
























































currently being implemented in INTERLISP using a "spaghetti stack" 

technique (Bobrow & Wegbreit 1973a) which has the property that for 

ordinary recursive function calls it costs very little more than the usual 

stack storage allocation mechanism. This system is almost operational and 

will be combined with QLISP in the near future. 

The INTERLISP frame will contain the usual binding, access, and control 

links and a continuation point (current state), as described earlier, plus 

some other fields for additional features. Functions will exist that 

enable the programmer to locate existing frames by name or by following 

along access or control chains, creating a new process using any existing 

frame as above, and constructing arbitrary control structure trees of new 

frames. Hultiprocessing is done by explicit passing of control among 

processes, or to a user-programmed scheduler. 

An extremely general relative evaluation function will permit 

independent specification of both access and control environments before 

evaluating a specified expression. The effects of both the CONTINUE and 

the CEVAL commands of CONNIVER and the relative stack evaluation of 

BBN-LISP can be obtained as special cases of this new INTERLISP capability. 

Another feature of the INTERLISP frame is the exit-function. In any 

�s�y�s�~�e�m� that implements flexible control structures, when a module makes a 

normal return to its parent, certain bookkeeping operations must be 

performed by the system during the actual transfer. INTERLISP provides a 

place in the frame for a user function to be specified for execution at 

this time. This exit function may be specified at run time by a different 

module. Thus, for example, a module can insert an exit function in the 
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module three above it in the control chain which causes a breakpoint to the 

user just before that higher module returns to its parent. 

The present control structure of QLISP is rather restrictive, because 

the new INTERLISP features mentioned above have not been available to build 

upon. In particular, only "recursive" backtracking is possible; that is, 

one can only backtrack to a higher point in a depth-first control tree. 

This means that once a QLISP expression exits with a value, that expression 

cannot be re-entered as a generator to produce another value. However, as 

Sussman (Sussman 1972) pointed out, most sequential backtracking programs 

can be rewritten into nested recursive tests. QLISP provides, as a 

temporary expedient, a recursive backtracking version BIS of its basic 

associative retrieval program IS. IS takes a pattern as its argument, and 

tries to find an instance of that pattern in the data base. BIS takes as 

an additional argument a test for any expression found. If a proposed 

expression is rejected, BIS attempts to find a different instantiation of 

its pattern argument. For example, the following program will search the 

data base for something that John owns which is colored red: (The pattern-

matching operations are explained further in Section C.) 

(BIS (OWNS JOHN + X) 

(IF (IS (COLOR $X RED» THEN (PRINT $X) 
ELSE (FAIL») 

After the spaghetti stack and associated .control operations are added 

to INTERLISP, the QLISP ~ function will probably be modified to create its 

own backtrack point, so that the above code could be replaced by 

(IS (OWNS JOHN + X» followed by the above IF statement, without needing an 

enclosing BIS operator. 
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Demons, in current QLISP, are set up as groups of functions called 

teams that may be associated with any net storage or retrieval command. 

This gives the programmer the flexibility needed to design either an 

efficient system, in which he carefully selects the appropriate times to 

trigger each demon, or a more carefree system, in which he calls for all 

demons at every opportunity. 

4. POPLER/POP-2. POPLERl.5 follows the PLANNER philosophy in terms of 

making a failure mechanism and backtracking an important part of the 

control facility. It uses the Bobrow and Wegbreit frame structure model 

and allows general multiprocessing to be programmed with primitives similar 

to the ones described for COID1IVER and INTERLISP. The POPLER interpreter 

does the time-sharing quantum management. Data base demons are modelled 

directly on PLANNER. 

Its special additional fields for the module frame are an updateable 

frame data item which can be accessed by the user, a frame type which 

specifies certain continuation properties of the procedure, and an action 

list which is used for the backtrack control scheme. The action list 

contains failure actions which are executed when backtracking occurs, and 

exit actions which are executed when a POPLER function returns via its 

control link. The latter provide the same facility as the exit function of 

INTEP~ISP. The extended control facilities are only available in POPLER, 

and not in the underlying POP-2. 
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C. Pattern Hatching 

In this section we shall describe the principal automatic pattern­

matching and variable-binding operations of the new languages. 

1. SAIL. Following normal ALGOL conventions, variables in SAIL must be 

declared with their types. Item variables or itemvars, represented by 

identifiers, name locations that may have SAIL items as their contents. 

These contents (also referred to as the values of the itemvars) are 

frequently determined by a search and match operation invoked by a FOREACH 

statement. For example, if X and Yare itemvars, the statement 

l"OREACH X, Y SUCH THAT father III X = Y DO ••• 

will cause the template 

father III = 

to be matched against all triples in the data base that begin with 

"father", call the second and third elements of each such triple X and !, 

respectively, and execute the program specified after the DO for each such 

pair. Thus, patterns per ~, as data structures, do not exist in SAIL. 

Rather, the program syntax simultaneously specifies several patterns and 

uses them to retrieve desired items from the data base. 

2. PLANNER/CONNIVER. PLANNER, CONNIVER, QA4, and QLISP, like LISP, do not 

have declarations for variables. In LISP all identifiers in argument 

positions are assumed variables unless explicitly "quoted". In pattern 

matching context, however, it is much more convenient to operate in 

"inverse quote mode"; that is, to assume all identifiers are constants 
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unless marked by a prefix to be a variable. The specific prefix used 

identifies the type of binding the variable may take. 

PLANNER has three types of pattern variables: ?, $? and $ +. The 

pattern ? matches anything. The basic distinction between the prefixes $? 

and $ + is that $?X insists on preserving a previously assigned value for 

X, if any, whereas $ +X permits the value of X to be changed. For example, 

if we let + be the assignment operator, after 

$+ X + A, 

the operation $?X + B will cause a failure error because X is already 

bound to A. 

In present implementations, pattern matching in PLANNER can only 

instantiate variables at the top level of the data list structure. This 

does not seem to be a serious constraint, primarily because patterns are 

only matched against assertions, and PLANNER assertions rarely have more 

than one level of structure. 

CONNIVER uses pattern matching in much the same way as PLANNER--to 

fetch items from the data base, or to identify applicable programs by their 

patterns. The pattern matching algorithm is kept simple by requiring the 

programmer to identify the role of each variable in a pattern by means of a 

prefix. Several prefixes are used: 

?X permits X to be assigned any value 

!X restricts X to be assigned to an expression that contains no 

variables 

,X requires that a previously-assigned value of X be substituted into 

the pattern before the match begins 
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@exp specifies that exp, which may be any LISP expression, is to be 

evaluated by the LISP interpreter before the match begins. 

The CONNIVER pattern matcher may be used on arbitrary LISP data and may 

contain variables at any level. For example, the pattern 

«FREDS ?X) • ?REST) 

matches both 

«FREDS FATHER) WHISTLES) and 

«FREDS GONE) HE SAID), 

generating association lists 

«X FATHER) (REST (WHISTLES») and 

«X GONE) (REST (HE SAID»). 

3. QLISP/INTERLISP. Pattern matching plays a much more important role in 

QLISP than it does in the previously-discussed languages. Patterns are 

used here not only to access the data base and to select appropriate 

functions (by means of goal statements or other demon constructs), but also 

as a basic method for operating upon complex data structures. 

QLISP variables come in three varieties and two modes, all identified 

by prefixes. The varieties are + , ?, and $: 

+X permits X to be assigned any value. 

?X permits X to be assigned a value if it has none before, but does 

not permit a preassigned value to be changed. 

$X references a preassigned value of X, that must exist. 

QLISP functions resemble LISP functions but, instead of a list of bound 

variables to associate with actual arguments, the lambda expression begins 

with a pattern to be matched against the actual argument. (QLISP functions 
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have only one argument, but this can be an n-tuple.) Pattern extraction 

eliminates the need for possibly confusing chains of cars and cdrs. For 

example, suppose we want a program to transform a list structure of three 

elements in the following way: 

(A (B C» -+ «C B) A). 

The LISP function to do this would be: 

(LAMBDA (X) (LIST (LIST (CADADR X) (CAADR X» (CAR X»). 

In QLISP it would be much more transparent: 

(QLAI1BOA (TUPLE + X (TUPLE + Y + Z» (TUPLE (TUPLE $Z $Y) $X». 

Moreover, if the actual data did not have the appropriate form, e.g., if we 

tried to run these programs on the lists 

(A B C) or 

(A (B C) (0 E», 

the LISP program would generate an error at same lower level that might be 

difficult to diagnose, or (in the second example) it would calculate a 

meaningless result that would cause some future program to run into 

trouble; the QLISP program immediately reports that its argument does not 

have the anticipated structure. 

There are two modes of variables: individual variables, which we have 

been discussing thus far; and segment variables, denoted by the prefixes 

++, ??, and $$, which match any number of elements of a class, bag, or 

tuple. 

Now we can see how the pattern-matching technique for labeling 

substructures of an expression is particularly useful for QLISP structures 

of mixed data type. Suppose we wish to find an expression that plays some 

special role in an arbitrary set of algebraic expressions such as 
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{ 17, a-b, S+c+d+e, c+b+d, d-a}. 

This set could be represented in QLISP hy 

(CLASS 17 
(TUPLE DIFF A B) 
(TUPLE PLUS (BAG 5 C DE» 
(TUPLE PLUS (BAG C B D» 
(TUPLE DIFF D A». 

Now let us pose the question, "If any number is subtracted from something 

in one expression and added to something in another, tell me what it is 

added to". When matched against the above set, the following pattern 

(CLASS (TUPLE DIFF +Vl +V2) 
(TUPLE PLUS (BAG +V2 + +X» 
+ +V3) 

will cause the variable X to be bound to the answer, 

$X = (BAG CD). 

4. POPLER. Pattern matching in POPLER is used for the same purposes as in 

PLANNER/CONNIVER. Pattern variables in POPLER have four types, two modes, 

and restrictions. The restrictions include a data type restriction, and 

user programmable tests. The types are as indicated by the prefix forms 

below, where we have taken the liberty of substituting the pound sign (#) 

for the Sterling pound sign. 

##X matches only the current value of X. 

#*X will assign a matched item to a variable as long as the 

restrictions are satisfied. 

#:X will tentatively assign the value, but sets up a failure action to 

restore the old value in case of later failure back. 

#>X behaves like #:X if the variable is unassigned, but will only 

match the value of X (as does ##X) if it has an assigned value. 
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In matching list structure elements, individual variables can also have a 

segment mode, and match an interior segment of a list. The segment mode 

forms of the above types are prefixed with ###, #**, #::, and #». 

POPLER patterns are very, general, with variables at arbitrary levels in 
~ 

a list, and a stock of standard pattern "actors" (Hewitt 1972) which help 

specify the pattern. These include an actor which tests whether a 

specified list is contained in the target, one which will check property 

lists, and combiners to allow alternatives and conjunctions. New actors 

are easy to add. 

D. Deductive Hechanisms 

In this section we shall describe the principal automatic search, 

deduction or decision-making facilities for the new languages. 

1. SAIL. SAIL does not have any explicit deduction mechanism. However, 

complex semi-automatic search procedures that implement certain deductive 

principles can easily be programmed with the aid of a device called a 

"matching procedure". A matching procedure is a boolean procedure that may 

contain unbound pattern variables as arguments. The matching procedure is 

called from a FOREACH enumeration statement. It returns either by 

succeeding and returning values for the previously unbound parameters, or 

failing, which causes the FOREACH to terminate. 

For example, suppose we wish to execute some program hum for every 

known part of a human being. If the data base has associations such as 
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part III human = hand 
part III human = foot 
part III hand = finger 
part II!I finger = fingernail 
part III foot = toe 

The statement 

FOREACH X SUCH THAT part III human = X DO hum 

would only run hum on hand and foot. However, the following use of a 

recursive matching procedure partof would run hum on all parts of the 

human, because partof specifies the desired transitivity of the part 

relation: 

FOREACH X SUCH THAT partof (human,X) DO ~ 

Here is a definition of partof, with comments enclosed in quotes: 

HATCHING PROCEDURE partof(itemvar a; ?itemvar b); 
"The question mark indicates a possibly unbound parameter" 

BEGIN 
FOREACH b SUCH THAT part III a = b DO 

BEGIN SUCCEED; "pass back as first answer each value of b found by 
direct memory look-up" 

q + b; 
FOREACH b such that partof(q,b) DO SUCCEED; 

"Recursive call for transitivity; whenev"er any b is 
found, it is passed back to the caller." 

END; "Outer FOREACH now iterates." 
FAIL; "No more possible answers." 

END; 

2. PLANNER/CONNIVER. The key to the deductive mechanism of PLN~NER is the 

theorem, an expression containing as major elements a target pattern we 

shall call P and a program Q. There are three categories of theorems: 

consequent, antecedent, and erase. These categories differ primarily in 

the ways they are invoked. 
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The most important category with respect to deduction is the consequent 

theorem, which usually has the logical form 

Q implies P; 

that is, "if program Q were successfully executed then the assertion 

matched by pattern P would be proven". Frequently the "program" Q itself 

merely requests that an assertion be proven, so that the consequent theorem 

sets up an automatic backward-chaining mechanism for searching the data 

base. 

These searches are initiated by the goal statement. For example, 

suppose some program wishes to determine whether a finger is part of a 

person, when the data base contains the assertions (PA~r ARM PERSON), 

(PART HAND ARM) and (PART FINGER HAND) • The program statement 

(GOAL (PART FINGER PERSON» 

would first look directly for the assertion (PART FINGER PERSON) in the 

data base, but not find it; then the goal mechanism would look for a 

consequent theorem whose pattern matches the assertion of the goal. If the 

theorem 

( CONSEQUENT 
(PARI' $?X $?Z) 
(GOAL (PART $?X $?Y» 
(GOAL (PART $?Y $?Z» 

} 
} 

[Pattern P] 

[Program Q] 

is stored in theorem memory, then by matching (PART $?X $?Z) against the 

goal (PART FINGER PERSON) the theorem would "run", i.e., attempt to prove, 

two new instantiated goal statements: 

(GOAL (PARI' FINGER $?Y» and 

(GOAL (PARI' $?Y PERSON». 
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Upon matching the first goal against the data base, Y is instantiated as 

HANDi the second goal can then be satisfied by another use (a recursive 

call) of the same consequent theorem. 

The above example shows how facts implicitly present in the combined 

data base and theorem memory can be deduced when needed. An alternative 

approach to making needed facts accessible is to deduce them at the 

earliest opportunity and store them explicitly for future possible use. 

This approach is possible in PLANNER by using antecedent theorems. 

Whenever anything is asserted, i.e, added to the data base, all 

antecedent theorems are checked against the new assertion. If the P part 

matches the assertion, the Q part is immediately executed. 

Suppose we have the following theorem: 

(ANTECEDENT 
(PART $?X $?Y) 
(GOAL (PART $'?Y $?Z» 
(ASSERT (PART $?X $?Z» 

} 
} 

[Pattern P] 

[Program Q] 

Now, continuing the above example, if some program executes 

(ASSERT (PART FINGERNAIL FINGER» 

then P of the above' theorem matches, so the two-statement Q is 

automatically instantiated and executed. First (GOAL PART FINGER $?Z» is 

proven from the data base by setting Z to HAND, and then 

(ASSERT (PARr FINGERNAIL HAND) ) is executed. This latter assertion again 

invokes the same antecedent theorem. Eventually 

(PARr FINGERNAIL ARM) and 

(PARI' FINGERNAIL PERSON) 

are also added to the data base, eliminating the need for deducing these 

facts (with consequence theorems) if they are ever needed in the future. 

37 



Of course, antecedent theorems must be used judiciously to avoid cluttering 

up the data base with many relatively useless facts. 

The third PLANNER theorem type is erase: Its Q part is executed 

whenever P matches a fact that is being erased (deleted) from the data 

base. Just as antecedent theorems, which are triggered by assertions, are 

usually used to assert additional derived facts, erase theorems, which are 

triggered by erasures, are usually used to erase additional dependent facts 

in order to clean up the data base. 

CONNIVER takes the view that PLANNER theorems and their associated 

search or data-manipulation activities are too automatic. Instead of 

offering, for example, a GOAL mechanism that searches through alternative 

derivations (by means of consequent theorems) until a final proof is found, 

CONNIVER gives the programmer mechanisms for designing his own search 

algorithms. These mechanisms can be used to construct algorithms similar 

to the ones built into PLANNER, if desired, but they also permit much more 

flexible communication and dynamic modification of the search procedures. 

CONNIVER data items each reside in their own named data contexts; each 

major element of a CONNIVER search algorithm also resides in its own 

control context. The PLANNER concept of pattern-directed program 

invocation--ernbodied in the P and Q elements of every PLANNER theorem--has 

been carried over into CONNIVER. However, the process of matching the 

pattern P, to generate data items and to bind variables, takes place in a 

control context independent from the program Q that makes use of those 

bindings. The two processes may be interleaved in any manner desired by 

the programmer, who is given convenient handles for coordinating and 

communicating between such processes. Thus, although there are no built-in 
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deductive mechanisms quite like PLANNER's theorems, CONNIVER makes it easy 

for a programmer to devise his own, more tightly controlled, deductive 

procedures. 

3. QLISP/INTERLISP. The QLISP goal statement is quite similar to the goal 

statement of PLANNER; it causes first a search through the data store for 

an item matching the argument of the goal, and then, if that search is 

unsuccessful, the goal statement invokes the execution of appropriate 

functions (programs) whose target pattern matches the goal. Every QLISP 

function has as part of its definition a "bound variable expression" that 

contains a pattern that is matched against its argument before the function 

may be invoked. This pattern filters out inappropriate arguments, and it 

binds variables within the function definition to appropriate elements of 

the selected arguments. As in PLANNER, QLISP functions also maintain 

appropriate control information to backtrack automatically through 

alternative matches until a goal is successfully completed, although 

backtracking between functions is dependent on the completion of the 

ItITERLISP control structure implementation. (By QLISP functions we mean 

the new QLAMBDA form which has been added to the repertoire of function 

types available in INTERLISP.) 

In addition, the QLISP goal statement has several features that are 

oriented somewhat differently from the comparable PLANNER statement: 

a) The goal statement consists of two distinct operations in 

sequence: a data base search, followed by the pattern-directed 

execution of programs. These two operations, called is and cases, 

respectively, are commonly used independently. 
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b) SAIL normally only stores true propositions (assertions) in its 

main permanent data base. Although any expression may be stored 

in the PLANNER data base, the built-in GOAL search mechanism 

assumes they all represent assertions. Although PLANNER 

assertions may have property lists, these are not used by the 

system in any standard way. QLISP encourages the programmer to 

put in the net any complex structures he wishes: each has a unique 

occurrence, and a property list. In following goal chains, QLISP 

system functions know that assertions are just those net 

expressions that have on their property lists a MODELVALUE 

attribute with truth value T (true) or NIL (false). 

c) The QLISP demon mechanism is implemented by requiring the user to 

specify teams of demon functions (perhaps none) as part of every 

data storage or retrieval operation. By specializing these data 

operations, e.g., one for changes to the robot world, another for 

logical propositions, the team mechanism 'allows tighter 

specification of relevant demons. Standard teams for ASSERT and 

DELETE could implement the PLANNER antecedent and erase theorems. 

d) Like CONNIVER, QLISP has both data and control contexts which may 

be created or modified by the programmer. Goal statements may be 

executed with respect to any specified contexts: therefore data­

base changes need not be undone, as in PLANNER, with erase and 

antecedent theorems. As the applicable scope of an expression 

changes, CONNIVER permits moving of expressions to other contexts. 

QLISP will be able to perform a similar function. 
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4. POPLER. The POPLER deductive mechanism is modeled after PLANNER and 

CONNIVER, with procedures which can be called by "pattern directed 

invocation". A target-pattern, representing what is to be done, is used to 

select a procedure whose procedure pattern matches the target-pattern. 

There are four types associated with different classes of targets: achieve, 

infer, assert or erase. Assert procedures are the "antecedent theorems" of 

PLANNER, invoked when appropriate data items are added to the data base; 

erase procedures operate when items are removed. Achieve and infer 

procedures correspond to two different PLANNER uses of "consequent 

theorems"; check, is something now the case, versus, goal, make 

something be the case. Inferring does not allow the use of operators which 

are defined to change the world. To use Davies example (1973 p.7.l), in a 

chess playing program we should certainly want to distinguish between the 

target statements: 

1) achieve ([I am checkmated]) ; 

2) infer ( [I am checkmated]); 

The former would attempt to lose the game, while the latter only checks 

\tlhether the game is already lost. 

In addition to direct invocation of relevant procedures with backtraCk 

control, POPLER allows the CONNIVER-like construction of a possibilities 

list independent of the invocation of the procedures. possibilities can be 

procedure items or generators, and can be pruned by any function with 

access to this possibilities list. POPLER also allows user association of 

recommendation lists and filters to help modify the straightforward 

(default) depth first search. 
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V CONCLUSIONS 

We have described in this paper several new programming languages for 

AI research. We shall now review some of the principal features and 

present status of these languages: 

(1) SAIL. This language is one of the most stable, debugged, and heavily 

used of the languages surveyed. It runs on a PDP-IO under the DEC 10-50 

monitor. Its ALGOL base provides full algebraic capability, with well­

tested I/O and interface·to assembly-language subroutines. The debugging 

features remain an extension of an assembly code debugger. Swinehart 

(1973) has implemented a display package for a system built on top of SAIL 

which allows informative exploration of a control structure tree. The 

associative memory is a single, permanent, top-level structure; no 

convenient way exists for partitioning access to the associations on the 

basis of control context, subject matter, etc., except by explicit 

programming. Hajor storage management, including erasure of abandoned 

data, is the programmer's (rather than the system's) responsibility; so is 

the specification of which variables to save or restore upon backtracking. 

Fairly elaborate process control and communication features have recently 

been added to the language, and it seems likely that the language will 

continue to be modified in an evolutionary manner to respond to the needs 

of its users. 

(2) PLANNER. HICRO-PLANNER is an implementation of a subset of Hewitt's 

PLANNER ideas (Hewitt 1972). MICRO-PLANNER was written in LISP under the 
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HI'!' ITS system that runs only on the PDP-IO at HIT, but HICRO-PLANNER has 

been transferred to other LISP systems for experimental use. PLANNER 

introduced the important coupled concepts of pattern-directed program 

selection and procedural representation of knowledge. Extensive automatic 

depth-first search and backtrack control is a debatable feature of PLru~ER: 

this automatic control structure permits the programmer to describe· his 

algorithms in a piecemeal declarative fashion without worrying about 

sequential program flow; but it can lead to highly inefficient thrashing in 

the absence of suitable constraints, and the right constraints are 

frequently awkward to express. The natural conventions for using the data 

store asssurne that it holds only elementary propositi~ns that are presumed 

to be true; there are no built-in checks for consistency, and there is no 

convenient way to make use of the knowledge that a given proposition is 

false. PLANNER has received much publicity, partly because of t:.he 

outstanding research for which it is being used at the MIT AI Laboratory. 

Its future probably depends upon the efficiency of its new implementations 

and the experiences of a growing community of users. 

(3) CONNIVER. This new system grew out of the collective experience of 

UICRO-PLANNER users. It too is implemented in LISP under ITS. The 

philosophy of CONNIVER is to return a much greater degree of control--and 

responsibility--to the user than was permitted by PLANNER. As a result, 

CONNIVER is a system in which it is possible for skilled programmers to 

design efficient algorithms that involve the kind of complex interacting 

processes needed in current AI research. Since CONNIVER does not have 

PLANNER-like conventions to structure the semantics of its data and 
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programs--assertions, theorems, goals, etc.--it may be substantially more 

difficult for a new user to learn. On the other hand, the inefficiencies 

of blind backtracking may make PLANNER also an impractical language except 

in the hands of an expert who learns the subtleties of its more complex 

control options. 

(4) QLISP/INTERLISP. Much of the QLISP philosophy, and large chunks of its 

actual code, were taken directly from QA4, an experimental language 

implemented at SRI more than two years ago. The usefulness of QLISP's new 

data types and pattern-matching facilities were tested in QA4 in problem-

solving and automatic-programming research. The major shortcomings of 

QA4--such as slow execution and lack of debugging tools and utility 

functions--have been overcome by embedding QLISP directly into INTERLISP. 

All the well-established capabilities of INTERLISP debugging aids, user 

file structures, and so on, as well as all of basic LISP, are automatically 

available. Although some of the control structure operations available 

through the QA4 interpreter are not present in QLISP, the new control 

features of It~ERLISP will soon make the combined INTERLISP/QLISP system 

one of the most flexible systems available. QLISP is still under active 

development and a first version of QLISP is now being completed at SRI; 

preliminary versions have been available for experimental use for several 

months. A new version of the pattern matcher that gains generality by 

using a unification-like algorithm is being added and substantial changes 

may take place when the new control structure implementation for INTERLISP 

is complete. QLISP will eventually contain an efficient implementation of 
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most of the desirable language features we have discussed, and will be 

available to the large, interested community of TENEX system users. 

(6) POPLER. POPLER 1.5 is a programming language implemented in and an 

extension of POP-2, a system developed at the University of Edinburgh for 
.... 

application to Artificial Intelligence programming. POP-2 has been, used 

for several years on the ICL 4130 in Edinburgh; in the past year a PDP-lO 

implementation has been completed (for the 10/50 monitor), and others have 

been started. Recently a new interactive editor has been completed, and 

the system is well documented and friendly to users. POP-2 is a simple 

programming language with good data structure facilities: built-in words, 

arrays, strings, lists and records. A "garbage collector" automatically 

controls storage for the programmer. 

POPLER 1.5 was completed in spring 1973, and has not yet been used for 

any major projects. It looks like it will provide most of the facilities 

of a PLAtlliER like system. It has a sophisticated control structure which 

is "visible" to the programmer and program. Programs can be compiled into 

POP-2 or kept in data structures and interpreted by a special evaluator. 

The language has general facilities for pattern matching, pattern 

invocation of procedures, and pattern directed retrieval from a context 

structured data base. The principal problem with POPLER stems from the 

fact that it is built on top of POP-2 and is not integral \-lith the system. 

Another problem is that it currently ",arks only in Edinburgh, and the 

folklore of the system is in very few hands. 
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The languages we discussed above are the principal systems currently in 

use, or likely to be in use in the near future, at the largest AI 

laboratories. Among them, they represent the major new directions in the 

development of AI software tools. Several other experimental language 

systems have some features in common with the systems we have surveyed. We 

did not include such other systems in detail in this paper because either 

the system was purely experimental and unlikely to see extensive use, the 

features of AI interest are only incidental to the main functions of the 

language, or we were not sufficiently familiar with the system to treat it 

accurately here. Nevertheless, the reader may be interested in learning 

more about at least the following relevant systems: 

(1) ABSET (Elcock 1971), a programming language based on sets, 

developed at the University of Aberdeen; 

(2) EeL, an extensible language system developed (Wegbreit 1972) at 

Harvard University for work in automatic programming. Similar to 

INTERLISP internally, it has particularly good handling of 

extended data types. It combines a pleasant source language, an 

interpreter for list structure representation of programs, and 

several levels of optimizing compiler. It has been working for 

about a year. 

(3) LISP-70 (Tesler 1973), a compiler based LISP system designed to be 

a "production language" for AI, that is, it biases language 

features toward efficient implementation. The full system is not 

yet up, but a prototype !4LISP2 (Smith 1973) used some of the 

pattern matching and automatic rule maintenance for some natural 
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language processing work. LISP-70 looks as if it will be an 

interesting language when it is finally available. 

(4) SMALLTALK (Kay 1973) and PLANNER73 (Hewitt 1973), both embody an 

interesting idea which extends the SIMULA (Ichbiah 1971) notion of 

classes, items that have both internal data and procedures. A 

user program can obtain an "answer" from an instance of a class by 

giving it the name of its request without knowing whether the 

requested information is data or is procedurally determined. Alan 

Kay has extended the idea by making such classes be the basis for 

a distributed interpreter in SHALLTALK, where each symbol 

interrogates its environment and context to determine how to 

respond. Hewitt has called a version of such extended classes 

actors, and has studied some of the theoretical implications of 

using actors (with built-in properties such as intention and 

resource allocation) as the basis for a programming formalism and 

language based on his earlier PLANNER work. 

and PLANNER73 are both not yet publicly available, the ideas may 

provide an interesting basis for thinking about programs. The 

major danger seems to be that too much may have been collapsed 

into one concept, with a resultant loss of clarity. 

The development of software tools for AI research is currently an 

extremely active area, and the systems emerging from this activity are 

still in a great state of flux. However, one can begin to see the features 

fitting together. For example, current AI research interests in 

representation of knowledge demands the availability of permanent 

associative memories and complex symbolic structures formed from new data 
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types such as sets. These structures almost force the use of pattern-based 

analysis and retrieval methods. Pattern matching applied to such data, in 

turn, is highly likely to be ambiguous and thus suggests backtrack control. 

The simultaneous availability of all these features results in extremely 

parsimonious descriptions of current AI algorithms. Within the next few 

years we expect that one or more successors of QLISP, PLANNER/CONNIVER, 

POPLER, and similar developmental efforts will stabilize and become the 

basis for the major AI results of the next decade. Such successors will 

embody not only the new features described here, but will face up to the 

programming process as an entity (as described in Bobrow 1972), and provide 

the programmer the tools necessary to facilitate all his interactions in 

building a working system (e.g., editing, debugging, optimization, 

documentation, etc.). Another challenge will be to seek coherence in the 

Babel, and enough agreement on the forms of programs to allow successive 

researchers to stand on the shoulders of their predecessors, not their 

toes. 
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