

APPENDIX D
PREDECLARED IDENTIFIERS

These are the identifiers for the built-in procedures. If one of these identifiers is
declared in a DECLARE statement, the corresponding built-in procedure becomes
unavailable within the scope of the declaration.

BOOLEAN
DEC
DOUBLE
EXPAND
HIGH
LAST
LENGTH
LOW
PROPAGATE

ROL
ROR
SCL
SCR
SHL
SHR
SIZE
TESTCLEAR
TIME

D-l

APPENDIX E
DIFFERENCES BETWEEN
PL/M-80 AND PL/M-51

Most PL/M-80 programs cannot be used as PL/M-51 programs unless they are
modified. Approximately ninety-five percent of the statements in a PL/M-80 program
need no modifications whatsoever. The main changes to keep in mind are memory,
I/O, interrupts, bits, overlaying variables, and words-all of which are discussed in
the following paragraphs.

E.1 Memory

The biggest difference between the 8080/8085 and the 8051 (and hence between
their PL/Ms) is the way memory is organized. The 8080 has a single memory, from
byte 0 to byte 65535. Therefore, a PL/M-80 variable has a type and an address­
nothing more.

The 8051 has more than one memory: it has on-chip RAM, off-chip RAM, and ROM,
and if you specify a BYTE at address 17, it can still be in one of 3 places (it is like
specifying "140 main street" without naming the town; or phone number 555-1212
without an area code). Therefore, a PL/M-51 variable has a type, an address, and a
suffix specifying the memory space it occupies. If you do not specify a suffix, MAIN
is assumed. If you want to use the PL/M-80 DATA initialization (renamed to
CONSTANT), CONSTANT is assumed. Thus, in an application without off- chip
RAM (alias AUXILIARY), most non-BASED declarations get you the memory you
want. But, BASED declarations are dangerous. For example, if you get the message
"3 defaulted based variables," make sure these 3 declarations do what you want.

E.2 I/O

The 8051 has no I/O operations; all I/O is done using special-function registers,
which are variables at on-chip RAM (or BIT) addresses 128-255. To read port 0 and
copy it to port 1, write the following in ASM51:

MOV P1,PO

PL/M-51 has no I/O operations either. It lets you declare the hardware registers you
want to use (e.g., DECLARE PCON AT(87H) REGISTER), or-the easier option­
$INCLUDE a file of such declarations; when available, this kind of file will be
supplied for every member of the MCS-51 family.

Once the REGISTER variables are declared-and if your PL/M-51 program wants
to copy port 0 to port l--you can write PI = PO.

E.3 Interrupts

8051 has 4 register-banks. PL/M-51 assumes that you will never let an interrupt
procedure use the same bank as the procedure it interrupts; total chaos can result if
you do. The USING attribute of a procedure, or the $REGISTERBANK control,
can be used to ensure that you never let an interrupt procedure use the same bank as
the procedure it interrupts. To avoid any problems, use one register-bank for non­
interrupt code, one for low-priority interrupts, and one for high-priority interrupts.

E-l

Differences Between PL/M-80 and PL/M-51

E-2

E.4 Bits

In order to use the 8051's Boolean processor, PL/M-51 has a BIT data type. BITs
are 1 bit long, and can be 1 (true) or 0 (false). The results of comparisons in
PL/M-51 are of BIT type, rather than BYTE, as in PL/M-80. Automatic conver­
sions to/from BITs do not occur; you must explicitly use the applicable built-in
functions.

E.S Overlaying Variables

3ince MAIN and BIT memory is extremely scarce, the default setting of the
$OPTIMIZE control lets the compiler overlay the variables of any two different
procedures or DO blocks if it is sure they both cannot be active simultaneously (see
$OPTIMIZE(2) in Chapter 14}. Thus, you have to start thinking like an Algol or
Pascal programmer unless you have RAM to spare: the variables of a procedure or
DO block become undefined upon procedure exit.

E.6 Words

A minor point is the order of bytes within a word. In PL/M-51, unlike PL/M-80,
the first byte of a word contains its high-order byte. Thus, if a WORD variable has
value 1234H, its first byte will be 12H and its second will be 34H. If you avoid
overlaying BYTEs on top of WORDs, this should not affect your program.

PL/M-51

ASCII HEX PL/M-S1
CHARACTER CHARACTER?

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EaT 04 no
ENQ 05 no
ACK 06 no
BEL 07 no
BS 08 no
HT 09 no
LF OA no
VT OB no
FF OC no
CR 00 no
SO OE no
SI OF no
OLE 10 no
OCI 11 no
OC2 12 no
OC3 13 no
OC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 1B no
FS 1C no
GS 10 no
RS 1E no
US 1F no
space 20 yes
! 21 no
" 22 no
23 no
$ 24 yes
% 25 no
& 26 no

27 yes
(28 yes
) 29 yes
* 2A yes
+ 2B yes
, 2C yes
- 20 yes

2E yes
/ 2F yes
0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes
: 3A yes
; 3B yes
< 3C yes
= 3D yes
> 3E yes
? 3F no

ASCII
CHARACTER

@
A
B
C
0
E
F
G
H
I
J
K
L
M
N
a
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

A(t)
-

\

a
b
c
d
e
f

9
h
i
j
k
I

m
n
0
p
q
r
s
t
u
v
w
x
y
z
{

I
}

,......,
DEL

HEX

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
60
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F

APPENDIX F
ASCII CODES

PL/M-51
CHARACTER?

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
yes
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no

F-l

APPENDIX G
INTERFACING PL/M-51 TO ASM51

The segments and PUBLICs generated by the PL/M-51 compiler must have names.
A user who writes only PL/M-51 code may ignore all of these names. A user who
interfaces PL/M-51 with ASM51 must know the naming conventions for PUBLICs.
The naming conventions for PUBLICs are described in the following paragraphs.

G. 1 Calling Sequence

If a procedure is called FOO, the entry-point for calls to it is called FOO . To pass
parameters, two PUBLICs are supplied: the starting addresses of two regions, one in
DA T A space and one in BIT space, where parameters have to be placed. These two
addresses are named ?FOO?BYTE and ?FOO?BIT, respectively.

During the procedure call, parameters are placed in on-chip RAM starting at these
addresses. BIT parameters start at ?FOO?BIT, and BYTE parameters at
?FOO?BYTE. A WORD parameter is regarded as two BYTE parameters, with its
high-order byte coming first.

For example, consider a PL/M-51 procedure:

Q: PROCEDURECBIT1 ,BYTE1 ,BIT2,WORD1) PUBLICi

Its first BIT parameter will be put in ?Q?BIT, and its second in ?Q?BIT+ 1, in the
BIT address space. Its first BYTE parameter will be put in ?Q?BYTE, and its WORD
parameter in ?Q?BYTE+ 1 (high-order byte) and ?Q?BYTE+2 (low-order byte),
in MAIN memory. The procedure's entry-point will be called Q.

To call this procedure from ASM51 code, we have to move its parameters to their
proper destination. Thus, to simulate

CALL Q(1,72,O,747)

in ASM51, write

EXTRN
EXTRN
EXTRN
SETB
MOV
CLR
MOV
MOV
CALL

CODECQ)
BITC?Q?BIT)
DATAC?Q?BYTE)

?Q?BIT
?Q?BYTE,'72
?Q?BIT+1
?Q?BYTE+1,'HIGH(747)
?Q?BYTE+2,'LOW(747)
Q

To write an assembly-language procedure to do Q's job, you have to write

PUBLIC Q
PUBLIC ?Q?BIT
PUBLIC ?Q?BYTE
BITS SEGMENT BIT
BYTES SEGMENT DATA
PROC SEGMENT CODE
RSEG BITS

G-l

Interfacing PL/M-51 to ASM51

G-2

?Q?BIT:
BIT1: OBIT
BIT2: OBIT 1

RSEG BYTES
?Q?BYTE:
BYTE1: OS
WORD1: OS 2

RSEG PROC
Q :

The labels for BITl, BIT2, BYTEI and WORDI are not strictly necessary, but they
let us avoid some arithmetic. For example, it is easier to write WORD 1 than
?Q?BYTE+l.

G.2 Procedure Epilogue

To return from the procedure, the compiler inserts a RET instruction at any point a
RETURN is to be executed (including the final END statement, which is an implied
RETURN).

G.3 Value Returned from Typed Procedure

The result of a typed procedure is returned as shown in table G-l.

Table G-l. Typed Procedure Values

Procedure Type Result Returned In

BYTE A Register

WORD R6 and R7

BIT C Register (the carry bit)

PLJM-51

APPENDIX H
RUN-TIME INTERRUPT PROCESSING

H. 1 General Information

An interrupt is initiated when the CPU receives a signal from some device (on-chip
or off-chip).

Note that the CPU does not respond to this signal unless interrupts are enabled, and
unless the specific interrupt in question is also enabled. In PLfM-51, the user is
responsible for enabling and disabling interrupts, which is done by using the IE regis­
ter and the ENABLE and DISABLE statements.

If the interrupt is enabled, the following actions take place:

1. The CPU completes any instruction currently in execution.

2. The PC register is placed on the stack (occupying two bytes of stack storage).

3. Interrupts whose priority is the same or lower than the one being serviced are
disabled.

4. The low-level interrupt handler (supplied by PLM51.LIB) saves the A,B, DPTR
and PSW registers on the stack, switches to the interrupt procedure's register­
bank, and then activates the interrupt procedure corresponding to the interrupt
number.

5. When that procedure terminates, the stack is automatically restored to its state
when the interrupt was received, A, B, DPTR and PSW are restored, and control
returns to the point where it was interrupted.

The mechanism for this activation and restoration, the interrupt vector, is described
below.

H.2 The Interrupt Vector

If the NOINTVECTOR control is not used, an interrupt vector entry is automati­
cally generated by the compiler for each interrupt procedure. Collectively, the inter­
rupt vector entries form the interrupt vector. If NOINTVECTOR is used, the
programmer must supply the interrupt vector as explained in section H.3.

The interrupt vector is an absolute chunk of code beginning at location 3. The n-th
entry is at location 8*n + 3, and contains a jump to another (relocatable) chunk of
code (referred to here as the low-level interrupt handler) that first saves A, B, DPTR
and PSW, sets PSW to select the correct register-bank, and then calls the procedure
declared with the INTERRUPT n attribute. These two pieces of code come from
PLM51.LIB during RL51-time.

Figure H-I is an example of the code used to implement the interrupt vector entry
and the low-level interrupt handler for interrupt 2. ?PIV02 is the start address of the
interrupt vector entry, ?PIP02 is the start address of the low-level interrupt handler,
?PIH02 is the start address of the user written interrupt procedure. ?PSW02 is the
appropriate setting of the PSW for the interrupt procedure as implied by the USING
attribute used for that procedure.

H-l

Run-Time Interrupt Processing

H-2

-----MODULE ?PIV02 -----

the interrupt-vector entry

NAME ?PIV02
PUBLIC ?PIV02
EXTRN CODEC?PIP02)

CSEG AT 02 * 8 + 3
?PIV02:

LJMP ?PIP02
END

----- MODULE ?PIP02 -----

low level interrupt handler

?PIP02S

?PIP02:

NAME

PUBLIC
EXTRN

SEGMENT
RSEG

PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW

?PIP02

?PIP02
CODEC?PIH02),
NUMBERC?PSW02)

code
?PIP02S

MOV PSW,I?PSW02
L CAL L ? P I H 0 2
POP PSW
POP DPL
POP DPH
POP B
POP ACC
RET I
END

Figure H-1. ASM51 Code for Interrupt Vector and CPU Status Stacking

H.3 Writing Low-Level Interrupt Handlers Separately

To achieve faster response by pushing less (if you are sure that Band DPTR do not
have to be saved), you may want to write the interrupt vector entry and the low-level
interrupt handler yourself.

If you want to handle interrupts yourself, compile your PL/M-51 interrupt-service
routine without giving it the INTERRUPT attribute. Then, make it PUBLIC, call
it, for example, MY_HANDLER and make sure it has the right register-bank (i.e.,
USING attribute, or $REGISTERBANK setting).

PL/M-51

PLfM-51 Run-Time Interrupt Processing

Now, assemble an ASM51 program to call your handler. Your ASM51 program
must look like the one that follows.

EXTRN CODE(MY_HAHDLER)
MY_HANDLER_S_BAHK EQU 3 i for instance
MY_HAHDLER_S_INTERRUPT_HO EQU 5 i for instance

CSEG AT(8*MY_HANDLER_S_INTERRUPT_NO+3) the correct vector
address

LJMP MY_LOW_LEVEL_INTERRUPT_HAHDLER
HANDLER SEGMENT CODE

RSEG HANDLER
MY_LOW_LEVEL_INTERRUPT_HANDLER:

PUSH ACC
PUSH B, DPL and DPH were eliminated

PUSH PSW
MOV PSW,I8*MY_HANDLER_S_BANK
LCALL MY_HANDLER
POP PSW

POP DPH, DPL ad B were eliminated
POP ACC
RET I
END

H.4 Writing Interrupt Vectors Separately

The only code at the interrupt-vector address is an LJMP to the low-level interrupt
handler supplied by PLM51.LIB. If you want to write your own vector and use the
existing low-level handler, you have to know that handler's PUBLIC name. For inter­
rupt number 0, this name is ?PIPOO; for interrupt number 1, ?PIPO 1; and so on.

Thus, to produce your own vector-entry for interrupt no.4, write

EXTRN
CSEG
LJMP
END

CODE(?PIP04)
AT(4*8+3)
?PIP04

and assemble under ASM51.

The PL/M-51 interrupt handler must have the INTERRUPT attribute so the low­
level interrupt handler will have access to its entry-point. The interrupt handler must
be compiled under $NOINTVECTOR.

H.5 PL/M-51 Errors Detected at RL51-Time

It is illegal to have two different procedures with the same INTERRUPT attribute.
If you break this rule in one module, the compiler will detect it; but, if the two proce­
dures are in different modules, RL51 will have to detect the error. RL51 detects the
error by complaining about a doubly-defined symbol with a name like ?PIH05. Similar
RL51 error messages will appear if module-level code ("main program" in Fortran
parlance) appears in more than one module.

H-3

• 0
APPENDIX I

THE PROCESSOR DESCRIPTOR FILES n

The REGnn.DCL files, listed below, are supplied with the PL/M-51 compiler. Each
file contains all the REGISTER declarations needed for the appropriate machine
(e.g., REG51.DCL contains the declarations for the 8051 microcomputer). All regis­
ters below have the same name in the appropriate 8051 series manual. $INCLUDE­
ing it in your source file will ensure that you never have to declare a register.

If, in some module, you have no use for a register, you can delete its definition from
this file.

NOTE
The compiler uses the ACC, B, PSW, DPL and DPH registers to accomplish
various computations and to hold temporary results. Use of these registers in
the user program, although permitted, may cause unpredictable results (e.g.,
PSW = OFFH is dangerous).

/* REGISTER DECLARATIONS FOR 8051 */

DECLARE REG LITERALLY 'REGISTER'i

/********* BYTE REGISTERS ********/
DECLARE

PO
P 1
P2
P3
PSW
ACC
B
SP
DPL
DPH
PCON
TCON
TMOD
TLO
T L 1
THO
TH1
I E
I P
SCON
SBUF

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

ATCBOH)
ATC90H)
ATCOAOH)
ATCOBOH)
ATCODOH)
ATCOEOH)
ATCOFOH)
ATCB1H)
ATCB2H)
ATCB3H)
ATCB7H)
ATCBBH)
AT.CB9H)
ATCBAH)
ATCBBH)
ATCBCH)
ATCBDH)
ATCOABH)
ATCOBBH)
ATC9BH)
ATC99H)

REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG i

T*-f**-i** * * BIT REGISTERS * * * * * * * * /

/********* PSW BITS ********/
DECLARE

C Y BIT
A C BIT
FOB I T
RS1 BIT
RSO BIT

ATCOD7H) REG,
ATCOD6H) REG,
ATCOD5H) REG,
ATCOD4H) REG,
ATCOD3H) REG,

1-1

The Processor Descriptor Files PL/M-Sl

OV BIT ATCOD2H) REG)
P BIT ATCODOH) REG)

Ifffffffff TCOH BIT S ffffffffl

T F 1 BIT ATCSFH) REG)
T R 1 BIT ATCSEH) REG)
TFO BIT ATCSDH) REG)
T R 0 BIT ATCSCH} REG)
I E 1 BIT ATCSBH} REG)
I T 1 BIT ATCSAH} REG)
lEO BIT ATCS9H} REG)
ITO BIT ATCSSH} REG)

Ifffffffff I E BIT S ffffffffl

EA BIT ATCOAFH} REG)
ES BIT ATCOACH} REG)
E T 1 BIT ATCOABH} REG)
E X 1 BIT ATCOAAH} REG)
E TO BIT ATCOA9H} REG)
EX 0 BIT ATCOASH} REG)

Ifffffffff I P BIT S ffffffffl

PS BIT ATCOBCH) REG)
P T 1 BIT ATCOBBH} REG,
P X 1 BIT ATCOBAH} REG)
PTO BIT ATCOB9H} REG,
P X 0 BIT ATCOBSH} REG)

If.fffffff P3 BITS ffffffffl

RD BIT ATCOB7H} REG,
lAIR BIT ATCOB6H} REG)
T 1 BIT ATCOBSH} REG,
TO BIT ATCOB4H} REG)
I H T 1 BIT ATCOB3H} REG)
I H TO BIT ATCOB2H} REG)
TXD BIT ATCOB1H) REG)
RXD BIT ATCOBOH} REG)

Ifffffffff SCOH BITS ffffffffl

SMO BIT ATC9FH} REG)
S M 1 BIT ATC9EH) REG)
SM2 BIT ATC9DH} REG)
REH BIT ATC9CH} REG)
TBS BIT ATC9BH) REG)
RBS BIT ATC9AH} REG)
T I BIT ATC99H} REG)
R I BIT AT(9SH} REGj

1-2

PLfM-51 The Processor Descriptor Files

I f REGISTER DECLARATIONS FOR S044 f I

DECLARE REG LITERALLY 'REGISTER' ;

Ifffffffff BYTE REGISTERS ffffffffl

DECLARE
P 0 BYTE AT(SOH) REG,
P 1 BYTE AT(SOH) REG,
P 2 BYTE AT(OAOH) REG,
P3 BYTE AT(OBOH) REG,
PSW BYTE AT(ODOH) REG,
ACC BYTE AT(OEOH) REG,
B BYTE AT(OFOH) REG,
SP BYTE AT(S1H) REG,
DPL BYTE AT(S2H) REG,
DPH BYTE AT(S3H) REG,
TCOH BYTE AT(SSH) REG,
TMOD BYTE AT(SSH) REG,
TLO BYTE AT(SAH) REG,
T L 1 BYTE AT(SBH) REG,
THO BYTE AT(SCH) REG,
T H 1 BYTE AT(SDH) REG,
I E BYTE AT(OA8H) REG,
I P BYTE AT(OB8H) REG,

E I NT BYTE AT(OSEH) REG,
EBUF BYTE AT(OSFH) REG,

STS BYTE AT(OC8H) REG,
SMD BYTE AT(OCSH) REG,
RCB BYTE AT(OCAH) REG,
RBL BYTE AT(OCBH) REG,
RBS BYTE AT(OCCH) REG,
RFL BYTE AT(OCDH) REG,
STAD BYTE AT(OCEH) REG,
DMACNT BYTE AT(OCFH) REG,
NSHR BYTE ATCOD8H) REG,
S IUS T BYTE AT(ODSH) REG,
TCB BYTE AT(ODAH) REG,
TBL BYTE AT(ODBH) REG,
TBS BYTE ATCODCH) REG,
F I F 0 1 BYTE AT(ODDH) REG,
F I F 0 2 BYTE AT(ODEH) REG,
F I F 0 3 BYTE AT(ODFH) REGj

Ifffffffff BIT REGISTERS ffffffffl

Ifffffffff PSW BIT S ffffffff/

DECLARE
CY BIT AT(OD7H) REG,
AC BIT ATCOD6H) REG,
F 0 BIT ATCODSH) REG,
R S 1 BIT AT(OD4H) REG,
RSO BIT AT(OD3H) REG,
OV BIT AT(OD2H) REG,
P BIT AT(ODOH) REG,

1-3

The ProcessorDescriptor Files PL/M-51

1*******1* TCOH BITS ********1

T F 1 BIT ATCBFH) REG,
T R 1 BIT ATCBEH) REG,
TFO BIT ATCBDH) REG,
TRO BIT ATCBCH) REG,
I E 1 BIT ATCBBH) REG,
I T 1 BIT ATCBAH) REG,
lEO BIT ATCB9H) REG,
ITO BIT ATCBBH) REG,

1 1 ******** I E BIT S * * * I * * * * I
EA BIT ATCOAFH) REG,
ES BIT ATCOACH) REG,
E T 1 BIT ATCOABH) REG,
EX 1 BIT ATCOAAH) REG,
ETO BIT ATCOA9H) REG,
EX 0 BIT ATCOABH) REG,

1********* I P BIT S ********1
PS BIT ATCOBCH) REG,
P T 1 BIT ATCOBBH) REG,
P X 1 BIT ATCOBAH) REG,
PTO BIT ATCOB9H) REG,
P X 0 BIT ATCOBBH) REG,

1**1****** P3 BIT S * * * * * I * * I
RD BIT ATCOB7H) REG,
WR BIT ATCOB6H) REG,
T 1 BIT ATCOB5H) REG,
TO BIT ATCOB4H) REG,
I H T 1 BIT ATCOB3H) REG,
I H T 0 BIT ATCOB2H) REG,
TXD BIT ATCOB1H) REG,
RXD BIT ATCOBOH) REG ,

1********* STS BIT S ****1***1

TBF BIT ATCOCFH) REG,
RBE BIT ATCOCEH) REG,
RTS BIT ATCOCDH) REG,
S I BIT ATCOCCH) REG,
BOV BIT ATCOCBH) REG,
OPB BIT ATCOCAH) REG,
AM BIT ATCOC9H) REG,
RBP BIT ATCOCBH) REG,

1****1**** H S H R BIT 5 ********/
HS2 BIT ATCODFH) REG,
H S 1 BIT ATCODEH) REG,
HSO BIT ATCODDH) REG,
SES BIT ATCODCH) REG,
HR2 BIT ATCODBH) REG,
H R 1 BIT ATCODAH) REG,
HRO BIT ATCOD9H) REG,
SER BIT ATCODBH) REGi

1-4

PL/M-51

1* REGISTER DECLARATIONS FOR S052 *1

DECLARE REG LITERALLY 'REGISTER'j

1********* BYTE REGISTERS ********1
DECLARE

PO
P 1
P2
P3
PSW
A C C
B
SP
DPL
DPH
PC ON
TCON
TMOD
TLO
T L 1
THO
T H 1
I E
I P
SCON
SBUF
T2CON
TL2
TH2
RLDL
RLDH

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

AT(SOH)
AT(90H)
AT(OAOH)
AT(OBOH)
AT(ODOH)
AT(OEOH)
AT(OFOH)
AT(S1H)
AT(S2H)
AT(S3H)
AT(S7H)
AT(SSH)
AT(S9H)
AT(SAH)
AT(SBH)
AT(SCH)
AT(SDH)
AT(OASH)
AT(OBSH)
AT(9SH)
AT(99H)
AT(OCSH)
AT(OCAH)
AT(OCBH)
AT(OCCH)
AT(OCDH)

REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REG,
REGj

1********* BIT REGISTERS ********1

1********* PSW BITS ********1
DECLARE

CY BIT
AC BIT
FOB I T
RS1 BIT
RSO BIT
OV BIT
P BIT

1*********
TF1 BIT
TR1 BIT
TFO BIT
TRO BIT
IE1 BIT
IT1 BIT
lEO BIT
ITO BIT

AT(OD7H) REG,
AT(OD6H) REG,
AT(ODSH) REG,
AT(OD4H) REG,
AT(OD3H) REG,
AT(OD2H) REG,
AT(ODOH) REG,

TCON BITS ********1
AT(SFH) REG,
AT(SEH) REG,
AT(SDH) REG,
AT(SCH) REG,
AT(SBH) REG,
AT(SAH) REG,
AT(S9H) REG,
AT(SSH) REG,

The ProcessorDescriptor Files

1-5

The ProcessorDescriptor Files

1-6

,
EA BIT
E S BIT
ET1 BIT
EX1 BIT
ETO BIT
EXO BIT

,
P S BIT
PT1 BIT
PX1 BIT
PTO BIT
PXO BIT

,
RD BIT
WR BIT
T 1 BIT
TO BIT
INT1 BIT
INTO BIT
TXD BIT
RXD BIT

,
SMO BIT
SM1 BIT
SM2 BIT
REN BIT
TB8 BIT
RB8 BIT
T I BIT
RIB I T

IE BITS •••••••• ,
ATCOAFH) REG,
ATCOACH) REG,
ATCOABH) REG,
ATCOAAH) REG,
ATCOA9H) REG,
ATCOA8H) REG,

IP BITS •••••••• ,
ATCOBCH) REG,
ATCOBBH) REG,
ATCOBAH) REG,
ATCOB9H) REG,
ATCOB8H) REG,

P3 BITS •••••••• ,
ATCOB7H) REG,
ATCOB6H) REG,
ATCOBSH) REG,
ATCOB4H) REG,
ATCOB3H) REG,
ATCOB2H) REG,
ATCOB1H) REG,
ATCOBOH) REG,

SCON BITS •••••••• ,
ATC9FH) REG,
ATC9EH) REG,
ATC9DH) REG,
ATC9CH) REG,
ATC9BH) REG,
ATC9AH) REG,
ATC99H) REG,
ATC98H) REG,

, ••••••••• T2CON BITS •••••••• ,
TF2 BIT ATCOCFH) REG,
T21P BIT ATCOCEH) REG,
T21E BIT ATCOCDH) REG,
T2RSEN BIT ATCOCCH) REG,
BGEN BIT ATCOCBH) REG,
TR2 BIT ATCOCAH) REG,
C_T BIT ATCOC9H) REGj

,. RESERVED BIT ATCOC8H) REGj .,

PL/M-51

APPENDIX J
SAMPLE PROGRAM 2

This appendix lists an entire PL/M-51 application. The sample program was compiled,
linked and run, and gave correct results.

The program is divided into 3 separate modules:

1. CALC, which contains the main program.

2. NUMIO, which handles I/O of numbers, and is mainly concerned with convert­
ing numbers to/from ASCII and binary representation.

3. CHARlO, which is concerned with the hardware-dependent I/O details (it
performs I/O through the serial port SBUF).

Coding this example in ASM51 takes many hundreds of statements (partly because
this example does 16-bit arithmetic, yet 8051 only supplies 8-bit arithmetic). It is
recommended that you compare the sample program given here to the somewhat
similar one given in Appendix G of the MCS-5J Macro Assembler User's Guide.

PLlM-S1 COMPILER calculator for unSigned 16 bit arithmetic

ISIS-II PL/M-S1 V1.0

COMPILER INVOKED BY: PLMS1 :F1:CALC.pS1 pw(90) pICBB)

Stitle C'calculator for unSigned 16 bit arithmetic')

calc: DO;

print: PROCEDURECstrSp) EXTERNAL;

DECLARE strSp ADDRESS; END; Ifprints a null terminated

string residing in ROM and pointed at by STRSP fl

getSnum: PROCEDURE WORD EXTERNAL; END; Ifgets a number from SBUFfl

1 0

12

13

1 7

18

19

20

21

22

23

24
2S

getSoper: PROCEDURE BYTE EXTERNAL; END; Ifgets operation from

SBUF I I

outSnum: PROCEDURECnum) EXTERNAL; I'prints a number to SBUF'I
DECLARE num WORD; END;

DECLARE CRLF LITERALLY 'ODH, OAH'; Ifcarriage-return, line-feed'l

DECLARE (in1, in2) WORD, oper BYTE;

SINCLUDE (:f1:regS1.dcl)

If REGISTER DECLARATIONS FOR BOS1 II

SNOLIST

TMOD = 20H; I'set timer mode to auto reloadfl

TH1 = -253; Ifset timer for 110 BAUD fl

SCON = OCAH;/fprepare the serial portll

TR1 = 1; Ifstart clockfl

CALL print(.('CALCULATOR FOR UNSIGNED 16 BIT ARITHMETIC.', CRLF,

'TYPE A DECIMAL NUMBER (UP TO 5 DIGITS FOLLOWED BY 'RETURN'),',

C R L F ,

'THEN AN OPERATION (+, - f OR I), THEN THE SECOND NUMBER. " CRLF,

0» ;

DO WHILE 1; Ifdo foreverfl

CALL print('(CRLF, 'FIRST NUMBER:' 0»;

in1 = getSnumj

oper = getsoper j

J-l

Sample Program 2 PL/M-51

J-2

26
27
28
29
30 3
31 3

32

34

35
36
37

CALL printc.C'SECoND NUMBER: " 0))j
in2 = getSnumj
DO CASECoper)j

110: + II CALL outSnumCin1 +in2)j
111: - II CALL outSnumCin1 -in2)j
112: I II CALL outSnumCin1 'in2)j
113: II

IF in2=0
THEN CALL printC.C'ATTEMPT TO DIVIDE BY 0', CRLF, 0))j
ELSE CALL outSnumCin1 lin2)j

ENDj I'of DO CASE'I
ENDj I'of DO forever'l

END calcj

MODULE INFORMATION: CSTATIC+oVERLAYABLE)
CODE S I Z E o 0 B 5 H
CONSTANT SIZE o 0 E 0 H
DIRECT VARIABLE S I Z E 05H+00H
INDIRECT VARIABLE S I Z E OOH+OOH
BIT SIZE OOH+OOH
BIT-ADDRESSABLE S I Z E OOH+OOH
AUXILIARY VARIABLE S I Z E 0000 H
MAXIMUM STACK S I Z E o 004 H
REGISTER-BANK(S) USED: 0
125 LINES READ
0 PROGRAM ERROR(S)

END OF PLlM-51 COMPILATION

PL/M-51 COMPILER liD for numbers and operation

ISIS-II PL/M-51 V1.0
COMPILER INVOKED BY: PLM51 :F1:NUMIo.p51 pw(90)

stitle ('liD for numbers and operation')
numSio: DOj

print: PRoCEDURECstrSp) EXTERNALj

181 D
224D

5D+ o D
o D + o D
o D + o D
o D + o D
OD
4D

DECLARE strSp ADDRESSj ENDj I'print a null terminated
string residing in ROM and pointed at by STRSP II

get$char: PROCEDURE BYTE EXTERNALj ENDj I'get char from SBUF and echo
i t I I

8

1 0

11

12
13

14

15

16
1 7

19

20

3

putSchar: PRoCEDURECchar) EXTERNALj
DECLARE char BYTEj ENDj

DECLARE CR LITERALLY 'ODH'j
DECLARE CRLF LITERALLY 'ODH, OAH' j

I'print a char to SBUF'I

getSnum: PROCEDURE WORD PUBLICj I'gets a number from SBUF'I
DECLARE num WORD,

Ci, char) BYTEj
num, i = OJ
char = getschar j
I'each loop iteration handles one input character'l
DO WHILE char<>CR AND i<5j

IF char < '0' OR char> '9' THEN DOj I'error'l
CALL printC.CCRLF, 'NOT A DECIMAL DIGIT. RETYPE NUMBER:
) j

n u m, i OJ l're-initialize·1

o)

PL/M-51 Sample Program 2

21

22

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

4 1

43

44

45

46

4 7

48

3

3

3

3

3

UID;

ELSE DO; Ifadd digit to numberfl

num num f10 +char -'0';

i = i + 1 ;

EtiD;

char = getSchar;

EtiD;

IF char <> CR I'possible only if input had over 5 digitsfl

THEti CALL print(,(' FIRST DIGITS USED', 0));

CALL print('(CRLF, 0));

RETURti(num) i

EtiD getSnum;

getSoper: PROCEDURE BYTE PUBLIC; Ifgets operation from SBUFfl

DECLARE (i, char) BYTE;

DECLARE op_code(4) BYTE CotiSTAtiT('+-f/'};

DO WHILE 1; If DO forever (until a legal operation is typed)fl

CALL print(.('OPERATIoti: ',0) }i

char = getschar;

CALL print('(CRLF, O});

DO i = 0 to 3; I'ched if input char is an operation*1

IF char = op_code<i} THEti RETURti(i};

EtiD;

CALL print(,('ERROR, PLEASE TYPE + f OR I', CRLF, O));

EtiD; Ifof DO foreverfl

EtiD getSoper;

out$num: procedure(num} PUBLIC; Ifprints a number to SBUFf,

DECLARE num WORD;

49 DECLARE (i, j, digit) BYTE;

PL/M-51 COMPILER 110 for numbers and operation

50 DECLARE power_10 WORD,

5 1

52

53

54

55

56

57

58

59

60

61

62

63

64

65

powers_10(6} WORD CotiSTAtiT<10000, 1000, 100, 10, 1, OJ;

CALL print(,('RESULT IS: " O});

i = 0;

DO WHILE num < powers_10U}i "skip printing leading zeroes f /

i = i + 1 i

EtiDi

DO j = i to 3; Ifl oop prints all digits except lastf/

power _ 1 0 = power s_ 1 0 (j) i

digit = num /power_10;

CALL putSchar('O' +digit}i

num = num - digit 'power_10i

EtiD;

CALL putschar('O' +num)i Ifprint last digit'/

CALL print('(CRLF, 0));

EtiD outsnum;

EtiD numSio;

MODULE IMFORMATIOH: (STATIC+OVERLAYABLE)

CODE S I Z E o 169 H 361D

COHSTAHT S I Z E 0090H 14 4 D

DIRECT VARIABLE S I Z E 00H+07H o D + 7D

IHDIRECT VARIABLE S I Z E OOH+OOH OD+ OD

BIT SIZE OOH+OOH o D + OD

BIT-ADDRESSABLE S I Z E OOH+OOH on+ OD

AUXILIARY VARIABLE S I Z E o 00 0 H on
MAXIMUM STACK S I Z E o 0 0 2 H 2D

REGI STER-BAHK(S) USED: 0

J-3

Sample Program 2 PL/M-51

J-4

70 LINES READ
o PROGRAM ERROR(S)

END OF PL/M-51 COMPILATION

PLlM-51 COMPILER character lID through SBUF

ISIS-II PL/M-51 V1.0
COMPILER INVOKED BY: PLM51 :F1 :CHARIO.p51 pw(90) pl(66)

6

8 3
9 2

1 0
11

12 2
13 2
14 3
15 3
16 2
17
18 2
19
20

21
22

23
24
25
26
27
28

29

Stitle ('character 1I0 through SBUF')
charSio: DO;

SINCLUDE (:f1:reg51.dcl)
If REGISTER DECLARATIONS FOR 8051 fl

SNOLIST
putSchar: PROCEDURE(char) PUBLIC; Ifprint a char to SBUFfl

DECLARE char BYTE;
DO WHILE NOT TI; If wait till ready for outputfl
ENDi
T I = 0;

5buf = char;
END putSchar;

getSchar: PROCEDURE BYTE PUBLIC; Ifget char from SBUF and echo itfl
DECLARE char BYTE;
DO WHILE NOT RI; Iflllait till there i5 inputfl
END;
R I = 0;

char = 5bufi
CALL putSchar(char);
RETURN(char);

END getSchar;

print: procedure(5trSp) PUBLICi
DECLARE 5trSp ADDRESS; Ifprint a null terminated

5tring re5iding in ROM and pointed at by STRSP fl

DECLARE char BASED 5tr$p BYTE CONSTANT;
DO WHILE char <> 0; 1ft ill null terminatorfl

CALL putSchar(char)i
5trSp = 5trlp +1;

END;
END print;

END charSio;

MODULE INFORMATION: (STATIC+OVERLAYABLE)
CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE
REGISTER-BANK(S) USED:
119 LINES READ
o PROGRAM ERROR(S)

~ND OF PL/M-51 COMPILATION

0043H
OOOOH

00H+03H
OOH+OOH
OOH+OOH
OOH+OOH

o 0 0 0 H
o 004 H
0

67D
OD
o D + 3D
o D + OD
o D + OD
o D + OD
OD
4D

APPENDIX K
HOW TO GENERATE BETTER CODE

If you write PLjM-51, the object-code produced will neither be as compact, nor as
fast, as the best ASM51 code you can write for the job. But, you have a good chance
of exceeding most ASM51 programmers in the efficient use of on-chip RAM.

It is worth noting, though, that certain computations can require many instructions
and execute very slowly on the 8051, even in assembly-language. If X and Yare
WORD variables, it takes only 3 keystrokes to write XjY in your program; but, the
code to do this job can take 500 microseconds or so (at 12 MHz). The following
paragraphs describe actions to avoid if time or space are critical.

WORD operations are always more expensive than BYTE operations. Do not use
WORD variables if BYTEs will do the job; and do as little arithmetic with them as
you can. Remember that "DECLARE A ... BASED B;" is legal even if B is a BYTE,
as long as A has a MAIN or IDATA suffix.

"DECLARE X <type> CONSTANT(17);" is much more expensive than
"DECLARE X LITERALLY '1 T; ". The former construct causes X to be fetched
from ROM each time it is used (by one or two MOVC instructions, with the attendant
set-up overhead). The latter causes the value of X to appear in the code as an
immediate (e.g., #17).

The code to handle AUXILIARY variables is expensive and slow. Try to put only
rarely-accessed variables in AUXILIARY.

Division of a BYTE variable by anything is fairly cheap. Division of a WORD
variable, even by a BYTE, can be very slow, depending on the divisor. Keep in mind
that SHR can be much cheaper than division.

On the other hand, procedure CALLs (and function calls), with or without parame­
ters, are fairly cheap; they are much faster and more compact than in PLjM-80.
Thus, the benefits of using procedures (programs are easier to understand and
maintain) are available without the overhead that is usually associated with them.

K. 1 RAM Space Efficiency

Since all members of the 8051 family have 4K bytes or more of ROM, efficiency in
using ROM space is not a critical issue. On-chip RAM is a different matter, however.
All members of the 8051 family have only 128-256 bytes of on-chip RAM. From this
128-256 bytes, the register banks and stack must be deducted. Keep in mind, too,
that you lose an additional byte of the on-chip ROM that remains for each 8-bit
variable you use.

$OPTIMIZE(2) (the default) goes some way to help here. It makes one critical
assumption: that, when your code exits a PROCEDURE or DO block, you no longer
care about the values of items declared inside it, and that, if you ever re-enter it, you
are ready to accept garbage in them (until you reinitialize them). If you are ready to
live by these rules (which are those of Pascal and Ada, and also those referring to the
variables of REENTRANT procedures in PLjM-80 and PLjM-86), the
$OPTIMIZE(2) default will assume it has permission to share the same piece of on­
chip RAM between procedures that do not call each other, and thus, to make 128

K-l

How to Generate Better Code

K-2

bytes do the work of 200 or 300. The compiler is careful not to play this trick if two
procedures call each other; but, it assumes that all such possible calls appear in the
module it compiles. See the $OPTIMIZE control in Chapter 14.

Based upon the information given in the preceding paragraphs, it follows that global
(module level) variables are more expensive than local variables because the former
cannot be overlaid.

PL/M-51

• ®
APPENDIX L

VALID PL/M-S1 STATEMENTS n

This appendix contains various types of valid PL/M-51 statements that may help you
remember where the commas, semicolons, etc., must appear.

X,Y,Z = 8 XOR Y*MAXC'??', .Z);
X = X + 1 ;
CALL FOOCBAZ,GORP,THUD);
CALL STRUC.WORD_MEMBER;
CALL ZILCH;

IF 1>2 THEN CALL FOR HELPC.C'S.O.S !' ,0»;
ELSE RETURN;

DECLARE CKING,DAVID) BIT MAIN, STRC*) BYTE CONSTANTC'JERUSALEM');
DECLARE EIGHT_BITS LITERALLY 'BYTE';
DECLARE PCON BYTE ATC87H) REGISTER;
DECLARE Q WORD CONSTANT PUBLIC, QQ LABEL EXTERNAL;
DECLARE S STRUCTUREC NAME(31) BYTE, AGE BYTE, SEX BYTE);

DECLARE T STRUCTURE C
CBIT_1, BIT_2) BIT) AT(22H);

DECLARE WORD AUXILIARY, XX BASED X BYTE CONSTANT;
DECLARE Y ATC.YY+1) BYTE IDATA;

DO 1=1 TO 7;
END;

DO; END;

X: DO i

END X i

DO CASE Ii
i /* case ° -- null statement */
i /* case 1 */
CALL 1_IS_2;

/* case 3 */

END;

DO 1=1 TO 77 BY 13;
END;

GO TO END;
X: PROCEDURE INDIRECTLY_CALLABLE;
X: PROCEDURE INTERRUPT 4 USING 1;

MAX: PROCEDURECX,Y) BYTE; DECLARE (X,Y) BYTE;
IF X>Y THEN RETURN X; ELSE RETURN Yj

END MAX;

ZILCH: PROCEDURE EXTERNAL; END ZILCH;
RETURN Y;
RETURN;

L-l

APPENDIX M
ASSEMBLER UTILITY LIBRARY: UTILS1.LIB

The assembler utility library, UTILS1.LIB, contains a number of procedures useful
for string manipulation. These have been coded in ASMSI and have been optimized
for speed. Each procedure has a name determined by the memory types involved. The
generic forms, however, are as follows:

M 0 Vxyi (tram, to, count) - move string
R M Vxxi (tram, to, count)

eM P xyi (tram, to, count) - compare strings

F N D Bxi (tram, to, count) - search string for element
F N D Wxi (tram, to, count)

5 K P Bxi (tram, to, count) - search string for mismatch
5 K P Wxi (tram, to, count)

5 E T Bxi (tram, to, count) - set string elements to value
5 E T Wxi (tram, to, count)

M. 1 Using UTILS1.LIB

Two things are required when using one or more of the procedures from UTILSI.LIB
in a program module:

The module's object-code file must be linked with UTILSI.LIB.

• Any UTILS1.LIB procedure used in the module must be declared as an EXTER­
NAL procedure before it is called.

To link the assembler utility library with the module's object-code file, use RLSI.
For example, if the object-code file is called MYMOD.OBJ, then the necessary linkage
is performed by the following:

R L 5 1 M Y MOD . 0 B J, UTI L 5 1 . LIB, P L M 5 1 . LIB [options]

Here, the PLMS1.LIB support library is necessary as described in Chapter 13. The
options are RLSI controls described in the MCS-5J Utilities User's Guide.

The EXTERNAL declarations needed for UTILS1.LIB are shown in M.3. These are
contained in the declaration file UTILS1.DCL. For example, the MOV procedure
for moving strings from on-chip RAM (DATA or IDATA) to external RAM
(XDATA) has the following declaration:

MOVDX1: PROCEDURE (from, target, count) EXTERNAL USING 1;
DECLARE from BYTE, target WORD, count BYTE;
END;

The parameters of each UTILSI.LIB procedure have either BYTE or WORD
(ADDRESS) values. To save space, BYTEs are used wherever possible. For example,
the from parameter of MOVDX I is declared a BYTE because any address in on-chip
RAM will be FFH or less. That is, a BYTE is sufficient to express any address in
the from address space. On the other hand, the target parameter of MOVDX I requires
a WORD declaration because the size of the address space (XDATA) is larger than
FFH.

M-I

Assembler Utility Library UTIL51 . LIB

M-2

As noted in 10.S, PL/M-Sl makes the following assumptions about interrupts: an
interrupt procedure must never use the same register bank as the procedure it inter­
rupts. It is recommended that one register bank be used for the main program, one
for the high level interrupt, and one for the low level interrupt.

Because it is likely that UTI LSl.LI B procedures will be used by both interrupt
handlers and the main program, three copies of each procedure are included in the
library. Each copy differs only in the suffix of its procedure name. For example,
UTILSl.LIB contains the following three procedures: MOVDXO, MOVDXI, and
MOVOX2. Each of the three procedures is identical, except that each should be
declared USING a different register bank. Although it is not necessary, it is recom­
mended that the suffix of each procedure matches the register bank used by the
procedure. The simplest way to do this is to edit a copy of UTILS1.0CL and replace
each occurrence with the desired register bank number.

M.2 The UTILS1.LIB Procedures

The generic forms of the UTILSI.LIB procedures contain the following mnemonics:

x, y the address spaces of the source and target respectively. These can have
the following designations:

x - xdata (AUXILARY)
C constant (ROM)
0-- data or idata (MAIN)

the register bank used by the UTILSI.LIB procedure (0, I, or 2).

The following are descriptions of the general forms of the UTI L5I. LI B procedures.

MOVxyi

MOV xyi is an untyped procedure that copies a BYTE string from an x address space
to a y address space. It is activated by

CAL L M 0 V xyi (source, destination, count)

where

source and destination are expressions that evaluate to address values in address
spaces x and y respectively.

count is an expression with a BYTE or WORD value.

denotes the register bank (0, 1, or 2) used by the
procedure.

The string elements are copied in ascending order. This will work in every situation
except for those cases where all of the following are true:

x and yare the same address space.

the destination address is higher than the source address.

• both strings overlap.

In this particular case, elements in the overlap region get copied over before they
have a chance to be copied. For this particular case, use RMV, which is the same as
MOV, but copies elements in descending order.

PL/M-51

PL/M-Sl Assembler Utility Library UTILSl.LIB

RMVxxi

RMV xxi is an untyped procedure that copies a BYTE string from an x address space
to the same address space. It is activated by

CAL L R M V xxi (source, destination, count)

where

source and destination are expressions that resolve to address values in x.

count is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

RMV is the same as MOV except that elements are copied in descending order. This
is needed for the special case of overlapping source and destination strings in the
same address space having destination address higher than the source address.

CMPxyi

CMPxyi is a WORD function that compares two BYTE strings. It is activated by a
function reference with the following form:

eM P xyi (source1, source2, count)

where

source1 and source2 are expressions that evaluate to address values in address
spaces x and y respectively.

count is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

CMP compares two BYTE strings of length count whose locations start at source1
and source2 in address spaces x and y. CMP returns the index (position within the
strings) of the first pair of elements found to be unequal. If both strings are equal,
CMP returns the WORD value OFFFFH.

FNDBxilFNDWxi

FNDBxi is a WORD function that searches a BYTE string to find an element that
has a specified value. It is activated by a function reference with the form:

F N D Bxi (source, target, count)

where

source

target

count

is an expression that evaluates to an address value in the
address space x.

is an expression with BYTE or WORD value (if it is a
WORD, the 8 high-order bits will be dropped to produce a
BYTE value).

is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

FNDB returns the index (position within the string) of the first occurrence of the
BYTE value of target in the source string. If no elements of the string match the
BYTE value of target, the function returns OFFFFH.

M-3

Assembler Utility Library UTIL51. LIB

M-4

FNDW is the same as FNDB except that it searches a WORD string instead of a
BYTE string. If target has a BYTE value, it is first extended by 8 high-order O-bits
to produce a WORD value.

SKPBx;/SKPWx;

SKPB and SKPW are the converses of FNDB and FNDW (see above). Instead of
searching for the first element of the source string that matches the target, SKPB
and SKPW search for the first element that does not match the target. In every other
respect, these functions operate the same as FNDB and FNDW.

SETBx;/SETWx;

SETBxi is an untyped procedure that sets each element of a BYTE string to a single
specified value. It is activated by

CAL L 5 E T Bxi (destination, newvalue, count)

where

destination

newvalue

count

is an expression that evaluates to an address value in the x
address space.

is an expression with a BYTE or WORD value (if it has a
WORD value, the 8 high-order bits are dropped to produce
a BYTE value).

is an expression with BYTE or WORD value.

is the register bank (0, 1, or 2) used by the procedure.

SETB assigns the BYTE value of newvalue to each element of the BYTE string of
count length beginning at destination.

SETW is the same as SETB except that it assigns a single WORD value to all the
elements of a WORD string. If newvalue is a BYTE, it is first extended by 8 high­
order O-bits to produce a WORD value.

M.3 UTILS1.LIB Procedure Declarations

The following is a list of the declarations for the procedures and functions included
in UTILSl.LIB. These declarations are included in the file UTILSl.DCL. The file
contains declarations for the utilities that use register banks 0, 1, or 2. The user
should select those needed, or if he desires to use procedures that use another register
bank, edit UTIL51.DCL to include the desired register bank number.

MOVDD1: PROCEDURE (from, target, count) EXTERNAL USING 1j
/* MOVE DATA BYTES TO DATA */

DECLARE from BYTE, target BYTE, count BYTEj
ENDj

MOVXD1: PROCEDURE (from, target, count) EXTERNAL USING 1j
/* MOVE XDATA BYTES TO DATA */

DECLARE from WORD, target BYTE, count BYTEj
ENDj

PL/M-51

PL/M-Sl Assembler Utility Library UTILSl.LIB

MOVCD1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE ROM BYTES TO DATA */

DECLARE from WORD, target BYTE, count BYTEj
ENDj

MOVDX1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE DATA BYTES TO XDATA */

DECLARE from BYTE, target WORD, count BYTEj
ENDj

MOVCX1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE ROM BYTES TO XDATA */

DECLARE from WORD, target WORD, count WORDj
ENDj

MOVXX1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* MOVE XDATA BYTES TO XDATA */

DECLARE from WORD, target WORD, count WORDj
ENDj

RMVDD1: PROCEDURE (from, target, count) EXTERNAL USING 1 j
/* REVERSE MOVE DATA BYTES TO DATA */

DECLARE from BYTE, target BYTE, count BYTEj
ENDj

RMVXX1: PROCEDURE (from, target, count) EXTERNAL USING 1j
/* REVERSE MOVE XDATA BYTES TO XDATA */

DECLARE from WORD, target WORD, count WORDj
ENDj

CMPDD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
/* COMPARE BYTES IN DATA TO BYTES IN DATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from BYTE, target BYTE, count BYTEj
EHDj

CMPXD1: PROCEDURE (from, target, count) WORD EXTERNAL USIHG 1 j
/* COMPARE BYTES IH XDATA TO BYTES IH DATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target BYTE, count BYTEj
EHDj

CMPCD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
/* COMPARE BYTES IN ROM TO BYTES IN DATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target BYTE, count BYTEj
ENDj

CMPCX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 i
/* COMPARE BYTES IN ROM TO BYTES IN XDATA */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORDi
ENDi

CMPCC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1i
/* COMPARE BYTES IN ROM TO BYTES IN ROM */

/* RETURN INDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORDj
ENDi

M-5

Assembler Utility Library UTIL51 . LIB

M-6

CMPXX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* COMPARE BYTES IN XDATA TO BYTES IN XDATA fl
1* RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORDj
ENDj

FNDBX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* FIND target BYTE IN XDATA, RETURN INDEX DR OFFFFH *1
DECLARE from WORD, target BYTE, count WoRDj
ENDj

FNDBC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* FIND target BYTE IN ROM, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target BYTE, count WoRDj
ENDj

FNDBD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If FIND target BYTE IN DATA, RETURN INDEX OR OFFFFH *1
DECLARE from BYTE, target BYTE, count BYTEj
ENDj

FNDWX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If FIND target WORD IN XDATA, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORDj
ENDj

FNDWC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
,If FIND target WORD IN ROM, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORDj
ENDj

FNDWD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If FIND target WORD IN DATA, RETURN INDEX OR OFFFFH *1
DECLARE from BYTE, target WORD, count BYTEj
ENDj

SKPBX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
If SKIP target BYTE IN XDATA, RETURN INDEX DR OFFFFH *1
DECLARE from WORD, target BYTE, count WORDj
ENDj

SKPBC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
1* SKIP target BYTE IN ROM, RETURN INDEX DR OFFFFH *1
DECLARE from WORD, target BYTE, count WORDj
END ;

SKPBD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
If SKIP target BYTE IN DATA, RETURN INDEX DR OFFFFH *1
DECLARE from BYTE, target BYTE, count BYTEj
END;

SKPWX1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1 j
1* SKIP target WORD IN XDATA, RETURN INDEX OR OFFFFH *1
DECLARE from WORD, target WORD, count WORD;
ENDj

PL/M-51

PL/M-Sl Assembler Utility Library UTILSl.LIB

SKPWC1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
/* SKIP target WORD IN ROM, RETURN INDEX OR OFFFFH */

DECLARE from WORD, target WORD, count WORD;
END;

SKPWD1: PROCEDURE (from, target, count) WORD EXTERNAL USING 1;
/* SKIP target WORD IN DATA, RETURN INDEX OR OFFFFH
*/ DECLARE from BYTE, target WORD, count BYTE;
END;

SETBX1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET BYTE IN XDATA TO target VALUE */

DECLARE from WORD, target BYTE, count WORD;
END;

SETBD1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET BYTE IN DATA TO target VALUE */

DECLARE from BYTE, target BYTE, count BYTE;
END;

SETWX1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET WORD IN XDATA TO target VALUE */

DECLARE from WORD, target WORD, count WORD;
END;

SETWD1: PROCEDURE (from, target, count) EXTERNAL USING 1;
/* SET WORD IN DATA TO target VALUE */

DECLARE from BYTE, target WORD, count BYTE;
END;

M-7

8051,12-1
8051 Hardware Flags, 12-1
8080/8085, 1-1
$, 14-1
-,2-2
" 2-2
; , 2-2
:, 2-2
<>,2-2
> =,2-2,5-5
< =,2-2,5-5
>, 2-2, 5-5
<, 2-2, 5-5
*, 2-2, 5-4
',2-2
-, 2-2, 5-4
+, 2-2, 5-4
), 2-2
(, 2-2
* /' 2-2
/*, 2-2
/, 2-2, 5-4
·,2-1,4-1
=,2-2

Activating a Procedure, 10-4
Addition, 5-4
ADDRESS, 3-1
Address-space, 3-3
Address space codes, 3-3
Algorithms, 8-1, 8-2
"ALGORITHM S", 8-1
Analyzing an Expression, 5-2
AND, C-l
Apostrophe, 2-2
Arithmetic, 5-4
Arithmetic Operators, 2-1, 2-2, 5-4

Principal, 5-4
Arithmetic, 4-1, 5-4

Unary, 5-5
Array Member, 6-2
Arrays, 1-2,6-1 thru 6-5

Of Structures, 6-3
Within Structures, 6-3, 6-4

ASCII Character Set, 2-1, F-I
ASCII Codes, F-I
Assembly Language, 1-2
Assignments, 5-9
Assignment Statement, 5-8
ASM51, G-l, J-l

Coded Procedures, G-I , G-2
Asterisk, 2-2
AT,4-6

Statement, 4-7
Attribute, 4-6
AUXILIARY Suffix, 3-3, 3-8

Based Variables, 4-3
Cautions, 4-4

BIT,2-4
Addressable Size, 3-2
Arrays, 6-3
Restrictions, 6-3, 3-2
Size, 2-4
Value, 2-4

Blank, 2-1, 2-2
Block, 7-1 thru 7-5

Nesting, 7-7
Structure, 1-2, 1-4,7-1

BNF, A-I
Body,

Of a procedure, 10-6
Boolean, 1-2

Operations, 1-2, 5-3
Buffer, 8-2
Built-Ins, II-I, 11-5
Built-In Procedures, 1-8, 11-1 thru 11-5
BYTE,2-3

Value, 2-4, 4-1

CALL statement, 7-10
Carriage Return, 2-2
Carry Flag, 12-2
Carry-Rotation, 12-2
Character, 1-2
Character String Constants, 2-3
CMP, M-3
Code, E-l, F-I, G-l
Colon, 2-2
Comma, 2-2
Command Tail Errors, 16-1
Comments, 2-4
Compatibility Checking, 1-2
Compilation, 14-1

Constants, 14-4
Summary, 14-13

Compiler, 1-1
Controls, 14-1

By category, 14-3
Errors, 16-2

Compound Delimiters, 2-3
Computer Programming,

The Art of, 8-1
Conditional Compilation, 14-14
Constant Expressions, 5-1

Special case, 5-9
Constant, 2-3, 5-1
Constants, 2-3, 5-1

Compilation, 3-8, 14-13
Storing, 2-3
Whole-number, 2-4

CONSTANT Suffix, 3-5
Control Constructs, 1-2, 1-3
Control Errors, 16-1

INDEX

Index-l

REQUEST FOR READER'S COMMENTS

PL/M-51 User's Guide
121966-003

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi­
cation. If you have any comments on the product that this publication describes, please contact your Intel repre­
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve­
ment.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). _____________ _

NAME ______________________________ ___ DATE _______ _

TITLE ___ _

COMPANY NAME/DEPARTMENT __ _

ADDRESS ______________________________________ __

CITY _______________ _ STATE _________ __ ZIP CODE _____ _

(COUNTRY)

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

inter
INTEL CORPORATION, 3065 Bowes Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

