

currently being implemented in INTERLISP using a "spaghetti stack"

technique (Bobrow & Wegbreit 1973a) which has the property that for

ordinary recursive function calls it costs very little more than the usual

stack storage allocation mechanism. This system is almost operational and

will be combined with QLISP in the near future.

The INTERLISP frame will contain the usual binding, access, and control

links and a continuation point (current state), as described earlier, plus

some other fields for additional features. Functions will exist that

enable the programmer to locate existing frames by name or by following

along access or control chains, creating a new process using any existing

frame as above, and constructing arbitrary control structure trees of new

frames. Hultiprocessing is done by explicit passing of control among

processes, or to a user-programmed scheduler.

An extremely general relative evaluation function will permit

independent specification of both access and control environments before

evaluating a specified expression. The effects of both the CONTINUE and

the CEVAL commands of CONNIVER and the relative stack evaluation of

BBN-LISP can be obtained as special cases of this new INTERLISP capability.

Another feature of the INTERLISP frame is the exit-function. In any

�s�y�s�~�e�m� that implements flexible control structures, when a module makes a

normal return to its parent, certain bookkeeping operations must be

performed by the system during the actual transfer. INTERLISP provides a

place in the frame for a user function to be specified for execution at

this time. This exit function may be specified at run time by a different

module. Thus, for example, a module can insert an exit function in the

26

module three above it in the control chain which causes a breakpoint to the

user just before that higher module returns to its parent.

The present control structure of QLISP is rather restrictive, because

the new INTERLISP features mentioned above have not been available to build

upon. In particular, only "recursive" backtracking is possible; that is,

one can only backtrack to a higher point in a depth-first control tree.

This means that once a QLISP expression exits with a value, that expression

cannot be re-entered as a generator to produce another value. However, as

Sussman (Sussman 1972) pointed out, most sequential backtracking programs

can be rewritten into nested recursive tests. QLISP provides, as a

temporary expedient, a recursive backtracking version BIS of its basic

associative retrieval program IS. IS takes a pattern as its argument, and

tries to find an instance of that pattern in the data base. BIS takes as

an additional argument a test for any expression found. If a proposed

expression is rejected, BIS attempts to find a different instantiation of

its pattern argument. For example, the following program will search the

data base for something that John owns which is colored red: (The pattern-

matching operations are explained further in Section C.)

(BIS (OWNS JOHN + X)

(IF (IS (COLOR $X RED» THEN (PRINT $X)
ELSE (FAIL»)

After the spaghetti stack and associated .control operations are added

to INTERLISP, the QLISP ~ function will probably be modified to create its

own backtrack point, so that the above code could be replaced by

(IS (OWNS JOHN + X» followed by the above IF statement, without needing an

enclosing BIS operator.

27

Demons, in current QLISP, are set up as groups of functions called

teams that may be associated with any net storage or retrieval command.

This gives the programmer the flexibility needed to design either an

efficient system, in which he carefully selects the appropriate times to

trigger each demon, or a more carefree system, in which he calls for all

demons at every opportunity.

4. POPLER/POP-2. POPLERl.5 follows the PLANNER philosophy in terms of

making a failure mechanism and backtracking an important part of the

control facility. It uses the Bobrow and Wegbreit frame structure model

and allows general multiprocessing to be programmed with primitives similar

to the ones described for COID1IVER and INTERLISP. The POPLER interpreter

does the time-sharing quantum management. Data base demons are modelled

directly on PLANNER.

Its special additional fields for the module frame are an updateable

frame data item which can be accessed by the user, a frame type which

specifies certain continuation properties of the procedure, and an action

list which is used for the backtrack control scheme. The action list

contains failure actions which are executed when backtracking occurs, and

exit actions which are executed when a POPLER function returns via its

control link. The latter provide the same facility as the exit function of

INTEP~ISP. The extended control facilities are only available in POPLER,

and not in the underlying POP-2.

28

C. Pattern Hatching

In this section we shall describe the principal automatic pattern­

matching and variable-binding operations of the new languages.

1. SAIL. Following normal ALGOL conventions, variables in SAIL must be

declared with their types. Item variables or itemvars, represented by

identifiers, name locations that may have SAIL items as their contents.

These contents (also referred to as the values of the itemvars) are

frequently determined by a search and match operation invoked by a FOREACH

statement. For example, if X and Yare itemvars, the statement

l"OREACH X, Y SUCH THAT father III X = Y DO •••

will cause the template

father III =

to be matched against all triples in the data base that begin with

"father", call the second and third elements of each such triple X and !,

respectively, and execute the program specified after the DO for each such

pair. Thus, patterns per ~, as data structures, do not exist in SAIL.

Rather, the program syntax simultaneously specifies several patterns and

uses them to retrieve desired items from the data base.

2. PLANNER/CONNIVER. PLANNER, CONNIVER, QA4, and QLISP, like LISP, do not

have declarations for variables. In LISP all identifiers in argument

positions are assumed variables unless explicitly "quoted". In pattern

matching context, however, it is much more convenient to operate in

"inverse quote mode"; that is, to assume all identifiers are constants

29

unless marked by a prefix to be a variable. The specific prefix used

identifies the type of binding the variable may take.

PLANNER has three types of pattern variables: ?, $? and $ +. The

pattern ? matches anything. The basic distinction between the prefixes $?

and $ + is that $?X insists on preserving a previously assigned value for

X, if any, whereas $ +X permits the value of X to be changed. For example,

if we let + be the assignment operator, after

$+ X + A,

the operation $?X + B will cause a failure error because X is already

bound to A.

In present implementations, pattern matching in PLANNER can only

instantiate variables at the top level of the data list structure. This

does not seem to be a serious constraint, primarily because patterns are

only matched against assertions, and PLANNER assertions rarely have more

than one level of structure.

CONNIVER uses pattern matching in much the same way as PLANNER--to

fetch items from the data base, or to identify applicable programs by their

patterns. The pattern matching algorithm is kept simple by requiring the

programmer to identify the role of each variable in a pattern by means of a

prefix. Several prefixes are used:

?X permits X to be assigned any value

!X restricts X to be assigned to an expression that contains no

variables

,X requires that a previously-assigned value of X be substituted into

the pattern before the match begins

30

@exp specifies that exp, which may be any LISP expression, is to be

evaluated by the LISP interpreter before the match begins.

The CONNIVER pattern matcher may be used on arbitrary LISP data and may

contain variables at any level. For example, the pattern

«FREDS ?X) • ?REST)

matches both

«FREDS FATHER) WHISTLES) and

«FREDS GONE) HE SAID),

generating association lists

«X FATHER) (REST (WHISTLES») and

«X GONE) (REST (HE SAID»).

3. QLISP/INTERLISP. Pattern matching plays a much more important role in

QLISP than it does in the previously-discussed languages. Patterns are

used here not only to access the data base and to select appropriate

functions (by means of goal statements or other demon constructs), but also

as a basic method for operating upon complex data structures.

QLISP variables come in three varieties and two modes, all identified

by prefixes. The varieties are + , ?, and $:

+X permits X to be assigned any value.

?X permits X to be assigned a value if it has none before, but does

not permit a preassigned value to be changed.

$X references a preassigned value of X, that must exist.

QLISP functions resemble LISP functions but, instead of a list of bound

variables to associate with actual arguments, the lambda expression begins

with a pattern to be matched against the actual argument. (QLISP functions

31

have only one argument, but this can be an n-tuple.) Pattern extraction

eliminates the need for possibly confusing chains of cars and cdrs. For

example, suppose we want a program to transform a list structure of three

elements in the following way:

(A (B C» -+ «C B) A).

The LISP function to do this would be:

(LAMBDA (X) (LIST (LIST (CADADR X) (CAADR X» (CAR X»).

In QLISP it would be much more transparent:

(QLAI1BOA (TUPLE + X (TUPLE + Y + Z» (TUPLE (TUPLE $Z $Y) $X».

Moreover, if the actual data did not have the appropriate form, e.g., if we

tried to run these programs on the lists

(A B C) or

(A (B C) (0 E»,

the LISP program would generate an error at same lower level that might be

difficult to diagnose, or (in the second example) it would calculate a

meaningless result that would cause some future program to run into

trouble; the QLISP program immediately reports that its argument does not

have the anticipated structure.

There are two modes of variables: individual variables, which we have

been discussing thus far; and segment variables, denoted by the prefixes

++, ??, and $$, which match any number of elements of a class, bag, or

tuple.

Now we can see how the pattern-matching technique for labeling

substructures of an expression is particularly useful for QLISP structures

of mixed data type. Suppose we wish to find an expression that plays some

special role in an arbitrary set of algebraic expressions such as

32

{ 17, a-b, S+c+d+e, c+b+d, d-a}.

This set could be represented in QLISP hy

(CLASS 17
(TUPLE DIFF A B)
(TUPLE PLUS (BAG 5 C DE»
(TUPLE PLUS (BAG C B D»
(TUPLE DIFF D A».

Now let us pose the question, "If any number is subtracted from something

in one expression and added to something in another, tell me what it is

added to". When matched against the above set, the following pattern

(CLASS (TUPLE DIFF +Vl +V2)
(TUPLE PLUS (BAG +V2 + +X»
+ +V3)

will cause the variable X to be bound to the answer,

$X = (BAG CD).

4. POPLER. Pattern matching in POPLER is used for the same purposes as in

PLANNER/CONNIVER. Pattern variables in POPLER have four types, two modes,

and restrictions. The restrictions include a data type restriction, and

user programmable tests. The types are as indicated by the prefix forms

below, where we have taken the liberty of substituting the pound sign (#)

for the Sterling pound sign.

##X matches only the current value of X.

#*X will assign a matched item to a variable as long as the

restrictions are satisfied.

#:X will tentatively assign the value, but sets up a failure action to

restore the old value in case of later failure back.

#>X behaves like #:X if the variable is unassigned, but will only

match the value of X (as does ##X) if it has an assigned value.

33

In matching list structure elements, individual variables can also have a

segment mode, and match an interior segment of a list. The segment mode

forms of the above types are prefixed with ###, #**, #::, and #».

POPLER patterns are very, general, with variables at arbitrary levels in
~

a list, and a stock of standard pattern "actors" (Hewitt 1972) which help

specify the pattern. These include an actor which tests whether a

specified list is contained in the target, one which will check property

lists, and combiners to allow alternatives and conjunctions. New actors

are easy to add.

D. Deductive Hechanisms

In this section we shall describe the principal automatic search,

deduction or decision-making facilities for the new languages.

1. SAIL. SAIL does not have any explicit deduction mechanism. However,

complex semi-automatic search procedures that implement certain deductive

principles can easily be programmed with the aid of a device called a

"matching procedure". A matching procedure is a boolean procedure that may

contain unbound pattern variables as arguments. The matching procedure is

called from a FOREACH enumeration statement. It returns either by

succeeding and returning values for the previously unbound parameters, or

failing, which causes the FOREACH to terminate.

For example, suppose we wish to execute some program hum for every

known part of a human being. If the data base has associations such as

34

part III human = hand
part III human = foot
part III hand = finger
part II!I finger = fingernail
part III foot = toe

The statement

FOREACH X SUCH THAT part III human = X DO hum

would only run hum on hand and foot. However, the following use of a

recursive matching procedure partof would run hum on all parts of the

human, because partof specifies the desired transitivity of the part

relation:

FOREACH X SUCH THAT partof (human,X) DO ~

Here is a definition of partof, with comments enclosed in quotes:

HATCHING PROCEDURE partof(itemvar a; ?itemvar b);
"The question mark indicates a possibly unbound parameter"

BEGIN
FOREACH b SUCH THAT part III a = b DO

BEGIN SUCCEED; "pass back as first answer each value of b found by
direct memory look-up"

q + b;
FOREACH b such that partof(q,b) DO SUCCEED;

"Recursive call for transitivity; whenev"er any b is
found, it is passed back to the caller."

END; "Outer FOREACH now iterates."
FAIL; "No more possible answers."

END;

2. PLANNER/CONNIVER. The key to the deductive mechanism of PLN~NER is the

theorem, an expression containing as major elements a target pattern we

shall call P and a program Q. There are three categories of theorems:

consequent, antecedent, and erase. These categories differ primarily in

the ways they are invoked.

35

The most important category with respect to deduction is the consequent

theorem, which usually has the logical form

Q implies P;

that is, "if program Q were successfully executed then the assertion

matched by pattern P would be proven". Frequently the "program" Q itself

merely requests that an assertion be proven, so that the consequent theorem

sets up an automatic backward-chaining mechanism for searching the data

base.

These searches are initiated by the goal statement. For example,

suppose some program wishes to determine whether a finger is part of a

person, when the data base contains the assertions (PA~r ARM PERSON),

(PART HAND ARM) and (PART FINGER HAND) • The program statement

(GOAL (PART FINGER PERSON»

would first look directly for the assertion (PART FINGER PERSON) in the

data base, but not find it; then the goal mechanism would look for a

consequent theorem whose pattern matches the assertion of the goal. If the

theorem

(CONSEQUENT
(PARI' $?X $?Z)
(GOAL (PART $?X $?Y»
(GOAL (PART $?Y $?Z»

}
}

[Pattern P]

[Program Q]

is stored in theorem memory, then by matching (PART $?X $?Z) against the

goal (PART FINGER PERSON) the theorem would "run", i.e., attempt to prove,

two new instantiated goal statements:

(GOAL (PARI' FINGER $?Y» and

(GOAL (PARI' $?Y PERSON».

36

Upon matching the first goal against the data base, Y is instantiated as

HANDi the second goal can then be satisfied by another use (a recursive

call) of the same consequent theorem.

The above example shows how facts implicitly present in the combined

data base and theorem memory can be deduced when needed. An alternative

approach to making needed facts accessible is to deduce them at the

earliest opportunity and store them explicitly for future possible use.

This approach is possible in PLANNER by using antecedent theorems.

Whenever anything is asserted, i.e, added to the data base, all

antecedent theorems are checked against the new assertion. If the P part

matches the assertion, the Q part is immediately executed.

Suppose we have the following theorem:

(ANTECEDENT
(PART $?X $?Y)
(GOAL (PART $'?Y $?Z»
(ASSERT (PART $?X $?Z»

}
}

[Pattern P]

[Program Q]

Now, continuing the above example, if some program executes

(ASSERT (PART FINGERNAIL FINGER»

then P of the above' theorem matches, so the two-statement Q is

automatically instantiated and executed. First (GOAL PART FINGER $?Z» is

proven from the data base by setting Z to HAND, and then

(ASSERT (PARr FINGERNAIL HAND)) is executed. This latter assertion again

invokes the same antecedent theorem. Eventually

(PARr FINGERNAIL ARM) and

(PARI' FINGERNAIL PERSON)

are also added to the data base, eliminating the need for deducing these

facts (with consequence theorems) if they are ever needed in the future.

37

Of course, antecedent theorems must be used judiciously to avoid cluttering

up the data base with many relatively useless facts.

The third PLANNER theorem type is erase: Its Q part is executed

whenever P matches a fact that is being erased (deleted) from the data

base. Just as antecedent theorems, which are triggered by assertions, are

usually used to assert additional derived facts, erase theorems, which are

triggered by erasures, are usually used to erase additional dependent facts

in order to clean up the data base.

CONNIVER takes the view that PLANNER theorems and their associated

search or data-manipulation activities are too automatic. Instead of

offering, for example, a GOAL mechanism that searches through alternative

derivations (by means of consequent theorems) until a final proof is found,

CONNIVER gives the programmer mechanisms for designing his own search

algorithms. These mechanisms can be used to construct algorithms similar

to the ones built into PLANNER, if desired, but they also permit much more

flexible communication and dynamic modification of the search procedures.

CONNIVER data items each reside in their own named data contexts; each

major element of a CONNIVER search algorithm also resides in its own

control context. The PLANNER concept of pattern-directed program

invocation--ernbodied in the P and Q elements of every PLANNER theorem--has

been carried over into CONNIVER. However, the process of matching the

pattern P, to generate data items and to bind variables, takes place in a

control context independent from the program Q that makes use of those

bindings. The two processes may be interleaved in any manner desired by

the programmer, who is given convenient handles for coordinating and

communicating between such processes. Thus, although there are no built-in

38

deductive mechanisms quite like PLANNER's theorems, CONNIVER makes it easy

for a programmer to devise his own, more tightly controlled, deductive

procedures.

3. QLISP/INTERLISP. The QLISP goal statement is quite similar to the goal

statement of PLANNER; it causes first a search through the data store for

an item matching the argument of the goal, and then, if that search is

unsuccessful, the goal statement invokes the execution of appropriate

functions (programs) whose target pattern matches the goal. Every QLISP

function has as part of its definition a "bound variable expression" that

contains a pattern that is matched against its argument before the function

may be invoked. This pattern filters out inappropriate arguments, and it

binds variables within the function definition to appropriate elements of

the selected arguments. As in PLANNER, QLISP functions also maintain

appropriate control information to backtrack automatically through

alternative matches until a goal is successfully completed, although

backtracking between functions is dependent on the completion of the

ItITERLISP control structure implementation. (By QLISP functions we mean

the new QLAMBDA form which has been added to the repertoire of function

types available in INTERLISP.)

In addition, the QLISP goal statement has several features that are

oriented somewhat differently from the comparable PLANNER statement:

a) The goal statement consists of two distinct operations in

sequence: a data base search, followed by the pattern-directed

execution of programs. These two operations, called is and cases,

respectively, are commonly used independently.

39

I

b) SAIL normally only stores true propositions (assertions) in its

main permanent data base. Although any expression may be stored

in the PLANNER data base, the built-in GOAL search mechanism

assumes they all represent assertions. Although PLANNER

assertions may have property lists, these are not used by the

system in any standard way. QLISP encourages the programmer to

put in the net any complex structures he wishes: each has a unique

occurrence, and a property list. In following goal chains, QLISP

system functions know that assertions are just those net

expressions that have on their property lists a MODELVALUE

attribute with truth value T (true) or NIL (false).

c) The QLISP demon mechanism is implemented by requiring the user to

specify teams of demon functions (perhaps none) as part of every

data storage or retrieval operation. By specializing these data

operations, e.g., one for changes to the robot world, another for

logical propositions, the team mechanism 'allows tighter

specification of relevant demons. Standard teams for ASSERT and

DELETE could implement the PLANNER antecedent and erase theorems.

d) Like CONNIVER, QLISP has both data and control contexts which may

be created or modified by the programmer. Goal statements may be

executed with respect to any specified contexts: therefore data­

base changes need not be undone, as in PLANNER, with erase and

antecedent theorems. As the applicable scope of an expression

changes, CONNIVER permits moving of expressions to other contexts.

QLISP will be able to perform a similar function.

40

4. POPLER. The POPLER deductive mechanism is modeled after PLANNER and

CONNIVER, with procedures which can be called by "pattern directed

invocation". A target-pattern, representing what is to be done, is used to

select a procedure whose procedure pattern matches the target-pattern.

There are four types associated with different classes of targets: achieve,

infer, assert or erase. Assert procedures are the "antecedent theorems" of

PLANNER, invoked when appropriate data items are added to the data base;

erase procedures operate when items are removed. Achieve and infer

procedures correspond to two different PLANNER uses of "consequent

theorems"; check, is something now the case, versus, goal, make

something be the case. Inferring does not allow the use of operators which

are defined to change the world. To use Davies example (1973 p.7.l), in a

chess playing program we should certainly want to distinguish between the

target statements:

1) achieve ([I am checkmated]) ;

2) infer ([I am checkmated]);

The former would attempt to lose the game, while the latter only checks

\tlhether the game is already lost.

In addition to direct invocation of relevant procedures with backtraCk

control, POPLER allows the CONNIVER-like construction of a possibilities

list independent of the invocation of the procedures. possibilities can be

procedure items or generators, and can be pruned by any function with

access to this possibilities list. POPLER also allows user association of

recommendation lists and filters to help modify the straightforward

(default) depth first search.

41

V CONCLUSIONS

We have described in this paper several new programming languages for

AI research. We shall now review some of the principal features and

present status of these languages:

(1) SAIL. This language is one of the most stable, debugged, and heavily

used of the languages surveyed. It runs on a PDP-IO under the DEC 10-50

monitor. Its ALGOL base provides full algebraic capability, with well­

tested I/O and interface·to assembly-language subroutines. The debugging

features remain an extension of an assembly code debugger. Swinehart

(1973) has implemented a display package for a system built on top of SAIL

which allows informative exploration of a control structure tree. The

associative memory is a single, permanent, top-level structure; no

convenient way exists for partitioning access to the associations on the

basis of control context, subject matter, etc., except by explicit

programming. Hajor storage management, including erasure of abandoned

data, is the programmer's (rather than the system's) responsibility; so is

the specification of which variables to save or restore upon backtracking.

Fairly elaborate process control and communication features have recently

been added to the language, and it seems likely that the language will

continue to be modified in an evolutionary manner to respond to the needs

of its users.

(2) PLANNER. HICRO-PLANNER is an implementation of a subset of Hewitt's

PLANNER ideas (Hewitt 1972). MICRO-PLANNER was written in LISP under the

42

HI'!' ITS system that runs only on the PDP-IO at HIT, but HICRO-PLANNER has

been transferred to other LISP systems for experimental use. PLANNER

introduced the important coupled concepts of pattern-directed program

selection and procedural representation of knowledge. Extensive automatic

depth-first search and backtrack control is a debatable feature of PLru~ER:

this automatic control structure permits the programmer to describe· his

algorithms in a piecemeal declarative fashion without worrying about

sequential program flow; but it can lead to highly inefficient thrashing in

the absence of suitable constraints, and the right constraints are

frequently awkward to express. The natural conventions for using the data

store asssurne that it holds only elementary propositi~ns that are presumed

to be true; there are no built-in checks for consistency, and there is no

convenient way to make use of the knowledge that a given proposition is

false. PLANNER has received much publicity, partly because of t:.he

outstanding research for which it is being used at the MIT AI Laboratory.

Its future probably depends upon the efficiency of its new implementations

and the experiences of a growing community of users.

(3) CONNIVER. This new system grew out of the collective experience of

UICRO-PLANNER users. It too is implemented in LISP under ITS. The

philosophy of CONNIVER is to return a much greater degree of control--and

responsibility--to the user than was permitted by PLANNER. As a result,

CONNIVER is a system in which it is possible for skilled programmers to

design efficient algorithms that involve the kind of complex interacting

processes needed in current AI research. Since CONNIVER does not have

PLANNER-like conventions to structure the semantics of its data and

43

programs--assertions, theorems, goals, etc.--it may be substantially more

difficult for a new user to learn. On the other hand, the inefficiencies

of blind backtracking may make PLANNER also an impractical language except

in the hands of an expert who learns the subtleties of its more complex

control options.

(4) QLISP/INTERLISP. Much of the QLISP philosophy, and large chunks of its

actual code, were taken directly from QA4, an experimental language

implemented at SRI more than two years ago. The usefulness of QLISP's new

data types and pattern-matching facilities were tested in QA4 in problem-

solving and automatic-programming research. The major shortcomings of

QA4--such as slow execution and lack of debugging tools and utility

functions--have been overcome by embedding QLISP directly into INTERLISP.

All the well-established capabilities of INTERLISP debugging aids, user

file structures, and so on, as well as all of basic LISP, are automatically

available. Although some of the control structure operations available

through the QA4 interpreter are not present in QLISP, the new control

features of It~ERLISP will soon make the combined INTERLISP/QLISP system

one of the most flexible systems available. QLISP is still under active

development and a first version of QLISP is now being completed at SRI;

preliminary versions have been available for experimental use for several

months. A new version of the pattern matcher that gains generality by

using a unification-like algorithm is being added and substantial changes

may take place when the new control structure implementation for INTERLISP

is complete. QLISP will eventually contain an efficient implementation of

44

most of the desirable language features we have discussed, and will be

available to the large, interested community of TENEX system users.

(6) POPLER. POPLER 1.5 is a programming language implemented in and an

extension of POP-2, a system developed at the University of Edinburgh for
....

application to Artificial Intelligence programming. POP-2 has been, used

for several years on the ICL 4130 in Edinburgh; in the past year a PDP-lO

implementation has been completed (for the 10/50 monitor), and others have

been started. Recently a new interactive editor has been completed, and

the system is well documented and friendly to users. POP-2 is a simple

programming language with good data structure facilities: built-in words,

arrays, strings, lists and records. A "garbage collector" automatically

controls storage for the programmer.

POPLER 1.5 was completed in spring 1973, and has not yet been used for

any major projects. It looks like it will provide most of the facilities

of a PLAtlliER like system. It has a sophisticated control structure which

is "visible" to the programmer and program. Programs can be compiled into

POP-2 or kept in data structures and interpreted by a special evaluator.

The language has general facilities for pattern matching, pattern

invocation of procedures, and pattern directed retrieval from a context

structured data base. The principal problem with POPLER stems from the

fact that it is built on top of POP-2 and is not integral \-lith the system.

Another problem is that it currently ",arks only in Edinburgh, and the

folklore of the system is in very few hands.

45

The languages we discussed above are the principal systems currently in

use, or likely to be in use in the near future, at the largest AI

laboratories. Among them, they represent the major new directions in the

development of AI software tools. Several other experimental language

systems have some features in common with the systems we have surveyed. We

did not include such other systems in detail in this paper because either

the system was purely experimental and unlikely to see extensive use, the

features of AI interest are only incidental to the main functions of the

language, or we were not sufficiently familiar with the system to treat it

accurately here. Nevertheless, the reader may be interested in learning

more about at least the following relevant systems:

(1) ABSET (Elcock 1971), a programming language based on sets,

developed at the University of Aberdeen;

(2) EeL, an extensible language system developed (Wegbreit 1972) at

Harvard University for work in automatic programming. Similar to

INTERLISP internally, it has particularly good handling of

extended data types. It combines a pleasant source language, an

interpreter for list structure representation of programs, and

several levels of optimizing compiler. It has been working for

about a year.

(3) LISP-70 (Tesler 1973), a compiler based LISP system designed to be

a "production language" for AI, that is, it biases language

features toward efficient implementation. The full system is not

yet up, but a prototype !4LISP2 (Smith 1973) used some of the

pattern matching and automatic rule maintenance for some natural

46

language processing work. LISP-70 looks as if it will be an

interesting language when it is finally available.

(4) SMALLTALK (Kay 1973) and PLANNER73 (Hewitt 1973), both embody an

interesting idea which extends the SIMULA (Ichbiah 1971) notion of

classes, items that have both internal data and procedures. A

user program can obtain an "answer" from an instance of a class by

giving it the name of its request without knowing whether the

requested information is data or is procedurally determined. Alan

Kay has extended the idea by making such classes be the basis for

a distributed interpreter in SHALLTALK, where each symbol

interrogates its environment and context to determine how to

respond. Hewitt has called a version of such extended classes

actors, and has studied some of the theoretical implications of

using actors (with built-in properties such as intention and

resource allocation) as the basis for a programming formalism and

language based on his earlier PLANNER work.

and PLANNER73 are both not yet publicly available, the ideas may

provide an interesting basis for thinking about programs. The

major danger seems to be that too much may have been collapsed

into one concept, with a resultant loss of clarity.

The development of software tools for AI research is currently an

extremely active area, and the systems emerging from this activity are

still in a great state of flux. However, one can begin to see the features

fitting together. For example, current AI research interests in

representation of knowledge demands the availability of permanent

associative memories and complex symbolic structures formed from new data

47

types such as sets. These structures almost force the use of pattern-based

analysis and retrieval methods. Pattern matching applied to such data, in

turn, is highly likely to be ambiguous and thus suggests backtrack control.

The simultaneous availability of all these features results in extremely

parsimonious descriptions of current AI algorithms. Within the next few

years we expect that one or more successors of QLISP, PLANNER/CONNIVER,

POPLER, and similar developmental efforts will stabilize and become the

basis for the major AI results of the next decade. Such successors will

embody not only the new features described here, but will face up to the

programming process as an entity (as described in Bobrow 1972), and provide

the programmer the tools necessary to facilitate all his interactions in

building a working system (e.g., editing, debugging, optimization,

documentation, etc.). Another challenge will be to seek coherence in the

Babel, and enough agreement on the forms of programs to allow successive

researchers to stand on the shoulders of their predecessors, not their

toes.

48

BIBLIOGRAPHY

Baumgart, B.G. }fICRO-PLANNER ALTERNATE REFERENCE MANUAL. stanford AI Lab
Operating Note No. 67, April 1972.

Bobrow, D. G. REQUIREHENTS FOR ADVANCED PROGRAMMING LANGUAGES FOR LIST
PROCESSING APPLICATIONS. Communications of the ACM. Volume 15, Number
7, pp. 618-627, July 1973.

Bobrow, Daniel G. and Raphael, Bertram. A COMPARISON OF LIST-PROCESSING
COMPUTER LANGUAGES. Communications of the ACM. Volume 7, Number 4,
April 1964.

Bobrow, Daniel G. and t'legbreit, Ben. A MODEL AND STACK IHPLE1-1ENTATION OF
HULTIPLE ENVIRONMENTS. Communications of the ACM, Volume 16, Number
la, October 1973.

Bobrow, Daniel G. and Wegbreit, Ben. A MODEL FOR CONTROL STRUCTURES FOR
ARI'IFICIAL INTELLIGENCE PROGRAHMING LANGUAGES. Proceedings of IJCAI,
Stanford, California, August 1973.

Burstall, R.l-1., Collins, J .S., and Poppleston, R.J. PROGRAMHING IN POP-2.
Edinburgh University Press, 1971.

Davies, D. Julian M. POPLER 1.5 REFERENCE MANUAL. University of
Edinburgh, TPU Report No.1, May 1973.

Elcock, E. t-l. et ale ABSET, A PROGRAHMING LANGUAGE BASED ON SETS:
motivation and examples. Machine Intelligence 6, Edinburgh University
Press, 1971.

Feldman, J .A. et ale RECENT DEVELOPMENTS IN SAIL--An ALGOL-based language
for artificial intelligence. FJCC, 1972.

Feldman, J.A. and
Communications
1969.

Rovner, P.D.
of the ACN.

AN ALGOL-BASED ASSOCIATIVE LANGUAGE.
Volume 12, Number 8, pp. 439-449, August

Gelernter, H. and Rochester, N. HEALIZATION OF A GEOHETRY THEOREH-PROVING
}mCHINE. Proc. International Conference on Information Processing.
Paris, Unesco House, 1959.

Griswold, 1<..1:.:. et ale THE SNOBOL4 PROGRAMHING LANGUAGE.
1968.

Prentice-Hall,

Hewitt, C. PROCEDURAL EMBEDDING OF KNOWLEDGE IN PLANNER. Proceedings of
IJCAI, London, September 1971.

49

...

Hewitt, C.
PLANNER:
robot.

DESCRIPTION AND THEORETICAL ru~ALYSIS (USING SCHEMATA) OF
A language for proving theorems and manipulating models in a

AI Hemo No. 251, MIT Project MAC, April 1972.

Hewitt, C. et ale A UNIVERSAL MODULAR ACTOR FORl-1ALISH FOR ARTIFICIAL
INTELLIGENCE. Proceedings of IJCAI, Stanford, California, August 1973.

Ichbiah, J.D. and Morse, S.P. GENERAL CONCEPTS OF THE SIMULA 67
PROGIDU1MING LANGUAGE. Companie Internationale pour le Informatique,
Paris, September 1971.

Kay, A. et ale
1973.

SMALLTALK, NOTEBOOK. Xerox Palo Alto Research Center,

HcDermott, Drew V. and Sussman, Gerald Jay. THE CONNIVER REFERENCE MANUAL.
AI Hemo No. 259, HIT Project HAC, May 1972.

Reboh, Rene and Sacerdoti, Earl. A PRELIMINARY QLISP MANUAL. SRI AI
Center Technical Note 81, August 1973.

Rulifson, J.F., Waldinger, R.J., and Dirksen, J.A. QA4, A LANGUAGE FOR
WRITING PROBLEN-SOLVING PROGRAMS. Proceedings IFIP Congress, 1968.

Rulifson, J.F. et ale QA4: A PROCEDURAL CALCULUS FOR INTUITIVE REASONING.
SRI AI Center Technical Note 73, November 1973.

Smith, D.C. and Enea, H.J.
1973.

MLISP2. Stanford AI Lab Heroo AIM-195, May

Sussman, Gerald Jay and McDermott, Drew Vincent. WIlY CONNIVING IS BETTER
THAN PLANNING. AI Memo No. 255A, MIT Project MAC, April 1972.

Sussman, G.J. and Winograd, T. MICRO-PLANNER REFERENCE MANUAL. AI Memo
No. 203, l'-1IT Project HAC, July 1970.

Swinehart, D.
SYSTEr·1S.

A MULTIPLE-PROCESS APPROACH TO INTERACTIVE
PhD Thesis, Stanford University, 1973.

PROGRAl'1l1ING

Swinehart, D. and Sproull, B. SAIL. Stanford AI Project Operating Note
No. 57.2, January 1971.

Tei telrnan, W. TO\vARD A PROGRAMMING LABORATORY. Proceedings IJCAI,
Washington, D.C., 1969.

Teitelrnan, w., Bobrow, D., and Hartley, A. INTERLISP REFERENCE MANUAL.
Xerox Palo Alto Research Center, 1973.

Tesler, L.G. et ale THE LISP70 PATTERN MATCHING SYSTm~. Proceedings of
IJCAI, Stanford, California, August 1973.

Wegbreit, Ben et ale
September 1972.

ECL PROGRAM1-1ER • S HANUAL.

50

Harvard University,

