IBM 5250 Information Display System
IBM 5251 Display Station
Model 11
Maintenance Information Manual
IBM 5250 Information Display System
IBM 5251 Display Station
Model 11
Maintenance Information Manual
This maintenance information manual is to be used for servicing the IBM 5251 Model 11 Display Station. Customer engineers using this manual are assumed to have completed the 5251 Model 11 Display Station education course.

The Maintenance Information Manual (MIM) is in two major sections; maintenance and theory. Maintenance includes locations, procedures, and diagnostic aids. Theory includes data flow, functional units, and features.

Definitions of terms and abbreviations that are not common, but are used in the MIM are in Glossary of Terms and Abbreviations.

Setup instructions for the 5251 Model 11 Display Station are in Appendix A.

Note: MIM pages vi, 1-4, 1-6, 1-10, 1-18, 1-42, 1-43, 1-45, 1-46, 1-53, 1-55, 3-2 and A-1 have DANGER and CAUTION notices. If desired, translate these notices and write your own words on the blank lines provided on these pages.

Related Publications

Related information can be found in the following manuals:

- IBM 5250 Display System Reference Card, GX21-9249
- IBM 5251 Display Station Operator’s Guide, GA21-9248
- IBM 5251 Display Station Setup Procedures, GA21-9286
- IBM 5251 Model 11 Display Station Maintenance Analysis Procedures, SY31-0571
- IBM 5256 Printer Maintenance Information Manual, SY31-0462
- IBM 5256 Printer Maintenance Analysis Procedures, SY31-0572

First Edition (December 1977)

The information in this manual is sometimes changed. Any changes will be given in later editions. Requests for copies of IBM publications should be made to your IBM representative or the IBM branch office serving your locality.

A Reader’s Comment Form is at the back of this publication. If the form has been removed, address your comments to IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1977
The 5251 Model 11 has the following specific DANGERS:

• Line voltage is present at the power supply and the display assembly.

• High voltage is present at the cathode-ray tube.

• The cathode-ray tube could implode if it is hit or dropped.

• The green wire in the display assembly is not at ground voltage.
CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the following safety practices while maintaining IBM equipment:

1. You should not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your manager if you MUST work alone.
2. Remove all power, ac and dc, when removing or assembling major components, working in immediate areas of power supplies, performing mechanical inspection of power supplies, or installing changes in machine circuitry.
3. After turning off wall box power switch, lock it in the Off position or tag it with a "Do Not Operate" tag, Form 229-1266. Pull power supply cord whenever possible.
4. When it is absolutely necessary to work on equipment having exposed operating mechanical parts or exposed live electrical circuitry anywhere in the machine, observe the following precautions:
 a. Another person familiar with power off controls must be in immediate vicinity.
 b. Do not wear rings, wrist watches, chains, bracelets, or metal cuff links.
 c. Use only insulated pliers and screwdrivers.
 d. Keep one hand in pocket.
 e. When using test instruments, be certain that controls are set correctly and that insulated probes of proper capacity are used.
 f. Avoid contacting ground potential (metal floor strips, machine frames, etc.). Use suitable rubber mats, purchased locally if necessary.
5. Wear safety glasses when:
 a. Using a hammer to drive pins, riveting, staking, etc.
 b. Power or hand drilling, reaming, grinding, etc.
 c. Using spring hooks, attaching springs.
 d. Soldering, wire cutting, removing wheel bands.
 e. Cleaning parts with solvents, sprays, cleaners, chemicals, etc.
 f. Performing any other work that may be hazardous to your eyes. REMEMBER — THEY ARE YOUR EYES.
6. Follow special safety instructions when performing specialized tasks, such as handling cathode ray tubes and extremely high voltages. These instructions are outlined in CEMs and the safety portion of the maintenance manuals.
7. Do not use solvents, chemicals, greases, or oils that have not been approved by IBM.
8. Avoid using tools or test equipment that have not been approved by IBM.
9. Replace worn or broken tools and test equipment.
10. Lift by standing or pushing up with stronger leg muscles — this takes strain off back muscles. Do not lift any equipment or parts weighing over 60 pounds.
11. After maintenance, restore all safety devices, such as guards, shields, signs, and grounding wires.
12. Each Customer Engineer is responsible to be certain that no action on his part renders products unsafe or exposes customer personnel to hazards.
13. Place removed machine covers in a safe out-of-the-way place where no one can trip over them.
14. Ensure that all machine covers are in place before returning machine to customer.
15. Always place CE tool kit away from walk areas where no one can trip over it; for example, under desk or table.
16. Avoid touching moving mechanical parts when lubricating, checking for play, etc.
17. When using stroboscope, do not touch ANYTHING it may be moving.
18. Avoid wearing loose clothing that may be caught in machinery. Shirt sleeves must be left buttoned or rolled above the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approximately 3 inches from end. Tie chains are not recommended.
20. Before starting equipment, make certain fellow CEs and customer personnel are not in a hazardous position.
21. Maintain good housekeeping in area of machine while performing and after completing maintenance.

Knowing safety rules is not enough. An unsafe act will inevitably lead to an accident. Use good judgment — eliminate unsafe acts.

ARTIFICIAL RESPIRATION

General Considerations

1. Start Immediately — Seconds Count
 Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to loosen clothing, warm the victim, or apply stimulants.
2. Check Mouth for Obstructions
 Remove foreign objects. Pull tongue forward.
3. Loosen Clothing — Keep Victim Warm
 Take care of these items after victim is breathing by himself or when help is available.
4. Remain in Position
 After victim revives, be ready to resume respiration if necessary.
5. Call a Doctor
 Have someone summon medical aid.
6. Don’t Give Up
 Continue without interruption until victim is breathing without help or is certainly dead.

Rescue Breathing for Adults

1. Place victim on his back immediately.
2. Clear throat of water, food, or foreign matter.
3. Tilt head back to open air passage.
4. Lift jaw up to keep tongue out of air passage.
5. Pinch nostrils to prevent air leakage when you blow.
6. Blow until you see chest rise.
7. Remove your lips and allow lungs to empty.
8. Listen for snoring and gurglings — signs of throat obstruction.
9. Repeat mouth to mouth breathing 10:20 times a minute. Continue rescue breathing until victim breathes for himself.
This page is intentionally left blank.
This page is intentionally left blank.
Glossary of Terms and Abbreviations

µf: microfarad.

AC: Alternating current.

addr: Address

ALU: Arithmetic and logic unit.

attribute: Controls how data is displayed on the display screen. For example, attributes of a display field include blinking, high intensity, and reverse image.

B-type display assembly: Refer to reference 150.

blink: An attribute of a display field that causes the characters to flash.

brightness limiter: Refer to reference 150.

Cable Thru feature: A special feature that permits multiple display stations or printers to be attached to a system cable.

cd: Character.

character matrix: A part of the display screen character window. The character matrix is 16 scans by 8 dots wide.

character window: A part of the display screen 24 scans by 10 dots wide including the character matrix.

clicker: A solenoid in the keyboard that makes a sound after each keyboard character is received by the display station.

Cmd: The command key on the keyboard that is used to select command functions.

column separator: A vertical bar in a field of data that separates all characters in that field.

command function keys: The 14 keys in the top row of the display station keyboard that are used with the Cmd (command) key to request functions.

cont: Controller

contrast control: Refer to reference 100.

computer: A device that controls the operation of one or more input or output devices.

data stream: A continuing flow of data.

dc: Direct current.

diag: Diagnostic.

driver: Refer to reference 212.

Dup: The key on the keyboard that is used to duplicate a field from a preceding field.

E-type display assembly: Refer to reference 150.

end-of-message delimiter: A 111 in the station ID that indicates the last frame of a message block.

ERAP: Error recording analysis procedures.

field attribute: The control characters that describe a displayed field. For example, a display field can be intensified, reversed, underscored, or made to blink.

flyplate: Refer to reference 135.

FRU: Field-replaceable unit.

hex: Hexadecimal.

HH:MM:SS: Hours, minutes, and seconds.

I/O: Input/Output.

ID: Identification.

implode: To burst inward.

Ins: The key on the keyboard that is used to select insert mode.

IPL: Initial program load.

KBD: Keyboard.

key stem: Refer to reference 135.
keylock: A device with a lock and key to restrict use of the display station.

keystroke: The action of pressing a key on the keyboard.

LED: Light-emitting diode.

linearity: The size of displayed characters being in proportion.

LRC: Longitudinal redundancy check.

M-type display assembly: Refer to reference 150.

main planar: The basic printed circuit electronic board used in the display station.

make/break key: A key that generates a scan code when the key is pressed and when it is released.

MAP: Maintenance analysis procedure.

menu: A list of options that can be selected to request display station tests.

microprocessing: An operation of the MPU.

microprocessing unit (MPU): A processing unit that is microprogram controlled and performs internal machine operations. The MPU receives data, controls the display of data, and controls the flow of information to and from the controller.

microprogram: A program that uses microinstructions to carry out system operations.

MIM: Maintenance information manual.

mini-MAP: A maintenance analysis procedure that is located in the maintenance information manual. A mini-MAP continues the failure analysis after one of the other MAPs has located the area that is failing.

MPU: Microprocessing unit.

mm: Millimeter.

ms: Millisecond.

msg: Message.

MSIPL: Main storage initial program load.

multiframe response: More than one frame or multiple frames of data that are sent.
retrace lines: Refer to reference 156.

retry: Sending frames of information a number of times by the controller until received by the display station without an error.

ripple level: A voltage measurement.

rolling: Pertains to movement of a display screen; either horizontally, vertically, or a combination of both.

ROS: Read only storage.

rt adj: Right adjust.

serdes: Serializer/deserializer.

serializer/deserializer (serdes): A register that is used to send data from the display station to the controller, one bit at a time.

setup: Preparing a device for operation.

sign-on: The procedure performed at a display station that can include entering the sign-on command, a password, or other user specified security information.

stabilizer: Refer to reference 134.

stat addr: Station address.

stem: See key stem.

synchronization: Two or more events occurring at the same time.

SVCS: Services.

Sys Req: The Sys Req key is used to enter a request directly to the system.

TB: Terminal block.

template: Refer to reference 143.

Terminator switch: A switch used to terminate the twinaxial cable at the last display station or printer in a series. This switch is a part of the Cable Thru feature on a display station.

theory: A section of this manual that includes data flow, functional units, and features.

twinaxial cable: A twisted-pair shielded cable that connects a display station or printer to a controller.

typamatic key: A repeat-action key on the keyboard.

underscore: An attribute of a display field that places a line under all positions of the field.

US: United States.

V-type display assembly: Refer to reference 150.

Vac: Volts alternating current.

Vdc: Volts direct current.

video: Pertains to the display screen image.

yoke: Refer to reference 150.

YY/MM/DD: Year, month, and day.
This page is intentionally left blank.
This page is intentionally left blank.
The information in this MIM is to be used as reference material when diagnosing machine failures. This MIM contains maintenance procedures, diagnostic aids, preventive maintenance information, tools and test equipment information, theory and features. Appendixes give general information that is not directly related with the maintenance of the 5251 Model 11 Display Station (information such as setup procedures).

The format for page numbering is XXX-YYY.Z. Where XXX is the section number, YYY is the page number, and Z (although not normally used) is for expansion when it is not practical to give new numbers to all pages.

Three-digit reference numbers are assigned to location drawings and maintenance procedures to reference from the MAPs. For example, 130 indicates the keyboard locations of the display station.

MAINTENANCE PROCEDURES

This section contains location drawings, maintenance procedures, mini-MAPs, and diagnostic aids for repairing, installing, or diagnosing the failing field-replaceable units.

Location drawings show the position of the parts in the display station.

Maintenance procedures contain removals, replacements, and adjustment procedures. All procedures and drawings have the three-digit reference number assigned to reference from the MAPs.

Diagnostic Aids

Diagnostic program descriptions, how to use them, and what is available when they are in control are found in this section. To aid in diagnosing machine failures in more detail, a list of error conditions is included.

Mini-MAPs

You are sent to mini-MAPs after one of the other MAPs has located the area that is failing. The mini-MAPs continue the failure analysis to locate a failing field-replaceable unit.

In general, mini-MAPs provide you with three levels of information. These levels are:

1. A figure showing the circuit line names and pin numbers.
2. A description of the circuit and how it can be tested.
3. A detailed guide that uses the yes and no path of questions that you can follow to isolate the failure.

You can select the level of information you need and ignore the remainder in order to locate a failing field-replaceable unit.

PREVENTIVE MAINTENANCE

Any preventive maintenance required by the display station is described in this section.

TOOLS AND TEST EQUIPMENT

The tools needed to service the display station are described in this section.
THEORY

This section contains descriptions of the functional units and features. These descriptions are preceded by a view of the system that gives you a general idea of the complete operation and where each function or feature fits in.

FEATURES

The features that are available with the 5251 Model 11 Display Station are described in this section.

APPENDIXES

Appendix A contains the setup procedures required to make a new display station operational. Appendix B explains the purpose of special keys on the keyboard.

INDEX

The index is a detailed list of all material in the MIM.
Locations

100 FRONT VIEW

Display Screen
Bezel
Display Screen Indicators
Control Panel
Brightness Control
Control Panel LEDs
Contrast Control
Status Switch
Power Switch
Keylock
Keyboard
Access Panel Cover
Cable Thru Feature Connector (socket 2)
Keyboard Cable Connector
Terminator Switch
System Cable Connector (socket 1)
Address Switches
4 2 1
101 COVERS OPEN

The covers are shown pivoted open.

Display Assembly

Main Planar Board

Power Supply

Line Filter

Control Panel

102 CABLE CHART

Line Cord

Line Filter

AC Distribution

Control Panel

Power Supply

Fuse

Control Panel

Display Assembly

Display Signal/Planar Power

Customer's Twinaxial Cables

Access Panel

Planar Board

H G B

Internal Keyboard

Keyboard Signal

Keyboard

Signal

Line Voltage

Feature
103 MAIN PLANAR BOARD AND CARD LOCATIONS

Planar Board Pivot

Level 2

D13
B13
D02
B02

Level 1

J K L M N P Q R

Main Planar Board Component Side

Control Panel Station Address Cable

Display Signal/Planar Power Cable

Keyboard Cable

Interposer

Cable Connector

Internal System Cable Connector

Keylock Cable

Cable Connector

Maintenance Procedures 5251 MIM 1-3
104 MAIN PLANAR BOARD PART NUMBERS

<table>
<thead>
<tr>
<th>Country</th>
<th>Main Planar Board Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. and Canada</td>
<td>7362528</td>
</tr>
<tr>
<td>ASCII</td>
<td>7362529</td>
</tr>
<tr>
<td>Japan (English)</td>
<td>7362530</td>
</tr>
<tr>
<td>Japan (Katakana)</td>
<td>7362531</td>
</tr>
<tr>
<td>Austria/Germany</td>
<td>7362532</td>
</tr>
<tr>
<td>Belgium</td>
<td>7362533</td>
</tr>
<tr>
<td>Brazil</td>
<td>7362534</td>
</tr>
<tr>
<td>Canada (French)</td>
<td>7362535</td>
</tr>
<tr>
<td>Denmark/Norway</td>
<td>7362536</td>
</tr>
<tr>
<td>Finland/Sweden</td>
<td>7362537</td>
</tr>
<tr>
<td>France</td>
<td>7362538</td>
</tr>
<tr>
<td>Italy</td>
<td>7362539</td>
</tr>
<tr>
<td>Portugal</td>
<td>7362540</td>
</tr>
<tr>
<td>Spain</td>
<td>7362541</td>
</tr>
<tr>
<td>Spanish-Speaking</td>
<td>7362542</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>7362543</td>
</tr>
</tbody>
</table>

CAUTION

The logic used on planar boards is susceptible to electrostatic discharge damage. Avoid contact with any conductive parts. Handle the planar by the plastic frame only.

Ground yourself and the conductive plastic bag containing the new planar by holding the bag and momentarily touching the machine frame.

Ensure that the component side is face up when placing a planar on any surface.
105 MAIN PLANAR BOARD JUMPERS

The jumper part number is 1794401.

<table>
<thead>
<tr>
<th>Jumper Position</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Installed for 5251 Model 11</td>
</tr>
<tr>
<td>1B</td>
<td>(not used)</td>
</tr>
<tr>
<td>2</td>
<td>Installed for 5251 Model 11</td>
</tr>
<tr>
<td>3</td>
<td>(not used)</td>
</tr>
<tr>
<td>4</td>
<td>(not used)</td>
</tr>
<tr>
<td>5</td>
<td>Installed for 5251 Model 11</td>
</tr>
<tr>
<td>6</td>
<td>Installed when needed for raster check (156)</td>
</tr>
<tr>
<td>7</td>
<td>(not used)</td>
</tr>
<tr>
<td>8A</td>
<td>(not used)</td>
</tr>
<tr>
<td>8B</td>
<td>Installed for twinaxial cable</td>
</tr>
<tr>
<td>9</td>
<td>Installed (both jumpers) when the Cable Thru feature is NOT installed</td>
</tr>
</tbody>
</table>

![Diagram of Main Planar Board with Jumpers]
Covers

108 DISPLAY STATION COVERS

CAUTION
Place the display station away from the edge of the table to prevent damage to the covers.

To open the covers:

1. Loosen the cup screw 1 on the left side of the display station.
2. Loosen the cup screw 2 on the right side of the display station.
3. Hold the front half of the cover and pivot it toward the front of the display station.
4. Hold the back half of the cover and pivot it toward the rear of the display station.

To close the covers:

CAUTION
When reinstalling the covers, ensure that the cup of the screw fits over the lip of the cover to prevent damage to the cover and to ensure that the cover is securely fastened down.

1. Pivot the front half of the cover toward the rear of the display station.
2. Pivot the back half of the cover toward the front of the display station.
3. Tighten the cup screws 1 and 2. Ensure that the cup fits over the lip on the cover.

109 KEYBOARD COVERS

Removal

1. Loosen the 4 screws on the bottom of the keyboard assembly.
2. Lift the cover away from the keyboard.

Replacement

1. Place the cover on the keyboard assembly.
2. Tighten the 4 screws on the bottom of the keyboard assembly.

Note: Ensure that the keys do not rub on the cover.
Control Panel and Keylock

110 CONTROL PANEL

- **Power Switch (rear)**
 - Black
 - Black
 - Transformer
 - Black
 - Black
 - Line Filter

- **Brightness**
 - +8.5V
 - Control
 - Ground
 - Contrast

- **Identifier Depression**
 - White dot (Flat Side)
 - LED
 - Black (+5V)

- **Yellow Wire (control)**

 When you replace LED's, align the identified lead (white dot or flat side) with the identifier depression in the LED holder.

- **Keylock Feature**
 - N/O (normally open)
 - Common
 - N/C (normally closed)

- **Cable Thru Feature**
 - Address Switches (rear)
 - Ground
 - Address 4
 - Address 2
 - Address 1

- **Terminator Switch (rear)**
 - Position 2
 - Ground
 - System Cable Connector
 - Cable Thru Connector
 - Position 1
 - Ground
 - Normal/Test

- **Status Switch (rear)**
111 BRIGHTNESS AND CONTRAST CONTROLS
MINI MAP

- Use this figure to locate problems with the Brightness and Contrast controls.

- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

- The ‘+8.5 Vdc’ line is active. The voltage on the ‘+ brightness control’ line will vary with the setting of the control, and will be between 0 and +8.5 volts. The voltage on the ‘+ contrast control’ line will vary from less than 3 to +8.5 volts.

Service Aids

- The display station will not be damaged if powered-on after the control panel cable is disconnected.

Tools

- Ground the CE meter on frame ground at the power supply.
Check the control line at the planar (brightness or contrast) for a change in voltage as the control is turned fully counterclockwise and then clockwise.

The voltage limits are:

<table>
<thead>
<tr>
<th></th>
<th>Fully</th>
<th>Fully</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCW</td>
<td>0 Vdc</td>
<td>8.5 Vdc</td>
</tr>
<tr>
<td>CW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brightness</td>
<td>0 Vdc</td>
<td>8.5 Vdc</td>
</tr>
<tr>
<td>Less than Contrast</td>
<td>3.0 Vdc</td>
<td>8.5 Vdc</td>
</tr>
</tbody>
</table>

Are the voltage limits correct?

Y N

Check the center tab of the control.
- Turn the control fully counterclockwise and then clockwise.

Are the voltage limits present at the center tab of the failing control?

Y N

- Check for 8.5 volts on one top tab of the failing control.
- Check the lower tab of the failing control.

The voltage should be:
- 0 volts if checking the brightness control. Less than 3 volts if checking the contrast control.

Are the voltages correct?

Y N

The cable or the planar is failing.
- Trace the failing line back to the planar.
- Replace the control.

Check the control line for an open.

Inspect the interposer.
- Replace the planar (set the jumpers correctly on the new planar (103) (105)).
112 CONTROL PANEL LEDs MINI MAP

- Use this figure to locate a control panel LED problem. For detailed information,
- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

- The ‘+5 Vdc’ line is active.

Service Aids

CAUTION
Grounding any indicator line will damage the LED or the main planar board.

- LEDs may be swapped to isolate failures.
- The LEDs flash on for about 1 second during power-on.
- Grounding the ‘-force POR’ line at 1-G-D11 turns on all LEDs.
- The display station will not be damaged if powered-on after the control panel cable is disconnected.
- The forward resistance of a good LED is about 4,000 ohms and the reverse resistance of a good LED is more than 20,000 ohms.

Tools

- Ground the CE meter on frame ground at the power supply.

*The voltage at this point is less than +5V when the LED is on. The voltage only goes to 0 when the LED is open.

When you replace LEDs, align identified lead (white dot or flat side) with the yellow wire in the LED holder.
The LEDs will turn on about 1 second during power-on. Do all the LEDs fail?

Y N

- Move the 2 wires for the failing LED to an LED that works (maintain polarity when leads are moved). Does that LED light?
 Y N

 The cable is open or the planar is failing.
 - Trace the failing line back to the planar. Is the cable OK?
 Y N

 - Repair or replace the cable.
 - Inspect the interposer.
 - Replace the planar (set the jumpers correctly on the new planar (103) (105)).
 - Connect the wires to the proper LED.

- Replace the failing LED.
- Connect the wires to the proper LED.

- Trace the +5 Vdc common line from the LEDs back to the planar.

Suggested action for an intermittent problem:

- Analyze the suspected line; inspect all the connector contacts.

- Replacement sequence:
 - LED
 - Planar
 - Control Panel Cable
113 CONTROL AND ACCESS PANEL SWITCHES MINI MAP

- Use this figure to locate problems with the Address switches and the Status switch.
- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

- The 'test sw' line is at a Down level when the Status switch is in the Test (closed) position.
- A station address line is at a Down level when the Address switch is in the closed position and '1' is displayed in the address field when the display station is in Test mode.

Service Aids

- The settings of the Address switches should not be changed unless either the Status switch is in the Test position or the internal system cable is removed from the planar.
- The display station will not be damaged if powered-on after the control panel cable is disconnected.
- The display assembly must be removed (151) to service the Address switches.

Tools

Connect the CE probe as follows:

- +lead-1-G-D03
- -lead-1-G-D08
- Ground-1-B-D08

![Diagram of Planar Board, Interposer, Control Panel Cable, and Display Screen]
Check the failing line at the planar with the switch closed.

Is the line at a Down level?
Y N
- Check for an open through the switch back to the ground line.
- Check the failing line at the planar with the switch open.

Is the line at an Up level?
Y N
- Leave the switch open.
- Check the line back through the switch for a grounded line or a short circuit in the switch.

Is the line OK?
Y N
- Replace the cable or switch.
- Inspect the interposer.
- Replace the planar (set the jumpers correctly on the new planar (103) (105)).
- Set the Address switches correctly.

Inspect the interposer.
- Replace the planar (set the jumpers correctly on the new planar (103) (105)).
- Set the Address switches correctly.

Suggested action for an intermittent problem:

• Analyze the suspected line; inspect all the connector contacts.

• Replacement sequence:
 - Switch
 - Planar
 - Control Panel Cable
Planar

Keylock Cable
Connector Pins:

Common
N/O (normally open)
N/C (normally closed)

Unlocked
Locked

Internal System Cable

Keylock Feature

Keylock Switch

Connector Pins:

(black)
(blue)
(red)
Remove the connector from the planar.

Use a CE meter.

Check continuity at the planar end of the cable between the common and the normally open lines with the switch in the locked position.

Is there continuity?

Y N

- Repair or replace the keylock assembly.

- Check continuity at the planar end of the cable between the normally open and the normally closed lines with the switch in the locked position.

Does the meter indicate an open?

Y N

- Repair or replace the keylock assembly.

- Check continuity at the planar end of the cable between the normally closed and the common lines with the switch in the unlocked position.

Is there continuity?

Y N

- Repair or replace the keylock assembly.

- Replace the planar board (set the jumpers correctly on the new planar (103) (105)).

Suggested action for an intermittent problem:

- Analyze the suspected line; inspect all the connector contacts.

- Replacement sequence:
 - Keylock Assembly
 - Planar
This page is intentionally left blank.
KEYBOARD

130 KEYBOARD LOCATIONS

Connector B
Planar Board
Interposer
Internal Keyboard Cable
Access Panel Connector
Keyboard Signal Cable
Keyboard ID Jumper Block
Clicker
Keyboard Logic Printed Circuit Board
Pad Printed Circuit Board Connector Contacts
Buffers
Keyboard Assembly

IBM 5251 Display Station Model 11

Maintenance Procedures 5251 MIM 1-17
131 KEYBOARD REMOVAL AND DISASSEMBLY

1. Power off.
2. Remove the top cover by loosening the 4 screws on the bottom of the keyboard assembly.
3. Remove the keyboard logic printed circuit board (130).
4. Remove 2 screws on each side of the keyboard (130).
5. If a key module is to be removed, locate the position of the key before the keyboard is inverted.
6. Lift the keyboard out of the keyboard base.

CAUTION
The keyboard assembly must be kept free of dirt.

7. Invert the keyboard and reinstall it on the original mounting block using a screw on each side to hold the assembly in place.

CAUTION
Removing the pad printed circuit board with a key pressed causes the flyplate to jump out of the key module.

8. Ensure that there is no pressure on any keys.
9. Remove the screws from the pad printed circuit board.
10. Lift the pad printed circuit board from the key assembly.
11. To assemble, reverse the above procedure.

132 CLEANING

1. Disassemble the keyboard (131).
2. Clean the pad printed circuit board with a water moistened, lint free cloth. Check the flyplates for dirt; clean only those flyplates that are dirty or are causing failures.

133 KEY MODULE

Removal
1. Use the keytop removal tool (part 9900373) to lift the keytop pushbuttons from the keys to be removed.
2. Disassemble the keyboard (131).
3. Reach under the key unit and push up the failing key modules until they are free.

Note: The module retaining ears must clear the frame 1 as shown.

CAUTION
To prevent loosening a flyplate, ensure that no keys are pressed.

Installation
1. Insert the key module. Align the opening in the key module with the orientation lug in the mounting hole. The key stem notch must be put in position toward the spacebar edge of the keyboard.
2. Reinstall the pad printed circuit board.
3. Turn the key unit over and, if necessary, position the dust shield.
4. Put the keytop on the key unit.
5. Reinstall the logic printed circuit board and covers.
This page is intentionally left blank.
134 SPACEBAR

Removal
1. Disassemble the keyboard (131).
2. Hold the ends of the Spacebar and pull up to slide the bar off the key stems.
3. If the pivots need to be removed, insert a screwdriver tip in the opening in the side of the frame; then, twist the screwdriver slightly until the pivot is removed.

Installation
1. Press the pivots 1 into place in the frame 1.
2. Place the Spacebar 2 in position over its key modules.
3. Guide the stabilizer 3 into the openings in the pivots.
4. Press the Spacebar on the key stems.

135 FLYPLATE REPLACEMENT

Reinstalling a disconnected flyplate in a key module is not recommended.

If replacement is necessary because a new key module is not available, inspect the flyplate to ensure the connection is not loose between the spring and flyplate or the flyplate is not damaged.
1. Disassemble the keyboard (131).
2. Remove the key module (133).
3. Form the spring on the flyplate so that there is 12.7 mm (0.5 inch) between the ends of the spring.
4. Remove the keytop from the key module; then, remove the module from the keyboard.

5. Tape the key stem down as shown.

6. Hold the key module and flyplate as shown, line up the ends of the flyplate spring 1 with the tips of the flat spring 2 attached to the key stem.

7. Insert a small stylus or straightened paper clip through one of the access holes in the key module 3.

8. Push the tip of the flat spring up on the inside of the flyplate spring.

9. Move the flat spring down until the tab drops into the opening of the flyplate spring.

10. Attach the other end of the spring in the same way.

11. Carefully remove the tape holding the key stem.

12. Check the key stems for taper in the center opening and form them if necessary.

13. Install the key module in the key assembly.
136 KEYBOARD ID MINI MAP

- Use this figure to locate an open or grounded ID line.
- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

- ID lines with jumpers are at a Down level (displays a ‘1’ in the ID field in Test mode).
- ID lines without jumpers are at an Up level (displays a ‘0’ in the ID field in Test mode).

Service Aids

- Verify the ID jumpers at the Keyboard Identification chart (142).
- The display station will not be damaged if powered-on after the keyboard cable is disconnected.

Tools

Connect the CE probe as follows:

- +lead–1–G–D03
- –lead–1–G–D08
- Ground–1–B–D08

Display Screen

The Status switch at the Test position; Keyboard key pressed

Keyboard ID
0123xxxx

Keyboard Logic
Printed Circuit Board

Access Panel
14
15
18
19

+5V

Planar Board
Interposer
Internal Keyboard Cable
Keyboard Signal Cable

Connector B
1-B-D04
1-B-D05
1-B-D09
1-B-D10

1-8-004
1-8-005
1-8-D09
1-8-010

13
14
15
18
19

B02
B02
D02
D02

802
005
009
010

B02
D02

Access Panel

Jumper Block

0123xxxx

Keyboard Logic
Printed Circuit Board
Check the failing line at the planar with the 10 jumper installed on the jumper block.

Is the line at a Down level?

Y N

→ Check for an open line back through the keyboard logic PC board.

→ Check the failing line at the planar with the jumper 10 removed.
The line should be at an Up level.

Is the line at an Up level?

Y N

→ Leave the jumper off.
→ Check the line from the planar back to the jumper block on the logic PC board for a ground.

Is the line OK?

Y N

→ Replace the cable or keyboard logic PC board.

→ Inspect the interposer.
→ Replace the planar (set jumpers correctly on the planar (103) (105)).
→ Set the ID jumper correctly.

→ Inspect the interposer.
→ Replace the planar (set jumpers correctly on the planar (103) (105)).
→ Set the ID jumper correctly.

Suggested action for an intermittent problem:

- Analyze the suspected line; inspect all the connector contacts.
- Replacement sequence:
 - Planar
 - Keyboard Cables
 - Keyboard Logic PC Board

Inspect the interposer.
Replace the planar (set jumpers correctly on the planar (103) (105)).
Set the ID jumper correctly.
137 KEYBOARD SCAN CODE MINI MAP

• Use this figure to locate an open or grounded scan code line.

• For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

• The scan code lines are valid after a key is pressed.

Service Aids

• All scan code lines switch Up and Down when a keyboard key is pressed. A '1' is displayed in the scan code field on the display screen when a line is active.

• Use the Shift key to test the 'break code' line. The break code position in the displayed field is normally '0'. The position changes to '1' only after the Shift key is pressed and released.

• The display station will not be damaged if powered-on after the keyboard cable is disconnected.

Tools

Connect the CE probe as follows:

• +lead-1-G-D03
• -lead-1-G-D08
• Ground-1-B-D08
137 (continued)

— Check the failing scan code line at the planar (the bit line that did not change).
— Press and release a key that activates the line.

Does the line pulse?

Y N

Is the line at a Down level?

Y N

— Check the line in the cables for an open.
Are the cables OK?

Y N

— Replace the failing cable.
— Replace the keyboard logic PC board.

— Disconnect the cable at the keyboard end.
Is the line still at a Down level?

Y N

— Replace the keyboard logic PC board.

— Disconnect the cable at Socket B on the planar.
Is the line still at a Down level?

Y N

— Repair or replace the failing keyboard cable.

— Replace the planar (set the jumpers correctly on the new planar (103) (105)).

— Inspect the interposer.
— Replace the planar (set the jumpers correctly on the new planar (103) (105)).

Suggested action for an intermittent problem:

• Analyze the suspected line; inspect all the connector contacts.

• Clean the pad PC board contacts.

• Replacement sequence:
 — Keyboard Logic PC Board
 — Planar
 — Keyboard Cables
138 KEYBOARD VOLTAGE AND STROBE MINI MAP

- Use this figure to correct a data strobe or strobe delay problem.

- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

- The voltage lines are active.

- The ‘-data strobe’ line is positive (+) (the pulse will be negative when a key is pressed).

- The ‘+delay strobe’ line is negative (-) (the pulse will be positive when a key is pressed.)

Service Aids

- When a key is pressed, the ‘-data strobe’ line pulses at a Down level.

- When the planar receives the ‘-data strobe’ line, it pulses the ‘+delay strobe’ line at an Up level.

- A failure in the ‘-5 Vdc’, ‘+5 Vdc’, ‘-data strobe’, or ‘+delay strobe’ line causes both the ‘-data strobe’ and ‘+delay strobe’ lines to fail.

- The display station will not be damaged if powered-on after the keyboard cable is disconnected.

Tools

Connect the CE probe as follows:

- +lead-1-G-D03
- -lead-1-G-D08
- Ground-1-B-D08

Clean both sides of the pad printed circuit board connector contacts (130).
— Check the ‘+5 Vdc’ and ‘-5 Vdc’ lines at the planar.
 Are the voltages correct?
 Y N

 A ground in the cable or keyboard logic PC board could have damaged the planar.
 — Check for a grounded voltage line and then replace the planar (set the jumpers correctly on the new planar (103) (105)).

— Check the ‘+5 Vdc’ and ‘-5 Vdc’ lines at the keyboard end of the cable.
 Are the voltages correct?
 Y N

 — Check for an open voltage line in the cables.
 — Check the ‘DATA strobe’ line at the planar.
 Does the line pulse when a key is held down?
 Y N

 Is the ‘DATA strobe’ line at an Up level?
 Y N

 — Disconnect the cable at the keyboard end.
 Is the line at a Down level?
 Y N

 — Replace the keyboard logic PC board.

 — Check the ‘DATA strobe’ line for a ground.

 Is the ‘DELAY strobe’ line Down at the planar?
 Y N

 — Replace the planar (set the jumpers correctly on the new planar (103) (105)).

 — Check the ‘DATA strobe’ line at the keyboard end of the cable.
 Does the line pulse when a key is held down?
 Y N

 — Check the ‘DELAY strobe’ line for an open.
 — Inspect the -5, +5, and B07 (‘DATA strobe’ line) contacts on the keyboard end of the cable.

Suggested action for an intermittent problem:

• Analyze the suspected line; inspect all the connector contacts.

• Clean the pad PC board contacts.

• Replacement sequence:
 — Logic PC Board
 — Planar
 — Keyboard Cables
139 KEYBOARD CLICKER MINI MAP

- Use this figure to locate a keyboard clicker problem.
- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On
- The '+8.5 Vdc' line is active.
- The '-clicker activate' line is at an Up level.

Service Aids
- The '-clicker activate' line pulses at a Down level when a key is pressed causing the clicker to sound. This line also pulses each time the program loops in Test mode.
- The clicker coil can be tested by removing the lower wire from the connector block and touching ground.
- The display station will not be damaged if powered-on after the keyboard cable is disconnected.

Tools
- Connect the CE probe as follows:
 - +lead-1-G-D03
 - -lead-1-G-D08
 - Ground-1-B-D08
139 (continued)

- Check the clicker coil and the '+8.5 Vdc' line as follows.
- Remove the lower coil wire.
Does the clicker sound each time the wire is touched to a ground pin?
Y N

The '+8.5 Vdc' line is open or the clicker is failing.
- Check for +8.5 Vdc at the upper clicker pin.
Is the voltage correct?
Y N

- Check for an open '+8.5 Vdc' line back to the planar.
- Replace the clicker.

Check the clicker activate line (B03) at the keyboard end of the cable.
Does the line pulse each time a key is pressed?
Y N

Is the line at a Down level?
Y N

Does the line (1-B-B03) pulse at the planar each time a key is pressed?
Y N

- Inspect the interposer.
- Replace the planar (set the jumpers correctly on the new planar (103) (105)).

- Check the cable for an open.
- Check the clicker activate line for a ground.

- Check the keyboard end of the cable.
- Replace the logic PC board.

Suggested action for an intermittent problem:

- Analyze the suspected line; inspect all the connector contacts.

- Replacement sequence:
 - Clicker
 - Keyboard Logic PC board
 - Planar
 - Keyboard Cables
140 KEYBOARD CABLE CHECK MINI MAP

- Use this figure to locate an open in the cable check
- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-on

- Both the '-cable check A' and '-cable check B' lines are at a Down level.

Service Aids

- The display station will not be damaged if powered-on after the keyboard cable is disconnected.

Tools

Connect the CE probe as follows:

- +lead-1-G-D03
- -lead-1-G-D08
- Ground-1-B-D08
140 (continued)

- Probe cable check B (B-D12) at the planar.
 Is the line at a Down level?
 Y N

 - Check for an open through the cable and keyboard logic PC board back to ground on the planar.
 - Inspect the interposer.
 - Replace the planar (set the jumpers correctly on the new planar (103) (105)).

Suggested action for an intermittent problem:

- Jumper 1-B-D02 to 1-B-D12

- If the problem still occurs, replace the planar. If not, the cable or keyboard logic PC board could be open.
141 KEYBOARD POR MINI MAP

- Use this figure to locate an open or grounded 'power on reset' (POR) line.

- For Mini MAP example, see *Troubleshooting Aids* (212).

Conditions after Power-On

- The 'power on reset' line is at an Up level.

Service Aids

- The 'power on reset' line is at a Down level for about 0.5 seconds during power on.

- The display station will not be damaged if powered-on after the keyboard cable is disconnected.

Tools

Connect the CE probe as follows:

- +lead-1-G-D03
- -lead-1-G-D08
- Ground-1-B-D08

Diagram: Diagram showing the connection of various components including the Planar Board, Interposer, Internal Keyboard Cable, Keyboard Signal Cable, Keyboard Logic Printed Circuit Board, Driver, and the Power On Reset line.
MAP 0002 sends you to this service page for a grounded 'power on reset' line only.

- Check the 'power on reset' line at the planar.
Is the line at a Down level?

Y N

Does the line pulse Down for about 1 second during power on?

Y N

- Inspect the interposer
- Replace the planar (set the jumpers correctly on the new planar (103) (105)).

You have taken the wrong path.
- Go to MAP 0001, Start of Call.

- Power off.
- Remove the cable at socket B.
- Power on.
Is the line at a Down level at the planar?

Y N

- Check for a ground in the cable or keyboard logic PC board.
- Inspect the interposer.
- Replace the planar (set the jumpers correctly on the new planar (103) (105)).

Suggested action for an intermittent problem:

- Analyze the suspected line; inspect all the connector contacts.
- Clean the pad PC board contacts.
- Replacement sequence:
 - Logic PC Board
 - Planar
 - Keyboard Cables

Maintenance Procedures 5251 MIM 1-33
142 Keyboard Identification

The following shows the jumpers that are necessary for keyboard identification.

<table>
<thead>
<tr>
<th>Country</th>
<th>Standard Keyboard</th>
<th>Bit Assignment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>Austria/Germany</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>France AZERTY</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Canada (French)</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>France QWERTY</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>International</td>
<td>1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Japan (English)</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Japan (Katakana)</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>U.S./Canada</td>
<td>0 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

* 1 = Jumpered
0 = Not Jumpered

[Diagram of Keyboard ID Jumper Block (part 1650667)]
143 KEYBOARD ARRANGEMENT

This section shows the key numbers for the keyboards. The key numbers compare with the key positions in the scan code table (144).

Keyboard Template (GX21-9266)

<table>
<thead>
<tr>
<th>Display Mode</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>Test Request</td>
</tr>
</tbody>
</table>

The top row of keys on the keyboard permit command functions. Pressing the Cmd (command) key and then one of the top row keys selects command functions 1 through 12, or Test Request. Pressing Cmd, then holding down the Shift key and pressing one of the top row keys selects Display Mode, command functions 13 through 24, or Clear.

The keyboard template is placed in the opening above the top row of keys on the keyboard cover. The customer can change the template to indicate the name of the command function that compares to the top row key numbers.

Standard Keyboard Layout

Standard Keyboard Layout (Katakana)

Not a typematic key. A make/break key.
Scan codes are a function of the physical position of the keyboard keys. The following tables show the 8-bit scan code, the hexadecimal code, and the key position for the keyboards. The * indicates a make/break key with a bit setting of either 0 or 1. When a make/break key is pressed, bit 0 of the code is a 0. When a make/break key is released, bit 0 of the code is a 1.

STANDARD KEYBOARD

<table>
<thead>
<tr>
<th>Key Position</th>
<th>Hex Code</th>
<th>Scan Code 01234567</th>
<th>Key Position</th>
<th>Hex Code</th>
<th>Scan Code 01234567</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7C</td>
<td>01111100</td>
<td>44</td>
<td>4E</td>
<td>01001110</td>
</tr>
<tr>
<td>2</td>
<td>6F</td>
<td>01101111</td>
<td>45</td>
<td>54</td>
<td>*1010100</td>
</tr>
<tr>
<td>3</td>
<td>6C</td>
<td>01101100</td>
<td>46</td>
<td>11</td>
<td>00010001</td>
</tr>
<tr>
<td>4</td>
<td>6D</td>
<td>01101101</td>
<td>47</td>
<td>12</td>
<td>00010010</td>
</tr>
<tr>
<td>5</td>
<td>6E</td>
<td>01101110</td>
<td>48</td>
<td>13</td>
<td>00010011</td>
</tr>
<tr>
<td>6</td>
<td>7D</td>
<td>01111101</td>
<td>49</td>
<td>14</td>
<td>00010100</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>01110001</td>
<td>50</td>
<td>15</td>
<td>00010101</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>01110000</td>
<td>51</td>
<td>16</td>
<td>00010110</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>01110010</td>
<td>52</td>
<td>17</td>
<td>00010111</td>
</tr>
<tr>
<td>10</td>
<td>73</td>
<td>01110011</td>
<td>53</td>
<td>18</td>
<td>00010110</td>
</tr>
<tr>
<td>11</td>
<td>3E</td>
<td>00111110</td>
<td>54</td>
<td>19</td>
<td>00010101</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>00110001</td>
<td>55</td>
<td>1A</td>
<td>00010100</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>00110010</td>
<td>56</td>
<td>1B</td>
<td>00010111</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>00110011</td>
<td>57</td>
<td>1C</td>
<td>00011100</td>
</tr>
<tr>
<td>15</td>
<td>34</td>
<td>00110100</td>
<td>58</td>
<td>44</td>
<td>01000100</td>
</tr>
<tr>
<td>16</td>
<td>35</td>
<td>00110101</td>
<td>59</td>
<td>45</td>
<td>01000101</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>00110110</td>
<td>60</td>
<td>46</td>
<td>01000110</td>
</tr>
<tr>
<td>18</td>
<td>37</td>
<td>00110111</td>
<td>61</td>
<td>4D</td>
<td>01001101</td>
</tr>
<tr>
<td>19</td>
<td>38</td>
<td>00111000</td>
<td>62</td>
<td>47</td>
<td>*1011011</td>
</tr>
<tr>
<td>20</td>
<td>39</td>
<td>00111001</td>
<td>63</td>
<td>0E</td>
<td>00000110</td>
</tr>
<tr>
<td>21</td>
<td>3A</td>
<td>00111010</td>
<td>64</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>22</td>
<td>3B</td>
<td>00111011</td>
<td>65</td>
<td>02</td>
<td>00000000</td>
</tr>
<tr>
<td>23</td>
<td>3C</td>
<td>00111100</td>
<td>66</td>
<td>03</td>
<td>00000001</td>
</tr>
<tr>
<td>24</td>
<td>3D</td>
<td>00111101</td>
<td>67</td>
<td>04</td>
<td>00000100</td>
</tr>
<tr>
<td>25</td>
<td>4B</td>
<td>01001011</td>
<td>68</td>
<td>05</td>
<td>00000101</td>
</tr>
<tr>
<td>26</td>
<td>4C</td>
<td>01001100</td>
<td>69</td>
<td>06</td>
<td>00000110</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>00000000</td>
<td>70</td>
<td>07</td>
<td>00000111</td>
</tr>
<tr>
<td>28</td>
<td>21</td>
<td>00000001</td>
<td>71</td>
<td>08</td>
<td>00001000</td>
</tr>
<tr>
<td>29</td>
<td>22</td>
<td>00000010</td>
<td>72</td>
<td>09</td>
<td>00001001</td>
</tr>
<tr>
<td>30</td>
<td>23</td>
<td>00000011</td>
<td>73</td>
<td>0A</td>
<td>00001010</td>
</tr>
<tr>
<td>31</td>
<td>24</td>
<td>00000100</td>
<td>74</td>
<td>06</td>
<td>*1010110</td>
</tr>
<tr>
<td>32</td>
<td>25</td>
<td>00000101</td>
<td>75</td>
<td>0C</td>
<td>00001100</td>
</tr>
<tr>
<td>33</td>
<td>26</td>
<td>00000110</td>
<td>76</td>
<td>41</td>
<td>01000001</td>
</tr>
<tr>
<td>34</td>
<td>27</td>
<td>00000111</td>
<td>77</td>
<td>42</td>
<td>01000010</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>00001000</td>
<td>78</td>
<td>43</td>
<td>01000011</td>
</tr>
<tr>
<td>36</td>
<td>29</td>
<td>00001001</td>
<td>79</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>37</td>
<td>2A</td>
<td>00001010</td>
<td>80</td>
<td>68</td>
<td>01101000</td>
</tr>
<tr>
<td>38</td>
<td>2B</td>
<td>00001011</td>
<td>81</td>
<td>40</td>
<td>01000000</td>
</tr>
<tr>
<td>39</td>
<td>2C</td>
<td>00010100</td>
<td>82</td>
<td>4A</td>
<td>01001010</td>
</tr>
<tr>
<td>40</td>
<td>2D</td>
<td>00010101</td>
<td>83</td>
<td>0F</td>
<td>00001111</td>
</tr>
<tr>
<td>41</td>
<td>47</td>
<td>01000111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>48</td>
<td>01001000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>49</td>
<td>01001001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STANDARD KEYBOARD (KATAKANA)

<table>
<thead>
<tr>
<th>Key Position</th>
<th>Hex Code</th>
<th>Scan Code</th>
<th>Key Position</th>
<th>Hex Code</th>
<th>Scan Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7C</td>
<td>01111100</td>
<td>44</td>
<td>4E</td>
<td>01001110</td>
</tr>
<tr>
<td>2</td>
<td>6F</td>
<td>01101111</td>
<td>45</td>
<td>54</td>
<td>*1010100</td>
</tr>
<tr>
<td>3</td>
<td>6C</td>
<td>01101100</td>
<td>46</td>
<td>11</td>
<td>00010001</td>
</tr>
<tr>
<td>4</td>
<td>6D</td>
<td>01101101</td>
<td>47</td>
<td>12</td>
<td>00010010</td>
</tr>
<tr>
<td>5</td>
<td>6E</td>
<td>01101110</td>
<td>48</td>
<td>13</td>
<td>00010011</td>
</tr>
<tr>
<td>6</td>
<td>7D</td>
<td>01111101</td>
<td>49</td>
<td>14</td>
<td>00010100</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>01110001</td>
<td>50</td>
<td>15</td>
<td>00010101</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>01110000</td>
<td>51</td>
<td>16</td>
<td>00010110</td>
</tr>
<tr>
<td>9</td>
<td>72</td>
<td>01110010</td>
<td>52</td>
<td>17</td>
<td>00010111</td>
</tr>
<tr>
<td>10</td>
<td>73</td>
<td>01110011</td>
<td>53</td>
<td>18</td>
<td>00011000</td>
</tr>
<tr>
<td>11</td>
<td>3E</td>
<td>00111110</td>
<td>54</td>
<td>19</td>
<td>00011001</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>00110001</td>
<td>55</td>
<td>1A</td>
<td>00011010</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>00110010</td>
<td>56</td>
<td>1B</td>
<td>00011011</td>
</tr>
<tr>
<td>14</td>
<td>33</td>
<td>00110011</td>
<td>57</td>
<td>1C</td>
<td>00011100</td>
</tr>
<tr>
<td>15</td>
<td>34</td>
<td>00110100</td>
<td>58</td>
<td>44</td>
<td>01000100</td>
</tr>
<tr>
<td>16</td>
<td>35</td>
<td>00110101</td>
<td>59</td>
<td>45</td>
<td>01000101</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>00110110</td>
<td>60</td>
<td>46</td>
<td>01000110</td>
</tr>
<tr>
<td>18</td>
<td>37</td>
<td>00110111</td>
<td>61</td>
<td>4D</td>
<td>01001101</td>
</tr>
<tr>
<td>19</td>
<td>38</td>
<td>00111000</td>
<td>62</td>
<td>57</td>
<td>*1010111</td>
</tr>
<tr>
<td>20</td>
<td>39</td>
<td>00111001</td>
<td>63</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3A</td>
<td>00111010</td>
<td>64</td>
<td>01</td>
<td>00000001</td>
</tr>
<tr>
<td>22</td>
<td>3B</td>
<td>00111011</td>
<td>65</td>
<td>02</td>
<td>00000010</td>
</tr>
<tr>
<td>23</td>
<td>3C</td>
<td>00111100</td>
<td>66</td>
<td>03</td>
<td>00000011</td>
</tr>
<tr>
<td>24</td>
<td>61</td>
<td>01100001</td>
<td>67</td>
<td>04</td>
<td>00000100</td>
</tr>
<tr>
<td>25</td>
<td>3D</td>
<td>00111101</td>
<td>68</td>
<td>05</td>
<td>00000101</td>
</tr>
<tr>
<td>26</td>
<td>4C</td>
<td>01001100</td>
<td>69</td>
<td>06</td>
<td>00000110</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>00100000</td>
<td>70</td>
<td>07</td>
<td>00000111</td>
</tr>
<tr>
<td>28</td>
<td>21</td>
<td>00100001</td>
<td>71</td>
<td>08</td>
<td>00001000</td>
</tr>
<tr>
<td>29</td>
<td>22</td>
<td>00100010</td>
<td>72</td>
<td>09</td>
<td>00001001</td>
</tr>
<tr>
<td>30</td>
<td>23</td>
<td>00100011</td>
<td>73</td>
<td>0A</td>
<td>00001010</td>
</tr>
<tr>
<td>31</td>
<td>24</td>
<td>00100100</td>
<td>74</td>
<td>0C</td>
<td>00001100</td>
</tr>
<tr>
<td>32</td>
<td>25</td>
<td>00100101</td>
<td>75</td>
<td>56</td>
<td>*1010111</td>
</tr>
<tr>
<td>33</td>
<td>26</td>
<td>00100110</td>
<td>76</td>
<td>41</td>
<td>01000001</td>
</tr>
<tr>
<td>34</td>
<td>27</td>
<td>00100111</td>
<td>77</td>
<td>42</td>
<td>01000010</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>00101000</td>
<td>78</td>
<td>43</td>
<td>01000011</td>
</tr>
<tr>
<td>36</td>
<td>29</td>
<td>00101001</td>
<td>79</td>
<td>53</td>
<td>*1010011</td>
</tr>
<tr>
<td>37</td>
<td>2A</td>
<td>00101010</td>
<td>80</td>
<td>68</td>
<td>01101000</td>
</tr>
<tr>
<td>38</td>
<td>2B</td>
<td>00101011</td>
<td>81</td>
<td>40</td>
<td>01000000</td>
</tr>
<tr>
<td>39</td>
<td>2C</td>
<td>00101100</td>
<td>82</td>
<td>4A</td>
<td>01001010</td>
</tr>
<tr>
<td>40</td>
<td>2D</td>
<td>00101101</td>
<td>83</td>
<td>0F</td>
<td>00001111</td>
</tr>
<tr>
<td>41</td>
<td>47</td>
<td>01000111</td>
<td>84</td>
<td>4B</td>
<td>01001011</td>
</tr>
<tr>
<td>42</td>
<td>48</td>
<td>01001000</td>
<td>85</td>
<td>7E</td>
<td>01111110</td>
</tr>
<tr>
<td>43</td>
<td>49</td>
<td>01001001</td>
<td>86</td>
<td>52</td>
<td>*1010010</td>
</tr>
</tbody>
</table>
Display

Four manufacturers supply the display assembly for the display station. The B-type, E-type, M-type, and V-type, display assemblies function differently, look different, but are compatible and generate the same display.

Note: Use fiber screwdriver (part 460811) for display assembly adjustments.

150 B-TYPE DISPLAY ASSEMBLY LOCATIONS

Top View
150 E-TYPE DISPLAY ASSEMBLY LOCATIONS

Top View

- Display AC Power Cable
- Planar Board Connector G
- Interposer
- B02 D02
- Display Signal/Planar Power Cable
- Printed Circuit Board
- High Voltage Transformer
- Filament
- Yoke
- Centering Rings
- Decal
- Cathode-Ray Tube
- Printed Circuit Edge Connector

Align the pointer with the notch when you connect the cable.

Refer to the decal if it is present.
Top View

- Power Supply
- Ground
- Mounting Screws
- Brightness Limiter Control
- Fuse
- Decal
- Cathode-Ray Tube
- Yoke
- Centering Rings
- High Voltage Transformer
- Transformer
- Filament
- Printed Circuit Board
- Printed Circuit Edge Connector
- Display AC Power Cable
- Display Signal/Planar Power Cable
- Align the pointer with the notch when you connect the cable.

Interposer
- Planar Board Connector G

1 Refer to the decal if it is present.

- Brightness Limiter
- Fuse
- 1A Slo Blo
- B+
- Vertical Linearity
- Vertical Height
- Focus
- Horizontal Width
- Horizontal Centering
Top View (World Trade Display Assembly)

Align the pointer with the notch when you connect the cable.

1 Refer to the decal if it is present.
DANGER
The display assembly contains high voltages and the green wire in the display assembly is not at ground voltage. Therefore, use extra caution when making internal adjustments.

1. Power off.
2. Open the front and rear covers (108).
3. Disconnect the display AC power cable connector.
4. Disconnect the printed circuit edge connector.
5. Remove the 6 mounting screws on the M-type display assembly. On the other types of display assemblies, remove the 2 mounting screws and 4 nuts.

DANGER
Be careful when working with the display assembly. The cathode-ray tube can implode when it is hit or falls. For personal safety, wear safety glasses.

6. Lift the display assembly from the display station housing.
7. Install the new display assembly. Place the used display assembly in the shipping container for return to the branch office.
8. Fasten the display assembly with the hardware that is provided on the new display assembly.
9. Connect the printed circuit edge connector. Align the pointer of the label on the connector with the notch in the printed circuit board (157).
10. Connect the display AC power cable.
11. If necessary, make the display adjustments (152 through 155).
12. Align the display assembly to allow the front cover to close properly.
13. Close the front and rear covers (108).
14. Check the bezel to display assembly gap to ensure that the gap is not excessive (100).
15. If the gap is excessive, return to step 12.
Display Adjustments

DANGER
The display assembly contains high voltages and the green wire in the display assembly is not at ground voltage. Therefore, use extra caution when making internal adjustments.

152 VIDEO ADJUSTMENTS

The three adjustments common to all display assemblies are:

- The Brightness control on the control panel.
- The Contrast control on the control panel.
- The Brightness Limiter control on the display assembly.

Brightness Limiter Adjustment

1. Turn the Brightness control on the control panel fully clockwise.
2. Turn the Brightness Limiter control on the display assembly until the retrace lines just disappear. See the raster figure (156).
 Note: Too much brightness could cause poor focus.

Contrast Control and Brightness Control Adjustments

1. Display Option 1 (Display Attributes) of the Display Verification Menu of the Online Test (206).
2. The pattern of H's around the display screen are of both normal intensity and of high intensity. Adjust the Contrast control and the Brightness control for the best display screen image.

Video Gain

On some display assemblies, this adjustment limits the character brightness. Normally, use the Brightness control on the control panel for attaining the best display screen image. The video gain can correct the horizontal or vertical intensity of a character.

153 VERTICAL AND HORIZONTAL ADJUSTMENTS

Vertical Adjustments

The vertical adjustments could interact. You should adjust the vertical hold anytime the picture rolls before you continue with the other vertical adjustments.

Vertical Hold

Adjust the vertical hold for a stable display (not rolling) without display distortion (flat top).

1. Place the Status switch in the Test position to display the scan code, address, and ID fields.
2. Observe the display screen while you turn the vertical hold to its limit.
3. Set the vertical hold adjustment in the middle of its range. Do not allow the picture to roll. If a small adjustment causes the picture to roll up then down, replace the display assembly.

Vertical Height

This adjustment controls the overall display screen height. The nominal height should be 190 mm (7.6 inches).

Vertical Linearity

This adjustment controls the uniform character height.

The vertical height and vertical linearity can interact. Adjust for the desired result.

Linearity Phase

This adjustment controls the uniform character height between the top of the screen and the bottom of the screen.
Horizontal Adjustments

Horizontal Width

The horizontal width controls the width of a display. A special tool is needed to adjust it. The adjustment is preset to a 6.35 mm (0.25 inch) tolerance. If there is a horizontal position problem, use the centering rings and correct the problem with that adjustment (155). The nominal width is 250 mm (10 inches).

Horizontal Centering

Horizontal centering is on a few display assemblies. This adjustment centers the video within the raster.

Horizontal Linearity

Horizontal linearity controls the uniform character width.

154 YOKE ADJUSTMENT (150)

Adjust the yoke for correct size and horizontal alignment of the display.

1. Loosen the clamp screw on the yoke collar.
2. Position the yoke against the cathode-ray tube for correct sized display.
3. Adjust the yoke to correct the tilted display.
4. Tighten the clamp screw on the yoke collar.

Note: If the adjustment cannot be made, replace the display assembly (151).

155 CENTERING ADJUSTMENT (150)

Ring magnets determine the horizontal and vertical positions of a display. If the display is tilted, do not adjust the ring magnets; turn the yoke (154). The following adjustments will interact. Adjust both rings to attain the best results.

1. Adjust the rear ring magnet for horizontal centering. The space on the left and right margins of the display should be equal. (This space can be determined from the 80th character on the right of the display.)
2. Adjust the front ring magnet for vertical centering. The space on the top and bottom margins of the display should be equal.

3. If the adjustment cannot be made, replace the display assembly (151).

Additional Adjustment Information

Note: The following adjustments should not be attempted, but are described for your information only:

- Focus.

 The focus control permits a desired display focus. The adjustment is made at the factory for the best character definition.

- B+

 The B+ adjustment is set at the factory with a precision meter. No attempt should be made to adjust this voltage. Symptoms of this voltage being out of adjustment is a loss of display. Because many other parts in the display assembly can cause the same symptom, the display assembly should be replaced. In most cases, this indicates a failing part instead of the B+ voltage out of adjustment.
RASTER

Raster is a condition of the display screen whenever the display screen area is lighted.

Note: The cursor and indicators may, or may not be displayed.

If there is a raster condition on the display screen, ensure that the raster check jumper is removed, then perform Video Adjustments (152).

Raster Check

CAUTION:
Power off when installing jumpers to prevent damage to the planar board.

To display a complete raster, install a jumper on jumper position 6 on the main planar board. This places a solid high level voltage on the video signal line. A complete raster will check the display assembly and display signal cable.
157 DISPLAY SIGNAL/PLANAR POWER CABLE MINI MAP

- Use this figure to locate problems with the horizontal sync, vertical sync, and video lines.

- For Mini MAP example, see Troubleshooting Aids (212).

Conditions after Power-On

- Each line is pulsing.

CAUTION

Do not power on the display station with the display signal/planar power cable disconnected unless the display AC power is also disconnected.

Service Aids

- Open lines continue to pulse because of feedback from the display assembly. When probing for an open line, disconnect the display AC power connector (150).

All Types (Except the M-Type Display) (150) Vertical Rolling or Overlayed Lines of Data

- Check the vertical sync line for an open.

- Check the adjustments (153).

All Types (Except the M-Type Display) (150) Dark Screen

- The raster check jumper (156) forces a high video signal that lights the display screen.

- A video or horizontal sync failure causes a dark screen.

M-Type Display (150) Rolling or Unstable Display

- Check the horizontal and vertical lines for opens.

- Check the adjustments (153).

M-Type Display (150) Dark Screen

- Check the video lines for an open.

- The raster check jumper (156) forces a high video signal that lights the display screen.

Tools

Connect the CE probe as follows:

- +lead-1-G-D03
- -lead-1-G-D08
- Ground-1-B-D08

Diagram

![Diagram of Planar Board, Interposer, Display Signal/Planar Power Cable, Display Assembly, and Connector G](image)
— Determine which display you have.
— Trace the line called out in the MAP.
All signals come from the planar; however, the display will cause an open line to continue to pulse at a high enough level to trigger the CE probe.
— Power off.
— Disconnect the display AC power connector (150).
— Power on.
— Check the signal at the planar.

Note: The Brightness control must be turned up (clockwise) all the way to make the video signal large enough to trigger the CE probe.

Is the line pulsing at the planar?

Y
— Power down.
— Disconnect the cable at the display.
— Power up.

N
Does the line pulse now?

Y
— Check the cable for a grounded signal line.

N
Is the cable OK?

Y
— Repair or replace the cable.

N
— Replace the planar (set the jumpers correctly on the new planar (103) (105)).
— Replace the display.

Is the line pulsing at the display?

Y
— Check the cable for an open.

N
Is any other line called out by the MAP that has not been checked?

Y
— Reconnect the display AC power connector (150).
— Make adjustments if applicable (153)
— Replace the display assembly.

N
— Repeat this procedure for the other line.

Suggested action for an intermittent problem:

• Analyze the suspected line; inspect all the connector contacts.
• Replacement sequence:
 — Display Assembly
 — Planar
 — Display Signal/Planar Power Cable
Normal screen (free key mode):

Display not centered
Tilted display

Display size not correct (too small)
Display size not correct (expanded vertically)

Characters missing only in the corners
CUSTOMER TWINAXIAL CABLE

170 CABLE SIGNAL QUALITY CHECK

This check is a Controller diagnostic procedure. Refer to the Controller documentation. All display stations will be taken offline. The signal quality check requires an oscilloscope. If you are not trained on the controller, call for a system trained service representative.

171 TWINAXIAL CABLE AND TERMINATOR SWITCH

One jumper is always required on the main planar board for the twinaxial cable. If the Cable Thru feature is not installed, two additional jumpers are required.

The two jumpers on jumper position 9 of the main planar board must be removed if the Cable Thru feature is installed on the display station.

The Terminator switch (cable thru feature) on the access panel has a position 1 and position 2. Position 1 stops the communications signal and completes the circuit. Position 1 is the required position when the display station is the last work station on the line. All other stations in the series must have the Terminator switch in position 2.

Position 2 allows the communications signal to flow through the display station to the next work station.

Note: Do not leave the twinaxial cable disconnected when servicing the display station with the Cable Thru feature. Other devices are taken offline when this cable is disconnected. The display assembly must be removed (151) to service the Terminator switch.
The following figure shows a 5251 Model 11 Display Station attached to a controller at a system location. Display stations and printers can be attached in a point-to-point configuration, or can be attached in a series configuration by means of a Cable Thru feature on each work station in the configuration.

Data Flow

1. Data is entered at the keyboard.
2. Data is transferred to the controller.
3. Data is interpreted by the controller.
4. Data can be used by the system.
5. Data is returned to the 5251 for displaying.

The combined length of cable for each series must not exceed 1,524 meters (5,000 feet).

Two display stations connected in series with the Cable Thru feature.
173 STATION PROTECTOR

The station protector is owned and maintained by the customer. The following procedure can be used to check an IBM supplied station protector.

The cables to the station protector must be disconnected before the checks can be made. This will disconnect the work stations from the system.

DANGER
Never handle cables or connectors during an electrical storm.

Typical Installation

Station Protector Board

1. Check each diode with the black lead connected to the anode and the red lead connected to the cathode. The resistance should be less than 2,000 ohms.
2. Check each diode with the black lead connected to the cathode and the red lead connected to the anode. The resistance should exceed 10,000 ohms.
POWER SUPPLY

180 POWER SUPPLY LOCATIONS

The fan is visible from the display assembly side.

AC Power Supply Fuse

Power Supply Input and Display Assembly Line Voltage

Transformer (inside cover)

-5V Test Point

Low Voltage Circuit Breaker

Line Filter (attached to the display base under the power supply)

Power Supply Printed Circuit Board

Low Voltage Connector

World Trade Terminal Block (50 Hertz)

+5V Test Point

+8.5V Test Point

Heat Sink

Connector Pin Description

-5V
+5V
Ground
+8.5V

Low Voltage Connector Detail

1, 2, 3, 4, 5, 6, 7, 8, 9

-5V
+5V
Ground
+8.5V
181 POWER SUPPLY REMOVAL AND REPLACEMENT

1. Power off.

2. Disconnect the line cord from the customer outlet.

3. Open the front and rear covers.

4. Disconnect the cables to the display assembly, the Power switch, and the main planar board.

CAUTION
Place the display station away from the edge of the table to prevent it from falling, and do not tip the machine on its back or side when removing the power supply.

5. Using a socket tool, remove the 6 power supply mounting screws.

6. Lift the power supply from the display station housing.

7. Install the new power supply. Place the used power supply in the shipping container for return to the branch office.

8. Fasten the power supply with the mounting screws.

9. Reconnect the cables.

10. Check the World Trade transformer connections (184).

182 VOLTAGE LEVEL CHECKS

Voltage levels can be checked as follows on the power cable to the main planar board or at the power supply.

DANGER
Line voltage is present at the power supply.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Level</th>
<th>Planar Board Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 4, 7, 8</td>
<td>Ground</td>
<td>D05–D10</td>
</tr>
<tr>
<td>3, 5, 6</td>
<td>+5 (+4.6 to +5.5)</td>
<td>B02, B03, D02, D03</td>
</tr>
<tr>
<td>2</td>
<td>-5 (-4.6 to -5.4)</td>
<td>B06</td>
</tr>
<tr>
<td>9</td>
<td>+8.5 (+7.7 to +9.4)</td>
<td>B09–B11</td>
</tr>
</tbody>
</table>

(This cable is part of a cable assembly that carries the display assembly signal lines to the main planar board.)

183 POWER SUPPLY RIPPLE LEVEL CHECK

The peak-to-peak output ripple level should be less than 3% of the respective DC voltages when measured with an oscilloscope.
184 POWER SUPPLY CHARTS

115 Volt Power Supply (US)

<table>
<thead>
<tr>
<th>Connector Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5V</td>
</tr>
<tr>
<td>3, 5, 6</td>
<td>+5V</td>
</tr>
<tr>
<td>1, 4, 7, 8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>+8.5V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>104 to 126 Vac</td>
</tr>
</tbody>
</table>

Diagram showing components and connections:
- Line Voltage Black
- White Filter
- Power Switch
- 1, 2 Black Fuse
- 3, 4 Black
- Transformer
- Circuit Breaker
- Low Voltage Connector
- Power Supply Printed Circuit Board
- Display Assembly
World Trade Power Supply

<table>
<thead>
<tr>
<th>Connector Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-5V</td>
</tr>
<tr>
<td>3,5,6</td>
<td>+5V</td>
</tr>
<tr>
<td>1,4,7,8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>+8.5V</td>
</tr>
</tbody>
</table>

World Trade Transformer Primary Connections for Terminal Block

<table>
<thead>
<tr>
<th>Line Voltage</th>
<th>*Voltage Limits</th>
<th>E13 To</th>
<th>E14 To</th>
<th>Transformer Connections To TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Vac</td>
<td>90 to 110 Vac</td>
<td>TB-1</td>
<td>TB-2</td>
<td>1 and 5 to TB-1, 2 and 6 to TB-2</td>
</tr>
<tr>
<td>110 Vac</td>
<td>99 to 121 Vac</td>
<td>TB-1</td>
<td>TB-3</td>
<td>1 and 5 to TB-1, 3 and 7 to TB-3</td>
</tr>
<tr>
<td>123.5 Vac</td>
<td>112 to 135 Vac</td>
<td>TB-1</td>
<td>TB-4</td>
<td>1 and 5 to TB-1, 4 and 9 to TB-4</td>
</tr>
<tr>
<td>200 Vac</td>
<td>180 to 220 Vac</td>
<td>TB-1</td>
<td>TB-6</td>
<td>2 and 5 to TB-2</td>
</tr>
<tr>
<td>220 Vac</td>
<td>198 to 242 Vac</td>
<td>TB-1</td>
<td>TB-7</td>
<td>3 and 5 to TB-3</td>
</tr>
<tr>
<td>235 Vac</td>
<td>212 to 258 Vac</td>
<td>TB-1</td>
<td>TB-8</td>
<td>4 and 5 to TB-4</td>
</tr>
</tbody>
</table>
LINE CORD/LINE FILTER REMOVAL AND REPLACEMENT

1. Remove the power supply (181).

2. Repair or replace the line cord or the line filter.

 Note: For the location of the line filter, see 180.

3. Replace the power supply (181).
Diagnostic Aids

200 CONTROL PANEL LEDS

Five lights (LEDs) are located on the control panel of the display station, and are used by the operator and the customer engineer. All five lights are on momentarily during power on to test the LEDs. After power on, the following descriptions apply. The lights are:

Line Sync: When on, this light indicates that the display station has recognized a poll or data that the controller sent over the system cable. The poll or data can be for any display station on the cable (Cable Thru feature). The light goes off if more than 160 ms elapse between recognizable characters.

Line Check: When on, this light indicates that the display station has detected a parity error in the poll or data the controller sent. When the Cable Thru feature is installed, each display station turns this light on even if the poll or data is not addressed to that work station. The addressed work station returns an error response to the controller. The controller resends the information that caused the error until the information is received at the display station error free, at which time, the light will be turned off.

Internal Check: When on, this light indicates that a parity error has been found in the data bus while getting data from read/write storage. The Internal Check light can be reset (off) by setting the Test switch to the Test position. A power on reset occurs when this light is being reset by the Status switch.

Storage Check: (reserved)

Ready: When on, this light indicates that the power-on diagnostic has completed correctly. The Ready light is off if the Status switch is in the Test position; if either or both the Storage Check and Internal Check lights are on; or if the microprocessor is in a diagnostic sequence. The MPU controls this light.
201 STATUS SWITCH

The Status switch on the control panel is a diagnostic aid for the customer engineer. It also functions as a reset switch.

1. If the switch is in the Test position when the display station is powered-on, the power-on diagnostic displays the scan code for each key pressed. The power-on diagnostic will continue to loop with the cursor in position B until the switch is set to the Normal position.

2. The settings of the Address switches (Cable Thru feature) should not be changed while the power-on diagnostic is looping, unless a keyboard data key is pressed and held down. Release the key to allow the power-on diagnostic to loop after the desired settings of Address switch are changed, so that the changes can be seen in the address field of the display screen.

3. If the cursor is in position D and the Status switch is in the Normal position, the clicker will sound only for the first 4 keys pressed. Additional keys can be pressed, but the clicker will be inactive. If the Status switch is now set to the Test position, lines 0 and 25 will be displayed for approximately 5 seconds. During this 5 seconds, the hexadecimal code of the last key pressed will be displayed in position 76 of line 25.

4. Lines 0 and 25 are displayed when the Status switch is set to the Test position during a customer job or when the cursor is in position E. Display station operation is not affected. Lines 0 and 25 are removed when the Status switch is set to the Normal position.

5. The Storage check light and Internal Check light are reset by setting the Status switch to the Test position. The operator must sign-on and restart the customer job after the Status switch is set to the Normal position.

6. The field attribute will be displayed when the Status switch is in the Test position.
Line 25 Information

The illustration shows the most commonly used information. The table indicates all the information displayed on line 25 when the Status switch is set to the Test position. An alternative display of line 25 occurs whenever contents of the last key log (position 76) contains the break bit. This is a result of pressing and releasing any shift key before or during the time the Status switch is set to the Test position.
202 FIELD ATTRIBUTE CHARACTERS

Field attribute characters can be displayed by setting the Status switch to the Test position. The hexadecimal code is displayed to the left of the field that it converts as follows:

<table>
<thead>
<tr>
<th>Hex Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Normal display</td>
</tr>
<tr>
<td>21</td>
<td>Reverse image</td>
</tr>
<tr>
<td>22</td>
<td>High intensity</td>
</tr>
<tr>
<td>23</td>
<td>Reverse image, high intensity</td>
</tr>
<tr>
<td>24</td>
<td>Underscore</td>
</tr>
<tr>
<td>25</td>
<td>Underscore, reverse image</td>
</tr>
<tr>
<td>26</td>
<td>Underscore, high intensity</td>
</tr>
<tr>
<td>27</td>
<td>No display</td>
</tr>
<tr>
<td>28</td>
<td>Blink</td>
</tr>
<tr>
<td>29</td>
<td>Blink, reverse image</td>
</tr>
<tr>
<td>2A</td>
<td>Blink, high intensity</td>
</tr>
<tr>
<td>2B</td>
<td>Blink, high intensity, reverse image</td>
</tr>
<tr>
<td>2C</td>
<td>Blink, underscore</td>
</tr>
<tr>
<td>2D</td>
<td>Blink, underscore, reverse image</td>
</tr>
<tr>
<td>2E</td>
<td>Blink, underscore, high intensity</td>
</tr>
<tr>
<td>2F</td>
<td>No display</td>
</tr>
</tbody>
</table>

Hexadecimal codes 30 through 3F are the same as 20 through 2F but include column separators between each character in the field.
203 DISPLAY STATION OPERATION OVERVIEW

The following flowchart shows the sequence of operations from power on to either customer sign-on or online test.

- Power Switch: On
- Cursor in position D
- System Available indicator is off
- Line Sync
- Line Check
- Internal Check
- Storage Check
- Ready
- Power-on diagnostic (See 204)
- Status switch: Normal
- Controller running: Yes
 - Free key operation with controller (See 205)
 - Press the Shift key, Sys Req key, and Enter key
 - Establish contact with the system
- Controller running: No
 - Display station must be configured
- Online tests (See 206)
- Sign-on procedure (See 207)
204 POWER-ON DIAGNOSTIC

The following flowchart shows the steps of the internal diagnostics performed when the display station is powered on.

At the end of this diagnostic, more tests or sign-on can be done with the free key operation, online test, or sign-on procedure.

Power-On Diagnostic Flowchart (Part 1 of 3)
Power-On Diagnostic Flowchart (Part 2 of 3)

Status Switch

Test

Normal

A

Test

Status switch

Normal

Check I/O adapter with read scan instruction

End of diagnostic

No data should be present

Keyboard key pressed

Yes

Scan code is presented as 8 position binary pattern on screen

Station Address

Keyboard ID

11001001

Clicker sounds every 2 to 3 seconds

Move cursor to position C

Power on diagnostic switches control to main program

Cursor moved to position D

Enable poll recognition at cable adapter

End of power-on sequence

Line Sync*

Line Check

Internal Check

Storage Check

Ready

No data should be present

Ready light off

*The Line Sync light is on when the controller is polling.
Power-On Diagnostic Flowchart (Part 3 of 3)

The numbers indicate the sequence of major areas of adapters the power-on diagnostic checks.
205 FREE KEY OPERATION

A free key operation can be entered after the power-on diagnostic and before the customer sign-on. In free key operation, the display station communicates with the controller and permits key character displays; this checks alphabetic keys and most function keys. The following function keys, if pressed in free key mode, will return an error code 0099:

- Print
- Help
- Roll↑ (Up)
- Roll↓ (Down)
- Enter/Record Advance
- Test Request
- Attention
- Command function
- keys 1 through 24

Use online tests (206) to check these key operations.

![Flowchart diagram](image)

- Controller and display station polling complete
- Key pressed at display station
- Scan code sent to controller
- Controller interprets scan code for display character
- Controller sends character to display station
- Character is displayed

Continue free key mode

Online tests (See 206)

Sign-on procedure (See 207)
Online tests include work station exerciser routines that reside in the system. A Prime Option Menu is displayed that provides the selection of display verification, matrix printer verification, configuration data, and ERAP (error recording analysis procedures).

The display verification includes the Display Attributes test and the Displayable Characters test that check out the planar. The Specified Input Fields test checks out the controller. The Function Keys and Features test checks out the system and the features installed on the display station.

Online tests can be run on the work station at the same time other jobs are being run on the system. However, the work station must be in a signed off condition before online tests can be run on that work station. There may be various ways to terminate or sign off a job. To describe them here is beyond the scope of this manual as the methods used are system operating procedures. If you are not familiar with the system, use the procedure in the following flowchart:

1. Ensure that the Status switch is in the Normal position.
2. This display station used as the system console.
 - Yes
 - Wait for the IPL Sign on display.
 - Key in the user ID (any alphabetic character).
 - Key in the time (5 numeric characters).
 - No
 - Turn the Power switch off and then on.

1. Press the Load key on the system.
2. Check with the system operator before pressing the Load key.
 - Yes
 - Key in the ZERO (0) numeric character.
 - No
 - Hold the Shift key and press the Sys Req key.

1. Press the Enter key.
2. Hold the Shift key and press the Sys Req key.
 - Yes
 - Press the Enter key.
 - Press the Cmd key.
 - No
 - Contact the system operator for assistance (MSIPL, msg waiting, etc).

1. Error message displayed.
 - Yes
 - Press the Enter key.
 - No
 - Press the Enter key (Test Req key).

If any message or error code is displayed, verify that you have followed the steps correctly. If you have, contact the system operator for assistance.

Some of the reasons you may not get to the online tests are:
- The system is not powered on.
- The MSIPL has not been successfully completed.
- This station is not configured in the system.
- A message is waiting on the system console for this station and the operator has taken no action.
Online Tests Overview

Prime Option Menu

Select Option:

0. Terminate
1. Display Verification
2. Matrix Printer Verification
3. Configuration Data
4. ERAP
5. Link Test

Prime Option 1
Display Verification Menu

Prime Option 2
Matrix Printer Verification Menu

Prime Option 3
Configuration Data

Prime Option 4
ERAP

Prime Option 5
Link Test

See the IBM 5256 Printer Maintenance Information Manual, SY31-0462

ERAP Option 1
All

ERAP Option 7
Work Station Controller

ERAP Option 8
Display Stations

ERAP Option 9
Serial Matrix Printer

Display Verification Option 1
Display Attributes

Display Verification Option 2
Displayable Characters

Display Verification Option 3
Specified Input Fields

Display Verification Option 4
Function Keys and Features

See the maintenance documentation for the controller

See the maintenance documentation for the controller
Select the Display Verification Menu by:

a. Pressing the 1 key.

b. Pressing the Enter key.
Select the Display Attributes option by:

a. Pressing the 1 key.

b. Pressing the Enter key.

This display tests the attributes, Contrast control, and alignment of characters on the display screen.

How to use this display:

1. Turn the Contrast control fully clockwise and slowly decrease the Brightness control observing the pattern of H's that alternate in intensity.

2. Set the Brightness control for the best character image.

3. Press the Spacebar once to position the cursor on the right side of the display screen.

4. Key in one of the hexadecimal numbers shown on the left side of the display screen and press the Enter key. Observe the results that take place on the right side of the display screen. Compare these results to the attribute description on the left. An incorrect entry causes the entry to blink at high intensity. Repeat steps 3 and 4 for each of the remaining hexadecimal numbers.

Note: Attribute combinations are not shown on this display screen. Refer to 202 Attribute Characters for these combinations.

5. Return to the Display Verification Menu by:
 a. Pressing the C key.
 b. Pressing the Enter key.
Select Displayable Characters by:

a. Pressing the 2 key.

b. Pressing the Enter key.

This display provides a matrix of characters representing the character set of the keyboard.

Return to the Display Verification Menu by:

a. Pressing the C key.

b. Pressing the Enter key.
Select Specified Input Fields by:

a. Pressing the 3 key.
b. Pressing the Enter key.

This display tests the controller operations that are used by the display station. Fields of information are entered, read by the controller, and written back to the display screen next to the input field.

How to use this display:

1. Press the Spacebar once to position the cursor at the beginning of the first input field. The cursor moves from the field on the left to the field on the right when the input field information has been entered.

2. Enter information in the fields as described on the display screen. If an error is made, press the Error Reset key and correct the error.

Field Description:

Alpha or Numeric: Key in 5 alpha or numeric characters.

Mandatory Fill: This field must be filled with 5 alpha or numeric characters.

Alpha Only: Key in 5 alpha characters.

Field Exit Req: Key in 5 alpha or numeric characters and then press the Field Exit key.

Numeric Only: Key in 5 numeric characters.

Dup Key: Press the Dup key once. The key code of the Dup key will be shown until the screen is written by the controller. This field will duplicate the Numeric Only Field.

Signed Numeric: Key in 4 numeric characters. The cursor will remain under the last character keyed. Press the Field Exit key (positive) or the Field - key (negative).

Bypass: This field will be automatically bypassed and no entry will be required.

Upper Case: Key in 5 alpha characters.

Rt Adj Z Fill: Key in 1 alpha or numeric character. Press the Field Exit key. The character entered will be moved to the right of the field and the left 4 positions will be filled with zeros.

Rt Adj B Fill: Key in 1 alpha or numeric character. Press the Field Exit key. The character entered will be moved to the right of the field and the left 4 positions will be filled with blanks.

Auto Enter: Key in 5 alpha or numeric characters. As soon as the last character is entered, the controller reads all the input fields, passes the information to the system, and writes it back to the display screen next to the input fields.

3. Return to the Display Verification Menu by:

a. Pressing the C key.
b. Pressing the Enter key.
Select Function Keys and Features by:

a. Pressing the 4 key.

b. Pressing the Enter key.

This display tests the roll keys and command function keys.

How to use this display:

1. Press and hold the Upper Shift key with either the Roll+ or Roll- key.

2. Observe roll lines 1, 2, 3, and 4. Lines rolled off the display screen can be returned by pressing the Enter key.

3. Observe the intensity of the numbers on the display screen while performing step 4.

4. Press and hold the Cmd key and press command function key 1. Release both keys. Repeat until command function keys 1 through 12 have been pressed. Now press and hold the Cmd key and the Upper Shift key while pressing command function key 13. Release all three keys. Repeat until command function keys 13 through 24 have been pressed.

5. Repeat step 4 and a normal display of the numbers reappears.

6. Return to the Display Verification Menu by:
 a. Pressing the C key.
 b. Pressing the Enter key.

7. Return to the Prime Option Menu by:
 a. Pressing the C key.
 b. Pressing the Enter key.
Select Configuration Data by:

a. Pressing the 3 key.

b. Pressing the Enter key.

The descriptions for Configuration Data are:

1. Device Addr is the address of the controller.

2. Unit Addr is the stations assigned to the controller. The first digit is the port number and the second digit is the station address.

3. Logical ID is the name the system uses to address this station.

4. Return to the Prime Option Menu by:
 a. Pressing the C key.
 b. Pressing the Enter key.
Select the Error Recording Analysis Procedures (ERAP) Menu by:

a. Pressing the 4 key.

b. Pressing the Enter key.

Select Display Stations by:

a. Pressing the 8 key.

b. Pressing the Field Exit key.

Note: For a detailed ERAP explanation, refer to the system documentation. For display station problem identification, see 208 Error History Table in this section.

Select the desired device by:

a. Entering the ID of the device.

b. Pressing the Enter key.
If you only want to look at the error tables on the display screen:

a. Press the 1 key.

b. Press the Enter key.

If you want a printout of the error tables:

a. Press the 2 key.

b. Press the Enter key.
If you have selected the ALL option, the ERAP tables will be displayed for all devices on the line, one at a time. When the Error History Table for the first device is displayed and the Enter key is pressed, the I/O Counter Table for the second device will be displayed. This sequence will be repeated until each device Error History Table has been displayed.

If you have selected a specific device, these three tables may be redisplayed or reprinted (in order) as many times as desired by pressing the Enter key after each one has been displayed or printed.

Press the Enter key.
Press the Enter key.

For display station problem identification, see 208 Error History Table.

1. Return to the ERAP Menu by:
 a. Pressing the C key.
 b. Pressing the Enter key.

2. Return to the Prime Option Menu by:
 a. Pressing the 0 key. (Numeric 0)
 b. Pressing the Field Exit key.

3. Return to the Sign On Menu by:
 a. Pressing the C key.
 b. Pressing the Enter key.
207 SIGN-ON PROCEDURE

This is the procedure the operator and customer engineer use to sign-on for display station application use. It is also a diagnostic, in that all parts of the display station, customer twinaxial cable, controller, and system, must be operating correctly.

The initial program load (IPL) sign-on procedure must be completed before this procedure can be used.

- Press and hold the Shift key. Press Sys Req key, and Enter key
- Press the Shift key, Sys Req key, and Enter key
- Sys Req recognized at system
- System has enable instruction for display station
- 5251 ready for online use
- Customer sign-on
- Name, ID, etc
- End sign-on procedure
208 ERROR HISTORY TABLE

This is an example of an error history table. It describes the fields that are displayed on the display station or that can be printed on the printer. The example is printed on the side of this page so that it can be held on the display screen for easier problem identification.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Controller defined any bit present; see Controller/Host MAP</td>
</tr>
<tr>
<td>2</td>
<td>Device defined any error bit present; see Controller/Host MAP</td>
</tr>
<tr>
<td>3</td>
<td>CODE STATUS</td>
</tr>
<tr>
<td>4</td>
<td>ERROR</td>
</tr>
<tr>
<td>5</td>
<td>CONT</td>
</tr>
<tr>
<td>6</td>
<td>DEVI</td>
</tr>
<tr>
<td>7</td>
<td>DATE</td>
</tr>
<tr>
<td>8</td>
<td>TIME</td>
</tr>
</tbody>
</table>

Device Status: 0 = Keyboard scan code 1 = Keyboard scan code

Controller Status: 0 = Keyboard scan code 1 = Keyboard scan code

Diag aids: PM Tools & Test

Maintenance Procedures: 5251 MIM 1-81
209 ERROR CODES

Two types of error codes are described here. The display station error codes and operator error codes.

Display Station Error Codes

Errors that are relative to hardware failures or servicing of a display station are listed first. These errors are sensed at the controller by the status sent from the display station or as a result of either no response or a wrong response.

Errors are stored in the order they are received and are listed here in groups. Error code 01xx identifies a display station error.

Line/Interface Errors

0100 No Response

This error is reported when a display station is in session and no response to a poll occurs.

0101 Transmit Activity Check

This error is found at a controller during a poll or command being executed by the controller.

0103 Receive Parity Error

The controller reports this error when a frame is received and parity is wrong in response to a poll or command.

0104 Line Parity Check

The display station reports this error when a frame is received and parity is wrong when receiving a poll or command.

0106 Receive Length Check

The controller received the wrong number of bytes as a result of a poll or command.

0108 Power On Transition

This status bit is set when the display station is powered-on. The bit is reported as an error only if the display station was in session.

0109 Activate Command Failure

The controller checked the device status and found that the busy bit was not on after an activate command.

Keyboard Errors

0111 Scan Code Not Valid

The 8-bit code sent in the keyboard response frame does not translate to an assigned character or function as the controller specified.

Command/Function Errors

0120 Command Not Valid

This condition indicates that the poll/command sent to the display station is not a valid command or the device ID is not correct.

0121 Register Value Not Valid

This condition indicates that the address counter value is not in the user accessible limits.

0122 Storage or Input Queue Overrun

This condition occurs when more than 16 commands and associated data frames are sent, or when an attempt is made to store data beyond the user accessible storage.

0123 Null or Attribute Exception

No attribute was found or the address counter points to an attribute.

0124 Activate Not Valid

This condition indicates that the activate command sent to the display station is not valid.

0125 Undefined Exception Status

This condition indicates an undefined exception status is returned by the display station in response to a poll.

0149 Undefined Error Status

The controller found an error but cannot determine what caused the error.
Time-Out Errors

0190 Even/Odd Change In Status

Status sent to the controller from the display station has not changed in 225 ms after the controller has sent a positive acknowledgment and has received a nonbusy response.

0191 Busy

The controller finds that the busy bit has been on for a period greater than 400 ms.
This page is intentionally left blank.
Operator Error Codes

These errors are caused by pressing the wrong key, pressing a key that is not recognized by the controller, or entering the wrong data in a specified input field. Errors appear on the display screen with the format 00xx. These numbers will be blinking. To display the type of error, press the Help key.

If an error is displayed and no error condition is present, the most probable cause of the error is in the controller. Refer to the system documentation for the cause of the error.

However, you can check the error conditions with the Online Test (206). For example, the Specified Input Fields display (selected from the Display Verification Menu, option 3) contains specific data fields. You can intentionally make errors by entering the wrong data in a field and check the error condition that appears.

The following list of operator error codes shows the error code number and the description, followed by a description of the cause of the error.

For error recovery on all these errors, press the Error Reset key.

KBD-0000 HELP KEY NOT ALLOWED NOW

You have pressed the Help key; however, either no error code was displayed or the error was issued by a program that does not support the Help key.

KBD-0001 LAST KEYSTROKE NOT RECOGNIZED

The controller has not kept up with the rate you were entering information and the last character you entered was not recognized. This is a keyboard overrun.

KBD-0002 LAST KEYSTROKE NOT RECOGNIZED

The controller received a key code that is not valid and does not know what key you pressed.

KBD-0003 INVALID KEY FOLLOWED CMD KEY

You have pressed the Cmd key but the next key you pressed was not one of the command function keys.

KBD-0005 CURSOR IN PROTECTED AREA OF DISPLAY

You have attempted to enter data; however, the cursor is not in an input field on the display. Data cannot be entered in a protected area of the display.

Move the cursor to a field where the data can be entered and enter the data.

KBD-0006 INVALID KEY FOLLOWED SYS REQ KEY

You pressed the Sys Req key but did not follow it by pressing either the Enter key or the Error Reset key.

KBD-0007 MANDATORY ENTER FIELD—MUST ENTER DATA

There is at least one mandatory enter field on the display that you must enter data into before the display can be changed or moved.

KBD-0008 THIS FIELD REQUIRES ALPHABETIC CHARACTERS

The field you are now trying to enter data into will take only alphabetic data and you have pressed a nonalphabetic key.

Valid characters are A through Z, blank, comma, period, hyphen, and apostrophe. The Dup key can be used to duplicate these characters into this field.

KBD-0009 THIS FIELD REQUIRES NUMERIC CHARACTERS

The field you are now trying to enter data into will take only numeric data and you have pressed a nonnumeric key.

Valid characters are 0 through 9, blank, comma, period, plus, and minus. The Dup key can be used to duplicate these characters into this field.

KBD-0010 ONLY CHARACTERS 0 THROUGH 9 ALLOWED

The field you are now trying to enter data into will take only signed numeric data and you have pressed some other key.

Valid characters are 0 through 9 and the Dup key.
KBD-0011 INVALID KEY FOR SIGN POSITION OF FIELD

You have attempted to enter data into the last position of a signed numeric field.

KBD-0012 INSERT MODE—NO ROOM TO INSERT DATA

There is no room to insert data into this field. Either there is no more room in the field or the cursor is in the last position of the field.

Do not use Insert mode to change data or enter the last character into this field.

KBD-0013 INSERT MODE—ONLY DATA KEYS ALLOWED

You are now in Insert mode; however, you have pressed a nondata key. Only data keys are valid after pressing the Ins key.

To use Insert mode, press the Ins key and then a data key.

KBD-0014 MANDATORY FILL FIELD—MUST FILL TO EXIT

You have pressed a function key that would move the cursor out of this field; however, the cursor is not in the first or last position of this mandatory fill field. A mandatory fill field must be completely filled unless you exit the field from the first position in the field and no data is entered into the field.

Enter data to the end of the field or move the cursor to the start of the field and then use the Field −, Field +, or Field Exit key to blank all of the field.

KBD-0015 CHECK DIGIT ERROR

The number and the check digit you have just entered do not compare.

KBD-0016 FIELD MINUS KEY INVALID WITH THIS FIELD

You have pressed the Field − key, but the field you are in is not a signed numeric field.

KBD-0017 MANDATORY FILL FIELD—KEY USED INVALIDLY

You have pressed the Field −, Field +, or Field Exit key; however, the cursor is not in the first or last position of this mandatory fill field. A mandatory fill field must be completely filled unless you exit the field from the first position in the field and no data is entered into the field.

Enter data to the end of the field or move the cursor to the start of the field and then use the Field −, Field +, or Field Exit key to blank all of the field.

KBD-0018 INVALID KEY USED TO EXIT THIS FIELD

The cursor is in the last position of this field. You must use a nondata key (for example, the Field Exit key) to leave this field.

KBD-0019 DUP KEY NOT ALLOWED IN THIS FIELD

You have pressed the Dup key; however, the Dup key is not permitted in this field.

KBD-0020 ENTER KEY NOT ALLOWED IN THIS FIELD

You have pressed the Enter key; however, the Enter key is not permitted in this field. This is either a right adjust or a signed numeric field and you must exit the field before pressing Enter.

Continue by pressing the Field +, Field −, or the Field Exit key and then press the Enter key.

KBD-0021 MANDATORY ENTER FIELD—MUST ENTER DATA

The cursor is positioned in a mandatory enter field. A mandatory enter field must have data entered in the field before you can exit the field.

KBD-0022 STATUS OF FIELD NOT KNOWN

A system error has occurred. The status of the present field is not known. This error can occur when the Del or Ins key is pressed.

KBD-0027 KEY NOT DEFINED—KEY CANNOT BE USED

You pressed a key that is not used by this system.
KBD-0099 KEY NOT VALID AT THIS TIME

The key you pressed is not valid at this time. Either the program or utility would not recognize the key or you pressed a function key before pressing the Sys Req key.

Continue without using this key. If you have not yet used the system request functions, the Sys Req key is the only valid function key at this time.

Note: When this error occurs, the display station is in free key operation. Free key operation is described in reference 205.

210 DIAGNOSTIC DISPLAY LOCATIONS

Cursor Display Positions

Line 0
E
D

D
C
B
A
Line 25

Power-On Diagnostic Display

Status switch at the Test position; Keyboard key pressed

Scan Code
01234567
Break Code

Keyboard ID
0123xxxx

Station Address
xxxxx567 (421)

211 (not used)
MiniMAPs provide you with three levels of information. These levels are:

1. A figure showing the circuit line names and pin numbers.

2. A description of the circuit and how it can be tested.

3. A detailed guide that uses the yes and no path of questions that you can follow to isolate the failures.

This procedure is used to give you as much information as possible about the failing circuit.

It is possible the symptoms could change or disappear during probing on an intermittent problem.

All the diagrams use the same format.

Conditions After Power-On

Describes the normal condition of the circuit after Power-On.

Service Aids

Lists suggestions as to how the circuit may be tested and additional information about the circuit.

Tools

Suggests which tool to use.

SOURCE
(Driver)

SINK (Receiver)
(pull up resistor)

+/- Line Name Pin Number Cable Pin

Driver Cable Interposer

+5 (external load)
— Use this general procedure for the normal condition and then for the conditions listed in the service aids.

Is the signal present at the SOURCE (driver)?

Y N

Is the line at a Down level?

Y N

— Replace the SOURCE (driver).

The line could be either grounded or logically driven to the Down level by the SOURCE.
— Check for a ground.

Is the line grounded?

Y N

— Replace the SOURCE (driver).
— Replace the FRU that caused the ground.

Note: A pull up resistor at the SINK (receiver) will cause an up level at the SINK (receiver) if the cable is open.

Is the signal present at the SINK (receiver)?

Y N

— Repair or replace the interposer or cable.

Is this the last signal line to be checked?

Y N

— Go through the same procedure for any other lines called out by the MAP.
— Replace the SINK (receiver).

Suggested action for an intermittent problem:

• Analyze the suspected line; inspect all the connector contacts.

• Replacement sequence:
 — FRU A
 — FRU B

Note: The FRUs are listed in the order they should be replaced considering repair time, failure rate, and parts cost.

Suggested action for an intermittent problem:

• Analyze the suspected line; inspect all the connector contacts.

• Replacement sequence:
 — FRU A
 — FRU B

Note: The FRUs are listed in the order they should be replaced considering repair time, failure rate, and parts cost.
This page is intentionally left blank.
Preventive maintenance is not required on the display station.
This page is intentionally left blank.
Tools and test equipment needed to service the 5251 Display Station are:

1. CE general logic probe

2. Standard CE tool kit.

 Tools the customer engineer normally uses are in this kit.

3. Metric tool kit

 A kit of metric tools is available from Mechanicsburg by ordering bill of material 1749235.

 Note: In the display station, all metric screws are blue.

4. Fiber screwdriver

 A Fiber screwdriver is required for adjusting the cathode-ray tube. This screwdriver is available by ordering part 460811.
CE General Logic Probe (Part 453212)

The universal logic probe provides a visual indication of a line level. (Refer to the handbook that comes with probe.)

Indicator Lights

Up indicates a positive level (+). Down indicates a negative level (-).

A pulsing line is indicated by both lights being on.

Power Leads

+Red
-Black

CAUTION

Improper connection of the power leads might cause the probe to malfunction.

(For the following connection locations, see 103.)
Connect the black (-) lead to 1-G-D08 (ground).
Connect the other (+) lead to 1-G-D03.

A voltage difference of 4V to 12V is needed to power the probe. The black lead is always the most negative.

Test Terminal

The line being probed is connected to this terminal.

Note: In order to avoid improper indications, lead should not be placed near the high voltage transformer or the neck of the cathode-ray tube (150).

Ground Lead

CAUTION

Connect this lead to any signal ground near the probe point. Do not use frame ground.

Improper indications result if this lead is not connected to signal ground.

Note: In order to avoid improper indications, lead should not be placed near the high voltage transformer or the neck of the cathode-ray tube (150).

Logic Selector (TECHNOLOGY)

Selects the type of logic to be probed. Use the Multi setting for the display station.

Latch Switch

The Up position allows latching the Up light on a positive pulse.
The Down position allows latching the Down light on a negative pulse.
The None position resets the lights and prevents any latching action.
The None position is used for most probing in the display station.

Gate Ref Volts Switch

Set the Gate Ref Switch to ground (GND).

Gating Terminals

Not required for probing in the display station.
Introduction

The IBM 5251 Model 11 Display Station is a tabletop, online work station for data entry or interactive display functions. The display station contains a display screen for displaying data, a keyboard for data entry, a control unit that contains storage, and a cable adapter for communication with a controller.

SYSTEM CONFIGURATION

The following figure shows a configuration of a 5251 Model 11 Display Station attached to a controller at a system location. The number of display stations attached to this system is specified during system configuration for the customer's application. Display stations and printers can be attached in a point-to-point configuration, or can be attached in a series configuration by means of a Cable Thru feature on each work station in the configuration.

Display stations rely on a controller and a system. Data entered at the keyboard 1 is moved into the microprocessing unit, to the cable adapter, and serially shifted on the system cable to the controller 2. The controller receives the data, translates it 3 or sends it on to the system 4. The data is then returned to the display station to be displayed 5.
Data Flow

1. Data is entered at the keyboard.
2. Data is transferred to the controller.
3. Data is interpreted by the controller.
4. Data can be used by the system.
5. Data is returned to the 5251 for displaying.

The combined length of cable for each series must not exceed 1,524 meters (5,000 feet).

Two display stations connected in series with the Cable Thru feature.
DATA FLOW

The next figure shows the data flow of the display station. The following pages of this section describe functions in each of the major sections of the display station.

All the electronic logic of this display station is contained on a main planar board.
FUNCTIONAL UNITS

KEYBOARD AND KEYLOCK ADAPTER CONTROL

The keyboard and keylock adapter control is a group of registers controlling the interface and address functions of the I/O devices. These registers are controlled by the microprocessing unit (MPU) and loaded with data from the I/O devices. The data is then moved to the read/write storage by the MPU.

Keyboard/Keylock Adapter

- Status Switch
- Planar
- Keyboard
- Keylock Feature
- Command or Address Register
- Read-Only Storage
- I/O Data Register
- MPU
- Read/Write Storage
- Display Adapter
- CRT
- Cable Thru Feature
- Address Switches
- Power Supply
- Power Switch
- Brightness
- Contrast
- Line Sync
- Line Check
- Internal Check
- Storage Check
- Ready
Keyboard

The keyboard has three major parts; key modules, pad printed circuit board, and logic printed circuit board. Key modules, including the keytops, are the physical switches the operator presses. A pad printed circuit board below the key modules senses the pressed key by capacitive coupling. The logic printed circuit board, attached to the pad printed circuit board, contains the scan counter that converts the pressed key to a scan code. The scan code is loaded into an eight position buffer on the logic printed circuit board, while the keyboard signals the keyboard adapter control that a keystroke is available to send. This interface is by a strobe pulse, that moves the keystroke scan code to the keyboard adapter.

The scan code moves through the display station, to the controller. The controller interprets and converts the scan code to the character comparable to the type of keyboard. The keyboard identification specifies how the scan code is interpreted.

Typamatic keys reload the character buffer with a scan code for each scan code cycle. The typamatic key operation is at a rate of 10 to 15 repeated operations per second (600 ms first cycle time).

The Shift and Shiftlock keys generate a break code pulse. The break code indicates a change in shift status to the controller.

Clicker

A solenoid attached to the keyboard is activated after data is sent from the logic printed circuit board and is stored by the MPU. The sound of the solenoid is an aid to the operator because it indicates that the next key may be pressed. Also, an alarm function can be performed by this solenoid when the keyboard adapter pulses the solenoid, with a series of pulses.

Keyboard Identification

A four-bit ID code is sent to the controller on request. The ID code identifies the keyboard to the controller. The ID code is physically wired with jumpers on a plug board at the keyboard logic printed circuit board.
DISPLAY ADAPTER

The display adapter contains the circuits that control the video, horizontal, and vertical drive signals for the display assembly.
Buffering and Displaying

Data to be displayed is in read/write storage. The display adapter addresses the read/write storage area for this data, moves it to one of the two row buffers in the display adapter, converts the data into a dot pattern by a character generator, and shifts it into the video signal line to the cathode-ray tube. At the same time, the display adapter is determining the display position, converting the position into the vertical and horizontal drive signals for the cathode-ray tube. This routine is constantly repeated to refresh the display. The generated character matrix is a pattern of 16 scans by 8 dots wide.

The character window is 10 dots wide by 24 dots high. The character matrix is 8 dots wide by 16 dots high.

Hexadecimal Character '20'

Lowercase e

Scan Code

Cursor

Character

Underscore
CONTROL PANEL

The control panel has two display controls. The Brightness control determines the light difference between the displayed data and the remainder of the display screen. The Contrast control determines the brightness of the field intensified by the intensity field attribute. Both controls determine the voltage level of the video signal at the main planar.

Contrast 0 to 0.6V*

Brightness 0 to 3V

*0 to 0.6V is added to the Brightness level voltage.
DISPLAY SCREEN

Field Attributes

Field attributes control how data in that field will be displayed on the display screen. They control display blinking, intensity, underscoring, column separation, reverse image, and no display. The application program controls field attributes. After power on, field attributes will default to normal intensity, no blinking, no underscoring, no column separators, and no reverse image when the screen is refreshed. Field attributes occupy one character space position and it is the first character of the field.

Display Screen Indicators

These indicators appear on the display screen. A bright square indicates the on condition and a dash indicates the off condition. The controller controls the indicators, except the System Available indicator. Power-on resets all indicators.

The display screen indicators, when on, indicate the following:

- **System Available** – indicates that the display station has received a poll or a command. This indicator will turn off if the display station does not receive a poll or command for 200 ms.

- **Message Waiting** – indicates that a message is waiting for the operator.

- **Keyboard Shift** – indicates that the display station is in upper (numeric) keyboard shift.

- **Insert Mode** – indicates that the key has started an operation.

- **Input Inhibited** – indicates that the system cannot process a keyboard scan code.

A cursor, controlled by the MPU or controller, indicates a position on the display surface, usually where the next keyboard character will be displayed.

CABLE ADAPTER

The cable adapter is the hardware (drivers, receivers, and logic) on the planar board that handles the incoming and outgoing communications between the controller and the display station.

Note: A twinaxial cable connects the display station to the controller. See the Customer Twinaxial Cable section in the maintenance section of this manual, and the Cable Thru description in the Features section.

The 16-Bit Frame

Frame Concept

Communications between the controller and the cable adapter at the display station are carried by 16-bit frames that are sent to and from the controller on an as-required basis. The cable carries no signal between frames.

To understand what is to follow, it is necessary to explain briefly the phase encoding used for sending data on the system cable. The data is phase encoded so that a transition occurs during each bit time (a 0 to 1 transition for a 0 and a 1 to 0 transition for a 1). Because the transition divides the bit into 2 parts, the term **half bit** will be used in the explanation that follows. (The data sent on the system cable is a 4 level signal. Refer to the system documentation for a further explanation of the phase encoding process.)

When information is to be sent on the cable, a group of five 1 bits (10101 101010 half bits) is sent to establish bit synchronization. Immediately after the 1 bits, a group of 3 half bit 1’s and 3 half bit 0’s is sent to establish frame synchronization. After the frame synchronization half bits, the frame is sent, starting with the sync bit.

The transmission rate is 1.0 MHz (16 microseconds per frame). The frame bit assignment during transmit and receive is shown in the following diagram:
Transmission Sequences

The 16-bit frame carries 13 bits of information in each direction. The fill bits, always 000, serve as a timing delay. The parity bit makes the active bits in the frame even. The display station decodes the address bits and responds to a specific address. The display station sends a response frame that contains the display station address. A display station address of 111 indicates an end of message and causes a line turnaround. At the work station, line turnaround extends from the time the last bit of a frame (bit 0) is received until the same work station starts sending bit and frame synchronization patterns. Bits 7 through 14 are the data or commands used throughout the display station and storage. Bit 15 (always on) is the synchronization bit for both the controller and the display station.
Commands

Note: The binary number in parentheses next to the command is the bits 10 through 14 of the command frame.

Clear (10010): clears the addressed feature or display station starting at the present value of the address counter to the present value of the reference counter.

EOQ (00010): designates the end of the command queue. Bits 8 and 9 of the command frame must be on (1). Only polls will be accepted until a not-busy status is returned to the controller in response to a poll.

Insert Character (00011): is followed by one data frame containing a character to be inserted at the address counter location.

Load Address Counter (10101): is followed by two data words and causes bits 7 through 14 of the data words to be written in the address counter.

Load Cursor Register (10111): is similar to the load address counter command for the cursor register.

Load Reference Counter (00111): is followed by two data words and loads the reference counter similarly to the load address counter command.

Move Data (00110): moves data between limits set by the value of the address counter and the value of the cursor register.

Poll (10000): is sent from the controller to the display station and starts the transmission of one or two status words per poll. The poll command acknowledges and resets a line parity error from the display station. It also acknowledges the receiving of the last status transmission by the display station.

Read Between Limits (11010): causes data to be returned from an area in read/write storage within the limits of the address counter register and the reference counter register.

Read Data (01000): starts the transmission of one byte of data from the display station to the controller.

Read Registers (11100): starts the transmission of six data words containing the contents of the three control registers.

Read to End of Line (01010): requests a response from the display station with one display line of data from the read/write storage.

Reset (00010): resetting can be selected by a specific address feature or by sending the display station address for a complete station reset. Attributes are set to normal, the cursor is moved to the upper left corner.

Search Next Attribute (00100): causes the display station to search the read/write storage for the next attribute.

Search Next Null (10100): causes the display station to search the read/write storage for the next null.

Set Mode (10011): causes the display station to receive one word that is specified as a mode control. This command must be sent before the 5251 makes any multiframe response.

Write Control Data (00101): controls the display screen during error conditions, conditionally resets the exception status, controls the keyboard clicker during input inhibit, and controls the audible alarm.

Write Data and Load Cursor (10001): is followed by 1 to 14 data frames. The cursor register is updated to the new value in the address counter.

Write Immediate Data (11101): causes the display station to store all the data the controller sends. If the storage area is exceeded, a storage overrun error occurs.

1Commands that must be followed by either a read activate or write activate command.
Response Frame

A response frame is returned to the controller after the display station is polled following a power-on reset. The controller receives the first response frame and returns a set mode command.

A two-frame response is made to every poll command after the set mode command. The second frame contains a station address of all 1’s (indicating the last message frame) and the scan code in bits 7 through 14. The first frame in the response contains the status information as follows:

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 8</th>
<th>Bit 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = Display station not busy</td>
<td>0 = No line parity error found</td>
<td>Indicates there is feature data or status from an I/O device to send to the controller.</td>
</tr>
<tr>
<td>1 = Display station busy</td>
<td>1 = Line parity error found</td>
<td></td>
</tr>
</tbody>
</table>

Bits 11, 12, and 13:
These three bits are encoded to indicate the exception status as follows:

<table>
<thead>
<tr>
<th>Bit 11</th>
<th>Bit 12</th>
<th>Bit 13</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>No exception status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1</td>
<td>Null or attribute error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0</td>
<td>Activate not valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>Command or device ID not valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1</td>
<td>Input queue or storage overrun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0</td>
<td>Register value not valid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1</td>
<td>Power on transition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bit 14:
By analyzing bit 14, the controller can determine if the information in the response frame received is the same as the previous response frame, or if the information has changed. Bit 14 is set to zero (0) after power on. Any change in the response frame changes bit 14 from its previous condition.
Interface

The following figure shows action and synchronization between a display station and controller. All exchanges are started from the controller by a command. The flow is in two directions, one direction at a time.

Controller 5251

Poll for Status

- The controller initiates a poll sequence.
- Base status of busy or not busy is returned to the controller.
- Base status is followed by a key scan code frame after a set mode command. When the display station has no scan code to move to the controller, zeros will be transferred.
- If a keyboard overrun occurs, a scan code of all 1's will be returned.
- The controller translates the scan code; a ‘write data and load cursor’ command returns the scan code to the display station.

Write Data 5251

- A write operation is initiated and handled the same as a read operation, the difference being that the transferred data is from the controller to the display station.

Controller 5251

Read Data

- The controller initiates a read operation.
- The display station receives a poll frame, and responds with a busy base status and the automatic keyboard status frame. The display station, at this time, is moving data queues in preparation for the next operation.
- The controller continues to poll the display station until it responds with a base status of not busy.
- The controller issues an activate command, to start the read operation.
- The display station shifts the requested data onto the twinaxial line to the controller.

Notes:
1. The frame contains synchronization and instructions to switch the display station or controller to Receive mode.
2. The frame contains an end-of-message delimiter: station ID or all ones (111).

← Arrow indicates the exchange of one 16-bit frame in the indicated direction.
Data Transfer

During data transfer, the cable adapter has three major functions:

1. To respond to polling.
2. To shift data to the customer twinaxial cable for transmission to the controller.
3. To receive data from the cable and decode the data for either or both of the following:
 - Commands
 - Transferring data to read/write storage

The cable adapter finds the display station address on the first frame of a message transmitted. The address for a single online display station is 000. As this address is received and recognized, and a response is returned, polling is complete.

Data to be transmitted to the controller is moved from read/write storage, through a serializer/deserializer (serdes) register, and to the customer twinaxial cable under control of the cable adapter.

Received data is moved into the serdes until the sync bit is in the high-order position. The serdes is stopped, permitting time for the data to be moved to read/write storage.
The MPU (microprocessing unit) is the control center of the display station. The MPU receives data from the keyboard and from input/output controls. The MPU controls the displaying of data, and the flow of information to and from the controller. It is a processing unit that is microprogram controlled and performs internal machine operations such as testing and comparing data, checking for machine errors, operating the I/O devices, and storing and getting data from the read/write storage.

The major parts of the MPU are read/write and read-only storage, storage registers, work registers, and an arithmetic and logic unit (ALU).

Read/Write Storage

Read/write storage is divided into two major parts: a display regen area and an I/O device control area. The I/O device control area is also divided into parts for display control, cable adapter control, and microprocessing unit work space.

Internal Processing Queue

Each display station keeps a work area large enough to hold up to 16 frames of commands or associated data. Commands and associated data are executed from this queue on a first-in, first-out method.
Control Registers

Each display station contains three registers that the controller can access. Each register is an address pointer. The registers are named the cursor, address counter, and the reference counter.

The ‘cursor’ register controls the location of the cursor on the display screen. The ‘address counter’ register is used in reading data from, as well as writing data. The ‘reference counter’ register is used for moving data from one display area to another.
KEYLOCK

A Keylock feature is available on the display station for security of data.

When the keylock is in the locked position with the Status switch at the Normal position, the display screen is blank except for the system indicators on the right side of the screen. Data displayed at the time the keylock is changed to the locked position is controlled by the application program. Keyboard data entered while the keylock is in the locked position will not be displayed by the display station.

The Keylock feature can be in either the locked or unlocked position and the power-on diagnostic still functions the same.

Keylock

![Keylock Diagram]
CABLE THRU

If more than one work station (either a display station or a printer) is connected in series on the customer twinaxial cable, this feature must be installed on each of those work stations to supply connectors for the customer twinaxial cable to the next work station in the series. This feature also has four switches. Three switches permit a unique address for the work station. The fourth switch permits termination for the work station when this is the last station in the series. A maximum of seven work stations can be connected in this series. Addresses range from 000 to 110. The last work station in a series does not require the Cable Thru feature. (The basic machine has a built-in termination and requires a station address of 000.)

See the Customer Twinaxial Cable section in the maintenance section of this manual.

Note: Do not leave the twinaxial cable disconnected when servicing the display station with the Cable Thru feature. When this cable is disconnected, other devices are taken offline. Quick-disconnect adaptor (IBM part 7362230 or Amphenol part 82-5588 or equivalent) can be used to connect the twinaxial incoming and outgoing cables bypassing the display station.

<table>
<thead>
<tr>
<th>Address</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

0 = Off, 1 = On
Appendix A. Display Station Setup Instructions

The display station is shipped from the factory fully tested and adjusted. If the display station is still in the shipping container, follow the unpacking instructions fastened to the outside of the container.

This setup procedure should be used after the display station is unpacked and located where it is to be used or whenever it is disconnected and relocated.

DANGER
The display station has a weight of approximately 34 kilograms (75 pounds). NEVER LIFT IT BY YOURSELF.

If the display station has the Keylock feature, a small envelope containing 2 keys is taped to the machine. Place the keys in a safe place; you will need one of them later in these setup instructions.

Before you start the setup instructions, ensure that a grounded power outlet is available; US 115 Vac; for World Trade, see the installation planning representative.

If problems occur during these instructions, go to the Start of Call MAP.

The setup instructions are written in two sections:

- Section 1 can be completed without connecting the display station to the system.
- Section 2 describes how to connect the display station to the system.

Setup Instructions - Section 1

1. Remove the front access panel cover.
2. Plug the keyboard cable into the keyboard cable connector.
3. Verify that the Power switch is in the Off position.
4. Verify that the Status switch is in the Normal position.
5. Plug the power cord into the grounded power outlet.
6. If the display station has the Keylock feature, insert the key and turn it clockwise to the Unlock position.
7. Set the Power switch to the On position and turn the Brightness control full clockwise.
8. When the display station warms up (about 20 to 30 seconds), slowly turn the Brightness control counterclockwise to a comfortable brightness.

The following conditions indicate that the display station is working properly:

- The cursor is in the upper right corner.
- A dash line is on the display screen to the left of all display screen indicator labels.
- The Ready light is on and all other lights are off.
Setup Instructions - Section 2

Before you start connecting the display station to the system, ensure that the following is complete:

- The system operator knows that you are going to connect the display station to the system.
- The system cable (with a proper connector) is installed and ready to use.
- The system cable is connected to the system.
- If the display station is to be connected to a preceding display station or printer (Cable Thru feature) the Terminator switch on the preceding work station must be set to position 2 (171).

9. Set the Power switch to the Off position.

10. To connect the system cable:
 a. Insert the system cable into the cable tunnel 1 opening on the back of the machine, then push the cable into the opening until the cable connector appears at the front.
 b. From the front, hold the cable connector and pull enough cable out of the cable tunnel to reach across the keyboard cable to socket 1.

 ![Diagram of system cable connection](image)

 Connect the system cable to the socket 1 connector.

 If your display station has the Cable Thru feature go to step 11. If not, go to step 12.
11. Contact the system console operator for the address of this display station. Set the Address switches and the Terminator switch.

Use this table to determine the setting of the three Address switches:

<table>
<thead>
<tr>
<th>Address Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

If the address is:

Set the Terminator switch to position 1:

Position 1 stops the communications signal and completes the electrical circuit. Position 1 is the required position when the display station is the last workstation on the line.

Position 2 allows communications signals to flow through the display station to the next workstation.

12. Replace the front access panel cover.

13. Set the Power switch to the On position.

The following conditions indicate that the display station is working with the controller:

a. The cursor is in the upper left corner.
b. The System Available indicator is on.
c. The Line Sync light is on.
d. The Ready light is on.
e. The three check lights are off.

If the display station has the condition as described in step 8, the system may not be powered up, running, or functioning properly, or your display station may not be in session.

14. Press any numeric or alphabetic keys and listen for the clicker sound as each key is pressed. Observe the cursor move as each character is displayed.

15. If the keylock feature is installed on the display station, give both keys to the customer.

16. Setup is complete.
This page is intentionally left blank.
Appendix B. Keyboard Functions

US keyboard as shown. World Trade keyboard will be different, but the functions will be similar.

System Request/Attention Key

The upper shift function of the Sys Req/Attn key is used for signing onto the system.

The lower shift function of the Sys Req/Attn key sends an attention command to the system.

An attention command can:

- Temporarily stop the present display station activity and allow selection of a new activity.
- Notify the system that the display station is ready to select a new program or activity.
- Request that the keyboard be unlocked (after normal error recovery action has failed) so that data entry can continue.

Command Key

Pressing the Cmd key directs the system to disregard the normal function of the top row of keys and instead perform the function assigned to that key in the program. A keyboard template indicates to the operator the command functions assigned to the top row of keys.

Delete/Insert Key

The upper shift function of this key is used to delete data from the display screen. When the Delete key is pressed, the character above the cursor is deleted and all characters to the right of the cursor (in the same field) are shifted to the left one position.

The lower shift function of this key allows a character or characters to be inserted into an existing input field on the screen without destroying data already there. New characters are inserted at the cursor position and the data above and to the right of the cursor is shifted to the right one position for each character inserted. The cursor also shifts to the right one position.

Erase Input/Home Key

The upper shift function of this key erases data in all input fields that have been modified. When this key is pressed in a program formatted display, all fields that have had data entered are erased. The cursor moves to the home position on the screen.

The lower shift function of this key moves the cursor to the home position of the formatted screen. It moves the cursor to the first input position on the upper left corner of the display screen in free key mode.
Print Key
This key causes a print request to be sent to the system. The system program selects the printer that will be used.

Help Key
The help key is used to display a description of a current error condition or when further assistance from the system is needed.

Roll Keys
The roll keys move the information on the display screen either up or down.

Horizontal Movement Keys
These keys cause the cursor to move one position in the direction indicated by the arrow on the key.

Error Reset Key
This key will unlock the keyboard when it was locked because of an error condition. It will also reset the insert, system request, and command modes.

Enter/Record Advance Key
This key indicates to the system that the entered data is ready to be sent.

Field Exit Key
This key is used to exit from input fields. When this key is pressed, blanks are inserted from the cursor to the end of the field. When this key is pressed in a right-adjust field, the data to the left of the cursor is shifted to the right. The vacated positions are filled with zeros or blanks as specified by the format. This key must be used to exit from input fields that are specified by the program as right adjust or field exit required fields.

Field + Key
This key has the same function as the Field Exit key and is for your convenience when using the 10-key numeric pad.

Field - Key
This key functions the same as the Field Exit key except that it inserts a minus (-) sign in the last position of the input field. An error is displayed if you press this key in a field not programmed to accept negative numbers.

Dup Key
This key, in a field programmed to allow duplication, places an asterisk with an overscore (i) in the cursor position and all the following positions of that field. This special symbol represents a request to the program to duplicate the information from the same field in the previous record or from another information source.

Character Backspace Key
This key causes the cursor to move back to the previous enterable character position (not necessarily the last position).

Field Advance Key
This key causes the cursor to move to the first position of the next established field.

Field Backspace Key
This key causes the cursor to move to the first character position of the field in which it is located. If the cursor is located in the first character position of a field when this key is pressed, it moves to the first character position of the preceding field.
New Line Key

This key causes the cursor to move to the first character position of the first input field of the next line of the display screen. If the cursor is on the last input line of the display screen when this key is pressed, it moves to the first input position at the top of the display screen.

Shift Key

When this key is pressed and held down, the alphabetic keys (A through Z) are entered as uppercase letter, the special characters identified on the tops of the numeric and symbol keys can be entered, and the function control keys on the left side of the keyboard can perform the function shown on the top half of the key.

Shift Lock Key

This key locks the keyboard in upper shift. The keyboard can be returned to lower shift by pressing either of the shift keys.

Spacebar

This key moves the cursor to the right one position at a time. As the cursor moves, the data located above the cursor is destroyed and a blank character is entered.
This page is intentionally left blank.
access panel switches
 conditions after power on 1-12
 mini MAPs 1-12
 troubleshooting 1-12
address counter register 4-16
adjustments
 brightness control 1-43
 B+ 1-44
 centering 1-44
 contrast control 1-43
 display assembly 1-43
 flyplate 1-20
 focus 1-44
 gain 1-43
 hold 1-43
 horizontal 1-43
 linearity 1-43
 linearity phase 1-43
 ring magnets 1-44
 vertical 1-43
 video 1-43
 width 1-43
 yoke 1-44
ALARM 4-5
attention key B-1

bit synchronization 4-9
brightness control
 adjustment 1-43
 conditions after power on 1-8
 mini MAPs 1-8
 purpose 4-8
 service aids 1-8
 troubleshooting 1-8
buffering theory 4-7
B+ adjustment 1-44

CE probe connections
 access panel switch 1-12
 brightness control 1-8
 contrast control 1-8
 control panel LEDs 1-10
 control panel switch 1-12
 display signal/planar power cable 1-46
keyboard
 cable 1-30
 clicker 1-28
 ID 1-22
 POR 1-32
 scan codes 1-24
 strobe 1-26
 voltage 1-26
Keylock 1-14
CE tool kit 3-1
centering adjustment 1-44
character backspace key B-2
character matrix 4-7
characters, field attribute 1-62
circuit breaker location 1-54
clear command 4-11
clicker theory 4-5
command error codes 1-82
command key B-1
commands
 clear 4-11
 EOQ 4-11
 insert character 4-11
 load address counter 4-11
 load cursor 4-11
 load cursor register 4-11
 load reference counter 4-11
 move data 4-11
 poll 4-11
 read activate 4-11
 read between limits 4-11
 read data 4-11
 read registers 4-11
 read to end of line 4-11
 reset 4-11
 search next attribute 4-11
 search next null 4-11
 set mode 4-11
 write activate 4-11
 write control data 4-11
 write data and load cursor 4-11
 write data and load cursor 4-11
 write immediate data 4-11
conditions after power on
access panel switch 1-12
brightness control 1-8
contrast control 1-8
control panel LEDs 1-10
control panel switch 1-12
display signal/planar power cable 1-46
keyboard
cable 1-30
clicker 1-28
ID 1-22
POR 1-32
scan codes 1-24
strobe 1-26
voltage 1-26
configuration data 1-75
configuration, display system 4-1
contrast control
adjustment 1-43
conditions after power on 1-8
mini MAPs 1-8
purpose 4-8
service aids 1-8
troubleshooting 1-8
control panel
address switch wiring 1-7
brightness control wiring 1-7
contrast control wiring 1-7
keylock feature wiring 1-7
LEDs 1-7
conditions after power on 1-10
replacement 1-7
service aids 1-10
troubleshooting 1-10
wiring 1-7
mini MAPs 1-10
power switch wiring 1-7
switches
conditions after power on 1-12
mini MAPs 1-12
service aids 1-12
troubleshooting 1-12
control registers
address counter 4-16
cursor 4-16
reference counter 4-16
covers, display station 1-6
covers, keyboard 1-6
cursor 4-9
cursor locations 1-60
cursor register 4-16
customer twinaxial cable 1-51
display assembly
adjustments 1-43
B+ 1-44
centering 1-44
focus 1-44
horizontal 1-43
horizontal centering 1-44
horizontal width 1-43
vertical 1-43
vertical height 1-43
vertical hold 1-43
vertical linearity phase 1-43
vertical linearity 1-43
video 1-43
video brightness limiter 1-43
video brightness control 1-43
video contrast 1-43
video gain 1-43
yoke 1-44
locations
B type 1-38
E type 1-39
M type 1-40
V type 1-41
removal and replacement 1-42
display attributes 1-71
display screen examples 1-48
display screen indicators
input inhibit 4-9
insert mode 4-9
keyboard shift 4-9
message waiting 4-9
system available 4-9
display signal/planar power cable
conditions after power on 1-46
mini-MAPs 1-46
service aids 1-46
troubleshooting aids 1-46
display station
addresses 5-2
configuration 1-52
covers 1-6
data flow 4-3
description 4-1
operation overview 1-63
setup A-1
unpacking A-1
display system configuration 4-1
display verification menu 1-70
displayable characters 1-70
displaying, theory 4-7
Dup key B-2
half bits 4-9
height adjustment 1-43
help key B-2
hold adjustment 1-43
home key B-1
horizontal adjustment 1-43
horizontal movement key B-2

I/O counter table 1-78
indicators
input inhibited 4-9
insert mode 4-9
keyboard shift 4-9
message waiting 4-9
system available 4-9
information exchange diagram 4-13
input inhibited 4-9
insert character command 4-11
insert key B-1
insert mode 4-9
internal check LED 1-59

jumper block, keyboard ID 1-17
jumper, Cable Thru feature 1-51
jumper, raster check 1-45
jumper, tawnial cable 1-51
jumpers, main planar board 1-5

key module removal and replacement 1-18
keyboard
adapter control theory 4-4
arrangements
Katakana layout 1-35
standard layout 1-35
template 1-35
cable
conditions after power on 1-30
mini MAP 1-30
service aids 1-30
troubleshooting 1-30

cleaning 1-18

clicker
conditions after power on 1-28
mini MAP 1-28
service aids 1-28
troubleshooting 1-28

covers 1-6
disassembly 1-18

features
Cable Thru 5-2
keylock 5-1
fiber screwdriver 3-1
field advance key B-2
field attributes displayed 1-60
field attribute characters 1-62
field attributes purpose 4-9
field backspace key B-2
field exit key B-2
field + key B-2
field - key B-2
flyplate removal and replacement 1-20
focus adjustment 1-44
frame
bit synchronization 4-9
concept 4-9
half bits 4-9
synchronization 4-9
transmission rate 4-9
transmission sequences 4-10
16 bit 4-9
free key mode 1-67
function error codes 1-82
function keys and features 1-74
gain adjustment 1-43
keyboard (continued)
error codes 1-82
flyplate removal and replacement 1-20
functions
 attention key B-1
 character Bksp key B-2
 command key B-1
 delete key B-1
 Duplicate key B-2
 enter key B-2
 erase input key B-1
 error reset key B-2
 field advance key B-2
 field Bksp key B-2
 field exit key B-2
 field + key B-2
 field - key B-2
 help key B-2
 home key B-1
 horizontal movement key B-2
 insert key B-1
 new line key B-3
 print key B-2
 record advance key B-2
 roll keys B-2
 shift key B-3
 shift lock key B-3
 spacebar B-3
 system request key B-1
ID
 condition after power on 1-22
 mini MAP 1-22
 service aids 1-22
 troubleshooting 1-22
keyboard identification
 jumpers 1-34
 theory 4-5
key module 1-18
 installation 1-18
 removal 1-18
locations
 access panel connector 1-17
 buffer 1-17
 connector B 1-7
 ID jumper block 1-17
 internal cable 1-17
 keyboard assembly 1-17
 logic PC board 1-17
 pad PC board 1-17
 signal cable 1-17
POR
 conditions after power on 1-32
 mini MAP 1-32
 service aids 1-32
 troubleshooting 1-32
removal and replacement 1-18
scan code tables 1-36
scan codes
 conditions after power on 1-22
 mini MAP 1-24
 service aids 1-24
 troubleshooting 1-24
keyboard (continued)
shift 4-9
spacebar 1-20
spacebar installation and removal 1-20
strobe
 conditions after power on 1-26
 mini MAP 1-26
 service aids 1-26
 troubleshooting 1-26
template 1-35
theory 4-5
voltage
 conditions after power on 1-26
 mini MAP 1-26
 service aids 1-26
 troubleshooting 1-26
keylock
 adapter control theory 4-4
 feature 5-1
 location 1-14
 mini MAP 1-14
 planar board connection 1-14
 switch wiring 1-14
keys
 character backspace B-2
 command B-1
 dup B-2
 enter B-2
 error reset B-2
 field advance B-2
 field backspace B-2
 field exit B-2
 field + B-2
 field - B-2
 help B-2
 home B-1
 horizontal movement B-2
 new line B-3
 print B-2
 record advance B-2
 roll B-2
 shift B-3
 shift lock B-3
 spacebar B-3

LED
 internal check 1-59
 line check 1-59
 line sync 1-59
 ready 1-59
 storage check 1-59
 line check LED 1-59
 line cord removal and replacement 1-58
 line filter
 location 1-54
 removal and replacement 1-58
 line interface error codes 1-82
 line sync LED 1-59
 line 25 description 1-61
 linearity adjustment 1-43
 linearity phase adjustment 1-43
load address counter command 4-11
load cursor command 4-11
load cursor register command 4-11
load reference counter command 4-11
locations
access panel cover 1-1
address switches 1-1
bezel 1-1
brightness control 1-1
Cable Thru feature connector 1-1
contrast control 1-1
control panel 1-1
control panel LEDs 1-1
display assembly 1-38
display screen 1-1
display screen indicators 1-1
display station covers 1-6
keyboard 1-1
keyboard cable connector 1-1
keylock 1-1
line filter 1-2, 1-54
main planar board 1-2, 1-3
power supply 1-2, 1-54
power switch 1-1
status switch 1-1
system cable connector 1-1
terminator switch 1-1
low voltage connector location 1-54

main planar board locations
cards 1-3
cross connectors 1-3
message waiting 4-9
metric tool kit 3-1
microprocessing unit
internal process queue 4-15
read/write storage 4-15
mini MAPs
access panel switches 1-12
brightness control 1-8
contrast control 1-8
control panel LEDs 1-10
cross connectors 1-3
display signal/planar power cable 1-46
keyboard
cable 1-30
clacker 1-28
ID 1-22
POR 1-32
scan codes 1-24
strobe 1-26
voltage 1-26
keylock 1-14

move data command 4-11
MPU (see microprocessing unit) 4-15

online test
configuration data 1-75
display attributes 1-71
display verification menu 1-70
displayable characters 1-72
entry procedure 1-68
ERAP menu 1-76
ERAP procedure 1-76
error counter table 1-78
error history table 1-79, 1-81
function keys and features 1-74
I/O counter table 1-78
overview 1-69
prime option menu 1-69
specified input fields 1-73
operator error codes 1-83

PC board location 1-54
planar board
cable connector 1-3
cards 1-3
cross connectors 1-3
display signal/planar power cable 1-3
interposer 1-3
jumper s 1-5
keyboard cable 1-3
keylock cable 1-3
part numbers 1-4
pivot 1-3
station address switches 1-3
PM 2-1
poll command 4-11
power on diagnostic 1-64
power supply
chart, world trade 1-57
chart, 115 volt 1-56
locations
fan 1-54
fuse 1-54
heat sink 1-54
line filter 1-54
power supply (continued)
locations (continued)
low voltage connector 1-54
PC board 1-54
transformer 1-54
+5 v test point 1-54
-5 v test point 1-54
+8.5 v test point 1-54
removal and replacement 1-55
ripple level check 1-55

new line key B-3

Index 5251 MIM X-5
Appendices Index
preventive maintenance 2-1
prime option menu 1-69
print key B-2
printed circuit board location 1-54
protector, station 1-53

raster 1-45
raster check 1-46
read activate command 4-11
read between limits command 4-11
read data command 4-11
read registers command 4-11
read to end of line command 4-11
ready LED 1-59
record advance key B-2
reference counter register 4-16
removals
 display assembly 1-42
 display station covers 1-6
 flyplate 1-20
 key module 1-18
 keyboard 1-18
 keyboard covers 1-6
 line cord 1-58
 line filter 1-58
 power supply 1-55
 spacebar 1-20
replacements
 display assembly 1-42
 flyplate 1-20
 key module 1-18
 keyboard 1-18
 keyboard covers 1-6
 line cord 1-58
 line filter 1-58
 power supply 1-55
 spacebar 1-20
reset command 4-11
response frame 4-12
response frame bits 4-12
response frame layout 4-12
ring magnets adjustment 1-44
ripple level check 1-55
roll keys B-2

safety
 CE safety practices vii
 specific dangers vi
scan code
 interpretation 4-5
 operation 4-5
 tables 1-36
search next attribute command 4-11
search next null command 4-11
service aids
 access panel switches 1-12
 brightness control 1-8
 contrast control 1-8
 control panel LEDs 1-10
 control panel switches 1-12
display signal/planar power cable 1-46
 keyboard
 cable 1-30
 clicker 1-28
 ID 1-22
 POR 1-32
 scan codes 1-24
 strobe 1-26
 voltage 1-26
set mode command 4-11
setup A-1
shift key B-3
shift lock key B-3
sign on procedure 1-80
spacebar key B-3
spacebar removal and replacement 1-20
specified input fields 1-73
station protector 1-53
status switch 1-60
storage check LED 1-60
strobe pulse operation 4-5
system available 4-9
system request key B-1
template, keyboard 1-35
terminator switch 1-51
test points 1-54
timeout error codes 1-82
tools and test
 CE logic probe 3-2
 CE tool kit 3-1
 fiber screwdriver 3-1
 metric tool kit 3-1
 transmission rate 4-9
 transmission sequences 4-10
troubleshooting
 access panel switches 1-12
 aids 1-86
 brightness control 1-8
 contrast control 1-8
 control panel LEDs 1-10
 control panel switches 1-12
 display signal/planar power cable 1-46
 keyboard
 cable 1-30
 clicker 1-28
 ID 1-22
 POR 1-32
 scan codes 1-24
 strobe 1-26
 voltage 1-26
 keylock 1-14
 twinaxial cable 5-2
 twinaxial cable and terminator switch 1-51
 twinaxial cable jumper 1-51
 typematic keys operation 4-5

unpacking A-1

vertical adjustment 1-43
video adjustment 1-43
voltage level check 1-55

width adjustment 1-43
write activate command 4-11
write control data command 4-11
write data and load cursor command 4-11
write immediate data command 4-11

yoke adjustment 1-44
This page is intentionally left blank.
READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

<table>
<thead>
<tr>
<th>Error in publication (typographical, illustration, and so on). No reply.</th>
<th>Inaccurate or misleading information in this publication. Please tell us about it by using this postage-paid form. We will correct or clarify the publication, or tell you why a change is not being made, provided you include your name and address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Number</td>
<td>Error</td>
</tr>
<tr>
<td>Page Number</td>
<td>Comment</td>
</tr>
</tbody>
</table>

Note: All comments and suggestions become the property of IBM.

Name __

Address __

No postage necessary if mailed in the U.S.A.
IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

IBM Corporation
General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)