First Edition (May 1978)

A form for readers' comments has been provided at the back of this publication. If the form has been removed, address comments to IBM Corporation, Marketing Publications, Dept. 824, 1133 Westchester Avenue, White Plains, New York 10604. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever.

(C) COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION 1978
APL PROGRAMMING GUIDE

VECTOR OPERATIONS

FIRST EDITION

EDITED BY
TIMOTHY P. HOLLS

ABSTRACT

THIS GUIDE SUMMARIZES KEY CONCEPTS, CODING TECHNIQUES, IDIOMS, GUIDELINES, AND TRADE-OFFS WHICH WILL HELP THE APL PROGRAMMER TO PRODUCE EFFICIENT APL CODE.

KEY WORDS: APL, APLSV, PROGRAMMING TECHNIQUES, APL/CMS, VS APL, 5100 APL

A PUBLICATION OF DPD SCIENTIFIC MARKETING
APL PROGRAMMING GUIDE

PREFACE

THIS GUIDE IS A COMPILATION OF KEY CONCEPTS, CODING TECHNIQUES, IDIOMS, GUIDELINES, AND TRADE-OFFS IN APL PROGRAMMING. IT IS INTENDED FOR INTERMEDIATE AND ADVANCED APL PROGRAMMERS WHO ARE FAMILIAR WITH APL SYNTAX AND OPERATIONS AS FOUND IN THE APL LANGUAGE MANUALS AND SIMILAR PUBLICATIONS. ITS GOAL IS TO SHOW GOOD IMPLEMENTATIONS OF BASIC APL DATA PROCESSING OPERATIONS.

THIS VOLUME COVERS VECTOR OPERATIONS TOPICS IN APL PROGRAMMING. IT IS DESIGNED TO BE A REFERENCE MANUAL. THE INFORMATION INCLUDED IS CATEGORIZED ACCORDING TO THE TYPE OF OPERATION PERFORMED AND THE DATA BEING PROCESSED. THE TABLE OF CONTENTS IS INTENDED TO SERVE AS THE PRIMARY MEANS FOR LOCATING THE APL CODE FOR A SPECIFIC OPERATION.

THIS GUIDE IS BASED ON EXPERIENCE WITH IBM APLSV SYSTEMS. WHERE APPROPRIATE, THE TECHNIQUES HAVE BEEN CODED SO AS NOT TO BE DEPENDENT ON ANY APL SYSTEM IMPLEMENTATION. HOWEVER, THE READER MUST DETERMINE WHETHER OR NOT CODE CHANGES ARE NECESSARY FOR EXECUTION ON ANOTHER APL SYSTEM. CERTAIN CODE IMPLEMENTATIONS MAY HAVE TO BE SPLIT INTO ADDITIONAL STATEMENTS IF THE ORDER OF EXECUTION OF OTHER APL SYSTEMS REQUIRES THIS.

IT IS THE PHILOSOPHY OF THIS GUIDE TO SHOW ONLY THE BASIC CODE NECESSARY TO PERFORM A GIVEN OPERATION. ONLY A FEW TECHNIQUES ARE ILLUSTRATED AS COMPLETELY-DEFINED APL FUNCTIONS. IT IS LEFT TO THE READER TO COMBINE THESE BASIC COMPONENTS INTO STANDARDIZED SUBROUTINES OR LARGER FUNCTIONS AS DEEMED APPROPRIATE FOR AN APPLICATION.

* * * * *

MORE THAN ONE IMPLEMENTATION OF A TECHNIQUE IS SHOWN WHEN THERE ARE SIGNIFICANT DIFFERENCES IN THE NATURE OF THE IMPLEMENTATIONS. EACH IMPLEMENTATION IS THE "BEST" ONE FOR ITS PARTICULAR APPROACH. THE ORDER IN WHICH THE IMPLEMENTATIONS ARE LISTED FOR EACH TECHNIQUE OR EACH TRADE-OFF IS BASED ON MEASUREMENTS OF THE TIME TAKEN TO PROCESS A VECTOR OF ABOUT 25 ELEMENTS. THE FASTEST IMPLEMENTATION IS SHOWN FIRST.

THE READER IS CAUTIONED, HOWEVER, THAT SUCH CHARACTERISTICS AS EXECUTION SPEED, STORAGE REQUIRED, DATA REPRESENTATION AND HANDLING, ETC., ARE DEPENDENT ON THE APL SYSTEM IMPLEMENTATION. THESE CHARACTERISTICS MAY ALSO CHANGE AS AN APL SYSTEM IS MODIFIED AND IMPROVED. THEREFORE NO EXPLICIT MEASUREMENTS OF THESE CHARACTERISTICS HAVE BEEN INCLUDED IN THIS GUIDE. READERS WHO CONSIDER THESE CHARACTERISTICS IMPORTANT IN THEIR APPLICATIONS SHOULD DETERMINE THEM FOR EACH TECHNIQUE ON THE APL SYSTEM WHICH THEY ARE USING.
EXECUTION SPEED CAN ALSO VARY WITH THE LENGTH AND NATURE OF THE VARIABLES PROCESSED. AN IMPLEMENTATION WHICH IS FASTER FOR SMALL VARIABLES MAY BE SLOWER FOR LARGE ONES. SIMILARLY, LOGICAL DATA (BITS) MAY BE HANDLED MORE SLOWLY THAN BYTE OR INTEGER DATA.

THE IMPLEMENTATIONS SHOWN IN THIS GUIDE ARE LARGELY NON-LOOPING SOLUTIONS USING THE POWER OF APL PRIMITIVE FUNCTIONS. THE READER SHOULD BE AWARE, HOWEVER, THAT IMPLEMENTATIONS WITH LOOPING CAN BE FASTER AND MORE EFFICIENT FOR LARGE DATA VARIABLES IN CERTAIN SITUATIONS. LOOPING WILL ALSO HELP AVOID "WS FULL" INTERRUPTIONS, ALLOWING LARGER VARIABLES TO BE PROCESSED.

SOME ALTERNATE IMPLEMENTATIONS WHICH ARE KNOWN TO BE POORER HAVE BEEN INCLUDED IN ORDER TO DOCUMENT THEIR EXISTENCE AS VARIATIONS. CERTAIN ONES FOUND IN OLDER APL FUNCTIONS REPRESENT EARLIER SOLUTIONS DEVELOPED BEFORE NEW APL PRIMITIVE FUNCTIONS WERE ADDED TO THE LANGUAGE. SOME OF THE ALTERNATE IMPLEMENTATIONS, WHILE LESS EFFICIENT FOR PERFORMING THE ENTIRE TECHNIQUE, MAY NEVERTHELESS BE BETTER IN A SPECIFIC APPLICATION WHERE THEIR INTERMEDIATE RESULTS ARE ALSO USEFUL OR ALREADY AVAILABLE FROM PREVIOUS PROCESSING. THE FINAL RESULT MIGHT BE OBTAINED FASTER BY STARTING WITH THE INTERMEDIATE DATA THAN BY PROCESSING FROM SCRATCH WITH THE FASTEST TECHNIQUE. MINOR VARIATIONS IN IMPLEMENTATION, E.G., COMPLEMENTARY OPERATIONS, ARE GENERALLY OMITTED. THE NOTATION \(\leftrightarrow \) MEANS "IS THE SAME AS".

EXPLANATIONS OF THE DETAIL-PROCESSING OCCURRING IN THESE TECHNIQUES ARE INCLUDED ONLY WHERE THEY WERE CONSIDERED NECESSARY. READERS WHO SEEK A SPECIFIC TECHNIQUE MAY SIMPLY COPY THE CODE AND VERIFY THE DESIRED OPERATION AND RESULTS. THOSE WHO WANT TO INCREASE THEIR GRASP AND UNDERSTANDING OF APL PROCESSING ARE ENCOURAGED TO STUDY THE CODE IN DETAIL. THIS CAN CONSIST OF FIRST WORKING IT OUT ON PAPER AND THEN EXECUTING EACH PORTION IN SEQUENCE TO EXAMINE THE RESULTS. THIS EXERCISE PROVES TO BE A VERY GOOD WAY TO UNDERSTAND AND MASTER APL SEMANTICS AND PROGRAMMING LOGIC. IT CONTRIBUTES TO THE ABILITY TO RECOGNIZE ENTIRE TECHNIQUES OR "IDIOMS" OF APL WHEN SUBSEQUENTLY READING APL PROGRAMS. SOME OF THESE TECHNIQUES ARE THEMSELVES COMBINATIONS OF SEVERAL SIMPLER TECHNIQUES.

CERTAIN BRIEF APL OPERATIONS OCCUR REPEATEDLY IN THESE TECHNIQUES. THEY CAN BE THOUGHT OF AS "KERNEL" APL OPERATIONS AND ARE IDENTIFIED AS SUCH IN THE TEXT. WHILE THEY ARE NOT NECESSARILY USED TO PRODUCE FINAL RESULTS IN THEMSELVES, THEY FORM THE BASIS FOR MANY OTHER MORE COMPLEX TECHNIQUES. THEREFORE THEY ARE WORTH RECOGNIZING AND LEARNING.
APL PROGRAMMING GUIDE

PREFACE (CONT'D)

MANY OPERATIONS ARE SHOWN WITH A GENERALIZED TEST VARIABLE, E.G., "Q", AND THEY MAY BE USABLE FOR EITHER NUMERIC OR CHARACTER DATA. IN APPLICATIONS WHERE ONLY ONE KIND OF DATA IS PROCESSED, THE SPECIFIC DATA ELEMENTS, E.G., 0 OR ' ', MAY BE SUBSTITUTED IN THE EXPRESSION RATHER THAN ASSIGNING THEM TO THE VARIABLE.

WHEREVER POSSIBLE AND APPROPRIATE, THE IMPLEMENTATIONS OF THESE TECHNIQUES ARE CODED TO EXECUTE THE SAME REGARDLESS OF THE VALUE OF THE INDEX ORIGIN $IO. THIS IS DONE TO INCREASE THE USABILITY OF THE TECHNIQUES. HOWEVER IT FREQUENTLY MAKES THE APL CODE MORE DIFFICULT TO READ AND MORE CUMBERSOME. IF A TECHNIQUE IS TO BE EXECUTED IN AN ENVIRONMENT WITH AN UNCHANGING INDEX ORIGIN, IT IS SUGGESTED THAT THE READER SUBSTITUTE THE ORIGIN VALUE FOR $IO WHERE IT APPEARS IN THE CODE AND THEN SIMPLIFY THE APL EXPRESSIONS WHICH RESULT.

* * * * *

READERS WHO KNOW OF OTHER "BETTER" IMPLEMENTATIONS OF ANY TECHNIQUE OR WHO DETERMINE IMPROVEMENTS TO ANY IMPLEMENTATIONS SHOWN IN THIS GUIDE ARE REQUESTED TO SEND THIS INFORMATION TO THE EDITOR. CONTRIBUTIONS AND SUGGESTIONS FOR ADDITIONAL TECHNIQUES ARE ALSO WELCOME.

THE EDITOR IS INDEBTED TO MANY APL PROGRAMMERS, BOTH KNOWN AND UNKNOWN, FOR THE CODE WHICH HAS BEEN INCLUDED IN THIS GUIDE. SPECIAL APPRECIATION IS EXTENDED TO THE REVIEWERS, WHO CONTRIBUTED IMPROVEMENTS TO THE CODE, THE TEXT, AND THE FORMAT OF THIS GUIDE.

CERTAIN MATERIAL IDENTIFIED BY FOOTNOTES HAS BEEN ADAPTED FROM THE PUBLICATIONS LISTED BELOW. SOME OF THE MATERIAL IS UNCHANGED EXCEPT FOR VARIABLE NAMES AND APL SYSTEM DIFFERENCES.

VECTOR OPERATIONS -- TABLE OF CONTENTS

CREATING A VECTOR V ... 1

BY CATENATION .. 1
CATENATING UNIQUE ELEMENTS Q TO V AND INCREMENTING
COUNTERS C ... 3
BY ASSIGNMENT AND INDEXING 4
BY RESHAPING ANOTHER VARIABLE W 5
GENERATING A VECTOR USING A LOGICAL VECTOR AND A SCALAR Q 6
GENERATING A VECTOR OF INDICES 7
 IN FIELDS OF WIDTHS W 7
 GENERATING THE "X"TH AXIS INDICES I FOR ALL ELEMENTS
 OF ARRAY A, CORRESPONDING TO RAVEL-A (,A) 8
 IN INCREASING-DECREASING SEQUENCE, WITH LENGTH L 10
 IN INCREASING-DECREASING SEQUENCE, WITH LENGTH L,
 AND WITH MAXIMUM VALUE K 10

GENERATING A VECTOR WITH A RANGE OF NUMBERS 11
SUCCESSIVE INTEGERS FROM J TO K 11
SUCCESSIVE REAL NUMBERS FROM J TO K INCREMENTING BY D 11
R SUCCESSIVE REAL NUMBERS STARTING WITH N AND
INCREMENTING BY D ... 12
GENERATING A LOGICAL (BOOLEAN) VECTOR 13
 WITH K LEADING 1'S AND LENGTH L 13
 WITH K TRAILING 1'S AND LENGTH L 13
DEFINING THE FIELD PARTITION P OF V 14
 WHEN THERE ARE NO FIELD DELIMITERS 14
 WHEN THE FIELD DELIMITER IS Q 18
 IN FIELDS OF WIDTHS W, ALTERNATING 1'S AND 0'S 19

EXPANDING / INSERTING ELEMENTS INTO A VECTOR V 20

INSERTING K ELEMENTS Q BEFORE/AFTER EACH ELEMENT OF V 20
INSERTING K ELEMENTS Q BEFORE/AFTER THE ELEMENTS WITH
INDICES I ... 22
INSERTING ELEMENT Q IN WIDTHS W BEFORE/AFTER THE ELEMENTS
WITH INDICES I .. 24
EXPANDING FIELDS WITH DIFFERENT WIDTHS W TO FIELDS OF THE
SAME WIDTH L .. 26
INSERTING ELEMENT Q AFTER EVERY "K"TH ELEMENT OF V 27
INSERTING A STRING S AFTER THE ELEMENT WITH INDEX I 28
EXPANDING V TO LENGTH L 29
 PADDING WITH THE PAD-ELEMENT (0 OR BLANK) 29
 PADDING WITH THE LAST ELEMENT 29

TESTING THE ELEMENTS IN A VECTOR V 30

DETERMINING IF ELEMENT Q OCCURS IN V 30
DETERMINING IN WHICH FIELD OF V AN ELEMENT Q OCCURS 31
COUNTING THE NUMBER OF OCCURRENCES N OF ELEMENTS Q IN V 33
PERFORMING RELATIONAL TESTS ALONG V 34
DETERMINING IF ALL THE ELEMENTS OF V ARE UNIQUE 35
VECTOR OPERATIONS -- TABLE OF CONTENTS (CONT'D)

SELECTING ELEMENTS OF A VECTOR V ... 36
SELECTING ELEMENTS THAT SATISFY A TEST 36
SELECTING ELEMENTS P WHICH ARE BETWEEN PAIRED DELIMITERS D 37
SELECTING ELEMENTS P WHICH ARE OUTSIDE PAIRED DELIMITERS D 39
SELECTING SUBSTRING S WITH STARTING INDEX I AND LENGTH L 41
SELECTING LEFT AND RIGHT FIELDS OF V DELIMITED BY
THE ELEMENT Q .. 42
SELECTING FIELD N OF V .. 43

FINDING INDICES OF ELEMENTS OF A VECTOR V 45
FINDING THE INDICES OF ELEMENTS THAT SATISFY A TEST 45
FINDING THE INDEX OF THE 1ST OCCURRENCE OF ELEMENTS Q 46
FINDING THE INDEX OF THE LAST OCCURRENCE OF ELEMENTS Q 47
FINDING THE INDICES I OF THE SMALLEST AND LARGEST ELEMENTS 48
FINDING THE STARTING INDICES I OF OCCURRENCES OF A PATTERN
OF ELEMENTS ... 49
FINDING ALL OCCURRENCES OF A SUBSTRING S 49
FINDING ALL OCCURRENCES OF A WORD S 50
FINDING THE BOUNDARY INDICES OF THE FIELDS OF V 51
WHEN THERE ARE NO FIELD DELIMITERS 51
WHEN THE FIELD DELIMITER IS Q .. 53

SHIFTING A VECTOR V .. 54
SHIFTING N POSITIONS WITHOUT CHANGING THE LENGTH OF V 54
WITH WRAP-AROUND (ROTATING) .. 54
WITHOUT WRAP-AROUND ... 54
CENTERING V ... 55
WHEN THE FILL-ELEMENT IS Q .. 55
WITHIN A FIELD OF PAD-ELEMENTS OF WIDTH W 56
COMPRESSION THE FILL-ELEMENT Q TO THE SIDES. 57
RIGHT-JUSTIFYING V .. 58
WHEN THE FILL-ELEMENT IS Q .. 58
WITHIN A FIELD OF PAD-ELEMENTS OF WIDTH W 59
COMPRESSION THE FILL-ELEMENT Q LEFT 61
LEFT-JUSTIFYING V .. 62
WHEN THE FILL-ELEMENT IS Q .. 62
WITHIN A FIELD OF PAD-ELEMENTS OF WIDTH W 64
COMPRESSION THE FILL-ELEMENT Q RIGHT 65
REVERSING THE POSITIONS OF THE ELEMENTS OF V 66
REVERSING THE ELEMENTS WITH INDICES I 66
REVERSING THE ELEMENTS WITHIN EACH FIELD OF V 67

SORTING A VECTOR V ... 68
SORTING A NUMERIC VECTOR ... 68
IN ASCENDING ORDER ... 68
IN DESCENDING ORDER ... 68
SORTING A VECTOR V (CONT'D)

IN EITHER ASCENDING OR DESCENDING ORDER 68
SORTING THE ELEMENTS OF V WITHIN THE FIELDS OF V 69
IN ASCENDING ORDER .. 69
IN DESCENDING ORDER 70
DETERMINING THE RANK-ORDER R OF THE ELEMENTS OF V 71
ASCENDING RANK-ORDER 71
DESCENDING RANK-ORDER 71
SORTING A CHARACTER VECTOR 72
MOVING CHARACTERS NOT IN THE SORT SEQUENCE TO END OF V 72
DELETING CHARACTERS NOT IN THE SORT SEQUENCE 73
MERGING 2 NUMERIC VECTORS IN ASCENDING ORDER 74
MERGING 2 VECTORS USING THE PATTERN IN LOGICAL VECTOR L 75
MERGING 2 VECTORS OF SAME LENGTH IN ALTERNATING POSITIONS 76

COMPUTING VALUES FROM A VECTOR V 77

DETERMINING THE WIDTHS W OF THE FIELDS OF V 77
WHEN THERE ARE NO FIELD DELIMITERS 77
WHEN THE FIELD DELIMITER IS Q 77
SUMMING SETS OF ELEMENTS OF V 78
SETS OF ELEMENTS SORTED INTO FIELDS 78
SETS OF ELEMENTS NOT IN FIELDS 79
DETERMINING THE PAIRWISE DIFFERENCES D IN V 80
COMPUTING THE AVERAGE OF THE VALUES IN V 81
PERFORMING ARITHMETIC SCAN OPERATIONS ON V 82
PERFORMING LOGICAL SCAN OPERATIONS ON V 83

REPLACING ELEMENTS OF A VECTOR V 85

REPLACING ELEMENTS SELECTED BY A TEST 85
WITH ELEMENT Q .. 85
WITH THE PAD-ELEMENT (0 OR BLANK) 87
REPLACING MULTIPLE OCCURRENCES OF AN OLD SUBSTRING OS WITH A NEW SUBSTRING NS 88

DELETING ELEMENTS FROM A VECTOR V 89

DELETING ALL OCCURRENCES OF ELEMENT Q 89
DELETING ALL LEADING OCCURRENCES OF ELEMENT Q 90
DELETING ALL TRAILING OCCURRENCES OF ELEMENT Q 91
DELETING LEADING AND TRAILING OCCURRENCES OF ELEMENT Q 92
DELETING REDUNDANT OCCURRENCES OF ELEMENT Q 93
DELETING REDUNDANT OCCURRENCES OF ALL ELEMENTS 94
DELETING LEADING, TRAILING, AND REDUNDANT OCCURRENCES OF ELEMENT Q ... 95
DELETING THE ELEMENTS WITH INDICES I 96
DELETING A SUBSTRING WITH STARTING INDEX I AND LENGTH L 97
DELETING DUPLICATE OCCURRENCES OF ALL ELEMENTS 98
CREATING A VECTOR V

BY CATENATION

TYPE 1: CATENATING INDIVIDUAL ELEMENTS

A INITIALIZE TO AN "EMPTY" VECTOR

\[V \leftarrow 10 \quad \text{OR} \quad V \leftarrow 't' \quad \text{OR} \quad V \leftarrow 0 \ldots \]

A ADD ELEMENTS BY CATENATION

\[V \leftarrow V, 45 \ 78 \ 23 \]

A USE THIS METHOD WHEN THE FINAL SIZE OF V IS UNKNOWN

A CAUTION: CATENATION REQUIRES THAT \#WA > THE STORAGE TAKEN UP BY "V". WHEN \#WA BECOMES <, A "WS FULL" WILL OCCUR.

TYPE 2: CATENATING SEVERAL VECTORS

A GENERATE SEPARATE "PARTIAL"-VECTORS

\[T \leftarrow 'F I N A L \ S U M M E R Y \ R E P O R T \ O F \ A N N U A L \ S A L E S' \]
\[D \leftarrow 'D E C E M B E R \ 3 1 , \ 1 9 ^ { \prime } , \ 2 0 \ V Y' \]
\[B R \leftarrow 'B R A N C H \ O F F I C E \ N O . , ' , \ V N \]

A CATENATE VECTORS TO FORM LONGER VECTOR

\[H D R \leftarrow 'T', ' -- ' , B R , ' -- ' , D \]

A USE THIS METHOD WHEN FINAL VECTOR WOULD BE TOO LONG
A FOR ONE FUNCTION STATEMENT. THIS ALSO ALLOWS THE
A THE INDIVIDUAL VECTORS TO BE USED IN MORE THAN ONE
A STATEMENT.

(CONTD ON NEXT PAGE)
CREATING A VECTOR V

BY CATENATION (CONT'D)

TYPE 3: MANUALLY ENTERING A VECTOR WHERE THE DATA EXCEEDS THE TERMINAL INPUT LINE LENGTH

* CATENATE A "" AT THE END OF EACH LINE WHICH IS TO BE CONTINUED

\[V \leftarrow 2.3 \ 9.7 \ 6.2 \ 5.8 \ \ldots \ 43.79, \ \boxempty \]
\[\boxempty \colon \ 93.7 \ 105.2 \ 125.3 \ \ldots \ 155.1, \ \boxempty \]
\[\boxempty \colon \ \ldots \ \text{ETC.} \]

* CHARACTER INPUT MUST BE TYPED WITHIN QUOTES
Creating a Vector V

Catenating Unique Elements Q to V and Incrementing Counters C

Catenate the elements only if they don't occur in V

\[V \oplus V, (L \leftarrow Q \epsilon V) / Q \]

Increment the corresponding counter in C for each element

\[C \leftarrow (C, L / 0) + V \epsilon Q \]

\[pV \leftrightarrow pC \]
\[C[i] \text{ is the count of occurrences of } V[i] \]

Example:

\[V \leftarrow 'MECRVKID' \]
\[C \leftarrow 2 \ 5 \ 2 \ 1 \ 1 \ 2 \ 3 \ 1 \]
\[Q \leftarrow 'BASED' \]

Result:

\[V: \quad MECRVKIDBAS \]
\[C: \quad 2 \ 6 \ 2 \ 1 \ 1 \ 2 \ 3 \ 2 \ 1 \ 1 \]

If any elements in Q occur more than once:

\[V \oplus V, (L \leftarrow U \epsilon V) / U \leftarrow (1 \{Q\} = Q \{Q\}) / Q \]

\[C \leftarrow (C, L / 0) ++ / V \circ \cdot = Q \]

Example:

\[Q \leftarrow 'MISSISSIPPI IS THE MAGNOLIA STATE' \]

Result:

\[V: \quad MECRVKIDBASP THGNOL \]
\[C: \quad 4 \ 8 \ 2 \ 1 \ 1 \ 2 \ 9 \ 2 \ 1 \ 4 \ 7 \ 2 \ 4 \ 3 \ 1 \ 1 \ 1 \ 1 \]

Adapted from (1) The APL Idiom List
CREATING A VECTOR V

BY ASSIGNMENT AND INDEXING

FIRST ASSIGN "N" FILL-ELEMENTS TO THE VECTOR, E.G.,
PAD-ELEMENTS (0 OR BLANK); N = A POSITIVE INTEGER

V= Np0

NOTE: Np0 PRODUCES 1-BIT ELEMENTS. THESE WILL
INCREASE TO INTEGER OR FLOATING POINT ELEMENTS
WHEN THE FIRST VALUE ≠ 0 OR 1 IS ASSIGNED.

INITIALIZE INDEXING VARIABLE

PTR=0 [IO+1]

STORE ELEMENTS IN VECTOR BY INDEXING, CHECKING FOR
END OF VECTOR

→(N<PTR+PTR+1)/END
V[PTR]=45

ALTERNATIVELY

→(N<1+I+PTR+\(n\))/END
V[I]=1 2 3 ... K [IO+1]
PTR=PTR+K

USE THIS METHOD IF THE FINAL SIZE OF VECTOR (OR AN
UPPER LIMIT ON THE SIZE) IS KNOWN

CAUTION: IF THE STORAGE TAKEN UP BY "V" > WA, NO
OPERATION CAN BE PERFORMED WHICH WOULD DUPLICATE "V"
(WILL RESULT IN A "WS FULL")
CREATING A VECTOR \(V \)

BY RESHAPEING ANOTHER VARIABLE \(W \)

\[
V \leftarrow N \times W
\]

\(W \) MAY BE AN ARRAY OF ANY RANK (0, 1, 2, 3, \ldots)
\(N \) MUST BE AN INTEGER \(\geq 0 \)

EXAMPLE:
\[
W \leftarrow '1'
N \leftarrow 10
\]
RESULT:
\[
1111111111
\]

EXAMPLE:
\[
W \leftarrow 'ABCD'
N \leftarrow 13
\]
RESULT:
\[
ABCDABCDABCD
\]

EXAMPLE:
\[
W \leftarrow 2 3 4 1 0 0 1 0
N \leftarrow 17
\]
RESULT:
\[
1 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0
\]

TO REPLICATE A VECTOR \(W \) \(N \)-TIMES:

\[
V \leftarrow (N \times W) \cdot W
\]

\(N \) MUST BE AN INTEGER \(\geq 0 \)

EXAMPLE:
\[
W \leftarrow '1234'
N \leftarrow 4
\]
RESULT:
\[
12341234123412341234
\]
CREATING A VECTOR \(V \)

GENERATING A VECTOR USING A LOGICAL VECTOR AND A SCALAR \(Q \)

\[V \leftarrow (\text{LOGICAL VECTOR}) \setminus Q \]

A PAD-ELEMENTS (0 OR BLANK) OCCUPY THE 0-BIT POSITIONS

EXAMPLE: UNDERLINING A HEADING (REPLACE Q WITH '−')

\[
\begin{align*}
\text{HDR} & \leftarrow \text{'THIS IS A HEADING'} \\
V & \leftarrow (\text{HDR} \neq ' ') \setminus '−'
\end{align*}
\]

RESULT: \[---- -- - ------- \]

EXAMPLE: \[L+1 1 0 0 1 1 0 0 1 1 0 0 \]
\[V+L \setminus ' ' \]

RESULT: \[• • • • • \]
CREATING A VECTOR V

GENERATING A VECTOR OF INDICES

IN FIELDS OF WIDTHS W

\[V \leftarrow (+/W) \cdot 0 \]
\[V[+\backslash(1\backslash IO), -1\backslash W] \cdot 1 \]
\[V \leftarrow \backslash V \]

EXAMPLE: \[W \leftarrow 2 \ 2 \ 4 \ 1 \]
RESULT: \[1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3 \ 4 \quad [\backslash IO \leftarrow 1] \]

A ALTERNATE IMPLEMENTATIONS:

\[V \leftarrow IO++/(1+/W) \cdot IO++/W \]
\[V \leftarrow IO++/(1+/W) \cdot IO++/W \]

A TO GENERATE A VECTOR OF THE ELEMENTS IN VECTOR "x",
A CODE: \[X[V] \]

EXAMPLE: \[X \leftarrow '\Delta c*\Rightarrow\n' \]
\[W \leftarrow 3 \ 1 \ 1 \ 2 \ 3 \]
RESULT: \[\Delta\Delta\Delta c*\Rightarrow\n\n\]
CREATING A VECTOR \textit{V}

GENERATING A VECTOR OF INDICES

GENERATING THE \texttt{"X"TH AXIS INDICES I FOR ALL ELEMENTS OF ARRAY \texttt{A}, CORRESPONDING TO RAVEL-\texttt{A} (',\texttt{A})}

\[R+(\neg\texttt{IO})+X-p\texttt{pA} \]
\[I+, (R\texttt{1pA}) \texttt{0}(R\texttt{1pA}) \texttt{1}(\texttt{pA})[X] \]

\texttt{\textbullet} THIS CAN BE SIMPLIFIED FOR ARRAYS OF RANK 1 OR 2:

\texttt{\textbullet} RANK 1 (\texttt{=} VECTOR): \texttt{I+1pA}

\texttt{\textbullet} NOTE: THIS IS A "KERNEL" APL OPERATION

\texttt{\textbullet} RANK 2 (\texttt{=} MATRIX):

\texttt{\textbullet} ROW INDICES (X=1): \texttt{I+, (pA)1+1pA}

\texttt{\textbullet} COL INDICES (X=2): \texttt{I+, (pA)1+1pA}

\texttt{\textbullet} NOTE: FOR RANK \geq 3, THE EXPRESSION FOR THE LAST AXIS \texttt{(COLUMNS)} IS THE SAME AS SHOWN ABOVE FOR RANK 2.

\texttt{EXAMPLE:} \texttt{A+2 3 2p112}

\begin{verbatim}
1 2
3 4
5 6

7 8
9 10
11 12
\end{verbatim}

\texttt{,A}

\begin{verbatim}
1 2 3 4 5 6 7 8 9 10 11 12
\end{verbatim}

\texttt{RESULT:}

\texttt{CORRESPONDING PLANE INDICES (X+1): [\texttt{IO+1}]}

\begin{verbatim}
1 1 1 1 1 2 2 2 2
\end{verbatim}

\texttt{CORRESPONDING ROW INDICES (X+2):}

\begin{verbatim}
1 1 2 2 3 3 1 1 2 2 3 3
\end{verbatim}

\texttt{CORRESPONDING COLUMN INDICES (X+3):}

\begin{verbatim}
1 2 1 2 1 2 1 2 1 2 1 2
\end{verbatim}

\texttt{(CONT'D ON NEXT PAGE)
CREATING A VECTOR V

GENERATING A VECTOR OF INDICES

GENERATING THE "k"TH AXIS INDICES I FOR ALL ELEMENTS OF ARRAY A. CORRESPONDING TO RAVEL-A (.A) (CONT'D)

A ALTERNATE IMPLEMENTATION:

I=IO+(pA/Ix/pA-IO)[X;]

A NOTE: THIS IMPLEMENTATION GENERATES INDICES FOR ALL THE AXES AT ONE TIME
CREATING A VECTOR V

GENERATING A VECTOR OF INDICES

IN INCREASING-DECREASING SEQUENCE, WITH LENGTH L

$V+1 \cdot H, 0 \leq H < L+2$

EXAMPLE: L+8
RESULT: 1 2 3 4 4 3 2 1 $[\text{IO+1}]$

EXAMPLE: L+13
RESULT: 0 1 2 3 4 5 6 5 4 3 2 1 0 $[\text{IO+0}]$

NOTE: IF H IS A DIMENSION OF A MATRIX M, V CAN BE USED TO EXPAND M SYMMETRICALLY, I.E., $M[V]$ FOR ROW SYMMETRY, $M[;V]$ FOR COLUMN SYMMETRY

IN INCREASING-DECREASING SEQUENCE, WITH LENGTH L, AND WITH MAXIMUM VALUE K

$V+K \cdot L(1 \cdot H), 0 \leq H < L+2$

EXAMPLE: L+12
K+3
RESULT: 1 2 3 3 3 3 3 3 3 2 1 $[\text{IO+1}]$
CREATING A VECTOR \(V \)

GENERATING A VECTOR WITH A RANGE OF NUMBERS

SUCCESSIVE INTEGERS FROM \(J \) TO \(K \)

\[V \times J + (K - J) \times (1 + |K - J|) - IO \]

EXAMPLE: \(\begin{align*} J &= 7 \\ K &= 2 \end{align*} \)

RESULT: \(7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0 \ -1 \ -2 \)

SUCCESSIVE REAL NUMBERS FROM \(J \) TO \(K \) INCREMENTING BY \(D \)

\[V \times J + (D \times (K - J)) \times (1 + |(K - J) \times D|) - IO \]

\(J \) AND \(K \) ARE ANY REAL NUMBERS; \(D \) REAL AND \(> 0 \)

EXAMPLE: \(\begin{align*} J &= 1.4 \\ K &= 8.2 \\ D &= .7 \end{align*} \)

RESULT: \(1.4 \ 2.1 \ 2.8 \ 3.5 \ 4.2 \ 4.9 \ 5.6 \ 6.3 \ 7 \ 7.7 \)

(CONTD ON NEXT PAGE)
CREATING A VECTOR \(V \)

GENERATING A VECTOR WITH A RANGE OF NUMBERS (CONT'D)

R SUCCESSIVE REAL NUMBERS STARTING WITH N AND INCREMENTING BY D

\[V \leftarrow N + D \times (1R) - \lceil IO \rceil \]

\(R \) IS ANY INTEGER \(\geq 0 \); \(N \) AND \(D \) ARE ANY REAL NUMBERS

EXAMPLE:

\[
\begin{align*}
R & \leftarrow 10 \\
N & \leftarrow 0 \\
D & \leftarrow .1
\end{align*}
\]

RESULT:

\[0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \]

A SPECIAL CASE IMPLEMENTATIONS, FOR INTEGER \(N \) AND \(D = 1 \):

\[V \leftarrow (N - \lceil IO \rceil) + 1R \]

\[V \leftarrow (N - \lceil IO \rceil) + 1R + N - \lceil IO \rceil \quad ** \]

EXAMPLE:

\[
\begin{align*}
R & \leftarrow 8 \\
N & \leftarrow 13
\end{align*}
\]

RESULT:

\[13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20 \]

**** ADAPTED FROM (3) USE AND MISUSE OF APL **
CREATING A VECTOR \(V \)

GENERATING A LOGICAL (BOOLEAN) VECTOR

WITH \(K \) LEADING 1'S AND LENGTH \(L \)

\[V = L + K \cdot 1 \]

EXAMPLE:

\[L = 12 \\
K = 5 \]

RESULT:

\[1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \]

*ALTERNATE IMPLEMENTATION:

\[V = (K - \lfloor K \rfloor \cdot 1) \cdot L \]

WITH \(K \) TRAILING 1'S AND LENGTH \(L \)

\[V = (-L) + K \cdot 1 \]

RESULT:

\[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \]

*ALTERNATE IMPLEMENTATION:

\[V = (L - K + \lfloor K \rfloor \cdot 1) \cdot L \]
CREATING A VECTOR V

GENERATING A LOGICAL (BOOLEAN) VECTOR

DEFINING THE FIELD PARTITION P OF V

P[I] = 1 WHERE V[I] IS THE FIRST (OR LAST) ELEMENT OF A FIELD; OTHERWISE P[I] = 0

NOTE: THIS VECTOR "P" IS REQUIRED WHEN PERFORMING CERTAIN OTHER OPERATIONS ON FIELDS OF V

WHEN THERE ARE NO FIELD DELIMITERS

TYPE 1: FOR K FIELDS WITH SAME WIDTH W

FIRST: P←(K×W)pW+1
LAST: P←(K×W)p(-W)+1

NOTE: THIS IS A "KERNEL" APL OPERATION

EXAMPLE: K←5
W←3

RESULT: FIRST: 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
LAST: 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

ALTERNATE IMPLEMENTATIONS:

FIRST: P←(K×W)p1,(W-1)p0
LAST: P←(K×W)p((W-1)p0),1

NOTE: THIS FIELD PARTITION CAN BE USED WHEN PROCESSING A K×W MATRIX Raveled AS A VECTOR

(CONTD ON NEXT PAGE)
CREATING A VECTOR V

GENERATING A LOGICAL (BOOLEAN) VECTOR

DEFINING THE FIELD PARTITION P OF V (CONT'D)

WHEN THERE ARE NO FIELD DELIMITERS (CONT'D)

TYPE 2: FROM A VECTOR I OF INDEX NUMBERS OF THE 1ST ELEMENTS OF EACH FIELD

FIRST: \(P+(\top V)eI \)
LAST: \(P+1\top(V)eI \)

NOTE: THIS IS A "KERNEL" APL OPERATION

EXAMPLE:

\[
V+10 \\
I+1 4 5 9 \\
[\[10+1]
\]

RESULT:

FIRST: 1 0 0 1 1 0 0 0 1 0
LAST: 0 0 1 1 0 0 0 1 0 1

NOTE: "\(P+(\top V)eI \)" IS ALSO VALID FOR A VECTOR V WITH FIELD DELIMITERS

(CONT'D ON NEXT PAGE)
CREATING A VECTOR \(\mathbf{v} \)

GENERATING A LOGICAL (BOOLEAN) VECTOR

DEFINING THE FIELD PARTITION \(P \) OF \(\mathbf{v} \) (CONT'D)

WHEN THERE ARE NO FIELD DELIMITERS (CONT'D)

TYPE 3: FROM A VECTOR OF FIELD-WIDTHS \(W \), WHERE \(\mathbf{v} \leftrightarrow +/W \)

FIRST: \(P^+(1+/W)e+\io,W \)

LAST: \(P^+(1+/W)e(+/W)\sim\io \)

EXAMPLE: \(W=3 \ 1 \ 4 \ 2 \)

RESULT:

FIRST: 1 0 0 1 1 0 0 0 1 0

LAST: 0 0 1 1 0 0 0 1 0 1

A ALTERNATE IMPLEMENTATIONS:

FIRST: \(B^+(G\times W)\rho(G+1/W)+1 \)

\(P^+,(W\rightarrow (1G)-\io)/B \)

LAST: \(B^+(G\times W)\rho(-G+1/W)+1 \)

\(P^+,(W\rightarrow \phi(1G)-\io)/B \)

(CONT'D ON NEXT PAGE)
CREATING A VECTOR V

GENERATING A LOGICAL (BOOLEAN) VECTOR

DEFINING THE FIELD PARTITION P OF V (CONT'D)

WHEN THERE ARE NO FIELD DELIMITERS (CONT'D)

TYPE 4: FROM A VECTOR OF FIELDS OF IDENTICAL ELEMENTS

FIRST: P+1,(1+V)¬1+V
LAST: P+(1+V)¬1+V),1

NOTE: THIS IS A "KERNEL" APL OPERATION

NOTE: MAY HAVE TO SORT V FIRST TO PRODUCE THE FIELDS

EXAMPLE: V+''BBBBDDCCCA''

RESULT: FIRST: 1 0 1 0 0 0 1 0 0 1
 LAST: 0 1 0 0 0 1 0 0 1 1

ALTERNATE IMPLEMENTATIONS:

FIRST: P+V¬1+(1+0pV),V
LAST: P+V¬1+V,1+0pV

These can be simplified as follows:

NUMERIC V CHARACTER V
FIRST: P+V¬1+0,V P+V¬1+' ',V
LAST: P+V¬1+V,0 P+V¬1+V,' '

(CONT'D ON NEXT PAGE)
CREATING A VECTOR V

GENERATING A LOGICAL (BOOLEAN) VECTOR

DEFINING THE FIELD PARTITION P OF V (CONT'D)

WHEN THERE ARE NO FIELD DELIMITERS (CONT'D)

TYPE 4: (CONT'D)

A CAUTION: 1ST AND LAST ELEMENTS OF V MUST BE
A DIFFERENT TO USE THE FOLLOWING IMPLEMENTATIONS

FIRST: \(P+V\neq 1\phi_{V} \)
LAST: \(P+V\neq 1\phi_{V} \)

WHEN THE FIELD DELIMITER IS Q

FIRST: \(P+S>1\phi_{0}, S+V=Q \)
LAST: \(P+S>1+(S+V=Q), 0 \)

A NOTE: EMPTY FIELDS ARE ELIMINATED FROM THE PARTITION

EXAMPLE: \(V=' , \text{ALPHA}, \text{PHI}, , \text{BETA}' \)
Q=' '

RESULT: FIRST: 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
LAST: 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

A NOTE: TO DELETE THE FIELD DELIMITERS FROM V AND P
A FOR OTHER PROCESSING, USE:

\(V+S/V \) OR \(V+(V\neq Q)/V \)
\(P+S/P \) OR \(P+(V\neq Q)/P \)
Creating a Vector V

Generating a Logical (Boolean) Vector

In fields of widths W, alternating 1's and 0's

Type 1: K fields with same width W

$$V \leftarrow (K \times W) \cdot (W \times 2) + W \cdot 1$$

*Note: To start with 0's, code: "...(-W\times2)..."

Example: $K=5$

$W=3$

Result: 1 1 1 0 0 1 1 1 0 0 0 1 1 1

Type 2: From a vector of field-widths W, where $\rho V \leftrightarrow +/W$

$$V \leftarrow \{(1+/W) \epsilon +/IO, W\}$$

*Note: To start with 0's, code: \(\sim V\)

Example: $W=5$ 2 3 1 4

Result: 1 1 1 1 1 0 0 1 1 1 0 1 1 1

*Note: This is a "\(\sim\) scan" operation performed on a logical vector defining the 1st elements of the field partition of V (see previous technique).

Alternate Implementation:

$$B \leftarrow (G \times W) \cdot (G \times 2) + (G \uparrow /W) \cdot 1$$

$$V \leftarrow (\cdot W \cdot \cdot > (iG) \cdot \cdot IO) / B$$

*Note: To start with 0's, code: "...(-G\times2)..."
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING K ELEMENTS Q BEFORE/AFTER EACH ELEMENT OF V

TYPE 1: INSERTING PAD-ELEMENTS (0 OR BLANK)

AFTER: \(V^+, V, ((pV), K) pQ \quad [Q=0 \text{ OR } Q='] \)
BEFORE: \(V^+, (((pV), K) pQ), V \)

EXAMPLE: INSERTING ZEROES

\[V^+15 \]
\[K=2 \]
\[Q=0 \]

RESULT: AFTER: 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
BEFORE: 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5

a ALTERNATE IMPLEMENTATIONS:

AFTER: \(V^+, ((pV), K+1) + ((pV), 1) pV \)
BEFORE: \(V^+, ((pV), -K+1) + ((pV), 1) pV \)

AFTER: \(V^+((K+1) \times pV) p(K+1)+1) \backslash V \)
BEFORE: \(V^+((K+1) \times pV) p(-K+1)+1) \backslash V \)

(CONTD ON NEXT PAGE)
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING K ELEMENTS Q BEFORE/AFTER EACH ELEMENT OF V (CONT'D)

TYPE 2: INSERTING ANY OTHER ELEMENT Q

AFTER: \(V^+\cdot V,((\rho V, K)\rho Q \)

BEFORE: \(V^+\cdot((\rho V, K)\rho Q), V \)

EXAMPLE: \(V^+15 \)
\(K^+2 \)
\(Q^+10 \)

RESULT: AFTER: 1 10 10 2 10 10 3 10 10 4 10 10 5 10 10

BEFORE: 10 10 1 10 10 2 10 10 3 10 10 4 10 10 5

ALTERNATE IMPLEMENTATIONS:

AFTER: \(V^+((B^+((K+1)\times\rho V)\rho(K+1)+1)\backslash V \)
\(V[((-B)/\rho V)+Q \)

BEFORE: \(V^+((B^+((K+1)\times\rho V)\rho(-K+1)+1)\backslash V \)
\(V[((-B)/\rho V)+Q \)

ALTERNATE IMPLEMENTATION, FOR K = 1

AFTER: \(V^+\cdot V,[[\downarrow Q=0.5] Q \)

\(\downarrow Q^+1: \ V^+\cdot V,[[1.5] Q \)
\(\downarrow Q^+0: \ V^+\cdot V,[[0.5] Q \)

BEFORE: \(V^+\cdot Q,[[\downarrow Q=0.5] V \)

NOTE: AXIS-NUMBER DECIMAL-PART IS A DECIMAL VALUE BETWEEN 0 AND 1; "0.5" SHOWN HERE

EXAMPLE: INSERTING ASTERISKS

\(V^+\cdot ABCDEFG \)
\(Q^+\cdot** \)

RESULT: AFTER: A*B*C*D*E*F*G*

BEFORE: *A*B*C*D*E*F*G*
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING K ELEMENTS @ BEFORE/AFTER THE ELEMENTS WITH INDICES I

TYPE 1: INSERTING PAD-ELEMENTS (@ OR BLANK)

AFTER: \[i+i' \] \[i' = i + \text{Q} \]
\[X+(i\text{Q}), i \]
\[V+(\text{Q}, i\text{Q})[\text{A}(i\text{Q}, i\text{Q})] \]
\[i \]

BEFORE: \[i+i' \]
\[X+(\text{Q}, i\text{Q})[\text{A}(i\text{Q}), i \]
\[V+(\text{Q}, i\text{Q})[\text{A}(i\text{Q}, i\text{Q})] \]
\[i \]

NOTE: TO INSERT AFTER FIELDS OF WIDTHS "W", SET I+=W

EXAMPLE:
\[V+\text{NOWISTHETIME} \]
\[I+3 \]
\[5 \]
\[8 \]
\[\text{[Q]+I} \]
\[K+2 \]
\[Q+1 \]

RESULT:
AFTER: NOW IS THE TIME
BEFORE: NO WISTHETIME

ALTERNATE IMPLEMENTATIONS:

AFTER: \[i+i[\text{A}i+, i] \]
\[X+(\text{Q}, i\text{Q})[\text{A}(i\text{Q}, i\text{Q})] \]
\[V+\text{A}+\text{Q} \]

BEFORE: REPLACE "-QO" WITH "-QO"

AFTER: \[i+i[\text{A}i+, i] \]
\[X+(\text{Q}, i\text{Q})[\text{A}(i\text{Q}, i\text{Q})] \]
\[V+\text{A}+\text{Q} \]

BEFORE: REPLACE "-QO" WITH "-QO"

AFTER: \[C+(i+1\text{Q})[\text{A+}1+(X+1) \]
\[X+((i\text{Q})[\text{A}+(L\text{C})] \]

BEFORE: REPLACE "L+(X+1)" WITH "L+(-X+1)"

(CONTD ON NEXT PAGE)
EXPANDING / INSERTING ELEMENTS INTO A VECTOR \(V \)

INSERTING \(K \) ELEMENTS \(Q \) BEFORE/AFTER THE ELEMENTS WITH INDICES \(I \) (CONTD)

TYPE 1 (CONTD)

a FOR \(K = 1 \), THESE SIMPLIFY TO:

\[
\text{AFTER: } V \leftarrow (V, (p, I)pQ)[\Delta(\iota pV), (p, I)p]\]

\[
\text{AFTER: } I \leftarrow I[\Delta I + , I] \\
B \leftarrow ((N + pI) + pV)p1 \\
B[-(I + - IO) + \iota N] + 0 \\
V \leftarrow B \setminus V
\]

\[
\text{AFTER: } I \leftarrow I[\Delta I + , I] \\
V \leftarrow (\sim (\iota N + pV) \varepsilon (I + - IO) + \iota N + pI) \setminus V
\]

TYPE 2: INSERTING ANY OTHER ELEMENT \(Q \)

\[
\text{AFTER: } N + K \times pI + , I \\
V \leftarrow (V, \iota pQ)[\Delta(\iota pV), \iota pI]
\]

\[
\text{BEFORE: } N + K \times pI + , I \\
V \leftarrow ((\iota pQ), V)[\Delta(\iota pI), \iota pV]
\]

EXAMPLE: \(Q \leftarrow ^*^*^1 \\
K \leftarrow 2
\]

RESULT: AFTER: NOW**IS**THE**TIME \\
BEFORE: NOW**W**I**S**TH**E**TIME

a ALTERNATE IMPLEMENTATION:

\[
\text{AFTER: } I \leftarrow I[\Delta I + , I] \\
B \leftarrow (K \times N + pI) + pV)p1 \\
B[-(K \times N + pI + - IO) + \iota K \times N] + 0 \\
V \leftarrow B \setminus V \\
V[-(\sim B)/\iota pV] + Q
\]

BEFORE: REPLACE "" - IO"" WITH ""- IO""

23
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING ELEMENT Q IN WIDTHS W BEFORE/AFTER THE ELEMENTS WITH INDICES I

TYPE 1: INSERTING PAD-ELEMENTS (0 OR BLANK)

AFTER: I+I[S+1\S+1, I]
 C+(G×pV)ρ(G+1+/W+W[S])+1
 U+(ρ0V)(eI)\W
 V+(U, 0, z(\G)-(\IO)/C)V

BEFORE: REPLACE ""(G+. . . "" WITH ""(−G+. . . "" AND
 \G"" WITH ""φ1G"

\ EACHER ELEMENT OF W CONTAINS THE NUMBER OF ELEMENTS TO
\ BE INSERTED BEFORE/AFTER THE ELEMENT OF V WHOSE
\ INDEX IS THE CORRESPONDING ELEMENT OF I; \pI ↔ \pW

EXAMPLE: V+7 6 5 4 3 2 1
 I+2 5 6
 w+1 3 2

RESULT: AFTER: 7 6 0 5 4 3 0 0 0 2 0 0 1

\ ALTERNATE IMPLEMENTATIONS:

AFTER: I+I[S+1\S+1, I]
 K+\IO++/(\pV)*>[I
 J+(\pV)+(\0, W+W[S])[K]
 V+(1+/W)+pV(eJ)\V

BEFORE: REPLACE "". >"" WITH "". ≥"

** ADAPTED FROM (1) THE APL IDIOM LIST

(CONTD ON NEXT PAGE)
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING ELEMENT Q IN WIDTHS W BEFORE/AFTER THE ELEMENTS WITH INDICES I (CONT'D)

TYPE 2: INSERTING ANY OTHER ELEMENT Q

AFTER: \[I + I[S + \Delta I + 1] \]
\[C + (G \times p V) p (G + 1 + \lceil /W + W[S] \rceil + 1) \]
\[U + ((1 p V) e I) \backslash W \]
\[V + (B + (u \ast q (1G) - \Box IO) / C) \backslash V \]
\[V[(\sim B) / 1p V] + Q \]

BEFORE: REPLACE "(G+..." WITH "(-G+..." AND "1G" WITH "1G"

EXAMPLE: Q = -1

RESULT: 7 6 -1 5 4 -3 -1 -1 -1 2 -1 -1 -1

25
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

EXPANDING FIELDS WITH DIFFERENT WIDTHS W TO FIELDS OF THE SAME WIDTH L

RIGHT-CENTRED FIELDS

\[V + (, W \cdot \ge (\lfloor L \rfloor - \lceil IO \rceil) \backslash V \]

- **INSERTS PAD-ELEMENTS (0 OR BLANK)**
- "L" MUST BE \(\ge \lceil W \rceil / W \)

EXAMPLE:
\[V + 'AABCDABABC' \]
\[W + 1 4 2 3 \]
\[L + 4 \]

RESULT:
AABCD AB ABC

- **ALTERNATE IMPLEMENTATIONS:**

\[V + (, (W - \lceil IO \rceil) \cdot \ge \lfloor L \rfloor) \backslash V \]

\[V + (, (L - W) \cdot \le (\lfloor L \rfloor - \lceil IO \rceil) \backslash V \]

LEFT-CENTRED FIELDS

\[V + (, W \cdot > (\lceil L \rceil - \lceil IO \rceil) \backslash V \]

RESULT:
A ABCDAB ABC

- **ALTERNATE IMPLEMENTATIONS:**

\[V + (, W \cdot \ge (\lfloor L \rfloor + \lceil IO \rceil) \backslash V \]

\[V + (, (W - \lceil IO \rceil) \cdot \ge \lfloor L \rfloor) \backslash V \]

- **NOTE:** THESE ARE "KERNEL" APL OPERATIONS
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING ELEMENT Q AFTER EVERY "k"TH ELEMENT OF V

\[V \leftarrow (((v \cdot (v \cdot k) \cdot k \cdot v) \cdot q) \right. \]

* Q IS A SCALAR; Q MAY BE A VECTOR ONLY IF \(pQ \leftrightarrow (v \cdot k) \)

EXAMPLE:

\[
\begin{align*}
V & \leftarrow '123178' \\
K & \leftarrow 2 \\
Q & \leftarrow '/'
\end{align*}
\]

RESULT: 12/31/78

* NOTE: MAY ALSO CATENATE Q AT THE LEFT, BEFORE THE RAVEL.

* LEADING Q MAY BE DELETED VIA: \(V \leftarrow 1', \ldots \)

* THEN THE EXAMPLE CAN BE SIMPLIFIED TO:

\[
V \leftarrow 1', '/', 3 \ 2 \ pV
\]

* NOTE: MAY NEED TO DELETE TRAILING OCCURRENCES OF Q AND/OR EXTRANEOUS ELEMENTS OF V PRODUCED BY THE RESHAPE:

\[
V \leftarrow (^{-1 + R + pV}) \rho ((R + (r \cdot (v \cdot k) \cdot k \cdot v) \cdot q) \right. \]

RESULT: 12/31/78
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

INSERTING A STRING S AFTER THE ELEMENT WITH INDEX I

\[V \leftarrow (I \oplus IO) \oplus V, S, (I \oplus IO) \oplus V \]

\[\Box IO+1: \quad V \leftarrow (I \oplus V), S, I \oplus V \]
\[\Box IO+0: \quad V \leftarrow ((I+1) \oplus V), S, (I+1) \oplus V \]

A S MAY BE A SCALAR OR VECTOR

EXAMPLE:

\[V \leftarrow 'ABCDHIJ' \]
\[S \leftarrow 'EFG' \]
\[I \leftarrow 4 \quad \Box IO+1 \]

RESULT:

\[ABCDEFGHIJ \]

A ALTERNATE IMPLEMENTATION:

\[V \leftarrow (V,S)[(I \oplus V),(S)\oplus I] \quad ** \]

A TO INSERT S AFTER SEVERAL ELEMENTS:

\[N \leftarrow (S+\oplus S) \oplus \oplus I \oplus I \]
\[V \leftarrow (V,N \oplus S)[(I \oplus V),((S)+\oplus I)\oplus I] \]

EXAMPLE:

\[V \leftarrow 'B\leftarrow(B=0)+B+15' \]
\[S \leftarrow '[3]' \]
\[I \leftarrow 3 \quad 8 \quad 0 \quad \Box IO+0 \]

RESULT:

A NOTE: SEE ALSO THE TECHNIQUE “REPLACING MULTIPLE OCCURRENCES ...”

** ADAPTED FROM (1) THE APL IDIOM LIST **
EXPANDING / INSERTING ELEMENTS INTO A VECTOR V

EXPANDING V TO LENGTH L

Padding with the pad-element (0 or blank)

\[V \leftarrow L + V \]

Example:

\[
\begin{align*}
V & \leftarrow 17 \\
L & \leftarrow 15
\end{align*}
\]

Result:

1 2 3 4 5 6 7 0 0 0 0 0 0 0 0

Alternate implementation:

\[V \leftarrow L + V, LpQ \quad [Q \leftarrow 0 \text{ or } Q^\dagger \text{ } \dagger] \]

Padding with the last element

\[V \leftarrow L + V, Lp^{-1} + V \]

Result:

1 2 3 4 5 6 7 7 7 7 7 7 7 7 7

Alternate implementation:

\[V \leftarrow V[\langle 1L \rangle | (\rho V) \sim \rho IO] \]
TESTING THE ELEMENTS IN A VECTOR V

DETERMINING IF ELEMENT Q OCCURS IN V

R+QeV

 RESULT R IS 1 IF Q OCCURS IN V AND 0 IF IT DOESN'T
 IF Q IS A VECTOR, R IS A VECTOR OF THE SAME LENGTH

EXAMPLE: V= 'WE THE PEOPLE'
 Q= 'LATE'

RESULT: 1 0 1 1

 ALTERNATE IMPLEMENTATIONS, WHEN Q IS A SCALAR:

R+V/V=Q OR R+V/.=Q
R+0<+/V=Q OR R+0<+/=Q

 ALTERNATE IMPLEMENTATIONS, WHEN Q IS EITHER VECTOR
 OR SCALAR:

R+((□IO+pV)>V1Q

□IO+1: R+(1+pV)>V1Q
□IO+0: R+(pV)>V1Q

R+V/Qo.=V

R+((pV)-□IO)≥V1Q

□IO+1: R+(pV)≥V1Q
□IO+0: R+((pV)-1)≥V1Q
TESTING THE ELEMENTS IN A VECTOR V

DETERMINING IN WHICH FIELD OF V AN ELEMENT Q OCCURS

1. FIND THE INDICES OF THE OCCURRENCES OF THE ELEMENT Q IN V; RANGE-CHECK THESE INDICES AGAINST THE INDICES OF THE FIELD BOUNDARIES

\[OC_{\neq} / (I \leftarrow (V = Q) \div \rho V) \cdot \geq FB \]

"FB" IS AN N×2 MATRIX WHERE EACH ROW CONTAINS THE LOWER AND UPPER BOUNDARY INDICES OF A FIELD (SEE TECHNIQUE "FINDING THE BOUNDARY INDICES ... "). THE INDICES USED FOR THESE BOUNDS ARE DEPENDENT ON THE RELATIONAL FUNCTION USED (> OR ≥).

NOTE: "/=N\cdot \geq R" IS A "KERNEL" APL OPERATION FOR RANGE-CHECKING THE NUMBERS N AGAINST THE LOWER AND UPPER RANGE LIMITS R

EXAMPLE:

\[V = \begin{bmatrix} 55.55 & 59.59 & 50.50 & 90.09 \end{bmatrix} \]

\[FB = \begin{bmatrix} 2p1 & 6 & 7 & 12 & 13 & 18 & 19 & 24 & 25 & 30 & 31 & 36 \end{bmatrix} \]

\[Q = 9 \]

RESULT:

BOUNDS:

\[\begin{bmatrix} 6 & 12 & 18 & 24 & 30 & 36 \\ 1 & 7 & 13 & 19 & 25 & 31 \end{bmatrix} \]

INDICES:

\[\begin{bmatrix} 8 & 0 & 1 & 0 & 0 & 0 & 0 \\ 14 & 0 & 0 & 1 & 0 & 0 & 0 \\ 17 & 0 & 0 & 1 & 0 & 0 & 0 \\ 29 & 0 & 0 & 0 & 0 & 1 & 0 \\ 31 & 0 & 0 & 0 & 0 & 0 & 1 \\ 35 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

THE RESULTANT BIT MATRIX "OC" HAS 1 ROW FOR EACH INDEX OCCURRENCE OF Q, AND 1 COLUMN FOR EACH FIELD DEFINED IN "FB", I.E., \[pOC \leftrightarrow (\rho I), 1 \top pFB \]. A 0 OR 1 INDICATES THE ABSENCE OR PRESENCE OF THAT OCCURRENCE OF Q IN THE FIELD.

EACH COLUMN OF "OC" CAN BE USED TO SELECT THE INDICES THAT OCCUR IN FIELD "K", I.E.: \[OC[; K] / I \]

(CONTD ON NEXT PAGE)
TESTING THE ELEMENTS IN A VECTOR V

DETERMINING IN WHICH FIELD OF V AN ELEMENT Q OCCURS (CONT'D)

A THE FIRST OCCURRENCE OF Q IN FIELD "K" CAN BE DETERMINED
A USING: T <- \oc
A AND THEN: T[;K]/I
A \oc INDICATES WHICH FIELDS CONTAIN Q

A THE COLUMNS CAN BE SUMMED TO COUNT THE NUMBER OF
A OCCURRENCES OF Q IN THE FIELDS, I.E.: +\oc

A TO TEST FOR ANY OF SEVERAL DIFFERENT ELEMENTS "DQ",
A REPLACE "V=Q" WITH "V\in DQ" OR "V/V_0 = DQ"

A THEN \oc INDICATES WHICH ELEMENTS OF "DQ" OCCUR IN
A SOME FIELD
TESTING THE ELEMENTS IN A VECTOR V

COUNTING THE NUMBER OF OCCURRENCES N OF ELEMENTS Q IN V

\[N++ / Q : . = V \]

a "N" CONTAINS THE COUNTS FOR EACH RESPECTIVE ELEMENT IN Q

a IF Q IS A SINGLE ELEMENT, THIS SIMPLIFIES TO:

\[N++ / Q = V \quad \text{OR} \quad N+Q+ : . = V \]

EXAMPLE: \(V \leftarrow 'A L P H A, B E T A, G A M M A, D E L T A, E P S I L O N' \)
\(Q \leftarrow 'A P I T' \)

RESULT: 4 6 0 1 2

a TO COUNT THE GRAND TOTAL OF ALL OCCURRENCES OF ELEMENTS Q IN V:

\[N++ / V \in Q \]

RESULT: 13
TESTING THE ELEMENTS IN A VECTOR V

PERFORMING RELATIONAL TESTS ALONG V

\[R+(\neg 1+V) \land 1+V \]

 \[V[\neg 1+\rho V]aV[\rho V] \quad [\rho O+1] \]

- "\land" is one of the relational functions \(<\leq\neq\geq\) for numbers and \(=\neq\) for characters

- TO TEST IF THE RELATION HOLDS ALONG V, SUBSTITUTE \(R\land/\ldots\) OR \(\ldots\land.a\ldots\)

\[\rho R \leftrightarrow (\rho V)-1 \]

- REDUCTION \((a/V)\) DOES NOT PRODUCE THIS RESULT, SINCE ITS INTERMEDIATE RIGHT-COMPARANDS BECOME BOOLEAN AFTER THE RIGHTMOST COMPARISON

EXAMPLE: TESTING FOR "\(<" ALONG V

\[V\leftarrow 1\ 2\ 4\ 6\ 5\ 9\ 13\ 17 \]

RESULT: \(1\ 1\ 1\ 0\ 1\ 1\ 1\)

- ALTERNATE IMPLEMENTATIONS \(\leftarrow (\rho R \leftrightarrow \rho V)\):

 - FOR \(\leq\): \(R+(\Delta V)=\rho V\) **

 - FOR ALL \(=\): \(R\land/V=\rho V\) OR \(R+V\land.=\rho V\) **

** ADAPTED FROM (1) THE APL IDIOM LIST
TESTING THE ELEMENTS IN A VECTOR V

DETERMINING IF ALL THE ELEMENTS OF V ARE UNIQUE

\[R+\land(1\circ V)=V\land V \]

**

EXAMPLE: \[V+1=\land\upsilon |a| \land \upsilon \circ\ast 0\upsilon +\ast \theta \epsilon \omega a? \leq \geq \leq \neq \land 1 \]

RESULT: 0

A ALTERNATE IMPLEMENTATION:

\[R+\sim \theta \epsilon(1\circ V)=V\land V \]

** ADAPTED FROM (1) THE APL IDIOM LIST
SELECTING ELEMENTS OF A VECTOR V

SELECTING ELEMENTS THAT SATISFY A TEST

\[R \leftarrow (\text{TEST}) / V \]

* THE "TEST" MUST PRODUCE A BOOLEAN RESULT (E.G., USING
* A LOGICAL OR RELATIONAL EXPRESSION) WHICH IS A SCALAR
* OR A VECTOR WITH THE SAME LENGTH AS V

* IF NO ELEMENTS ARE SELECTED, THE RESULT IS AN EMPTY VECTOR

EXAMPLE: SELECTING ELEMENTS > 5
\[R \leftarrow (V > 5) / V \leftarrow 2\ 5\ 8\ 13\ 19 \]
RESULT: 8 13 19

EXAMPLE: SELECTING ELEMENTS ≠ BLANKS
\[R \leftarrow (V \neq ' ') / V \leftarrow ' THIS IS A CHAR. LINE' \]
RESULT: THIS IS A CHAR. LINE

EXAMPLE: SELECTING / DELETING A SUBSTRING
\[R \leftarrow ' **DATE', ((\text{TEST}) / ' -RANGE'), ' ERROR', \]
TEST \leftarrow 0
RESULT: **DATE ERROR

NOTE: THE CODE FOR OTHER "TESTS" MAY BE EXTRACTED FROM
* THE APPROPRIATE TECHNIQUES IN THIS GUIDE. FOR
* EXAMPLE, THE TEST FOR "ALL LEADING OCCURRENCES" MAY BE
* FOUND IN THE TECHNIQUE FOR DELETING SUCH OCCURRENCES.
* ADDITIONAL TESTS ARE SHOWN ON THE FOLLOWING PAGES.
SELECTING ELEMENTS OF A VECTOR V

SELECTING ELEMENTS P WHICH ARE BETWEEN PAIRED DELIMITERS D

TYPE 1: ONLY 1 TYPE OF DELIMITER ELEMENT

\[P_+ (B \geq 1 \pm \backslash 1, B + D = V) / V \]

* THE RESULT WILL INCLUDE THE DELIMITERS AND THE ELEMENTS BETWEEN THEM

* **CAUTION:** NO "NESTING" OF PAIRED DELIMITERS IS ALLOWED

EXAMPLE: BETWEEN PAIRED QUOTATION MARKS (")

\[V_+ 'THE "BEST" ANSWER IS "LIMIT".' D_+ "'" \]

RESULT: "BEST" "LIMIT"

* **ALTERNATE IMPLEMENTATION:**

\[P_+ (C \leq 1 \pm \backslash 0, C + D = V) / V \]

* TO SELECT WITHOUT THE DELIMITERS:

\[P_+ (B \pm 1 \pm \backslash 1, B + D = V) / V \]

\[P_+ (C \pm 1 \pm \backslash 0, C + D = V) / V \]

RESULT: BESTLIMIT

* **NOTE:** THE TEST FOR BALANCED DELIMITERS IS:

\[0 = 2 | + / B \quad \text{OR} \quad 0 = 2 | + / D = V \]

(CONTD ON NEXT PAGE)
SELECTING ELEMENTS OF A VECTOR \(V \)

SELECTING ELEMENTS \(P \) WHICH ARE BETWEEN PAIRED DELIMITERS \(D \)
(Contd)

Type 2: Left and Right Delimiter Elements

\[P + (L \leq + (V = 1 + D) - 1 + 0, V = 1 + D) / V \]

"\(D \)" contains the delimiters in the order of pairing,
E.g., \(D = \{ [\} \)'

The result will include the delimiters and the elements
between them

"\(L \)" is the level of nesting of the paired delimiters

To be selected

Example: Between Parentheses

\[V = ((p) = r | r) / r + (5 | N) * 2 \]
\[D = \{ () \} \]
\[L + 1 \]

Result: \(((p) = r | r) (5 | N) \)

A Alternate Implementation:

\[P + (L \leq + \{ |- 0 \phi , D = V \}) / V \]

A To Select Without the Delimiters for Level "\(L \)"

\[P + (L \leq + (- 1 + 0, V = 1 + D) - V = 1 + D) / V \]

\[P + (L \leq + \{ |- 1 0 \phi , D = V \}) / V \]

Result: \((p) = r | 5 \mid N \)

A Note: Tests for balanced delimiters are:

\(\wedge / 0 \leq + (V = 1 + D) - V = 1 + D \) \quad OR \quad \wedge / 0 \leq + - / D = V \)
SELECTING ELEMENTS OF A VECTOR V

SELECTING ELEMENTS P WHICH ARE OUTSIDE PAIRED DELIMITERS D

TYPE 1: ONLY 1 TYPE OF DELIMITER ELEMENT

\[P \leftarrow (B \vee 1 \neq \backslash 1, B + D = V) / V \]

THE RESULT WILL INCLUDE THE DELIMITERS AND THE ELEMENTS OUTSIDE THEM

CAUTION: NO "NESTING" OF PAIRED DELIMITERS IS ALLOWED

EXAMPLE: OUTSIDE PAIRED QUOTATION MARKS ("")

\[V \leftarrow \text{"THE "BEST" ANSWER IS "LIMIT"."} \]
\[D \leftarrow "1" \]

RESULT: THE "" ANSWER IS "".

ALTERNATE IMPLEMENTATION:

\[P \leftarrow (C \times 1 = \backslash 0, C + D \neq V) / V \]

TO SELECT WITHOUT THE DELIMITERS:

\[P \leftarrow (B < 1 \neq \backslash 1, B + D = V) / V \]

\[P \leftarrow (C > 1 = \backslash 0, C + D \neq V) / V \]

RESULT: THE ANSWER IS .

(CONTD ON NEXT PAGE)
SELECTION OF ELEMENTS OF A VECTOR V

SELECTION OF ELEMENTS P WHICH ARE OUTSIDE PAIRED DELIMITERS D
(CONTD):

TYPE 2: LEFT AND RIGHT DELIMITER ELEMENTS

\[P \leftarrow (L \rightarrow \backslash (1^0, V = 1^D) - V = 1^D) / V \]

"D" CONTAINS THE DELIMITERS IN THE ORDER OF PAIRING.
E.G., D \rightarrow \'[]\'
THE RESULT WILL INCLUDE THE DELIMITERS AND THE ELEMENTS OUTSIDE THEM
"L" IS THE LEVEL OF NESTING OF THE PAIRED DELIMITERS TO BE SELECTED

EXAMPLE: OUTSIDE PARENTHESES

\[V \leftarrow \'((1pR) = R1R) / R \leftarrow (5 | N) * 2 \'
D \leftarrow \'()\'
L \leftarrow 1 \]
RESULT: \((/) / R \leftarrow () * 2\)

AN ALTERNATE IMPLEMENTATION:

\[P \leftarrow (L \rightarrow \backslash 1^- 1^0 0 \phi_0, D^+ = V) / V \]

TO SELECT WITHOUT THE DELIMITERS FOR LEVEL "L":

\[P \leftarrow (L \rightarrow \backslash (V = 1^D) - 1^0, V = 1^D) / V \]

\[P \leftarrow (L \rightarrow \backslash 1^- \phi_0, D^+ = V) / V \]
RESULT: \(/ R \leftarrow * 2\)
SELECTING ELEMENTS OF A VECTOR \(V \)

SELECTING SUBSTRING \(S \) WITH STARTING INDEX \(I \) AND LENGTH \(L \)

\[S + L \dagger (I - \pi IO) \dagger V \]

EXAMPLE: \(V \rightarrow \text{'THESE ARE THE TIMES'} \)
\(I \rightarrow 6 \)
\(L \rightarrow 8 \)

RESULT: ARE THE

ALTERNATE IMPLEMENTATION:

\[S + V[(I - \pi IO) \dagger L] \]

TO SELECT MULTIPLE SUBSTRINGS WITH SAME LENGTH:

\[S + V[(I - \pi IO) \dagger L] \]

EXAMPLE: \(I \rightarrow 8 \) \(1 \) \(17 \)
\(L \rightarrow 3 \)

RESULT: RE THEMES
SELECTING ELEMENTS OF A VECTOR V

SELECTING LEFT AND RIGHT FIELDS OF V DELIMITED BY THE ELEMENT Q

\[R \leftarrow (1+pL^+((V_1Q)-IIO)+V) + V \]

EXAMPLE: \[V \leftarrow 'PARM1,ARG2' \]
\[Q \leftarrow '1,' \]

RESULT:
\[L: \text{PARM1} \]
\[R: \text{ARG2} \]
SELECTING ELEMENTS OF A VECTOR V

SELECTING FIELD N OF V

TYPE 1: USING A FIELD PARTITION VECTOR P

A MUST FIRST GENERATE A LOGICAL VECTOR P DEFINING THE
A FIELD PARTITION OF V, WITH A 1-BIT FOR THE 1ST
A ELEMENT OF EACH FIELD OF V AND 0'S OTHERWISE
A (SEE SECTION "GENERATING A LOGICAL VECTOR").
A ALSO pP ↔ pV
A CAUTION: ANY FIELD DELIMITERS MUST BE DELETED FROM V

F+(N=+\P)/V

"N" IS THE NUMBER OF THE FIELD
A NOTE: "+\P" IS A "KERNEL" APL OPERATION

EXAMPLE: V+'111112223344556666667'
 F+1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1
 N+6
RESULT: 666666

A ALTERNATE IMPLEMENTATIONS, WHEN N IS A VECTOR:

F+((+\P) breve N)/V

F+(v \Nbreve. =+\P)/V

EXAMPLE: N+2 5 7
RESULT: 222557

(CONTD ON NEXT PAGE)
SELECTING ELEMENTS OF A VECTOR V

SELECTING FIELD N OF V (CONT'D)

TYPE 2: USING THE INDEX OF THE FIRST ELEMENT AND THE FIELD WIDTH

PERFORM THE FOLLOWING 3 TECHNIQUES:

1. COMPUTE WIDTHS W OF THE FIELDS OF V

2. FIND THE STARTING (BOUNDARY) INDICES I OF EACH FIELD

3. USE THESE TO SELECT THE SUBSTRING "FIELD N" VIA:

\[F + W[N] + (I[N] - IO) + V \]

"N" IS THE INDEX-NUMBER OF THE FIELD
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE INDICES OF ELEMENTS THAT SATISFY A TEST

\[I \leftarrow (\text{TEST}) \div \text{iV} \]

\[\text{NOTE: THIS IS A "KERNEL" APL OPERATION} \]

\[\text{EXAMPLE: FINDING THE INDICES OF THE DELIMITER "\text{n}"} \]

\[V \leftarrow \text{nALPHAnBETA\text{nGAMMA\text{nPnZETAn}} \]
\[I \leftarrow (V \leftarrow \text{\text{n}}) \div \text{iV} \]

\[\text{RESULT: 1 7 12 18 21 [\text{iO+1}]} \]

\[\text{NOTE: TO OBTAIN THE INDICES FOR A SPECIFIC INDEX ORIGIN, ADD:} \]

\[\text{iO+1: I} \leftarrow (\text{~iO}) \div (\text{TEST}) \div \text{iV} \]
\[\text{iO+0: I} \leftarrow (\text{~iO}) \div (\text{TEST}) \div \text{iV} \]
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE INDEX OF THE 1ST OCCURRENCE OF ELEMENTS Q

I + V \{ Q \}

EXAMPLE: V = 'EDCBAJHGFEDIZG'
Q = 'GADH'

RESULT: 9 5 2 8 [I0+1]

a ALTERNATE IMPLEMENTATION:

I + I0++ / \ Q 0. # V

a ALTERNATE IMPLEMENTATIONS, WHEN Q IS A SCALAR OR
a 1-ELEMENT VECTOR:

I + 1+ (V = Q) / 1p V

I + (V \leq Q) / 1p V
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE INDEX OF THE LAST OCCURRENCE OF ELEMENTS Q

\[I\leftarrow(-1 \cdot 2 \cdot \text{IO} + pV) - (\phi V) \cdot Q \]
\[\text{IO}+1: \quad I\leftarrow(1+pV) - (\phi V) \cdot Q \]
\[\text{IO}+0: \quad I\leftarrow(-1+pV) - (\phi V) \cdot Q \]

EXAMPLE: \[V\leftarrow'EDCBAJIHGFEJIZG' \]
\[Q\leftarrow'GADHX' \]

RESULT: \[16 \ 5 \ 13 \ 8 \ 0 \quad [\text{IO}+1] \]

A ALTERNATE IMPLEMENTATIONS:

\[I\leftarrow((2 \cdot \text{IO} - 1) + pV) - (\phi V) \cdot Q \]
\[I\leftarrow((-1 \cdot \text{IO} + pV) - (\phi V) \cdot Q \]
\[I\leftarrow(+/\sqrt[4]{Q} . = \phi V) - \text{Q} \cdot \text{IO} \]

A ALTERNATE IMPLEMENTATION, WHEN Q IS A SCALAR OR A 1-ELEMENT VECTOR:

\[I\leftarrow -1 + (V = Q) / pV \]
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE INDICES I OF THE SMALLEST AND LARGEST ELEMENTS

A THE SMALLEST ELEMENT:

\[I \leftarrow \lfloor \frac{1}{\sqrt{V}} \right\rfloor \]

**

A NOTE: FINDS INDEX OF THE 1ST OCCURRENCE

EXAMPLE: V+14 76 46 54 22 5 68 68 94 39

RESULT: 6 [IO+1]

A ALTERNATE IMPLEMENTATIONS:

\[I \leftarrow 1\uparrow V \quad \text{OR} \quad I \leftarrow 1\uparrow \downarrow V \]

A NOTE: "...1+..." FINDS THE LAST OCCURRENCE

A THE LARGEST ELEMENT:

\[I \leftarrow \lfloor \frac{V}{1} \rfloor \]

**

RESULT: 9 [IO+1]

A ALTERNATE IMPLEMENTATIONS:

\[I \leftarrow 1\downarrow \downarrow V \quad \text{OR} \quad I \leftarrow 1\uparrow \downarrow V \]

** ADAPTED FROM (1) THE APL IDIOM LIST
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE STARTING INDICES I OF OCCURRENCES OF A PATTERN OF ELEMENTS

FINDING ALL OCCURRENCES OF A SUBSTRING S

- FIND INDICES OF ALL OCCURRENCES OF 1ST ELEMENT OF SUBSTRING, EXCEPT ANY THAT ARE TOO CLOSE TO END OF V
 \[I+((L+V=1+V)/1(pV)+L+1-pS+,S) \]

- EXTRACT THE SUBSTRINGS AND KEEP ONLY THE INDICES OF THE IDENTICAL ONES
 \[I+((V[(I-\sqcup IO)\oplus 1pS]\sqcup =S)/I \]

- NOTE: IF ""WILL BE GREATER THAN "", CODE
 \[\ldots V[I\oplus (1pS)-\sqcup IO]\ldots \]

EXAMPLE: V+STORE THE FIRST INSTANCE OF ""ST"" LAST
 S+ST

RESULT: 1 14 19 30 36 \[\sqcup IO+1 \]

RESULT IS THE EMPTY VECTOR WHEN THE SUBSTRING IS NOT FOUND

ALTERNATE IMPLEMENTATIONS:

\[I+((-L)+S \sqcup =(L,1+pV)pV)/1(pV)+1-L+pS+,S \]

\[I+((\sqcup ((1pS)-\sqcup IO)\sqcup (S+,S)\sqcup =V)/1pV \]

- NOTE: THIS LAST IMPLEMENTATION FINDS OCCURRENCES WRAPPED AROUND THE ENDS OF V. TO AVOID THIS:

\[I+((1+\sqcup ((1pS)-\sqcup IO)\sqcup 0,(S+,S)\sqcup =V)/1pV \]

** ADAPTED FROM (3) USE AND MISUSE OF APL**
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE STARTING INDICES I OF OCCURRENCES OF A PATTERN OF ELEMENTS

FINDING ALL OCCURRENCES OF A WORD S

NOTE: IGNORES ANY OCCURRENCE OF THE WORD THAT IS EMBEDDED WITHIN ANOTHER WORD

FIND INDICES OF ALL OCCURRENCES OF 1ST ELEMENT OF WORD, EXCEPT ANY THAT ARE TOO CLOSE TO END OF V

\[I = (L+V=1+S)/1(pV)+L+1-pS+1,S \]

EXTRACT THE SUBSTRINGS AND KEEP ONLY THE INDICES OF THE IDENTICAL ONES

\[I = (V[(I-\square IO)0.+1pS]∧.=S)/I \]

COMPUTE THE INDICES OF THE ELEMENTS IMMEDIATELY BEFORE AND AFTER EACH SUBSTRING, AND RANGE-CHECK

\[L+≠/(J+I0.+1pS)0.>(0,pV)-√\square IO \]

KEEP ONLY THE STARTING INDICES OF THE SUBSTRINGS WHOSE ADJACENT ELEMENTS ARE NON-WORD ELEMENTS OR AT THE VECTOR ENDS

NOTE: "ALF" IS A VECTOR OF VALID ELEMENTS FOR WORDS OR LABELS

\[I = (∼V/(pJ)pL\backslash V[L/,J]∈ALF)/I \]

EXAMPLE: V='STORE THE FIRST INSTANCE OF "ST" LAST' S='ST' ALF='ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' ALF+ALF,'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'

RESULT: 30 [□IO+1]
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE BOUNDARY INDICES OF THE FIELDS OF V

WHEN THERE ARE NO FIELD DELIMITERS

TYPE 1: FROM A VECTOR OF FIELD-WIDTHS W, WHERE \(\rho V \leftrightarrow +/W \)

FIRST ELEMENTS: \(LB+/-1+\square IO,W \)
LAST ELEMENTS: \(UB+(+/W)-\square IO \)

EXAMPLE: \(W=5\ 2\ 3\ 1\ 4 \)
RESULT:
\[\begin{align*}
LB: & \quad 1\ 6\ 8\ 11\ 12 & [\square IO+1] \\
UB: & \quad 5\ 7\ 10\ 11\ 15 \\
LB: & \quad 0\ 5\ 7\ 10\ 11 & [\square IO+0] \\
UB: & \quad 4\ 6\ 9\ 10\ 14 \\
\end{align*} \]

A NOTE: FOR "K" FIELDS WITH SAME WIDTH "L", SET "W=K\rho L"

A NOTE: TO OBTAIN THE INDICES FOR A SPECIFIC INDEX ORIGIN, ADD:

\[\square IO+1: \quad LB+(\square IO)+... \]
\[\square IO+0: \quad LB-(\square IO)+... \]

A [LIKEWISE FOR "UB"]
FINDING INDICES OF ELEMENTS OF A VECTOR V

FINDING THE BOUNDARY INDICES OF THE FIELDS OF V (CONT'D)

WHEN THERE ARE NO FIELD DELIMITERS (CONT'D)

TYPE 2: WHEN V CONTAINS FIELDS OF IDENTICAL ELEMENTS

FIRST ELEMENTS: \(LB+(1, (1+V)^{-1}+V)/\rho V \)

LAST ELEMENTS: \(UB+((1+V)^{-1}+V), 1)/\rho V \)

NOTE: IF "\(\rho V \)" IS REPLACED BY "V", THE BOUNDARY ELEMENTS (FIRST OR LAST) OF EACH FIELD WILL BE SELECTED

EXAMPLE: \(V='AABBBCDDDEEEE' \)

RESULT: \(LB: 1\ 3\ 7\ 8\ 11\ \ [\square IO+1]\
UB: 2\ 6\ 7\ 10\ 14\)

NOTE: TO OBTAIN THE INDICES FOR A SPECIFIC INDEX ORIGIN, ADD:

\(\square IO+1: \ LB+(-\square IO)+...\)
\(\square IO+0: \ LB+-(-\square IO)+...\)

ALTERNATE IMPLEMENTATIONS:

FIRST: \(LB+(V^{-1}+1+0\rho V), V)/\rho V \)

LAST: \(UB+(V+1+V, 1+0\rho V)/\rho V \)

THESE CAN BE SIMPLIFIED AS FOLLOWS:

NUMERIC V CHARACTER V

FIRST: \(LB+(V^{-1}+0, V)/\rho V \) \(LB+(V^{-1}+1', V)/\rho V \)

LAST: \(UB+(V+1+V, 0)/\rho V \) \(UB+(V+1+V, 1')/\rho V \)

(CONT'D ON NEXT PAGE)
Finding Indices of Elements of a Vector V

Finding the Boundary Indices of the Fields of V (Contd)

When There Are No Field Delimiters (Contd)

Type 2: When V Contains Fields of Identical Elements (Contd)

A Caution: 1st and Last Elements of V Must Be Different to Use the Following Implementations

First: \[LB \leftarrow (V=1 \Phi V) / 1 \Phi V \]

Last: \[UB \leftarrow (V=1 \Phi V) / 1 \Phi V \]

When the Field Delimiter is Q

First Elements: \[LB \leftarrow (1, V=Q) / 1 + \Phi V \]

Last Elements: \[UB \leftarrow 1 + ((V=Q), 1) / 1 + \Phi V \]

A Assumes that V contains no leading or trailing delimiters Q, unless it has empty fields.

A To produce an \(N \times 2 \) matrix "FB" where each row contains the boundary indices of a field, Enter: \[FB = LB, [\Phi IO + 0.5] UB \]

Example: \[V=1 '55.55 59.55 59.59 50.50 50.59 90.09', Q='1' \]

Result: \[LB: 1 7 13 19 25 31 [\Phi IO +1] \]
[UB: 5 11 17 23 29 35]

A Alternate Implementations:

First: \[LB \leftarrow (U=Q) / 1 \Phi U + Q, V \]

Last: \[UB \leftarrow 1 + (U=Q) / 1 \Phi U + V, Q \]
SHIFTING A VECTOR V

SHIFTING N POSITIONS WITHOUT CHANGING THE LENGTH OF V

WITH WRAP-AROUND (ROTATING)

RIGHT: \(V \leftarrow (-N) \phi V \)
LEFT: \(V \leftarrow N \phi V \)

EXAMPLE: \(V \leftarrow 10 \)
\(N \leftarrow 3 \)

RESULT:
\(R: \) 8 9 10 1 2 3 4 5 6 7
\(L: \) 4 5 6 7 8 9 10 1 2 3

A NOTE: USING ONLY \(V \leftarrow N \phi V \)
A LEFT \(\leftrightarrow \) \(N>0 \) AND RIGHT \(\leftrightarrow \) \(N<0 \)

WITHOUT WRAP-AROUND

A PAD-ELEMENT WILL BE 0 FOR NUMBERS, BLANKS FOR CHARS

RIGHT: \(V \leftarrow (-\rho V) \oplus (-N) \phi V \)
LEFT: \(V \leftarrow (\rho V) \oplus N \phi V \)

EXAMPLE: \(V \leftarrow 10 \)
\(N \leftarrow 4 \)

RESULT:
\(R: \) 0 0 0 0 1 2 3 4 5 6
\(L: \) 5 6 7 8 9 10 0 0 0 0
SHIFTING A VECTOR V

CENTERING V

WHEN THE FILL-ELEMENT IS O

\[V^+(\lceil 0.5 \times (B \| 1) - (\Phi_B + V \times O) \| 1) \phi V \]

EXAMPLE:

\[V^+ - A B - C - - D - - E - - - - \]

\[Q^+ - - - - \]

RESULT:

\[- - - A B - C - - D - - E - - - - \]
SHIFTING A VECTOR V

CENTERING V

WITHIN A FIELD OF PAD-ELEMENTS OF WIDTH W

\[W^+(-L(W+pV)\div2)+V \]

A OMIT THE "W+" IF DO NOT NEED RESULT IN FULL WIDTH W

EXAMPLE: \[V\gets'\text{TABLE OF CONTENTS}' \]
\[W\gets30 \]

RESULT: \[| \text{TABLE OF CONTENTS} | \]

A ALTERNATE IMPLEMENTATIONS:

\[W^+(((0.5\times W-pV)-W)+V \]

\[W^+((0.5\times W-pV)pQ),V \quad [Q\leftarrow 0 \text{ OR } Q\leftarrow ' '] \]
SHIFTING A VECTOR V

CENTERING V

COMPRESSING THE FILL-ELEMENT Q TO THE SIDES

\[V \leftarrow \left[0.5 \times + / \sim B \right] \phi V \left[\Delta B + V \times Q \right] \]

EXAMPLE:

\[V \leftarrow \begin{array}{cccccc}
 & \cdot & \cdot & \cdot & \cdot & \cdot \\
 & A & \cdot & \cdot & \cdot & \cdot \\
 & B & C & D & \cdot & \cdot \\
 & E & F & \cdot & \cdot & \cdot \\
 & G & \cdot & \cdot & \cdot & \cdot \\
\end{array} \]

\[Q \leftarrow \begin{array}{c}
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
 \cdot \\
\end{array} \]

RESULT:

\[\begin{array}{cccccc}
 & \cdot & \cdot & \cdot & \cdot & \cdot \\
 & A & B & C & D & E \\
 & F & G & \cdot & \cdot & \cdot \\
 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{array} \]

A ALTERNATE IMPLEMENTATION:

\[V \leftarrow \left[0.5 \times + / \sim B \right] \phi \left(-\rho V \right) \times \left(\left(\rho V \right) \rho Q \right), \left(B + V \times Q \right) / V \]
SHIFTING A VECTOR \(V \)

RIGHT-JUSTIFYING \(V \)

WHEN THE FILL-ELEMENT IS \(Q \)

\[
v \leftarrow (\square IO - (Q \times \phi V) \, 1) \phi V
\]

\begin{align*}
\square IO + 1 & : v \leftarrow (1 - (Q \times \phi V) \, 1) \phi V \\
\square IO + 0 & : v \leftarrow (- (Q \times \phi V) \, 1) \phi V
\end{align*}

\(\square \) THE COMPLEMENT IS: \(v \leftarrow (\square IO - (Q = \phi V) \, 10) \phi V \)

EXAMPLE: \(\quad v \leftarrow '***A*BB**CCC*****' \)
\(\quad Q \leftarrow '*' \)

RESULT: \(\quad *******A*BB**CCC \)

\(\square \) ALTERNATE IMPLEMENTATIONS:

\[v \leftarrow ((1 + (v \neq Q) / q \, v) + \square IO) \phi V \]

\[v \leftarrow (1 - (v = Q) \, 11) \phi V \quad ** \]

\[v \leftarrow -(+ / \setminus Q = \phi V) \phi V \]

\(\square \) NOTE: IF "\(Q \)" IS A VECTOR OF DIFFERENT FILL-ELEMENTS,
\(\quad \) REPLACE "\(v \neq Q \)" WITH "\(\sim v \in Q \)" AND "\(Q \times \phi V \)" WITH "\(\sim (\phi V) \in Q \)"

** ADAPTED FROM (1) THE APL IDIOM LIST

(CONTD ON NEXT PAGE)
SHifting a Vector V

RIGHT-JUSTIFYING V

WHEN THE FILL-ELEMENT IS Q (CONT'D)

a SPECIAL CASE IMPLEMENTATION:

a WHEN V IS LEFT-JUSTIFIED AND THERE ARE NO EMBEDDED FILL-ELEMENTS Q

\[V \leftarrow (+/V=Q) \Phi V \quad \text{OR} \quad V \leftarrow (V+.=Q) \Phi V \]

EXAMPLE: \[V \leftarrow 'ALASKA*******' \]
\[Q \leftarrow '*' \]
RESULT: \[*******ALASKA \]

a ALTERNATE IMPLEMENTATION:

\[V \leftarrow (V \downarrow Q) \leftarrow \uparrow IO) \Phi V \]
SHIeETING A VECTOR \(\mathbf{V} \)

RIGHT-JUSTIFYING \(\mathbf{V} \)

WITHIN A FIELD OF PAD-ELEMENTS OF WIDTH \(W \)

\((-W) + \mathbf{V}\)

A **NOTE:** IF \(W < \rho \mathbf{V} \), \(\mathbf{V} \) WILL BE TRUNCATED ON THE LEFT

EXAMPLE:

\[\begin{align*}
V &= 17 \\
W &= 12
\end{align*} \]

RESULT:

\[0\ 0\ 0\ 0\ 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7 \]

A **NOTE:** THE FORMAT FUNCTION "\(\mathbf{V} \)" CAN ALSO BE USED TO
A RIGHT-JUSTIFY THE CHARACTER RESULT WHEN FORMATTING
A NUMBERS

A ALTERNATE IMPLEMENTATION:

\((-W) \uparrow (W \rho \mathbf{Q}), \mathbf{V} \quad [Q=0 \ OR \ Q=\ '']\)
SHIFTING A VECTOR \(V \)

RIGHT-JUSTIFYING \(V \)

COMPRESSING THE FILL-ELEMENT \(Q \) LEFT

\[V + V[\Delta V = Q] \]

EXAMPLE:
\[V \leftarrow '***A*BB***CCC*****' \]
\[Q \leftarrow ' ' \]

RESULT:
\['**********ABBCC' \]

ALTERNATE IMPLEMENTATIONS:

\[V + (B/V), (\sim B + V = Q)/V \]

\[V + ((+/\sim B)\rho Q), (B + V = Q)/V \]

\[V + (-\rho V) + ((\rho V)\rho Q), (V = Q)/V \]

ALTERNATE IMPLEMENTATION, WHEN \(Q \) IS THE PAD-ELEMENT:

\[V + (-\rho V) + (V = Q)/V \]

EXAMPLE:
\[V\leftarrow 0 0 1 0 2 3 0 0 4 0 \]
\[Q\leftarrow 0 \]

RESULT:
\[0 0 0 0 0 0 1 2 3 4 \]
SHIFTING A VECTOR V

LEFT-JUSTIFYING V

WHEN THE FILL-ELEMENT IS Q

\[V \rightarrow (((V=Q) \& 11) - \blacksquare IO) \& V \]

\[\square IO \uparrow 1: \quad V \rightarrow (((V=Q) \& 11) - 1) \& V \]
\[\square IO \uparrow 0: \quad V \rightarrow (((V=Q) \& 11) \& V \]

A THE COMPLEMENT IS: \[V \rightarrow (((V=Q) \& 10) - \blacksquare IO) \& V \]

EXAMPLE: \[V \rightarrow '****A*BB**CCC*****' \]
\[Q \rightarrow '*' \]

RESULT: \[A*BB**CCC******** \]

A ALTERNATE IMPLEMENTATIONS:

\[V \rightarrow ((1 + (V \& Q) / \& 1) \& 10) \& V \]

\[V \rightarrow (+ / \& V \& Q) \& V \]

\[V \rightarrow (((Q \& V) \& 11) - 1) \& V \]

A NOTE: IF "Q" IS A VECTOR OF DIFFERENT FILL-ELEMENTS,
A REPLACE "V=Q" WITH "\& V \& Q" AND "Q \& V" WITH "\& (\& V) \& Q"

(CONTD ON NEXT PAGE)

62
SHIFTING A VECTOR \(V \)

LEFT-JUSTIFYING \(V \)

WHEN THE FILL-ELEMENT IS \(Q \) (CONT'D)

A SPECIAL CASE IMPLEMENTATION:

A WHEN \(V \) IS RIGHT-JUSTIFIED AND THERE ARE NO EMBEDDED FILL-ELEMENTS \(Q \)

\[V^+(-+/V\neq Q)\phi V \quad \text{OR} \quad V^+(-V+.\neq Q)\phi V \]

EXAMPLE: \(V^+'*******ALASKA' \)
\(Q^+'*' \)

RESULT: ALASKA*******

63
SHIFTING A VECTOR V

LEFT-justifying V

WITHIN A FIELD OF PAD-ELEMENTS OF WIDTH W

W+V

a NOTE: IF W < pV, V WILL BE TRUNCATED ON THE RIGHT

EXAMPLE: V<17
W<12

RESULT: 1 2 3 4 5 6 7 0 0 0 0 0

a ALTERNATE IMPLEMENTATION:

W+V,wpQ [Q<0 OR Q<1]
SHIFTING A VECTOR V

LEFT-JUSTIFYING V

COMPRESSING THE PAD-ELEMENT Q RIGHT

V+V[∀V≠Q]

EXAMPLE: V= '*'***A*BB***CCC*****'
Q= '*''

RESULT: ABBCCC**********

A ALTERNATE IMPLEMENTATIONS:

V+(B/V),(~B+V≠Q)/V

V+(B/V),(+~B+V≠Q)pQ

V+(pV)((V≠Q)/V),(pV)pQ

A ALTERNATE IMPLEMENTATION, WHEN Q IS THE PAD-ELEMENT:

V+(pV)((V≠Q)/V)

EXAMPLE: V= 0 0 1 0 2 3 0 0 4 0
Q= 0

RESULT: 1 2 3 4 0 0 0 0 0 0
SHIFTING A VECTOR V

REVERSING THE POSITIONS OF THE ELEMENTS OF V

REVERSING THE ELEMENTS WITH INDICES I

\[V[\Phi I] + V[I] \]

EXAMPLE:

\[
\begin{align*}
V &= 13 56 35 44 21 60 78 \\
I &= 2 5 \\
\Phi I &= [0 1 2 3 4 5 6]
\end{align*}
\]

RESULT:

\[13 21 35 44 56 60 78 \]

NOTE: IF \(2 < \Phi I \), THIS WILL REVERSE THE POSITIONS OF THE GROUP OF ELEMENTS

66
SHIFTING A VECTOR V

REVERSING THE POSITIONS OF THE ELEMENTS OF V

REVERSING THE ELEMENTS WITHIN EACH FIELD OF V

A MUST FIRST GENERATE A LOGICAL VECTOR P DEFINING THE
A FIELD PARTITION OF V, WITH A 1-BIT FOR THE 1ST
A ELEMENT OF EACH FIELD OF V AND 0'S OTHERWISE
A (SEE SECTION "GENERATING A LOGICAL VECTOR").
A ALSO \(p^p \leftrightarrow p^v \)

A CAUTION: ANY FIELD DELIMITERS MUST BE DELETED FROM V

\[V = V[\phi\phi+\backslash P] \]

EXAMPLE: \(V = 'ABCDEFGHJI' \)
\[P = 1 0 0 1 1 0 0 0 1 0 \]
RESULT: CBADHGFJEI

** ADAPTED FROM (2) BOOLEAN FUNCTIONS AND TECHNIQUES**
SORTING A VECTOR \(V \)

SORTING A NUMERIC VECTOR

IN ASCENDING ORDER

\[V + V[\downarrow V] \]

A CAUTION: BEFORE SORTING, MAY HAVE TO USE "\(\downarrow V \)" TO ENSURE THAT \(V \) IS A VECTOR

EXAMPLE: \(V+77 \ 29 \ 42 \ 3 \ 18 \ 81 \)
RESULT: \(3 \ 18 \ 29 \ 42 \ 77 \ 81 \)

A NOTE: CAN USE "\(\downarrow V \)" TO SORT ANOTHER VECTOR "\(W \)" WHOSE ELEMENTS CORRESPOND TO \(V \), I.E.: \(W+W[I] \)

IN Descending ORDER

\[V + V[\downarrow V] \]

RESULT: \(81 \ 77 \ 42 \ 29 \ 18 \ 3 \)

A NOTE: IN SUBSEQUENT TECHNIQUES, A DESCENDING SORT MAY BE OBTAINED BY SUBSTITUTING "\(\downarrow \)" FOR "\(\downarrow \)"

IN EITHER ASCENDING OR DESCENDING ORDER

\[V + V[\downarrow V \times T] \]

**

A FOR ASCENDING SORT, SET "\(T+1 \)"; FOR DESCENDING, "\(T-1 \)"

EXAMPLE: \(T-1 \)
RESULT: \(81 \ 77 \ 42 \ 29 \ 18 \ 3 \)

** ADAPTED FROM (1) THE APL IDIOM LIST
SORTING A VECTOR V

SORTING A NUMERIC VECTOR

SORTING THE ELEMENTS OF V WITHIN THE FIELDS OF V

A MUST FIRST GENERATE A LOGICAL VECTOR P DEFINING THE
A FIELD PARTITION OF V, WITH A 1-BIT FOR THE 1ST
A ELEMENT OF EACH FIELD OF V AND 0'S OTHERWISE
A (SEE SECTION "GENERATING A LOGICAL VECTOR").
A ALSO P ⇒ ρV
A CAUTION: ANY FIELD DELIMITERS MUST BE DELETED FROM V

IN ASCENDING ORDER

V+V[S[Δ(+/P)[S+ΔV]]]

**

EXAMPLE: V+10 9 8 7 6 5 4 3 2 1
 P+1 0 0 1 1 0 0 0 1 0

RESULT: 8 9 10 7 3 4 5 6 1 2

A ALTERNATE IMPLEMENTATION, FOR NUMBERS > 0:

V+V[ΔV++/P×[/V]]

A THE SORT INDICES "WITHIN EACH FIELD" CAN BE
A GENERATED VIA:

I+ΣIO+S[Δ(+/P)[S+ΔV]]-¹P×¹P

**

RESULT: 3 2 1 1 4 3 2 1 2 1 [ΣIO+1]

** ADAPTED FROM (2) BOOLEAN FUNCTIONS AND TECHNIQUES
(CONTD ON NEXT PAGE)
SORTING A VECTOR V

SORTING A NUMERIC VECTOR

SORTING THE ELEMENTS OF V WITHIN THE FIELDS OF V (CONTD)

IN DESCENDING ORDER

\[V \leftarrow V[S[\downarrow (+P)[S+\downarrow V]]] \]

**

EXAMPLE:

\[V \leftarrow 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \]
\[P \leftarrow 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \]

RESULT:

\[3 \ 2 \ 1 \ 4 \ 8 \ 7 \ 6 \ 5 \ 10 \ 9 \]

** ALTERNATE IMPLEMENTATION, FOR NUMBERS > 0:

\[V \leftarrow V[\downarrow V++|P|^{-[\downarrow V]}] \]

** LIKewise THE SORT INDICES "WITHIN THE FIELDS" ARE:

\[I \leftarrow \tilde{I}O+S[\downarrow (+P)[S+\downarrow V]]-|P|^{-[\downarrow V]} \]

** ADAPTED FROM (2) BOOLEAN FUNCTIONS AND TECHNIQUES
SORTING A VECTOR V

SORTING A NUMERIC VECTOR

DETERMINING THE RANK-ORDER R OF THE ELEMENTS OF V

ASCENDING RANK-ORDER

\[R \triangleleft V \]

- \(pR \leftrightarrow pV \)
- \(R[i] \) IS THE RANK OF \(V[i] \) IN \(V \), I.E., THE INDEX OF \(V[i] \) IN A SORTED \(V \)

NOTE: THIS IS A "KERNEL" APL OPERATION

EXAMPLE:

\[V \leftarrow 148 \ 149 \ 152 \ 157 \ 153 \ 160 \ 143 \]
\[V \leftarrow V, \ 137 \ 146 \ 151 \ 155 \ 147 \ 150 \ 145 \]

RESULT:

\[6 \ 7 \ 10 \ 13 \ 11 \ 14 \ 2 \ 4 \ 9 \ 12 \ 5 \ 8 \ 3 \]

ALTERNATE IMPLEMENTATION:

\[R \leftarrow V[\Delta V] \backslash V \]

DESCENDING RANK-ORDER

\[R \triangledown V \]

RESULT:

\[9 \ 8 \ 5 \ 2 \ 4 \ 1 \ 13 \ 14 \ 11 \ 6 \ 3 \ 10 \ 7 \ 12 \]

ALTERNATE IMPLEMENTATION:

\[R \leftarrow V[\triangledown V] \backslash V \]
SORTING A VECTOR V

SORTING A CHARACTER VECTOR

NOTES:

1. NON-NUMERIC DATA MUST BE ENCODED AS NUMBERS IN ORDER TO BE SORTED.

2. THE NUMERIC SORT OPERATIONS CAN BE MODIFIED FOR SORTING A CHARACTER VECTOR V BY REPLACING "AV" WITH THE "KERNEL" APL OPERATION "\$SEQ*V" (SEE BELOW FOR POSSIBLE "\$SEQ"). LIKewise FOR Ψ.

3. THE SORT SEQUENCE (SSEQ) IS USER-DEFINED. "BLANK" MUST BE POSITIONED WHERE APPROPRIATE.

4. CAUTION: \$AV IS SYSTEM DEPENDENT. THE FOLLOWING SORT SEQUENCES WITH \$AV ARE FOR APLSV.

POSSIBLE SORT SEQUENCES (SSEQ):

SSEQ+˜'ABCD...WXYZA 0123456789' - EXPLICIT DEFINITION
SSEQ+\$AV - SYSTEM DEFINITION: LETTERS (PLAIN AND UNDERSCORED), NUMBERS, BLANK
SSEQ+1 'A;AV' - BLANK, LETTERS, NUMBERS
SSEQ+($A4+$A8+$A5\$AV)',1' - LETTERS, NUMBERS, SPECIAL CHARS (SEQUENCE FOR LABELS)

OR ANY OTHER SEQUENCE OF ANY CHARACTERS.

MOVING CHARACTERS NOT IN THE SORT SEQUENCE TO END OF V

V←V[\$SEQ*V]

EXAMPLE: V←'PROBLEM DEFINITION: (I+J)+C[52'
SSEQ+ABCDEFGHJKLMN0PQRSTUWXYZ 0123456789'
RESULT: BCDEFFIIIIJLMNNOOPRT 25:(;)+1

NOTE: SUBSTITUTE "Ψ" FOR "Δ" TO OBTAIN A DESCENDING SORT

(CONTD ON NEXT PAGE)
SORTING A VECTOR V

SORTING A CHARACTER VECTOR (CONT'D)

DELETING CHARACTERS NOT IN THE SORT SEQUENCE

\[V \leftarrow V \left[(I[J] < IO + pSSEQ) / J + A + SSEQ \right] \]

RESULT: BCDEEFIIIIJLMNNOOPRT 25

AN ALTERNATE IMPLEMENTATION:

\[V \leftarrow V \left[ISSEQ \downarrow V + (V \in SSEQ) / V \right] \]
SORTING A VECTOR V

MERGING 2 NUMERIC VECTORS IN ASCENDING ORDER

\[V + v(V+V1,V2) \]

Example:

\[
\begin{align*}
V1 &= 53 \ 25 \ 98 \ 33 \ 86 \\
V2 &= 42 \ 79 \ 17 \ 101 \ 64
\end{align*}
\]

Result:

17 25 33 42 53 64 79 86 98 101

Note: SUBSTITUTE "\(\downarrow \)" FOR "\(\uparrow \)" TO OBTAIN A DESCENDING MERGE
SORTING A VECTOR V

MERGING 2 VECTORS USING THE PATTERN IN LOGICAL VECTOR L

\[V + (V_1, V_2)[AL\upharpoonright L] \]

- 1's in L designate positions for elements of V_1,
- 0's for V_2
- \(\rho L \leftrightarrow \rho V_1, V_2 \)

EXAMPLE:

\[
\begin{align*}
V_1 &\leftarrow 'ACDG' \\
V_2 &\leftarrow 'BEF' \\
L &\leftarrow 1\; 0\; 1\; 1\; 0\; 0\; 1
\end{align*}
\]

RESULT: ABCDEFG

ALTERNATE IMPLEMENTATIONS:

\[V + (V_2, V_1)[AL\upharpoonright L] \]

\[
\begin{align*}
V &\leftarrow L \setminus V_1 \\
V &\leftarrow (\neg L) \div \rho V \upharpoonright V_2
\end{align*}
\]

** ADAPTED FROM (1) THE APL IDiom LIST**
SORTING A VECTOR V

MERGING 2 VECTORS OF SAME LENGTH IN ALTERNATING POSITIONS

\[V3+, V1, [\text{IO+0.5}] V2 \]

\[\text{IO+1: } V3+, V1, [1.5] V2 \]
\[\text{IO+0: } V3+, V1, [0.5] V2 \]

A NOTE: AXIS-NUMBER DECIMAL-PART IS A DECIMAL VALUE
A BETWEEN 0 AND 1: "0.5" SHOWN HERE

EXAMPLE:
\[V1+1 3 5 7 9 \]
\[V2+2 4 6 8 10 \]

RESULT:
\[1 2 3 4 5 6 7 8 9 10 \]
COMPUTING VALUES FROM A VECTOR V

DETERMINING THE WIDTHS W OF THE FIELDS OF V

WHEN THERE ARE NO FIELD DELIMITERS

a FROM FIELDS OF IDENTICAL ELEMENTS

\[W = 1 - 1 + 0, I + (\sim IO) + ((1 \div V) = 1 + V), 1 / 1 \div V \]

"I" CONTAINS THE ORIGIN-1 INDICES OF THE LAST ELEMENTS IN EACH FIELD

a NOTE: MAY HAVE TO SORT V FIRST TO PRODUCE THE FIELDS

EXAMPLE: \(V \leftarrow 'BBADDDCCC' \)

RESULT: 2 1 4 3

WHEN THE FIELD DELIMITER IS Q

\[W = (I, 1 + Q) - 1 + 0, I + (\sim IO) + (V = Q) / 1 \div V \]

a ASSUMES THAT V CONTAINS NO TRAILING DELIMITERS Q

a (UNLESS THERE IS AN "EMPTY" FIELD)

EXAMPLE: VECTOR OF FIELDS DELIMITED BY COMMAS

\(V \leftarrow 'KR235,RT1,32,TEST VARIATIONS,,9/27/78', Q \leftarrow ' ' \)

RESULT: 5 3 2 15 0 7

a ALTERNATE IMPLEMENTATIONS:

\[W = I - 1 + 1 \div 0, I + (\sim IO) + ((V = Q), 1) / 1 \div V \]

\[W = I - 1 + 1 \div 0, I + (\sim IO) + (U = Q) / 1 \div U + V, Q \]

77
COMPUTING VALUES FROM A VECTOR V

SUMMING SETS OF ELEMENTS OF V

SETS OF ELEMENTS SORTED INTO FIELDS

a SETS OF IDENTICAL ELEMENTS

$$S+\text{W}^\sim+1+0, \text{W}^+((\text{V}^2+1+V),0)+\text{W}$$

a CAUTION: ANY FIELD DELIMITERS MUST BE DELETED FROM V

EXAMPLE: $V\leftarrow2\,2\,5\,5\,5\,4\,1\,3\,3\,3$

RESULT: 4 15 4 1 9

a TO SUM THE ELEMENTS OF ANOTHER VECTOR "$X"$ WHOSE
a ELEMENTS CORRESPOND TO V, SUBSTITUTE "$+\text{X}"$ FOR "$+\text{W}"

a ALTERNATE IMPLEMENTATIONS:

$$S+\text{W}^\sim+1+0, \text{W}^+(((1+V)^2-1+V),1)+\text{W}$$

$$S+(\text{V}^2+1+V,0)/\text{V}^x+/\text{V}^0.=\text{V}$$
COMPUTING VALUES FROM A VECTOR V

SUMMING SETS OF ELEMENTS OF V

SETS OF ELEMENTS NOT IN FIELDS

TYPE 1: SETS OF IDENTICAL ELEMENTS

\[S+V+.xV. = ((\i\rho V) = V\i V) / V \]

**

EXAMPLE: \ V=2 5 4 1 3 2 5 3 5 3

RESULT: \ 4 15 4 1 9

TYPE 2: SETS DEFINED BY VECTOR I

\[S+V+.xI. = ((\i\rho I) = I\i I) / I \]

**

A VECTOR "I" DEFINES THE SETS IN V BY IDENTICAL ELEMENTS.
A ALL ELEMENTS OF V Whose CORRESPONDING ELEMENTS IN I
A ARE THE SAME COMPOSE A SET; \ \rho V \leftrightarrow \rho I
A \rho S \leftrightarrow \text{THE NUMBER OF SETS DEFINED BY I}
A IF "I" CONSISTS OF POSITIVE INTEGERS, AND ALL INTEGERS
A OF "I/I" OCCUR IN I, THEN THIS TECHNIQUE CAN BE
A SIMPLIFIED TO:

\[S+V+.xI. = \i I / I \]

**

EXAMPLE: \ V=72 78 94 83 85 83 76 91 75
\ \ I=22 44 11 55 11 22 55 55 22

RESULT: \ 230 78 179 250

** ADAPTED FROM (1) THE APL IDiom LIST
COMPUTING VALUES FROM A VECTOR V

DETERMINING THE PAIRWISE DIFFERENCES D IN V

\[D = (1 + V) - 1 + V \]

\[\rho D \leftrightarrow (\rho V) - 1 \]

EXAMPLE: \[V = 1 \ 4 \ 9 \ 16 \ 25 \ 36 \ 49 \ 64 \]

RESULT: \[3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15 \]

\[\rho \text{ ALTERNATE IMPLEMENTATION:} \]

\[D = 1 + V - 1 + V \]

\[\rho \text{ TO INCLUDE THE 1ST ELEMENT OF V IN THE RESULT [} \rho D \leftrightarrow \rho V]\]

\[D + V - 1 + 0 \cdot V \]

RESULT: \[1 \ 3 \ 5 \ 7 \ 9 \ 11 \ 13 \ 15 \]

\[\rho \text{ NOTE: THESE ARE "KERNEL" APL OPERATIONS} \]
COMPUTING VALUES FROM A VECTOR V

COMPUTING THE AVERAGE OF THE VALUES IN V

\[\text{AVG} + (+/V) \times 1 \rightarrow \rho, V \]

\[\rho \text{ WILL PROCESS A SCALAR AND AN EMPTY VECTOR (} 0 = \rho V) \]

\text{EXAMPLE:} \quad V \rightarrow 86 \ 81 \ 92 \ 73 \ 68 \ 89

\text{RESULT:} \quad 81.5

** ADAPTED FROM (1) ** \text{THE APL IDIOM LIST}
COMPUTING VALUES FROM A VECTOR V

PERFORMING ARITHMETIC SCAN OPERATIONS ON V

A THE SIGNIFICANCE OF CERTAIN SCAN OPERATIONS IS AS
A FOLLOWS [ADAPTED FROM (1) THE APL IDIOM LIST]:

EXAMPLE: V+1 3 0 0 5 1 0 2

+\V = PROGRESSIVE SUM: 1 4 4 4 9 10 10 12

x\V = PROGRESSIVE PRODUCT: 1 3 0 0 0 0 0 0

\V = PROGRESSIVE MAXIMA: 1 3 3 3 5 5 5 5

\V = PROGRESSIVE MINIMA: 1 1 0 0 0 0 0 0

A SPECIAL CASE:

-\N = ALTERNATING SERIES: [N+7] 1 -1 2 -2 3 -3 4

A ALTERNATE IMPLEMENTATIONS FOR "PLUS-SCAN", WITHOUT
A USING THE SCAN OPERATOR "+\":

S←V+.×I.≤I←1pV

D←(-pT+(pS+V))+1
LP:S+T+D+S
→(T<1+D←2×D)/LP

** ADAPTED FROM (3) USE AND MISUSE OF APL
COMPUTING VALUES FROM A VECTOR V

PERFORMING LOGICAL SCAN OPERATIONS ON V

THE SIGNIFICANCE OF CERTAIN SCAN OPERATIONS IS AS
FOLLOWS [ADAPTED FROM (1) THE APL IDIOM LIST]:

EXAMPLE: \(V \rightarrow 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \)

\(v \downarrow V = \text{ALL 1'S STARTING WITH THE FIRST (LEFTMOST) 1:} \)
\[
0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]

\(< \downarrow V = \text{ALL 0'S EXCEPT THE FIRST (LEFTMOST) 1:} \)
\[
0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\]

\(\geq \downarrow V = \text{ALTERNATING 0'S AND 1'S UNTIL FIRST 1; THEN} \)
\(\text{ALL SAME AS LAST DIGIT:} \)
\[
0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]

\(= \downarrow V = \text{ALTERNATING FIELDS OF 1'S AND 0'S, CHANGING} \)
\(\text{TO THE COMPLEMENT AS OF EACH 0. FIRST FIELD} \)
\(\text{OF 0'S OCCURS STARTING WITH FIRST 0 [0'S IN V} \)
\(\text{DESIGNATE 1ST ELEMENTS OF FIELDS IN RESULT]:} \)
\[
0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0
\]

EXAMPLE: \(V \rightarrow 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \)

\(\wedge \downarrow V = \text{ALL 0'S STARTING WITH THE FIRST (LEFTMOST) 0:} \)
\[
1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\]

(CONTD ON NEXT PAGE)
COMPUTING VALUES FROM A VECTOR V

PERFORMING LOGICAL SCAN OPERATIONS ON V (CONT'D)

EXAMPLE: \[V+1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ (CONT'D) \]

\[\leq V = \text{ALL 1'S EXCEPT THE FIRST (LEFTMOST) 0:} \]
\[1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \]

\[> V = \text{ALTERNATING 1'S AND 0'S UNTIL FIRST 0; THEN} \]
\[\text{ALL SAME AS LAST DIGIT:} \]
\[1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \]

\[\neq V = \text{ALTERNATING FIELDS OF 1'S AND 0'S, CHANGING} \]
\[\text{TO THE COMPLEMENT AS OF EACH 1. FIRST FIELD} \]
\[\text{OF 1'S OCCURS STARTING WITH FIRST 1 [1'S IN V} \]
\[\text{DESIGNATE 1ST ELEMENTS OF FIELDS IN RESULT]:} \]
\[1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \]

A REPETITIVE EXECUTION OF \[\neq \] ON A LOGICAL VECTOR
A WHICH INITIALLY HAS ALL 1'S WILL PRODUCE THE
A FOLLOWING BIT-PATTERNS:

\[\begin{align*}
1111111111111111 & \quad \ldots \ldots \ldots \ldots \ldots \\
1010101010101010 & \quad \ldots \ldots \ldots \ldots \ldots \\
1100110011001100 & \quad \ldots \ldots \ldots \ldots \ldots \\
1000100010001000 & \quad \ldots \ldots \ldots \ldots \ldots \\
111100011110001 & \quad \ldots \ldots \ldots \ldots \ldots \\
101000010100001 & \quad \ldots \ldots \ldots \ldots \ldots \\
110000011000001 & \quad \ldots \ldots \ldots \ldots \ldots \\
100000010000001 & \quad \ldots \ldots \ldots \ldots \ldots \\
1111111111100000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1010101010000000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1100110000000000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1000100000000000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1111000000000000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1010000000000000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1100000000000000 & \quad \ldots \ldots \ldots \ldots \ldots \\
1000000000000000 & \quad \ldots \ldots \ldots \ldots \ldots
\end{align*} \]

** ADAPTED FROM (2) BOOLEAN FUNCTIONS AND TECHNIQUES**
REPLACING ELEMENTS OF A VECTOR V

REPLACING ELEMENTS SELECTED BY A TEST

WITH ELEMENT Q

\[V[(\text{TEST})/\rho V] + Q \]

* The "TEST" must produce a boolean result (e.g., using a logical or relational expression) which is the same length as V.

* If \[2 \leq q \], Q must contain the same number of elements as those to be replaced in V.

Example:

\[
\begin{array}{ccccccc}
42 & 75 & 0 & 27 & 0 & 0 & 59 \\
\text{TEST} & + & V & < & 0 \\
Q & + & 0 \\
\end{array}
\]

Result:

\[
42 \ 0 \ 0 \ 0 \ 27 \ 0 \ 0 \ 0
\]

Alternate Implementation:

\[V \leftarrow (\rho V) \rho (\text{TEST}) \Theta V, [\square IO - 0.5] Q \]

* Q is a scalar or a vector where \(\rho Q \rightarrow \rho V \).

* When Q is a vector and \((\rho Q) \leq \rho V\), Q must be expanded to the length of V, e.g., with pad-elements:

\[V \leftarrow (\rho V) \rho B \Theta V, [\square IO - 0.5] (B \rightarrow \text{TEST}) \backslash Q \]

* **Note:** Axis-number decimal-part is a decimal value between 0 and 1; "0.5" shown here.

(Contd on next page)
REPLACING ELEMENTS OF A VECTOR V

REPLACING ELEMENTS SELECTED BY A TEST (CONTD)

WITH ELEMENT Q (CONTD)

* ALTERNATE IMPLEMENTATION, FOR NUMERIC VECTORS:

\[V' = (V \times \sim \text{L}) + Q \times \text{L} + \text{TEST} \]

EXAMPLE:

\[V' = 42 \quad 75 \quad 0 \quad -3 \quad 27 \quad 0 \quad 0 \quad -59 \]
\[\text{TEST} = V \leq 0 \]
\[Q = 2 \]

RESULT:

\[42 \quad 2 \quad 2 \quad 2 \quad 27 \quad 2 \quad 2 \quad 2 \]

* SPECIAL CASE IMPLEMENTATIONS, REPLACING 0'S WITH Q

\[V = V + Q \times V = 0 \]

\[V = V + (V = 0) \backslash Q \]

EXAMPLE:

\[Q = 99 \]

RESULT:

\[42 \quad 75 \quad 99 \quad -3 \quad 27 \quad 99 \quad 99 \quad -59 \]

** ADAPTED FROM (1) THE APL IDiom LIST **
REPLACING ELEMENTS OF A VECTOR V

REPLACING ELEMENTS SELECTED BY A TEST

WITH THE PAD-ELEMENT (0 OR BLANK)

\[V \leftarrow B \backslash (B \sim \text{TEST}) / V \]

EXAMPLE: REPLACING '//' WITH BLANKS

\[V \leftarrow '12/31/78' \]
\[\text{TEST} \leftarrow V = '//' \]

RESULT: 12 31 78

A NOTE: THIS TECHNIQUE ALLOWS FURTHER PROCESSING
A OF V ON THE SAME LINE, IN CONTRAST TO
A REplacement BY INDEXING
REPLACING ELEMENTS OF A VECTOR V

REPLACING MULTIPLE OCCURRENCES OF AN OLD SUBSTRING OS WITH A NEW SUBSTRING NS

a) MUST FIRST FIND THE STARTING INDICES I OF THE
 OCCURRENCES OF THE OLD SUBSTRING (SEE TECHNIQUES
 "FINDING THE STARTING INDICES..."). THESE
 INDICES MUST BE IN ASCENDING ORDER.

a) THEN COMPUTE THE ADJUSTED STARTING INDICES OF THE
 OCCURRENCES OF THE OLD SUBSTRING

 \[I + (I - \square I O) + ((\square N I + \rho I) - \square I O) \times (O L + \rho O S) - \rho N S \]

 \[N I + N I + K + \square I O - 1 \]

 \[L P \rightarrow (N I < K + K + 1) / 0 \]

a) SUBSTITUTE THE NEW SUBSTRING IN PLACE OF THE OLD ONE

 \[V \leftarrow (P \uparrow V), N S, (O L + P \uparrow I[K]) \downarrow V \rightarrow L P \]

EXAMPLE:

 \[V \leftarrow ' R V \downarrow (T \rho R V) = R V \downarrow R V / R V \]
 \[O S \leftarrow ' R V \]
 \[N S \leftarrow ' F A C T O R S \]
 \[I + 1 8 12 15 19 [\square I O + 1] \]

RESULT:

 \[F A C T O R S + \leftarrow (T \rho F A C T O R S) = F A C T O R S \backslash F A C T O R S) / F A C T O R S \]

a) NOTE: IF "NS" IS AN EMPTY STRING, THE OLD STRING IS
 DELETED FROM THE VECTOR

a) ALTERNATE IMPLEMENTATION:

 \[D \leftarrow (T \rho V) \epsilon (I - \square I O) \epsilon + T \rho O S \]
 \[R \leftarrow ((T \rho V) \epsilon I) \epsilon \wedge (\rho N S) p 1 \]
 \[V \leftarrow (D, R) / V, ((\rho V), (\rho N S) p N S \]
DELETING ELEMENTS FROM A VECTOR V

DELETING ALL OCCURRENCES OF ELEMENT Q

\[V \leftarrow (V \neq Q) / V \]

EXAMPLE: DELETING BLANKS

\[V \leftarrow ' M35 , M40 , 42.5 , TEST , 4/23/78 ' \]
\[Q \leftarrow ' ' \]

RESULT: M35, M40, 42.5, TEST, 4/23/78

A ALTERNATE IMPLEMENTATIONS, WHEN Q IS A VECTOR:

\[V \leftarrow (\sim (V \in Q)) / V \]

\[V \leftarrow (\sim (V \neq Q)) / V \]

EXAMPLE:

\[V \leftarrow ' M35 , M40 , 42.5 , TEST , 4/23/78 ' \]
\[Q \leftarrow ' 2 . 5 ' \]

RESULT: M35, M40, 425, TEST, 4/23/78

NOTE: "\(\sim V \in Q \)" IS A "KERNEL" APL OPERATION
DELETING ELEMENTS FROM A VECTOR V

DELETING ALL LEADING OCCURRENCES OF ELEMENT Q

V←((V≠Q)11)-IO)V

IO←1: V←((V≠Q)11)-1)+V
IO←0: V←((V≠Q)11)+V

* THE COMPLEMENT IS: V←((V=Q)10)-IO)V

* NOTE: "((V≠Q)11)-IO" IS A "KERNEL" APL OPERATION

EXAMPLE: DELETING LEADING ZEROES

V←0 0 0 22 3 0 14 0 0 57 0 0
Q←0

RESULT: 22 3 0 14 0 0 57 0 0

* ALTERNATE IMPLEMENTATIONS:

V←(V \ V≠Q)/V

V←(+/\V=Q)+V

V←((1+(V≠Q)/\10V)-IO)+V

V←(((Q=\V)\11)-1)+V

* NOTE: IF "Q" IS A VECTOR OF DIFFERENT ELEMENTS,
* REPLACE "V≠Q" WITH "\VεQ" AND "Q=\V" WITH "\(\V)εQ"
DELETING ELEMENTS FROM A VECTOR V

DELETING ALL TRAILING OCCURRENCES OF ELEMENT Q

\[V+((\pi\text{IO}-(Q\neq V)\cdot 1)\cdot 1)\cdot V \]

\[\pi\text{IO}
\begin{align*}
\pi\text{IO}+1: & \quad V+((1-(Q\neq V)\cdot 1)\cdot V) \\
\pi\text{IO}+0: & \quad V+(-(Q\neq V)\cdot 1)\cdot V \\
\end{align*}

\[\pi\text{THE COMPLEMENT IS}: \quad V+((\pi\text{IO}-(Q=\phi V)\cdot 1)\cdot 1)\cdot V \]

\[\pi\text{NOTE: "}\pi\text{IO}-(Q\neq V)\cdot 1" \quad \text{IS A "KERNEL" APL OPERATION} \]

\[\pi\text{EXAMPLE: DELETING TRAILING ZEROS} \]

\[V+0 0 0 22 3 0 14 0 0 57 0 0 \]

\[Q+0 \]

\[\pi\text{RESULT}: \quad 0 0 0 22 3 0 14 0 0 57 \]

\[\pi\text{ALTERNATE IMPLEMENTATIONS:} \]

\[V+((1-(V=Q)\cdot 1)\cdot 1)\cdot V \quad \star \star \]

\[V+((\neg 1+(V\neq Q)/(\pi\rho V)+\pi\text{IO})\cdot V \]

\[V+(\phi V\backslash Q\neq V)/V \]

\[V+(-+/\pi Q=\phi V)\cdot V \]

\[\pi\text{NOTE: IF "Q" IS A VECTOR OF DIFFERENT ELEMENTS,} \]
\[\pi\text{REPLACE "V}\neq\text{Q" WITH "}\neg V\in\text{Q" AND "Q}\neq\phi V\text{" WITH "}\neg(\phi V)\in\text{Q"} \]

\[\star \star \text{ADAPTED FROM (1) THE APL IDIOM LIST} \]
DELETING ELEMENTS FROM A VECTOR

DELETING LEADING AND TRAILING OCCURRENCES OF ELEMENT 0

\[V \leftarrow ((B\land \neg IO) \land ((IO \land - (FB \lor V \lor Q) \land 1)) \lor V \]

\[\neg IO + 1: \quad V \leftarrow ((B\land 1) \land (1 - (FB \lor V \lor Q) \land 1)) \lor V \]

\[\neg IO + 0: \quad V \leftarrow (B \land 1) \lor (- (FB \lor V \lor Q) \land 1) \lor V \]

A THE COMPLEMENT IS: \[V \leftarrow ((B \land 0) \land \neg IO) \land ((IO \land - (FB \lor V \lor Q) \land 0)) \lor V \]

EXAMPLE: DELETING ZEROES

\[V \leftarrow 0 \ 0 \ 0 \ 22 \ 3 \ 0 \ 14 \ 0 \ 0 \ 57 \ 0 \ 0 \]

\[Q \leftarrow 0 \]

RESULT: \[22 \ 3 \ 0 \ 14 \ 0 \ 0 \ 57 \]

A ALTERNATE IMPLEMENTATIONS:

\[V \leftarrow ((1 + I) \land \neg IO) \land ((\neg 1 + I \land (V \lor Q) \land 1) \lor V \lor IO) \lor V \]

\[V \leftarrow ((V \lor B) \land \neg FB \lor V \lor Q) \lor V \]
DELETING ELEMENTS FROM A VECTOR V

DELETING REDUNDANT OCCURRENCES OF ELEMENT Q

\[V \leftarrow (L \cdot v^1 + 1, L \cdot v = Q) / V \]

A REDUNDANT = THE 2ND, 3RD, ETC., CONTIGUOUS OCCURRENCES

EXAMPLE: DELETING ASTERISKS

\[V \leftarrow '***A****BB*CCC***' \]
\[Q \leftarrow '***' \]

RESULT: *A*BB*CCC*

A NOTE: BOTH \[V \leftarrow (L \cdot v^1 \cdot L \cdot v = Q) / V \] AND \[V \leftarrow (L \cdot v^1 \cdot L \cdot v = Q) / V \] [THE COMPLEMENT]

DELETE THE TRAILING OCCURRENCES OF Q ENTIRELY IF Q ALSO OCCURS AS THE LEADING ELEMENT. THE LEADING OCCURRENCES ARE DELETED WHEN "\ldots \cdot v^1 \cdot \ldots" IS SPECIFIED.

RESULT: *A*BB*CCC

A NOTE: \[L \cdot v^1 + 1, L \] AND \[L \cdot v^1 \cdot L \] [AND THEIR COMPLEMENTS] ARE "KERNEL" APL OPERATIONS
DELETING ELEMENTS FROM A VECTOR V

DELETING REDUNDANT OCCURRENCES OF ALL ELEMENTS

\[V = (1, (1 + V)^{-1} + V)/V \]

A REDUNDANT = THE 2ND, 3RD, ETC., CONTIGUOUS OCCURRENCES

EXAMPLE: \[V = 'AAABBCBBAAABCCCC' \]

RESULT: \[ABCBABC \]

A NOTE: THIS SELECTS THE 1ST OCCURRENCES OF ELEMENTS
A IN THE FIELDS OF REDUNDANT ELEMENTS. TO SELECT THE
A LAST OCCURRENCES:

\[V = ((1 + V)^{-1} + V), 1)/V \]
DELETING ELEMENTS FROM A VECTOR V

DELETING LEADING, TRAILING, AND REDUNDANT OCCURRENCES OF ELEMENT Q

\[V' = (1+L)L + (L+1+L+V=Q)/V \]

EXAMPLE: DELETING BLANKS

\[V' = 'A BC DEF GHIJ ' \]
\[Q' = ' ' \]

RESULT: A BC DEF GHIJ
DELETING ELEMENTS FROM A VECTOR V

DELETING THE ELEMENTS WITH INDICES I

\[V' = (\neg (\forall I : V \in I)) / V \]

Example:

\[V = 15 \ 37 \ 0 \ 22 \ -3 \ -19 \ 8 \]
\[I = 2 \ 5 \ 6 \ [\neg I \cup I + 1] \]

Result:

\[15 \ 0 \ 22 \ 8 \]

Alternate Implementations:

\[V' = (\forall I : \neg \forall V) / V \]

\[V' = (\neg \forall I : V \in I) / V \]
DELETING ELEMENTS FROM A VECTOR V

DELETING A SUBSTRING WITH STARTING INDEX I AND LENGTH L

\[V \leftarrow (P + V), (L + P + I - \square IO) + V \]

\[\square IO + 1: \quad V \leftarrow (P + V), (L + P + I - 1) + V \]

\[\square IO + 0: \quad V \leftarrow (I + V), (I + L) + V \]

\[\text{EXAMPLE: } \quad V \leftarrow 'ABCDEFGHIJKLMNOP' \]
\[I \leftarrow 8 \quad [\square IO \leftarrow 1] \]
\[L \leftarrow 4 \]

\[\text{RESULT: } \quad ABCDEFGLMNOP \]

\[\text{ALTERNATE IMPLEMENTATIONS:} \]

\[V \leftarrow (\square IO - I) \phi L + (I - \square IO) \phi V \]

\[\text{NOTE: THE ABOVE IMPLEMENTATION WILL DELETE A SUBSTRING} \]

\[\text{WRAPPED AROUND THE ENDS OF V} \]

\[V \leftarrow V[(\text{IP}), ((L + P + I - \square IO) - \rho V) + \text{IPV}] \]

\[V \leftarrow (\sim (\text{IPV}) \varepsilon (I - \square IO) + \text{IL}) / V \]

\[\text{TO DELETE MULTIPLE SUBSTRINGS WITH SAME LENGTH:} \]

\[V \leftarrow (\sim (\text{IPV}) \varepsilon (I - \square IO) \cdot + \text{IL}) / V \]

\[\text{EXAMPLE: } \quad I \leftarrow 1 \quad 6 \quad 11 \quad [\square IO \leftarrow 0] \]

\[\text{RESULT: } \quad AFKP \]

\[\text{NOTE: TO DELETE MULTIPLE OCCURRENCES, SEE ALSO THE} \]

\[\text{TECHNIQUE "REPLACING MULTIPLE OCCURRENCES ..."} \]
DELETING ELEMENTS FROM A VECTOR V

DELETING DUPLICATE OCCURRENCES OF ALL ELEMENTS

\[V \leftarrow \left((\oplus V) \oplus V \right) / V \]

* ELEMENTS OF RESULT OCCUR IN SAME ORDER AS THEIR FIRST OCCURRENCE IN V

** EXAMPLE: \[V \leftarrow \text{'TENNESSEE'} \]

** RESULT: TENS

* ALTERNATE IMPLEMENTATION:

\[V \leftarrow \left((2 \ominus 10) \ominus \setminus V \ominus V \right) / V \]

** ALTERNATE IMPLEMENTATION, ONLY WHEN V IS NUMERIC

\[V \leftarrow (1, (1 \ominus V) \ominus^{-1} V) / V + V \ominus V \]

* ELEMENTS OF RESULT ARE SORTED IN ASCENDING ORDER

** EXAMPLE: \[V \leftarrow 4 \ 3 \ 2 \ 1 \ 3 \ 2 \ 1 \]

** RESULT: 1 \ 2 \ 3 \ 4

** ADAPTED FROM (1) THE APL IDIOM LIST

(CONTD ON NEXT PAGE)
DELETING ELEMENTS FROM A VECTOR V

DELETING DUPLICATE OCCURRENCES OF ALL ELEMENTS (CONT'D)

SPECIAL CASE IMPLEMENTATIONS:

WHEN V CONTAINS INDICES AND \(\rho V > \left\lceil \frac{\gamma}{V} \right\rceil \)

\[
\begin{align*}
B[0] &+ (\left\lceil \frac{\gamma}{V} \right\rceil + 1) \rho 0 \\
B[V] &+ 1 \\
V &+ B[\rho B]
\end{align*}
\]

ELEMENTS OF RESULT ARE IN ASCENDING ORDER

CAUTION: THIS IS NOT EFFICIENT IF \(\left\lceil \frac{\gamma}{V} \right\rceil \) IS MUCH GREATER THAN \(\rho V \)

CAUTION: THE INDICES IN V MUST BE GENERATED IN THE SAME ORIGIN IN WHICH THE CODE IS TO BE EXECUTED

EXAMPLE: V=5 4 4 3 3 2 2 1 4 4 3 5 5 2 2 2
RESULT: 1 2 3 4 5 \[\left\lceil \frac{\gamma}{V} \right\rceil + 1\]

ALTERNATE IMPLEMENTATION:

\[
V + (N \in V) / N + 1 (\left\lceil \frac{\gamma}{V} \right\rceil + 1)
\]
This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of IBM systems. This form may be used to communicate your views about this publication. They will be sent to the author’s department for whatever review and action, if any, is deemed appropriate. Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation whatever. You may, of course, continue to use the information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

__

__

What is your occupation?__

Number of latest Newsletter associated with this publication: _______________________________________

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or representative will be happy to forward your comments or you may mail directly to the address in the Edition Notice on the back of the title page.)