Artificial Intelligence Project---RLE and MIT Computation Center
Notes on The Compiler---Memo 7
by J. McCarthy

We will start with a very modest compiler. Our first major goal is a compiler that will compile recursive function definitions. Its input will be LISP statements in restricted notation and its output will be a SAP tape. However we will start with an even simpler compiler that will only compile programs to evaluate expressions and at first we will print these rather than punch them.

The main routine of this preliminary version is compute \((L,C)\). Here \(L\) is an expression such that we want a program to evaluate it and \(C\) is where the result is to be put. The value of compute \((L,C)\) is a list structure version of the SAP program that performs the computation.

The first thing that compute \((L,C)\) does is branch on \(\text{car}(L)\). The cases are:

1. \(\text{car}(L)=-1\)
2. \(\text{car}(L)=\text{car}\)
3. \(\text{car}(L)=\text{cdr}\)
4. \(\text{car}(L)=\text{cons}\)
5. \(\text{car}(L)=\text{eq}\)
6. \(\text{car}(L)=\text{cond}\)
7. \(\text{car}(L)=\text{list}\)
8. other

The programs for some of these cases follow:

1. \(\text{car}(L)=-1\rightarrow\text{move}(L,C)\)
2. \(\text{car}(L)=\text{car}\rightarrow\text{list}(\text{compute}(\text{cadadr}(L),\text{ir}^4),\text{cla}04,\text{move}(\text{acdn},C))\)
3. \(\text{car}(L)=\text{cdr}\rightarrow\text{list}(\text{compute}(\text{cadadr}(L),\text{ir}^4),\text{cla}04,\text{move}(\text{acdn},C))\)
4. \(\text{car}(L)=\text{cons}\rightarrow\text{list}(\text{compute}(\text{cadadr}(L),\text{corac}(\text{cadadr}(L))),\text{compute}(\text{cadadr}(L),\text{acdc}\
\text{list}(\text{inst},\text{std},\text{cadadr}(L)),\text{list}(\text{inst},Z1,Z2,Z3),\text{list}(\text{inst},\text{srd}(1)),\text{list}(\text{inst},\text{id},\text{cadadr}(L)),(\text{inst},\text{cla}01),(\text{inst},\text{stq}01),\
(\text{inst},\text{pdx}01),\text{list}(\text{inst},\text{lxd}1,4),\text{move}(\text{ir}^4,C))\)
Here Z1, Z2 and Z3 are

\[t x 1 \times + 3, 1, 0 \]
\[s r d \ f r o u t, 4 \]
\[t a x \ f r o u t + 1, 4 \]

Move (A,B) is a program to move a 15 bit quantity from place A to place E. The possibilities for A and B are

1. acac-address part of accumulation with the rest of the accumulation cleared.
2. acan-address part of accumulation with the rest unspecified.
3. acdc decrement part of ac, rest cleared
4. acdn decrement part of ac, no clearing
5. mqac, mqan, mqdc, mqdn-analogously to above with the mq register instead of the ac.
6. ir4
7. corac (M), coran (M), cordc (M), cordn (M)

Here the destination is a memory register with symbolic address M.
CS-TR Scanning Project
Document Control Form

Report #: Alm - 7

Each of the following should be identified by a checkmark:

- [] Artificial Intelligence Laboratory (Al)
- [] Laboratory for Computer Science (LCS)

Document Type:

- [] Technical Report (TR)
- [x] Technical Memo (TM)
- [] Other: __________________________

Document Information

Number of pages: \(\frac{2}{6} \) images

Not to include DOD forms, printer instructions, etc... original pages only.

Intended to be printed as:

- [x] Single-sided or
- [] Double-sided

Print type:

- [] Typewriter
- [] Offset Press
- [] Laser Print
- [] Inkjet Printer
- [] Unknown
- [] Other: MimaGRAPH (Poor)

Check each if included with document:

- [] DOD Form
- [] Funding Agent Form
- [] Cover Page
- [] Spine
- [] Printers Notes
- [] Photo negatives
- [] Other: __________________________

Page Data:

Blank Pages (by page number): __________________________

Photographs/Tonal Material (by page number): __________________________

Other (note description/page number):

Description: IMAGE MAP: (1-2)
Page Number: 1-2

(3-6) Scan Controls TARG'TS (9)

Scanning Agent Signoff:

Date Received: 11/30/95 Date Scanned: 12/14/95 Date Returned: 12/14/95

Scanning Agent Signature: Michael W. Cook

Rev.9/94 DS/LCS Document Control Form c:心意form.vdf
Scanning Agent Identification Target

Scanning of this document was supported in part by the Corporation for National Research Initiatives, using funds from the Advanced Research Projects Agency of the United states Government under Grant: MDA972-92-J1029.

The scanning agent for this project was the Document Services department of the M.I.T Libraries. Technical support for this project was also provided by the M.I.T. Laboratory for Computer Sciences.