IDENTIFICATION

Product Code: DIGITAL-8-28-U-SYM.

Product Name: Single Precision Decimal-to-Binary Conversion and Input ASR 33, Signed or Unsigned

Date Created: January 14, 1966

Maintainer: Software Service Group
1. ABSTRACT
 This routine accepts a string of up to four decimal digits (single precision for the PDP-8) from the Teletype keyboard and converts it to the corresponding 2's complement binary number.
 The string may contain as legal characters a sign (+, -, or space) and the digits from 0 - 9. If the first legal character is not a sign, the conversion is unsigned. A back arrow (←) at any point in the string erases the current string and allows the operator to reenter the correct value. Any character after the first, other than another digit or back arrow causes the conversion to terminate and is found in location SISAVE within the subroutine.
2. PRELIMINARY REQUIREMENTS
2.1 Storage
 This subroutine requires 74 core locations.
2.2 Equipment
 Basic PDP-8 with ASR 33
3. LOADING OR CALLING PROCEDURE
3.1 Loading
 The symbolic tape provided may be assembled with the user's main program by either PAL III or MACRO-8. The symbolic tape has neither an origin setting nor a terminating "$", but does have a PAUSE pseudo-instruction at the end.
3.2 Calling Sequence
 The subroutine is called by an effective JMS to location SICONV. Return is to the location immediately following the calling JMS with the binary number in the AC (accumulator).
4. USING THE ROUTINE
4.1 Errors in Usage
 If a sign (+, −, or space) precedes the string of decimal digits, the maximum decimal number correctly accepted is 2047 (2^{11} − 1). The sign, if any, must appear first. If a sign does not precede the string of decimal digits, the maximum decimal number correctly accepted is 4095 (2^{12} − 1).
4.2 Recovery from Such Errors
 If either of these maxima is exceeded, the results are unspecified.
5. RESTRICTIONS
5.1 Status Active Registers
 The status of the AC and link is not preserved.
5.2 Status Hardware
 This subroutine should not be used when the interrupt is on.
5.3 Miscellaneous
 The magnitude restrictions on numbers are described in section 4.1.
6. DESCRIPTION

6.1 Discussion

This subroutine converts to the binary equivalent a signed or unsigned string of decimal numbers read from the console keyboard of the PDP-8. If a minus sign is specified, the results are in 2's complement negative form. The first character is examined and, if it is a sign (+, −, or space), a switch is set to provide the correct sign for the conversion. Regardless, a switch is set after the first character to terminate conversion if a character other than a decimal digit or rub out appears. If a back arrow appears at any time, the conversion is reinitialized and the subroutine waits for the correct entry.

The last four bits of the ASCII code for each of the decimal digits are identical to the standard 8-4-2-1 BCD code. Thus, the BCD digit is extracted from the 8-bit code by the AND instruction with a "mask" of 17. When the first BCD digit comes in, it is added to a cleared location (SJHOLD) in memory and stored back in that location. When the next legal character comes in, location SJHOLD is multiplied by 10, then added to the BCD code of the character and returned to location STORE. This sequence holds true for a decimal number of any arbitrary length.

6.2 Example and/or Application

Since the PDP-8 can add and shift easily, the multiplication by 10 can be accomplished in three instructions. Since a shift left is equivalent to a multiplication by 2, a double shift left is equivalent to a multiplication by 4. Assume that the number currently in STORE is 5, and the new code just coming in is the number 1 stored in HOLD. The program sequence to perform the multiplication and storage is as follows:

<table>
<thead>
<tr>
<th>Instruction Sequence</th>
<th>Comment</th>
<th>Contents of AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>/Load C(STORE) into AC</td>
<td>000 000 000 101</td>
</tr>
<tr>
<td>TAD STORE</td>
<td>/Multiply C(STORE) by 4</td>
<td>000 000 010 100</td>
</tr>
<tr>
<td>CLL RTL</td>
<td>/Add STORE giving C(STORE) by 5</td>
<td>000 000 011 001</td>
</tr>
<tr>
<td>TAD STORE</td>
<td>/Multiply by 2 giving C(STORE) by 10</td>
<td>000 000 110 010</td>
</tr>
<tr>
<td>CLL RAL</td>
<td>/Add in the next number</td>
<td>000 000 110 011</td>
</tr>
<tr>
<td>TAD HOLD</td>
<td>/Store back into STORE and return to wait for next character</td>
<td>000 000 000 000</td>
</tr>
</tbody>
</table>

The number residing in location STORE is 0063_8 or 0051_10.
If the next number to come in were "9," using the same sequence and conditions, the result would be 001 000 000 111, the binary equivalent of 519.

6.3 Scaling
This subroutine assumes an integral decimal number (signed or unsigned) and yields an integral binary equivalent (signed or unsigned respectively).

7. METHOD
The algorithm used is illustrated above (6.2) with details shown in the listing (10.1).

8. FORMAT
8.1 Input
The input string may or may not contain a sign (+, −, or space). Any character other than a sign, 0−9, or back arrow causes the subroutine to terminate, as does a sign in any but the first position.

8.2 Core Data
The terminating character is found in location SISAVE.

8.3 Output
Spacing, tabulation, carriage return, etc., are not provided for in this subroutine. See DIGITAL-8-19-U-Sym which contains short subroutines for the latter purposes.

9. EXECUTION TIME
9.1 Average
This subroutine is input limited at a maximum of 10 hz.

10. PROGRAM
10.1 Program Listing

/SINGLE PRECISION DECIMAL INPUT FROM KEYBOARD
/CALLING SEQUENCE: JMS SICONV
/ACC IGNORED, RETURN WITH BINARY WORD IN ACC

0200 0000 SICONV, 0
0201 7300 CLA CLL
0202 1274 TAD SISET1 + 1 /INITIALIZE PROGRAM SWITCHES
0203 3232 DCA SICTRL
0204 1274 TAD SISET1 + 1
0205 3224 DCA SIXSW1
0206 3310 DCA SIHOLD
0207 3311 DCA SINEG1 /CLEAR NEGATIVE SWITCH
0210 5257 JMP SINPUT
0211 3307 SIPROC, DCA SISAVE
0212 1307 TAD SISAVE /STORE AND THE PROCESS CHARACTER
0213 1301 TAD SIRBUT
0214 7450 SNA /IS IT A "BACK-ARROW" (IE. ERASE) KEY
0215 5201 JMP SICONV + 1 /YES, REINITIALIZE
0216 1302 TAD SIM260
0217 7510 SPA /IS IT LESS THAN 260 (IE. "0")
0220 5232 JMP SICTRL /YES. TRANSFER TO SEE WHAT CHAR. IT IS
0221 1303 TAD SIM271
0222 7740 SMA SZA CLA /IS IT GREATER THAN 271 (IE. "9")?
0223 5232 JMP SICTRL /YES, TRANSFER TO SEE WHAT CHARACTER IT
0224 7300 SIXSW1, CLA CLL /NO, FIRST CHARACTER WAS A DECIMAL DIGIT
0225 1231 TAD .+4 /CLOSE SWITCH TO GO TO "SINMBR" NEXT
0226 3224 DCA .-2
0227 1245 TAD SINMBR -1 /SET SWITCH TO SENSE TERMINATING CHAR.
0230 3232 DCA SICTRL
0231 5246 JMP SINMBR
0232 7300 SICTRL, CLA CLL /CONTINUE CHECKING
0233 1307 TAD SISAVE
0234 1304 TAD SIMSPC
0235 7450 SNA /IS IT A SPACE?
0236 5274 JMP SISET1 + 1 /YES, SET SWITCH TO SENSE TERM. CHAR.
0237 1305 TAD SIMPLS
0240 7450 SNA /IS IT A "PLUS"?
0241 5274 JMP SISET1 + 1 /YES, SET SW TO SENSE TERM. CHAR.
0242 1306 TAD SIMMNS
0243 7650 SNA CLA /IS IT A MINUS?
0244 5273 JMP SISET1 /YES, SET NEGATIVE X SWITCH AND TERM SW.
0245 5264 JMP SISEND /NO, IT WAS A TERMINATING CHAR.
0246 1310 SINMBR, TAD SIHOLD /MULTIPLY CURRENT ASSEMBLED NUMBER BY 10
0247 7106 CLL RTL
0250 1310 TAD SIHOLD
0251 7004 RAL
0252 3310 DCA SIHOLD
0253 1307 TAD SISAVE /PICK UP CURRENT DIGIT
0254 0300 AND SIMASK /MASK OFF THE HIGH ORDER BITD
0255 1310 TAD SIHOLD /ADD TO ASSEMBLED NUMBER
DIGITAL-8-28-U-SYM

0256 3310 DCA SIHOlD /STORE BACK IN SIHOlD
0257 6031 SINPUT, KSF /INPUT ROUTINE
0260 5257 JMP .-1
0261 6036 KRBl
0262 6046 TLS
0263 5211 JMP SIPROC
/TERMINATING ROUTINE
0264 7300 SIEND, CLA Cll
0265 1311 TAD SINEG1
0266 7010 RAR /PUT NEGATIVE SWITCH INTO LINK
0267 1310 TAD SIHOlD
0270 7430 SZl
0271 7041 CMA IAC /YES, NUMBER NEGATIVE. COMPLEMENT
0272 5600 JMP I SOCONV /RETURN.
0273 2311 SISEPl, ISZ SINEG1 /SET NEGATIVE SWITCH
0274 7300 CLA Cll
0275 1245 TAD SINMBR -1 /CLOSE SW TO TRANSFER TO TERM.
0276 3232 DCA SICTRL
0277 5257 JMP SINPUT
/CONSTANTS AND VARIABLES
0300 0017 SIMASK, 17 /CODE FOR ERASE
0301 7441 SIRBUT, -337 /NUMBER USED TO GENERATE CODE "260"
0302 0057 SIM260, 57 /NUMBER USED TO GENERATE CODE "271"
0303 7767 SIM271, -11
0304 7540 SIMSPC, -240 /CODE FOR SPACE
0305 7765 SIMPLS, -13 /NUMBER USED TO GENERATE CODE "253" (+)
0306 7776 SIMMNS, -2 /NUMBER USED TO GENERATE CODE "255" (-)
0307 0000 SISAVE, 0 /STORAGE LOCATIONS
0310 0000 SIHOlD, 0
0311 0000 SINEG1, 0
11. DIAGRAMS
11.1 Flow Chart

ENTRY

INITIALIZE & ZERO ASSEMBLY LOCATIONS

ERASE NUMBER

WAIT FOR INPUT FROM KEYBOARD

A BACKARROW?

NO

LESS THAN 260?

NO

GREATER THAN 271?

NO

MULTIPLY PARTIALLY ASSEMBLED NUMBER BY 10

ADD INCOMING DECIMAL DIGIT

YES

A "-"?

NO

A "+"?

NO

A "SPACE"?

NO

FIRST CHARACTER IS A TERMINATOR

FIRST CHARACTER?

YES

NO

SET SIGN INDICATOR TO NEGATIVE

NUMER NEGATIVE?

YES

FORM 2'S COMPLEMENT

NUMBER IN AC

EXIT
12. REFERENCES

12.1 Other Library Programs
DIGITAL-8-19-U-Sym