SuperTAP™ Advanced Development Tool for Intel Architectures
For Intel386™ EX Processor

Highlights

• Industry’s most portable, and versatile in-circuit tool:
 – Software development and test
 – Hardware design and debug
 – Integration
 – Manufacturing Test
 – Field Service
• For software development, SuperTAP is better than a monitor or ROM Emulator:
 – Provides communications path between target and host debugger without using target resources
 – Provides run control over the execution of code
 – Provides fast code downloads
 – Provides read/write access to registers and memory
 – Provides both hardware and software breakpoints
 – Real-time view and control of code execution history
 – Visibility of events (bus cycle and code conditions)
 – Ability to map memory address space
 – Works on stable or unstable systems
 – Ability to revive system after software crash
 – Extensive macro language automates debugging
 – Null target mode allows code development without a target system
• For hardware design and integration, SuperTAP’s advanced emulation features fit in a hand-held package:
 – Real-Time emulation to 33 MHz
 – Selectable 3- or 5-volt operation
 – Support for all i386EX modes and memory models
 – 64K frame trace buffer with timestamp
 – Trace pre-qualification, positioning and post-filtering
 – Advanced, GUI State-Machine Event System
 – Non-Stop Emulation (NSE™) Trace System
 – Non-Stop Emulation (NSE) Event System
 – Overlay Memory substitution for RAM and ROM
 – Versatile communications include 115Kbaud RS232 and High-Speed RS422
 – ONCE™ mode support
 – Complete i386EX PQFP and TQFP adapter support

SuperTAP™—Price and Performance
In the tradition of CodeTAP®, SuperTAP was designed with advanced technology to give embedded engineers all the debugging functions they use most, such as software and hardware breakpoints and modification of memory and processor registers.

As Applied’s third generation CodeTAP, SuperTAP sets a new standard in emulation, adding high-performance features such as a real-time 64K deep trace buffer (including address, data, processor status, and timestamp), target monitoring, selectable triggering, extended overlay memory and communications—all in an affordable, small-footprint device.

With support for popular compilers and hosts, SuperTAP fits easily into your environment. And thanks to its low cost, you can increase tool availability, boost the whole team’s productivity, and reduce time to market.

For More Information:
Call 1-800-426-3925; E-Mail info@amc.com;
Browse http://www.amc.com
Patented Emulation Technology
Applied invented CodeTAP emulation
technology (U.S. Patent No. 5,228,039)
to provide low-cost visibility and control
for executing and debugging code.

In the CodeTAP tradition, SuperTAP
fits in your pocket and is affordable.
However, SuperTAP’s extended
features compare to traditional
high-end ICEs and will appeal to software
and hardware developers alike.

Behind the tool is a dual processor
architecture that guarantees real-time
operation, provides fast code downloads
and trace uploads. You get the benefit
of advanced technology you won’t find
in look-alike devices.

The bottom line? We think you’ll
agree—SuperTAP is the best tool in
the industry for i386EX debugging.

More Than a Development Tool
SuperTAP offers value that goes
beyond the development and debug
phases. A complete C macro language
lets you automate complex test
scripts. SuperTAP’s portable size and
communications make it quick and
easy to use in the field as well as
around the office. Clip-on adapters
make production line testing go more
quickly. And Performance Analysis,
using Applied’s unique CodeTEST
product, provides unsurpassed
embedded software testing
capabilities.

Non-Stop Emulation (NSE™)
SuperTAP was designed to support
real-time critical applications.
SuperTAP offers NSE trace and event
subsystems that can be utilized with
the target running or paused.
SuperTAP also offers fast peek/poke
to memory and registers.

NSE™ Trace Subsystem
A 64K deep x 80-bit wide real-time
trace buffer helps you locate bugs by
providing a history of microprocessor
events. On each bus cycle, SuperTAP
captures everything you need to track
data movement and program execution
flow. Captured information includes
address, data, processor status, and
timestamp.

SuperTAP’s NSE (Non-Stop
Emulation) feature means you can
upload, view and trigger trace without
stopping the target processor. Executed
code is displayed in assembly and C-
source with symbols or raw bus cycles.
The trace buffer includes the capability
to search for bus cycles containing any
combination of address, data, and processor
status information to speed analysis.

Triggering trace is easy: SuperTAP
offers pre-, post- and center- triggering
capabilities.

Trace information can be pre-
qualified through SuperTAP’s Event
Subsystem, so you capture only the
information you want to see. You can
also use built-in Logic State Analysis,
which tracks external signals, to qualify
events. Timestamp provides accurate
event timing, from 25 ns to 8 hours.

Breakpoint Subsystem
Extensive breakpoints work together
with the Event System to facilitate
code and hardware testing and
analysis. You can set breakpoints in
your source code symbolically, by
specifying function or variable names,
or you can just point and click.

You can detect a variety of events
using software breakpoints, hardware
access breakpoints, and hardware
execution breakpoints. Hardware
execution breakpoints break immediately
before an instruction executes. They
prevent false triggering due to pre-
fetching. Unlike software breakpoints,
hardware execution breakpoints work
in ROM as well as RAM.

Hardware access breakpoints can
trigger on address, data value, and
cycle type. Cycle types include read,
write, I/O, DMA, interrupt-
acknowledge, and pre-fetch.

NSE™ Event Subsystem
The Event system dramatically
simplifies debugging of obscure or
intermittent problems. Sixteen
comparators and four trigger levels let
you define complex, nested conditions
to qualify breakpoints or trace.
Forward and backward branching
among trigger levels allows repetitive
capture of isolated events in trace.
SuperTAP’s Event System provides you
the ability to define up to eight active
bus events at the same time to
troubleshoot a complex condition. Two
32-bit event counters provide
passcount information for triggers.

Furthermore, SuperTAP’s NSE
capability allows you to modify your
triggers without stopping the target
processor. Triggers include address
match, address range, data match, data
range, and bus cycle (read/write, halt,
I/O, interrupt, DMA). Event actions
include break emulation, change
target level, count, assert trigger out,
and Trace control.

Overlay Memory Subsystem
For convenient debugging of target
PROM and RAM, you can map up to
1 MB of overlay memory to target
addresses with an unlimited number of
4K blocks. 4 MB and 8 MB options are
available. At full processor speed, overlay
requires no wait states. And because
overlay memory is based on addresses,
it doesn’t require chip selects.

Map address space is automatically
generated by a .MAP file. Attributes
include target read/write, read-only or
neither, and overlay read/write or
guarded. Guarded memory instantly
detects corrupted pointers.
High-Speed Communications

In addition to high-speed RS-232 serial communications, SuperTAP supports high-speed RS-422 serial communications with actual transfer rates up to 7 MByte/min. For example, a 256K file downloads in just two seconds. These significantly shortened download times mean substantial productivity gains.

Hardware Diagnostics

Testing hardware integrity is simplified with stand-alone mode. In this mode, SuperTAP behaves just like a bare processor, eliminating the need to remove and replace chips for testing.

SuperTAP also lets you continue to communicate with and troubleshoot your target under conditions that cause other tools to crash. A second processor continuously monitors the emulation processor for RESET, HOLD, READY, Vcc, clock, and hung bus cycles. If anything goes wrong, SuperTAP not only will help you recover from the condition, but tell you why it happened.

Performance Analysis

For the most powerful software measurements, team SuperTAP with CodeTEST software verification tools. Combined, SuperTAP and CodeTEST become the ultimate embedded development platform, and are a must for industries requiring proof of compliance to specification such as in aerospace or medical fields. For commercial high volume product development, SuperTAP and CodeTEST can reduce the chance and expense of product recalls.

CodeTEST provides Performance Analysis—including function and task execution times as well as call-pair views—Coverage Analysis, Memory Allocation Analysis and Extended Trace Analysis—all non-sampled, all while the target runs in real time.

For more information about CodeTEST, refer to the CodeTEST data sheet.

Industry Leading Debugger

Applied has partnered with leaders in the industry to ensure your SuperTAP is part of a complete, integrated environment.

SuperTAP comes complete with debugger as well as cross-linker/locator tools to support the outputs of most leading X86 compilers.

For more information about SuperTAP’s debugger, supported host operating systems, and user interface, see the SuperTAP debugger specification sheets.
Applied Microsystems Corporation

Direct Sales Offices

Headquarters
Applied Microsystems Corporation
5020 148th Avenue N.E.
P.O. Box 97002
Redmond, WA 98073-9702
Tel: 206-882-2000
Toll-Free: 1-800-426-3925
TRT Telex 185196
Fax: 206-883-3049

Eastern Region
Applied Microsystems Corporation
57 Bedford Street, Suite 203
Lexington, MA 02173

Applied Microsystems Corporation
919H N. Plum Grove Rd.
Schaumburg, IL 60173

Western Region
Applied Microsystems Corporation
5020 148th Ave. N.E.
Redmond, WA 98052

Applied Microsystems Corporation
19700 Fairchild, #380
Irvine, CA 92715

Applied Microsystems Corporation
3375 Scott Blvd., Suite 100
Santa Clara, CA 95054

Applied Microsystems Corporation
15851 Dallas Pkwy, Suite 165
I-8-1, Minamisemba, Chuo-ku
Osaka-shi, Osaka
Japan
Tel: +81-3-3493-0770
Fax: +81-3-3493-7270

Japan
Applied Microsystems Japan, Ltd.
Arco Tower 13 F
1-8-1 Shimomeguro, Meguro-ku
Tokyo 153

France
Applied Microsystems SARL
ZA1 de Courtaboeuf
7, Avenue des Andes
F-91952 Les Ulis Cedex
France
Tel: +33-1-64-463000
Fax: +33-1-64-460760

Germany
Applied Microsystems GmbH
Stahlguterring 11a, 81829 Muenchen
Germany
Tel: +49 (0)89-427-4030
Fax: +49 (0)89-427-40333

Distributors and Representatives located worldwide.
For the nearest location, call 1-800-426-3925 or (206) 882-2000
CAD-UL® XDB High Level Language Debugger
For the SuperTAP™ Advanced Development Tool

A Complete, Integrated Toolchain Environment
XDB from CAD-UL offers full support of 16-bit and 32-bit Intel architectures on PC and Sun hosts. Support of CPU protection mechanisms are provided by supplying flat and segmented memory models and subsystems.

Asynchronous memory access during emulation provides dynamic control that makes it much easier to debug real-time critical software.

XDB debugger is packaged with the LINK386 linker/locator system which supports allocation of descriptor tables, multitasking models, GATE definitions, absolute linkable and relocatable (loadable) code, and supports standard object formats.

Customized for SuperTAP
All of SuperTAP’s features have graphical window displays and easy point-and-click access through the interface including Trace, Event and Breakpoint system and Overlay. XDB is available for 16-bit and 32-bit development and comes complete with locator that provides interoperability for a variety of compilers including CAD-UL, Borland, Intel, Microsoft, Metaware, Watcom and other compilers that generate OMF symbolic format.

SuperTAP facilitates debugging by providing complete i386EX register information. Field definitions and online help are provided for all registers. Bit modifications are enabled with convenient point and click access.

SuperTAP offers complete C/C++ debugging with high-level, assembly, and bus cycle display options. Trace is 64K deep, recording data values, execution, and timestamp.

Applied Microsystems Corporation
SuperTAP™ Advanced Development Tool
for the Intel386™ EX CPU with CAD-UL: XDB

Microprocessors Supported
Intel i386EX CPU (all modes)

Speed
To 33 MHz
3–5 volt operation at any speed

Packages Supported
PQFP (132-pin) clip-on
TQFP (144-pin) solder-down
PQFP 132-pin solder-down

Communications
RS-232C host serial port (115K baud)
RS-422 serial interface (7 MByte/min)
(Both included in standard configuration)

SuperTAP Debugger and Hosts
CAD-UL XDB
Windows 3.11 / Windows 95/Windows NT / OS/2 compatible
OSF-Motif, Sun-OS
(All X86 modes & models supported)

Included With Debugger
CAD-UL LINK386 linker/locator

Complete Integrated Toolchain
Add CAD-UL IDE Compiler, Assembler, Linker and Libraries for a complete, integrated toolchain
Compatible with SSI linker and locator and Phar Lap linc/loc (C support only; sold separately)

Memory Model Support
Flat, Small, Small ROM, Compact, Large

Macro Language
Full C-like expression language

Compilers Supported
CAD-UL C/C++ + Compiler C0386
Intel ASM-286/386
Intel PLM-286/386
Intel iC-286/386
Microsoft C/C++
Borland C/C++
MetaWare High C
Watcom C/C+++
Other compilers that generate OMF386 symbolic format

Language Support
Assembler
C
C++
PLM

Performance Analysis
Timestamp with scalable resolution

Overlay Memory
1 MB zero wait state to 33 MHz
4 MB, 8 MB optional
Unlimited number of 4K blocks
Attributes: target or overlay, read/write, read-only or guarded.

Trace Subsystem
Featuring NSE
64K deep X 80-bit wide real-time trace history including 20 address bits, 16 data bits, 4 execution bits, and timestamp
Display executed code in assembly and C-source with symbols or raw bus cycles
Trigger trace upon events
View dynamic trace display without stopping emulation
Record DMA cycles
Timestamp with from 25 ns to 8 hours

Event and Breakpoint Subsystem
Featuring NSE™ dynamic triggering
Unlimited software execution breakpoints
Hardware resources include:
8 hardware execution breakpoints
7 data access breakpoints
Two 32-bit counters
Four trigger levels
Up to 8 inputs in one level
Up to 8 active bus events at one time
Triggering:
Address match
Address range
Data match
Data range
Bus cycle (read, write, halt, I/O, interrupt, DMA)
PINSTATE (INT 0–6, TIMERIN, TIMEROUT)

Event actions
Break emulation
Change trigger level
Count
Assert trigger out
Trace one cycle/trace on<trace off

Target Diagnostics
Monitor target Vcc, RESET, HOLD, and READY
Monitor target clock
Monitor bus timeout

Power Requirements
Powered from external supply
Input power 115 VAC, 47 Hz–63 Hz or 230 VAC, 47–63 Hz

Physical Specifications
Dimensions (LWH): 8.4 x 1.24 x 4.0” (21.43 x 3.17 x 10.16 cm)
Ambient humidity: 0–90% non-condensing
Operating temperature: 32–104° F (0–40° C)

Microprocessors Supported
Intel i386EX CPU (all modes)

Speed
To 33 MHz
3–5 volt operation at any speed

Packages Supported
PQFP (132-pin) clip-on
TQFP (144-pin) solder-down
PQFP 132-pin solder-down

Communications
RS-232C host serial port (115K baud)
RS-422 serial interface (7 MByte/min)
(Both included in standard configuration)

SuperTAP Debugger and Hosts
CAD-UL XDB
Windows 3.11 / Windows 95/Windows NT / OS/2 compatible
OSF-Motif, Sun-OS
(All X86 modes & models supported)

Included With Debugger
CAD-UL LINK386 linker/locator

Complete Integrated Toolchain
Add CAD-UL IDE Compiler, Assembler, Linker and Libraries for a complete, integrated toolchain
Compatible with SSI linker and locator and Phar Lap linc/loc (C support only; sold separately)

Memory Model Support
Flat, Small, Small ROM, Compact, Large

Macro Language
Full C-like expression language

Compilers Supported
CAD-UL C/C++ + Compiler C0386
Intel ASM-286/386
Intel PLM-286/386
Intel iC-286/386
Microsoft C/C++
Borland C/C++
MetaWare High C
Watcom C/C+++
Other compilers that generate OMF386 symbolic format

Language Support
Assembler
C
C++
PLM

Performance Analysis
Timestamp with scalable resolution

Overlay Memory
1 MB zero wait state to 33 MHz
4 MB, 8 MB optional
Unlimited number of 4K blocks
Attributes: target or overlay, read/write, read-only or guarded.

Trace Subsystem
Featuring NSE
64K deep X 80-bit wide real-time trace history including 20 address bits, 16 data bits, 4 execution bits, and timestamp
Display executed code in assembly and C-source with symbols or raw bus cycles
Trigger trace upon events
View dynamic trace display without stopping emulation
Record DMA cycles
Timestamp with from 25 ns to 8 hours

Event and Breakpoint Subsystem
Featuring NSE™ dynamic triggering
Unlimited software execution breakpoints
Hardware resources include:
8 hardware execution breakpoints
7 data access breakpoints
Two 32-bit counters
Four trigger levels
Up to 8 inputs in one level
Up to 8 active bus events at one time
Triggering:
Address match
Address range
Data match
Data range
Bus cycle (read, write, halt, I/O, interrupt, DMA)
PINSTATE (INT 0–6, TIMERIN, TIMEROUT)

Event actions
Break emulation
Change trigger level
Count
Assert trigger out
Trace one cycle/trace on<trace off

Target Diagnostics
Monitor target Vcc, RESET, HOLD, and READY
Monitor target clock
Monitor bus timeout

Power Requirements
Powered from external supply
Input power 115 VAC, 47 Hz–63 Hz or 230 VAC, 47–63 Hz

Physical Specifications
Dimensions (LWH): 8.4 x 1.24 x 4.0” (21.43 x 3.17 x 10.16 cm)
Ambient humidity: 0–90% non-condensing
Operating temperature: 32–104° F (0–40° C)

This document may contain preliminary information and is subject to change without notice. Applied Microsystems Corporation assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Applied Microsystems Corporation or third parties. NO WARRANTIES OF ANY KIND, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

© Applied Microsystems Corporation 1996. All rights reserved.

SuperTAP™ and CodeTEST™ are trademarks and CodeTAP™ is a registered trademark of Applied Microsystems Corporation. All other brand names, product names or trademarks cited herein belong to their respective holders.

For more information, call 1-800-426-3925, e-mail info@amc.com, or browse http://www.amc.com