

Norsk DaTa NORD-10

A first version of PASCAL is now running on the NORD-10 under
the MOSS operating system. This note gives a short
introduction to the PASCAL system and how to use it.

NORD-10 PASCAL

The compiler has been developed from the P-PASCAL compiler by
the following group:

Andora Fjeldsgaard
Petter Gjerull
Stein Gjessing

Jan Husemoen

Ketil Moen

Terje Noodt

kThe implementation is described in "Rapport om implementering
~av PASCAL p& NORD-10", University of Oslo, April 1976.

‘The compiler utilizes the 2-bank feature of the NORD-10, so it
is possible to run 64K programs with 64K of data. The present
version compiles to symbolic assembly code, so that a compiled
program must be assembled by AMORAL before it can be executed.

Non-implemented features

Compared to the full PASCAL language, the following are the
main restrictions in NORD-10 PASCAL:

1. packed is not implemented (the compiler does however
accept the symbol PACKED) . .

2. The type file is not implemented.

3. Formal procedures are not implemented.
4. Range ‘and index checking ‘are not implemented.

“5%. Arithmetic overflow is not checked.

How to use the system

The compiler is activated by the command
) *PASCAL
After the compiler has been loaded it will ask the user to

specify which logical units are to be used for input, 1listing
and compiled code. This conversation takes the following form:

INPUT =
<specify octal unit number of source code file>
OUPUT =
<specify octal unit number of listing file>
PRR =
<specify octal wunit number of the file where compiled
code will be written>

The files should be opened before activating the compiler, but
it is also possible to exit from the compiler by CTRL A, open
the file, and then continue with the)GO command.

When compilation is finished (signalled by right parenthesis),
the file containing the compiled code can for instance be
saved for later use. To execute.the program, go through the
following steps:

1 Open the compiled code file with logical unit 3 (if not
already open on this 1lun).

2) *LINKP

3)GO

NB:A PASCAL‘E;ogram will store some of its data
at high adresses. Thus a text input for

editing will not be preserved through a PASCAL
compilation or execution of a PASCAL program.

The compiler recognizes the following options (placed within a
comment and preceded by $):

C Produce code -~ default is off
T Produce tables of variables - default is off
L Produce listing - default is on ’

In a PASCAL program the programmer can use the following file
names:

INPUT (default input file)
QUTPUT (default output file)
PRR
PRD

The files that are used should appear in the program heading,
as f. ex.:

PROGRAM PROG (INPUT,PRR) ;

Before data access to a file the program must call

RESET (<file name>)
for an input file, and.

REWRITE (<file name>)
for an output file. These calls have the effect of wrifinq the
filename followed by an equal sign to the terminal, whereafter
the logical unit number (octal) of the file can be specified.

8# YILLITSHIN TVISV

LL6T AVU

LS 39Yd

For the files INPUT and OUTPUT the calls to RESET and REWRITE
are done automatically if they appear in the program heading.

Machine dependant characteristics

1. A set can have up to 64 elements.

2. A procedure cannot have more than 253 words of local
variables, including parameters, but excluding record and
array variables.

3. An integer variable occupies 1 16-bit word, a floating
variable 3 16-bit words.

4, A string can have a maximum length of 16 characters.
Improvements and changes

It is expected that the PASCAL system will ‘be impfoved and
changed frequently in the near future. A descfiptlon of any
change or improvement will be written on the file *PASCINF,
whicﬁ may be inspected or listed by the PASCAL user.

Questions, comments and error reports are invited, and can be
given to any member of the PASCAL group.

Terje's address is Computing Center, University of Oslo, Blindern, Oslo 3, Norway.

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

SIEGE: GENEVE/SUISSE

CERN LABORATOIRE | Andy Mickel
PASCAL Users Group

ucc: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 5545

U. S. A.

Adresse postale/Postal address:

1211 GENEVE 23
SUISSE / SWITZERLAND] -

Votre référence
Your reference

Notre reference

Our reterence PS/CCI/DB/afcs Geneva, 19th January 1977

PASCAL NEWSLETTER
Dear Andy,

I am pleased to announce the successful implementation of a

Standard PASCAL compiler on the Norsk Data NORD-10 computer (running under

SINTRAN III o/s), by myself and my colleague Robert Cailliau. We developed

our compiler from the Zirich P4 code compiler, first assembling the source

_ P4 code into relocatable binary P4 code and then interpreting it as

efficiently as possible by an assembly code program. It is a great tribute
to Professor Wirth and his team at Zirich, who have produced a most excep-
tionally concise description of the implementation procedure and a very
readable compiler written in PASCAL, that we were able to implement our
system in about 2 man months. Apart from a small problem with the character
set (why do CDC have to be different to everybody else?), the implementation

went like a dream.

The very professional polish to the compiler and its documentation,
plus experience with its use, indicate that the compiler itself is extremely
reliable, and since our assembler/interpreter is very simple in terms of
coding and has successfully compiled the compiler, we have comsiderable faith
in our system. Naturally, it is not ultra-fast, but nevertheless takes only
15 minutes to compile the compiler, which for a 16-bit minicomputer with

2 pusec cycle time is not too bad.

Naturally, anyone is welcome to receive a copy of our system, although

the NORD-10 is currently used exclusively in Europe.

A quick word on the PASCAL language itself - I feel that when
Professor Wirth stopped just short of creating the long sought after "obvious"
replacement to FORTRAN as the standard language, he missed a great opportunity.
Naturally unable to be the pérfect all-time language, it does have some slight
drawbacks (frequently discussed in this newsletter, and in particular no interface
to external routines), most of which it would seem could be relatively easily
overcome, but which, however, do make it more difficult than it should be to

persuade users to take it up.

Anyone interested in our PASCAL system can contact :

David Bates

PS/CCI Group

CERN, 1211 Geneva 23
Switzerland (tél. 41-98-11)

‘ Sincerely,

David L. Bates

LLBT AVW

89 39V¥d

SEMS T1G600 /7 SoLAR

ECOLE NATIONALE SUPLRIEURE DE LA METALLURGIE
ET DE L’INDUSTRIE DES MINES DE NANCY

TELEPHONE (28) 51.42.32
TELEX : ENSMIM 850661

‘ECOLE DES MINES, Parc de Saurupt 54042 NANCY CEDEX

NANCY, I February 2, 1977

PUG

c/o Timothy Bonham

University Computer Center

227 txperimental Engineering Building
B Minneapolis, Minnesota 55455

USA -

Dear Tim:

As announced to George Richmond we are (still) working
on implementing a Pascal compiler for the SEMS minicomputer
series. To answer your 10 questions see attached implementation
notice. ' .
Our hope is to provide an entire implementation with
efficient debugging tools for the programmer on a small computer.
As all the available documentation on this project is writen in
french, we think it better to send it directly only to people
‘who ask for it, and I enclose one copy of it for your own use.

Yours sincerely,

A. Tisserant

SEMS T1600 / SOLAR PASCAL IMPLEMENTATION

Alain Tisserant
Département Informatique de 1'INPL

1: Implementor

Ecole des Mines

Parc de Saurupt

54042 Nancy Cedex FRANCE
Tel.: (28) 51 42 32

2: Machines : SEMS T1600 and SOLAR 16/05/40/65
3: 0S : B0S-D
Hardware required : MTS16

FHE or MHU disk
16 K words of core memory (minimum)

4,5,6 : Compiler not yet available. Will be distributed

by TRIA.

7: Fully implements standard Pascal; also compatible with
the IRIS 80 Pascal compiler.
Its extensions are character strings
LOOP ... EXIT ... END statement
1/0 for sets and scalars symbolics
It allows also separate compilations, insertion of ASM or
Fortran routines, and sets of any interval of integers.

8: Pascal is compiled in two passes, with intermediate language

use. Of course, compilers are written in Pascal; the
intermediate language is an adaptation of P-code for
minicomputers. This implementation provides a fully
transparent virtual memory.

9: Reliability: expected to be excellent!

10: P-code has been adapted for non-stack, 16 bits words,
based addressing and accumulator machines. An automatic
segmentation mechanism will allow compilation and execution
of large programs (such as the compiler) with small
memory requirements.
First pass of the compiler is parametrizable, but
second pass must be hand rewritten for each implementation.

8# YILLITSHIN TV¥ISY

LLBT “AYMW

69 39Vvd

S1EMENS 4004, 7000 serIEs

SIEMENS PASCAL BS2000 PROGRAMMING SYSTEM.

A PASCAL Compiler for SIEMENS 4004/151 and all SIEMENS

series 7000 installations running under operating system
BS2000 has been developped by Dr. Manfred Sommer

(Dept. D AP GE - SIEMENS AG - MUNICH - GERMANY)

on the basis of the ETH P4 Compiler.

The Compiler may be used in an interactive Edit, Compile

and Go environment, as the Compiler produces code that

may run without relocation anywhere in virtual memory.

The interactive environment is provided by a PASCAL program
'dialogue' which invokes the Compiler and/or generated pro-
grams by an additional standard procedure :execp (i.e. invoke
PASCAL program). This procedure may be used by all PASCAL
programs and supplies the possibility of a nested execution
hierarchy of PASCAL main programs.

The code produced by the Compiler (the instruction set used
is almost compatible with IBM 360/370 series instruction set)
may be put from virtual memory into a savefile. This savefile
may be reformatted hy a PASCAL program so as to be submitted
to the system linkage utility routines.

The Compiler does some localized optimizations with the

aim of producing a compiler suitable for the compilation

of application programs. The result is that the code produced
seems to be much faster than the code produced by the standard
Fortran compiler. i

The compilation speed is rather fast averaging 4o lines per
second on a 4004/151 and more than 100 lines per second on

a 7000/7.755.

The Compiler supports the language standard PASCAL.

File handling is fully implemented by the sequential file
access method. Work will be done to support also the

(direct access) indexed sequential file access method.

The predicate packed of arrays ; records is ignored

as it would not change much on a byte machine.

The procedure dispose is replaced - as in all P-Compilers =
by the procedures mark and release.)

Global labels may only be used to get back to the

main program.

There are no limitations imposed by the compiler.

Additional standard procedures are provided to make
operating system services available with the aim to make

the compiler suitable for the compilation of system programs.

There is the possibility to interact with the operating
system by calls of additional standard procedures.

The system seems to be as efficient and reliable as
PASCAL systems are usually.

There is a users manual - written in german language.
For the conditions of availability contact the author.

The Compiler has been developed on the basis of the ETH P4
Compiler. This Compiler has been extended to process full
standard PASCAL with some typical modifications (i.e.
mark/release, case ... else, variable string assignments
and comparisons). The character code is EBCDIC, the setsize
is 256 allowing_for set of char. The code generation is
done on the basis of the intermediate P-code at the end

of each procedure trying to do some local optimizations.
The code is generated into virtual memory and may be

executed immediatly or put into a standard module library.

For further information contact

- Dr. Manfred Sommer -

" SIEMENS AG
Department D AP GE
Postbox 70 00 78
D-8000 Munich
(West Germany)

The efficiency of SIEMENS,K PASCAL BS2000

In N. Wirths: "Programming languages...." (Berichte des
Instituts flir Informatik der ETH %urich Nr. 17) there is

~a list of programs for comparativestudies . These programs

are measured on a CDC 6400 SCOPE 3.4 installation, assumed
to be roughly equivalent to a 370/155 by a remark in the
same paper. .This set of programs was run for comparison

,on a SIEMENS 7.755 under BS2000 operating system, assumed

to be roughly equivalent to a 370/155 in turn.

8# 4JLLITSHIN TVISYd

LL6T “AYH

09 39Vvd

&

Results are:

CDC 6400 SIEMENS 7.755
SCOPE 3.4.B82000 V 3.0

1. Powers of two 0.813 0.883

2. Palindromes 2.695 5.223
3. Quicksort (different test data-

intsize) 2.861 3.985

I, characount (micro seconds per char) 68 82

5. numericio a) input 1.238 2.541

b) output 0.980 2.260

6. Queens 0679 1.009

7. Prim 1.061 1.083

8. ancestor a) build matrix 0.291 0.267

b) evaluate ancestors 1.667 1.569

"¢c) output matrix 0.578 0.614

9. ancestor-S a) build matrix ? 0.084

setsize = 100 b) evaluate ancestors ? 0.322

¢) output matrix ? 0.627

Programs 1,4,6,7,8 indicate that the times used are

indeed roughly equivalent; 3,9 are not comparable; the
different values on program 5 are probably due to a different
file sﬁructure; and program 2 is assumed to be an example

for the term "roughly equivalent" - it is not known why

it behaves different from program 7.

It should be noted that BS2000 is a virtual memory operating
system and paging interrupts lead to different- execution
times of the same program in the order of 10 %.
On the other hand there are still some final optihisations
in the code generator not yet implemented - it is hoped

Vk that the times will be better by a an order up to 20 %
as soon as those optimisations are ready.

The compilation of the compiler yields a performance of
90 lines / second. ‘

There have been some tests on the length of the sequence
of instructions for calling "Ackermann". The SIEMENS
compiler produces 15 instructions needing 52 bytes of code.

Texas INsTRUMENTS TI-ASC

" Douzglas S, Johnson, Advanced Software Technolozy Dept., #i.3. 295, Texas Instruasents,
vallas, Texas 75222, tells us that a superset of Pascal called PO0L is inplemented on the
TI-ASC. Through other sources we nave learned that POL was developed wusing a Pascal
cross-compiler running on a Control Data 70630 which produced code for tae A3C. PDL was
developed for a ballistic ifissile Defense Agency project, and is described in the article:
"An extendable approach to computer-aided software requirements engineerinz" by T.t. Cell,
D.C. Bixler, and i.g. Dyer, Icid Transactions oa 3oftware cngiaeering 3 {(Jan., 1377),
pp 49-50.

Texas INSTRUMENTS T1-990, TI1-9900

Douglas Johnson (above) also reports that there is a Pascal cross-compiler which runs
on an I 370 and produces code for the TI-990 and the TI-9310. Several people have told
us that TI has developed a native-code coapiler wnich runs on the 990/10 under the DX10
operating system.

A very different implementation for the TI-9900 (a 16-bit micro), “ICROPASCAL, is
notable for being a stand-alone turnkey Pascal machine with bundled software ana hardware.
In addition to the materials printed here, the implemeators sent us a fairly gooa-sized
manual, mostly in Gerwan. Deviations from standard Pascal appear to ve: files, with and
zoto statements, label declarations, and procedures/functions as parameters are not
supported. Sets of 56U characters are supported.

We present ourselves:

MICROPASCAL

1.) the implementors are:

H. Schauer, R. Nagler, A. Szer; Institut flir Informationssysteme
1040 wWien, ArgentinierstraBe 8, Austria, Tel. 65 87 31/313

the distributors are:

ECO-Computer GesmbH&Co Kg (Fa. Langschwert)
1010 Wien, Tuchlauben 14, Austria, Tel. 63 35 80

2.) our implementation is called MICROPASCAL

3.) the minimal hardware configuration is the microprocessor
TI 9900/4 (Texas Instruments), a mark-sense card-reader and
a line-printer (with interfaces). You need no operating

system to run the compiler.

4.) only the whole system is selled(hardware and software) and
costs 200.000.- &S (Austrian Schilling). (about 1500 US §).

5.) the system will be ready for sale in summer 77, we intend
to make more of it and we would like to accept bug reports.

6.) documentation is available in form of a supplement to the
PASCAL-Report

8# W3ILLITSMHIN TVISVY

AVHU

[L6T

T9 39vd

7.) it fully implements Standard PASCAL beside a few little things
caused by the hardware configuration (see documentation).

8.) it is a portable compiler-interpreter system which saves
memory and is very slow compared _with other systems;it is
written in PASCAL and machine-code, 3000 source_lines, 12KROM
words, no external memory .

9.) the reliability of the system is excellent

10.)it was written in PASCAL and bootstrapped to the microprocessor.
it takes three month to implement it on any microprocessor

with no special experience of the implementors.

MICROPASCAL is a system that permits tle translation and execution of PASCAL
programs on a microprocessor. It consists of a miecroprocessor, memory for the operating
system and. the user programs and two interfaceskfbr input and output. The main purvose
of the system is to support programming education.

Baste concepts: the compiler translates the source precgram into an intermediate
language represented as a treez, where each node represznts one declaration and each
leave consists of the intermediate code of a PASCAL biock in reversed polish rotation.
This tree is the static information of the program. The comptlation does not excezd the
level of syntactic decompcsition defined by the syntax diagrams in the PASCAL report.
At ‘execution time the code tis iﬁterpreted by aid of the runtime stack which provides the
dyrnamic information. The runtime stack cornstists of parcmeters and local data cf all the
cctive subroutines. The interpreter performs all context-sensitive checking at the exe-
cution time. The intermediate Zanguége is compressed by using -a numeric code of variable
length to represent the identifiers: those which are frequently used are represented
by short numbers. Sirce anry information concerning the identifiers is stored in the nodes
of the tree, the intermediate code is not redundant. The interpreter is "microprogramned",
Z.e. in the intermzdiate code all cperators are calls of subroutines of the interpreter.

Features of the system:
- it supports portability: the machine-independent parts of the sysfem, i.e. the compiler
ard part of the interpreter are in the intermediate language (and interpreted themselves).
Only the nucleus of the interpreter (organisation of the runtime stack and the execution
of operations) is machine~-dependent and therefore handcoded.
- extremely low requirement of storage (12K ROM): the same interpreter is used to control
the compilation, the machine—independent part of the intarpretation and the exzcution
of the user program (the problem of runtime efficiency was no constraint to the problem).
- very easy handling: the system is ready as soon power is on. No need for any harduare
or softwarz support to provide or maintain a machine-readcble program. The input device
is a mark-sense card reader and the output is a printed listing.

The machire-independent parts of the system are written in PASCAL and bootstrapped by

an existing PASCAL compiler.

In1vac 90/70

M. Sommer (see Siemens 4004 announcement, above) responded to Bill Hopkins' request
in Newsletter #7 for an implementation for the RCA/Univac Spectra 70: "Stemaing from the
former cooperation between RCA and SIEMENS there is a close correspondence between SPECTRA
70 and SIEMENS 4004 computers. Our operating system is derived from VMOS - now called
BS2000. Our PASCAL implementation is running on a 4004/151 {compatible with SPECTRA 70/61)
under BS2000 (compatible with VMOS)." (Letter to B. Hopkins, dated Feb. 2, 1977.)

(* Thanks, Manfred! *)

Untvac 1100 seriEs

Bill Barabash of SUNY Stony Brook reports that they are in possession of all three
Pascal compilers for the U1110. They use the DIKU compiler by Steensgaard-Madsen for
beginning students because it only requires 42K. They use the Mike Ball San Diego compiler
(60K) 1in advanced courses because it allows the creation of modules with independent
global areas. They also run a preliminary version of the Fischer-LeBlanc Wisconsin
compiler which requires 80K and must itself be compiled by Mike Ball's compiler. It's
extensive checking appears to be quite sound according to Bill,

VarRIAN V-70 SERIES

In a .note dated Feb. 1, 1977, Gregory L. Hopwood, Varian Data Machines,
2722 Michelson Drive, Irvine, California 92664, {714/833-2400) states "fes - we are
interested in Pascal. Varian has a Pascal compiler (Brinch Hansen) which runs on our V70
line of minis.®

In a letter dated Feo. 4, 1977, Michael Teener, Data Sciences Division, Technology
Service Corporation, 2811 wilshire Boulevard, Santa Monica, California 90403,
(213/829-T411) reports:

Technology Service Corporation

Data Sciences Division

— 2811 Wilshire Boulevard, Santa Monica, California 90403 = Phone: (213) 829-7411

. 4 February 1977

Mr. Andy Mickel .)
University Computer Center

227 Experimental Engineering Building
University of Minnesota

Minneapolis, Minnesota . 55455

Dear Andy: :

For the past year or so I have been looking for a Pascal compiler for
our Varian V-76 minicomputer. I looked into using a Pascal-P imple-
mentation, but that turned out to be too much work to do singlehanded.
I mentioned this little project to our local Varian rep, who then
shocked me by saying, "But we already have Pascal."

Simply put, anyone can get Pascal from the Varian Users Group (VOICE).
The required equipment is a Varian V-70 with 32K+ memory, memory map,
Vortex II 0.S., extended instruction set and 512 words of writable
control store (WCS). This last requirement is of considerable interest

g# 4ILLITSHIN TV¥ISY

AV U

L/6T

¢9 39Vvd

'\

"demand formatted and structured 1/0.

since Varian uses the WCS to set up the V-70 as a Pascal machine...its
machine language looks suspiciously like P-code. The compiler itself is
quite fast. According to my friends at Varian, it compiles over 1000
statements a minute. Some other characteristics are:

1/0 is not standard, instead it is oriented around Vortex II

1/0 macros. A1l files must be opened before using, with
reference to files via logical unit numbers. 'GET' and 'PUT'

do buffered I/0 and 'READ' and 'WRITE' do character by character
1/0.

Programs can be overlaid.
The range on integers is -32768..32767.
Integer case labels must be in the range 0...127.

The range of reals is about -1038..1038.

The relative precision of a real is about 10716,

A string must have an even number of characters. (A11 arrays

of type 'CHAR' are packed).

Enumeration types ('X=(A,B,...)') cannot be defined within
record types.

An enumeration type used as a tag field type can have at most
16 constant identifiers.

Integer variant labels must be in the range 0..15.

A set of integers can only include members in the range 0..127
(strangely enougn, this is room for all ASCII characters).

There is no 'text' type.
Comments are enclosed in double quotes (").
Brackets '[' and ']' are represented by '(.' and '.)'.

The horizontal arrow character (underline on newer printers) can
be used in identifiers.

Tha first ten characters of an identifier are significant.

I haven't had a chance to play with it much, but the programmers at Varian
claim it is extremely bug-free for a brand-new compiler. Anyway, anyone
can get it from Varian as VOICE #183C8.

As for Pascal itself, I would like to add my voice to the growing crowd of
real-world (i.e., non-academic) programmers who would like, or rather,
Michael Hagerty's comments in #6

on this subject are excellent.

Aside from I/0 and dynamic array parameters (about which enough has been said),

I really don't like the 'begin-end' blocking of Pascal. It just doesn't
read very well and adds needless confusion to the source code. I would far
prefer to use an implicit structure more 1ike Algol 68 or IFTRAN. As a
matter of fact, Nancy Brooks of General Research Corporation is implementing
a Pascal pre-processor much 1ike IFTRAN (which is a joint GRC-TSC Fortran
Pre-Processor) which has the following syntax:

EXPRESSION ENDWHILE

~(enp1p)—

STATE!ERT

Similarly for 'FOR', 'CASE', and 'WITH'. (The 'REPEAT' form

is already consistent with this.)
The idea is to get rid of all those 'END's. Our experience with IFTRAN
leads us to believe that providing unique ending delimiters for compound
statements within each type of control structure catches many of the
common structural errors in complex programs. The 'IF' - 'ORIF' -
'ELSE' - 'ENDIF' structure is particularly good for this purpose. Besides
all that, the resulting pretty-printed listings are a delight to read.

Anyway, Pascal is the best overall language yet, and if the I/0 problems
are fixed, it could be near perfect for our use.

Keep up the good work.

Michael Teener
Manager
Computing Center

MT:cs

P.S. Oh yes, Varian Pascal does not have label types or 'GO TO's. How's

that for a restriction?

(* Editor's note: we made a mistake! We mistook the commentary on Pascal
in this letter to be an explanation of extensions to the Varian
implementation., Half of this letter, therefore should have appeared in
the Open Forum section. *)

Z1Lo6 Z-80

Ken Bowles has announced an implementation for the 2Z-80 to be distributed sometime
this summer. For more details see the Digital Equipment PDP-11 section of this Newsletter.

According to Jim C. Warren, editor of Dr. Dobbs Journal of Computer Calisthenics &
Orthodontia (Oct., 1976 1issue, p 6), Niel Colvin of Technical Design Labs, Trenton, New
Jersey, has adapted a P-code compiler for the 2Z-80. The P-code interpreter reportedly
occupies about 1K bytes. Another Zilog rumor is that Dean Brown is the person at Zilog to
see about Pascal. .

8# YILLITSMIN TYISYd

‘AYH

LL6T

£9 39vd

INpEx TO IMPLEMENTATION NoTices (rssues #5 - #3)

Portable Implementations.

Pascal P.
#5: 4450,
#6: 65-67.
#7: 27.
#8: 40-41.
Pascal Trunk.
#5: 51.
#8: 42,
Pascal J.
#5: 51,
#7: 27-28.
L #8: 42,
Pascal S.
#5: 51,

Pascal Variants.

crmercecccm————

Concurrent Pascal.
#5% 53-54.
#6: 67-69.
Modula.
#3: 42,

Software Writing Tools.

#6: 70,
#7:°29.
#8: 40.

Machine Dependent Implementations.

Note: (*) indicates that one
or more implementations exist,’
are underway, or are being
considered. :

Amdahl 470,

see IBM 360, 370.
Burroughs B1700.

#6: 71,
Burroughs B3700,B4700,

#8: 4u-45,
Burroughs B5700.

(*)

Burroughs B6700.
#5: 51,
#6: T2-T4.
#7: 29,
#8: 4547,

CII 10070.
see also Xerox Sigma 7.
#6: TH.
#7: 29-30.

CII Iris 50.
#6: TH.

CII Iris 80.
#6: TH.
#7: 29-31.

Computer Automation LSI-2.
#3: 48,

Control Data Cyber 13, 2550.
#5: 51. :
#8: u8.

Control Data 3300,
(*)

Control Data 3600,
*)

Control Data 6000,7000;Cyber70,170.

#5: 51-53.
#6: Th-T5.
#3: 48,
Cray Research CRAY-1.
#6: 75-76.
Data General Nova series,
#8: 49,
Digital Equipment PDP-8.
#7: 32. .
Digital Equipment PDP-10.
#51: 54=55,
#6: 76-78,
#38: 49,
bigital Equipment PDP-11,
#5: 53-54,
#6: 78-79.
#7: 32-37.
#8: 49-52.

~ Foxboro FOX1.

#7: 37-38.
Fujitsu FACOM 230-38.
(%))
Fujitsu FACOM 230-55.
*)

Hewlett Packard HP-2100.
. #6: 80.
#8: 52,

Hewlett Packard HP-3000.
#6: 80,

Hitachi HITAC 8700, 8800.

see IBM 360, 370.

- Honeywell series 6.
(*) i

Honeywell H316.
#5: 55.
#6: 80,

- Interdata 4,

Honeywell 6000, Level 66 series,
#5: 55.
#6: 80.
#8: 52,
IBM 360, 370.
#5: 55-63.
#6: 81-86.
#7: 38-39.
#3: 52-53.
IBM 1130.
#6: 86.
#7: 39.
#38: 54,
ICL 1900.
#8: 5L,

_ICL 2970.

#8: 54,
Intel 8080.

#8: 54-56,

#8: 56,
Interdata 7/16.

#6: 87.
Interdata 8/32.

#7: 4O.
Mitsubishi MELCOM 7700.

»

Motorola 6800.
#6: 87-88,
#8: 56.
Nanodata QM-1.
#8: 56.
Norsk Data NORD-10.
#8: 57-58. "

© Philips P-1400.
- (*)

Prime P-400.
#6: 838,
RCA- Spectra 70.
see Siemens 4004, T000.
. see Univac 90/70.
SEL 8600,
‘ o)
SEMS T1600, Solar.:
#8: 59,
Siemens 150.
(*)
Siemens 4004/157.
#6: 88,
#8: 60-61.
Siemens 7000. ;
#8: 6061, ;
Telefunken TR-440. -
*

Texas Instruments'TI-Asc;
#8: 61,
Texas Instruments TI-980A.
)

Texas Instruments TI-990, 9910.
#8: 61-62.
Univac 90/70.
see Siemens 4004, 7000.
#8: 62,
Univac 1100 series.
#5: 64,
_ #6: 89-90.
#7: HO-42.
#8: 62.
Varian V70 series.
#6: 90,
#8: 62-63.
Xerox Sigma 6, 9.
#6: 90.
#7: 42-44,
Xerox Sigma 7.
see also CII 10070.
#6: 90, :
#7: 31, 44,
Zilog Z-80.
#8: 63.

8# 43ILLITSHIN TYISVd

LLBT “AYHK

h9 39vd

