

C-86 Compiler User's Guide

usefuL

code

endp

ends
end

5.2 Large Model

5.2.1 Segment Names and Attributes

Object modules generated by CC86 in LARGE model always contain two segments.
One of these holds all of the code produced by the functions in the file. The other
generally contains all of the data actually allocated by the functions in the file. These
segments are called 'name_CODE' and 'name_DATA', where name is the name of
the source file (with all leading devices, VIC, and directory information stripped off).
The code segment always has class name CODE, and the data segment always has
class name DATA; these are the same naming conventions used by PL/M-86 in the
LARGE model.

The 'name_CODE' segment includes code, linkage vectors, literals, switch tables, and
readonly data. If the ROM control is specified, it also includes strings. The
'name_DA T A' segment in cludes ordinary external and static impure data items. If
the ROM control is not specified, it also includes strings.

There are no group definitions in the object code produced by the LARGE model
CC86.

5.2.2 Calling Sequence

The LARGE model calling sequence is similar in spirit to the SMALL model
sequence. Arguments are passed in exactly the same way, except that pointers are
two-word objects. The base part of the pointer is pushed first, followed by the offset
part. This makes the pointer object on the stack compatible with the standard 8086
pointer.

As a consequence of the fact that the return address pushed by the FAR CALL
instruction is now a double word, the first argument is at offset 10 from the BP
(rather than at offset 8 as in the SMALL model).

Functions return pointer objects in the DX:AX register pair. This is different from
PL/M-86, which returns pointer objects in the ES:BX register pair.

The following example copies a character string from the location pointed to by pI
to that pointed to by p2, changing all upper case letters to the '!' character.

f(pI, p2)
char *p I, *p2;
{

}

int c;

while «c=*pl + +) != 0) {

}

if (c) ='A' && c < ='Z')
c = '!';

*p2++ = c;

*p2 = 0;

Runtime Issues

5-5

Runtime Issues

5-6

C-86 Compiler User's Guide

f_ proc far

push SI

push di
push bp
mov sp,bp

sub sp,2

pI equ dword ptr [bp+ 10]
p2 equ dword ptr [bp+ 14]
c equ word ptr [bp-2]

10: les si,p 1
inc word ptr pI
mov al,es: [si]
cbw
mov c,ax
or ax,ax
Je 12

cmp c,'A'
j 1 11
cmp c,'Z'
jg 11
mov c,'!'

11 : les si,p2
inc word ptr p2
mov ax,c
movb es: [si],al
Jmp 10

12: les si,p2
mov es:byte ptr [si], 0

pop bp
pop di
pop si
ret

f_ endp

5.2.3 Runtime Startoff

The runtime startoff routine works exactly the same way in the LARGE model as it
does in the SMALL model. Only the SS and the SP registers are set up (the DS and
ES registers are set up to access internal data while the LQMAIN routine is running).

5.2.4 Heap Allocation

The standard allocation routines malloc and free are simply interfaces to the library
functions DQ$ALLOCATE and DQ$FREE. LARGE model programs may be bound
in any fashion in which these Intel supplied routines function correctly.

C-86 Compiler User's Guide

5.2.5 Interfacing with Intel Supplied Routines

The LARGE model interface to Intel supplied routines is similar to that used in the
SMALL model. Because of differences between the C and PL/M-86 calling sequences,
the linkage must be written in ASM86.

Here is an example. Assume a LARGE model interface is required for the same
USEFUL PL/M-86 routine used as an example in the SMALL model. The following
ASM86 routine will perform the linkage:

name useful

extrn useful:far
usefuLcode segment public 'code'

assume cs:useful_code
public usefuL

usefuL proc far
push Sl

push di
push bp
mov sp, bp
sub sp, N_autos

push word ptr [bp+ 10]
push word ptr [bp+ 12]
push word ptr [bp+ 14]
call useful
mov dx, es
mov ax, bx

; At this point, the SI, DI, DS and ES registers
; may have been altered.

mov sp, bp
pop bp
pop di
pop si
ret

usefuL endp

usefuL code ends

end

; Note the "_"

; C save code

; Claim locals

; Push parameters
; from left
; to right, and
; call routine.
; Return pointer
; in dx:ax

; C return code

Runtime Issues

5-7

CHAPTER 6
SHORTCOMINGS AND CAVEATS

This section is an attempt to document the known shortcomings in the compiler and
its runtime system and to warn the new user of some of the more common difficulties.

6. 1 Binary Files

The ISIS file structures maintain a distinction between ASCII and binary files. In a
binary file, all characters are simply read and written as encountered. However, in
an ASCII file, all newlines must be expanded to carriage return/line feed sequence
on output, and the carriage return/line feed sequence must be converted to newline
on input. The fopen routine takes an extra format specifier in the mode field (a b) to
specify a binary stream; forgetting to specify the b will make extra ODh bytes appear
in output files and will make ODh bytes disappear on input files. This class of problems
happens most frequently when one is moving a program from COHERENT (where
there is no distinction between ASCII and binary I/O) to ISIS.

6.2 Running out of Memory

Care should be taken when writing programs that allocate memory with the dynamic
memory allocation functions malloc and free. Typically, a program simply prints a
message and exits when it discovers that no more dynamic memory is available.
However, I/O buffers are claimed on demand. If the error message is the very first
write to a stream, there may not be enough space to claim the I/O buffer. To make
programming a little easier, the standard error stream pre allocates its buffers.
However, programs that write diagnostics to the standard output or to some other
stream should be cautious.

The setbuf routine may be used to force the allocation of the buffer.

6.3 Fields

The C language requires only that fields be implemented in integers. It also allows
the implementation considerable liberty with respect to the zero or sign extension of
fields.

CC86 allows fields of char, of unsigned char, of short, of unsigned short, of int, and
of unsigned into Fields in signed types are sign extended to integers when referenced.
Fields in unsigned types are zero extended to integers when referenced.

No attempt has been made to implement fields in long integers or unsigned long
integers.

6-1

CHAPTER 7
THE STANDARD (libc) LIBRARY

The standard libraries contain a large number of routines that perform many common
programming tasks. This section describes each of the routines in the libraries. For
each routine, it describes the calling sequence (the type of the return value and the
types of each of the arguments) and gives a quick explanation of the routine's function.

The library routines are divided into functional groups. These groups correspond
(roughly) to the topics in Chapter 4 of this manual.

7. 1 Character Classification

The include file ctype.h contains definitions for a number of character classification
macros. These macros permit the lexical class of a character to be easily determined.

The macros use a character classification table so that all class determinations are
short and efficient.

The is ascii macro is defined on all integers. All other macros are defined only on the
special value EOF and legal ASCII characters (as determined by isascii).

isalnum(c); int C,

The isalnum macro tests if c is either an alphabetic character or a numeric character
(as defined by the isalpha and isdigit macros).

isalpha(c); int C,

The isalpha macro tests if c is alphabetic. In this context, alphabetic means the upper
and lower case letters and the underbar(_).

isascii(c); int C,

The isascii macro tests if the integer c is in the legal ASCII range (0 to 127 decimal).
It is normally used to check the legality of a character before presenting it to one of
the other macros, which malfunction on out of range arguments.

iscntrl(c); int C,

The iscntrl macro tests if c is a rubout (7FH) or a control character (less then 20H).

isdigit(c); int C,

The isdigit macro tests if c is a digit (between 0 and 9).

islower(c); int C,

The islower macro tests if c is a lower case letter (between a and z).

isprint(c); int C,

The is print macro tests if c is a printing character (between a blank space and,......,).

ispunct(c); int C,

The ispunct macro tests if c is a punctuation character. A punctuation character is
defined as a character that is neither a control character nor an alphanumeric
character.

7-1

The Standard (libc) Library C-86 Compiler User's Guide

7-2

isspace(c); int c;

The isspace macro tests if c is a whitespace character (space, tab, carriage return,
newline, line feed or form feed).

isupper(c); int c;

The isupper macro tests if c is an upper case letter (A through Z).

7.2 String Manipulation

The string manipulation routines work on 0 byte terminated strings stored in arrays
of characters. They all assume that their arguments are well formed. If any of the
routines are called with ill-formed strings (strings without the O-byte termination),
they may test, compare or move all of memory!

char *strcat(51, 52); char *51, *52,

The strcat routine concatenates a copy of the string pointed to by 52 to the end of
the string pointed to by 51. The destination string is assumed to have enough memory
allocated past its end to hold the extra characters. The 51 argument (a pointer to the
result) is returned.

char *strncat(s1, 52, n); char *51, *52, n;

The strncat routine is just like strcat, except that it will never copy more than n
characters from the second string.

int strcmp(51, 52); char *51, *52,

The strcmp routine performs lexicographic string comparison. It takes pointers to two
strings as arguments and returns an integer that is less than zero if the first string is
less than the second string, equal to zero if the first string is the same as the second
string or greater than zero if the first string is greater than the second string.

int strncmp(51, 52, n); char *51, *52, int n;

The strncmp routine is just like strcmp, except that it does not compare more than n
characters.

int strlen(51); char *51;

The strlen routine returns the number of characters in the string pointed to by s1.

char *strcpY(51, 52); char *51, *52,

The strcpy routine copies the string pointed to by 52 into the string pointed to by 51.
The 51 argument (a pointer to the result string) is returned.

char *strncpy(s1, 52, n); char *s1, *52, int n;

The strncpy routine is just like strcpy, except that no more than n characters are
copied.

char *index(51, c); char * 51; int c;

The index routine returns a pointer to the first occurrence of the character c in the
string 51. A NULL pointer is returned if the character is not present in the string.

char *rindex(51, c); char *51; int c;

The rindex routine returns a pointer to the last occurrence of the character c in the
string 51. A NULL pointer is returned if the character is not present in the string.

C-86 Compiler User's Guide The Standard (Ubc) Library

7.3 Creating, Deleting and Manipulating FILE Objects

FILE *fopen(name, mode); char *name, *mode;
FILE *freopen(name, mode, fp); char *name, *mode; FILE *fp;

The fopen routine creates a new FILE object and attaches the device and/or file
specified by the name argument to it.

The name argument is a string. Any device and/or file name, as defined by the
operating system, is acceptable.

The mode string must be one of one of r (for reading), w (for writing), r+w (for
updating) or a (for appending). If the file does not exist and the mode is w or a, it
will be created. If the mode is wand the file does exist, it will be truncated to zero
length (the old contents are destroyed).

The mode string may also contain the character b to specify that the new FILE should
be set up for binary I/O. A binary FILE is the same as a default (ASCII) file, except
that the special processing of the newline character (OAH) is disabled.

A pointer to the new FILE object is returned. A NULL pointer is returned on any
kind of error.

The freopen routine is like fopen routine, except that it takes a third argument fp.
This FILE object will be closed, and the named file will be attached to it. This routine
is normally used to associate one of the standard streams (stdin, stdout or stderr)
with a specific file.

int fclose(fp); FILE *fp;

The fclose routine destroys the FILE object pointed to by fp, after finishirig up any
I/O operations associated with the FILE, releasing any I/O buffers and detaching
the connection. It returns 0 if all went well, or - 1 on any type of error.

int fflush(fp); FILE * fp;

The fflush routine writes out any data that has been buffered in a FILE object. It
returns 0 if all went well, and - 1 on any kind of error. The fnush performs no opera­
tion on an input stream; it always returns a successful status.

void setbuf(fp, b); FILE *fp; char b[BUFSIZ];

The setbuf routine causes the buffer b to be associated with the specified FILE. It
must be called before buffers are dynamically allocated to the FILE (that is, before
the first read or write operation is performed).

This routine is most often used to prevent I/O buffers from being allocated in the
dynamic storage pool in programs that require very precise control of their memory
usage.

feof(fp); FILE *fp;

The feof macro tests the _FEOF flag in the FILE fp. This flag is set when an input
FILE hits end of file.

ferror(fp); FILE * fp;

The ferror macro tests the _FERR flag in the FILE fp. This flag is set on any kind
of I/O error.

clearerr(fp); FILE *fp;

The clearerr macro clears the _FERR flag in the FILE fp. It is used by programs
that recover from I/O errors.

7-3

The Standard (Ii be) Library C-86 Compiler User's Guide

7-4

fileno(fp); FILE * fp;

The fileno macro extracts the operating system's connection number from the FILE
fp. It might be used, for example, to obtain the connection number so that it could
be passed to dq$special or dq$get$connection$status.

7.4 Byte by Byte 1/0

int. fgete(fp); FILE * fp;

The fgetc routine reads and returns the next byte from the input FILE fp. The special
value EO F (-1) is returned on end of file or error.

int fputc(c, fp); int c; FILE *fp;

The fputc routine writes the byte c onto the output FILE fp. The c argument is
returned, if all went well. An EOF is returned on any kind of error.

The fgetc and fputc routines are the actual, low level byte-by-byte I/O functions.
However, they are normally not called by users. User programs call these routines
through four standard macros.

getchar()

The getcharO macro is identical to fgetc(stdin).

getc(fp)

The getc(fp) macro is identical to fgetc(fp).

putchar(c)

The putchar(c) macro is identical to fputc(c, stdout).

putc(c, fp)

The putc(c, fp) macro is identical to fputc(c, fp).

int ungetc(c, fp); int c; FILE *fp;

The ungetc routine pushes the character c back into the input FILE fp. Only one
character may be pushed back. This routine is useful in situations (such as the reading
of numbers) where an extra character must be read in order to determine that the
end of the input has been reached.

7.5 Word by Word 1/0

int getw(fp); FILE *fp;

The getw routine reads and returns the next (16-bit) word from the input FILE fp.
It returns EOF on end of file. However, since EOF is a legal word value, the feof or
ferror macros must be used to determine the success or failure of a getw.

int putw(i, fp); int i; FILE * fp;

The putw routine writes the (16-bit) word i to the output FILE fp. It returns i if the
write was successful, and EOF on any kind of error. Since EOF is a legal word, the
ferror macro must be used to check the success of a putw.

C-86 Compiler User's Guide The Standard (libc) Library

7.6 String I/O

char *fgets(b, n, fp); char *b; int n; FILE *fp;

The fgets routine reads characters from the input FILE fp and stores them into the
buffer b. It stops reading on end of file, when a newline character is read or after
n-l bytes have been stored in the buffer. Newlines are stored in the buffer. A 0 byte
is stored in the buffer immediately after the last character read.

The b argument is returned unless reading was terminated by end of file, in which
case NULL is returned.

char *gets(b); char *b;

The gets routine is much like fgets, except that it always reads from the standard
input FILE. There is no n parameter to specify the length of the buffer, and delim­
iting newlines are NOT stored in the buffer.

int *fputs(b, fp); char * b; FILE * fp;

The fputs routine writes the 0 byte terminated string in the buffer b onto the output
FILE fp.

int *puts(b);

The puts routine writes the 0 byte terminated string in the buffer b, followed by a
newline, to the standard output FILE.

7.7 Block I/O

int fread(b, s, n, fp); char *b; int s, n; FILE *fp;

The fread routine reads (up to) n objects, each of size S bytes, from the input FILE
fp into the buffer b. The number of items actually read is returned.

The feof and ferror macros must be used to check for end of file or error conditions.

int fwrite(b, s, n, fp); char *b; int s, n; FILE *fp;

The fwrite routine writes n items, each of size S bytes, from the buffer b onto the
output FILE fp. The number of items actually written is returned.

The ferror macro must be used to check for error conditions.

7.8 Formatted I/O

printf(format [, list]); char * format,
fprintf(fp, format [, list]); FILE * fp; char * format,
sprintf(sp, format [, list]); char * sp, * fp;

These three routines perform formatted output conversion. The printf routine writes
characters to the standard output FILE, the fprintf routine writes characters to the
FILE fp, and the sprintf routine stores characters into the string sp.

The format argument is a character string that controls the interpretation of the
additional arguments in the comma separated list. Ordinary characters (characters
that are not part of a format specification) are simply copied to the output.

7-5

The Standard (libe) Library C-86 Compiler User's Guide

7-6

Format specifications are introduced by a percent sign (%). After the % there may
be:

I. A minus sign (-) that specifies left adjustment of the data in the output field,
instead of the default right adjustment.

2. A string of decimal digits that specify the width of the output field. Normally, a
field is padded to its field width with space characters (blank spaces). However,
if the first character of the field width is a 0, the field will be padded with 0
characters; the leading 0 does not cause the field width specification to be taken
as an octal number. If the field width is an *, the next int from the list is used as
the field width.

3. A period (.) that serves only to separate the two decimal digit strings.

4. A string of decimal digits that specifies the precision of an e, f, or g conversion
item, or the maximum number of characters that will be output by an s conver­
sion item. If the maximum number is an *, the next int from the list is used as
the maximum width.

5. An I that specifies that the argument from the list is a long object rather than an
int object. Making the conversion character uppercase has the same effect.

6. A conversion character that specifies the exact form of the data conversion. The
legal conversion characters are:

% The character % is output; the sequence %% is used to print a single %
character.

c The next int from the list is output as a character.

d(O) The next int (long) from the list is output in decimal.

e The next float or double from the list is output in the format [-]d.ffffffE
[+ - lee, where the length of the fraction string ffffffis given by the preci­
sion (default 6).

f The next float or double from the list is output in the format [-]ddd. ffffff:
where the length of the fraction string ffffffis given by the precision (default
6).

g The next float or double from the list is output in the shorter of either the
e or the f conversion format.

0(0) The next int (long) from the list is output in octal.

r The next char * from the list is taken as a pointer to the argument list of
a function. A recursive invocation of printf, fprintf, or sprintf is created
to process this list as a printf argument list, with the pointer pointing at
the format argument. This format item is used to implement functions
that take printf style format lists as arguments.

s The next item from the list is taken to be a (character) pointer to a string.
This string is output, subject to the maximum length specification.

u(U) The next int (long) from the list is output as an unsigned decimal integer.

x(X) The next int (long) from the list is output in hexadecimal. The characters
A through F (uppercase) are used for the digits with values 10 through
15.

Users requiring floating point output should read the remarks in section 3.1 above.
Floating point output may print several strings in addition to the usual numbers. The
string { Float} indicates that the real floating point output routine was not included
in the link, as described above. The string {s Un normal } , where s is + or -,
indicates that the floating point object is unnormalized. The string {s NAN}
indicates that the floating point object is not a legitimate floating point number. The
string {s Infinity} indicates that the floating point object represents infinity or
- infinity. The string {s Oenormal} indicates that the floating point object is
denormalized.

C-86 Compiler User's Guide The Standard (Iibc) Library

scanf(format [, list]); char * format,
fscanf(tp, format [, list]); FILE * fp; char * format,
sscanf(sp, format [, list]); char * sp * format,

These three routines perform formatted input conversion. The scanf routine reads
characters from the standard input FILE, interprets them according to the given
format and stores the results in the argument list. fscanf reads from the FILE fp, and
sscanf reads from string sp.

The format argument is a character string that controls the interpretation of the input.
The list arguments must be pointers that indicate where the corresponding input item
will be stored. White space characters (space, tab, newline) in format are ignored.
Other characters except % match non-white space characters in the input. The %
character identifies the start of a conversion specification. Each conversion may use
one or more of the remaining arg arguments. It is essential for users to ensure type
matching between the arguments and the conversion specifications.

Each routine terminates when it encounters the end of the format string or when the
input does not match a specification. Each returns the number of successful assign­
ments.

After the % character, there may be characters indicating the width of the input field
and the conversion type. A field is delimited by white space (space, tab, newline) or
by the given field width, if any. Newlines are white space, so the input can include
more than one line. The following modifiers, in this order, may precede the conver­
sion type:

1. An optional *, indicating that the next input field should be skipped (rather than
assigned to the next variable in list).

2. An optional string of decimal digits, specifying a maximum field width.

3. An 1, specifying that the next input item is a long object rather than an int object.
Making the conversion character uppercase has the same effect.

4. A conversion character that specifies the exact form of the data conversion. The
legal conversion characters are:

c The next input character is assigned to the next list member, which should
be char *.

d(D) The next input field is a decimal (long) integer; the next list member should
be int * (long *).

e The next input field is a floating point number; the next list member should
be float * or double *.

f Same as e.

o(0) The next input field is an octal (long) integer; the next list member should
be int * (long *).

s The next input field is a string; the next list member should be char *.

7.9 Random Access

Associated with every FILE is a long integer containing the seek pointer. This pointer
is an origin 0 offset, in bytes, from the start of the file. It specifies the next byte that
will be read or written and is advanced as I/O is actually performed. This seek pointer
may be manipulated by programs to perform random access file operations.

7-7

The Standard (libc) Library C-86 Compiler User's Guide

7-8

int fseek(fp, offset, how); FILE * fp; long offset; int how;

The fseek routine adjusts the seek pointer associated with the FILE fp. If how is 0,
the seek pointer is set to offset. If how is 1, offset is added to the seek pointer (permit­
ting relative seeking). If how is 2, the seek pointer is set to the sum of offset and the
size of the file (in bytes). This permits seeking relative to the end of file.

long ftell(fp); FILE *fp;

The ftell routine returns the seek pointer associated with the FILE fp.

FILE *rewind(fp); FILE * fp;

The rewind(fp) routine is identical to fseek(fp, OL, 0). It IS provided only for
programming convenience.

7. 10 Sorting

The standard library provides two completely general sorting routines. These routines
implement only the framework of the sort. The user program must provide a routine
to perform key comparison.

void shellsort(b, n, s, p); char *b; int n, s; int (*p)();

The shellsort is a general purpose sorting function that uses Shell's sorting algorithm.
The argument b is a pointer to the base of the data block to be sorted. The block
contains n items, each of size s bytes. The p argument is a pointer to a function that
takes two arguments (both pointers to the objects being compared) and returns an
integer that is less than zero if the first object is less than the second, equal to zero if
the objects are identical, and greater than zero if the first object is greater than the
second object.

void qsort(b, n, s, p); char *b; int n, s; int (*p)();

The qsort routine is just like the shellsort routine, except that it uses C. A. R. Hoare's
quicksort algorithm.

7 . 11 Dynamic Memory Allocation

The standard library provides a general purpose dynamic memory allocation system.
This system is used both by user programs and by the I/O routines contained within
the standard library to dynamically allocate and release blocks of memory.

char *ealloe(n, s); unsigned int n, s;

The ealloe routine allocates (via an internal call to malloe) enough memory to contain
n objects each of size s bytes. It clears this memory to binary zeros and returns a
pointer to it. It returns NULL if the memory cannot be allocated.

void free(p); char *p;

The free routine takes a pointer p to a block of memory, which has been allocated by
malloe or ealloc, and returns the block to the free memory pool. Passing random
pointers, or pointers to blocks of memory not allocated by malloe or ealloe to free,
brings speedy disaster.

char *malloe(n); unsigned int n;

The malloe routine allocates and returns a pointer to a block of memory at least n
bytes in length. The memory is not cleared. It returns NULL if the memory cannot
be allocated.

C-86 Compiler User's Guide The Standard (Ii be) Library

7. 12 Odds and Ends

The standard library contains routines to convert numbers (stored in character strings)
from ASCII to binary, to generate random numbers and to perform nonlocal flow
control.

int abs(i); int i;

The abs routine computes the absolute value of its argument i. No overflow checking
is performed; the absolute value of the largest negative number is itself.

double atof(s); char *s;
int atoi(s); char * s;
long atol(s); char * s;
The atof, atoi and atol routines convert a number stored as an ASCII character string
to a double, an int, or a long respectively. Leading whitespace is ignored. Leading
signs (' +' and' - ') are accepted and correctly interpreted. The first unrecognized
character (usually the 0 byte at the end of the string) stops the conversion. No overflow
checking is performed.

int rand();
void srand(seed); int seed;

The rand routine is a random number generator. Every time it is called, it returns a
new random number in the range 0 to 2-15-1. Thc generator has a period of 2-32.
The srand routine can be called to seed (reset) the random number generator. Often
a timing device (Intel 8253, for example) can be used as a source of random seeds.

int setjrnp(env); jmp_buf env;
void longjrnp(en v, value); jmp_buf env; int value;

The setjrnp and longjrnp routines manipulate machine environments and provide a
simple scheme for performing non local transfers of control. An environment (env) is
an array of some sort. The include file setjrnp. h contains a typedef (jmp_buf) for this
object.

The setjrnp routine saves the state of the runtime stack (SP, BP, and IP, plus the CS
in the LARGE model) in the supplied environment and returns o.

The longjrnp routine restores the state of the runtime stack from the en v, and then
makes the call to setjrnp that set up the environment return again. However, this
time, the setjrnp routine returns value.

The caller of setjrnp must not have returned when longjmp is called, or the runtime
stack will be destroyed.

7-9

CHAPTER 8
THE SYSTEM INTERFACE (OQ$) LIBRARY

Both C libraries contain a complete set of system interface (DQ$) routines. These
routines have the same names as their PL/M-86 counterparts described in the Series
III System Programmer's Reference Manual. In almost all cases, the calling sequences
are identical.

The interface routines perform some minor transformations upon their parameters to
make it easier to call the system from C programs. In particular, they transform the
O-byte terminated strings of C into the leading count strings of PL/M-86 by moving
the data into a buffer on the stack.

The header file udi.h contains definitions and macros useful for dealing with the
system interface. Included in this file are symbolic names for the system error codes,
some structures for dealing with the time, date, and status of a connection, and
definitions for the types (such as token and Boolean) used by the interface routines.

The following subsections contain brief descriptions of each routine. Experienced
Series III programmers will find this information sufficient. Less experienced
programmers are well advised to refer to the Intel publications for more elaborate
descri ptions.

8. 1 Segment Management

token dq$alloeate(size, excep$p);
unsigned int size; int *excep$p;

This function allocates a new segment at least size bytes in length (with 0 meaning
64K) and returns a token representing the base of the new segment. If the operation
fails, a token of OxFFFF is returned. This routine is probably of very little use to
programs running in the SMALL segmentation model, since the new segment may
not be addressable. However, this routine is used (almost directly) as a dynamic
memory allocator by LARGE model programs.

void dq$free(segment, excep$p);
token segment, int * excep$p;

This routine returns the segment (previously obtained via a call to dq$alloeate) whose
base is segment to the system's free memory pool.

unsigned dqgetsize(segment, excep$p);
token segment, int * excep$p;

This function obtains the size in bytes (with 0 representing 64K) of the segment
whose base is segment.

Programs using the SMALL segmentation model can use this function to obtain the
size of their expanding DATA segment. This is, in fact, how the standard memory
allocation routines (malloe and free) determine the size of the free storage pool.

8.2 Exception Handling

int (*dq$trap$exeeption(handler$p, excep$p))();
int (*handler$p)(); int *excep$p;

8-1

The System Interface (DQ$) Library C-86 Compiler User's Guide

8-2

This function makes the function pointed to by handler$p the current exception
handler. The exception handling function is called, with a single integer argument
(the exception code), when an exception occurs. A pointer to the old exception handling
function, or NULL if no handler has yet been established, is returned.

This function has the same calling sequence in both segmentation models. The actual
exception handler is, in both cases, a FAR procedure concealed in the interface routine.
This hidden routine makes an indirect call to the user's handler (using either a NEAR
or FAR call, as is appropriate). The hidden routine saves all of the SOS6 registers. It
does not, however, save or restore the status of the numeric coprocessor (SOS7).

int (*dqgetexception$handler(excep$p»();
int *excep$p;

This function returns a pointer to the current execption handling function, or NULL
if no handler has yet been established. It is not a system interface function. It simply
returns the pointer to the exception handler that has been saved by dq$trap$exception.

The excep$p argument is present only for calling sequence compatibility; it is
completely ignored.

void dq$decode$exception(code, but, excep$p);
int code; char buf[Sl]; int *excep$p;

This routine obtains, from the system, an error message describing the error code
passed in code and stores the message, as a PL/M-S6 string, in the buffer but.

int (*dq$trap$cc(handler$p, excep$p))();
int (*handler$p)(); int * excep$p;

This function makes the function pointed to by handler$p the current control C trap
handling function. It returns a pointer to the old handler, or NULL if no handler has
yet been established. The handler function is called with no arguments.

As with dq$trap$exception, this routine is the same in both segmentation models; it
handles all of the register saving and long pointer fabrication.

8.3 Exit

void dq$exit(code);
int code;

This routine terminates the current program. All connections are detached and all
resources are released. The code is a completion status, which is thrown away by the
system.

8.4 Get Time and Date

void dqgettime(gt$p, excep$p);
struct gt *gt$p; int * excep$p;

This routine asks the system for the current time and date. This information is
returned, as PL/M-S6 format strings, in the supplied gt structure (which is defined
in udi.h).

C-86 Compiler User's Guide The System Interface (DQ$) Library

8.5 Get System Identification

void dqgetsystem$id(id, excep$p);
char id{ 21]; int * excep$p;

This routine obtains the system identification and stores it, as a standard C string, in
the supplied id buffer.

8.6 Delete a File

void dq$delete(path$p, excep$p);
char * path$p; int * excep$p;

This routine deletes the file whose pathname is the string path$p. This C string is
transformed into a PL/M-86 string by the interface routine via a buffer on the stack.

8.7 Rename a File

void dq$rename(old$p, new$p, excep$p);
char * old$p; char * new$p; int * excep$p;

This routine renames the file whose pathname is in the C string old$p to the new
name in the C string new$p.

8.8 Connection Management

connection dq$attach(path$p, excep$p);
char * path$p; int * excep$p;

This function establishes a connection to an existing file. An error will be returned if
the file does not exist. The path$p argument is a C string containing the pathname
of the file.

connection dq$create(path$p, excep$p);
char * path$p; int * excep$p;

This function establishes a connection to a new file. If the named file exists, it is
deleted and recreated (truncating it to 0 length). The path$p argument is a C string
containing the path name of the new file.

void dq$open(conn, mode, num$buf, excep$p);
connection conn; int mode, num$but, int * excep$p;

This routine takes a connection object and prepares it for I/0 operations. This involves
checking access rights, allocating buffers, and, in general, preparing for actual read
and/or write commands.

The conn argument is a connection object re~urned by a call to dq$attach or dq$create.

The mode argument specifies the desired access mode. Legal modes are 1
(DQ$MREAD) for read access only, 2 (DQ$MWRITE) for write access only, and 3
(DQ$MUPDATE) for read and write access. The symbolic definitions of the access
modes are in the udi. h header file.

The num$buf argument specifies the number of buffers. The console is usually run
unbuffered (num$buf = 0). Double buffering (num$buf = 2) is appropriate for
sequentially processed connections. Single buffering (num$buf = 1) may be more
appropriate for connections used in a random fashion.

8-3

The System Interface (DQ$) Library C-86 Compiler User's Guide

8-4

void dq$c1ose(conn, excep$p);
connection conn; int * excep$p;

This routine undoes the actions of a dq$open. All buffers are flushed and released.

void dq$detach(conn, excep$p);
connection conn; int * excep$p;

This routine undoes the actions of a dq$attach or dq$create. If the connection is open,
it is automatically closed before it is detached.

8.9 Read from a File

unsigned dq$read(conn, buf$p, count, excep$p);
connection conn; char * buf$p; unsigned count, int * excep$p;

This function obtains up to count bytes from the connection conn and stores them
into successive bytes starting at buf$p. The number of bytes actually read is returned.
On end of file, a count of 0 is returned.

The number of bytes read is never larger than count, although on line edited connec­
tions it may be less than count.

8. 10 Write to a File

void dq$write(conn, buf$p, count, excep$p);
connection conn; char * buf$p; unsigned count, int * excep$p;

This routine writes count bytes beginning at buf$p to the connection specified by
conn. Files are automatically extended if the write goes beyond end of file.

8. 11 Seek a Connection

void dq$seek(conn, mode, offset, excep$p);
connection conn; int mode; long offset, int * excep$p;

This system interface routine moves the seek pointer in the connection specified by
conn to the position specified by the mode and offset. The mode may be 1 (DQ$BACK)
to seek backwards by offset bytes, 2 (DQ$SET) to set the seek pointer to offset, 3
(DQ$FORWARD) to seek forwards by offset bytes, or 4 (DQ$ENDBACK) to seek
backwards by offset bytes from the end of file.

Note that the offset is a long integer. This is different from the PL/M-86 interface,
where the high and low halves of the offset are passed as separate arguments.

8. 12 Truncate a File

void dq$truncate(conn, excep$p);
connection conn; int * excep$p;

This routine truncates the file open on the connection conn at the current seek position.
The connection must be open for write or update.

C-86 Compiler User's Guide The System Interface (DQ$) Library

8. 13 Get Connection Status

void dqgetconnection$status(conn, gs$p, excep$p);
connection conn; struct gs * gs$p; int * excep$p;

This routine fills in the supplied gs structure with status information obtained from
the connection conn.

The gs structure definition is in the udi . h header file and looks like this:

struct gs {

char gs_open; /* Open flag * /
char gs_access; /* Access modes * /
char gs_seek; / * Seek modes * /
long gs_offset; /* Seek pointer * /

} ;

If the connection is open, the gs_open field is set true (not zero); if the connection is
not open, the field is set false (zero).

The gs_access field indicates the access mode of the connection. The gs_seek field
indicates the seek operations that are legal on the connection. The udi. h header file
contains the symbolic names of the bits in these bytes.

The gs_offset field is set to the current seek position. If the connection is not open or
cannot perform a backward seek, it is set to garbage.

8.14 Change Extension

void dq$change$extension(path$p, new, excep$p);
char * path$p; char new[3]; int * excep$p;

This routine changes the extension of the filename in the string path$p to that speci­
fied by the new argument. If new[0] is a blank, the extension is stripped from the
path$p.

8.15 Load an Overlay

void dq$overlay(link$p, excep$p);
char * link$p;
int *excep$p;

This routine loads the overlay whose link name is contained in the C string link$p
from the current load file.

8. 16 Perform Special I/O Function

void dq$special(type, parm$p, excep$p);
int type; connection * parm$p; int * excep$p;

This routine permits the setting and/or resetting of the line edit mode on the console.
The type argument is either 1, which makes console input transparent, or 2, which
makes it line edited. The dq$special routine does not check that the type argument is
one of these values. Any additional codes accepted by the operating system are
acceptable to this routine.

8-5

The System Interface (DQ$) Library C-86 Compiler User's Guide

8-6

The parm$p argument is a pointer to a connection that represents a dq$attach of the
:CI: device.

8.17 Command Tail Parsing

int dqgetargument(buf, excep$p);
char but [81]; int * excep$p;

This routine gets the next argument from the command tail and stores it into the
supplied buffer as a PLfM-86 format string. It returns the character that terminated
the argument.

This routine is not normally used by C programs. Instead, the command tail has been
preparsed by the runtime startoff and passed as arguments to the main routine.

unsigned dq$switch$buffer(buf$p, excep$p);
char * buf$p; int * excep$p;

This routine switches the input buffer used by dqgetargument to a user specified
area in memory. It is useful for parsing imbedded '$' control lines and other related
tasks.

The first time that this routine is called, it returns O. On subsequent calls, it returns
the offset, in bytes, from the start of the buffer of the first character past the last
delimiter returned by dqgetargument.

APPENDIX A
KEYWORDS

CC86 uses the following identifiers as keywords. They may not be used for any other
purpose.

auto extern short
break float sizeof
case for static
char goto struct
continue if switch
default int typedef
do long union
double readonly unsigned
else register void
entry return while
enum

A-I

APPENDIX B I
ERROR MESSAGES

The following error messages may be printed by CC86. '%s' will be replaced by a
string and '%d' by a decimal number.

argo list syntax
array bound must be a constant
array bound must be positive
array row has 0 length
bad argument storage class
bad base type for field
bad external storage class
bad field width
bad filler field width
call of non function
cannot add two pOinters
cannot assign unlike structures
cannot declare flexible automatic array
cannot initialize fields
cannot initialize unions
cannot specify class in cast
'case' not in 'switch'
class not allowed in structure body
compound statement required
constant expression required
declarator syntax
'default' not in 'switch'
end of file in comment
enumeration constant '%s' is changing value
enumeration list syntax error
expression syntax
external syntax
extra 'long' or 'short'
field too wide
function cannot be an argument
'goto' statement syntax
identifier '%s' is not a label
identifier '%s' is not a tag
identifier '%s' is undefined
identifier '%s' not a formal
identifier '%s' not an enumeration tag
identifier '%s' not legal in expression
identifier '%s' redeclared
identifier '%s' reinitialized
identifier '%s' semantically forbidden
illegal character C%d)
illegal character constant
illegal label '%s'
illegal operation on 'void' type
illegal pointer subtraction
illegal use of 'void'
illegal use of 'void' in cast
illegal use of floating point
illegal use of pointer
illegal use of structure
indirection through non pointer
initializer too complex
left context required
left side of ' .. ' not usable

B-1

Error Messages

B-2

member 'Is' is changing offset
member 'Is' is changing width
member 'Is' is undefined
mismatched conditional
mi splaced ':' operator
misplaced 'long'
misplaced 'short'
misplaced 'unsigned'
missing %s
missing member
missing right brace
missing semicolon
multiple 'default' labels
multiple classes
multiple types
no 'break' context
no 'continue' context
non scalar field
nonterminated string or character constant
number too long
registers lack an address
returnee) illegal in 'void' function
size of %s 'Is' is not known
structure or union in truth context
tag mismatch
too many case labels
too many initializers
too many structure initializers
type clash
type reqUired in cast
undefined label '%5'
unexpected end of enumeration list
unexpected end of file

C-86 Compiler User's Guide

The following warning messages may be printed by CC86. '%s' will be replaced by a
string.

divide
empty

by zero
switch

missing '='
nested comments
possible missing initializer
sizeof(function) set to 1
sizeof(void) set to 0
switch of non integer
symbol 'Is' truncated to 39 characters
zero modulus

The following strict warning messages may be printed by CC86. '%s' will be replaced
by a string.

%s '%s'%s is unused
constant '%s' is long
construction not in Kernighan and Ritchie
identifier 'Is' not bound to register
questionable structure access
risky type in truth context
structure '%5' does not contain member '%s'
union '%5' does not contain member '%s'

ASCII HEX PLlM-286
CHARACTER CHARACTER?

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EaT 04 no
ENQ 05 no
ACK 06 no
BEL 07 no
BS 08 no
HT 09 no
LF OA no
VT OB no
FF OC no
CR OD no
SO OE no
SI OF no
OLE 10 no
OCI 11 no
OC2 12 no
OC3 13 no
OC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 1B no
FS 1C no
GS 1D no
RS 1E no
US 1F no
space 20 yes
! 21 no .. 22 no
23 no
$ 24 yes
0/0 25 no
& 26 no

27 yes
(28 yes
) 29 yes
'* 2A yes
+ 2B yes

2C yes
- 2D yes

2E yes
/ 2F yes
0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes

3A yes
3B yes

< 3C yes
= 3D yes
> 3E yes
? 3F no

ASCII
CHARACTER

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
a
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

!\(f)
-

\

a
b
c
d
e
f
9
h
i
j
k
I

m
n
0
p
q
r
s
t
u
v
w
x
y
z
{

I
}

,....,
DEL

HEX

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

APPENDIX C
ASCII CODES

PL/M-286
CHARACTER?

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
yes
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no

C-l

-n \~

8087.LIB, 3-2

ASCII character set, C-l
ASCII file, 6-1
ASM86, 2-1, 2-2, 5-1, 5-4, 5-7
assembly language source files, 1-1
assembly option, 2-1, 2-2

binary file, 6-1
block I/O, 4-5, 7-5
byte I/0, 4-3, 7-4

calling sequence, 5-1 thru 5-3, 5-5, 5-6
CC86, 2-1 thru 2-3
change extension, 8-5
character classification, 7-1, 7-2
closing a FILE, 4-3, 7-3, 7-4
CODE segment, 5-1, 5-5
command line processing, 5-3
command tail parsing, 8-6
COMPACT model, 1-1
connection management, 8-3
connection status, 8-5
CONST segment, 5-1
conversion routines, 4-9, 7-9
creating a FILE, 1-1, 7-3

DATA segment, 5-1 thru 5-3, 5-5
data types, 1-1
debug option, 2-1, 2-2
define option, 2-1, 2-3
delete file, 8-3
derived data types, 1-1
directives, 1-1
dollar sign, 1-1
DQS library, 1-1, 8-1 thru 8-6
dynamic memory allocation, 4-9, 6-1, 7-8

E8087.LIB,3-2
error messages, B-1 thru B-2
exception handling, 8-1, 8-2
exit, 8-2

fields, 6-1
FILE type, 4-2
floating point, 3-2, 7-5 thru 7-7
floating point output, 3-2, 7-5 thru 7-7
format specification, 4-6, 7-5 thru 7-8
formatted I/O, 4-6, 7-5 thru 7-7

hardware floating point, 3-2
header files, 4-1
heap allocation, 5-3, 5-4, 5-6

identifier, 1-1
include option, 2-1 thru 2-3
input/output, 4-2, 4-3 thru 4-8, 8-5, 8-6
Intel supplied routines, 5-4, 5-5
iRMX86 system, 1-1
ISIS, 1-1,6-1

keep option, 2-1, 2-2
keywords, A-I

LARGE model, 1-1,3-1,5-1 thru 5-7
large option, 2-1, 2-2
LARGE.LIB,3-1
LCLIB.LIB, 3-1, 3-2
LDTEFG.OBJ,3-2
link, 1-1, 3-1, 3-2
LINK86, 1-1, 3-1, 3-2
load overlay, 8-5
LOC86, 1-1
LQMAIN.OBJ, 3-1, 3-2,4-1

MEDIUM model, 1-1
memory allocation, 4-9, 6-1
MEMORY segment, 3-1,5-1

opening a FILE, 4-3, 7-3

perform I/O function, 8-5
PL/M-86, 1-2, 5-1, 5-4 thru 5-7
preprocessor, 1-1
printf, 4-6, 7-5 thru 7-7

random access, 4-6 thru 4-8, 7-7, 7-8
read from file, 8-4
relocatable object files, 1-1
rename file, 8-3
ROM control, 2-2,5-1,5-5
RSX-IIM, 1-1,2-1, 2-2
RUN,2-2
runtime issues, 5-1
runtime library, 1-1, 3-1,4-1 thru 4-9
runtime startoff routines, 3-1

scanf, 4-6, 7-7
SCLIB.LIB, 3-1
SDTEFG.OBJ,3-2
seek connection, 8-4
segment management, 8-1
Segmentation model, 1-1, 3-1, 5-1, 5-5
Series III development system, 1-1,2-2
SMALL model, 1-1, 3-1, 5-1

INDEX

Index-l

Index

SMALL.LIB, 3-1
software floating point, 3-2
sorting, 4-8, 7-8
SQMAIN.OBJ, 3-1,4-2
stack allocation, 5-3
Stack requirements, 3-1, 4-8
STACK segment, 3-1, 4-8, 5-1
standard library, 4-1
storage classes, 1-1
strict warning messages, B-2
string, 4-1, 4-2,4-5, 7-2
string I/O, 4-5, 7-5
system identification, 7-5
system interface, 4-9, 8-1

Index-2

time and date, 8-2
truncate file, 8-4

UDI library, 1-1
undefine option, 2-2, 2-3

C-86 Compiler User's Manual

universal Development Interface (UDI) library, 1-1

verbose option, 2-1, 2-3

warning messages, B-2
word I/0, 4-4, 7-4
WORK device, 2-2, 2-3
workfiles control, 2-2, 2-3
write to file, 8-4

REQUEST FOR READER'S COMMENTS

C-86 Compiler User's Guide
122085-001

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi­
cation. If you have any comments on the product that this publication describes, please contact your Intel repre­
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve­
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

------_._--------_._-------- ---

--- --_ ... __ -------_.-_.----_ .. --_ .. _-----------------_._ .. ------._------.---_._----_. __ ._--

4. Did you have any difficulty understanding descriptions or wording? Where?

_ ... _------_ ... _------_._-------_._ .. _---- --_._-_ --_._.- _._-------

5_ Please rate this publication on a scale of 1 to 5 (5 being the best rating}._ ... _ _ ... _ .. _ _.

NAME DATE

TIT L E ___ , ... __ _ ... _ ... __ _ ______ .. _ _ __ ._. __ ___ _ ... _ __ .. _

COMPANY NAME/DEPARTMENT

ADDRESS

_ .. -.... _-...... _ _------_.---_._--_ ... _--_ ... __ ... _ _------ _.- .. _ --_ .. _-_ -----_._ .. --_ .. _---------

CITY STATE ZIP CODE __ _

(COUNTRY)

Please check here If you require a written reply. []

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSIN ESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

"""
NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

