The following changes to commands DELETE, RENAME, and CHMOD will be effective May 18th.

DELETE \(a_1 \ b_1 \ a_2 \ b_2 \ldots a_n \ b_n\)
deletes all versions of files \(a_1 \ b_1\), if possible. If \(a_1 \ b_1\) is R1 mode (read only class one), the following message will be printed:

\(a_1 \ b_1\) R1 MODE. DO YOU WANT TO DELETE IT,

If \(a_1 \ b_1\) is to be deleted, type "yes" after the comma; if \(a_1 \ b_1\) is not to be deleted, type "no".

If \(a_1 \ b_1\) is R2 mode (read only class two), the \(a_1 \ b_1\) will not be deleted and the following message will be printed:

ATTEMPT TO DELETE FILE IN READ ONLY MODE

If for any reason \(a_1 \ b_1\) cannot be deleted a comment is printed.

If \(b_i = m\), all files with primary name \(a_i\) will be deleted.
If \(a_i = m\), all files with secondary name \(b_i\) will be deleted.

CHMOD \(a_1 \ b_1 \ m_1 \ a_2 \ b_2 \ m_2 \ldots a_n \ b_n \ m_n\)

(Where \(m_i\) must be 0, 1, 2, 3, 4, T, P, R1, or R2) changes the mode of files \(a_i \ b_i\), if possible. If the mode of \(a_i \ b_i\) cannot be changed, a comment will be printed.

If \(a_i \ b_i\) is R2 mode, the mode will not be changed and the following message will be printed:

"3" TRIED TO RENAME READ ONLY CLASS 2.

\(a_i\) or \(b_i\) may be with the conventions described above.

RENAME \(a_1 \ b_1 \ c_1 \ d_1 \ a_2 \ b_2 \ c_2 \ d_2 \ldots a_n \ b_n \ c_n \ d_n\)
changes name \(a_i \ b_i\) to \(c_i \ d_i\), if possible. All other files names \(c_i \ d_i\) will be deleted before renaming \(a_i \ b_i\). If \(c_i \ d_i\) is R1
mode, the user has the choice of deleting it as described under DELETE.
If c_i, d_i cannot be deleted or if a_i, b_i is R2 mode, renaming will not be done. If a_i, b_i is R2 mode, the following message is printed:

```
*** TRIED TO RENAME READ ONLY CLASS 2
```

If for any reason a_i, b_i cannot be renamed, a comment will be printed.

If $a_i = \$, c_i must be $\$, and only the secondary name is changed. If $b_i = \$, d_i must be $\$, and only the primary name is changed.

If d_i is missing, it is assumed to equal b_i.