

DATA FILE PERFORMANCE CONSIDERATIONS

Sequential Access

If memory is available when the file is opened, the computer
allocates a buffer equal to a full diskette track (about
7.5K) which minimizes the number of accesses to the file.
Therefore, high usage files should be opened first to take
advantage of this capability. This space can be taken back
by the computer (to the minimum buffer of 512 bytes) if the
program requires the memory in a subsequent operation.

When specifying the initial size of a file (using the SIZE=
parameter) attempt to make it large enough for the data.
Although the computer may allocate up to 100 additional
extents, these extents can be scattered on the diskette or
disk which significantly degrades performance.

NOTE: Extents are allocated as 10% of the original
allocation or 512 bytes which ever is larger.

Indexed Access

The most significant performance consideration for indexed
files is the number of records added to the file since the
last time the INDEX CSF was run. The key records are
written to an overflow area of the index file and are not in
sorted order. Therefore, accessing those records is slower
than accessing records in the original part of the key file.

Performance can be improved by regularly running the INDEX
CSF to create a new index file. This operation can be in a
procedure so that the user does not have to take any special
steps (see item "How Often Should INDEX be Run," page 11).

For large indexed files, specifying a key work area (the KW=
parameter) can improve performance. It allocates an area in
memory to store selected index records from the sorted
portion of the index file. This allows the computer to do
its initial index search in memory, eliminating some
accessing of the index file. If you specify a key work area
of 65,535 bytes (KW=65535), the computer allocates only the
space necessary based on the size of the index file. The
improvement in performance is greater for large files where
the index file spans several tracks.

As with sequential files, when specifying the initial size
of a file (using the SIZE= parameter), attempt to make it
large enough for the data. Although the computer allocates
up to 100 additional extents if needed, these extents can be
scattered and significantly degrade performance. This is
also true of the index file; however, the initial size of
the index file is determined by the number of used records
(active and deleted) in the master file when the INDEX CSF

60 Datamaster Procedures and Techniques

is run. Therefore, it is important to run INDEX any time
records have been added to the file.

There should be an improvement in performance on a diskette
system if the master and index file are on separate
diskettes. However, the improvement is small compared
with the above items.

PERFORMANCE OF THE DISK

How much improvement in performance does the 5247 Disk Unit
have? Although the disk unit has faster access and higher
data transfer rate than diskette, the improvement in
performance of an application using the disk depends on how
much and what type of file accessing is done.

As discussed in the item titled "Data File Performance
Considerations" on page 55 if sequential access is usedi
7.5K is transferred to the buffer at a time. All accesses
of these records then take place in memory, which is the
same speed whether the data is read from disk or diskette.

Processing and printing take the same amount of time
independent of the disk or diskette.

Applications with a lot of index file access should show the
most improvement in performance.

The major improvement is not the running of a single
application, but the capability to run four applications on
four work stations all sharing the disk unit without a
decrease in performance. In fact, if the four applications
are not contending for the same files, they should run
faster than they would on a diskette computer.

There is one situation where the computer runs slower. If
an application has a file opened SHRU (share for update), it
runs slower than if the file is opened using any of the
other sharing options. There is additional overhead
required by SHRU: the sectors used by the application have
to be "locked" and "unlocked," and the file header has to be
updated with each access since another work station may be
using it. Therefore, only use SHRU when absolutely required
by the application.

HOW TO DETERMINE THE RECORD NUMBER OF THE LAST RECORD

When using relative access it is necessary to know the
record number of the last record in the file in order to
add new records (since it must be specified in the WRITE
statement). The following statements may be used to

Data File Techniques 61

determine the number of the next record in the file
(subtract one to get the number of records in the file):

00030 OPEN #1: "N~'£=file/volid" ,INTERNAL,OUTPUT
00040 WRITE #1:" "
00050 R=REC(l)
00060 CLOSE #1:
00070 OPEN #l:"NAME=file/volid",INTERNAL,OUTIN,RELATIVE
00080 DELETE #l,REC=R:

Line 30

Line 40

Line 50

Line 60

Line 70

line 80

opens the file for output, sequential.

adds a temporary record to the file.

saves the record number of the record added (the
value of the System Variable REC) in the variable
R. R-1 would be the number of records in the file
(including deleted records).

closes the file.

opens the file for update, relative.

deletes the added record; it can be added again by
a subsequent WRITE statement.

62 Datarnaster Procedures and Techniques

PROCEDURE TECHNIQUES

GO VS GO END VS CLEAR PROC

If a program being executed from a procedure is interrupted
by an error, pressing CMD ATTN, or a PAUSE statement, three
options are available:

1. GO or GO xxxxx causes the interrupted program to resume
execution at the current (if error) or next line, or at
the line number specified by xxxxx.

2. GO END terminates the current program and closes any
files opened in that program, but does not end the
procedure. The next procedure command is now executed
as if the program ended normally.

3. CLEAR PROC terminates the current program and
procedure, closes all files opened in the program,
closes all active procedure and sub-procedure files, and
the computer displays READY INPUT.

If PROC INPUT is displayed when the interrupt occurs:

1. GO causes the next procedure corrmand to be executed.

2. GO END closes only the active PROC or SUBPROC file. It
returns control to the procedure command following the
most recent SUBPROC command, or if none, the computer
displays READY INPUT.

3. CLEAR PROC closes all procedure and sub-procedure files
and the computer displays READY INPUT.

FALSE ERROR MESSAGE FROM PROCEDURE

When running procedures that use PROCERR RETURN to suppress
errors or reset the System Variable ERR to 0, it is possible
to get an error message displayed that is not the true cause
of the problem.

Some errors are not trapped by PROCERR RETURN (e.g. 1008,
2104, 4000 and 4001). Therefore, if an error occurs that is
trapped by PROCERR RETURN and is not handled properly by the
procedure (by analysing ERR), the procedure continues until
an error, which cannot be suppressed, occurs. This masks
the true cause of the problem.

Procedure Techniques 63

To avoid this be sure to reset the return with a PROCERR
STOP command as soon as the steps for which errors are being
trapped are completed. Don't use a 'blanket' PROCERR RETURN
in procedures.

Also note that any PROCERR command issued in a procedure
remains in effect for all subsequent procedures and
sub-procedures, whether chained to from a program or invoked
from a procedure. Therefore, it is a good idea to begin any
procedure with PROCERR STOP.

In order to reset the System Variable ERR to zero without
suppressing errors include a PROCERR RETURN followed by a
PROCERR STOP in the procedure.

NO ERROR MESSAGE WHEN RUNNING A DROPPED PROC

If a Proc file is DROPped, you will not get an error message
when the Proc is called either by a PROC or SUBPROC command.
This is because a Proc file is a data file that is executed
sequentially and will always return to READY INPUT when it
reaches the end of file. The DROPped Proc file has a file
label and an end of file marker; therefore, when the PROC or
SUBPROC command is issued, the system returns to READY INPUT
and does not display an err6r as one has not occurred.

A DEL COMMAND WITH A COMMENT DELETES ALL SUBSEQUENT LINES

If a DEL command is issued from a procedure or the keyboard
and it has a comment on it (an exclamation point, '! '), the
command will delete the line specified plus all following
lines of the program in memory.

To avoid this do not use comments on DEL commands.

REMOVING DISKETTES WHILE A PROCEDURE IS ACTIVE

It is sometimes necessary to remove a diskette during the
execution of a procedure (especially during copy
operations). However, if the diskette to be removed
contains the active procedure, an error 4000 or 4001 may
occur. To avoid this have the current procedure issue a
PROC to a procedure on the diskette remaining. This
procedure can already be on the remaining diskette, copied
to it from the diskette being removed or created on it by a
program.

PROC has to be used rather than SUBPROC so that the
procedure file on the diskette to be removed is closed.

64 Datamaster Procedures and Techniques

When the original diskette is reinserted, the procedure on
the diskette that remained issues a PROC command back to a
procedure on the reinserted diskette.

For example, the following sequence does the back up steps
for the diskette in slot 2. The initially active procedure
(MENU) is on the diskette in slot 1:

Slot 1

MENU procedure
LOAD MENU.PROGRAM
RUN

CHAINs to PROC=COPY
(if copy option selected)

(Backup inserted)

(Original inserted)

MENU procedure
LOAD MENU.PROGRAM
RUN

Slot 2

COpy procedure
prompts to insert backup

LINK COpy
copy parameters

ENDLINK
prompts to reinsert original

PROC MENU

In this example the diskette containing the active procedure
remains inserted until that procedure is closed by issuing a
PROC command to the other diskette.

If both diskettes need to be removed, the chain of
procedures has to be arranged so that before each diskette
is be removed a PROC command activates a procedure on a
diskette that remains mounted. Both diskettes cannot be
removed at the same time.

CREATING PROCEDURES FROM A PROGRAM

Frequently the steps of a procedure or file names used in a
procedure depend upon the specific sequence of activities
the application user selects. Procedures can be created by
a program by putting the desired commands into a display
file. For example, the following program steps create a
procedure that does a SORT using a sort control file name
contained in the variable NAME$:

Procedure Techniques 65

00020 OPEN #l:"NAME=srt.proc/vol",DISPLAY,OUTPUT
00030 RESTORE #1:

00100 PRINT #l:"SORT n&NAME$
00110 PRINT #l:"PROC MENU"
00120 CLOSE #1:
00130 CHAIN "PROC=SRT.PROC/VOL"

Line 20 opens the procedure file as a display file for
output. The file is assumed to exist.

Line 30 resets the record pointer to the beginning of the
file.

Line 100 Puts the SORT command into the file as the first
procedure step. The entry is the word SORT
followed by a blank and the contents of the
variable NAME$, which contains the name of the
sort control file to be used by SORT.

Line 110 Puts a PROC command in the file so that when the
sort completes, the MENU procedure is executed,
thus closing the SRT.PROC file so that it can be
rewritten (if necessary) for the next operation.

Line 120 closes the newly created procedure file.

Line 130 chains to the newly created procedure (which ends
the execution of this program).

There are some rules that must be understood about updating
or creating procedure files from a program:

1. An active procedure file cannot be rewritten. A
procedure file remains active until another PROC
command is issued, or the last step in the procedure
completes and an end-of-file occurs attempting to get
the next procedure step.

This is the reason the "PROC MENU" step was added to
the procedure created above in line 110.

2. Individual records in a procedure file cannot be
updated because it is a display file (Type 05).
Therefore, the entire procedure must be rewritten any
time it is changed.

66 Datarnaster Procedures and Techniques

REPORT FORMATTING TECHNIQUES

PREVENT AN EXTRA LINE FROM PRINTING AFTER NEWPAGE

If extra lines creep into a report, it may be caused by the
PRINT #255:NEWPAGE statement. This can be eliminated by
following the statement with two semicolons:

PRINT #255:NEWPAGE;;

HOW TO PRINT 198 CHARACTERS/LINE AT 15 CPI

When printing at 15 characters per inch (CPI) , the computer
can print 198 characters on,a line (132*1.5). However, the
default line length for the printer (device #255) is 132
characters. This can be changed by opening the printer and
setting a new record length:

OPEN #255:"NAME=//10,RECL=198",DISPLAY,OUTPUT

HOW TO CHANGE THE PAGE OVERFLOW COUNT

When using forms that are a different length than the
standard 66 lines, or when printing at a different number of
lines per inch, the page overflow count (normally 60 lines)
needs to be changed. This can be done by opening the
printer and setting a new page overflow count:

OPEN #255:"NAME=//10,PAGEOFLOW=80",DISPLAY,OUTPUT

NOTE: When the printer is turned OFF or the Error Reset key
is pressed, the printer will reset to the normal printer
defaults. Therefore, when you change the printer defaults
(such as horizontal density, vertical density, lines per
inch, quality print), you should have the BASIC statements
that issue those changes as part of your error handling
routines.

ERROR 0802 USING PIC(Z.ZZ) FORMAT SPECIFICATION

Error 0802 occurs when running a program that has a FORM
statement with a PIC specification with zero suppress zs
after the decimal point.

The Datamaster does-not support this type of specification.
This is documented in the BASIC LANGUAGE REFERENCE manual
(SA34-0109) •

Report Formatting Techniques 67

ERROR 0726 OR OTHER MAPPING ERRORS

Error 0726 or other mapping errors may occur if ~the
replication factor for a FORM statement specification is
greater than 255. This is a design limit of the computer
and is documented in the BASIC LANGUAGE REFERENCE manual
(SA34-0109) .

This problem can be avoided by "breaking" the specifications
into pieces smaller than 255. For example:

If the FORM statement wanted is:

00100 FORM 400*PD 5,C 10

Then use:

00100 FORM 200*PD 5,200*PD 5,C 10

SIGN DOES NOT REPLACE THE COMMA IN PIC

A floating minus (-) or plus (+) sign does not replace the
comma (,) in a FORM statement PIC specification. For
example:

00100 LET X=-345.67
00110 PRINT #255,USING 120:X
00120 FORM PIC(--,---.##)

The computer prints:

- 345.67

instead of:

-345.67

If the position of the sign is critical to the report or
form being printed, do not include commas in the PIC
specification.

68 Datamaster Procedures and Techniques

SCREEN FORMATTING TECHNIQUES

PREVENT THE DISPLAY SCROLLING WHEN SOUNDING THE ALARM

When the alarm is sounded using the PRINT BELL statement
during full-screen-processing, the display scrolls up one
line unless the statement is followed by two semicolons:

PRINT BELL;;

INCORRECT RESULTS FROM INPUT FIELDS

If the cursor positioning keys (the 'arrow' keys in the
lower left corner of the keyboard) are used to move from
field to field, incorrect data may be transferred to the
variables of the INPUT FIELDS statement.

This problem can be avoided by always using the Field
Advance, Field Backspace, Field Exit, New Line, Field Plus
or Field Minus keys to move from field to field.

The INPUT FIELDS specification string can also contain
attributes that automatically do a field advance (A) or
enter (E) thus minimizing the use of field or cursor
movement keys (see the BASIC LANGUAGE REFERENCE manual
(SA34-0109), Full-Screen Processing section).

ERROR 6126 USING SUBSTRING IN INPUT FIELDS SPECIFICATION

Error 6126 may occur if the INPUT FIELDS specification
contains a substringed variable. For example:

00100 INPUT FIELDS 12,"&COL$(2:3)&",C 8,N,N":X$

This error can be avoided by assigning the substringed
variable to another variable and using that variable in the
INPUT FIELDS specification. For example:

00090 LET CC$=COL$(2:3)
00100 INPUT FIELDS "2,"&CC$&",C 8,N,N":X$

Screen Formatting Techniques 69

HOW TO POSITION CURSOR AT FIELD CAUSING AN ERROR

When an application uses full-screen processing to enter
numerous items, it is nice to be able to position the cursor
at the exact field where an error occurred. This assists
the user in quickly correcting the error.

Doing this requires two things: identifying which of
several fields caused the error and changing that field's
attributes to place the cursor there. The following example
shows how this can be done and also highlights the field in
error:

00020 DIM FMT$(3) ,IN$(3)
00030 LET FMT$(1)="02,02,N 5,UH ,N"
00040 LET FMT$(2)="03,02,N 5,UH ,Nil
00050 LET FMT$(3)="04,02,N 5,UH ,Nil

00100 LET C=l
00110 INPT: INPUT FIELDS MAT FMT$:MAT A$ CONV CERR
00120 LET FMT$(C) (11:13)="UH "
00130 REM NO ERROR OCCURRED

00200 CERR: LET FMT $ (C) (11: 13) =" UH "
00210 LET C=CNT+1
00220 LET FMT $ (C) (11: 13) =" RHC "
00230 PRINT BELLi;
00240 GOTO INPT

Line 20 dimensions the format specification and input
variable arrays.

Lines 30-50 set initial format specifications.

Line 100 sets a field attribute to reset if no error
occurs.

Line 110 does the full screen input of the 3 fields. If a
conversion error occurs the program branches to
the line labeled CERR.

Line 120 clears the cursor and reverse image attributes
from the last field in which an error occurred (if
any) so that it will not affect the next use of
this INPUT FIELDS.

Line 200 clears the cursor and reverse image attributes
from the last field in which an error occurred (if
any).

70 Datamaster Procedures and Techniques

Line 210 sets C to the field number that caused the error
(CNT is the last successful field processed) .

Line 220 sets the cursor and reverse image attributes for
the field that caused the error.

Line 230 sounds the alarm to notify the user that an error
has occurred.

Line 240 returns to the INPUT FIELDS to retry the input.
This time the field that caused the error is in
reverse image and the cursor is positioned at that
field.

Screen Formatting Techniques 71

(This page intentionally left blank.)

72 Datamaster Procedures and Techniques

BRADS TECHNIQUES

PROBLEM WITH RELEASE CHANGE ON 5247 DISK

Some disk users operated with BRADS III, release 2.0 on the
5247 Disk Unit prior to receiving the current BRADS III,
release 2.3 diskettes. By using the older release, 2.0,
they may have inadvertently placed a special BRADS file on
one or more of the BRP~DS diskettes used in the application.
The result could be a confusing set of error messages, such
as: "FILE CANNOT BE FOUND" and "DEFINITION NOT IN DIRECTORY."
When this occurs, BRADS is using one of the old and possibly
inaccurate special files.

To correct this problem, perform these steps:

Key: PRINT WSID$ and press the Enter key.

The response will be the two-digit work station ID
such as 11, 21, 31, or 41.

Use the DIR corrmand to print the directory of every diskette
used in the application.

Search the listings for the name:

BRFUSExx where xx is the same as the WSID$ printed
above.

Use the FREE command to free these files wherever they are
found.

NOTE: There should be only one BRFUSExx file present
in the system and it should be located on the BRADS3
volume, whether that is a diskette or one of the disk
volumes.

Retry the BRADS application. If BRADS is unable to find a
proper BRFUSExx file, Key: CMD/ERROR RESET and BRADS
creates a new BRFUSExx file.

BRADS III EXAMPLES

BRADS III Examples are included in the BRADS material as a
guideline for writing BRADS reports to interface with your
current BMAS applications. The techniques used in BRADS
Examples can be helpful in building reports to interface
with other accounting applications.

BRADS Techniques 73

The intent of the "Examples" is to illustrate the use of
BRADS to produce a variety of additional reports to
supplenlent your accounting application reports. They are
NOT tested, ready to run programs, to use as guidelines to
assist you in generating your own BRADS reports.

BRADS III, mod 3, release 2.3, is the most current level of
BRADS. The Examples sent with the new release of BRADS are
the original level without the various PTFs applied as
Examples are not designed to be running code, but merely
educational guidelines. Therefore, if you have modified
your BRADS Examples or applied various PTFs, you will not
want to copy the new Examples over your existing Examples.

TO DETERMINE THE RELEASE OF BRADS

The BRADS III program diskette and the Spread diskette
contain history files which contain information regarding
the release and modification level of the BRADS programs.
To access this information on the BRADS III operations
diskette,

Key:
LOAD PTF.HIST,DATA and press the ENTER key

The response will be:

00010:BRADS III, Release xx Mod Level yy PTF xx date
83/10/28

where xx is the release number and yy is the modification
level.

To access the information on the Spread diskette,

Key:
LOAD PTF.HIST2,DATA and press the ENTER key

If the modification level of the BRADS III diskette is less
than 02, see your marketing representative for a new release
of BRADS.

RE-INSTALLING BRADS III WITH RELEASE 2.3

If BRADS III has been in use for a while, it probably has
many definitions in the BRADS directory DIR. There may also
be other BRADS directories on the BRADS operations diskette
or stored reports there. How is all this information saved
when Release 2.3 of BRADS III is installed? Just follow
these steps:

74 Datamaster Procedures and Techniques

1. Install BRADS III Release 2.3 using the directions in
LEARNING BRADS III BOOK 1. Be sure to use a blank diskette when
creating the new operations diskette. Don't use your
current operations diskette.

2. Now that a new operations diskette has been created,
copy all the definitions from the DIR directory on the
old operations diskette to the DIR directory on the new
operations diskette. Use the 'Copy Directory' command
to do this. The entries on screen 8103A should look
something like this:

FROM DIRECTORY
TO DIRECTORY
DEFINITION NAME
ON NAME MATCH

DIR//l
DIR//2
*
R

---Old diskette in drive 1
---New diskette in drive 2
---* means all definitions

Notice that the drive number is specified. This is so
that BRADS can tell which directory is which.

3. Any files (BRADS directories, reports, etc.) that are
on the old BRADS operations diskette should be copied
to the new operations diskette. Use the COpy customer
support function (Choice 2) to do this. If it is
unclear which files should be copied, print directories
(DIR I,PRINT) for each diskette and compare them. Copy
any files that are on the old diskette and not on the
new diskette.

When you have completed these steps, you can use the new
operations diskette as you did the old one.

RE-INSTALLING BRADS III WITH RELEASE 2.3 TO A 5247 DISK

1. Type RENAME DIR/BRADS3/5,DIR.TEMP and press ENTER

2. Type RENAME DIR.I/BRADS3/5,DIR.I.TEMP and press ENTER

NOTE: This will hold your current BRADS directory and
its index file in temporary files so that they are not
destroyed during the installation of the new release of
BRADS III.

3. Insert the BRADS diskette number 1 of 5 into drive 1

4. Type PROC INSTALL.BRAD.DISK and press ENTER

5. When the CPU displays screen 42-169, press the ERROR
RESET key and then press CMD 9

6. When the next BRADS installation screen is displayed
press the ENTER key to continue

BRADS Techniques 75

7. When the BRADS installation has completed and you have
returned to the READY INPUT screen, proceed to step 8

8 • Type:
Type:
Type:
Type:

FREE DIR/BRADS3/5 and press ENTER.
FREE DIR.I/BRADS3/5 and press ENTER.
RENAME DIR.TEMP/BRADS3/5,DIR and press ENTER.
RENAME DIR.I.TEMP/BRADS3/5,DIR.I and press ENTER.

Your system will now be updated to the newest release of
BFADS III and you are ready to continue your normal
operations of BRADS III.

SYSTEM/34 BRADS FILE QUERY

Running File Query on large files results in a slower
operation if the report is printed immediately after the
program is generated.

Use the following technique to interrupt and save the File
Query program after it is generated. Then, run the File
Query program using the Run Report option on the BRADS menu,
or load and run it from BASIC.

1. First "Generating FILE QUERY Running Code" appears on
the lower left of the display

2. When the code is generated the following is displayed

File Query Running
Press ATTN to Interrupt

3. Press the ATTN key

4. When the "Inquiry Options" are displayed, select option
4 - Set Inquiry Condition for Program

5. When the "File Query Interrupted" screen is displayed,
Type a CMD 6 - Save Program

6. When screen 8122E - BRADS - FILE QUERY/SAVE QUERY
PROGRAM is displayed, enter a Query Program Name and
enter 'N' in response to the "Return to File Query
after Save" prompt and press the Enter key. Note that
the program name that is entered should be different
from any other file name on the disk.

76 Datamaster Procedures and Techniques

PROCESSING DUPLICATE-KEY INDEX FILES IN BRADS

This technique is used to process large files in which
several records have the same key. For example, an open
receivables file in an accounts receivable application has
several invoice or credit memo records for each customer.
An index file built for this file using just the customer
number has duplicates.

This type of file can be processed in a BRADS report as
follows:

1. Assume F$(l) is the key field in the file definition of
the transaction file that contains duplicates

Generate an index on this field and allow duplicate
keys

2. Assume Screen 1 will be displayed allowing for entry of
the desired customer number which is put into F$(33)

3. Enter Specify Report and select File Specifications

Enter index definition name

Input method 'D' for demand

4. Select Calculations

Display screen 1 and provide for entry of the desired
key value into F$(33). Code first access to the file
through the index, then code subsequent reads
sequentially. For example:

30000
30010
30020
30030
30040
30050
30060

Line 30000

Line 30010

IF FNSCREEN(1,1,0,1)=9 THEN GOTO BEND
ON FNREAD(F1,33) THEN GOTO 30020,BERRCALC,30000
A=FNPRINT(P1,0,1)
ON FNREAD(F1,SEQ) THEN GOTO 30040,30000,BERRCALC
IF F$(33»<F$(1) THEN GOTO 30000
A=FNPRINT(P1,0,1)
GOTO 30030

displays a screen that prompts the user to enter
the number (key) of the record to be processed.

reads file 1 using the value entered into
F$(33). If the key is found, continue to line
30020. If EOF is reached (an error on an
indexed read), go to the BRADS error routine
BERRCALC. If no record is found, go back to the
screen to allow entry of another key value.

BRADS Techniques 77

Line 30020

Line 30030

Line 30040

Line 30050

Line 30060

processes the record. In this example, each
record selected will be printed. Any other
processing of the record is done at this point.

reads the subsequent records sequentially.

compares the key value entered into F$(33) to
the key field F$(l) from the file to make sure
that the record read has the same key as the
first record found. If it is not equal, then go
to the screen so another key value or end of job
can be entered.

processes the record.

goes to the sequential read to get the next
record.

NOTE: Use of the BRADS functions FNREAD, FNPRINT, FNSCREEN
may be found in the BRADS III REFERENCE manual
(SB30-2538) .

BRADS REPORTS BUILT WITH SPECIFY REPORT

Any report written with the Specify Report function of the
BRADS application is a stand-alone, BASIC program which may
be executed independently of BRADS. Once created, you may
use CMDs: LOAD, LIST, LISTP, RUN, RUN TRACE, REPLACE.

If changes need to be made to the user-written calculations,
the report program may be LOADed, modified, and then
REPLACEd. Any changes that are made other than to the
calculations, for example, file specifications, print
formats etc., must be made through the Specify Report option
of the BRADS menu and the report must be rebuilt.

If changes to the BRADS code are necessary, the program must
be LOADed, modified, and REPLACEd. Should the program be
rebuilt using the Specify Report option of BRADS, all
previous user modifications to the generated code are lost.

NOTE: When specifying Free-Form reports in BP~DS which
require user-written calculations, specify all options
required except calculations and build the report. Then LOAD
the program into memory, add the needed program statements,
and REPLACE it.

NOTE: A report program generated and saved by the Query
option of BRADS is also a stand-alone, BASIC program. It
may be manipulated as stated above, executed through the run
report option, or RUN independently of BRADS.

78 Datamaster Procedures and Techniques

CREATING 3-ACROSS MAILING LABELS IN SPECIFY REPORT

To create three-across labels in specify report which will use a
different name for each label, such as:

Joe Smith
124 Elm
Suite 100

Mary Jones
124 Maple
Niles, IL 60014

Rich McAndrews
III Jackson
Suite 300

Eldon, IL 60012 Waco, TX 78021

all character fields should be defined as variable to
eliminate extraneous blanks in data fields. The input
method for the data file should be specified as'S' for
sequential. In the report format, the field design should
consist of rows of pound signs for each address line in
three columns. Each line should use a unique field
reference that is not used in the data file with each column
starting with a multiple of ten.

f$(ll)--~---
f$(12)------
f$(13)------
f$(14)-------

f$(2l)------
f$(22)------
f$(23)------
f$(24)-------

f$(31)------
f$(32)------
f$(33)------
f$(34)-------

Calculations are required in the BCYCLE and BREAD area of
the report.

o 5 0 0 0 l"~ T :F' $ = (" ")
05010 FOR COL=10 TO 30 STEP 10
11000 LET F$(COL+1)=F$(1)&" "&F$(2)
11010 LET F$(COL+2)=F$(3)
11020 LET F$(COL+3)=F$(4)
11030 LET F$(COL+4)=F$(S)&", "&F$(6)&" "&F$(7)
11040 IF F$(4»<"" THEN GOTO 11070
11050 F$(COL+3)=F$(COL+4)
11060 F$(COL+4)=""
11070 NEXT COL
21000 GOSUB BPDETAIL
30000 GOTO BCYCLE

Line 05000 clear array F$ to avoid duplicate labels on
last row

Line 05010 lOts = column 1, 20's = column 2, 30's =
column 3

Line 11000 current column line 1 = first name, a blank
space, and last name

Line 11010 current column line 2 = first address line

Line 11020 current column line 4 = second address line

BRADS Techniques 79

Line 11030

Line 11040

Line 11050

Line 11060

Line 11070

Line 21000

Line 30000

concatenate city, a comma and a blank, state,
a blank, and the zip code

if the second address line is not blank, do
not compress the address lines

move line 4 up to line 3

blank out the 4th line

next column in the loop

the three columns are now complete, print the
detail lines

labels printed, start the cycle again

BRADS SPREAD INPUT FILES

BRADS Spread users should review the "Input Files" and "File
Opcode" sections of the BRADS REFERENCE (SPREAD) manual
(SB30-2540). It is faster to use BRADS maintained input
files than entering the data into the Spread Specifications
file as shown in LEARNING BRADS Book 3. Keying original
data, changes, 'actual' monthly figures and finding records
quickly is easier and faster once input file usage is
understood.

Use the input file examples described in the sample spread
sheets in the "Consolidations" and "Plan-vs-Actual" pages of
the BRADS REFERENCE (SPREAD) manual to gain a greater understanding
of BRADS input file concepts.

Some input file highlights:

1. When designing BRADS input files for spread reports
insure that in addition to the spread data these 3
identification and control fields are included in the
file definition:

Row Name (limited to 10 characters)
Row Description(ranging from 10 to 30 characters)
A 'Pi Code(3 characters).

These fields will be used for both selection and
printing purposes. If files already exist without
these fields, it might be possible to use record number
for selection of specific rows of data.

2. A model file definition, such as 'monthly' shown in
BRADS LEARNING Book 3, can be used to simplify
preparation of spread sheets. That definition includes
13 numeric data fields and the 3 identification and
control data fields described in 1 above. This

80 Datamaster Procedures and Techniques

definition could represent 12 individual monthly and 1
annual total values for a typical accounting record.
Once this definition is placed in the BRADS directory,
it can be used as a model in Define File to build a
definition for an actual data file. A model definition
of a file having 12 months actual and 12 months budget
data is shown as 'VARIANCE. DATA , on page D-24, in the
BRADS REFERENCE (SPREAD) manual, (SB30-0540).

3. Substituting data files is another time-saver as
described on page S-83 under Specify Spread in the
BRADS REFERENCE (SPREAD) manual, (SB30-0540). The file
description 'monthly' is used with the actual data
being retrieved from other files. Review the various
parameters (file,dir,y,n) of these examples to
understand the built-in flexibility of using various
VOLIDs and DIRs.

4. In order to use input files in spread it is necessary
to indicate 'Y' for the input file option on Specify
Spread screen 8133C and specify at least one File
Opcode calculation to select information from the input
file.

5. Some suggestions for using the File Opcode:

a. Place File Opcodes at the beginning of the
calculation specifications

b. Place File Opcode calculations in the input file
order rather than the order that spread processes
them (such as, information from Record 1 first (or
File 1 first, if multiple files are used))

c. Extra Formatting or Run Report can be used to
re-arrange calculated data rows when printing if
required.

d. Individual rows or groups of rows can be retrieved
by row name (if available) or by record number.

e. The Rowseq Opcode can be used to specify the
sequence of rows to be printed or to select one of
a group of rows to use in a spread calculation.

f. Consolidation of several files (of similar format)
is easy.

g. If a row is used in a calculation specification
and a subsequent File Opcode selects a row by the
same name from a file, the two rows will be added
together. This design permits the consolidation
of files.

BRADS Techniques 81

{This page intentionally left blank.}

82 Datamaster Procedures and Techniques

Brads and WSID$ 73
Brads re~installing 74
Brads release level 74
Brads w/dup. keys 77
Brads Examples 73
Brads Spread 80
Brads 5247 re-inst. 75
Char/Per/Inch change 67
Clear proc 63
Compress diskette 25
Compress 5247 25
Convert characters 35
Convert 5322-S/34 47
Convert 5322-S/36 40
CSF file level 19
CSF update diskette 19
CSF update 5247 22
CSF Diskette Order 17
CSF EC level 18
Del command 64
Dropped Proc 64
Duplicate keys 58
Editing a program 35
Error analyzing 1
Error from Proc 13
Error in Proc 63
Error 0102 7
Error 0301 7
Error 0405 7
Error 0726 7
Error 0726 68
Error 0802 9
Error 0802 w/PIC 67
Error 4000 9
Error 4138 9
Error 4152 10
Error 4159 9
Error 4270 10
Error 6126 12
Error 6126 69
Error 6401 12
Error 6480 12
Error 7010 21
Error 7501 12
Error 7503 12
File query 76
Go and Go End 63
Hardware level 17
Index how often 27
Index limit 26

Indexed access
Indexed file
Indexed updating
Input fields
Last record read
List File
List Storage
Mailing labels
Newpage
Open sharing
Page overflow
Partial key
Patch applying
Patch BR00252
Patch BE00264
Patch BR00266
Patch BR00267
Patch BR00272
Phantom file
Pic statement
Positioning cursor
Print bell
Printer switch
Proc creating
Proc Setup1
Proc Setup2
Proc Setup3
Protect command
Read directory
Read Rec=O
Read Search=
Removing diskettes
Replace
S/36 differences
Sequential access
Sort address out
Sort limit
Specify report
Split screen
Srch command
Substring
System CSF level
Trap listing
Trap on PD
Trap running
Traps
Trig functions
Unformatted I/O
Variable filename
5247 performance

INDEX

60
52
55
69
61

6
5

79
67
57
67
58
31
32
32
33
33
33
13
68
70
69
27
65
15
16
16
36
54
53
53
64
17
44
60
51
26
78
12
39
69
18
37
52
37

2
39
56
53
61

Index 83

--- -----.- - --,- ---- - ---- - - ---==-'= w: =® G360-1000-0

