Program Library Catalog
<table>
<thead>
<tr>
<th>PROGRAM LIBRARY CATALOG INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE</td>
</tr>
<tr>
<td>IUG-101: CLUE (DEBUG WITH TRACE)</td>
</tr>
<tr>
<td>102: SUPER-CLUB</td>
</tr>
<tr>
<td>103: TIC-TAC-TOE</td>
</tr>
<tr>
<td>104: MICA II IN-CORE ASSEMBLER</td>
</tr>
<tr>
<td>105: 360/20 SIMULATOR FOR MODEL 4</td>
</tr>
<tr>
<td>106: MODEL 3 ASSEMBLER</td>
</tr>
<tr>
<td>107: MODEL 3 SIMULATOR</td>
</tr>
<tr>
<td>108: TAPE LABEL MAKER</td>
</tr>
<tr>
<td>109: PAPER TAPE DUPLICATOR</td>
</tr>
<tr>
<td>110: DIAMOND DEMO</td>
</tr>
<tr>
<td>111: MAG-TAPE DRIVERS</td>
</tr>
<tr>
<td>112: UNIF-RANDOM NUMBER GENERATOR</td>
</tr>
<tr>
<td>113: IDS DISC UTILITY</td>
</tr>
<tr>
<td>114: TIDE W/MODIFY</td>
</tr>
<tr>
<td>115: TTY SUBROUTINES</td>
</tr>
<tr>
<td>116: FORTRAN EDIT UTILITY</td>
</tr>
<tr>
<td>117: A/D-READ</td>
</tr>
<tr>
<td>118: SUPER 50-SEQUENCE FOR MODEL 3</td>
</tr>
<tr>
<td>119: BOSS/3B (BASIC OPERATING SYSTEM)</td>
</tr>
<tr>
<td>120: CLOCK AND CALENDAR</td>
</tr>
<tr>
<td>121: LOAD MULTIPLE/STORE MULTIPLE TRAP</td>
</tr>
<tr>
<td>122: SIM-TRAP ROUTINES FOR LM, STM, PUSH, POP, AND TEXT EDITING</td>
</tr>
<tr>
<td>123: READ-WRITE-FUNCTIONS</td>
</tr>
<tr>
<td>124: SINK/SOURCE CONTROL</td>
</tr>
<tr>
<td>125: EDITOR/ASSEMBLER COMBO</td>
</tr>
<tr>
<td>126: MODEL 5 ASSEMBLER</td>
</tr>
<tr>
<td>127: 80-BYTE RECORD COPIER</td>
</tr>
<tr>
<td>128: MOD 1 FORTRAN COMPILER</td>
</tr>
<tr>
<td>129: MOD 1 FORTRAN RUN-TIME LIBRARY</td>
</tr>
<tr>
<td>130: OS CARD TO TAPE UTILITY</td>
</tr>
<tr>
<td>131: ASSEMBLER FOR MOD 1 W/64-BYTE ROM</td>
</tr>
<tr>
<td>132: TEXT EDITOR FOR MOD 1 W/64-BYTE ROM</td>
</tr>
<tr>
<td>133: LINEAR REGRESSION USING INTERACTIVE FORTRAN</td>
</tr>
<tr>
<td>134: GENERAL LOADER FOR WIRE WRAP TTY</td>
</tr>
<tr>
<td>135: RELOCATING LOADER FOR WIRE-WRAP TTY</td>
</tr>
<tr>
<td>136: TEXT EDITOR FOR WIRE WRAP-TTY</td>
</tr>
<tr>
<td>137: BOSS/4B FOR 16KB COMPILATIONS</td>
</tr>
<tr>
<td>138: BOSS/4B SYSTEM GENERATION SOURCE</td>
</tr>
<tr>
<td>139: MODEL 1 INTERTAPE PROGRAMMING SYSTEM (IPS1)</td>
</tr>
<tr>
<td>140: INTEGRATION USING TRAPEZOIDAL RULE</td>
</tr>
<tr>
<td>141: STAND-ALONE INTERTAPE DRIVER</td>
</tr>
<tr>
<td>142: OS MODEL 1 ASSEMBLER</td>
</tr>
<tr>
<td>143: MEDIA TO MEDIA PROGRAM</td>
</tr>
<tr>
<td>IUG-144:</td>
</tr>
<tr>
<td>145:</td>
</tr>
<tr>
<td>146:</td>
</tr>
<tr>
<td>147:</td>
</tr>
<tr>
<td>148:</td>
</tr>
<tr>
<td>149:</td>
</tr>
<tr>
<td>150:</td>
</tr>
<tr>
<td>151:</td>
</tr>
<tr>
<td>152:</td>
</tr>
<tr>
<td>153:</td>
</tr>
<tr>
<td>154:</td>
</tr>
<tr>
<td>155:</td>
</tr>
<tr>
<td>156:</td>
</tr>
<tr>
<td>157:</td>
</tr>
<tr>
<td>158:</td>
</tr>
<tr>
<td>159:</td>
</tr>
<tr>
<td>160:</td>
</tr>
<tr>
<td>161:</td>
</tr>
<tr>
<td>162:</td>
</tr>
<tr>
<td>163:</td>
</tr>
<tr>
<td>164:</td>
</tr>
<tr>
<td>165:</td>
</tr>
<tr>
<td>166:</td>
</tr>
<tr>
<td>167:</td>
</tr>
<tr>
<td>168:</td>
</tr>
<tr>
<td>169:</td>
</tr>
<tr>
<td>170:</td>
</tr>
<tr>
<td>171:</td>
</tr>
<tr>
<td>172:</td>
</tr>
<tr>
<td>173:</td>
</tr>
<tr>
<td>174:</td>
</tr>
<tr>
<td>175:</td>
</tr>
<tr>
<td>176:</td>
</tr>
<tr>
<td>177:</td>
</tr>
<tr>
<td>178:</td>
</tr>
<tr>
<td>179:</td>
</tr>
<tr>
<td>180:</td>
</tr>
<tr>
<td>181:</td>
</tr>
<tr>
<td>182:</td>
</tr>
<tr>
<td>183:</td>
</tr>
<tr>
<td>184:</td>
</tr>
<tr>
<td>185:</td>
</tr>
<tr>
<td>186:</td>
</tr>
<tr>
<td>187:</td>
</tr>
</tbody>
</table>
PLOT 10 - ACCESS LEVEL SOFTWARE AND GRAPHICS DEMO

FAST FOURIER TRANSFORMS ON INTERDATA PROCESSORS

SELECTOR CHANNEL READ/WRITE PACKAGE

SYMBOL - TEXT-PRINTING USING INTERDATA 70 AND TEKTRONIX 4010

SREAD - FORTRAN-CALLABLE SUBROUTINE

TIMR86

TIMR75

ANALAD

CLEAR

COMAND

DFIX

EOFIND

EOF85

EXISER

Kخار FUNCTION ROUTINE

MOVEB ROUTINE

MOVEIO

MASKA ROUTINE

OVRLAY

PROC IN INTERDATA FORTRAN

PSWMOD IN ASSEMBLY LANGUAGE

SHIFT

SFTENT

SIGATN

SIGFRE

SOURCE PROGRAM LIBRARY MAINTENANCE PROGRAM

GAMES

MAG TAPE DEADSTART LOADER

CROSS REFERENCE ASSEMBLER

ARTILLERY GAME IN BASIC

GOOK 1 & GOOK 2 IN BASIC

GUESS WHAT? IN BASIC

INTERDATA-IBM 360/370 CROSS ASSEMBLER

FORTRAN CROSS ASSEMBLER

OS XRFMT

23 MATCHES GAME IN BASIC

BLACK JACK GAME IN BASIC

CHARACTER MANIPULATION & COMPARISON ROUTINES

URAND

DOS DISCTRAN

LINE FREQUENCY CLOCK DRIVER

DOS BOOTSTRAP LOADER (FOR FIXED-HEAD DISC)

RTOS DISCTRAN

LUPA/GETPA

DIABLO DISK DRIVER FOR MODEL 4 AND BOSS/4B
"UTILIZING A FIXED HEAD DISC UNDER DOS"

BASTK - 132 CHARACTER BASIC (9 ZONES)
LESSON IN BASIC - NUMBER ONE
MEMORY DRIVER

NOTE - IUG-236 thru IUG-285 are written in Dartmouth Time Sharing System BASIC and are available in Listing form only.

ANNUITY
CALENDAR
POPULA
FORECAST (FCST)
FOURIER
RESPONSE
LESSEE
LESSIM
LESSOR
MODEL
OPTION
PROJECT
SPREAD
REPORT
RISK
GRAPH
PLOT-IT
PLOTSKI
LEMT
TEKIO
COMMON
MAKE-BUY
PROFITS
CPM
LAYOUT
DIFEQ
INTERP
INTGRT
QUADROOT
RUNGE-2
SIMPLEX
ANOVAR
LINFIT
TEXTSUB
SIMPREG
STEPREG
RUNOFF
STENO
STENOADD
TEXTSUB
<table>
<thead>
<tr>
<th>IUC-276:</th>
<th>VAL</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>277:</td>
<td>DRIVE</td>
<td>51</td>
</tr>
<tr>
<td>278:</td>
<td>PAYROLL SYSTEM</td>
<td>51</td>
</tr>
<tr>
<td>279:</td>
<td>GROUP</td>
<td>51</td>
</tr>
<tr>
<td>280:</td>
<td>SAMPSTAT</td>
<td>51</td>
</tr>
<tr>
<td>281:</td>
<td>STASUB</td>
<td>52</td>
</tr>
<tr>
<td>282:</td>
<td>FLOW</td>
<td>52</td>
</tr>
<tr>
<td>283:</td>
<td>COMMENT</td>
<td>52</td>
</tr>
<tr>
<td>284:</td>
<td>MAILSORT</td>
<td>52</td>
</tr>
<tr>
<td>285:</td>
<td>MAILLIST</td>
<td>52</td>
</tr>
<tr>
<td>286:</td>
<td>DSGEN - GENERAL LOADER FOR 2.5MB DISC</td>
<td>52</td>
</tr>
<tr>
<td>287:</td>
<td>OS AIDS/RTOS</td>
<td>53</td>
</tr>
<tr>
<td>288:</td>
<td>TAPTRN (TAPE TRANSLATOR)</td>
<td>53</td>
</tr>
<tr>
<td>289:</td>
<td>VIRTUAL DATA MEMORY</td>
<td>53</td>
</tr>
<tr>
<td>290:</td>
<td>INTERACTIVE FORTRAN W/TRAP</td>
<td>53</td>
</tr>
<tr>
<td>291:</td>
<td>INTERACTIVE FORTRAN/HARDWARE FLOATING POINT</td>
<td>53</td>
</tr>
<tr>
<td>292:</td>
<td>INTERACTIVE FORTRAN/SOFTWARE FLOATING POINT</td>
<td>54</td>
</tr>
<tr>
<td>293:</td>
<td>OS INTERACTIVE FORTRAN</td>
<td>54</td>
</tr>
<tr>
<td>294:</td>
<td>DOUBLE PRECISION INTEGER DIVISION (DBLDVD)</td>
<td>54</td>
</tr>
<tr>
<td>295:</td>
<td>DOUBLE PRECISION INTEGER CONVERSION ROUTINE (DBLINT)</td>
<td>54</td>
</tr>
<tr>
<td>296:</td>
<td>DOUBLE PRECISION INTEGER MULTIPLICATION (DBLMLT)</td>
<td>54</td>
</tr>
<tr>
<td>297:</td>
<td>INTERVAL Timing (INTTIM)</td>
<td>54</td>
</tr>
<tr>
<td>298:</td>
<td>STAR TREK II</td>
<td>55</td>
</tr>
<tr>
<td>299:</td>
<td>STAR TREK III</td>
<td>55</td>
</tr>
<tr>
<td>300:</td>
<td>CLUB-DOS</td>
<td>55</td>
</tr>
<tr>
<td>301:</td>
<td>OS CLUE 70 (OS CLUB WITH TRACE)</td>
<td>55</td>
</tr>
<tr>
<td>302:</td>
<td>IFFUNC/BOSS 4B SCOPE DRIVER</td>
<td>55</td>
</tr>
<tr>
<td>303:</td>
<td>VARLIST</td>
<td>56</td>
</tr>
<tr>
<td>304:</td>
<td>XQDOS</td>
<td>56</td>
</tr>
<tr>
<td>305:</td>
<td>LOADER FORMAT ANALYZER</td>
<td>56</td>
</tr>
<tr>
<td>306:</td>
<td>GAMES 2</td>
<td>56</td>
</tr>
<tr>
<td>307:</td>
<td>INTEL 8008 & 8080</td>
<td>57</td>
</tr>
<tr>
<td>308:</td>
<td>COMPAR</td>
<td>57</td>
</tr>
<tr>
<td>309:</td>
<td>DSKCMP</td>
<td>57</td>
</tr>
<tr>
<td>310:</td>
<td>MAPSRT</td>
<td>57</td>
</tr>
<tr>
<td>311:</td>
<td>OLINE</td>
<td>58</td>
</tr>
<tr>
<td>312:</td>
<td>SCOPEYS</td>
<td>58</td>
</tr>
<tr>
<td>313:</td>
<td>SAVMEM</td>
<td>58</td>
</tr>
<tr>
<td>314:</td>
<td>UPDATE</td>
<td>58</td>
</tr>
<tr>
<td>315:</td>
<td>GTCAL</td>
<td>58</td>
</tr>
<tr>
<td>316:</td>
<td>DOSCMD (ICMD)</td>
<td>59</td>
</tr>
<tr>
<td>317:</td>
<td>DOS FOR MOD 4</td>
<td>59</td>
</tr>
<tr>
<td>318:</td>
<td>GEPAC30 PATCH MODULE TO INTERDATA CROSS REFERENCE ASSEMBLER</td>
<td>59</td>
</tr>
<tr>
<td>319:</td>
<td>SNAP2</td>
<td>59</td>
</tr>
<tr>
<td>320:</td>
<td>SSP - SCIENTIFIC SUBROUTINE PACKAGE</td>
<td>60</td>
</tr>
<tr>
<td>IUG-321:</td>
<td>INTERACTIVE GENERAL LOADER</td>
<td>60</td>
</tr>
<tr>
<td>322:</td>
<td>INTERCHANGE GAMES PACKAGE</td>
<td>61</td>
</tr>
<tr>
<td>323:</td>
<td>MOTOROLA M6800/INTERDATA CROSS ASSEMBLER</td>
<td>61</td>
</tr>
<tr>
<td>324:</td>
<td>PRINCIPLE, INTEREST RATE PROGRAM</td>
<td>61</td>
</tr>
<tr>
<td>325:</td>
<td>AMORTIZATION PROGRAM</td>
<td>62</td>
</tr>
<tr>
<td>326:</td>
<td>MATRIX ALGEBRA, LINEAR EQUATIONS</td>
<td>62</td>
</tr>
<tr>
<td>327:</td>
<td>TREND ANALYSIS PROGRAM</td>
<td>62</td>
</tr>
<tr>
<td>328:</td>
<td>GRAPH ROUTINE (TEKTRONIX 4010-1)</td>
<td>62</td>
</tr>
<tr>
<td>329:</td>
<td>SINE AND COSINE WAVES 1-720 DEGREES (TEKTRONIX 4010)</td>
<td>62</td>
</tr>
<tr>
<td>330:</td>
<td>PLTBO (BIORHYTHM CHART PLOTTER)</td>
<td>62</td>
</tr>
<tr>
<td>331:</td>
<td>DISCUPT UTILITY (DISC PATCH)</td>
<td>63</td>
</tr>
<tr>
<td>332:</td>
<td>MULTI-USER INTERACTIVE FORTRAN SYSTEM</td>
<td>63</td>
</tr>
<tr>
<td>333:</td>
<td>PUNCH</td>
<td>63</td>
</tr>
<tr>
<td>334:</td>
<td>SOURCE MAINTENANCE UTILITY TASK</td>
<td>64</td>
</tr>
<tr>
<td>335:</td>
<td>UT 200 EMULATOR FOR DEDICATED 7/16</td>
<td>64</td>
</tr>
<tr>
<td>336:</td>
<td>UT 200 EMULATOR FOR 7/32</td>
<td>64</td>
</tr>
<tr>
<td>337:</td>
<td>DCT-1000 MULTIPLEXOR EMULATOR FOR UNIVAC 1100</td>
<td>64</td>
</tr>
<tr>
<td>338:</td>
<td>G2CALRO2 - FORTRAN VERSION OF CAL</td>
<td>64</td>
</tr>
<tr>
<td>339:</td>
<td>EXPANDED PRECISION ARITHMETIC PACKAGE - EPAP</td>
<td>64</td>
</tr>
<tr>
<td>340:</td>
<td>OS/32MT UNIVERSAL CLOCK MODULE & UNIVERSAL LOGIC INTERFACE DRIVER</td>
<td>64</td>
</tr>
<tr>
<td>341:</td>
<td>70X LOADER FORMAT ANALYZER</td>
<td>65</td>
</tr>
<tr>
<td>342:</td>
<td>DISCREL</td>
<td>65</td>
</tr>
<tr>
<td>343:</td>
<td>DIRECT</td>
<td>65</td>
</tr>
<tr>
<td>344:</td>
<td>PSEUDO-RANDOM NUMBER GENERATOR SUBROUTINE PACKAGE</td>
<td>65</td>
</tr>
<tr>
<td>345:</td>
<td>OS/32 ASCIBC</td>
<td>65</td>
</tr>
<tr>
<td>346:</td>
<td>EBCASC</td>
<td>65</td>
</tr>
<tr>
<td>347:</td>
<td>1130 COMMERCIAL SUBROUTINE PACKAGE</td>
<td>66</td>
</tr>
<tr>
<td>348:</td>
<td>CANONICAL CORRELATION ANALYSIS - CANONA</td>
<td>66</td>
</tr>
<tr>
<td>349:</td>
<td>NSTAT - NONPARAMETRIC STATISTICAL ANALYSIS & CROSS CLASSIFICATION</td>
<td>66</td>
</tr>
<tr>
<td>350:</td>
<td>7-TRACK MAGNETIC TAPE DRIVER</td>
<td>66</td>
</tr>
<tr>
<td>351:</td>
<td>DISCUPT UTILITY</td>
<td>67</td>
</tr>
<tr>
<td>352:</td>
<td>OS/16MT-2 SYSTEM TABLE BUILDER II</td>
<td>67</td>
</tr>
<tr>
<td>353:</td>
<td>FIND</td>
<td>67</td>
</tr>
<tr>
<td>354:</td>
<td>FETCH</td>
<td>67</td>
</tr>
<tr>
<td>355:</td>
<td>SCAN</td>
<td>67</td>
</tr>
<tr>
<td>356:</td>
<td>TIC-TAC-TOE</td>
<td>68</td>
</tr>
<tr>
<td>358:</td>
<td>CRIBBAGE</td>
<td>68</td>
</tr>
<tr>
<td>359:</td>
<td>SNAPSHOT</td>
<td>68</td>
</tr>
<tr>
<td>360:</td>
<td>MULTI-USER EXECUTIVE OPERATING SYSTEM FOR 16-BIT CPU</td>
<td>68</td>
</tr>
<tr>
<td>361:</td>
<td>FIXED AND FLOATING POINT MATH PACKAGE</td>
<td>69</td>
</tr>
<tr>
<td>362:</td>
<td>TIDE (16-BIT TEXT EDITOR)</td>
<td>69</td>
</tr>
<tr>
<td>363:</td>
<td>RTOS - REAL TIME OPERATING SYSTEM - 16-BIT MODEL 70/80</td>
<td>69</td>
</tr>
<tr>
<td>IUG-364:</td>
<td>RTEX - REAL TIME TELECOMMUNICATIONS EXECUTIVE</td>
<td>69</td>
</tr>
<tr>
<td>365:</td>
<td>BASIC INTERPRETER</td>
<td>70</td>
</tr>
<tr>
<td>366:</td>
<td>FLOXOS - REAL TIME BASIC WITH FLOPPY DOS</td>
<td>70</td>
</tr>
<tr>
<td>367:</td>
<td>OBDUMP - OBJECT DUMP</td>
<td>70</td>
</tr>
<tr>
<td>368:</td>
<td>CAL-360/370 CROSS ASSEMBLER</td>
<td>70</td>
</tr>
<tr>
<td>369:</td>
<td>MOVESTR</td>
<td>71</td>
</tr>
<tr>
<td>370:</td>
<td>BFP - BASIC FORTRAN PLOTTER</td>
<td>71</td>
</tr>
<tr>
<td>371:</td>
<td>FBCOPY - FIXED-BLOCK AND UNBLOCK COPY</td>
<td>71</td>
</tr>
<tr>
<td>372:</td>
<td>OS/32MT RUN ANALYZER</td>
<td>72</td>
</tr>
<tr>
<td>373:</td>
<td>SIMULATION PROGRAMS IN BASIC LEVEL I</td>
<td>72</td>
</tr>
<tr>
<td>374:</td>
<td>SFS - SPOON FEEDER SYSTEM</td>
<td>72</td>
</tr>
<tr>
<td>375:</td>
<td>SORT</td>
<td>73</td>
</tr>
<tr>
<td>376:</td>
<td>CAL 360/370 CROSS ASSEMBLER</td>
<td>73</td>
</tr>
<tr>
<td>377:</td>
<td>INPUT</td>
<td>73</td>
</tr>
<tr>
<td>378:</td>
<td>SNAP</td>
<td>73</td>
</tr>
<tr>
<td>379:</td>
<td>DATA DIRECTOR EDITOR</td>
<td>74</td>
</tr>
<tr>
<td>380:</td>
<td>BFP (BASIC FORTRAN PLOTTER)</td>
<td>74</td>
</tr>
<tr>
<td>381:</td>
<td>SOLO OPERATING SYSTEM INCLUDING SEQUENTIAL AND CONCURRENT PASCAL INTERPRETERS</td>
<td>75</td>
</tr>
<tr>
<td>382:</td>
<td>COBOL SQUEEZER</td>
<td>75</td>
</tr>
</tbody>
</table>

Request Form 76
Submittal Form 77, 78
Program Review Form 79, 80
IUG-101: CLUE (DEBUG WITH TRACE)
System Requirements:
 Mod 3, TTY, CLUB, 03-013R00,
 Rel/Gen Loader
Occupies: X'522' Bytes Above CLUB
Language: Interdata Basic Assembler
Available material:
 Relocatable Object Tape
 Assembly listing, description

CLUE is an extension of the Interdata Hexadecimal Debug Program, 03-013.
The operation of CLUE is identical to that of CLUB with Disassembly and
Output, as described in the CLUB manual, Publication Number 03-002R03A12,
except for the addition of directives for selective program trace,
sequential program input, and extension of the breakpoint features.
Linkage to the 03-013R00 version of CLUB is required at load time.

IUG-102: SUPER-CLUB
System Requirements:
 Mod 3, TTY
 50-Sequence Loader
Language: Interdata Basic Assembler
Available Material:
 Bootstrap Object Tape, Description

SUPER-CLUB is a combination of the Interdata General Loader, 06-025R01, as
described in the Loader Description, 29-231, and the Hex-Debug (CLUB)
program, 03-013R02, as described in the CLUB Manual, 29-235. An asterisk
(*) directive, added to Club, allows the setting of the loader bias and
transfer to the loader. The loader returns to Super-Club following each load.
Continuous linkage loading is provided by repetitive asterisk (*).directives.
Any interrupts which occur are trapped, and a message is typed. The program
is available in bootstrap form which is self-loading into the topmost 4K bytes
of memory.

IUG-103: TIC-TAC-TOE
System Requirements:
 Mod 3, TTY,
 Rel/Gen Loader
Occupies: X'A50' Bytes
Language: Interdata Basic Assembler
Available material:
 Relocatable object tape,
 Assembly listing, description

This demonstration program plays Tic-Tac-Toe on from 1-16 teletypes
having addresses X'00' to X'0F'. This game is played interactively at each
teletype, with the print-out showing the status of the game and a goading
message after each play. The program involves four levels of strategy,
ranging from Random to Unbeatable. As the game is played, the computer
comes more and more difficult to beat each time it loses.
MICA II IN-CORE ASSEMBLER

System Requirements:
- Mod 4, TTY
- GEN Loader

Occupies:
- 2KB

This small interactive Assembler for the Model 4 occupies only 2K bytes of memory. Instructions and data are typed by the user on the console Teletype. The instructions and data are assembled directly into core without the necessity of punching a paper tape which is to be loaded into core. No relocation facilities or symbolic addressing is available, although addressing relative to the current location is permitted. The program tape contains six sub-programs requiring the General Loader for linkage loading.

360/20 SIMULATOR FOR MODEL 4

System Requirements:
- Mod 4, 8KB, TTY
- HS Opt for Mag Tape I/O
- REL/GEN Loader

Occupies:
- X'F84' Bytes

Simulated execution of 360/20 object code is performed by this program. The 360/20 program occupies a portion of memory along with the core resident simulator which requires 4K. A Model 4 with at least 8K bytes of memory, is required. All 360/20 instructions, including I/O and decimal arithmetic (with multiply and divide) can be executed directly with no change to the 360 program. The simulator executes 360/20 instructions at about the same speed as the Model 20 itself.

MODEL 3 ASSEMBLER

System Requirements:
- GE Time-Share System

Language: BASIC for GE Time-Share Systems

This program is an interactive assembler written in Basic, to run on the GE Time-Share System. The assembler consists of several modules for file handling, Pass 1 and 2, listing generation, and tape punching. Use of the program requires some knowledge of the file handling and control language of the time-share system. This program is available only as a Basic listing, with no supporting documentation. The listing may be of interest to prospective users of the GE system, or as an example of an assembler written in Basic.
IUG-107: MODEL 3 SIMULATOR
System Requirements: MIT 360 Time-Share System
Language: 360 BAL for 360/67 Time-Share System
Available Material: Source Listing

This program, which runs on the MIT 360 time share system, simulates the execution of INTERDATA Model 3 object code. It provides at a time sharing terminal, interactive features for program creation, execution, tracing, and breakpointing. The program is a complete simulation of all Model 3 instructions with special provisions for handling I/O instructions at the terminal. This program is available as a listing of the source program, which is written in 360 Assembly language.

IUG-108: TAPE LABEL MAKER
System Requirements: Mod 3, TTY ABS/REL GEN Loader
Occupies: X'0080' to X'03D2'
Language: INTERDATA Basic Assembler
Available Material: Absolute Object Tape Assembly Listing Description

The Tape Label Maker is used to make a readable label on a punch paper tape. A line of characters can be entered from the teletype keyboard, edited as needed and punched on the tape in a readable form.

IUG-109: PAPER TAPE DUPLICATOR
System Requirements: Mod 3, HSPTP, HSPTP ABS/REL/GEN Loader
Occupies: X'80' to X'1C0' using remaining core for tape image
Language: INTERDATA Basic Assembler
Available Material: Absolute Object Tape Assembly Listing Description

This program allows the duplication and verification of paper tapes using the high speed paper tape reader and punch. A master tape is read and stored in its entirety in core memory. The master tape is then re-read for verification. The tape is duplicated by punching the data from core memory to paper tape, with appropriate leader and trailer. A number of copies can be made as specified by a count in display panel switches. A verify mode then allows checking of all copies punched. This program requires less than 500 bytes, but 16K memory or more is required for duplication of large programs.
IUG-110: DIAMOND DEMO
System Requirements:
 Mod 3, X-Y Scope
 REL/GEN Loader
Occupies:
 X'F0' Bytes

Language: INTERDATA Basic Assembler
Available Material:
 Relocatable Object Tape
 Assembly Listing
 Description

This program is designed to provide a demonstration package for a Model 3 with an oscilloscope. The program generates two triangular wave shapes that are 90° out of phase. One wave shape is fed to the X axis, the other to the Y axis of the scope. The resultant diamond pattern appears on the scope face. Parameters in the program control the picture intensity.

IUG-111: MAG-TAPE DRIVERS
System Requirements:
 Mod 4, HS Opt, Mag Tape
 GEN Loader

Language: INTERDATA Basic Assembler
Available Material:
 Relocatable Object Tape
 Assembly Listing
 Description

The Mag Tape Driver Routines provide 8 subroutines for handling normal data transfer operations with IBM compatible 7-track or 9-track magnetic tape:

Write A Record
Read A Record
Backspace n Records
Backspace n Files
Advance n Records
Advance n Files
Write End Of File
Rewind

The Read routine includes error detection and recovery procedures. Each operation is started with a Branch and Link subroutine call to specify ENTRY/EXTRN global symbols. Status of the I/O operation is returned to the calling program.
IUG-112: UNIF-RANDOM NUMBER GENERATOR

System Requirements:
Mod 3, HS Opt
(MH Instruction)
REL/GEN Loader

Occupies:
X'80' Bytes

Language: INTERDATA Basic Assembler
Available Material:
Relocatable Object Tape
Assembly Listing

UNIF generates ten uniformly distributed random numbers between X'0000' and X'FFFF'. The calling sequence is:

BAL 15, UNIF
DC A(RSLT1)
DC A(RSLT2)

RSLT1 is any full word odd integer between X'0000', X'0001' and X'01FF'. X'FFFF' which is initially defined by the programmer and is subsequently redefined by UNIF. RSLT2 is the string of uniform halfword integers. The uniformly distributed numbers are generated as follows:

\[
\text{RSLT1} = \text{modulo} \left\lfloor \left(\text{RSLT1} \times (3125) \right) \right\rfloor \\
\text{RSLT2} = \left\lfloor \text{RSLT1} / 2^{16} \right\rfloor
\]

For ten iterations where modulo arithmetic is \(2^{26}\) and \(\left\lfloor A \right\rfloor\) means the largest integer is not greater than \(A\). All general registers used are saved and restored upon return.

IUG-113: IDS DISC UTILITY

System Requirements:
Mod 3, 16KB, TTY, Selch,
IDS Disc Mod 7032
HEX-Debug, 03-013R00
at X'2300'
ABS/REL/GEN Loader

Occupies: X'2D00' to X'2F5C'

Language: INTERDATA Basic Assembler
Available Material:
Absolute Object Tape (CLUB "0" Dump)
CLUB Disassembly Listing w/comments

This program provides a set of Read/Write/Compare utilities for the IDS Disc, Model 7032. This program can write from selected areas of core in 200 halfword increments, read into a buffer and compare. Errors cause a type-out showing address and contents. The program can also read from a selected track and sector into core. Also, it is possible to write, read or compare through the disc, without incrementing core locations. The program, which is absolute, assumes CLUB is at location X'2300', and utilizes its illegal instruction trap.
IUG-114: TIDE W/MODIFY

System Requirements:
Mod 3, TTY
REL/GEN Loader

Occupies: X'BC0' Bytes
plus adjustable 1KB text buffer

Language: INTERDATA Basic Assembler
Available Material:
Relocatable Object Tape
Assembly Listing
Description of M or MV Commands

This program is the standard version of TIDE, 06-014R00, as described in TIDE manual 06-014A15, with the addition of two new commands: M for Modify or MV for Modify-Verify. This command allows modification of a character string within the open line. Only enough characters need to be typed to specify the particular string to be modified. Characters may be changed, added or inserted, or deleted.

IUG-115: TTY SUBROUTINES

System Requirements:
Mod 4, HS Opt, TTY
GEN Loader

Occupies: X'2AA' Bytes

Language: INTERDATA Basic Assembler
Available Material:
Relocatable Object Tape
Assembly Listing
Description

This program consists of a group of utility subroutines which will handle most teletype functions. They include standard input, output message as well as special character commands. In the latter case, upon recognition of the special character, control is transferred to a core location which contains a pointer to a service routine (or other user program). Each function is accomplished by the user's programmed calling sequences with BAL's and global symbols specified in the description.

IUG-116: FORTRAN EDIT UTILITY

System Requirements:
Mod 4, HS Opt, Fltg. Pt., 16KB
BOSS, FORTRAN IV Compiler
& Routine Library
CR/MT/DRUM/DISC

Language: FORTRAN IV
Available Material:
Compiled Listing

The Fortran Edit Utility is useful for updating a source program file on a magnetic tape or equivalent device. The program is useful as an example of character-manipulation in the Fortran IV language. The compiled program uses BOSS for logical I/O, and is therefore device independent. The functions of this program are:
1. Place source statements (cards) onto magnetic tape with sequence number.

2. Modify existing source on mag tape and inset update statements by sequence number.

3. Re-sequence existing cards on magnetic tape.

4. List any card image file.

This program is provided in listing form only, which includes many comments. The program includes less than 50 statements and must be compiled to be used.

IUG-117: A/D-READ
System Requirements: Mod 3, A/D Converter REL/GEN Loader
Occupies: X'48' Bytes
Language: INTERDATA Basic Assembler
Available Material: Relocatable Object Tape Assembly Listing Description

AD-READ is a subroutine for use in reading a preset number of A/D converter channels sequentially. Each channel, in the case of an 8-bit converter, uses one byte and, in the case of 10-bit or 12-bit converters, uses two bytes. The Calling Sequence requires that the starting address of the data buffer for the particular pass of the A/D Converter is loaded into Register 6, the last buffer address is loaded into Register 8, and the increment into Register 7. All other registers used are restored. The address which contains the first channel number to be queried, is a constant following the branch and link instruction.

IUG-118: SUPER 50-SEQUENCE FOR MODEL 3
System Requirements: Mod 3 ONLY
Language: INTERDATA Basic Assembler
Available Material: Listing Below

This new 50 sequence for the Model 3 does not require bootstrap tapes to be loaded on the first character:
This 50 Sequence is operable only on the Model 3, because of the nature in which Branch and Link (BALR) is decoded in the Model 3 firmware. The Model 3 BALR performs linkage prior to branching whereas the Model 4/5 branches prior to linkage.

IUG-119: BOSS/3B (BASIC OPERATING SYSTEM)

System Requirements:

Language: INTERDATA Basic Assembler

Mod 3, TTY

Available Material:

Bootstrap Object Tape

Assembly Listing

BOSS/3B is a Basic Operating System which runs on the INTERDATA Model 3, and requires a little more than 3KB of core (X'0D00'). BOSS/3B acts in every way like BOSS/4B and conforms with the Basic Operating System (BOSS) Manual No. B29-216. BOSS/3B uses the illegal instruction PSW to trap out the Supervisor Call (SVC), Store Multiple (STM), and Load Multiple (LM) instructions and perform them in software. The trap routines are written so that the programmer has full use of the instructions for his own use as well as BOSS's use.

Note: There is an error in the above tape.

Location 856 contains 7CC - this should be 7D0
IUG-120: CLOCK AND CALENDAR
System Requirements: Mod 3, 60Hz Real Time Clock
Language: INTERDATA Basic Assembler
Available Material: Source Listing

This program is an example, in source listing form only, of calendar time tracking by use of a real-time 60Hz clock. With this subroutine, the user need only append an interrupt handling routine to obtain the 60 cycle count, and an initialization routine to preset the calendar date in six halfwords (secs, mins, hours, day, month, years) in conjunction with enabling interrupts on a precision 60Hz real-time clock.

IUC-121: LOAD MULTIPLE/STORE MULTIPLE TRAP
System Requirements: Mod 3 GEN Loader
Language: INTERDATA Basic Assembler
Available Material: Relocatable Object Tape (w/2 versions + stack)
Occupies: X'020A' Bytes (Version 1) X'021C' Bytes (Version 2) X'006A' Bytes (STACK)
Description 3 Assembly Listings

The Load Multiple/Store Multiple Trap routine is a re-entrant trap routine that simulates execution of the LM/STM instructions. This program allows a user to run any program using Standard Model 4 instructions (except Autoload and Model 4 Options) on the Model 3. Illegal Instruction trap routines, stack overflow/underflow routines, or interrupt handling routines using LM and STM, may be used with this program as specified in the description.

IUG-122: SIM-TRAP ROUTINES FOR LM, STM, PUSH, POP, AND TEXT EDITING
System Requirements: Mod 3, TTY HEX-DEBUG, 03-013R00 at X'80' GEN Loader
Language: INTERDATA Basic Assembler
Available Material: Assembly Listings
Description

SIM is the main program of a set of routines designed to allow the use of certain optional instructions on machines without their hardware implementation. These instructions are STM,LM,PUSH,POP,CLBR,CLB,MOVR, MOV, FNDR, and FND. The General Loader is required for ENTRY/EXTRN linkage. The set of routines is independent of all other executing programs in the machine since entry and exit are achieved via illegal instruction interrupts and PSW swapping.
IUG-123: READ-WRITE-FUNCTIONS

System Requirements:
Mod 4, HS Opt, Fltg. Pt.
16KB
HSPTR/P or Card Reader
Interactive Fortran
w/RWF, 03-007R00
REL Loader

Occupies:
X'3D8' Bytes

Language: INTERDATA OS Assembler
Available Material:
Relocatable Object Tape
Assembly Listing
Description w/Example Printout

This program provides some READ-WRITE-FUNCTIONS for INTERDATA's Interactive Fortran with RWF, 03-007R00, such as:

READ:
Card Reader and High Speed Paper Tape
*Uses conversion codes for IBM-026 Keypunch Hollerith
with changes available on listing of conversion codes
for IBM-029 Keypunch Hollerithin Card Reader routine.

WRITE:
High Speed Paper Tape

FUNCTIONS:
Integer/Fraction, Random numbers, and Absolute value.

Expansion slots are provided to facilitate other user I/O device handlers and functions. Additional Interactive Fortran user statements implemented are:

READ X,A,B,C,... reads one statement from the Card Reader (X=4)
or from the High Speed Paper Tape Reader (X=1910). Variables
A,B,C,... are set to the respective values separated by commas on
the statement read.

WRITE X,A,B,C,... writes the values of the variables, expressions
or character Strings A,B,C,... to the High Speed Paper Tape Punch
when X=1910.

WRITE X writes 200 null characters as leader or trailer with
punch-off control to the High Speed Paper Tape Punch when X=2010.

FUNC (X,A), NUMBER initializes the Random Number Generator with
NUMBER (e.g. 7305.1) (X=5) and FUNC (X,A) causes A to be set to
a generated random number when X=5.

FUNC (X,A),B when X=10, causes the variable A to be set to the
absolute value of the variable B.

FUNC (X,A,B),C when X=3 causes A to be set to the integer portion
of the variable C and B is set to the fractional portion of the
variable C.
IUG-124: SINK/SOURCE CONTROL

System Requirements:
- 16KB
- HSPTER or Card Reader
- Interactive Fortran
 w/RWF, 03-007R00
- IUG-123, RWF's
- REL Loader

Occupies:
- X'B0' Bytes

Language: INTERDATA OS Assembler
Available Material:
- Relocatable Object Tape
- Assembly Listing
- Description w/Example Printout

This program, in conjunction with IUG-123 READ-WRITE-FUNCTION, provides Sink/Source control for Interactive Fortran programs. It allows user Interactive Fortran programs to be entered via the Card Reader or the High Speed Paper Tape Reader by means of the additional system command statement in Direct Mode, "← RCRD." By patching a halfword in IUG-124 containing the device number, the "← RCRD" statement reads from the HSPTER.

IUG-125: EDITOR/ASSEMBLER COMBO

System Requirements:
- Mod 3, 16KB, TTY, HSPTER=X'03'

Occupies:
- X'78' to X'28A6' using
 16KB for text buffer

Language: INTERDATA Basic Assembler
Available Material:
- Bootstrap Object Tape
- Assembly Listings
- Description

This program modifies the standard INTERDATA Basic Assembler, 03-024, and original Editor (TIDE), 06-014, in three forms:

1. those which extend the editing powers of TIDE, including modifications which allow the user to choose between two different command input devices, the standard teletype and the ARDS or Advanced Remote Display Station, as well as two different punch devices, in this case, a standard teletype punch and a high-speed punch.

2. those which allow the user to move between the Editor and the Assembler

3. those which permit the user to specify list and punch devices for the assembler to operate on, as well as the format of output which the assembler generates.

In keeping with these changes, all previous TIDE commands have been preserved and the new commands have been implemented with identical format and control. In addition to the description provided, user information on this assembler is found in 29-230 and on the editor in 06-014A12.
The Model 5 Assembler was contributed by Nicholas Negroponte of M.I.T. The assembler has all the features of the standard basic assembler with the restriction that floating-point constants and expressions cannot be used. The system is written to run with the CMS system on the 360/67, and its I/O structure is dependent on that system. Professor Negroponte has indicated that this program could be modified for other I/O systems, and he has offered to provide the program to interested users who will send him a mag tape reel on which he can write the program. Interested parties should contact the INTERCHANGE Secretary for further information on this program.

The Copier program is used to copy 80-byte source records from logical unit 1 to logical unit 2. Double buffering is employed to make use of the overlapping I/O capability of BOSS/4A. If a non-zero status is detected, it is printed on the console device and a PAUSE SVC is issued. On continuing, the operation for which the non-zero status was returned, is re-tried.
IUG-128: MOD1 FORTRAN COMPILER
System Requirements:
 Mod 1, 4K, TTY
 Mod 1 GEN Loader
Occupies:
 3.5KB

Language: Mod 1 Assembler
Available Material:
 Absolute Object Tape
 Mod 1 Assembly Listing

The Model 1 Fortran System consists of IUG-128, a Basic Fortran Compiler and IUG-129, Mod 1 Fortran Run-Time Library routines designed to operate on a Model 1 with 4KB memory. A teletype is the only required device. The compiler is fully resident and requires only one pass across the source. It reads a source tape producing a listing, dictionary table, and user object tape. In 4KB, the compiler allows about 500 bytes for dictionary space.

IUG-129: MOD 1 FORTRAN RUN-TIME LIBRARY
System Requirements:
 Mod 1, 4K, TTY
 Mod 1 GEN Loader
Occupies:
 3KB

Language: Mod 1 Assembler
Available Material:
 Absolute Object Tape
 Mod 1 Assembly Listing

The Model 1 FORTRAN System consists of IUG-128, a Basic FORTRAN Compiler and IUG-129, the Mod 1 FORTRAN Run-Time Library which is provided as a single, absolute, low core resident tape. The entire library is about 3KB, but the User object program may overlay upper sections (1K) of the Run-Time Library to increase user program size, i.e., if TRIG, LOGARITHMIC, or other functions are not required. Without overlays, 1KB of user program space is available on a 4KB system with the Run-Time Library.

IUG-130: OS CARD TO TAPE UTILITY
System Requirements:
 Mod 4, 8KB, BOSS
Occupies:
 X'11D2' Bytes

Language: INTERDATA OS Assembler
Available Material:
 Relocatable Object Tape
 Assembly Listing
 Description

This program, in conjunction with a resident operating system, converts source information from logical unit 1 to logical unit 2 in identical or contracted standard INTERDATA source format, such as from cards to paper tape or magnetic tape. Upon execution at its origin, message/response interaction with the operator at logical unit 00/05 provides self-explanatory direction in regard to operating procedures. Verification of the generated source on L'2 is accomplished by a second pass across the source on LUL. Listings can be obtained on LU3 of the LUL source during the first reproduction pass or of the LU2 source during the second verification pass. An optional sequence check for ascending sequence identifiers on each LUL source statement is provided on both passes. An optional "squeeze" of the LUL source is provided: (deletion of

13
sequence field, left justification of carriage return to last non-space character of each line, and reduction of multiple spaces to a single delimiting space). Reproducing large source programs to paper tape allows the creation of "multitapes", whereby every one-inch thicknesses of fan-fold paper tape, an INTERDATA OS Assembler language "PAUSE" statement is injected on the LU2 copy, and the operator obtains trailer, breaks the tape, obtains leader and continues.

IUG-131: ASSEMBLER FOR MOD 1 W/64-BYTE ROM

System Requirements: Mod 1, 4K, TTY
Mod 1 GEN Loader

Language: INTERDATA Mod 1 Assembler
Available Material: Absolute Object Tape

Occupies: Mod 1 Assembly Listing
3KB

This program is the Model 1 Assembler, 08-004, modified to allow the user with a 64-byte crushed core loader (ROM) to perform assemblies. The functions and specifications of this program are identical to those described in the Model One User's Manual, 29-215.

IUG-132: TEXT EDITOR FOR MOD1 W/64-BYTE ROM

System Requirements: Mod 1, 4K, TTY
Mod 1 GEN Loader

Language: INTERDATA Mod 1 Assembler
Available Material: Absolute Object Tape

Occupies: Mod 1 Assembly Listing
2KB

This program is the Model 1 Text Editor, 08-007, as modified to allow the user with a 64-byte crushed core loader (ROM) to edit text. The functions and specifications of the program are identical to those described for the standard editor in the Model One User's Manual, 29-215, with the following exceptions:

Special Text Editor Address

- '0040' Restart location, program will not initialize text buffer
- '0044' Starting location, program will initialize text buffer
- '0048' Defines first address of text buffer
- '004A' Defines last address of text buffer
IUG-133: LINEAR REGRESSION USING INTERACTIVE FORTRAN

System Requirements: Language: Interactive Fortran
Mod 3, 16KB, TTY
and Interactive FORTRAN
With TRAP, 03-006R02
or
Mod 4, HS Opt, (Fltg. Pt),
TTY
and Interactive FORTRAN/
MOD4 or RWF, 03-007 or
03-011

Available Material:
Source Listing (as created by
03-006R02)
Source Tape (as created by 03-006R02)
Description

This program is designed to perform a regression analysis on two variables. It gives the standard error of estimate, a least square best fit line, and a table or residuals. (The source tape can be converted through 03 007R01 to be useful with OS Interactive Fortran, 03-033.) Note: the original Interactive Fortran's separated statements with ASCII spaces and the upcoming I.F. revisions have standardized inter-record paper tape gaps of 8 nulls.

IUG-134: GENERAL LOADER FOR WIRE WRAP TTY

System Requirements: Language: INTERDATA OS Assembler
Mod 3, TTY
50 Sequence Loader
Available Material:
Bootstrap Object Tape
Assembly Listing

Occupies: X'600' bytes from top-of-core

This program is the INTERDATA General Loader, 06-025R01, as modified to be loaded and to load in a wire-wrap TTY environment. User description is available in the Loader Descriptions, Publication Number 29-231R01.

IUG-135: RELOCATING LOADER FOR WIRE-WRAP TTY

System Requirements: Language: INTERDATA OS Assembler
Mod 3, TTY
50 Sequence Loader
Available Material:
Bootstrap Object Tape
OS Assembly Listing

Occupies:
X'400' Bytes from top-of-core

This program is the INTERDATA Relocating Loader, 06-024R01, as modified to be loaded and to load in a wire wrap TTY environment. User description is available in the Loader Descriptions, Publication 29-231R01.
IUG-136: TEXT EDITOR FOR WIRE WRAP TTY

System Requirements: Language: INTERDATA OS Assembler
Mod 3, TTY
REL/GEN Loader
Occupies: Available Material:
X'13FA' Bytes
Relocatable Object Tape
OS Assembly Listing

This program is the INTERDATA TIDE Editor, 03-026R01, as modified for I/O in a wire wrap TTY environment. User description is available in the Editor (TIDE) Program Manual, Publication No. 29-229R01.

IUG-137: BOSS/4B FOR 16KB COMPILATIONS

System Requirements: Language: INTERDATA OS Assembler
Mod 4, 8KB, TTY
HS Opt for Mag Tape
(For use in FORTRAN IV
compilations:
Mod 4, HS Opt,
Fltg. Pt., 16KB
TTY, FORTRAN IV Compiler)
Available Material:
Combined Bootstrap & Relocatable
Object Tape
OS Assembly Listing of modified
BOSS/4B
Description

This program is a modified version of BOSS/4B, 03-021R01, with the loader and magnetic tape driver routines removed. Its implicit purpose is to facilitate FORTRAN IV Compilations under BOSS/4B in 16KB environments with directions available in the IUG-137 description. User information on compilations under BOSS/4B are found in BOSS Program Manual, B29-216 and the BOSS FORTRAN IV User's Guide, 29-246. The program tape combines a bootstrapped Rel Loader followed by the modified BOSS/4B such that not only is IUG-137 in effect, self-loading but that the compiler can then be loaded by the same Rel Loader.

IUG-138: BOSS/4B SYSTEM GENERATION SOURCE

System Requirements: Language: INTERDATA OS Assembler
OS Assembler
Available Material:
Source Multitape (3 parts)
Source Listing of Multitape
Description

This program is the source form of BOSS/4B, 03-021R01, in multtape form to provide users with the ability to add or delete modules from BOSS/4B to conform to individual system requirements. The source tape consists of 3 sections with source statements squeezed (no sequence fields, left-justified terminal carriage return, and multiple spaces reduced to a single delimiting space). It contains no OPTION statement and must be assembled with the OS Assembler, 03-025, as each separate section ends with a "PAUSE" statement and TITLE and IF statements are used.
IUG-139: MODEL 1 INTERTAPE PROGRAMMING SYSTEM (IPS1)
System Requirements: Language: Mod 1 Assembler
Mod 1, 4KB
SERIAL TTY Available Material:
1 or 2 INTERTAPE Systems Absolute Object Tape
Mod 1 General Loader Assembly Listing
Occupies: '800' - 'FFA' Description

The Intertape Programming System, (IPS1) for the INTERDATA Mod 1 processor is a cassette resident operating system. IPS1 has two main functions. It allows the building of a system library on cassette which may contain Model 1 system programs, user-written programs, or user data files. Elements entered into the library may be labeled and called by name with keyboard commands. Secondly, IPS1 provides cassette and teletype Input/Output routines which may be called by user programs. In addition, IPS1 contains other cassette utility commands and debugging features.

IUG-140: INTEGRATION USING TRAPEZIODAL RULE
System Requirements Language: FORTRAN IV
Mod 4, High Speed Option, Available Material:
Floating Point, 16KB Description
BOSS/4B, FORTRAN IV Compiler, Listing
Run-Time Library, FUNC.

This program performs integration using Trapezoidal Rule on any polynomial of the form \(C(1) + C(2) X + \ldots + C(I+1) X^I \) up to order 99 where the user specifies:
1. Order of the Polynomial = I
2. Co-efficients of the Polynomial = C(i)
3. Lower Limit, Upper Limit, Number of Intervals +1 = N; where N may range from \(2 \leq N \leq 999 \)

The program and its associated Function subroutine (FUNC) are provided in listing form only.

IUG-141R01: STAND-ALONE INTERTAPE DRIVER
System Requirements: Language: OS Assembler
Mod 4, INTERTAPE Available Material:
Occupies: Relocatable Object Tape
X'0222' Bytes Assembly Listing
Description

This stand-alone driver performs the following I/O operations with the INTERTAPE cassettes: READ, WRITE, REWIND, WRITE AN END-OF-FILE, SKIP-RECORD-FORWARD, SKIP-RECORD-REVERSE, SKIP-EOF-FORWARD, and SKIP-EOF-REVERSE. No High Speed Option or Selector Channel is required. Appropriate call sequences are as follows:

For READ/WRITE: BAL R15,CASDVR For COMMANDS: BAL R15,CASDVR
DC X'xxyy' DC X'xxyy'
DC O DC O
DC A(START) DC A(END)

where \(xx = \) function code and \(yy = \) physical device address of cassette drive. The R01 version removes an erroneous DC 0 from the R00 object tape and adjusts the address arithmetic used to allow blocks of data greater than 32KB to be READ/WRITEN.
IUG-142: OS MODEL 1 ASSEMBLER
Author: Steve Callender, G. E. Co.
System Requirements: Mod 4, 8KB, TTY, BOSS
Language: INTERDATA OS Assembler
Available Material: Source Paper Tape

This OS Mod 1 Assembler is the standard INTERDATA Model 1 Assembler for Model 3, 4 or 5, 03-034, as modified to operate under BOSS for I/O purposes. Written to run on a Model 4 or 5, it assembles source statements of the Mod 1 Assembler Language as described in the Mod 1 Users Manual, 29-215. Operating procedures are those defined in 03-034A16 Operating Instructions. It uses three logical units which must be assigned as follows prior to execution:

LU1 Source Input Device
LU2 Binary Object Device which must be X'FF' to obtain M08/M09 tape format.
and LU3 List Output Device.

IUG-143: MEDIA TO MEDIA PROGRAM
Author: Steve Callender, G. E. Co.
System Requirements: Mod 5, 8KB, TTY, BOSS
Language: INTERDATA OS ASSEMBLER
Material Available: Source Paper Tape
Description

This Media to Media Program provides the capability, under BOSS, to read ASCII records from one peripheral device to another. Optional features provided are moving the sequence number from columns 72 through 80 to columns 62 through 70, and conversion of Hollerith code produced on either the -029 or -026 keypunch. Extraneous trailing spaces are removed from records. Program options are selected via the settings of the Display Panel's Data Entry Switches' least significant digit.

IUG-144: OS TEXT EDITOR W/IMPROVED OUTPUT
Author: Steve Callender, G. E. Co.
System Requirements: Mod 4, 8KB, TTY, BOSS
Language: INTERDATA OS ASSEMBLER
Material Available: Source Paper Tape

This text editor is the standard INTERDATA Text Editor (TIDE), 03-027R01, as documented in the Tide Manual, 29-229 and as improved by the following features:

1) Modified to function beyond 32KB;
2) O,L,P output of multiple lines made faster;
3) High text buffer limit fetched from BOSS as TOP-OF-CORE;
4) Reinitialization on restarts of the General Register containing the constant 1;
and 5) Form feed character sent to LU3 for L and P commands.
IUG-145: SOURCE DECK SYSTEM
Author: Steve Callender, G.E. Co.
System Requirements:
 Mod 5, 24KB, TTY, BOSS/4B
 Mag Tapes
Occupies:
 X'F00' to X'43FE'

Language: INTERDATA OS Assembler
Material Available:
 Absolute Object Tape
 Operating Instructions

This system allows for the creation and maintenance of magnetic tape source libraries where each file, separated by file marks, consists of program source statements preceded by a TITLE statement and terminating with an END statement. It provides the capability to edit and copy these magnetic tapes. Source files may be listed, extracted, or assembled. In addition, several operator convenience functions are provided.

IUG-146: MODEL 1 MULTIPLY/DIVIDE SUBROUTINES
System Requirements:
 Mod 1, 2KB
Occupies:
 MULTIPLY 59 Bytes
 DIVIDE 85 Bytes

Language: INTERDATA MOD 1 Assembler
Material Available:
 Source Listing

These two subroutines, Multiply and Divide, provide the Model 1 user with a software unsigned 16 x 16 bit multiplication and a 32 x 16 bit division capability. Execution times are:
 MULTIPLY: 603+19Nusec, N=No. of 1's in multiplier
 DIVIDE: 822:986 + 10Nusec, N=No. of 1's in quotient.

IUG-147: PLOT4 - POOR MAN'S PLOTTER
Author: Richard Sewell, NRC of Canada
System Requirements:
 Mod 4, TTY (or line printer)
Occupies:
 X'27C' Bytes

Language: INTERDATA OS Assembler
Material Available:
 Flow Chart
 Assembly Listing
 Description
 Relocatable Object Tape

This subroutine plots up to four sets of data stored in memory onto printing devices, such as the teletype or high speed line printer instead of a special plotter device.
IUG-148: MAG TAPE UPDATE/MAINTENANCE PROGRAM

System Requirements:
- Mod 4, HS Opt., TTY, BOSS
- Card Reader/Mag Tape

Occupies:
- X'2A8' Bytes

Language: INTERDATA Basic Assem
Available Material:
- Relocatable Object Paper Tape
- OS Assembly Listing

Description

This program, under BOSS, allows the user to create, copy and update multi-file magnetic tapes by means of a series of simple commands. Files contain 80 byte records addressable by their rightmost five digits of the sequence field in columns 73-80. Records are re-sequence on output to LU3 from 00000001 up to 00032767.

Other functions performed by the program include:

- TTY Keyboard to Magnetic Tape
- Card Reader to Magnetic Tape
- Card Reader to Printer
- Magnetic Tape to Printer

IUG-149: RANDM – RANDOM NUMBER FUNCTION

Author: Fred V. Brock, Univ. of Okla.

System Requirements:
- Mod 4, HS Opt., Flt. Pt.,
- 16KB BOSS, Fortran IV, 04-014

Occupies:
- X'A2' Bytes

Language: INTERDATA OS Assembler
Available Material:
- Relocatable Object Tape
- OS Assembly Listing
- Test Program Listing

This program is an assembly language function subroutine which allows the user to use RANDM as a function in FORTRAN IV programming; such as

RX = RANDM(IY).

RANDM generates a sequence of 536, 870, 912 random real numbers in the range 0.4656613E-9 to 1.0; with population mean 0.5 and variance 0.083333. It is initialized by setting IY to any odd, positive integer up to 32767 and on subsequent calls IY=0. This function is adopted from the IBM 360/SSP subroutine RANDU and should have the same characteristics.

EXAMPLE: generate 1000 random numbers

```
DIMENSION RX(1000)
RX(1) = RANDM (7305)
DO 1 J=2, 1000
RX (J) = RANDM
1 CONTINUE
```

At load time this subroutine object tape should be LINKed to the user's compiled program prior to the EDIT of the Run-Time Library.
This program is an assembly language subroutine which allows the user to call RANDU in FORTRAN IV programming, such as:

CALL RANDU(IY, IX, RX)

RANDU generates a sequence of 16383 random integers, IX, and real numbers, RX. The range of these numbers is \(1 \leq IX \leq 32767, \ 0.305185E-4 \leq RX \leq 1.0\). The distribution is uniform over this range with population mean of 0.5 and variance 0.083333. On the initial call to RANDU, IY must be set to any odd, positive integer \(\leq 32767\), and on subsequent calls, IY must be set equal to the previous value of IX. This subroutine is taken from the IBM 1130/SSP.

EXAMPLE: generate 1000 random real numbers.

```
DIMENSION RX (1000)
CALL RANDU (7305, IX, RX(1))
DO 1 J = 2, 1000
CALL RANDU (IX, IX, RX(J))
1 CONTINUE
```

At load time, this subroutine's object tape should be LINKed to the user's compiled object tape prior to the EDIT of the Run-Time Library.

IUG-151: VAPOR PRESSURE - TEMPERATURE TABLE

The purpose of this program is to give a tabulated list of temperature vs. vapor pressure based on either 2 or 3 laboratory generated points. The program will take either Centigrade or Fahrenheit temperature and either millimeters, mercury or atmospheres pressures(not inches). The program solves the equations:

\[\ln(VP) = B + A/T \] (ABSOlUTE) for the two point case
and \[\ln(VP) = C + BT \] (ABSOlUTE) + A/T (ABSOlUTE) for the three point case.

When given a lower and upper value and increment, the program types a table of values in millimeters, mercury and atmospheres.
IUG-152: SIMULTANEOUS EQUATIONS SOLVER

System Requirements:
(Developed on Model 14, 32KB using a Time-shared version of Interactive Fortran)
Any interactive fortran with associate configuration

Language: Interactive Fortran
Available Material:
Source Paper Tape
Source Listing

The purpose of this program is to solve a set of up to 14 simultaneous equations. The technique used is the Gauss Elimination as presented in varied mathematical texts and/or matrix methods. The source paper tape contains both the main subroutine Gauss Elimination (GE) and Absolute Value (AV) which is called by AV. To solve more than 14 simultaneous equations the arrays X and A would have to be re-dimensional.

IUG-153: MAG TAPE GENERAL LOADER

System Requirements:
Model 3/4 HS OPT (RB) REL/GEN Loader (R01)

Language: Interdata OS Assembler
Available Material:
Relocatable Object Tape (M16) Assembly Listing

This program is similar to the Interdata General Loader, 06-025R01, as described in Loader Descriptions, 29-231. It is, itself, loaded by the REL or GEN Loader (R01 versions).

IUG-153 loads 108-byte fixed-length object data records from 9-track magnetic tape. The records must be in standard Interdata non-zoned loader format without the leading X'F0' character found on M16/17 paper tape formats. For example, object records output under BOSS 4A/4B with a binary write SVC are loadable by this loader. It does not load object paper tapes. No tape positioning is available. The Device Definition Table BINDV at location X'78' must be set to X'YY00' where YY=Magnetic Tape Device Address, e.g. X'8500' or X'9500'.

On parity error, eight re-reads are attempted resulting in a "READ ERROR" message if receipt of the ERR status bit persists. The message "EOF READ" results from an EOM status returned, and the "DEV END" message results from an EOT status returned.

IUG-154: BOSS/4A INTERTAPE DRIVER

System Requirements:
Model 4, 16KB, BOSS/4A, Intertape
Occupies: X'23' Bytes

Language: Interdata OS Assembler
Available Material:
Relocatable Object Tape
Source Listing
Linking instructions

The Driver provides all of the functions available in the BOSS/4B Intertape Driver, Interdata Part Number 07-042F02. These functions incl
Read, Write, Backspace, Skip Record, Write an EOF, Skip Forward to EOF, Skip Reverse to EOF, and Rewind. The driver is subject to the same restrictions and considerations as the BOSS/4B Driver mentioned above. In developing this Driver, the logic of the BOSS/4B Driver was modified and augmented to take full advantage of the I/O Proceed and Task Queuing facilities of BOSS/4A. Although the linking instructions overlay the HSPRT/P, LP, CR, and MT Drivers with this Intertape Driver; similar system commands may be used to locate it elsewhere in memory with the user establishing his particular driver entry points in AETAB and adjustments to UBOT of BOSS/4A.

IUG-155: INTERDATA MODEL 70 CROSS-ASSEMBLER FOR USE ON IBM 360/67 CP/CMS

System requirements:
IBM 360/67 CP/CMS, 65KB
Language: 360 BAL
Available material:
6 Assembly listings
6 Object decks
(on special request)

This program is a cross-assembler for the Interdata OS Assembler (Model 70) on the IBM 360/67 running under Model 5 Assembler, IUG-126; with reference to Interdata OS Assembler, 03-025. The cross-assembler consists of five programs and allows a flexible choice of output methods. Also, any embedded "AUTOPL0T" statements (looking like comment cards to the assembler) can then be used to create flow charts on the IBM 360.

IUG-156: TELETYPETYPE TEST PROGRAM (TELTY)

System requirements:
Model 4, 8KB, TTY
Occupies: X'2E2' Bytes
Using 72 byte Buffer at
X'760' absolute

Language: Interdata Basic Assembler
Available material:
Relocatable object tape
Basic assembly listing
(no comments)
Operating instructions

This is a teletest test program similar to the Interdata Teletype Test Program 06-004R03. It differs in that the program is relocatable and prior to character input it types the message "ENTER CHARACTERS".

IUG-157: STORAGE OSCILLOSCOPE TEST (STOSCO)

System requirements:
Model 4, 8KB,
Interdata Scope Interface
Available material:
Relocatable Object Tape (M08)
Basic Assembly Listing
Operating instructions

This program produces a pattern on the oscilloscope face that is output just once in order to test storage scopes. The pattern is a grid of evenly spaced parallel orthogonal lines. It can be used to test the linearity and uniformity of the scope. Setting Display Panel Switch 15 causes the program to repeat the scope display continuously.
IUG-158: CORE I/O SIMULATOR DRIVER (BOSS/4A)

System requirements: Language: Interdata OS Assembler
Model 5/70, 24KB-40KB, Available material:
BOSS/4A, REL/GEN Loader R01, Source Paper Tape
OS Tide, OS Assembler or Assembly listing
FORTRAN IV Relocatable Object Tape

Occupies: X'4A' Bytes

This program is designed for use on machines with large memory storage. This driver allows source input for the OS Assembler or FORTRAN IV to be read directly from a pre-loaded "Tide" Buffer. This allows alterations and recompilations to be repeated with no need for source I/O operations. The driver is loaded according to standards, adjusted UBOT and "AETAB" in Boss/4A patched to reflect a Dummy Physical Unit, and Driver Address. Halfword X'48'R in the driver must be patched to point to the start of the OS Tide buffer.

The desired Logical Unit for source input is assigned to the Dummy Physical Unit. A rewind on this unit must be used to re-initialize the Tide buffer for each compilation or assembler pass.

IUG-159: FAST FORMAT PUNCHER FOR INTERTAPE

System requirements: Language: Interdata Assembler
Model 3, 8KB, TTY, Available material:
Intertape, IUG-160 Relocatable Object Tape

Occupies: X'01BE' Bytes Source Listing

This program is an adaptation of the Fast Format Puncher 06-031. The output routine has been rewritten to accommodate Intertape. The copy option of 06-031 has been deleted. The program dumps a block of memory bounded by user-entered addresses at X'0000'R (Low Address) and X'0002'R (High Address). The data is dumped on BOUTDV. The user may specify a transfer address in X'0004'R. The program must be loaded with the General Loader, 06-025R01. It is started at X'0010'R. The program has been used successfully in conjunction with the Fast Format Loader for Intertape, IUG-160 to create Cassette Tape Bootstrapped modules of BOSS/4A and BOSS/4B.

IUG-160: FAST FORMAT LOADER FOR INTERTAPE

System requirements: Language: Interdata Assembler
Model 3, 8KE, TTY Available material:
Intertape Relocatable Object Tape

Occupies: X'80'-X'C2' Source Listing
X'D0'-X'136' and
X'1FA', Bytes Below
Load Bias

The program is an adaptation of the Fast Format Loader, 06-030R01. The loader input routine was modified to accommodate the Intertape.

24
Mainly, it implements back-spacing and re-reading in the event that ERR (Intertape Status Bit \emptyset) = 1. The program must be loaded with the General Loader, 06-025R01, with the Bias Definition Value (X'NAOA') set to the address which the last byte of the Fast Format Loader is to occupy. Thus, if [X'NAOA']=X'3000', the Fast Format Loader will occupy X'2E06'–X'3000' upon loading.

The General Loader terminates with the PSW set to X'80000 00D0'. Depressing EXEC (starting at X'D0') causes a file gap to be written on BOUTDV followed by an 8-bit image of a boot loader which can be loaded by the 50-Sequence, followed by a checksummed 8-bit image of the Fast Format Loader.

Used in conjunction with the Fast Format Puncher for Intertape, IUG-159, Bootstrapped load modules may thus be created. The Model 4 50-Sequence and Device Definition Table must be modified as follows (to load this Boot and its subsequent program/data dumped in Fast Format):

```
50 D500 AL X'C2'
52 00C2
54 4300 B X'80'
56 0080
BINDV 78 55C1 or 45C1
BOUTDV 7A 55C2 or 45C2
```

Note that in order to use this 50-Sequence, the tape must be manually positioned off the BOT clear leader.

Note: If the Fast Format Puncher is to be used to dump a block of memory following the header output by this program, DO NOT REWIND THE TAPE.

IUG-161: FILER INDEX LISTING PROGRAM

System requirements:
1. Model 74 Instruction Set
2. RTOS or BOSS, TTY
3. List Device, Mass Storage
4. Device

Language: OS Assembler

Available material:
1. Relocatable Object Tape
2. OS Assembly Listing
3. Description

This program produces a listing, on the Device Assigned to Logical Unit 3, of the named files on a mass-storage Logical Unit 4 which has been maintained by the Filer, Interdata Program 07-047. The listing shows the name of the file, the address of the first record of the file, and the number of records to add to the file when it is expanded. The program also prints the number of unused sectors left on the Logical Unit containing files.
IUG-162: BOSS CORE DRIVER
System requirements: BOSS, OS Tide, OS Assembler or FORTRAN IV Compiler
Model 5/70, 24KB
Language: OS Assembler
Available material: Source Paper Tape
Relocatable Object Tape
Source Listing
Assembly Listing

This program allows users with large memories to have either the OS Assembler or FORTRAN IV Compiler resident at the same time with OS Tide under an operating system, BOSS. This provides users with a combination assembly-editor or compiler-editor. Assigning a dummy physical address to the OS Tide text buffer in core, and also assigning Logical Unit 1 (LU1) to this dummy physical address causes the OS Assembler or FORTRAN IV Compiler to read source directly from OS Tide. This includes multiple passes when required. To link to BOSS, UTOP may be adjusted to include the driver and AETAB must be adjusted with the address of A(COREDV) of the driver for physical device "FE". The driver must be given the selected limits of the text buffer in OS Tide and the addresses of ILFUNC and ZZZZ of BOSS/4B.

IUG-163: INTERTAPE TEST PROGRAM FOR MODEL 4
System requirements: Model 4, 8KB Intertape M46-400
Occupies: X'0D76' R Bytes
Language: OS Assembler
Available material: Relocatable Object Tape
Assembly Listing
Description

This program is an updated version of the Interdata Cassette Tape Test Program 06-110, which has been rewritten to be used with Interdata's Intertape Product M46-400. Its intent is to provide the user with a test program which occupies less than 8KB memory. It contains facilities to check all features of the Intertape system by switch options.

IUG-164: INTER-SIG 707
System requirements: Model 70, 8KB, TTY 10-023F Data Set Adapter 103 Data Set, Full duplex time share service capable of suppressing the echo from the keyboard.
Language: Interdata Basic Assembler
Available material: Relocatable Object Tape
Assembly Listing
Operating instructions
Description

This program allows one to converse with the Xerox UTS or any full duplex time sharing service using a TTY console device, Model 70 processor, full duplex data set adapter and a 103 Data Set. The program occupies X'52C' Bytes.
IUG-165: 2-BYTE INTEGER FORTRAN IV COMPILER AND RUN-TIME LIBRARY

System requirements:
Model 4, 16KB, TTY
Floating Point

Language: OS Assembler
Available material: Relocatable Object Tapes
Description

Source listings or tapes are not available for the 2-Byte Compiler. Users must have the FORTRAN IV software package, 04-014 to obtain additional documentation and the remaining run-time library tapes. The modification allows the "two-byte" integer to be used in any FORTRAN IV statement in which the "standard" integer may be used. The only difference is that two bytes of core storage are allocated for the standard integer. The two types of integers will be functionally equivalent, except in those areas affected by the difference in core allocation.

IUG-166: BULLSEYE - THE ARTILLERY GAME

System Requirements:
Model 70, 16KB, TTY

Available material:
Source Paper Tape created by Interactive Fortran

Bullseye is a game demonstrating the interactive nature of some programs. It asks for a target distance in miles, elevation angle in degrees, and velocity of the projectile in feet/sec (i.e. 1.5, 45,600 (CR)). Remarks are made to goad the player, and the distance undershot or overshot is printed in feet. The user then updates the angle and/or velocity. There is a replay option.

IUG-167: YR - 20TH CENTURY DAY-OF-THE-WEEK GENERATOR

System requirements:
Model 70, 8KB, TTY

Available material:
Source Paper Tape created by Interactive Fortran, Flow chart

This program requests input of date, month, year. Input is from TTY 6-digit numerical representation of any date in the 20th Century. Output is "check n" where n is number of days into 20th Century of input, then the day of the week on which that date fell.
IUG-168: OSOBAN - OS OBJECT TAPE ANALYZER

Submitted by: William Vaughan
Interdata, Inc.

System requirements: Language: OS Assembler
Model 4, 8KBM BOSS/4A or BOSS/4B,
DOS or BOSS

Available material: Object tape, listing, description.

This program analyzes a standard Interdata object tape in MO8, MO9 or
M17 format. The analysis is printed in a descriptive, easy-to-read
format. Invalid loader items are detected. No error checking is performed
on sequence number and checksums.

IUG-169: DISK FILE SYSTEM

Submitted by: J.T. Beckett
Bell Telephone Labs.
Naperville, Illinois

System requirements:
Model 4, SELCH, TTY, Disk

Available material: Source or object tapes, description, listings

This program was designed for an Interdata Model 4 with Diablo Disk. It
permits the allocation of named files and the transfer of data in absolute
form between the disk and specified core limits. The program resides at
the top of memory to permit loading programs such as the BOSS operating system
and other Interdata test programs which must reside in low core. Accompanying
programs provide a bootstrap facility and the means for dumping the disk
onto another device for backup protections.

IUG-170: ORI EDITOR

Submitted by: T.J. Monks, NASA, Greenbelt, Maryland.

System requirements: Model 5 Language: OS Assembler

Available material: Object tape, description, listing

This Editor program has been implemented for the Interdata Model 5 to
run under the Interdata Basic Operating System. In order to create an
editing tool closely resembling the existing Interdata Text Editor (TIDE),
some changes were made in the nature of names and commands and order of
arguments. In this way it would be possible for a user to use the ORI
Editor without realizing he is not using TIDE, since EDITOR functions are
a superset of TIDE functions.
IUG-171: INTEGER SQUARE ROOT SUBROUTINE FOR MODEL 5 & NEW SERIES

Submitted by: J. Spooner, General Electric Company
Waynesboro, Va.

System requirements: Language: OS Assembler
Model 4, 8KB, TTY

Available material: Object tape and listing

This subroutine extracts halfword root from fullword argument with optional rounding of result. Execution time is considerably less than for method of successive approximations. Model 70 average time is 400 microseconds.

IUG-172: M10 TAPE GENERATOR (PAPER TAPE DUPLICATOR IN M10 FORMAT)

System requirements: Language: OS Assembler
Model 4, TTY, HSPTTR

Available material: Object tape, operating instructions

Simple to use program creates M10 bootstrappable tapes which can be loaded by Model 5 bootstrap. Program requires X'3AC' bytes in addition to that occupied by program for which tape is to be generated.

IUG-173: CHARACTER TIME

Submitted by: Scott Hughes, Atmospheric Environment Service, Toronto, Canada

System requirements: Language: OS Assembler
Model 4, 8KB, TTY, Loader

Available material: Source tape, program description, operating instructions

The purpose of this program is to allow ease in adjusting the timing of devices on the multiplexor bus. Device address and desired transmission rate are entered on the console switches and an indication of how close the desired and actual transmission rates are, is displayed on the console lights.
IUG-174: BOSS 4A BOOTTAPE CREATOR

Submitted by: Scott Hughes, Atmospheric Environment Service, Toronto, Canada

System requirements:
- Model 4, 8KB, HSPTP, BOSS/4A
- Rel/Gen/BOSS or OS Loader

Language: OS Assembler

Available material: Source tape, assembly listing, program description, operating instructions

This program punches a bootstrap tape of the current version of BOSS/4A in core. The bootstrapping process used on the tape does not modify core outside of BOSS by placing the M10 format loader in the Interrupt Service Table. Using this program, drivers or patches may be added to BOSS, and a bootstrapping tape can be made of the version.

IUG-175: OS INT 4TRAN RW EXPANSION

Submitted by: R.J. Paoli, Space Sciences Laboratory, University of California at Berkeley

System requirements:
- Model 4, 16KB, HS Opt., Floating Point, TTY.

Language: OS Assembler

Available material: Source/object tapes, listing, description, operating instructions

This program allows the use of all peripheral devices that are available to the Operating System to be used as logic units with the READ-WRITE statements in Interdata's OS Interactive Fortran, 03-033. The program is loaded with the OS Loader. It includes an initialization procedure which provides the Fortran linkages, adjustment of the user buffer and program transfer to the Interactive Fortran.

IUG-176: OS BLACK JACK

Submitted by: Wayne Lowzik, Interdata, Inc.

System requirements: Model 5 or New Series, 16KB, Floating Point, TTY, BOSS, DOS

Language: FORTRAN IV

Available material: Source/object tape, listing, description, operating instructions

This program runs standard Black Jack (21) under an operating system. The program uses logical unit 5 and all operating input comes in from the TTY. The deck of cards are on paper tape supplied with the program. Deck is shuffled in core. The program asks that the deck be assigned LU4.
IUG-177: YAHTZEE - A GAME PROGRAM IN BASIC

Available material: Source paper tape and listing

Yahtzee is a game for one to four players. After introducing the players to the computer, five dice are rolled and their face values printed. As in draw poker, the player has two changes to improve his hand by ROLLing any or all dice. The object of the game is to score each improved hand on one of thirteen "lines" on the score sheet. Each line may be used only once, and when all lines are used, the game is over.

IUG-178: GOLF IN BASIC

Submitted by Philip Stein, National Bureau of Standards, Washington, D.C.

Available material: Source paper tape and listing

This program plays golf with the user. The user chooses clubs and how hard to swing. The source is adjustable in data statements.

IUG-179: ONE-ARM BANDIT GAME IN BASIC

Submitted by Philip Stein, National Bureau of Standards, Washington, D.C.

This program plays the slot machine game One-arm Bandit with the user.

IUG-180: DATAPLOT 70

Submitted by: Carol Young and Philip Stein, NBS, Washington, D.C.

System requirements: Language: OS Assembler, FORTRAN IV
Model 5 or New Series, 16KB, Electrostatic plotter.

Available material: Object tape, compiler listing, example printout, test listing.

Dataplot 70 is a Fortran Sine-wave test program. It is a complete package for converting point-by-point data to raster form for an electrostatic plotter. Program includes FORTRAN subroutines for scaling data, labelling and drawing axes, and drawing titles.
IUG-181: OS DELOADER

System requirements: Language: OS Assembler
Model 5/New Series, 8KB, and BOSS or other OS source and listing device.

Available material: Object tape, source listing and example printout

OS Deoader reads M08 or M16 object programs (like OSOBAN, IUG-168) and produces: (a) a listing with loader control items and assembly op codes and formats. An attempt to fit ASCII printing characters if also made for each line; (b) a disassembled, relocatable output which can be re-assembled.

IUG-182: MAGTAPE DUMP

Submitted by: R. Crabtree, Atmospheric Environment Service, Toronto, Canada

System requirements: Language: OS Assembler
Model 70, 8KB, TTY, HSPT/R/P, and a binary input device.

Available material, Source/object paper tape, operating instructions

This program allows the user to investigate mag tape records of varying lengths in a hexadecimal format. The program reads in logical records from a binary device, unpacks the data and outputs the hex character string to a character (ASCII) device.

IUG-183: MAGLDR

Submitted by: D.R. Hicks, RCA, Camden, New Jersey

System requirements: Language: OS Assembler
Model 70, 8KB, TTY, HSPT, Mag Tape Cassette

This is a patched version of the General Loader (06-025R01) to permit finding labeled programs, and to permit mag tape operations.
IUG-184: BOSS/4D

Submitted by: D.R. Hicks, RCA, Camden, New Jersey

System requirements: Language: OS Assembler
 Model 70, SELCH, TTY, Mag Tape

Available material: Object tape, assembly listing, description, operating instructions.

This program is a patched version of BOSS/4A which permits commands of the form "LOAD LU Name" so that programs on a mag tape library can be found and loaded. The program also permits commands to change FSW and reset default system parameters. HSPTR/P, LP, and CR drivers have been deleted.

IUG-185: EBCDAS (Subroutine to convert an EBCDIC character into its ASCII equivalent)

Submitted by: Roy Stehle, Stanford Research Institute, California

Language: Interdata 70 Fortran FORTRAN Call Statement: CALL EBCDAS (KHAR)

This program converts the 8-level EBCDIC character KCHAR into a 7-level ASCII character which is returned in KCHAR. The program first tests the value of KCHAR. If KCHAR is less than zero or greater than 255, KCHAR is returned unchanged. The program uses table look-up to convert the 64 character FORTRAN set as well as 25 control or symbol characters. In some cases, an illegal EBCDIC character will be converted into an ASCII "@".

IUG-186: GPM - GENERAL PURPOSE MACRO ASSEMBLER

Submitted by: E.P. Estes, Interdata Inc.

The General Purpose Macro Assembler, GPM, is a symbol stream processor designed to run on an Interdata model 4, 5 or New Series minicomputer. The program must be run under one of the Interdata operating systems. The program processes an input symbol stream which is read from logical unit 7. The input symbol stream may consist of: 1. Macro definitions; 2. Macro calls; 3. Transparent input symbols.
System requirements: Interdata Models 3, 4, 5 or New Series, 8KB of core, paper tape reader, 4010 Computer Display Terminal with a TEKTRONIX Teletype Port Interface.

Access Level Software (ALS) has been written to facilitate the use of the TEKTRONIX 4010 Computer Display Terminal with the Interdata computers. The cursor is supported in addition to the terminal. The software includes basic routines for the following:
- Plotting
- Graphic Input
- Input of any ASCII character
- Output of any ASCII character

All routines are written in assembly language.

IUG-188: FAST FOURIER TRANSFORMS ON INTERDATA PROCESSORS

System requirements: A processor capable of running on Interdata general purpose operating system (BOSS, DOS or RTOS). The routines are written in Kearney & Trecker FORTRAN and assembler. (Note: the compiler may not execute on a Model 74, this will require another processor for system maintenance.)

Operation in 8KB of core may be possible with a subset of facilities, but in general a 16KB processor will be required.

All operations are performed as 16-bit two's complement integers. However, the input data should be confined to the range 16383 to -16384. A block exponent technique is used to relieve the user of the problem of scaling data. The standard version supports a maximum of 1024 points, but this may be extended by changing 'STABLE'.

IUG-189: SELECTOR CHANNEL READ/WRITE PACKAGE

This is an assembly language program with a series of Fortran-callable entries for the Interdata New Series Model 70. This package, which interfaces with the magnetic tape unit, is written in relocatable loader format and stored on the library unit (AO) with the label WRDATA. It includes four Fortran-callable entry points:
- WRDATA
- RDDATA
- IWRSTA
- LENGTH
SYMBOL is a demonstration of a text-printing program using the Interdata Model 70 and the TEKTRONIX 4010 display terminal. The distinctive feature of this program is that it does not use the hardware character generator included in the 4010. Rather, it draws the characters using a series of vector line segments pre-stored in the computer memory. One advantage of this technique is that the character fonts can be modified to fit the user's requirements solely by software changes.

This particular character set has been designed to match the standard Leroy drawing templates widely used for report illustrations. At present, the set includes a full upper and lower case plus a complete Greek letter set. It also contains many of the commonly used punctuation marks and special characters. The program is FORTRAN callable.

IUG-191: SREAD - FORTRAN-callable Subroutine

This routine is used to permit free-form entry of data to a program. The number of data inputs is specified by NUMBER. The logical unit which will be interrogated is LU. When the specified number of data inputs has been read from the logical unit named, the data values will be returned in a real array named ARRAY. This array should be at least as large as the largest value of NUMBER used in the main program.

Data input may be in integer, fixed-point, or scientific notation. The data returned to the main program will always be real, and will be an approximation of the input value.

IUG-192: TIMR86

TIMR86 computes the execution time of a program on the Model 80 or Model 60. It runs under any operating system and uses LU1 for source input, LU3 for listing output.

Every time it sees a label it begins accumulating a new counter of execution time. Every time it sees a conditional branch it prints out all the accumulated times. When it sees an unconditional branch, it starts with a single counter. It will automatically compensate four times when branch is taken or not taken. For load and store, multiply, and shifts, it assumes an average execution time.

IUG-193: TIMR75

This program is exactly like the TIMR86 except that it computes the execution time of a program on the Model 70 and Model 50.
IUG-194: ANALAD

This program, written in FORTRAN IV, will analyze circuits with a "ladder" topology, i.e. alternating series and shunt elements. The circuit can be made of RLC networks. The size of the circuit is not restricted, only the topology. The program solves the ABCD matrix of the network.

IUG-195: CLEAR

This routine, in Interdata assembly language, sends the Acknowledge Interrupt instruction until a time-out status is returned. The routine returns with the last device address received in the argument NDEV, which should be zero.

IUG-196: COMAND

This program, written in Interdata assembly language sends an output command to device NDEV with bit pattern found in lower 8 bits of NCMD. On return, lower 8 bits of NSTAT contain status read from device. If NCMD equals zero then no command is sent but current status of NDEV is returned in NSTAT. Execution of this routine requires that the Protect Mode is disabled.

IUG-197: DFIX

This re-entrant routine takes the double precision value in X and converts it to an unnormalized binary number and stores the most significant 32 bits in the array Y.

IUG-198: EOFIND

Entry of SKPEOF reads forward on logical unit LU until an EOF mark is found. Entry BKSEOF reads backward on logical unit LU until an EOF mark is found.

IUG-199: EOF85

This program contains a series of entry points that enable the Fortran programmer to manipulate the magnetic tape unit directly without logical unit assignments through BOSS. The 8-bit status returned from the mag tape device is returned in the low-order bits of the argument ISTAT.
IUG-200: EXISER

On external interrupts (if external interrupts are enabled) the computer will stop currently-running program and branch to this routine with external interrupts disabled. Routine first sends an interrupt acknowledgement and determines number and status of interrupting device. It then determines a branch entry point address for the device (by table lookup), sets up Fortran linkages, places the address of the memory cell containing the current status of the device in the first argument position (in integer format), and branches to the appropriate entry point.

On return from the device service program, the EXISER routine again sends an interrupt acknowledgement. If no interrupts are waiting, the routine returns to the interrupted program.

IUG-201: KHAR FUNCTION ROUTINE

This function routine reads one character from the teletype keyboard (device 02) and returns with the character read in the upper 8 bits of KC. The routine does not use the BOSS driver. ID is a dummy argument. Routine requires the Protect Mode bit of the PSW status word to be reset.

IUG-202: MOVEB ROUTINE

This assembly language routine extracts N bits from the full 32 bit word location A, starting at bit position L1, and inserts these bits into word B, starting at location L2. Bit positions are designated from right to left starting with bit position 0.

IUG-203: MOVEIO

This program permits the Fortran programmer to convert integer and real numbers to ASCII characters internally via calls to the formatted I/O routines, @I, using a standard Fortran format statement.

IUG-204: MASKA ROUTINE

This routine masks off the Nth bit position of the contents of the full 32-bit word A. If the bit designated by N in A is "1", the value of the function is returned as (-1). If the bit is zero, the value of the function is returned as false (0). Bit positions are designated from right to left with the least significant bit position designated bit 0.
IUG-205: OVRLAY

This program contains a series of Fortran-callable entries that enable the Fortran programmer to overlay programs in memory from an external storage device and start execution. The program utilizes a modified OS Library Loader program (label LOADRI) which must be resident in memory with this program.

IUG-206: PROC IN INTERDATA FORTRAN

Program converts Univac 1108 system 6-level BCD code found in argument IB to equivalent 7-level ASCII code and stores in internal 68 character buffer.

IUG-207: PSWMOD IN ASSEMBLY LANGUAGE

This program contains a series of Fortran-callable entry points that enable the Fortran programmer to change the current PSW status in real time.

IUG-208: SHIFT

This program shifts the contents of location IA by N bit positions and returns the value in I. The contents of IA are not changed. If N is positive, the shift is left circular. If N is negative, the shift is right end-off with sign extension.

IUG-209: SFTENT

This routine takes the contents of the full word A, and left shifts (end-off) 8 bits. It then adds the lower eight bits of the half-word IBYTE to the lower 8 bits of A and places the result in B. The contents of A and IBYTE are not changed.

IUG-210: SIGATN

Program takes the integer value in argument NDB and converts to three BCD digits. It then transmits these digits in ascending sequence to the temporary storage register via the Universal Interface Module (device 9B). Finally, a command to transfer the contents of the temporary register to the ATTN register is sent. Routine returns after the interface returns a "not busy" status. Program requires the Protect Mode bit of the PSW status word be reset.
IUG-211: SIGFRE

Entry SIGFRE takes the first ten integer decimal digits found in the double precision argument FREQ and converts them to BCD format. It then transmits these digits in ascending sequence to the temporary storage register via the Universal Interface module. Finally, a command to transfer the contents of the temporary register to the CF register is sent. Routine returns after the interface returns a "not busy" status.

Entry SIGBCD assumes the argument (NCD) has previously been un-normalized by subroutine DFIX (IUG-197).

IUG-212: SOURCE PROGRAM LIBRARY MAINTENANCE PROGRAM

The Mag Tape Source Library Maintenance program allows users to create, copy, and update multifeile ASCII magnetic tapes by means of simple commands. The object program is in relocatable form and is located on the program library with label SOURLI.

LU0 = Command device
LU1 = Input tape
LU2 = Output tape
LU3 = Insert device

The program starts by rewinding the input tape and output tape. It advances past the first EOF on the input tape and writes a double EOF on the output tape and backspaces over the last EOF. It then returns to the command mode and indicates this by printing the character '##' on the command device. Starting the program at ORG + IC will not reposition the input or output tapes but will write a double EOF on the output and backspace over the last.

IUG-213: GAMES1

This program is actually three separate demonstrations using the console display and switches:

1. Start at ORG to display switch settings and their complement.
2. Start at ORG+X'20' to have binary counter with speed set by console switches.
3. Start at ORG+X'40' to display (2**16)-1 pseudo-random sequence.
IUG-214: MAG TAPE DEADSTART LOADER

Load an absolute block of program code in 8-bit format into core memory from Mag Tape device 85. (code loaded is assumed to be a relocatable mag tape general loader program). This bootstrap program is designed to be loaded with the 50 sequence from the paper tape reader starting at location X'80'. Program sends X-OFF to tape reader, rewinds mag tape device at location X'7000'. On parity error, program rewinds and rereads. After error-free load, program branches to location X'7000'.

IUG-215: CROSS REFERENCE ASSEMBLER

This Cross Reference Assembler operates basically the same as the standard Interdata OS Assembler. During the printing pass the statement numbers are printed between the object data and source statement on the listing. At the end of the pass the standard symbol table is printed along with the statement numbers of instructions which references the symbol.

This assembler requires one additional logical unit assignment for the Cross Reference file. The file must be on a disc and should be approximately 144 sectors (3 cylinders) for a source deck of approximately 2000 cards. No change has been made to the OPTION card. The list device must have 132 print positions. If the teletype is used for the listing some of the references may be lost.

IUG-216: ARTILLERY GAME IN BASIC

This program is essentially the IUG-166 rewritten in BASIC

IUG-217: GOOK1 & GOOK 2 IN BASIC

These two programs will assist in the generation of "gobbledgook" required in the compilation of reports.

IUG-218: GUESS WHAT? IN BASIC

The computer will select a number of up to 4 digits. You are asked to guess the number. After each guess you will be told the number of correct digits and the number of digits in the correct position. 14 chances to guess the number are permitted.
This program assembles programs written in standard Interdata source language, producing object code for the Interdata processor. The Cross Assembler requires an IBM 360/370 under either OS MFT or OS/MVT and at least a 64K region size. Object code from the Cross Assembler is provided in two formats written to data sets SYSPUNCH and SYSCARD. The SYSPUNCH data set refers to a partitioned data set in which 108 byte records in standard Interdata relocatable object program format are written. The SYSCARD data set is sequential data set in which the 108 byte relocatable object program records are placed after being reformatted so that 2 object records become 3 80-byte records. This data set is then suitable for punching on cards.

This is a FORTRAN computer program to assemble the machine code for the Interdata Model 70 on the Control Data 3800.

For installations that have access to a large centralized computer, it is frequently advantageous to assemble the machine code for a minicomputer on the large computer rather than purchasing additional core for each minicomputer for the assembly routine.

The conversion of the mnemonic code to the machine code is done in three steps. First the operational code and the operational registers are established together with the instruction locations. Parallel to this, the variable and constant lists are filled with temporary locations assigned if no fixed locations were specified.

In the second step, the ambiguity of the variables, constants, and locations is checked, the final locations of the variable and constant list are determined, and the external list is set up.

In the third step, the symbolic names are converted to machine code, arithmetic conversions of locations are performed, and the index registers are inserted. Finally, a summary of all symbolic names and instructions is printed.

A fully documented report of this program may be obtained from the U.S. Government Printing Office, Washington D.C. 20402 and is designated NOAA TR ERL 269-APCL 28.
IUG-221: OS XRFMT

OS Assembler Aid In FORTRAN IV

IUG-222: 23 MATCHES GAME IN BASIC

IUG-223: BLACK JACK GAME IN BASIC

IUG-224: CHARACTER MANIPULATION & COMPARISON ROUTINES

Four serially reusable and Fortran callable subroutines:
 KOMPAR - Compares two full words
 STRCMP - Compares two strings of any given length
 INSERT - Inserts a character into a string of characters
 EXTRAC - Extracts a character from a string of characters

IUG-225: URAND

A serially reusable, Fortran callable subroutine which generates pseudo
random numbers from a uniform distribution.

IUG-226: DOS DISCTRAN

A disc utility to run under DOS, which allows the transfer of data between
main memory and disc upon operator requests from the keyboard device.

IUG-227: LINE FREQUENCY CLOCK DRIVER

A modified version of the standard RTOS Line Frequency Clock Driver.
Modifications provide month and year advancing logic and temporarily disable
external interrupts while the time-out count for any device is being
manipulated.

IUG-228: DOS BOOTSTRAP LOADER (FOR FIXED-HEAD DISC)

Modified version of Interdata RTOS Bootstrap Loader. It reads a core image from
the disc into memory and assumes the starting point to DOSCYL, the cylinder
address of DOS.

IUG-229: RTOS DISCTRAN

A disc utility to run under RTOS which allows the transfer of data between
a one sector sized buffer (256 bytes) and the disc, upon operator requests
from the keyboard device.
IUG-230: LUPA/GETPA

Two Run-Time Library subroutines (16-bit machines only)

LUPA - Logical Unit to Physical Address
GETPA - Obtain Physical Address IPA currently assigned to Logical Unit LU

IUG-231: DIABLO DISK DRIVER FOR MODEL 4 AND BOSS/4B

This program is a modification of IUG-123, Interactive Fortran Read-Write Functions.

IUG-232: "UTILIZING A FIXED HEAD DISC UNDER DOS"

A write-up on changes to the Interdata Disc Operating System (DOS) to allow support of a Pacific Micronetics fixed-head disc. The fundamental differences between the Diablo disc driver, the standard DOS, and the PM disc driver are described. These changes may be applicable to the support of other fixed-head discs or drums having the same command and status bytes, sector size (256 bytes) and sector addressing techniques.

IUG-233: BASIK - 132 CHARACTER BASIC (9 ZONES)

A modification of Interdata's BASIC Interpreter to permit printing 132 character records and to tabulate to 9 zones with the ninth zone extending to 132 characters. This program is not for use with Interdata standard MUE. Use with BOSS, DOS, etc.

IUG-234: LESSON IN BASIC - NUMBER ONE

First lesson in BASIC covers: READ, DATA, LET, INPUT

IUG-235: MEMORY DRIVER

This program in Basic Assembler language requires BOSS/4B. This program allows the computer memory to be used as a peripheral (Device X'FE') as far as BOSS/4B is concerned. It can be forward spaced, backspaced (108 byte records), EOF, rewound, forward file, backward file. It is useful for program rearrangement, a one mag-tape system and, in general, for any object code operations.
IUG-236: ANNUITY

How long before YOU go broke?? This program will figure out how long your money will last depending on the interest and withdrawal rates of your savings plan.

IUG-237: CALENDAR

A program which will print an entire calendar for any given year, print the calendar for any given months in any given year, or print the day of the week for any given date.

IUG-238: POPULA

Among the many applications of the compound interest formula is that of population projections. It is not entirely accurate in that it assumes a steady increase each year, but it is useful for showing roughly how an area will increase. This program will generate data for any number of years at any requested intervals.

IUG-239: FORECAST (FCST)

Analyzes data containing no trend component or a linear trend, with no seasonal pattern, or with a constant or multiplicative seasonal pattern. The user specifies the model to be fitted to the data. If the user specifies no trend, a simple average is used for forecasting. If a trend is specified, linear regression is used. The test section of the program uses only part of the data to initialize the model and then forecasts several periods ahead, so that the quality or fit of the model can be observed. Then the forecast section of the program uses all the data to initialize and forecasts values for several periods beyond.

IUG-240: FOURIER

Calculates and saves in a file the Fourier coefficients of any given function X(t). This file can be used as input to RESPONSE (IUG-241). The user also has the options of printing out the coefficients and the frequency spectrum at the terminal.
IUG-241: RESPONSE

Computes the Fourier coefficients of the periodic response of a system to a given periodic input. The input function is specified in a terminal-format file consisting of Fourier coefficients in the format that is generated by the program FOURIER (IUG-240). The system is defined by its frequency response. To plot the output of this program, use PLOTSKI (IUG-253).

IUG-242: LESSEE

Uses the Bower-Williamson method of analysis to compare alternatives of leasing a piece of equipment outright. The method calculates two cost differences between owning and leasing. The first, the financial advantage, is simply the difference between the amount of debt capacity used up by the load and that used up by the discounted present value of all cash flow advantages including depreciation tax benefits.

IUG-243: LESSIM

Calculates the rate of return which the lessor receives for investing in an asset and then leasing it to someone else. Unlike LESSOR (IUG-244), this program recognizes that the rental payments from the lessee and the salvage value of the asset are uncertain. Using an estimate of the chance of default or discontinuance in any year and an estimate of the possible variation of actual salvage, the program simulates the experience of the lessee. The user specifies the number of trials. The output indicates the lessor's expected return, the possibility of loss, and the distribution of random outcomes.

IUG-244: LESSOR

Calculates the rate of return which the lessor receives for investing in an asset and then leasing it to someone else; i.e., the interest rate which discounts all of the net cash flows back to the initial investment the lessor must make. By comparing this after tax rate of return with the returns expected from alternative investments, the lessor can determine the desirability of the lease. This rate of return is calculated from the lessor's cash flows, which depend on lease receipts and tax payments.

IUG-245: MODEL

Creates an input file for OPTION (IUG-246) from data statements. The program contains a complete set of sample data.
IUG-246: OPTION

Similar to PROJECT (IUG-247), but allows the user much greater flexibility in the manipulation of relationships between accounts. The user provides five years of historical data and the program projects five more years. Historical regression and proportion coefficients may be computed for use in projections.

IUG-247: PROJECT

Projects financial statements of a company for five years into the future. Input consists of the most recent year's balances for 27 key accounts. Output is written into a file saved by the user. An additional file may be specified to receive the output in the format required to project the statements for five more years.

IUG-248: SPREAD

Uses the output from PROJECT (IUG-247) and prints one of five financial statements: balance sheet, income statement, funds flow statement, balance sheet items as a per cent of total assets, and accounts as per cent of sales.

IUG-249: REPORT

Computes and prints financial statements based on the account manipulations performed by OPTION (IUG-246). Statements available are the income statement, balance sheet, and cash flow statement.

IUG-250: RISK

A risk analysis program based on Hertz simulation model described in Jan.-Feb. 1964 "Harvard Business Review" article. The user may design his own model to project a set of cash flows. He may supply one value for each factor in his model or may supply a number of possible values for each factor and the per cent chance of the actual value lying between data pairs. RISK uses this information with a random number to calculate a value for a particular factor and repeats the process to calculate several sets of cash flows and rate of return and a net present value for each set of cash flows. The program prints histograms which show how many sets of flows have generated rates of return or net present values which fall within certain intervals.
IUG-251: GRAPH

Plots the graph of a function. The X-axis is drawn in, and if X=0 in the
given range, the Y-axis is also drawn in. User specifies the function in a
'DEF' statement and the minimum and maximum of the range, the spacing on
the X-axis, and any undefined points in 'DATA' statements.

IUG-252: PLOT-IT

A program to plot points in two or three dimensions, on any terminal or on
the high speed printer (when run in Background). The user may use the full
width of the paper on the printer. Scales are set automatically to include
all the points to be plotted, but the user may alter the scales.

IUG-253: PLOTSKI

Graphs functions defined by their Fourier coefficients. PLOTSKI can be
used in conjunction with RESPONSE (IUG-241) and FOURIER (IUG-240) to plot
the output of a system defined by its frequency response. FOURIER produces
FOURIER coefficients of a periodic (input) function defined in the multiple
line DEF statements. These coefficients, together with the frequency
response of the system, can be used in the program RESPONSE to compute the
Fourier coefficients of the output function of the system. Several sets of
coefficients may be stored in a file, and the program allows the user
to plot them separately. Sample data file for demonstration (PLOTSKID) is
contained in PLOTSKI.

IUG-254: LEMT

Lunar landing simulation. The user is the pilot of a lunar module trying to
land his craft on the surface of the moon. The user inputs the amount of
fuel to be burned in each second of his descent. Display consists of graphs
for altitude, vertical velocity, and amount of fuel remaining.

IUG-255: TEK10

A package of subprograms for obtaining graphical output on the TEKTRONIX
T4010 CRT terminal.

IUG-256: COMMON

A package of subprograms for obtaining graphical output on any of the
following devices: TEKTRONIX T4002, T4010, TELETYPE or other printer,
Hewlett Packard 7200.
IUG-257: MAKE-BUY

A program designed to help a manufacturer decide whether to buy a certain component for his product, or make it in his own plant. The cost of buying the component is compared with the discounted stream of cash flows that would result if the necessary investments were made to produce the component.

IUG-258: PROFITS

The user enters the sales, purchases, and beginning and ending inventories for each department of a firm. The program computes and prints information about inventory turnover and profitability for each department.

IUG-259: CPM

Analyzes a PERT-time network (for product planning). For each activity in the network the program determines the mean completion time, the earliest expected completion time, the variance associated with the completion time, the primary slack, and the secondary slack.

IUG-260: LAYOUT

Uses the Vollamnn-Ruml plant layout model to determine the optimum layout of a plant with several departments. The departments are assumed to be rectangular and laid out in near rows. The user inputs a flow matrix for exchanges between departments, cost weightings, and starting solutions. One or more departments may be held in a fixed location.

IUG-261: DIFEQ

Solves a group of N First-order differential equations of the form:

$$\frac{dX(I)}{dt} = G(I) = 1, 2, 3, \ldots, N,$$

when the initial conditions are known, by the fourth order Runge Kutta method.

IUG-262: INTERP

The user supplies a list of arguments and their corresponding function values, and the program interpolates the function value Y at a given point X, using the Aitken-Lagrange interpolation for a single valued function.
IUG-263: INTEGR

Computes the integral of any function, over any interval, using Simpson's rule, a technique which breaks up a curve into pieces and approximates each section with a parabola.

IUG-264: QUADROOT

Computes roots, both imaginary and real, of any quadratic equation (an equation of the form ax^2 + bx + c = 0) using the quadratic formula, given values for A, B, and C. This program includes both a subprogram and a driver program.

IUG-265: RUNGE-2

Gives an approximate solution to the second order differential equation:
\[P' = P(X, Y, P) \]
\[Y_0 = Y(X_0) \]
\[P_0 = P(X_0) \]
using the Runge Kutta method (second order accuracy). This program includes both a subprogram and a driver program.

IUG-266: SIMPLEX

Uses a simple version of the Simplex method to solve small linear programming problems (limited to 60 activities, 30 constraints). This method is G. Hadley's two phase method described in his "Linear Programming", pp 149-158.

IUG-267: ANOVAR

Provides complete factorial analysis of variance for up to 14 factors. The analysis is performed by the use of three special operators. The analysis of most other designs can be derived by reducing them first to the factorial designs and then pooling certain components of the variance table.

IUG-268: LINFIT

Computes best linear fit for a set of up to 20 independent variables to a dependent variable. (The program may be easily modified for more than 20 variables). The program also gives the correlations between the independent and dependent variables.
IUG-269: MULTREG

Computes one or more multiple linear regressions on a batch of data. 211 is maximum number of data sets; 17 is maximum number of variables. Output is more elaborate (and longer) than that of STEPREG (IUG-271). User may specify whether or not variance-covariance matrix and/or residuals are to be printed out.

IUG-270: SIMPREG

Performs simple linear regression analysis on N sets of paired observations (X, Y0), where X is the independent variable and Y is the dependent variable. The output includes the least squares estimates of the slope and intercept of the regression equation Y = A + B*X, the analysis of variance table with the appropriate F value, the coefficient of determination, and optional output of predicted values and residuals.

IUG-271: STEPREG

Performs a stepwise multiple regression for up to 20 variables (can be expanded). The stepwise method allows the selection of the best subsets of the independent variables for 1, 2,..., N-1 regressors (where the total number of variables is N). The regressors are chosen in order to maximize the partial correlation coefficient (or T-value) of the newly entered variable at each step. The final solution comes close to being the optimum combination of independent variables for maximizing the multiple correlation coefficient.

IUG-272: RUNOFF

A publications formatting routine for the printing of textual files on the Dartmouth Time-Sharing System (DTSS). Control words, or commands, inserted throughout the text determine the output format, including such items as page size, line width, titles, page numbering, and paragraphing.

IUG-273: STENO

A program for composing and automatically typing individual business letters. The program is simple enough to invite use for one-of-a-kind letters but general enough to handle form letters for a large mailing list. The program allows the use of variable text appropriate to each addressee.

IUG-274: STENOADD

This program (which can either be chained to by STENO (IUG-273) or run independently) is used to print addresses on envelopes or labels.
IUG-275: TEXTSUB

A BASIC "Library" file of subprograms for handling manipulation of strings and text. Subprograms included are:

- **UCASE** - changes lowercase letter to uppercase
- **YES-NO** - inputs a string and checks to make sure the user answered "Yes" or "No".
- **NSPACE** - deletes all spaces from a string
- **NCONTROL** - deletes all control (non-printing) characters from a string.

IUG-276: VAL

This a BASIC subprogram which can be used in place of the function VAL (A$) to convert a string into the number which is represented by that string.

IUG-277: DRIVE

Provides a way for a BASIC program to control terminal modes.

IUG-278: PAYROLL SYSTEM

Designed to computerize a town's payroll records. The main program PAYROLL enables the user to calculate and compile payroll summaries, calculate and write payroll checks, and keep accurate records for all changes regarding employees. The program also uses 8 subprograms which are appended to it, and the user must create several (empty) data files before running any of the programs.

IUG-279: GROUP

Uses grouped data (up to 20 groups) to calculate various statistical measures; mean, median, variance, standard deviation, skewness, and coefficient of variability. Data are input during the program run.

IUG-280: SampStat

Computes the minimum, maximum, range, sum, mean, sum of squares, variation for one or more groups of data.
A BASIC Library of statistical subprograms. Subprograms included are:

- F-PROB Computes probability of F variable
- CHI-PROB Computes probability of CHISQ variable
- T-PROB Computes probability of T variable
- NOR-PROB Computes probability of Normal variable
- BIN-PROB Computes probability of Binomial variable
- NOR-DEV Generates a random normal deviate
- POI-PROB Computes probability of Poisson variable

A flowcharting program which will print out a diagram of a BASIC program, including lines indicating all possible transfers of control. References all GOTO, GOSUB, IF...THEN, ON...GOTO, and FOR...NEXT instructions. May be RUN at a terminal or in BACKGROUN; user may specify a specific block of lines to be flowcharted.

Aligns programming comments in 'BASIC' programs. User may specify alignment column, add comments or blank lines, or replace existing comments. COMMENT also neatens the user's program by indenting the body of FOR-NEXT loops, subprograms, and function definitions.

A program for maintaining a terminal-format file of mailing addresses. Allows you to delete, change, or insert individual addresses.

Allows user to print addresses on mailing labels or envelopes on most terminals, or on a high-speed peripheral device; normally used in conjunction with MAILSORT (IUG-284).

This program is a modified version of the standard General Loader 06-025R03. The DSCGEN loader retains all the characteristics of the standard GEN LDR and in addition, the message "ERROR AT DISC DRIVER" reports all errors that may occur in the disc driver that replaces the other peripheral drivers. This one message is typed on the teletype in response to all disc related errprs. such as invalid sector number, device unavailable, write protect, and others.
OS AIDS/RTOS is a modification of Interdata's OS AIDS that can be established as an RTOS task and that does all I/O to the keyboard device with SVC 1 instructions.

IUG-288: TAPTRN (TAPE TRANSLATOR)

Submitted by: Robert Rosen, Harry Diamond Laboratories, Washington D.C.
Minimum system requirements: Model 70, 80, 85, TTY, HSPT/P
Software Requirement: Loader, Extended FORTRAN IV and Run Time Library

This program converts ASCII paper tapes from one format to another. Specific characters can be deleted, specific trailing characters can be deleted (e.g. trailing blanks), special end of record sequences can be added (e.g. replace X-OFF by CR, LF, and 6 NULLS) and any parity can be generated. The user can control the speed of the HSPT/P (useful when reading roll paper tape on fan-fold reader).

IUG-289: VIRTUAL DATA MEMORY

Submitted by: Robert Rosen, Harry Diamond Laboratories, Washington D.C.
Minimum system requirements: Model 70, 80, 85, TTY, Disc. DOS

This routine enables the user to manage a virtual data memory of 64K bytes regardless of the size of real memory. The user supplies the routine with the virtual address (0 LOC 65535) and the routine returns the real address of the item, doing any paging necessary. The routine uses a modified least-active-page replacement algorithm. The user may vary the page size, the number of pages kept in memory, and the paging unit.

IUG-290: INTERACTIVE FORTRAN W/TRAP

This program includes the multiply/divide Trap routine for machines that do not contain the high speed option. This version is the only one available for users with only 8KB memory and no high speed option. Since the Trap arithmetic operations require more execution time than hardware instructions, this version of Fortran runs slower than the other versions. Also, due to the size of the Trap routine, the working space is reduced considerably. Therefore, this version of Fortran requires more than 8KB of memory to be extensively useful, and contains several user restrictions.

IUG-291: INTERACTIVE FORTRAN/HARDWARE FLOATING POINT

This program uses hardware floating-point instructions, and therefore requires the Floating Point Instruction set.
IUG-292: INTERACTIVE FORTRAN/SOFTWARE FLOATING POINT

Performs its calculations by software floating-point computations, and does not require, nor can it use, hardware floating point instructions.

IUG-293: OS INTERACTIVE FORTRAN

This program performs its calculations using either hardware or software floating-point computation subroutines. However, this method used by the system depends on the user's choice of the starting location.

IUG-294: DOUBLE PRECISION INTEGER DIVISION (DBLDVD) John Jones, Interdata Inc.

Requires: New Series Processor, 16K3 Memory, OS, Library Loader
Source Language: Assembler

This routine will divide a 64-bit signed dividend by a 32-bit signed divisor and yield a 32-bit signed quotient and a 32-bit signed remainder.

IUG-295: DOUBLE PRECISION INTEGER CONVERSION ROUTINE (DBLINT) J. Jones, Interdata Inc.

System requirements: As in IUG-294

This routine converts a double precision integer into its decimal equivalent.

IUG-296: DOUBLE PRECISION INTEGER MULTIPLICATION (DBLMLT) J. Jones, Interdata, Inc.

System requirements as in IUG-294

This routine multiplies two signed 32-bit integers and returns a signed 64-bit integer.

IUG-297: INTERVAL TIMING (INTTIM)

System requirements as in IUG-294.

This program may be used to provide the execution time between two points of a calling program.

This program requires three additional subroutines: DBLMT (IUG-296, DBLINT (IUG-295), and DBLDVD (IUG-294), to perform double precision arithmetic and conversion.
IUG-298: STAR TREK II Author: E. Shirdlu, Omnimagens Consultants

Star Trek II is based on the game SPACWR from David Ahl's 101 BASIC Computer Games. The II designation indicates considerable enhancements due to the author and many of his colleagues. Most of the names of the players and equipment are based on the TV show Star Trek, but no other similarity is intended.

IUG-298A: STAR TREK III Author: C. Archer, Interdata, Inc.

Yet another version in BASIC of the popular game Star Trek in which you, the captain of the spaceship must rid the galaxy of the deadly Klingon menace.

IUG-299: HUNT THE WUMPUS Author: E. Shirdlu, Omnimagens Consultants

This game written in BASIC is a hunt for the cave-dweller Wumpus. Wumpus occupies 20 rooms, each room has 3 tunnels leading to other rooms. The object of the game is to hit the Wumpus in spite of such hazard as bottomless pits and superbats.

IUG-300: CLUB-DOS Author: Robert Rosen, Harry Diamond Labs, Washington DC

This program is a modified version of OS CLUB, the on-line interactive hexadecimal debug program. The program runs on any Interdata 70, 80, 85, 7/16 etc. which supports an operating system and the STM instruction.

IUG-301: OS CLUE 70 (OS CLUB WITH TRACE) Author: H. Lyster, National Research Council of Canada.

Minimum requirements: Model 5 or 70, TTY, BOSS, 5B or equivalent Language: Interdata OS Assembler

Available material: Source paper tape, Relocatable Paper Tape, Assembly Listing Occupies: X'108C' Bytes

OS CLUE 70 is an extension of the Interdata Hexadecimal DEBUG Program 'OS CLUB" (03-032). The operation of OS CLUE is identical with that of OS CLUB as described in the CLUB Manual, except for the addition of directives for selective program trace and sequential program input and the substitution of the letter 'U' for the letter 'O' as the directive which outputs labelled binary data in loader format.

IUG-302: IFFUNC/BOSS 4B SCOPE DRIVER Author: Marilyn Sealey, University of Iowa, Speech & Hearing Center.

Minimum requirements: Model 4, 16KB Core Memory, Floating Point, Tektronix Scope 603, BOSS 4A or 4B, Interactive Fortran

This program is a modification of IUG-123: READ/WRITE FUNCTIONS and adds functions for plotting to a scope. The scope driver can be patched into BOSS/4B.
This program reads and stores all variables ($ and numeric) and prints an alphabetical list of the variables. A useful program for adding another variable when "What is left" is not known.

This is a serially re-useable subroutine to execute a DOS command from a FORTRAN program.

System Requirements: INTERDATA 16-bit processor, a binary input device and line printer, an Operating System, Library Loader and FORTRAN V, Level l Run Time Library, 16KB of memory plus the amount needed for the operating system.

The Loader Format Analyzer reads standard 16-bit format records and provides a printout for each record showing:

a. sequence number
b. checksum value
c. loader items
d. data items

This program plays the game of "Animal, Vegetable, or Mineral?"
The Intel Cross Assembler runs on an Interdata 7/16 with the DOS operating system. The assembler is capable of assembling Intel 8008 and 8080 code.

The software comprises some 26 source modules, including a FORTRAN main body routine, 22 subroutines, 2 test routines and an optimized loader for the Intel processor.

The program is available on a user-supplied 9-track mag tape in source format.

This program reads in two direct physical files from LU-1 and LU-2. A comparison is made between each group of sixteen halfwords in the file and if a difference occurs then the sixteen halfwords from the LU-2 file are printed out in LU-3 with a character translation. This program is particularly useful in comparing a program before and after runtime. Thus providing an aid for debugging the program.

This program is to be run on a two disc drive system. It will copy all files on pack C6 onto pack D6 and will carry out a compression process for cleaning up the packs at the same time.

One advantage of the system is that it will provide a consistency between the busy flags and the file directory on the disc which may have become inconsistent particularly on a two disc system environment.
OLINTE will analyze the library and produce a listing containing a line
for each record in the library. It will output for each record the
sequence number of the record and will indicate using symbols any labels,
entry points, external or common references at end of module.

IUG-312: SCOPYS Author: Bruce Williams
LANGUAGE: FORTRAN National Acoustic Laboratory
PROCESSOR: Model 80 New South Wales, Australia

This program inputs from disc file, source statements including features
of "SCOPYS" and will output to disc file the version acceptable to the
fortran or assembler compilers.

IUG-313: SAVMEM Author: Bruce Williams
LANGUAGE: FORTRAN National Acoustic Laboratory
PROCESSOR: Model 80 New South Wales, Australia

This program will read the current CONTAB table from DOS and using this
table, certain parts of memory will be written on LU-E disc file. In
particular, this program is used for saving a program in memory on disc.
If the same program is saved after running, then a comparison can be made
between the two programs and any changed areas can be used in debugging.
IUG-308 COMPAR exists for doing the comparison.

IUG-314: UPDATO Author: Bruce Williams
LANGUAGE: FORTRAN National Acoustic Laboratory
PROCESSOR: Model 80 New South Wales, Australia

The program expects LU-2 to be positioned after the new module. It also
expects the library to be terminated by label ENDVL0. It will search the
library for the module and if it is not found on the library it will
replace the label ENDVL0 with the new module on LU-2 and then add label
ENDVL0 on the end of the new module which becomes the end of the library.

IUG-315: GTCAL Authors: Cheryl Allen and Jim Farmer
LANGUAGE: FORTRAN Georgia Institute of Technology
PROCESSOR: 16-bit or 32-bit

This is an Interdata CAL cross assembler to run on a UNIVAC 1108. There are
two main programs in this package, one to build the hash-coded op-code tables
for the assembler (TGEN) and the main driver for the assembler itself (GTCAL).
Unless the assembler is to be run on a machine other than the UNIVAC 1108,
new op-code tables will not have to be generated as they are included in the
assembler itself. The programs were written in FORTRAN to make the cross-
assembler as machine independent as possible. Machine dependent routines for
input and output and character manipulation are flagged as such both in the
documentation and in the program listings. The documentation for each program
is in three parts: a diagram of the general program flow, a description of
the common areas and data structions, and a short description of each
subroutine.

Available on user-supplied 9-Track magnetic tape.
DOSCMD is a FORTRAN-callable subroutine which passes DOS system commands into the system via an SVC-4 supervisor call, returning the mainline FORTRAN program.

ICMD is an array of any length and any type, such that the DOS command is stored in the array as a string of 70-bit ASCII characters stored one per byte, starting with the leftmost byte of ICMD(1). The string can be stored in ICMD with a DATA statement, or entered with a READ statement. The string must be terminated by a blank or carriage return. Illegal command syntax or unexecutable statements will cause an unconditional return to DOS, as will the execution of a TRANSFER or SVC 2 PAUSE.

This program is Interdata's Disc Operating System modified to run on a Model 4, and can do everything that a Model 70 can do. (See DOS Reference Manual 29-293R01).

The GEPAC-30 instruction set is compatible with Interdata assemblers with the exception of the extended short branch instructions. A solution for this deviation is provided in the form of a patch module program to run with Interchange program IUG-215 Cross Reference Assembler, where the special GEPAC-30 mnemonics are defined using the "user defined op-codes" feature of the assembler, and operand expressions are properly evaluated by the patch module.

SNAP2 is a simple core save and restore program for Interdata Model 70 with Intertape cassette. The user specifies the first, last and start address of the core area to be written by setting up core locations. SNAP will write a single record containing a bootstrap plus the core image specified. The core image can then be read into core using the standard 50 sequence (or LSU program 97-000001). Features: dynamic display, checksum, semi-automatic error recovery, inhibit auto start, inhibit tape stop on error, read without destroying locations X'80'-X'CF', write routine callable as subroutine via EXTRN, optional automatic rewind after reading, multiple-record capability. Size: ~'200' bytes.
IUG-320: SSP - SCIENTIFIC SUBROUTINE PACKAGE

Language: FORTRAN

Contributed by: Roy Stehle, Stanford Research Institute, Menlo Park, California

Medium: This package is available on a user-supplied 9-track 800 bpi magnetic tape, accompanied by a library description organized and segmented by program function. The subroutines are in relocatable object format with individual labels.

The Scientific Subroutine Package is formulated for greatest ease-of-use with maximum flexibility. A total of 356 subroutines provide a broad base of computational routines aiding the user to build his own program. The user furnishes, as part of his program, whatever input/output and other operations necessary for total solution of his problem.

All routines are accessible by simple FORTRAN CALL statements, and are treated as standard FORTRAN subroutines; all data is transmitted via the arguments in the CALL statement and no outlines cause input or output directly, resulting in a versatile device independent service for the user.

Program is available on two user-supplied 2400' mag tapes.

IUG-321: INTERACTIVE GENERAL LOADER

Language: ASSEMBLY

Contributed by: W. Lowzik, American Business Computers, 220 Montgomery Street, San Francisco, CA

Minimum system requirements: Model 4, 8KB, TTY or CRT on PASLA, 2.5 MB Disk.

Media: Source available on user-supplied magnetic tape. Object available on paper tape

This version of the General Loader supports the 2.5 to 10 megabyte disk. It will run on any Interdata CPU on a PASLA or TTY on TTY interface (see low core).

Object programs may be loaded and linked from a DOS R03 physical disk file into core (must be attribute X'20') or 256 byte record length. There is no de-blocking done with a 256 byte record. It is only necessary to know where the first record in the program resides, i.e. sequence number X'FFFF'. The operating system supporting the disk may be DOS, BOSS, RTOS, OS-16MT, etc. however, DOS R03 will supply the required cylinder in decimal, where the program resides.
IUG-322: INTERCHANGE GAMES PACKAGE

Available on a user-supplied magnetic tape or cassette

IUG-323: MOTOROLA M6800/INTERDATA Cross Assembler

G.A. Thomsen, Motorola, Schaumburg, IL. 60172

Language: Interdata Assembler

This assembler runs on any Interdata 16-bit configuration capable of supporting an operating system. The program requires a scratch device to perform automatic two-pass assemblies. However, the source statements may be re-read from the original input device on pass two.

The assembler accepts source code for the M6800 microprocessor in standard Motorola format. The operand data identifiers, H, O, and B are not permitted. However, the leading identifiers $, % and @ are permitted, allowing compatibility with existing Motorola source programs. Additionally, "conditional" assembly is permitted by employing "IF" statements of the type used in the Interdata OS Assembler.

The output consists of an object program loadable by both EXORCISORTM and MIKBUGTM resident loaders. A listing and unsorted symbol table are also produced.

The assembler source listing is completely commented. Operating instructions, logical unit assignments, and notes pertinent to the assembler are included as the first page of the listing.

This program is available to Interchange members on a user-supplied magnetic tape or cassette.

IUG-324: PRINCIPLE, INTEREST RATE PROGRAM (31 STATEMENTS)

C. Bowman, USAFAS, Fort Sill, Oklahoma

Language: FORTRAN IV Processor: 16-bit or 32-bit
IUG-325: AMORTIZATION PROGRAM (68 STATEMENTS)
C. Bowman, USAFAS, Fort Sill, OK.
Language: FORTRAN IV Processor: 16-bit or 32-bit

IUG-326: MATRIX ALGEBRA, LINEAR EQUATIONS (130 STATEMENTS)
C. Bowman, USAFAS, Fort Sill, OK.
Language: FORTRAN IV Processor: 16-bit or 32-bit

IUG-327: TREND ANALYSIS PROGRAM (234 STATEMENTS)
C. Bowman, USAFAS, Fort Sill, OK
Language: FORTRAN IV Processor: 16-bit or 32-bit
This program consists of a main program and two subroutines

IUG-328: GRAPH ROUTINE (TEKTRONIX 4010-1)
C. Bowman, USAFAS, Fort Sill, OK
Language: FORTRAN IV Processor: 16-bit or 32-bit

IUG-329: SINE AND COSINE WAVES 1-720 DEGREES (TEKTRONIX 4010)
C. Bowman, USAFAS, Fort Sill, OK
Language: FORTRAN IV Processor: 16-bit or 32-bit
This program draws on X and Y axes.

IUG-330: PLTBIO (BIORHYTHM CHART PLOTTER)
S. Baker, Naval Air Rework Facility, San Diego, CA.
Language: FORTRAN V
This program will plot your biorhythm chart on a monthly basis, thus enabling the user to plan future activities to take the best advantage of Physical, Emotional and Intellectual capabilities at any given time.

62
IUG-331: DISCUPT UTILITY (DISC PATCH)

R. P. Jung, Interdata GMBH, Munich, Germany

Language: FORTRAN V Level 1 Processor: 16-bit

Operating System: OS/16MT2

This program provides the capability to read a random disc file, one sector at a time (256 bytes), modify data in hexadecimal form, and create a new file and write onto it.

IUG-332: MULTI-USER INTERACTIVE FORTRAN SYSTEM

The Multi-User Interactive Fortran System is a computational system designed for use in schools, offices and laboratories. The system uses a language which is a subset of FORTRAN, augmented to make it interactive. It has the power of such other interactive languages as 'BASIC', and possesses the advantage that its syntax is that of FORTRAN. This means that the system provides an excellent method for learning Fortran programming.

The system is physically operated from teletype terminals. These are connected by means of telephone lines to a central computer which provides the computational power. The users dial up the system whenever they wish to use it.

IUG-333: PUNCH

Jeff Sumberg, Interdata, Inc., Oceanport, N.J.

System requirements: 16-bit CPU, 8KB Memory, TTY, HSPTR/P
Language: Basic Assembler

This program permits the user to punch characters from A-Z or 0-9 at the start of paper tape for the purpose of labelling, etc.
IUG-334: SOURCE MAINTENANCE UTILITY TASK
J.N. Walker, H.M. Huber Corporation, Edison, N.J.

System requirements: 7/16 HSAU or other 16-Bit CPU with RTOS capability, disc or drum, I/O Device.
Memory: 7KB above OS (not including memory requirements for editing, compiling or assembling)

This utility task creates and maintains directoried card image ASCII source files libraries in a direct access, mass storage environment. The program is designed as an aid to program development, in that it can be used to create, edit or compile source code interactively or in batch, with a minimum number of operations required on the part of the user.

IUG-335: UT200 EMULATOR FOR DEDICATED 7/16 using modified DOS plus a user program.

IUG-336: UT200 EMULATOR for 7/32 under OS 32/MT with ITAM

IUG-337: DCT-1000 MULTIPLEXOR EMULOR FOR UNIVAC 1100

IUG-338: GTCALRO2 - FORTRAN VERSION OF CAL designed to be machine independent. This version has machine dependent routines for UNIVAC 1100.

IUG-339: EXPENDED PRECISION ARITHMETIC PACKAGE - EPAP
Chris Henrich, Interdata, Inc.

System requires: 32-bit processor, FORTRAN Compiler, CAL, TET

This package performs arithmetic operations to a high degree of precision: up to 98 hexadecimal digits of significance. The number of digits found in any particular calculation is adjustable by the user; generally, more digits require more computation time. The package has two parts: (a) a main program designed for use at a terminal; (b) the subroutines which perform the actual arithmetic.

IUG-340: OS/32MT UNIVERSAL CLOCK MODULE & UNIVERSAL LOGIC INTERFACE DRIVER
Jeff Waxler, Interdata, Inc., Dallas, Texas

System requires: Model 7/32; 2 or more Universal Clock Modules, 1 Line Frequency Derived Clock, 1 or more Universal Logic Interfaces.
Language: INTERDATA Assembler

The Universal Clock Driver provides support of additional Universal Clock Modules or a Line Frequency Clock under OS/32 MT. The supported attributes include: Read, Write, Wait, Proceed, Unconditional Proceed and Halt I/O/Intervals from 1 us to 4.66 hours are supported by the PIC. The Universal Logic Interface Driver provides very basic support for the ULI (under OS/32MT).
IUG-341: 70X LOADER FORMAT ANALYZER

System Requires: OS, Library Loader, and FORTRAN V Level 1 Run Time Library
Memory: 16KB Plus memory required for OS

Reads the output produced by the loader from LU2 and prints its own output
on LU3. The output of the analyzer is intended to be an easily readable
form of the bit output of the loader.

IUG-342: DISCREL

System requires: 32-bit CPU. Language: CAL
This Rel Loader can be used to load an OS/32 module from a disc file.

IUG-343: DIRECL
Language: CAL Requires: 32-bit CPU
DIRECT is a utility program which transforms the output of DISPLAY FILE
command into a useful CSS file.

IUG-344: PSEUDO-RANDOM NUMBER GENERATOR SUBROUTINE PACKAGE
Guy Sotomayor, Dickinson College, Carlisle, Pa.

This package, which can be supplied on a user-provided magnetic tape,
consists of a set of subroutines for sampling from the uniform, Gaussian
and exponential distributions. These pseudo-random number generator
routines are conversions to the Interdata 32-bit series systems from the
original routines designed by Dr. Jo Ahrens, Nova Scotia Technical College,
for IRM Systems. Mathematical proofs for all the algorithms used exist in
the recent mathematical literature. The routines in this package are low
in memory requirements, execute in less than 3/4 of a millisecond and
generally represent the state of the art in the generation of pseudo-random
numbers.

Minimum requirements: 32-bit CPU, CAL Assembler, FORTRAN V compiler (for the
test programs), Line Printer (helpful since the documentation is embedded
in the source code as a prolog.

IUG-345: OS/32 ASCBC
C. Archer, Interdata, Inc.
This program converts 80-byte ASCII records into 80-byte EBCDIC records.
The program uses table look-up to convert the 64 character set, as well
as 25 control characters.

IUG-346: EBCASC
As above except that the conversion is from EBCDIC records into ASCII.
IUG-347: 1130 COMMERCIAL SUBROUTINE PACKAGE (Available on a user-supplied 2400' 9-T magnetic tape.)
This package contains three files. First, the 32-bit object code file, ready to link into the program as is. Second, the source file for the subroutines. The last file contains the source code for all the test programs.

The source modules are completely documented, internally. However, for further information refer to the IBM 1130 Commercial Subroutine Programmers Guide H20-0241-3. As well as the 1130 CSP routines, several commonly used additions and a sort/merge procedure have been included.

Most of the subroutines are coded in standard FORTRAN IV. Most of the routines have been tested, used successfully, and have corresponding test programs in the test program file. The rest should be used with caution. The exception is EBCASV. This routine does not have test program but has been tested by verifying its operations through the use of OS/32 AIDS.

The routine TEXT was coded entirely in CAL Assembly code. TEXT has not been tested in the 16-bit mode. The L5DMF executive routine to the sort/merge procedure uses online assembly statements to accomplish dynamic memory management. The technique used will require some modification for systems other than OS/32ST.

IUG-348: CANONICAL CORRELATION ANALYSIS - CANONA

This program was designed to provide the research with the facilities necessary to study experimental results without many of the restrictions imposed by the more traditional analytic methods. A by-product of canonical correlation allows the user to study the affect of various groupings of variables from one set on the individual variables of the other set. It should be noted however that data to be analyzed by this program should fit the definition for the interval or ratio measurements scales. Data that include frequencies of responses to questions, answers, counts of occurrences, and readings from chemical and physical analytical instruments fall into this category.

IUG-349: NSTAT - NONPARAMETRIC STATISTICAL ANALYSIS & CROSS CLASSIFICATION (Available on a user-supplied magnetic tape)

This program was designed to provide the researcher with nonparametric procedures analogous to the more common parametric statistical procedures.

The facilities provided by this program for analyzing data are those procedures that involve the user of contingency or cross-classification frequency tables.

IUG-350: 7-TRACK MAGNETIC TAPE DRIVER Requires: 32-bit cpu, OS/32MT
This driver is designed to operate on an Interdata 7/32 as part of OS/32MT. It may be included with the operating system at Sysgen time by specifying a device code of 240, and providing cpu with a file containing the DCB and the 7-Track driver. The driver supports both ASCII and BINARY I/O as binary.
IUG-351: DISCUPD UTILIT Y
R.P. Jung, Interdata Gmbh, Munich, Germany
This program provides the capability to read a random disc file, one sector at a time (256 bytes), modify data in hexadecimal form, and create a new file and write to it.

System requires: 32-bit cpu, OS.32MT
Language: FORTRAN V, Level I

IUG-352: OS/16MT-2 SYSTEM TABLE BUILDER II
Greg Palmer, RCA, Camden, New Jersey
This program operates and runs exactly as the OS/16MT-1 System Table Builder program (03-079), with the following considerations:
1. The program can be executed under OS/16-MT2.
2. The source output file can be assembled under the CAL/16 (03-101) assembler.

The following restrictions/enhancements have been made:
1. A binary label, TNBLD, has been inserted.
2. A transfer address has been added (BPR).
3. When executing under OS/16MT-2 the option COMP must be specified, and all optional logical unit assignments which are not used, must be assigned to the NULL device.
4. The DLIST pseudo-op has been replaced with comparable coding, since the DLIST statement is not supported by CAL.16 (this feature is transparent to the user).
5. The PREAMBLE statement must be specified to override the default preamble which would generate a "WIDTH 120" statement which is not supported by CAL/16.

IUG-353: FIND
David J. Fylstra, Stanford Research Institute,
This Fortran-callable subroutine searches a library file on logical unit LU for a labeled object module. It accomplishes the same function as a Library Loader FIND command.

System requires: Model 70, 16KB Memory, Fortran Compiler, Library Loader.
Language: Assembler

IUG-354: FETCH
David J. Fylstra, Stanford Research Institute, Menlo Park, CA
This subroutine allows the DOS users to fetch and load a labeled overlay segment from a library of labeled object modules. Other subroutine used is: FIND (IUG-353).

IUG-355: SCAN
David J. Fylstra, Stanford Research Institute, Menlo Park, CA
This FORTRAN-callable subroutine is a general character scanner. The subroutine scans across character string LINE (packed one character per byte) from position START to position END, until a delimiter is found. The intervening string is returned in ITOKEN, and START is left positioned at the delimiting character; the delimiter is returned in the left byte DELCHR. LINE and ITOKEN may be any type of array receiving characters from FORTRAN READ or DATA statements; character positions are counted left-to-right starting with zero. START, END, and DELCHR are typically two-byte integers.
IUG-356: TIC-TAC-TOE
C. Archer, Interdata, Inc., Oceanport, N.J.
This version of the game TIC-TAC-TOE is written in BASIC. System requires: TTY or CRT; BASIC; BOSS, OS/16MT2 or OS/32MT.

IUG-357: REAL-TO-ASCII & INTEGER-TO-ASCII FIXED FORMAT CONVERSION SUBROUTINES
(DOCUMENT ONLY AVAILABLE)
W.D. Cave, General Electric Company, Nela Park, Cleveland, OH
This conversion package is designed for real-time small memory system applications on Interdata 16-bit computers. The routines are compact and fast. All parameters are passed via registers, and the routines are completely re-entrant. They are fixed format as opposed to free-format in that the ASCII result is stored (right justified) in a user buffer of specified size.

IUG-358: CRIBBAGE
Charles V. Codling, Interdata Inc., Washington, D.C.
This Cribbage program plays you against the computer. A Random Number Generator is used to determine hands dealt and who has the first Crib. RAN1.CAL is a Random Number Generator. An Equate statement is at the front to indicate FORTRAN V or VI calling sequences and should be set for the respective compiler used.

INPUT = Logical Unit 1 OUTPUT = Logical Unit 6
System requires: Model 6/16 - 8/32, 30KB Memory, KVDT or Carousel Device.
Language: FORTRAN V Level I

IUG-359: SNAPSHOT (Dump subroutines)
Charles V. Codling, Interdata, Inc.
Washington, D.C.
System requirements: 7/32, 8/32, .25KB Memory
Prints hex and ASCII equivalent data on IU-6 from the starting through ending addresses. These addresses are rounded to word boundaries in multiples of 8 words. The start address is rounded downward and the ending address is rounded upward, if required. Multiples of the same line are suppressed with an asterisk on the last line of the repeated lines.

IUG-360: MULTI-USER EXECUTIVE OPERATING SYSTEM FOR 16-BIT CPU
The BASIC Multi-User Executive is a dedicated operating system specifically tailored to provide multi-terminal environment using the BASIC Interpreter (IUG-365). As few as two or as many as 32 terminals may be supported. Although designed specifically for use with the BASIC Interpreter, the Executive can support other re-entrant programs.

The modular construction of the Multi-User Executive allows each user to specify the type of terminal device to be used and the address of the terminal. A full range of I/O device drivers is supported, allowing user written drivers to be added or removed.
IUG-361: FIXED AND FLOATING POINT MATH PACKAGE
This package provides a variety of routines for 16-bit arithmetic operations. The 4 binary-to-decimal type conversions do not use multiply-divide op-codes. The various trigonometric routines do use multiply-divide op-codes. The random number generator routine produces pseudo-random binary sequences of 1 to 16 bits.
The package consists of:
Binary to DECimal Integer Conversion
Binary to Decimal/Fractional Conversion
Decimal to Binary Integer Conversion
Decimal to Binary Fractional Conversion
Square Root
Log Base 2,e,10
Exponential
Sine/Cosine
Arctangent
Angle Conversion
Multiply/Divide Trap
Random Number Generator
Fixed-Point Single Precision Conversion Routines
Fixed Point Single Precision Arithmetic Routines.

IUG-362: TIDE (16-BIT TEXT EDITOR)
TIDE is an on-line, interactive text editing program that assists the user with creation, examination, and manipulation of source program paper tapes. The user directs TIDE through keyboard commands while the textual information within TIDE's text buffer until a hard copy of the text is obtained (listing/tape). TIDE assumes the teletype is interfaced to the processor as Device 02. TIDE runs on any INTERDATA 16-bit cpu. The program requires approximately 5K of core memory.

IUG-363: RIOS - REAL TIME OPERATING SYSTEM - 16-BIT MODEL 70/80
RIOS provides the user with the capability of interleaving the execution of a number of programs based on their established priorities. While still being responsive to the occurrence of real time events and their required processing, RIOS can perform a variety of background tasks.

IUG-364: RTEX - REAL TIME TELECOMMUNICATIONS EXECUTIVE
Under RTEX, program tasks (channel programs) issue requests to the system for operations on communication adapters with the Supervisor Call 15 instruction (SVC15). System servicing of communication calls under RTEX offers considerable latitude in the manner in which communication drivers may be designed and executed. This flexibility enables communication systems to be customized for a given application.
IUG-365: BASIC INTERPRETER
BASIC is a widely accepted, general purpose, interactive programming language designed to include extensive programming power along with simplicity of use. This BASIC Interpreter provides the BASIC language under any existing INTERDATA operating system and at R)@ and above for INTERDATA 16-bit and 32-bit processors.

INTERDATA BASIC is compatible for the most part, with BASIC written for other systems. Programs to be converted should require only minor modification.

The BASIC Interpreter is written as a re-entrant package and can provide multi-user capability and file handling features within the BASIC language itself when run under the multi-user capability under RTOS and OS/16MT on the 16-bit processors and under OS/32MT on the 32-bit processors.
BASIC requires a Model 5, 70, 7/17, 80, 7/32 or 8/32 processor or equivalent; or a Model 74 or a Basic 7/16 using an OS with floating point trap support.
BASIC operates only with the previously named operating systems and may not be supported by any other OS which might be provided by INTERDATA.

IUG-366: FLOXOS - REAL TIME BASIC WITH FLOPPY DOS
W. Hall and P. Stein, National Bureau of Standards, Washington, D.C.
System requires: Basic 6/16, 32KB Memory, DOS, BASIC
Source Language: Assembler
Available on user-supplied magnetic tape. System consists of four files:
 File 1 - Calls source
 2 - FLOXOS source
 3 - XF?CP1 SYSGEN
 4 BASIC
All programs are inter-related and cannot be run separately without considerable rework.

IUG-367: OBDUMP - Object Dump
Eric Michelsen, Interdata, Inc.
System requires: Any Interdata processor, 3KB Memory, Binary object input,
ASCII list device, OS/16MT2 or OS/32.
Source language - CAL

OBDUMP is a common-mode program which lists 16 or 32 bit object code in an easily readable form. Binary object code is read from UI1 and a listing is sent to D03. The ID assignments must be made before starting OBDUMP.

IUG-368: CAL-360/370 CROSS ASSEMBLER
Dr. A. Savitzki, Perkin-Elmer, Norwalk, Connecticut.

There are two main programs in this package, one to build the hash-coded op-code tables for the assembler (XGEN) and the main driver for the assembler itself (GIVAIL). Unless the assembler is to be run on a machine other than an IBM 360/370, new op-code tables will not have to be generated as they are included in the assembler itself. The programs were written primarily in FORTRAN to make the cross-assembler as machine independent as possible. Machine dependent routines for input and output and character manipulation are flagged as such both in the documentation and in the program listings. The documentation for each program is in three parts; a diagram of the general program flow, a description of the common areas and data structures, and a short description of each subroutine.
MOVESTR is a general purpose character-string manipulation routine. It
Moves NCHARS characters from the string in array LINE 1 starting at position
START1 to the string LINE2 starting at position START2. Character positions
are numbered from left to right starting with zero. START1, START2, and
NCHARS are two-byte integers, and LINEL and LINE2 are character-strings
packed one character per byte in any kind of array.
System requires: Model 70, 16KB Memory, Assembler, FORTRAN compiler.

IUG-370: BFP - BASIC FORTRAN PLOTTER
Dr. K. Foerster, Institute for Aerodynamics & Gasdynamics,
Stuttgart, Germany
System requirements: Model 70, TEKTRONIX 4006-1, FORTRAN IV
Available material: Source listing, description

BFP is a short subprogram (9 FORTRAN IV statements) performing
the following basic task of plotting: Given a polygon by the
set of Cartesian coordinates of its initial, corner and end
points. Draw the polygon on the CRT’s screen. The coordinates
must already be 2-byte integers in the range displayable by
the CRT (0 ≤ x ≤ 1023, 0 ≤ y ≤ 780; the number of points (being
49 in the listed version) can be extended easily.

```
SUBROUTINE BFP(G,N)
INTEGER*2 GS,G(N)
GS=29
DO 1 I=1,N
  G(I)=G(I)+G(I)/32*224+8288-MOD(I,2)*32
  WRITE(1u,2) GS,(G(I+1),G(I),I=1,N,2)
1 FORMAT(99A2)
RETURN
END
```

IUG-371: FBCOPY - FIXED-BLOCK AND UNBLOCK COPY
J. Kendall & R. Fascenda, University of South Florida, Tampa, Fla.

System requires: 16-bit processor, 9KB Memory, Operating System
to support SVCs, I/O dev.

FBCOPY is a useful program for blocking and de-blocking. When
blocking is performed, the input record must be less than the
output record size. When de-blocking is desired, the output
record must be less than the input record size. If this rule
is not observed, then FBCOPY will respond with an error and ask
for the record sizes again.

Example of de-blocking an input record of 8,000 characters into
100 records of 80 characters.

```
RUN FBCOPY
FBCOPY /XX:XX:XX
INPUT RECORD
>8000
OUTPUT RECORD
>0080
EOJ XX:XX:XX
```
IUG-372: OS/32MT RUN ANALYZER

The OS/32MT Run Analyzer is a real-time collector of data as to system activity. The results of an analysis may be used to:

- Measure overhead and idle capacity under actual running conditions;
- Find bottlenecks and limiting factors in the operating system;
- Determine the potential payoff of proposed optimizations.

The analyzer portion of this program may also be patched to perform a similar analysis on tasks by:

BI *
VER 3A,423
MOD 3A,433

IUG-373: SIMULATION PROGRAMS IN BASIC LEVEL I

S. W. Calvin, Department of the Army
U.S. Dependents Schools

This is a package of educational programs for the study of biology, physics, and social studies.

IUG-374: SFS - SPOON FEEDER SYSTEM

The Univac 1110 Interdata 7/16 Interface has three functions. One, to send assembler images to the minicomputer for assembly; two, to record core images of the 7/16 for dumps or later reloading; and three, to send the core images back to the minicomputer.

All of the communication is done through an asynchronous line.

The 1100 7/16 Spoon Feeder System consists of 5 interrelated programs:

- SPOON/1100
- DUMPER/1100
- DUMPTER/716
- PUNCHOBJECT
- MODIFIED 7/16 ASSEMBLER
IUG-375: SORT

Dr. Samuel Raymond, Hospital of the University of Pennsylvania

The records are sorted in place without using any work area. The routine half-divides a given set of records into two halves so that all the records in the low half are less than the records in the high half. The mainline calls half repeatedly. Each time, the boundaries of the large half are sorted in stack and the small half is used. When the small half is eleven records or less, it is sorted by pairwise swapping and the previous half is examined.

IUG-376: CAL 360/370 CROSS ASSEMBLER

T. Whab, Bell Northern Research, Ottawa, Canada

This is an updated version of IUG-368. An 'EXEC' routine is supplied for the handling of the mainline FORTRAN code 'CALXASM'. This should be a ready to use 'CALXASM' cross assembler, with few if any changes required to run under IBM 360/370.

IUG-377: INPUT

Michael L. Campanella, Xerox Corporation, Rochester, New York

This is a blind I/O routine to input data without format specification.

IUG-378: SNAP

William Thomas, American Express Company Phoenix, Arizona

SNAP dump will allow the programmer to monitor general registers and storage as the application is executing. SNAP will print the contents of all general registers of the current set. It will also print the contents of specified storage.
IUG-379: DATA DIRECTOR EDITOR

The Data Director Editor is a powerful, multiuser editor that will aid in the development and modification of APT part program, assembly-language programs, and other text.

Some benefits of the editor are:

. Most of the editor is reentrant, allowing several users to share it.
. The user can utilize the editor as though the entire file being edited is in memory.
. Editing takes place on a working file so that changes are not made to the original file until desired.
. The editor offers a powerful command set where most commands have the same syntax.

IUG-380: BFP (BASIC FORTRAN PLOTTER)

(Listing and description only)
Dr. K. Foerster, Institute of Aerodynamics & Gasynamics, Stuttgart, Germany

BFP is a short subprogram (9 FORTRAN IV statements) performing the following basic task for plotting on a Tektronix 4006-1: Given a polygon by the set of Cartesian coordinates of its initial, corner and end points. Draw the polygon on the CRTs screen.

The coordinates must already be 2 byte integers in the range displayable by the CRT (0≤x≤1023, 0≤y≤780); the number of points (being 49 in the listed version) can be extended easily.)
IUG-381: SOLO OPERATING SYSTEM INCLUDING SEQUENTIAL AND CONCURRENT PASCAL INTERPRETERS

Frank Kurka, Interdata, Inc., Oceanport, New Jersey

Minimum system - operational OS/32MT2 et al, should include a disc and magnetic tape unit.

Sequential Pascal is an implementation language for utilities and languages. Concurrent Pascal is an implementation language for operating systems and real time scheduling. Solo is one operating system written in and implemented by Concurrent Pascal itself. Solo, in turn, supports both sequential and concurrent Pascal program development and operation by providing an environment for editing, file management and interpretation of Pascal programs, which is optimized for Pascal. In this sense, one operating system (Solo), runs under another (OS/32MTX), in a very transparent mode, thus providing a very different environment at the users terminal.

Included in the documentation are: bibliography, unpacking instructions, and certain manuals.

IUG-382: COBOL SQUEEZER

Kenneth Cohen, Interdata, Inc., Detroit, Michigan

This program takes any Interdata COBOL/32 user-written source code and radically decreases the core requirements for the object module.

The COBOL SQUEEZER operates as a post-processor to the compiler and strips out certain redundant code and data from the CAL generated by the COBOL/32 compiler. It is invoked by a CSS call requiring only the name of the program to be squeezed, and a list device.

The program, which is fully tested, debugged and documented, is available on a user-supplied magnetic tape.
INTERCHANGE

DATE _______________
REQUEST NUMBER _______________
(For Office Use Only)

DELEGATE __

ORGANIZATION __

ADDRESS __

CITY, STATE ____________________________ **ZIP CODE** _______________

User Supplied Media

<table>
<thead>
<tr>
<th>ITEM</th>
<th>IUG #</th>
<th>DESCRIPTION</th>
<th>DISC</th>
<th>2.5MB</th>
<th>10MB</th>
<th>CASSETTE</th>
<th>80C 111</th>
<th>1600 BT</th>
<th>DOCUMENTATION</th>
<th>SHIP DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

In order to process this request as soon as possible, we ask your cooperation in requesting only four (4) programs per form.

Signature of Interchange User

REPLY

ITEM(s) are not available at this time and will be shipped at a later date.

If there are any questions, please call. (201) 229-4040.
Material submitted to INTERCHANGE for publication in the Newsletter or to the INTERCHANGE Program Library should be sent to INTERCHANGE, Perkin-Elmer Data Systems, 2 Crescent Place, Oceanport, New Jersey 07757.

Members of INTERCHANGE may contribute or request programs. Each program submitted should be accompanied by a program submittal form and should include source on an appropriate media as specified on the Program Order Form. Documentation should include a listing, operating instructions and a program abstract. As much other pertinent information as possible should also be included.

Wherever possible, the documentation should be typed or in an easily reproducible form. In most cases, the documentation will be reproduced as submitted without alteration.

Submittal forms may be obtained on request from the INTERCHANGE office.
TITLE

AUTHOR

ORGANIZATION

MINIMUM SYSTEM REQUIREMENTS TO USE PROGRAM OPERATIONALY

PROCESSOR MEMORY KB OPTIONS

PERIPHERALS

SOFTWARE (other programs or subroutines needed)

SOURCE LANGUAGE

MATERIAL SUBMITTED: Format

SOURCE item(s)

OBJECT item(s)

Occupies:
Object Program Label
START Address
RESTART Address
XFER
Loads with

TYPE OF LISTING SUBMITTED: Source ___ Assembly ___ Compiler ___

DOCUMENTATION: Description Printout

Flowcharts Other

I, the undersigned, give full permission to INTERCHANGE to re-reproduce and distribute this program in full or in part, "free of charge" to all interested parties.

SIGNED

INTERCHANGE, 2 Crescent Place, Oceanport, New Jersey 07757 (201) 229-4040
The primary purpose of a program review is to determine whether or not the program operates as its author claims. The task of reviewing a program is an extremely variable one which cannot be specified in advance. The quality of the reviewing process, therefore, depends almost entirely on the diligence of the reviewer. As it is almost impossible to test every program that is submitted into the library in advance, we ask that you, the recipient of the program, test it out for us, complete this form, and return it to the INTERCHANGE office for evaluation. In this way, we can weed out ineffective programs and certify programs which do work efficiently.

Please check all statements made by the author about his program. When the program is in core, run it more than once to be sure that it has been properly initialized. Feel free to make comments about the program in your report. For example, if you know of a better or more general program for the same purpose, let us know.
PROGRAM REVIEWED: Number and Title

REVIEWED BY: Name
Organization

Yes No

1. Did the program compile?

2. Did the object program work?

3. Was it modified by you?

4. Was the documentation adequate?

5. Are operating instructions adequate?

6. Was the material included with the program sufficient for your use?

7. Do you feel the program should remain in the INTERCHANGE Library?

8. Do you have any suggestions for improving the usefulness of this program? (These comments or suggestions will be passed on to the author for his consideration.)

Please return this form to: INTERCHANGE
Perkin-Elmer Data Systems
2 Crescent Place
Oceanport, New Jersey 07757

80