HP 18267A X.25 Test Library and Emulator
for the HP 4952A Protocol Analyzer
User's Guide
Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. No part of this document may be photocopied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. The information contained in this document is subject to change without notice.

If your software application or hardware should fail, contact your local Hewlett-Packard Sales Office listed in the protocol analyzer operating manual.

Colorado Telecommunications Division
5070 Centennial Boulevard
Colorado Springs, CO, 80919-2497
Contents

Notice .. 2
Contents ... 3
Illustrations .. 7
Printing History ... 8
Syntax Conventions .. 9

Chapter 1 - Introduction

Description .. 1-1
Applications ... 1-2
How to Use this Manual ... 1-2
Equipment Supplied ... 1-3

Chapter 2 - Loading The Test Library and Emulator

Introduction .. 2-1
Connect an Interface Pod ... 2-2
Turn ON the Protocol Analyzer ... 2-2
Make a Working Copy of the Master Disc .. 2-3
Loading the X.25 Level 2 Emulator and Tests ... 2-4
 Loading the X.25 Level 2 Emulator .. 2-5
 Loading a Test from the Test Library ... 2-6

Chapter 3 - Getting Started - X.25 Setup Menus

Setup Menus Overview ... 3-2
Level 1 Setup Menu ... 3-2
Level 2 Setup Menu ... 3-3
Level 3 Setup Menu ... 3-6
 Virtual Call LCNs ... 3-7
 Auto P(s), P(r) ... 3-8
 Auto Level 3 RR Transmission .. 3-8

Contents - 3
Chapter 4 - Using the Emulator to Create a Test

Emulation Editor Description... 4-2
Level 1 Emulation.. 4-2
Level 2 Emulation - The Set Lead Command... 4-3
 Set Lead Command - Set Lead "ON".. 4-3
 Set Lead Command - Set Lead "OFF".. 4-3
Level 3 Emulation - The Send Statement.. 4-4
 Send Statement.. 4-4
Executing the Emulate Menu... 4-5
Setting Up the Emulator.. 4-6
Configuring the Level 1 Setup Menu.. 4-7
Configuring the Level 2 Setup Menu.. 4-8
 Device Emulating.. 4-8
 Frame Size (N1).. 4-9
 Window Size (k)... 4-9
 Timer T1... 4-9
 Restart Count (N2).. 4-9
Extended Control.. 4-9
Configuring the Level 3 Setup Menu.. 4-10
 Virtual Call LCNs.. 4-10
 Auto P(s), P(r)... 4-11
 Auto Level 3 RRs.. 4-11
 Auto Restart Conf... 4-11
 Auto Call Acc/Con, Clr Cnf... 4-11
 Auto Address Insertion .. 4-11
 Auto LCN Insertion.. 4-11
Configure the Call Setup Menu.. 4-12
Display Definition Setup Menu... 4-12

Contents - 4
Chapter 5 - Procedure for Installing and Troubleshooting
X.25 Equipment and Networks

Using the X.25 Test Library and Emulator .. 5-1
Step 1: Determining the Equipment Parameters.. 5-1
 Level 1 Setup Parameters ... 5-2
 Level 2 Setup Parameters ... 5-3
 Level 3 Setup Parameters ... 5-3
 Determining the Subscriber Equipment Parameters .. 5-4
Step 2: Ensuring Network/Subscriber Parameter Consistency 5-5
Step 3: Ensuring Network/Subscriber Operation Before Installation 5-5
Step 4: Ensuring Network/Subscriber Operation After Installation 5-5
Installation Record ... 5-6

Chapter 6 - X.25 Test Library Emulate Menu Listings

LEVEL1_MON ... 6-1
 Test Results ... 6-1
 LEVEL1_MON Listing .. 6-2
DTE_SUBNET/DCE_SUBNET .. 6-3
 Test Results ... 6-3
 DCE_SUBNET Listing ... 6-4
DTE_FRAME/DCE_FRAME ... 6-10
 Test Setup .. 6-10
 Test Results ... 6-11
 DCE_FRAME Listing .. 6-11
DTE_LCN1/DCE_LCN1 .. 6-15
 Test Setup .. 6-15
 Test Results ... 6-15
 DCE_LCN1 Listing .. 6-16
DTE_LCN2/DCE_LCN2 .. 6-20
 Test Parameters .. 6-20
 Test Results ... 6-20
 DCE_LCN2 Listing .. 6-21
DTE_WINDOW/DCE_WINDOW .. 6-23
 Test Setup .. 6-23
 Test Results ... 6-23
 DCE_WINDOW Listing ... 6-24
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE WINDOW Listing</td>
<td>6-24</td>
</tr>
<tr>
<td>DTE_CALL_1/DCE_CALL_1</td>
<td>6-27</td>
</tr>
<tr>
<td>Test Setup</td>
<td>6-27</td>
</tr>
<tr>
<td>Test Results</td>
<td>6-27</td>
</tr>
<tr>
<td>DCE_CALL_1 Listing</td>
<td>6-29</td>
</tr>
<tr>
<td>DTE_CALL_M/DCE_CALL_M</td>
<td>6-32</td>
</tr>
<tr>
<td>Test Setup</td>
<td>6-32</td>
</tr>
<tr>
<td>Test Results</td>
<td>6-32</td>
</tr>
<tr>
<td>DCE_CALL_M Listing</td>
<td>6-34</td>
</tr>
<tr>
<td>DTE_FACIL/DCE_FACIL</td>
<td>6-38</td>
</tr>
<tr>
<td>Test Setup</td>
<td>6-38</td>
</tr>
<tr>
<td>Test Results</td>
<td>6-38</td>
</tr>
<tr>
<td>DCE_FACIL Listing</td>
<td>6-39</td>
</tr>
<tr>
<td>MON_TEST</td>
<td>6-42</td>
</tr>
<tr>
<td>Test Setup</td>
<td>6-42</td>
</tr>
<tr>
<td>Test Results</td>
<td>6-42</td>
</tr>
<tr>
<td>MON_TEST Listing</td>
<td>6-44</td>
</tr>
</tbody>
</table>
Illustrations

2-1. Connect an Interface Pod 2-2
2-2. Top Level Menu 2-3
2-3. Selecting the X.25 Level 2 Emulator 2-5
2-4. Selecting a Test From the Test Library 2-6

3-1. X.25 Setup Menu 3-1
3-2. X.25 Emulator Level 1 Setup Menu 3-3
3-3. X.25 Emulator Level 2 Setup Menu 3-4
3-4. X.25 Emulator Level 3 Setup Menu 3-6
3-5. Display 3 Selected in Level 1 Setup Menu 3-11
3-6. X.25 Display Definition Menu 3-12
3-7. One or Two Column Menu 3-13
3-8. X.25 Display Header Selections 3-15

4-1. Emulating the Network 4-6
4-2. Level 1 Setup Menu 4-7
4-3. Level 2 Setup Menu 4-8
4-4. Level 3 Setup Menu 4-10

5-1. Network Test Setup 5-2
5-2. Subscriber Test Setup 5-4

6-1. DTE_CALL_1/DCE_CALL_1 Softkey Tree 6-28
6-2. DTE_CALL_M/DCE_CALL_M Softkey Tree 6-33
New editions are complete revisions of the manual. Update packages (formerly known as "Manual Changes") are issued between editions. They contain additional and replacement pages to be merged into the manual by the customer. The dates on the title page change only when a new edition or a new update is published. No information is incorporated into a reprinting unless it appears as a prior update. The edition does not change when an update is incorporated.

Many product updates and fixes do not require manual changes and, conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one-to-one correlation between product updates and manual updates.

Edition 2 ... January 1989
Syntax Conventions

The following symbols, abbreviations, and other conventions are used in this publication.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><Setup Menu></td>
<td>A softkey.</td>
</tr>
<tr>
<td>[RESET]</td>
<td>A keyboard entry</td>
</tr>
<tr>
<td>[CNTL] character</td>
<td>A control character entry from the keyboard where both the [CNTL] (control) key and an alphanumeric key are pressed at the same time. To enter [CNTL] U press the control and the U character key.</td>
</tr>
<tr>
<td>[SHIFT] <Softkey></td>
<td>A keyboard entry where both the [SHIFT] and a softkey are pressed at the same time to select an auxiliary softkey function.</td>
</tr>
<tr>
<td>BSC</td>
<td>Within menus or screens, a parameter that must be entered in the exact format shown.</td>
</tr>
<tr>
<td>filename</td>
<td>Within menus or screens, a user-defined parameter.</td>
</tr>
<tr>
<td>Message</td>
<td>Error message or analyzer text display.</td>
</tr>
<tr>
<td>WARNING</td>
<td>An operating procedure, practice, etc., which, if not correctly followed, could result in personal injury or loss of life.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>An operating procedure, practice, etc. which, if not strictly observed, could result in damage to, or destruction of, equipment or software.</td>
</tr>
<tr>
<td>NOTE</td>
<td>Explanatory comments or supplementary instructions are preceded by a Note label.</td>
</tr>
</tbody>
</table>

Syntax Conventions - 9
Introduction

Description

The HP 18267A X.25 Test Library and Emulator makes X.25 troubleshooting, especially at installation, easier.

The enhancements to the standard HP 4952A Protocol Analyzer made by this application are:

- Automatic lead driving for Level 1 (full duplex only).
- Extended Control support for X.25 Level 2.
- Complete Level 2 emulation.
- Partial Level 3 emulation.
- An installation procedure.
- Prewritten, ready to use X.25 tests.
Applications

This product can be used where X.25 data travels over an LAPB link using RS-232C/V.24, RS-449, V.35, X.21, or Mil-188C as a physical interface.

To use the HP 18267A X.25 Test Library and Emulator in an efficient way:

Use the prewritten tests of the Test Library and installation procedure in Chapter 5 to help during installation of X.25 equipment.

Modify the prewritten tests for installation testing.

Use the prewritten tests as examples to write custom tests for troubleshooting X.25 networks and equipment during installation, maintenance, or design.

How to Use This Manual

If you are a novice X.25 user, start from the beginning and read through each chapter in order. If you are familiar with X.25, look at the description of the Setup Menus (Chapter 3), and Creating a Test (Chapter 4) for a hands-on demonstration of the capabilities. Chapter 5 contains an installation procedure. Chapter 6 contains listings of the X.25 Test Library contained on the HP 18267A master disc.

If you would like an overview of what is contained in each chapter, refer to the Table of Contents which describes the objectives and major headings for each chapter. The chapters are arranged in order of increasing difficulty, with each chapter building on the concepts introduced in the preceding one.

This manual describes the features of the HP 18267A X.25 Test Library and Emulator with minimal references to HP 4952A protocol analyzer operation. If you would like to review the basic HP 4952A functions and features, refer to the HP 4952A Operating Manual.
Equipment Supplied

The HP 18267A X.25 Test Library and Emulator package includes the following:

- Master Disc
- Blank Disc
- User’s Guide

The HP 18267A master disc contains the X.25 Level 2 Emulator, and a X.25 Test Library of prewritten tests.

The User’s Guide provides training and reference information.
Loading the Test Library and Emulator

Introduction

This chapter describes how to load the X.25 Level 2 Emulator and tests into the HP 4952A Protocol Analyzer. Only one test can be loaded at a time.

For detailed information concerning voltage and grounding requirements, power cords, and instrument operation, refer to the HP 4952A Protocol Analyzer Operating Manual.

CAUTION

Always turn OFF the Protocol Analyzer before connecting or disconnecting an Interface Pod.
Connect an Interface Pod

Make certain that the Protocol Analyzer is turned OFF.

Connect the Interface Pod cable to the connector on the back panel of the Protocol Analyzer.

Turn ON the Protocol Analyzer

Press the line switch to "1" on the back panel to turn ON the HP 4952A Protocol Analyzer. The Protocol Analyzer begins an automatic self test sequence. After the tests are completed, the top level menu is displayed.
If errors have been detected during the test, a list of errors is displayed. You can get to the top level menu from the error display by pressing [EXIT]. In this case, however, proper operation cannot be assumed; contact your Hewlett-Packard Sales and Service Office for assistance.

The top level menu is very important because it gives you access to all of the features of the Protocol Analyzer.

![Image of Protocol Analyzer Menu]

Figure 2-2. Top Level Menu

After the application is loaded, the top level display will change as shown above in figure 2-2.

Make a Working Copy of the Master Disc

Hewlett-Packard recommends that you make a working copy of the master disc. Use the working copy for day-to-day use and retain the master as a backup in case your working copy of the disc fails due to wear or accidental erasure.
Copying an application program for any reason other than your own use violates copyright laws.

The HP 18267A Test Library and Emulator package includes a master disc and a blank disc. The blank disc is provided so you can make a working copy of the master disc. If you are not familiar with the basic features of the Protocol Analyzer, you should consult the HP 4952A Protocol Analyzer Operating Manual for the necessary procedures.

Loading the X.25 Level 2 Emulator and Tests

The X.25 Level 2 Emulator cannot be used concurrently with other applications.

Load the HP 18267A disc into the HP 4952A Protocol Analyzer.
Loading the X.25 Level 2 Emulator

1. From the top level menu, press [MORE], then <Mass Store>.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE_LCN1</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_LCN2</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_WINDOW</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_CALL_M</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_CALL_1</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_FRAME</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_FACIL</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>MON_TEST</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>X25_EMULAT</td>
<td>Applic Prog</td>
<td>89</td>
</tr>
</tbody>
</table>

Figure 2-3. Selecting the X.25 Level 2 Emulator
2. Move the cursor over the file \texttt{X25_EMULAT}, and press <Load>.

3. Press <Execute> and the X.25 Level 2 Emulator will be loaded.

Loading a Test from the Test Library

1. From the top level menu, press [MORE], then <Mass Store>.

![Function: Directory MSD = Disc](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE_CALL_3</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>LEVI_MON</td>
<td>Menu</td>
<td>33</td>
</tr>
<tr>
<td>DCE_SUBNET</td>
<td>Menu</td>
<td>33</td>
</tr>
<tr>
<td>DCE_LCN1</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_LCN2</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_WINDOW</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_CALL_M</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_CALL_1</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
<tr>
<td>DCE_FRAME</td>
<td>Ext Menu</td>
<td>37</td>
</tr>
</tbody>
</table>

3/30/88 Call, Data, Clear 3 CHAN

Space Available 1964 Sectors

![MSD= Dir Load Store Del Recover](image)

Figure 2-4. Selecting a Test From the Test Library

2. Move the cursor over the test of your choice, and press <Load>. See Chapter 6 for file names of the tests and their descriptions.

3. Press <Execute> and the test will be loaded into the Emulation menu.
This chapter explains the X.25 setup menus and display features. The following descriptions and displays assume that the X.25 Level 2 Emulator is loaded.

From the top level menu, press `<Setup>` to access the X.25 Setup menu. See figure 3-1.

![X.25 Setup Menu]

Figure 3-1. X.25 Setup Menu
If you haven't loaded the X.25 Level 2 Emulator, follow the instructions in Chapter 2. When the X.25 Level 2 Emulator is loaded, it replaces the top level menu softkey <Sim Menu> with <Emul Menu>. The <Emul Menu> softkey lets you create and edit X.25 emulation menus which are similar to simulate menus.

Setup Menus Overview

When you load the X.25 Level 2 Emulator application, five setup menus are provided. The first four represent different levels of X.25 control, and the fifth determines how the data will be displayed in the Examine Data menu, or during run time. In order to correctly emulate part of an X.25 Network, the different X.25 parameters must be chosen correctly.

Every time you save an Emulate menu, the current Setup parameters will be saved with that test.

Level 1 Setup Menu

The Level 1 Setup menu can be reached by pressing the <Setup> menu key from the top level menu, then pressing <Lev 1 Setup>. When you load the Emulator, the analyzer is automatically set up for X.25 protocol. The default speed, data code, and other parameters are the most common used. See figure 3-2.

In order to use the HP 4952A with other protocols, the X.25 Level 2 Emulator application must be deleted.

Auto Configure can be used to determine the Level 1 Setup parameters of an X.25 line with data flowing.
Level 2 Setup Menu

From the top level menu press `<Setup>`, then press `<Lev 2 Setup>`. The protocol analyzer's display changes as shown in Figure 3-3. The X.25 Level 2 parameters are discussed on the next page.
The Level 2 Setup Menu is used to modify LAPB Data Link Control parameters that can affect the operation of Emulation menus. The Level 2 parameters are listed below:

Device Emulating
- Determines whether the HP 4952A is emulating the network or subscriber.
- The Address field will change from Command Address 03 Hex and Response Address 01 HEX, to 01 and 03 HEX respectively.

Frame size (N1)
- Defaults to 9999 bytes. During run time no received information frame (I-Frame) can be larger than the set value in the Frame Size. If an information frame is received that is longer than this set value, the emulator will issue a frame reject command. Frames transmitted by the HP 4952A may be any length up to 253 bytes including the FCS bytes.
<table>
<thead>
<tr>
<th>Window Size (k)</th>
<th>Determines the number of frames that can be sent from the HP 4952A before an acknowledgement must be received. The default window size is 2. Other common sizes are 1, and 3 to 7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer</td>
<td>T1 timer value is the length of time allowed between the transmission of a frame and the acknowledgment of that frame by the receiver. The default is 3000 milliseconds.</td>
</tr>
<tr>
<td>Retry Count (N2)</td>
<td>The retry count determines how many times a frame will be transmitted from the HP 4952A without an acknowledgement requested. If the Retry Count is exceeded, then the link is brought down. The default Retry Count is 20.</td>
</tr>
<tr>
<td>Extended Control</td>
<td>Determines whether the control field of a frame is one or two bytes long, and whether the N(S) and N(R) values will be Modulo 8 or Modulo 128. The default is Off which indicates Modulo 8</td>
</tr>
</tbody>
</table>

X.25 Setup Menus 3-5
Level 3 Setup Menu

The Level 3 Setup menu is reached from the top level menu by pressing <Setup>, then <Lev 3 Setup>. See figure 3-4. The Level 3 Setup choices are described on the next page.

Figure 3-4. X.25 Emulator Level 3 Setup Menu
The X.25 Level 2 Emulator is a partial Level 3 emulator. In order to perform many of the automatic Level 3 functions, the emulator keeps track of the call activity on up to eight logical channels at any one time.

The Level 3 Setup menu supplies many automatic level 3 features. These features may be selected On or Off in the Level 3 Setup menu. These include:

- **Virtual Call LCNs** determines the incoming call LCN range accepted by the emulator.

- **Auto P(s), P(r) for up to 8 logical channels.**

- **Auto level 3 RR transmission on receipt of a Data packet.**

- **Auto Restart Confirmation transmission on receipt of a Restart Request packet.**

- **Auto Call Accept/Call Confirmation, and Auto Clear Confirmation transmission on receipt of a Call Request/Incoming Call packet and a Clear Request packet respectively.**

- **Auto Address Insertion into Call Request/Incoming Call packets.**

- **Auto LCN Using Counter 5** inserts the value of counter 5 into the LCN field of all outgoing packets except Restart packets.

Virtual Call LCNs

The Virtual Call LCN field determines the LCN range of incoming calls that will be accepted.

The emulator automatically keeps track of the call activity on up to 8 logical channels at any one time. The numbers of the logical channels are determined in real time based on Call Request/Incoming Call packets, Clear Request/Clear Indication packets, Restart Request/Restart Request packets, and Data packets on LCNs which have not previously had a Call Request/Incoming Call. Data packets falling into the last category are assumed to be on Permanent Virtual Circuits and one of the available logical channels will be allocated to that channel number until a Restart Request/Restart Indication packet is detected on the line (either transmitted or received).
Auto P(s), P(r)

The emulator automatically keeps track of the P(s) and P(r) counts for the first 8 LCNs that become active after the emulator is started (either Permanent Virtual Circuits PVCs or Switched Virtual Circuits SVCs). If 8 LCNs are currently being used, and additional call requests are transmitted or received, the emulator will not keep track of the P(s) and P(r) counts for those additional logical channels.

When a packet is transmitted that has a P(s) or P(r) field, the emulator automatically inserts the correct value based on the LCN for those fields overriding the send string values.

Auto Level 3 RR Transmission

If this option is selected, an RR packet will be transmitted automatically when a Data packet is received. The P(r) count will be the P(s) count for incoming packets plus one.

Auto Restart Confirmation Transmission

When a Restart Request/Restart Indication packet is received by the emulator, a Restart Confirmation packet is automatically transmitted on LCN 0. The P(s) and P(r) counts for the 8 logical channels that can be followed are set to 0.

Auto Call Accept/Call Confirmation and Clear Confirmation Transmission

When a Call Request or Incoming Call packet is received by the emulator, a Call Accept/Call Confirmation packet is automatically transmitted on the same LCN. This will occur if the requested LCN has not already been allocated, and if the requested LCN is within the range specified in the Virtual Call LCNs field of the Level 3 Setup menu. If the call is successful, the emulator will begin to follow the P(s) and P(r) counts for that channel until a clear is received for that channel or until a Restart Confirmation packet is detected on the line.

If the LCN has already been allocated or the LCN is not within the specified range, a Clear Request/Clear Indication packet is automatically transmitted with 00 00 as the cause and diagnostic codes.

When a Clear Request/Clear Indication packet is received by the emulator, a Clear Confirmation packet is automatically transmitted on the same LCN. The User Data field of the packet is left empty. The emulator will also stop following the P(s) and P(r) counts for that channel.
Auto Address Insertion from Call Setup Menu

Call Request/Incoming Call packets transmitted by the emulator will have their Calling and Called address fields automatically entered on transmission using information which has been entered into the Call Setup menu. You can define the called and calling addresses for up to six calls in the Call Setup menu. The first call to be initiated by the emulator will go to the address defined for the first call, the second call to the address defined for the second call, the seventh call to the address defined for the first call, the eighth call to the address defined for the second call, etc. Refer to the Call Setup menu description for more information.

Auto LCN Using Counter 5

For all outgoing packets the emulator will automatically insert the counter 5 value into the LCN field except for the following three exceptions:

1. All Restart packets will have LCN = 0 regardless of the value of counter 5.

2. All automatic response packets such as Call Connect, RR, will use the LCN of the packet they are responding to.

3. If the LCN field of the send string is not zero, the packet will use the LCN inserted into the send string.
In order to preset counter 5 to a known value such as 1, use the following Emulate menu commands:

- **Reset Counter 5**
- **Increment Counter 5 by 1**

The Reset Counter 5 command resets Counter 5 to 0. The Increment Counter 5 by 1 command sets Counter 5 to 1. The first LCN inserted will be 1. The next will be 2, etc.

Counter 5 can be decremented by adding 65535 to it. The following example describes how this works:

Assuming the current value of counter 5 is 250

Increment Counter 5 by 65535

The next LCN used would be 249 due to the following reason:

The value 65535 is FFFF Hexadecimal. By adding FFFF to 00FA (250 decimal) the result will be:

\[
\begin{align*}
1111 \ 1111 \ 1111 \ 1111 &= \text{FFFF Hex} = 65535 \text{ Dec} \\
+ 0000 \ 0000 \ 1111 \ 1010 &= \text{00FA Hex} = 250 \text{ Dec} \\
\hline
0000 \ 0000 \ 1111 \ 1001 &= \text{00F9 Hex} = 249 \text{ Dec}
\end{align*}
\]

Call Setup Menu

The Call Setup menu lets you enter up to six calling and Called address combinations which will be automatically inserted into Call Request/Incoming Call packets transmitted by the emulator if auto address insertion has been selected in the Level 3 Setup menu. Assuming that called addresses have been specified for each of the six calls, the first call packet will go to the first call address specified, the second to the second address, etc. The seventh call will go to the first address, the eighth to the second address, etc.

If any of the called addresses are not specified, the next called address in the list will be used continuing the rotation. If only one called address is specified, all outgoing calls will be sent to that one address. If no called addresses are specified, all call packets will be sent out with the address length field indicating 0 and no address bytes.
that one address. If no called addresses are specified, all call packets will be sent out with the
address length field indicating 0 and no address bytes.

No "dummy" characters need be entered into the Emulate menu "Send" string for either the
address length or the addresses themselves. Any Facility field information should be entered
immediately after the Packet Type Identifier field in the "Send" string.

Display Definition Setup Menu

The <Disp Def> Setup menu option lets you define up to five different custom display formats.
Five predefined display formats are loaded with the X.25 Level 2 Emulator.

![Figure 3-5. Display 3 Selected in Level 1 Setup Menu](image)

Once defined, the X.25 user defined displays are selected in the Level 1 Setup menu’s Display
field, or in the Examine Data menu. See figure 3-5 for an example.
Setting Up X.25 User Definable Displays

The X.25 user definable display menu lets you define the X.25 display format, and to define where the subscriber is connected to the network (physical DTE or the physical DCE).

To define an X.25 display perform the following:

1. Press the <Set Up> key in the Top Level Menu.

2. Press the <Disp Def> key to access the X.25 Display Definition Menu shown in figure 3-6.

3. Select the X.25 Display Menu (one through five) that you wish to define or modify.
4. Define the user definable display Column, Header, and Data Field parameters as follows:

a. Select either a one or two Column display format. See figure 3-7.

![Figure 3-7. One or Two Column Menu](image)

In one column format, subscriber information is displayed in normal video, and network information is displayed in inverse video.

In two column format, subscriber information is displayed in the left half of the display, and network information is displayed in the right half of the display.

The one column format can contain up to 32 characters per line. The two column format can contain up to 15 characters per line. Each field, i.e., Addr, Ns, P/F etc., takes up a certain amount of header space.
The amount of header space occupied by each field is given in the "X.25 Display Header Selection" section in this chapter. A field which ends after the header line will cause the error message "Field extends past header line" to appear.

When using the two column display, all fields entered will appear in both header blocks.

b. Define the header information. See figure 3-8. Use softkeys to select fields for header definition. Fields are displayed in half bright video in the header block at cursor position. Spaces between fields must be entered by you (use arrow key) if you desire them. Fields can not extend past end of line. You may overwrite a field by placing the cursor over that field and selecting another field.

The entire header can be cleared using the Clear Header softkey. The fields can be deleted by using the Delete Field softkey. See figure 3-8 for a complete list of the header fields and information.
The X.25 header selections are described in the section "X.25 Display Header Selection" on the next page.

c. Define the Data Field Parameters. Not necessary if data is not specified in header. These parameters enable you to define where in a packet the data field will start, and how long it will be.

The "Field Start Octet" field lets you define on which octet to start the display. The "Field Length" field lets you specify how many octets (from the starting octet) that you want to display.

d. Press the [EXIT] key when you are finished.
X.25 Display Header Selection

The following table gives the amount of field space consumed in the header definition:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Abbreviation</th>
<th>Space used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Address</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>Frame Type</td>
<td>FType</td>
<td>5</td>
</tr>
<tr>
<td>Ns</td>
<td>Ns</td>
<td>3</td>
</tr>
<tr>
<td>Nr</td>
<td>Nr</td>
<td>3</td>
</tr>
<tr>
<td>P/F</td>
<td>PF</td>
<td>1</td>
</tr>
<tr>
<td>FCS</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>LCN</td>
<td>LCN</td>
<td>3</td>
</tr>
<tr>
<td>Packet Type</td>
<td>PkType</td>
<td>9</td>
</tr>
<tr>
<td>Ps</td>
<td>Ps</td>
<td>3</td>
</tr>
<tr>
<td>Pr</td>
<td>Pr</td>
<td>3</td>
</tr>
<tr>
<td>Data</td>
<td>dd...d</td>
<td>up to 32</td>
</tr>
<tr>
<td>Frame Arrival Time</td>
<td>FrTime</td>
<td>6</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>Mod</td>
<td>Mod</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>M</td>
<td>1</td>
</tr>
</tbody>
</table>

Frame Address (A)

The frame address (A) is displayed as a hex character.
Frame Type (FType)

All of the frame types are decoded and their 5 character abbreviations are as follows:

<table>
<thead>
<tr>
<th>Frame Type</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>INFO</td>
</tr>
<tr>
<td>Receive Ready</td>
<td>RR</td>
</tr>
<tr>
<td>Receive Not Ready</td>
<td>RNR</td>
</tr>
<tr>
<td>Reject</td>
<td>REJ</td>
</tr>
<tr>
<td>Set Asynchronous Balanced Mode</td>
<td>SABM</td>
</tr>
<tr>
<td>Set Async Balanced Mode Extended</td>
<td>SABME</td>
</tr>
<tr>
<td>Disconnect</td>
<td>DISC</td>
</tr>
<tr>
<td>Disconnected Mode</td>
<td>DM</td>
</tr>
<tr>
<td>Unnumbered Acknowledgement</td>
<td>UA</td>
</tr>
<tr>
<td>Frame Reject</td>
<td>FRMR</td>
</tr>
</tbody>
</table>

Ns and Nr

Ns and Nr require three display spaces each regardless of whether extended control is selected.

P/F (PF)

This field is a 1 when the P/F bit is set, and a blank when the P/F bit is not set.

FCS (F)

The FCS is displayed as "G" for good, "B" for bad and "A" for abort. The "B" and "A" blink to indicate an error.

LCN

LCN includes both the LCGN and the LCN. It is displayed as a hexadecimal number.
Packet Type (PkType)

All of the packet types are decoded and their 9 character abbreviations are as follows:

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Call</td>
<td>Inc Call</td>
</tr>
<tr>
<td>Call Request</td>
<td>Call Req</td>
</tr>
<tr>
<td>Call Connected</td>
<td>Call Con</td>
</tr>
<tr>
<td>Call Accepted</td>
<td>Call Acc</td>
</tr>
<tr>
<td>Clear Indication</td>
<td>Clr Ind</td>
</tr>
<tr>
<td>Clear Request</td>
<td>Clr Req</td>
</tr>
<tr>
<td>Clear Confirmation</td>
<td>Clr Conf</td>
</tr>
<tr>
<td>DCE Clear Confirmation</td>
<td>Clr Conf</td>
</tr>
<tr>
<td>DCE Data</td>
<td>Data</td>
</tr>
<tr>
<td>DTE Data</td>
<td>Data</td>
</tr>
<tr>
<td>DCE Interrupt</td>
<td>DCE Int</td>
</tr>
<tr>
<td>DTE Interrupt</td>
<td>DTE Int</td>
</tr>
<tr>
<td>DCE Interrupt Confirmation</td>
<td>Int Conf</td>
</tr>
<tr>
<td>DTE Interrupt Confirmation</td>
<td>Int Conf</td>
</tr>
<tr>
<td>DCE RR</td>
<td>RR</td>
</tr>
<tr>
<td>DTE RR</td>
<td>RR</td>
</tr>
<tr>
<td>DCE RNR</td>
<td>RNR</td>
</tr>
<tr>
<td>DTE RNR</td>
<td>RNR</td>
</tr>
<tr>
<td>DTE REJ</td>
<td>REJ</td>
</tr>
<tr>
<td>Reset Indication</td>
<td>Reset Ind</td>
</tr>
<tr>
<td>Reset Request</td>
<td>Reset Req</td>
</tr>
<tr>
<td>DCE Reset Confirmation</td>
<td>Reset Con</td>
</tr>
<tr>
<td>DTE Reset Confirmation</td>
<td>Reset Con</td>
</tr>
<tr>
<td>Restart Indication</td>
<td>Restart I</td>
</tr>
<tr>
<td>Restart Request</td>
<td>Restart R</td>
</tr>
<tr>
<td>DCE Restart Confirmation</td>
<td>Restart C</td>
</tr>
<tr>
<td>DTE Restart Confirmation</td>
<td>Restart C</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Diag</td>
</tr>
<tr>
<td>Registration Confirmation</td>
<td>Reg Conf</td>
</tr>
<tr>
<td>Registration Request</td>
<td>Reg Req</td>
</tr>
</tbody>
</table>

Ps and Pr

Ps and Pr require three display spaces each regardless of whether the packet specifies mod 8 or mod 128.
Data (dd...d)

Data is a generic field which you define. You can define the field to be any length up to 32 characters in a one column display or up to 15 characters in a two column display. You must also specify the frame octet with which the field is to begin. The data field can be displayed in either the data code selected in the setup menu or in hex.

This field allows you to display as much of the data in a data packet as desired up to the limit. It is also possible to display decoded data and undecoded data at the same time. For example, assume that the data field has been setup to be 1 octet long and to start at frame octet 5 (Packet Type Identifier field), and the packet type has been selected to be displayed.

The Data field decode will show the Packet Type Identifier in an undecoded format, and the Packet Type Identifier field will show the same information decoded to indicate the packet type as a mnemonic.

Frame Arrival Time (FrTime)

The frame arrival time is displayed ONLY during Examine Data. It is measured from the start of the run to the frame’s end flag. The time is displayed as a 6 digit number in milliseconds and is accurate to 1 millisecond.

Frame Arrival Time Overflow. An overflow occurs after 99999 milliseconds. If an overflow occurs, the result will be followed by an *. If a second overflow occurs, the * is no longer displayed.

Q, D and M

These fields are simply displayed as a 1 or a 0.

Mod

Modulo is displayed as either "8", "128", or Undefined (Und).
Defining the HP 4952A Connection Point

You can tell where the analyzer is connected to the network when capturing data, or where the analyzer was connected to the network when the buffer data was captured. If the proper connection point is indicated, the analyzer will decode information in the X.25 user definable display formats as follows:

For one column display formats:
 Data from Subscriber is in normal video.
 Data from the Network is in inverse video.

For two column display formats:
 Data from Subscriber is in normal video (left side of display).
 Data from Network is in inverse video (right side of display).

In addition, X.25 packets will be decoded into their proper mnemonics based on where the packet originated. For example, a packet with a Packet Type Identifier of 0B HEX will be decoded as a Call Request packet if the packet was sent by the Subscriber, or as an Incoming Call packet if the packet was sent by the Network.

The X.25 Display Definition menu as shown in figure 3-6, is a simplified diagram of two common type of Subscriber connections to an X.25 Network. The inverse video square(s) in each indicate where in the Network the HP 4952A is connected.

In figure 3-6, The analyzer may be connected either between the Subscriber and the first Modem, or between the second Modem and the Network.

To indicate the proper connection point, move the connection point indicator to the desired location using the <Conn Point> key. The connection point is toggled between the two possible connection points each time the <Conn Point> key is pressed.
Selecting a User Definable Display

The steps required to access the user definable displays are as follows:

1. Select \(<\text{Set Up}\)> in the main level menu, then press \(<\text{Lev 1 Setup}\)>.

2. Move the cursor into the Display field. The Display field softkeys will appear.

3. Select the X.25 display (one through five) that you wish to use.

4. Press \([\text{EXIT}]\) twice to return to the top level menu.

or

1. Select \(<\text{Examine Data}\)> in the main menu.

2. Press \([\text{MORE}]\) twice, then \(<\text{Chang Dsply}\)>.

3. Select the X.25 display (one through five) that you wish to use. After selecting the X.25 user-definable display you wish use, the display returns to the Examine Data menu with the cursor at the same frame.
Using the Emulator to Create a Test

This chapter explains how to setup the HP 4952A and create a test using the X.25 Level 2 Emulator. An example test is given and explained line by line. It is important to understand that you do not need to write your own tests. The example used in this chapter is similar to one of the Test Library Tests. The purpose of this chapter is to show how to write a test.

Here is the order in which this chapter is presented:

- Emulate menu
 - Level 1 Emulation (Special Considerations)
 - Level 2 Emulation (The Set Lead Command)
 - Level 3 Emulation (The Send Statement)
 - Executing the Emulate Menu

- Setting Up the Emulator
 - Configuring the Level 1 Setup Menu
 - Configuring the Level 2 Setup Menu
 - Configuring the Level 3 Setup Menu
 - Setup the Call Setup Menu
 - Selecting a Predefined Display Format

- Writing the Test

Given the following situation, an example test is written in the emulate menu to test X.25 equipment.

An HP 2334 PAD with an asynchronous terminal connected to port 3 is being installed on an X.25 Network. Port three of the PAD will be verified to operate correctly before it is connected to the Network. See figure 4-1. A call will be placed with the HP 4952A Protocol Analyzer through the PAD onto port 3 to the terminal connected to port 3. Data will be sent after the link has been established, then the call will be cleared.
This test, if successful, is a good indicator that the PAD will operate correctly when connected to the X.25 Network.

Emulation Editor Description

There are several prewritten emulation tests provided with the HP 18267A. See Chapter 5 for installation procedure which uses these tests. These tests may be used as is, modified, or you may create your own. To modify or create tests, the Emulate menu must be used. This chapter shows how to modify or create tests by demonstrating, with an example, the steps required.

The X.25 Level 2 Emulator application replaces the Simulate softkey `<Sim Menu>` with the `<Emul Menu>` softkey. The `<Emul Menu>` softkey lets you enter the Emulate menu where you can create and edit X.25 emulation menus which are similar to simulate menus.

If you are not familiar with the top level menu, press the [MORE] key several times to see the relative position of the `<Emul Menu>` softkey. You can always return to the top level menu from any of the other menus by pressing the [EXIT] key.

NOTE

When an Emulate menu is stored to disc as an extended menu, all the Setup menus are saved with that file.

The `<Emul Menu>` softkey accesses the Emulate menu. The Emulate menu instruction set is identical to the Simulate menu instruction set, except for the following changes:

Level 1 Emulation

Level 1 is automatically brought up by the emulator. If DTE is selected as device simulating then DTR and RTS are driven on. Level 1 handshaking is not required from the device under test.

If DCE is selected as device simulating then CTS, CD, and DSR are driven on. Level 1 handshaking is not required from the device under test.
Level 2 Emulation - The Set Lead Command

NOTE

The Set Lead command works differently in the Emulate menu than it does in the Simulate menu.

Set Lead Command - Set Lead "ON"

The Set Lead RTS, DTR, CTS, DSR, or CD "ON" command brings up the Level 2 link by sending a SABM (SABME with Extended Control On). Level 2 is determined to be "up" after a UA is received.

If the Set Lead "ON" command is not initiated by the emulator, then it is assumed the other device will bring up the Level 2 link by sending a SABM or SABME. The emulator will respond with a UA. It does not matter which lead is specified in the Set Lead command, they all work the same.

Set Lead Command - Set Lead "OFF"

The Set Lead RTS, DTR, CTS, DSR, or CD "OFF" command causes the emulator to bring down the Level 2 link by sending a DISC frame.
Level 3 Emulation - The Send Statement

Send Statement

All Send Statements are assumed to be Level 3 packet strings. The frame level address and control bytes are ignored if manually entered, but they must be included to hold space in the string. A two byte space is needed if Extended Control is set Off in the Level 2 Setup menu, and a three byte space is needed if Extended Control is set On. The easiest way to type the string is to use Level 3 Assisted String Entry which is accessed by pressing the <Level 3> softkey after <Send> is pressed. The appropriate number of spaces will be left for the address and control bytes.

\[
\text{Send } 0_0 0_0 1_0 0_0 f_{B} \text{ GG}
\]

Address Field \(_\) \(_\) Control Field

Two bytes (three bytes if Extended Control is On) are automatically inserted for the Level 2 information when Level 3 Assisted Entry is used.

The frame level address byte of the transmitted packet is determined in the Level 2 Setup menu's Device Emulating field. The address byte is displayed as 0_0. The actual value is inserted during runtime. If the Device Emulating field is selected to be a Network, then the Command Address will be 0_3 and the Response Address will be 0_4. If the Device Emulating field is selected to be a Subscriber, then the Command Address will be 0_1 and the Response Address will be 0_3.

The frame level control byte is displayed as 0_0. The actual value is inserted during runtime based on whether Extended Control was chosen.

If Auto LCN insertion or Auto LCN using counter 5 is selected in the Level 3 Setup menu, then the LCN field may or may not be overwritten depending on the packet type transmitted. Refer to Chapter 3 for more information. The LCN byte must be included in the string to hold space.

The Call Req/Inc Call packet address field (transmitted by the emulator) is inserted into the send string at runtime if Auto address insertion has been selected in the Level 3 Setup menu. No dummy characters should be entered into the send string for either the address length or the addresses themselves, except if Auto Address Insertion is set Off. Refer to the Call Setup Menu section for more information on how to enter the Calling/Called address to be used with Auto Address insertion.
Executing the Emulate Menu

To execute the Emulate menu press <Run Menu>, then <Emulate>.

In the Run menu, data filters can be set up to filter data or leads out of the buffer while running. The data filter default is Off.
NOTE

The HP 18267A X.25 Emulator application must be loaded before proceeding.
Configuring the Level 1 Setup Menu

The Level 1 setup parameters are unique to each system. For this example the default parameters match the HP 2334A PAD parameters. View the Level 1 Setup menu to make sure they do match.

From the Top level menu press the <Set Up> softkey.

Now press the <Lev 1 Setup> softkey.

![Level 1 Setup Menu](image)

Figure 4-2. Level 1 Setup Menu

After the Level 1 Setup has been checked or modified if necessary, press the [EXIT] key once.
Configure the Level 2 Setup Menu

Press the `<Lev 2 Setup>` softkey.

The display appears as shown in figure 4-3. An explanation of each parameter is given in chapter 3.

Level 2 Setup Menu

<table>
<thead>
<tr>
<th>Device Emulating</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Address</td>
<td>0₃</td>
</tr>
<tr>
<td>Response Address</td>
<td>0₁</td>
</tr>
<tr>
<td>Frame size (N1)</td>
<td>9999 bytes</td>
</tr>
<tr>
<td>Window size (K)</td>
<td>2</td>
</tr>
<tr>
<td>Timer T1</td>
<td>3000 msecs</td>
</tr>
<tr>
<td>Retry Count (N2)</td>
<td>20</td>
</tr>
<tr>
<td>Extended Control</td>
<td>Off</td>
</tr>
<tr>
<td>Rev 1.0 © hp 1986</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-3. Level 2 Setup Menu

Device Emulating and Network

- **Device Emulating**
 - Command Address: 0₃
 - Response Address: 0₁
- **Network**
 - Command Address: 0₃
 - Response Address: 0₁

The HP 4952A will be set up as the Network because the HP 2334A PAD is configured as a subscriber. See figure 4-1.
Frame size (N1)

9999

The frame size can be from 1 to 9999 bytes. By leaving the value at 9999 (default), all frame sizes are accepted by the emulator.

Window size (k)

7

The window size is typically 2 (default), but the HP 2334A PAD is 7. This will indicate that up to seven frames can be unacknowledged at any one time.

Timer T1

3000 msec

Timer T1 is left at default which matches the HP 2334A PAD’s T1 timer.

Restart Count (N2)

20

Restart Count (N2) is left at default which matches the Restart Count of the HP 2334A PAD.

Extended Control

Off

The HP 2334A PAD does not support extended control.

The Level 2 Setup is now complete. Press the [EXIT] key once.
Configuring the Level 3 Setup Menu

Press the <Lev 3 Setup> softkey.

The Level 3 Setup menu is displayed in figure 4-4 with default settings. An explanation of each setting is given in Chapter 3.

![Level 3 Setup Menu](image)

Figure 4-4. Level 3 Setup Menu

Virtual Call LCNs

The LCN range 1 - 8 will be used because it matches the HP 2334A PAD. The Virtual Call LCN range is compared against incoming packets to make sure they are within the LCN range specified. If they are not within the range specified, the packet is rejected.
Auto P(s), P(r) On

With the Auto P(s), P(r) set On, the emulator will automatically insert the P(s) and P(r) counts into the appropriate outgoing packets.

Auto Level 3 RRs On

Since no data packets will be received by the emulator during this test, it does not matter whether Auto Level 3 RRs is set On or Off.

Auto Restart Conf On

Since no Restart Request/Restart Indication packets will be received by the emulator during this test, it does not matter whether Auto Restart Confirmation is set On or Off.

Auto Call Acc/Con, Clr Cnf On

Since no Call Request or Incoming Call packets will be received by the emulator during this test, it does not matter whether Auto Call Acc/Con, Clr Cnf is set On or Off.

Auto Address Insertion On

The first call initiated by the emulator will go to the first address defined in the Call Setup menu.

Auto LCN Insertion On

Enables emulator to select from LCN range determined in the Virtual Call LCNs field. The send string LCN is overwritten during runtime if Auto LCN Insertion is set On.

Press the [EXIT] key once.
Configure the Call Setup Menu

Press <Call Setup>.

For the sample test:

Type in the Called/Calling Addresses 303551212/7195551212 in the Call #1 field of the Call Setup menu.

Display Definition Setup Menu

The <Disp Def> Softkey lets you modify the five predefined custom display formats which are loaded with the X.25 Level 2 Emulator. These display formats determine how information is displayed in the Examine Data menu.

The X.25 user defined display formats are selected in the Level 1 Setup menu’s Display field, or in the Examine Data menu. See figure 3-5 for an example.

Selecting a User Definable Display

The steps required to access the user definable displays are as follows:

1. Select <Set Up> in the main level menu, then press <Lev 1 Setup>.

2. Move the cursor into the Display field. The Display field softkeys will appear.

3. Select the X.25 display (one through five) that you wish to use.

4. Press [EXIT] twice to return to the top level menu.

or

1. Select <Examine Data> in the main menu.

2. Press [MORE] twice, then <Chang Dsply>.

3. Select the X.25 display (one through five) that you wish to use. After selecting the X.25 user-definable display you wish use, the display returns to the Examine Data menu with the cursor at the same frame.
Writing the Test

The following test is listed first, then described line by line.

This test will make sure the HP 2334A PAD is ready to be connected to the X.25 Network. It will send a Restart Request, place a call, send data, and then clear the call.

NOTE

The first line of the Emulate menu will read "Simulate DCE" or "Simulate DTE".

Go to Emulation Test Description following this test listing for an explanation of each line.

Simulate DCE

Block 1
Set Lead CTS On

Block 2
Send $00\; 00\; 10\; 00\; f_B$

When DTE $x\; x\; x\; f_F$
then goto Block 3

Block 3
Send $00\; 00\; 10\; 00\; 0_b$

When DTE $x\; x\; x\; 0_F$
then goto Block 4

Using the Emulator to Create a Program 4-13
Block 4
Send \texttt{100 00 10 01 00} SENDING DATA PACKET

When DTE \texttt{1 x ? ? x 01}
then goto Block 5

Block 5
Send \texttt{100 00 10 00 13}

When DTE \texttt{1 x ? ? x 17}
then goto Block 6

Block 6
Set Lead \textbf{CTS Off}

and then

Stop Tests
Emulation Test Description

Simulate DCE

Block 1
Set Lead **CTS On**

Procedure to Bring Up Level 2 Link
Press [MORE], then <Set Lead>.

Select <CTS> and <On>.

Move the cursor down to Block 2 with the down arrow keys.

Comments
The "Set Lead CTS On instruction brings up the Level 2 link. A "Set Lead CTS Off command will bring down the link. You could also use DSR or CD to bring up or down the link.

Block 2
Send \(0_0\) \(0_0\) \(1_0\) **GG**

Procedure to Send a Restart Packet
Press <Send>

Press [MORE], then <Levl 3> for Level 3 assisted entry.

Comments on Selecting the Address/Control Fields
The Level 2 Address and Control fields are shown as \(0_0\) and \(0_0\). These are dummy values. They hold a space in the Send string. The real values are inserted automatically during runtime based on the Device Emulating value chosen in the Level 2 Setup menu.

Since we chose the Device Emulating in the Level 2 Setup menu to be a Network then the command and response address bytes will be \(0_3\) and \(0_1\) respectively. If you had chosen the Device Emulating to be a Subscriber then the command and response address bytes would be \(0_1\) and \(0_3\) respectively.
The Control field always indicates an Information frame since all Level 2 functions are taken care of by the emulator. \(N(r)\) and \(N(s)\) are automatically entered by the emulator.

The GFI and LCGN Fields

Press the \(<\text{GFI}>\) softkey.

Move the cursor with right arrow key to see the GFI and LCGN defaults. These are: \(Q=0, D=0, \text{Mod 8 }=1,\) and \(\text{LCGN }=00.\) These are the values the test will use. These values can be changed for other tests.

The Logical Channel Number

Move the cursor past the LCGN parameter. The LCN field is displayed as \(00.\)

A Restart packet requires the logical channel to be \(00.\)

When a Call packet is being sent, and you are simulating a Network (DCE), the LCN should be selected from the low end of the LCN range.

When a Call packet is being sent, and you are simulating a Subscriber (DTE), the LCN should be selected from the high end of the LCN range.

Selecting the Restart Packet

Move the cursor out of the LCN field. Press the [MORE] key twice, and then the \(<\text{RSTRT}>\) softkey. You may wish to add the cause and diagnostic fields at this point.

Move the cursor down with the down arrow key to exit this string.
Comments on the Packet Type Field

The packet field defaults to a Data packet. If you move the cursor in the Data packet with the left and right arrow key, you will notice that you may manually enter the P(s), M, and P(r) values. Notice they default to 0. During runtime the emulator will take care of the P(s) and P(r) values for the Data packet if Auto P(s), P(r) is set "On" in the Level 3 Setup menu.

Any values you place in the P(s) and P(r) fields will be overwritten if Auto P(s), P(r) is set "On" in the Level 3 Setup menu.

Triggering On a Restart Confirmation Packet

Press <When Trig>, then select <DTE>.

Press [MORE], then <Levl 3>.

Press <Packet Type>, then select the Restart Confirmation packet by pressing [MORE] twice, and then <RSTRT CNFM>.

Move the cursor down with the down arrow key to Block 3.

Special Comments On Triggering

The program is triggering on the DTE sending a Restart Confirmation packet.

The X in the When string indicates a don’t care. The ? indicates a byte with partial don’t care bits.

Sending a Call Request Packet

Press <Send>.

Press [MORE], then <Levl 3> for Level 3 assisted entry.

Press <Packet Type>, and then press <CALL>.
Press <Hex>, then enter \(0_0\) after the Call packet for the facilities field length.

Move the cursor down with the down arrow key to exit the Send string.

Comments on the Called/Calling Address
The Called/Calling Address lengths and addresses do not have to be entered in the Send string as long as they are entered in the Call Setup menu, and Auto Address Insertion is set On. The emulator will calculate the length and enter the value and addresses into the appropriate position of the packet during runtime. No dummy characters are needed.

Comments on Using Facilities
The Facilities Field length is inserted to show where it is placed when Auto Address Insertion is set On. It is optional.

If the network has facilities chosen, they must be entered in the send string.
When DTE X ?? X 0F
then goto Block 4

Triggering On a Call Accepted Packet
Press <When Trig>, then select <DTE>.

Press [MORE], then <Levl 3>.

Press <Packet Type>, then select the Call Accept packet by pressing the <CALL ACPT> softkey.

Move the cursor down with the down arrow key to Block 4.

Comments
The program is triggering on the DTE sending a Call Accept packet.

Sending a Data Packet
Press <Send>.

Press [MORE], then <Levl 3>.

Press <LCN> and enter 01 Hex assuming the call will be placed on LCN 01. Data packets require the LCN value to be entered manually even though Auto LCN Using Counter 5 is being used.

Press <DATA>.

Move the cursor 2 spaces to the right and type in "SENDING DATA PACKET"

Move cursor down with down arrow key.
When DTE X ? ? X 0
then goto Block 5

Triggering on a Receiver Ready Packet

Press <When Trig>, then <DTE>.

Press [MORE], then <Levl 3>.

Press <Packet Type>, then select the Receiver Ready packet by pressing the <RR> softkey.

Move the cursor down with the down arrow key to Block 5.

Sending a Clear Request Packet

Press <Send>.

Press [MORE], <Levl 3>.

Press <LCN>, then <Hex>. Enter 0_1.

Select the Clear Request Packet by pressing [MORE], then the <CLEAR> softkey. You may wish to add the cause and diagnostic fields at this point.

Move cursor down with down arrow key.

Block 5
Send 0_0 0_1 0_1 1_3 GG
When DTE \(\downarrow \) ? ? X 17 then goto Block 6

Triggering on a Clear Confirmation Packet
Press \(<\text{When Trig}>\), then \(<\text{DTE}>\).

Press [MORE], then \(<\text{Levl 3}>\).

Press \(<\text{Packet Type}>\), then select the Clear Confirmation packet by pressing [MORE], and then the \(<\text{CLR CNFM}>\) softkey.

Move the cursor down with the down arrow key to Block 6.

Bringing Down the Level 1 and 2 Link
Press [MORE], then \(<\text{Set Lead}>\).

Select \(<\text{CTS}>\) and \(<\text{Off}>\).

Comments
The "Set Lead CTS Off" instruction brings down the Level 1 and Level 2 link by sending a Disconnect.

Press \(<\text{and then}>\).

Press \(<\text{Stop}>\), then \(<\text{Tests}>\).
Procedure for Installing and Troubleshooting X.25 Equipment and Networks

Using the X.25 Test Library and Emulator

The X.25 Test Library and Emulator is a tool intended for installation and troubleshooting of X.25 equipment and networks. This tool provides prewritten tests most of which run on the X.25 Level 2 Emulator to aid in installing and troubleshooting.

A typical installation will consist of adding a subscriber to an X.25 Network. The subscriber equipment usually is an X.25 PAD with multiple asynchronous terminals attached.

The steps for installation testing are outlined below. They are intended to be followed in the order presented: Setup the HP 4952A, verify parameters of the network and subscriber equipment, verify operation of each side before and after installation. If you prefer, skip to step 3 or 4. If problems are found, come back to step 1 to troubleshoot the problem.

X.25 Test Library tests are used in this chapter. There is both a DCE and DTE version of each test. The device under test must first be determined to be the DCE or DTE before the tests can be used. See Step 1 below. For information on how to run the tests and interpret the results, refer to chapter 6 where the tests are listed and described.

Step 1: Determining the Equipment Parameters

The step 1 tests determine the Level 1, Level 2, and Level 3 parameter values of the network and equipment to be installed. These parameters will be used to assure that the configuration of the network and the equipment to be installed are compatible. The parameters also will be used for further testing.

The network's parameters will first be determined, then the subscriber's. See figure 5-1 for test installation.
Figure 5-1. Network Test Setup

NOTE

The X.25 Level 2 Emulator should NOT be loaded yet.

Level 1 Setup Parameters

There are no tests available to determine the following Level 1 setup parameters:

- Data bits/sec
- DTE clock source
- Bit sense

It is necessary to know the network's configuration for these parameters before testing begins. The data code used by most X.25 networks is "ASCII 8". The bit sense for most networks is "normal".
Connect the HP 4952A up to the network. Do not load the X.25 Level 2 Emulator yet.

Load the X.25 Test Library monitor menu LEVEL1_MON. This test identifies whether the network is configured as a physical DCE or DTE.

Execute the monitor menu LEVEL1_MON by pressing <Run Menu> followed by <Monitor Line>. See Chapter 6 for information on how to interpret the results.

Record the Level 1 values of speed (bits/sec), data code, DTE clock, and bit sense on the Installation Record page at the end of this chapter.

Level 2 Setup Parameters

If the results for the LEVEL1_MON test were "Emulator=DTE", load the X.25 Test Library simulate menu DTE_SUBNET. This test will determine whether the emulator will be the subscriber or the network for Level 2 addressing, whether Extended control is active, and what values Timer T1 and Retry Count N2 have.

Execute DTE_SUBNET by pressing <Run Menu> followed by <Simulate>. See Chapter 6 to interpret results.

Now load the X.25 Level 2 Emulator application. See Chapter 2 for installation instructions.

To determine the frame size used by the network, load and execute the X.25 Test Library test DTE_FRAME. See Chapter 6 for information on how to execute this test and interpret the results.

There are no tests available to determine the Level 2 window size. If this value is not known, it will need to be obtained from the network configuration information. A window size of 2 is commonly used.

Record the Level 2 parameter values on the Installation Record page at the end of this chapter.

Level 3 Setup Parameters

To determine the Virtual Call LCN range, use one of two tests provided: DCE_LCN1 or DCE_LCN2 (also DTE versions).
DCE_LCN1 will locate each end of the LCN range for X.25 equipment and networks which will reject calls placed outside the LCN range.

DCE_LCN2 can be used to find one end of the LCN range for other equipment and networks.

Refer to Chapter 6 for information on how to execute these tests and interpret the results.

Determining the Subscriber Equipment Parameters

Repeat the process on the subscriber equipment (PAD) using the other version of the tests (DCE versions if the DTE versions were just used). Record the results for later use in the Installation Record at the end of this chapter. See figure 5-2 for test setup.

![Subscriber Test Setup](image)
Step 2: Ensuring Network/Subscriber Parameter Consistency

In step 1 the Level 1, 2, and 3 parameters were determined and recorded in the Installation Record for both the network and the subscriber equipment. Make sure that the network and subscriber equipment are not both physical DTE’s or DCE’s, and that they are not both a network or subscriber. If either of these situations exist, they must be remedied before installation. Also make sure the other parameters, such as T1 timer, window size, etc., are the same for the network and subscriber equipment.

Step 3: Ensuring Network/Subscriber Operation Before Installation

Before installing the subscriber equipment to the network, load and execute the appropriate X.25 Test Library menu either DTE_CALL_1 or DCE_CALL_1 on the network and subscriber equipment to ensure proper operation. This test places a call to a single logical channel number, sends data, and clears the call. If you would like to test multiple logical numbers, load and execute the X.25 Test Library test either DTE_CALL_M or DCE_CALL_M on the network and subscriber equipment instead. Refer to Chapter 6 for information on how to execute these tests and interpret the results.

If your network or equipment requires the appropriate facilities to be listed in the Call packets, modify the Call packet in the Emulate menu. Refer to Chapter 6 for information on how to add facilities.

Step 4: Ensuring Network/Subscriber Operation After Installation

Now that you have tested the network and subscriber equipment separately, connect them together. In some situations you may start installation testing at this step. If improper operation is indicated here in step 4, start at step 1 and go through the process. This will most likely find the problem.
Load and execute the X.25 Test Library monitor test MON TEST. This test will give results indicating whether the network and subscriber equipment are working properly. This test is not foolproof, but should give a high level of confidence that the installation is operational. Refer to Chapter 6 for information on how to execute this test and interpret the results.

Installation Record

Identification

- **Network Port**
- **Subscriber**

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Network</th>
<th>Subscriber (PAD)</th>
</tr>
</thead>
</table>

Level 1 Parameters
- Speed (bits/sec)
- Data Code
- DTE Clock
- Bit Sense
- Device Emulating

Level 2 Parameters
- Frame Size (N1)
- Window Size (k)
- Timer (T1)
- Retry Counter (N2)
- Extended Control

Level 3 Parameters
- Virtual Call LCN Range
- Window Size
- Facilities Subscribed
The X.25 Test Library tests are intended for installation and troubleshooting of X.25 equipment and networks. Refer to Chapter 5 for an installation procedure using the following tests.

The HP 4952A is connected to the device under test for all tests.

LEVEL1_MON

This test checks the DTR and DSR leads of the device under test to determine whether the HP 4952A should emulate the DTE or the DCE.

This is a monitor menu (Emulator not loaded).

To execute this test press `<Run Menu>`, then `<Monitor Line>`. The test will beep when it completes.

Test Results

If DTR is high, the message reads \textit{EMULATOR = DCE}.

If DSR is high, the message reads \textit{EMULATOR = DTE}.

If neither DTR or DSR is high, the message reads \textit{DTR & DSR NOT ON}.

\textbf{NOTE}

Once the emulator is determined to be the DCE or DTE device, use the tests prefixed by that device name, i.e., \textit{DCE} or \textit{DTE} respectively.
LEVEL1_MON Listing

Monitor

Block 1
Message CHECK OTE LEADS:
If Lead DSR is On:
 then goto Block 3
If Lead DTR is On:
 then goto Block 4

Block 2
Message DTR & DSR NOT ON
 and then
Beep
 and then
Goto Block 5

Block 3
Message EMULATOR = OTE
 and then
Beep
 and then
Goto Block 5

Block 4
Message EMULATOR = DCE
 and then
Beep

Block 5
Goto Block 5
DTE_SUBNET/DCE_SUBNET

This test determines the following Level 2 Setup parameters:

- Network/Subscriber
- Timer T1
- Retry Count N2
- Extended Control

This is a Simulate menu (Emulator not loaded)

To execute this test press <Run Menu>, then <Simulate>.

Test Results

The test looks at the link level address to determine if the device under test is the network or the subscriber. If after 10 seconds, the device under test has not sent a command, the emulator sends a SABM with address 1, waits for a response, then sends a SABM with address 3, waits for a response, then sends a SABME with address 1, waits for a response, then sends a SABME with address 3. Once a response has been received, the emulator beeps and displays one of the following messages:

- EM = SUBSCRIBER
- EMUL = NETWORK
- EM = SUB, EXT CT (Emulator = Subscriber, Extended Control On)
- EM = NET, EXT CT (Emulator = Network, Extended Control On)

You can stop the test at this point by pressing [EXIT], or allow the test to continue to determine Timer T1 and Retry Count N2.

If this test is left to run, Timer T1 and Retry Count N2 are determined. This portion of the test may take several minutes. When the test completes, the HP 4952A beeps again. Check Counter 1 for N2, and Timer 1 for the approximate value of T1.

Setup the appropriate Level 2 Setup parameters accordingly.
Simulate DCE

Block 1
Message BRING UP LEVEL 1
and then
Set Lead CS On
and then
Set Lead CD On
If Lead DTR is Off
then goto Block 27
If Lead RS is Off
then goto Block 27
If Lead RTS is Off
then goto Block 28

Block 2
Message WAIT FOR SAEM,DM
and then
Reset Timer 1
and then
Start Timer 1

When DTE 2 great
then goto Block 13
When DTE 2 great
then goto Block 17
When DTE 2 great
then goto Block 11
When DTE 2 great
then goto Block 15
When DTE 2 great
then goto Block 3
When DTE 2 great
then goto Block 5
When Timer 1 > 10000
then goto Block 3

Block 3
Reset Counter 1
Block 4
Message SABM, ADDR = 1
and then
Reset Timer 1
and then
Start Timer 1
and then
Increment Counter 1 by
and then
Send 19566r

If Counter 1 > 2
then goto Block 5
When DTE 'SABM'
then goto Block 12
When Timer 1 > 4000
then goto Block 4
Block 5
Reset Counter 1

Block 6
Message SABM, ADDR = 3
and then
Reset Timer 1
and then
Start Timer 1
and then
Increment Counter 1 by
and then
Send 19566r

If Counter 1 > 2
then goto Block 7
When DTE 'SABM'
then goto Block 14
When Timer 1 > 4000
then goto Block 6
Block 7
Reset Counter 1
Block 8
Message SABME, ADDR = 1
and then
Reset Timer 1
and then
Start Timer 1
and then
Increment Counter 1 by 1
and then
Send 194608

If Counter 1 > 2
then goto Block 9
When DTE Set
then goto Block 16
When Timer 1 > 4000
then goto Block 8

Block 9
Reset Counter 1

Block 10
Message SABME, ADDR = 3
and then
Reset Timer 1
and then
Start Timer 1
and then
Increment Counter 1 by 1
and then
Send 194608

If Counter 1 > 2
then goto Block 19
When DTE Set
then goto Block 18
When Timer 1 > 4000
then goto Block 10

Block 11
Send 194608
DCE_SUBNET Listing (Continued)

Block 12
Message EM = SUBSCRIBER
and then
Goto Block 20

Block 13
Send 10ZGGF

Block 14
Message EMUL = NETWORK
and then
Goto Block 20

Block 15
Send 10ZGGF

Block 16
Message EM = SUB, EXT CT
and then
Goto Block 20

Block 17
Send 10ZGGF

Block 18
Message EM = NET, EXT CT
and then
Goto Block 20

Block 19
Message NO RESPONSE
and then
Goto Block 20

Block 20
Reset Counter 1
and then
Beep
and then
Increment Counter 1 by 1

When DTE 10ZGGF
then goto Block 21
Block 21
Reset Timer 1
and then
Start Timer 1

Block 22
Reset Timer 2
and then
Start Timer 2
and then
Increment Counter 1 by 1

When DTE FREE:
then goto Block 23
When Timer 2 > 10000:
then goto Block 24

Block 23
Stop Timer 1
and then
Goto Block 22

Block 24
Stop Timer 2
and then
Reset Timer 2
and then
Beep
and then
Goto Block 25

Block 25
Message PRESS SUMMARY
and then
Beep
DCE_SUBNET Listing (Continued)

Block 26
When DTE \[x\]
 then goto Block 26
Block 27
Message \[DTR NOT ACTIVE\]
When Lead \[DTR\]
 goes \[On\]
 then goto Block 21
Block 28
Message \[RTS NOT ACTIVE\]
When Lead \[RTS\]
 goes \[On\]
 then goto Block 21
DTE_FRAME/DCE_FRAME

This test determines the maximum frame size allowed by the device under test up to and greater than 128 bytes.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

Enter the device under test's Called/Calling Address in the Call Setup menu's Call #1 field.

This test assumes LCN 1 will be used for the call. If a different LCN is desired for the call, enter the Emulate menu and change the Increment Counter 5 by 1 statement in Block 1 to reflect the desired LCN. For example, if you wish to use LCN 8, change the Increment Counter 5 statement to:

Increment Counter 5 by 8

If facility information is required by the device under test in the Call packet, that information must be entered in the Call packet send string in Block 4 of the Emulate menu. Enter the facilities into the send string in place of 0 which follows 0.

To execute this test press <Run Menu>, then <Emulate>. The test beeps when it completes.
Test Results

The emulator waits 5 seconds for a restart from the device under test. If no restart is received, a SABM is sent and the emulator waits again for a restart from the device under test. If no restart is received, the emulator sends a restart, waits for confirmation, and starts the test. A call is placed to the device under test, and then packets of sizes 16, 32, 64, 128, and > 128 bytes are sent. The emulator will display an appropriate message indicating the maximum frame size after a frame is rejected.

One of the following messages will appear:

- PACKET SIZE < 16
- PACKET SIZE = 16
- PACKET SIZE = 32
- PACKET SIZE = 64
- PACKET SIZE = 128
- PACKET SIZE > 128

DCE_FRAME Listing

Simulate DCE

Block 1
Message WAIT FOR RESTART
and then
Reset Counter 5
and then
Increment Counter 5 by 1
and then
Reset Timer 1
and then
Start Timer 1

When DCE 1
then goto Block 4
When DTE 1
then goto Block 2
When Timer 1 > 5000
then goto Block 2
Block 2
Message SABM SENT
and then
Set Lead CTS On
When DTE 1X62
then goto Block 3
Block 3
Message RESTART SENT
and then
Reset Timer 1
and then
Start Timer 1
and then
Send 1335353535
When DTE 1X63
then goto Block 4
When Timer 1 > 3000
then goto Block 2
Block 4
Message WAIT CALL CONF
and then
Send 133535353535
When DTE 1X64
then goto Block 5
When DCE 1X65
then goto Block 13
Block 5
Message PACKET SIZE < 16
and then
Send 133535353535PACK SIZE = 16
When DTE 1X66
then goto Block 6
When DTE 1X67
then goto Block 11
Block 6
Message PACKET SIZE = 16
and then
Send 138hi38PACKET SIZE =
32 x
When DTE 138 then goto Block 7
When DTE 138 then goto Block 11
Block 7
Message PACKET SIZE = 32
and then
Send 138hi38PACKET SIZE =
64 x
When DTE 138 then goto Block 8
When DTE 138 then goto Block 11
Block 8
Message PACKET SIZE = 64
and then
Send 138hi38PACKET SIZE =
128 x
When DTE 138 then goto Block 9
When DTE 138 then goto Block 11
Block 9
Message PACKET SIZE = 128
 and then
Send 128, 128, PACKET SIZE >

When DTE 128
 then goto Block 10
When DTE 127
 then goto Block 11

Block 10
Message PACKET SIZE > 128

Block 11
Beep

Block 12
When DTE X
 then goto Block 12

Block 13
Message CALL CLEARED
 and then
Goto Block 13
DTE_LCN1/DCE_LCN1

This test determines what switched virtual LCN range the device under test is set up for. It only is an effective test if the device under test clears calls which are outside its switched virtual LCN range.

If the device under test will accept all calls regardless of the LCN used, use the DTE_LCN2 or DCE_LCN2 test instead.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

Enter the device under test's Called/Calling Address in the Call Setup menu's Call #1 field.

If facility information is required by the device under test, that information must be entered in the Call packet send strings in Block 4 and 6 of the Emulate menu. Enter the facilities into the send string in place of 00 which follows 08.

To execute this test press <Run Menu>, then <Emulate>. The test beeps when it is completed.

Test Results

The emulator waits 5 seconds for a restart from the device under test. If no resart is received, a SABM is sent and the emulator waits again for a restart from the device under test. If no restart is received, the emulator sends a restart, waits for confirmation, and starts the test.

Calls are then placed by the emulator starting on LCN1, then LCN2, then LCN3, etc., until a call is accepted. The LCN which a call was first accepted is assumed to be the lowest legal switched virtual LCN. Calls are then placed and cleared on subsequent LCNs until calls are no longer accepted. The last LCN on which a call was accepted is assumed to be the highest legal switched virtual LCN.

Counter 1 indicates the lowest legal switched virtual LCN.
Counter 2 indicates the highest legal switched virtual LCN.

Some devices require a few seconds delay between clearing a call and placing another call to the same address. This test is set up for a delay of 6 seconds between calls. If a shorter or longer delay is desired, modify the wait statements in Block 4 and 6.

DCE_LCN1 Listing

```
Simulate DCE

Block 1
Message WAIT FOR RESTART
    and then
Reset Counter 1
    and then
Reset Counter 2
    and then
Reset Counter 5
    and then
Reset Timer 1
    and then
Start Timer 1

When DCE 1255EF
    then goto Block 4
When DTE 1876EF
    then goto Block 2
When Timer 1 > 5000
    then goto Block 2

Block 2
Message SABM SENT
    and then
Set Lead CTS On

When DTE 1876EF
    then goto Block 3
```
Block 3
Message "RESTART SENT"
and then
Reset Timer 1
and then
Start Timer 1
and then
Send 158196986649

When DTE 187884
then goto Block 4
When Timer 1 > 3000
then goto Block 2

Block 4
Message "TEST FOR LOW LCN"
and then
Reset Timer 1
and then
Start Timer 1
and then
Wait 6000
and then
Increment Counter 1 by 1
and then
Increment Counter 2 by 1
and then
Increment Counter 3 by 1
and then
Send 1351031392886464

When DTE 188769
then goto Block 5
When DCE 188531
then goto Block 4
When Timer 1 > 7000
then goto Block 4
Block 5
Message WAIT FOR CLR CNF
 and then
Send 1395019310001000

When DTE 106666
 then goto Block 6
Block 6
Message TEST FOR HI LCN
 and then
Reset Timer 1
 and then
Start Timer 1
 and then
Wait 6000
 and then
Increment Counter 5 by 1
 and then
Send 1395019310001000

When DTE 106666
 then goto Block 7
When DCE 106666
 then goto Block 8
When Timer 1 > 7000
 then goto Block 8
Block 7
Message WAIT FOR CLR CNF
 and then
Increment Counter 2 by 1
 and then
Send 1395019310001000

If Counter 2 > 4095
 then goto Block 8
When DTE 106666
 then goto Block 6
DCE_LCN1 Listing (Continued)

Block 8
Reset Counter 5
 and then
Reset Timer 1
 and then
Beep

Block 9
Message TEST COMPLETE
 and then
Wait 1000
 and then
Goto Block 10

Block 10
Message CHECK COUNTERS
 and then
Wait 1000
 and then
Goto Block 9
DTE_LCN2/DCE_LCN2

This test is used to determine one end of the switched virtual circuit LCN range. It is used when the device under test will accept all calls regardless of the LCN.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

To execute this test press <Run Menu>, then <Emulate>. The test will beep when it completes.

Test Results

The emulator waits 5 seconds for a restart from the device under test. If no restart is received, a SABM is sent and the emulator waits again for a restart from the device under test. If no restart is received, the emulator sends a restart, waits for confirmation, and starts the test.

Enter Examine Data and find the decoded Call Request/Incoming Call packet sent from the device under test to determine the high or low end of the range. If the device under test is the network, the LCN displayed is the low end of the range. If the device under test is the subscriber, the LCN is the high end of the range.
DCE_LCN2 Listing

Simulate DCE

Block 1
Message WAIT FOR RESTART
 and then
Reset Timer 1
 and then
Start Timer 1

When DCE 1XSTART
 then goto Block 4
When DTE 1XSTART
 then goto Block 2
When Timer 1 > 5000
 then goto Block 2

Block 2
Message SABM SENT
 and then
Set Lead CTS On

When DTE 1XSTART
 then goto Block 3

Block 3
Message RESTART SENT
 and then
Reset Timer 1
 and then
Start Timer 1
 and then
Send 1XSTART

When DTE 1XSTART
 then goto Block 4
When Timer 1 > 3000
 then goto Block 2
DCE_LCN2 Listing (Continued)

Block 4
Message WAITING FOR CALL

When DTE $1XHXX4$
 then goto Block 5
Block 5
Reset Timer 1
 and then
 Beep

Block 6
Message TEST COMPLETE
 and then
 Wait 1000
 and then
 Goto Block 7

Block 7
Message LCN VALUE ABOVE
 and then
 Wait 1000
 and then
 Goto Block 6
DTE_WINDOW/DCE_WINDOW

This test determines the Level 3 window size of the device under test.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match the device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

Select the switched virtual LCN range in the Level 3 Setup menu.

Enter the device under test's Called/Calling Address in the Call Setup menu's Call #1 field.

This test assumes LCN 1 will be used for the call. If a different LCN is desired for the call, enter the Emulate menu and change the Increment Counter 5 by 1 statement in Block 1 to reflect the desired LCN. For example, if you wish to use LCN 8, change the Increment Counter 5 statement to:

Increment Counter 5 by 8

If facility information is required by the device under test in the Call packet, that information must be entered in the Call packet send string in Block 4 of the Emulate menu. Enter the facilities into the send string in place of 00 which follows 0_B.

To execute this test press <Run Menu>, then <Emulate>.

Test Results

The emulator waits 5 seconds for a restart from the device under test. If no restart is received, a SABM is sent and the emulator waits again for a restart from the device under test. If no restart is received, the emulator sends a restart, waits for confirmation, and starts the test.
When the call is accepted, the message WAITING FOR DATA appears. Data packets must then be repetitively sent to the emulator from the device under test for about 5 seconds. No packet level responses are issued by the emulator so that the device under test will fill its window. The HP 4952A beeps when the test is completed and counter 1 has the Level 3 window size of the device under test.

The message CALL CLEARED appears if the call is not accepted. If this is the case, recheck the Called and Calling addresses, and the Level 1, 2, and 3 Setup parameters.

Send data packets to the emulator for 5 seconds. If more time is needed in order to fill the device under test packet window, enter the Emulate menu and increase the timeout value in the "When Timer 1 statement in Block 5".

DCE_WINDOW Listing

Simulate DCE

Block 1
Message WAIT FOR RESTART
and then
Reset Counter 5
and then
Increment Counter 5 by 1
and then
Reset Timer 1
and then
Start Timer 1

When DCE 1X5665
then goto Block 4
When DTE 1X5665
then goto Block 2
When Timer 1 > 5000
then goto Block 2

Block 2
Message . SABM SENT
and then
Set Lead CTS On
When DTE 1X5665
then goto Block 3
Block 3
Message

and then
Reset Timer 1
and then
Start Timer 1
and then
Send 1351959866

When DTE 1\times 65536:
then goto Block 4
When Timer 1 > 5000:
then goto Block 2
Block 4
Message

and then
Reset Timer 1
and then
Send 133359393966

When DTE 1\times 65536:
then goto Block 5
When DCE 1\times 65536:
then goto Block 11
When DTE 1\times 65536:
then goto Block 11
Block 5
Message

When Timer 1 > 5000:
then goto Block 7
When DTE 1\times 65536:
then goto Block 6
Block 6
Increment Counter 1 by 1
and then
Reset Timer 1
and then
Start Timer 1
and then
Goto Block 5
Block 7
Send \[\text{13901341344G}\]
and then
Reset Timer 1
and then
Beep

Block 8
Message \[\text{TEST COMPLETE}\]
and then
Wait \[\text{1000}\]

Block 9
Message \[\text{CHECK COUNTER 1}\]
and then
Wait \[\text{1000}\]
and then
Goto Block 8

Block 10
Message \[\text{CALL CLEARED}\]
and then
Beep
and then
Goto Block 12

Block 11
Message \[\text{RESET REQ RECUED}\]
and then
Beep

Block 12
When DTE 8
then goto Block 12
DTE_CALL_1/DCE_CALL_1

This test allows a call to be placed to the device under test, data to be sent on the LCN that is set up, and the call to be cleared using the softkeys.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match the device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

Enter the device under test’s Called/Calling Address into the Call Setup menu, Call #1.

This test assumes LCN 1 will be used for the call. If a different LCN is desired for the call, enter the Emulate menu and change the Increment Counter 5 by 1 statement in Block 1 to reflect the desired LCN. For example if you wish to use LCN 8, change the Increment Counter 5 statement to:

\[
\text{Increment Counter 5 by 8}
\]

If facility information is required by the device under test in the Call packet, that information must be entered in the call packet send string in Block 6 of the Emulate menu. Enter the facilities into the send string in place of the \(0\) which follows the \(8\).

To execute this test press `<Run Menu>`, then `<Emulate>`.

Test Results

The user definable softkeys (3,4,5) will indicate CALL DATA MORE if the device under test sends a SABM to bring up level 2. If the device under test does not send a SABM, the softkeys will read SABM DISC MORE. If the second set of softkeys appear, press SABM to bring up level 2 and press MORE twice and then press RESTART to send a restart request packet.

Pressing MORE twice will display the CALL DATA MORE softkeys.
At this point a call can be placed to the device under test by pressing the CALL softkey. Once the call has been confirmed, data can be transmitted to the device under test using the DATA softkey. The data transmitted has no significance and can be modified to fit any particular need by modifying the send string in Block 7 of the Emulate menu.

The call can be cleared by pressing the MORE key and then CLR.

The softkey tree is as follows:

![Softkey Tree Diagram]

Figure 6-1. DTE_CALL_1/DCE_CALL_1 Softkey Tree
DCE_CALL_1 Listing

Simulate DCE

Block 1
Message SABM DISC MORE
and then
Reset Counter 5
and then
Increment Counter 5 by 1

When DCE 1X6789
or
When DCE 1X7689
then goto Block 5
When Softkey 3
then goto Block 2
When Softkey 4
then goto Block 3
When Softkey 5
then goto Block 5

Block 2
Set Lead CTS On
and then
Goto Block 4

Block 3
Set Lead CTS Off

Block 4
Message WAITING FOR UA
and then
Reset Timer 1
and then
Start Timer 1

When DTE 1X6789
or
When DCE 1X7689
then goto Block 5
When Timer 1 > 5000
then goto Block 1
Block 5
Message CALL DATA MORE

When SoftKey 3
then goto Block 6
When SoftKey 4
then goto Block 7
When SoftKey 5
then goto Block 8

Block 6
Message WAIT CALL CONF
and then
Reset Timer 1
and then
Start Timer 1
and then
Send 13353939388667

When DTE 100000
then goto Block 5
When Timer 1 > 5000
then goto Block 5

Block 7
Send 13353939388667
DCE DATA 94
and then
Goto Block 5

Block 8
Message CLR RESTART MORE

When SoftKey 3
then goto Block 9
When SoftKey 4
then goto Block 10
When SoftKey 5
then goto Block 11
DCE_CALL_1 Listing (Continued)

Block 9
Message WAITING FOR CONF and then
Reset Timer 1 and then
Start Timer 1 and then
Send 138131555656

When DTE 18888
then goto Block 5
When Timer 1 > 5000
then goto Block 8
Block 10
Message RESTART SENT and then
Reset Timer 1 and then
Start Timer 1 and then
Send 138131555656

When DTE 18888
then goto Block 5
When Timer 1 > 5000
then goto Block 1
DTE_CALL_M/DCE_CALL_M

This test allows calls to be placed to the device under test, data to be sent on the multiple LCNs that are set up, and the calls cleared using the softkeys.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match the device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

Enter the device under test’s Called/Calling Addresses into the Call Setup menu’s Call #1 - Call #6 fields.

This test assumes LCN 1 will be the first one used. If a different LCN is desired for the first call, enter the Emulate menu and change the Increment Counter 5 by 1 statement in Block 1 to reflect the desired LCN. For example if you wish to start with LCN 8, change the Increment Counter 5 statement to:

```
Increment Counter 5 by 8
```

If facility information is required by the device under test in the Call packet, that information must be entered in the call packet send string in Block 7 of the Emulate menu. Enter the facilities into the send string in place of the 00H which follows the 00H.

To execute this test press <Run Menu>, then <Emulate>.

Test Results

The user definable softkeys (3,4,5) will indicate CALL DATA MORE if the device under test sends a SABM to bring up level 2. If the device under test does not send a SABM, the softkeys will read SABM DISC MORE. If the second set of softkeys appear, press SABM to bring up level 2, press MORE twice, and then press RESTART to send a Restart Request packet. Pressing MORE twice will display the CALL DATA MORE softkeys.
At this point a call can be placed to the device under test by pressing the CALL softkey. Once the call has been confirmed, data can be transmitted to the device under test using the DATA softkey. The data transmitted has no significance and can be modified to fit any particular need by modifying the send string in Block 8 of the Emulate menu.

The call can be cleared by pressing the MORE key, and then CLR.

To send a call on another LCN, press the MORE softkey until the INC/DEC LCN MORE softkeys appear. Press softkey 3 to increment the LCN, softkey 4 to decrement the LCN. Any calls, data packets or clear packets will be transmitted on the new LCN.

The softkey tree is as follows:

Figure 6-2. DTE_CALL_M/DCE_CALL_M Softkey Tree
Simulate DCE

Block 1
Reset Counter 5
and then
Increment Counter 5 by \(\text{[#1]} \)

Block 2
Message SABM DISC MORE

When DCE \(\text{#23F8F} \)
or
When DCE \(\text{#24B8F} \)
then goto Block 6
When Softkey 3
then goto Block 3
When Softkey 4
then goto Block 4
When Softkey 5
then goto Block 6

Block 3
Set Lead CTS On
and then
Goto Block \(\text{[#5]} \)

Block 4
Set Lead CTS Off

Block 5
Message WAITING FOR UA
and then
Reset Timer 1
and then
Start Timer 1
When DTE 15768 or
When DCE 15768
then goto Block 6
When Timer 1 > 5000
then goto Block 2
Block 6
Message CALL DATA MORE

When SoftKey 3
then goto Block 7
When SoftKey 4
then goto Block 3
When SoftKey 5
then goto Block 9
Block 7
Message WAIT CALL CONF and then
Reset Timer 1 and then
Start Timer 1
and then
Send 13515135336363

When DTE 15768
then goto Block 6
When Timer 1 > 5000
then goto Block 6
Block 8
Send 135133DCE DATA 16363 and then
Goto Block 6
DCE_CALL_M Listing (Continued)

Block 9
Message CLR RESTART MORE

When SoftKey 3
then goto Block 10
When SoftKey 4
then goto Block 11
When SoftKey 5
then goto Block 12

Block 10
Message WAITING FOR CONF
and then
Reset Timer 1
and then
Start Timer 1
and then
Send 199FE189681

When DTE 197F
then goto Block 6
When Timer 1 > 5000
then goto Block 9

Block 11
Message RESTART SENT
and then
Reset Timer 1
and then
Start Timer 1
and then
Send 190197F9681

When DTE 197F
then goto Block 6
When Timer 1 > 5000
then goto Block 2
DCE_CALL_M Listing (Continued)

Block 12
Message INC/DEC LCN MORE

When SoftKey 3
then goto Block 13
When SoftKey 4
then goto Block 14
When SoftKey 5
then goto Block 12

Block 13
Message and then
Reset Timer 1
and then
Start Timer 1
and then
Increment Counter 5 by 1

When Timer 1 > 75
then goto Block 12

Block 14
Message and then
Reset Timer 1
and then
Start Timer 1
and then
Increment Counter 5 by 65535

When Timer 1 > 75
then goto Block 12
DTE FACIL/DCE FACIL

This test is an example of tests that can be used to determine if particular facilities are supported by the device under test. In this example two calls are placed to the device under test. The first call requests reverse charging, the second call requests fast select.

This is an Emulate menu test (X.25 Level 2 Emulator loaded)

Test Setup

Update the Level 1 Setup menu so that the parameters match the device under test.

Update the Level 2 Setup menu parameters with the values determined by DTE_SUBNET or DCE_SUBNET.

Select the switched virtual LCN range in the Level 3 Setup menu.

Enter the device under test's Called/Calling Address into the Call Setup menu's Call #1 field.

This test assumes LCN 1 will be used for the call. If a different LCN is desired for the call, enter the Emulate menu and change the Increment Counter 5 by 1 statement in Block 1 to reflect the desired LCN. For example, if you wish to use LCN 8, change the Increment Counter 5 statement to:

Increment Counter 5 by 8

If different facility information is required by the device under test in the Call packet, that information must be entered in the call packet send strings in Block 5 and 7 of the Emulate menu. Enter the facilities into the send string following the 08H.

To execute this test press <Run Menu>, then <Emulate>. The test beeps when it is completed.

Test Results

The emulator waits 5 seconds for a restart from the device under test. If no restart is received, a SABM is sent and the emulator waits again for a restart from the device under test. If no restart is received, the emulator sends a restart, waits for confirmation, and starts the test.

Two calls are then placed to the device under test. The first call requests reverse charging, the second call requests fast select.
The HP 4952A beeps when the test completes. Counter 1 will be 1 if reverse charging is available; Counter 2 will be 1 if fast select is available. Some devices require all supported facilities to be included in the call packet. If this is the case the facilities field of the two call packets will need to be modified to include all necessary facilities.

The message line at the bottom of the display will give messages indicating the progress of the test.

DCE_FACIL Listing

```
Simulate DCE

Block 1
Reset Counter 1
    and then
Reset Counter 2

Block 2
Message WAIT FOR RESTART
    and then
Reset Timer 1
    and then
Start Timer 1

When DCE 18888
    then goto Block 5
When DTE 18888
    then goto Block 3
When Timer 1 > 5000
    then goto Block 3

Block 3
Message SABM SENT
    and then
Set Lead CTS On

When DTE 18888
    then goto Block 4
```
DCE_FACIL Listing (Continued)

Block 4
Message RESTART SENT
 and then
Reset Timer 1
 and then
Start Timer 1
 and then
Send 133193336767

When DTE 133333
 then goto Block 5
When Timer 1 > 5000
 then goto Block 3

Block 5
Message PLACING CALL
 and then
Reset Timer 1
 and then
Send 1333048900893676

When DTE 133333
 then goto Block 6
When DCE 133333
 then goto Block 7

Block 6
Message CLEARING CALL
 and then
Increment Counter 1 by 1
 and then
Send 133191993667

When DTE 133333
 then goto Block 7

Block 7
Message PLACING CALL
 and then
Wait 500
 and then
Send 1331919939999967
When DTE 189F2A then goto Block 8
When DCE 189F2B then goto Block 9
Block 8
Message CLEARING CALL
and then
Increment Counter 2 by 1
and then
Send 138108138166
When DTE 189F2B then goto Block 9
Block 9
Beep

Block 10
Message TEST COMPLETE
and then
Reset Timer 1
and then
Start Timer 1

When Timer 1 > 1000 then goto Block 11
Block 11
Message CHECK COUNTERS
and then
Reset Timer 1
and then
Start Timer 1

When Timer 1 > 1000 then goto Block 10
MON_TEST

This test is used as a final check prior to installation. The line between the network and installed equipment is monitored for 240 seconds to determine if all the leads are up, if level 2 has come up and if a Restart Request/Restart Confirmation has occurred.

This is a Monitor menu test

Test Setup

Update the Level 1 Setup menu so that the parameters match the device under test.

To execute this test press <Run Menu>, then <Monitor Line>. The test beeps when it is completed.

Test Results

One of the following messages will appear:

NO SABMS SENT

Indicates that neither device has tried to bring up level 2 by sending a SABM.

NO RESTARTS SENT

Indicates that a SABM/UA exchange has taken place but no Restart Request/Restart Confirmation exchange occurred.

SAME LINK ADDRS

Indicates both devices are using the same link level addresses.

DSR IS OFF

Indicates the DCE is not driving the DSR lead on.
DTR IS OFF
Indicates the DTE is not driving the DTR lead on.

RTS IS OFF
Indicates the DTE is not driving the RTS lead on.

CTS IS OFF
Indicates the DCE is not driving the CTS lead on.

CD IS OFF
Indicates the DCE is not driving the CD lead on.

CALL ACCEPTED
Indicates that a call was requested and accepted.

CALL CLEARED
Indicates that a call Request/Incoming call packet was transmitted by one of the devices but the call was not accepted. The calling device may be using the wrong called address or there may be a facilities compatibility problem between the two devices.

LEVEL 2 PROBLEM
One of the devices sent over 10 SABMs trying to bring up Level 2 but no UA was received from the other device, or a FRMR was sent by one of the devices.

TEST COMPLETE
No calls were requested during the time of the test but a SABM/UA exchange and a Restart Request/Restart Confirmation exchange both occurred.

MON_TEST Listing

Monitor

Block 1
Message CHECK LEADS
If Lead DSR is Off
then goto Block 14
If Lead DTR is Off
then goto Block 15
If Lead RTS is Off
then goto Block 16
If Lead CTS is Off
then goto Block 17
If Lead CD is Off
then goto Block 18

Block 2
Message WAITING FOR RRs
and then
Reset Timer 1
and then
Reset Timer 2
and then
Reset Timer 3
and then
Reset Timer 4
and then
Start Timer 1
and then
Reset Counter 1
and then
Reset Counter 2
and then
Reset Counter 3
and then
Reset Counter 4
and then
Reset Counter 5
MON_TEST Listing (Continued)

Block 3
When DTE 243
or
When DTE 943
then goto Block 4
When DCE 243
or
When DCE 943
then goto Block 5
When DTE 246
or
When DTE 946
or
When DCE 946
then goto Block 5
When DCE 946
or
When DTE 246
or
When DTE 946
then goto Block 6
When DCE 946
or
When DCE 946
then goto Block 7
When DTE 5661
or
When DCE 5661
then goto Block 9
When DTE 18h
or
When DCE 18h
then goto Block 8
When DTE 18h
or
When DCE 18h
When DTE TEST

or

When DCE TEST

then goto Block 21

When DTE teste

or

When DCE teste

then goto Block 19

Block 4

Message DTE SABM, ADD=1

and then

Increment Counter 1 by 1

If Counter 2 > 0

then goto Block 13

If Counter 1 > 10

then goto Block 20

If Counter 1 > 0

then goto Block 3

Block 5

Message DCE SABM, ADD=1

and then

Increment Counter 2 by 1

If Counter 1 > 0

then goto Block 13

If Counter 3 > 10

then goto Block 20

If Counter 3 > 0

then goto Block 3

Block 7

Message DCE SABM, ADD=3

and then

Increment Counter 4 by 1

If Counter 3 > 0

then goto Block 13

If Counter 4 > 10

then goto Block 20

If Counter 4 > 0

then goto Block 3
Block 8
Message **WAITING FOR CALL**
and then
Increment Counter 5 by 1
and then
Goto Block 3

Block 9
Message **WAITING FOR CALL**
and then
Increment Counter 5 by 1
and then
Goto Block 3

Block 10
Message **CHECK SABMS**
If Counter 5 > 0
then goto Block 21
If Counter 1 > 0
then goto Block 12
If Counter 2 > 0
then goto Block 12
If Counter 3 > 0
then goto Block 12
If Counter 4 > 0
then goto Block 12
If Counter 1 > 0
then goto Block 12

Block 11
Message **NO SABMS SENT**
and then
Beep
and then
Goto Block 22
Block 12
Message NO RESTARTS SENT
 and then
 Beep
 and then
 Goto Block 22

Block 13
Message SAME LINK ADDR
 and then
 Beep
 and then
 Goto Block 22

Block 14
Message DSR IS OFF
When Lead DSR goes On
 then goto Block 2

Block 15
Message DTR IS OFF
When Lead DTR goes On
 then goto Block 2

Block 16
Message RTS IS OFF
When Lead RTS goes On
 then goto Block 2

Block 17
Message CTS IS OFF
When Lead CTS goes On
 then goto Block 2

Block 18
Message CD IS OFF
When Lead CD goes On
 then goto Block 2
Block 19
Message CALL CLEARED
 and then
Beep
 and then
Goto Block 22

Block 20
Message LEVEL 2 PROBLEM
 and then
Beep
 and then
Goto Block 22

Block 21
Message TEST PASSED
 and then
Beep

Block 22
When DTE
 then goto Block 22
Index

a

Address byte 3-11, 4-4
Address field 3-4, 4-4
Address length 3-11
Application program 2-4
Applications 1-2
ASCII 8 5-2
Asynchronous terminal 4-1
Auto Address Insert 3-7, 3-9, 3-10, 4-4, 4-11
Auto Call Acc/Con, Clr Cnf 4-11
Auto Call Accept/Call Confirmation 3-7, 3-8
Auto Clear Confirmation 3-7
Auto Configure 3-2
Auto LCN Using Counter 5 3-7, 3-9, 4-4
Auto level 3 RR 3-7, 3-8, 4-11
Auto P(s), P(r) 3-7, 3-8, 4-11
Auto Restart Confirmation 3-7, 4-11
Auto Restart Confirmation Transmission 3-8

b

Backup 2-3
Bit sense 5-2
Blank disc 2-4

C

Call #1 4-12
Call #1 field 6-10
CALL ACCEPTED 6-43
Call activity 3-7
CALL CLEARED 6-43
Call Req/Inc Call packet address field 4-4
Call Request/Incoming Call packet 3-7, 3-10
Call Setup Menu 3-10
Called addresses 3-10
Called/Calling Addresses 4-12
Calling/Called address combinations 3-10
CD IS OFF 6-43
CD, CTS, DSR 4-2
Clear Confirmation Transmission 3-8
Clear Request packet 3-7
Column, Header, Data Field param. 3-13
Command Address 3-4, 4-4, 4-8
Configure the Call Setup Menu 4-12
Configure the Level 2 Setup Menu 4-8
Configuring the Level 1 Setup Menu 4-7
Configuring the Level 3 Setup Menu 4-10
Connect an Interface Pod 2-2
Control Field 3-5, 4-4
Copyright laws 2-4
Counter 1 6-15
Counter 1 for N2 6-3
Counter 2 6-16
Counter 5 3-9
CTS IS OFF 6-43
CTS, CD, and DSR 4-2
Data (dd...d) 3-19
Data bits/sec 5-2
Data code 5-2
Data Field Parameters 3-15
Data filters 4-5
Data packet 3-7
DCE_CALL 1 5-5
DCE_CALL_M 5-5
DCE_LCN1 5-3
DCE_LCN2 5-3
Define the HP 4952A Connection Point 3-20
Determining the Equipment Parameters 5-1
Determining the Subscriber Parameters 5-4
Device Emulating 4-4, 4-8
DISC frame 4-3
Display Definition Setup Menu 3-11, 4-12
Display formats 3-11
DSR IS OFF 6-42
DTE clock source 5-2
DTE_CALL 1 5-5
DTE_CALL_1/DCE_CALL_1 6-27
DTE_CALL_M 5-5
DTE_CALL_M/DCE_CALL_M 6-32
DTE_FACIL/DCE_FACIL 6-38
DTE_FRAME 5-3
DTE_FRAME/DCE_FRAME 6-10
DTE_LCN1/DCE_LCN1 6-15
DTE_LCN2/DCE_LCN2 6-20
DTE_SUBNET 5-3
DTE_SUBNET/DCE_SUBNET 6-3
DTE_WINDOW/DCE_WINDOW 6-23
DTR IS OFF 6-43

Eight logical channels 3-7
EM = NET, EXT CT 6-3
EM = SUB, EXT CT 6-3
EM = SUBSCRIBER 6-3
EMUL = NETWORK 6-3
Emulate menu "Send" string 3-11
Emulation Editor Description 4-2
Emulation menus 3-2
Emulator package 2-4
Emulator = DCE 5-2
Emulator = DTE 5-2
Ensure Network/Subscriber Consistency 5-5
Equipment Supplied 1-3
Errors 2-3
Examine Data menu 3-2, 3-11, 4-12
Example test 4-1
Executing the Emulate Menu 4-5
Extended Control 4-4, 4-9, 6-3

Facilities 6-38
Facility field 3-11
Facility information 6-10
FCS 3-4, 3-17
Field Length 3-15
Field Start Octet 3-15
Five predefined display formats 3-11
Five setup menus 3-2
Frame Address (A) 3-16
Frame Arrival Time (FrTime) 3-19
Frame level address and control bytes 4-4
Frame reject 3-4
Frame Size 3-4, 4-9, 5-3, 6-10
Frame Type (FType) 3-17
g
Getting Started - X.25 Setup Menus 3-1
GFI and LCGN Fields 4-16

h
Header information 3-14
Highest legal switched virtual LCN 6-16
How to Use This Manual 1-2
HP 18267A Test Library and Emulator 1-1
HP 2334A PAD 4-1, 4-13
HP 2334A PAD parameters 4-7

i
Increment Counter 5 by 1 3-10, 6-10
Increment Counter 5 by 65535 3-10
Install and Troubleshoot X.25 Equip. 5-1

l
LCN 3-17
LCN 0 3-8
LCN range 4-10
Leads 6-42
Legal switched virtual LCN 6-15
Level 1 Emulation 4-2
Level 1 Setup 3-2, 3-11, 5-2
Level 2 Emulation - Set Lead Command 4-3
Level 2 link 4-3
Level 2 parameters 3-4
LEVEL 2 PROBLEM 6-43
Level 2 Setup 3-3, 5-3
Level 2 window size 5-3
Level 3 Emulation - The Send Statement 4-4
Level 3 Assisted Entry 4-4
Level 3 emulator 3-7
Level 3 packet strings 4-4

Level 3 Setup 3-6, 5-3
LEVEL1_MON 5-3, 6-1
Levels of X.25 control 3-2
Line switch 2-2
Link 3-5
Loading a Test from the Test Library 2-6
Loading the X.25 Level 2 Emulator 2-5
Logical channel numbers 5-5
Logical channels 3-8

m
Make a Copy of the Master Disc 2-3
Master disc 2-4
Mod 3-19
Modify LAPB Data Link Cont. param. 3-4
Modulo 8 or Modulo 128 3-5
MON_TEST 5-6, 6-42
Multiple asynchronous terminals 5-1

n
N(S) and N(R) values 3-5
Network 3-12
Network/Subscriber 3-4, 6-3
NO RESTARTS SENT 6-42
NO SABMS SENT 6-42
Novice X.25 user 1-2
Ns and Nr 3-17

O
Operating Manual 2-4
Outgoing Call Req./Inc. Call packets 2-9

P
P/F (PF) 3-17
Packet Type (PkType) 3-18
Packet Type Identifier field 3-11
Permanent Virtual Circuits 3-8
Physical DCE or DTE 5-3
Prewritten tests 4-2, 5-1
Ps and Pr 3-18

q
Q, D and M 3-19

r
Reset Counter 5 3-10
Response Address 3-4, 4-4, 8
Restart Count (N2) 4-9
Restart Request packet 3-7
Retry Count N2 3-5, 5-3, 6-3
Reverse charging 6-38
Rotation 3-10
RR packet 3-8
RTS IS OFF 6-43
Run time 3-2, 3-4

s
SABM 4-3
SAME LINK ADDR 6-42
Select a User Definable Display 3-21, 4-12
Send Statement 4-4
Send string 4-4
Set Lead command 4-3
Set Lead CTS Off 4-15
Set Lead CTS On 4-15
Set Lead "OFF" 4-3
Set Lead "ON" 4-3
Set RTS, DTR, CTS, DSR, CD "ON" 4-3
Setting Up the Emulator 4-6
Setting Up X.25 Definable Displays 3-12
Setup menus 3-1, 3-2
Simulate DCE 4-13
Subscriber 3-12
Subscriber equipment 5-1, 5-5
Switched Virtual Circuits SVCs 3-8
Switched virtual LCN 6-15

t
T1 timer 3-5
TEST COMPLETE 6-43
Test Library 2-4
Timer 1 6-3
Timer T1 4-9, 5-3, 6-3
Top level menu 2-3, 2-5, 3-1, 3-2, 3-6
Turn ON the Protocol Analyzer 2-2

u
Using the Emulator to Create a Test 4-1
Using X.25 Test Library and Emulator 5-1

v
Virtual Call LCN range 5-3
Virtual Call LCNs 3-7, 4-10

w
Window size 3-5, 5-3, 6-23, 4-9
Working copy 2-3
Writing the Test 4-13

Index - 4
X

X.25 Display Header Selection 3-16
X.25 equipment and networks 5-1
X.25 PAD 5-1
X.25 Test Library tests 5-1
X25_EMULAT 2-6

Softkeys

<Call Setup> 4-12
<Chang Dsply> 3-21
<Chang Dsply> 4-12
<Conn Point> 3-20
<Disp Def> 3-11, 12
<Disp Def> 4-12
<Emul Menu> 3-2
<Emul Menu> 4-2
<Emulate> 4-5
<Execute> 2-6
<Lev 1 Setup> 3-2
<Lev 1 Setup> 4-7, 12
<Lev 2 Setup> 3-3
<Lev 2 Setup> 4-8
<Lev 3 Setup> 3-6
<Lev 3 Setup> 4-10
<Levl 3> 4-4
<Load> 2-6
<Mass Store> 2-5
<Run Menu> 4-5, 5-3, 6-3
<Send> 4-4
<Set Up> 3-1, 3-3, 3-6, 3-12, 4-7, 4-12
<Sim Menu> 3-2, 4-2
<Simulate> 5-3, 6-3
HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

ASIA

- **Hewlett-Packard Asia Ltd.**
 - 22/F Bond Centre, West Tower
 - 89 Queenston, Central
 - HONG KONG
 - G.P.O. Box 883, Hong Kong
 - Tel: 5-849777
 - Telex: 76753 HPAPAL TD

- **Hewlett-Packard (Canada) Ltd.**
 - 6877 Gowerway Drive
 - MISSISSAUGA, Ontario L4V 1M6
 - Tel: (416) 678-9430
 - Fax: (416) 678-9421

EASTERN EUROPE

- **Hewlett-Packard Ges.m.b.h., Liebhagasse 1**
 - POSTAL BOX 72
 - A-1222 VIENNA, Austria
 - Tel: (222) 2500
 - Telex: 13 4425 HEP A

NORTHERN EUROPE

- **Hewlett-Packard S.A.**
 - V. D. Hooplaan 241
 - P.O. Box 999
 - NL-1181 LN 15 AMSTELVEEN
 - The Netherlands
 - Tel: 20 5479999
 - Telex: 189 191 npnw

SOUTH EAST EUROPE

- **Hewlett-Packard S.A.**
 - World Trade Center
 - 110 Avenue Louis-Casal
 - 1215 Coelion, GENEVA, Switzerland
 - Tel: (022) 98 96 51
 - Telex: 272251 npnw
 - Mail Address:
 - P.O. Box
 - CH-1217 Meyrin 1
 - GENEVA, Switzerland

MIDDLE EAST AND CENTRAL AFRICA

- **Hewlett-Packard S.A.**
 - International Sales Branch
 - Middle East/Africa
 - 7, rue du Bois-du-Lan
 - P.O. Box 364
 - CH-1217 Meyrin 1
 - GENEVA, Switzerland
 - Tel: (41/22) 780 1111
 - Fax: 783 7353

SALES OFFICES

EUROPE

- **European Operations**
 - Hewlett-Packard S.A.
 - Route du Nant d'Avril
 - 1217 Meyrin 2
 - GENEVA, Switzerland
 - Tel: (41/22) 780 8111
 - Fax: (41/22) 790 8542

- **United Kingdom**
 - Hewlett-Packard Ltd.
 - Nine Mile Ride
 - WOKINGHAM Berkshire, RG111L
 - Tel: 0344 773100
 - Fax: (44/344) 763926

UNITED STATES OF AMERICA

- **Customer Information Center**
 - (800) 752-0900
 - 6:00 PM to 5:00 PM Pacific Time

- **Eastern USA**
 - Hewlett-Packard Co.
 - 4 Chateau Cherry Road
 - ROCKVILLE, MD 20850
 - Tel: (301) 670-4300

- **Midwest USA**
 - Hewlett-Packard Co.
 - 5201 Tohyi Drive
 - ROLLING MEADOWS, IL 60008
 - Tel: (312) 255-8800

- **Southwestern USA**
 - Hewlett-Packard Co.
 - 2015 South Park Plaza
 - ATLANTA, GA 30339
 - Tel: (404) 955-1500

- **Western USA**
 - Hewlett-Packard Co.
 - 5163 Lankershalm Blvd.
 - NORTH HOLLYWOOD, CA 91601
 - Tel: (818) 505-5600

- **Other International Areas**
 - Hewlett-Packard Co.
 - Intercontinental Headquarters
 - 3495 Deer Creek Road
 - PALO ALTO, CA 94304
 - Tel: (415) 857-5027
 - Telex: 024-8300
 - Cable: HEWPACK

- **Melbourne, Victoria Office**
 - Hewlett-Packard Australia Ltd.
 - 31-41 Joseph Street
 - BOX 221
 - BLACKBRUN, Victoria 3120
 - Tel: (03/1) 895-2895
 - Fax: (03/1) 898-7381
 - Cable: HEWPACK Melbourne

BERMUDA

- **Applied Computer Technologies**
 - Atlantic House Building
 - P.O. Box HM 2591
 - P.O. Box 308
 - HAMILTON 5
 - Tel: 295-1616
 - Telex: 380-3586/ACT BA

BOLIVIA

- **Arribella Ltda**
 - Av. 20 de Octubre #2125
 - Casilla 1333
 - LA PAZ
 - Tel: 265841
 - Fax: 223-356

BRAZIL

- **Hewlett-Packard do Brasil S.A.**
 - Praia de Botafogo 228-A/6-114
 - S.A. DE CONJ. 601
 - Edifício Argentina - Aa A
 - 22250 RIO DE JANEIRO, RJ
 - Tel: (55/21) 552-6422
 - Telex: 21905 HPBR BR
 - Cable: HEWPACK Rio de Janeiro

BRUNEI

- **Komputer Wismn Sdn Bhd**
 - G6, Chandrawasw Cmpx, Jalan Tutung
 - P.O. Box 1297
 - BANDAR SENI BEGAWAN
 - NEGERA BRUNI DARUSSALAM
 - Tel: 673-29000-2/28711

BURKINA FASSO

- **S.T.E.L.**
 - Immeuble le General
 - Avenue General de Gaulle
 - P.O. Box 161
 - ABIDJAN 01
 - Ivory Coast
 - Tel: 32 12 27
 - Telex: 22149

CAMEROON

- **R.T.I.**
 - 175 Rue Blomet
 - 78015 PARIS
 - France
 - Tel: (1) 45 31 0910
 - Telex: 2033761
 - Fax: (1) 45 30 91 18

CANADA

- **Hewlett-Packard (Canada) Ltd.**
 - 3030 3rd Avenue N.E.
 - CALGARY, Alberta T2A 6T7
 - Tel: (403) 272-2299
 - Fax: (403) 272-2299

SALES OFFICES

- **Arranged alphabetically by country**

- **The Netherlands**
 - Hewlett-Packard S.A.
 - Montaner 2140/00
 - 1428 BUENOS AIRES
 - Tel: (514) 781-4059
 - Fax: (514) 781-4090
 - Laboratorio Rodriguez
 - Consorci S.R.L.,
 - Misiones, 1166 - 1876
 - Beni Aires
 - BUENOS AIRES
 - Tel: 252-3958, 252-4991
 - Argentinean Esflico S.R.L.
 - A/A/ASC 2228
 - 1416 BUENOS AIRES
 - Tel: 541-56-1961, 541-59-2767
 - Telex: 227966 HEW-PAC-AR

- **Australia**
 - Customer Information Centre
 - (0800) 03881
 - Adelaide, South Australia Office
 - Hewlett-Packard Australia Ltd.
 - PARKSIDE, S.A. 5063
 - 153 Greenhill Road
 - ADELAIDE (Parksade) Sales
 - Tel: (08/64) 272-5911
 - Fax: (08/64) 373-1598

- **Bahrain**
 - Modern Electronic Establishment
 - Hewlett-Packard Division
 - P.O. Box 22015
 - RIYADH 11495
 - SAUDI ARABIA
 - Tel: (966/1) 4730300
 - Fax: (966/1) 2200490
 - Wael Pharmacy
 - P.O. Box 648
 - MANAMA
 - Tel: 256-123
 - Telex: 8550 WAEL BN

- **Belgium**
 - Hewlett-Packard Belgium S.A./N.V.
 - Blvd de la Woluwe, 100
 - Woluwe-sta
 - 1200 BRUSSELS
 - Tel: (02) 783.31.11
 - Fax: (02) 783.96.13

- **Benin**
 - S.T.E.L.**
 - Immeuble le General
 - Avenue General de Gaulle
 - P.O. Box 161
 - ABIDJAN 01
 - Ivory Coast
 - Tel: 32 12 27
 - Telex: 22149

- **Canada**
 - Alberta
 - Hewlett-Packard (Canada) Ltd.
 - 11120-178th Street
 - EDMONTON, Alberta T5J 12P
 - Tel: (32) 486-6666
 - Fax: (32) 489-8764
SALES OFFICES
Arranged alphabetically by country (cont’d)

TAIWAN
Hewlett-Packard Taiwan Ltd.
Taichung Office
SFL. 67, Sec. 3. Hsin-Hsin Road, TAINCHUN
Tel: (04) 254-1201

TANZANIA
Adcom Ltd. Inc. Kenya
P.O. Box 30070
NAIROBI
Kenya
Tel: 33 19 55
Telex: 22639

THAILAND
Unimesa Co. Ltd.
2545 Sukumwit Avenue
Tel: (66) 727-2306
Fax: (66) 774-8165

Togo
S.I.T.E.
Immeuble le General
Avenue General de Gaulle
Porto de Spain
Trinidad & Tobago
Caribbean Telecoms Ltd.
Corrall McAllister Street & Eastern Main Road, Laventille
P.O. Box 732

TUNISIA
Precision Electronique
5, rue de Chypre
Muhellevier
1002 TUNIS BELVEDERE
Tunisia
Tel: 78 50 37
Fax: 71238

TURKEY
E.M.A.
Medina Eldem Sokak No. 41/6
Yenisehir
ANKARA
Tel: 131 4655, 131 9175
Telex: 46912 emsetr
Fax: 135 29 70

UNITED ARAB EMIRATES
Emiratco Ltd.
P.O. Box 1641
SHARJAH
Tel: 591181
Telex: 48710 EMITAC EM
Fax: 557355

UNITED KINGDOM
ENGLAND
Hewlett-Packard Ltd.
Customer Information Centre
Ring St. Lane
Winchester, Wokingham
G.B.-BERKSHIRE RG11 5AR
Tel: (44) 61-248-0826
Fax: 680689

NORTHERN IRELAND
Hewlett-Packard (Ireland) Ltd.
Carickfergus Industrial Centre
75 Belfast Road, Carickfergus
Co. ANTRIM BT38 8PM
Tel: (0906) 67333

UNITED STATES
Alabama
Hewlett-Packard Co.
2100 Riverchase Center
Building 100 - Suite 118
BIRMINGHAM, AL 35244
Tel: (205) 866-0547
Fax: (205) 888-5308

Alaska
Hewlett-Packard Co.
4000 Old Seward Highway
Suite 101
ANCHORAGE, AK 99503
Tel: (907) 563-8855
Fax: (907) 561-7409

Arizona
Hewlett-Packard Co.
8080 Pointe Parkway West
PHOENIX, AZ 85044
Tel: (602) 272-8600
Fax: (602) 272-8608

Arkansas
Hewlett-Packard Co.
10818 Executive Center Dr
Conway Bldg. Suite 118
LITTLE ROCK, AR 72211
Tel: (501) 221-3614
Fax: (501) 221-3614

California
Hewlett-Packard Co.
26701 W. Argoura Rd.
CALABASAS, CA 91302
Tel: (818) 880-3400
Fax: (818) 880-3437

Tunisia
Precision Electronique
5, rue de Chypre
Muhellevier
1002 TUNIS BELVEDERE
Tunisia
Tel: 78 50 37
Fax: 71238
<table>
<thead>
<tr>
<th>State</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Hewlett-Packard Co. 2015 South Park Place ATLANTA, GA 30339 Tel: (404) 955-1500 Fax: (404) 980-7669 Hewlett-Packard Co. 3607 Parkway Lane Suite 300 NORCROSS, GA 30092 Tel: (770) 448-1894 Fax: (770) 246-5206</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Florida</td>
<td>Hewlett-Packard Co. 1200 East Delhi Road NAPLES, FL 33905 Tel: (568) 682-1500 Fax: (508) 784-2619 Hewlett-Packard Co. 5201 Tollview Drive ROCKVILLE, MD 20850 Tel: (301) 948-6370 Fax: (301) 948-5986</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Hewlett-Packard Co. 4201 Corporate Dr. WEST DES MOINES, IA 50265 Tel: (515) 224-1435 Fax: (515) 224-1870</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Hewlett-Packard Co. 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100 Fax: (612) 641-9797</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Georgia</td>
<td>Hewlett-Packard Co. 500 Woodland Parkway, Suite 101 RIGGLEMAN, MS 39157 Tel: (601) 857-0730 Fax: (601) 957-2515</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Hewlett-Packard Co. Pacific Tower 1001 Bishop St. Suite 2400 HONOLULU, HI 96813 Tel: (808) 526-1555 Fax: (808) 536-7873</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Idaho</td>
<td>Hewlett-Packard Co. 11309 Chinden Blvd. BOISE, ID 83714 Tel: (208) 333-2700 Fax: (208) 332-2528</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Illinois</td>
<td>Hewlett-Packard Co. 2205 E. Empire St. BLOOMINGTON, IL 61704 Tel: (309) 662-9411 Fax: (309) 662-0351 Hewlett-Packard Co. 525 W. Monroe St., Suite 1308 CHICAGO, IL 60606 Tel: (312) 930-0010 Fax: (312) 930-0986</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Indiana</td>
<td>Hewlett-Packard Co. 4015 James Drive EVANSVILLE, IN 47715 Tel: (812) 480-4600 Fax: (812) 480-5500</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Iowa</td>
<td>Hewlett-Packard Co. 4050 River Center Court CEDAR RAPIDS, IA 52402 Tel: (319) 362-0606 Fax: (319) 362-1024</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Kentucky</td>
<td>Hewlett-Packard Co. 35N S. Hurstbourne Lane, Suite 100 LOUISVILLE, KY 40222 Tel: (502) 426-0100 Fax: (502) 426-0322</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Louisiana</td>
<td>Hewlett-Packard Co. 160 James Drive East ST. ROSE, LA 70087 Tel: (504) 467-4100 Fax: (504) 467-4100 x 291</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Maryland</td>
<td>Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227 Tel: (410) 644-5800 Fax: (410) 362-7650 Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370 Fax: (301) 948-5986</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Hewlett-Packard Co. 1775 Minuteman Road ANDOVER, MA 01810 Tel: (978) 682-1500 Fax: (978) 784-2619 Hewlett-Packard Co. 29 Burlington Mall Rd. BURLINGTON, MA 01803-4514 Tel: (817) 270-7000 Fax: (817) 221-5240</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Michigan</td>
<td>Hewlett-Packard Co. 3033 Orchard Vista S.E. AUBURN, WA 98002 Tel: (509) 599-5000 Fax: (509) 599-5382 Hewlett-Packard Co. 15 Sylvan Way PARSONS, NJ 07075 Tel: (201) 682-4000 Fax: (201) 682-4031 Hewlett-Packard Co. 20 New England Ave. PISCATAWAY, NJ 08854 Tel: (201) 562-8400 Fax: (201) 562-8466</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Minnesota</td>
<td>Hewlett-Packard Co. 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100 Fax: (612) 641-9797</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Mississippi</td>
<td>Hewlett-Packard Co. 800 Woodland Parkway, Suite 101 RIGGLEMAN, MS 39157 Tel: (601) 857-0730 Fax: (601) 957-2515</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Missouri</td>
<td>Hewlett-Packard Co. 13010 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 Fax: (314) 344-5273 Hewlett-Packard Co. 6601 Winship Dr. KANSAS CITY, MO 64133 Tel: (816) 737-0071 Fax: (816) 737-4690</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Montana</td>
<td>Hewlett-Packard Co. 13010 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 Fax: (314) 344-5273</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Nebraska</td>
<td>Hewlett-Packard Co. 1626 Nicholas St. OHIO 60145 Tel: (407) 493-0300 Fax: (407) 493-4334</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>Hewlett-Packard Co. 120 W. Century Road PARAMUS, NJ 07653 Tel: (201) 599-5000 Fax: (201) 599-5382 Hewlett-Packard Co. 15 Sylvan Way PARSONS, NJ 07075 Tel: (201) 682-4000 Fax: (201) 682-4031 Hewlett-Packard Co. 20 New England Ave. PISCATAWAY, NJ 08854 Tel: (201) 562-8400 Fax: (201) 562-8466</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>New Mexico</td>
<td>Hewlett-Packard Co. 7801 Jefferson Rd. AUBURN, WA 98002 Tel: (509) 826-9309 Fax: (509) 826-9345 Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 Fax: (314) 344-5273</td>
<td>Consult the table for details.</td>
</tr>
<tr>
<td>Ohio</td>
<td>Hewlett-Packard Co. 2717 S. Arlington Rd. AURORA, OH 44202 Tel: (440) 465-2200 Fax: (440) 465-7415 Hewlett-Packard Co. 130 John Muir Dr. AMHERST, NY 14228 Tel: (716) 699-3003 Fax: (716) 636-7034</td>
<td>Consult the table for details.</td>
</tr>
</tbody>
</table>
SALES OFFICES
Arranged alphabetically by country (cont’d)

UNITED STATES
(Cont’d)

Hewlett-Packard Co.
0787 Washington Village Dr.
DAYTON, OH 45459
Tel: (513) 433-2223
Fax: (513) 433-8633

Hewlett-Packard Co.
9070 Springboro Pike
MIAMISBURG 45342
Tel: (419) 241-7655
Fax: (419) 241-7655

Hewlett-Packard Co.
15885 Sprague Road
STRONGSVILLE, OH 44136
Tel: (216) 234-7300
Fax: (216) 234-7300

Hewlett-Packard Co.
One Maritime Plaza, 5th Floor
720 Water Street
TOLEDO, OH 43604
Tel: (419) 242-2200
Fax: (419) 242-7655

Hewlett-Packard Co.
675 Brookside Blvd.
WESTERVILLE, OH 43081
Tel: (614) 891-3344
Fax: (614) 891-1476

Oklahoma
Hewlett-Packard Co.
3525 N.W. 54th St.
Suite C-100
OKLAHOMA CITY, OK 73112
Tel: (405) 946-9499
Fax: (405) 942-2127

Hewlett-Packard Co.
6655 South Lewis,
Suite 105
TULSA, OK 74136
Tel: (918) 481-6700
Fax: (918) 481-2250

Oregon
Hewlett-Packard Co.
925 S. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
Fax: (503) 682-8155

Pennsylvania
Hewlett-Packard Co.
Huntwood Industrial Park
50 Dorchester Rd.
P.O. Box 6080
HARRISBURG, PA 17112
Tel: (717) 657-5900
Fax: (717) 657-5946

Hewlett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
Fax: (412) 963-1300

Hewlett-Packard Co.
2750 Monroe Boulevard
VALLEY FORGE, PA 19482
Tel: (215) 688-9000
Fax: (215) 688-2034

South Carolina
Hewlett-Packard Co.
Brooks Park, Suite 122
1 Harrison Way
COLUMBIA, SC 29212
Tel: (803) 732-0400
Fax: (803) 732-4567

Hewlett-Packard Co.
545 N. Pleasantburg Dr.
Suite 100
GREENVILLE, SC 29607
Tel: (803) 233-9002
Fax: (803) 232-8739

Tennessee
Hewlett-Packard Co.
One Energy Center Suite 200
Pepplesick Parkway
KNOXVILLE, TN 37932
Tel: (615) 966-4747
Fax: (615) 966-8147

Hewlett-Packard Co.
889 Ridge Lake Blvd., Suite 100
MEMPHIS, TN 38119
Tel: (901) 763-4747
Fax: (901) 762-9723

Hewlett-Packard Co.
44 Vantage Way,
Suite 160
NASHVILLE, TN 37228
Tel: (615) 255-0771
Fax: (615) 278-2310

Texas
Hewlett-Packard Co.
9050 Capital of Texas Highway, North #290
AUSTIN, TX 78759
Tel: (512) 346-3855
Fax: (512) 338-7201
Mailing Address
PO Box 9431
Austin, TX 78766-9430

Hewlett-Packard Co.
5700 Crompt Dr
EL PASO, TX 79912
Tel: (915) 833-4400
Fax: (915) 581-8097

Hewlett-Packard Co.
10535 Harwin Drive
HOUSTON, TX 77036
Tel: (713) 776-6400
Fax: (713) 776-6495

Hewlett-Packard Co.
3301 West Royal Lane
IRVING, TX 75061
Tel: (214) 869-3377
Fax: (214) 830-8951

Hewlett-Packard Co.
9 E. Toronto, Suite 100
MCALLEN, TX 78503
Tel: (512) 830-3030
Fax: (512) 630-1335

Hewlett-Packard Co.
930 E. Campbell Rd.
RICHARDSON, TX 75081
Tel: (214) 231-6101
Fax: (214) 699-4337

Hewlett-Packard Co.
14102 San Pedro Ave., Suite 100
SAN ANTONIO, TX 78232
Tel: (210) 494-9336
Fax: (210) 491-1299

Utah
Hewlett-Packard Co.
3500 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
Fax: (801) 974-1780

Virginia
Hewlett-Packard Co.
840 Greenbrier Circle
Suite 101
CHESAPEAKE, VA 23320
Tel: (703) 424-7105
Fax: (703) 424-1494

Hewlett-Packard Co.
4401 Water Front Dr.
GLEN ALLEN, VA 23060
Tel: (804) 747-7750
Fax: (804) 965-9297

Hewlett-Packard Co.
2800 Electric Road Suite 100
ROANOKE, VA 24018
Tel: (703) 774-3444
Fax: (703) 968-8049

Washington
Hewlett-Packard Co.
15815 S.E. 39th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
Fax: (206) 643-8748

Hewlett-Packard Co.
N. 1225 Argonne Rd
SPOKANE, WA 99212-2657
Tel: (509) 923-7070
Fax: (509) 927-4236

West Virginia
Hewlett-Packard Co.
501 56th Street
CHARLESTON, WV 25304
Tel: (304) 925-0492
Fax: (304) 925-1910

Wisconsin
Hewlett-Packard Co.
275 N. Corporate Dr.
BROOKFIELD, WI 53005
Tel: (414) 792-8800
Fax: (414) 792-0218

URUGUAY
Pablo Ferrando S.A.C. e I.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 59-82-902-586
Telex: 598882566

Olympia de Uruguay S.A.
Maquinas de Oficina
Avda. del Libertador 1979
Casilla de Correo 5644
MONTEVIDEO
Tel: 91-1899, 98-3809
Telex: 6342 OROU UY

VENEZUELA
Analytical Supplies, CA
Quinta # 603 Inipermex
Av El Centro
Los Chorros
Apartado 75472

CARACAS
Tel: 364904, 2394047
Telex: 26274 CABIC

Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3 y calle 75
MARACAIBO, Estado Zulia
Apartado 2646
Tel: 56873686
Fax: 26464 HPMAR

YUGOSLAVIA
Do Hermes
General Zadarova 4
YU-11000 BEGRAD
Tel: (011) 045 411
Tel: 11433

Do Hermes
Cetolovska 73
YU-61000 LJUBLJANA
Tel: (01) 553-170
Tel: 31585

ZAIRE
C.I.E.
Computer & Industrial Engineering
25 Ave. de la Justice Gombe
Boise Postale 10976

KINSHASA
Tel: 32 063, 32 633, 28 251
Tel: 21552
Fax: 22 850

ZAMBIA
R.J. Tiberly (Zambia) Ltd.
P.O. Box 32792

LUSAKA
Tel: 21 55 80
Tel: 40 128

ZIMBABWE
Field Consolidated (Private) Ltd.
Sytron Division
Manhattan Court
81 Second Street
P.O. Box 3458

HARARE
Tel: 73 98 81
Tel: 26241
Fax: 70 20 08

Please send directory corrections to:
Test & Measurement Catalog
Hewlett-Packard Company
3200 Hiliawn Avenue
Palo Alto, CA 94304
Tel: (415) 857-4706
Fax: (415) 857-3880

September 1989