TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. General Features of the Magnetic Tape Units</td>
<td>1</td>
</tr>
<tr>
<td>II. Control of the Tape Units</td>
<td>3</td>
</tr>
<tr>
<td>A. Automatic Control by the Computer</td>
<td>3</td>
</tr>
<tr>
<td>1. Record</td>
<td>3</td>
</tr>
<tr>
<td>2. Record for delayed printing</td>
<td>4</td>
</tr>
<tr>
<td>3. Read</td>
<td>4</td>
</tr>
<tr>
<td>4. Re-record</td>
<td>7</td>
</tr>
<tr>
<td>5. Stop orders</td>
<td>7</td>
</tr>
<tr>
<td>a. General</td>
<td>7</td>
</tr>
<tr>
<td>b. Stop in cleared area</td>
<td>7</td>
</tr>
<tr>
<td>B. Manual Control of the Tape Units</td>
<td>8</td>
</tr>
<tr>
<td>III. Use of the Magnetic Tape Units by Programmers</td>
<td>13</td>
</tr>
<tr>
<td>A. Auxiliary Storage</td>
<td>13</td>
</tr>
<tr>
<td>Programming for Auxiliary Storage</td>
<td>16</td>
</tr>
<tr>
<td>B. Delayed Output</td>
<td>21</td>
</tr>
<tr>
<td>IV. Manual Control of the Delayed Output Equipment</td>
<td>25</td>
</tr>
<tr>
<td>V. Subroutines Available to the Programmer for Use</td>
<td></td>
</tr>
<tr>
<td>with the Magnetic Tape</td>
<td>27</td>
</tr>
<tr>
<td>A. Auxiliary Storage</td>
<td>27</td>
</tr>
<tr>
<td>B. Delayed Output</td>
<td>27</td>
</tr>
<tr>
<td>VI. Changes in Progress</td>
<td>23</td>
</tr>
<tr>
<td>Appendix</td>
<td>30</td>
</tr>
</tbody>
</table>
SUBJECT: USE OF THE MAGNETIC TAPE AND DELAYED OUTPUT EQUIPMENT

To: Scientific and Engineering Computation Group

From: H. Denman

Date: 3 July 1953, Revised February, [illegible] 1954

Abstract: The following memorandum concerns the present status of the magnetic tape units associated with the Whirlwind I computer, some changes which are to be made in their operation and use, and some further changes which have been suggested but not yet accepted. The discussion is mainly from the point of view of the programmer, but it also includes some details of the physical operation of the units and their control by the computer operators. The following does not represent either the final form of the equipment or final standards for its use, since changes in the equipment and its use will continue to be made. As changes are made the persons concerned will be notified as far in advance as possible, so that the necessary changeover can be made with the minimum of error or confusion.

NOTE: Much of the following data on the tape units has been obtained from the engineers in charge of these units (Edward Farnsworth and James Forgie), and from M-1623-1 (Programming for In-Out Units) and E-482 (Operation of Magnetic Tape Units). More detailed information on the operation of the tape units will be contained in a later memorandum by James Forgie.

I. General Features of the Magnetic Tape Units

Information can be stored on and read from magnetic tape in binary form, where the binary digits 0 and 1 are represented by two opposite directions of magnetization in a small region of the layer of magnetic material on the tape. Since WWI (Whirlwind I) programs, numerical data, Flexowriter characters, etc. may be expressed in binary form, they may be stored on the magnetic tape. This information may be used in several ways—it may be stored on the tape temporarily to be read back into primary (magnetic core) storage at a later time (auxiliary storage) or to activate directly an electric typewriter or punch (delayed output), or it may remain on the tape permanently to be used by many programmers. Other media can also store such information, but magnetic tape is used because it provides the computer with very large storage capacity per unit (an 800 foot reel of magnetic tape can store as many as 125,000 WWI words), this storage is non-volatile (the stored information can remain permanently on the tape with no effort necessary to maintain it), and the reading operation is
non-destructive. Also, previous information can be easily erased and the tape used again, information can be fairly quickly transferred to and from the tape by the computer (after it has located the desired position on the tape), and when used as buffer storage for delayed output the tape can permit a considerable saving in computer time over direct output methods. The ability of the tape unit to run in either direction while reading, recording, or searching reduces the access time for information on the tape (the time required to locate and transfer desired information from auxiliary storage to primary storage).

At present there are five Raytheon magnetic tape units associated with the WWI computer; these units are referred to by the numbers 0, 1, 2, 3A and 3B. Figure 4 shows the five tape units, some of their controls, and the delayed output equipment. Three of these units (0, 1 and 2) are normally connected to the computer. One of the units 3A or 3B is normally connected to the computer, the other to the delayed output equipment (these connections are reversed by throwing the transfer switch on the delayed output equipment enclosure).

Although the present design of the tape equipment permits a maximum of six binary digits on a line across the 1/2 inch wide tape, these digits have been grouped in pairs in order to increase the reliability of reading and recording on the tape. One of these pairs of bits (or channels) is reserved for index pulses (a pulse in a channel is defined to be 1's in both bit positions of the channel), so that there are only two channels per line available to the programmer. An index pulse is used to indicate to the tape unit that information is stored in the other two channels of the line. The index pulse plays a role analogous to the seventh hole on paper tape and is necessary in this system to distinguish between no information on a line (erased tape) and a pair of 0's in that line. A 16 bit WWI word will therefore be represented on the tape by a group of 8 lines, each with an index pulse in its index channel. In order to separate the lines of information, spaces of erased tape (with 0's in all the channels) of length equal to that of the information lines are left between the lines of information.

Block marks, which are used to indicate the beginning of blocks of WWI words on the tape, consist of pulses in both information channels, and 0's in the index channel. Words are recorded on the tape only when it is moving at its normal speed of 30 inches per second and a pulse is recorded on the tape in 160 microseconds, so that a line of information or a block mark will occupy 0.0048 inches linearly along the tape. Thus the 8 lines and 8 spaces which make up one WWI word occupy 0.077 inches, and 2.56 milliseconds are required to record this word or for it to pass under the read-record head of the unit while reading. (Recording Flexowriter characters for delayed printing using the new sl record orders produces automatically a lengthened
II. Control of the tape units
A. Automatic Control by the Computer

Only one piece of In-Out equipment can be controlled by the computer at a time; thus the computer can control at any instant only one of the four tape units connected to it (the selection of another tape unit or any other In-Out equipment will stop the tape unit which had been previously under the control of the computer). The computer can give the same set of instructions to any tape unit connected to it. These instructions include those of the form \(sl \text{ par}\) (where the address section \(\text{par}\) selects a particular tape unit and instructs it to operate in a certain mode and direction) and the group of in-out instructions \(rd, \text{ rc}, \text{ and } \text{bi}\) (which follow certain of the \(sl\) instructions and complete the transfer of information between the arithmetic element and the tape). The modes of operation of the tape units (selected by the \(sl\) instructions) are as follows:

1. Record forward and reverse*
The \(sl\) record orders initiate a 14.5 millisecond delay count in the In-Out Delay Counter so that no other in-out instruction can be performed until this delay ends. The tape unit selected is instructed to run the tape in the desired direction** and the erase current is turned on. Because of the inertia of the tape and certain parts of the tape units, an average of 5 to 6 milliseconds is required before a tape unit which has been instructed to change the motion of the tape actually affects the speed or direction of the tape (this is called the mechanical reaction time of the unit). Thus if a tape unit is at rest when an \(sl\) record instruction is given, the tape will be erased while still at rest and as it accelerates to normal speed. At the end of the 14.5 millisecond delay a block mark is recorded on the tape and the unit is then ready to record WWI words on the tape when so instructed by the computer. Until a record order or some other \(sl\) instruction is given, the unit will continue to erase tape in the specified direction.

* The "forward" and "reverse" directions for the tape units are absolute as far as the programmer and computer operator are concerned. The system is wired so that when the tape is moving in the "forward" direction, tape is being wound up on the front reel of the unit (see Figure 2).

** The last binary digit of the address of the \(sl\) instruction indicates the direction of motion requested. If it is a 0, i.e., if the address \(\text{par}\) is even, the forward direction has been selected; if the last digit is a 1, i.e., \(\text{par}\) is odd, the reverse direction has been selected.
If the tape unit selected is already in motion, the \textit{si} record instruction still immediately initiates the 14.5 millisecond delay count and starts erasing the tape as it passes under the read-record head. If the new \textit{si} instruction calls for the same direction as the tape is moving, the programmer gets a longer interval of erased tape before the block mark (see Appendix B). If it calls for the opposite direction, the unit starts the delay count and erase current, but continues to move in the original direction for 5 to 6 milliseconds (reaction time), then decelerates to a stop and accelerates to normal speed in the new direction, retraces the portion of tape just erased, and records the block mark at approximately 0.05 inches in the new direction from the point on the tape which was under the head when the \textit{si} instruction was given.

Each record order (\textit{ro}) following an \textit{si} order for recording sends the contents of the accumulator to the In-Out Register, from which the word is recorded (two digits at a time) on the tape, the left digit pair in the accumulator becoming the first line of the word on the tape, etc. A 2.56 millisecond total delay is counted in the In-Out Delay Counter during this operation. WWI instructions (other than in-out) may be performed during this recording. If another \textit{ro} order occurs within the 2.56 millisecond period, the next word will be recorded on the tape after the first delay is completed. This will give the closest spacing of words on the magnetic tape (a space of 0.0048 inches between the last line of one word and the first line of the next word). If the next \textit{ro} order does not follow within the 2.56 milliseconds, the unit will erase tape after the first word is completely recorded until another \textit{ro} order or some \textit{si} instruction taking the unit out of the record mode is given.

2. Record for delayed printing (forward and reverse)

These \textit{si} record orders cause the tape unit selected to behave in the same manner as the \textit{si} order described above. A 14.5 millisecond delay is counted in the In-Out Delay Counter, tape is erased, and a block mark is recorded at the end of the delay interval. The only difference occurs on following \textit{ro} orders. In this case the initial space preceding the first line of each word is lengthened from 0.0048 to about 0.15 inches (corresponding to a 5.1 millisecond delay count); thereafter the recording of the word proceeds as usual. The total delay count for an \textit{ro} order following this \textit{si} order will be about 7.5 milliseconds, which gives enough space for the magnetic tape to stop while the delayed output equipment is printing or punching the last Flexowriter character and then to accelerate to normal speed before reading the next character.

3. Read forward and reverse

The \textit{si} read instructions initiate a delay count of 5.1 milliseconds in the In-Out Delay Counter to enable the reading circuits to become unsaturated if the unit had
been previously in a record mode. The unit selected is instructed to move in the desired direction. If this unit has been at rest, the tape does not start to move for the 5 to 6 millisecond reaction time of the units. After the 5.1 millisecond delay has been counted, the unit starts examining the information on the tape as it passes under the head. After finding a block mark on the tape the unit sends succeeding groups of 8 lines (as indicated by index pulses) to the In-Out Register where they are assembled into W111 words by successive left shifts.* Once an si read instruction has been given to a unit and the first block mark after the delay detected, the unit ignores other block marks it finds on the tape while operating in this read mode.

In order to get words from the In-Out Register to the accumulator and to clear this register for the next word, a read (rd) order is required for each word to be read from the tape, or a block input order (bi) for a group of words. If the first line of a word arrives at the In-Out Register and finds the previous word still there (the register has not been cleared by a rd or bi order), a program alarm is given and the computer stops.

The programmer must give at least one rd or bi instruction after an si read instruction. If this is not done, the operation of the in-out equipment on the next si instruction becomes uncertain.

If the tape unit selected by the si read order has already been selected by the previous si instruction so that it is already in motion, then the behavior of the unit depends on the combination of the two si instructions. The 5.1 millisecond delay is counted in any case. If the unit has been running in the direction now requested, the unit simply waits the 5** millisecond delay, starts looking for a block mark, and after finding one starts sending lines to the In-Out Register to be assembled into words. If the unit has been running in the opposite direction, the tape continues to move in the original direction during the reaction time, then decelerates continuously until it is up to normal speed in the other direction. At the end of the 5 millisecond delay count, however, it again starts searching for a block mark, and after finding one, starts reading.

Since the delay of 5 milliseconds before starting to look for a block mark is used after all si read instructions regardless of the speed and direction of the tape, the programmer must insure that the head of the tape unit selected is in an erased section of tape if the si read instruction is given while the tape is at rest or required to change direction of motion. In such cases, the tape unit starts to look for a block mark when at rest or moving very slowly, and this causes the

* If the unit is running in different directions during the recording and reading of a word on the tape, the word must be rearranged either before the ro order or after the rd order to obtain it in the desired form.

** Hereafter, in reference to the 5.1 millisecond delay, we will simply write 5.
reading operation to be marginal—a line of information on the tape might be misinterpreted as a block mark, causing the tape unit to read the succeeding lines into the In-Out Register. If the si read instruction is always given so that the head is in an erased section of tape until the tape reaches normal speed in the desired direction, then although the unit will be searching for a block mark while moving slowly, there will be no information on the tape which can be misread as a block mark. An si read followed by an rd, followed by a second si read, would insure that the tape unit is up to normal speed after the second si read.

The computer can perform internal (non in-out) instructions while the delay is being counted and the unit is searching for a block mark. Unless the programmer knows exactly how much blank tape exists between the point at which he gave the si read order and the first word after the block mark, he cannot program for more than 7.7 milliseconds of computation between the si and the next rd or bi instructions. If the words are recorded on the tape at maximum density, the programmer may perform 2.56 milliseconds of internal orders between successive rd orders; if the recording was made at lower density, more time will be available between successive rd orders. As long as the word in the In-Out Register is read before the first line of the next word arrives, no program alarm will occur.

If a block input (bi) instruction follows an si read instruction, and if the accumulator contains +n when this instruction is given, the tape unit will send the next n words on the tape to the In-Out Register and the computer will automatically transfer them into electrostatic storage, storing them in a block starting at the address of the bi instruction. No other WII orders of any kind can be performed until this operation is completed, and the length of time required depends on the spacing of the words on the tape. If these words are all in one block and recorded at maximum density then the transfer will require 2.56 n milliseconds from the time the first word starts into the In-Out Register. Later block marks passing under the head during this operation are ignored. If the contents of the accumulator are +0 when the bi order is given, one word will be read from the tape into the In-Out Register (as a result of the previous si read instruction), but the bi instruction will not transfer it into magnetic core storage. If the programmer wishes to transfer this word into the accumulator, then he should give an rd or a non-zero bi order.

This order must follow the zero bi order within 300 microseconds in order to prevent a program alarm. If the programmer is not interested in this word, then he may clear the IOR and thus prevent a program alarm by giving any other si instruction within the 300 microseconds. Each bi order should be preceded by an si read instruction; it may also be preceded by one or more rd orders. If a non-zero block input order is followed by a rd instruction, this rd order will bring a +0 into the accumulator, and further rd orders will behave in normal fashion. Care must be taken to follow
the last rd or bi order after an si read instruction with some instruction de-selecting the tape unit, in order to avoid a program alarm due to further information arriving in the In-Out Register when it contains a word.

4. Re-record forward and reverse

A tape unit given an si instruction to re-record in either direction switches to the read mode and moves in the desired direction. After it detects a block mark the unit switches to the record mode. Since the unit starts in the read mode, a 5 millisecond delay is initiated in the In-Out Delay Counter, and after this delay is counted the unit searches along the tape until it locates a block mark. When one is located, the unit switches to the record mode, and therefore starts erasing tape unless an si instruction occurs in time to prevent this. This order is used either to record over a block of information (in which case this order will be followed by rc orders) or to skip blocks in either the forward or reverse directions prior to reading or re-recording.

This instruction should not be given while the tape is at rest in a section containing information or where it will cause the tape to reverse direction of motion while in a region containing information. This is because the unit starts in the read mode when given this instruction, and therefore the same situation prevails as described in section II A 3.

5. Stop orders

a. General

Any si order de-selects all other pieces of In-Out equipment except the one to which it refers. When free-running units such as the magnetic tape units or the photoelectric tape reader are de-selected, they are instructed to stop (these units ignore any information they pass over while coasting to rest). Thus si orders, such as si 0 and si 1, which do not refer to any particular piece of in-out equipment, de-select any piece of in-out equipment in use, but also may stop the computer. If it is desired to de-select a piece of in-out equipment and to continue computer operation, then the programmer should use an si 408 (decimal) or 630 (octal). When de-selected, a tape unit continues during its reaction time to travel at normal speed in the direction in which it has been moving, and then decelerates to a stop in an additional 1.0 milliseconds (approximately).

b. Stop in cleared area

This si instruction stops the selected tape unit in a cleared (erased) section of tape. The direction specified in the address of this si instruction (see Appendix C) should correspond to the direction of motion of the tape when the order is given. Physically, the tape unit switches to the record mode if it is not already in this mode, and a 14.4 millisecond delay count is initiated. At the end of this delay
the unit switches to the record mode in the opposite direction, and another 14.3 millisecond delay is counted while the tape reverses direction. At the end of this delay, the unit is de-selected. (At this time the tape has been cleared about 0.61 inches beyond the point where this instruction was given, and the tape finally stops, if permitted, about 0.21 inches beyond the point where the instruction was given.) No block marks are recorded on the tape during this operation. The total delay count is therefore about 28.7 milliseconds (there is no delay count associated with the de-selection of the unit). The computer clock is stopped during this delay, so that no computer operations can be performed for this 28.7 millisecond period. At the end of this period, the unit is de-selected, and it then coasts to a stop moving in the direction opposite to the original. If an si instruction in this new direction occurs before the unit has come to rest, the unit may accelerate to normal speed without actually coming to rest; if the new si instruction is in the original direction, the tape unit must coast to a stop before accelerating to normal speed in the original direction.

This instruction should not be used at interior points in a recording even if given in an interblock space, because the tape is erased so far ahead of the point at which the order is given (see above) that it will erase part of the beginning of the next block (unless the interblock spacing is made longer in some way, as by counting a delay when the unit is erasing tape in the record mode).

B. Manual Control of the Tape Units

A certain amount of manual control of the tape units by the computer operators is occasionally either necessary or desirable. For this reason certain manual controls are provided for each of the tape units and the delayed output equipment. These manual controls are used to turn on power for the units, to position the tapes with respect to the read-record heads, to put the units under the control of the computer, to erase tape, to connect certain units to the delayed output equipment, etc.

All of the Raytheon tape units have the following controls on the front of the units (see Figure 3): two toggle switches marked STANDBY and POWER, a light labeled POWER ON, and a five-position rotary switch (marked A S F S R), as well as a set of four neon lights which indicate the action of the clutches and brakes of the unit. All units have, in addition, a separate control panel (labeled MAGNETIC TAPE AUX CONTROL PANEL) which is used instead of the controls on the unit itself. One of these panels is shown in Figure 1.
Figure 1: Magnetic Tape Auxiliary Control Panel

Manual control of units with the auxiliary control panel is accomplished as follows: on the tape unit, the STANDBY and POWER switches must be ON (up) and the five-position rotary switch in the A (Automatic) position. These switches are to be left permanently in these positions and all manual control of the units done by means of the auxiliary control panels.* On the auxiliary control panel, the STOP pushbutton must be on (pushed in) in order to start the unit. When the POWER ON button is pressed, the tape unit is turned on (if the STOP button is pushed in) and after a timed delay of about 45 seconds for the servomechanism to warm up, full power is applied to it. At this time the unit is ready to operate under manual or automatic control, and the READY light goes on. Then if the pushbutton AUTO (Automatic) is pressed in, the unit is connected to the computer and may be operated by the program. If the operator wishes to position the tape under the head by running the tape in either the forward or reverse direction he simply presses the FWD (Forward) or REV (Reverse) pushbutton respectively, and then presses the STOP button when the tape is in the desired position. When the operator wishes to rewind (i.e., move the tape in the reverse direction) the tape to one of the limit switches** on the tape, he pushes the RW (Rewind) button and the tape unit automatically rewinds the tape until the closest limit switch is reached, and stops the tape at that point.

* Since each tape unit normally is controlled manually by means of the auxiliary control panel, it should not be necessary for the operator to lift or remove from the unit the transparent plastic dust cover which protects each unit.

** A limit switch is a group (usually two) of metallic strips attached across the tape. When one of these strips touches a pair of wipers located several inches along the tape in advance of the read-record head, the unit stops. These limits act only when the unit is under manual control (in the Rewind mode), not when under the control of the computer. When Unit 3A or 3B is connected to delayed print equipment and Auto-pushbutton is in, a special Rewind pushbutton on delayed output equipment will also rewind the tape.
The last four mentioned pushbuttons (RW, FWD, REV, STOP) put the unit under manual control and therefore the MANUAL light is lit whenever any one of these buttons is in and the power is on.

If there are two sets of limit switches at the beginning of a tape with some permanently recorded data on the tape between them and if the operator wishes to position the tape at the first limit switch though the tape is past the second limit switch, he may press the Rewind button and wait for the tape to stop at the second limit switch, switch to Reverse until the limit switch completely passes the head, and then press the Rewind button again. The tape will now stop at the first limit switch, and after the Automatic button is pushed the unit will be ready to start under computer control at the beginning of the permanently recorded data.

If the operator wishes to turn off any unit he simply presses the corresponding POWER OFF pushbutton.

At the beginning of a computer period, each tape unit is normally positioned at the beginning of its tape. Unit 0*, however, has the Comprehensive System conversion program permanently recorded between limit switches on the first part of its tape, and Units 3A and 3B similarly have data permanently recorded for checking these units and the delayed output equipment. If this material is to be used, the computer operator can run these tapes back to the first limit switch by the method outlined above. The programmer can assume that these units will be positioned at or past the second limit switch, and since these limits are ignored by the unit when it is under computer control (in Automatic), he should never program to run the tape back past the point where he starts recording on the tape.

Units 1 and 2 do not have permanently recorded data on their tapes. Therefore, these tapes have only 1 limit switch each, located near the beginning of the tape. The heads of these units are normally positioned at these limit switches when a program referring to these units is started. Since none of the tape units are protected from the tape running off either reel when under computer control, the programmer using the magnetic tape units should not program run-back of any unit past the point where he starts his recording. Such a run-back may either destroy some part of one of the permanently recorded sections or run the beginning of the tape off the reel. If a program is being run which uses a tape unit with a permanent recording stored on it which is separated from the remainder of the tape by a limit switch, the computer operator must insure when the program is started that this tape is positioned so that the head is at the limit switch forward of this permanent recording. The only guarantee against destroying permanently recorded information on a tape unit would be to disconnect the recording circuits for that unit, which would prevent the units from being locked in "read" mode and can be recorded on only by special arrangement with the magnetic tape engineers.
programmer from using the remainder of the tape on this unit. The limit switches can offer protection to this permanent data only if both the operators and programmers obey these instructions.

Erasure of the tape units

Units 0, 1, and 2 can be erased only by programs in the computer. If it is desired to erase a portion of the tape on any of these units, the programmer can simply give an si record order for the proper direction and then count a delay in the program until the desired amount of tape has been erased (see Appendix B). A block mark will be recorded after the first 14.5 milliseconds, so that it may be necessary to add 14.5 milliseconds to the programmed delay to get a certain length cleared area after this block mark. As long as the programmer remains in this area, there will be no information except what he records there. Normally this is not a necessary procedure, since tape is erased as a recording is made, and even the tape passed over while stopping can be erased by using the si stop in cleared area orders. However, if a programmer wishes to be able to position the tape manually to the beginning of his recording on the tape (as he would do if he wanted to start the program over again because of an alarm during the performance of the program or to make use of an undisturbed recording for another run of his program, etc.), it is advisable to erase the tape around the limit switch and then start recording in this erased portion of tape. Then the slight differences in tape position which may occur in stopping the tape by the limit switch when rewinding will not allow any old information in the vicinity of the switch to be read into the computer when the program is started again with the tape at the limit switch (at the beginning of the recording).

If the computer operator wishes to erase a section of the tape on units which do not have external erase current, he should first position the tape so that either end of the section he wishes to erase is under the head. The following program is then put in Flip-Flop storage

<table>
<thead>
<tr>
<th>Register</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>si record for desired unit and direction (see Appendix C)</td>
</tr>
<tr>
<td>3.</td>
<td>sp 3</td>
</tr>
</tbody>
</table>

This program is started by putting 2 in the PC Reset switches, and pressing the START OVER pushbutton for the computer. The program will select the tape unit and start it in the indicated direction with the erase current on. It lays down a block mark after 14.5 milliseconds and then continues to erase tape until the computer is stopped by the operator, which will de-select the unit and allow it to coast to rest in the read mode. The tape can then be used or positioned manually before use. If the operator wishes to lay down a series of block marks with erased tape between, he can
Magnetic Tape Relay Switch Panel

- Reverse Print Mode
- Erase
- Print Out

Magnetic Tape Relay Transfer Panel

- Erase
- Reverse Print
- Print Out
- Forward Print

Magnetic Tape Auxiliary Control Panel
(see Figure 1.)

Unit #2

Figure 2: Magnetic Tape Unit #2 and Manual Controls and Indicator Lights--Center Rack.
use the above program and put sp 2 in Flip Flop 3.

Special provision has been made for manual erasure of units 3A and 3B by the computer operators without using computer time. To erase a particular section of one of these tapes, first put the bar transfer switch on the delayed output equipment enclosure in position so that the unit to be erased is connected to the print-out equipment (See Figure 4)*. The tape should then be positioned manually to either end of the section to be erased and the ERASE—PRINT OUT toggle switch on the MAGNETIC TAPE RELAY TRANSFER panel put in the ERASE position. (The ERASE CURRENT ON red light goes on.) Then start the unit in the correct direction by the manual controls and the tape will be erased as it passes under the head as long as this current is on. Note that only the tape unit connected to the delayed print equipment is erased and the erasure occurs while the unit is under manual control. The ERASE—PRINT OUT switch should be returned to the PRINT OUT position after erasing.

Units 3A and 3B are both equipped with limit switches on the tape, and a rewind pushbutton has been put on the control panel on the delayed output equipment box. To rewind one of these units to a limit switch, the Automatic pushbutton should be pressed in and the transfer switch moved to such a position that the unit to be rewound is connected to the delayed output equipment. The tape may be rewound by means of the pushbutton on the enclosure and may be erased simultaneously if the erase current is turned on while the unit is being rewound.

Some of the tape reels have been marked so that the operator can judge approximately how much tape still remains on either reel. The operator can then tell from the programmer's estimate of how much tape he will use on that unit whether the program can be run immediately or the tape will have to be run back, and in the latter case, he can tell more accurately when he has run it back sufficiently.

When the REMOTE CONTROL light on the RACK INTERLOCK PANEL is lit, the tape units are all under remote control from the computer room, and cannot be operated by the computer or the computer operators using the above-mentioned controls until this light is off. When the Lock In Read light is on, the record circuits for the units are inoperable, and the tape can only be read. (See Figure 2.)

III. Use of the Magnetic Tape Units by Programmers

A. Auxiliary Storage

The programs and numerical data required to solve certain problems on the Whirlwind computer occupy more registers than the 2016 available in primary (magnetic core) storage. In these cases the programmer must decide how to store the additional information (instructions or data) required. Among the auxiliary storage media available to the programmer are paper tape, magnetic tape, and the magnetic drum. *Green lights have been placed on Unit 3A and 3B. The one that is lit indicates that unit is connected to the delayed print equipment.
However, the fundamental method of getting information into magnetic core memory (MCM) is through the photoelectric tape reader. Thus if a programmer wishes to store auxiliary information on the magnetic drum or tape, he must first have it punched on paper tape and read through the photoelectric tape reader into MCM; he then transfers it to the tape or drum.* (If the extra information is generated in MCM by the program, then only the original data and program have to be read in by the photoelectric tape reader.) Thus, if we have certain information which will not fit in MCM but which is to be used only once and in a certain definite sequence by a program in the computer then the simplest and fastest method would be to have this data punched on paper tape in the proper sequence and read into the computer through the photoelectric tape reader as it is needed. If it is to be used more than once, but in the same sequence, then it might be punched on paper tape and this tape made into a loop (if it is not too long), so that it can be run through the photoelectric tape reader as many times as needed. However, the reading speed of the photoelectric tape reader is about 67 words per second, which is much slower than the magnetic tape and drum. (Also, the photoelectric tape reader cannot be reversed and information cannot be easily and quickly recorded on paper tape and read back without the intervention of the operator.) Thus if information which cannot be stored in MCM is going to be needed a number of times or requires random access to it by the computer, or if information is generated in MCM which must be stored for future reference, time considerations lead us to consider either the magnetic tape or drum for auxiliary storage.

The random access time for reading or recording a block of material from the magnetic drum to MCM or vice versa is the sum of 8.3 milliseconds for finding the starting point of this block on the drum (assuming that it is all stored in one drum group and that it is not necessary to change the drum group reference) plus 32 microseconds per word for completing transfer of the block of information between the drum and MCM. If it may be necessary to change the drum group reference, then the random time to find the start of the block on the drum is 37.6 milliseconds and again 32 microseconds per word are required to complete the transfer. However, although there are 24,576 registers of storage on the drum (12 groups of 2048 registers each), the recording circuits of Group 11 are disconnected so that it is not available to the programmer for recording. Group 0, in general, should not be used.

The arbitrary access time for a block of information on one of the magnetic tape units depends on how much of the reel of tape is used. If T is the time required for the tape to travel at normal speed from one end of a recording of information to the other, and if we disregard the interblock spacings and assume that no time is required to accelerate or decelerate the tape, then the random access time (starting at an arbitrary point in the recording and going to another arbitrary point in the recording) is $T/3$, plus a minimum of 2.56 milliseconds per word to complete the

*The drum read-in program can read 556 tapes directly into the drum without the intervention of the programmer (if properly tagged).
transfer of information between tape and MOM. Thus, for a 25,000 word maximum
density recording on one tape unit, T is about 64 seconds, and the average time to
obtain the beginning of the desired block about 21 seconds. Therefore, if the full
drum capacity of 25,000 words were available to the programmer, the average time
required to find the beginning of a block of words on the drum would be about
$\frac{1}{560}$ th that for the same amount of data on one magnetic tape unit, and the speed
of transfer of information from auxiliary storage to MOM is about 80 times faster
for the drum than for the tape.

When information is to be read linearly into MOM from magnetic tape (i.e.,
the information is read into MOM in the same fixed sequence a number of times), then
the access time when the head is between blocks is very short---on the order of 15
milliseconds to start the tape unit and run over the interblock cleared space to
the block mark and then 2.56 milliseconds reading time per word if recorded at
maximum density. (The drum access time in this linear case is the same as given
above.) However, at the end of the recording the tape unit normally must be reversed
and run back to the beginning of the recording to start over again, and since this
must usually be done under computer control (in some cases it might be possible to
ask the operator to do this while the program in the computer is doing something
else, but this is not advisable), this runback time is wasted computer time (this
is not necessary for the drum; at worst, for a recording on one group, it will take
16.7 milliseconds to pick up the start of the recording again, or 48.7 milliseconds
if it is necessary to change groups). For such linear cases, it does not matter
materially whether this information is put on only one tape unit (if not too long)
or spread over several, since essentially the same time will be required for reading
in the information and running back over it (in fact, the latter case will require
slightly more computer time because it will be necessary to calculate in the program
which unit should be referred to next). If, however, random access to the information
is required, then it is very advantageous to spread it over as many units as possible,
since it takes only a few WUI orders in the program in MOM to find out which unit
contains the next desired information (which requires time on the order of a milli-
second) so that the random time to get to the beginning of the block would be reduced
to about $T/3n$, where n is the number of units on which the recording is stored,
assuming that it is evenly distributed over the n units.

Since there are four tape units under the control of the computer, it is possible
for the programmer to use all four for auxiliary storage. However, units 3A and 3B
are reserved primarily for delayed output use, and it is expected that unit 2 will
also be used this way in the future. Therefore, it is preferred that programmers
do not use these units for auxiliary storage. If it seems desirable to the programmer
and his associated staff member to use units 2 and 3 for auxiliary storage, it is possible to do so, but this may cause some delay in having the program performed, since it may interfere with the use of these units for delayed output. Unit 0, contains the OS conversion program and other permanent programs. Because of this, Unit 0 cannot be used by programmers. (See * page 10.) Unit 1 can store up to about 125,000 words (and also unit 2). Units 3A and 3B, if used as auxiliary storage, can hold about 155,000 words maximum.

An additional degree of freedom which the magnetic tape provides the programmer is the ability to vary the spacing between words on the tape when recording, so that on reading there will be an interval between the necessary rd orders which will provide enough time for certain calculations. Even at minimum spacing, there is time for about 70 to 100 WVI operations between successive rd orders. In this way it is possible to save part or almost all of the running time of the tape while reading, though it may take some additional time for recording. To get the desired spacing while recording, the programmer normally will have to count the necessary delay, unless he wants the minimum spacing or the longer spacing of about 7.5 milliseconds for delayed print recordings (see Appendix C), both of which are given automatically. A typical delay counter which the programmer may insert between his rc orders is as follows:

\[a \]
\[c a y \]
\[a + 1 \]
\[a d \]
\[a + 2 \]
\[c p a+1 \]

If we have the number -n in y, this program will go through the \(ad \ 1, \ cp \ a+1 \) cycle \(n+1 \) times. Each cycle takes 32 microseconds (the \(ad \ 1 \) order requires only 16 microseconds because its address is in test storage). Since this counting is done in parallel with the In-Out Delay Count, the complete desired delay between rc orders must be programmed. For example, if a space corresponding to about 3 milliseconds is desired between words (from the end of one to the start of the next) on the tape, then the count above would have to take 5.56 milliseconds, and therefore, \(n \) would be 174 decimal. If other internal instructions have to be performed before recording each word, then this counted delay can be reduced.

Programming for Auxiliary Storage

The usual method of recording information on the magnetic tape is as blocks of WVI words. In this way the wasted (from the programmer's point of view) tape and time taken by the si record and stop orders can be averaged over a number of words. To record a block of words on the tape, the following orders may be used:

1. si pqr--starts the selected tape unit in the indicated direction, given by
the address pqr. A 14.5 millisecond delay count is initiated and the erase current is turned on. At the end of the delay a block mark is recorded, and the unit is ready to record WWI words on the tape. WWI instructions, other than in-out, may be performed during the delay interval.

2. rc—records on the tape the contents of the accumulator, during a 2.56 millisecond delay count (or a 7.5 millisecond total delay count if the si orders for delayed print are used). This order can not proceed until the delay count for the previous si record order or rc has been completed. As many rc orders as desired may be given before the next si instruction. Any number of WWI internal orders may occur between the rc orders, but to get the maximum density of stored information on the tape the rc orders must follow within 2.56 milliseconds of each other.

3. si—stops the selected tape unit in the direction specified by the si record order above. This is used after the block of words has been recorded, and will stop the tape unit without leaving any old data on the tape between the last word of the block and the point where the tape stops. If the tape has been previously cleared so that erased tape exists in this region, then the programmer can use the general in-out equipment stop order si 408 (decimal) (which is si 630 octal). The proper addresses for the si instructions are listed in Appendix C.

If other blocks of data are to be recorded it may not be necessary to stop the tape unit. In order to get an interblock cleared space and a block mark before the next block of data is recorded, the programmer can give another si record order in the same direction. However, if some other in-out unit is referred to between the end of recording one block and the beginning of the next, it is necessary to stop the tape unit in cleared tape first, since reference to the other in-out equipment will de-select the tape unit and if it were not stopped in a cleared area would permit old data to remain on the tape.

The system does not permit recording on the magnetic tape by means of the block output (bo) order.

If the programmer wishes to skip in either direction over blocks of recorded information on the tape, prior to reading or re-recording certain blocks, he may use the si re-record orders. These orders should be given only when the tape unit selected is in an erased area of tape, since the unit starts in the read mode on this order (see Section II A 4.). After the 5 millisecond delay the unit starts searching for a block mark in the indicated direction, and should pick up the first block mark in this direction. (The programmer should remember that block marks are normally recorded only at the beginnings of blocks of words by the si record orders.) After
this first block mark is detected, the unit would normally switch into the record mode, but if another \textit{si} re-record instruction occurs by this time, the unit will switch into the read mode again and go on to the next block mark after the delay, disregarding the block of information passed over between the two block marks. Thus, to skip on the tape in the same direction as the recording was made, where only one block mark has been recorded per block of information, one simply gives \(m+1 \) \textit{si} re-record orders separated by not more than 5.1 milliseconds (in a cyclical program if desired); after the last such order the unit will have just read the block mark at the beginning of the \((m+1)\)st block and will switch to the record mode, ready to re-record this block of information if given the necessary \textit{ro} orders. If the programmer starts in the clear space at the end of a block and skips blocks in the direction opposite to that in which the recording was made, then each \textit{si} re-record order actually causes us to skip a block. Therefore, \(m \) such orders cause the unit to skip back \(m \) blocks. After the completion of the \(m \)th \textit{si} re-record order the unit has just read the block mark of the \(m \)th block back, going in the opposite direction to the recording; it now turns on the erase current while moving over the already erased interblock space in front of this block. If the programmer wishes to re-record the block of information just passed over, he should give an \textit{si} re-record order \textbf{in the original direction}. The tape unit will then turn around in the interblock space (it will start looking for a block mark while at rest or moving slowly, but this will not cause trouble, since the unit is in an erased section of tape), pick up the block mark just passed, and then switch into the record mode, ready to re-record the block. In this case a total of \(m+1 \) \textit{si} re-record orders have been given in order to re-record the \(m \)th block back on the tape.

A difficulty with re-recording blocks of information is in terminating the re-recording. If one re-records a different number of words in a block, then the interblock spacing will be shortened if the new block is longer, or information must be erased if the new block is shorter. Also, if, after a re-recording, the programmer uses the \textit{si} stop in erased section order in the interior of a sequence of blocks already recorded, he will erase part of the beginning of the next block under normal spacings (see Section II A 5.). An alternative is to de-select the unit, so that it will simply coast to a stop in the interblock space, ignoring any information it passes over. If the re-recording does not fall exactly on the old information, there may be some old information left at the end of the block. For this reason it is advisable to leave the unit in the record mode for a period after the last word of the block has been re-recorded, a period sufficient to erase any old information which might remain. If the re-recorded block is the same length as the block it replaces, then the programmer can count a delay after the last \textit{ro} order sufficient
to erase 1 to 2 milliseconds of tape past the last word (the total time for the counted delay must include the time required for the last \(\text{rd} \), so that a counter of the form given in Section III A would require an \(n \) of about 125 decimal). Then the programmer can safely de-select the unit, and it will coast to a stop in the cleared area without leaving data on the tape.

If the programmer wished to stop the unit in the cleared space in front of a block after skipping blocks in the direction opposite to the recording and uses the \(\text{si} \) stop in cleared area order, a long space will be erased in front of this block. If this is not the first block of the recording, the unit will erase a portion of the end of the preceding block. De-selection of the unit would be satisfactory if it occurs soon enough so that the head stops at least 0.015 inches from other information on the tape.

If the programmer wishes to skip in either direction prior to reading a particular block, the \(\text{si} \) re-record orders may still be used. For skipping in the direction opposite to that in which the recording was made, the procedure above can still be used, if an \(\text{si} \) read in the original direction is used instead of the last re-record order; the unit will turn around in the space in front of the \(m \)th block mark, and start to read this block. If skipping in the same direction as the recording, the programmer should program \(m \) \(\text{si} \) re-record orders to skip the first \(m-1 \) blocks, then give an \(\text{si} \) read order in this same direction to pick up the first word in the \((m+1)\)st block. This last must be done because the \(\text{si} \) re-record orders switch the unit into the record mode after detection of a block mark and therefore do not permit reading this block.

The \(\text{si} \) read orders can also be used to skip blocks, since they too cause a delay of 5 milliseconds and must find a block mark before any other in-out instructions can be performed. To skip \(m \) blocks in the direction of the recording and to read the \(m+1 \)st block, from a start in an erased interblock space, one need only give a succession of \(m+1 \) \(\text{si} \) read orders with each of the first \(m \) followed by a dummy \(\text{rd} \) or \(\text{bi} \) order (see Section II A 3); after the \((m+1)\)st \(\text{si} \) read instruction the unit will pick up the block mark preceding the desired block and will start transferring its words into the In-Out Register. If skipping in the direction opposite to that in which the blocks were recorded, starting in an interblock space, the unit should be given \(m \) \(\text{si} \) read instructions in the opposite direction to the recording, each followed by a dummy \(\text{rd} \) or \(\text{bi} \) order, which brings the unit to the start of the desired block. The unit is then given an \(\text{si} \) read instruction in the direction of the recording, so that the unit will turn around in the interblock space before the desired block, pick up this block mark again, and start reading this block.

In order to read blocks of information from the tape in the same direction in
which they were recorded, starting with the unit in the cleared area in front of
the block of information which is to be read, the following orders may be used:

1. *si* read in the direction of the recording. After the 5 millisecond read
delay, during which the unit starts to move if it were at rest or moves over
0.15 inches of blank tape if it were already in motion in this direction, the
unit picks up the next block mark, which should be the one in front of the desired
block of information. After it detects this block mark, the next word is read
from the tape and sent to the In-Out Register where it is assembled into a word.

To prevent a program alarm, this word must be read or cleared from the In-Out
Register before the first line of the next word arrives there (see Section II A 3).

Since the first *rd* order will not be performed by the computer for at least
7.8 milliseconds after the *si* read instruction, the programmer can use this
time for non-in-out instructions.

2. *rd*--reads the word which has been assembled in the In-Out Register into the
accumulator and then clears the In-Out Register. The unit is still in the read
mode, however, and continues to search for information, indicated by index pulses,
and to send it to the In-Out Register. If the recording was made at maximum
density, then until the end of the block is reached, words will continue to fill
the In-Out Register and must be read out with the *rd* orders each 2.56 milliseconds.

If larger spacing was used, then the *rd* orders can be correspondingly further
apart.

3. When all of the words in the block have been read, and it is desired to
continue reading, then the programmer can continue to give *rd* orders, the first
of which will take a longer period to complete, since it will require traveling
over the interblock distance and the next block mark before it will find the
next word. The programmer could also repeat the *si* read order above.

4. If the last desired word has been read, and the programmer wishes to stop
the unit, he should, if he has just finished a block of information, simply
de-select the unit in the read mode with an *si 408*(decimal) order. If the tape
is more than one word from the end of the block, it is not advisable simply to
stop the unit in this way, since it may come to rest in part of the recorded
information, which may cause difficulty on later *si* read instructions (see Section
II A 3). In this case, the programmer could continue to give *rd* orders, without
transferring the words into MCM, until he gets to the end of a block where it
is safe to stop.

The programmer may replace a series of *rd* instructions with a *bi* instruction,
if he first puts into the accumulator the number of words he would like to read and
indicates by the address of the *bi* instruction where in MCM he would like to start to
store this block of words. Either a \texttt{rd} or \texttt{bi} instruction must follow each \texttt{si} read order. If it seems advisable, the programmer may mix a series of \texttt{rd} and \texttt{bi} instructions after an \texttt{si} read, but if he does, he should note the peculiarities of such operation as given in Section II A 3.

To summarize, the use of the magnetic tape for auxiliary storage provides the programmer with very large storage capacity at the expense of access time. In general, due to the operating features of the tape units, the programmer should store his information on the tape in blocks of \texttt{III} words. These words occupy a minimum of 2,56 milliseconds of tape running time each. The blocks of words may be read or re-recorded many times on the tape, and by means of several different programming procedures. The use of block input orders makes programming the reading of blocks of words very simple, but does not permit any of the time required for the transfer of the information to \texttt{MCM} to be used for the performance of internal orders.

The programmer should carefully note the position of the read-record head (with respect to his own recorded information or to areas which have not been erased and therefore may contain old data) during the performance of the program. This is especially important when it is necessary or desirable to stop the tape unit in the interior of a recording or to de-select the unit anywhere. To prevent program alarms while reading from magnetic tape, care must be taken to prevent information from arriving at the In-Out Register before the old information has been cleared.

B. Delayed Output

The output media available to the programmer include the direct output typewriter and punch, the oscilloscope, and the delayed output typewriter and punch. Because of the low operating speed of the direct output typewriter and punch (137 milliseconds to type an alphabetical or numerical character and longer for machine functions such as shift, carriage return, etc., and 93 milliseconds to punch one line of paper tape), their use for output is discouraged except under such special circumstances as when the programmer has only a small amount of output or when he needs to see his results immediately (and there are not too many of them). Because of the parallel operation of the computer and these direct output devices, it is sometimes possible, if the total calculation time of the program is equal to or greater than the time required to print the results directly, to mix the printing or punching operations with the calculations in such a way as to reduce substantially the time the computer must wait to finish a previous direct output instruction before going ahead with another. As a simple example, if the results of a program can be put in one-to-one correspondence with the Flexowriter characters or the 128 possible combinations of holes punched in one line on the paper tape, and if the time to calculate such a result is equal to or greater than 137 or 93 milliseconds respectively, then these calculations can be
carried on while the corresponding characters are being printed or punched, so that no computer time is lost to output.

Printing of alpha-numerical characters on the scope can be accomplished at speeds 15 to 20 times faster than the direct printer, despite the fact that each such character must be constructed from a number of points. By use of the camera mounted on the scope, pictures of such an output display can be taken. These photographs usually are not available until some time after the program has been performed. For details on the use of the scope and camera, see M-2188, PROGRAMMING FOR AND OPERATION OF OSCILLOSCOPE AND CAMERA. At present, the scope and the delayed printer have approximately equal speeds when used to print alpha-numeric characters, but when the oscilloscope character and vector generators now under construction and testing are ready, it should be much faster to use the scope.

When using the magnetic tape delayed output system, special WWI words are recorded on a magnetic tape unit (now only on unit 3A or 3B) while this unit is connected to the computer. When this tape unit is connected to the delayed output equipment, these words are read from the tape by the delayed output equipment independently of the computer operation (except for the power supply), and these special words are used to select the proper output character and the mode of the delayed output (typewriter or punch, and seventh hole punched or not); then the selected output device types or punches the desired character. Since the operation of printing an alpha-numerical character or punching a line of paper tape takes on the order of 100 milliseconds and only 1.28 milliseconds are required for the 8 necessary binary digits (4 lines) of information in the special word on the tape to pass under the read-record head of the tape unit at normal speed, some method of reducing the effective speed of the tape is required in order not to use a very long length of tape per output character. In addition, typewriter machine functions take long (up to about 1 second) and varying amounts of time, so that it can not be predicted in advance exactly how much time will be required to print a certain character on the typewriter. For these reasons, it was necessary to stop the magnetic tape while the delayed output typewriter or punch is operating. In this way it is only necessary to leave enough erased space on the tape between any two special words recorded there for the tape to brake to a halt after the first word is read and to accelerate to normal speed again (after the character is printed) before the next one appears on the tape.

The physical arrangement on the magnetic tape of the word corresponding to one output character is as follows: the first three lines of the word on the tape (corresponding to the left six digits of what appears in the accumulator when the reorder is given, i.e., AC0 to AC5 inclusive) give the binary code for the Flexowriter character to be printed or the binary combination to be punched in the first six channels of the line on the paper tape. The fourth line of this word on the magnetic
tape selects the seventh hole (for the paper tape) and the output mode (typewriter or punch). If a 1 occurs in the second channel of this line on magnetic tape (corresponding to the eighth digit in the accumulator, i.e., AC7), the punch is selected; if a 0, the typewriter is selected. If the typewriter is selected, and the PUNCH ON switch on the typewriter is off (up), the typewriter will print only, but if this switch is on (down), the typewriter will print and punch simultaneously. (This is advantageous when more than one copy of the results is desired — the punched paper tape corresponding to the printed results can be used on any other Flexowriter to obtain more copies of these results. Also, if known errors occur in the print out, these can be corrected on the tape by duplicating it to the point where an error occurred, punching in the correct character, then continuing the duplication.) If the punch is selected either by a 1 in AC7 or by means of the PUNCH ON switch, a 1 in AC6 will cause the 7th hole of the line on the paper tape to be punched. Any combination of typewritten and punched characters can be recorded on the magnetic tape for mixed output.

Since only 4 lines of the word on magnetic tape are required to give the complete output information for one character, the delayed output equipment has been set up to read only the first 4 lines of each WM1 word on the magnetic tape (block marks are ignored during the reading operation for delayed output). As soon as these first 4 lines of the word are read, the tape unit is instructed to stop, and the last 4 lines of the word are ignored and the tape passes over these lines as it coasts to a stop. The tape remains at rest until a completion pulse comes from the typewriter or punch indicating that this character has been typed or punched. When this completion pulse is received by the tape unit it starts forward to read the first 4 lines of the next word and repeat this cycle of operations.

Under normal operation of the tape for delayed output, words are recorded in the forward direction and later read back into the delayed output equipment in the same direction. However, it is possible to read the tape in the reverse direction for delayed output; this is done by means of the REVERSE PRINT switch on the magnetic tape relay transfer panel on the center rack. When this is used the tape starts reading in reverse, and in order to print the correct characters, the programmer must record in reverse, or scramble the words so that the proper digits are in the last 4 lines of the special words if recording in the forward direction. The use of this mode makes it unnecessary to run the tape back after a recording is made on the tape and before it can be printed.
The amount of tape which passes under the head of a unit while it decelerates to rest and then accelerates to normal speed is about 0.18 inches, and equals the amount which passes under the head of the unit in about 6.0 milliseconds when the tape is running at normal speed. Also, 1.28 milliseconds are required for the 4 lines of a word containing the output information corresponding to one Flexowriter character to pass under the head, so that an average of about 7.3 milliseconds of tape at normal speed is required per output character. However, this is based on good adjustment and operation of the clutches and brakes on the units. In order to give operating margins, about 7.5 milliseconds of tape at normal speed should be used per output character. This is the spacing given by the re orders following an ai record for delayed print order.

Thus, to program for delayed output, the programmer simply gives an ai record for delayed print order (this is used only with units 3A and 3B at the present time). He then gives an re order each time the special word corresponding to a desired output character is obtained in the accumulator. This process is as economical of computer time as can be obtained, since calculations to obtain these special words can be done while the previous re order is being carried out by the In-Out equipment. If the calculations to obtain an output character take more than 7.5 milliseconds, then magnetic tape will be wasted if it is left running. However, stopping the tape unit (in cleared area) requires 28.7 milliseconds of computer time, and since, when the next character is to be recorded, another ai record for delayed print order will be necessary, such a procedure will use up about 16 milliseconds of tape. Therefore, it is not desirable to start and stop the unit frequently. The usual procedure (for single length WWI words), is to store up a group of results, convert and record the corresponding Flexowriter characters at one time, then stop the unit and go on with the calculations. In using the subroutines now available for (24,6) double register numbers, the tape unit is stopped after each such number is recorded (see Section V B).

When a recording is finished, the magnetic tape must be stopped. In addition, the tape must be stopped when it is being read back for delayed printing. If this is not done, the unit will search ahead after the last character is printed, looking for the next special word on the tape. If the tape has been erased, it will continue running until the end comes off the reel. If there is old data on the tape, it will be printed, and if the operator does not know how much material should be printed by the program it may not be easy to determine when the unit should be stopped manually. However, if when he is finished the programmer records a word on the tape which contains the Flexowriter stop character (110001) and which selects the typewriter, the typewriter, when it receives this character, will not send a completion pulse back to the tape unit. Therefore the unit will not start again until the operator
manually starts the delayed print equipment, by pressing the "START READ" button.

It is also desirable that each programmer who uses the magnetic tape for delayed output on the typewriter end his recording with the character for a carriage return before the stop character. Then the typewriter will be left with its carriage at the left for the next printing. In addition, if the programmer shifts the typewriter to upper case for the last part of the printing, he should always put in a shift to lower case before ending the recording. This is because the typewriter locks in these cases, and if the computer operator does not notice that the machine has been left in upper case after a delayed print-out, the next program, which may assume the machine is in lower case, will start printing in upper case. The programmer may, if he wishes, always record a lower case character at the start of his recording if he wishes to type in lower case.

The Flexowriter unit used with the delayed output equipment has a long carriage, with a usable length of about 160 spaces. The size of the type is 10 characters to the inch. The tab settings have been set arbitrarily at 10 spaces apart.

IV. Manual Control of the Delayed Output Equipment

At the start of a computer period, units 3A and 3B are normally positioned with their heads at the second limit switches on these tapes. The area between the first and second switches contains test recordings for checking the operation of these tape units and the delayed output equipment. If the operator wishes to check either of these units, he rewinds it to the first limit switch, puts the transfer switch in the position where the unit to be tested is connected to the delayed output equipment, and starts the unit reading forward (with the Automatic pushbutton on, the START READ switch on the typewriter is pressed). The permanent recordings operate the typewriter and punch to give certain standard results when they are operating properly. These should print out without significant error, except in the capstan test, where the spacing between words on the tape is successively reduced. When significant failure occurs here, the operator looks at the print to see if a certain number corresponding to the spacing on the tape is below a certain limit when the failure occurred. If the number is below this limit, the test is satisfactory; if it is not the engineers should be informed. If both units do not give the proper results, the trouble probably lies with the delayed output equipment rather than the tape units. If only one unit is malfunctioning, then the operator can still use the other.

There is a maximum of 1200 feet of magnetic tape on these two units, but a certain amount must be left on both ends so that the ends will not come off the reels. In addition the permanent test data occupies a small region at the beginning of each tape. Thus there is a maximum of about 1150 feet on each unit available for the
programmers, but if there is breakage of the tape near the ends, the reel may not be replaced until the length available to the programmer drops below 1000 feet. This minimum of 1000 feet is enough to record about 53,000 output characters at maximum density (one each 7.5 milliseconds), and requires a minimum of about 6.7 minutes to record it. The typing of such a recording would require at least 85 minutes. (The delayed output typewriter can type about 15 lines per second if the corresponding words on the magnetic tape are 7.5 milliseconds apart.)

After a recording (which starts at the limit switch) for delayed output is put on unit 3A or 3B, depending on the position of the transfer switch when the recording is made, the operator normally throws this switch and proceeds with the next program. While this program is being run, the unit which has the recording is run back to the limit switch by means of the pushbutton on the Flexowriter enclosure. The START READ switch on the typewriter is then pushed, and the tape is read by the delayed output equipment and the results are printed or punched. Should an error occur or the typewriter fail to stop at the end of the recording, the computer operator can stop the tape unit and Flexowriter by pressing the STOP READ switch on the typewriter.

If two programs in succession record on magnetic tape for delayed output and the first recording takes so long to print or punch that it is not completed when the second program has finished recording its results on the other tape unit, then this second set of results can not be printed out immediately. If another program which uses the delayed output equipment is now performed, it is necessary to record this data on the second unit, following the second recording. If a very long recording was made on the first unit, it is possible that the whole reel of tape of the second unit will be filled with results before the first results are completely printed. In this case it would be necessary to replace the reel on the second unit. Also it is possible to record so much data for printing out that it can not be finished in the computer period. If the computer power is shut off in the next period, this information can not be printed out until a period in which the computer power is on. Other utility programs also use the magnetic tape units for delayed printing or punching, such as post mortem tapes and the conversion programs which store data for the punching of 556 tapes. These uses of the magnetic tape and the low speed of printing or typing results can lead to serious problems for the computer operators and in the scheduling of programs to be run.

To avoid such problems, the Scientific and Engineering Applications (S&EC) Group has adopted the practice of postponing the performance of certain programs for which such difficulties might arise. Therefore, it is important that programmers carefully fill in the "Max. No. Ft. Forward" (i.e., the number of feet of magnetic tape required for his program) column in the magnetic tape section of the S&EC Performance Request
form (DL-324-9). If this practice does not obviate these difficulties it may be necessary to penalize programmers who have very large amounts of output by charging a portion of their delayed output time against their allotted computer time.

V. Subroutines Available to the Programmer for Use With the Magnetic Tape

A. Auxiliary Storage

Some subroutines have been written for recording on and reading from the magnetic tape when used as auxiliary storage. They provide the programmer with facilities for recording an arbitrary number of blocks of arbitrary word length (within the capacity of the unit) on unit 1, for skipping forward or backward any number of blocks within the recording, and for reading or re-recording any of these blocks. Certain of these routines provide a check on the reading operation and if an error is detected repeats the reading operation until it checks properly. More details on these routines can be obtained in a report entitled Magnetic Tape Subroutines, dated January 2, 1953; this report is available in the Tape Room of the Digital Computer Laboratory.

B. Delayed Output

Synthetic instructions of the types MOA... and iMOA... are now available in the CS instruction code. These instructions provide for the conversion (from binary to decimal) and delayed printing of the contents of the AC or the MRA, as well as the delayed printing of certain special characters (see the CS Manual).

Subroutines for delayed output (more details on these routines can be obtained from the Subroutine Library)

1. LSR Tape OD 3 (Tape number 3214)

This subroutine records on magnetic tape, for delayed printing, the contents of the WWI accumulator as a signed decimal integer, and this number is printed in the form ± xxxxx (with initial 0's replaced by spaces). The + sign can be replaced by a space and the delayed punch used instead of the printer. The length of this subroutine is 86 registers. About 0.2 feet of magnetic tape, and about 0.1 seconds of computer time, are required per number.

2. LSR Tape OD 2 (Tape number 3333)

This subroutine records on magnetic tape, for delayed printing, the contents of the MRA (in CS programs) as a (24,6) generalized decimal number. The number is printed in the form ± .xxxxxxx ± xx, where the last digits represent the
magnitude of the exponent of 10 of the number. (Use of a preset parameter varies
the number of significant decimal digits printed; there is a maximum of 8.)
The number is automatically followed by a space. Other machine functions such as
tab, space, or carriage return can also be obtained by use of special entry points.
The magnetic tape is started before each number or machine function is recorded,
and stopped after the recording. This subroutine is entered in the interpretive
mode. About 0.25 seconds and 0.6 feet of magnetic tape are required per number.
The routine occupies 147 registers.
3. LSR Tape TD 1 (Tape number 2756 m5)
 This subroutine is used for either direct or delayed printing of 30-j,j
 numbers. In addition to the facilities mentioned in 2 above, another preset
 parameter can be used to give spaces instead of positive signs, and roundoff is
 provided. Both routines use the PA section of a CS program, and leave the con-
 tents of the MRA unchanged. This routine takes about 0.2 seconds and 0.4 feet
 of tape per number and occupies 207 registers.
4. LSR Tape OD 1 (Tape number 3217 m4)
 This subroutine provides for both format and printing of numbers on direct
 or delayed printer, and includes the preceding tape as a part. Another preset
 parameter is used to specify the number of columns per page (format). Otherwise
 it is similar to the preceding tape. Registers used are 229.
VI. Changes in Progress
1. A long-carriage Flexowriter is being connected to unit 2, so that it also may
 be used for delayed output. A transfer switch is being mounted on the spare
 Flexowriter cabinet to change the connections so that unit 2 is connected to the
 computer in one position and to the delayed output reading equipment in the other.
 Another switch will be located on the Flexowriter cabinet so that the Flexowriter
 can be disconnected from the delayed output equipment and used normally for
 typing, punching, and reproducing tapes.
2. Limit switch contacts have been located near the ends of all the reels of
tapes, and an alarm circuit is being connected so that whenever a unit passes
over a limit switch, the alarm will sound (whether the unit is under manual or
computer control). In addition, lights on each unit will be lit when that unit
is on a limit switch. Thus, when a unit is rewound and stops at a limit switch,
the gong will sound and the light will go on and stay on. If the unit is at the
other end of the tape and is still running, the gong will sound, and the light go on as the wipers pass over the limit switches, and then go off again. At this point, the unit will be stopped by the operator; otherwise the tape would probably run off the reel. (If unit 3A or 3B is being used, it may be possible to stop the program, interchange 3A and 3B, and then continue recording on the other unit.)

3. A toggle switch and light are being added to the console near the photoelectric tape reader which will permit the operator to switch unit 0 to a manual Rewind mode. The Automatic pushbutton must be in on the unit 0 auxiliary control panel in order for this switch to be used, and this toggle switch must be returned to the Automatic position before unit 0 can be controlled by the computer.

4. An Index Count Error alarm is being installed which will sound an alarm, light a light, and stop the delayed typewriter and the tape unit when more or less than 8 lines on the tape (corresponding to one WW word) have been read for any Flexo character during delayed output from that unit. The operator can then examine the results and decide whether to repeat the section containing the error or to go on. In the latter case, he will have a pushbutton to clear the alarm, and then can continue with the output.

Lists of Photographs

A-55528
A-57916

Signed: H. Denman
H. Denman

Approved: J.D. Porter
J.D. Porter

HD: JDP: bjf
Appendix A. In-Out Delay counts for various orders

1. **si** instructions

- **si read** -- 5.1 milliseconds
- **si re-record** -- 5.1 milliseconds
- **si record** -- 14.5 milliseconds
- **si record for delayed print** -- 14.5 milliseconds
- **si stop in cleared area** -- 28.7 milliseconds

No other in-out instructions can follow the above orders before the ends of these delay counts. In the cases of the **si** read and re-record orders, no other in-out instructions can be performed until these delays have been counted and the unit has detected a block mark afterwards. Internal WWI orders can be performed during all of these delays except the last, where no other orders can be performed until this delay is finished.

2. **rd** -- none (information comes into the In-Out Register from the tape at intervals depending on the spacing of the words on the tape--at least 2.56 milliseconds per word, but no delay is counted in the In-Out Delay Counter (IODC). If the In-Out Register is not full when this order is given, the computer waits until a word is assembled).

- **bi** -- none (as for the **rd**, no delay is counted, but the time required to complete the order and to permit another instruction is given by the total time required to read the n words from the tape into storage; at maximum density, 2.56 n milliseconds.)

- **rc** -- 2.56 milliseconds if it follows an **si** record order
- 7.5 milliseconds if it follows an **si** record for delayed print order

Appendix B. Amount of tape used for magnetic tape instructions

If the tape is running at normal speed of 30 inches per second when a certain delay of d milliseconds is counted in IODC, then to determine the length of tape in inches which has passed under the head during this period, which we call L, we simply use

\[L = 0.030 d \]

Thus, if we **rc** one word (after normal **si** record order), \(d = 2.56 \), and \(L = 0.077'' \).

If the **rc** follows the new **si** record order, \(d = 7.5 \) and \(L = 0.225'' \): But if the tape is at rest or is required to change direction of motion by the **si** instruction, then the length of tape passing under the head is not given by the above equation. The delay count is the same, but the tape is accelerating during the period and therefore a smaller length of tape passes under the head. No exact formula can be given for this since the acceleration depends on the action of certain mechanical clutches and brakes and their actions vary with time. The following estimates were based on the assumptions that the average reaction time of the units is 5.5 milliseconds, the average acceleration time is 1.0 milliseconds, and the acceleration is constant.

Whenever an **si** instruction is given to a tape unit, about 5 to 6 milliseconds elapse before the tape motion can be affected (this is the reaction time required for the clutches or brakes on the unit to act on the spindle which drives the tape).
This is followed by a period of high acceleration or deceleration of the tape to its normal velocity of 30 inches per second in the desired direction. Thus if the tape is at rest and is ordered to *si* read or re-record in either direction, the tape will not started to move at the end of the 5 millisecond delay count. Therefore it will not have moved past the head when it begins to look for a block mark. If the tape is at rest and is ordered to record in either direction by the appropriate *si* order, the tape will not move during the reaction time (about 5.5 milliseconds), will accelerate to normal speed in about 0.5 to 1.5 milliseconds, and therefore will be moving at normal speed for about 7.0 milliseconds of the counted delay of 14.5 milliseconds. At the end of the delay count the head will be about 0.26 inches from the point on the tape at which the *si* record order was given.

If the tape is moving when an *si* order referring to it is given and if this instruction directs the tape unit to move in the same direction, then the equation above can be used. We find that at the end of the delay count, for an *si* read or re-record order, the tape has moved about 0.15 inches from the point at which the order was given, for an *si* record order about 0.44 inches. If directed to *si* stop in a cleared area in the same direction, a section of tape about 0.61 inches long will be cleared, and the tape unit, after a delay count of 28.7 milliseconds, will be de-selected at about 39 inches from the point at which the order was given, and if permitted to coast to stop will finally stop about 0.21 inches from this point.

If the tape is moving in one direction and the *si* instruction directs it to change direction, the delay counts remain the same, but the tape will continue to travel in the original direction while the clutch-brake mechanism starts to decelerate the tape until its velocity in the original direction is reduced to 0. The tape then accelerates to normal velocity in the desired direction, which requires another 1.0 to 1.5 milliseconds. If the new *si* is for reading or re-recording, the tape will travel at normal speed in the original direction during the timed delay so that the position of the tape at the end of the delay will be about 0.15 inches from the starting point in the original direction of motion. If the *si* instruction is for recording, the tape will travel in the original direction about 0.13 inches (erasing the tape), and then will reverse direction and the block marker at the end of the delay will be recorded about 0.05 inches in the desired direction from the starting place. If the *si* instruction is to stop in cleared area in the opposite direction, the tape unit again erases about 0.18 inches in the original direction, retraces this region, and erases about 0.22 inches of tape in the new direction, reverses direction again and is de-selected at just about the point where the order was initiated, but travelling in the original direction. If the unit is permitted to stop, it will move about 0.18 inches in the original direction before stopping.

A word recorded on the tape using the regular *si* record orders occupies about 0.077 inches of tape. If the recording for auxiliary storage is made at maximum density, there is no distance between the words (other than the 0.0048" interline space already included in this figure). When recording using the *si* record for delayed print order, each word occupies about 0.225 inches, 2/3 of which is the long space given automatically before each word so that the unit can stop between words on the tape while the output equipment is operating. For auxiliary storage it may be desirable to increase the spacing given above; for delayed printing the spacing given above is minimum. If calculations to obtain the next output character after recording one on the tape require more than 7.5 milliseconds, and the unit is left running in the *si* record mode, a longer space will be obtained between these words on the tape, its length depending on the time required for the calculations.
Appendix C. Reference list of si addresses for the magnetic tape units

<table>
<thead>
<tr>
<th>si Instruction</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3A or 3B**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-record forward</td>
<td>100(o)</td>
<td>110(o)</td>
<td>120(o)</td>
<td>130(o)</td>
</tr>
<tr>
<td></td>
<td>64(d)</td>
<td>72(d)</td>
<td>80(d)</td>
<td>88(d)</td>
</tr>
<tr>
<td>Re-record reverse</td>
<td>101(o)</td>
<td>111(o)</td>
<td>121(o)</td>
<td>131(o)</td>
</tr>
<tr>
<td></td>
<td>65(d)</td>
<td>73(d)</td>
<td>81(d)</td>
<td>89(d)</td>
</tr>
<tr>
<td>Read forward</td>
<td>102(o)</td>
<td>112(o)</td>
<td>122(o)</td>
<td>132(o)</td>
</tr>
<tr>
<td></td>
<td>66(d)</td>
<td>74(d)</td>
<td>82(d)</td>
<td>90(d)</td>
</tr>
<tr>
<td>Read reverse</td>
<td>103(o)</td>
<td>113(o)</td>
<td>123(o)</td>
<td>133(o)</td>
</tr>
<tr>
<td></td>
<td>67(d)</td>
<td>75(d)</td>
<td>83(d)</td>
<td>91(d)</td>
</tr>
<tr>
<td>Stop in cleared area</td>
<td>104(o)</td>
<td>114(o)</td>
<td>124(o)</td>
<td>134(o)</td>
</tr>
<tr>
<td>forward</td>
<td>68(d)</td>
<td>76(d)</td>
<td>84(d)</td>
<td>92(d)</td>
</tr>
<tr>
<td>Stop in cleared area</td>
<td>105(o)</td>
<td>115(o)</td>
<td>125(o)</td>
<td>135(o)</td>
</tr>
<tr>
<td>reverse</td>
<td>69(d)</td>
<td>77(d)</td>
<td>85(d)</td>
<td>93(d)</td>
</tr>
<tr>
<td>Record forward</td>
<td>106(o)</td>
<td>116(o)</td>
<td>126(o)</td>
<td>136(o)</td>
</tr>
<tr>
<td></td>
<td>70(d)</td>
<td>78(d)</td>
<td>86(d)</td>
<td>94(d)</td>
</tr>
<tr>
<td>Record reverse</td>
<td>107(o)</td>
<td>117(o)</td>
<td>127(o)</td>
<td>137(o)</td>
</tr>
<tr>
<td></td>
<td>71(d)</td>
<td>79(d)</td>
<td>87(d)</td>
<td>95(d)</td>
</tr>
<tr>
<td>Record for delayed print forward*</td>
<td>146(o)</td>
<td>156(o)</td>
<td>166(o)</td>
<td>176(o)</td>
</tr>
<tr>
<td></td>
<td>102(d)</td>
<td>110(d)</td>
<td>118(d)</td>
<td>126(d)</td>
</tr>
<tr>
<td>Record for delayed print reverse*</td>
<td>147(o)</td>
<td>157(o)</td>
<td>167(o)</td>
<td>177(o)</td>
</tr>
<tr>
<td></td>
<td>103(d)</td>
<td>111(d)</td>
<td>119(d)</td>
<td>127(d)</td>
</tr>
</tbody>
</table>

(o) = octal
(d) = decimal

* When these si record instructions are used, there is the usual 14.5 millisecond delay counted in the In-Out Delay Counter while tape is being erased, and a block mark is laid down at the end of this period. Succeeding rc instructions generate a 7.5 millisecond total count in the In-Out Delay Counter. This order is chiefly designed to be used with Units 3A and 3B, because this delay automatically provides the minimum delay necessary for use with the delayed printer and punch.

** These si addresses refer to whichever unit is connected to the computer through the transfer switch.
FIG. 3
RAYTHEON MAGNETIC TAPE UNIT
MAGNETIC TAPE UNITS AND DELAYED OUTPUT EQUIPMENT