/ﬂTANDEMCOMPUTERS

Uses and Abuses
of Statement Coverage

Bruce W. Bailey

Technical Report 87.2
April 22, 1987
Part Number 83053

USES AND ABUSES OF STATEMENT COVERAGE

Bruce W. Bailey

22 April 1987

Tandem Technical Report 87.2

Tandem TR 87.2

Uses and Abuses of Statement Coverage
Bruce W. Bailey

22 April 1987
ABSTRACT

While coverage analyzers have been discussed in the literature
for years, they are still rarely used by software projects. The
author has developed a tool for the software developers and
software quality assurance personnel at Tandem Computers that
provides a measure of testing effectiveness. This tool shows
which statements within a program have (and have not) been
executed during a test run. The author 1is not aware of any
other coverage facility that is fully integrated with compilers,
debugging facilities, and the operating system. The improved
operating characteristics and ease of use have contributed to the

acceptance of this tool.

Several practical applications of a statement coverage analyzer
are outlined. Additionally, some of the pitfalls of using such a

facility are examined, based on experiences using the tool.

The following are trademarks of Tandem Computers Incorporated:
GUARDIAN 90, NonStop, TAL, Tandem.

Uses and Abuses of Statement

Table of Contents

Introduction

1.1

Background

What COVER Provides

Legitimate Uses of Statement Coverage

3.1

WWwwwww
- L] L] . L] .
NOoONA e W

N N Y N N N N

L3 .]] .]) . . |

WO NI WN Rt

Metric . « + + « .« . .

Guiding test case development
Dead code identification

Ordering test execution

Identifying QA acceptance tests

Equivalency testing .

Boolean operations on results

Is the statement tested
Boundary tests

Range of values . .
Table-driven code .
Timing / concurrence
Paths / cycles . . .
Conjunctives . .
Initialization .
Contexts

Conclusions . . . ¢« « « « &

Acknowledgements

References . ¢« ¢ « ¢« o o &

Appendices . . . e e e

8.1

CDOD(DCD
U'I&P-wl\)

ORDER Algorlthm . .
Sample ORDER Output .
Sample Listing Mark-up
Sample Display Output

Sample SORT Output . .

e o e o & s * o

e o o o o o

e s o e o o o o

e o o o o o

falls of Using a Coverage Analyzer

e o o e o e o o .

e e o o o e

Coverage

Analysis

o o o e o o o ¢ o o

e o o ® ® o e o o o

® o o o & o

e o e & e e e & o o

e e o o o . e & o & e o

N

w

GOV U1 D D D

e} [eoloclNeolNo s BUNEEN BLNTL RN JEN|

[y
o

11

12
12
14
15
16
18

1.0 Introduction

Commercially available coverage tools are, at present, limited
to specific programming languages. They generally require a
pre-compilation pass of the source code to insert procedure calls
that track execution paths and write the results to a file upon
program termination.

Advances in coverage analyzer design have primarily concentrated
on adaptations to new languages and higher orders of coverage; for
example, cycle coverage.

The author has developed a statement coverage facility which
is compatible with all languages that execute on Tandem NonStop
Systems. It requires no pre-processing of the source code and
does not noticeably degrade execution performance. In addition,
it provides reporting facilities such as statistical reports,
program listing mark-up, sorted displays showing the largest
unexecuted program segments, and a listing which suggests an
optimal order of test execution.

From the experience gained in wusing this tool on both the
operating system and typical data-processing applications, several
suggestions are made regarding the suitability of various uses for
coverage data. :

1.1 Background

A coverage tool was developed at Tandem specifically to test
the microcode that runs in one of our intelligent terminals,
the 6530. This tool was based on a hardware facility that
was attached to the micro-processor being measured. After the
QA organization built what was considered a comprehensive test
library for the terminal, the tool was applied to determine which
areas of code were not exercised. Results indicated that 45% of
the code was not tested. The coverage tool was used to help
direct testing until 96% coverage was achieved. Each iteration of
test improvement uncovered new problems, clearly demonstrating the
utility of a coverage facility.

Interest in developing a coverage facility for our mainframe
processor line grew. Since Tandem supplies an entire range of
architecturally equivalent processors, a software solution to the
problem was particularly attractive. Experience has shown this
approach to have several other benefits.

A coverage prototype that did not require special hardware
support was written by the author as a research vehicle. While
not suitable for general use, it helped to identify not only
the feasibility of several approaches but also the relative
development costs.

Subsequently, the author developed a production quality product
(COVER) that is fully integrated into the Tandem GUARDIAN 90
operating system and functions on all Tandem NonStop systems,

thereby satisfying the needs of the majority of the developers in
the Software Development organization.

2.0 What COVER Provides

Basically, COVER measures STATEMENT COVERAGE; that is, a measure
of which executable source code statements were executed during
a particular run [BAIL87]. The requirements for such a facility
were first outlined in [BAILS85].

The primary output from COVER is the "bitmap file." A bitmap
file is the output from a given measurement or collection of
measurements. This includes information on the object file which
was measured, as well as the actual "bitmap" indicating which
statements were executed. Roughly speaking, there 1is a bit
assigned for each statement of a program. A "0" bit indicates
that a statement has not been executed, a "1" bit that it has.

Given these measurement results and the original object code
file, COVER is able to produce a variety of reports. These
include the ability to mark the original program 1listing to
highlight unexecuted statements, as well as the ability to provide
statistical data, on a procedure by procedure basis, such as the
total number of statements and total number of statements that
were not executed.

3.0 Legitimate Uses of Statement Coverage Analysis

It is important to be clear about why and when a coverage tool
should be used. Coverage tools are very powerful and provide
the user with information that would not likely be made available
through manual techniques. Some of the merits of coverage that
might not be obvious are treated here.

3.1 Metric

Coverage 1is not the only metric that applies to the quality of
a test library, but it is one of the more wuseful ones. The
relationship between the metric and quality of test is clear,
and it is a fairly simple metric to produce. It appears that
statement coverage is as useful as a metric as any other coverage
‘metric [WEIS85]. Note that 100% coverage of a program does
not mean that it has been completely tested. However, if there
is only partial coverage you can be certain that the program
is either not fully tested or that it has "dead" code. Only
as 100% statement coverage is approached do other measures of
test coverage become necessary. A good compromise between effort
in testing and the identification of errors is typically 85%
[MILL79], although a coverage metric alone is not a reasonable
termination criterion,

3.2 Guiding test case development

Probably the most common use of a coverage analyzer is to identify
areas of code which are not tested in order to direct resources
to those areas. Improving coverage often requires looking for the
largest contiguous segments of statements which were not executed,
then analyzing, with the aid of the developer, ways in which this
code can be reached. However, see "Pitfalls."

3.3 Dead code identification

Unexecuted statements may, in fact, be "dead" code. That is,
there may be no way to reach this code. Close inspection of the
code should indicate whether this is the case and, if so, whether
this represents a bug or whether the code can simply be removed.
Some dead code may be found with static analyzers, but often it is
dead because of an error in assumptions about possible data values
at a conditional statement.

3.4 Ordering test execution
Testing 1is wusually a cyclical activity involving QA test and
Development fixes. The testing cycle continues until the product

meets its release criteria. If the test suite takes a long

4

time to run with respect to this turn-around cycle, it would be
desirable to run first those tests that are most likely to uncover
bugs. Coverage information on 1individual tests can suggest a
practical ordering: first, run the test case that exercises the
most statements. Next, run the test case that adds the most
coverage, and so forth. (See the appendix for a more thorough
description of this algorithm.)

3.5 Identifying QA acceptance tests

In many organizations it is desirable to have the developer run a
subset of the QA regression library before re-releasing his code
to QA. Often a reasonable choice of tests can be made based on
coverage.

3.6 Equivalency testing

A high level of coverage helps assure that a re-implimentation
of a component is equivalent to the original in the absence of
a complete External Specification. Too often QA 1is handed a
specification which says: "program B does the same thing as the
old program A, with these additions..." 1If before program B is
developed, the test developer can achieve nearly 100% coverage
of program A, then applying the same test suite to program B
will give reasonable confidence that the old users of A will see
no differences in external function when using only the original
features.

3.7 Boolean operations on results

Given the bitmap files FileA and FileB corresponding to two test
cases Test A and Test B, both for the same program; boolean
operators prove valuable for answering the following questions:

e What is tested if we run both of these test cases? This can
be answered by ORing (inclusive OR) FileA and FileB together.
This is the most commonly used operation. In general, this
is used to operate on all measurement results to provide a
statistic on how much was tested by an entire test suite.

e What does Test B test that is common to Test A? This can be
answered by ANDing FileA and FileB together.

What does Test B test that has not alread

Yy been tested by Test

A? This can be answered by first ORing FileA and FileB into
Temp, then XORing (exclusive OR) FileA and Temp. For example:
Statement

FileA OR
Temp XOR

Temp
Temp

Test B contributes an

FileA
FileB

FileB
Filea

execution

1
1
0

1
0

2
1
1

1
0

3
0
0

0
0

4
1
1

1
0

5
0
1

1
1

of statement 5.

4.0 Pitfalls of Using a Coverage Analyzer

A coverage tool is not a panacea for software bugs. Even if 100%
coverage is achieved, it does not follow that adequate testing has
been performed. Some of the pitfalls of using a coverage tool to
direct test development are explored in this chapter.

Using a coverage analyzer to drive test development may produce
inefficient testing. An inordinate number of test cases may be
created simply to "fill in the holes." A more methodical approach
may yield fewer test cases which will test the same function. A
good test case is one which reduces by more than a count of one,
the number of other test cases that must be developed. It should
cover a large set of other possible test cases [BEIZ83].

4.1 Is the statement tested

Is the executed statement really tested? Testing means comparing
the result of the execution with the expected result. A good test
of a statement will cause it to manifest incorrect results if the
statement is in error.

4.2 Boundary tests

Have the boundary conditions been tested? Coverage will not give
you a <clue. If a variable is to take on values [n:m] then test
cases should be developed for such cases as n-1, n, n+1, and m-1,
m, m+l,

4.3 Range of values

Have a wide range of data values been included? Mid-range values
may influence other areas of code or may identify degenerative
performance problems.

4.4 Table-driven code

If the procedure is table-driven, have all values of the table
been used? Has every state of a state-machine been spanned? For
example, in an assembler have all machine mnemonics been used?

4.5 Timing / concurrence

Have timing & concurrence conditions been adequately exercised?
Are there race conditions which have not been found? Sometimes
these are impossible to discover except non-deterministically.
This is a major advantage of "stress testing."

4.6 Paths / cycles

Have sufficient paths been tested? For example, in the following
program fragment

IF A THEN CALL B;

CALL C;

Execution of all statements does not tell you whether A was ever
FALSE.

4.7 Conjunctives

Execution of both statements in the following program fragment
IF A OR B THEN CALL C;
will not indicate whether A (or B) was ever FALSE.

4.8 1Initialization

Was 1initialization of variables performed properly? The most
common example of 1initialization failures 1is when memory is
cleared before program execution. A procedure may perform
correctly on its first call when variables are initialized to
zero, but it may fail on subsequent calls when there is "junk"
left around from previous calls.

4.9 Contexts

Was a function performed in various contexts? This is especially
important for operating system types of processes which run
indefinitely; for example, teleprocessing monitors (Pathway) and
database processes (DP2) which may perform differently based on
earlier inputs.

5.0 Conclusions

The design features that contribute the most to COVER's usability
are

e it requires no special hardware,
® it requires no re-compilation of the source program, and

* it does not noticeably degrade execution performance.

The utility features which are particularly important are
e there is no need to modify the test suite,

e it will mark-up a program listing directly,

® it provides for a variety of statistical reports,

e it can identify the largest unexecuted segments of the program
under test, and

e it can suggest an efficient order for test execution.

We expect the coverage analysis of our test libraries to help
increase the level of testing of our software while reducing the
over-all duration of testing. This can only be achieved if the
user has a clear understanding of the value of statement coverage.
The misuse of coverage information may otherwise result in less
efficient testing. '

6.0 Acknowledgements

Many people have provided me with encouragement and ideas. 1I'd
like to thank those who took the time to review my material
and who volunteered to use my early prototypes. In particular,
I'd like to thank Alan Hibdon for being the first "guinea pig"
and for comparing his measurements of the "C" compiler with
those of a commercially available product, Ed Kit for providing
background and demonstrating the utility of statement coverage,
Chris Larson for logistic support and the original pseudo-code
for the ORDER algorithm, Randy Shingai for help with final
implementation details, and Keith Stobie for recommendations on
how such a tool may be used.

10

7.0 References

[BAIL85] Bruce W. Bailey, "COVER Product Requirements", Tandem
Computers Incorporated, April 29, 1985.

(BAIL87] Bruce W. Bailey, "COVER External Specification", Tandem
Computers Incorporated, February 11, 1987.

[BE1z83] Boris Beizer, "Software Testing Techniques", Van Nostrand
Reinhold, 1983.

[MILL79] Edward F. Miller Jr., "Some Statistics from the Software
Testing Service", ACM SIGSOFT, Software Engineering Notes, Vol. 4,
No. 1, January 1979, pp. 8.

[WEIS85] Mark D. Weiser, John D. Gannon, and Paul R. McMullin,
"Comparison of Structural Test Coverage Metrics", IEEE Software,
Vol. 2, No. 2, March 1985, pp. 80-85.

11

8.0 Appendices

8.1 ORDER Algorithm

It is desirable to expose a product to very broad testing in as
short a time as possible. Given an existing set of test cases
which have been separately measured, it is useful to order those
test cases so that the test with the highest coverage is run
first. Once this is run, the next test case should be selected so
that it adds the most to the total coverage, and so forth. This
is a natural sort order for the measurement results.

For simplicity, assume that all test case executions require the
same elapsed time. Assume there is a set of K test cases for a
product and that the product comprises N program statements. We
may represent the results of a statement coverage measurement on
a product as a bit matrix X consisting of K rows and N columns,
X(K,N), where X(k,n) 1is 1 if statement "n" was executed by test
case "k"; otherwise X(k,n) is 0. These K rows will be considered
to be the sort keys. 1In the following pseudo-code, only the keys
will be sorted; however, in reality each record would also contain
a field indicating the name of the corresponding test case.

The following pseudo-code should give a reasonably clear picture
of the algorithm. Note that the selection of a test case depends
on first selecting all the "better" test cases. This is what
precludes the use of a partitioned sort algorithm. A consequence
of this is that ORDER is an O(K**2) algorithm.

12

proc ORDER(BigK, BigN, X);
integer BigK, BigN; --Array dimensions.
bit array X(BigK, BigN); --Test measurement results.
bit array V(BigN); --Cumulative measurement result
-- Temporary variables
integer SumJ, SumK, SumMax, j, k, Max:
bit array swap(BigN);

-- The notation "*" as an array subscript means "all elements
-- along that coordinate taken one at a time."

-- The function "LOR" is the boolean inclusive OR.

-- The function "AddElements" computes the sum of the elements
-- of its vector argument.

V(*) := 0;

for k := 1 to BigKk-1 do
begin
SumMax := SumK := AddElements(V(*) LOR X(k,*)):
Max := k+1;
--Find the test case which helps the most.
for j := Max to BigK do
begin
SumJ := AddElements(V(*) LOR X(j,*));
if SumJ > SumMax then

begin
-—-Establish a new bound
SumMax := SumJ;
--Keep track of index for later swap
Max := j;
end;
end; --j

if SumMax > SumK then
begin
--Swap X(k,*) with X(Max,*)
swap(*) := X(k,*);

X(k,*) := X(Max,*);
X(Max,*) := swap(*);
end;

V(*) := X(k,*) LOR V(*);

end; --k

13

8.2 Sample ORDER Output

The following listing shows how COVER reports the coverage of a
set of test executions. There is one bitmap per test execution.
These are then reported according to the above sort ordering.
Note that even though the test corresponding to ZzZC0O0004 only -
produced 25.3% coverage, it added more than any other test once
2Z2C00006 was run,

COVER - T9618C00 - (15JUL87)
Program $SYSTEM.SYS10.COVERCOM compiled 7 Apr 1987, 18:40:53
Process \PRUNEQC.04,031 run 8 Apr 1987, 8:55:07
by user 101,147 (SOFTDEV.BWB)
Current OS is $SYSTEM.SYS10.0SIMAGE - Version MO0 (15JUL87)
COVER is ENABLEd (NO PRIV).
Program file is $SYSTEM.BWB.BRANDY dated 26 Jan 1987, 15:47:38
Measurement of $SYSTEM.BWB.BRANDY which comprises 771 statements

Sequence Filename % Coverage % Cumulative
1 2ZC00006 57.1% 57.1%
2 ZZC00004 25.3% 64.3%
3 ZZC00002 55.3% 69.9%
4 ZZC00005 53.7% 71.6%
5 2ZC00003 56.5% 71.7%
6 Zz2C00001 49.8% 71.7%

14

8.3 Sample Listing Mark-up

The following text 1is the actual output of a marked up program
listing. Some columns of extraneous information were removed so
the listing would fit on this page. It demonstrates how a program
listing itself is marked to indicate which statements were or were
not executed. Statements which were NOT executed are marked with
a "*", If more than one statement occurs on the same line, a "+"
is used when some statement has been executed but another has not.

PAGE 1 SOVER.BWBDEMO.SAMP [1]

TAL - T9250B40 - (15SEP86)
Date - Time : (Q4FEB87 - 08:56:54

6 0000 int proc abs(arg); !Function definition
7 0000 int arg;

8 0000 begin

9. 0000 if arg > 0 then

10. *0003 return arg

11 0003 else

12, 0006 return -arg;

13, 0011 end;

14. 0000

15. 0000 proc mainstreet main;
16. 0000 begin

17. 0000 int 1,3;

18. 0000 :

19. 0001 call initializer; !External system procedure
20. 0006 i := 0;

21. 0010

22. 0010 while i do

23. *0012 i :=0; !Never executed

24, 0015

25, +0015 if 1 then j := -j; !Second statement not executed
26. 0022

27. 0022 j := abs(i); !Function call

28. 0026

29. 0026 i :=2; j 1= 3; !Both statements executed
30. 0032

31. +0032 call stop; j := 0; !Second statement not executed
32, 0041
33. *0041 end; !Implicit call stop

15

8.4 Sample Display Output

The following text is a sample of the output display of a
measurement of the program "AMP." In 1its most verbose form,
it lists every program statement and indicates whether or not
that statement was executed. Note that the entry point of
"MAINSTREET" is considered to be a statement because it allocates
local storage. For procedures with multiple entry points it is
desirable to determine whether each entry point was called.

Execution report. Statements marked "*" were NOT executed.
Bitmap is from $SYSTEM.BWBDEMO.ZZCOAMP
Program file is $SYSTEM.BWBDEMO.AMP dated 4 Feb 1987, 8:56:54

Spaceid 00 word offset 000004 is base of ABS.
Entry point at word offset 000000 is ABS

Procedure header at line 6. in $OVER,BWBDEMO,SAMP
Source file timestamp was 4 Feb 1987, 8:56:30.
Word offset 000000 is line 9. in $OVER.BWBDEMO.SAMP
* Word offset 000003 is line 10. in SOVER.BWBDEMO.SAMP
Word offset 000006 is line 12. in $SOVER.BWBDEMO.SAMP
of 3 statements, 1 (33.3%) were not executed.

Spaceid 00 word offset 000015 is base of MAINSTREET.
Entry point at word offset 000000 is MAINSTREET

Procedure header at line 15. in SOVER.BWBDEMO,SAMP
Source file timestamp was 4 Feb 1987, 8:56:30.
Word offset 000000 is line 15. in SOVER.BWBDEMO.SAMP
Word offset 000001 is line 19. in SOVER.BWBDEMO.SAMP
Word offset 000006 is line 20. in SOVER.BWBDEMO.SAMP
Word offset 000010 is line 22. in SOVER.BWBDEMO.SAMP
* Word offset 000012 is line 23. in SOVER.BWBDEMO.SAMP
Word offset 000015 is line 25. in $OVER.BWBDEMO.SAMP
* Word offset 000017 is line 25. in SOVER.BWBDEMO.SAMP
Word offset 000022 is line 27. in SOVER.BWBDEMO.SAMP
Word offset 000026 is line 29. in SOVER.BWBDEMO,SAMP
Word offset 000030 is line 29. in SOVER.BWBDEMO.SAMP
Word offset 000032 is line 31. in SOVER.BWBDEMO.SAMP
* Word offset 000037 is line 31. in SOVER.BWBDEMO.SAMP
* Word offset 000041 is line 33. in SOVER.BWBDEMO.SAMP
of 13 statements, 4 (30.8%) were not executed.
of 16 statements, 5 (31.3%) were not executed.

16

The following text shows how the same data may be manipulated to
display only summary information for the program with a breakdown
by procedure.

Execution report. Entry points marked "*" were NOT executed.
Bitmap is from $SYSTEM.BWBDEMO.ZZCOAMP
Program file is $SYSTEM.BWBDEMO.AMP dated 4 Feb 1987, 8:56:54

Spaceid 00 word offset 000004 is base of ABS.
Entry point at word offset 000000 is ABS
of 3 statements, 1 (33.3%) were not executed.

Spaceid 00 word offset 000015 is base of MAINSTREET.
Entry point at word offset 000000 is MAINSTREET

of 13 statements, 4 (30.8%) were not executed.
of 16 statements, 5 (31.3%) were not executed.

17

8.5 Sample SORT Output

The following listing shows how COVER reports the largest unexe-
cuted segments of contiguous statements. Each segment is reported
in descending order of number of statements. Included on each
detail line are: the procedure name, source file name, line
number, and octal offset from the beginning of the procedure.
This is followed by the number of statements which were not
executed.

COVER - T9618C00 - (15JUL87)
Program $SYSTEM.SYS10.COVERCOM compiled 7 Apr 1987, 17:23:42
Process \PRUNEQC.04,031 run 7 Apr 1987, 18:14:10
by user 101,147 (SOFTDEV.BWB)

Current OS is $SYSTEM.SYS10.0SIMAGE - Version M0O0 (15JUL87)

COVER is ENABLEd (NO PRIV).

Bitmap is from $SYSTEM.BWBSORT.ZZCO0O0006

Program file is $SYSTEM.BWBSORT.BRANDY dated 26 Jan 1987, 15:47:38.

Procedure name Source file Line number Offset Statmnts
CREATE~BACKUP SBRANDY 696. 000000 55
SET RUNTIME~OPTIONS SBRANDY 572. 000253 54
DOSHOW~MENU ' SBRANDY 1369. 000000 54
ANALYZE~CHECKPOINT~STATUS SBRANDY 749, 000000 26
ANALYZE~SYSTEM"MESSAGE SBRANDY 794 . 000000 23
SET RUNTTIME~OPTIONS SBRANDY 547. 000001 18
CHECKRECEIVE SBRANDY 832. 000000 15
OPEN"BACKUPS~FILES SBRANDY 672. 000022 11
CHECK”~VERSION SBRANDY 656. 000021 9
GET~TOKEN SBRANDY 464, 000027 6
OPEN"PRIMARYS"FILES SBRANDY 636. 000025 6
EXECUTE SBRANDY 1443, 000071 6
BRANDY SBRANDY 1469. 000033 5
GOTO" SBRANDY 1033. 000055 4
GoTo" SBRANDY 1051. 000125 3
XCAL" SBRANDY 1179. 000105 3
ouTPUT” SBRANDY 345, 000024 2
IF~ SBRANDY 1201. 000042 2
BRANDY SBRANDY 1485. 000124 2

18

Distributed by
//’|TANDEMCOMPUTERS
Corporate Information Center
19333 Vallco Parkway MS3-07
Cupertino, CA 95014-2599

