

IMPLEMENTATION

This is a true compiler that produces 8080 code. The Pascal
6000 bootstrap compiler is around 2500 lines long and loads in
about 14K. The TP compiler is around 1500 lines long and loads
in about 14K (Not yet finished.). The compiler route was taken
because an interpreter system is too slow for most real-time lab
situations even though they are smaller. This is also an excellent,
language for hardware design by manufacturers, allowing bit
fiddling but yet still a high level language in a reasonable
amount of memory. (* The cross-compiler runs at 2400 lines/minute

on a CDC 6400. *)
RELIAB ILITY

, The reliability of the compiler is excellent, an efficient
register mapping algorithm is incorporated into the compiler.

METHOD OF DEVELDPEMENT

The original compiler was developed from PLO (Taken from the
book Algorithms + Data Structures = Programs by Niklaus Wirth.).
A considerable amount of modifications was done to implement
variable types, Pascal statements, code generation, and register
mapping,

The TP compiler (bootstrap) currently produces good runnable code but
documentation and a few loose ends remain to be taken care of. I am
currently considering the writting of Modula for 8080 based
microcomputers, since TP could be used as a starting point.

Sincerely,

�p�~�~�
PeterZechmeister

INTERDATA 4

Jean Vaucher of the University of Montreal has informed us in a letter dated Dec. 13.
1976, that the Interdata 4 project there has been discontinued because of the availability
of rascal on other machines.

MOTOROLA 6800

Hark Rustad ilas provided us with some changes (received April 4. 197'll to his notice
which appeared in Pascal Newsletter #6. Under Checklist point 7, he indicates that the
following features have been added or restored: case statement, variant. records,
enumeration types. for statement. the type real (as a four byte quantity), and an exit
statement (which returns �f�r�o�~� a procedure or function). Mark lists the deviations from
standard Pascal as being:

1. No declared files; get, put, reset. and rewrite are not supported.
2. The with and !loto statements are not supported.
3. The standard procedures sin, cos, arctan, exp, ln, sqrt, pack, and unpack are

not supported.
q. The case statement has an optional else clause.
5. The predefined procedure exit is non-standard.

llark also says that the compiler code occupies about 19K-20K bytes, while his t1-CODE
interpreter takes about 3K (including a floating point package). He is currently working
on optimization features for the compiler.

NANODATA QM-l

""",",t)i.i:,Y
JI-...."
17 March 1977

Ref: 6201. DMH-016

Implementor: Dennis Heimbigner
TRW DSSG
Mail Station: R3/1072
1 Space Park
Redondo Beach, CA 90278
(213) 536-2914 or (213) 535-0833

Machine: Nanodata QM-l with (minimum)
256 words nanostore

BK words control store
60K words main store

9755 55 megabyte disk
TASK version 1. 04. 02 or later
PROD version 2.04.01 or later

Optional:

Card reader
Printer (highly desirable)

Documentation: a. Brinch Hansen's SOLO manuals (not available thru TRW)
b. Short machine readable document describing the

implementation and ways to modify it.

Reliability: In-house use has been light but the system has been good.
to the extent we have used it.

Method of Development: The Concurrent Pascal system kernel was
programmed in micro-code. Some care was taken to insure
that the QM-l's virtual machine was compatible with the
virtual machine defined by the PDP-ll/45 kernel. Please
note that I did B£! implement a PDP-ll/45 emulator. As
a result, virtual code object files (e.g., type SEQCODE
or CONCODE) which run correctly under the PDP-ll/45 system
should run under the QH-l·system. The reverse is also true
for programs which do not use the fact that integers on the
QM-l are 18 bits as opposed to 16 on the PDP-II.

The kernel was micro-coded in about 6 months, from January
1976 to June 1976; on a part-time basis. Some one half
of that time was spent on the IO drivers.

Speed: Appears to run at about one-third the speed of the PDP-ll/45
system. I believe that a modest programming effort could
achieve parity in speed.

Distribution: Release by TRW is currently under consideration.
Inquiries are welcome.

Sincerely,

J)' f.'-

�·�·�·�~�~�~�X�c�y�
Dennis H. Heimbigner �~�
DEFENSE AND SPACE SVSTEMS GROUP OF TRW INC .• ONE SPACE PARI\. REDONDO BEACH. CALIFORNIA 90278. (213) 535.4321

U)

,.
rn
-t
-t
rn
;;;0

"'0

::J:>
G'l

rn
Vl

O'l

NORSK DATA NORD-IO

A first version of PASCAL is now running on the NORD-IO under
the MOSS operating system. This note gives a short
introduction to the PASCAL system and how to use it.

NORD-lO PASCAL

The compiler has been developed from the P-PASCAL compiler by
the following group:

Andora Fjeldsgaard
Petter Gjerull
Stein Gjessing
Jan Husemoen
Ketil Moen
Terje Noodt

The implementation is described in "Rapport om implementerinq
av PASCAL p~ NORD-IO", University of Oslo.) April 1976.

The compiler utilizes the 2-bank feature of the NORD-la, so it
is possible to run 64K programs with 64K of data. The present
version compiles to symbolic assembly code, so that a compiled
program must be assembled by AMORAL before it can be ex.cuted.

Non-implemented features

Compared to the full PASCAL language, the following are the
main restrictions in NORD-IO PASCAL:

1. p~cke~ is not implemented (the compiler does however
accept the symbol PACKED).

2. The type file is not implemented.

3. Formal procedures are not implemented.

4. Range and index checking are not implemented.

':5'~. Ar i thmet ic over flow is not checked.

How to use the system

The compiler is activated by the command

)*PASCAL

After the compiler has been loaded it will ask the user to
specify which logica~ units are to be used for input, listing
and compiled code. T~is conversation takes the following form:

INPUT =
<specify octal unit number of source code file>

OUPUT =
<specify octal unit number of listing file>

PRR =

<specify octal unit number of the file where compiled
code will be written>

The files should be opened before activating the compiler, but
it is also possible to exit from the compiler by CTRL A, open
the file, and then continue with the)GO command.

When compilation is finished (signalled b~ right parenthesis),
the file containing the compiled code can for instance be
saved for la~er use. To execute the program, go throuqh the
following steps:

1 Open the compiled code file with logical unit 3 (if not
already open on this lun).

2) *LINKP
3) GO

NB:!.! E-~f.AL E.r:.'?'Ham ~i!..;' ~!:or~ ~~ '?f its data
at hi9.~ !:~~~~~!- Thus a !ex!: !~~!: f'?£
editi~9. ~ill ~ot E~ preserved !~!ough ~ PA~~~
.':ompilation '?E ~~~cutio!! of ~ PASCAL E~~

The compiler
comment and

C

T
L

recognizes the following options (placed within a
preceded by $):

Produce code - default is off
Produce tables of variables - default is off
Produce listing - default is on

I~ a PASCAL program the programmer can use the following file
names:

INPUT
OUTPUT
PRR
PRO

(default input file)
(default output file)

The files that are u~ed should appear in the program heading,
as f. ex.:

PROGRA;'l PROG (INPUT, PRR) ;

Before data access to a' file the program must call
RESET«file name»

~or an input file, and,
REWRITE«file name»

for an output file. These calls have the effect of wr{ting the
filename followed by an equal sign to the terminal, whereafter
the logical unit number (octal) of the file can be specified.

For the files INPUT and OUTPUT the calls to RESET and REWRITE
are done automatically if they appear in the program heading.

1. A ~! can have up to 64 elements.

2. A procedure cannot have more than 253 words of local
variables, including parameters, but excluding record and
array variables.

3. An integer variable occupies I 16-bit word, a floating
variable 3 16-bit words.

4. A string can have a maximum length of 16 characters.

Impr£ve~nts and chang~

It is expected that the PASCAL system will be impro~ed and
changed freouently in the near future. A description of any
cti-'anqe or improvement will be written on the file *PASCINF,
which may be inspected or listed by the PASCAL user.

Questions, comments and error reports are invited, and can be
given to any member of the PASCAL group.

Terje's address is Com?uting Center, University of Oslo, Blindern, Oslo 3, Norway.

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN LABORATOIRE I

Adresse postMe/Postal address:

1211 GENEVE 23
SUISSE I SWITZERLAND

Votre reference
Your reference

Dear Andy,

SIEGE: GENEVE/SUISSE

PASCAL NEWSLETTER

Andy Mickel
PASCAL Users Group
UCC: 227 Exp. Engr.
University of Minnesota
Minneapolis, MN 5545
U. S. A.

Geneva, 19th January 1977

I am pleased to announce the successful implementation of a

Standard PASCAL compiler on the Norsk Data NORD-IO computer (running under

SINTRAN III o/s), by myself and my colleague Robert Cailliau. We developed

our compiler from the Zurich P4 code compiler, first assembling the source

P4 code into relocatable binary P4 code and then interpreting it as

efficiently as possible by an assembly code program. It is a great tribute

to Professor Wirth and his team at Zurich, who have produced a most excep

tionally concise description of the implementation procedure and a very

readable compiler written in PASCAL, that we were able to implement our

system in about man months. Apart from a small problem with the character

set (why do CDC have to be different to everybody else?), the implementation

went like a dream.

The very professional polish to the compiler and its documentation,

plus experience with its use, indicate that the compiler itself is extremely

reliable, and since our assembler/interpreter is very simple in terms of

coding and has successfully compiled the compiler, we have considerable faith

in our system. Naturally, it is not ultra-fast, but nevertheless takes only

15 minutes to compile the compiler, which for a l6-bit minicomputer with

2 ~sec cycle time is not too bad.

Naturally, anyone is welcome to receive a copy of our system, although

the NORD-IO is currently used exclusively in Europe.

A quick word on the PASCAL language itself - I feel that when

Professor Wirth stopped just short of creating the long sought after "obvious"

replacement to FORTRAN as the standard language, he missed a great opportunity.

Naturally unable to be the perfect all-time language, it does have some slight

drawbacks (frequently discussed in this newsletter, and in particular no interface

to external routines), most of which it would seem could be ,elatively easily

overcome, but which, however, do make it more difficult than it should be to

persuade users to take it up.

Anyone interested in our PASCAL system can contact

David Bates
PS/CCI Group
CERN, 1211 Geneva 23
Switzerland (tel. 41-98-11)

Sincerely,

S [1"1 S T 1 GOO / SOL A R

ENSMIM

PUG

£COLE NATIONALE SUPDRIEURE DE LA MlOTALLURGIE

ET DE L'INDUSTRIE DES MINES DE NANCY

'FeoL!: nES MINES, Pare de Saurupt 51012 NANCY CEnEX TeLePHONE (281 5L42,}2

TELEX, ENSMIM 850661

NANCY,I.February 2,1977

SEMS T1600 / SOLAR

1: Implementor

PASCAL IMPLEMENTATION

Alain Tisserant
Departement Informatique de 1 'INPL
Ecole des Mines
Parc de Saurupt
54042 Nancy Cedex FRANCE

Tel.: (28) 51 42 32

2: Machines: SEMS T1600 and SOLAR 16/05/40/65

3: OS: BOS-D
c/o Timothy Bonham Hardware required
University Computer Center

MTS16

227 Experimental Engineering Building
Minneapolis, Minnesota 55455
USA

Dear Tim:

As announced to George Richmond we are (still) working
on implementing a Pascal compiler for the SEMS minicomputer
series. To answer your 10 questions see attached implementation
notice.

Our hope is to provide an entire implementation with
efficient debugging tools for the programmer on a small computer.
As all the available documentation on this project is writen in
french, we think it better to send it directly only to people
who ask for it, and I enclose one copy of it for your own use.

Yours sincerely,

~--

A. Tisserant

4,5,6

FHE or MHU disk
16 K words of core memory (minimum)

Compiler not yet available, Will be distributed
by TRIA.

7: Fully implements standard Pascal; also compatible with
the IRIS 80 Pascal compiler.
Its extensions are character strings

LOOP .. , EXIT ... END statement
I/O for sets and scalars symbol ics

It allows also separate compilations, insertion of ASM or
Fortran routines, and sets of any interval of integers.

8: Pascal is compiled in two passes, w;th intermediate language
use. Of course, compilers are written in Pascal; the
intermediate language is an adaptation of P-code for
minicomputers. This implementation provides a fully
transparent virtual memory.

9: Reliability: expected to be excellent!

10: P-code has been adapted for non-stack, 16 bits words,
based addressing and accumulator machines. An automatic
segmentation mechanism will allow compilation and execution
of large programs (such as the compiler) with small
memory requirements.

First pass of the compiler is parametrizable. but
second pass must be hand rewritten for each implementation.

-0
)0>

G>

rn
V1
LO

SIEMENS 4004, 7000 SERIES

SIEMENS PASCAL BS2000 PROGRAMMING SYSTEM.

A PASCAL Compiler for SIEHENS 4004/151 and all SIEMENS

series 7000 installations running under operating system

BS2000 has been deveJopped by Dr. Manfred Sommer
(Dept. D AP GE - SIEMENS AG - MUNICH - GERMANY)
on the basis of the ETH p4 Compiler.

The Compiler may be used in an interactive Edit, Compile
and Go environment, as the Compiler produc'es code that
may run without relocation anywhere in virtual memory.
The interactive environment is provided by a PASCAL program
'dialogue' which invokes the Compiler and/or generated pro
grams by an additional standard procedure :execp (i.e. invoke

PASCAL program). This procedure may be used by all PASCAL
programs and supplies the possibility of a nested execution

hierarchy of PASCAL main programs.
The code produced by the Compiler (the instruction set used
is almost compatible with IBM 360/370 series instruction set)
may be put from virtual memory into a savefile. This savefile
may be reformatted by a PASCAL proe;ram so as to be submitted
to the system linkage utility routines.
The Compiler does some localized optimizations with the

aim of producing a compiler suitable for the compilation
of application programs. The result is that the code produced
seems to be much faster than the code produced by the standard

Fortran compiler.
The compilation speed is rather fast averaging 40 lines per

second on a 4004/151 and more than 100 lines per second on

a 7000/7.755.
The Compiler supports the language standard PASCAL.
File handling is fully implemented by the sequential file

access method. Work will be done to support also the
(direct access) indexed sequential file access method.

The predicate packed of arrays ,. records is ignored

as it would not change much on a byte machine.
The procedure dispose is replaced - as in all P-Compilers -

by the procedures mark and release.
Global labels may only be used to get back to the

main program.
There are no limitations imposed by the compiler.
Additional standard procedures are provided to make
operating system services available with the aim to make
the compiler suitable for the compilation of system proF,rams.

There is the possibility to interact with the operating
system by calls of additional standard procedures.

The system seems to be as efficient and reliable as
PASCAL systems are usually.

There is a users manual - written in german lang,uage.
For the conditions of availability contact the author.

The Compiler has been developed on the basis of the ETH P4
Compiler. This Compiler has been extended to process full
standard PASCAL with some typical modifications (i.e.

mark/release, case '" else, variable string assignments

and comparisons). The character code is EBCDIC, the setsize

is 256 allowing for set of char. The code generation is
done on the basis of the int~rmediate P-code at the end

of each procedure trying to do some local optimizations.
The code is generated into virtual memory Clnd may be

executed immediatly or pGt into a standard module library.

For further information contact

Dr. Manfred Sommer
SIEMENS AG

Department D AP GE

Postbox 70 00 78
D - 8000 M u n i c h
(West Germany)

The efficiency of SIEMENS. PASCAL BS2000

In N. Wirths: "Programming languages " (Berichte des
Instituts fUr Informatik der ETH Z0rich Nr. 17) there is

a list of programs for comparative studies . These programs
are measured on a CDC 6400 SCOPE 3.4 installation, assumed

to be roughly equivalent to a 370/155 by a remark in the
same paper. This set of programs was run for comparison

on a SIEMENS 7.755 under BS2000 operating system, assumed
to be roughly equivalent to a 370/155 in turn.

Results are:

CDC 6400 SIEMENS 7.755

1. Powers of two

2. Palindromes

3. Quicksort (different test data

intsize)

4. characount (micro seconds per char)

5. numericio a) input

b) output

6. Queens

7. Prim

8. ancestor a) build matrix

b) evaluate ancestors

. c) output matrix

9. ancestor-S a) build matrix

setsize = 100 b) evaluate ancestors

c) output matrix

SCOPE 3.4- BS2000 V

0.813 0.885

2.695 5.223

2.861 3.985

68 82
1. 238 2.5111

0.980 2.260

0.679 1.009

1. 061 1. 083

0.291 0.267

1. 667 1.569

0.578 0.614

0.084

0.322

0.627

Programs 1,4,6,7,8 indicate that the times used are

3.0

indeed roughly equivalent; 3,9 are not comparable; the

different values on program 5 are probably due to a different

file structure; and program 2 is assumed to be an example

for the term "roughly equiValent" - it is not known why

it behaves different from program 7.

It should be noted that BS2000 is a virtual memory operating

system and paging interrupts lead to differen~ execution

times of the same program in the order of io s.

On the other hand there are still some final optimisations

in the code generator not yet implemented'" it is hoped

that the times will be better by a an order up to 20 %
as soon as those optimisations are ready.

The compilation of the compiler yields a performance of

90 lines I second.

There have been some tests on the length of the sequence

of instructions for calling "Ackermann". The SIEMENS

compiler produces 15 instructions needing 52 bytes of code.

TEXAS INSTRUMENTS TI-ASC

uous!.as S. Johnson, Advanced Software Technolo;:;y Dept., H.'s. 295, Texas Ins:.ru.llents,
Oallas, Texas 75222, tells us that a superset of Pascal ~a]!ed ?DL is i.r.p!.e,nen:'Bd on the
TI-ASC. Tl1rou3h other sources we have learned toa: PDL ",·;as JevelopeJ usi.nt: a ?us~al
cross-compiler running on a Control Data 76;)8 which produced code for the A.3C. t'ClL I,.:as
developed for a ballistic 1115s11e Defense A~ency project, and is described in tile article:
"An extendable approach to computer-aided Doftware require~llents enJineerln~" by r.~. E~ll,
i).C. Bixler, and H.t:. Oyer, It::.::..: Transactions on 30ft\~are C:nGi:1eerin,:; 3 {Jan., 191'f) ,
pp 49-50.

TEXAS INSTRUMENTS TI-990, TI-9900

Douzlas Johnson (above) also reports that there is a Pascal cross-coi:J.piler which runs
on an I~r'l 370 and produces code for the TI-990 and the TI-9910. Several people ilave toU
us that TI has developeu a native-code compiler Wilicil runs on the 990/10 under the UX10
operating system.

A very different implementation for the TI-9900 (a 16-bit micro), '1ICrlOfASCAL, is
notable for being a stand-alone turnkey Pascal machine with bundled software and hardware.
In add.ition to the materials printed here, the im.plementors sent us a fairly gooa-sized
manual, mostly in Ger[!lan. Deviations from standard Pascal appear to be: files, "lith and
~oto statements, label declarations, and procedures/functions as parameters are not
supported. Sets of 64 characters are supported.

We present ourselves:

MICROPASCAL

1.) the implementors are:

H. Schauer, R. Nagler, A. Szer; Institut fUr Informationssysteme

1040 Wien, ArgentinierstraBe 8, Austria, Tel. 65 87 31/313

the distributors are:

ECO-Computer GesmbH&Co Kg (Fa. Langschwert)

1010 Wien, Tuchlauben 14, Austria, Tel. 63 35 80

2.) our implementation is called MICROPASCAL

3.) the minimal hardware configuration is the microprocessor

TI 9900/4 (Texas Instruments), a mark-sense card-reader and

a line-printer (with interfaces). You need no operating

system to run the compiler.

4.) only the whole system is selled(hardware and software) and

costs 200.000.- OS (Austrian Schilling). (about 1500 US ~).

5.) the system will be ready for sale in summer 77, we intend

to make more of it and we would like to accept bug reports.

6.) documentation is available in form of a supplement to the

PASCAL-Report

:z
rn

(/) ,
rn
--i
--i
rn
;;0

7.) it fully implements Standard PASCAL beside a few little things

caused by the hardware configuration (see documentation).

S.} it is a portable compiler-interpreter system which saves

memory and is very slow compared _I~ith other systems; it is

written in PASCAL and machine-code, 3000 source_lines, 12kROM

words, no external memory .

9.} the reliability of the system is excellent

IO.}it was written in PASCAL and bootstrapped to the microprocessor.

it takes three month to implement it on any microprocessor

with no special experience of the implernentors.

MICROPASCAL is a system that pel'Tl1its t:,e tl'ansiation and execution of PASCAL

p~ograms on a mic~op~ocesso~. It consists of a mic~oprocesso~, memo~d fo~ the operating

syste~ and the user progrwns and two interfaces for input and output. The main pu~~ose

of the system is to support progrcJrming education.

Basic concepts: the compiZer tran.sZc:.tes the source prcgra.'71 into an intermediate

language rep~esented as a t~ee, whe~e each node ~ep~esents one decla..~ation and each

leave cor:sists of the intermediate code of a PASCAL block in ~evel'::;ed polish notation.

This t~ee is the static information of the p~ogram. The compilation does not exceed the

lellel of syntactic decomposition defined by the synt= diag~cms in the P.4SCAL re?o~t,

At 'execution time the code is intel';:>~eted by aid of the nmtime stack which prov";des t!,e

dyna~ic information, The ~untime stack cor:sists of parcmete~s and local data of all the

c.ctive suDrout"':nes. The inter'preter. performs alZ context-sensitive checkin.g at the e::;2-

cut ion time. The intermediate language is comp~essed by using a nume~ic code of variable

Vmgth to ~ep~esent the identifie~s: those which are frequently used are rep~eser:ted

by short n"J1/bers. Sir:ce any infomation concerning the identifie~s is stored in the nodes

of the t~ee, the intermediate code is not redundant. The inte~?~eter is "micro;:>rogramned",

i, e. in the ir:ciirrmediate code all ope~ators a~e calls of sub~outines Of the interprete~.

Features of the system:

it su;:>ports portability: the machine-independent parts of the system, i.e. the cornpile~

and part of the interpreter are in the intermediate language (and interpreted th,mselves).

Only the nucleus of the inte~p~eter (organisation of the runtime stack and the execution

of ope~ations) is machine-dependent and the~efore han9coded.

- extremely low ~equirement of sto~age (l2K ROM): the same interp~eter is used to control

the compilation, the machine-independent ;:>art of the interp~etation and the exeoution

of the use~ program (the p~obZem of runtime efficier:cy was no constra£nt, to the problem).

- ve~ easy handling: the system is ready as soon power is on. No need for any hardware

o~ software st<p;:>ort to p~ovide or maintain a rr.achine-~eadable program. The in;:>ut device

is a mark-sense card ~eade~ and the output is a printed listing.

The machir:e-independa."lt parts of the system are written in PASCAL and bootst~appad by

an existing PASCAL compiZe~.

UNIVAC 90110

M. Sommer (see Siemens 4004 announcement, above) responded to Bill Hopkins')'equest
in Newsletter #7 for an implementation I'or the ~CA/univac Spectra 'fU: "Stemming from the
former cooperation between ileA and SIt:r1l::NS there is a close correspondence between SPECTRA
70 and SIEMENS 4004 computers. Our operating system is derived fro", V110S - now called
BS2000. Our PASCAL implementation is running on a 4004/151 (compatible with SPECTRA 70/61)
under BS2000 (compatible with VMOS)." (Letter to B. Hopkins, dated feb. 2, 1917.)

(* Thanks, Manfred! *)

UNIVAC 1100 SERIES

Bill Barabash or SUNY Stony Brook reports that they are in possession of all three
Pascal compilers for the U 1110. They use the DIKU compiler by Steensgaard-11adsen for
beginning students because it only requires 42K. They use the l11ke Ball San Diego compiler
(60K) in advanced courses because it allO\,s the creation of modules with independent
global areas. They also run a preliminary version of the Fischer-LeBlanc liisconsin
compiler which requires 80K and must itself be compiled by l1ike Sall' s compiler. It's
extensive checking appears to be quite sound according to Bill.

VARIAN V-70 SERIES

In a note dated Feb. 1, 1977, Gregory L. !lopwood, Varian Data Machines,
2722 t1ichelson Drive, Irvine, California 92664, (714/833-2400) states "Xes >Ie are
interested in Pascal. Varian has a Pascal compiler (Brinch Hansen) >lhich runs on our V70
line of minis.1t

In a letter dated feD. 4, 1977, Michael Teener, lJata Sciences Division, Technology
Service Corporation, 2811 Wilshire Boulevard, Santa t10nica, California 90403,
(213/829-7411) reports:

Technology Service Corporation
Data Sciences Division

2811 Wilshire Boulevard, Santa Monica, California 90403 Phone: (213) 829.7411

4 February 1977

Mr. Andy Mickel
University Computer Center
227 Experimental Engineering Building
University of Minnesota
Minneapolis, Minnesota 55455

Dear Andy:

For the past year or so I have been looking for a Pascal compiler for
our Varian V-76 minicomputer. I looked into using a Pascal-P imple
mentation, but that turned out to be too much work to do singlehanded.
I mentioned this little project to our local Varian rep, who then
shocked me by saying, "But we already have Pascal."

Simply put, anyone can get Pascal from the Varian Users Group (VOICE).
The required equipment is a Varian V-70 with 32K+ memory, memory map,
Vortex II O.S., extended instruction set and 512 words of writable
control store (~JCS). This last requirement is of considerable interest

z
rn

(/)

r
rn
----i
----i
rn
::0

since Varian uses the WCS td set up the V-70 as a Pascal machine ... its
machine language looks suspiciously like P-code. The compiler itself is
quite fast. According to my friends at Varian. it compiles over 1000
statements a minute. Some other characteristics are:

I/O is not standard, instead it is oriented around Vortex II
I/O macros. All files must be opened before using, with
reference to files via logical unit numbers. 'GET' and 'PUT'
do buffered I/O and 'READ' and 'WRITE' do character by character
I/O.

Programs can be overlaid.

The range on integers is -32768 .. 32767.

Integer case labels must be in the range 0 ... 127.

The range of rea 1 sis about _1038 .. 1038.

The relative precision of a real is about 10-16 .

A string must have an even number of characters. (All arrays
of type 'CHAR' are packed).

Enumeration types ('X=(A.B •...)') cannot be defined within
record types.

An enumeration type used as a tag field type can have at most
16 constant identifiers.

Integer variant labels must be in the range 0 .. 15.

A set of integers can only include members in the range 0 .. 127
(strangely enough, this is room for 2ll ASCII characters).

There is no 'text' type.

Corrments are enclosed in double quotes (").

Brackets '[' and 'J' are rEpresented by '(.' and '.)'.

The horizontal arrow character (underline on newer printers) can
be used in identifiers.

Th:= first ten characters of an identifier are significant.

I haven't had a chance to play with it much, but the programmers at Varian
claim it is extremely bug-free for a brand-new compiler. Anyway. anyone
can get it from Varian as VOICE #183C8.

As for Pascal itself. I would like to add my voice to the growing crowd of
real-world (i.e., non-academic) programmers who would like, or rather.
demand formatted and structured I/O. Michael Hagerty's comments in #6
on this subject are excellent. '

Aside from I/O and dynamic array parameters (about which enough has been said).
I really don't like the 'begin-end' blocking of Pascal. It just doesn't
read very well and adds needless confusion to the source code. I would far
prefer to use an implicit structure more like Algol 68 or IFTRAN. As a
matter of fact. Nancy Brooks of General Research Corporation is implementing
a Pascal pre-processor much like IFTRAN (which is a joint GRC-TSC Fortran
Pre-Processor) which has the following syntax:

Similarly for 'FOR'. 'CASE', and 'WITH'. (The 'REPEAT' form
is already consistent with this.)

The idea is to get rid of all those 'END's. Our experience with IFTRAN
leads us to believe that providing unique ending delimiters for compound
statements within each type of control structure catches many of the
common structural errors in complex programs. The 'IF' - 'ORIF' -
'ELSE' - 'ENDIF' structure is particularly good for this purpose. Besides
all that. the resulting pretty-printed listings are a delight to read.

Anyway, Pascal is the best overall language yet, and if the I/O problems
are fixed. it could be near perfect for our use.

Keep up the good work.

MT:cs

Michael Teener
Manager
Computing Center

P.S. Oh yes. Varian Pascal does not have label types or 'GO TO's. How's
that for a restriction?

(* Editor's note: we made a mistake! We mistook the commentary on Pascal
in this letter to be an explanation of extensions to the Varian
implementation. Half of this letter, therefore should have appeared in
the Open Forum section. *)

blDG Z-80

Ken Bowles has announced an implementation for the z-80 to be distributed sometime
this sunmer. For more details see the Digital Equipment PDP-11 section of this Newsletter.

According to Jim C. Warren, editor of Dr. Dobbs Journal of Computer Calisthenics &
Orthodontia (Oct., 1976 issue, p 6), Niel Colvin of Technical Design Labs, Trenton. New
Jersey, has adapted a P-code compiler for the Z-BO. The P-code interpreter reportedly
occupies about 1K bytes. Another Zilog rumor is that Dean Brown is the person at Zilog to
see about Pascal.

INDEX TO IMPLEMENTATION NOTICES (ISSUES #5 - #3)

Portable Implementations.

Pascal P.
#5: 44-50.
116: 65-67.
#7: 27.
#8: 40-41.

Pascal Trunk.
#5: 51.
118: 42.

l'ascal J.
#5: 51.
#7: 27-28.
#8: 42.

Pascal S.
U5: 51.

Pascal Variants.

Concurrent Pascal.
li5 ': 53-54.
#6: 67-69.

Modula.
118: 42.

Software Writing Tools.

#6: 70.
iI7: 29.
118: 40.

Machine Dependent Implementations.

Note: (I) indicates that one
or more implementations exist,
are underway, or are being
considered.

Amdahl 470.
see IBM 360, 370.

Burroughs B1700.
#6: 71.

Burroughs B3700,B4700.
118: 44-45.

Burroughs B5700.
(I)

Burroughs B6700.
H5: 51.
116: 72-74.
117: 29.
#8: 45-41.

CII 10070.
see also Xerox Sigma 7.
li6: 74.
U7: 29-30.

CII Iris 50.
116: 74.

CII Iris 80.
116: 74.
#7: 29-31.

Computer Automation LSI-2.
ns: 48.

Control Data Cyber 18, 2550.
115: 51.
118: 48.

Control Data 3300.
(I)

Control Data 3600.
(*J

Control Data 6000,7000;Cyber70,170.
115: 51-53.
n6: 74-75.
118: 48.

Cray Research CHAr-I.
116: 75-76.

Data General Nova series.
#8: 49.

Digital Equipment PDP-B.
#7: 32.

Digital Equipment PDP-l0.
115: 54-55.
116: 76-78.
113: 49.

Digital Equipment PDP-11.
115: 53-54.
116: 78-79.
117: 32-37.
118: 49-52.

Foxboro FOX 1 •
117: 37-38.

Fujitsu FACOM 230-38.
(* J

Fujitsu FACOM 230-55.
(oJ

Hewlett Packard HP-2100.
#6: 80.
liS: 52.

Hewlett Packard HP-3000.
116: 80.

Hitachi HITAC 8700, 8800.
see IBM 360, 370.

Honeywell series 6.
(I)

Honeywell H316.
li5: 55.
116: 80.

Honeywell 6000, Level 66 series.
~5: 55.
86: 80.
18: 52.

IBM 360, 370.
15: 55-63.
86: 81-86.
117: 38-39.
#il: 52-53.

IBM 1130.
#6: 86.
117: 39.
118: 54.

ICL 1900.
1i8: 54.

ICL 2910.
118: 54.

Intel 8080.
liS: 54-56.

Interdata 4.
118: 56.

Interdata 7/16.
116: 87.

Interdata 8/32.
#7: 40.

MitsubishiMELCOM 1700.
(I)

Motorola 6800.
#6: 87-88.
H8: 56.

Nanodata QM-l.
liB: 56.

Norsk Data NORD-l0,
118: 57-58.

Philips P-1400.
(*)

Prime P-400.
116: 88.

RCA Spectra 70.
see Siemens 4004, 7000.
see Univac 90/70.

SEL8600.
(I)

SEMS T1600, Solar.
1t8: 59.

Siemens 150.
(I)

Siemens 4004/157.
fi6: 88.
118: 60-61.

Siemens 7000.
#8: 60-61.

Telefunken TR-440 •.
(*)

Texas Instruments TI-ASC.
H8: 61.

Texas Instruments TI-980A.
(0)

Texas Instruments TI-990, 9910.
#8: 61-62.

Univac 90170.
see Siemens 4004, 7000.
U8: 62.

Univac 1100 series.
85: 64.
#6: 89-90.
#7: 40-42.
#8: 62.

Varian V70 series.
116: 90.
118: 62-63.

Xerox Sigma 6, 9.
#6: 90.
#7: 42-44.

Xerox Sigma 7.
see also CII 10070.
#6: 90.
il7: 31, 44.

Zilog Z-BO.
118: 63.

-0

»
C/)

n
»
r

