CodeICE Emulator
for Intel i960® J-Series Processors

Highlights

- Full-scale development system supports all 3.3v, 5.0v and speed-doubled core 960 Jx processors with a single probe tip and user interface at full-rated processor speed
- Powerful multi-windowed MWX-ICE C/C++ debugger interface runs on Sun4, HP 9000/700, and PC hosts
- Integrated interactive RTOS kernel support option for VxWorks™
- Intuitive CPU Browser™ interface to fully configure, visualize, and change internal 960 Jx register states (PRCB, BPCON, PMCONs, etc.)
- Performance Plus tools provide:
 - Convenient profiling and code coverage support for Intel’s optimizing compilers
 - Performance analysis for profiling real-time execution of unlimited system functions
- Unique Source-Level Trace capability automatically correlates execution history with source code
- High speed overlay memory options from 1 MB to 8 MB
- Seamless networking support for workstations and PCs
- Real-time trace with timestamp captures 128 bits x 32K frames of information at full speed with cache enabled
- IDP mode services target interrupts while the emulator is paused
- Fully isolated probe tip, diagnostic functions, and scope loops help verify hardware design and diagnose problems
- 26 hardware access, 18 hardware execution breakpoints and virtually unlimited software breakpoints
- Flexible, powerful event system is easily configured to detect even the most isolated real-time system events

Tick, tick, tick . . .
Faster printers, better networking, cheaper telecom. Develop the products quicker. And do it for less. You face this kind of pressure every day, but now Applied Microsystems gives you some breathing room. The new CodeICE emulator for 960 Jx is designed to accelerate development over the entire life cycle of your project. And CodeICE uses the latest in innovative emulation technology to give you a rich feature set and keep your costs down at the same time.

Beat the Clock
CodeICE 960 Jx turns what used to take too much time and effort into just one more milestone you can check off. Features that help make your job easier include the new, graphical CPU Browser™ register configuration interface, a self-configuring performance optimization tool set, Applied’s unique Source-Level Trace capability, and integrated RTOS support.

The intuitive MWX-ICE debugger interface makes it easy to organize your approach to development for the way you work best. The graphical debugger offers point-and-click access to even the most powerful emulator features. It also features seamless integration with a graphical source explorer, editors, language tools and configuration management tools. With tools this powerful and this easy to use, you have a development environment that can really stop the clock.

We also offer tools to support these Intel products:
80960 CA/CF/Hx/RP; 80C186/188 XL, EA, EB, EC; 80L186/188 XL, EA, EB, EC; 80286; 80386 SX/DX; 386EX
A Winning Combination
Meeting today’s aggressive schedules and budgets takes affordable tools that offer both robust power and ease of use. CodeICE emulators represent a new approach to emulator technology that meets each of these requirements.

Just for Jx
Each CodeICE emulator is engineered for a single processor architecture. This processor-specific design makes it possible to reduce the number of components needed to build an emulator, yet significantly increase feature breadth and depth and achieve unmatched precision.

As a result, the CodeICE emulator for 960 Jx delivers affordable no-compromise performance—such as 50 MHz internal and 40 MHz external bus speeds and a rich feature set that supports the entire J-series with a single probe tip and debugger.

Power You Can Use
CodeICE features are designed to help you work more quickly and easily. Debugging embedded designs can actually be fun with tools like the CPU Browser graphical register configuration interface and interactive RTOS support. And with the intuitive MWX-ICE debugger interface you may even be home in time for dinner.

What’s more, as the chart below shows, you can use the power of the emulator over the entire development cycle, which makes CodeICE an even better investment. Each team member, from software and hardware engineers to manufacturing and support technicians, can get information about your product they can’t get as easily—or at all—with any other tool. And because each CodeICE can be installed on your workstation or PC network as its own node, everyone can have seamless access to the emulator.

Graphical Debugging Speeds Development
MWX-ICE is a function-rich C/C++, source- and assembly-level debugger. Available for PC, Sun4, or HP hosts, MWX-ICE gives you quick and easy visibility and control of code execution in your target.

This intuitive debugger combines a point-and-click windowed interface, extensive macro capabilities, and a comprehensive hypertext on-line help system with Applied’s specially engineered support for all the features of the CodeICE emulator for 960 Jx. It gives you simple, straightforward control of your target and the emulator, whether you prefer to work with a mouse or from the command line.

With the notebook feature, you don’t have to remember debugger command language. Instead, you can build even complex command sequences just by pointing and clicking. And the context-sensitive hypertext help system means you don’t waste time hunting through manuals.

The multi-windowed graphical interface lets you visually organize your debug environment for a more natural approach to debugging. For example, you can display source code and corresponding assembly language in separate windows to clarify their relationship and verify compiler performance.

MWX-ICE accepts executables from the popular tool chains, such as Intel’s i960, GCC960 and MRI’s C/C++ compilers.
Source Level Trace Simplifies Debugging

To see what’s really going on in your target, you need to see the relationship between source code and the processor instructions that execute in the target. With Applied’s unique Source-Level Trace capability, correlating execution history to source code has never been easier.

When viewing trace at source-level, you can also display the associated source modules and line numbers for quick and easy reference. For complete capture of execution history, the Trace system provides 128 bits of information about each cycle to a depth of 32K frames. Register tracking, a pioneering technology in CodeICE emulators, records the state of processor registers during execution and aligns data movement to executed instructions. This unique capability helps boost productivity by providing accurate information about internal processor operations.

Trace With Cache Enabled

To debug code that makes the most of heavily cached processors, such as the Jx family, you need a means of seeing the instructions that were executed out of cache. Applied’s trace system not only does that, but also disassembles cached instructions. You can then display them at source level, assembly level, bus/clock cycle level, or in mixed levels.

Easy Breakpoints

With the Scope feature, you don’t need to search back and forth among source modules to determine where to set breakpoints or to find the source code corresponding to your current trace. Choosing the Scope button brings the current line of trace into scope for both symbol accesses and the source window. Then, to set a breakpoint in your application at the highlighted line of trace, simply choose the Break button.

And when you need to locate a particular text string in the trace buffer, a menu-driven search capability finds any text, whether it’s data, an address, or even a function name.

Event System Pinpoints Problems

The CodeICE Event System lets you readily determine the execution trail of code without having to modify your code with printf statements or semaphores. The System can be used to qualify trace so you can capture the specific context of a problem, not just the effect. And you can quickly and transparently place breakpoints anywhere, even for functions executed out of cache.

It’s easy to configure the Event System using familiar names and symbolic references. The System supports a variety of qualifications in any combination. The When Event / Then Action statement format is both simple to understand and powerful. The full complement of event system actions furnishes a complete tool kit for isolating problems. Available actions include stop emulation, turn-on trace, turn-off trace, change state or group, increment counters, and generate an external trigger for operations such as synching an oscilloscope. The Logic State Analysis Probe option allows you to bring an additional 16 external signals in from your target to further qualify events.

Source-level trace reveals relationships between source code and processor instructions.
In most targets, when you’re using breakpoints to help pin down a problem you can’t always afford to stop your application’s whole world when you hit a breakpoint. The target still needs to service interrupts driven from other tasks while you determine where to set your next breakpoint. That’s why the CodeICE emulator provides a capability called Interrupts During Pause (IDP). When this feature is enabled, the emulator services interrupts even when you have suspended emulation.

Overlay Memory Saves Time

High-speed overlay memory helps maximize your investment by extending the utility of the CodeICE emulator to the very early stages of development. Before your target hardware is ready, the emulator, probe tip, overlay memory and simulated I/O provide an execution vehicle so you can get going early.

Mapping overlay as target memory also eliminates time spent burning ROMs to verify a code fix. Overlay also simplifies and accelerates hardware-software integration by letting you gradually implement target memory. Simply use overlay until the target hardware is debugged. You can program segments of overlay memory with 64K granularity to mimic your target system read-only or read-write memory. Overlay capacities of up to 8 MB are available.

RTOS Support Offers System-Level Visualization

CodeICE engineers work closely with industry-leading commercial kernel developers to provide comprehensive support packages for Real-Time Operating Systems (RTOS). RTOS visibility at the CodeICE level shows how the target, application, and RTOS interact with one another during execution in a thoroughly integrated, real-time environment.

Several broad categories of support are provided, including: real-time trace of RTOS activity, display of individual task context and other system structures, task-qualified breakpoints, task stack overflow detection, and task profiling support. The benefit of integrated RTOS support is a substantial reduction in the time required to debug and optimize your application as it runs in your target.

CPU Browser Speeds Register Configuration

Nobody enjoys poring through data books full of register bit settings. The CPU Browser™ register configuration utility makes your life easier with an error-proof means to configure and...
visualize the states and meanings of internal 960 Jx registers, such as the PMCONS, PRCB, timer, and interrupt registers. Its graphical display shows current or proposed register configuration information, with point-and-click access to all configurable bit fields.

Pre-set hex and binary values for bit configuration prevent mis-keying, and error checking is performed on all changes before they are applied. The CPU Browser window includes clear descriptions of individual bit fields, and the register bit configuration display immediately previews the effects of enabling and disabling each bit state.

Performance Plus Tools

Go Beyond Analysis

It takes more than just analysis to optimize performance. That’s why the CodeICE system for 960 Jx includes a suite of tools to help you streamline your embedded design.

Applied teamed with Intel to offer convenient profiling and code coverage support for Intel’s optimizing compilers. The result is a set of seamless, easy-to-use commands that automate the process of locating, extracting, formatting and uploading real-time profile data from memory back to your file system in a ready-to-go image.

Automated performance improvement may be all you need in many situations. But for critical applications you can make additional system performance measurements with an easy to use Performance Analysis tool. Because it places no demands on target operation or resources, the tool delivers an accurate view of where your code spends its time. It monitors an unlimited number of modules, gathering data to describe execution activity, code timing, interrupt timing and fault detection. Data is presented in an easily understood histogram format, and the tool generates reports to help document software and product performance.

Product validation is also an important component of every product life cycle. The CodeICE system includes an extensive macro language that lets you build automated test suites using emulator commands.

Once you’ve fine-tuned target performance and built up an arsenal of comprehensive test cases, you can use CodeICE profile support commands to gather test coverage information. Used together with Intel’s coverage analyzer, CodeICE performance tools tailor the output of the code coverage report to your requirements, such as call graph listings, combinations of program-, module-, function-, and source-level coverage reports, hit or miss source line execution, and two-profile comparisons.

Helping You Succeed

Because our success depends on your success, we take product support very seriously. In fact, at Applied Microsystems we call our program Customer Satisfaction.

Keeping you satisfied means more than just answering your questions. The leader in embedded development tools and the most experienced 960 market driver, Applied has the qualified and committed people it takes to provide thorough on-site training and superior engineering assistance, technical guidance on emulation issues, and expedited product service.

Our Applications Engineering Group is backed by a network of experienced Field Application Engineers, our own design teams, and the commitment of the entire company. And with over 16,000 installed solutions and more than fifteen years of leadership in embedded hardware and software development tools, our team is an important asset to have on your team.

Take the Time to Call Now

To see how the new CodeICE 960 Jx emulator can help you beat the clock, call 1–800–426–3925 for information or a product demonstration. And breathe easier—with the CodeICE emulator you can develop your 960 Jx product on time and in budget. And maybe even have a little time for yourself.
CodeICE Emulator for Intel i960® J-Series Processors

Microprocessors Supported
- Intel 80960JF, 80960JD, 80960JF, 80960JA at 50 MHz

Packages Supported
- PGA direct
- PQFP with optional adapters

Minimum Host Requirements
- **PC 386 or better**
 - Microsoft Windows 3.1 or higher, 12 MB RAM minimum, 16 MB recommended (1 vacant ISA or EISA slot for High-Speed Parallel)
- **Sun SPARC**
 - 16 MB RAM minimum, 20 MB swap, Sun OS 4.1.x, Solaris 2.2/2.3
 - Ethernet port
- **HP 9000/700**
 - 16 MB RAM minimum, 20 MB Swap, HP/UX 9.0 or later, Ethernet port

Communications
- **PC Environment:**
 - Ethernet (Winsock 1.1, TCP/IP (incl. Novell)), IEEE 802.3 10base2, 10base5, 10baseT
 - High-Speed Parallel
- **Sun / HP Environment:**
 - IEEE 802.3 10base2, 10base5, 10baseT

User Interface
- **Integrated Source Level Debugger**
 - Multi-Windowed interface (X-windows/Motif on workstations, Windows on PC)

Trace System
- **Hardware**
 - Trace depth 32K x 128 bits wide with programmable timestamp
 - **Intelligent Trace Disassembler**
 - Display instructions and register contents correlated with data
- **Trace Windows**
 - Choose between bus cycle, assembly, and source trace display, on-the-fly, in any combination
 - Scrollable forward and backwards
 - Search trace for specified patterns
 - Connected to the event system to allow qualified tracing
- **Source-Level Trace**
 - Unique capability displays which source lines were executed and correlated values while executing out of cache

Event System
- **Define external signals from your target to qualify events**
- **Event Actions:**
 - Break
 - Stop and Update
 - Update
 - Stop
 - Change group
 - Trigger out
 - Activate state/group
 - Increment/toggle/reset counter

Breakpoint System
- Up to 26 hardware access breakpoints and an additional 18 hardware execution breakpoints for ROM or RAM
- Virtually unlimited software execution breakpoints for code located in RAM
- 1 asynchronous breakpoint from keyboard
- Access to on-chip breakpoints

Overlay Memory
- 1 to 8 MB available
- No overlay wait states to 20 MHz
- (one wait state at 20 MHz and above)
- Map anywhere in 64K segments
- Configurable as read-only and read-write to simulate ROM and RAM in the system

Target Hardware Debug Support
- Fully buffered probe tip allows debug of dysfunctional target hardware
- Predefined diagnostic routines and scope loops offer a suite of tools to quickly isolate defective hardware
- Integrate up to 16 external signal lines from your target hardware into the CodeICE break, event and trace systems with optional Logic Analysis Probe

Advanced Testing and Validation
- C-like macro extension language allows you to construct and save target regression tests
- Record and playback debugging sessions

Physical Specifications
- **Chassis:**
 - 16" X 13" X 5" (40.6 cm X 33 cm X 12.7 cm) [L x W x H]
- **Chassis weight:**
 - 14 lbs. (6.35 kg)
- **Probe Tip:**
 - 7.25" X 3.18" X 0.81" (18.41 cm X 8.07 cm X 2.05 cm) [L x W x H]

For more information, call 1-800-426-3925, e-mail info@amc.com, or browse http://www.amc.com