

SC09-1128-01

C Language Manual

- --- --- ----- __.,.. - -- - ---- ------ ---- _,_

Second Edition (October 1987)

This edition applies to the IBM C for System/370 Program Offering (Products 5713-AAG and 5713-AAH).

References in this publication to IBM products, programs, or services do not imply that IBM intends to make
these available in all countries in which IBM operates. Any reference to an IBM licensed program in this publi­
cation is not intended to state or imply that only IBM's licensed program may be used. Any functionally equiv­
alent program may be used instead.

This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to

IBM Canada Ltd.
Information Development,
Department 849,
1150 Eglinton Ave. East
North York, Ontario, Canada. M3C 1H7

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

© Copyright Whitesmiths, Ltd. 1978, 1987
IBM C Compiler by Whitesmiths, Ltd.

IBM is a registered trademark of International Business Machines Corporation, Armonk, NY.

Contents

Chapter 1: Introduction
Features of C for System/370 ... 1 - 2
The C Language Standard .. 1 - 3
IBM Extensions to the Proposed ANSI Standard 1 - 3
C Program Structure .. 1 - 5

Functions and Data Objects ... 1 - 5
C Source Files .. 1 - 5
Preprocessor Capabilities .. 1 - 5
Compilations ... 1 - 6

Chapter 2: Elements of the C Language
The Character Set for C .. 2 - 1
Source Lines ... 2 - 2
Vhi tespace and Comments .. 2 - 2
Identifiers ... 2 - 3
Keywords ... 2 - 4
Constants ... 2 - 4

Integer Constants .. 2 - 4
Floating Constants .. 2 - 5
Character Constants ... 2 - 6
String Constants ... 2 - 7

Delimiters, Separators, and Operators 2 - 9

Chapter 3: Identifiers
Naming Things in C .. 3 - 1

Declaring Identifiers .. 3 - 3
Name Spaces ... 3 - 6
Scope of Names .. 3 - 6
Visibility .. 3 - 7
Linkage .. 3 - 9

Chapter 4: Declarations
Components of a Declaration ... 4 - 1
Storage Class ... 4 - 2

Initial Declarations .. 4 - 3
Redeclarations ... 4 - 5

Base Type ... 4 - 7
The Void Type .. 4 - 9
The Integer Types .. 4 - 9

char type ... 4 - 9
signed cha1· type .. 4 - 10
unsigned char type .. 4 - 10
short type .. 4 - 10
unsigned short type ... 4 - 10
int type .. 4 - 10
unsigned int type .. 4 - 10
long type ... 4 - 11

iii

Contents

unsigned long type .. 4 - 11
The Floating Types .. 4 - 11

float type .. , .. 4 - 11
double type ... 4 - 11
long double type .. 4 - 12

The Composite Types .. 4 - 12
Enzuneration Types .. 4 - 12
Struct Types ... 4 - 13
Bitfields .. 4 - 14
Union Types ... 4 - 15

Type Qualifiers .. 4 - 16
The Type Qualifier canst ... 4 - 16
The Type Qualifier volatile ... 4 - 17

Declarators ... 4 - 17
Pointer Type Attribute ... 4 - 18
Array Type Attribute ... 4 - 19
Function Type Attribute .. 4 - 20

Function Prototype Argumi!nts .. 4 - 21
OS Calling Sequence ... 4 - 21

Definitions ... 4 - 22
Function Definition ... 4 - 22
Data Object Definition ... 4 - 22

Data Initializers ... 4 - 23
Type Definitions .. 4 - 25
Type Names ... 4 - 25
Classification of Types4 - 26

Chapter 5: Expressions
Grouping and Precedence .. 5 - 1
Regrouping ... 5 - 3
Side Effects and Order of Evaluation ... 5 - 4
Types and Classes of Expressions ... 5 - 4

Types of Expressions ... 5 - 5
Classes of Expressions ... 5 - 5

Arithmetic Conversions .. 5 - 7
Widening Conversions ... 5 - 7
U nsignedness Preserving Rules .. 5 - 9
Narrowing Conversions ... 5 - 9
Unsigned Conversions ... 5 - 10

Pointer Conversions .. 5 - 10
Converting Integers to Pointers ... 5 - 10
Converting Function Pointers ... 5 - 11
Converting Data Object Pointers ... 5 - 11
Converting Incomplete Pointers .. 5 - 12
Converting Pointers to Integers ... 5 - 12

Pointer Arithmetic .. 5 - 12
Comparing Types .. 5 - 13

Same Types ... 5 - 13
Assignment Compatibility ... 5 - 14

The C Operators .. 5 - 15
Addressing Operators .. 5 - 15

Subscript Operator ... 5 - 15
Point at :Member Operator .. 5 - 16
Select Me1nber Operator ... 5 - 16

iv

Contents

Function Calls .. 5 - 16
OS Calling Sequence ... 5 - 19

Unary Operators .. 5 - 19
Logical NOT Operator .. 5 - 19
Bitwise NOT Operator .. 5 - 19
Preincren1ent Operator ... 5 - 19
Predecrenient Operator .. 5 - 19
Postincrenient Operator ... 5 - 20
Postdecre111ent Operator ... 5 - 20
Plus Operator ... 5 - 20
Minus Operato1· .. 5 - 20
Indirect On Ope1·ator .. 5 - 20
Address Of Operator ... 5 - 21
Size Of Operator ... 5 - 21
Type Cast Operators ... 5 - 21

Multiplicative Operators .. 5 - 22
Multiply Operator ... 5 - 22
Divide Operator : .. 5 - 22
Reniainder Operator ... 5 - 22

Additive Operators .. 5 - 22
Add Operator .. 5 - 22
Subtract Operator ... 5 - 23

Bitwise Shift Operators ... 5 - 23
Left Shift Operator .. 5 - 23
Right Shift Operator ... 5 - 23

Relational and Equality Operators ... 5 - 24
Less Than Operator .. 5 - 24
Less Than Or Equal To Operator .. 5 - 24
Greater Than Operator ... 5 - 24
Greater Than Or Equal To Operator 5 - 24
Equal To Operator .. 5 - 25
Not Equal To Operator ... 5 - 25

Bitwise Binary Operators .. 5 - 25
Bitwise AND Operator ... 5 - 25
Bitwise Exclusive OR Operator .. 5 - 26
Bitwise Inclusive OR Operator ... 5 - 26

Logical and Conditional Operators ... 5 - 26
Logical AND Operator ... 5 - 26
Logical OR Operator ... 5 - 26
Conditional Operator ... 5 - 27

Assignment Operators .. 5 - 27
Gets Operator ... 5 - 27
Gets Multiplied Operator .. 5 - 27
Gets Divided Operator .. 5 - 28
Gets Reniainder Operator ... 5 - 28
Gets Added Operator .. 5 - 28
Gets Subtracted Operator ... 5 - 28
Gets Left Shifted Operator .. 5 - 28
Gets Right Shifted Operator ... 5 - 28
Gets AND Operator .. 5 - 28
Gets Exclusive OR Operator ... 5 - 28
Gets Inclusive OR Operator .. 5 - 28

Con1ma Operator ... 5 - 29
Constant Expressions .. 5 - 29

v

Contents

Chapter 6: Statements
Test and Void Expressions .. 6 - 1
Labels ... 6 - 2

Plain Label ... 6 - 2
Case Label ... 6 - 2
Default Label ... 6 - 2

Kinds of Statements .. 6 - 3
expression Statement .. 6 - 3
null Statement ... 6 - 4
conipound Statement .. 6 - 4
return Statement ... 6 - 5
if Statement ... 6 - 5
if/else Statement .. 6 - 6
elsell'.f Chain ... 6 - 7
u1hile Statement .. 6 - 7
do/while Statement ... 6 - 8
for Statement .. 6 - 8
su1itch Statement : .. 6 - 9
break Statement .. 6 - 10
continue Statement ... 6 - 10
goto Statement .. 6 - 11

Chapter 7: The Preprocessor
File Inclusion Preprocessor Di rec ti ves 7 - 1

Rules for #include File Processing .. 7 - 2
The LJBH Option and PDS Member Names Under MVS .. 7 - 3

File Name Macro Expansion .. 7 - 4
Conditional Preprocessor Directives ... 7 - 4

Testing for Macro Definition .. 7 - 4
Testing for Arithmetic Value .. 7 - 5
Alternate Groups ... 7 - 6

Macro Preprocessor Directives ... 7 - 7
Macros with Arguments .. 7 - 7

Constructing String Constants ... 7 - 8
Replacing Arguments Inside String Constants 7 - 9

Predefined Macros ... 7 - 9
Constructing Tokens : .. 7 - 10
Removing M aero Definitions .. 7 - 10

Information Preprocessor Directives ... ? - 10
Comments ... 7 - 11
Line Control ... 7 - 11
Pragmas .. 7 - 11

Chapter 8: C Runtime Environment
C Library Functions .. 8 - 1
Program Startup and Termination ... 8 - 3
How Library Functions Indicate Errors 8 - 5
How Your Program Indicates Errors ... 8 - 7

Chapter 9: Input/Output
Streams ... 9 - 1

Text Streams ... 9 - 2
Binary Streams ... 9 - 3

Buffered Input/Output .. 9 - 4

vi

Contents

Opening Files ... 9 - 5
Closing Files .. 9 - 6
Reading Streams ... 9 - 7
Writing Streams .. 9 - 7
Positioning Streams .. 9 - 8
Other S.tream Services .. 9 - 9

Formatted Input/Output .. 9 - 9
Formatted Input .. 9 - 10
Formatted Output ... 9 - 11

Chapter 10: Organizing Your Program
File Layout ... 10 - 1
Function Layout .. 10 - 3
Restrictions ... 10 - 5
Programs vi th Hul tiple Files ... 10 - 6
Portability Issues .. 10 - 6

Chapter 11: C Library Reference
Header Files ... 11 - 1

assert.h .. 11 - 3
ctype.h ... 11 - 5
ims.h .. 11 - 19
limits.h .. 11 - 23
math.h ... 11 - 25
setjmp.h ... 11 - 61
signal.h .. 11 - 64
stdarg.h ... 11 - 68
stdefs.h .. 11 - 73
stdio.h .. 11 - 74
stdlib.h ... 11 - 126
string.h .. 11 - 143
time.h .. 11 - 164

Appendix A: Compile Time Error Messages
Errors in Your Program .. A - 1
Environn1ental Problems .. A - 21

Appendix B: Runtime Error Messages
Internal Conditions ... B - 1
Environmental Problems .. B - 2
Errors in the C Runtime .. B - 3

Appendix C: · Summary of Reserved Identifiers
Usage of Reserved Identifiers ... C - 1
The Reserved Identifiers ... C - 2

Appendix D: Glossary ... D - 1

Index ... , X - 1

vii

viii

Preface

About This Manual

C Language Manual (SC09-1128) describes the C programming
language and associated C library for the System/370 architecture
running VM/CMS, MVS, or MVS/XA. It serves as a reference
guide for programmers· writing programs in the C language. This
document assumes a working knowledge of programming
fundamentals. Your C Compiler User's Guide describes how to use
the C compiler on your system.

Organization of This Manual

This manual has eleven chapters.

Chapter l, 11 Introduction, 11 describes the basic features of the C
language, the specific features and language extensions of C
for System/370, and fundamental concepts of C program
structure.

Chapter 2, "Elements of the C Language." describes the characters
and symbols that you can use in a C program. It also
discusses how you write the basic elements of C. and
explains how to combine these language elements to form a
C program.

Chapter 3, "Identifiers," describes all the things you can give
names to, the scope of their names, and how their names
interact.

Chapter 4, 11 Declarations. 11 describes how to declare and define
functions, data objects. and type definitions, and how you
specify their attributes.

Chapter 5, "Expressions," describes how you call functions, compute
values, and store values in data objects.

Chapter 6, "Statements." discusses the executable statements
available in the C language.

Chapter 7, "The Preprocessor, 11 covers the functions the preprocessor
performs, such as file inclusion, conditional compilation, macro
definition, and macro expansion.

Chapter 8, "C Runtime Environment," covers executable program
structure, the nature of C library functions, and how library

ix

functions report errors.

Chapter 9, "Input/Output," explains how you handle text and binary
data streams, perform buffered input/output, and format your
input and output.

Chapter 10, "Organizing Your Program," discusses common
conventions, programing style considerations, and issues that
affect the portability of your programs.

Chapter 11, "C Library Reference," describes each of the functions.
type definitions, and macros available with the ANSI C
library. For each group of functions, it describes the header
file that supports that group. and then describes each of the
functions that the header file declares, in alphabeticai order
by function name.

Appendix A, "Compile Time Error Messages," describes the error
messages that the compiler may emit when it compiles your
program, and liow to correct the errors.

Appendix B, "Runtime Error Messages," describes the error
messages that the runtime environment may emit when you
run your program, and how to correct the errors.

Appendix C, "Summary of Reserved Identifiers," is a list of all
identifiers reserved by the C language and declared in the
header files in the C library.

Appendix D, "Glossary," defines C terms and other special
terminology this manual uses.

This manual also provides an Index.

Related Publications

x

The following publications are referred to in the text of this
manual. You may want to use them for more information on
certain topics.

* C Compiler Users Guide for VM/CMS, 8009-1130.

* C Compiler Users Guide for MVS, MVS/XA, 8009-1129.

Chapter 1: Introduction

The C programming language is designed for general purpose use.
Its key features are small size relative to other programming
languages, fast execution speed, flexibility in building applications,
and ease in transporting C code from one computing environment
to another.

C is compact because . it implements operations such as input/output
and storage allocation in the form of function libraries.

C is fast and efficient because it converts many of its operators
directly to machine instructions. C also features "pointers." which
allow direct manipulation of the machine addresses of data objects.
C further encourages efficiency and ease of maintenance with a full
set of high level control flow statements and data structures. C
programs often run at speeds comparable to assembly language
programs, although C is far easier to code, debug, and maintain.

C is portable because it handles the majority of environmental
dependencies within library functions.

Introduction 1 - 1

Features of C for System/370

The following features are available with C for System/370:

Compilation and Execution under VMICMS

You can compile and run your programs from CMS.

Multiple Compilation and Execution Environments under MVS and MVSIXA

You can compile your programs from a Time Sharing Option
(TSO) session or from a batch Job Control Language (JCL)
stream. You can run your C programs under TSO. under a
standard batch initiator, or in an Information Management System
(IMS) environment.

31 Bit Addressing under MVSIXA

The compiler takes advantage of the 31 bit addressing capability of
MVS/XA. It supports data objects larger than 16 megabytes.

Generation of Reentrant Code

The compiler produces reentrant code for C programs.

Interfaces to Other Languages

You can write assembly language routines so that C functions may
call them. You can also generate function calls that use the
standard OS calling sequence employed by a number of other
products.

Dynamic Linking for IMS

You can dynamically link to C programs running under IMS from
other IMS programs.

Debugging Support

The compiler includes a source level debugger.

Support for Program Listings

Upon request. the compiler generates listings of C source files or
combined listings of C source interspersed with assembly language
code. Line numbers in the assembly language listing refer to the
lines in the C source that caused the compiler to generate the
assembly language code.

Automatic Register Allocation

1 - 2

The compiler automatically places data objects that your program
references frequently in unallocated registers.

Introduction

The C Language Standard

This implementation of C for System/370 is compatible with the
proposed ANSI standard for the C programming language. as
described in the "Information Bulletin" published by CBEMA (the
April 1985 draft of the X3Jll Committee Standard).

In accordance with the proposed ANSI standard. this manual
describes any behavior that is "implementation defined." When you
see the phrase "on System/370." the statement that follows tells
you the properties of this particular compiler. Other
implementations may choose different behavior in these areas. within
the limits allowed by the C language.

IBM Extensions to the Pr.oposed ANSI Standard

The compiler supports the following extensions to the proposed
ANSI standard:

Extension to the ANSI Math Library

The ANSI C math library includes the following functions (the
definitions for which conform closely to the UNIXTM System V
Interface Definition) :

* Bessel Group functions j 0. j 1. j n. yO. yl. and yn

*

*

Erf Group functions erf and erfc

The functions gamma and hypot.

Support For Additional Signals

IMS Support

The C library function signal supports the signals SIGUSRl and
SIGUSR2 as defined in the UNIXTM System V Interface Definition,
in addition to those signals defined by the proposed ANSI
Standard.

The C library includes the function ctdli, which permits access to
an IMS data base from a C program using the data manipulation
language DL/I.

Substitution of Macro Arguments Within S'tring Constants

A compiler option is available that permits substitution of macro
arguments within string constants, as some UNIXTM compilers do.

Type Conversion Options

A compiler option is available that allows your program to operate
under the "unsignedness preserving" rules as UNIXTM compilers do.
instead of the default ANSI "value preserving" rules.

UNIX is a registered trademark of AT&T Bell Laboratories

Storing in String Constants

In this implementation, string constants do not overlap and your
program can store new values in them. This is a common
extension which the proposed ANSI standard describes. The
proposed ANSI standard allows overlap between string constants
and prohibits storing new values in them.

Special OS Calling Sequence

1 - 4

The preprocessor directive #pragma can name functions that your
program calls using a standard OS compatible calling sequence.
This allows C functions to call OS compatible functions.

Introduction

C Program Structure

This section describes the basic parts of every C program and how
you combine these parts to build an executable file.

Functions and Data Objects

A C program source file consists of a series of printable
characters. The compiler interprets these as specifications to build
a set of functions and data objects. Functions become groups of
machine instructions that your program can execute. Data objects
become regions of memory that your program uses to store values
during execution. The memory image that constitutes your
executable file consists only of functions and data objects provided
by your program or by the C library.

You describe the functions and data objects in your C program by
"declaring" them. When you declare a function or data object. you
tell the compiler about its properties. A data object declaration.
for example. tells the compiler what its name is in your program.
what values can be stored in it. and where in the program you
may use it.

A "definition" is a special form of declaration. You must define
(and also declare) any function or data object you refer to in
your program. The definition of a function tells the compiler what
actions to carry out when the function is called. The definition of
a data object tells the compiler what initial values t0 store in it.

C Source Files

You present declarations and definitions of functions and data
objects to the compiler in the form of a C source file. A C
source file is a human readable "text" file that follows the rules
for writing C. The compiler converts your source files to
executable form. A program often consists of more than one C
source file.

Preprocessor Capabilities

A preprocessor rewrites your C source text in several useful ways
before the remainder of the compiler interprets it as described
above. The preprocessor performs "directives" that you signal by
writing C text lines that begin with the character #. A
preprocessor directive. for example, includes the contents of another
file. Others let you conditionally skip portions of your C source
text. You can also define "macros 11 that let you write a single
identifier as a symbolic name for a constant. or for a complex
sequence of source text. This capability enables you to change the
value of a numeric constant. for example. by changing the
definition in just one place.

Introduction 1 - 5

Compilations

A "compilation" consists of the C source file you specify when you
invoke the compiler. combined with any other files that you tell
the preprocessor to include. You do not necessarily provide all the
source code in a single compilation. The C compiler provides an
extensive library of functiorts. Accompanying these are a number
of "header files" that you can include in your compilation· to make
it easier to use the library. The compiler produces an object code
file for each compilation.

A C program is built by linking together the object code files
necessary to define all the functions and data objects that you use.
You do not necessarily provide all the object code files required to
link your program. The linkage editor or loader will select object
code files from the C library if they provide definitions that your
object code files require. Once built. your program becomes an
executable file that you can invoke like any other program on your
system.

1 - 6 Introduction

Chapter 2: Elements of the C Language

This chapter describes the characters you can use in a C source
file. The compiler groups these characters into "tokens," which are
the basic elements of the C language. This chapter also describes
how the compiler performs this grouping. It defines every valid
token and describes its use.

The Character Set for C

You write C source files using a subset of the EBCDIC character
set. All the characters you need to express a C program are:

*

*

*

*

*

*

Uppercase letters ABCDEFGHIJKLMNOPQRSTUVVXYZ and
lowercase letters abcdefghijklmnopqrstuvwxyz. You use
these to form identifiers and keywords. An uppercase letter
is different from the corresponding lowercase letter.

Decimal digits 0123456789. You use these as part of
identifiers. and to form integer and floating constants.

The underscore You use it to form identifiers.

The backslash \. You use it as an "escape" character. to
give special meaning to the character or characters that
follow.

Punctuation [] {} () <> ! #%- &*+-=: ; "' , I. 1-1. You use these
to form delimiters, separators, and operators. The EBCDIC
"not" sign ..., is accepted in place of the caret •.

Space, horizontal tab. carriage return, vertical tab. form feed.
and newline. You use these "whitespace" characters to
separate tokens that the compiler might otherwise interpret
as one token.

Some input devices may not generate all of the characters you
need to write a C program. You can replace these characters in
your C source by substituting the following "trigraphs" in their
places:

Elements of the C Language 2 - 1

trigraph

??=
??(
??)

??!
??<
??>

??!
??'
??-

character equivalent

[
1

\
{
}

For example, you can write the C source line:

#define or_two(x, i) (x[i] I x[(i) + 1))

as

??=define or_two(x, i) (x??(i??) ??! x??((i) + 1??)).

Source Lines

The compiler immediately converts the sequence of source lines in
your source file to a continuous stream of characters. It records
the end of each source line by inserting a newline character in the
stream. Regardless of the external format you choose for your
source file, this manual describes all input in terms of this
converted stream.

The compiler imposes few restrictions on how you organize your C
source. In some cases, however, the newline character serves as a
special delimiter. If you want to write several physical source lines
where the compiler requires one source line, write a backslash
character at the end of all but the last of the physical source
lines. The compiler always discards the backslash newline
sequence. It will accept a source line of up to 511 characters.
counting all whitespace and the newline on the end.

Two uses of the backslash newline sequence are:

#define fourteen x x + x + x + x + x + x + x + \
x + x + x + x + x + x + x

printf("Herely corroborative detail intended to give artistic \
verisimilitude to an otherwise bald and unconvincing narrative\n");

Whitespace and Comments

2 - 2

You use whitespace characters to separate tokens. Whitespace also
helps make your program easier to read and maintain. Chapter
10, "Organizing Your Program." shows you how to use whitespace
to format your source text.

Elements of the C Language

Identifiers

Anywhere that the compiler permits whitespace, it also permits a
"comment." A comment begins with the characters I* and ends
with the characters */. Between these two delimiters, you may
write any EBCDIC characters you can edit into your source file.
The comment may continue for any number of source lines. Or,
you may confine it to part of a source line. A comment must
end, however, before the end of the source file in which it begins.
You cannot, for example, begin a comment in a source file
included by the preprocessor directive #include and end it back in
the original source file. You cannot "nest" comments, because the
sequence I* has no special meaning within a comment. In your
program a comment is equivalent to a single space character.

Some examples of comments are:

if (a < b) /* a comment at the end of a line */
a = /*(char *)*le; I* (char *) is "commented out" *I

#define abc I* the preprocessor directive doesn't
end until the comment does *I 17

You use identifiers to name many different things in a C program.
You form all identifiers using the same rules. An identifier is a
token that begins with an uppercase letter, a lowercase letter, or
an underscore. Following that first character, you can write more
of these characters, interspersed with decimal digits. The identifier
does not end until you write some other character. such as a
whitespace character or punctuation. An identifier can fill an entire
source line.

When comparing two identifiers, the compiler looks at only the
first 31 characters. Do not take advantage of this limitation.
however. If you intend two identifiers to be the same, but spell
them differently after the first 31 characters, some other compiler
may treat them as distinct. Your programs will be more portable.
and more readable. if you assume that all identifier characters
might be significant.

The C library defines identifiers, for a variety of purposes, that
have a leading underscore. If you choose names that have a
leading underscore, you might experience conflicts with some of
these names that are internal to the C library. Or. your program
might work properly now, but could malfunction if you compile it
with another compiler. Never use identifiers that begin with an
underscore. All other identifiers are either documented in this
manual as restricted or are free for you to use. If an identifier
is not a keyword listed below, is not described as part of the C
library, and begins with a letter, you may use it. Appendix C,
11 Summary of Reserved Identifiers," provides a complete list of
reserved identifiers.

Some examples of valid identifiers are:

Elements of the C Language 2 - 3

Keywords

Constants

x
SIZE
System 370
a_rather_long_identifier

A keyword is an identifier that the compiler predefines for some
special purpose. The complete set of keywords in C is:

auto extern sizeof
break float static
case for struct
char goto switch
const if typedef
continue int union
default l~mg unsigned
do register void
double return volatile
else short while
en um signed

A constant is a token. or character sequence, that you use to
represent a fixed value. There are four kinds of constants, each
of which is described in detail below. These are:

*
*
*
*

Integer constants, such as 372 or OxFFFF

Floating constants. such as 10.5 or 23e-10f

Character constants, such as 'a' or '\n'

String constants. such as "Look out!"

Every constant has a "type" as well as a value. Chapter 4.
"Declarations," describes types and their uses. This chapter simply
names the types and states the rules for determining the type to
associate with each constant. You can always tell both the type
and the value of a constant just by how it appears.

Integer Constants

Integer constants represent integral numeric values. You write
them in one of three bases: octal, decimal, or hexadecimal.

If the first character is a digit other than 0, the token is a
decimal integer constant, as in 129. That digit and all digits that
follow constitute a decimal number whose value is the value of the
integer constant. You may follow the digits immediately with a
suffix, as described below.

If the first two characters are Ox or OX, the token is a
hexadecimal integer constant. as in Ox3b2. The sixteen
hexadecimal digits, in order. are either 0123456789abcdef or

of the C Language

0123456789ABCDEF. All such digits that follow the first two
characters constitute a hexadecimal number, whose value is the
value of the integer constant. You may follow the digits
immediately with a suffix. as described below.

Otherwise. if the first character is 0, the token is an octal integer
constant. as in 0377. The eight octal digits. in order. are
01234567. All the digits that follow constitute an octal number.
whose value is the value of the integer constant. You may follow
the digits immediately with a suffix. as described below.

The type of an integer constant is int if the compiler can
represent the value of the constant as an int. On System/370.
this is a two's complement integer occupying 32 bits. Otherwise.
the type is unsigned int if the compiler can represent the value of
the constant with that type. On System/370, this is an unsigned
binary integer occupying 32 bits. The constant OxFFFFFFFF. for
example, is an unsigned int. If the type unsigned int is still not
adequate, then the compiler tries to represent the number as a
long and finally unsigned long. in that order. On System/370.
long and unsigned long have the same representation as int and
unsigned int, so they represent no additional values.

You can add a suffix to any of these forms if you want to
control the type more closely. If you add 1 or L. the compiler
chooses one of the long types. whether or not it needs it to
represent the value. For example. the constant lOL has type long.
If you add u or U, the compiler chooses one of the unsigned
types. whether or not it needs it to represent the value. The
constant 0555u has type unsigned int, for example. You may add
the suffixes in either order. Never use the suffix 1, since it is so
easily mistaken for the digit 1. Use L instead.

If you write an integer constant that the compiler cannot represent
as the specified type, the compiler will emit an error message.

Integer constants are always positive. If you want to write a
negative constant, use a unary minus operator, as in -53. This is
actually a /1 constant integer expression. /1 but the compiler accepts it
anywhere an integer constant is permitted, and it computes the
value for you at compile time. (On System/370. the expression
-2147483648 must be type cast to int to represent the negative
integer with largest magnitude.)

Some examples of integer constants. all of which have the value
300, are

300
OX12C
0454
300U I*
0454L

Floating Constants

type is unsigned int *I
I* type is long *I

Floating constants represent finite prec1s1on approximations to real
numbers. over a range of values much larger than the integers
represent. A floating constant consists of a decimal integer part. a

Elements of the C Language 2 - 5

decimal point, a decimal fraction part, and an exponent. The
exponent consists of an e or an E, followed by an optional + or -
sign, followed by a decimal exponent. The decimal integer, decimal
fraction, and decimal exponent are all sequences of decimal digits.
You may omit either the decimal integer or the decimal fraction.
but not both. You may omit either the decimal point or the
exponent, but not both. The value is the decimal integer plus the
decimal fraction, multiplied by ten raised to the signed decimal
exponent.

The type of a floating constant with no suffix is double. If you
add an f or an F suffix, the type is float. If you add an 1 or
an L suffix, the type is long double. Never use the suffix 1.
You may add at most one of these suffixes. On System/370. the
compiler represents the type float as a floating point number
occupying 32 bits. The compiler represents both of the types
double and long double as a floating point number occupying 64
bits.

If you write a floating constant that the compiler cannot represent
as the specified type, the compiler will emit an error message.

Some examples of floating constants. all of which have the value
300, are:

3e2
300.
300.0
.3e3
300.0f I* type is float *I
3e2L I* type is long double *I

All floating constants are positive. You can write a "constant
expression," such as -3. 7, however, if you want a negative floating
value.

Character Constants

2 - 6

A character constant represents the numeric value of an EBCDIC
character code or an "escape sequence." You write the EBCDIC
character or escape sequence inside single quotation marks, as in
'a' or '\377'. The EBCDIC character may be any character
except backslash, newline, or a single quotation mark. You can
represent these and many other character values by writing an
escape sequence. The following table lists the escape sequences
and the characters they generate:

Elements of the C Language

escape sequence hexadecimal value character generated

\a 2F alert (bell)
\b 16 backspace
\f oc form feed

\n 25 newline
\r OD carriage return
\t 05 horizontal tab

\v OB vertical tab
\' 7D single quotation mark
\" 7F double quotation mark

\? 6F question mark
\\ EO backslash

\ooo octal value
\xhhh hexadecimal value

The octal value escape sequence may have up to three octal digits.
An important example is \0, which has the value 0. This is the
"null character." It is used widely in C. The hexadecimal value
escape sequence may have up to three hexadecimal digits. On
System/370, the compiler requires at most two hexadecimal digits
to represent any character code. An example is \x3f. If you
write a three digit hexadecimal value escape sequence, the most
significant digit is lost.

You may write any EBCDIC character you can edit into your
source text inside a character constant. If the character is not
printable, however, your program will be hard to read and maintain.
Also, if the character is not one of the set listed earlier, your
program may not be acceptable to another compiler. Do not
encode an octal value escape sequence or hexadecimal value escape
sequence directly into your program. If you can write your string
constants with just the C source characters and the escape
sequences, your program will be more readable and more portable.

The value of the character constant is the value of the EBCDIC
character code, or the numeric value of the escape sequence you
specify. Its type is int. On System/370, the compiler represents
char as an unsigned binary integer occupying eight bits, so a
character constant is always positive.

String Constants

A string constant is a sequence of character codes that the
compiler stores in successive locations in memory. You specify
each character code in the same way as for a character constant.
You write the sequence of EBCDIC characters and escape
sequences inside double quotation marks, as in "hello" or
"That's all \n". Escape any double quotation mark you write in
the string constant, as in "\"Right\", he said."· The compiler
appends a null character \0 to the end of each string constant.
So the null string constant "" occupies one character of storage

Elements of the C Language 2 - 7

2 - 8

and "a\ tc" occupies four characters of storage. The type -0f a -
string constant is array of char. The array size is equal to the
number of characters of storage the string constant occupies.

If you use octal value escape sequences or hexadecimal value
escape sequences when you write a string constant, remember that
each of these includes up to three digits following the backslash.
If you want to write a string constant consisting of the null
character followed by the digit 1, write it as "\0001 ".

If you write the comment delimiter I* inside a string constant, as
in "I*". the compiler will not treat this as the start of a
comment. Similarly, if you write a quotation mark inside a
comment. as in

I* time 7hr 30' 56" *I

the compiler will not treat this as the start of a character
constant or string constant. Character constants, string constants
and comments are mutually exclusive. Once you start one, the
compiler stops looking for examples of the others.

If you write two string constants in a row, the compiler
concatenates them to form a single string constant. There is no
intervening null character. so "abc" "def" is equivalent to
"abcdef". The compiler processes escape sequences before
performing the concatenation. so "abc\0" "17def" is equivalent to
"abc\00017def" and not "abc\017def".

String constant concatenation gives you a convenient way to break
long string constants across multiple text lines. You can indent
each component for readability. String constant concatenation also
helps you construct string constants when you write preprocessor
macros. Chapter 7, "The Preprocessor," discusses this topic in the
section, "Constructing String Constants."

A string constant differs from the other constants because the
compiler stores its value in a data object in memory. When you
write a string constant as part of an expression, it is the address
of the string constant that your program manipulates. not the
string constant as a whole. The address "designates" the string
constant. This distinction between dealing with a value and a data
object designator is discussed in Chapter 5, "Expressions."

Even though a string constant is a "constant," the compiler may
not always prevent you from storing new values in the string
constant during program execution. Some older C programs depend
on being able to store into string constants this way. For
maximum portability. however. you should avoid storing into string
constants. When creating a reentrant program, you must treat all
string constants as read only. You cannot store new values in
string constants during execution of a reentrant program.

Elements of the C Language

Delimiters, Separators, and Operators

All of the remaining tokens the compiler recognizes consist of one
to three punctuation characters. Some of these tokens are
"operators," which you use to specify what value to compute, as in

x+y

Others are "delimiters" or 11 separators, 11 which you use to group
and separate other tokens, as in

(x+y)/z

or

return 3;

Sometimes the same token is an operator in one context. for
example, and a separator in another. You do not need to be
concerned with the distinction to understand which tokens are valid.

The following is a complete list of all the tokens made from
punctuation and the names for each:

token

&
&&
&=
(
)

* *=
+
++
+=

'

->

I
I=

names

exclamation mark. logical NOT
not equal to
pound sign
percent sign, modulus
gets remainder

ampersand, address of, AND
logical AND
gets AND
left parenthesis
right parenthesis

asterisk. indirect on, multiply
gets multiplied
plus, add
increment
gets added

comma
minus. subtract
decrement
gets subtracted
point at member

decimal point, dot. select member
ellipsis
slash, divide
gets divided
colon

Elements of the C Language 2 - 9

2 - 10

token

;
<
<<
<<=
<=

=
==
>
>=
>>

>>=
?
[
J

=
{

I
I=
11

}

names

semicolon
less than
left shift
gets left shifted
less than or equal to

equal sign, gets
equal to
greater than
greater than or equal to
right shift

gets right shifted
question mark
left bracket
right bracket
caret, exclusive OR

gets exclusive OR
left brace
vertical bar, inclusive OR
gets inclusive OR
logical OR

right brace
NOT

The EBCDIC character set has both a "solid" vertical bar and a
"broken" vertical bar. You may use either interchangeably.
Parentheses () , square brackets [] . and braces { } can occur
only in balanced pairs, as in ((a+b)+c).

When the compiler groups the input character stream into tokens.
it always makes the longest token it can. It does so even if that
grouping leads to an invalid program, and there is a different
grouping of characters that is valid. For example, if you write:

x +++++ y

the compiler groups this as if you wrote

x ++ ++ + y

This is not a valid expression. while

x ++ + ++ y

might be valid in some contexts. Adopt a style of using
whitespace that prevents ambiguity such as this. Chapter 10.
"Organizing Your Program." describes one such style.

Elements of . the C Language

If the compiler sees a character it does not recognize outside of a
comment. character constant. or string constant. it emits an error
message. It also emits an error message if you write an invalid
constant. such as l 9J2. All of your source text must contribute
either to tokens, comments. or to whitespace. The rest of this
manual describes the C language in terms of tokens composed by
the rules described in this chapter.

Elements of the C Language 2 - 11

2 - 12 Elements of the C Language

Chapter 3: Identifiers

You use identifiers to name things in C. When you declare a
function or data object, for example. you name it by writing an
identifier as part of the declaration, as in:

void fun();
int x = 3;

I* fun names a function */
I* x names a data object *I

This chapter covers niany aspects of identifiers and their use. The
topics it covers are:

*

*

*

*

*

*

All the different things you must name in your programs.
with a brief description of what you use them for.

The placement of declarations, and how you declare some
things implicitly.

The concept of "name spaces." Sometimes you can use the
same identifier for two different things at the same time.
The rules governing name spaces tell you when you can and
when you cannot do this.

The "scope" of names. You need to know where in your
source text you can use an identifier you have declared.
You also need to know when you can reuse the identifier.

The concept of "visibility" of identifiers. An identifier can
be "in scope," but still not visible over portions of your
program text.

The rules for identifier linkage. Some names must be
shared across compilations, while others are private to a
compilation.

Naming Things in C

The following is a list of all the things that identifiers in a C
program can name:

Macros: You write a #define preprocessor directive to define an
identifier as a "macro." From that point on in your source
file, the compiler replaces occurrences of that identifier with
the "macro expansion" text you specify as part of the
#define preprocessor directive. An example is:

Jdefine NCHARS 511 I* NCHARS is a macro */

Macros are described in Chapter 7. "The Preprocessor."

Identifiers 3 - 1

3 - 2

Keywords: All the keywords are predefined by the compiler. You
cannot add new keywords and you cannot remove any
existing keywords. The names of preprocessor directives are
not keywords. Keywords are listed in Chapter 2, "Elements
of the C Language."

Labels: You write a label at the start of an executable statement.
inside a function definition, if you want to transfer control
there with a goto statement. For example:

top: x += 5; I* top is a label */

goto top;

Labels are described in Chapter 6. "Statements."

Functions and data objects: You write declarations to describe
functions and data objects. and to give them names.
Functions and data objects declarations are described in
Chapter 4, ''Declarations."

Type definitions: A "type definition" is an identifier that you can
use anywhere you need to specify a type. You write
declarations to describe type definitions, as in:

typedef char *Cptr;/* Cptr is a type definition *I

Type definitions are described in Chapter 4, "Declarations."

Enumeration constants: An 11 enumeration 11 is a type whose values
all have names. You introduce these names as
11 enumeration constants" when you declare the enumeration.
as in:

enum Roman {
I 1, II, III,
v = 5, x = 10 } ;

I* enumeration constants *I

Enumeration constants are described in Chapter 4,
"Declarations."

Tags: You can write a "tag" when you declare an enumeration
type (enum) or a structure type (struct or union) .
Elsewhere in your source file. you can use the tag as a
shorthand way to refer to the type. In the example above.
Roman is an enum tag. Tags are described in Chapter 4.
"Declarations."

Structure members: You declare
declare the content of a

struct Complex { /*
float re, im; };

"structure members" when you
structure type. For example:

struct tag *I
I* structure members *I

Structure members are described in Chapter 4.
11 Declarations."

Identifiers

Declaring Identifiers

There are several distinct contexts within a compilation. You can
write the same declaration in different contexts and it will have
different meanings. You can introduce identifiers for some things
in one context, but not in others. The contexts are 11 file level."
"argument level." and "block level." Below is a sample program
that illustrates these various contexts. It is a complete program
that you can edit into a file. compile. link. load. and run. It
prints out the number of characters you type for each of the
command options you specify when you invoke the program. Note
that this example violates some rules of good coding practice to
illustrate language features in a small example program.

#include <stdio.h> I* get declaration for printf */

#define SUCCESS 0
ldef ine FAILURE 1

I* symbolic name for good exit status *I
l* symbolic name for bad exit status */

enum Exit_status { /* declare an enumeration *I
success SUCCESS,
failure= FAILURE};

typedef unsigned int Counter;
I* COUNTER is a type definition */

static Counter count = O; I* count is a data object *I

extern int main(ac, av) /* main is a function */
int ac; I* ac and av are arguments *I
char *av[];
{ /* start of function body */
extern Counter count; I* same count as before *I
register int i; I* new i */

for (i = 1; i < ac; ++i)/* look at each argument *I
{ /* start new block */
register Counter ac = O;I* new ac */
register int j = O;I* new j *I

top: I* count characters in av[i] */
if (av[i][j] == '\0')

++ac;
++j;

goto bottom;

goto top;
bottom:

printf("%s has %i characters\n", av[i], ac);
count += ac; I* accumulate total count *I
} /* end inner block *I

printf("TOTAL: %i characters\n", count);
exit(success); I* terminate execution *I
} /* end of function body *I

Identifiers 3 - 3

3 - 4

This file has four "file level" declarations. one for the enumeration
Exit status. one for the type definition Counter. one for the
data object count, and one for the function main. The last two
declarations are also definitions. Within the definition for main are
several other declarations. There are two "argument level"
declarations, for the function arguments ac and av. A "function
body" begins with the first left brace in its definition and ends
with its balancing right brace. Within a function body. you can
write "block level" declarations after any left brace. In this
example, block level declarations occur in two places. After the
first left brace that begins the function body the program
redeclares count and declares i for the first time. After the
second left brace, the program declares a new data object with the
name ac and also declares j for the first time. In summary, the
declaration contexts in this example are:

enum Exit status { .
success SUCCESS,
failure= FAILURE};

typedef unsigned int Counter;

static Counter count;

extern int main(ac, av)
int ac;
char *av[];
{
extern Counter count;
register int i;

{

I* file level *I

I* file level *I

I* file level *I

I* file level *I
I* argument level *I
I* argument level *I

I* block level *I
I* block level *I

register Counter ac = O; I* block level *I
register int j = O; I* block level *I

}

}

You also use declarations to write 11 type names. 11 A type name is
a way of writing a type without associating an identifier with the
type, as in (char). You use a type name to write a "type cast"
operator, or to write the operand of the operator sizeof. These
operators are described in Chapter 5, 11 Expressions." You can also
use type names when you declare the arguments of a "function
prototype." Function prototypes are described in Chapter 4,
"Declarations." You can introduce identifiers in the process of
writing a type name. but it is not often useful to do so. This
example contains no type names.

The effect of different declaration contexts on how you name things
is as follows:

Macros: To the preprocessor. a source file is just a sequence of
text lines. The #include preprocessor directive in the

Identifiers

example above causes the preprocessor to include the text
from the header file <stdio.h> as part of the compilation.
but the included text is then just part of the sequence of
text lines. You can write a #define preprocessor directive
anywhere in the file. to introduce a new macro name. In
the example program. the identifiers SUCCESS and FAILURE
are macro names. Any additional structure is irrelevant to
macro names.

Keywords: Keywords are known throughout a file. You cannot
introduce any new ones. The example uses the keywords
char, extern. for. goto, if, int, register, static,
typedef, and unsigned.

Labels: You may only introduce labels inside a function body. In
the example, there are two labels, named top and bot tom.

Functions and data objects: You can declare a function at file level,
at argument level, or at block level. If you declare a
function at argument level. the compiler changes its type to
a pointer type. You can define a function only at file
level. You cannot have functions nested inside of other
functions. In the example. exit, main, and printf are
functions. The function main is defined by the compilation.

You can declare a data object at file level. argument level,
or block level. If you de@lare an "array" type data object
at argument level, the compiler changes its type to a
pointer type. You can define a data object at file level or
block level. You cannot define a data object at argument
level, since that would cause the compiler to replace the
argument value passed on a function call with the defining
value. In the example. ac. av, count, i. and j are data
objects. Two different data objects are named ac. The
argument av is an array type that the compiler changes to
a pointer type.

Type definitions: You can declare a type definition at file level or
block level. You cannot declare a type definition at
argument level. In the example. Counter is a type
definition.

Enumeration constants: You can declare an enumeration anywhere a
declaration is permitted. including a type name. The
example contains the enumeration constants success and
failure.

Tags: You can declare a tag anywhere a declaration is permitted.
including a type name. In this example, Exit_ status is an
enum tag.

Structure members: You can declare a structure member anywhere
a declaration is permitted. including a type name. There
are no structure members in this example.

Identifiers 3 - 5

Name Spaces

When you declare a function. you cannot also declare a data object
with the same name. Function and data object names occupy the
same "name space." The interaction of various names is as
follows:

Macros: Macro identifiers occupy their own name space. If you
define an identifier as a macro, the compiler treats it as a
macro name in all contexts, regardless of any other meaning
you give to that name. You can even use keywords as
macro names, although this will make your program difficult
to read.

Keywords: Keywords occupy every other name space except that of
macros.

Labels: Labels occupy a name space separate from all other
identifiers except keywords.

Functions and data objects: The names of functions and data
objects occupy the same name space as type definitions and
enumeration constants. They cannot match any keywords.

Type definitions: Type definitions occupy the same name space as
functions, data objects, and enumeration constants. They
cannot match any keyword.

Enumeration Constants: Enumeration constants occupy the same
name space as functions, data objects, and type definitions.
They cannot match any keywords.

Tags: There are enum tags, struct tags, and union tags. All
occupy the same name space. They cannot match any
keywords.

Structure members: Each structure declaration introduces a separate
name space. Members of a given structure must have
names that differ from each other, but their names do not
conflict with member names for other structures. They
cannot match any keywords.

Scope of Names

3 - 6

Every name you introduce has a range of source text over which
the compiler recognizes that name. If you write an identifier in
your source file before that name is "in scope," the compiler does
not recognize the connection. The same thing happens if you refer
to an identifier after the name has gone "out of scope."

Many names have "block scope." A name you introduce with a
file level declaration remains in scope through the end of the
compilation. A name you introduce with an argument level
declaration remains in scope through the end of the function body.
A name you introduce with a block level declaration remains in
scope through the end of the block containing the declaration.

The scope rules for names are as follows:

Identifiers

Visibility

Macros: A macro name goes in scope when you write the #define
preprocessor directive that defines it. It goes out of scope
only if you write a iundef preprocessor directive that
removes its definition. Otherwise, the name remains in
scope through the end of the compilation. Chapter 7, "The
Preprocessor", discusses preprocessor directives.

Keywords: Keywords are always in scope.

Labels: A label goes in scope when you first use it in a goto
statement, as in goto top; or when you define it, as in
top: ; . It goes out of scope at the end of the function
body in which it appears. The labels in one function body
do not conflict with those in another function body.

Functions and data objects: The name of a function or data object
goes in scope when you declare it. You can also implicitly
declare a function by naming it in a function call
expression. Th,is is described in Chapter 5, "Expressions."
The names of functions and data objects have block scope.

Type definitions: A type definition goes in scope when you declare
it. The names of type definitions have block scope.

Enumeration constants: An enumeration constant goes in scope when
you define it as part of the enumeration that contains it.
Enumeration constants have block scope.

Tags: A tag goes in scope when you first refer to it. You can
use a tag to refer to an enumeration or structure even
before you define its contents. Tags have block scope.

Structure members: A structure member goes in scope when you
declare it as part of the structure that contains it.
Structure members have block scope.

A block structured language lets you control what names are
"visible" over a region of source text. If you declare an identifier
at the beginning of a block. you can mask a different declaration
using the same identifier in an enclosing block. The outer
identifier remains in scope, but it is no longer visible. When the
newer declaration goes out of scope, the older declaration becomes
visible once again. In the example program. the identifier ac
refers to a data object of type Counter in the innermost block.
This declaration of ac masks the declaration of an argument of the
same name in the outer block. Any identifiers not explicitly
masked in this fashion are still visible in the inner block. In the
example, av and count are declared in containing blocks and used
in the inner block. In fact. count is declared at file level, which
is always the outermost block.

The effect of visibility on different names is as follows:

Macros: If an identifier is currently a macro name, you cannot give
it a different definition. Macro names are always visible.

Identifiers 3 - 7

3 - 8

Keywords: You can mask keywords with macro definitions.

Labels: Labels are independent of block scope, so you can transfer
control into a block or out of a block with a goto
statement.

Functions and data objects: The names of functions and data
objects have block scope. You can mask them by a
declaration in an inner block. Argument level declarations
are a special case. The compiler behaves as if all
arguments are declared at the beginning of the function
body. You cannot mask access to an argument by declaring
something of the same name in the outermost block of a
function body.

Type definitions: Type definitions have block scope. You can mask
them by a declaration in an inner block. However, there
are many 11 abbreviated 11 declarations that you must not use
when you declare a name that is a type definition in a
containing block. For instance, the delaration

static Counter;

is usually an abbreviation for

static int Counter = O;

But if Counter is in scope as a type definition, the
compiler assumes that you are declaring something with the
base type Counter. It will emit an error message because
you apparently declare no names.

Enumeration constants: The names of enumeration constants have
block scope. You can mask them by a declaration in an
inner block.

Tags: Tags have block scope. but they also present a special
problem. If you want to declare two data structures that
refer to each other, you must do so as:

struct xl {
struct x2 *px2; I* point to x2 (not yet defined) *I } ;

struct x2 {
struct xl *pxl; I* point to xl (defined) */ } ;

Identifiers

The tag x2 lets you refer to the second structure before
you write its definition. Referring to a structure you have
not yet defined is necessary for describing structures that
refer to each other. However. if there is a definition of x2
in a containing block. the first structure will refer to that
type instead of the one yet to come. You solve this
problem by writing a special form of the struct declaration:

struct x2; I* mask any outer meaning for x2 *I
struct xl {

struct x2 *px2; I* point to x2 (not yet defined) *I } ;
struct x2 {

Linkage

struct xl *pxl; I* point to xl (defined) *I
..... } ;

The added declaration masks any tag x2 in a containing
block.

Structure members: The names of structure members have block
scope. Visibility is not an issue, however, because the
compiler determines the structure member names you can
use in an expression from the type of the data object you
are selecting from. For example, in the following structure
declaration:

struct Complex {
float re, im;
} x;

I* start new block *I
{
struct Complex {

int re, ix;
} ;

x.re = x.im;

}

the structure members re and im are both of type float.
because the type of x determines the names of its structure
members. The fact that the tag Complex is not visible is
irrelevant, as are the names of the structure members of
the new type.

The second declaration of count. at the beginning of the function
body, illustrates a special kind of declaration. The declaration does
not introduce a new data object. The keyword extern, in this
context, means that the declaration is for the data object defined
in a containing block. The declaration must agree with the earlier
declaration for count, since both describe the same data object.

Two declarations are "linked" if they refer to the same function,
or to the same data object. Linking is almost the opposite of
masking, described under "Visibility" above. You can use block
scope to introduce different data objects, for example, with the
same name. Or, you can use declarations that link to declare the
same data object in different scopes.

The "redeclaration" of count in the example was not necessary.
since the identifier is known in containing blocks unless you
explicitly mask it. Redeclaration is permissible, however. and often
used to document what data objects outside a function body are

Identifiers 3 - 9

3 - 10

accessed within the function. This is an example of "internal
linkage." Internal linkage is confined entirely to the compilation.
and has no effect on other compilations that make up the complete
program.

The example program also contains three important examples of
"external linkage." The function main that this compilation defines
is the function that the C runtime environment calls at program
startup. The C runtime environment must link its declaration of
main with this definition. On the other hand, the header file
<stdio.h> declares the function printf in this compilation. The
function exit is implicitly declared where it is called. Both
declarations must be linked with the definitions provided by object
code files in the C library.

When you specify that a function or data object has external
linkage, the compiler modifies its name to produce an 11 external
identifier." This identifier is passed to assemblers, linkage editors,
and loaders and so foilows different rules than those for identifiers
internal to C. On System/370. external identifiers have seven
significant characters when naming data objects, or eight when
naming functions. In addition, there is no distinction between
uppercase and lowercase letters. Choose your identifiers carefully.
so that both internal and external name comparisons work correctly.
The compiler emits an error message if distinct identifiers within
one compilation produce external identifiers that are identical. The
linkage editor or loader is responsible for conflicts between
compilations.

Detailed rules for writing linked declarations are given in Chapter
4, "Declarations." Do not write only linked declarations of
different types. Within one compilation, the compiler emits an
error message for such errors. Across compilations, the linkage
editor or loader generates an error message for only some errors of
this kind.

A declaration may also have "no linkage." You may not write
another declaration in the same block as a declaration for an
identifier that has no linkage. Type definitions, enumeration
constants, and function arguments always have no linkage. In the
example, the data objects i. ac. and j declared inside the function
body have no linkage.

Identifiers

Chapter 4: Declarations

You write declarations to describe the functions, data objects. and
type definitions for your program. With each of these, you provide
an identifier, a type, and other attributes. In the process of
writing types. you also provide identifiers for enumeration constants.
tags, and structure members. Declarations serve as a principal way
to give meaning to identifiers in C.

Chapter 3, "Identifiers," describes all the different things in a C
program that require identifiers. It also describes the various
contexts in which you write declarations, along with such issues as
name spaces, scope of names, visibility, and linkage. This chapter
describes the many aspects of writing declarations, including:

*

*
*
*

*

*

*

The components of a declaration: storage classes. base types.
declarators, and definitions

Storage classes

Base types

Declarators

Definitions of functions and data objects

Type definitions

Type names.

The chapter ends with a classification of all the types used in C.

You write an "expression" as part of a declaration to specify the
number of elements in an array, for example. or the initial value
to be stored in a data object. Chapter 5. "Expressions," describes
expressions in detail. The /1 constant integer expressions" referred
to in this chapter are those expressions that the compiler can
evaluate at compile time, to determine an integer value.

Components of a Declaration

There are four major components to a declaration:

storage class: Specifies a type definition or provides linkage
information for functions and data objects. For data objects.
the storage class also specifies their "lifetimes. 11

base type: Specifies type information common to all the declarators.

Declarations 4 - 1

declarators: Specify an identifier. possibly with additional type
information relating to that identifier. You can write
multiple declarators, separated by commas, in one declaration.

definitions: Specify a function body for a function, or a data
initializer for a data object. A definition, if present,
immediately follows a declarator.

Some examples of declarations are:

static int a = O; I* storage class is static; type is int;
declarator is a; definition is = 0 *I

extern int sum(int a, int b) /* storage class is extern;
type is int; declarator is sum(int a, int b);
definition follows *I

{
return a + b;
}

double x, y, z; I* no storage class; type is double;
declarators are x, y, and z; no definitions *I

You can write the storage class anywhere among the "type
specifiers" that make up the base type, but common practice is to
write it first in the declaration. You can abbreviate a declaration
by leaving out the storage class, if you write at least one type
specifier. You can leave out the type specifiers if you write the
storage class, provided you are not trying to declare a new
meaning for an identifier that is in scope as a type definition.
You can leave out both the storage class and the type specifiers if
you are writing a file level declaration or an argument level
declaration. The identifier must not be in scope as a type
definition. The complete set of type specifiers is discussed later in
this chapter in the section "Base Type."

One or more declarators follow the storage class and base type.
Each declarator may be followed by a definition. You separate the
declarators and their definitions with commas. You terminate the
list of declarators and definitions with a function definition or with
a semicolon.

Storage Class

4 - 2

The storage class, if present. consists of one of the keywords
extern, static, auto, register. or typedef. If the storage class
is typedef, then the declaration is a type definition. The
identifier becomes a synonym for that type, and can appear
anywhere a base type appears. No definition part can appear with
a declarator in a type definition. You can write a type definition
at file level or at block level. Some examples are:

typedef unsigned int Counter; I* Counter is unsigned int *I
typedef char *CBAR_PTR; I* CBAR_PTR is pointer to char *I

For functions and data objects. the compiler interprets the storage
class based on several factors:

Declarations

*

*

*

Initial Declarations

Whether the declaration is at file level, argument level. or
block level

Whether you are declaring a function or a data object

Whether a declaration is in scope to which this declaration
must link

If no declaration of the same identifier is in scope, then the
following rules apply:

function file level declaration: If the storage class is extern or
absent, then the function has external linkage. If the
storage class is static. then the function has internal
linkage. No other storage class is permitted. Some
examples are:

extern int exfri();/*
double exfrd();

external link.age *I
I* external link.age */
I* internal link.age *I static long stfrl();

auto int aufri(); I* ERROR: invalid storage class *I
data object file level declaration: If the storage class is extern,

then the data object has external linkage. If the storage
class is absent, then the data object has external linkage
and the declaration constitutes a "tentative definition." If
no explicit definition for that data object appears by the end
of the compilation, then the compiler will provide an implicit
definition with all zero data initializers. If the storage class
is static, then the data object has internal linkage. Since
the data object must be defined within the current
compilation, any static data object declaration is a tentative
definition. The section "Definitions" later in this chapter
discusses tentative definitions.

No other storage class is permitted. Some examples are:

extern int exi; I* external link.age */
long exl; I* tentative definition, external link.age */
static double std; I* tentative definition, internal link.age *I
register int rei; I* ERROR: invalid storage class *I

function argument level declaration: If you declare an argument as
a function type, the compiler rewrites it as a "pointer to
function" type. It behaves just like any other "data object
argument level declaration," described next.

data object argument level declaration: Name only identifiers that
appear in the argument list for the function, and each
identifier must appear at most once. If you declare an
argument as an array type. the compiler rewrites it as a
pointer type. If you provide no declaration for an argument
identifier, the compiler implicitly declares it to be of type
int, with the storage class absent. If the storage class is
absent, then the argument is the data object passed on a
function call.

Declarations 4 - 3

4 - 4

An argument data object has no linkage and /1 dynamic
lifetime." Your program allocates storage for the data
object every time the function is called, and deallocates it
when the function returns control to its caller. Data objects
you declare with storage class extern or static have
"static lifetime." The compiler determines their initial stored
values from their data initializers, before program startup.
and they continue to occupy storage until program
termination. Program startup and termination are discussed
in Chapter 8, "C Runtime Environment."

If the storage class is register, then the compiler tries to
allocate a "register" and designate that as the argument
data object. If it succeeds, your program copies the
argument value passed on each function call to the register
data object. You cannot take the address of a register data
object, as in &x, so the compiler is free to implement
register data objects in storage with enhanced access, such
as machine registers. This restriction is true whether or
not the compiler actually places the data object into a
machine register. On System/370, you can place up to
three data objects in registers. However, there is no limit
to the type or number of data objects of storage class
register that you can declare. All such data objects must
have an integer or pointer type that the compiler represents
in 32 bits. These types are described later in this chapter.
If the compiler cannot allocate a register data object, it
leaves the argument data object designation unchanged.

The compiler counts the number of references to each data
object in a given function and puts the most frequently
referenced data objects in machine registers until all three
available machine registers are utilized. The compiler
performs all explicit requests for registers made by declaring
data objects of storage class register before performing
automatic register allocation.

No other storage class is permitted. Some examples are:

int f(a, b, c, d)
double c; I* third argument is double *I
register int a; I* register requested for first *I
long b; I* second is long *I
{ •.•.. } I* fourth is int by default *I

double d(x, y, z)
double· x, y;
double x;
double w;
static double

I* x and y are
I* ERROR: x is
I* ERROR: w is
z; I* ERROR:

double *I
declared twice *I
not an argument *I
invalid storage class *I

function block level declaration: For any storage class. the function
has external linkage. Some examples are:

Declarations

int f()
(

int f() (
extern int g(); I* external linkage */
double h(); /* external linkage *I

data object block level declaration: If the storage class is extern.
then the data object has external linkage. If the storage
class is static, then the data object has no linkage. static
lifetime, and is a tentative definition. The identifier is
visible only inside the block. No other declaration can be
linked to this one.

If the storage class is auto or absent. then the data object
has no linkage and dynamic lifetime. The compiler allocates
storage for the data object every time control enters the
block during execution of the containing function. and
deallocates it when control leaves the block.

If the storage dass is register. then the compiler tries to
allocate a register for the data object. Such a register data
object has no linkage and dynamic lifetime. You cannot
take the address of a register data object. If the compiler
cannot allocate a register. it allocates the data object just as
for the auto storage class.

Some examples are:

extern int exi;
static long stlo;
auto double audo;
float aufl;
register int rei;

I* external linkage *I
I* no linkage, static lifetime *I
I* no linkage, dynamic lifetime *I
I* no linkage, dynamic lifetime *I
I* no linkage, register requested *I

Redeclarations

If a declaration of the same identifier is in scop~. then the
declaration is a "redeclaration," and the following rules apply:

function file level redeclaration: If the storage class is extern or
absent, then the function inherits linkage from the previous
declaration. If the storage class is static, then the
function must have internal linkage from the previous
declaration. If you want a function to be /mown only
within the current compilation, use static storage class in
its first declaration. Subsequent declarations can be extern
for any function declaration.

No other storage class is permitted. Some examples are:

Declarations 4 - 5

4 - 6

extern int exfri();
extern int exfri();/* external linkage inherited *I
static int exfri();/* ERROR: wasn't internal linkage *I

static double stfrd();
external double stfrd();/* internal linkage inherited *I
static double stfrd(); I* internal linkage consistent *I

data object file level redeclaration: If the storage class is extern,
then the data object inherits linkage from the previous
declaration. If the storage class is absent, then the data
object inherits linkage from the previous declaration and the
combined declaration becomes a tentative definition. If the
storage class is static. then the data object must have
internal linkage from the previous declaration.

No other storage class is permitted. Some examples are:

extern int exi;
extern int exi; /* external linkage inherited *I
int exi; I* external linkage inherited *I

static long exlo;
extern long exlo; /* internal linkage inherited *I

function argument level redeclaration: This is not permitted.

data object argument level redeclaration: This is not permitted.

function block level redeclaration: For any storage class. the
function inherits linkage from the previous declaration.
Some examples are:

extern int exfri();
static double stfrd();
g() {

extern int exfri();/* external linkage inherited *I
double stfrd(); I* internal linkage inherited *I

data object block level redeclaration: If the storage class is extern,
and the previous declaration specifies internal or external
linkage, the data object inherits that linkage. If the
previous declaration specifies no linkage. you are declaring a
different data object from the one whose name is currently
in scope. Similarly. if the storage class is anything other
than extern, you are also declaring a different data object.
The compiler will emit an error message if you declare
different data objects with the same identifier within the
same block.

Some examples are:

Declarations

extern int exi;
static long stlo;
static double stdo;/*
int g() {

ORIGINAL stdo *I

extern int exi;
extern long stlo;
auto double stdo;

I* external link.age inherited *I
I* internal link.age inherited *I
I* NEV: no link.age */

Base Type

{
extern int exi; /* same exi as always */
extern double stdo;/* ORIGINAL*/
auto long aulo;
extern long aulo; I* ERROR: different *I

The visibility of stdo in this example is quite complex. It is first
declared at file level with internal linkage and static lifetime. It is
then masked by the au to declaration at the top of the function
which has no linkage. The extern declaration in the inner block
links to the declaration at file level. The original stdo is
unmasked for the duration of the inner block, then masked once
again until the end of the function.

There are many ways to control visibility and linkage in C, but
the rules are complex. The keywords extern and static are
"overloaded. /1 They have very different meanings in slightly
different contexts. You can avoid most of the subtle cases
described here quite easily. however. Declare all functions and all
data objects with external linkage, at file level. Declare all other
file objects in the innermost block with sufficient scope for all
references. Do not intentionally redeclare external identifiers.
Treat them as "reserved identifiers" throughout your program. Use
block scope to minimize accidental name conflicts among identifiers.
Do not use block scope to introduce redefinitions that harm
readability. You need to use only a few of the many forms of
declarations detailed here. Chapter 10. "Organizing Your Program."
discusses style restrictions that help you write better C code.

The "type" you write in a declaration characterizes many aspects
of the thing being declared. Types fall into three major groups:

function types: You distinguish functions by declaring a type of the
form function returning T. where T is a type that a
function may return. All such types are called "function
types."

incomplete types: You give an expression that produces no value
the special type void. If you do not provide enough
information so the compiler knows the size of a data object.
you have a type that describes a /1 data object of unknown
content. 11 These types plus void constitute the 11 incomplete
types."

data object types: All other types other than function types and
incomplete types are "data object types. 11

Declarations 4 - 7

4 - 8

Each data object type has a set of "values" that it can represent.
These values are different bit patterns of the "representation" of
that data object type. The compiler knows exactly how many bits
to allocate for a data object of a given type. The C language
permits enough variation in the representation of each type that
efficient encoding is possible on many different computer
architectures. So the type of a data object tells you how much
storage the compiler allocates for it, what bit patterns your
program may store in the data object and what value to assign to
each valid bit pattern when your program reads the contents of
that storage.

The "base type" is that part of the type information you write as
the first part of the declaration. Each declarator in the declaration
may provide additional type information, but all share the base
type. For example,

int in, *pi, fri(), ai[];

declares in to be of type int. pi to be of type pointer to int. fri
to be of type function returning int, and ai to be of type array
of int. The base type for this declaration is int, specified by the
keyword int.

You write a base type by writing one or more "type specifiers"
that describe the type. You may write the type specifiers in any
order, and the storage class may appear anywhere among the type
specifiers. For example, to declare the variable x with the storage
class static and the type long double, you can write any of:

static long double x;
static double long x;
long double static x;
long static double x;
double static long x;
double long static x;

Always use the first form. however. since it is the most readable.
Types written with multiple type specifiers are presented here in
the forms most widely used. If you can write a type more than
one way, use the form listed first.

All base types fall into one of the following categories:

*

*

*
*

The "void type:" void

The "integer types:" char, signed char. unsigned char.
short, unsigned short. int. unsigned int. long, and unsigned
long

The "floating types: 11 float, double, and long double

The "composite types:" en um. struct. and union

The type void is always an incomplete type. The composite types
may be either incomplete types. if their content is not yet
specified, or data object types.

A base type may be qualified by either or both of the "type
qualifiers" const and volatile. All base types and qualifiers are

Declarations

described in order. along with their representations on System/370.
Several types often have the same representation. Nevertheless,
each of the types listed here is considered to be different. when
the compiler checks if two types are the same.

All of the base types describe data objects that occupy a integral
number of bytes of contiguous storage. There are no unallocated
regions of storage within a data object, and there are no bytes
that are only partially filled. There may be "padding" bits, which
do not contribute to the value of any component of a composite
data object. These are still part of the value of the data object
as a whole. A byte in C always consists of at least eight bits.
On System/370, a byte consists of exactly eight bits.

All of the base types describe data objects that begin on a byte
boundary. Each type may also require a stronger "alignment" in
storage. The data object may be constrained, for example, to
begin on an even numbered byte address. The compiler enforces
any alignment required for data objects when it allocates storage
for them. For a composite data object. it ensures that each
component is adequately aligned and that the data object as a
whole is aligned as strictly as its most demanding component.
System/370 requires no special storage alignment, but favors access
to a data object aligned on a data address that is a multiple of
its size in bytes. The compiler aligns data objects on storage
boundaries favored by System/370.

The Void Type

You write type void as void. This type has no representation.
It is the only incomplete type that cannot be completed. You
cannot declare a data object of type void. as in

void x; I* ERROR *I

Valid types based on void are pointer to void type. function
returning void types, and other types derived from these.

The Integer Types

char type

The integer types each represent a range of integers. Some are
"signed integers," which represent a range including both negative
and positive values. Others are "unsigned integers," which
represent a range from zero to some positive value. All integers
in C have a binary representation.

You write type char as char. The type is an integer that
occupies one byte of storage. Each compiler chooses whether to
represent type char as a signed or an unsigned integer.
Regardless of this choice. all of the character codes you use to
write C programs are positive values when represented as type
char. Chapter 2. "Elements of the C Language." describes these
characters. You use data objects of type chm· to hold character
codes. On System/370. the compiler represents a data object of
type char as an unsigned binary integer. with values from 0 to

Declarations 4 - 9

255, inclusive.

signed char type

You write type signed char as signed char. The type is a
signed integer that occupies one byte of storage. You use data
objects of this type to hold small signed values. On System/3 70.
data objects of type signed char can hold values from -128 to
127, inclusive.

unsigned char type

short type

You write type unsigned char as unsigned char. The type is an
unsigned integer that occupies one byte of storage. You use data
objects of this type to hold small unsigned values. On
System/370, data objects of type signed char can hold values from
0 to 255, inclusive.

You write type short as any of: short, short int, signed short
int, or signed short. The type is a signed integer that occupies
at least 16 bits of storage. You use data objects of this type to
hold moderate signed values. On System/370, the type short
occupies 16 bits of storage. Its values range from -32,768 to
32, 767, inclusive.

unsigned short type

int type

You write type unsigned short as either of: unsigned short or
unsigned short int. The type is a unsigned integer that
occupies at least 16 bits of storage. You use data objects of this
type to hold moderate unsigned values. On System/370, the type
unsigned short occupies 16 bits of storage and can hold values
from 0 to 65,535, inclusive.

You write type int as int. If you specify no base type, the
compiler assumes you mean the type int. You can also write the
type signed int as signed int. The compiler treats the type
signed int as identical to plain int, except when you declare a
bitfield. Bitfields are discussed later in this chapter. The type int
is a signed integer that occupies at least 16 bits of storage. You
use data objects of this type to hold moderate signed values. The
C language strongly favors arithmetic with type int or unsigned int.
On System/370, the type int actually occupies 32 bits of storage.
Data objects of type int can hold values from -2,147,483.648 to
2,147,483,647, inclusive.

unsigned int type

4 - 10

You write type unsigned int as either of: unsigned int or
unsigned. The type is an unsigned integer that occupies at least
16 bits of storage. You use data objects of this type to hold
moderate unsigned values. The C language strongly favors

Declarations

long type

arithmetic with type i11t or 1111.signed i11t. The type unsigned int
actually occupies 32 bits of storage. On System/370. data objects
of type unsigned int can hold values from 0 to 4.294.967.295.
inclusive.

You write type long as any of: long. long int. signed long. or
signed long int. The type is a signed integer that occupies at
least 32 bits of storage. You use data objects of this type to
hold large signed values. On System/3 70. the type long has the
same representation as i11t.

unsigned long type

You write type w1signf'd long as either of: unsigned long or
unsigned long int. The type is an unsigned integer that
occupies at least 32 bits of storage. You use data objects of this
type to hold large unsigned values. On System/3 70. the type
unsig1wd long has the same representation as unsignf'd int.

The Floating Types

float type

double type

The floating types each represent a range of finite prec1s1on
approximations to the real numbers. Each range may be different,
but each includes both negative and positive values plus the value
zero. All must maintain at least six decimal digits of precision
over a range from ten to the power -38 to ten to the power
+38.

You write type float as float. This is the floating type that
occupies the least amount of storage. You use data objects of this
type to hold floating values that may be of the minimum required
precision. On System/370. the type float is a floating point data
type that occupies 32 bits of storage. It retains at least six
decimal digits of precision. over a range from approximately lE-76
to 1E+76.

You write type double as double. This is a floating type that
should retain greater precision than the type float. The C
language strongly favors arithmetic with type double. You use data
objects of this type to hold floating values that should be of the
maximum precision normally available. On System/370. the type
double is a floating point data type that occupies 64 bits of
storage. It retains at least 15 decimal digits of precision. over a
range from approximately lE-76 to 1E+76.

Declarations 4 - 11

long double type

You write type long double as long double. This is a floating
type that retains the maximum precision available during
intermediate calculations of floating expressions. You use data
objects of this type to hold floating values that should be of
extraordinary precision. On System/370. the type lo11g double has
the same representation as the type double.

The Composite Types

The three composite types struct. union. and enum share a
common format. The type descriptor for any of these consists of
the proper keyword, followed by a tag, followed by the "content"
inside braces. If you write both the tag and the content. you can
later use the tag alone to refer back to the content. If you write
just the content, you have an "unnamed" composite type. Only
identifiers declared within the declaration having this base type can
have the same unnamed composite base type. If you write just
the tag, you can refer either forward or back in your source text
to the content that goes with it. When you use a tag to talk
about a composite type whose content you have not yet written.
you are specifying an incomplete type. You can use an incomplete
type anywhere that the compiler does not need to know the size
of data objects of that type.

Since struct types and union types share so many properties, this
manual uses the term "structure" frequently to refer to both. An
incomplete struct or union type. for example. is a structure of
unknown content. You can also write an enum of unknown
content, but that has fewer uses.

Here are some examples of the use of tags:

struct Complex { /* both tag and content */
float re, im; } x; I* x is of type struct Complex *I

union mix *p; I* union mix has unknown content,
p is of type pointer to union mix *I

struct Complex y; I* y is of same type as x *I

enum {RED, YELLOV, GREEN} light; I* unnamed type *I
There is a special way to declare an incomplete composite type
when a tag of the same name is in scope in a containing block.
You write a declaration with no declarators. as in:

union mix; I* introduce new tag "mix" in this block */
union mix *p; I* p points to the new "mix" *I
Chapter 3, "Identifiers." discusses this issue. in the section
"Visibility."

Enumeration Types

4 - 12

You write an "enumeration" type as the keyword enum. followed by
a tag, followed by the content inside braces. You may omit either
the tag or the content. but not both. An enumeration is an
integer type whose values you name when you write the content.

Declarations

You use data objects of enumeration type to hold a small number
of distinct values. The compiler chooses one of the integer types
other than long or unsigned long to represent each enum. If all
of the values you specify in the content of the enumeration can be
represented in a signed char. for example. the compiler will
represent the enumeration as that type. When the compiler
compares two types, it uses the integer type it chose as the type
of the enumeration. You may store values in a data object of
enumeration type other than those values you define for the
enumeration. If you do. make sure that the values you store are
representable in the chosen type.

The content of an enumeration consists of one or more
enumeration constant declarations. which you separate with commas.
An enumeration constant declaration consists of an identifier. or an
identifier followed by an equal sign. followed by a constant integer
expression giving the value of the enumeration constant. If you
write only an identifier, the value of the enumeration constant is
zero for the first enumeration constant declaration in the list. For
later declarations in the list. the value is one more than the value
for the preceding declaration. An enumeration constant declaration
defines its identifier to be an enumeration constant. Its type is
the type the compiler chose to represent the enumeration and its
value is the enumeration constant value for that declaration. You
can use enumeration constants almost anywhere you can use any of
the integer constants described in Chapter 2. "Elements of the C
Language". If you use them in #if of #el if preprocessor
directives. however. the compiler will treat them as undefined macro
names. not enumeration constants.

Some examples of enumerations are:

enum Roman {
I 1, II, III,
v = 5, x = 10 };

enum {

I* values are 1, 2, 3 */
I* values are 5 and 10 *I

Struct Types

OPEN, CLOSE, READ, 'WRITE, I* values are O, 1, 2, 3 */
OP= 0, CL, RE, YR}; I* values are also 0, 1, 2, 3 */

You may define enumerations that declare multiple enumeration
constants with the same value. as the last example illustrates.

You write a "struct" type as the keyword struct. followed by a
tag, followed by the content inside braces. You may omit either
the tag or the content. but not both. A data object of struct
type is composed of one or more "structure members" that occupy
sequentially increasing addresses in storage. The first structure
member is a data object at offset zero from the start of the
composite data object. Each subsequent structure member begins
on a storage boundary. following the previous structure member.
that is suitably aligned for its type. The compiler may provide
padding between structure members to enforce proper alignment.
The compiler may also provide padding after the last structure
member so that a data object of the same type can immediately

Declarations 4 - 13

follow and be on a proper storage boundary. as in an array of
structures. You use a struct type to declare a collection of related
data objects that you wish to manipulate as a single data object.

The content of a struct type consists of a sequence of declarations.
Each declaration names one or more structure members. Do not
specify a storage class as part of any declaration. Declare only
data object types. Also, do not specify a definition for any
declarator. Some examples are:

struct address {
char name[SO]; I*
char street[SO];
char town[30]; /*
long zip code; I*
}; -

struct node {

first member is array
I* array of char *I

array of char *I
long integer *I

of char *I

struct node *prev; I* root.prev->value is previous value *I
struct node *next; I* root.next->value is next value *I
long value;
} root;

I* root.value is current value *I
I* root of binary tree *I

The last example illustrates that you can declare a struct type that
contains pointers to objects of the same type, by declaring a
pointer to struct of 1111/mown content. The compiler does not have
to know the size of the whole struct. since it is just adding a
pointer to the struct.

Bitfields

4 - 14

You may write a "bitfield" declarator as part of the content of a
structure type. A bitfield is a contiguous group of bits within one
structure member of type int. You declare a bitfield by writing a
declaration that has base type signed int. unsigned i11t. or int.
Each bitfield declarator consists of an identifier followed by a colon.
followed by a constant integer expression giving the size in bits of
the bitfield. You can declare an "unnamed bitfield" by leaving out
the identifier. The size in bits must be a value between zero and
the number of bits used to represent the type int, inclusive. On
System/370, an int data object occupies 32 bits of storage.

You may declare one or more bitfields in sequence. The compiler
adds a new structure member of type int for the first bitfield in a
sequence. If the compiler can pack each subsequent bitfield into
the same structure member. it uses the group of bits adjacent to
those used for the previous declarator. On System/370. the first
bitfield in a sequence occupies the most significant bits of the int.
Subsequent bitfields pack into the most significant bits remaining in
that same int. The compiler adds a new structure member if it
cannot pack a bitfield into the current structure member. or if you
specify a bitfield of width zero. A bitfield of width zero must be
an unnamed bitfield. You can also use an unnamed bitfield
anywhere you want to control padding between named bitfields.

The compiler determines the type of each bitfield from the base
type of its declaration. If the base type is signed int, then the
bitfield is a signed bitfield type. The compiler interprets it as a

Declarations

Union Types

two's complement integer. so it can represent a range including
both negative and positive values. If the base type is unsigned
int. then the bitfield is an 1111sig11ed bitfield type. The compiler
interprets it as an unsigned binary integer. so it can represent a
range of values beginning with zero. If the base type is int. then
the bitfield is a plain bitfield type. Its representation is the same
as either signed bitfield or unsigned bitfield. On System/370, the
representation is the same as for an unsigned bitfield. This is the
only context where the compiler distinguishes the type sig11ed i11t
from plain int. The bitfield types are all integer types.

Some examples of bitfields are:

struct old ptr {
int :-8; I* most significant 8 bits unnamed *I
int pointer : 24; }; I* remaining 24 bits *I

struct answers {
int smdw : 2, I* x.smdw *I

age : 7, 'I* x.age *I
can drive :1, I* x.can drive *I
can=type :1; } x; I* x.can_type *I

You write a "union" type as the keyword union. followed by a
tag. followed by the content inside braces. You may omit either
the tag or the content. but not both. A data object of union
type is composed of one or more structure members that overlap
in storage. All structure members are data objects at offset zero
from the start of the composite data object. The composite data
object begins on a storage boundary that is suitably aligned for
any of its structure members. The compiler provides padding after
any structure members smaller than the entire composite data
object. You use a union type to declare a data object that may
hold data objects of different types at different times.

The content of a union type consists of a sequence of declarations.
Each declaration names one or more structure members. The rules
for writing structure member declarations for a union type are the
same as those for a struct type. If you specify a sequence of
bitfields. the compiler treats each as the first of a sequence. On
System/370. every bitfield in a union type occupies the most
significant bits of a 32 bit integer. Some examples are:

union arith {
int ival;
double dval;
} ;

union {
char *cp;
short *sp;
int *ip;
} ptr;

I* may contain an int *I
I* or a double *I

I* point to char with ptr.cp *I
I* or to short with ptr.sp *I

I* or to int with ptr.ip *I

Only one structure member of a union data object may have a
valid stored value at any given time while your program is

Declarations 4 - 15

executing. Your program must determine which structure member
has a valid stored value. since the union data object contains no
such indication. You can store a value in one structure member
of the union and access it properly as another structure member of
the union, provided both structure members have the same type.
If two structure members of a union are struct types whose first
structure members have the same types, then you can store a
value in one of those structure members and access it properly as
the corresponding structure member of the other struct in the
union. For example:

union {
struct {

int utag; I* utag is common to both structs *I
double val; /* holds double x.d.val *I
} d;

struct {
int utag; .
int val; /* holds int x.i.val *I
} i; } x;

You may store a value in x. i • u tag and test it properly by
accessing x. d. u tag.

Except for this situation. if you store a value in one structure
member of the union and access it as a structure member of the
union having a different type. your program may work quite
differently when compiled by different compilers. Avoid such
operations if you want your program to be portable.

Type Qualifiers

You can add the type qualifiers const and volatile to any base
type. You can also add them to pointer type attributes. which are
discussed later in this chapter. Each type qualifier can appear at
most once in a base type or a pointer type attribute. You may
specify const and volatile together. in either order.

The Type Qualifier const

When you add the type qualifier const to any base type. you
make it a "const" type. If you write an expression that obviously
alters the value stored in the data object, the compiler will emit
an error message. Do not write an expression that covertly alters
the value stored in the data object. You use const types to
declare data objects whose stored values you do not intend to alter
during execution of your program.

If you declare a data object of const type with static lifetime.
either at file level or at block level. you may specify its stored
value by writing a data initializer. The compiler determines its
stored value from its data initializer before program startup. and
the data object continues in existence until program termination.
If you specify no data initializer. the stored value is zero. If you
declare a data object of const type at argument level. you tell the
compiler that your program will not alter the value stored in that
argument data object by the function call. If you declare a data

4 - 16 Declarations

object of const type and dynamic lifetime at block level. you may
specify its stored value by writing a data initializer. If you specify
no data initializer, the stored value is indeterminate. The value you specify
will be stored in the data object upon every transfer of control to
the beginning of the block. Chapter 6, "Statements". describes
transfer of control.

If you declare a structure member to be a data object of const
type, you tell the compiler that your program will not alter the
value stored in that structure member. If the structure type is a
const type. then your program may not alter the value stored in
any of its structure members.

Some examples of const types are:

const float pi = 355.0 I 113.0;
int f (arg)

I* pi never changed *I

const double arg; I* arg never changed inside f */
{
const double sin arg = sin(arg);

/*-sin_arg never changed after this*/

The Type Qualifier volatUe

Declarators

When you add the type qualifier volatile to any base type. you
make it a "volatile" type. An expression that stores a value in a
data object of volatile type stores the value immediately. Your
program will not defer or eliminate storing a value in such a data
object. An expression that accesses a value in a data object of
volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from such a data
object. You use volatile types to declare data objects whose stored
values may be changed in ways that the compiler cannot anticipate.

Most applications have no need for volatile types. You use volatile
types to declare data objects that appear to be in conventional
storage but are actually represented in machine registers with
special properties. You use them to declare data objects that are
in storage shared among multiple programs. You can also use
them to declare data objects that "signal handlers" may access. A
signal handler is a function you specify that responds to events
that might not be synchronized with the execution of your
program. Signal handlers are described with the header file
<signal. h> in Chapter 11. /1 C Library Reference."

You write a declarator to specify the identifier you are declaring.
and to provide additional type information. If the base type is not
an enumeration or a structure type. you must specify at least one
declarator. After the declarator you can write a function definition
or a data initializer. If you follow a declarator with a function
definition, you terminate the declaration. Otherwise. you can then
write a comma followed by another declarator. If you do not
terminate the declaration with a function definition, you write a

Declarations 4 - 17

semicolon to terminate the declaration.

The simplest declarator you can write is an identifier alone.
as x. This declares the identifier x to have the base type.
make more complex declarators. you can add three kinds of
attributes" to an identifier x. whose base type is T:

*x: declares x to be of type pointer to T

such
To

"type

x [size] : declares x to be of type array of T. with the number of
elements specified by size

x (args): declares x to be of type function retuming T. with its
argument types specified by args

If you specify more than one of these type attributes, you read
them from right to left. For example. *fp() is of type function
returning pointer to T. for base type T. and **app [5) is of type
array of pointer to pointer to T. You can also use parentheses to
specify that type attributes read in a different order. You read
the contents of the innermost parentheses first. For example,
(*pf) () is of type pointer to function returning T. and
*(*pap)[S) is of type pointer to array of pointer to T.

These rules model the way the compiler applies the addressing
operators when you write expressions. You write the poi11ter type
attribute in a declarator the same way you write the "indirect on"
operator in an expression. You write the array type attribute the
same way you write a "subscript" in an expression. You write
the function type attribute the same way you write a "function
call" in an expression. You also read the type attributes in the
same order as the compiler "groups" the corresponding operators in
an expression. These operators are described in Chapter 5,
"Expressions."

If you wish to change a declarator of type T to type pointer to
T, replace the identifier x within the declarator with (*x). If you
want to change the declarator to type array of T, replace the
identifier with (x[)). If you want to change the declarator to
type function returning T. replace the identifier with (x()). You
may not always need the parentheses, but using them will not
cause an error.

Below are the rules for applying each of the type attributes to an
identifier alone. You build more complex declarators by applying
the rules above.

Pointer Type Attribute

4 - 18

You write the pointer type attribute as an asterisk *· followed by
any type qualifiers. followed by the identifier.

If T is the base type. the type of this declarator is pointer to T.
T may be any type. Do not take the type pointer to void
literally, however. It is used as a special form of universal data
object pointer. as described in Chapter 5. "Expressions." You use
pointers to hold the addresses of functions or data objects. On
System/370. all pointers occupy 32 bits of storage and support 31
bit addresses on MVS/XA or 24 bit addresses on other systems.

Declarations

You write * const cp to declare that cp is a const pointer to T.
You write * volatile vp to declare that vp is a volatile pointer
to T. You can also write both type qualifiers after the *· in
either order. Type qualifiers written after the * describe the
pointer data object, while type qualifiers written with the base type
describe the data object pointed to. Note the four distinct cases:

char *p; I* pointer to char *I
const char *pc; I* pointer to const char *I
char * const cp; /* const pointer to char *I
const char * const cpc; I* const pointer to const char *I

Array Type Attribute

You write the array type attribute as the identifier followed by an
array size in brackets [] . If T is the base type. the type of
this declarator is array of T. T must be a data object type. If
the array size is absent, the type is an array of u11k11ow11 conte11t.
This is an incomplete · type. Otherwise. the array size must be a
constant integer expression whose value is greater than zero. The
array size gives the number of elements, or instances of a data
object of type T, within the array. You use an array to hold an
ordered sequence of data objects all of the same type.

You can use an array of unknown content in several contexts. If
you provide a data initializer with the declarator, the compiler sets
the size to the number of array element data initializers you write.
Two examples are:

I* size is 3 *I int x[] = {l, 2, 3};
char mesg[] = "hello"; I* size is 6 (including null) */

If you write a declarator that is not a defining instance. you can
declare it as an array of unknown content. You can use
identifiers declared this way to access elements of the array. An
example is:

extern double tab[]; I* tab defined elsewhere *I
If you declare a pointer to an array. the array can be an array of
unknown content. You may not use the pointer to access storage.
however. For example:

char (*pa)[]; I* pointer to array of char *I
If you declare a function argument to be an array. the compiler
rewrites the deciaration as a pointer to the first element of the
array. This is a complete type. So the array can be of unknown
content. For example:

int main(ac, av)
int ac;
char *av[]; I* actually passed as char **av *I

If you redeclare an array. either of the declarators may omit the
size. If both provide a size. the two sizes must be the same.
Once you provide a size. the compiler remembers it as part of the
combined declarations. It becomes a data object type. and is no
longer an incomplete type. For example:

Declarations 4 - 19

extern char extc[];/*
char extc[25]; I*
extern char extc[25];
extern char extc[];/*
char extc [20] ; I*

unknown size *I
compatible with first *I

I* compatible with first
still compatible *I
ERROR: size still known *I

two *I

Function Type Attribute

4 - 20

You write the function type attribute as the identifier followed by
an argument list in parentheses ().

If T is the base type. the type of this declarator is fu11ctio11
returning T. T must be a data object type other than array of
T, or the type void. You use functions to express all of the
executable code you supply with your program.

You can write several kinds of argument list. These represent
combinations of two choices you make:

function definition: If you provide a definition for the function with
this declaration. you must provide the names of the function
arguments in the argument list.

function prototype: If you want the compiler to check the types
and number of arguments on subsequent function calls and
redeclarations, you must provide the types of the function
arguments in the argument list. A function declaration that
provides argument types is called a "function prototype."

Some examples are:

int fri(); I* no definition, no prototype *I
int fri(int, double); I* no definition, prototype *I
int fri(int a, double d); I* no definition, prototype *I
int fri(x, y) I* definition, no prototype *I

int x;
double d;
{ }

long frlo(long lo) /* definition, prototype *I
{ }

If a declaration is not a function prototype or a definition, its
argument list must be empty. This is not an incomplete type.
An incomplete type is a data object type that is missing some
information that the compiler needs to know before it can
determine the size of objects declared with that type.

If a declaration is not a function prototype but is a definition. an
empty argument list means that the function has no arguments.
Otherwise, write the argument identifiers alone within the argument
list. You declare any arguments with argument level declarations
immediately following the declarator. The function body. enclosed
in braces. terminates the argument level declarations. You may
declare each argument at most once. You may declare only
arguments at argument level. If you do not declare an argument.
the compiler implicitly declares it to have type int.

If a function prototype is not also a definition. you may omit the
argument identifiers. An argument declaration of this form is

Declarations

called a "type name" and is discussed later in this chapter. If
you supply argument identifiers. their scope ends with the end of
the argument list. They need not match identifiers you use in
redeclarations of the function.

If a function prototype is also a definition. provide the argument
identifiers along with their types. The scope of these argument
identifiers ends with the end of the function body.

If you write an argument type of the form function l'etumi11g T.
the compiler changes it to poi11tel' to function retul'ning T. If you
write an argument type of the form array of T, the compiler
changes it to pointer to T. Otherwise the type you write must be
a data object type.

Function Prototype Arguments

You write a function prototype for a function f with no arguments
as f(void). For a function with a fixed number of arguments.
you write a list of declarations. one for each argument. You
separate the declarations with commas. Each declaration can have
only one declarator. A function prototype argument declaration can
have the storage class register. which has meaning only if the
prototype is also a definition. A function prototype argument of
"const" or "volatile" type has meaning only if the function
prototype is also a definition. The compiler checks the types and
number of arguments on a function call in scope of a prototype.
Chapter 5, "Expressions" describes the rules for calling functions in
the section "Function Calls."

If you want to call a function with a variable length argument list.
write a function prototype whose argument list ends with a comma
followed by the ellipsis, as in:

int printf(char *fmt, •••);

You must specify at least one argument in the function prototype.
On a function call, the compiler checks the types and number of
all the arguments that you specify in the function prototype. You
may call a function with more arguments than you specify in the
function prototype. but not with fewer. All function calls and the
definition must be in scope of such a function prototype. if you
want your program to be highly portable.

If you redeclare a function. either of the declarators may be a
function prototype and the other not a function prototype. If both
provide a function prototype. the number of arguments and their
types must be the same. Chapter 5. "Expressions." describes
when types are the same in the section "Comparing Types". Once
you provide a function prototype. the compiler remembers it as
part of the combined declarations.

OS Calling Sequence

If you wish to call a function that uses the standard OS calling
sequence, such as a function written in another language. declare
the function in a special way. Chapter 7. "The Preprocessor."
describes how to specify that a function uses the OS calling

Declarations 4 - 21

Definitions

sequence. in the section "Pragmas."

You write a definition immediately after a declarator. If the
declarator declares an identifier of function type, the definition must
be a sequence of argument declarations followed by a function body.
If the declarator declares an identifier of data object type, or an
array of unknown content, the definition must be a data initializer.
In either case, the identifier is declared at the end of the
declarator. It is in scope for the definition. A function can
therefore call itself and a data object can use its own address as
part of its data initializer. Do not write a definition for a
declarator whose type is incomplete, except for an array of
unknown content as described above.

Function Definition

You define a function by specifying its argument declarations and
function body. You also provide a "defining instance" of the
function identifier when you specify a function body. Every
function your program makes use of must have exactly one
defining instance. That defining instance may be in one of the
compilations you provide, or it may be in the C library the
compiler provides. If you declare a function with storage class
static at file level. it has internal linkage. You must provide a
defining instance in the same compilation. Calling a function is
described in Chapter 5, "Expressions," in the section "Function
Calls". Writing the body of a function is described in Chapter 6,
"Statements."

Data Object Definition

4 - 22

You define the value stored in a data object by specifying a data
initializer. You also provide a "defining instance" of the data
object identifier when you specify a data initializer. Every data
object your program makes use of must have exactly one defining
instance. That defining instance may be in one of the
compilations you provide, or it may be in the C library the
compiler provides.

If a data object has dynamic lifetime. its one and only declaration
is its defining instance. In this case, your program evaluates the
data initializer you write whenever it allocates the data object. Its
value is converted to the type of the data object and stored in it.
If you write no data initializer for an object with dynamic lifetime.
its stored value is not valid until your program stores a value in
the data object.

If a data object does not have dynamic lifetime. it must have
static lifetime. When you write a data initializer for one of its
declarations, that is its defining instance. The compiler determines
its value from its data initializer at compile time. and stores its
value before program startup. A data object with static lifetime
has either no linkage, internal linkage. or external linkage. The

Declarations

compiler creates a defining instance, within the compilation, for
such a data object with no linkage or with internal linkage that
has no defining instance. Every such declaration is therefore a
tentative definition. If the compiler creates a defining instance for
a tentative definition, it provides a zero data initializer for each of
the components of the data object.

The compiler similarly creates a defining instance for a data object
with external linkage, within the compilation, if you write at least
one tentative definition for it. You write such a tentative
definition at file level by writing no storage class in the
declaration. Therefore, you must write either a data initializer or
a tentative definition for every data object you make use of that
has e.t:ternal linkage and is not defined in the C library. For
example:

int a = 3;
int b;
extern int
static int

I* defined in this compilation *I
I* defined in this compilation *I

c; I* not defined *I
d; I* defined in this compilation *I

A compilation that does not provide a defining instance of a data
object may declare it with an incomplete type. For example.

extern int a[];

may be used to access elements of the array a.

Data Initializers

You initialize a data object of "scalar 11 type by writing an equal
sign followed by an expression. You may enclose the expression in
braces. A scalar type is an integer type, a floating type. or a
pointer type. The type of the expression must be "assignment
compatible" with the type of the data object. Chapter 5,
"Expressions," describes assignment compatibility in the section
"Comparing Types". The examples that follow show how you
initialize scalar data objects:

char space= ' ';
int x = 3;
doubled= 2.7;
char *message "bad file"; I* string becomes char * *I
unsigned char *puc = {(unsigned char *)&space};

You initialize a data object of array type or structure type. or an
array of unlmown content. by writing an equal sign followed by an
expression, or by a list of "data items" you enclose in braces.
Each data item is an expression. or a sublist of data items you
enclose in braces. If you are initializing a scalar component, a
data item must be a constant expression. You separate the data
items in a list with commas. You may also write a comma at
the end of the list. For example:

int vals[4] = {l, 2, 3, 4,}; I* last comma is permitted *I
You initialize a data object of array type. or an array of unknown
content, by writing one data item for each of the elements of the
array. If you write fewer data items than there are elements. the

Declarations 4 - 23

4 - 24

compiler provides a zero data initializer for each of the remammg
elements of the array. If you write more data items than there
are elements. the compiler emits an error message. If the
declarator has type array of unknown content. the compiler
determines the size of the array from the number of data items
you provide. It is then no longer an army of unknown content
and its type is a data object type. You can initialize a data
object of type array of char. or an array of unlmow11 content of
the same type, by writing a string constant for the data item, as
in:

char ab[4] = "ab"; I* 'a'' I b'' 0, 0 *I
char def[] = "def"; I* , d,' , e'' , f,' O *I
char ghij [4] = "ghij"; I* , g'' , h'' , i,' , j, *I
char klmn[4] = "klmno"; I* ERROR: too many characters *I
The terminating null character counts as part of the string
constant, but the compiler omits it if there is no room for it in
the data object.

You initialize a data object of union type by writing one data item.
The data item initializes the first structure member of the union.
You initialize a data object of struct type by writing one data item
for each structure member. If you write fewer data items than
there are structure members. the compiler provides a zero data
initializer for each of the remaining structure members of the
struct. If you write more data items than there are structure
members. the compiler emits an error message. For example:

struct Complex zero= {0};
struct Complex one = 1.0;
int identity[3)[3] = {{l, O, 0},

{O, 1, O},
{O, 0, 1}};

If you leave out any of the inner braces in a data initializer. the
compiler determines where they should go. In simple cases. this
notation may be a convenient abbreviation. For example, you can
write the array identity in the example above as:

int identity[3][3] = {1, O, O, 0, 1, 0, 0, O, 1};

For complex nested structures. however, the compiler may interpret
what you intend in a way that you do not expect. You may also
find it hard to read a data initializer with braces left out. Do
not leave out braces in a complex data initializer.

The compiler restricts the expressions you can write for some data
initializers. If the data object has static lifetime. then all
expressions must be "constant expressions." Chapter 5.
"Expressions." describes these in the section "Constant
Expressions." If you initialize an array type with dynamic lifetime.
then all expressions must be constant expressions. If you initialize
a structure type with dynamic lifetime by writing a list of data
items, then all expressions in the data items must be constant
expressions. Some examples are:

Declarations

struct Complex frc();
int £() (

struct Complex one= (1, O}; I* must be constants *I
struct Complex ex = frc(); I* or a single expression *I
int fibs[] = (1, 1, 2, 3};

Type Definitions

You write a type definition by writing a declaration with the
storage class typedef. Each declarator defines its identifier as a
type definition of the type it specifies. Do not write any
definitions with any of the declarators. The type definition can
subsequently be used wherever a type specifier is permitted. It is
not a new type, but a synonym for the type it defines. You use
type definitions to summarize complex types in one place. or to
introduce mnemonic names for types used in special ways within
your source text. The type definition may have any type. Some
examples are:

typedef int I, I* I is int */
Pi, I Pi is pointer to int */
Fri(); I Fri is function returning pointer to int *I

static I i, I* i is int *I
pi; I pi is pointer to int */

Pi pi; I* pi is still pointer to int */
typedef Pi *Ppi; I* Ppi is pointer to pointer to int *I

You may not use a type definition of function type to declare an
identifier alone and then define it. For example:

typedef long Frlo(long a);
extern Frlo extfn; I* not a definition *I
Frlo intfn

(..... } I* ERROR: disallowed *I
long extfn(long x)

(..... } I* permissible *I
When you define a function. write its argument list in a function
type attribute in its declarator.

Type Names

You write a type name in several contexts where all you need to
specify is a type. You write a type cast operator. for example. as
a type name in parentheses. as in (char) or (unsigned char *).
You also use type names to declare argument types in a function
prototype. You can also write a type name in parentheses as the
argument to the operator sizeof.

You write a type name by first writing a normal declaration with
an identifier. Do not specify a storage class. · Specify a base
type and only one declarator. Do not specify a definition. Some
examples are:

Declarations 4 - 25

char x; I* char *I
double *pd; I* pointer to double *I
int (*pfi)(); I* pointer to function returning int *I

There should be no redundant parentheses around the identifier. as
in:

char *(p); I* VILL CAUSE TROUBLE (see below) *I
Drop the identifier and you create a type name. The examples
above become:

char
double *
int (*)()
char *() I* TROUBLE: type has changed *I

To read a type name, determine where the identifier belongs. It
will be inside the innermost parentheses that are not empty and
are not function prototype argument lists. It belongs to the right
of the base type, all asterisks. and the type qualifiers const and
volatile. It is to the left of everything else.

Classification of Types

4 - 26

Here is a summary of all the types in C. They are presented in
outline form. grouped by similar properties or similar usage. Learn
the names of all the groups in this list:

function types
function returning void types
function returning structure types
function returning scalar types

incomplete types
void type
structure of unlmown content types
enwn of unknown content types
array of unlmown content types
const incomplete types
volatile incomplete types

data object types
array types
structure types

struct types
union types

scalar types
pointer types

Declarations

function pointer types
incomplete pointer types

pointer to void type
pointer to type of 1111Jmow11 co11tent types

data object pointer types

arithmetic types
floating types

float type
double type
long double type

integer types
char type
signed char type
unsigned char type
short type
unsigned short type
int type
unsigned int type
long type
unsigned long type
bitfield types
'signed bitfield types
unsigned bitfield types
enum types

const data object types
volatile data object types

The "const incomplete types" and 11 const data object types" are
also referred to collectively as "const types". Similarly. the
"volatile incomplete types" and "volatile data object types" are also
referred to collectively as "volatile types" and the structure types
and enum types are referred to collectively as "composite types."

Declarations 4 - 27

4 - 28 Declarations

Chapter 5: Expressions

You use expressions to call a function. compute a value. or alter a
data object. Some examples of expressions are:

printf("hello\n")
'a' + 1

I* call a function *I
I* next value after 'a' *I

x = y + z
y = cos(x)

I* assign value of (y + z) to x *I
I* assign function value to y *I

You build expressions from operators, which specify the action you
want to perform. and operands. upon which the operators act. An
operand can be a constant. such as 3. the name of a data object.
such as abc, or a subexpression. The definition of expression is
recursive, so a subexpression can. in general, be any expression.

There are many important aspects to expressions in C. You need
to know:

*

*
*

*

*

*

*

*

How operators group. in the absence of parentheses

How the compiler regroups expressions

Which operators cause side effects, and the extent to which
you can control order of subexpression evaluation

How your program converts between arithmetic types

How your program converts between pointer and integer
types

What type conversions the compiler permits on assignment

The function of each of the operators

What restrictions apply to "compile time" or "constant"
expressions

This chapter describes each of these aspects.

Grouping and Precedence

You use parentheses to tell the compiler exactly which operands
you want to associate with which operators. For example. the
expression a*(2+c) calls for 2 to be added to c (via the operator
+) . and the result multiplied by a (via the *) . If you write this
expression without parentheses. as in a*2+c. the compiler must
apply a series of rules to determine how to group the operands
with the operators.

Expressions 5 - 1

5 - 2

The various operators have different precedence. The rules for
precedence determine how tightly operands bind to their operators.
Multiplication, for example. has higher precedence than addition, so
the compiler groups the expression a*2+c as (a*2)+c.

When operators have the same precedence, the order in which the
compiler groups them is either left to right or right to left. For
example, the compiler groups the expression x/y/z as (x/y)/z.
because the divide operator I groups left to right. On the other
hand, the compiler groups x I= y I= z as x I= (y I= z) since
the assignment operators group right to left.

In order of descending precedence. the operators are:

1. The addressing operators: function call x(y). subscript x[y].
point at member x->y, and select member x.y. All group
right to left.

2. The unary operators: logical NOT ! x, bitwise NOT -x.
preincrement ++x. postincrement x++, predecrement --x.
postdecrement x--. plus +x, minus -x, indirect on *x.
address of &x, size of sizeof x, and type casts such as
(double)x. All group right to left.

3. The multiplicative operators: multiply x*Y. divide x/y. and
remainder x%y. All group left to right.

4. The additive operators: add x+y and subtract x-y. Both
group left to right.

5. The bitwise shift operators: left shift x«y and right shift
x>>y. Both group left to right.

6. The relational operators: less than x<y. less than or equal
x<=y. greater than x>y. and greater than or equal x>=y.
All group left to right.

7. The equality operators: equal to X==Y and not equal to
x ! =Y· Both group left to right.

8.

9.

10.

11.

12.

The

The

The

The

The

operator bitwise

operator bitwise

operator bitwise

operator logical

operator logical

AND x&y groups left to right.

exclusive OR x·y groups left to right.

inclusive OR xly groups left to right.

AND x&&y groups left to right.

OR x 11 y groups left to right.

13. The operator conditional x?y: z groups right to left. This is
a "ternary" operator. because its "right" operand is a pair
of alternative expressions separated by a colon. An example
is

a<O ? -1 : 1

which has the value -1 if a<O is true. or the value 1 if
a <O is false.

14. The assignment operators: gets x=y. gets multiplied x*=Y·
gets divided x/=y. gets remainder x%=y. gets added X+=Y·
gets subtracted x-=Y· gets left shifted x<<:::::y, gets right

Expressions

Regrouping

\

shifted x>>=y. gets AND x&=y. gets exclusive OR xA =Y· and
gets inclusive OR x I =Y· All group right to left.

15. The operator comma x, y groups left to right.

As an example, the more complex expression

a = b = x & y I z

groups the same as

a = (b = ((x & y) I z))

Always use parentheses to remove ambiguity when working with
operators you use infrequently. Otherwise. you may misread the
expression later.

The C compiler performs as much expression evaluation at compile
time as it can. This capability permits you to write complex
expressions in places where the compiler must know the value at
compile time. The section "Constant Expressions," later in this
chapter, discusses compile time expressions. Compile time
evaluation can also significantly reduce the amount of computation
your program actually performs every time you run it. In looking
for subexpressions that it can compute at compile time, the
compiler can regroup expressions in certain ways. It may perform
regrouping even if you write parentheses to show how you intend
to group the operands.

As an example, the compiler can regroup the expression

a + b + (c + d)

in a number of ways, including

a + ((b + c) + d)

even though the add operator ordinarily groups left to right. and
even though your explicit parentheses suggest a different grouping.

The compiler can also regroup expressions that use any of the
"commutative" operators (*· +. &. A. and I) . An operator is
commutative if the order in which you apply it to multiple
operands does not change the result. For example. a&b&c yields
the same result whether you write it as (a&b)&c or as a&(b&c).

If you want to enforce a given grouping within an expression. you
can use the plus operator +x. as in

a + b + +(c + d)

Using the plus operator this way defeats the regrouping and
ensures that the compiler will add c to d before combining the
result with the other operands.

Expressions 5 - 3

Side Effects and Order of Evaluation

A "side effect" is a change in the value stored in a data object.
or a change in the state of a file, as a byproduct of evaluating an
expression. Function calls, the increment and decrement operators.
and the assignment operators all cause side effects. Your program
evaluates some expressions. known as "void expressions," only for
their side effects. A void expression either has no value, because
its type is void, or your program discards its value.

The following expressions all have side effects:

printf("hello world\n")
++a
a = 1

If an expression has more than one side effect, the order in which
your program evaluates any subexpressions can yield unexpected
results. In many cases, however. the C language does not restrict
order of evaluation enough to make the evaluation of such
expressions completely predictable. For example. your program can
evaluate the arguments of the function call

f(++a, ++a)

in arbitrary order, so you have no way of precisely determining the
values of the arguments. As a general rule. avoid writing
expressions with more than one (related) side effect.

Certain operators do provide a predictable order of evaluation of
their operands. You can use these operators to write robust
expressions, including expressions with multiple side effects. The
operators logical AND && and logical OR 11. for example. ensure
strict left to right evaluation. You can therefore write

0 <= i && i < sizeof a && a[i] != 'c'

and be sure that a[i] will never be outside the array of char
data object a. Similarly. the comma operator x,y evaluates its x
operand completely before evaluating its y operand. So

Cl = getchar(), C2 = getchar()

stores the first input character in Cl and the second one in C2.

The compiler evaluates the arguments to a function call before
calling the function. Also. an assignment operator causes the
compiler to modify storage before using the assigned value further
in an expression. The descriptions of the operators that follow
state any restrictions on order of evaluation for a given operator.

Types and Classes of Expressions

5 - 4

Two important attributes of every expression are the type of its
result and its "class." These are determined as follows:

Expressions

Types of Expressions

Every expression or subexpression has a type. If the expression is
an identifier, you determine its type when you declare it. If an
expression is a constant. the rules for typing constants (described
in Chapter 2. "Elements of the C Language") determine its type.
If you enclose an expression in parentheses, its type is that of the
expression in parentheses. Otherwise. the expression must be an
operator with subexpressions for operands. Each operator has its
own rules for determining its type. based on the types of its
operands. If you start with the simplest subexpressions, you can
determine their types. then work up through the operators until
you determine the type of the expression as a whole.

For example. the expression:

2.4 + (3L - 2)

has the constant operands 2. 4 with type double, 3L with type
long, and 2 with type· int. Subtracting a value of type int from a
value of type long gives a result of type long. Adding a value of
type long to a value of type double gives a result of type double.
So the type of the expression is the type of the operator +, which
is type double in this case.

Classes of Expressions

Every expression or subexpression is in one of four classes:

*
*

*

*

A "void expression." which yields no value

A "function designator." which designates a function of some
type

An "!value." which designates a data object of some type

An "rvalue. 11 which yields a value of some data object type.

Just as with type. you can determine the class of an expression
by starting with the simplest subexpressions and working up
through the operators. Enclosing an expression in parentheses does
not change its class.

A void expression is one whose type is void. As discussed earlier.
the compiler evaluates such expressions for their side effects only.
An example is the C library function

srand(O)

which provides an initial value for a random number generator.
srand has type function retuming void. If any other ~lass of
expression occurs where the compiler expects a void expression. the
compiler evaluates it and discards the result. The function printf.
for example, returns a value every time your program calls it. but
the expression that calls it often discards that value.

A function designator is one whose type is f1111ctio11 retumillg T.
where T is a valid type. In the example above. srand is a
function designator. which the compiler uses to determine which
function to call. There is no context where the C language
requires a function designator. so there are no rules for converting

Expressions 5 - 5

5 - 6

other classes of expression to this class.

An !value can also be called a "data object designator expression."
It designates the location of a data object for the purpose of
taking its address, obtaining its stored value, or altering its stored
value. An !value must have a data object type. An identifier you
declare to be a data object is an !value. Expressions such as
p->m and a[i] are always !values. *P is an !value if its type is
a data object type. x.m is an !value if x is an !value. No other
class of expression may occur where the compiler requires an
I value.

If you want to use an !value to alter the value stored in a data
object, it must be a "modifiable !value." This means it must not
be of type array of T. and it must not be a const type.

Some examples of !values are:

&x + 1
abc = 0
p->last char = '3'
*f() = 27

/&x is an lvalue *I
I* abc is a modifiable lvalue *I
I* p->last char is modifiable lvalue *I
I* *f() is-a modifiable lvalue *I

Some examples that are 11ot !values are:

&frs().abc
x + 1 = 3

I* ERROR: frs().abc is NOT an lvalue *I
I* ERROR: x + 1 is NOT a modifiable lvalue *I

An rvalue is an expression that is not in any of the other three
classes. It has a data object type other than array of T. It also
has a value. A void expression may not occur where the compiler
requires an rvalue. If a function designator. of type functio11
returning T, occurs where the compiler requires an rvalue. its value
is the address of the function and its type is pointer to functio11
returning T. So if f is a function designator. writing

g(f)

is the same as writing
g(&f)

since the argument to a function must be an rvalue.

If an !value occurs where the compiler requires an rvalue. and its
type is not array of T. then its value is the value stored in the
data object you designate by the lvalue and its type is the type of
the !value. So if x is of type int. writing

g(x)

uses the current value in x as the value of the argument. The
function g cannot modify the value stored in x by modifying the
value you pass for the argument.

If an !value is of type array of T. then its value is the address
of the first element of the array (having subscript zero) and its
type is T. So if a is an array. writing

g(a)

is the same as writing

Expressions

g(&a[O])
This last rule lets you use the name of an array in contexts
where you need a pointer into the array. While this is generally
convenient, it often leads to confusion between array types and
pointer types.

Arithmetic Conversions

Many of the arithmetic operators follow the same rules for
determining their result type from the types of their operands.
The first rule is that the wider of the two operand types
determines the type of the result. If that type is not at least as
wide as int. then the compiler converts the type of the result to
int. Another rule requires that your program must "widen" each
of the operands to the result type before the operation takes place.
As an example. if you add the short int sh to the double d. as in
sh+d, then your program must convert sh to a double with the
same numeric value as sh before adding it to d. The result is of
type double.

Widening Conversions

The compiler determines the width of a type in part by how the
target machine represents it. In general. the wider the type. the
greater the range of values it can correctly represent. On
System/370. the compiler represents the type int as a 32 bit two's
complement integer. Types narrower than int include signed char.
char, unsigned char. short. unsigned short. and signed bitfield.
The compiler may represent type enum as narrower than int. The
plain type char has the same representation as unsigned char. An
w1signed bitfield of fewer than 32 bits is also narrower than int.
When you see the phrase "the compiler widens to int." in the
descriptions of operators later in this chapter. it means the
following:

The compiler converts all arithmetic types narrower than int
to an int that has the same value as the original type.
An unsigned bitfield of 32 bits widens to unsigned int. On
System/370. a plain bitfield of 32 bits also widens to
unsigned int. Any other type is left alone. If the operand
is not a constant expression. then the compiler produces
executable code to make your program perform the proper
conversion at runtime.

Although long has the same representation as int on System/370.
the compiler considers long to be a wider type. The compiler
considers long to be wider than unsigned int. even though long
cannot represent all of the values of type unsigned int on
System/370 and other computers. The compiler represents the type
float as a 32 bit floating point data item. It considers float to
be wider than any of the integer types even though it cannot
retain 32 significant bits. The type long double has the same
representation as double: a 64 bit floating point data item. The
widening order of the types that represent arithmetic results is:

Expressions 5 - 7

5 - 8

int, unsigned int, long, u11signed lo11g. float, double, and lo11g
double.

The following examples show how the compiler applies the
arithmetic conversion rules to addition of many of the arithmetic
types. In all the cases shown ch is of type chal', in is of type
int, ui is of type unsigned int. lo is of type long, ul is of type
unsigned long, fl is of type float, and do is of type double:

ch + ch I* widen both to int, result is int *I
ch + in I* widen ch to int, result is int *I
ch + ui I* widen ch to unsigned int, result is unsigned int */
ch + lo I* widen ch to long, result is long *I
ch + ul I* widen ch to unsigned long, result is unsigned long *I
ch + fl /* widen ch to float, result is float *I
ch + do I* widen ch to double, result is double *I

in + in
in + ui
in + lo
in + ul
in+ fl
in + do

ui + ui
ui + lo
ui + ul
ui + fl
ui + do

lo + lo
lo + ul
lo + fl
lo + do

ul + ul
ul + fl
ul + do

fl+ fl
fl + do

do + do

I* result is int *I
I* widen in to unsigned int, result is unsigned int *I
I* widen in to long, result is long *I
I* widen in to unsigned long, result is unsigned long *I
I* widen in to float, result is float *I
I* widen in to double, result is double *I

I* result is unsigned int *I
I* widen ui to long, result is long *I
I* widen ui to unsigned long, result is unsigned long *I
I* widen ui to float, result is float *I
I* widen ui to double, result is double *I

I* result is long */
I* widen lo to unsigned long, result is unsigned long *I
I* widen lo to float, result is float *I
I* widen lo to double, result is double *I

I* result is unsigned long */
I* widen ul to float, result is float *I
I* widen ul to double, result is double *I

I* result is float *I
I* widen fl to double, result is double *I

I* result is double *I
Converting an int to a long. or an unsigned int to an unsigned
long, requires no change of representation or value. Converting an
int or long to an unsigned int or an unsigned long requires no
change of representation. Your program reinterprets negative values
as very large positive values. Converting any of the integer types
to a float may result in loss of significance. Your program
truncates the value toward zero. The conversion of any of the
integer types or a float to a double or a long double is exact.

Expressions

Unsignedness Preserving Rules

Using a compiler option. you can instruct the C compiler to
enforce an alternate set of rules for widening operands. These
rules are called the "unsignedness preserving rules." as opposed to
the "value preserving rules" adopted for the proposed ANSI
standard. The C Compiler User's Guide for your system describes
how to enforce this alternate set of rules.

Under the unsignedness preserving rules, the types 1111sig11ed char.
11nsig11ed short, all plain bitfields. and all unsig11ed bitfields widen
to unsigned int.

If you write an expression whose operands are unsigned int and
long. the resulting type is 1111.signed long. All other rules are the
same.

You use this option to compile large programs written for a
compiler that enforces unsignedness preserving rules. until you can
locate and correct any expressions whose meanings have changed
significantly. On a two's complement machine that ignores integer
overflow such as System/370. few such cases arise. Look for
unsigned char and unsigned short operands combined with negative
integers in expressions such as x<y. x<=y. x>y. x>=y. x>>y. x/y.
and x%y. Write type casts whenever you wish to enforce a given
result type. For example.

unsigned char uc;
if (uc-'0'<='9') I* change to (unsigned)(uc-'0')<='9' *I

Narrowing Conversions

If you write an expression that assigns a narrower type to a wider
type. then your program widens the value stored in the data object
in the way just described. If you write an expression that assigns
a value of the same type as the data object, then your program
stores the value unchanged. If you write an expression that
assigns a wider type to a narrower type. then your program must
"narrow" the value stored in the data object by applying one or
more of the following conversion rules.

Your program converts the types long double and double to float
by discarding excess significance. It truncates the value toward
zero. It converts all floating types to integer types by discarding
all fraction bits and truncating the value toward zero. An overflow
occurs if the value is too large for the computer to represent in
the integer type you specify. or if the value is negative and the
type you specify is an unsigned integer type. On System/3 70.
your program retains the low order bits that it can represent in
the specified type. This is an unreported error.

Similarly, if your program must convert an integer type to an
integer type having fewer bits in its representation. the value is
unchanged wherever possible. If the value is negative and the
specified type is an unsigned integer type. then your program
retains the low order bits that it can represent in the specified
type. If the value is too large for the computer to represent in
the specified integer type. an overflow occurs. On System/370.

Expressions 5 - 9

Unsigned

your program stores the low order bits that it can represent in
the specified type. This is an unreported error if the specified
type is not an unsigned integer type.

The following examples show some of the arithmetic conversion
rules that the compiler applies to narrowing assignments. In all
the cases shown. sc is of type signed char, and uc is of type
unsigned char:

SC 5 I* exact *I
SC -1 I* exact *I
UC 5 I* exact *I
UC -1 I* valid, value stored is 255 *I

SC 25.4 I* value stored is 25 *I
SC -25.4 I* value stored is -25 *I
UC = 25.4 I* value stored is 25 *I
UC -25.4 I* ERROR: value stored is 231 */

Conversions

Unsigned integer arithmetic is more accurately "modulus" arithmetic.
sometimes called "wraparound" arithmetic. Overflow cannot occur.
because adding one to the largest unsigned integer value wraps
around to zero, by definition. Similarly. subtracting one from zero
wraps around to the largest unsigned integer value. also by
definition. For maximum portability, your program should avoid the
conversions described above that result in errors. Unsigned
arithmetic has fewer such cases than signed integer arithmetic.
You should therefore use unsigned integers in situations where you
want your program to ignore loss of significant bits.

Pointer Conversions

You can assign the value of expressions of certain types to a data
object of type pointer to T. You can also write a type cast
operator in front of an expression to convert between pointer types
and certain other types. All types of the form pointer to T fall
into one of the three groups: function pointers. incomplete pointers.
and data object pointers. The rules for converting among pointer
types in different groups are discussed below.

Converting Integers to Pointers

5 - 10

You may assign an integer expression whose value is zero to any
of these pointer types. In all cases. the result is a "null pointer."
which compares equal to integer zero. No function or data object
in C has an address that compares equal to a null pointer.

You may type cast an integer expression whose value is nonzero to
any of these pointer types. On System/370. a type cast does not
change the representation of the integer value. so the compiler
treats the integer as an absolute machine address. The result of
using such a pointer to call a function or to access a data object
is very machine dependent. A typical application has no valid use

Expressions

for such pointers. Unless you know precisely what the effect will
be, you should avoid type casting any integer other than zero to a
pointer type.

Converting Function Pointers

You can convert any function pointer to another function pointer by
means of a type cast operator. Do not use the converted value
to call a function. because the protocols may differ for functions
you declare differently. However. you can convert the value back
to its original type and then use the resulting value to call a
function. All function pointers hai•e the same representation, so
you may use any kind of f1111ction pointer to convey the address
of any hind of function. For example. if pfi is of type pointer
to function returning int. fi is of type function returning int. and
pfd is of type pointer to function returning double:

pfi = &fi I* types are the same *I
pfi() I* same as fi() */
pfd = (double (*)())pfi /* pfi is cast to type of pfd */
pfd() /* ERROR: stored value is unsuitable for call */
pfi = (int (*)())pfd /* pfd is cast to type of pfi */
pfi() /* stored value is suitable for call */

Converting Data Object Pointers

You may convert any data object pointer to another data object
pointer by means of a type cast operator. Since you can treat
any data object as an array of char whose size is the number of
bytes in the data object. you can always convert a data object
pointer to a pointer to char. If you convert a data object pointer
to some other data object pointer type. however. and then use the
converted value to access the data object. the results are
unpredictable. The results are also unpredictable if you convert the
pointer value back to its original type and then use the resulting
pointer value to access the data object. Do this only where the
intermediate type points to data objects that are no more strictly
aligned on storage boundaries than data objects pointed to by the
original type. Since pointer to char always has the least strict
alignment. it is the best intermediate type to use for conveying
data object pointers if you want to write a portable program.
System/370 favors certain storage alignment restrictions for
improved performance, but permits any alignment for any data
object.

As an example. if
and pc is of type

pi is of type pointer to int. i is of type int.
pointer to char:

pi = &i
*pi = 3
pc = (char
*pc = 'a'
pi = (int
*pi = 2

I*
I*

*)pi
I*

)pc I
I*

types are the same *I
same as i = 3 *I

I* pi is cast to type of pc */
part of i overwritten *I
pc is cast to type of pi */
same as i = 2 */

Expressions 5 - 11

Converting Incomplete Pointers

You can assign or type cast an incomplete pointer to a data object
pointer, and you can assign or type cast a data object pointer to
an incomplete pointer. A pointer to void has the same
representation as pointer to char, so it is just as useful for
conveying data object pointers. A pointer to void has the added
advantage that the compiler converts it automatically on assignment.
without an explicit type cast. You can therefore use it as the
type of a function call argument or return value that can convey
any data object pointer. This minimizes the need for writing type
casts when calling the function. You cannot use an incomplete
pointer to access a data object. You can, however, use such a
type to convey data object pointer values.

Converting Pointers to Integers
There is no provision for directly type casting a function pointer to
a data object pointer, 'a function pointer to an incomplete pointer.
a data object pointer to a function pointer. or an incomplete
pointer to a function pointer. The C language considers function
pointers, integers, and the· remaining pointer types to have as
many as three different representations. Since System/370
represents all pointers the same as values of type int, you can
type cast any pointer to int, then to any other pointer type
without loss of information. although this is not recommended.
Observe the exceptions described above, however, if you want your
program to be portable.

Pointer Arithmetic

5 - 12

You can add an integer to a data object pointer. The result is of
the same pointer type, and you can use the value to designate a
data object different from the original pointer value. Adding one
to a pointer actuaUr !,w;rem,11;i.ts &he point~ yaJn.c b,}r. ,tb!i} number
of b;ytes tbe'Comgil~r uses to i;~gt=ii1Wi .. ~ ,,Qatai .-'lWec:t of the" 'ti;'t?e

-pointed to. So if p points to a member of an array, p+l point:
to the next member of that array, if there is one. If there is a
next member, *(p+l} is an lvalue that designates that next
member. If not, then the expression p+l is valid, but *(p+l} is
not. You may often want to increment a pointer until it points
just past the end of an array. as part of a control loop that
processes all the members of the array.

You can also subtract an integer from a data object pointer. As
with addition. the compiler multiplies the integer value by the
number of bytes it uses to represent a data object of the type
pointed to. So if p points to a member of an array, p-1 points
to the immediately preceding member of that array. if there is one.
If there is an immediately preceding member. *(p-1} is an lvalue
that designates that preceding member. If not. then the
expression p-1 is not valid. and neither is *(p-1). Thus. you
should never decrement a pointer until it points before the
beginning of an array.

Expressions

Any pointer value you generate by adding or subtracting an integer
must point inside the same data object as the original pointer or
just beyond it, as described above. If not, then the expression is
not valid. If you compare an invalid pointer value to other pointer
values. you may get unpredictable results. Even subtracting the
value you just added may not result in a valid pointer.

Every data object in C is composed of an integral number of
contiguous bytes of storage. You can treat every data object as if
it were a union, one of whose members is of type array of char
with a size equal to the number of bytes the compiler uses to
represent the data object. The address of element zero of the
array is the same as the address of the data object. You can
therefore copy a data object. read it in. or write it out character
by character. by advancing a pointer to char through it from
beginning to end. These actions are commonplace in C.

Comparing Types

Same Types

The compiler compares two types in one of two ways: either they
must be "the same" or they must be "assignment compatible."

The compiler checks that two types are the same when you
redeclare an identifier. Two pointers are assignment compatible if
they point to the same type. Whether you use a type definition
to summarize part of the type information for one type does not
affect whether two types are the same. The rules for determining
if two types are the same are discussed below.

Two types are the same if they are identical. The type array of
T of unknown content is the same as the type array of T with
known content, if their types T are the same. The type f1111ctio11
retuming T with unspecified arguments is the same as the type
function retuming T with specified arguments (a function
prototype) , if their types T are the same. If both have specified
arguments. the number and corresponding types of the arguments
must be the same.

Two structures that you declare within one compilation with no
tags or with different tags are never the same. even if they
declare fields of the same type. with identical names. in identical
order. Two structures that you declare in different compilations
are the same, however. if they declare fields of the same type in
identical order.

Some examples are:

int a[];
int a[S]; I* same type *I

typedef char *Pc;
char *pc;
Pc pc; I* same type *I

Expressions 5 - 13

int f(int x, int y);
int f(int a, int b); I* same type *I
int f(); /* still same type *I

Assignment Compatibility

5 - 14

When you write an expression that assigns the value of an
expression to a data object. the types of the data object and
expression value must be assignment compatible. When you call a
function, the compiler effectively assigns each of the argument
expressions to the corresponding actual argument you use within
the called function. If you specify the argument types by writing
function prototypes. the compiler checks each actual argument with
its corresponding function prototype argument for assignment
compatibility. When you write a type cast operator in front of an
expression, you specify that the operand value be converted from

. the operand type to the type specified in the type cast. If the
two types are scalar and assignment compatible. the compiler
always permits the type cast.

The rules for determining whether a value of some type is
assignment compatible with some other type are as follows:

Assignment is defined only for storing in data object types other
than array types and const types. The C language does not
permit assignment of a pointer to any const type to a pointer to
a nonconst type. The compiler does not permit assignment of a
pointer to any volatile type to a pointer to a nonvolatile type.
The type qualifiers const and volatile are otherwise ignored.

If the two types are the same. they are assignment compatible. If
both the types in question are arithmetic types. they are
assignment compatible. The rules for converting values among
arithmetic types are presented earlier in this chapter.

You may assign a value of the type pointer to Tl to a data
object of type pointer to T2. if their types Tl and T2 are the
same. You may assign an integer expression whose value is zero
to any pointer type. You may assign a value of type pointer to
void to any data object pointer or incomplete pointer. You may
assign the value of a data object pointer or an incomplete pointer
to a data object of type pointer to void.

Some examples of assignment compatibility are:

int i 3; I* same type *I
int j = 3.5; I* both arithmetic *I

int *pi = &j; I* same type *I
void *pv = &j; I* void* is compatible *I

If you want to write an assignment of a form not covered by
these rules, you can generally write a type cast to convert the
expression to a type that is assignment compatible with the data
object you wish to modify. You can convert any scalar type to
any other scalar type by writing at most two type casts. The
conversion may, however. not be portable.

Expressions

The C Operators

C offers an exceptionally powerful set of operators. This section
describes each operator. how you write it. and what it does.

Addressing Operators

You can select a portion of a data object in one of several ways.
by subscripting. as with x[y]. by pointing at a structure member
with a structure pointer. as with x->y. or by selecting a structure
member from a structure, as with x.y. Here and in the
discussion below, the symbols x and y stand for the two operands.
Addressing operators and function calls are at the same level of
precedence. They group right to left.

Subscript Operator

The operator "subscript" x[y] uses the values of its operands to
produce an lvalue that designates an element of an array. Both
operands must be rvalues. One of the operands must be a data
object pointer, the other must be an integer type. You usually
write the data object pointer to the left (in place of x) and the
integer operand inside the square brackets (in place of y) . This
notation is similar to that in several other programming languages.
where x[y] designates the yth element of the array designated by
x. If the data object pointer is of type pointer to T, the result
is of type T. The expression x[y] is entirely equivalent to the
expression *(x+(y)).

When you write an expression such as a [3], to select element 3
from the array of int a, several actions occur. First. the compiler
rewrites the expression as *(a+(3)). Since a is an lvalue and the
add operator requires rvalue operands. the compiler must convert a
to an rvalue. An lvalue of type array of int becomes a data
object pointer of type pointer to int that points at element zero of
the array. This is true even if a is an array of unknown content.
Adding an integer 3 to a pointer to int requires that the 3 first
be multiplied by sizeof (int). On System/370, this operation
produces 12. the byte offset of element 3 of the array. Finally.
the operator indirect on * uses the value of its data object pointer
operand to produce an lvalue. That !value designates element 3 of
the array. You can use the lvalue to store a new value in the
array element. as in a [3] =2. or to obtain its value. as in a [3] +2.
or to obtain its address. as in &a [3]. The subscript operator
expresses a selection process used frequently in C programs.

If you have an array with multiple dimensions. you simply repeat
the subscripting process. For example, if b is of type array of
array of int and i is of type int. the expression b[i] is an lvalue
of type array of int. You can subscript it further. as in b [i] [7],
which is an lvalue of type int. There is no limit to the number
of dimensions you can specify for an array. so there is no limit to
the number of subscripts you can write in an expression. You
must be careful. however. not to write an expression such as
b [i, 7]. This is 11 ot equivalent to b [i] [7]. The comma operator
, causes the compiler to evaluate i as a void expression. so its

Expressions 5 - 15

value is discarded. The resulting subscript is the right operand of
the comma operator. giving an expression equivalent to b [7]. The
only way to write multiple subscripts is to enclose each in its own
square brackets.

Point at Member Operator

The operator "point at member" x->y produces an lvalue that
designates the structure member whose name is y in the structure
pointed at by x. The operand x must be an rvalue. It must be
a data object pointer of some structure type. Declare the operand
y previously as the name of a structure member within the
designated structure. The value your program generates to
designate the structure member y is the value of the data object
pointer x plus the offset in bytes of structure member y from the
start of the structure. This offset is not multiplied by any size
factor, unlike when you add an integer operand to a data object
pointer. The type of. the result is the type of the structure
member y.

Select Member Operator

The operator "select member" x.y obtains the structure member
whose name is y in the structure x. If x is an !value. x. y is an
!value that designates the structure member y. Otherwise. x. y is
an rvalue whose value is the value of structure member y. The
operand x must be a structure type, and you must declare y
previously as the name of a structure member within the
designated structure. If x is an !value, the value your program
generates to designate the structure member y is the address of x
plus the offset in bytes of structure member y from the start of
the structure. As with x->y. this offset is not multiplied by any
size factor. The type of the result is the type of the structure
member y.

If x->y is a valid expression. then (*x) • y is always valid. If x. y
is a valid expression, and if &x is also valid. then (&x)->y is
always valid.

You can write an rvalue having a structure type in several ways.
For example, if frs designates a function that returns a structure.
then f rs () is such an rvalue. If m is a structure member of that
structure, then f rs () • m is the value of structure member m
returned by the function call frs(). You cannot write &frs().m.
because the expression f rs (). m does not designate a data object.
Since it is an rvalue. it only has a type and a value.

Function Calls

5 - 16

The operator "function call" x(y) calls the function you designate
by x, passing it the argument list y. If x is not a function
designator. of type function returning T. then it must be a
function pointer. of type pointer to function returning T. or an
identifier that has no declaration in scope. You can use a
function pointer x to call a function by writing either x(y) or
(*x)(y). When you use an undeclared identifier to designate a

Expressions

function, the compiler implicitly declares the identifier within the
current block as if you had written:

int x();

right after the left brace that begins the current block. When you
call a function. your program remembers where it left off in
evaluating the expression by saving its "calling environment." and
passes control to the first statement of the function. When the
function returns control by executing a return statement. your
program restores its calling environment and continues evaluating
the expression where it left off. If T is void, or if the return
statement executed within the function specifies no return value.
evaluate the function call as a void expression. Otherwise. the
function returns a value of type T. and the function call is an
rvalue. A function may return structure types as well as scalar
types.

The argument list y may be empty, as in x(). or a single
expression. as in x(arg). or a list of expressions you separate with
commas, as in x(argl, arg2, arg3). If the argument list is
empty, you must still write the empty parentheses to specify a
function call.

A function call allocates a data object for each of the expressions
in the argument list. Each of the argument expressions is an
rvalue whose value is stored in the corresponding argument data
object. Arguments may have structure types as well as scalar
types. The function may alter the values stored in any of its
argument data objects. When the function returns. the compiler
deallocates the argument data objects for this function call. A
function may call itself recursively. or call other functions that call
the original function in turn. Each call allocates and frees a
different stored calling environment and a different set of argument
data objects, just as the function itself allocates and frees different
sets of automatic data objects. Each execution of a return
statement within the function returns control to the last expression
that called the function.

When you write the declaration for x. you can choose to declare
its argument types. This form of declaration is a function
prototype. It is described in Chapter 4. "Declarations." Some
examples of function prototypes are:

void f(void); /* no arguments permitted *I
void g(double); I* one double argument *I
void h(char *, int); I* two arguments *I
void j(char *, ...); I* one or more arguments *I

If you choose this form, then the argument list in the function
call must have the number of arguments the declaration requires.
The compiler checks that each argument is assignment compatible
with the corresponding type in the declaration. The compiler then
converts the value of the argument expression to that type before
it is stored in the data object. For example. you can use the
function prototypes shown above with the following function calls:

Expressions 5 - 17

5 - 18

£() I* no arguments *I
g(3) /* 3 is converted to 3.0 *I
h("hello", 3) /* "hello" becomes char * as an rvalue *I
j("I F I\n", 3, 2.7, 1) /* first argument checked *I
The following function calls are not valid:

f('a') I* ERROR: too many arguments *I
g("abc") I* ERROR: not assignment compatible *I
h('a', 3) /*ERROR: first not assignment compatible *I
j() /* ERROR: not enough arguments *I
When you write the declaration for x, you can also choose not to
declare some or all of its argument types, as in

void j(char *, ...); I* extra arguments not checked *I
void k(); /* no argument information */
void m(al, a2) I* definition does not provide *I

int al, a2; I* argument information for calls *I
{ }

If that is your choice, then the compiler checks each call to the
function in a different way. First it determines the type of each
argument rvalue. The compiler widens each argument to int, and
converts any argument of type float to type double. From these
converted types. the compiler builds an implicit argument
declaration. which has the proper number of arguments. The
arguments also have types that are assignment compatible with the
expressions in the function call argument list. The compiler then
allocates argument data objects and stores argument values just as
it does in the presence of an explicit declaration for the function
arguments. Each such function call gets its own implicit argument
declaration. The compiler does not check that different function
calls on the same function have implicit argument declarations that
agree in number or corresponding types. Nor does it check the
function calls against the definition, if you provide the definition
earlier in the same compilation. For maximum portability. however.
all function calls must have implicit argument declarations that
match the function definition.

For example. you may use the declarations shown in the last
series of examples above with any of the following function calls:

k()
k("hello",
k(3.2f)
m(l, 2)

I* no arguments *I
"world")/* like void k(char *, char*) *I

I* like void k(double) *I
I* like void m(int, int) *I

The following function calls are not valid:

k(m(l, 2)) /* ERROR: void can't be an rvalue *I
m(3) /* ERROR: wrong number of arguments *I
m(3.0, 2) I* ERROR: won't match definition */

The ability to declare function arguments so that the compiler can
check them is a recent addition to the C language. Many existing
programs rely on the implicit conversion described above to match
arguments passed on a function call with those the function
definition expects. If you declare all your function arguments. your

Expressions

program will be less prone to errors while it is being written and
later maintained.

OS Calling Sequence

If you wish to call a function that uses the standard OS calling
sequence, such as a function written in another language. declare
the function in a special way. Chapter 7, "The Preprocessor."
describes how to specify that a function uses the OS calling
sequence, in the section "Pragmas."

Unary Operators

You write a unary operator either to the left of its operand. as in
-x. or to the right. as in x++. Here. and in the examples below.
x stands for the operand. Unary operators group right to left.

Logical NOT Operator

The operator "logical NOT" Ix compares its operand against zero.
to produce an rvalue. If the operand compares equal to zero. the
value of the result is one. Otherwise the value is zero. The
operand must be an rvalue of scalar type. For example. ! 3 has
the value 0, ! 0 has the value 1. and ! 2. 78 has the value 0.
The type of the result is always int.

Bitwise NOT Operator

The operator bitwise NOT -x inverts each of the bits of its
operand value. to produce an rvalue. A one bit becomes zero. a
zero bit becomes one. The operand must be an rvalue of integer
type, which the compiler widens to int. For example. on
System/370. -o has the value OxFFFFFFFF (all one bits). and
-ox76543210 has the value Ox89ABCDEF. The type of the result
is the type of the widened operand.

Preincrement Operat01·

The operator "preincrement" ++x adds one to the value stored in
the data object you designate by its operand. to produce an rvalue.
The operand must be a modifiable lvalue. It must have arithmetic
type or a data object pointer type. The result is the new value
stored in the data object. For example. if x initially holds the
value 3. ++x leaves the value 4 in x and yields the value 4. Its
type is the type of the operand. which the compiler widens to int.
The expression ++x is entirely equivalent to the expression (x+=l).
as described later in this chapter.

Predecrement Operator

The operator "predecrement" --x subtracts one from the value
stored in the data object you designate by its operand. to produce
an rvalue. The operand must be a modifiable lvalue. It must
have arithmetic type or a data object pointer type. The result is
the new value stored in the data object. For example. if x
initially holds the value 3. --x leaves the value 2 in x and yields
the value 2. Its type is the type of the operand. which the

Expressions 5 - 19

compiler widens to int. The expression --x is entirely equivalent
to the expression (x-=1). described later in this chapter.

Postincrement Operator

The operator "postincrement" x++ adds one to the value stored in
the data object you designate by its operand, to produce an rvalue.
The operand must be a modifiable !value. It must have arithmetic
type or a data object pointer type. The result is the old value
stored in the data object. For example. if x initially holds the
value 3, x++ leaves the value 4 in x and yields the value 3. Its
type is the type of the operand. which the compiler widens to int.

Postdecrement Operator

Plus Operator

Minus Operator

The operator "postdecrement" x-- subtracts one from the value
stored in the data object you designate by its operand, to produce
an rvalue. The operand must be a modifiable !value. It must
have arithmetic type or a data object pointer type. The result is
the old value stored in the data object. For example, if x initially
holds the value 3, x-- leaves the value 2 in x and yields the
value 3. Its type is the type of the operand. which the compiler
widens to int.

The operator "plus" +x does nothing to the value of its operand,
to produce an rvalue. The operand must be an rvalue of
arithmetic type, which the compiler widens to int. For example.
+3 yields the value 3. and +18.2 yields the value 18.2. The type
of the result is the type of the widened operand. You may also
use the plus operator to prevent regrouping, as described earlier in
this chapter in the section "Regrouping."

The operator "minus" -x negates the value of its operand, to
produce an rvalue. The operand must be an rvalue, of arithmetic
type, w4ich the compiler widens to int. For example, -3 has the
value -3, and -18.2 has the value -18.2. The type of the result
is the type of the widened operand.

Indirect On Operator

5 - 20

The operator "indirect on" *x uses the value of x to designate a
data object or a function. The operand must be an rvalue, of
type pointer to T. If the operand is a data object pointer that
points to a valid data object. the result is an !value. If the
operand is a function pointer that points to a valid function. the
result is a function designator. In either case, if the operand is
of type pointer to T. the result is of type T. The operand must
not be an incomplete pointer type. and the value must be a valid
pointer.

Expressions

Address Of Operator

The operator "address of" &x obtains the address of its operand. to
produce an rvalue. If the operand is an lvalue. it must not have
storage class register and it must not designate a bi tfield.
The result is a data object pointer. If the operand is a function
designator. the result is a function pointer. In either case. if the
operand is of type T. the result is of type pointer to T.

If *x is a valid expression. then &*x is always valid and compares
equal to x. If &x is a valid expression. then *&x is always valid
and designates the same data object or function as x.

Size Of Operator

The operator "size of" sizeof x produces an rvalue whose value is
the number of bytes the compiler uses to represent the data type
of its operand. The operand must be an lvalue. an rvalue. or a
type name you write in parentheses, such as sizeof (int [10))
or sizeof (struct x). In any case. the compiler does not
evaluate the operand, since it only needs to determine its type to
determine the value of the result. It is always true that sizeof
(char) has the value 1. On System/370. sizeof 3 has the value
4 since the integer constant 3 is of type int and an int occupies
four bytes.

The type of the operator sizeof is an unsigned integer type that
can represent the size of the largest declarable data object. If you
want your program to be portable. and you must declare a data
object that can hold the result of sizeof. you should use the type
definition size t. described with the header file <s tdefs. h> in
Chapter 11. "C Library Reference." On System/370. the type of
sizeof is unsigned int.

Type Cast Operators

A "type cast" operator is a type name you write in parentheses.
such as (char *)x or (float)x. A type cast causes the compiler
to convert the value of the operand to the type you name. as if
it were assigning the value to a temporary data object of the
named type. The operand must be an rvalue of scalar type. The
result is an rvalue. whose value is the value that the compiler
would have stored in the temporary data object. Its type is the
named type. which the compiler widens to int.

The named type must be a scalar type. You may always write a
type cast where the operand type is assignment compatible with
the named type. Otherwise. one of the following must be true:
If the named type is a function pointer. then the operand type
must be a function pointer. not necessarily of the same type. If
the named type is a data object pointer or incomplete pointer. then
the operand type must be a data object pointer. an incomplete
pointer, or an integer type. If the named type is an integer type.
then the operand type must be a pointer type. The operations
you can perform using pointer type casts are described earlier in
this chapter in the section "Pointer Conversion." For example.
(double)3 has the value 3.0. and (unsigned char)257 has the

Expressions 5 - 21

value 1.

Multiplicative Operators
The multiplicative operators group left to right. The compiler may
regroup expressions that use the operator "multiply." as described
earlier in this chapter in the section "Regrouping."

Multiply Ope1·ator

The operator "multiply" x*y multiplies the value of x by the value
of y, to produce an rvalue. The result type is the wider of the
two operand types, which the compiler widens to int. Both
operands must be rvalues of arithmetic type, which the compiler
widens to the result type. For example. 3*4 has the value 12.
and 3*4.0 has the value 12.0.

Divide Operator

The operator "divide" x/y divides the value of x by the value of
y, to produce an rvalue. The result type is the wider of the two
operand types, which the compiler widens to int. Both operands
must be rvalues of arithmetic type. which the compiler widens to
the result type. If the result is an integer type, the result value
truncates toward zero. Do not divide by zero. For example. 7 I 4
has the value l, and 7 .0/4 has the value 1.75.

Remainder Operator

The operator "remainder" x%y obtains the remainder from dividing
the value of x by the value of y, to produce an rvalue. The
result type is the wider of the two operand types, which the
compiler widens to int. Both operands must be rvalues of integer
type. which the compiler widens to the result type. Do not divide
by zero. If x%y is valid. it is always true that

(x/y)*Y ..,. (x%y)

is equal to x.

Additive Operators

Add Operator

The additive operators group left to right. The compiler may
regroup expressions that use the operator "add," as described
earlier in this chapter in the section "Regrouping."

The operator "add" x+y adds the value of x to the value of y. to
produce an rvalue. Both operands must be rvalues. If both
operands are of arithmetic type. the result type is the wider of the
two operand types. which the compiler widens to int. In this
case, the compiler widens both types to the result type.
Otherwise, one operand must be a data object pointer and the
other must be an integer type. In this case. the result type is
the same as the data object pointer. The value is obtained as
described earlier in this chapter in the section "Pointer Arithmetic."
For example, 3+2 has the value 5. 3.0+2. 7 has the value 5.7, and

5 - 22 Expressions

"hello"+4 points at the last letter in the string.

Subtract Operator

The operator "subtract" x-y subtracts the value of y from the
value of x. to produce an rvalue. Both operands must be rvalues.
If both operands are of arithmetic type. the result type is the
wider of the two operand types. which the compiler widens to int.
In this case, the compiler widens both operands to the result type.
If x is a data object pointer and y is an integer type. the result
type is the same as the data object pointer. In this case, the
value is obtained as described earlier in this chapter in the section
"Pointer Arithmetic."

If neither of the above cases apply. both operands must be valid
data object pointers of the same type that point to elements of
the same array. In this case. the compiler obtains the value of
the expression by dividing the difference between the two pointer
values by the size in ·bytes of a data object of the type pointed
to. The type of the result is a signed integer type having the
same number of bits as the type of the operator sizeof. If you
want your program to be portable. and you must declare a data
object that can hold the difference between two pointers, you
should use the type definition ptrdiff t. described with the header
file <stdefs.h> in Chapter 11. "C Library Reference." On
System/370, this type is int. For example, 3-4 has the value -1.
2. 7-1 has the value 1.7. and a[7]-a[2] has the value 5 for any
a of type array of T.

Bitwise Shift Operators

The bitwise shift operators group left to right.

Left Shift Operator

The operator "left shift" x«y shifts the value of x left the
number of places you specify by the value of y. to produce an
rvalue. Both operands must be rvalues of integer type. The
compiler widens the x operand to int. The y operand must have
a value greater than or equal to zero and less than the number of
bits the compiler uses to represent the widened x operand. The
result type is the type of the widened x operand. For example.
Ox1234«4 has the hexadecimal value 12340, and Ox1234«0 has
the hexadecimal value 1234.

Right Shift Operator

The operator "right shift" x>>y shifts the value of x right the
number of place specified by the value of y. to produce an rvalue.
Both operands must be rvalues of integer type. The compiler
widens the type of x to int. The y operand must have a value
greater than or equal to zero and less than the number of bits
the compiler uses to represent the widened x operand. The result
type is the type of the widened x operand. For example.
01234>>3 has the value 0123. and 01234>>0 has the value 01234.
If you want your program to be portable, you should not right

Expressions 5 - 23

shift a negative signed integer. On System/370. such a shift
copies sign bits into vacant bit positions. but this behavior is not
required of all implementations of C.

Relational and Equality Operators

The relational operators group left to right at the same level of
precedence, and the equality operators group left to right at the
next lower level of precedence. Do not let the compiler group
these operators for you. however. because the result is often not
useful. If you write O<x<5. for example, the expression looks like
common notation for stating that x must lie between the values 0
and 5. However, the compiler groups this as (O<x)<5, which
always has the value 1. This is because (O<x) becomes either 0
or 1, which is always less than 5. To test whether x lies
between 0 and 5. you can use the operator logical AND described
below to write O<x&&x<5.

Less Than Operator

The relational operator "less than" x<y compares the values of its
operands, to produce an rvalue. Both operands must be rvalues.
If the value of x compares less than the value of y. the value of
the result is 1. Otherwise the value is 0. If both operands have
arithmetic type, the compiler widens them to a common type.
This common type is the wider of the two operand types. which
the compiler widens to int. Otherwise, both operands must be
valid data object pointers of the same type that point to elements
of the same array. For example. 3<5 has the value l, 3.0<3 has
the value 0. and &a [0] <&a [1] has the value 1 for any a of type
array of T. The type of the result is always int.

Less Than Or Equal To Operator

The relational operator "less than or equal to" x<=y compares the
values of its operands to produce an rvalue. If the value of x
compares less than or equal to the value of y, the value of the
result is 1. Otherwise the value is 0. The rules for determining
types are the same as for the operator "less than." For example.
5<=3 has the value 0. 3. 0<=3 has the value 1. and &a [0] <=&a [1]
has the value 1 for any a of type array of T.

Greater Than Operator

The relational operator "greater than" x>y compares the values of
its operands to produce an rvalue. If the value of x compares
greater than the value of y. the value of the result is 1.
Otherwise the value is 0. The rules for determining types are the
same as for the operator "less than." For example. 3>5 has the
value 0, 3.0>3 has the value 0. and &a[l]>&a[O] has the value 1
for any a of type array of T.

Greater Than Or Equal To Operator

5 - 24

The relational operator "greater than or equal to" x>=Y compares
the values of its operands to produce an rvalue. If the value of x

Expressions

compares greater than or equal to the value of y. the value of the
result is 1. Otherwise the value is 0. The rules for determining
types are the same as for the operator "less than." For example.
3>=5 has the value 0. 3. O> =3 has the value 1. and &a [1] >=&a [0]
has the value 1 for any a of type array of T.

Equal To Operator

The equality operator "equal to" X==Y compares the values of its
operands to produce an rvalue. Both operands must be rvalues.
If the value of x compares equal to the value of y, the value of
the result is 1. Otherwise the value is 0. If both operands have
arithmetic type, the compiler widens the operands to a common
type. This common type is the wider of the two operand types.
which the compiler widens to i11t. Both operands may be pointers
of the same type, or one operand may be a pointer to void and
the other a data object pointer. Otherwise, one operand must be
a pointer type and the other must be an integer constant with the
value 0. A pointer operand may be a valid pointer or a null
pointer, which compares equal to integer 0. If two pointers point
to the same function or data object. their values compare equal.
You may compare any scalar type for equality or inequality with
an integer constant with the value 0. For example, 3==5 has the
value 0, 3. 0==3 has the value 1. and &a [0] ==&a [1] has the value
0 for any a of type array of T. The type of the result is always
int.

Not Equal To Operator

The equality operator "not equal to" x! =Y compares the values of
its operands to produce an rvalue. If the value of x compares
unequal to the value of y, the value of the result is 1. Otherwise
the value is 0. The rules for determining types are the same as
for the operator /1 equal to." For example, 3 ! =5 has the value 1.
3. 0 ! =3 has the value 0. and &a [0) ! =&a [1) has the value 1 for
any a of type an·ay of T.

Bitwise Binary Operators

The operator "bitwise AND" groups left to right. The operator
"bitwise exclusive OR," at the next lower level of precedence.
groups left to right. The operator "bitwise inclusive OR," at the
next lower level of precedence. also groups left to right. The
compiler may regroup expressions that use any of these operators.
as described earlier in this chapter in the section "Regrouping".

Bitwise AND Operator

The operator "bitwise AND" x&y performs a logical AND between
corresponding bits of its two operand values. to produce an rvalue.
If both bits have the value 1. the result bit has the value 1.
Otherwise the result bit has the value 0. The result type is the
wider of the two operand types. which the compiler widens to int.
Both operands must be rvalues of integer type, which the compiler
widens to the result type. For example. OxllOO&OxlOlO has the
value OxlOOO.

Expressions 5 - 25

Bitwise Exclusive OR Operator

The operator "bitwise exclusive OR" x·y performs a logical
exclusive OR between corresponding bits of its two operand values.
to produce an rvalue. If the two bits differ. the result bit has
the value 1. Otherwise the result bit has the value 0. The
result type is the wider of the two operand types, which the
compiler widens to int. Both operands must be rvalues of integer
type, which the compiler widens to the result type. For example.
Oxlloo·ox1010 has the value Ox0110.

Bitwise Inclusive OR Operator

The operator "bitwise inclusive OR" x I y performs a logical inclusive
OR between corresponding bits of its two operand values. to
produce an rvalue. If either bit has the value 1. the result bit
has the value 1. Otherwise the result bit has the value 0. The
result type is the wider of the two operand types. which the
compiler widens to int. Both operands must be rvalues of integer
type. which the compiler widens to the result type. For example.
OxllOO I Ox1010 has the value Oxll l 0.

Logical and Conditional Operators

The operator "logical AND" groups left to right. The operator
"logical OR." at the next lower level of precedence. groups left to
right. The operator "conditional. 11 at the next lower level of
precedence. groups right to left. Each of these operators imposes
some restriction on the order in which the compiler evaluates its
operands during program execution. You can use them to write
expressions that have predictable side effects. or that avoid
evaluating operands that are invalid.

Logical AND Operator

The operator "logical AND" x&&y compares the values of its
operands against 0. to produce an rvalue. If the x operand is 0.
the result has the value 0 and your program does not evaluate the
y operand. Otherwise. the result has the value 1 if the y operand
is nonzero, or the value 0 if the y operand is 0. Each operand
can be any scalar type. which may differ from the type of the
other operand. For instance. O&&printf(" ! ") has the value 0
(printf is not called). 1&&0 has the value 0. and 8&&3. 2 has
the value 1. The result type is always int.

Logical OR Operator

5 - 26

The operator "logical OR" x 11 y compares the values of its
operands against zero. to produce an rvalue. If the x operand is
nonzero. the result has the value 1 and your program does not
evaluate the y operand. Otherwise. the result has the value 1 if
the y operand is nonzero. or the value 0 if the y operand is zero.
Each operand can be any scalar type. which may differ from the
type of the other operand. For instance. 1 I I printf(" ! ") has the
value 1 (printf is not called). 3<2 I I 3<1 has the value 0. and

Expressions

8 I I 3. 2 has the value 1. The result type is always int.

Conditional Operator

The operator 11 conditional 11 x?y: z compares its x operand against
zero, to determine which of the operands y and z to evaluate. If
the x operand is nonzero. your program evaluates y and not z.
Otherwise. your program evaluates z and not y. The x operand
can be any scalar type. If y and z are both void expressions. the
result is a void expression. Otherwise, both operands must be
rvalues and the result is an rvalue. If both y and z are of
arithmetic type. the result type is the wider of the two types.
which the compiler widens to int. The compiler widens both
operands to the result type. If both y and z have the same type.
the result is the common type. You may use structure types as
well as scalar types. If one of the two operands is pointer to
void, the other may be a data object pointer. In this case, the
data object pointer is . converted to poi11ter to void, which is the
type of the result. Otherwise. one of the two operands must be a
pointer type and the other an integer constant expression with the
value 0. In this case. the compiler converts the integer 0 to the
pointer type. which is the type of the result. For example. 1? 5: 8
has the value 5. 3<4?2. 7:5 has the value 2.7, and O?O:"abc"
points at the string.

Assignment Operators

Gets Operator

The assignment operators all have an important side effect. They
replace the value stored in a data object with another value. Each
also produces an rvalue, so you can use it as the operand of
another operator, as in x+(y=z). In all cases, the value of the
result is the new value stored in the data object. The type of
the result is the type of the data object, which the compiler
widens to int if the type is arithmetic. Your program will store
the new value in the data object before using the result of the
operator. The assignment operators group right to left.

In all the examples below. x is of type int and has the initial
stored value 3.

The assignment operator "gets 11 X=Y stores the value of y in the
data object designated by x. The x operand must be a modifiable
lvalue. Its previous stored value need not be valid. The y
operand must be an rvalue that is assignment compatible with the
type of x. You can assign structure types as well as scalar types.
If the types of x and y differ. then the compiler converts the
value of y as described earlier in this chapter in the section
11 Arithmetic Conversions".

Gets Multiplied Operator

The assignment operator "gets multiplied 11 x*=Y stores the current
value of x, multiplied by the value of y. in the data object
designated by x. Operand type restrictions and conversions are the

Expressions 5 - 27

same as for x*Y. The compiler converts the result of the
multiplication to the type of x before storing it. For example,
x*=2 has the value 6, and x*=5 .1 has the value 15.

Gets Divided Operator

The assignment operator "gets divided" x/ =Y operates in the same
way as x*=y, except that it computes the value x/y. For
example, x/=2 has the value 1, and x/=-0.5 has the value -6.

Gets Remainder Operator

The assignment operator "gets remainder" x%=Y operates in the
same way as x*=Y, except that it computes the value x%y. For
example, x%=2 has the value 1. and x%=-2 has the value 1.

Gets Added Operator

The assignment operator "gets added" x+=Y operates in the same
way as x*=Y except that it computes the value x+y. The y
operand cannot be a data object pointer. For example, x+=3 has
the value 5, and x+=5. 7 has the value 8.

Gets Subtracted Operator

The assignment operator "gets subtracted" x-=Y operates in the
same way as x*=y, except that it computes the value x-y. The y
operand cannot be a data object pointer. For example, x-=3 has
the value 0, and X-=5. 7 has the value -2.

Gets Left Shifted Operator

The assignment operator "gets left shifted" x<<=Y operates in the
same way as x*=Y· except that it computes the value x<<y. For
example, x<<=3 has the value 24. and x<<=O has the value 3.

Gets Right Shifted Operator

The assignment operator "gets right shifted" x>>=y operates in the
same way as x*=Y· except that it computes the value x>>y. For
example, x>>=l has the value I. and x>>=O has the value 3.

Gets AND Operator

The assignment operator "gets AND" x&=y operates in the same
way as x*=y, except that it computes the value x&y. For
example, x&=3 has the value 3. and x&=4 has the value 0.

Gets E:-<clusive OR Operator

The assignment operator "gets exclusive OR" xA =Y operates in the
same way as x*=Y· except that it computes the value xAy. For
example, xA =3 has the value 0. and xA =4 has the value 7.

Gets Inclusive OR Operator

5 - 28

The assignment operator "gets inclusive OR" x I =Y operates in the
same way as x*=y, except that it computes the value x I y. For

Expressions

example, x I =3 has the value 3. and x I =4 has the value 7.

Comma Operator

The comma operator has the lowest level of precedence. You use
it to write a series of expressions in a context where only one
expression is permitted. as in

if (must_swap)
temp = x, x = y, y = temp;

An if statement controls the execution of one statement, wl:ich
may be an expression statement. Here, the comma operator is
used twice to group into one expression three closely related
expressions. The comma operator also evaluates its operands left
to right in all cases. so you can depend on the assignments
happening in the order you expect. The comma operator groups
left to right.

The operator "comma" x,y evaluates its operands in a specified
order. First the x operand is evaluated as a void expression.
Then the y operand is evaluated. If y is a void expression. the
result is a void expression. Otherwise, the result is an rvalue
whose value is the value of y. If y is an arithmetic type. the
compiler widens it to int. The y operand may be a structure type
as well as a scalar. The type of the result is the widened type
of y.

You also use commas to separate the arguments in a functior. call.
If you write f(g() ,x), for example, the compiler always assumes
you are writing two arguments. not one argument which is the
result of applying the comma operator. If the comma operator is
what you intend, however. you must put extra parentheses around
the expression. as in f((g() ,x)).

Constant Expressions

Sometimes the compiler restricts the expressions you can write. If
you are declaring the size of an array, for example, the compiler
must determine the value of an integer expression. In the case of
the expression

char a[5*4+3];

the compiler recognizes that you want the array a to have 23
elements. The compiler performs as much arithmetic as it can
while it is translating your source file. This permits you to write
complex expressions in places where the compiler must know the
value at compile time.

A 11 constant expression 11 is one that the compiler can reduce to a
known value before it reads any more of your source file. The
most restrictive form is a "constant integer expression." which the
compiler requires in a variety of contexts. If you write an
expression of integer type. and use only certain operands and
operators, you can be sure that it is a constant integer expression.
If it is not, and the compiler requires one. the compiler will emit

Expressions 5 - 29

5 - 30

an error message.

You can have any expression as the operand of the operator
sizeof. For all other operands. you can use: integer constants,
floating point constants. character constants, and enumeration
constants. You can write type casts that convert to arithmetic
type. You can also use the operators: logical NOT ! x, bitwise
NOT -x, plus +x, minus -x. size of sizeof x, multiply x*Y. divide
x/y. remainder x%y. add x+y. subtract x-y, left shift x<<y, right
shift x>>y, less than x<y. less than or equal x<=Y· greater than
x>y, greater than or equal x>=y. equals X==y, not equal x ! =Y·
bitwise AND x&y, bitwise exclusive OR xAy, bitwise inclusive OR
xjy. logical AND x&&y. logical OR xi jy. and conditional x?y:z.
The following are examples of constant integer expressions,
assuming that red and yellow are enumeration constants:

3
5 + 6
(int)(2.7 * 86~4 + 'a')
red < yellow ? red + 1 : red

If you are writing a static initializer for an arithmetic data object,
your program is subject to fewer restrictions. The constant
expression can have any arithmetic type. The compiler converts its
value to the type of the data object, using the rules described
earlier in this chapter in the section "Arithmetic Conversions".

If you are writing a static data initializer for a data object of
some pointer type, your program is subject to even fewer
restrictions. A "constant pointer expression" can be an integer
constant expression with the value zero, or it can have the same
pointer type as the data object. You can use identifiers that
name functions and data objects with static lifetimes as operands.
You can write type casts of pointer type. You can use the
operators: subscript x[y]. points at x->y. select member x.y.
indirect on *x, and address of &x. None of these must access a
stored value, however. The final value must be expressible as an
integer constant, as the address of a function or data object, or as
the address of a data object plus or minus an integer constant.
The following examples of constant pointer expressions could be
used to initialize a data object of type pointer to char, assuming
that a is an array of any type T with static lifetime:

0
"abc"
(char *)a
(char *)&a[4]

The preprocessor directive #if evaluates constant integer
expressions. with a number of additional restrictions. These are
discussed in Chapter 7. "The Preprocessor."

Expressions

Chapter 6: Statements

The statements in a C function perform actions and determine the
flow of control through a function. When you call a function.
control passes to the first statement of that function. The first
statement performs its defined action. then passes control to a
successive statement. The successive statement is normally the
next statement in sequence. but some statements alter the normal
flow of control. Conttol passes from statement to statement until
a return statement gets control. The function then returns control
to the expression that called it.

You write a statement with various keywords. punctuation.
expressions, and other statements. Except for a co111pou11d
statement. every statement either ends with a semicolon or ends
with a statement that does so. The net effect is that you end
each statement you write with a semicolon. You can treat any
sequence of statements as a single statement by writing braces
around the sequence.

Test and Void Expressions

Many statements conditionally alter flow of control by evaluating a
"test expression." A test expression is an rvalue of scalar type.
If the value of the expression does not compare equal to zero. the
test is "true." Otherwise. the value of the expression compares
equal to zero. and the test is "false." You can compare any
scalar expression against zero. Some examples of test expressions
are:

x < 0
'0' <= c && c <= '9'
p /* same as p != 0 *I
1 /* always true *I

Another form of expression that occurs often in statements is a
void expression. This may be an expression of type void. which
produces no value. It may also be an rvalue of any type whose
value is discarded. You evaluate a void expression for its side
effects. such as calling a function or altering the value stored in a
data object. Some examples of void expressions are:

Statements 6 - 1

Labels

Plain Label

Case Label

srand(O) I* srand returns void */
printf("hello\n") I* printf returns int, discarded *I
x = 3 I* assign new value to x *I
++x I* increment stored value *I
y = 2, ++x I* comma lets you do two things *I

Chapter 5, "Expressions." describes both scalar rvalues and void
expressions.

You write a label at the beginning of a statement so that your
program can transfer control to the statement by means of a goto
statement or a switch statement. There are three kinds of labels:
"plain labels," "case labels." and "default labels."

A "plain label" consists of an identifier followed by a colon. You
implicitly declare an identifier as a label when you write a plain
label, or when you write a goto statement that contains the
identifier. Chapter 3. "Identifiers," discusses the scope. visibility.
and name space of labels. When your program transfers control to
a goto statement, it transfers control unconditionally to the
statement within the same function that has a plain label with a
matching identifier. Some examples of plain labels are:

top:
i = O;

if (i < sizeof (a) I sizeof (a[O])
goto bottom;

printf("a[%i] = %i\n", i, a[i]);
goto top;

bottom:

A "case label" consists of the keyword case. followed by a
constant integer expression. followed by a colon. You write a case
label only within a switch statement. When your program
evaluates the expression in the switch statement. it transfers
control to the statement following a case label if the value of the
expression in the case label compares equal to the value of the
expression in the switch statement.

Default Label

6 - 2

A "default label" consists of the keyword default followed by a
colon. You write a default label only within a switch statement.
When your program evaluates the expression in the switch
statement. it transfers control to the statement following a default
label if the value of the expression in the switch statement
compares equal to no case label value.

The section "switch Statement." later in this chapter, discusses
case labels and default labels in more detail. An example is:

Statements

switch (p->state)
{

case READING:
I* enum {READING, VRITING, CLOSED,• } *I

case VRITING:
printf("can't reopen %s\n", p->name);
break;

case CLOSED:
p->state
break;

default:

READING;

printf("inconsistent state!\n");
p->state = CLOSED;
}

If control passes to a labelled statement from the preceding
statement in sequence. the label causes no action and has no effect
on flow of control. You can write any number of labels. of
various kinds. before a statement.

Kinds of Statements

This chapter describes all the statements of C. in the order listed
below:

expression statement
null statement
compound statement
return statement
if statement
while statement
do/while statement
for statement
switch statement
break statement
continue statement
goto statement

expression Statement

expr;

An expression statement consists of an expression. followed by a
semicolon. It evaluates the void expression ex.pr and passes control
to the next statement in sequence. You use expression statements
to call functions and to store values in data objects.

Some examples are:

rootl = disc - b I (2.0 *a);
printf("are you sure? ");
++x;
x = cos(theta), y = -sin(theta);

Statements 6 - 3

null Statement

A null statement consists of a semicolon standing alone. It does
nothing but pass control to the next statement in sequence. You
use a null statement where you must write a statement. but want
to perform no additional action.

Some examples are:

while (getchar() != '\n') I* consume rest of line *I
;
top: ; I* null statement holds a label *I

compound Statement

{

6 - 4

declarations

statements
}

A compound statement consists of a sequence of declarations
followed by a sequence of statements. all enclosed in braces. It
creates a block with a new scope, allocates data objects with
dynamic lifetime. initializes any such data objects. and then passes
control to the first of the sequence of statements. If the last of
the sequence of statements passes control to the next statement in
its sequence, then the compound statement passes control to the
next statement in its sequence. You use a compound statement to
introduce a new scope block. or to group a sequence of statements
in a context that would otherwise permit only one.

You may write a goto statement or a switch statement that
transfers control to a statement within the compound statement.
In this case, the compound statement still creates a new scope
block and allocates data objects with dynamic lifetime. but it does
not initialize any such data objects. On System/370. your program
allocates all data objects with dynamic lifetime upon function entry.
Your program executes no code to allocate data objects upon entry
to each block.

Some examples of compound statements are:

Statements

if (d < 0)
{
d = -d;
minus = YES;
}

if (compare(px, py) < 0)
{
register int i;
Item t;

for (i
t

}

O; i < sizeof (*px); ++i)
px[i], px[i] = py[i], py[i] t;

return Statement

if Statement

return expr;

A return statement consists of the keyword return. followed by an
expression, followed by a semicolon. If the expression e.-.:pr is
present, your program evaluates it and converts its value to the
type returned by the function. The expression must be an rvalue
that is assignment compatible with the type returned by the
function. In all cases' the retum statement terminates execution of
the function, restores the previous calling environment, and returns
control to the expression that called it. You use a return
statement to return control from a function and to specify a return
value.

If the expression expr is present. the converted value becomes the
value of the function call in the calling expression. If the
expression expr is not present. the calling expression must be a
void expression. If the function is a void function. the calling
expression must be a void expression and the expression expr must
not be present.

At the end of every function body is an implicit:

return;

Some examples of return statements are:

return;
return cos(x);
return (a < 0 ? x + 1

if (test)
statement

x - 1);

An if statement consists of the keyword if. followed by a test
expression in parentheses. followed by a controlled statement. If
test is true, control passes to the controlled statement and then to
the next statement in sequence. Otherwise. control passes directly
to the next statement in sequence. You use an if statement to
execute a controlled statement at most once. under control of a
test.

Some examples of if statements are:

Statements 6 - 5

if (x < 0)
x = -x;

if (abs(val) < EPSILON)
return (answer);

if/else Statement

6 - 6

if (test)
statement

else
statement

An if/else statement consists of an if statement followed by the
keyword else and a second controlled statement. If test is true.
control passes to the controlled statement following the test and
then to the next statement in sequence. Otherwise. control passes
to the second controlled statement following the else and then to
the next statement in sequence. You use an if/else statement to
execute exactly one of two alternate statements. under control of a
test.

The first controlled statement must not be an if statement, and it
must not end in a controlled if statement. Otherwise. the compiler
will group the else with the controlled statement. as in:

if (i < 0)
if (j < 0)

printf("both negative\n");
else I* INDENTING IS MISLEADING *I

printf("i is not negative\n"); I* NOT TRUE! *I

You can write this example correctly by enclosing the controlled if
statement in braces. as in:

if (i < 0)
{
if (j < 0)

printf("both negative\n");
}

else
printf("i is not negative\n");

Some examples of if/else statements are:

Statements

if (x < y)
small

else
x, large y;

small y, large x;
if (reading)

n read_file(buf, size);
else

n = write_file(buf, size);

I* now true *I

)

else/if Chain

if (test)
stateme11 t

else if (test)
statement

else
statement

An else/if chain consists of an if/else statement whose second
controlled statement is another if/else. If the first test is true.
control passes to the first controlled statement and then to the
next statement in sequence. Otherwise. if the second test is true.
control passes to the second controlled statement and then to the
next statement in sequence. Otherwise, control passes to the third
controlled statement and then to the next statement in sequence.
You can extend the chain to arbitrary depth. You use an else/if
chain to execute exactly one of a series of statements. under
control of a series of tests.

None of the controlled statements. except the last, can be an if
statement or may end in a controlled if statement.

Some examples of else/if chains are:

if (x < 0)
return (-fun{-x));

else if (x == 0)
return (0);

else
return (approx(x));

if (isdigi t(ch))
do num(ch);

else if-(isletter(ch))
do name(ch);

else if-(ispunct(ch))
do ops(ch);

else -
printf("unknown character\n");

while Statement

while (test)
statement

A while statement consists of the keyword while. followed by a
test expression in parentheses. followed by a controlled statement.
If test is true. control passes to the controlled statement and then
back to the evaluation of test. Otherwise, control passes directly
to the next statement in sequence. You use a while statement to
execute a controlled statement zero or more times. under control of
a test.

Some examples of while statements are:

Statements 6 - 7

while ((c = getchar()) != EOF)
putchar(c);

while (EPS < abs(d - ans * ans))
ans = (d I ans + ans) I 2;

do/while Statement

do
statement
while (test);

A do/while statement consists of the keyword do, followed by a
controlled statement. followed by the keyword while. followed by a
test in parentheses, followed by a semicolon. Control first passes
to the controlled statement and then to the evaluation of test. If
test is true, control passes back to the controlled statement.
Otherwise control pass~s directly to the next statement in sequence.
You use a do/while statement to execute a controlled statement
one or more times, under control of a test.

Some examples of do/while statements are:

do
putchar(' '); I* put one or more spaces *I
while (++col < tabstop);

do {
est = (x I est + est) I 2.0;
err = dabs(est) I x;
} while (EPS < err);

for Statement

6 - 8

for (init; test; rei11it)
statement

A for statement consists of the keyword for, followed by three
expressions within the same set of parentheses, followed by a
controlled statement. You separate the three expressions by
semicolons. The first expression init is a void expression. the
second expression test is a test expression, and the third
expression reinit is a void expression. The first expression init is
evaluated once when the for statement first gets control. Then if
the second expression test is true. control passes to the controlled
statement, to the evaluation of the third expression reinit. and then
back to the evaluation of the second expression test. Otherwise.
control passes directly to the next statement in sequence. You
use a for statement to execute a controlled statement zero or more
times, under control of a test. and to express all loop control
expressions in one statement.

Some examples of for statements are:

Statements

for (i = O; i < sizeof (a); ++i) I* walk an array *I
a[i] = b[i + 1];

switch Statement

for (p = first; p; p = p->next)
if (p->value == value)

break;

switch (expr)
{
declarations

case case_expr:
statements

default:
statements
}

I* walk a list *I

A switch statement consists of the keyword switch. followed by an
expression in parentheses, followed by a controlled compound
statement. Your program evaluates the integer rvalue e:'<:pr once.
and then compares its value against the value of case expr for
each of the case labels within the switch statement. -If the values
compare equal for one of the case labels, then control transfers to
the statement immediately following that case label. If none of
the values compare equal and there is a def a ult label. the11 control
transfers to the statement immediately following the default label.
Otherwise control transfers to the statement following the switch
statement. You use a switch statement to transfer control to one
of several labelled statements within a controlled statement. under
control of an integer expression.

Each of the expressions case expr. within each of the case labels.
must be a constant integer expression. The compiler evaluates
each of the expressions case expr and converts it to the type of
the expression expr. All expressions case expr within a given
switch statement must have distinct values after conversion. You
can write at most one def a ult label in a switch statement. You
can prefix any statement within the controlled compound statement
of a switch statement with a case label or a default label. These
labels may be inside any contained statement, within the controlled
compound statement, except a contained switch statement.

If you write any declarations at the beginning of the compound
statement, the switch statement will allocate data objects you
declare there but it will not initialize any such data objects with
dynamic lifetime. Once control transfers to a statement within the
compound statement. the normal flow of control occurs. Write
breali statements to terminate each sequence of statements you
write after a case label or a default label, except the last
sequence. Some examples of case statements are:

Statements 6 - 9

switch (color)
{

case RED:
case ORANGE:
case YELLOV:

type = VARH;
break;

case GREEN:
type = COOL;
}

switch (c = getchar())
{

case EOF:
return;

case 'l':
go left();
break;

case 'r':
go right();
break;

default:
put it(c);
} -

break Statentent
/

./

6 - 10

break;

A break statement consists of the keyword break followed by a:
semicolon. It passes control to the next statement after the ·
innermost nested switch. while. do/while, or for statement. You
use a break statement to terminate a switch or a loop early.

Some examples of break statements are:

for (p =root; p !=NULL; p = p->next)
if (p->value == value)

break;

switch (code)
{

case Oxl7ff3b2:
mode = OLD_STYLE;
break;

case Ox3322232:
mode = NEV STYLE;
break; -

default:

Statements

mode VARYING;
}

continue Statement

continue;

A continue statement consists of the keyword continue followed by
a semicolon. It passes control to the statement that follows the
controlled statement in the innermost while. do/while. or for
statement. That successive statement is the test expression in a
while or a do/while statement. or the third expression in a for
statement. You use a co11ti11ue statement to repeat the test
expression in a loop early.

An example of the conti1111e statement is:

goto Statement

for (p = root; p != NULL; p = p->next)
{
if (p->value != value)

continue;
process(p);
}

goto label;

A goto statement consists of the keyword goto. followed by a
label, followed by a semicolon. It passes control to the statement
prefixed by the plain label whose identifier matches label. You use
a goto statement to bypass the flow of control that other
statements provide.

An example of the goto statement is:

for (p = root; p != NULL; p = p->next)
if (p->value == value)

for (q = p->list; q; q = q->next)
if (q->flavor == flavor)

goto done;
done: I* here on double match (p != NULL) or no match */

Statements 6 - 11

6 - 12 Statements

Chapter 7: The Preprocessor

Part of the compiler is a preprocessor which includes the contents
of specific source files you name. conditionally skips portions of
your source text. and lets you define source text "macros." It
performs these functions after the compiler groups input into tokens
and before it groups tokens into declarations. Chapter 2,
"Elements of the C Language." describes how you write tokens.
Chapter 4, "Declaratioils. 11 describes how you write declarations.

The preprocessor evaluates your C source file one text line at a
time. If the first character other than whitespace on a text line
is the character :jj:, the text line is a /1 preprocessor directive. 11 The
next token on the text line must be an identifier. which is the
name of the preprocessor directive. Write only the preprocessor
directive names described in this chapter. You cannot introduce
new preprocessor directive names. Preprocessor directive names are
not keywords or reserved identifiers. A preprocessor directive may
appear anywhere within your compilation.

The preprocessor either skips or 11 expands 11 any text line other
than a preprocessor directive. It skips text lines under control of
11 conditional preprocessor directives. 11 It expands text lines by
replacing each identifier that is defined as a macro with the
defining text for the macro.

This chapter describes all of the preprocessor directives. It covers
the following topics:

file inclusion preprocessor directives: How you include source files

conditional preprocessor directives: How you conditionally skip
portions of your source text

macro preprocessor directives: How you define macros. and how the
preprocessor expands them

information preprocessor directives: How you communicate special
information to the compiler.

File Inclusion Preprocessor Directives

The preprocessor directives

:jj:include <{name>

and

The Preprocessor 7 - 1

#include "{name"

tell the preprocessor to include the contents of a file whose name
is determined from {name, in place of the preprocessor directive
itself. Enclose {name either in angle brackets < > or in double
quotation marks " ", as shown. Files you include this way may
themselves contain #include preprocessor directives. You may nest
#include preprocessor directives to a depth of at least four files.

No source file you include may end with an incomplete text line,
within a comment, within a conditional preprocessor directive group.
or within a macro expansion. Conditional preprocessor directive
groups and macro expansions are described later in this chapter.

The preprocessor uses {name to construct one or more file names.
How it constructs file names depends upon which form of the
#include preprocessor directive you write, and which operating
system you are using. The compiler may use a "search modifier"
to construct a file nai:ne. You specify the search modifier when
you invoke the C compiler. If the preprocessor cannot open an
include file for reading. the compiler emits an error message. The
C Compiler User's Guide for your system describes how to form
correct file names, tells you the default value for the search
modifier for each form of the #include preprocessor directive, and
tells you how you can change the search modifier when you invoke
the compiler.

Rules for #include File Processing

7 - 2

You enclose {name in double quotation marks if you want the
preprocessor to include one of your own files rather than a file
shared by more than one user. An example is:

#include "myhdr.h"

If you enclose {name in angle brackets. the preprocessor will
include the file from the include library provided with the C
compiler. This form of #include preprocessor directive is usually
used to include project wide include files or one from the include
library provided by the C compiler. An example is:

#include <stdio.h>

On VM/CMS, the compiler command options SEarch(mod) and
LSEarch(mod) allow you to specify a search modifier mod for
preprocessor #include files you enclose in angle brackets or double
quotation marks within your program. mod represents the minidisk
at which the compiler will begin the search for your include file.
For example, if you specify the compiler command option SE(x).
the compiler will search minidisks X. Y, and Z for include files you
enclose in angle brackets. It will not search minidisks A through
V. The table below explains how the compiler performs #include
file processing on VM/CMS depending on how you write your
include file names.

<test.h>

The Preprocessor

The compiler will search as directed by the
SEarch(mod) option if you specify it. Otherwise it
will search all accessed minidisks (normal VM/CMS

<test.h.b>

<test.h.* >

"test.h"

"test.h.b"

"test.h. *"

search order) .

The compiler will get the file TEST H B.

The compiler will search all accessed minidisks
(normal VM/CMS search order).

The compiler will search all minidisks as indicated by
the LSEarch(mod) option if you specify it.
Otherwise it will search all accessed minidisks
(normal VM/CMS search order). If the compiler
does not find the file using the above rules. it will
search for the file as if you wrote its name as
<test.h>.

The compiler will get the file TEST H B.

The compiler will search all accessed minidisks
(normal VM/CMS search order).

On MVS and MVS/XA. the compiler command options
SEarch(name) and LSEarch(name) allow you to specify a name
name which specifies one of the following:

1. The name of a partitioned dataset or

2. A DDname of the form dd:11ame. where name is a DDname
defining a partitioned dataset.

For example, 'j ones. local'. local. and dd: local are valid
definitions for name provided that local is a DDname assigned to
a partitioned dataset. For information about file names on MVS
and MVS/XA, see the description of the fopen function in Chapter
11, 11 C Library Reference. 11

The LIBH Option and Partitioned Dataset Member Names under .MVS

By default under MVS and MVS/XA. include file names that have
the suffix '.h' refer to member names that have the suffix '$H'.
The LIBH compiler command option directs the compiler to strip
the '. h' suffix from all include file names that refer to partitioned
dataset members. Stripping off the '. h' suffix allows you to
specify up to two more significant characters in include file names.
When you specify LIBH your include file names may be up to
eight characters in length instead of the default maximum length
of six characters. When you specify LIBH. an include file name
you write as <test. h> can refer to the member name TEST. The
table below explains how the compiler performs #include file
processing on MVS and MVS/XA. depending on how you write the
include file names. These examples assume that NOLIBH has been
specified.

<test.h> The compiler will get the member TEST$H from the
dataset you reference with the SEarch(name) compiler
command option. if you specify it. If the member
TEST$H is not in the dataset you reference with
SEarch(name) option. or if you do not specify
SEarch(namE'). the compiler will get the member
TEST$H from the dataset referenced by the DDname

The Preprocessor 7 - 3

"test.h"

INCLUDE.

The compiler will get the member TEST$H from the
dataset you reference with the LSEarch(name)
compiler command option. if you specify it. If you
do not specify LSEarch(name). the compiler will get
the sequential dataset test.h. If the compiler does
not find the file using these rules. it will search for
the file as if you wrote its name as <test. h>.

File Name Macro Expansion

You can also write an #include preprocessor directive as

#include ident

The identifier ident must be a macro that expands to one of the
two forms shown earlier.

Do not confuse file names enclosed in double quotation marks with
string constants. Escape sequences are not processed and string
concatenation does not occur before the file name is constructed.
It is the original 11 spelling" of the #include preprocessor directive.
or of the macro expansion of the identifier ident, that determines
the file name.

Conditional Preprocessor Directives

Several preprocessor directives allow you to specify conditions under
which the preprocessor will skip parts of your source file or an
include file.

Testing for Macro Definition

7 - 4

The preprocessor directive

#ifdef ident

tells the preprocessor not to skip the text lines immediately
following this directive if the identifier ide11t is currently defined as
a macro. Otherwise. the preprocessor skips text lines and
preprocessor directives until it encounters the preprocessor directive

#end if

later in the same file. The range of lines from the #ifdef
preprocessor directive to its corresponding #endif preprocessor
directive is a "conditional preprocessor directive group. 11 If the
preprocessor encounters any conditional preprocessor directive group
while skipping, the entire group is skipped.

For example:

The Preprocessor

#ifdef FLOAT FORM I* skip if FLOAT FORM not defined *I
typedef double LARGE;

#ifdef DO DIVIDES /* skip if either not defined *I
extern LARGE divide(LARGE, LARGE);
#endif I* for DO DIVIDES */

#end if I* for FLOAT FORM *I
You can use #ifdef to skip a #include preprocessor directive that
would fail if not skipped. All preprocessor directives that the
preprocessor skips must be formatted properly, however.

The preprocessor directive

Ii fndef ident

behaves exactly like #ifdef. except that the preprocessor skips the
text lines that follow if the identifier iden t is defined as a macro.

Testing for Arithmetic Value

The preprocessor directive

#if expr

behaves like #ifdef. except that the preprocessor skips text lines
if the expression expr evaluates to zero. The expression must be
a constant integer expression. with the following added properties:

* The preprocessor cannot evaluate the operator sizeof or any
type cast operators.

*

*

*

*

*

The preprocessor cannot evaluate any floating constants or
enumeration constants.

The preprocessor converts all integer constants, and all
intermediate results. to type long.

The preprocessor replaces either of the sequences

defined ident

or

defined (ide11t)

with the value 1 if ide11t is currently defined as a macro.
and with 0 otherwise.

The preprocessor expands any other identifier defined as a
macro, following the usual rules described later in this
chapter.

The preprocessor replaces any other identifier not defined as
a macro with the value 0.

For example:

#define MACH TYPE 370
#if MACH TYPE== 370 ti defined DO DIVIDES
.... I* don't skip if 370 or doing-divides *I

The Preprocessor 7 - 5

The form

U f defined ident

is equivalent to

#ifdef ident

and the form

#if !defined ident

is equivalent to

#ifndef ident

The C language retains #ifdef and Ufndef preprocessor directives
primarily for compatibility with older programs. Use the lif
directive exclusively.

Alternate Groups

7 .,.. 6

The preprocessor directive

#else

lets you specify an alternate group of text lines within a
conditional preprocessor directive group. If skipping is in effect
when it encounters lelse. it stops. Otherwise, skipping begins
until the corresponding #endif. Write an lelse preprocessor
directive only inside a conditional preprocessor directive group. For
example:

lif MACH TYPE == 370
.••• I* don't skip if 370 *I
lelse
••.. I* skip if 370 *I
#end if

The preprocessor directive

lelif e."<:pr

behaves much as

lelse
#if expr

except that you write only one lendif preprocessor directive to
end the conditional preprocessor directive group. For example:

#if MACH TYPE == 370
.•.• I* don't skip if 370 *I
#elif MACH TYPE := 36
.••. I* don't skip if 36 *I
#else
•••• I* skip if either 370 or 36 *I
#end if

You may write as many leli f preprocessor directives as you wish
within one conditional preprocessor directive group. You can write
at most one #else preprocessor directive after the last of any
leli f preprocessor directives. Your choices are very similar to

The Preprocessor

those you have when writing executable statements within a
function body. The corresponding statements if. if/else, and else/if
are described in Chapter 6. "Statements."

Macro Preprocessor Directives

The preprocessor directive

#define ide11t def

defines the identifier id en t as a macro. In text lines that follow.
the preprocessor will replace the identifier ident with the expansion
def. Do not define an identifier that is currently defined as a
macro, unless you define it with a definition def spelled exactly the
same as its current definition.

If the expansion def contains any instance of ident. the
preprocessor leaves it .alone. The preprocessor will. however.
expand as usual any other identifiers defined as macros, except
that any instances of ident within their expansions is left alone.
For example:

#define PI pi object
#define pi_object +(pi object)
x = PI; I* expands to: x = +(pi_object) *I

This sequence defines the macro PI as the data object pi object.
The second macro ensures that only the value of the data- object
is available from that point on in the compilation.

Macros with Arguments

The preprocessor directive

#define ident(args) d(>f

defines the identifier ident as a macro with arguments. In text
lines that follow, the preprocessor will replace the identifier ident
followed by an argument list in parentheses with the expansion def.
Do not define an identifier that is currently defined as a macro.
unless you define it with a definition d(>f spelled exactly the same
as its current definition.

Write no whitespace between ident and the left parenthesis. This
is the only context in the C language where the whitespace
between distinguishable tokens is significant. args consists of zero
or more "argument identifiers" separated by commas. All
argument identifiers must be distinct. Their scope is the expansion
def. For example:

:fl:def ine sum(x, y)
#define product

(x + y) /* has two arguments *I
(x * y) I* has NO arguments *I

The preprocessor will expand an identifier defined as a macro with
arguments only if you write an actual argument list in parentheses
immediately following the identifier in your source text. You may
write whitespace between the macro identifier and the left
parenthesis that follows. You may write any sequence of tokens

The Preprocessor 7 - 7

for each actual argument, provided that parentheses balance in the
sequence and any commas are inside parentheses. The actual
arguments are separated by commas.

Write the same number of actual arguments as you write argument
identifiers in the #define preprocessor directive. You may write
the macro identifier and actual arguments across multiple text lines.
with the following constraints:

*

*
*

Write no preprocessor directives among the text lines.

All of the text lines must be within the same file.

All of the text lines must total no more than 511
characters, counting one character for a newline at the end
of each line.

After identifying the actual arguments, the preprocessor expands
each of them. The macro that is being expanded is still defined
and may be expanded. when the arguments are expanded. For
example:

#define sum(x, y) (x + y)
sum(sum(3, 2), 4) /* same as ((3 + 2) + 4) */

The expansion def replaces the macro identifier and actual
arguments by the following rules:

*

*

*
*

*

The operator # followed by an argument identifier is replaced
by a "constructed string constant," as described below.

An argument identifier is replaced by its expansion.

The macro identifier ide11t is left alone.

Any other macro identifiers are expanded as usual. except
that the macro identifier is left alone.

Any other tokens are left alone.

For example:

#define quit(status) quit(OK, !(status))
quit(nerr == 0);

I* expands to: quit(OK, !(nerr == 0)) */

The macro quit rewrites the argument list before calling the actual
function quit.

Constructing String Constants

7 - 8

You can construct a string constant from an actual argument to a
macro. For example:

#define STR(x)#x
STR(f(l,2) + z) /* expands to: "f(l,2) + z" *I
STR("Help!" he said.) I* expands to: "\"Help!\" he said." *I
STR(a/* commentary *lb) * expands to: "a b" *I

You determine the characters of the string constant by how you
"spell" each of the tokens. and separating whitespace. in the actual
argument. The preprocessor omits any leading and trailing
whitespace. It replaces a comment with a single space. Other

The Preprocessor

compilers may replace any sequence of one or more whitespace
characters by a single space. so you should write only actual
arguments that have no space or a single space between tokens. if
you want your program to be highly portable.

The preprocessor constructs the string from the actual argument.
not its e.'tpansion. For example:

#define status(*getstat())
#define SHOV (x) printf(#x 11 = %i\n11 , x)

SHOV{status) I* expands to:
printf("status11 11 = %i\n11 , (*getstat())) *I

Since adjacent string constants are concatenated, as described in
Chapter 2. "Elements of the C Language." this becomes:

printf(11status = %i\n11 , (*getstat()));

Replacing Arguments Inside String Constants

As a compiler option, you can direct the preprocessor to replace
argument identifiers within string constants when it expands a
definition. For example:

#define SHOV(x) printf(11x = %i\n11 , x)
SHOV(abc) /* expands to:

printf (11abc = %i\n11 , abc)

Only string constants you write inside macro expansions are
expanded this way.

You use this option to compile large programs written for a
compiler that constructs strings this way. until you can alter the
macro definitions to use the form shown above. Using #x to
construct a string constant from an actual argument is a feature
added to C in the proposed ANSI standard.

Predefined Macros

Two macros are predefined at the start of each compilation. You
may not redefine either. test if either is defined, or remove either
definition. They are:

The predefined macro LINE expands to a decimal integer
constant whose value ts- the stored line number for the current line
of source text. The first line number for any source file has the
value 1.

The predefined macro FILE .. expands to a string constant whose
value is the stored file-name-for the current source file. For
example:

ldef ine ERR(x) \
printf(#x 11 : at line %i in %s\n11 , LINE

if (MACH TYPE I= 370)
ERR(unk.nown machine);

The Preprocessor

FILE)

7 - 9

You can predefine additional macros when you invoke the compiler.
Your C Compiler User's Guide describes how you specify macro
definitions as command options to the compiler. Macros defined
this way behave like any other macros you define. You may
redefine them with exactly the same definition text, test if they
are defined, and remove their definitions.

Constructing Tokens

You can construct a token from an actual argument to a macro.
For example:

ldefine TMP(n) tmp_var_ II n

double TMP(l), TMP(2); I* expands to:
double tmp_var_l, tmp_var_2; *I

The operator II constructs a token from the operand tokens before
and after it in a macro expansion. The preprocessor petforms
token construction after all other expansion has occurred. It
"spells" the resulting token by concatenating the spellings of the
expanded tokens before and after the II operator. All of the
characters must contribute to the spelling of the resulting token.
If the resulting token is a macro name, it is· not expanded. 1f it
is a II operator, it does not cause further token construction.

Removing M aero Definitions

The preprocessor directive

lundef ident

removes any definition of ident as a macro. It is not an error to
remove a macro definition from an identifier not currently defined
as a macro. If you wish to alter the definition of a macro, you
must first lundef its identifier before you may ldefine it a
different way.

You use the lundef preprocessor directive to remove any unwanted
macro definition that may be present in a header file, as in:

#include <stdio.h>
lundef getchar I* getchar no longer a macro *I

get_or_put(&getchar, &c); I* getchar must be a function */

This ensures that your program contains no macro definition that
masks the underlying declaration of getchar in the header file
<stdio.h>. You can take the address of a function. but not of a
macro. Chapter 8, "C Runtime Environment." discusses this use
of the lundef preprocessor directive.

Information Preprocessor Directives

7 - 10

Several preprocessor directives communicate special information to
the compiler. This section describes these directives.

The Preprocessor

Comments

Line Control

Pragmas

The preprocessor directive

does nothing. It may contain only whitespace. You use such
directives to hold comments. as in:

#if MACH TYPE == 370

I* 370 version follows *I

The preprocessor directive

#line canst

alters the stored line .number to the value of the decimal integer
constant canst. The next line of source text has the new line
number. The compiler displays the stored line number when it
emits an error message. You can expand the stored line number
into your program text by writing the predefined macro name

LINE , as described earlier in this chapter. You use the #line
preprocessor directive to correct for text lines added or deleted by
programs that modify your source text. or translate other languages
into C. For example:

#line 87

The preprocessor directive

#line canst "{name"

also alters the stored file name to {name. The next line of source
text has the new line number and the new file name. The
compiler displays the stored file name when it emits an error
message. You can expand the stored file name into your program
text by writing the predefined macro name FILE . as described
earlier in this chapter. You use this form of .the Tline
preprocessor directive to replace the name of an intermediate file
with that of a source file before it has been modified or translated.
For example:

#line 87 "matrix. p"

The preprocessor directive

#pragma link.age(ident, OS)

declares the identifier ident as a function with external linkage and
the standard OS calling sequence. You use it to declare ident as
a function written in a language that is called with the OS calling
sequence. If you must declare additional information about ident.
such as function return type and the number and types of its
arguments, use a conventional declaration.

The Preprocessor 7 - 11

7 - 12

On a function call to ide11t your program uses the OS calling
sequence, instead of the calling sequence used within C. Your C
Compiler User's Guide describes the C calling sequences.

You can take the address of the function with the OS calling
sequence, but you cannot assign it to any function pointer you can
declare. Its type is unique. If you type cast it to another
function pointer type. do not use the converted value to call the
function. Its calling sequence will be incorrect.

Different compilers define other formats for the lpragma
preprocessor directive. The compiler will ignore any format that it
does not recognize. If you miswrite a #pragma linkage
preprocessor directive, therefore, the compiler may not emit an
error message. There are no formats defined for all compilers.
Use the lpragma preprocessing directive only in programs you do
not intend to be portable.

For information on mixing languages. see Chapter 8. "Interfaces
with Other Languages." in your C Compiler User's Guide.

The Preprocessor

Chapter 8: C Runtime Environment

You build an executable C program file by typing a command that
invokes CC and names all the files that make up the program. CC
compiles any source files you name to produce object code files.
You then invoke the standard IBM linkage editor or loader to link
your object code files with the object code files you need from the
C library. Chapter 3 of your C Compiler User's Guide describes
how you invoke CC. You invoke the resulting C program file by
typing another command that names the C program file and any
command options you wish to specify to it.

Your C program executes in a "runtime environment" that provides
access to command options. performs input/output. and returns
control to the system when your program terminates. This chapter
describes what you need to know about the runtime environment
for C programs.

C Library Functions

There are no statements in C such as HEAD. WRITE. or OPEN.
as there are in many other languages. Instead. you perform calls
on C library functions. The C library performs input/output.
dynamic storage allocation. string manipulation. and many other
useful actions. A library function will typically:

*

*

Take certain arguments as input parameters

Perform a single operation

* Return a result as the value of the function. modify the
values stored in data objects. or alter the state of a file.

Chapter 9. "Input/Output." describes the functions that perform
input and output for your program. Chapter 11. "C Library
Reference." describes all library functions.

The C library provides "header files" for use with the :#include
preprocessor directive. Header files make it easy for you to
declare groups of related library functions and any types or data
objects that go with them. For example. you can write text
strings from C by using the code:

#include <stdio.h>

printf("Second quarter report:\n");

C Runtime Environment 8 - 1

8 - 2

In this example. <stdio.h> is the header file you include that
defines the printf library function. printf writes the text in
your output file. The library header files define many library
functions as macros, by using the #define preprocessor directive.
Such macros often expand to code that executes much faster than
an actual function call. possibly at the cost of greater code size.
If the library defines such a macro for a function, its definition
will contain enough parentheses so that C requires no additional
parentheses around the "function call" itself or around any of its
arguments. The compiler evaluates each argument to such a macro
exactly once, unless the description of the particular library function
provides an explicit exception to this rule. This ensures that
arguments with side effects. such as incrementing a data object. do
not cause unpredictable or surprising results.

For example. you can write code such as:

#include <stdio.h>

output_char = putchar{*p++) + 512;

regardless of whether or not <stdio.h> defines putchar as a
macro.

Since the notation for writing a macro expression with arguments
is the same as for calling a function in C. it does not matter
whether or not the header file defines a macro for a function. It
does matter, however, if you wish to take the address of a library
function by writing the operator & before its name. as in
&putchar. If putchar is defined as a macro. the compiler may
generate an error message when you write the expression
&putchar, or just putchar. If your program must refer to the
actual library function. instead of its macro replacement. you have
two choices:

*

*

Do not use the header file for that function. but declare it
in your program just as it appears in its description in this
manual

Include the header file for that function, then remove any
potential macro definition by using the lundef preprocessor
directive

For example, your code may always take the form:

#include <stdio.h>
lundef putchar

ptr_fun = &putchar;

since it is permissible to lundef an identifier not currently defined
as a macro.

Of the two choices, you will probably find that using #undef is
more convenient.

C .Runtime Environment

Program Startup and Termination

When you type a command that names a C program file. the
system loads the program into memory and starts program
execution. After some preparation. the C runtime environment calls
the function main, which you must provide somewhere among your
C source files. The time at which your program calls main is
"program startup." Eventually. your program will either return
from main, call the library function exit. or call the library
function abort. The time at which one of these events occurs is
"program termination." After some preparation. the C runtime
environment returns control to the system and the execution of the
C program file is complete.

Before program startup. the system copies command options you
specify into alterable memory and terminates each with a null
character. The first argument to main is an int giving the
number of command options you specify plus one. The second
argument to main is of type array of pointer to char. It points
to an array of pointers to each of the command options. Each
command option is a /1 string." which is a data object of type
array of char whose last character is the null character.

For example, if you define main as:

int main(int argc, char *argv[])
{ }

and if the command options you specify are "hello" and "world".
then upon entry to main

*
*
*

*

argc has the value 3

argv [1] points at the string "hello"

argv[2] points at the string "world"

argv [3] is a null pointer

The array argv always has at least two members. The first
argument. argv [0) is always defined. and there is always a null
pointer stored in argv just beyond the last command option.
Moreover, argc is always greater than zero upon entry to main.
If the C runtime environment can determine the name of the
program you specify with your CC command, then argv [0] points
at a string giving the program name. Otherwise. argv[O) points
at the string ""· Your C Compiler User's Guide describes the
value assigned to argv[O] on your system.

You can write a command option containing spaces by enclosing
the spaces within double quotation marks. For example. "c d e"
is a single command option containing two spaces. not three
separate command options. You write a double quotation mark
within a command option as \" and a backslash character as \ \.
Note that other escape sequences and trigraphs are not recognized
inside command options.

Under TSO. the runtime environment translates the command line
to lowercase. Any characters which you do not want the runtime

C Runtime Environment 8 - 3

8 - 4

environment to translate can be escaped by preceding them with a
backslash character.

Under IMS. there are two ways to invoke a C program. If the
C program is invoked directly from IMS. argc is set to 1. and
argv [0] is set to "". If the C program is invoked from the
system function. argc and argv are initialized from the command
string passed to the system function.

Note that under IMS signals are not set to their default values
when IMS or the system function calls main. If you alter signal
handling by calling signal. you may affect the entire IMS
environment.

Before program startup. the C runtime environment sets up the
data object pcblist for IMS programs. pcblist is available to
all user programs. whether or not they are- running under IMS.
For more information on pcblist. see the description of the
ims.h header file in ChaPter 11. "C Library Reference."

The program may alter the stored values of any of the characters
in any of its command options.

Before program startup. the C runtime environment opens three
text streams. The files are under control of three data objects
that the C library provides. All three data objects are of type
FILE. If you include the header file <stdio.h> in a C source
file, your program will have the definition of the type FILE and
definitions for macros that refer to these data objects. These
macros are:

* st din, controlling a readable text stream called the
"standard input" stream

* stdout. controlling a writable text stream called the
"standard output" stream

* stderr. controlling a writable text stream called the
"standard error" stream

By convention, stdin is read by programs that process a sequential
stream of input. where the name of the input file is of no
importance to the program. Similarly. stdout is written by
programs that produce a sequential stream of output. where the
name of the output file is of no importance to the program.
Error messages are written to s tderr.

By default, standard output is displayed on your interactive
terminal. See your C Compiler User's Guide lvlVS. MVSIXA
(SC09-1129) for information on how stdin. stdout. and stderr
are set up under MVS batch. where there is no interactive
terminal. You can direct standard output to a named file by
writing a command option that begins with >. The remainder of
the argument is taken as the name of a file to create and open
for text output. You can also append standard output to the end
of an existing file by writing a command option that begins with
>>. The description of the fopen function in Chapter 11. "C
Library Reference" describes the rules for writing file names on
your system. By redirecting standard output this way, you can

C Runtime Environment

save the output of your program in the file of your choice.

Similarly, standard input by default reads what you type at your
keyboard. You can direct that standard input come instead from a
named file by writing a command option that begins with <. The
remainder of the command option is taken as the name of a file
to open for text input. By redirecting standard input this way.
you can provide your program with input that you set up in
advance.

Standard error output is displayed on your interactive terminal. If
standard output is also left directed to your terminal display. then
the display combines the two output streams. However. if you
redirect standard output to a file. text written to standard error
still appears on the display. You may not redirect standard error
output on the command line.

If you specify the RENT option to CC, the table CUNITl is used to
initialize global and static data objects upon program startup. If
you do not specify the RENT option. a dummy table in the C
library is used.

Upon program termination. the runtime environment closes standard
input, standard output. and standard error. It also closes any
other files that the C library opened. so you do not have to close
each file that you open within your program.

How Library Functions Indicate Errors

During execution, your program may call library functions in many
different ways. If a library function cannot perform the service
you request, an error occurs. The C library handles errors in a
variety of different ways depending on their severity.

The simplest situation is where the error is a special case. one
that occurs frequently. Here, the usual response is to return a
unique value that your program can easily distinguish from any
other value that that function might return. An example is the
library function strpbrk(sl, s2). which locates the first occurrence
of any character from the string s2 within the string sl and
returns a pointer to that occurrence. If there is no such
occurrence. s trpbrk returns a null pointer.

A library function performing input from a file may encounter "end
of file" while searching for additional input. Such a function may
report this situation by returning a special value. such as EOF.
The macro EOF is defined in the header file <stdio.h>. However.
it will also record having encountered the end of the file by
setting a field within the FILE structure it uses to control input
from that file. Other functions in the library can later test and
clear that indicator.

For example:

C Runtime Environment 8 - 5

8 - 6

int ch;

while ((ch = getchar()) != EOF)
putchar(ch); I* copy characters until end of file *I

if (feof(stdin))
I* control should come here *I

A function performing input or output from a file may encounter
an error from which it cannot recover when making requests to
the underlying operating system. Such a function may report this
situation by returning some indication of early termination. It will
also record the read/write error by setting a field within the FILE
structure it uses to control input/output to that file. Other
functions in the library can also test and clear that indicator as
they can the end of file indicator.

Many math functions are defined for only a subrange of all the
input values that your program can specify to them. If you call a
math function with an: argument for which the function is not
defined, a "domain error" occurs. An example is the square root
of a negative value, as in sqrt(-1.5). Also, your program can
call a math function with an input value that yields an output
value too large or too small for the computer to represent. This
is a "range error."

When either a domain error or a range error occurs within a
library function, the library records the occurrence in a static data
object within the library. The header file <s tdef s. h> defines
errno as a macro that refers to this static data object, which is
of type int. Your program may set errno to zero, call a library
function, and then test whether errno has been set to some
nonzero value, indicating that an error occurred. For example:

errno = O;
y = alpha * exp(x * x I sigma);
if (errno)

printf("y overflowed\n");

Like the functions in the library. you should not try to take the
address of errno. The header file <s tdefs. h> also defines the
macros EDOM and ERANGE. EDOM is the value that a function
stores in errno when a domain error occurs, and ERANGE is the
value that a function writes to errno when a range error occurs.

The description of each library function tells whether it sets errno
and what its return value is on various errors. A macro called
HUGE VAL, which <math.h> defines, is a value of type double that
a fm1ction returns in place of a value too big to represent. If a
value is negative and too large to represent. the function returns
-HUGE VAL instead. These are both instances of "floating
overflow." Your program should not compare values against
HUGE VAL to check for floating overflow. Testing errno is better
programming practice and is more portable as well.

If a value is too close to zero to represent. the function replaces
it with the exact value 0. This is "floating underflow." Both
overflow and underflow are range errors.

C Runtime Environment

\

The most extreme response to an error that a library function
detects is to write an error message to the standard error stream
and then terminate abnormally. This happens. for example. when
the C runtime attempts to redirect standard output. as described
above, to a file it cannot create. Appendix B, "Runtime Error
Messages." documents all such cases.

How Your Program Indicates Errors

You specify a program termination status as the argument to exit
or the return value from main. In either case. the value 0
specifies "successful termination." All other values specify
"unsuccessful termination."

You can also cause an abnormal termination by calling abort.
The function kill calls abort if default signal handling is specified
for the signal it is re.porting.

Your program can regain control from a call to abort. You must
specify a function to call when the "signal" SIGABRT is reported.
as in:

tinclude <setjmp.h>
tinclude <stdlib.h>
tinclude <signal.h>

static jmp_buf ckpoint;

I* handle abort signals
*I

void restart()
{
printf("abort signal occurred\n");
longjmp(ckpoint, 1);
}

setjmp(ckpoint); I* restart here *I
signal(SIGABRT, &restart);
process();

Once your program calls the function signal, subsequent
occurrences of the signal SIGABRT will be handled by calling
restart. The signal handler restart prints an error message.
then calls longjmp to resume control just after the call to signal.
Normally, your program should not handle the signal SIGABRT. If
it must keep running at all costs. however. your program can
regain control as shown here.

Chapter 11, "C Library Reference." describes all of the functions
shown in this example.

C Runtime Environment 8 - 7

8 - 8 C Runtime Environment

Chapter 9:

Streams

Input/Output

You perform input/output in C by calling C library functions. You
can choose among three groups of functions:

*

*

*

Formatted input/output permits easy conversion of printable
text input to internal representation. or internal
representation to printable text output.

Uninterpreted text input/output lets you do your own
formatting.

Binary input/output permits transparent copying of data
objects to and from storage.

In all cases, the C library buffers input/output for enhanced
performance.

You include the header file <stdio.h> to declare the input/output
functions, several macros. and the type FILE.

All the input/output functions in the C library convert input and
output to logical "streams" of data. Streams have uniform
properties whether you are writing to or reading from physical
devices or files on storage media. Each open file appears as an
ordered sequence. or "stream." of eight bit bytes. The C library
makes available to your program no other structure or control
information.

There are two forms of streams: text streams and binary streams.
A text stream is an ordered sequence of characters made up of
text "lines." Each text line consists of zero or more characters
plus an end of line indicator. Inside your C program. the
character newline '\n' indicates the end of each line. regardless of
how the end of a line is indicated in the external file. There is
not a one to one correspondence between the characters in a text
stream and the characters in the file. Unless you write only the
"printable" characters. data you read in from a text stream may
not compare equal to the data you wrote out to the same text
stream earlier. The C library may lose or alter an incomplete last
line on output. However. the last character you read in from a
text stream will always be the last character that you wrote out
to the text stream earlier. as long as that last character is a
newline.

Input/Output 9 - 1

A binary stream is an ordered sequence of characters that
represents internal data exactly as written. Underlying record
structure is not visible to your. program when it reads a binary
stream. Data you read in from a binary stream always compares
equal to the data you wrote out to that binary stream earlier.
The C library may, however. append one or more null characters
'\0' to the end of some binary files that your program writes.

Files may have either fixed record format or variable length record
format. The default is variable length record format for text files
and fixed record format for binary files. You can specify whether
a file is in fixed record format or variable length record format
when you open it. Files of fixed record format contain records all
of the length you specify. Files of variable length record format
may contain records of any length up to the maximum length you
specify. If you do not specify a record length for a fixed record
format file when you create it. the default record length is 80
characters. If you do. not specify a record length for a variable
length record format file when you create it. the default maximum
record length is 255 characters.

The description of the function fopen in Chapter 11. "C Library
Reference," tells you how to determine what the file format and
record length will be when you open a file.

Text Streams

9 - 2

Note the following special considerations when you read or write
text streams under MVS and VM/CMS:

*

*

*

*

Input/Output

When you write variable length record format files, the C
library converts all "empty" lines to lines containing a single
space character. The C library converts the internal
sequence "newline newline" to "newline space newline" when
it writes it to a file. When the C library reads a variable
length record format file, it interprets a record containing a
single space character as an "empty" line.

If your program replaces a record within a variable length
record format file. it will fail if it attempts to write data
that alters existing record boundaries. Your program may
replace a record with one of the same length. but the write
operation will fail if the size of the new record differs from
the size of the old record. If your program appends a
record by writing a line of text that is longer than the
record size established for the file, the write operation will
fail.

Records you write to fixed record format text files are
padded with spaces. Trailing spaces are removed when you
read a fixed record format file.

If your program replaces a record within a fixed record
format file by writing a line of text that is longer than the
record size, the write operation will fail. If your program
appends a record by writing a line of text that is longer
than the record size. the extra characters are discarded and

*

*

*

*

Binary Streains

the write operation does not fail.

You cannot create an empty text file. If you close an
output text stream without writing any data to it. the C
library creates no external file in conjunction with the text
stream. For example. the sequence

FILE *f;

f = fopen("x.y.z", "w");
fclose(f);

will not generate an empty disk file. The file x. y. z does
not exist after the sequence is executed.

The return value of the f tell function is an encoded value
that contains sufficient information for the C library to
return to the file position at a later time during program
execution. by calling the function f seek. You cannot
perform arithmetic upon the encoded value. Chapter 11. "C
Library Reference." contains more information on restrictions
on fseek and ftell.

When your program writes datasets with the formats A or
M under MVS and MVS/XA, the characters newline '\n'.
carriage return '\ r'. and form feed '\ f' are all converted
to their corresponding ASA control characters on output.

When writing to interactive terminals and printer devices.
the character horizontal tab '\ t' expands to between one
and eight spaces. When your program writes to an
interactive terminal. the character alert '\a' does not
generate an audible alarm.

Note the following special considerations when you read or write
binary streams under MVS and VM/CMS:

*

*

*

For fixed record format binary files. the C library packs the
stream of characters you write into complete records. It
pads an incomplete last record with null characters '\0' to
achieve the proper record length.

For variable length record format files. you can use the
function fflush to create binary files with a specific record
structure. To terminate the current record being appended
to the file. perform a call on fflush for the stream. You
also terminate the current record being appended if the data
being written exceeds the record length for a given stream.
For example. if you specify the maximum record length of a
binary file to be 255 characters. and you attempt to write a
block of 510 characters. the C library creates two 255
character records.

The return value of the ftell function contains the number
of characters from the start of the file when you call it for
a binary stream connected to a fixed record format file.

Input/Output 9 - 3

*

*

*

For variable length record format files, ftell returns an
encoded value that contains sufficient information for the C
library to return to the file position at a later time during
program execution, by calling the function ftell. Chapter
11, "C Library Reference." contains more information on
restrictions on fseek and ftell.

On MVS and MVS/XA the C library regards a U-format
dataset as a sequence of characters. The C library
preserves the existing block structure of a U -format file
when the file is open for updating.

On MVS and MVS/XA. the C library regards the control
character in datasets with formats containing an /1 A" (FA
FBA, etc.) as an extra character in each record.

The C library does not support D-format datasets.

Buffered Input/Output

9 - 4

The C library functions declared in the header file <stdio.h>
support buffered input and output. Buffering input and output
helps reduce operating system overhead by reading or writing up to
BUFSIZ characters on each "read" or "write" system call. BUFSIZ
is a macro defined in the header file <stdio.h> as the default
size in characters of the buffer that a stream uses. The functions
in <stdio.h> perform buffered input/output by manipulating
structures of type FILE. FILE is a data object type declared in
the header file <stdio.h>. A FILE structure holds all the
information necessary to control a stream. such as:

*

*

*

*

A pointer to the current character in the file that the
stream is manipulating

A pointer to the buffer associated with the stream

An indicator that records whether a read/write error has
occurred

An indicator that records whether the end of the file has
been reached.

The C library performs the following basic operations on files and
streams:

open a file: Establish a connection between a stream in your
program and a data file on disk your interactive terminal.
or some other device.

close a file: Break a connection that you set up previously between
a stream and a file.

read from a stream: Transfer characters from a stream into a
buffer. given the address of the buffer within your program
and the number of characters to read.

write to a stream: Transfer characters from a buffer to a stream.
given the address of the buffer and the number of
characters to write.

Input/Output

position a stream: Move to a given position within the file and
continue reading or writing at that point.

change the buffering mechanism: Use a stream buffer you declare
instead of an internal buffer that the C library sets up for
you, or change the buffering strategy.

handle errors: Check for end of file or the occurrence of an
unrecoverable read/write error.

Opening Files

You associate an input or output stream with a file by "opening"
or "creating" the file. The file may be an existing text or binary
file or a physical device. Creating a file opens a file of zero
length. If you create a file that already exists, you truncate it.
You cause its contents to be discarded, so that it appears as a
file that did not previously exist.

To open a file, call the function fopen. You pass fopen a pointer
to a "string" containing the name of the file and a pointer to a
string that specifies how you want to manipulate the file. If it
succeeds, the function returns a pointer to a FILE structure that
controls the stream connected to the file. A string is a data
object of type array of char whose last character is a null
character. The description of the function fopen discusses how
files are named on your system. You can manipulate a stream as
either text or binary, for reading. writing. or updating. You
specify these choices in the second argument. plus additional
information such as record length. Some simple examples are:

FILE *pbfi, *pbfo, *ptfi, *ptfo;

if (!(ptfi = fopen(av[l], "r")) 11 /* reading text */
!(ptfo = fopen(av[2], "w"))) I* writing text *I
printf("cannot open text files\n");

if (!(pbfi = fopen(av[3], "rb")) II /*reading binary *I
! (pbfo = fopen(av[4], "vb"))) /* writing binary */
printf("cannot open binary files\n");

You could write an explicit file name, such as "data. in", as the
first argument to fopen. In practice, however, you should avoid
writing explicit file names into your source text. Your program
can obtain file names from the command options. as input text
from another file. or in response to an interactive query. Using
any of these methods makes your program more flexible.

You can also open a file by calling freopen. which reuses an
existing FILE data object. such as stdio. When you call freopen.
the function closes any open file controlled by the specified FILE
data object, then opens the file you name. just as with fopen.
Chapter 11, "C Library Reference." discusses all of the options for
opening a file, with the description of the function fopen.

The runtime environment provides you with three open text files at
program startup: the "standard input" stream stdio. for reading
input to your program: the "standard output" stream stdout, for

Input/Output 9 - 5

Closing Files

writing output from your program: and the "standard error"
stream stderr, for writing error messages from your program.
Chapter 8, "C Runtime Environment." provides more information on
the standard streams. In many cases. your program need not call
fopen or freopen because you can perform all necessary input and
output using the three standard streams. If your input is a
stream of text that your program reads just once, from start to
finish, and if your output is a stream of text that your program
writes sequentially. then use the standard streams. Your program
will be more general if you do. and you will be able to redirect
the input and output each time you invoke the program.

You disassociate a file from a stream by closing the file. This
automatically "flushes" the output stream. The C library writes
any remaining buffer contents to an output file. When your
program terminates, tl)e C library automatically closes all the files
your program has opened. Your program should still close each
open file, however, as soon as all operations on it are complete.
You are less likely to encounter any limits on the number of open
files if you close them promptly. In addition, an unexpected
program termination, such as from a system failure, is less likely
to corrupt the contents of your . files if they are closed.

To close a file, call the fclose function. You pass fclose the
pointer to the FILE data object that fopen returns.

The following example shows how you call fopen and f close in
combination to open and close files in a C program.

#include <stdio•h>

int main(ac, av)
int ac;
char *av[];
{
FILE *pf;

for (; 0 < --ac; ++av) I* for each command option */
if (!(pf= fopen(av[l], "rb,recfm=f,lrecl=80")))

printf("can't open %s\n", av[l]);
else

exit(O);
}

{
process(pf); I* go process file */
fclose(pf);
}

In this example. the program must call fclose so that the
number of open files does not increase steadily. The example
assumes that some separately compiled function process processes
each opened file.

9 - 6 Input/Output

Reading Streams

The C library provides several different functions for reading
characters from a stream:

*

*

*

*

You can read a character at a time from the standard input
by calling get char.

You can read a character at a time from a stream you
specify by calling getc.

You can read a line of text into an array you specify from
a stream you specify by calling fgets.

You can read binary data into an array you specify from a
stream you specify by calling fread.

For example, you can copy the standard input to the standard
output by writing:

int ch;

while ((ch = getchar()) != EOF)
putchar(ch);

The header file <stdio.h> may redefine any of these functions as
a macro. The macro version of getchar. for example, obtains the
next input character directly from the buffer in s tdin, if there is
one. It calls the actual library function only if the buffer is
empty.

Using the macro version of an input or output function often
substantially improves the performance of your program. Be
careful, however, not to write an argument to getc that has side
effects, such as getc(*ppf++). The macro version expands to an
expression that evaluates its argument more than once. This is
one of the two cases where the C library does not make the
replacement of functions by macros transparent for function calls.
The other case. the macro putc. is described later in this chapter.

You can "push back" a character you have read from an input
stream, by calling the function ungetc. This is useful in programs
that must "parse" or "recognize" input. Often such a program
must read characters until it finds one it cannot currently process.
Your program is simpler if it can just push the unwanted character
back, and have it delivered as the next character read. The
ungetc function performs this service.

Chapter 11, "C Library Reference," documents all of these
functions. It also documents two other functions that read buffered
input: fgetc and gets. These are older functions whose
capabilities are better provided by the functions mentioned above.
Do not use fgetc or gets.

Writing Streams

The C library provides several different functions for writing
characters to a stream:

Input/Output 9 - 7

*

*

*

*

*

You can write a character at a time to the standard output
by calling put char.

You can write a character at a time to a stream you
specify by calling putc.

You can write a text string to the standard output by
calling puts.

You can write a text string to a stream you specify by
calling f puts.

You can write binary data from an array you specify to a
stream you specify by calling fwri te.

The header file <stdio.h> may redefine any of these functions as
a macro. The macro version of putchar, for example. stores the
argument character directly into the buffer in stdout, if there is
room. It only calls the actual library function if the buffer is full.

Be careful, however. riot to write a file argument to putc that has
side effects, such as putc(c, *ppf++). The macro version
expands to an expression that evaluates its argument more than
once. This is the other case. besides getc described earlier in this
chapter. where the C library does not make the replacement of
functions by macros transparent for function calls.

You can ensure that the buffer for an output stream is written to
the output file, by calling fflush. All output stream buffers are
written upon program termination. Normally, you need to call
f flush only to ensure that the C library display output to an
interactive terminal before your program requests input. You can
also alter the buffering strategy for a stream so that the C library
flushes the buffer on every write. as described later in this
chapter.

Chapter 11, "C Library Reference." documents all of these
functions. It also documents one other function that writes
buffered output: fputc. This is an older function whose
capabilitities are provided by the functions mentioned above. It is
included in the library for compatibility with older programs. Do
not use fputc.

Positioning Streams

9 - 8

When you read or write a stream. the C library refers to a stored
"file pointer" to determine which characters in the file to transmit.
After it transmits the characters, the C library advances the file
pointer by the number of characters transmitted.

You can obtain the current value of the file pointer for a stream
by calling ftell. You can use this value later. while the file is
still open, to return the file pointer to that place in the file. by
calling fseek. You can position the file pointer at the beginning
of the file by closing it and reopening it. by calling fseek or
rewind. You can position the file pointer at the end of the file.
by calling fseek. A binary file may have extra null characters
appended to it, however. so the end of a binary file is not well
defined.

Input/Output

For a binary stream connected to a fixed record format file. the
value of its file pointer is the offset in characters from the start
of the file to the next character to read or write. A value of
zero indicates the first character of the file. You can perform
integer arithmetic on a file pointer for such a binary stream. then
use it in a later call to f seek. You can position the file pointer
for such a binary stream at an explicit offset from the start of a
file. or relative to the current file pointer. by calling fseek.

The value of a text stream file pointer is encoded in a special
way. however. This is also true for a binary stream connected to
a variable length record format file. Do not perform arithmetic on
a file pointer for such a stream. If you use the value returned
by ftell to reposition a file pointer for a text stream. do not
write a text line that differs in length from the text line you
wrote earlier.

Other Stream Services

The C library allocates storage for a stream buffer automatically
when you first read or write the stream. Storage for the buffer
is freed automatically when you close the file. You may. however.
specify your own buffer. or specify an alternate buffering strategy.
by calling setvbuf. The alternate buffering strategies include: full
buffering, line buffering, and no buffering. An older version of this
function is setbuf, which you should not use.

To check whether end of file has been encountered on a stream.
call feof. To check for an irrecoverable transmission error. call
ferror. To clear these indicators, call clearerr. Most functions
that read from a stream provide a return value that indicates
whether end of file or an error have occurred. Your program may
have no need for any of these services. The section "How Library
Functions Indicate Errors." in Chapter 8. "C Runtime
Environment." discusses these and other error indications.

Formatted Input/Output

The C library provides a set of "scan" functions that convert
printable text, usually from an input stream. to values that the
functions store in data objects. The C library also provides a set
of "print" functions that convert the values of expressions to
printable text, usually for output to a stream. These are the
"formatted" input/output functions. All are functions that accept a
variable length argument list. All are functions that have a
"format string" argument. The format string determines how many
arguments are actually present on a given call. It also determines
how each argument is to be converted. You write scan format
strings by rules very similar to the rules for writing print format
strings, even though the conversions go in different directions.

For example:

Input/Output 9 - 9

int xx;

scanf("xx;..%i", &xx);
printf("xx=%i", xx);

I* read an integer field */
I* write an integer field */

The function scan£ reads characters from the standard input under
control of its format string argument. The format string in the
example requires that the next input characters be XX=. followed by
a sequence of characters that obey the rules for an integer
constant. If the input meets these requirements. the function
stores the converted value in the data object of type int pointed
at by the argument &xx. The function print£ writes characters to
the standard output under control of its format string argument.
The format string in the example generates the characters XX=,
followed by the value of the expression in xx written as an integer
constant.

The character % within a format string introduces a 11 conversion
specification. 11 The characters following the % tell what data object
type the function must convert. They may also specify the
number of characters to produce or process. These characters may
qualify the conversion in several ways. The characters between
conversion specifications have more literal meanings. These
characters must match input. and they are written as they appear
on output. The descriptions of fscanf and fprintf in Chapter
11, 11 C Library Reference." cover all aspects of conversion
specifications and format strings.

Formatted Input

9 - 10

The C library provides three different functions for converting
printable text to values to be stored in data objects:

* You can read the standard input. by calling scanf.

* You can read a stream you specify, by calling fscanf.

* You can read a string stored in memory, by calling sscanf.

In all cases, there is a format string argument that controls the
conversions. You write additional arguments for each of the data
objects you wish to store values in. All of these arguments must
be data object pointers. The value returned by each of these
functions is a count of the number of data objects stored into.
This number can be zero if the function detects a conflict before
the first data object conversion specification completes.

You can, for example. convert input until end of file by writing a
simple loop:

while (scanf("%Lf", &x}}
printf("cos(%Lf) = %Lf\n", x, cos(x));

You use scan£ as the most convenient way to obtain input values
from the standard input. You use fscanf to specify a stream
other than the standard input. You use sscanf to try several
different formats on the same input. as in:

Input/Output

while (fgets(buf, sizeof buf, stdin)) I* for each line *I
for (i = O; i < sizeof fmt I sizeof fmt[O]; ++i)

if (sscanf(buf, fmt[i], &x, &y, &z) == 3)
return (YES); /* converted all values *I

return (NO); I* failed *I
This example reads the standard input one line at a time. using
fgets. It then tries to convert the string stored in buf by
calling sscanf with a series of format strings. Pointers to format
strings are stored in the array fmt. The first format string that
causes sscanf to store values in all three data objects causes the
function to return with a value of YES. If no format string
succeeds, the function returns the value NO.

Formatted Output
The C library provides several different functions for converting
expressions to printable text. Three of these are used most often:

* You can write to the standard output, by calling printf.

* You can write to a stream you specify. by calling fprintf.

* You can store characters as a string in memory. by calling
sprintf.

In all cases. there is a format string argument that controls the
conversions. You write additional arguments for each of the
expressions you wish to convert to printable text. The value
returned by each of these functions is a count of the number of
characters of printable text produced.

You use printf as the most convenient way to write messages to
the standard output. You use fprintf to specify a stream other
than the standard output. You use sprint£ to convert values to
printable text that your program will further manipulate as data
objects.

There are three additional functions for converting expressions to
printable text. These are: vprintf. vfprintf. and vsprintf.
They permit you to design variations of the print functions. with
different initial arguments. special processing upon function entry, or
special processing before function return. You use them only for
more sophisticated applications.

Input/Output 9 - 11

9 - 12 Input/Output

Chapter 10: Organizing Your Program

C imposes very few constraints on how you lay out your program.
or how you organize it into source files. You must make your
program readable, however. so that you and others can maintain it.
This chapter describes some of the conventions that C programmers
have found useful for organizing programs. You can use it as a
starting point for developing your own style for organizing your
programs.

File Layout

Many C programs fit in one source file. Lay out those that do
in the following order:

I* TITLE OF PROGRAM
* ownership

* * brief description
*I

#include <stdio.h> I* library header files *I
#include <stdlib.h>

#define MAX ELEM 50

typedef double Num;

Num add(Num x, Num y);
Num store(Num *px, Num y);
Num sub(Num x, Num y);

I* macro definitions *I

I* type definitions */

I* function prototypes *I

Organizing Your Program 10 - 1

10 - 2

int stack top = MAX ELEM;
I* static lifetime data objects *I

Num stack[HAX_ELEH];

I* add two numbers
*I

functions in alphabetical order

Num add(Num x, Num y)
(
return (x + y);
}

I* HAIN
*I

int main(int ac, char **av)
(

}

I* other functions *I
The components, in order. are:

Title: Use a comment to name your program, note ownership. and
briefly describe what the program does. Place any copyright
notice here.

Library header files: Every library function has a header file that
declares it, as well as any useful type definitions and
macros that go with it. Include header files for every
library function you use. You can include them in any
order.

Macro definitions: You use macros to give mnemonic names to
numeric values that you use throughout a program. Write
these "manifest constants" in uppercase letters so they stand
out from data object identifiers. You also write "in line
functions" as macros with arguments. Keep them simple.

Type definitions: Define any types you use throughout your
program, particularly ones you might want to change
uniformly. Type definitions also give mnemonic names to
standard types you use in special ways. Type definition
names begin with an uppercase letter so they stand out
from standard C types and from other identifiers.

Function prototypes: Declare all your functions before you use them.
and declare their arguments. If all function calls are in
scope of a function prototype. the compiler can check
arguments for proper types and number, and can convert
them to the proper type. The compiler also checks function
return types. Write function names with lowercase letters.
On System/370, the first eight characters of function names
with external linkage must be distinct.

Static lifetime data objects: Declare all data objects that must have
static lifetime before you use them. If only one function
uses a data object. declare it within the function body. If

Organizing Your Program

it must be shared among functions. declare it within the
function body. Keep the number of static lifetime data
objects to a minimum. You write data object names with
lowercase letters. On System/3 70. the first seven characters
of data object names with external linkage must be distinct.

Function definitions: Define all your functions at the end of the
source file. in alphabetical order by function name. You
may wish to put main at the top of the list. Use the
combined function prototype and definition form of the
function type attribute. It is most easily compared with the
function prototype at the beginning of the source file. If
you must write C programs that also compile with older
compilers. however. use the form with separate argument
level declarations. You can then just "comment out" the
function prototype argument lists at the beginning. as in:

Num add(/* Num x, Num y */); I* looks like Num add() */

to get the older form of function declaration.

The example shows the bare minimum of comments a program
needs. Use comments as much as you think necessary to
supplement understanding of the code.

Function Layout

Adopt a consistent style for writing function definitions and adhere
to it rigorously. If you can set horizontal tab stops every four to
eight columns, then you can more easily indent in a uniform
manner. The following example shows a consistent style for
indenting:

Type name(Typel argl, Type2 arg2)
{
register int *p;
Typel al, a2;
static char first;

if (test)
x = y + 2;

if ex 11 y)
y = O;

else
{
++x;
--y;
}

if (testl)
funl(x);

else if (test2)
fun2(y);

else
fun3(z);

switch (value)

I* register declarations first */
I* then autos *I

I* then statics *I

I* if statement *I

I* if/else statement *I

I* else/if chain */

I* switch statement *I

Organizing Your Program 10 - 3

10 - 4

{
case A:
case B:

p = "first event";
break;

case C:
p = "second event";
break;

default:
p = "no match";
}

while (test)
(

I* while statement *I

for (i O; i < 100; ++i)
x += i;

for (; i < 200; ++i)
x += f(i);

for (sum ~ O;)
(
register int j = 3;

printf("top of loop\n");
if (test)

break;
test = g(test, j);
}

I* for statement *I

for (; ;) /* infinite loop *I

}

{
printf("well?\n");
if (getans())

}

break;
process();

do { I* do/while statement *I
x += y;
} while (x <= y);

return (value); I* return statement *I
}

Note the following:

Keywords: Always write a single space after every keyword.

Declarations: You may place declarations after any left brace. but
most occur at the beginning of the function body. Leave
an empty line after the last declaration to set it off from
the executable statements that follow. Group declarations by
storage class. with static declarations last. Place a
declaration with a data initializer in a declaration by itself.

Statement Layout: The indenting that the example illustrates
displays control relationships clearly. For each level of
control nesting. indent one horizontal tab stop more. Do
not exceed five levels of nesting. Break deeply embedded
loops out into separate functions.

Organizing Your Program

Restrictions

Expressions: Use no whitespace between operand and unary
operators or addressing operators. Write a single space on
either side of binary arithmetic operators. If you must
continue an expression on another line. break it at the
space next to an operator. if possible. Indent continuations
one horizontal tab stop further than the start of the
statement. Use parentheses for operators whose grouping
you do not know well.

switch Statements: Write a break statement at the end of each
group of case labels. If control must fall through the next
case label. say so in a comment. Always write the
default label last.

for Statements: Rewrite

for (; test;)

as

while (test)

Place only loop related expressions in the for statement.
Use the break statement to exit from the middle for a for.
while, or do/while statement.

return Statement: If an expression is present. write parentheses
around it. Unless the return statement is inside a void
function. specify a value on every return.

The following restrictions on coding practice reduce errors:

goto Statement: Avoid the goto statement completely if you can.
If you must use it, never transfer control into a block.
Write each label alone on a line, indented one tab stop less
than normal.

do/while Statement: Rewrite do/while statements as while statements.
if possible. A loop that can execute zero times is more
robust than one that always executes at least once.

continue Statement: Replace a co11ti11ue statement with an if/else
statement inside a loop whenever possible.

Relational Operators: Do not use the operators > and >=. Tests
such as

if ('0' <= c && c <= '9')

show interval tests better.

Const Types: Do not declare a data object as alterable if you can
declare it with a const type instead. The more restrictions
you impose on how much your program can alter data
objects. the less likely it is that some future change will
alter them unexpectedly.

Organizing Your Program 10 - 5

Programs with Multiple Files

Once your program exceeds 500 to 1.000 lines. break it into
multiple source files. When you do, group related functions and
data objects in the same file. You can then give many of them
internal linkage, by declaring them with storage class static at
file level. Minimize the number of. identifiers with external linkage.

Group all common macro definitions. type definitions. and function
prototypes into one or more header files of your own. Include
them at the top of each source file on an 11 as needed 11 basis,
using the form:

#include "myhdr.h"

Each header file should have a comment that describes its unifying
principle. Header files can in turn include standard header files
from the C library. but they should not include other files that
relate only to your program. Do not write any declarations with
definitions in a header file. If you do so for an identifier with
external linkage, and then include the header in two or more
compilations, multiply defined external identifier results.

You can use the same file layout for a multifile program as for a
program consisting of a single file. As with header files, write a
comment describing the criteria for placing declarations in this file.
You often include more include files in a multifile program than in
a program that consists of only one file. You probably use fewer
macros and type definitions unique to a compilation. The storage
class static is more often used in file level declarations.
Otherwise, the format of multifile programs is very similar to the
one shown earlier.

Portability Issues

10 - 6

You can write C programs that run on many different architectures
and operating systems. but you must plan carefully to do so.
Learn which aspects of C vary most among computers, then
restrict your programs so they avoid unnecessary dependencies on a
given environment.

This manual gives warnings throughout about the aspects of C that
affect portability. Follow the suggestions provided and you will
avoid the worst problems:

Identifiers: Some systems restrict external identifiers to as few as
six significant characters. in one case.

Text Streams: If your program processes text streams. remember
that some characters that do not print may disappear if you
write them out and read them back later. You can only
position a file pointer at the beginning or end of a text
stream. or to a file position your program determined earlier
by calling ftell. Do not write long text lines. Do not

Organizing Your Program

write an incomplete last line to a text stream.

Binary Streams: The text streams stdin and stdout can corrupt a
stream of binary data. Open all binary files by name. with
proper attributes. Assume that the operating system adds
some number of null characters to the end of a binary file.
Choose binary file formats that are self defining in length.
Do not position the file pointer at the end of a binary file.

Byte Order: Data objects that occupy multiple bytes of storage
differ in byte order among different architectures. You
cannot write a four byte integer, for example. to a binary
file and assume that you can recover that integer value
when you read that file on a different system. You can
write such data to a binary file if you know it will be read
on a machine of the same architecture. Otherwise, convert
binary data to some text representation and write a text
file. You can also put the bytes in a canonical order when
you write them· to the binary file. Then reorder the bytes
properly for each machine that reads the file.

File Names: There are few file names that you can use unchanged
on many different operating systems. Avoid writing file
names into your programs. It is better to obtain all file
names at runtime.

Integer Size: Remember that the size of an int data object varies
from 16 to 32 bits among the most popular computers. If
you know an integer must be large. declare it as lo11g. If
you know it must be small. declare it as short. On the
other hand, use the type definitions size t and ptrdiff t
to declare integers that must count all the bytes in the -
largest declarable data objects. In addition. always use the
operator sizeof to determine the number of bytes occupied
by a data object other than type char. Write expressions
such as -o to set all one bits in an int value, not Oxffff
or Oxffffff ff.

Pointer Size: A data object pointer may occupy more bytes than
an int. A data object pointer may differ in size from a
function pointer. Do not treat all integers and pointers as
having the same size. Function prototypes are the best way
to prevent this programming practice.

Keep in mind that many C programs are now running unchanged
on machines as diverse as the IBM/370 and the IBM PC. If you
want to write portable programs. C is better than many languages
at allowing you to do so.

Organizing Your Program 10 - 7

10 - 8 Organizing Your Program

Chapter 11: C Library Reference

This chapter describes all of the facilities provided by the C
library. The descriptions are organized by "header files."
Appendix C. "Summary of Reserved Identifiers," contains a
summary of all identifiers reserved in C or defined in the header
files.

Header Files

You include a header file. with the #include preprocessor directive.
in a compilation if your program uses any of the facilities
associated with that header file. You may include the C library
header files in any order. A header file may do any or all of the
following:

define types: Any special types you need are defined

define macros: A macro may provide a special value you may need.
designate a data object you may need to access. or expand
to a statement that you cannot express directly

declare functions: All the functions that relate to a header file are
declared within the header file.

In addition. every function declared in a header file may also be
"masked" by a macro of the same name. When you write an
expression that calls the function, the macro is expanded instead.
The macro may expand to an equivalent expression that avoids
calling a function. or it may directly call a lower level function and
avoid one level of function nesting. You can write calls to any
library function without worrying about whether or not it is masked
by a macro definition. unless the description of the function says
not to.

Chapter 8, "C Runtime Environment," discusses the limitations of
macros that mask C library functions. Chapter 9, "Input/Output."
describes the C library functions that perform input and output.
Chapter 10, "Organizing Your Program," suggests a style for using
C library header files.

The header files are described in alphabetical order. They are:

assert.h - runtime assertion checks

ctype.h - character test functions

C Library Reference 11 - 1

11 - 2

ims.h - IMS access

limits.h -

math.h -

setjmp.h -

signal.h

stdarg.h

stdefs.h -

stdio.h -

stdlib.h

string.h

time.h -

environmental limits

mathematical functions

nonlocal jumps

exceptional condition handling

walking argument lists

common definitions

stream 1/0

general utilities

string functions

timekeeping functions

Following each header . file description are descriptions of all the
functions declared in the header file. The functions appear in
alphabetical order.

C Library Reference

NAME

SYNOPSIS

FUNCTION

assert.h

assert.h - header file for runtime assertion checks

iinclude <assert.h>

The header file <assert.h> declares the macro assert. You use
assert to place consistency checks throughout your program. Your
program performs these checks as it executes, and emits an error
message if any of the checks fail. By defining the macro NDEBUG
before you include <assert. h>, you can suppress these checks.

<assert. h> defines the following macro:

assert - test an assertion. assert expands to a statement. It
must be followed by a semicolon.

<assert. h> refers to the following macro:

NDEBUG - suppress assertion checks if defined.

C Library Reference 11 - 3

assert

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

assert - test an assertion

#include <assert.h>
void assert(type test);

The assert macro performs a consistency check or tests an
assertion at runtime. It expands to a statement that compares
the test expression test against zero. type must be a scalar type.
If the expression compares equal to zero, the statement emits an
error message and calls the function abort. The error message
takes the form:

Assertion failed: test file file, line line

where test is the expression you write as the argument to assert.
file is the name of the source file where you expand the macro,
and line is the line number in that source file where you expand
the macro. The expression is written to the standard error
stream. assert then calls abort to terminate your program
abnormally.

If the identifier NDEBUG is defined as a macro at the point in your
compilation where you include <assert.h>, an expansion of the
assert macro followed by a semicolon becomes a null statement.

Write assert as an expression statement containing a function call.
The call must be followed by a semicolon.

Nothing. assert expands to a statement, not an expression.

To ensure that a subscript is in range:

assert(O <= i && i <= sizeof a I sizeof a[O));

<stdio.h>, abort

11 - 4 C Library Reference

NAME

SYNOPSIS

FUNCTION

SEE ALSO

ctype.h

ctype.h - header file for character test functions

#include <ctype.h>

The header file <c type. h> declares functions which test or change
the classification of a character.

<c type. h> declares the following functions:

isalnum - test for alphabetic or numeric character.

isalpha - test for alphabetic character.

iscntrl test for control character.

isdigit test for decimal digit.

isgraph test for graphic character.

islower test for lowercase character.

isprint - test for printable character.

ispunct test for punctuation character.

isspace test for whitespace character.

isupper test for uppercase character.

isxdigit test for hexadecimal digit.

tolower convert uppercase character to lowercase.

toupper convert lowercase character to uppercase.

All of these functions accept only a limited range of input values.
Make sure that the value of the argument you pass can be
represented as an unsig11ed char, or is equal to the macro EOF.
These are the values returned by input routines such as getchar
and getc. The header file <stdio.h> documents EOF, getchar,
and getc.

<stdio.h>. getc, getchar

C Library Reference 11 - 5

isalnum
I.,,,

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

isalnum - test for alphabetic or numeric character

#include <ctype.h>
int isalnum(int c);

'

isalnum tests whether c is an uppercase. letter, a lowercase letter,
or a decimal digit.

isalnum returns a nonzero value if the test is met.

To test for a valid C identifier:

if (isalpha(*s) II *s ==' ')
while (isalnum(*++s) fl *s == ' ')

isalpha, isdigi t, islower. isupper, isxdigi t, tolower, toupper

Make sure the argument c is within a restricted range, as
described under the header <ctype.h>.

11 - 6 C . Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

isalpha - test for alphabetic character

#include <ctype.h>
int isalpha(int c);

isalpha

isalpha tests whether c is an uppercase letter or a lowercase
letter.

isalpha returns a nonzero value if the test is met.

To find the end points of an alphabetic string:

#include <stdio.h>
#include <ctype.h>

char *s

main()
{

II 12345 bcdefghABCDEFhijkl #########";

char *first, *last, *sl, *s2, outbuf[SO];

first = s;
while (*first && !isalpha(*first))

++first; I* set first to first alpha character *I
for (last = first; isalpha(*last); ++last)

I* set last to last alpha character *I
for (sl = first, s2 = outbuf; sl < last; ++sl, ++s2)

*s2 = *sl;
I* copy alpha chars to output buffer */

s2++ = '\0'; I terminate string with null*/
printf("original string: %s\n", s);
printf("output string : %s\n", outbuf);
}

isalnum, isdigi t, islower. isupper, isxdigi t, tolower. toupper

Make sure the argument c is within a restricted range. as
described under the header <c type. h>.

C Library Reference 11 - 7

iscntrl

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 8

iscntrl - test for control character

#include <ctype.h>
int iscntrl(int c);

iscntrl tests whether c is a "control" character. A control
character in EBCDIC is any character whose code is less than
Ox40, except the codes Ox29, Ox30, Ox31, and Ox3E.

iscntrl returns a nonzero value if the test is met.

To map control characters to %:

#include <ctype.h>

char *mapstr(si)
char *si;
{
char *s;
for (s = si; *s; ++s)

if (iscntrl(*s))
*s = '%';

return (si);
}

isgraph, isprint, ispunct, isspace

Make sure the argument c is within a restricted range, as
described under the header <ctype.h>.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

isdigit - test for decimal digit

#include <ctype.h>
int isdigit(int c);

isdigi t tests whether c is a decimal digit.

isdigi t returns a nonzero value if the test is met.

To convert a decimal digit string to its integer value:

#include <stdio.h>
#include <ctype.h> .

main()
{
char *sl = "534";
char *s;
unsigned int sum;

for (sum = 0, s = sl; *s && isdigit(*s); ++s)
sum= (sum* 10) + (*s - '0');

printf("input string: %s\n", sl);
printf("output number: %d\n", sum);
}

isdigit

isalnum, isalpha, islower. isupper, isxdigi t, tolower, toupper

Make sure the argument c is within a restricted range, as
described under the header <c type. h>.

C Library Reference 11 - 9

isgraph

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

isgraph - test for graphic character

#include <c~ype.h>
int isgraph(int c);

isgraph tests whether c is a "graphic" character. A graphic
character is any printable character except space.

isgraph returns a nonzero value if the test is met.

To output only graphic characters:

for (; *s; ++s)
if (isgraph(*s))

putchar(*s);

iscntrl, isprint, ispunct. isspace

Make sure the argument c is within a restricted range, as
described under the header <ctype.h>.

11 - 10 , C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

islower - test for lowercase character

#include <ctype.h>
int islower(int c);

islower tests whether c is a lowercase letter.

islower returns a nonzero value if the test is met.

To convert a string to uppercase:

for (; *s; ++s)
if (islower(*s))

is lower

s += 'A' - 'a'; I also see toupper *I

isalnum, isalpha, isdigi t. isupper, isxdigi t. tolower, toupper

Make sure the argument c is within a restricted range, as
described under the header <c type. h>.

C Library Reference 11 - 11

is print

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 12

isprint - test for printable character

#include <ctype.h>
int isprint(int c);

isprint tests whether c is a printable character.

isprint returns a nonzero value if the test is met.

To output only printable characters:

for (; *s; ++s)
if (isprint(*s))

putchar(*s);

iscntrl. isgraph. ispunct. isspace

Make sure the argument c is within a restricted range, as
described under the header <ctype.h>.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

ispunct - test for punctuation character

linclude <ctype.h>
int ispunct(int c);

is pun ct

ispunct tests whether c is a "punctuation" character. Punctuation
characters include any printable character except space, decimal
digits, lowercase letters, or uppercase letters.

ispunc t returns a nonzero value if the test is met.

To extract all punctuation from a string into a separate buffer:

linclude <stdio.h>
linclude <ctype.h>

char *sl = "abcdef !@#$r&*0-_=+[{]}'\"mfnmdmsn\\I"-";

main()
{
char punct_buf[lOO);
char *s;
int i;

s = sl;
for (i = O; *s; ++s)

if (ispunct(*s))
punct buf[i++) = *s;

punct buf[i] = 1 \0'; I* terminate string with null*/
printf("input string: %s\n", sl);
printf("output : %s\n", punct buf);
} -

iscntrl, isgraph, isprint, isspace

Make sure the argument c is within a restricted range. as
described under the header <c type. h>.

C Library Reference 11 - 13

isspace

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 14

isspace - test for whitespace character

#include <ctype.h>
int isspace(int c);

isspace tests whether c is a whitespace character. Whitespace
characters are horizontal tab '\ t', newline '\n', vertical tab '\ v'.
form feed '\f', carriage return '\r', and space.

isspace returns a nonzero value if the test is met.

To skip leading whitespace:

while (isspace(*s))
++s;

iscntrl, isgraph, isprint. ispunct

Make sure the argument c is within a restricted range, as
described under the header <c type. h>.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

isupper - test for uppercase character

#include <ctype.h>
int isupper(int c);

isupper tests whether c is an uppercase letter.

isupper returns a nonzero value if the test is met.

To convert a string to lowercase:

for (; *s; ++s)
if (isupp~r(*s))

is upper

*s = tolower(*s); I* also see tolower *I

isalnum, isalpha. isdigi t. islover, isxdigi t. tolower, toupper

Make sure the argument c is within a restricted range. as
described under the header <ctype.h>.

C Library Reference 11 - 15

isxdigit

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 16

isxdigit - test for hexadecimal digit

linclude <ctype.h>
int isxdigit(int c);

isxdigi t tests whether c is a hexadecimal digit. The hexadecimal
digits include the characters 0123456789abcdefABCDEF.

isxdigi t returns a nonzero value if the test is met.

To convert a hexadecimal digit string to its integer value:

linclude <stdio.h>
linclude <ctype.h>

char *sl = "0Cfl";

main()
(
char *s;
unsigned int sum, digit;

for (sum = O, s = sl; isxdigit(*s); ++s)
(
if (isdigit(*s))

digit= *s - '0';
else if (islower(*s))

digit = (*s - 'a') + 10;
else

digit = (*s - 'A') + 10;
sum = (sum << 4) + digit;
}

printf("input string: %s\n", sl);
printf("output digit: %u\n", sum);
}

isalnum, isalpha, isdigi t. islower, isupper, tolower. toupper

Make sure the argument c is within a restricted range, as
described under the header <c type. h>.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

tolower - convert uppercase character to lowercase

#include <ctype.h>
int tolower(int c);

to lower

tolower converts an uppercase letter c to its lowercase equivalent.
All other characters are left unchanged.

to lower returns the corresponding lowercase letter, or the
unchanged character.

To convert a string to lowercase:

for (; *s; ++s)
*s = tolower(*s);

islower. isupper, toupper

Make sure the argument c is within a restricted range, as
described under the header <c type. h>.

C Library Reference 11 - 17

toupper

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 18

toupper - convert lowercase character to uppercase

linclude <ctype.h>
int toupper(int c);

toupper converts a lowercase letter c to its uppercase equivalent.
All other characters are left unchanged.

toupper returns .the corresponding uppercase letter, or the
unchanged character.

To convert a string to uppercase:

for(; *s;.++s)
*s = toupper(*s);

islower, isupper, toupper

Make sure the argument c is within a restricted range, as
described under the header <ctype.h>.

C Library Reference

NAME

SYNOPSIS

FUNCTION

ims.h

ims.h - header file for IMS access

#include <ims.h>

The header file <ims. h> declares the functions you use to
communicate with IMS. You include <ims.h> only if you are
writing a C program for an IMS environment. You must link a
C program in a special way if it is to run in an IMS
environment. See Chapter 4, "Linking and Loading Programs" in
your C Compiler User's Guide for MVS. MVSIXA (SC09-1129)
for information on linking programs to run under IMS.

<ims • h> defines the following macro:

_pcblist - A modifiable lvalue macro that designates the data
object the C runtime environment will use to store a pointer
to the list of PCB's (Program Communication Blocks)
obtained from IMS. pcblist is of type pointer to array
of void *· It has static lifetime.

pcblis t points to the first element of an array of pointers
to PCB's. The C runtime environment writes a NULL
pointer after the last PCB pointer in the array. If there
are no PCB pointers, then (* pcblist) [0] == NULL.
Therefore. (* pcblist)[O] points to the first PCB.
(* pcblist) fl] points to the second PCB, and so forth.
You may assign a value to pcblist or access its stored
value. You may not take its address. PCB's are described
in IMSNS Version 1 Application Programming
(SH20-9026) .

There are three different ways to invoke your C program
under IMS. If your program is not running under IMS.
then (* pcblist) [O] == NULL at program startup. If your
program-is running under IMS and was invoked by IMS.
then pcblist is set at program startup as described above.
If your program is running under IMS and was invoked
from a C program using the system function. then
pcblist is set to point to a copy of the array pointed at

by pcblist in the program that called the system
function.

(ims. h> declares the following functions:

asmtdli - Call IMS DL/I.

ctdli Call IMS DL/I from C. ctdli calls the. function
asmtdli. It also returns a status code indicating success
or failure.

C Library Reference 11 - 19

asmtdli

NAME

SYNOPSIS

FUNCTION

RETURNS

SEE ALSO

11 - 20

asmtdli - call IMS DL/I

#include <ims.h>
void asmtdli(int cmd, ...) ;

asmtdli calls DL/I to perform the command cmd you specify.
asmtdli uses the standard OS calling sequence as described in
Chapter 8, "Interfaces with Other Languages," in your C Compiler
User's Guide for MVS, MVS!XA (SC09-1129). The arguments to
asmtdli are described in IMS/VS Version 1 Application
Programming (SH20-9026) .

asmtdli accepts a variable number of arguments. The first
argument can optionally be a count of the number of arguments
that follow.

If you want DL/I to modify an argument, write the argument as a
pointer to a data object of the proper type. Otherwise. the
compiler will create a temporary copy of the argument you specify
and DL/I will modify that temporary copy.

Nothing. DL/I returns results by modifying the arguments to
asmtdli.

ctdli

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

ctdli

ctdli - call IMS DL/I

#include <ims.h>
int ctdli(int cmd, ...);

ctdli calls DL/I to perform the command cmd you specify.
ctdli calls asmtdli, which uses the standard OS calling sequence
as described in Chapter 8. "Interfaces with Other Languages," in
your C Compiler User's Guide for MVS. MVSIXA (SC09-1129).
The arguments to ctdli are the same as the arguments to
asmtdli. The arguments to asmtdli are described in IMS/VS
Version 1 Application Programming (SH20-9026).

c tdli accepts a variable number of arguments. The first
argument can optionally be a count of the number of arguments
that follow.

If you want DL/1 to modify an argument, write the argument as a
pointer to a data object of the proper type. Otherwise. the
compiler will create a temporary copy of the argument you specify
and DL/I will modify that temporary copy.

ctdli returns zero if the status field (bytes 11 and 12 of the
PCB argument) is blank. Otherwise. the status field is taken as
a two byte unsigned number widened to int, which is used as the
return value from ctdli.

To illustrate a few of the possible DL/I calls:

typedef struct
{
char s name[8];
char s-qual[l);
char s-keynam[8];
char s-opr[2];
char s=keyval[6];
chars endchr[l);
) Qual=ssa;

typedef struct
{
chars nameu[8];
char s-blank[l];
J Unq_ssa;

typedef struct
{
char ioa;
I* ••• *I
} Ioa;

C Library Reference 11 - 21

ctdli

SEE ALSO

11 - 22

typedef struct
{
char dbname[8];
char seglv[2];
char statcd[2);
char pro co [4] ;
int filler;
char segnam[8);
int lenkfb;
int nsenssg;
char keyfb;
} Db_pcb;

static Oual ssa qual ssa = {
{'R', 'o', '0',-'T',''
{'('},
{'K', 'E', 'Y',·' ', '',
{ , , '-'} ' - '

, ,
'

, ,
'

, ,
'

, ,
'

{'v', 'v', 'v', 'v', 'v', 'v'},
{')'}};

static Unq ssa unq ssa = {
{'N', -,A,, 'M', 'E', ' ',
{' '}};

static Ioa mst s ioa;
static Ioa det=s=ioa;

I* entry point from IMS (DL/I)
*I

void main(ac, av)
int ac;
char *av[];
{

, , , ,
' '

Db pcb *P pcbm = (* pcblist)[O];

, , } '

I '},

, '};

Db-pcb *p-pcbd = (unsigned long)(* pcblist)[l] \
- & Ox 7FFFFFFF; -

if (p pcbm)

}

r
ctdli(4, "GU ", p_pcbd, &det_s_ioa, &qual_ssa);
ctdli("GHU ", p pcbm, &mst s ioa, &qual ssa);
ctdli(3, "GBN "~ p pcbm, &Dist s ioa); -
ctdli("REPL", p_pcbm, &mst_s_Ioa);
}

asmtdli. <ims.h>

C Library Ref ereuce

NAME

SYNOPSIS

FUNCTION

limits.h

limits.h - header file for environmental limits

iinclude <limits.h>

The header file <limits. h> defines various properties of the
representations of the arithmetic types. You include <limits. h> if
your program must generate code that depends upon the value of
any of these limits. In the list of macros that follows, the actual
values for System/370 are given in brackets following the macro
name.

<limits. h> defines the following macros:

CHAR_ BIT - [8] the number of bits in a byte.

CHAR MAX - [2551 the maximum value for a data object of
type char.

CHAR MIN - [0] the minimum value for a data object of type
char.

DBL DIG - [15) the maximum number of decimal digits of
precision for a data object of type double.

DBL MAX EXP - [76] the maximum power of 10 that
- System/370 can represent in a data object of type double.

DBL MIN EXP - [-76] the minimum power of 10 that
- System/370 can represent in a data object of type double.

DBL_ RADIX - (16] the radix of double exponent representation.

DBL ROUNDS - [0] whether double arithmetic rounds (1) or
- chops (0).

FLT DIG - [6] the maximum number of decimal digits of
- precision for a data object of type float.

FLT MAX EXP - [76] the maximum power of 10 that
- System/370 can represent in a data object of type float.

FLT MIN EXP - [-76] the minimum power of 10 that
- System/3 70 can represent in a data object of type float.

FLT_RADIX - [16] the radix of float exponent representation.

FLT ROUNDS - [0] whether float arithmetic rounds (1) or
- chops (0).

INT MAX - [2,147.483.647] the maximum value for a data object
- of type int.

INT MIN - [-2.147.483.648] the minimum value for a data
- object of type int.

LDBL DIG - [15] the maximum number of decimal digits of
-precision for a data object of type lo11g double.

LDBL MAX EXP - [76] the maximum power of 10 that
-System/370 can represent in a data object of type long

C Library Reference 11 - 23

limits.h

11 - 24

double.

LDBL MIN EXP - [-76] the mm1mum power of 10 that
-System/370 can represent in a data object of type long

double.

LDBL RADIX - [16] the radix of long double exponent
-representation.

LDBL ROUNDS - [0] whether long double arithmetic rounds
- (1) or chops (0) .

LONG MAX - [2,147,483,647] the maximum value for a data
object of type long.

LONG MIN - [-2,147,483.648] the minimum value for a data
object of type long.

SCHAR MAX - [127] the maximum value for a data object of
fYpe signed char.

SCHAR MIN - [-128] the minimum value for a data object of
fYpe signed char.

SHRT MAX - [32,767]
type short.

the maximum value for a data object of

SHRT MIN - [-32. 768] the minimum value for a data object of
-type short.

UCHAR MAX - [255] the maximum value for a data object of
type unsigned char.

UINT MAX - [4,294.987.295] the maximum value for a data
- object of type unsigned int.

ULONG MAX - [4,294,987 ,295] the maximum value for a data
object of type unsigned long.

USHRT MAX - [65,535] the maximum value for a data object
Of type unsigned short.

All of these macros expand to constant integer expressions. You
can use all of them in #if preprocessor directives except UINT MAX
and ULONG MAX.

C Library Reference

NAME

SYNOPSIS

FUNCTION

\
/

math.h

math.h - header file for mathematical functions

linclude <math.h>

The header file <ma th. h> declares a number of functions commonly
used in mathematics.

Many of these functions report a "range error" if the value of the
function cannot be well approximated as a value of type double.
A range error can be caused by either floating underflow or
floating overflow. Some also report a "domain error" if the value
of an argument is outside the range for which the function is
defined. In either case, errno is set to a nonzero value, and a
special value is returned by the function. If the error is a range
error caused by floatiq.g underflow, the special value returned is
zero. The description of each function documents when these
errors can occur and what special values are returned for errors
other than floating underflow. The macro errno is defined in the
header file <stdefs.h>.

<math. h> defines the following macros:

EDOM - the value stored in errno when a domain error occurs.
It expands to a constant integer expression.

ERANGE - the value stored in errno when a range error occurs.
It expands to a constant integer expression.

HUGE VAL - the value returned in place of a value that is too
large to represent as type double. HUGE VAL expands to
an rvalue of type double. It is not necessarily a constant
expression that you can use in a data initializer. It will
not compare equal to a value of type float.

signgam - an rvalue whose value is the sign of gamma .x from
the last call to the function gamma. Its type is int.

<math.h> declares the following functions:

abs - integer absolute value.

acos - arccosine.

asin - arcsine.

atan -arctangent.

atan2 - arctangent of ratio.

cell nearest more positive integer.

cos cosine.

cosh -hyperbolic cosine.

erf - error function.

erfc - complementary error function.

C Library Reference 11 - 25

math.h

SEE ALSO

11 - 26

exp - exponential.

fabs - floating absolute value.

floor

fmod

fr exp

nearest more negative integer.

floating modulus.

extract fraction from exponent.

gamma - log gamma.

hypot - hypotenuse.

jO jO Bessel.

jl jl Bessel.

jn jn Bessel.

ldexp - scale exponent.

log - natural logarithm.

loglO common logarithm.

modf extract fraction and integer.

pow - raise to a power.

sin - sine.

sinh - hyperbolic sine.

sqrt - square root.

tan - tangent.

tanh -hyperbolic tangent.

yO yO Bessel.

yl yl Bessel.

yn yn Bessel.

<stdefs.h>

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

)

abs - integer absolute value

#include <math.h>
int abs(int i);

abs calculates the absolute value of i.

abs

abs does not check to see that the result is representable. On
System/370, the integer Ox80000000 is the largest negative integer
value. If you negate it. it overflows to become the same large
negative value. This is the only value that overflows when you
negate it.

abs returns the absol~te value of i.

To print out a debit or credit balance:

printf("balance %d%s\n", abs(bal),
(bal < 0) ? "CR" : (bal == 0) ? ""

f abs

"DB");

C Library Reference 11 - 27

a cos

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 28

acos - arccosine

#include <math.h>
double acos(double x);

acos computes the angle. in radians, whose cosine is .t. If .t is
outside the range [-1, 1 J. a domain error occurs.

acos returns the nearest internal representation to a cos .t, in the
range [0, n J . If a domain error occurs, it sets errno to EDOM
and returns zero.

To compute the polar · angle of the vector to (x, y) :

theta = acos (x I hypot(x, y));
if (y < 0)

theta = -theta;

asin, atan. atan2

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

\

asin - arcsine

#include <math.h>
double asin(double x);

as in

asin computes the angle. in radians. whose sine is x. If x is
outside the range [-1. 1] . a domain error occurs.

asin returns the nearest internal representation to asin x, in the
range [-n/2, n/2) . If a domain error occurs, it sets errno to
EDOM and returns zero.

To compute the polar angle of the vector to (x, y) :

theta = asin(y I hypot(x, y)};
if (x < 0)

theta = 3.1419265F - theta;

acos, a tan, a tan2

C Library Reference 11 - 29

a tan

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 30

atan - arctangent

linclude <math.h>
double atan(double x);

atan computes the angle. in radians, whose tangent is x.

atan returns the nearest internal representation to ata11 .x, in the
range [- rrJ2, rrJ2] .

To convert to polar coordinates in the right half plane:

rho = hypot(x, y);
theta = atan(y I x); I* also see atan2 *I

acos, as in, a tan2

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

atan2

atan2 - arctangent of ratio

#include <math.h>
double atan2(double y, double x);

a tan2 computes the angle. in radians, of the vector that passes
through the origin (0, 0) and the point (x, y). If both x and
y are zero, a domain error occurs.

atan2 returns the nearest internal representation to atan ylx. in
the range [- Jt, Jt] . If a domain error occurs, it sets errno to
EDOM and returns zero.

To convert any Cartesian coordinates to polar coordinates:

rho = hypot(x, y);
theta = atan2(y, x);

acos, asin. atan, hypot

C Library Reference 11 - 31

ceil

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 32

ceil - nearest more positive integer

#include <math.h>
double ceil(double x);

ceil computes the smallest integer greater than or equal to x.

ceil returns the smallest integer greater than or equal to x.

Some sample values are:

x ceil(.l.:)

5.1 6.0
5.0 5.0
4.9 5.0
0.0 0.0

-4.9 -4.0
-5.0 -5.0
-5.1 -5.0

floor

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

cos - cosine

#include <math.h>
double cos(double x);

cos computes the cosine of x, expressed in radians.

cos

cos returns the nearest internal representation to cos x. As x
increases in magnitude, its angular resolution becomes progressively
less precise. For magnitudes of x that are large in comparison to
n, you may find that the result cos returns is not useful. even
though the result still closely approximates cos x.

To rotate a vector through the angle theta:

xnew xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

sin, tan

C Library Reference 11 - 33

co sh

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 34

cosh - hyperbolic cosine

#include <math.h>
double cosh(double x);

cosh computes the hyperbolic cosine of x. A range error may
occur.

cosh returns the nearest internal representation to cosh x. If a
range error occurs, it sets errno to ERANGE and returns HUGE VAL
for values too large to represent.

To raise cosh x + S'inh x to the nth power:

demoivre = cosh(n * x) + sinh(n * x);

exp, sinh, tanh

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

erf - error function

#include <math.h>
double erf(double x);

erf computes the error function of x.

erf returns the nearest internal representation to erf x.

To compute a probability interval:

if (1.0 < x)

erf c

prob erfc(x) - erfc(x + epsilon);
else

prob = erf(x + epsilon) - erf(x);

C Library Reference

erf

11 - 35

erf c

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 36

erfc - complementary error function

linclude <math.h>
double erfc(double x);

erfc computes the complementary error function of x, as defined
by (1 - erf x).

erfc returns the nearest internal representation to erfc x.

To compute a probability interval:

if (1.0 < x)

erf

prob erfc(x) - erfc(x + epsilon);
else

prob erf(x + epsilon) - erf(x);

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

exp - exponential

#include <math.h>
double exp(double x);

exp

exp computes the exponential of x. A range error may occur.

exp returns the nearest internal representation to exp x. If a
range error occurs, it sets errno to ERANGE and returns HUGE VAL
for values too large to represent.

To compute the hyperbolic sine of x:

y = (exp(x) - exp(-x)) I 2.0;

log

I* also see sinh *I

C Library Reference 11 - 37

fabs

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 38

fabs - floating absolute value

#include <math.h>
double fabs(double x);

fabs computes the absolute value of x.

fabs returns the absolute value of x.

Some values are:

x fabs(x)

5.0 5.0
0.0 0.0

-3.7 3.7

abs

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

floor - nearest more negative integer

tinclude <math.h>
double floor(double x);

floor

floor computes the largest integer less than or equal to x.

floor returns the largest integer less than or equal to x.

Some sample values are:

x floor(x)

5.1 5.0
5.0 5.0
4.9 4.0
0.0 0.0

-4.9 -5.0
-5.0 -5.0
-5.1 -6.0

ceil

C Library Reference 11 - 39

fmod

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 40

fmod - floating modulus

#include <math.h>
double fmod(double x, double y);

fmod computes the "modulus" of x and y. The modulus is
defined as:

fmod(.'t, y) = = x - (i * y)

where i is an integer value and

fabs(fmod(x, y)) < fabs(y)

The value of fmod is defined even if i is not representable as a
value of type double.

fmod returns the modulus of x and y. The sign of the return
value has the same sign as .r. If y is zero, fmod returns x.

Some values are:

x y fmod(x. y)

5.5 5.0 0.5
5.0 5.0 0.0

-1.3 0.0 . -1.3
-5.5 5.0. -0.5

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

frexp

frexp - extract fraction from exponent

#include <math.h>
double frexp(double val, int *exp);

frexp partitions val into a fraction whose magnitude lies in the
half open interval [1/2, 1) , multiplied by two raised to an integer
power. If val is zero, the fraction and exponent are both zero.

frexp stores the integer power at *exp, and returns the fraction
as the value of the function.

To implement a float ·square root function:

float fsqrt(x)
float x;
{
float y;
int i, n;

x = frexp(x, &n);
if (x)

{
y x;
for (i

y
4; 0 <= --i;)
(x I y + y) * O.SF;
I* divide and average *I

x = y;
}

if (n & 1)
x *= 1.4142136F;

return (ldexp(x, n I 2));
}

ldexp, modf

C Library Reference 11 - 41

gamma

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 42

gamma - log gamma

linclude <math.h>
double gamma(double x);

gamma computes the natural log of the magnitude of the gamma
function. If x is an integer less than or equal to zero. a domain
error occurs. A range error may occur.

If gamma x is positive, gamma stores the value 1 in an int data
object whose value can be accessed by the rvalue macro signgam.
It stores the value -1 if gamma x is negative. It then returns
the nearest internal representation to log lgamma .~1. If a domah1
error occurs. it sets e·rrno to EDOM and returns HUGE VAL. If a
range error. occurs, it sets errno to ERANGE and returns HUGE VAL
for values too large to represent.

To compute the function gamma x:

y = exp(gamma(x));
if (signgam < 0)

y = -y;

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

hypot

hypot - hypotenuse

#include <math.h>
double hypo t (double x, double y) ;

hypot computes the hypotenuse of a right triangle whose sides are
x and y. A range error may occur.

hypot returns the nearest internal representation to the hypotenuse
of x and y. If a range error occurs, it sets errno to ERANGE
and returns HUGE VAL for values too large to represent.

To convert any Cartesian coordinates to polar coordinates:

rho = hypot(x, y);
theta= atan2(y, x);

atan2

C Library Reference 11 - 43

jO

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 44

jO - jO Bessel

#include <math.h>
double jO(double x);

jO computes the Bessel function of .t' of the first kind, of order 0.
A range error may occur, but only as the result of a floating
underflow.

jO returns the nearest internal representation to jO x. If a range
error occurs, it sets errno to ERANGE and returns zero.

To compute j2 x:

j2x = (2.0 I x) * jl(x) - jO(x); I* also see jn *I

jl, jn, yO, yl, yn

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

jl - jl Bessel

#include <math.h>
double jl(double x);

jl

j 1 computes the Bessel function of x of the first kind, of order 1.
A range error may occur. but only as the result of a floating
underflow.

j 1 returns the nearest internal representation to jl x. If a range
error occurs, it sets errno to ERANGE and returns zero.

To compute }2 x:

j2x = (2.0 I x) * jl(x) - jO(x); I* also see jn *I

jO. jn, yO. yl, yn

C Library Reference 11 - 45

jn

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 46

jn - jn Bessel

tinclude <math.h>
double j n(int n, double x);

jn computes the Bessel function of x of the first kind, of order 11.

A range error may occur, but only as the result of a floating
underflow.

jn returns the nearest internal representation to jn x. If a range
error occurs, it sets errno to ERANGE and returns zero.

To compute j2 x:

j2x = jn(2, x);

jO. jl, yO, yl, yn

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

Id exp

ldexp - scale exponent

iinclude <math.h>
double ldexp(double x, int e:'t.:p);

ldexp multiplies x by two raised to the power exp. A range
error may occur.

ldexp returns the computed product. If a range error occurs. it
sets errno to ERANGE and returns HUGE VAL for values positive and
too large to represent. If the value is - negative and too large. it
returns -HUGE VAL.

To implement a float square root function:

iinclude <stdio.h>
iinclude <math.h>

main()
{
float x, y;
float £sqrt();

x = 3.0;
y = fsqrt(x);
printf("the sqrt of %£ is %£\n", x, y);
}

float fsqrt(x)
float x;
{
float y;
int i, n;

x = frexp(x, &n);
if (x)

{
y x;
for (i = 4; 0 <= --i;)

y = (x I y + y) * 0.5F;
I* divide and average *I

x = y;
}

if (n & 1)
x *= 1.4142136F;

return (ldexp(x, n I 2));
}

C Library Reference 11 - 47

ldexp

SEE ALSO
frexp, modf

11 - 48 C Library ·Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

/

log - natural logarithm

linclude <math.h>
double log(double x);

log

log computes the natural logarithm of x. If :t is less than zero.
a domain error occurs. If x is zero, a range error occurs.

log returns the nearest internal representation to log .t'. If a
domain error occurs, it sets errno to EDOM and returns zero. If a
range error occurs, it sets errno to ERANGE and returns
-HUGE VAL.

To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x + 1));

exp, loglO

C Library Reference 11 - 49

IoglO

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 50

loglO - common logarithm

linclude <math.h>
double loglO(double x);

loglO computes the common logarithm of x. If x is less than
zero, a domain error occurs. If x is zero, a range error occurs.

loglO returns the nearest internal representation to loglO x. If a
domain error occurs, it sets errno to EDOM and returns zero. If a
range error occurs, it sets errno to ERANGE and returns
-HUGE VAL.

To determine the number of digits needed to represent x if x is
printed as a text string:

log

ndig = (int)loglO(x)+l;
if (ndig < 1)

ndig = 1;

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

modf

modf - extract fraction and integer

iinclude <math.h>
double modf (double val, double *pd);

modf partitions val into an integer and a fraction whose magnitude
is less than 1. The integer and fraction both have the same sign
as val.

modf stores the integer part in the data object at *pd. It returns
the fraction as the value of the function.

Some sample values are:

val *pd modf(val, pd)

5.1 5 0.1
5.0 5 0.0
4.9 4 0.9
0.0 0 0.0

-1.4 -1 -0.4

frexp, ldexp

C Library Reference 11 - 51

pow

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 52

pow - raise to a power

linclude <math.h>
double pow(double x, double y);

pow computes the value of .'.t raised to the power y. If .i: is zero
and y is less than or equal to zero, or if .i: is negative and y is
not an integer. a domain error occurs. A range error may occur.

pow returns nearest internal representation to x raised to the
power y. If a domain error occurs. it sets e:rrno to EDOM and
returns zero. If a range error occurs, it sets errno to ERANGE
and returns HUGE VAL for values positive and too large to
represent. For values negative and too large to represent, pow
returns -HUGE VAL.

Some sample values are:

x y pow(x, y)

2.0 2.0 4.0
2.0 1.0 2.0
2.0 0.0 1.0
1.0 any 1.0
0.0 -2.0 domain error

-1.0 3.0 -1.0
-1.0 2.1 domain error

exp, log

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

sin - sine

#include <math.h>
double sin(double x);

sin computes the sine of x. expressed in radians.

sin

sin returns the nearest internal representation to si11 x. As x
increases in magnitude. its angular resolution becomes progressively
less precise. For magnitudes of x that are large in comparison to
n, you may find that the result sin returns is not useful. even
though the result still closely approximates sin x.

To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

cos, tan

C Library Reference 11 - 53

sinh

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 54

sinh - hyperbolic sine

#include <math.h>
double sinh(double x);

sinh computes the hyperbolic sine of x. A range error may
occur.

sinh returns the nearest internal representation to sinh ,1:. If a
range error occurs, it sets errno to ERANGE and returns HUGE VAL
for values too large to represent.

To raise cosh x + sinh x to the nth· power:

demoivre = cosh(n * x) + sinh(n * x);

exp, cosh, tanh

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

sqrt - square root

#include <math.h>
double sqrt(double x);

sqrt

sqrt computes the square root of x. If x is less than zero. a
domain error occurs.

sqrt returns the nearest internal representation to sqrt x. If a
domain error occurs, it sets errno to EDOM and returns zero.

To check whether n is a prime number (where n is greater than
2):

if (! (n & 01))
return (l);

sq = sqrt((double)n);
for (div = 3; div < sq; div += 2)

if (!(n % div))
return (1);

return (0);

C Library Reference 11 ~ 55

tan

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 56

tan - tangent

#include <math.h>
double tan(double x);

tan computes the tangent of x. expressed in radians. If the
magnitude of x is too large to contain a fractional quadrant part.
the return value is 0. A range error may occur.

tan returns the nearest internal representation to tan .-t. A large
argument may return a meaningless value. If a range error
occurs, it sets errno to ERANGE and returns HUGE VAL for values
too large to represent.

To compute the coordinate y. given x and the polar angle theta:

y = x * tan(theta);

cos, sin

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

tanh - hyperbolic tangent

#include <math.h>
double tanh(double x);

tanh computes the hyperbolic tangent of x.

tanh returns the nearest internal representation to ta11h x.

To compute the hyperbolic tangent of x:

y = tanh(x);

exp, co sh, s inh

C Library Reference

tanh

11 - 57

yO

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 58

yO - yO Bessel

#include <math.h>
double yO(double x);

yO computes the Bessel function of x of the second kind. of order
0. If x is less than or equal to zero, a domain error occurs. A
range error may occur, but only as the result of a floating
underflow.

yO returns the nearest internal representation to yO x. If a
domain error occurs, it sets errno to EDOM and returns -HUGE VAL.
If a range error occurs. it sets errno to ERANGE and returns zero.

To compute y2 x:

y2x = (2.0 I x) * yl(x) - yO(x); I* also see yn *I

jO, jl, jn. yl, yn

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

yl - yl Bessel

#include <math.h>
double yl(double x);

yl

yl computes the Bessel function of x of the second kind. of order
1. If x is less than or equal to zero, a domain error occurs. A
range error may occur. but only as the result of a floating
underflow.

yl returns the nearest internal representation to yl x. If a
domain error occurs, it sets errno to EDOM and returns -HUGE VAL.
If a range error occurs, it sets errno to ERANGE and returns zero.

To compute y2 x:

y2x = (2.0 I x) * yl(x) - yO(x); I* also see yn */

jO, jl, jn, yO, yn

C Library Reference 11 - 59

yn

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 60

yn - yn Bessel

#include <math.h>
double yn(int 11, double x);

yn computes the Bessel function of x of the second kind. of order
n. If x is less than or equal to zero, a domain error occurs. A
range error may occur, but only as the result of a floating
underflow.

yn returns the nearest internal representation to yn x. If a
domain error occurs. it sets errno to EDOM and returns -HUGE VAL.
If a range error occurs. it sets errno to ERANGE and returns zero.

To compute y2 x:

y2x = yn(2, x);

jO, jl, jn, yO, yl

C Library Reference

NAME

SYNOPSIS

FUNCTION

setjmp.h

setjmp.h - header file for nonlocal jumps

#include <setjmp.h>

The header file <setjmp.h> declares functions which save and
restore a calling environment. You use them to bypass the normal
nesting of function calls and returns.

<setjmp.h> declares the following type:

jmp buf -.. an array type that holds the information needed to
- save a calling environment.

<se tj mp. h> declares the following functions:

longjmp - restore calling environment.

setjmp - save calling environment.

C Library Reference 11 - 61

longjmp

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 62

longjmp - restore calling environment

#include <setjmp.h>
void longjmp(jmp_buf e11v, int val);

longjmp restores the calling environment saved in env by setjmp.
You must save a calling environment in env by calling setjmp.
and your program must not have returned from the function
containing the call to setjmp before calling longjmp.

When you call longj mp, it restores the values stored in some
objects of storage class register or auto in the function
containing the call to setjmp. to the values stored in them at the
time of the setjmp call. There is no reliable way to determine
which of these objects. are restored, so you should not depend upon
the stored values of register or automatic data objects that may
have changed between the setjmp and longjmp calls. All other
data objects are unchanged when the calling environment is
restored.

longj mp bypasses the function call and return mechanism that
other functions use. You use it to return early from an arbitrary
nest of function calls. You can also use it within a signal
handler.

longjmp never returns. Instead. program execution continues by
returning again from the call to se tj mp that saved the calling
environment. If val has the value 0. setjmp returns 1.
Otherwise, setjmp returns val.

You can write a generic signal handler as:

void handle(sig)
int sig;
{
extern jmp_buf env;

longjmp(env, sig); I* return from setjmp *I
}

setjmp

When using the setjmp/longjmp function in combination with
signal(SIGINT). a permanent restriction causes control to return
to the instruction that the program was executing when the signal
occurred instead of to the setjmp call when longjmp is called.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

setjmp

setjmp - save calling environment

#include <setjmp.h>
int setjmp(jmp_buf env);

setjmp saves the calling environment in e11v for later use by the
function longjmp. Do not write a call to setjmp as a
subexpression. Write it as an expression statement. or as the
expression in a switch or an if statement.

setjmp returns zero when you first call it. It saves the current
calling environment in env. If a call to longjmp designates the
same saved calling environment. setjmp returns again with the
calling environment restored. The value returned is determined by
the call to longjmp. as described for that function.

To handle signals from a generic signal handler:

switch (setjmp(env))
{

case 0:
break; I* go do normal processing *I

case SIGFPE:
printf("floating point exception\n");
exit(O);

case SIGILL:
case SIGSEGV:

printf("bad news\n");
exit(l);

case SIGINT:
printf("interrupted\n");
exit(O);

default:

longjmp

printf("unknown signal\n");
exit(l);
}

C Library Reference 11 - 63

signal.h

NAME

SYNOPSIS

FUNCTION

11 - 64

signal.h - header file for exceptional condition handling

#include <signal.h>

The header file <signal. h> declares functions for reporting and
handling exceptional conditions. or /1 signals. /1 The runtime
environment converts certain hardware exceptions to C signals.
You can generate an asynchronous signal from your keyboard. In
your C program you can report any signal by calling the function
kill. You include <signal.h> to alter the default reporting and
handling of signals.

<signal. h> defines the following macros:

SIG DFL - the function pointer value you use on a call to
- signal to request default signal handling. This expands to

a constant expression of type pointer to function retur11i11g
void.

SIG ERR - the function pointer value returned by signal to
- report an error. This expands to a constant expression of

type pointer to function returning void.

SIG IGN - the function pointer value you use on a call to
- signal to request that a signal be ignored. This expands

to a constant expression of type pointer to function
returning void.

SIGABRT - the signal value that forces your program to
terminate abnormally.

SIGFPE - the signal value that reports a floating point exception.

SIGILL - the signal value that reports an invalid instruction.

SIGINT - the signal value that reports an asynchronous keyboard
interrupt.

SIGSEGV - the signal value that reports a memory protection
violation.

SIGSTACK - the signal value that reports on function call stack
overflow.

SIGTERM - the signal value that forces your program to
terminate quietly.

SIGUSRl a signal value reserved for your use.

SIGUSR2 - a signal value reserved for your use.

<signal. h> declares the following functions:

kill - report a signal.

signal - specify handling of a signal.

All macros that define signal values expand to constant integer
expressions.

C Library Reference

NAME

SYNOPSIS

FUNCTION

kill

kill - send a signal

#include <signal.h>
int kill(int pid, int sig);

kill sends the signal sig. pid must be zero. The signals that
kill sends are:

Name

SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGSTACK
SIGTERH
SIGUSRl
SIGUSR2

Meaning

force abnormal termination
floating point exception
invalid instruction
keyboard interrupt
memory protection violation
stack overflow
force quiet termination
reserved for your use
reserved for your use

Macros for all of these signal values are defined in the header file
<signal.h>.

The C runtime environment uses the SPIE system service to catch
exceptions. These are appropriately mapped to calls to kill that
send the signals SIGFPE. SIGILL, and SIGSEGV:

Program
interruption
code

Hardware
exception
name

C signal
code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Operation exception
Privileged operation exception
Execute exception
Protection exception
Addressing exception
Specification exception
Data exception
Fixed point overflow exception
Fixed point divide exception
Decimal overflow exception
Decimal divide exception
Exponent overflow exception
Exponent underflow exception
Significance exception
Floating point divide exception

SI GILL
SI GILL
SI GILL
SIGSEGV
SIGSEGV
SIGSEGV
SIGFPE
(masked)
SIGFPE
SIGFPE
SIGFPE
SIGFPE
(masked)
(masked)
SIGFPE

The C library uses the ST A.X system service to capture
asynchronous keyboard interrupts. These call kill to send the
signal SIGINT.

C Library Reference 11 - 65

kill

RETURNS

EXAMPLE

SEE ALSO

11 - 66

kill returns zero if sig has a proper value and if the handler for
the signal returns. If sig does not have a proper value, kill
returns a nonzero value.

To abort processing:

kill(O, SIGABRT);

abort, signal

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

signal

signal - specify handling of a signal

#include <signal.h>
void (*signal (int sig, void (*fwzc)()))();

signal changes the handling of the signal sig according to the
value of func. The description of kill lists the valid values for
sig.

If func has the value SIG DFL. "default" handling takes effect for
the specified signal. Default handling is to write an error message
to the standard error stream and terminate your program
abnormally. At program startup. default handling takes effect for
all signals.

If func has the value SIG_ IGN. the signal is subsequently ignored.

Otherwise func must be a pointer to a function that handles future
reports of the specified signal. When kill reports a signal. the
handler function is called with the expression:

(*func) (sig)

where sig is the signal reported by kill.

Your handler function should do as little as possible. It has only
limited storage for calling other functions. The best signal handler
simply alters the value stored in a scalar volatile static data object
and returns. It may also call longjmp to restore an earlier calling
environment. If a signal handler interrupts an input/output
operation. as in response to an asynchronous keyboard signal. the
stream or its associated file may be left in an inconsistent state.

signal returns the previous handler function func if successful.
Otherwise it returns the value SIG ERR.

To turn off keyboard interrupts:

signal(SIGINT, SIG_IGN);

abort, kill

C Library Reference 11 - 67

stdarg.h.

NAME

SYNOPSIS

FUNCTION

11 - 68

stdarg.h - header file for walking argument lists

#include <stdarg.h>

The header file <stdarg.h> defines macros that you use to "walk"
an argument list to a function that accepts a variable number of
arguments.

<s tdarg. h> declares the following type:

va list - an array type that holds information needed by the
- macros va arg and va end. A data object of this type

must be first initialized- by the macro va_start.

<stdarg.h> defines the following macros:

va _ arg - get pointer to next argument in list.

va end - terminate walking argument list.

va start - initiate walking argument list.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

va_arg

va_arg - get pointer to next argument in list

#include <stdarg.h>
type va _ arg(va _list ap, type);

The macro va arg is an rvalue that computes the value of the
next argumenC in a variable length argument list. Information on
the argument list is stored in the array data object ap. You
must first initialize ap with the macro va start. and compute all
earlier arguments in the list by expanding-va _ arg for each
argument.

The type of the next argument is given by the type name type.
The type name must be the same as the type of the next
argument. Remember that the compiler widens an arithmetic
argument to int. and converts an argument of type ffoat to double.
You write the type after conversion. Write int instead of char
and double instead of float.

Do not write a type name that contains any parentheses. Use a
type definition, if necessary. as in

typedef int (*Pfi)();
I* pointer to function returning int */

fun ptr = va arg(ap, Pfi);
- I* get function pointer argument *I

va arg expands to an rvalue of type type. Its value is the value
of the next argument. It alters the information stored in ap so
that the next expansion of va _ arg accesses the argument following.

To write multiple strings to a file:

#include <stdio.h>
#include <stdarg.h>

main()
{
void strput();

strput(stdout, "This is one string\n", \
"and this is another ••• \n", O);

}

void strput(FILE *pf, .•.);

C Library Reference 11 - 69

va_arg

SEE ALSO

11 - 70

void strput(pf)
FILE *pf;
{
char *ptr;
va_list va;

va start(va, pf);
while (ptr = va arg(va, char *))

fputs(ptr, -pf);
va end(va);
} -

va end, va start

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

va end - terminate walking argument list

#include <stdarg.h>
va_end(va_list ap);

va end

va end is a macro which you must expand if you expand the
macro va start within a function that contains a variable length
argument -list. Information on the argument list is stored in the
data object designated by ap. Designate the same data object in
both va start and va end.

You expand va end after you have accessed all argument values
with the macro-va arg. before your program returns from the
function that contains the variable length argument list. After you
expand va end, do not expand va arg with the same ap. You
need not expand va arg within tire function that contains the
variable length argu1nent list.

You must write an expansion of va end as an expression
statement containing a function call.- The call must be followed by
a semicolon.

Nothing. va end expands to a statement. not an expression.

To write multiple strings to a file:

void strput(FILE *pf, ••.);
void strput(pf)

FILE *pf;
{
char *ptr;
va_list va;

va_start(va, pf);
while (ptr = va arg(va, char *))

fputs(ptr, -pf);
va end(va);
} -

va_arg. va start

C Library Reference 11 - 71

v'a start

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 72

va start - initiate walking argument list

#include <stdarg.h>
va_start(va_list ap, parmN);

va start is a macro which you must expand before you expand
the macro va arg. It initializes the information stored in the data
object designated by ap. The argument parmN must be the
identifier you declare as the name of the last specified argument in
the variable length argument list for the function. In the function
prototype for the function, parmN is the argument name you write
just before the , •••

The type of parmN must be one of the types assumed by an
argument passed in the absence of a prototype. Its type must not
be float or char. Also, parmN cannot have storage class
register.

If you expand va start. you must expand the macro va end
before your program returns from the function containing -the
variable length argument list.

You must write an expansion of va start as an expression
statement containing a function call.- The call must be followed by
a semicolon.

Nothing. va start expands to a statement. not an expression.

To write multiple strings to a file:

void strput(FILE *pf, •••);
void strput(pf)

FILE *pf;
{
char *ptr;
va_list va;

va_start(va, pf);
while (ptr = va arg(va, char *))

fputs(ptr, -pf);
va end(va);
} -

va _ arg. va end

C. Library Reference

NAME

SYNOPSIS

FUNCTION

stdefs.h

stdefs.h - header file for common definitions

#include <stdefs.h>

The header file <s tdefs. h> declares types and defines macros that
are widely used.

<s tdef s. h> defines the following types:

ptrdiff t - the signed integer type the compiler chooses for the
difference between two pointers.

size t - the unsigned integer type the compiler chooses for the
result of the sizeof operator.

<stdefs. h> defines the following macros:

NULL - a constant pointer expression with value 0. You can use
NULL as a data object pointer argument to a function
whether or not it checks the types of its arguments.

errno - a modifiable !value that designates the data object used
for storing error codes. Its type is int, it has static
lifetime, and its initial stored value is 0. You may assign
values to errno or access its stored value. You may not
take its address. Any C library function may report an
error by storing a nonzero value in errno. No C library
function will store the value 0 in errno.

C Library Reference 11 - 73

stdio.h

NAME

SYNOPSIS

FUNCTION

11 - 74

stdio.h - header file for stream 1/0

linclude <stdio.h>

The header file <stdio.h> declares functions used to perform input
and output.

<stdio.h> defines the following type:

FILE - a structure type which holds information for controlling a
stream connected to an open file. The address of a data
object of type FILE is significant. You cannot assign the
value of a data object of type FILE to another data object
and use the address of that data object in place of the
address of the original data object.

<stdio.h> defines the following macros:

_IOFBF - the value you use as the third argument to setvbuf
to specify full buffering. It expands to a constant integer
expression.

IOLBF - the value you use as the third argument to setvbuf
to specify line buffering. It expands to a constant integer
expression.

IONBF - the value you use as the third argument to setvbuf
- to specify no buffering. It expands to a constant integer

expression.

BUFSIZ - the default size in bytes of a stream buffer. It
expands to a constant integer expression.

EOF - the value returned by a function to signal that end of file
is encountered on a stream. It expands to a constant
integer expression.

L tlllpnalll - the size in bytes of an array big enough to hold a
- temporary file name returned by tmpnam. It expands to a

constant integer expression.

SEEK_ CUR - the value you use as the third argument to f seek
to specify positioning relative to the current file pointer. It
expands to a constant integer expression.

SEEK END - the value you use as the third argument to f seek
-to specify positioning relative to the end of the file. It

expands to a constant integer expression.

SEEK_ SET - the value you use as the third argument to fseek
to specify positioning relative to the beginning of the file.
It expands to a constant integer expression.

SYS OPEN - the maximum number of files that can be open at
the same time. It expands to a constant integer
expression.

C Library Reference

stdio.h

TMP MAX - the mmunum number of unique file names that
tmpnam generates. It expands to a constant integer
expression. Its value is at least 25.

stderr - an rvalue whose value is the address of the data object
used for controlling the standard error stream. Its type is
pointer to FILE. It is not a constant expression. You
may not use it in a data initializer.

stdin - an rvalue whose value is the address of the data object
used for controlling the standard input stream. Its type is
pointe1· to FILE. It is not a constant expression. You
may not use it in a data initializer.

stdout - an rvalue whose value is the address of the data object
used for controlling the standard output stream. Its type is
pointer to FILE. It is not a constant expression. You
may not use it in a data initializer.

<stdio.h> declares the following functions:

clearerr - reset end of file and error indicators.

fclose - close a file.

feof - test end of file indicator.

ferror test read/write error indicator.

fflush flush output stream.

fgetc read a character from input stream.

fgets read a text line from input stream.

fopen - open a file.

fprintf - write formatted arguments to output stream.

fputc write a character to output stream.

fputs write a text line to output stream.

fread read records from input stream.

freopen - open a file with existing stream.

fscanf - read formatted arguments from input stream.

fseek - set file pointer.

ftell - get file pointer.

fwrite - write records to output stream.

getc - read a character from input stream.

getchar - read a character from standard input.

gets'~ - read a text line from standard input.

perror - map error number.

printf - write formatted arguments to standard output.

putc - write a character to output stream.

C Library Reference 11 - 75

stdio.h

SEE ALSO

11 - 76

putchar - write a character to standard output.

puts - write a text line to standard output.

remove remove a file.

rename change file name.

rewind - set file pointer to beginning of file.

scanf - read formatted arguments from standard input.

setbuf - set stream buffer.

setvbuf - set stream buffering strategy.

sprintf - write formatted arguments to a string.

sscanf - read formatted arguments from a string.

tmpfile - create temporary file.

tmpnam - generate temporary file name.

ungetc - push character back into input stream.

vfprintf - write formatted argument list to output stream.

vprintf - write formatted argument list to standard output.

vsprintf - write formatted argument list to a string.

The functions getc and putc may each be masked by a macro
definition that behaves differently from a call on the underlying
function. The macro version of each expands to an expression
that evaluates its pointer to FILE argument more than once. That
argument must not have side effects. The equivalent functions
fgetc and fputc. on the other hand. are never masked by macro
definitions. You may use these functions instead of getc and
putc, or undefine the identifiers getc and putc with a #undef
preprocessor directive, to avoid the problem of argument side
effects.

If you call any of these functions that expect an argument of type
pointer to FILE, the argument must be stderr, stdin, stdout, or
a value returned by an earlier call to fopen. Otherwise, the C
library sets errno to a nonzero value.

<stdefs.h>

C · Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

clearerr

clearerr - reset end of file and error indicators

#include <stdio.h>
void clearerr(FILE *pf);

clearerr resets the end of file and read/write error indicators for
the stream controlled by the FILE structure pointed at by pf.
clearerr. fopen, freopen. and rewind are the only C library
functions that clear these indicators.

Nothing.

To check and clear an error condition:

if (ferror(fp))
{
printf("bad record, skipped\n");
clearerr(fp);
}

feof, ferror. rewind

C Library Reference 11 - 77

fclose

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 78

fclose - close a file

#include <stdio.h>
int fclose(FILE *pf);

f close closes the file under control of the FILE structure pointed
at by pf. If your program opens a file for writing or updating.
fclose flushes any remaining output before closing the file. If
the C library allocated the associated buffer dynamically, f close
frees it. fclose then invalidates the FILE structure at pf until
the C library uses it to control another open file.

f close returns zero if it can close the file successfully.

To finish up if no more input is forthcoming:

if (feof(fp))
{
fclose(fp);
exit(errcount != O);
}

f open, freopen

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

feof - test end of file indicator

#include <stdio.h>
int feof(FILE *pf);

feof

feof tests the end of file indicator for the file controlled by the
FILE structure pointed at by pf.

f eof returns a nonzero value if the end of file indicator is set, or
if pf does not point at a FILE structure controlling an open file.

To check a token stream for proper termination:

if (tok == FIN && !feof(fp))
printf("missing EOF in data file\n");

clearerr, £error

C Library Reference 11 - 79

ferror

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 80

ferror - test read/write error indicator

#include <stdio.h>
int ferror(FILE *pf);

£error tests the read/write error indicator for the file controlled by
the FILE structure pointed at by pf.

f error returns a nonzero value if the read/write error indicator is
set, or if pf does not point at a FILE structure controlling an
open file.

To write an array ;md check for errors:
/

fwrite(a, sizeof a[O], n, pf);
if (ferror(pf))

printf("error writing file\n");

clearerr, feof

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

fflush - flush output stream

#include <stdio.h>
int fflush(FILE *pf);

fflush

fflush drains any unwritten data in the output buffer for the
stream controlled by the FILE structure pointed at by pf. If the
output buffer is empty, or the current buffer is opened only for
reading, fflush does nothing.

fflush returns a nonzero value if a write error occurs. or if pf
does not point at a FILE structure controlling an open file.

To prompt on an interactive device:

fprintf(pfout, "are you sure? ");
fflush(pfout);
fgets(answer_buf, sizeof answer_buf, pfin);

fclose. fopen, freopen, setvbuf

C Library Reference 11 - 81

fgetc

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 82

fgetc - read a character from input stream

#include <stdio.h>
int fgetc(FILE *pf);

fgetc obtains the next input character, if any. from the stream
controlled by the FILE structure pointed at by pf. fgetc then
increments the associated file pointer by one byte.

fgetc returns the value of the next character from the input
stream pointed at by pf. The character value is type cast to
unsigned char. If fgetc encounters end of file or a read error,
or if pf does not point at a FILE structure controlling an open
file, it returns the value EOF.

To copy a text file. character by character:

FILE *ipf, *opf;
int c;

ipf = fopen("infile.data", "r");
opf = fopen("outfile.data", "w");
while ((c = fgetc(ipf)) != EOF)

fputc(c, opf);

fputc, getc, getchar, putc. putchar

<stdio.h> does not define fgetc as a macro. getc is superior
to fgetc in this regard. even though you must exercise care in
calling get c.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

fgets

fgets - read a text line from input stream

linclude <stdio.h>
char *fgets(char *s, int 11, FILE *pf);

fgets copies characters from the file controlled by the FILE
structure pointed at by pf to the 11 character buffer starting at s.
It copies characters until it copies a newline character, reaches end
of file, or copies n-1 characters. It stores a null character
immediately following the last character copied into s. fgets then
increments the associated file pointer by the number of bytes read.

fgets returns s if one or more characters are copied and no read
error occurs. If it reaches end of file and has not read any
characters, or if pf does not point at a FILE structure controlling
an open file, s remains unchanged and fgets returns a null
pointer. If a read error occurs. the contents of s are
indeterminate and fgets returns a null pointer.

To copy a text file. line by line:

char buf [80];

ipf = fopen("infile.data", "r");
opf = fopen("outfile.data", "w");
while (fgets(buf, sizeof buf, ipf))

fputs(buf, opf);

fputs, gets, puts

C Library Reference 11 - 83

£open

NAME

SYNOPSIS

FUNCTION

11 - 84

fopen - open a file

#include <stdio.h>
FILE *fopen(const char */name, char *type);

fopen tries to open the file with name /name. If it succeeds in
opening the file, it initializes a FILE structure for operation with
the file and connects a stream to it.

The /name argument points to a string that contains the name of
the file fopen is to open. fopen makes no distinction between
uppercase and lowercase letters in the file name.

Under MVS and MVS/XA. the syntax for /name follows the
standard TSO rules for qualifying file names. If you enclose the
file name in double quotation marks only, the compiler adds your
account number to the front of the file name. Your account
number is provided by a facility such as RACF. For example, if
your account number is TS12345. the sequence

f = fopen("x.y","r");

opens the file TS12345. X. Y for reading.

If your system does not support account numbers, nothing is
prepended to the file name. If you enclose the file name in single
quotation marks and then enclose the result in double quotation
marks, the compiler does not add your account number to the
front of the file name. For example, the sequence

f = fopen('"x.y'","r");

opens the file X. Y for reading.

The notation to specify partitioned datasets is:

f = fopen("library.source(mem)","r");

This specification accesses the member mem from the library
TS12345. LIBRARY. SOURCE. As with simple sequential files, the
specification

f = fopen("'ts2331.source(mem)"',"r");

accesses the member mem from the library TS2331. SOURCE.

Under VM/CMS, there are two formats for specifying file names.
The conventional file specification format is:

/name /type /mode

where /name is the file name. /type is the file type. and /mode is
the file mode. You may write one or more spaces between
components. For example. the file name

a b c

is equivalent to the file name

C Library Reference

fopen

a b c

The second format for specifying file names under VM/CMS is

fname.ftype.fmode

where the components have the same meaning as above. The only
difference between the two formats is that you use single dots
rather than spaces to separate the components of the file name.

In both formats, the file mode is * by default if you omit the file
mode specification. If the effective file mode is *· fopen searches
all accessed minidisks in sequence until:

* When creating or truncating a file. it finds a writable
mini disk.

* When opening an existing file, it finds a file with the
specified file name and file type.

It is an error to specify a file name and not its corresponding file
type.

Under both VM/CMS and MVS. you may use as a file name a
DDname that you obtain from a filedef you executed previously. as
long as their attributes are compatible. The notation to specify a
DDname is

dd: ddname

where the string dd: is a prefix to the actual DDname dd11ame.
Never use single quotation marks around a DDname.

Under both VM/CMS and MVS. use "*" to refer to your terminal.

The type argument points to a string that must begin with one of
the following sequences:

"r" open text file for reading
"w" create text file for writing or truncate old file
"a" append: open text file or create for writing at end

of file

"rb" open binary file for reading
"wb" create binary file for writing or truncate old file
"ab" append; open binary file or create for writing at end

of file

"r+" open text file for update (reading and writing)
"w+" create text file for update or truncate old file
"a+" append: open text file or create for update, writing at

end of file

"r+b" open binary file for update (reading and writing)
"w+b" create binary file for update or truncate old file
"a+b" append: open binary file or create for update. writing

at end of file

If fopen opens a file for update. you may perform both reads and
writes on the stream. However. a read may not directly follow a
write, and a write may not directly follow a read without an

C Library Reference 11 - 85

fopen

11 - 86

intervening fseek or rewind, unless f open encounters end of file
on a read.

If you specify any of the append sequences "a". "ab", "a+", or
"a+b" to open a file, the C library dynamically forces all
subsequent writes to the current end of file. regardless of previous
calls to fseek. Before each write, the C library repositions the
file pointer at the end of the output file and flushes the buffer.

Note that on some file types. a call to fopen with type "ab" or
"a+b" may cause the C library to write new records beyond the
last data previously written. because the file was padded with null
characters when it was closed.

In addition to the sequences listed above. type may optionally
contain one or both of the parameters recfm and lrecl. Each is
followed by an equal sign and a parameter value. The recfm
parameter specifies the record format. The lrecl parameter
specifies the logical record length. Use commas to separate the
elements of the parameter list. If you specify neither recfm or
lrecl. omit the comma. You may also write spaces before and
after the comma separators and equal signs. f open makes no
distinction between uppercase and lowercase letters in parameters.

The permissible values for record format specification using recfm
are f or fixed for fixed record format and v or variable for
variable length record format.

The logical record length you specify with lrecl can be any
decimal integer value between 1 and 32768. inclusive. Under

• VM/CMS, however. if you use a DDname to specify the file to be
opened, the logical record length you specify may not exceed
32.760 for fixed record format files. or 32.756 for variable length
record format files. The logical record length you specify with
fopen is four bytes less than the logical record length you specify
in the filedef for a variable length record format file.

The following example illustrates an f open call to open the file
ABC DEF G under VM/CMS. The file is a fixed record format file
with a record length of 80 bytes. You write this call as

f = fopen("abc def g", "r, recfm = f, lrecl = 80");

If you are creating a file. any attributes you specify determine the
attributes of the new file. If you are truncating an existing file
under VM/CMS. and if the file name is not a DDname. then
fopen behaves as if you are creating a file. If you specify no
record format. the default format for a created file is fixed for a
binary file or variable for a text file. If you specify no logical

I record length, the default value is 80 for a fixed record format file
or 255 for a variable length record format file.

If the file you are opening already exists. any attributes you
specify must be compatible with those of the existing file. If you
specify a record format. it must be the same as for the existing
file. If you specify a logical record length. it must be the same
value used to create the file.

C Library Reference

RETURNS

EXAMPLE

SEE ALSO

NOTES

fopen

However, for variable length record format files on Vl\.1/CMS. only
the length of the longest record in the file is retained by the
system. Since the information regarding the original record length
with which the file was created may have essentially been lost.
fopen cannot always enforce this requirement strictly. In addition.
the following considerations also apply to variable length record
format files on VM/CMS:

*

*

If the file name is not a DDname. and if you specify a
logical record length that is larger than the recorded length
of the longest record currently in the file. then the value
you specify is the logical record length that the C library
uses.

If the file name is not a DDname, and if you specify no
logical record length. then the C library uses the larger of
255 and the recorded length of the longest record currently
in the file.

Reads and writes behave differently for:

*

*

*
*

Text files versus binary files

Fixed record format files versus variable length record format
files

Replacing records versus appending new records

Writing short records versus writing long records.

See Chapter 9, "Input/Output" for details on how these factors
interact.

fopen returns a pointer to the FILE structure controlling the
stream if it opens the file. Otherwise it returns a null pointer.

To open a fixed record format binary file for reading:

if (!(pf = fopen(infile, "rb, recfm=f, lrecl=80")))
printf("can't open %s\n", infile);

f close, freopen, f seek. rewind

Under MVS and MVS/XA. a restriction prohibits opening a member
of a partitioned dataset for appending. This restriction is not
enforced.

C Library Reference 11 - 87

fprintf

NAME

SYNOPSIS

FUNCTION

11 - 88

fprintf - write formatted arguments to output stream

#include <stdio.h>
int fprin t f (FILE *pf, cons t char *fmt, •••) ;

fprintf converts a series of arguments specified by its variable
length argument list to printable text. It writes this printable text
to the file controlled by the FILE structure pointed at by pf.
under control of a format string pointed at by fmt.

The format string consists of literal text to be output. interspersed
with "conversion specifications" that determine how fprintf
interprets arguments and how it will convert them for output. If
you specify insufficient arguments for the format string, the results
are unpredictable. If ,fprintf exhausts the format string while
arguments remain. it ignores the excess arguments. fprintf
returns when it encounters either the end of the format string or
a write error.

Each conversion specification starts with the character %. After the
%, you write the following components. in the order listed:

<flags>: zero or more characters which modify the meaning of the
conversion specification.

<field width>: an optional decimal number which specifies a
minimum field width. If the converted value has fewer
characters than the field width, fprintf pads it on the left
or right to the field width. The padding is on tl-,.e left
unless you specify padding on the right with the - flag.
Spaces are used for padding unless the field width is
written with a leading zero digit, in which case zeros are
used for padding.

If you write a field width with a leading minus sign.
fprintf interprets the minus sign as a flag. The field
width is always positive.

<precision>: a decimal number which specifies the minimum
number of digits to appear for the d, i. o. u. x. or X
conversion characters: the number of digits to appear after
the decimal point for the e. E. or f conversion characters:
the maximum number of significant digits for the g or G
conversion characters: or the maximum number of
characters to be printed from a string for the s conversion
character. You write the precision as a period followed by
a decimal digit string. fprintf treats a null digit string
as zero.

h: if present. specifies that the following d. i. o. u. x. or X
conversion character applies to a short or u11sig11ed short
argument. fprintf type casts the argument value to short
or u11sig11ed short before conversion. It specifies that the
following p conversion character applies to a "short pointer"

C Library Reference

fprintf

argument. System/370 does not support a short pointer
representation. If an h appears with any other conversion
character, fprintf ignores it.

I: if present, specifies that the d. i. o. u. x. or X conversion
character applies to a long or 1111sig11ed long argument. It
specifies a "long pointer" or "far pointer" argument if used
with the p conversion character. System/370 does not
support a long pointer representation. If the 1 appears with
any other conversion character. fprintf ignores it.

L: if present, specifies that the following e, E, f, g. or G
conversion character applies to a lo11g double argument.
System/370 represents type long double the same as double.
If the L appears with any other conversion character.
fprintf ignores it.

<conversion character>: a character that indicates the type of
conversion to be applied.

You may indicate either a field width or prec1s1on. or both. by an
* instead of a digit string. In this case. the next argument in
sequence must be an i11t. which supplies the field width or
prec1s10n. The arguments supplying field width or precision must
appear before the argument to be converted. If you supply a
negative value for a precision. fprintf behaves as if you left the
precision unspecified.

The <flags> field consists of zero or more of the following:

space: prepends a space if the first character of the result of a
signed conversion is not a sign. fprin t f ignores this flag
if you specify both space and +.

#: converts the result to an "alternate form. 11 For the c. d. i.
s, and u conversion characters, the flag has no effect. For
the o conversion character. it increases the precision to force
the first digit of the result to be zero. For the x, p. and
X conversion characters. a nonzero argument value will have
Ox or OX prepended to its result. For the e. E. f, g, or G
conversion characters. the result will contain a decimal point.
even if no digits follow the point. For the g and G
conversion characters, fprin tf will not remove trailing zeros
from the result. as it normally does.

+: the result of a signed conversion will begin with a plus or
minus sign.

-: the result will be left justified within the field.

The <conversion character> is one of the following:

%: converts to a %. It converts no arguments.

c: converts the least significant byte of the i11t argument to a
character.

d, i, o, u, x, X: converts the int argument to signed decimal (d
or i) . unsigned octal (o) . unsigned decimal (u) . or

C Library Reference 11 - 89

fprintf

11 - 90

unsigned hexadecimal notation (x or X) . For a signed
decimal. a positive number has no leading sign. Octal has
no leading 0, and hexadecimal has no leading OX. fprin t f
uses the letters abcdef for x conversion and the letters
ABCDEF for X conversion. The precision specifies the
minimum number of digits to appear. If fprintf can
represent the value being converted in fewer digits. it will
add leading zeros to the result. The default precision is 1.
The result of converting a zero value with precision of zero
is no characters.

e, E: converts the double argument to exponential form. such as
-5.l 73e+02. A positive number has no leading sign.
There is one digit before the decimal point, and the number
of digits after it is equal to the precision. If the precision
is not specified. fprintf sets it to 6. If the precision is
zero, no decimal point appears. fprintf rounds the value
to the appropriate number of digits. The E conversion
character will produce a result with E instead of e
introducing the exponent. The exponent always contains at
least two digits. However. if the exponent in the result is
greater than or equal to 100, the result contains additional
exponent digits.

f: converts the double argument to fraction form. such as
-517.297. A positive number has no leading sign. The
number of digits following the decimal point is equal to the
precision specification. If the precision is not specified,
fprintf sets it to 6. If the precision is zero, no decimal
point appears. If the result contains a decimal point, at
least one digit appears before it. fprintf rounds the value
to the appropriate number of digits.

g, G: converts the double argument in style f or e (or in style E
in the case of a G format code) , with the precision
specifying the number of significant digits. The style
fprintf uses depends on the value it converts. It uses
style e only if the exponent resulting from the conversion is
less than -4 or greater than the prec1s1on. It removes
trailing zeros from the result. A decimal point appears only
if it is followed by a digit.

11: stores the number of characters produced so far in the data
object designated by the next argument in sequence. The
argument must be of type pointer to int. It converts no
arguments.

p: converts the pointer to i·oid argument to a hexadecimal
number. using the letters ABCDEF. The number of digits in
the result is determined by the field width.

s: copies the string pointed at by the pointer to char argument
to produce the result. Characters are copied up to but not
including the terminating null character. If the precision is
specified. no more characters are copied other than that
value.

C Library Reference

RETURNS

EXAMPLE

SEE ALSO

NOTES

fprintf

If the character after % is not valid for a conversion specification.
f print f writes it out as literal text. Do not use this feature.
however. since future versions of fprintf may define additional
conversion specifications.

A nonexistent or small field width does not cause truncation of a
result. If the result is wider than the specified field width.
fprintf expands the field width to contain the conversion result.

fprintf returns the number of characters in the conversion. If a
write error occurs. or if pf does not point at a FILE structure
controlling an open file. it returns a negative number.

To print an error diagnostic:

fprintf(stderr, "%d errors in file %s\n", nerrors, fname);

To generate a ten digit octal result with leading zeros:

fprintf(stdout, "%.*o\n", 10, i);

print f, sprint f

A call with more conversion specifiers than argument variables will
cause unpredictable results.

C Library Reference 11 - 91

fputc

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 92

fputc - write a character to output stream

#include <stdio.h>
int fputc(int c, FILE *pf);

fputc copies the character c to the stream controlled by the FILE
structure pointed at by pf. fputc then increments the associated
file pointer by one byte.

fputc returns the value of the character copied to the stream.
The character value is type cast to unsigned char. If a write
error occurs, or if pf does not point at a FILE structure
controlling an open file. fputc returns the value EOF.

To copy a text file. character by character:

FILE *ipf, *opf;

ipf = fopen("infile.data", "r");
opf = fopen("outfile.data", "w");
while ((c = fgetc(ipf)) != EOF)

fputc(c, opf);

fgetc, getc. getchar. putc. putchar

<stdio.h> does not define fputc as a macro. putc is superior
to fputc in this regard. even though you must exercise care in
calling putc.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

fputs

fputs - write a text line to output stream

#include <stdio.h>
int f puts (cons t char *s, FILE *pf) ;

fputs copies characters from the buffer
stream controlled by the FILE structure
not copy the terminating null character.
associated file pointer by the number of

starting at s to the
pointed at by pf. It does
fputs increments the

bytes it copies.

fputs returns zero if any characters are written and no write
error occurs. fputs returns a nonzero value if a write error
occurs. or if pf does not point at a FILE structure controlling an
open file.

To copy a text file. line by line:

FILE *ipf, *opf;
char buf [80);

ipf c fopen("infile.data", "r");
opf = fopen("outfile.data", "v");
while (fgets(buf, sizeof buf, ipf))

fputs(buf, opf);

fgets. gets. puts

C Library Reference 11 - 93

£read

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 94

tread - read records from input stream

#include <stdio.h>
size t fread(void *ptr, size t size, size t nelem, FILE *pf);

f read copies array elements from the stream controlled by the
FILE structure pointed at by pf. Each element occupies size bytes
of storage. The first element begins at (char *)ptr. fread reads
at most nelem elements. It then increments the file pointer by
the number of bytes actually read.

If a read error occurs or if fread reads a partial element. the
resulting value of the file pointer is indeterminate. You can use
the f error and f eof functions to distinguish between a read error
and end of file.

fread returns the number of whole elements actually read. which
may be less than nelem if it encounters a read error or end of
file. If either size or 11elem is zero, or if pf does not point at a
FILE structure controlling an open file, f read returns zero.

To copy a file by records:

while (fread(buf, sizeof buf, 1, ipf))
fwrite(buf, sizeof buf, 1, opf);

fwrite

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

freopen

freopen - open a file with existing stream

#include <stdio.h>
FILE *freopen(const char *f11ame, const char *type, FILE *pf);

f reopen closes the file controlled by the FILE structure pointed at
by pf. If the close fails. freopen ignores the failure. It then
opens the file with name (name. initializes the same FILE structure
for operation with this file. and connects a stream to it. The
(name and type arguments are the same as for f open.

freopen returns pf if the open succeeds. Otherwise it returns a
null pointer.

To make "xyz.err" the standard error file:

if (!freopen("xyz.err", "v", stderr))
{
printf("can't set up standard error file\n");
exit(BAD);
}

f close, fopen

C Library Reference 11 - 95

fscanf

NAME

SYNOPSIS

FUNCTION

11 - 96

fscanf - read formatted arguments from input stream

#include <stdio.h>
int fscanf(FILE *pf,, const char *fmt, •••) ;

fscanf reads input text from the file controlled by the FILE
structure pointed at by pf, and converts it to values of various
types under control of a format string pointed at by fmt. It
stores these values in data objects designated by a series of
pointer arguments specified by its variable length argument list.

The format string consists of literal text to be matched on input.
interspersed with "conversion specifications" that determine how
fscanf interprets arguments and how it will convert values to be
stored. If you specify insufficient arguments for the format string.
the results are unpredictable. If fscanf exhausts the format string
while arguments remain. it ignores the excess arguments. fscanf
returns when it encounters a character it does not expect. the end
of the format string. the end of file. or a read error.

The format string may contain:

* Any number of spaces. horizontal tabs. and newline
characters which cause input to be read up to the next
character that is not whitespace.

* An ordinary character other than % which must match the
next character of the input stream.

Each conversion specification consists of the character %, an optional
assignment suppressing character *· an optional maximum field
width, an optional h. 1. or L indicating the size of the receiving
object, and a "conversion specifier."

A conversion specifier directs the conversion of the next input field.
fscanf places the result in the data object designated by the
value of the subsequent pointer argument, unless you specify
assignment suppression indicated by a *· Except for the
conversion specifiers c and [] . an input field is a string of
characters other than spaces. It extends to the next conflicting
character or until fscanf exhausts the field width. if specified.

The conversion specifier determines the interpretation of the next
input field. If the field does not meet this expectation. f scant
returns to its caller. Otherwise. the corresponding pointer argument
must be a pointer to the appropriate type. The conversion
specifier is one of the following:

%: expect a single %. No assignment occurs. If the character
after % is not a valid conversion character. the behavior is
undefined.

c: expect any character. The subsequent argument must be of
type pointer to char. This conversion specifier suppresses
the default fscanf behavior of skipping over spaces. To

C Library Reference

fscanf

skip over spaces before obtaining a character, use %ls and
leave room for a terminating null character. If you specify
a field width. the corresponding argument must point at the
first element of an array big enough to hold the specified
number of characters.

d: expect a decimal integer. The subsequent argument must be
of type poi11ter to int. The input format is an optionally
signed sequence of decimal digits.

e, f, g: expect a real number. The subsequent argument must be
of type pointer to float. The field may have an optionally
signed sequence of decimal digits. possibly containing a
decimal point. followed by an optional exponent field
consisting of an E or e. followed by an optionally signed
sequence of decimal digits.

i: expect an integer. The subsequent argument must be of
type pointer to int. If the input field begins with the
characters Ox or OX. the field is a hexadecimal integer. The
rest of the field is a sequence of zero or more hexadecimal
digits. If the input field begins with the character 0. the
field is an octal integer. The rest of the field is a
sequence of zero or more octal digits. Otherwise. the field
is a decimal integer. The rest of the field is an optionally
signed sequence of decimal digits.

n: consume no input. The subsequent argument must be of
type pointer to int. The value that fscanf stores is the
number of characters read so far on this call to fscanf.

o: expect an octal integer. The subsequent argument must be
of type pointer to int. The field may have an optionally
signed sequence of octal digits,

p: expect a pointer. The subsequent argument must be of
type pointer to pointer to void. The field should be
printable text produced by the %p conversion of f print f.
For any input other than a value produced earlier during
the same program execution. the behavior of the %p
conversion is unpredictable.

s: expect a character string. The subsequent argument must
be of type pointer to char. and must point to an array
large enough to hold the input field plus a terminating null
character. fscanf adds the terminating null character
automatically. The input field terminates before a space.
horizontal tab. or newline.

u: expect an unsigned decimal integer. The subsequent
argument must be of type pointer to i11t. The input format
is an optionally signed sequence of decimal digits.

x: expect a hexadecimal integer. The subsequent argument
must be of type poi11f(Jr to int. The field may have an
optionally signed sequence of hexadecimal digits.

[: expect a string that is not delimited by spaces. The
subsequent argument must be of type pointer to char. just

C Library Reference 11 - 97

fscanf

RETURNS

EXAMPLE

SEE ALSO

11 - 98

as for %s. Follow the left bracket with a set of characters
and a right bracket. The characters between the brackets
define the set of characters making up the string. If the
first character is not a circumflex •. the input field consists
of all characters up to the first character that is not in the
set between the brackets. If the first character after the
left bracket is a circumflex. the input field consists of all
characters up to the first character that is in the set of
the remaining characters between the brackets. After
copying the input field. f scan£ then stores a null character
following the last character copied.

You may precede the conversion characters d, i. o, u. and x with
1 to indicate that the subsequent argument is of type pointer to
long rather than pointer to int, or by h to indicate that it is of
type pointer to short. Similarly. you may precede the conversion
characters e and f with 1 to indicate that the subsequent argument
is of type pointer to .double rather than pointer to float, or by L
to indicate type pointer to long double.

You may write E for e, G for g. or X for x. This has no effect
on the conversion performed. however. For either form, fscanf
accepts both uppercase and lowercase letters in the input field.

If conversion terminates on an unexpected input character. fscanf
leaves that character unread in the input stream. It calls the
function ungetc to push the character back into the input stream.
It will leave trailing whitespace. including a newline, unread unless
matched in the format string. The success of literal matches and
suppressed assignments is not directly determinable except via the
%n conversion specifier.

fscanf returns the number of input fields converted and assigned.
This number can be zero if f scan£ encounters unexpected input
before the first field is converted and assigned. f scanf returns
the value EOF if it encounters end of file before the first
unexpected input or conversion and assignment, or if pf does not
point at a FILE structure controlling an open file.

If a range error occurs, fscanf sets errno to ERANGE and stores
a special value in the data object. For a floating type. this
special value is HUGE VAL for positive values too large to represent,
or -HUGE VAL for negative values too large to represent. For
integer types, it is the largest representable value of the
appropriate sign.

To read a hexadecimal number into a long:

long hexlong;

fscanf(infile, "%8Lx", &hexlong);

scan£, sscanf. ungetc

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

fseek

fseek - set file pointer

#include <stdio.h>
int fseek(FILE *pf, long /off, int sense);

fseek sets the file pointer for the stream controlled by the FILE
structure pointed at by pf.

For a binary stream connected to a fixed record format file. the
file pointer is set to the signed distance in bytes that !off specifies
from the position that sense specifies. The specified position is

* The beginning of the file if sense has the value SEEK_ SET

*

*

The current position if sense has the value SEEK CUR

The end of the file if sense has the value SEEK END.

No other value of sense is valid. The C library may append one
or more null characters to the end of a fixed record format file.
Remember this if you call fseek with sense equal to the value
SEEK END.

For any stream. including a text stream or a binary stream
connected to a variable length record format file, you may specify
either:

*

*

An offset of zero. and any of the values for sense described
above

An offset equal to the value of a file pointer returned by a
call to ftell. with sense equal to the value SEEK_ SET.

The first choice sets the file pointer just as for a binary stream.
The second choice sets the file pointer to the same position it had
when you obtained the value by calling ftell. Use only values
returned for the same stream. Do not close the file controlled by
that stream between the call to ftell and the call to fseek.

The return value from ftell is valid only if

*

*

The current file pointer is within the first 32. 768 bytes of
the start of a physical record in the file

The physical record is one of the first 131. 07 2 records of
the file.

ftell returns -1 for all other file positions, which is not an
acceptable value of /off for fseek.

fseek eliminates any effects of an earlier call to ungetc, if you
have not read the character pushed back in the interim. After an
fseek call. the next operation on a stream opened for update may
be either input or output.

fseek returns a nonzero value for invalid arguments if the file
cannot support the requested change in file pointer. or if pf does

C Library Reference 11 - 99

fseek

EXAMPLE

SEE ALSO

NOTES

11 - 100

not point at a FILE structure controlling an open file.

To go to the record indicated by index in a binary file:

fseek(pf, (long)(index * sizeof (struct record)), SEEIC~SET);

fopen, ftell. rewind, ungetc

A system restriction prohibits performing seek operations with VBS
(Variable Block Span) files under MVS and MVS/XA.

A restriction prohibits seeking on a member of a partitioned
dataset which is opened for writing. updating. or appending under
MVS and MVS/XA.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

ftell - get file pointer

#include <stdio.h>
long ftell(FILE *pf);

ftell

ftell gets the current value of the file pointer for the stream
controlled by the FILE structure pointed at by pf. You can use
this value in a later call to fseek to return the file pointer to its
position at the time of the f tell call.

For a binary stream connected to a fixed record format file. the
value of the file pointer is the offset in bytes from the beginning
of the file. For a text file or variable length record format binary
file, the file pointer is an encoded value. This value is valid if

* The current file position is within the first 32,768 bytes of
the start of a physical record in the file

* The physical record is one of the first 131.072 records of
the file

ftell may return -1 for any other file positions. which is not an
acceptable value for use on a later call to fseek. Note that a
file positioned at byte 32768 of record 131072 may also cause
ftell to return -1.

ftell returns the current value of the file pointer. The value is
-1 if it cannot encode the file position in the file pointer, or if pf
does not point at a FILE structure controlling an open file.

To save the current position in a text file to return to later:

fprintf(pf, "total: xxxxx\n");
marker = ftell(pf);

fseek(pf, marker, SEEK SET);
fprintf(pf, "total: %5I\n", total);

f seek. rewind

The difference between two file pointers is meaningful only for a
stream connected to a fixed record format file. In this case. the
difference measures the number of bytes in the file between the
two file positions. For text files. variable length record format
files on VM/CMS. and all file types on MVS and MVS/XA except
F. FA. FBS. and FBSA. the file pointer is an encoded value.

C Library Reference 11 - 101

fwrite

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 102

fwrite - write records to output stream

#include <stdio.h>
size t fwri te(const void *ptr, \
size - t size, size t nelem, FILE *pf);

fwri te copies array elements to the stream controlled by the FILE
structure pointed at by pf. Each element occupies size bytes of
storage. The first element begins at (char *)ptr. fwri te copies
nelem elements. It then increments the file pointer by the number
of bytes written.

If a write error occurs. the resulting value of the file pointer is
unpredictable.

fwri te returns the number of whole items actually written. which
may be less than nelem if a write error occurs. If either size or
nelem is zero, or if pf does not point at a FILE structure
controlling an open file. fwri te returns zero.

To copy a file record by record:

while (fread(buf, sizeof buf, 1, ipf))
fwrite(buf, sizeof buf, 1, opf);

fread

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

getc - read a character from input stream

#include <stdio.h>
int getc(FILE *pf);

getc obtains the next input character. if any, from the stream
controlled by the FILE structure pointed at by pf. getc then
increments the associated file pointer by one byte.

getc

<stdio.h> defines getc as a macro that expands to an expression
that evaluates pf more than once. If you must write this
argument with side effects. call the equivalent function fgetc or
use the #undef preprocessor directive to remove any macro
definition for the identifier getc.

getc returns the value of the next character from the input
stream pointed at by pf. The character value is type cast to
unsigned char. If getc encounters end of file or a read error, or
if pf does not point at a FILE structure controlling an open file.
it returns the value EOF.

To copy a text file. character by character:

FILE *ipf, *opf;

ipf = fopen("infile.data", "r");
opf = fopen("outfile.data", "w");
while ((c = getc(ipf)) != EOF)

putc(c, opf);

fgetc, fputc, getchar, putc. putchar

C Library Reference 11 - 103

getchar

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 104

getchar - read a character from standard input

#include <stdio.h>
int getchar(};

getchar obtains the next input character, if any, from the
standard input stream. getchar then increments the associated file
pointer by one byte.

getchar returns the value of the next character from the standard
input stream. The character value is type cast to u11signed char.
If getchar encounters end of file or a read error. or if stdin
does not control an open file. it returns the value EOF.

To copy a text file, character by character:

while ((c = getchar(}} != EOF}
putchar(c};

fgetc, fputc, getc. putc. putchar

C Library R~ference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

'
/

gets - read a text line from standard input

#include <stdio.h>
char *gets(char *s);

gets

gets copies characters, from the standard input stream. to the
buffer starting at s. gets copies characters until it encounters a
newline character or reaches end of file. If it encounters a
newline character. it discards it and stores a null character
immediately following the last character copied into s.

gets returns s if any characters are copied and no read error
occurs. If it reaches end of file before copying any characters. or
if stdin does not con:trol an open file, gets returns a null pointer.
If a read error occurs. the contents of s are unpredictable and
gets returns a null pointer.

To copy standard input to standard output:

while (gets(buf) &&
!puts(buf))

fgets, fputs, puts

There is no definite limit on the size of the line that gets reads.
fgets is superior to gets in this regard.

C Library Reference 11 - 105

perror

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 106

perror - map error number

tinclude <stdio.h>
const char *perror(const char *s);

perror maps the error number stored in errno to an error
message. perror provides informative error messages for all of
the values that the C library stores in errno. errno may have
any stored value. If s is not a null pointer. and errno is
nonzero, perror writes a line to the standard error stream
consisting of the string that s points to. a colon. a space. the
error message. and a newline.

If s is a null pointer. perror returns a pointer to the error
message string and performs no output.

perror returns a pointer to the error message string if s is a
null pointer. Otherwise perror returns a null pointer.

The statement

if (errno)
perror("quadrature function");

might produce the output

quadrature function: range error

<math.h>. <stdefs.h>

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

printf

printf - write formatted arguments to standard output

#include <stdio.h>
int printf(const char *fmt, •••);

print f converts a series of arguments specified by its variable
length argument list to printable text. It writes this printable text
to the standard output stream. under control of a format string
pointed at by fmt. Its behavior is entirely equivalent to the call

fprintf(stdout, fmt, •••)

with the same variable length argument list.

printf returns the number of characters in the conversion. If a
write error occurs, or if stdout does not control an open file, it
returns a negative number.

To print arg. which has type double and the decimal value
5100.53:

printf("%8.2f\n", arg);
printf("Z*.*f\n", 8, 2, arg);

Both forms will output:

, 5100.53'

Note that the first character of the above output is a blank space.

fprintf, sprintf

C Library Reference 11 - 107

putc

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 108

putc - write a character to output stream

#include <stdio.h>
int putc{int c, FILE *pf);

putc copies the character c to the stream controlled by the FILE
structure pointed at by pf. 'I'he file pointer associated with that
stream determines where in the file that c is copied. putc then
increments the associated file pointer by one byte.

<stdio.h> defines putc as a macro that expands to an expression
that evaluates pf more than once. If you must write this
argument with side effects. call the equivalent function fputc or
the #undef preprocessor directive to remove any macro definition
for the identifier putc..

putc returns the value of the character copied to the stream.
The character value is type cast to 1111signed char. If a write
error occurs, or if pf does not point at a FILE structure
controlling an open file. putc returns the value EOF.

To copy a text file. character by character:

FILE *ipf, *opf;

ipf = fopen{"infile.data", "r");
opf = fopen{"outfile.data", "w");
while {{c = getc{ipf)) != EOF)

putc{c, opf);

fgetc. fputc. getc. getchar. putchar

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

putchar - write a character to standard output

#include <stdio.h>
int putchar(int c);

putchar

putchar copies the character c to the standard output stream.
The file pointer associated with that stream determines where in
the file that c is copied. putchar then increments the associated
file pointer by one byte.

putchar returns the value of the character copied to the stream.
The character value is type cast to unsigned char. If a write
error occurs. or if stdout does not control an open file, putchar
returns the value EOF:

To copy a text file. character by character:

while ((c = getchar()) != EOF)
putchar(c);

fgetc, fputc. getc. getchar. putc

C Library Reference 11 - 109

puts

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 110

puts - write a text line to standard output

#include <stdio.h>
int puts(const char *s);

puts copies characters from the string starting at s to the
standard output stream. It does not copy the terminating null
character. It then writes a newline character to the stream.

puts returns zero if any characters are written and no write error
occurs. puts returns a nonzero value if a write error occurs. or if
stdout does not control an open file.

To copy the standard input to the standard output:

while (gets(buf) &&
!puts(buf))

fgets, fputs. gets

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

remove

remove - remove a file

#include <stdio.h>
int remove(cons t char *fname);

remove removes the file with name fname. You cannot open the
file after you remove it. For files with cataloged MVS names or
CMS filenames. you may create a new file with the same name
after you remove a file. Files accessed using a data definition (a
DD statement under MVS or a FILEDEF under VM/CMS) cannot
be removed. An attempt to reopen a data definition name file
with invalid file attributes will fail.

The file must not be open when you remove it.

remove returns a nonzero value if the file does not exist or if
remove cannot remove it.

To use and remove a file:

pf= fopen("x.y", "w");
process{pf);
if (remove ("x. y"))

printf("can't remove file\n");

rename. tmpnam

C Library Reference 11 - 111

rename

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 112

rename - change file name

iinclude <stdio.h>
int rename(const char *old, const char *new);

rename changes the name of the file with name old to the name
new. If it is necessary to copy the file to change the name.
rename will fail.

The file must not be open when you rename it.

Under VM/CMS, rename returns a nonzero value if the file does
not exist or if it cannot rename the file. Under MVS. rename is
not implemented and always returns failure.

To rename a test file:

if (rename(otest, ntest))
printf("can't rename %s\n", otest);

remove

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

rewind - set file pointer to beginning of file

#include <stdio.h>
void rewind(FILE *pf);

rewind

rewind sets the file pointer for the stream controlled by the FILE
structure pointed at by pf to the beginning of the file. It also
resets the end of file and error indicators.

The function call rewind(pf) is equivalent to the expression

(void) fseek(pf, OL, SEEK_SET)

Nothing.

To change modes from writing to reading:

while (fill_up(s) && !fputs(s, pf))
;

rewind(pf);
while (fgets(s, BUFSIZ, pf))

empty(s);

f seek

C Library Reference 11 - 113

scanf

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 114

scant - read formatted arguments from standard input

#include <stdio.h>
int scanf (cons t char *fmt, •••) ;

scanf reads input text from the standard input stream. and
converts it to values of various types under control of a format
string pointed at by fmt. It stores these values in data objects
designated by a series of pointer arguments specified by its variable
length argument list. Its behavior is entirely equivalent to the call

fscanf(stdin, fmt, •••)

with the same variable length argument list.

scanf returns the number of input fields converted and assigned.
This number can be zero if scanf encounters unexpected input
before the first field is converted and assigned. scanf returns the
value EOF if it encounters end of file before the first unexpected
input or conversion and assignment, or if stdin does not control
an open file.

To emit a warning in response to a request:

printf("are you sure? ");
fflush(stdout);
if (scanf("%c", &ans) && (ans -- 'Y' I I ans

return (YES);

fscanf, sscanf

C Library Reference

'Y'))

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

setbuf

setbuf - set stream buffer

iinclude <stdio.h>
void setbuf(FILE *pf, char *buf);

setbuf causes the stream controlled by the FILE structure pointed
at by pf to use as its buffer the buffer pointed at by bu(. If
you call setbuf after a file is opened and before you call a
function that reads or writes the stream connected to the open
file, then no buffer will be dynamically allocated on the first read
or write to the stream. If you call setbuf for a stream after the
first read or write to the stream, any output is flushed from the
current buffer. If the current buffer is dynamically allocated by
the C library, it is deallocated.

You must provide a buffer that occupies at least BUFSIZ bytes.
Storage for the buffer must not be deallocated until after the file
is closed. If the buffer has dynamic lifetime. close the file before
control leaves the block that allocates the buffer. Once you close
the file. the buffer disappears. It will not be reused if the stream
that controlled the file is used when another file is opened.

Do not store into the buffer while the file is open. The C library
may choose not to use the buffer you provide. or to use it in
ways you cannot anticipate. Do not access the buffer while the
file is open.

Nothing.

To force stdout to use a preferred buffer:

static char mybuf[BUFSIZ];

setbuf(stdout, mybuf);

fopen, freopen. fclose. setvbuf

setbuf is an older function that performs just one of the services
offered by setvbuf. setvbuf is superior to setbuf in this regard.

C Library Reference 11 - 115

setvbuf

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 116

setvbuf - set stream buffering strategy

#include <stdio.h>
int setvbuf(FILE *pf, char *buf, int type, int 11);

setvbuf sets the buffering strategy to the type of strategy you
specify for the stream controlled by the FILE structure pointed at
by pf. type must have one of the following values:

IOFBF - to specify full buffering. The buffer is flushed only
- when it is full, when you call f flush. or when you close

the file.

_IOLBF - to specify line buffering. The buffer is flushed when
the buffer is full. when you write a newline character to the
stream, when you read from the stream. or when you close
the file.

_IONBF - to specify no buffering. The buffer is flushed
whenever you write to the stream.

If pf is not a null pointer it also causes the stream to use as its
buffer the buffer pointed at by buf. The length of the buffer is
n. fl' you call setvbuf after a file is opened and before you call
a function that reads or writes the stream connected to the open
file, then no buffer will be dynamically allocated on the first read
or write to the stream. If you call setvbuf for a stream after
the first read or write to the stream. setvbuf sets the read/write
error indicator.

If you specify a buffer. storage for the buffer must not be
deallocated until after the file is closed. If the buffer has dynamic
lifetime, close the file before control leaves the block that allocates
the buffer. Once you close the file. the buffer disappears. It will
not be reused if the stream that controlled the file is used when
another file is opened.

Do not store into the buffer while the file is open. The C library
may choose not to use the buffer you provide. or to use it in
ways you cannot anticipate. Do not access the buffer while the
file is open.

setvbuf returns a nonzero value if you specify invalid arguments.
or if pf does not point at a FILE structure controlling an open
file.

To force s tdou t to use a preferred buffer:

static char mybuf[4096];

setvbuf(stdout, mybuf, _IOFBF, sizeof mybuf);

C Library Reference

setvbuf

SEE ALSO
fopen. £reopen. £close. setbuf

C Library Reference 11 - 117

sprintf

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 118

sprintf - write formatted arguments to a string

#include <stdio.h>
int sprintf(char *s, const char *fmt, •••);

sprintf converts a series of arguments specified by its variable
length argument list to printable text. It stores this printable text
in the buffer pointed at by s. under control of a format string
pointed at by fmt. Its behavior is otherwise the same as that of
fprin t f, called with the same variable length argument list.

sprint f stores a null character immediately after the last character
stored in the buffer. You must provide a buff er large enqugh to
store all of these characters.

sprintf returns the number of characters in the conversion. This
does not include the null character.

To center a title:

extern int width;
int n;
n = sprintf(buf, "%i %s, Year %i", day,

moo str[mo], year);
printf("%*s\n", (width+ n) I 2, buf);

fprintf, printf

C Library Reference

\

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

sscanf

sscanf - read formatted arguments from a string

#include <stdio.h>
int sscanf (char *s, const char *fmt, •••) ;

sscanf obtains input text from the string pointed at by s. and
converts it to values of various types under control of a format
string pointed at by (mt. It stores these values in data objects
designated by a series of pointer arguments specified by its variable
length argument list. Its behavior is otherwise the same as that
of fscanf. called with the same variable length argument list.

sscanf returns the number of input fields converted and assigned.
This number can be zero if sscanf encounters unexpected input
before the first field is converted and assigned. sscanf returns
the value EOF if it encounters the terminating null character for
the string before the first unexpected input or conversion and
assignment.

To expand tabs before converting input text:

while (fgets(buf, sizeof buf, stdin))
{
expand(buf, tab stops);
n = sscanf(buf,-fmt, &vl, &v2, &v3);
process(n, &vl, &v2, &v3);
}

fscanf. scanf

C Library Reference 11 - 119

tmpfile

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 120

tmpfile - create temporary file

linclude <stdio.h>
FILE *tmpfile{);

tmpfile creates a temporary file. opens it as a binary stream in
update mode. initializes a FILE structure for operation with the
file, and connects a stream to it. The C library automatically
removes a temporary file when you close the file or when your
program terminates.

tmpfile returns a pointer to the FILE structure controlling the
stream if it opens the file. Otherwise it returns a null pointer.

To create and use a temporary file:

pf = tmpf ile{);
passl{pf);
rewind{pf);
pass2{pf);

tmpnam

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

tmpnam - generate temporary file name

#include <stdio.h>
char *tmpnam(char *s);

tmpnam

tmpnam creates a file name that you can use as the name of a
temporary file. and stores the name as a string in memory. It
chooses a file name which is likely not to conflict with normal
user file names. tmpnam generates a different name each time you
call it. It will generate a minimum of TMP _MAX unique names.

The format of the file name is $11111111111111.CTEMP under CMS.
where 11111111111111 is a sequentially assigned integer value. Under
MVS and MVS/XA. tmpnam returns a DDname corresponding to a
unique system generatf)d dataset name. The dataset is always
deleted at the end of your batch job or terminal session. See
OSNS2 MVS JCL (GC28-0962) for more information on system
generated temporary dataset names.

Call fopen or freopen with the file name to open the file. Call
f close and remove to remove the file before your program
terminates.

If s is a null pointer, tmpnam stores the temporary file name in a
static buffer. Otherwise. s must be a buffer whose length is at
least L tmpnam bytes. tmpnam stores the temporary file name into
this bUffer.

tmpnam returns a pointer to the buffer where it stores the file
name.

To obtain a set of temporary file names:

for (i = O; i < NFILES; ++i)
tmpnam(&temp_file[i]);

tmpf ile

If you call tmpnam again. it may overwrite its static buffer. Make
sure you copy out the name. or use it as often as you need.
before calling tmpnam again.

Under VM/CMS. if you invoke multiple C programs in the same
environment. both may obtain the same name from tmpnam.

C Library Reference 11 - 121

ungetc

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 122

ungetc - push character back into input stream

#include <stdio.h>
int ungetc(int c, FILE *pf);

ungetc pushes back the character c into the stream controlled by
the FILE structure pointed at by pf. The character is retained
until you read it or until you call fseek or rewind on the stream.
It is never written to the file. You need not push back the same
character you read.

The C library supports only one character of push back for each
stream. Remember that the functions fscanf and scanf may call
ungetc just before they return.

ungetc returns the value of the character if it can push the
character back. The character value is type cast to unsigned char.
If it cannot push back the character. or if pf does not point at a
FILE structure controlling an open file, ungetc returns the value
EOF.

To read an identifier:

#include <stdio.h>
#include <ctype.h>

main()
(
unsigned char ident[30], c;
int i;

if (isalpha(c = getchar()))
for (i = 0, ident[O] = c; \

(c = getchar()) != EOF;)
if (!(isalpha(c) I I isdigit(c) I I c == ' '))

(
ungetc(c, stdin);
break;
}

else if (++i < sizeof (ident))
ident[i) = c;

ident[++i] = '\0';
printf("identifier is: %s\n", ident);
}

fgetc. fseek. getc. getchar. rewind

C Library Reference

\
)

/

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

vfprintf - write formatted argument list to output stream

#include <stdio.h>
#include <stdarg.h>
int vfprintf(FILE *pf, const char *fmt, va list arg);

vfprintf

vfprintf converts a series of arguments specified by a variable
length argument list to printable text. It writes this printable text
to the stream controlled by the FILE structure pointed at by pf.
under control of a format string pointed at by fmt. You must
store information on the variable length argument list in arg. by
expanding the macro va start. Do this in the function that
contains the variable length argument list.

vfprintf otherwise behaves the same as fprintf called directly
with the same variable length argument list.

vfprintf returns the number of characters in the conversion. If
a write error occurs, or if pf does not point at a FILE structure
controlling an open file. it returns a negative number.

To write to two streams at once:

void twoprint(char *fmt, .•.)
{
va_list ap;

va start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);

va start(ap, fmt);
vprintf(fmt, ap);
va end(ap);
} -

<stdarg.h>. fprintf. vprintf. vsprintf

C Library Reference 11 - 123

vprintf

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 124

vprintf - write formatted argument list to standard output

#include <stdio.h>
#include <stdarg.h>
int vprintf(const char */mt, va list arg);

vprintf converts a series of arguments specified by a variable
length argument list to printable text. It writes this printable text
to the standard output stream. under control of a format string
pointed at by /mt. You must store information on the variable
length argument list in arg. by expanding the macro va _start.
Do this in the function that contains the variable length argument
list.

vprin t f otherwise behaves the same as print f called directly with
the same variable length argument list.

vprintf returns the number of characters in the conversion. If a
write error occurs, or if s tdou t does not control an open file. it
returns a negative number.

To write to two streams at once:

void twoprint(char *fmt, ..•)
{
va_list ap;

va start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);

va start(ap, fmt);
vprintf(fmt, ap);
va end(ap);
} -

<stdarg.h>. fprintf. vfprintf. vsprintf

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

vsprintf - write formatted argument list to a string

#include <stdio.h>
#include <stdarg.h>
int vsprintf(char *s, const char *fmt, va list arg);

vsprintf

vsprintf converts a series of arguments specified by a variable
length argument list to printable text. It stores this printable text
in the buffer pointed at by s. under control of a format string
pointed at by (mt. You must store information on the variable
length argument list in arg. by expanding the macro va start.
Do this in the function that contains the variable length- argument
list.

vprintf otherwise behaves the same as sprintf called directly
with the same variable length argument list.

sprintf returns the number of characters in the conversion.

To center all output:

#include <stdio.h>
linclude <stdarg.h>

main()
{
void center_print();

center print(80, "Annual Report");
} -

void center_print(int vidth, char *fmt, ••.)
{
va list ap;
char buf[133];
int n;

va start(ap, fmt);
n : vsprintf(buf, fmt, ap);
printf("%*s\n", (vidth + n) I 2, buf);
va end(ap);
} -

<stdarg.h>. fprintf. vfprintf. vprintf

C Library Reference .. 11 - 125

stdlib.h

NAME

SYNOPSIS

FUNCTION

11 - 126

stdlib.h - header file for general utilities

#include <stdlib.h>

The header file <stdlib.h> declares functions that may be used to
perform a variety of services. including: storage allocation.
conversion of printable text to arithmetic types. and program
termination.

<stdlib.h> defines the following type:

onexit t - a scalar type used as the argument type and return
-value type for onexi t.

<stdlib.h> declares the following functions:

abort - terminate program execution

atof - convert buffer to floating.

atoi - convert buffer to integer.

atol - convert buffer to long integer.

calloc - allocate and clear storage.

exit - terminate program execution.

free - free storage.

getenv get environment variable.

malloc allocate storage.

abnormally.

onexit call function on program termination.

rand - generate pseudo random number.

realloc - reallocate storage.

srand - seed pseudo random number generator.

strtod - convert buffer to floating with error checking.

strtol - convert buffer to long integer with error checking.

system - execute a command.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

abort - terminate program execution abnormally

#include <stdlib.h>
void abort();

abort reports the signal SIGABRT by calling kill. If kill

abort

returns. abort then calls exit with a nonzero argument to indicate
unsuccessful termination.

abort never returns to its caller.

To terminate if a routine cannot access a file:

if (!(fp = fopen(DBMASTER, "r+b")))
{
printf("can't open database index master\n");
abort();
}

assert. exit. kill. onexi t. signal

C Library Reference 11 - 127

atof

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 128

atof - convert buffer to floating

#include <stdlib.h>
double atof(const char *11ptr);

atof converts the string at 11ptr to a value of type double. It
interprets the string as the text representation of a real number.
The string may have leading whitespace. an optionally signed
sequence· of decimal digits. possibly containing a decimal point,
followed by an optional exponent field consisting of an E or e
followed by an optionally signed sequence of decimal digits. The
text representation ends just before the first character that does
not satisfy this format.

atof returns the converted double value. It returns zero if no
characters are converted.

To read a string and convert it as a floating constant:

fgets(buf, sizeof buf, stdin);
d = atof(buf);

atoi. atol. strtod. strtol

atof does not check for overflow or underflow. It provides no
way to determine how many characters are converted. The
function strtod is superior to atof in this regard.

C Library Reference

\
j

/

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

atoi

atoi - convert buffer to integer

#include <stdlib.h>
int atoi(const char *11pt1');

atoi converts the string at 11ptr to a value of type int. It
interprets the string as the text representation of an integer. The
string may have leading whitespace. followed by an optionally signed
sequence of decimal digits. The text representation ends just
before the first character that does not satisfy this format.

atoi returns the converted int value. It returns zero if no
characters are converted.

To read a string and convert it as a integer constant:

fgets(buf, sizeof buf, stdin);
i = atoi(buf);

atof, atol, strtod. strtol

atoi does not check for overflow. It provides no way to
determine how many characters are converted. The function
strtol is superior to atoi in this regard.

C Library Reference 11 - 129

atol

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 130

atol - convert buffer to long integer

#include <stdlib.h>
int atol(const char *11ptr);

atol converts the string at 11ptr to a value of type /011g. It
interprets the string as the text representation of an integer. The
string may have leading whitespace, followed by an optionally signed
sequence of decimal digits. The text representation ends just
before the first character that does not satisfy this format.

atol returns the converted long value. It returns zero if no
characters are converted.

To read a string and convert it as a long constant:

fgets(buf, sizeof buf, stdin);
i = atol(buf);

atof. atoi. strtod. strtol

atol does not check for overflow. It provides no way to
determine how many characters are converted. The function
strtol is superior to atol in this regard.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

li:XAMPLE

SEE ALSO

calloc

calloc - allocate and clear storage

#include <stdlib.h>
void *calloc(size_t 11ele111, size t elsize);

calloc allocates storage for a data object whose size in bytes is
the product of nelem and el.size. It then stores a null character
in each of these bytes. The allocated storage is aligned on a
storage boundary acceptable for any data object type.

calloc returns a pointer to the allocated storage. if there is
enough storag·e available. Otherwise it returns a null pointer.

To allocate and set to zero an array of ten doubles:

double *pd;

pd = calloc(lO, sizeof *pd);

free. malloc. realloc

C Library Reference 11 - 131

exit

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 132

exit - terminate program execution

#include <stdlib.h>
void exit (int status);

exit calls all functions registered with onexi t in reverse order of
registry, closes all files, removes . temporary files, and terminates
program execution. You call exit with a status value of zero to
indicate successful termination. Any noniero value indicates some
form of unsuccessful ·termination.

exit will never return to its caller.

To exit with the correct status:

exit (ne.rrors I= OH

abort, onexi t

C Library Reference

\
)

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

free - free storage

#include <stdlib.h>
void free(void *ptr);

free

free deallocates storage allocated on an earlier call to calloc.
malloc, or realloc. If ptr is a null pointer. free does nothing.

You free allocated data objects to make more storage available for
later allocation.

Nothing.

You must not make use of ptr after you call free.

To give back an allocated data object:

free(pd);

calloc, malloc. realloc

Call free only with a null pointer or with a pointer value returned
earlier by calloc. malloc. or realloc.

C Library Reference 11 - 133

getenv

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 134

getenv - get environment variable

#include <stdlib.h>
char *getenv(const char *11ame);

getenv searches an externally supplied environment list for a string
of the form "NAME=value". If the string at name compares
equal to a NkME in the environment list, getenv returns a
pointer to the corresponding 11alue string. Do not store into the
string.

Under CMS. you can use the GLOBALV command to define global
variables to be used in a C program. These global variables must
be defined under the group name CENV. You use getenv to
access these global variables.

Under MVS. the environment list is empty.

getenv returns a pointer to the start of the value string if name
compares equal to NAME for that string. Otherwise getenv
returns a null pointer.

To check the environment for the global variable HYVAR:

char *r;
char *s = "HYVAR";

if ((r = getenv(s)) == NULL)
printf("GLOBAL variable HYVAR not found\n");

else
printf("GLOBAL variable HYVAR defined as: %s\n", r);

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

\

malloc

malloc - allocate storage

#include <stdlib.h>
void *malloc(size _ t nbytes);

malloc allocates storage for a data object whose size in bytes is
nbytes. The allocated storage is aligned on a storage boundary
acceptable for any data object type.

malloc returns a pointer to the allocated storage, if there is
enough storage available. Otherwise it returns a null pointer.

To allocate an array Of ten doubles:

double *pd;

pd = malloc(lO * sizeof *pd);

calloc, free. realloc

C Library Reference 11 - 135

on exit

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 136

onexit - call function on program termination

iinclude <stdlib.h>
onexit t onexit(onexit_t (*pfrmc)(void));

onexi t stores the function pointer pfunc in a static data object
internal to the C library. It returns the previous value stored in
the data object.

When your program calls exit. exit calls the function pointed at
by the value stored in the data object. It calls the function
before it closes any files or removes any temporary files. Since
exit is called when your program returns from main, the function
must not access any data objects with dynamic lifetime. All such
data objects may be deallocated before the function is called.

The function must return the value returned by onexi t when you
called onexi t with the pointer to the function. onexi t uses the
value the function returns as the address of the function earlier
stored in the static data object. In this way. all functions called
by exit are called in the reverse order that you requested.

onexi t returns a function pointer if the argument is valid.
Otherwise it returns a null pointer.

To remove your temporary files before program termination:

static onexit_t nextfunc;

static char *temp_file[NFILES];

static onexit_t cleanup()
{

exit

int i;

for (i = O; i < NFILES; ++i)
remove(temp file[i));

return (nextfunc);
)

nextfunc = onexit(&cleanup);
I* register cleanup function *I

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

\
)

rand - generate pseudo random number

#include <stdlib.h>
int rand(void);

rand

rand computes successive pseudo random integers in the range
[0, 32767]. It uses the following linear multiplicative algorithm.
which repeats every 4.294.987.296 times you call it:

static unsigned long next = 1;

int rand()
{
next = next * 1103515245 + 12345;
return ((unsigned int)(next I 65536) % 32768);
}

rand returns a pseudo random integer.

To flip a coin:

printf("%s\n", rand() < 16384
? "HEADS" : "TAILS");

srand

C Library Reference 11 - 137

realloc

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 138

realloc - reallocate storage

#include <stdlib.h>
void *realloc(void *ptr, size t 11bytes);

realloc alters the amount of storage allocated for a data object
earlier allocated by a call to calloc, malloc, or realloc. The
data object is at *ptr. The size in bytes of the new data object
is nbytes. Storage is not modified within the data object up to
the lesser of the old and new sizes. The allocated storage is
aligned on a storage boundary acceptable for any data object type.

realloc returns a pointer to the reallocated storage. if there is
enough storage available for the new data object. The new pointer
may differ from ptr even if 11bytes is smaller than the original
object. Otherwise it returns a null pointer. and the old data
object is left unaltered.

You must not make use of ptr after you call realloc.

To trim an array of doubles:

pd = realloc(pd, n * sizeof (*pd));

calloc, free. malloc

You must call realloc only with a pointer value returned earlier
by calloc, malloc, or realloc.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

srand

srand - seed pseudo random number generator

#include <stdlib.h>
void srand(unsigned int 11.seed);

srand uses 11.seed as a seed for the sequence of pseudo random
numbers that are returned on calls to rand. The same seed value
will generate the same sequence of pseudo random numbers. At
program startup. the seed value is 1.

Nothing.

To repeat a sequence ·of random numbers:

srand(l03);
passl();
srand(103);
pass2();

rand

C Library Reference 11 - 139

strtod

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 140

strtod - convert buffer to floating with error checking

#include <stdlib.h>
double strtod(const char *11ptr, char **endptr);

strtod converts the string at 11ptr to a value of type double. It
interprets the string as the text representation of a real number.
The string may have leading whitespace. an optionally signed
sequence of decimal digits. possibly containing a decimal point.
followed by an optional exponent field consisting of an E or e,
followed by an optionally signed sequence of decimal digits. The
text representation ends just before the first character that does
not satisfy this format.

A range error may or,cur.

If endptr is not a null pointer. strtod stores the pointer to the
first character that is not converted in the data object pointed at
by endptr. If no characters are converted, the pointer stored is
the value nptr, even if leading whitespace is present.

strtod returns the converted double value. It returns zero if no
characters are converted. If a range error occurs. it sets errno to
ERANGE and returns HUGE VAL for values positive and too large to
represent. If the value fS negative and too large to represent.
strtod returns -HUGE VAL.

To read a string and convert it as a floating constant:

fgets(buf, sizeof buf, stdin);
errno = O;
d = strtod(s, se);
if (errno II *se != '\n')

printf("bad number\n");

atof, atoi, atol. strtol

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

strtol

strtol - convert buffer to long integer with error checking

#include <stdlib.h>
long strtol(const char *nptr, char **e11dpt1·, int base);

strtol converts the string at 11ptr to a value of type long. It
interprets the string as the text representation of an integer. The
string may have leading whitespace followed by an optionally signed
sequence of decimal digits. The text representation ends just
before the first character that does not satisfy this format.

A range error may occur.

If endptr is not a null pointer. strtol stores the pointer to the
first character that is not converted in the data object pointed at
by endptr. If no characters are converted. the pointer stored is
the value nptr. even if leading whitespace is present.

When base is between 2 and 36. it becomes the base for
conversion. Leading zeros after the optional sign are ignored. and
a leading Ox or OX is ignored if· base is 16.

If base is zero. it is taken as a directive to adapt the base to
the input string using the same rules as for integer constants. A
leading zero after the optional sign indicates octal conversion. A
leading Ox or OX after the optional sign indicates hexadecimal
conversion. Otherwise. strtol uses decimal conversion.

strtol returns the converted long value. It returns zero if no
characters are converted. If a range error occurs, it sets errno to
ERANGE and returns LONG MAX for values positive and too large to
represent. If the value iS negative and too large to represent.
strtol returns LONG MIN.

To read a string and convert it to a long constant:

fgets(buf, sizeof buf, stdin);
errno = O;
lo= strtol(s, se, 16);
if (errno I I *se != '\n')

printf("bad number\n");

atof. atoi. atol. strtod

C Library Reference 11 - 141

system

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 142

system - execute a command

#include <stdlib.h>
int system(const char *cmd);

system interprets the string at cmd as a command line. It
invokes the executable file or builtin command you specify as if
you typed the string as a text line to the command interpreter.

Under VM/CMS, system uses the SVC202 system service. If your
program is executing in the user area. you must not call any CMS
command or program that also runs in the user area. The
limitations of SVC202 and all CMS commands that run in the
user area are described in the VM System Product CMS User's
Guide (SC19-6210).

You write a command line as an executable file name. in either
uppercase or lowercase. followed by any parameters traditionally in
uppercase. For example:

system ("CC MYPROG (LIST DEFINE(BIG)");

Under MVS, system issues a LINK SVC system call. MVS
searches for the program you specify in the same way as if you
called the program from a JCL batch stream. as described in the
MVS JCL Reference Ma11ual (GC28-0646). You write command
options as if you were running the program from a JCL batch
stream. For example:

system ("PGM=CC,PARM='LIST,DEFINE(BIG)'");

Write single quotation marks around the command options if the
command options contain spaces or other special characters. Write
a single quotation mark that is part of a command option as two
consecutive single quotation marks.

system returns a nonzero value if it cannot invoke cmd or if the
program terminates unsuccessfully.

If cmd is a null pointer. system returns a value of zero to
indicate that it is capable of invoking programs. On systems that
cannot invoke programs. system returns a nonzero value in this
case.

To invoke commands from the standard input:

while (fgets(buf, sizeof buf, stdin))
if (buf[O) != '!')

break;
else if (system(&buf[l)))

printf("failed\n");
else

printf("done\n");

C Library Reference

\
I

/

NAME

SYNOPSIS

FUNCTION

stl"ing.h

string.h - header file for string functions

iinclude <string.h>

The header file <st ring. h> declares functions useful for
manipulating "strings" and "buffers." A string is a data object of
type array of char whose contents are defined up to and including
an array element containing the null character \0. A buffer is a
data object of type array of char whose size is specified by an
integer value. If the size value is passed in the argument 11. the
data object is an "n character buffer. 11

Some functions manipulate "bounded strings." The contents of a
bounded string are either terminated by a null character. like a
string. or specified by an array size. like a buffer. whichever is
smaller.

A string or buffer is designated by the value of a pointer to its
first, or lowest addressed. element. Such a pointer is declared
either as type poillter to char or poillter to void.

When a function compares two strings or buffers for "lexical
order." it compares corresponding elements of the two army of
char data objects. starting with the first elements. If all elements
compare equal. or if there are no elements. the two strings or
buffers compare equal. Otherwise. the result of the comparison is
the result of comparing the first two char elements that are not
equal. For example. "" equals '"'. "abc" is less than "abd". and
"abed" is greater than "abc".

<string. h> declares the following functions:

memchr - scan buffer for character.

memcmp - compare two buffers for lexical order.

memcpy - copy one buffer to another.

memset - propagate fill character throughout buffer.

strcat concatenate strings.

strchr scan string for character.

strcmp - compare two strings for lexical order.

strcpy - copy one string to another.

strcspn - find the end of a span of characters not in set.

strlen - find length of a string.

strncat - concatenate bounded strings.

strncmp - compare two bounded strings for lexical order.

strncpy - copy one bounded string to another.

C Library Reference 11 - 143

string.h

11 - 144

strpbrk scan string for any character .. in set.
' strrchr scan string for last occurrence of character.

strspn find the end of a span of characters in a set.

strtok get token from string.

Make sure that no functions access elements outside the storage
you have reserved to hold the strings or buffers that the functions
manipulate, No checking is performed by the functions.

C Library Reference

' i
/

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

memchr

memchr - scan buffer for character

#include <string.h>
void *memchr(const void *s, int c, size t 11);

memchr scans for the first occurrence of the character c in an 11

character buffer starting- at s. Before the scan is made, s is type
cast to pointer to char and c is type cast to char.

memchr returns a pointer to the character with lowest address that
compares equal to c. It returns a null pointer if no character
compares equal.

To remove all spaces from a buffer:

while (s = memchr(buf, ' ', n))
memcpy(s, s + 1, &buf[--n] - s);

strchr, strcspn. strpbrk. strrchr. strspn

C Library Reference . 11 - 145

memcmp

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 146

memcmp - compare two buffers for lexical order

#include <string.h>
int memcmp(const void *sl, const void *s2, size t n);

memcmp compares two buffers. character by character. for lexical
order. The definition of lexical order is described with the header
file <string.h>. The first buffer starts at sl. The second buffer
starts at s2. Both buffers are n characters long. sl and s2 are
type cast to pointer to char before the comparison.

memcmp returns an integer greater than. equal to. or less than
zero, according to whether sl is lexically greater than. equal to. or
less than s2.

To look for a prefix match:

#include <stdio.h>
#include <stdefs.h>
#include <string.h>

char *s[] = {"quit",
"replace",
"insert",
"exit",
NULL};

int cmd_type;

main()
{
char *c, *find_prefix();
int i;

for (i = O; *s[i]; ++i)

}

if ((c = find prefix(s[i], strlen(s[i]))) !=NULL)
printf("prefix found\n");

else
printf("no prefix found\n");

C Library Reference

SEE ALSO

char *find prefix(buf, n)
char '*buf;
size t n;
{ -
char **ps;
extern int cmd type;
static char *prefixes[] {

"\6insert\1",
"\6delete\2",
"\7replace\3",
"\4quit\7",
NULL};

for (ps = &prefixes[O]; *ps; ++ps)

memcmp

if ((size t) **ps <= n && !memcmp(&(*ps)[l], \
buf,-(size t) **ps))
{ -
cmd type= (*ps)[(int) **ps + 1];
return (&buf[(size_t) **ps]);
}

return (NULL);
}

strcmp, strncmp

C Library Reference 11 - 147

memcpy

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 148

memcpy - copy one buff er to another

#include <string.h>
void *memcpy(void *sl, const void *s2, size t 11);

memcpy copies the n characters starting at location s2 to the
buffer starting at sl. sl and s2 are type cast to pointer to char
before the copy occurs. Characters are copied in unspecified order.

memcpy returns sl.

To remove all spaces from a buffer:

while(~= memchr(buf, ' ', n))
memcpy(s, s + 1, &buf[--n] - s);

strcpy. strncpy

If the destination string overlaps the source. and

(char *)s2 < (char *)sl)

the resulting string at sl may not compare equal to the original
string at s2.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

memset

memset - propagate fill character throughout buffer

tinclude <string.h>
void *memset(void *s, int c, size t 11);

memset copies c into each element of the 11 character buffer
starting at s. s is type cast to pointer to u11sig11ed char before
the copy operation is performed.

memse t returns s.

To write BUFSIZ null characters to a file:

fvrite(memset(buf, '\0', BUFSIZ), BUFSIZ, 1, pf);

memcpy

C Library Reference 11 - 149

strcat

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 150

strcat - concatenate strings

#include <string.h>
char *strcat(char *sl, const char *s2);

strcat copies the string at s2 to the end of the string at sl.
The first character of s2 replaces the null character at the end of
sl. The null character at the end of s2 is the last character
copied.

strcat returns sl.

To place the strings "first string" and "second string"
in buf:

strcpy(buf, "first string");
strcat(buf, " second string");

strncat

C Library Ref ere nee

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

strchr

strchr - scan string for character

#include <string.h>
char *strchr(const char *s, int c);

strchr scans for the first occurrence of the character c in the
string starting at s. c is type cast to char before the scan.

s trchr returns a pointer to the character with lowest address that
compares equal to c. It returns a null pointer if no character
compares equal.

To remove all spaces from a string:

while (s = strchr(str, ' '))
strcpy(s, s + 1);

memchr. strcspn. strpbrk. strrchr. strspn

C Library Reference 11 - 151

strcmp

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 152

strcmp - compare two strings for lexical order

#include <string.h>
int strcmp(const char *sl, const char *s2);

strcmp compares two strings. character by character. for lexical
order. The definition of lexical order is described with the header
file <string. h>. The first string starts at sl. The second string
starts at s2. The comparison includes the terminating null
characters.

strcmp returns an integer greater than. equal to. or less than
zero, according to whether sl is lexically greater than. equal to. or
less than s2.

To look for a string match:

#include <stdio.h>
#include <stdefs.h>
#include <string.h>

main()
{
int i;
static char *s[]

{
"insert",
"delete",
"insert",
"forget",
NULL
} ;

for (i = O; *s[i]; ++i)

}

if (match string(s[i]))
printf("match made\n");

else
printf("no match made\n");

C Library Reference

SEE ALSO

int match string(str)
char -*str;
{
char **ps;
static char *strings[]

{
"\linsert",
"\2delete",
"\3replace",
"\7quit",
NULL
} ;

for (ps = &strings[O); *ps; ++ps)
if (!strcmp(&(*ps)[l], str))

return ((size_t) **ps);
return (0);
}

memcmp. strncmp

C Library Reference

strcmp

11 - 153

strcpy

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 154

strcpy - copy one string to another

#include <string.h>
char *strcpy(char *sl, const char *s2);

strcpy copies the string starting at s2 to the string starting at
sl. Characters are copied in unspecified order. The terminating
null character is copied.

strcpy returns sl.

To remove all spaces from a string:

while (s = strchr(str, ' '))
strcpy(s, s + l);

memcpy, strncpy

If the destination string overlaps the source, and

(char *)s2 < (char *)sl)

the resulting string at sl may not compare equal to the original
string at s2.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

strcspn

strcspn - find the end of a span of characters in a set

#include <string.h>
size t strcspn(const char *sl, const char *s2);

strcspn scans the string starting at sl for the first occurrence of
a character in the string starting at s2. It computes a subscript i
such that

* sl[i] is a character in the string starting at sl

* sl[i] compares equal to some character in the string starting
at s2. which may be its terminating null character.

strcspn returns the lowest possible value of i. sl[i] designates
the terminating null character if none of the characters in sl are
in s2.

To find the start of a decimal constant in a text string:

if (!str[i = strcspn(str, "0123456789+-"}])
printf("can't find number\n");

memchr, strchr. strpbrk. strrchr. strpn

C Library Reference 11 - 155

strlen

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

11 - 156

strlen - find length of a string

#include <string.h>
size t strlen(const char *s);

strlen scans the string starting at s to determine the number of
characters before the terminating null character.

strlen returns the number of characters in the string before the
terminating null character. This number is zero for the null string

""

To output a string:

fwrite(s, strlen(s), 1, stdout);

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

strncat

strncat - concatenate bounded strings

#include <string.h>
char *strncat{char *sl, const char *s2, size t 11);

s trnca t copies the bounded string at s2 to the end of the string
at sl. The first character of s2 replaces the null character at the
end of sl. At most 11 characters are copied. If the last
character copied is not the null character at the end of s2.
strncat stores a null character immediately after the last character
copied.

strncat returns sl.

To concatenate two strings:

char buf[BUFSIZ];

buf[O] = '\0';
strncat{buf, sl, BUFSIZ - 1);
strncat{buf, s2, BUFSIZ - strlen{buf) - 1);

strcat, strncpy

C Library Reference 11 - 157

strncmp

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 158

strncmp - compare two bounded strings for lexical order

#include <string.h>
int strncmp(const char *sl, const char *s2, size t n);

strncmp compares two bounded strings. character by character, for
lexical order. The definition of lexical order is described with the
header file <st ring. h>. The first string starts at sl. The
second string starts at s2. At most 11 characters are compared.
The comparison includes the terminating null characters.

strncmp returns an integer greater than. equal to. or less than
zero, according to whether sl is lexically greater than. equfl.l to. or
less than s2.

To look for a string match:

int match string(buf, n)
char -*buf;
size t n;
{ -
char **ps;
static char *strings[] {

"\linsert",
"\2delete",
"\3replace",
"\7quit",
NULL};

for (ps = &strings[O], *ps; ++ps)
if (!strncmp(&(*ps)[l), buf, n))

return ((*ps)[O));
return (0);
}

memcmp. strcmp

C Library Reference

\

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

strncpy

strncpy - copy one bounded string to another

#include <string.h>
char *strncpy(char *sl, const char *s2, size t 11);

strncpy copies
starting at sl.
terminating null
copied. strncpy
character copied

the bounded string starting at s2 to the string
Characters are copied in unspecified order. If the
character is copied before 11 characters have been
stores null characters immediately following the last
until 11 characters have been copied or stored.

If n characters are copied and the . terminating null character has
not been copied, the resulting bounded string does not have a
terminating null character.

strcpy returns sl.

To remove all spaces from a string:

while (s = strchr(str, ' '))
strncpy(s, s + 1, strlen(s));

memcpy. strcpy

If the destination string overlaps the source, and

(char *)s2 < (char *)sl)

the resulting string at sl may not compare equal to the original
string at s2.

C Library Reference 11 - 159

strpbrk

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 160

strpbrk - scan string for any character in set

#include <string.h>
char *strpbrk(const char *sl, const char *s2);

strpbrk scans the string starting at sl for the first occurrence of
a character in the string starting at s2. It computes a subscript i
such that

*

*

sl[i/ is a character in the string starting at sl

sl[i/ compares equal to some character in the string starting
at s2, which may be its terminating null character.

strpbrk returns &slfiJ for the lowest possible value of i. or a null
pointer if sl[i/ designates the terminating null character.

To replace all whitespace characters with spaces:

while (s = strpbrk(s, 11\n\f\r\t\v"))
*s = ' ';

memchr. strchr. strcspn. strrchr. strspn

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

strrchr

strrchr - scan string for last occurrence of character

iinclude <string.h>
char *strrchr(const char *s, int c);

strrchr scans for the last occurrence of the character c in the
string starting at s. c is type cast to char before the scan.

strrchr returns a pointer to the character with highest address
that compares equal to c. It returns a null pointer if no
character compares equal.

To find the last "word" in a text line:

s = strrchr(str, ' ');
if (*s ! = ' ')

s = str;

memchr, strcspn, strpbrk. strrchr, strspn

C Library Reference 11 - 161

strspn

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 162

strspn - find the end of a span of characters not in set

#include <string.h>
size t strspn(const char *sl, const char *s2);

strspn scans the string starting at sl for the first occurrence of
a character not in the string starting at s2. · It computes a
subscript i such that

*
*

sl[i] is a character in the string starting at sl

slfi/ compares equal to no character in the string starting at
s2, except possibly its terminating null character.

strspn returns the lo'west possible value of· i. slfil designates the
terminating null character if all of the characters in sl are in s2.

To check a string for characters other than decimal digits:

if (str[strspn(str, "0123456789")])
printf("invalid number\n");

memchr, strcspn, strchr. strpbrk. strrchr

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

'\

i
/

strtok

strtok - get token from string

#include <string.h>
char *strtok(char *sl, const char *s2);

strtok helps you group a string into "tokens." A token is a
span of characters containing no separator characters from the
string s2.

If sl is not a null pointer. strtok scans the string starting at sl.
Otherwise, it scans the string starting at the pointer value it
stored, in an internal static data object. from the last time your
program called strtok.

strtok scans the string for a character not in the string s2. If
it encounters the tern1.inating null character before it finds a
character not in the string s2. there are no more tokens. The
pointer value it stores designates the terminating null character. It
returns a null pointer.

Otherwise. the token starts with the character it found. strtok
scans from this point for a character in the string s2. If it
encounters the terminating null character before it finds a character
in the string s2. there are no more tokens after this one. The
pointer value it stores designates the terminating null character. It
returns a pointer to the start of the token.

Otherwise, the token ends with the character it found. strtok
stores a null character in place of the character it found. The
pointer value it stores designates the next character after the
character it found. It returns a pointer to the start of the token.

You may specify a different string s2 each time you call strtok.
Do not store into the string that strtok is scanning.

strtok returns a pointer to the start of the next token. if there
is one. Otherwise it returns a null pointer.

To parse a text line into "words:"

for (s = str; pw = strtok(s, " ,.\":;"); s =NULL)
spell_check(pw);

C Library Reference 11 - 163

time.h

NAME

SYNOPSIS

FUNCTION

11 - 164

time.h - header file for timekeeping functions

#include <time.h>

The header file <time. h> declares functions used for timekeeping.

<time.h> defines the following types:

clock_t - an arithmetic type which holds "clock ticks." used to
measure elapsed time during program execution. There are
CLK _ TCK clock ticks per second.

time t - a scalar type which holds "date and time." used to
- determine a given moment in time. You may not perform

arithmetic on values of tvpe time t. Use the function
difftime to determine tl1e difference between two times.

struct tm - a struct tag that designates a type whose structure
members represent different components of a date and time.
broken down into conventional divisions. The following
structure members are part of its content:

int tm sec; I* seconds after the minute [O, 59] *I
int tm-min; I* minutes after the hour [O, 59] *I
int tm-hour; I* hours since midnight [O, 23] *I
int tm-mday; I* day of the month [1, 31] */
int tm-mon; I* month of the year [O, 11] */
int tm-year; I* years since 1900 *I
int tm-wday; I* days since Sunday [0, 6] *I
int tm-yday; I* day of the year [0, 365] *I
int tm-isdst; I* daylight savings time (-1 = status

unknown; 0 = not in effect; 1 = in effect) *I

The structure members are not .. necessarily in this order. and
there may be additional structure members.

<time. h> defines the following macro:

CLK TCK - the number of clock ticks per second. It expands to
a constant expression of type clock_ t.

<time. h> declares the following functions:

asctime - convert time structure to string.

clock get clock ticks.

ctime cpnvert time to string.

difftime calculate difference between times.

gmtime convert time to Greenwich Mean Time.

localtime - convert time to local time.

time - get time.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

asctime

asctime - convert time structure to string

#include <time.h>
char *asctime(const struct tm *timeptr);

asctime converts the time structure pointed at by timeptr to a 26
character string. The length of each field is always the same.
regardless of the value it represents. The string has the form:

c: ;.... :~- ;;·· ~
Tue Aug 01 09:00:00 1978\n\O

The fields are, in order:

*

*

*

*

*

*

*

The first three characters of the day of the week, followed
by a space. as in: Sun Mon Tue Ved Thu Fri Sat.

The first three · characters of the month. followed by a
space, as in: Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec.

The two digit day of the month. followed by a space. as in:
01 through 31.

The two digit hour of the day. followed by a colon. as in:
00 through 23.

The two digit minutes past the hour. followed by a colon.
as in: 00 through 59.

The two digit seconds past the minute. followed by a space.
as in: 00 through 59.

The four digit year. followed by a newline and a null
character.

The string is stored in an internal data object.

asctime returns a pointer to the date string.

To print the date and time:

time t lt;

time(<);
p:tintf("%s", asctime(localtime(<)));

clock. ctime. difftime. gmtime. localtime. time

Make full use of the stored value before you call asc time or
ctime again. since it will be altered on each call.

C Library Reference 11 - 165

clock

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 166

clock - get clock ticks

#include <time.h>
clock t clock();

clock gets the elapsed time during program execution. as measured
in "clock ticks". which may be unique to each system. You
subtract the values returned on two calls to clock to determine
how much time your program has consumed between calls. You
convert this difference to a time in seconds by dividing by
CLK TCK.

clock returns the cumulative time that your program has executed.
measured in clock ticks from an unspecified origin. If you move
your program to a system that has no clock. clock returns the
value -1. Under VM/CMS. MVS. and MVS/XA clock is not
implemented and always returns failure.

To compute and print elapsed time:

t = clock();
do timed process();
t : clock() - t;
printf("elapsed time %.2f seconds\n", ((double) \

t I CLK_TCK));

asctime, ctime. gm time. local time

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

ctime - convert time to string

#include <time.h>
char *ctime(char time t *timer);

c time converts the time pointed at by timer to local time.
represented as a time structure of type struct tm. It then

ctime

converts the time structure to a 26 character string. The format
of the string is exactly the same as described in asc time.
ctime(tim!'r) is entirely equivalent to asctime(localtime(timer)).

The string is stored in an internal data object.

ctime returns a point~r to the date string.

To print the date and time:

time t lt;

time(<);
printf("%s\n", ctime(<));

asctime. clock. difftime. gmtime. localtime. time

Make full use of the stored value before you call asctime or
ct ime again. since it will be altered on each call.

C Library Reference 11 - 167

difftime

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

11 - 168

difftime - find difference between times

#include <time.h>
double difftime(time_ t time2, time t timel);

difftime computes the difference between time2 and timel in
seconds.

difftime returns the difference in seconds between the two times.

To test if otime was at least five minutes ago:

if (5 * 60.0 <~ difftime(time(NULL), otime))
retry();

asctime. clock. ctime. gmtime. localtime. time

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

gm time

gmtime - convert time to Greenwich Mean Time

iinclude <time.h>
struct tm *gmtime(const time t *timer);

gmtime converts the time pointed at by timer to a time structure
whose components represent Greenwich Mean Time (GMT).

The structure is stored in an internal data object.

gm time returns a pointer to the time structure.

To print the date as .GMT:

time t lt;

lt = time(NULL);
printf("%s GHT\n", asctime(gmtime(&l t)));

asctime. ctime. difftime. local time. time

Make full use of the stored value before you call gmtime or
local time again. since it will be altered on each call.

C Library Reference 11 - 169

localtime

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

SEE ALSO

NOTES

11 - 170

localtime - convert time to local time

#include <time.h>
struct tm *local time(const time t *timer);

localtime converts the time pointed at by timer to a time
structure whose components represent local time.

The structure is stored in an internal data object.

localtime returns a pointer to the time structure.

To print the date as ,local time:

time t lt;

lt = time(NULL);
printf("It is now %s\n", asctime(localtime(<)));

asctime. ctime. difftime. gmtime. time

Make full use of the stored value before you call gmtime or
localtime again. since it will be altered on each call.

C Library Reference

NAME

SYNOPSIS

FUNCTION

RETURNS

EXAMPLE

time

time - get time

#include <time.h>
time t time(time_t *timer);

time gets the current date and time. If timer is not a null
pointer. the current date and time are stored in the data object
pointed at by time1·.

time returns the current date and time. It may also store it at
timer. if timer is not a null pointer. If you move your progTam
to a system that cannot determine the current date and time. the
value returned by time is -1.

To print the local date and time:

time t lt;

time{<);
printf("It is now %s\n", ctime(<));

C Library Reference 11 - 171

11 - 172 C Library Reference

Appendix A: Compile Time Error Messages

There are three sources of compile time errors:

*

*

*

Errors in your program. You have written an incorrect
program, one that violates one or more of the rules for
writing C programs. Alter your source file to correct these
errors.

Environmental problems. You have misnamed a file. or
failed to give access permissions that the compiler needs to
read or write it. Alter the names of the files. or the file
names you specify to the compiler. to correct these
problems. The compiler may fail to create a temporary
intermediate file. or to write it completely. because there is
inadequate space or because it cannot create temporary files.
Alter the environment to meet the needs of the compiler.
Error messages that the RLINK program generates are also
described here.

Errors in the compiler. The compiler detects an inconsistent
internal state and reports it. Such occurrences are
uncommon. These messages contain an exclamation point.
to distinguish them from other messages. You are
requested to report the occurrence of such errors. along with
the inputs that caused the error report. to your service
representative.

This appendix documents the error messages in the first category.
followed by the error messages in the second category. Those in
the third category should occur very rarely or not at all. and are
not described. The description of each error message suggests
possible sources of the error. and ways to correct it.

Errors in Your Program

"(" required

")" required

The compiler expects a left parenthesis where none is present. such
as after the keyword if.

The compiler expects a right parenthesis where none is present.
You may have written parentheses that do not balance. You may
have written something the compiler does not expect.

Compile Time Error Messages A - 1

")" required in "#if" expression

"·" required

You have written a #if or #elif directive. and the expression
requires a right parenthesis where none is present. You may have
written parentheses that do not balance. You may have written
something the compiler does not expect inside parentheses.

The compiler expects a colon where none is present, such as after
a case label. You may have written something the compiler does
not expect.

"·" required after "?" in "#if" expression

"·" required

"]" required

" {" required

"} " required

You have written a #if preprocessor directive containing a ?. and
the compiler does not encounter a : where it expects one. You
write the conditional operator as x?y: z. You may have written
parentheses that do n()t balance.

The compiler expects a semicolon where none is present. such as
after the keyword break. You may have written something the
compiler does not expect.

The compiler expects a right bracket where none is present. such
as after a subscript expression. You may have written brackets
that do not balance. You may have written something the
compiler does not expect.

The compiler expects a left brace where none is present. You
may have written something the compiler does not expect.

The compiler expects a right brace where none is present. You
may have written braces that do not balance. You may have
written something the compiler does not expect.

"##" permitted only in macro definition

You have written the preprocessor operator ## in a context other
than a macro definition. You may only use this operator within a
preprocessor #define directive. See Chapter 7. "The Preprocessor."
for information on how to use the ## operator.

argument already declared: <name>

A - 2

You have written an argument level declaration that declares the
same identifier twice in the argument list in the function
declaration. The identifier is name. You may declare an argument
at most once in argument level declarations. You may have
misspelled the identifier.

Compile Time Error Messages

argument cannot have incomplete type

You have written a function prototype and one of the arguments is
declared as having type void. Or. you have written a function
call and one of the arguments is a structure of unknown content.
An array of unknown size is converted to a pointer argument. but
no other incomplete type is permitted.

arithmetic operand required

You have written an expression containing an operator that requires
one or more arithmetic operands. Some operators that require
arithmetic operands are multiply x*y. divide x/y, remainder x%y.
add x+y. and subtract x-y. An arithmetic type is either an
integer or a floating type. The operand in question may be a
pointer type. a structure type. or type void. You may have
specified an invalid combination of pointer and other type operands
for an add or subtract operator.

array size w11mown

You are referring to an array of unknown content at a point
where the compiler must know the size in bytes of data objects
with that array type. You may have omitted the size of an array
in a declaration, as in char a [] . and specified no data initializer
for the array. If the compiler must allocate storage for the data
object, or if you write an expression such as sizeof a. for
instance, the compiler will emit this error message.

bitfield size out of range

You have declared a bitfield and the constant integer expression
following the colon does not have a value in the range [0. 32].
Or, the value is zero and you have specified a name for the
bitfield.

bitfield size undefined

You have written an expression that contains the sizeof operator,
and the operand you have associated with the sizeof operator is
an lvalue that designates a bitfield. You may not specify a
bitfield as the operand of the sizeof operator.

cannot take address of operand

You have written an expression containing the form &x, where x is
a void expression, an rvalue. an lvalue with some bitfield type. or
a data object identifier declared with storage class register. You
may take the address of a function designator. or of an lvalue
that is not of some bitfield type and does not have storage class
register. If x is an identifier that a header file defines as a
macro, the compiler may emit this error message.

Compile Time Error Messages A - 3

"case" value alread.v used

const modified

You have written a case label whose value matches the value of
another case label within the same switch statement. All case
label values are type cast to the same integer type as the
expression in the switch statement. The resulting values must all
be distinct. You may have written case label expressions using
different macro identifiers that are defined as expressions with the
same value. You may have misplaced braces, or eliminated a
switch statement without reviewing its controlled compound
statement.

You have written an expression that has an operand of a const
type where the compiler requires a modifiable lvalue. The
increment and decrement operators, such as x++, and the assigning
operators, such as X=Y and x+=Y all require that x be a modifiable
!value. You may be assigning to a structure member of a const
type in a structure that is not of a const type, or you may be
assigning to a structure member that is not of a const type in a
structure that is of a const type. You may be assigning to an
lvalue of the form *p, where p is a pointer to a const type.

constant integer expression required

You have written an expression that is not a constant integer
expression, and the compiler requires a constant integer expression.
The compiler requires a constant integer expression as the value of
a case label, as the size of a bitfield. as the value of an
enumeration constant, and as the optional size of an array
declarator. You may have written operators or operands that the
compiler cannot evaluate to an integer at compile time. such as
x++, 2.3, or &a[5]. You can write a constant integer expression
that contains floating constants and performs arithmetic upon them.
but you must also write a type cast operator to convert a floating
operator result to an integer type.

directive not allowed within macro arguments

You have written a macro expansion containing an argument list.
and a preprocessor directive occurs in your source text before the
end of the argument list. Write the macro name and argument
list on adjacent lines within one source file, with no intervening
preprocessor directives. You may not conditionally skip part of the
argument list, as with the :fl:if and :fl:endif preprocessor directives.

"#endif" required

You have written a :ltif, lifdef, or :fl:ifndef preprocessor directive.
and the balancing :fl:endif is not within the same source file. You
must contain a conditional preprocessor directive group completely
within one source file.

A - 4 Compile Time Error Messages

enumeration constant already declared: <name>

You have written a declaration containing an enum whose content
declares an identifier as an enumeration constant, and that
identifier has already been declared within the current block. The
identifier is name. You may have misspelled the identifier.

enumeration constant out of range: <name>

You have specified a value for an enumeration constant that cannot
be represented as type int. The enumeration constant has the
name name. For example.

enum End points {
LOV-= INT MIN, LOVl,
HIGHl = INT MAX - 1, HIGH,
LAST}; I* ERROR: value is INT MAX+ 1 */

If you specify an octal or hexadecimal integer constant with its
sign bit set, the compiler cannot represent its value as type int.
On System/370, you should write -1 instead of OxFFFFFFFF.

expression required

The compiler expects an expression where none is present. You
may have written something the compiler does not expect. You
may have misspelled a keyword. You may not omit expressions
within a comma separated list. as in f (a,, c).

expression too large

You have written a complex expression that generates more than
4,096 bytes of executable code. The compiler cannot process an
expression that generates more than 4,096 bytes of executable code.
Rewrite the expression as two or more separate expressions.

external names conflict: <name>

You have declared two different identifiers with external linkage.
and the external names derived from the two identifiers are
identical. One of the identifiers is name. Function names are
truncated to eight characters, data object names are truncated to
seven characters. Both are compressed to one alphabetic case.
The compiler detects conflicts in external names within a
compilation. The linkage editor or loader detects conflicts among
compilations. If a name need not be linked with other
compilations, you can alter its declaration to give it internal linkage
or no linkage. Otherwise. you must alter one or both names to
resolve the conflict.

fewer function call arguments than in prototype

You have written an expression containing a function call. and the
function call has fewer actual arguments than the number of
arguments specified in the function prototype.

Compile Time Error Messages A - 5

fewer function definition arguments than in prototype

You have written a function definition that specifies fewer
arguments than the number of arguments specified in the function
prototype.

fioating constant out of range

You have written a floating constant whose value is too large or
too small to represent.

floating expression out. of range

You have written an expression involving two floating operands and
the value of the expression is too large or too small to represent.

function call argument incompatible with prototype

You have written an expression containing a function call. and an
actual argument in the function call does not agree with the
corresponding argument declaration in the function prototype. The
actual argument may not be assignment compatible with the
prototype argument, or you may have written the wrong number of
actual arguments.

function cannot return canst or volatile type

You have written a declaration containing a function type attribute.
and the type returned by the function is a const or volatile type.
The type qualifiers const and volatile apply only to !values.
The value returned by a function is an rvalue.

function cannot return type

You have written a declaration containing a function type attribute.
and the function has type function returning array of Tl. or
function returning function returning T2. Or, you have written a
function definition or a function call and the function has type
function returning structure of unlmown content. You cannot call
such functions. In the first case, you can declare the function
with type function returning pointer to T 1. In the second case.
you can declare the function with type function retuming pointer to
function returning T2. In the third case, you must specify the
content of the structure.

function definition argument conflicts with prototype: <name>

A - 6

You have written a function definition, and an argument declared
in the function definition conflicts with the corresponding argument
declaration in the function prototype. The name of the argument
is name. The definition argument may not be the same type as
the prototype argument. or you may have written fewer definition
arguments than prototype arguments.

Compile Time Error Messages

fu 11 ction required for f1111 ction call

You have written an expression containing the form x(y). and x is
not of type function returning T or pointer to function returning T.
You may have misspelled the name of a function. If you choose
a function name that is a keyword or that a header file defines as
an rvalue macro. the compiler may emit this error message.

function size undefined

You have written an expression containing the operator sizeof and
its operand is some function type. The operand must have a data
object type.

identifier already declm·ed in block: < 11a111e >

You have written a file level declaration for an identifier previously
declared within the same block with no linkage. The identifier is
name. You may not redeclare an identifier with no linkage. If
you declare a data object at block level with any storage class
except extern. it has no linkage. Note that the declaration
sequence:

static int x;
extern int x;

redeclares x at file level. At block level. however. the sequence
declares conflicting data objects.

identifier or 11 { 11 required

You have written a declaration with the keyword struct. union. or
enum, and it is followed by neither a tag identifier nor a content
in braces. Specify a tag. a content. or both.

identifier required after "." or 11 -> 11

You have written an expression containing one of the operators .
or ->. and no identifier follows the operator. Write an identifier
that matches the name of a structure member in the structure
type specified by the left operand. You may have misspelled the
identifier.

identifier required after "#define"

You have written a #define preprocessor directive that does not
begin with an identifier. Both forms of :Jl:define. for macros with
and without arguments. must start with an identifier.

identifier required after 11 goto"

You have written the keyword goto at the start of a statement.
and no identifier follows. Write a label in a goto statement. You
may have misspelled the identifier.

Compile Time Error Messages A - 7

identifier required after 11#ifdef"

You have written a lifdef preprocessor directive with no identifier.
or with something on the text line after the identifier. You may
also write comments or whitespace on the text line. but nothing
else.

identifier required after 11 #ifndef"

You have written a lifdef or lifndef preprocessor directive with
no identifier, or with something on the text line after the
identifier. You may also write comments or whitespace on the
text line, but nothing else.

identifier required after 11 #undef"

You have written a lundef preprocessor directive that does not
begin with an identifier. or with something on the text line after
the identifier. You 111ay also write comments or whitespace on the
text line, but nothing else. It is not an error to lundef an
identifier that is not currently defined as a macro.

identifier required for function definition argument

You have written a function definition and one of the arguments in
the function attribute is not an identifier. Provide identifiers for
all arguments in a function definition.

identifier required in prototype argument

You have written a function definition that is also a function
prototype and one of the arguments does not contain an identifier.
Provide identifiers for all arguments in a function definition.

incompatible assignment

You have written an expression containing an assignment, and the
type you are assigning is not assignment compatible with the
destination type. You may have written an expression containing
the form X=Y· You may have written a data initializer in a
declaration for a data object with dynamic lifetime, as in:

register char *P = get_buf();

You can often use a type cast operator to make a scalar rvalue
assignment compatible with another scalar type modifiable !value.

incompatible return expression

A - 8

You have written a return statement within an expression. and the
expression type is not assignment compatible with the type
returned by the function. Or, the function is a void function.
You may not write an expression in a return statement with a
void function.

Compile Time Error Messages

incomplete co11wu1nt in file

You have written a comment that does not end before the end of
the source file in which it begins. Write a comment entirely
within one source file.

incomplete function body

You have written a function body. and the compiler encounters the
end of your source file before the end of the function body. You
may have written braces that do not balance. Your source file
may have been truncated. The compiler may have skipped source
text while recovering from an earlier error.

insufficient stack

The compiler has exhausted the storage it uses for calling
environments and data objects with dynamic lifetime. You may
have written a complex macro expansion or a complex expression.
Alter your program to lessen the demands it makes on the
compiler.

integer constant out of range

You have written an integer constant and the value is too large to
be represented as type unsigned long.

integer constant required after "#line"

You have written a #line preprocessor directive that does not
begin with an integer constant. Or you have written something
after the integer constant other than an optional file name inside
double quotation marks. You may also write comments or
whitespace on the text line. but nothing else.

integer expression required for 11 switch" statement

You have written a switch statement. and its expression is not of
integer type. You may not write a switch statement expression of
floating or pointer type. You may write a type cast to convert
any arithmetic type to an integer type, as in:

switch ((int)loglO(answer))

integer operand required

You have written an expression containing an operator that requires
one or more integer operands. Some operators that require integer
operands are remainder x%y. bitwise OR x I y. and bitwise NOT -x.
The operand in question may be a floating type. a pointer type. a
structure type, or type void.

invalid base type for bitfield

You have written a structure declaration containing a bitfield
declaration. and the type of the declarator is not int. signed int.
or unsigned int. You may not declare a bitfield as. for example:

Compile Time Error Messages A - 9

struct {
short sh_field : 3; I* ERROR: must be int type *I

invalid binary operator in "#if" expression

You have written a #if or #elif preprocessor directive. and you
have written a binary operator not acceptable within #if
expressions. You may have written a comma operator , or one of
the assigning operators. such as x+=y. You may have written =
instead of --.

invalid bitfield initializer

You have written a data initializer for a static data object of
bitfield type. and the expression is not a constant integer
expression.

invalid character: < x >

You have written a character that is not part of the C source
character set, and it is not inside a comment. a character constant.
or a string constant. The character is .'.t. If it is not a printable
character. you may not see it in the error message. Remove this
character from your source file.

invalid combination of type specifiers

You have written a declaration whose base type contains a
combination of type specifiers that the compiler does not recognize.
such as signed float.

invalid data initializer

You have specified the RENT option to CC and your program
attempts to initialize a data object of storage class static or
extern with the address of a non "const" static data object. A
restriction prohibits this type of initialization when you specify the
RENT option. This restriction may be removed in a future release.

invalid declarator following "("

You have written a declarator containing parentheses. and the
compiler does not recognize a declarator inside the parentheses. If
you omit the identifier in a function declaration, the compiler may
emit this error message when it encounters the parenthesized
argument list. If you choose an identifier that is a keyword or
that a header file defines as a macro, the compiler may emit this
error message. You may have difficulty expressing a complex
declarator properly.

invalid declarator following "*"

A - 10

You have written a declarator containing an asterisk. and the
compiler does not recognize a declarator following the asterisk. If
you choose an identifier that is a keyword or that a header file
defines as a macro. the compiler may emit this error message.
You may have difficulty expressing a complex declarator properly.

Compile Time Error Messages

invalid "#define" argument list

You have written a macro expansion whose #define preprocessor
directive has a left parenthesis immediately after the identifier, and
the argument list signalled by that left parenthesis is not well
formed. Or, the number of arguments written in the expansion
does not match the number written in the #define preprocessor
directive. You may not have intended to specify an argument list
in the #define preprocessor directive. For a macro with no
arguments. you must leave whitespace between the identifier and a
definition that begins with a left parenthesis. You may have
omitted a comma between argument names, or you may have
omitted the right parenthesis that ends the argument list. You
may have omitted an argument name or repeated one.

invalid file level declaration

You have written a file level declaration. and the
match it to any of the formats for declarations.
misspelled a storage class or type keyword. You
no declarators, as in

compiler cannot
You may have
may have written

extern int;

You may have misplaced a semicolon. as in

int func();
{

} ;
int x[2]
int y;

I* declaration complete here *I
I* ERROR: unexpected function body *I

I* ERROR ; permitted after function body *I
{l, 2} I* ERROR: ; required here *I

I* error reported on this line */

You may have written braces that do not balance in a data
initializer or in a function body. If you choose an identifier that
is a keyword or that a header file defines as a macro. the
compiler may emit this error message.

invalid floating constant

You have written a floating constant that contains digits or letters
that match none of the formats for a floating constant. You may
have omitted both the decimal fraction and decimal exponent of a
float constant, as in 35F. You may have written conflicting
suffixes, as in 3.0LF. You may have omitted a comma or an
operator.

invalid floating initializer

You have written a data initializer for a static data object of
floating type, and the expression is not a constant expression of
arithmetic type. The macro HUGE VAL is an rvalue of type double.
It may not be used as a static data initializer.

Compile Time Error Messages A - 11

inualid hexadecimal escape sequPnce

You have written an expression that includes a character constant
or a string constant containing an escape sequence beginning with
\x, and no hexadecimal digits follow. You must write one, two or
three hexadecimal digits immediately following the \x. See Chapter
2, "Elements of the C Language," for information on hexadecimal
value escape sequences.

invalid integer constant

You have written an integer constant that contains digits or letters
that match none of the formats for an integer constant. You
wrote the integer constant as n. You may have written a digit
for another base, as in 08. You may have repeated a suffix, as
in Ox400ULU. You may have omitted a comma or an operator.

invalid integer initializer

You have written a data initializer for a static data object of
integer type, and the expression is not a constant integer
expression.

invalid macro argument list

You have expanded a macro with arguments and the argument list
is not well formed. You may have written parentheses that do
not balance in the argument list. You may have written a
preprocessor directive within the argument list. You may have
written an argument list not entirely contained within one file. Or.
you may have written an argument list that spans text lines
totalling more than 511 characters.

invalid operand for '.' or '- >'

You have written an expression containing the form x.y or x->y
and x does not have the proper type. For x.y, x must be a
structure type. For x->y. x must be a pointer to a structure
type.

invalid operand for "defined" in "#if" expression

You have written a Uf or #elif preprocessor directive containing
the special operator defined. and the operator is not followed by
either an identifier or an identifier in parentheses. such as defined
x or defined (x). The identifier defined is not otherwise
reserved. so you may have defined a macro with this name earlier
and referred to the macro within the expression.

invalid operand for "#line"

A - 12

You have written a #line preprocessor directive with something
after the integer constant other than an optional file name inside
double quotation marks. You may also write comments or
whitespace on the text line. but nothing else.

Compile Time Error Messages

invalid operand in "#if" expression

You have written a #if or #eli f preprocessor directive. and you
have written an operand not acceptable within #if expressions.
You may only write integer constants, character constants. and
identifiers as simple operands within #if expressions. Do not write
floating constants or string constants. You may write comments or
whitespace after the expression on the text line. but nothing else.
You may have written parentheses that do not balance within the
expression. You may have written an operator not acceptable
within a #if preprocessor directive.

invalid operand types for 11 + ="

You have written an expression containing the form X+=Y· where x
is a data object pointer type and y is not an integer type. You
may not add a floating type to a pointer.

invalid operand types for " - ="

You have written an expression containing the form x-=Y· where x
is a data object pointer type and y is not an integer type. You
may not subtract a floating type from a pointer or subtract a
pointer from a pointer.

invalid operand types for comparison

You have written an expression containing one of the operators <.
<=. >, >=, ==, or ! =. and you are comparing a pointer operand to
an operand whose type is not acceptable. You cannot compare a
floating type to a pointer type. for example. or pointers of
different data object type. You may type cast two data object
pointers to the common type poi11ter to char and compare them. if
they point within the same data object.

invalid operand types for conditional

You have written an expression containing the form x?y: z. and the
types of y and z match no valid combination. You may not
combine pointer and floating types. for instance. or data object
pointers of different types. You may sometimes use a type cast
to convert one operand to an acceptable type.

invalid pointer initializer

You have written a data initializer for a static data object of
pointer type, and the expression is not a constant pointer
expression. You may have taken the address of a data object
with dynamic lifetime. You may have specified an expression of
pointer type that is not assignment compatible with the pointer
type of the data object. You can write a type cast to convert
integer types and many pointer types to a given pointer type.
For example:

int a[lO];
char *fill p = a;

f* ERROR: expression is "pointer to int" *I

Compile Time Error Messages A - 13

char *fill_q = (char *)a; I* valid */

invalid "#pragma linkage"

You have written a :ftpragma preprocessor directive with a linkage
option, and the compiler cannot match the format:

:ftpragma linkage(name, OS)

You may have written OS with lowercase letters. You may have
omitted a parenthesis or comma.

invalid statement

You have written a function body, and the compiler cannot match
the next statement to any of the formats for statements. You
may have misspelled a statement keyword. You may have written
an expression statement that the compiler cannot match to any of
its formats for expressions. You may have written braces that do
not balance.

invalid storage class

You have written a declaration containing a storage class keyword
that is not valid for that declaration context. You may have
written a typedef storage class in an argument level declaration.
Only the storage class register is permissible in an argument
level declaration, or within a function prototype argument list. You
may have altered a declaration with storage class register or
auto from a block level declaration to a file level declaration.

invalid type cast or operand type

You have written an expression containing the form (type name)x.
and type name is not acceptable in a type cast. Or the type of
x may not be type cast to the specified type. You may only
write type casts of scalar type. You may not type cast a function
pointer to a data object pointer, for instance, or a data object
pointer to a function pointer. If both types are scalar types.
replace x with (int)x, yielding a double type cast that is
acceptable. This expression will not necessarily be portable to
architectures other than System/370, however.

invalid type for prototype argument

A - 14

You have written a function prototype. and an argument has an
incomplete type. You write a function prototype with no
arguments as

extern int f(void);

You cannot otherwise
prototype argument.
structure of unknown
attribute.

write the type name void as a function
You may have written a base type that is a
content. You may have omitted a type

Compile Time Error Messages

invalid unary operator in "#if" Pxpressio11

You have written a #if or #elif preprocessor directive. and you
have written a unary operator not acceptable within #if
expressions. You may use only the operators def:ined, +, -. !.
and - You may not write a type cast or the sizeof operator.

invalid use of type definition: <name>

You have written an expression containing an identifier that is
declared as a type definition. The identifier is name. You may
have misspelled the identifier name. You may have omitted a
block level declaration.

misplaced "break 11 statement

You have written a break statement that is not contained within a
do/while. for, while, or switch statement. You may have misplaced
braces, or eliminated one of these statements without reviewing its
controlled statement.

misplaced "case" label

You have written a case label that is not contained within a
switch statement. You may have misplaced braces. or eliminated a
switch statement without reviewing its controlled statement.

misplaced "continue" statement

You have written a continue statement that is not contained within
a do/while, for, or while statement. You may have misplaced
braces, or eliminated one of these statements without reviewing its
controlled statement.

misplaced "default" label

You have written a default label that is not contained within a
switch statement. Or, you have already written a default label
within the same switch statement. You may have misplaced
braces. or eliminated a switch statement without reviewing its
controlled compound statement.

misplaced "#eh/"

You have written a #elif preprocessor directive, and there is no
unbalanced #if. #if def. or #i fndef preceding it.

misplaced "#else"

You have written a #else preprocessor directive and there is no
unbalanced #if. ifdef, or #ifndef preceding it.

misplaced "#endif"

You have written a #endif preprocessor directive. and there is no
unbalanced #if. :Jl:i fdef. or #i fndef preceding it.

Compile Time Error Messages A - 15

modifiable !value operand required

You have written an expression containing an assigning operator.
and the left operand is not a modifiable !value. Or. the operator
is an increment or a decrement operator. and the operand is not a
modifiable !value. A modifiable !value is any data object designator
that does not have a const type or an array type. The left
operand may not be an incomplete type, such as a structure of
unknown content. It may not be a function designator. It may
not be an rvalue. Several operators always produce rvalues. even
when their operands are !values. These include the increment and
decrement operators, such as ++x, the comma operator x,y, and
the conditional operator x?y: z. You may not use any of these as
a modifiable !value.

more function call arguments than in prototype

You have written an expression containing a function call. and you
have specified more arguments on the function call than you
specified in the function prototype.

more function definition arguments than in prototype

You have written a function definition, and you have specified more
arguments in the function definition than you specified in the
function prototype.

OS linlwge not allowed for C function

You have specified OS linkage for a C function. Do not write C
functions with OS linkage.

pointer or array operand required

You have written an expression containing the form *x. and x is
not a pointer or array type. Or, you have written an expression
containing the form x[y]. and x+y is not a pointer type. If x is
an array type, it will be converted to an rvalue of pointer type
when you add y to it. If you intend to address absolute locations
in memory, type cast the integer expression that specifies the
absolute address. as in (int *) Ox40. Note that this practice is
extremely nonportable.

"#pragma linkage" conflicts with declaration: <name>

You have written a :ft:pragma preprocessing directive that declares
name to have special linkage. and name has already been declared
and used without special linkage. Write the :ft:pragma. and any
supplemental declaration, before you write an expression that calls
the function.

prototype argument already declared: <name>

A - 16

You have written a declaration containing a function prototype. and
you have declared two arguments with the same identifier. If you
choose to write names for the arguments. all names must be
distinct within the function prototype. If you are not defining the

Compile Time Error Messages

\
)

function with this derh1n1tor. you need not write names for the
arguments.

redeclaration conflicts at block level: <name>

You have written a block level declaration with storage class
extern for an identifier previously declared with external or
internal linkage. and the declarations do not have the same type.
You may have misspelled the identifier.

redeclaration conflicts at file level: <name>

You have written a file level declaration for an identifier previously
declared, and the declarations have conflicting storage classes or do
not have the same type. You may not use the storage class
static in a redeclaration of an identifier with external linkage.
You may have misspelled the identifier.

redefined data object: <name>

You have written a data initializer for a data object. and the data
object is declared earlier with a data initializer in the same
compilation. The name of the data object is name. You may
write at most one data initializer for a data object, among all the
compilations that make up your program.

redefined function: <name>

You have provided a second defining instance of a function within
the same compilation. You may have misspelled one of the
function names. You may have tried to declare the function
arguments for a prototype using argument level declarations. as· in:

extern int f(double a, double b) I* valid prototype *I
{ .•..• } I* with definition*/

extern int f (a, b)
double a, b;

I* invalid prototype *I
I* ERROR: signals start of
a definition *I

extern int x; I* ERROR: function body now required *I
Remove one of the defining instances.

redefined label: <name>

You have written a function body containing a plain label whose
identifier appears in an earlier plain label in the same function
body. The identifier is name. Labels do not have block scope.
All labels within a function body must be distinct.

redefined macro: <name>

You have written a #define preprocessor directive that defines an
identifier already defined as a macro. The identifier is 11ame.
You may redefine a macro only if the new expansion is spelled
exactly the same as the previous expansion. Otherwise. you must
write a #undef preprocessor directive to remove the definition
before you can use the same identifier in a #define preprocessor

Compile Time Error Messages A - 17

directive.

redefined tag: <name>

You have written a structure type specifier containing both a tag
and a content. and the tag has already been declared in the same
scope. Struct, union, and enum tags share the same name space.

repeated type specifier

You have written a declaration whose base type contains the same
type specifier more than once, such as long long int. Or, you
have written two type specifiers that always conflict, such as two
type definitions. or a struct and a union type specifier. You may
combine a type definition or a composite type only with the type
qualifiers cons t and volatile.

scalar operand required

You have written an expression with an operand that must be of
scalar type, and it is not. A scalar type is an integer type, a
floating type, or a pointer type. The test expression of an if
statement, for instance. must be of scalar type. Do not write a
structure expression or a void expression where a scalar type is
required.

source line too long

You have written a text line longer than 511 characters. If you
end a physical text line with a backslash. the compiler treats that
line and the one following as a single text line. If you write a
macro expansion whose argument list does not end on the current
text line, the compiler treats that line and the one following as a
single text line. Several physical text lines may thus be combined
to form a single text line. The compiler cannot process a text
line that exceeds 511 characters.

string initializer too long

You have written a data initializer that uses a string constant to
initialize an array data object, and there are more elements in the
string constant than in the array. even omitting the terminating
null character. The string constant "abc", for instance, can
initialize an array with three or more elements. If the array is of
unknown size,, this string will define its size as four elements.
You cannot use this string to initialize an array of fewer than
three elements, however.

struct size unknown

A - 18

You are referring to a struct of unknown content at a point where
the compiler must know the size in bytes of data objects with that
structure type. If the compiler must allocate storage for the data
object, or if you write an expression such as sizeof str. for
instance. the compiler will emit this error message.

Compile Time Error Messages

!lfructure member already dedared: < nam<> >

You have written a structure declaration, and its content contains
two structure member declarations with the same identifier. The
identifier is name.

too many initializers

You have written a data initializer that contains more data items
than are required to initialize the data object. You may have
written braces improperly within a complex data initializer. You
may have altered the size of an array, or deleted structure
members from a struct, without altering the data initializer to
match.

type definition already declared: <name>

You have written a declaration with storage class typedef that
declares an identifier previously declared within the same block.
Or, the previous declaration within the same block is a type
definition. The identifier is name. You may have misspelled the
identifier. You may have written another type specifier with the
type definition, as in:

typedef int I;
unsigned I ui; I* ERROR: can't add type specifiers

to I */

unbalanced double quotation marks

You have written a string constant that contains a newline
character before the closing double quotation mark. You must
write a string constant all on one text line. You can write a
backslash at the end of a physical text line to merge that and the
next physical text line into one text line. You can write a long
string constant across multiple physical text lines this way. Or
you can write string constants on successive lines, separated only
by whitespace. The compiler concatenates adjacent string constants
to form one combined string constant.

unbalanced single quotation marlls

You have written a character constant that contains a newline
character before the closing single quotation mark. You must write
a character constant all on one text line.

undeclared operand: <name>

You have written an expression that contains an identifier not
currently declared and not used as the name of a function to call.
The identifier is name. You must declare a data object identifier
before you use it in any way within an expression. You must
declare a function identifier before you take its address in an
expression. You may have misspelled the identifier.

Compile Time Error Messages A - 19

undefined label: <name>

You have written a function body containing a goto statement. and
you defined no label that matches the label in the goto statement.
The label is name. You may not transfer control to another
function body with a goto statement.

undefined "static" function: <name>

You have declared an identifier as a function with internal linkage.
and you have provided no defining instance within the compilation.
The identifier is name. If you declare a function with storage
class static, then you must write a declaration for that function
with a function body somewhere within the compilation.

union size unknown

You are referring to a union of unknown content at a point where
the compiler must kn9w the size in bytes of data objects with that
structure type. If the compiler must allocate storage for the data
object, or if you write an expression such as sizeof un. for
instance, the compiler will emit this error message.

unlmown argument: <name>

You have written an argument level declaration that declares an
identifier not in the argument list in the function declaration. The
identifier is name. You may only declare arguments in argument
level declarations. You may have misspelled the identifier. If you
choose an identifier that a header file defines as a macro with
arguments. the compiler may emit this error message.

unknown directive following 11 # 11

You have written a comment preprocessor directive :ft: with
something other than comments or whitespace on the text line.
You may have misspelled the name of a preprocessor directive.

un1mown structure member: <name>

You have written an expression containing one of the forms x. y or
x->y, and y is not a structure member name contained in the
structure designated by the type of x. You must specify only
structure member names from the designated structure type.

void size undefined

A - 20

You are referring to a void type at a point where the compiler
must know the size in bytes of a data object. If the compiler
must allocate storage for the declaration. as in the case

auto void x;
or if you write an expression such as sizeof (void). for instance.
the compiler will emit this error message.

Compile Time Error Messages

"H•hilP" required

You have written a do/while statement, and the compiler expects
the keyword while where none is present. You may have written
more than one statement after the keyword do. without enclosing
them in braces. You may have written something the compiler
does not expect.

zero operand after 11 % "

You have written an expression containing the form x%y. where y
is a constant expression with the value zero. Do not divide by
zero.

zero operand after "/"

You have written an expression containing the form x/y. where y
is a constant expression with the value zero. Do not divide by
zero.

Compile Time Error Messages A - 21

Environmental Problems

"(" required

")" required

You have specified one or more command options to CC. and no
left parenthesis precedes the command options. This error message
is applicable only under VM/CMS.

You have specified a command option to CC that requires
information enclosed in parentheses, and no right parenthesis follows
the information. This error message is applicable only under
VM/CMS.

cannot create file: <file>

You have specified an· assembly language source file or a listing
file that the compiler cannot create for writing. Or the compiler
cannot create temporary intermediate files. The file name is file.
Provide sufficient disk space. and appropriate access permissions. for
compiler output files. Alternatively, the RLINK program is unable
to create an output file. On VM/CMS, RLINK creates the output
file RLOBJ TEXT * on the first writable minidisk. Make sure a
writable minidisk is available to RLINK. On MVS and MVS/XA.
RLINK creates the output dataset dd: SYSPUNCH. Make sure you
have set up SYSPUNCH correctly. You may have misspelled the file
name.

cannot open file: <file>

You have specified a C source file that the compiler cannot open
for reading. Or the compiler cannot open a temporary intermediate
file. The file name is fUe. Provide appropriate access permissions
for compiler input files. Alternatively, you have specified an object
file that the RLINK program cannot open for reading. The file
name is file. On VM/CMS. the file type is TEXT. On MVS and
MVS/XA, the input dataset name is dd: SYSIN. Provide appropriate
access permissions for RLINK input files. You may have misspelled
the file name.

cannot open "#include" file: <file>

You have specified a C source file or a library header file that the
compiler cannot open for reading. The file name is constructed
from file. Provide appropriate access permissions for compiler
include files. You may have misspelled the file name.

cannot read file: <file>

A - 22

The compiler has encountered a read error on an open file. The
file name is file. It assumes that the system has already retried
the read, and that the error is irrecoverable. Compile the code
again, preferably on a different storage device.

Compile Time Error Messages

cannot write file: <file>

The compiler has encountered a write error on an open file. The
file name is file. It assumes that the system has already retried
the write operation. and that the error is irrecoverable. There may
be no additional room on the storage device. Compile the code
again, preferably on a different storage device.

csect name too long

You have specified the CSECT(name) option to CC, and the length
of the . CSECT name name exceeds the length allowed. If you
specify CSECT(name) in combination with the RENT option. name
must not exceed seven characters in length. Otherwise name must
not exceed eight characters in length.

file name required

You have specified no, file name to CC. You must specify the
name of the source file you want to compile. Alternatively. you
have specified no file name to the RLINK program. On VM/CMS.
you must specify the name of one or more input files to RLINK.
the file type of which must be TEXT.

insufficient heap

invalid card

The compiler has exhausted the storage it has available for building
its internal data structures. You may have written a large number
of macro definitions, a large number of declarations. or a large
function body. You must increase the size of the virtual machine
on which the compiler is running. or alter your program to lessen
the demands it makes on the compiler.

You have specified input to the RLINK program which contains
invalid records within the object module. Make sure the object
module you use as input to RLINK is valid output from the C
compiler.

invalid characters in csect name

You have specified the CSECT(name) option to CC. and name
contains a character that is not an uppercase letter
ABCDEFGHIJKLMNOPQRSTUVVXYZ. a lowercase letter
abcdefghijklmnopqrstuvwxyz. or a decimal digit 0123456789.
The first character must be an uppercase or lowercase letter. Use
only uppercase letters, lowercase letters, and decimal digits to form
CSECT names.

invalid combination of options

You have specified two or more command options to CC that are
inconsistent. An example is the combination LIST and NOASM.
which calls for a listing combining C source lines and assembler
output, but specifies that the assembler is not to be run.

Compile Time Error Messages A - 23

invalid option

You have specified a command option to CC that CC cannot
recognize. See the summary of CC command options in your C
Compiler User's Guide for more information.

invalid range for sequence number columns

You have specified the command option SEQ (m, n) to CC and the
column numbers are inconsistent. Either the first column m is
zero, or the second column n is less than m. Columns are
numbered from 1. If you specify a range, you must specify a
range of one or more columns.

invalid search modifier

You have specified the command option SEARCH(mod) or
LSEARCH(mod) to CC under VM/CMS, and the search modifier mod
is not a single letter .or an * character.

invalid sequence option

You have specified a command option SEQ(m.11) to CC that does
not consist of two column numbers separated by a comma and
enclosed in parentheses.

rent requires csect name

You have specified the RENT option to CC and have not specified
the CSECT(name) option in combination with RENT. You must
specify the CSECT(name) option when you specify RENT.

too many macro definitions

A - 24

You have defined more #define macro definitions than CC will
allow. You can avoid this problem by including macro definitions
in a header file.

Compile Time Error Messages

\

Appendix B: Runtime Error Messages

Runtime diagnostics result from three sources:

*

*

*

Internal conditions. Your program reports a signal for
which default handling is specified.

Environmental problems. You have misnamed a file. or
failed to give access permissions that your program needs to
read or write it. Alter the names of the files. or the file
names you specify to your program. to correct these
problems.

Errors in the C runtime. The C runtime detects an
inconsistent internal state and reports it. Such occurrences
are uncommon. These conditions cause an abnormal exit. or
ABEND, with a code greater than 99, to distinguish them
from normal exits and abnormal exits due to other causes.
Report the occurrence of such errors, along with the
conditions that caused the error report, to your service
representative.

This appendix documents the error messages in the first category.
followed by the error messages in the second category. Those in
the third category should occur rarely or not at all, but are briefly
summarized with their ABEND codes.

Internal Conditions

Default Signal Handling

If you report a signal by calling the function kill. default
handling is specified for that signal unless you explicitly alter the
handling by calling the function signal. Default handling is to
print the contents of the machine registers. along with the program
status word. by using the WTP system service. Your program
then takes an abnormal exit with an ABEND code of:

1 For the abort signal SIGABRT.

2 For the terminal attention interrupt SIGINT.

3 For the program interrupt SIGTERM.

ABEND codes 1 through 9 are reserved for signals.

Runtime Error Messages B - 1

Program Termination

The function exit takes a normal exit. A return code of 0
indicates /1 successful termination. /1 All other values are various
forms of "unsuccessful termination." No message is printed.

Environmental Problems

cannot redirect STDIN

You have specified redirection of the standard input stream by
writing a command option of the form < file, and the file cannot
be opened for reading. file is the name of the file. You may
have misspelled the file name. The C runtime writes an error
message to the standard error stream and calls exit with an
argument value of 1.

cannot redirect STDOUT

You have specified redirection of the standard output stream by
writing a command option of the form > file, and the file cannot
be created for writing. file is the name of the file. You may
have misspelled the file name. The C runtime writes an error
message to the standard error stream and calls exit with an
argument value of 1.

command line error

You have written a command line that is invalid. You may have
redirected a stream more than once. You may have written
quotation marks that do not balance. The C runtime writes an
error message to the standard error stream and calls exit with an
argument value of 1.

Unsupported Operating System

You have invoked your program on a system that the C runtime
does not recognize. Your program takes an abnormal exit with an
ABEND code of:

10 - For an unsupported operating system.

ABEND codes 10 through 19 are reserved for initialization errors.

Not Enough Space

B - 2

Your program may make heavy demands for storage. On
VM/CMS, you can change the size of the virtual machine with the
CP DEFINE STORAGE command. On MVS and MVS/XA. you can
change the amount of storage available to your program by altering
the REGION job card parameter. On TSO. you can change the
amount of storage available to your program by altering the SIZE
parameter to the LOGON command. If your program has insufficient
storage, it takes an abnormal exit with an ABEND code of:

20 - For insufficient main stack.

Runtime Error Messages

\
)

21 For insufficient communications area in the first 16 Mbytes
of virtual memory. This occurs only under MVS/XA.

22 For insufficient signal stack.

23 For insufficient storage for the signal attention routine.

24 For insufficient space for library static data.

ABEND codes 20 through 29 are reserved for current and future
insufficient storage errors.

Errors in the C Runtime

The following errors should occur rarely or not at all. If they do.
your program takes an abnormal exit with an ABEND code of:

100

101

102

For an

For an
service.

For an
service.

open error on any

invalid return code

invalid return code

of the three standard streams.

from the FREE MAIN system

from the DMSFRET system

103 For an invalid return code from the ST AX system service.

104 For an invalid pointer type passed to the FREEMAIN or
DMSFRET system service (storage not allocated by
GETMAIN or DMSFREE).

105 For an invalid attempt to perform an exit when not started
by main or dli tc.

106 For an unsuccessful attempt to free stack space or system
static data area.

107 - For a return from exit.

ABEND codes 100 through 199 are reserved for current and future
C runtime errors.

Runtime Error Messages B - 3

B - 4 Runtime Error Messages

Appendix C: Summary of Reserved Identifiers

The following is a list of all identifiers defined by the compiler or
by the C library. The compiler defines only keywords. Each
identifier defined by the C library is defined or declared in a
header file.

Do not declare a function or data object whose name matches any
of these reserved identifiers. Do not, as a matter of caution. use
any of the identifiers listed below in any way within your
programs.

All identifiers that begin with an underscore are reserved for use
by the compiler. Assume that any such name might be defined as
a macro, even if you include no header files in a compilation.

Usage of Reserved Identifiers

The alphabetical listing of all identifiers also shows the header file
that defines or declares it and how it is used. No header file is
given for keywords. The usage classifications are:

*

*

*

*

*

*

If an identifier is a /1 constant integer macro, /1 you may use
it in a #if expression. or in any static data initializer.

If an identifier is a 11 constant arithmetic macro, 11 you may
use it in a static data initializer for a data object of
arithmetic type.

If an identifier is a 11 constant pointer macro, 11 you may use
it in a static data initializer for a data object of pointer
type.

If an identifier is an "rvalue macro," you may not use it in
a static data initializer. You may use it only in an
expression that permits an rvalue of the specified type. An
rvalue is permitted wherever a void expression is permitted.

If an identifier is an 11 lvalue macro," you may not use it in
a static data initializer. You may use it only in an
expression that permits an lvalue of the specified type. An
}value is permitted wherever an rvalue or a void expression
is ·permitted.

If an identifier is a "function only." you may use it in a
.static data initializer. You can use it for a data object of
type pointer. you may take its address, and you may use it
in a function call. It is declared within the header file as
a function. with external linkage.

Summary of Reserved Identifiers c - 1

*

*

*

*

*

*

*

*

If an identifier is a 11 function or macro. 11 you may not use
it in a static data initializer, and you may not take its
address. You may use it only in a function call. It is
declared within the header file as a function, with external
linkage. It may also be subsequently defined in the header
file as a macro. It will evaluate each of its arguments
exactly once. whether it is implemented as a macro or not.
You may remove any macro definition with the #undef
preprocessor directive.

If an identifier is a 11 function or unsafe macro, 11 as a
function it behaves just as a "function or macro." As a
macro. however, it may evaluate one of its arguments more
than once.

If an identifier is a /1 statement macro, /1 you may use it
only where a statement is permitted. You follow the macro
call with a semicolon, just like an expression in an
e.'\pression statement.

If an identifier is a "type definition," you may use it
wherever a type specifier is permitted.

If an identifier is a /1 struct tag. 11 you may use it wherever
a type specifier is permitted. You write the type specifier
as struct tag. where tag is the identifier. It is declared
within the header file as a struct tag, along with the
content that goes with it.

If an identifier is a 11 macro reference." it is not defined
within the header file. Instead, you must choose whether to
define it as a macro before including the header file. You
can define a macro either with a #define preprocessor
directive, or on the command line that invokes the C
compiler.

If an identifier is a "function reference." it is not defined
within the C library. You must provide a definition for this
function in one of the compilations that make up your
program.

If an identifier is a :fl:if or #elif operator. it has special
meaning only within an expression in one of those
preprocessor directives.

If the word 11 added 11 appears before any of these usages. the
identifier is not in the proposed ANSI Standard. Its usage in the
C library is an extension.

If the word "old" appears before any of these usages. the C
library offers a function that subsumes or replaces the function
declared with that identifier. Use the replacement suggested at the
end of the description of the "old" function.

The Reserved Identifiers

The reserved identifiers are:

c - 2 Summary of Reserved Identifiers

Header File I drntifier Usage

stdio.h BUFSIZ constant integer macro
limits.h CHAR BIT constant integer macro
limi ts.h CHAR MAX constant integer macro
limits.h CHAR HIN constant integer macro
time.h CLK TCK constant arithmetic macro
limits.h DBL DIG constant integer macro
limits.h DBL-MAX EXP constant integer macro
limits.h DBL HIN EXP constant integer macro
limi ts.h DBL RADIX constant integer macro
limits.h DBL-ROUNDS constant integer macro
math.h EDOM constant integer macro
stdio.h EOF constant integer macro
math.h ERANGE constant integer macro
stdio.h FILE type definition
limits.h FLT DIG constant integer macro
limits.h FLT-MAX EXP constant integer macro
limits.h FLT HIN EXP constant integer macro
limits.h FLT RADIX constant integer macro
limits.h FLT-ROUNDS constant integer macro
math.h HUGE VAL rvalue macro
limits.h INT MAX constant integer macro
limits.h INT-HIN constant integer macro
limits.h LDBL DIG constant integer macro
limits.h LDBL MAX EXP constant integer macro
limits.h LDBL-HIN-EXP constant integer macro
limi ts.h LDBL-RADlX constant integer macro
limi ts.h LDBL-ROUNDS constant integer macro
limi ts.h LONG MAX constant integer macro
limi ts.h LONG-HIN constant integer macro
stdio.h L_tmpnam constant integer macro
assert.h NDEBUG macro reference
stdefs.h NULL constant pointer macro
limits.h SCHAR MAX constant integer macro
limi ts.h SCHAR-HIN constant integer macro
stdio.h SEEK CUR constant integer macro
stdio.h SEEK-END constant integer macro
stdio.h SEEK SET constant integer macro
limits.h SHRT MAX constant integer macro
limits.h SHRT HIN constant integer macro
signal.h SIGABRT constant integer macro
signal.h SIGFPE constant integer macro
signal.h SI GILL constant integer macro
signal.h SIG INT constant integer macro
signal.h SIGSEGV constant integer macro
signal.h SIG STACK added constant integer

macro
signal.h SIGTERM constant integer macro
signal.h SIGUSRl constant integer macro
signal.h SIGUSR2 constant integer macro
signal.h SIG DFL constant pointer macro

\ signal.h SIG-ERR constant pointer macro
signal.h SIG IGN constant pointer macro

Summary of Reserved Identifiers c - 3

Header File Identifier Usage

stdio.h SYS OPEN constant integer macro
stdio.h TMP-MAX constant integer macro
limits.h UCBAR MAX constant integer macro
limi ts.h UINT MAX constant integer macro
limi ts.h ULONG MAX constant integer macro
limits.h USHRT-MAX constant integer macro
stdio.h IOFBF constant integer macro
stdio.h -IOLBF constant integer macro
stdio.h IONBF constant integer macro
stdlib.h abort function or macro
math.h abs function or macro
math.h a cos function or macro
time.h asctime function or macro
math.h as in function or macro
assert.h assert statement macro
ims.h asmtdli added function only
math.h atan function or macro
math.h atan2 function or macro
stdlib.h atof old function or macro
stdlib.h atoi old function or macro
stdlib.h atol old function or macro

auto keyword
break keyword

stdlib.h calloc function or macro
case keyword

math.h ceil function or macro
char keyword

stdio.h clear err function or macro
time.h clock function or macro
time.h clock t type definition

const keyword
continue keyword

math.h cos function or macro
math.h co sh function or macro
ims.h ctdli added statement macro
time.h ctime function or macro

default keyword
defined #if or #elif operator

time.h difftime function or macro
ims.h dlitc added function reference

do keyword
double keyword
else keyword
en um keyword

math.h erf function or macro
math.h erfc function or macro
stdefs.h errno lvalue macro
stdlib.h exit function or macro
math.h exp function or macro

extern keyword
math.h f abs function or macro

c - 4 Summary of Reserved Identifiers

Header File Ide11tifier Usage

stdio.h fclose function or macro
stdio.h feof function or macro
stdio.h ferror function or macro
stdio.h fflush function or macro
stdio.h fgetc old function only
stdio.h fgets function or macro

float keyword
math.h floor function or macro
math.h fmod function or macro
stdio.h fopen function or macro

for keyword
stdio.h fprintf function or macro
stdio.h fputc old function only
stdio.h fputs function or macro
stdio.h fread function or macro
stdlib.h free function or macro
stdio.h £reopen function or macro
math.h fr exp function or macro
stdio.h fscanf function or macro
stdio.h fseek function or macro
stdio.h ft ell function or macro
stdio.h fwri te function or macro
math.h gamma added function or macro
stdio.h getc function or unsafe macro
stdio.h get char function or macro
stdlib.h getenv function or macro
stdio.h gets old function or macro
time.h gm time function or macro

goto keyword
math.h hypot added function or macro

if keyword
int keyword

ctype.h isalnum function or macro
ctype.h isalpha function or macro
ctype.h iscntrl function or macro
ctype.h isdigit function or macro
ctype.h isgraph function or macro
ctype.h is lower function or macro
ctype.h isprint function or macro
ctype.h ispunct function or macro
ctype.h is space function or macro
ctype.h isupper function or macro
ctype.h isxdigit function or macro
math.h jO added function or macro
math.h jl added function or macro
setjmp.h jmp_ buf type definition
math.h jn added function or macro
signal.h kill function or macro
math.h ldexp function or macro

\ time.h local time function or macro
i math.h log function or macro

Summary of Reserved Identifiers c - 5

Header File Identifier Usage

math.h loglO function or macro
long keyword

setjmp.h longjmp function or macro
main function reference

stdlib.h malloc function or macro
string.h memchr function or macro
string.h memcmp function or macro
string.h memcpy function or macro
string.h memset function or macro
math.h modf function or macro
stdlib.h onexit function or macro
stdlib.h onexit t type definition
stdio.h perror function or macro
math.h pow function or macro
stdio.h printf function or macro
stdefs.h ptrdiff t type definition

-
stdio.h putc function or unsafe macro
stdio.h put char function or macro
stdio.h puts function or macro
stdlib.h rand function or macro
stdlib.h realloc function or macro

register keyword
stdio.h remove function or macro
stdio.h rename function or macro

return keyword
stdio.h rewind function or macro
stdio.h scanf function or macro
stdio.h setbuf old function or macro
setjmp.h setjmp function or macro
stdio.h setvbuf function or macro

short keyword
signal.h signal function or macro

signed keyword
math.h signgam added rvalue macro
math.h sin function or macro
math.h sinh function or macro
stdefs.h size t type definition

sizeof kej'\vord
stdio.h sprintf function or macro
math.h sqrt function or macro
stdlib.h srand function or macro
stdio.h sscanf function or macro

static keyword
stdio.h stderr rvalue macro
stdio.h st din rvalue macro
stdio.h stdout rvalue macro
string.h strcat function or macro
string.h strchr function or macro
string.h strcmp function or macro
string.h strcpy function or macro
string.h strcspn function or macro

c - 6 Summary of Reserved Identifiers

\
/

Header File

string.h
string.h
string.h
string.h
string.h
string.h
string.h
stdlib.h
string.h
stdlib.h

stdlib.h
math.h
math.h
time.h
time.h
time.h
stdio.h
stdio.h
ctype.h
ctype.h

stdio.h

stdarg.h
stdarg.h
stdarg.h
stdarg.h
stdio.h

stdio.h
stdio.h

math.h
math.h
math.h

Identifier Usage

strlen function or macro
strncat function or macro
strncmp function or macro
strncpy function or macro
strpbrk function or macro
strrchr function or macro
strspn function or macro
strtod function or macro
strtok function or macro
strtol function or macro
struct keyword
switch keyword
system function or macro
tan function or macro
tanh function or macro
time function or macro
time t type definition
tm struct tag
tmpfile function or macro
tmpnam function or macro
to lower function or macro
toupper function or macro
typedef keyword
ungetc function or macro
union keyword
unsigned keyword
va arg rvalue macro
va-end statement macro
va-list type definition
va start statement macro
vfprintf function or macro
void keyword
volatile keyword
vprintf function or macro
vsprintf function or macro
while keyword
yO added function or macro
yl added function or macro
yn added function or macro

Summary of Reserved Identifiers c - 7

c - 8 Summary of Reserved Identifiers

Appendix D: Glossary

abbreviated declaration: A declaration you write with one or more
components omitted. such as

static x; I* short for: static int x = O; *I

int a[2] [2] = {O, 1, 2, 3};
I* internal braces omitted *I

access: To obtain or alter the value stored in a data object.

alphabetic character: An uppercase letter or a lowercase letter.

alphanumeric character: An uppercase letter, a lowercase letter. or a
decimal digit.

application program: An executable program you write. as opposed
to a "system program" that helps you develop and run your
programs.

architecture: The set of machine instructions and data
representations that are common to a family of computers.
such as System/370.

argument: A data object allocated when you call a function. You
provide the initial stored value for the data object with the
"actual argument" expression you write in the function call.
The function may alter the stored value of an argument.
The argument data object is deallocated when the function
returns.

argument level declaration: A declaration you write before the first
left brace of a function body. to declare the arguments to
that function. You may also write file level and block level
declarations.

arithmetic types: A group of types which includes the integer and
floating types.

array: An ordered sequence of data objects all of the same type.

array element: One member of an array. An array element is
often designated by the address of the array combined with
an element number. counting from zero. For example. a[O]
is the first element of the array a.

assembler: A system utility that translates a text file. containing
simple mnemonics describing machine instructions and data
values. to an object code file. The compiler produces
"assembly language" when it translates your source files.

Glossary D - l

D - 2

You can also write assembly language source files directly.

assignment: Storing a new value in a data object. You can
perform simple assignment. as in x=y, or use the current
stored value to determine the new value. as in x+=Y·

assignment compatible: Meeting the type requirements for the two
operands of the assignment operator. An actual argument
in a function call must also be assignment compatible with
its corresponding function prototype argument. The
expresssion in a return statement must be assignment
compatible with the type returned by the function. Another
constraint on types is that they be the "same type."

base type: That portion of the type you specify at the start of a
declaration. Each declarator may provide additional type
attributes along with its identifier, but the base type is
shared among all declarators in a declaration.

binary stream: A stream you connect to a file for reading and
writing arbitrary data. No conversion is performed between
internal and external representations. You can also connect
a /1 text stream /1 to a file.

bitfield types: A group of types that describe data objects
consisting of contiguous groups of bits within an int
component of a structure. You can specify a bitfield type
only for a structure member. Bitfield types are integer
types.

block level declaration: A declaration you write after the left brace
of a compound statement. within a function body. You may
also write file level and argument level declarations.

bounded string: A data object of type array of char whose defined
content is specified by a number of elements n. or which
ends with the first element containing a null character.
whichever comes first. The C library also supports "buffers"
and "strings. /1

buffer: A data object of type array of char whose defined content
is specified by a number of elements 11. The C library also
supports "bounded strings /1 and "strings."

buffering: Reading and writing data in fixed size groups. Buffering
can improve performance by increasing the number of bytes
transferred on each call to the system services.

C compiler: A system utility that translates your C source files to
assembly language. and then to object code files.

C library: A set of object code files that the standard linkage
editor or loader can select from to obtain definitions of
functions and data objects. You use the C library to
perform input/output. storage allocation and deallocation. and
a number of other useful services.

C runtime: The executable code that gets control when you invoke
your C program. It initializes any data objects that must
be defined at program startup. and opens the three standard

Glossary

streams.
defined.
any open

It then calls the function main that you have
Upon program termination. the C runtime closes
files and returns control to the operating system.

calling environment: The information needed to return control from
a function call. You can save a calling environment by
calling the function se tj mp. A later call to the function
longjmp designating the same calling environment causes
execution to resume once again at the return from setjmp.

character constant: A token that specifies a value determined from
the encoding of a character. Its type is int. You can
write literal characters. such as 'a'. or escape sequences.
such as '\n'.

command line: The line of text you type to instruct the operating
system to invoke an executable program. You can specify
"command options 11 on the command line. which the C
runtime converts to a sequence of strings. When it calls
the function main. the C runtime provides arguments that
designate these command option strings.

command option: One of a sequence of strings that the C runtime
obtains from the command line used to invoke your
program. One of the arguments to the function main gives
the number of command options. Another argument
designates the first string in an array of command option
strings.

comment: A contiguous group of source characters between I* and
*I. You use comments to separate tokens that the
compiler might otherwise treat as a single token. You also
use comments to make your source code more readable.

compilation: The source file you present to the compiler. plus any
additional files that are included by #include preprocessor
directives within the source text.

composite type: Any of the struct. union. or enum types. All
composite types may have tags. and all must be defined by
writing their 11 content" inside braces.

const type qualifier: The type qualifier const. that declares the
base type or pointer type to be unmodifiable.

constant: A token that specifies the value of some data object
type. You can determine both the value and the type by
how you write a constant. The integer constant 123. for
instance. has the value 123 and the type int. There are
integer constants. character constants, floating constants. and
string constants.

constant expression: An expression that the compiler can evaluate
where you write it in your source text. The compiler
requires a 11 constant integer expression 11 for the size for the
size of an array or bitfield. for instance. It requires a
11 constant expression" when you initialize a static data object
of arithmetic type. It requires a 11 constant pointer
expression" when you initialize a static data object of

Glossary D - 3

D - 4

pointer type.

content: The descriptive part of a struct. union. or enum
declaration that you write inside braces.

conversion: Altering the representation of a value to that of another
type.

data initializer: That portion of a declaration that specifies an initial
value for a data object. A declarator followed by a data
initializer constitutes a 11 defining instance" for its identifier.
You can write constant expressions to specify the value that
a data object with static lifetime assumes prior to program
startup. You can write less restricted expressions to specify
the value that a data object with dynamic lifetime assumes
whenever control transfers to the start of the block in
which it is declared.

data item: An expression. or list of constant expressions enclosed in
braces. that you write to initialize a component of a data
object.

data object: A contiguous sequence of bytes in memory used to
hold values. You access a data object by writing an !value
operand. The !value specifies a type. which determines what
values are associated with the different bit patterns stored in
the data object. Other languages combine the concepts of
data object and !value into a single entity called a
"variable."

data object types: A major group of types that describe data
objects of known content. Each data object type occupies a
known number of bits of storage. and can represent a
known set of values. Other major groups of types include
the function types and the incomplete types.

debugger: An optional facility you can specify when you compile a
source file. that helps you locate errors in your program.
The debugger lets you inspect and alter data objects while
your program is executing.

declaration: A sequence of tokens you write to describe the
functions. data objects. and type definitions for your
program. A declaration consists of a storage class. a base
type, and zero or more declarators. Each declarator
provides andidentifier and possibly additional type attributes.
You may tollow a declarator with a definition. which is a
function body for a fur1c.tmn or a data initializer for a data
object. All of the tokens in your program belong either to
preprocessor directives or declarations.

declarator: That portion of a declaration that provides additional
type attributes and the identifier you wish to declare.

defining instance: That declaration which provides the definition for
a function or data object. For a functi011. the declaration

Glossary

containing its function body is its defining- instance. For a
data object. the declaration containing its• data initializer is
its defining instance. If no data initializer is specified. then

at least one of the declarations. in one of the compilations.
must be a "tentative definition" for that data object. In
this case. the compiler provides a defining instance.

definition: That portion of a declaration that specifies a function
body. for a function. or an initial value. for a data object.
A declarator followed by a definition constitutes a "defining
instance" of its identifier. Every function or data object
must have a definition somewhere among the compilations
you provide or within the C library. The compiler will
provide a definition for a data object if you write at least
one "tentative definition" for it.

designate: To provide the address of a function or data object.
You designate a function to call it or to take its address.
You designate a data object to access its stored value. alter
its stored value. or take its address. A data object
designator is an "!value."

domain error: A call to a C library function that specifies an input
argument for which the function has no defined value.
There are also "range errors. "

dynamic lifetime: The period over which storage is allocated for a
data object declared at argument level or block level. without
the storage class extern or static. Your program allocates
storage for a data object with dynamic· lifetime when control
transfers to the block in which you declared the data object.
If you write a data initializer for the data object. the initial
value is stored in the data object every time control
transfers to the start of the block. Your program
deallocates storage for the data object when control transfers
out of the block. Data objects may also have "static
lifetime. 11

enumeration constant: An identifier declared within the context of
an enumeration type to have a constant value of the same
type as the enumeration.

enumeration types: A group of types which includes all those
declared with the enum keyword. An enumeration type is
represented as an integer type. When you write an
enumeration type. you specify one or more 11 enumeration
constants. 11 each of which has a constant value of the same
type as the enumeration.

escape sequence: A contiguous group of characters within a
character constant or a string constant that specifies a
single character value. You can write a newline. for
instance, as '\n'. You can also specify an octal value
escape sequence. such as '\ 17'. or a hexadecimal value
escape sequence. such as '\xcS'.

executable file: A file produced by the linkage editor or loader
which you can run by typing a command line. Your
program is an executable file.

Glossary D - 5

D - 6

expression: A sequence of tokens you write to call functions.
compute values. and store values in data objects. Some
expressions must be "constant expressions." since the
compiler must be able to determine their values where you
write them in your source text. The compiler translates
other expressions to executable code so that your program
carries out the action you specify when control transfers to
the expression. The four classes of expressions are void
expressions, lvalues, rvalues, and function designators.

external linkage: An attribute you specify for a function or data
object to ensure that all compilations that declare the same
identifier with external linkage refer to the same function or
data object. You write a file level declaration with no
storage class keyword. or a declaration at file or block level
with the storage class extern. to specify external linkage.
The external identifier derived from the identifier you write
may have as few as seven significant characters, with no
distinction between uppercase and lowercase letters. You can
also specify "internal linkage" or "no linkage."

file level declaration: A declaration you write outside any other
declaration. You may also write argument level and block
level declarations.

file name: A string argument you specify to various C library
functions to provide the external name of a file. The rules
for writing file names vary among operating systems.

file pointer: An indicator associated with each stream connected to
an open file that designates the next byte to read or write
within the file. The file pointer is advanced on each read
or write. You can also set the file pointer by calling the
function fseek, and obtain its value by calling ftell.

floating constant: A token that specifies a value of some floating
type. You can write fractional form, such as 12. 4.
exponent form, such as 124e-1, or both, such as 1. 24el.
You can also add a suffix to specify type, such as 12. 4F.

floating types: A group of types which can represent approximations
to real numbers. Each type can represent a fixed number
of bits of precision over a range of values that is large
compared to the range of the integer types. Each type can
represent negative numbers and the value zero as well.

format strin.g: A string argument you specify to any of the "print"
or "scan" functions in the C library to specify the number
and nature of argument conversions to perform.

formatting: Converting between internal representation and printable
text. You format input from a text stream by calling one
of the "scan" functions in the C library. You· format
output to a text stream by calling one of the "print"
functions in the C library.

function: A group of machine instructions that your program can
execute. You transfer control to the start of the group by

Glossary

calling the function. Control leaves the group when your
program calls other functions or when it returns to the
function that called it. You call a function by writing an
expression. The function can return a value that becomes
the value of the function call within the expression. All
machine instructions the compiler generates from your source
program are grouped into functions.

function designator: A class of expression that designates a function
and has a type of the form fu11ctio11 returning T. You use
a function designator to call a function or to obtain its
address. Other classes of expressions are !values. rvalues.
and void expressions.

function prototype: A form of function declaration that specifies the
number and types of all the arguments to a function call.
You can also declare or define a function and specify no
information about the number and types of its arguments.

function types: A major group of types that describe functions.
Other major groups of types include the incomplete types
and the data object types.

grouping; The act of determining what operands group with what
operators in an expression. The compiler uses operator
precedence to determine grouping if you do not fully
parenthesize an expression.

header file: A file of source text provided with the C library that
you can include in your compilations. Every C library
function is declared in one of the header files. along with
any needed type definitions and macro definitions.

identifier: A token that consists of an arbitrary sequence of
uppercase letters. lowercase letters. underscore characters. and
digits, beginning with anything but a digit. You use an
identifier wherever you must name something in C.
Characters after the first 31 are not necessarily significant
when comparing two identifiers for equality. External
identifiers may have as few as seven significant characters.
with no distinction between uppercase and lowercase letters.

include file: A source file that you include as part of a compilation
by writing the #include preprocessor directive as part of
your source text. You can write your own include files. or
include any of the "header files" provided with the C
library.

incomplete types: A major group of types that describe data objects
of unknown content. or the type i·oid. You can use
incomplete types wherever the compiler does not need to
know the size of a data object. as when declaring a pointer
to an incomplete type. You can declare an array of
unknown content and specify its size by the data initializer
you provide with the declaration. You can declare an
argument that is an array of unknown content. since its
type is changed to a pointer type. Other major groups of
types include the function types and the data object types.

Glossary D - 7

D - 8

integer constant: A token that specifies a value of some integer
type. You can write decimal integer constants, such as 123.
octal integer constants. such as 0400, or hexadecimal integer
constants. such as Ox2ce. You can also add one or more
suffixes to specify type. such as 127U.

integer types: A group of types which can represent whole numbers.
The "signed integer 11 types can represent a range of
numbers from some negative value to some positive value.
The "unsigned integer" types can represent a range of
numbers from zero to some positive value.

internal linkage: An attribute you specify for a function or data
object to ensure that all declarations that declare the same
identifier with internal linkage. within one compilation. refer
to the same function or data object. You write a file level
declaration with the storage class static to specify internal
linkage. You can also specify "external linkage" or "no
linkage."

keyword: An identifier given special meaning by the compiler. You
cannot create new keywords, and you cannot redeclare
keywords.

label: An identifier you write in a goto statement to specify where
control transfers within the function body. You write a
"plain label" as a label identifier followed by a colon. before
the statement that gets control. You can also write "case
labels ff and ff def a ult labels ff within a switch statement.

linkage editor: A system utility that combines the object code files
the compiler produces with those that the assembler and the
C library produce to form an executable file.

lvalue: A class of expression that designates a data object and has
a type. You use an !value to obtain the value stored in a
data object. to obtain the address of the data object. or to
store a value in the data object. Other classes of
expressions are rvalues. function designators. and void
expressions.

macro definition: A preprocessor directive of the form:

#define x def11

that defines the identifier x as a macro whose expansion is
defn. You may also define macros that take arguments.
whose expansions are substituted within the expansion of
defn.

macro expansion: The replacement of a macro name. and any
arguments. that you write in your source text with the
expanded definition of the macro.

name space: A set of names. all of which must be distinct. All
labels within a function body form a name space. for
instance. You may use the same identifier as both a tag
and a data object name. because these occupy separate name
spaces.

Glossary

narrowing conversion: A conversion from one arithmetic type to
another that may result in loss of significant bits.

newline character: The character that causes the combined motion:
carriage return. line feed. The compiler converts your
source text to a character stream. recording the end of each
text line with a newline character. The C library records
the end of each line of a text file as a newline character.
when you read a text stream. When you write a newline
character to a text stream. the C library ends the current
text record. You write the newline character as the escape
sequence \n within a character constant or a string constant.

no linkage: An attribute you specify for a data object to ensure
that only one declaration for that identifier refers to the
data object. You write an argument or block level
declaration with no storage class keyword. or with the
storage class auto or register. to specify no linkage. You
can also specify "external linkage" or "internal linkage."

null character: The character that terminates a string. The
compiler appends a null character to every string constant.
You write the null character as the escape sequence \0
within a character constant or a string constant.

null pointer: A pointer whose value compares equal to the integer
constant 0. No function or data object in C has an
address that compares equal to the null pointer.

object code file: A file produced by the assembler that captures the
contribution to an executable file from a single C
compilation or a single assembly language file. You use the
linkage editor to combine object code files to produce an
executable file.

operand: A constant. identifier. or subexpression that an operator
operates upon within an expression. Examples of each are:
the constant operand 3. the identifier operand x. and the
subexpression operand *(a+l).

operator: A token you write in an expression to specify what
operation to perform upon one or more operands. You can
negate a value. for instance. as in -3. call a function. as in
printf("hello\n"). or store a value in a data object. as
in i=O.

padding: Extra data bits added to a data object or the contents of
a file that are not part of the value of any of the
components you specify.

pointer types: A group of types which can represent the addresses
of functions or data objects. There are pointers to
functions. pointers to incomplete types. and pointers to data
object types. You can use the value of a pointer type to
designate a function or a data object. by writing an
expression such as *p or p [i] .

precedence: The strength with which an operator groups operands
relative to other operators. Higher precedence operators

Glossary D - 9

D - 10

group more strongly than lower precedence ones.

preprocessor: That portion of the compiler which carries out
"preprocessor directives." signalled by lines beginning with
the character #. You write preprocessor directives to include
the contents of other files within a compilation, to
conditionally skip over portions of your source text. and to
define macros which are later expanded within your source
text. The preprocessor rewrites your source text after it is
grouped into tokens. before the tokens are grouped into
declarations.

preprocessor directive: A source text line beginning with the
character #. Each such line must match the pattern for
one of the preprocessor directives defined by the
preprocessor.

print function: Any of the C library functions that perform
formatted output.

printable character: A character that has a visible graphic
representation when written to a printer or a display device.
or the space character.

program: An executable file that you specify by writing one or
more source files. which are compiled to object code files
and combined by the linkage editor.

program startup: The point in time after your program has been
invoked. when control is first transferred to the function
main that you provide.

program termination: The point in time after your program has
transferred control to the C runtime for the last time.

punctuation character: A printable character other than an
alphanumeric character or a space. C uses some of the
punctuation characters to represent delimiters, separators. and
operators.

range error: A call to a C library function that results in a
computed value that cannot be represented in the required
type. For floating types. you can get a range error either
on underflow or on overflow. There are also "domain
errors. 11

redeclaration: A declaration with external linkage or internal linkage
that is in scope of a declaration for the same identifier that
also has external linkage or internal linkage. A
redeclaration describes the same function or data object as
the earlier declaration.

representation: The set of bit patterns defined for a given data
object type. Each valid bit pattern represents some value
of that type. For a given type in C. all bit patterns
occupy the same number of bits.

reentrant program A program that may be entered more than once.
even if prior versions have not yet completed. as long as
instructions and external data objects are not modified

Glossary

during execution. Multiple copies of the text section of the
same reentrant program may be shared by more than one
user simultaneously.

reserved identifier: An identifier that has special meaning either to
the compiler or to the C library. You may use a reserved
identifier in a different name space from the one containing
the special meaning.

rvalue: A class of expression that has a value and a type. It does
not designate a data object. Other classes of expressions
are !values. function designators. and void expressions.

same type: Having identical type. or type that is identical except
for information unspecified in one of the two types. When
you redeclare a function or data object. the redeclaration
must have the same type as the earlier declaration. A data
object pointer is assignment compatible with another data
object pointer that points to data objects of the same type.
Another constraint on types is that they be 11 assignment
compatible. 11

scalar types: A group of types which includes the integer types. the
floating types. and the pointer types. You can compare any
of the scalar types against zero.

scan function: Any of the C library functions that perform
formatted input.

scope: The region of source text over which a definition or
declaration is associated with an identifier. A definition or
declaration may be in scope but not "visible" because
another definition or declaration masks it.

side effect: A change in the value stored in a data object. or a
change in the state of a file. that occurs when your
program evaluates an expression.

signal: A positive integer value you specify as an argument to the
function kill to report an unusual event. You can call
kill directly. or the C runtime environment can call it in
response to an event it detects, such as an access to a
storage address that is not part of your program. You call
the function signal to alter the handling of signals.

signal handler: A function you write that gets control when kill
reports a signal.

signed: Having negative. zero. and positive values.

standard error: A text stream that the C runtime connects to an
open file before program startup. Your program can write
error messages to this stream.

standard input: A text stream that the C runtime connects to an
open file before program startup. Your program can read
from this stream.

standard output: A text stream that the C runtime connects to an
open file before program startup. Your program can write

Glossary D - 11

D - 12

to this stream.

statement: A sequence of tokens you write to perform actions and
specify flow of control through your program. You write
statements only inside a function body.

static lifetime: The period over which storage is allocated for a
data object declared at file level, or with either the extern
or static storage class. A data object with static lifetime
has its initial value stored in it at program startup. Your
program does not deallocate storage for it prior to program
termination. Data objects may also have "dynamic lifetime."

storage alignment: A requirement imposed by the architecture on
the values that the compiler may use for the addresses of
data objects of a given type. A short int. for example.
may be constrained to begin on an even byte boundary in
memory.

storage allocation: The act of obtaining storage for a data object.
The compiler allocates storage for data objects with static
lifetime prior to program startup. Your program allocates
storage for data objects with dynamic lifetime upon each
entry to the block in which they are declared. You can
also allocate storage at will by calling the library functions
calloc. malloc. and realloc.

storage class: That portion of a declaration that provides linkage
and lifetime for all declarators in the declaration. You write
a storage class with one of the five keywords extern.
static. auto. register. or typedef. The storage class
typedef signals a type definition. You may apply extern
and static to either functions or data objects. You may
apply auto and register only to data objects.

The act of releasing storage for a data object. Your
program will not deallocate storage for data objects with
static lifetime until after program termination. It deallocates
storage for data objects with dynamic lifetime upon each
exit from the block in which they are declared. You can
also deallocate storage you allocated by calling the library
functions calloc. malloc. and realloc, by calling the
library function free.

stream: A logical connection between a buffer and a file. controlled
by a data object of type FILE. You connect a stream to a
file by opening the file. You may then read or write the
stream. which buffers input or output to the file. You
break the connection by closing the file.

string: A data object of type array of char whose defined content
ends with the first element containing a null character. The
C library also supports "bounded strings" and "buffers."

string constant A token that specifies a value stored in memory as
a data object of type array of char. The string constant
"ab \n". for example. has the four elements 'a'. 'b'. ' \n'.
and '\0'. The compiler always appends a null character to

Glossary

I
)

a string constant.

struct types: A group of types which includes all those declared
with the struct keyword. The content of a struct type
consists of one or more structure members. each of which
has a distinct name and may have a distinct data object
type. The structure members specify component data objects
that follow each other in memory.

structure member: An identifier declared within the context of a
structure type to name a component of the structure type.
All structure members must have data object types. You
can specify a bitfield type only for a structure member.

structure types: A group of types which includes the struct types
and the union types.

successful termination: A call to the function exit with an
argument of zero.

tag: An identifier you declare as part of a struct. union, or
enum type. You can declare a tag before you define the
corresponding content. This is the only way to write
structures that reference one another.

tentative definition: A declaration for a data object that ensures
that the current compilation will provide a defining instance
for the data object. If you write no data initializer for the
data object. then the compiler will provide one with all zero
values. You write a tentative definition at file level by
omitting the storage class keyword from the declaration.

test expression: An rvalue of scalar type that is compared against
zero. You write test expressions to control execution of
statements. as in

if (test)
statement

text line: A sequence of characters in a text stream represented
internally with a newline character at the end of the line.
Both the compiler and the C library treat a text stream as
a sequence of text lines.

text stream: A stream you connect to a file for reading and
writing printable text. Characters may be added. altered. or
deleted to convert between the standard internal form for
text and the representation used for a given file. You can
also connect a "binary stream" to a file.

token: A contiguous group of characters in your source program
that matches a predetermined pattern. Tokens form the
elements of C declarations and preprocessor directives. The
compiler groups all of the characters in your source program
into tokens or into the whitespace and comments that
separate tokens.

trigraph: A sequence of three characters you write in place of a C
source character that your input device cannot generate.
You can replace a left bracket, for instance, with the

Glossary D - 13

D - 14

trigraph ??(.

type: The principal attribute of something you declare in C. The
three major groups of types are function types. incomplete
types, and data object types. Every constant you write also
has some data object type.

type attribute: A sequence of tokens you add to a declarator to
add type information. There are pointer type attributes,
such as *p. array type attributes, such as x[3]. and
function type attributes, such as f (int).

type cast operator: An operator that converts a scalar rvalue to the
type you specify in the operator. You write a type cast
operator as a type name inside parentheses, such as
(double)x.

type definition: A declaration with the storage class typedef. that
defines an identifier to be a synonym for the type you
specify.

type name: A declaration you write with no storage class. one
declarator, no definition. and no identifier within the
declarator. Examples are double or int (*) (). You write
type names as part of type cast operators, for instance. or
to declare arguments within a function prototype.

type qualifier: One of the keywords const or volatile. You can
write a type qualifier as part of the base type in a
declaration, or following the * pointer type attribute in a
declarator.

union types: A group of types which includes all those declared
with the union keyword. The content of a union type
consists of one or more structure members. each of which
has a distinct name and may have a distinct data object
type. The structure members specify component data objects
that overlap each other in memory.

unknown content: Describes an incomplete type that you can
complete by providing additional information. You provide
the size of an array to complete an "array of unknown
content." You provide the structure member declarations to
complete a "structure of unknown content." You cannot
complete the type void.

unsigned: Having only zero and positive values.

unsuccessful termination: A call to the function exit with a
nonzero argument.

value: The numeric meaning attached to a bit pattern by its
associated data object type. The 32 bit pattern for an int
with value 10. for instance. is a very small value as a float
and an address in low memory as a pointer to char.

variable length argument list: An argument list on a function call
that may differ in length from other argument lists in other
calls on the same function. You declare a function that
may accept variable length argument lists by writing a

Glossary

prototype such as int print f (char *fmt, ...) . The
notation , • • • indicates that actual arguments from that
point on behave as if there were no prototype in scope.

visibility: The region of source text over which a definition or
declaration is in scope for an identifier. and the identifier is
not masked by another definition or declaration.

void expression: A class of expression that has type r1oid. It
designates nothing and has no value. You evaluate a void
expression for its side effects, such as calling a function or
altering the value stored in a data object. Other classes of
expressions are !values. rvalues, and function designators.

void type: The incomplete type void. which has no representation
and which you cannot complete. You declare a function
that returns no value as a function returning r1oid. You
declare a generic data object pointer as a pointer to void.

volatile type qualifier: The type qualifier volatile, that declares the
base type or pointer type to be modifiable by agencies not
obvious to the compiler.

whitespace: A contiguous group of spaces. horizontal tabs. vertical
tabs. form feeds, carriage returns. and newlines. In your
source code. you use whitespace to separate tokens that
might otherwise be treated by the compiler as a single
token. You also use whitespace to make your source code
more readable. The C library enforces the same definition
of whitespace in several functions.

widening conversion: A conversion from one arithmetic type to
another that may result in an increase in the number of
bits used to represent the value.

Glossary D - 15

D - 16 Glossary

Index
preprocessor directive 7 -11
#define preprocessor directive

3-1, 3-5, 3-7, 7-7, 8-2
#elif preprocessor directive 7-6
#else preprocessor directive 7 -6
#endif preprocessor directive

7-4
#if constant 4-13
#if preprocessor directive 5-30.

7-5
#ifdef preprocessor directive

7-4
#ifndef preprocessor directive

7-5
#include file processing 7-2
#include files; search order 7 -2
#include preprocessor directive

3-4. 7-2. 8-1. 10-6
#line preprocessor directive 7 -11
#pragma preprocessor directive

1-4, 4-21. 5-19. 7-11
#undef preprocessor directive

3-7. 7-10. 8-2
31 bit addresses 4-18
31 bit addressing 1-2
< assert.h > header file 11-3
< ctype. h > header file 11-5
<ims.h> header file 11-19
<limits.h> header file 11-22
<math.h> header file 8-6, 11-25
< setjmp > header file 11-61
<signal.h> header file 11-64
<stdarg.h> header file 11-68
< stdefs.h header file 11-73
<stdefs.h> header file 8-6
< stdio.h > header file 8-4. 8-5,

9-1, 9-4, 9-7, 9-8, 11-74
< stdlib.h > header file 11-126
<string.h> header file 11-143
<time.h> header file 11-164

FILE macro 7-9, 7-11
-LINE- macro 7-9. 7-11
_pcblist data object 8-4

pcblist macro 11-19
abbreviated declaration 3-8. 4-2.

4-24. D-1
abort function 8-7, 11-127
abs function 11-2 7
access D-1
acos function 11-28
add operator 5-22
additive operators 5-2. 5-22
address of operator 4-4. 5-21
addresses 2-8. 4-9. 5-13. 5-15

addressing operators 4-18. 5-2.
5-15

alert character 2-6, 9-3
allocation of registers 1-2
allocation of storage 4-4. 4-5
alphabetic character D-1
alphanumeric character D-1
ANSI standard 1-3, 1-4. 5-9. 7-9
ANSI: extensions 1-3. 1-4
application program D-1
architecture D-1
argument D-1
argument block 7-12
argument level declaration 3-3.

3-5. 3-6. 3-8, 4-2. 4-3.
4-16. 4-20. D-1

argument level redeclaration 4-6
argument list 4-20, 5-17
argument widening 5-18. 7-12.

11-69
arithmetic conversions 5-1. 5-5.

5-7. 5-27
arithmetic types 4-27, 5-14. D-1
array D-1
array element D-1
array type attribute 4-18. 4-19
array types 4-13, 4-19, 4-20.

4-23. 4-24, 4-26. 5-6. 5-14.
5-15

arrays; convert to pointers 3-5.
4-3

ASA control character 9-3
asctime function 11-16 5
asin function 11-29
asmtdli function 11-20
assembler D-1
assemblers 3-10
assembly language listings 1-2
assert function 11-4
assertion test 11-4
assignment D-1
assignment compatible 4-23. 5-12.

5-14. 5-17. 5-21. 5-27. 6-5.
D-2

assignment conversions 5-1
assignment operators 5-2. 5-4.

5-27
asynchronous signals 4-17. 11-64
atan function 11-30
atan2 function 11-31
atof function 11-128
a toi function 11-12 9
atol function 11-130
auto data objects 11-62

Index X - 1

auto keyword 4-2
backslash character 2-1, 2-2,

2-6, 2-7
backslash/newline sequence 2-2
base type 4-1, 4-7, D-2
binary input/output 9-1
binary stream D-2
binary streams 9-1, 9-3, 10-7,

11-85
bitfield types D-2
bitfields 4-10, 4-14, 4-15, 5-21
bitwise AND operator 5-25
bitwise exclusive OR operator

5-26
bitwise inclusive OR operator

5-26
bitwise NOT operator 5-19
bitwise shift operator 5-2, 5-23
block level declaration 3-3, 3-4,

3-5, 3-6, 3-7, 4-2, 4-4.
4-16, D-2

block level redeclaration 4-6
block scope 3-6, 4-7, 6-4
body of function 3-3
bounded string D-2
bounded strings 11-143
break statement 6-9. 6-10
broken vertical bar 2-10
buffer D-2
buffered input/output 9-1
buffering D-2
buffering strategy 9-5, 9-8, 9-9,

11-116
buffers 11-143
BUFSIZ macro 9-4, 11-7 4
byte order 10-7
C compiler D-2
C library 1-3, 1-5, 2-3, 3-10,

4-17, 4-22, 5-21, 5-23, 8-1,
8-5, 8-7, 9-1, 9-2, 9-5.
9-7, 9-8, 9-10, 11-1, D-2

C runtime 11-65, D-2
C runtime environment 3-10, 8-1,

11-19
C#INITl table 8-5
call C from other languages 7 -12
call DL/I 11-20, 11-21
call other languages from C 7 -12
calling environment 5-17, 6-5,

11-61, 11-62, D-3
calling sequence 7 -12
calloc function 11-131
carriage return character 2-1,

2-6, 9-3, 11-14

X - 2 Index

case labels 6-2. 6-9
CC command 8-1
ceil function 11-32
char type 4-9
character constant D-3
character constants 2-4, 2-6
character set 2-1
character; alert 2-6
character; backslash 2-1, 2-2.

2-6, 2-7
character; carriage return 2-1.

2-6
character; escape 2-1, 2-6
character; form feed 2-1. 2-6
character; horizontal tab 2-1,

2-6
character; newline 2-1, 2-2, 2-6
character; null 2-7
character; question mark 2-6
character; space 2-1, 2-2
character: underscore 2-1. 2-3
character; unrecognized 2-10
character; vertical tab 2-6
character; virtual tab 2-1
character; whitespace 2-1. 2-2.

2-10
characters; printable 2-7
characters; punctuation 2-1
classes of expressions 5-5
classification of types 4-26
clearerr function 11-77
clock function 11-166
clock ticks 11-164, 11-166
closing files 8-5, 9-4, 9-6. 11-78
coding practice 2-5, 3-3. 4-2.

4-7, 4-8, 4-24, 5-3, 5-4.
5-10, 5-18, 8-6, 9-5, 9-6.
9-7, 9-8, 10-1

comma operator 5-2. 5-4, 5-15,
5-29

command line 8-3, 11-142. D-3
command option D-3
command options 8-3
comment D-3
comment delimiter 2-2. 2-7
comments 2-2, 2-7, 7-2, 7-9, 7-11.

10-3
comments; nest 2-2
commutative operators 5-3
compare identifiers 2-3, 3-10
comparing types 5-13
compilation D-3
compilations 1-6, 3-9, 4-22
compile time 4-1. 4-22. 5-1. 5-3.

5-29
compiler command option 7-2, 7-3
compiler error message 2-10, 3-8,

4-6. 4-16. 4-24, 5-29. 7-2.
7-12

compiler option 1-2, 1-3. 7-9
complex types 4-18, 4-25
composite type D-3
composite types 4-8, 4-9. 4-12
compound statement 6-1. 6-4. 6-9
concatenate string constants 2-7
conditional operator 5-2, 5-27
conditional preprocessor directive

7-1, 7-2. 7-4
conditional preprocessor directive

group 7-2, 7-4
const keyword 4-8. 4-16
const pointers 4-19, 5-14
const type qualifier D-3
const types 4-16, 4-19, 4-21,

4-26, 5-6, 5-14, 10-5
constant 2-4, D-3
constant expression 2-6, 4-23,

4-24, 5-1, 5-3, 5-29, D-3
constant integer expression 2-5,

4-1, 4-13, 4-14, 4-19, 5-29.
6-9

5-30
2-6
2-6

constant pointer expression
constant suffixes; floating
constants; character 2-4,
constants; decimal 2-5
constants; decimal integer 2-4
constants; enumeration 4-1
constants; floating 2-4, 2-5
constants; hexadecimal integer

2-4
constants: integer
constants; negative

2-7

2-4
2-5, 2-6,

constants; string 1-3, 2-4, 2-7
constants; unrecognized 2-10
construct file names 7 - 2
construct string constants 2-7
construct tokens 7 -10
content 4-12, 4-13, 4-14, 4-15,

D-3
contexts for declaration 3-3,

4-7
continue statement 10-5
control character 11-8
conversion D-4
conversion specification 9-10.

11-88. 11-96
convert arrays to pointers 3-5.

4-3, 4-19. 4-21. 5-6. 5-15
convert data object pointers 5-11
convert function pointers 5-11
convert functions to pointers

3-5, 4-3, 4-21, 5-6
convert incomplete pointers
convert integer to pointer
convert !values to rvalues
convert pointers to integers
convert time 11-1 70
cos function 11-33
cash function 11-34
creating files 9-5
ctdli function 1-3. 11-21
ctime function 11-16 7

5-12
5-10
5-6

5-12

data initializer 4-2. 4-4. 4-16,
4-17. 4-19. 4-22. 4-23. D-4

data item D-4
data items 4-23
data object D-4
data object definition 3-5. 4-22
data object designator 2-7. 5-6
data object pointer 4-18. 5-14.

5-15
data object types 4-7, 4-8. 4-19.

4-20, 4-24. 4-26. 5-14. D-4
data objects 1-5, 3-2. 3-5. 3-6.

3-7. 3-8. 4-1. 4-3. 4-6
date and time 11-164. 11-171
DDname 11-85
debugger D-4
debugging 1-2
decimal constants 2-5
decimal digits 2-1. 2-3. 11-9
decimal integer constants 2-4
declaration D-4
declaration contexts 3-3. 4-7
declaration; abbreviated 3-8.

4-2
declaration: argument level 3-3.

3-5, 3-6, 3-8. 4-2
declaration: block level 3-3.

3-4. 3-5. 3-6. 3-7. 4-2.
4-4

declaration: file level 3-3. 3-5.
3-7. 4-2, 4-5

declaration; implicit 3-7, 4-3
declaration: special tag 3-8
declarations 1-5. 3-1. 3-2. 4-1.

6-4. 6-9. 10-4
declarations: implementation of

3-1
declarations: linked 3-9
declarator D-4

Index X - 3

declarators 4-1, 4-17. 4-22
default labels 6-2, 6-9, 10-5
defined operator 7 - 5
defining instance 4-22, D-4
definition D-5
definition; implicit
definition; tentative

4-6

4-3
4-3, 4-5,

definitions 1-5, 4-1. 4-2, 4-21,
4-22

definitions; type 3-7
delimit comments 2-2
delimiter; comment 2-7
delimiters 2-1, 2-9
designate D-5
difftime function 11-168
digits; decimal 2-1, 2-3
digits; hexadecimal 2-4
digits; octal 2-5, 2-7
directive; preprocessor 1-5
divide operator 5-22
DL/I 1-3
DL/I call; perform 11-21
DL/I; call 11-20
DL/I; modify argument with 11-20.

11-21
do/while statement 6-8, 6-10.

6-11, 10-5
domain error 8-6, 11-25, 11-29,

11-31, 11-42. 11-49. 11-50,
11-52, 11-55. 11-58, 11-59,
11-60, D-5

double quotation mark 2-6, 2-7,
7-2

double type 4-11
dynamic data initializers 4-22
dynamic lifetime 4-4, 4-5, 4-16,

4-22, 4-24, D-5
EBCDIC 2-1, 2-2, 2-6, 2-7, 2-10
editor; linkage 3-10
EDOM macro 8-6, 11-25
ellipsis 4-21
else/if chain 6-7, 10-4
empty lines in files 9-2
empty parentheses 5-17
empty text files 9-3
end of file 8-5, 9-4, 9-5, 9-9,

11-77, 11-79, 11-99
enforce grouping 5-3
enum keyword 4-12
enumeration constant D-5
enumeration constants 3-2, 3-5.

3-6, 3-7, 3-8. 4-1, 4-13,
5-30

X - 4 Index

enumeration types 3-2, 4-12. D-5
environment variables 11-134
environment; calling 11-62
environmental limits 11-23
EOF macro 8-5. 11-5. 11-74
equal to operator 5-25
equality operators 5-2, 5-24
ERANGE macro 8-6, 11-25
erf function 1-3, 11-35
erfc function 1-3, 11-36
errno macro 8-6, 11-25, 11-73.

11-106
error message; compiler 2-10,

3-8. 4-6
error messages
escape character
escape sequence

3-10
2-1, 2-6
D-5

escape sequence: hexadecimal value
2-7 .

escape sequence; octal value 2-7
escape sequences 2-6, 2-7
executable file 1-5. 1-6, 8-1.

11-142, D-5
exit function 8-3, 8-7. 11-132
exp function 11-37
expand macros 3-1
expression D-5
expression statement 6-3
expression; constant 2-6
expression; constant integer 2-5.

4-1
expressions 5-1, 10-5
extensions to ANSI 1-3. 1-4
extern keyword 3-9, 4-2
external identifiers 3-10
external identifiers; length of

3-10
external linkage 3-10. 4-3. 4-5.

4-6. 4-22, 7-11, 10-6, D-6
fabs function 11-38
fclose function 9-6, 11-78
feof function 9-9, 11-79
ferror function 9-9, 11-8 0
fflush function 9-3. 9-8. 11-81
fgetc function 9-7, 11-82
fgets function 9-7, 11-83
file level declaration 3-3, 3-5.

3-7. 4-2. 4-5. 4-16. 4-23,
D-6

file level redeclaration 4-6
file mode 11-84
file name D-6
file names 9-5. 11-84
file pointer 9-4, 9-8, 10-6. 11-99.

11-101. 11-113. D-6
file processing; #include 7 - 2
file record format 9-2
FILE type definition 8-4. 8-5.

9-1. 9-4, 11-74
file: executable 1-5, 1-6
file: object code 1-6
files; header 1-6, 3-5
files: source 1-5
files; VBS 11-100
fixed record file format 11-99
float type 4-11
floating constant D-6
floating constant suffixes 2-6
floating constants 2-4. 2-5
floating overflow 8-6. 11-25
floating types 4-8. 4-11. 4-23.

4-27, D-6
floating underflow 8-6. 11-25
floor function 11-39
flow of control 4-16, 5-17, 6-1.

6-3, 6-4, 6-9, 6-11
flushing buffers 9-6. 11-78, 11-81
fmod function 11-40
fopen function 7-3, 8-4. 9-5,

9-6, 11-84
for statement 6-8. 6-10, 6-11.

10-5
form feed character 2-1. 2-6.

9-3, 11-14
format source 2-2
format string 9-9, 11-88, 11-96,

11-107. 11-114. 11-118, 11-119.
11-123. 11-124, 11-125. D-6

formatted input 9-10. 11-96. 11-114
formatted input/output 9-L 9-9
formatted output 9-11, 11-88.

11-107, 11-123, 11-124
formatting D-6
formatting: source 2-7
forward reference 3-8, 4-12
fprintf function 9-11, 11-88
fputc function 9-8, 11-92
fputs function 9-8, 11-93
fread function 9-7, 11-94
free function 11-133
freopen function 9-5, 11-95
frexp function 11-41
fscanf function 9-10, 11-96
fseek function 9-8. 11-99
ftell function 9-3, 9-8. 10-6.

11-101
function D-6
function body 3-3, 4-2, 4-21,

4-22
function calls 4-4. 4-16, 4-18,

4-21, 5-2, 5-4, 5-11. 5-12.
5-16, 6-L 6-5. 7-12. 8-2

function definitions 3-5. 4-1 7.
4-20, 4-22. 4-25. 10-3

function designator 5-5. 5-16.
5-20, D-7

D-7 function prototype
function prototypes

5-17. 10-2
3-4. 4-20.

function returning void types
4-9. 6-5

function to pointer conversion
3-5, 4-3

function type attribute 4-18.
4-20

function types 4-7. 4-20. 4-25.
4-26, D-7

functions 1-5, 3-2. 3-5. 3-6.
3-7, 3-8. 4-L 4-5

functions: nesting 3-5
fwrite function 9-8. 11-102
gamma function 1-3. 11-42
getc function 9-7, 11-103
getchar function 9-7. 11-104
getenv function 11-134
gets AND operator 5-28
gets divided operator 5-28
gets exclusive OR operator 5-28
gets function 9-7, 11-105
gets inclusive OR operator
gets left shifted operator
gets multiplied operator

5-28
5-28

5-27
gets operator 5-27
gets remainder operator 5-28
gets right shifted operator 5-28
gets subtracted operator 5-28
gmtime function 11-169
goto statement 3-2. 3-7. 3-8.

6-2. 6-4. 6-11. 10-5
graphic character 11-10
greater than operator 5-24
greater than or equal to operator

5-24
Greenwich Mean Time 11-164. 11-169
grouping 5-24. D-7
grouping of operators 5-1
grouping tokens 2-10
grouping: enforce 5-3
header file D-7
header files 1-6. 3-5. 7-10. 8-1.

10-2. 10-6, 11-1
hexadecimal digits 2-4. 11-16

Index X - 5

hexadecimal integer constant 2-4
hexadecimal value escape sequences

2-7
horizontal tab character 2-1,

2-6, 9-3, 11-14
HUGE VAL macro 8-6, 11-25
hypot function 1-3, 11-43
identifier D-7
identifiers 1-5, 2-1. 2-3, 3-1.

4-1
identifiers; compare
identifiers; external
identifiers; length of
identifiers: reserved

2-3, 3-10
3-10

2-3
2-3

if statement 6-5
if/else statement 6-6
implement declarations 3-1
implicit declaration 3-7, 4-3.

4-20, 5-16, 5-18
implicit definition 4-3
IMS 1-2, 1-3
IMS environment 8-4
IMS; pcblist macro 11-19
IMS: call DL/I 11-20, 11-21
IMS; invoke program from 8-4
IMS: link for 11-19
IMS; signal handling 8-4
include file D-7
include file processing 7 - 2
include files; search order 7-2
incomplete pointer 5-14
incomplete text line 7-2, 10-6
incomplete types 4-7, 4-9, 4-12,

4-19, 4-20, 4-22, 4-23, 4-24,
4-26, D-7

indirect on operator 4-18, 5-20
inherited linkage 4-5, 4-6
initializer: data 4-2, 4-4, 4-16,

4-17, 4-19, 4-22, 4-23, D-4
int type 4-10
integer constant 2-4, D-7
integer constant suffixes 2-4
integer constant; hexadecimal

2-4
integer constant; octal 2-5
integer constants 2-4, 4-13
integer expression 4-13
integer overflow 11-141
integer types 4-8, 4-9, 4-23.

4-27, D-8
integer; two's complement 2-5
integer; unsigned long 2-5
interactive terminals 8-4. 9-3.

9-8

X - 6 Index

internal linkage 3-9, 4-3. 4-6.
4-22, 10-6, D-8

invoke program from IMS 8-4
invoking programs 1-6, 8-1. 9-5.

11-132, 11-142
isalnum function 11-6
isalpha function 11-7
iscntrl function 11-8
isdigit function 11-9
isgraph function 11-10
islower function 11-11
isprint function 11-12
ispuhct function 11-13
isspace function 11-14
isupper function 11-15
isxdigit function 11-16
jO function 1-3. 11-44
jl function 1-3. 11-45
JCL 1-2
jn function 1-3, 11-46
keyword D-8
keywords 2-4, 3-1. 3-5. 3-6, 3-7.

3-9, 10-4
kill function 11-64
label D-8
labels 3-2, 3-5, 3-6. 3-7. 3-8.

6-2. 6-11. 10-5
ldexp function 11-4 7
leading underscore character 2-3
left shift operator 5-23
length of byte 11-23
length of bytes 4-9. 9-1
length of external identifiers

3-10. 10-6
length of identifiers 2-3
length of , macro expansion 7 -8
length of records 9-2
length of source line 2-2
length of strings 11-156
length of text line 2-2
less than operator 5-24
less than or equal to operator

5-24
letters: lowercase 2-1. 2-3, 3-10
letters; uppercase 2-1, 2-3, 3-10
lexical order 11-143. 11-146.

11-152, 11-158
lines; physical text 2-2
lines; source 2-2
link for IMS 11-19
linkage 3-1, 3-9, 4-1

, linkage editor 1-6. 3-10. 8-1.
D-8

linkage editor error messages

3-10
linkage: external 3-10, 4-3, 4-5,

4-6
linkage: inherited 4-5, 4-6
linkage: internal 3-9, 4-3, 4-6
linked declarations 3-9
listings; assembly language 1-2
loader 1-6, 3-10, 8-1
local time 11-164, 11-167, 11-170
localtime function 11-170
log function 11-49
loglO function 11-50
logarithm; compute 11-49
logical and conditional operators

5-26
logical AND operator 5-26
logical NOT operator 5-19
logical operators 5-2. 5-4
logical OR operator 5-26
long double type 4-12
long type 4-11
longjmp function
lowercase letters

11-6. 11-7.
11-18

11-62
2-1. 2-3, 3-10.
11-11. 11-17,

!value 5-5, 5-6, 5-15. 5-16. 5-20.
5-21. 0-8

macro arguments in string constants
1-3, 7-9

macro definition D-8
macro definition: remove 3-6
macro expansion 3-1, 7-1. 7-2,

7-4. 7-7. D-8
macros 1-5, 3-1. 3-4, 3-6, 3-7,

7-7. 8-2, 9-7. 9-8, 10-2
macros with arguments 7-7
main function 3-10. 8-3. 8-7.

11-136
maintenance 5-18, 10-1
malloc function 11-13 5
masking names 3-7. 3-9. 4-7. 11-1.

11-76
member names 7 -3
members of a structure 3-2. 3-5.

3-6. 3-7, 3-9. 4-1
memchr function 11-145
memcmp function 11-146
memcpy function 11-148
memset function 11-149
minus operator
modf function
modifiable lvalue

11-73

5-20
11-51

5-6, 5-19. 5-27.

modify argument with DL/I 11-20.

11-21
modulus arithmetic 5-10
multiple dimension arrays 5-15
multiple file programs 10-6
multiplicative operators 5-2.

5-22
multiply operator 5-22
mutually referring structures

3-8. 4-14
MVS 1-2. 7-3. 8-4. 9-2. 9-3. 11-84.

11-101. 11-166
MVS/XA 1-2. 7-3. 9-2. 9-4. 11-84.

11-101. 11-166
name space 0-8
name spaces 3-1. 3-6
names of preprocessor directives

3-1
names: mask 3-7. 3-9. 4-7
names: scope of 3-1. 3-6
narrowing conversion D-8
narrowing conversions 5-9
natural log 11-49
negative constants 2-5. 2-6. 2-7
nesting comments 2-2
nesting data initializers 4-24
nesting function calls 5-17. 11-61
nesting functions 3-5
nesting if statements 6-6
nesting include files 7 - 2
nesting switch statements 6-9
newline character 2-1. 2-2. 2-6.

9-1. 9-2. 11-14. D-9
no linkage 3-10, 4-4, 4-5. 4-6.

4-22. D-9
not equal to operator 5-25
null character 2-7. 4-24. 11-144.

D-9
null characters
NULL macro
null pointer
null statement

9-2. 9-3
11-73

5-10. 8-3. D-9
6-4

null string constant 2-7
object code file 1-6. D-9
object code files 8-1
objects: data 3-2
octal digits 2-5. 2-7
octal integer constant 2-5
octal value escape sequence 2-7
offset 11-101
offsets 4-13. 4-15. 5-16. 9-9.

11-99
onexit function 11-13 6
opening files 9-4. 11-84
operand D-9

Index X - 7

operator D-9
operator grouping 4-18
operator; address of 4-4
operator; sizeof 3-4
operators 2-1, 2-9,
operators; type cast

5-1
3-4

order of evaluation 5-4, 5-26,
5-29

OS calling sequence 1-4, 4-21,
5-19, 7-11

OS linkage 7-12
overflow 11-27
overlapping storage 4-15, 4-16,

11-148, 11-154, 11-159
overloaded keywords 4-7
packing bitfields 4-14
padding 4-9, 4-13, 4-14, 4-15,

9-2, 9-3, 11-86, 11-99, D-9 ·
partitioned dataset members 7-3
PCB 11-19
perror function 11-106
physical text lines 2-2
plain label 6-2
plus operator 5-3, 5-20
point at member operator 5-2,

5-16
pointer arithmetic 5-12, 5-22.

5-23
pointer conversions 5-1, 5-10,

5-21
pointer to incomplete type 4-19
pointer to void type 4-9, 4-18.

5-12, 5-14, 5-27, 11-143
pointer to void types 4-26
pointer type attribute 4-18
pointer types 4-18, 4-23, 4-26,

D-9
pointer: convert function to 4-3
pointers; convert arrays to 3-5,

4-3
pointers; convert functions to

3-5
portability 2-3, 2-7, 2-8, 4-16,

4-21, 5-10, 5-12, 5-14, 5-18,
7-9, 8-6, 10-6

positioning streams 9-4, 9-8,
11-99, 11-101

postdecrement operator 5-4. 5-20
postincrement operator 5-4. 5-20
pow function 11-52
pragmas 7 -11
precedence 5-2. D-9
predecrement operator 5-4. 5-19
predefined macros 7-9

X - 8 Index

preincrement operator 5-4. 5-19
preprocessor 1-5, 3-7, 7-1, D-9
preprocessor directive 1-5. 3-1,

7-1, D-10
preprocessor directive names 3-1
preprocessor directive: #pragma

1-4
print function 0-10
printable character 2-7, 9-1.

11-8, 11-10, 11-12. D-10
printf function 4-21. 5-5, 9-11.

11-107
process #include. files 7-2
program D-10
program communication block 11-19
program listings 1-2
program startup 4-4, 4-16, 4-22.

8-3, 8-5, 11-67, D-10
program structure 1-5
program termination 4-4. 4-16,

8-3, 8-7, 9-6, 11-64, 11-127.
11-132, 11-136, D-10

programs; invoking 1-6
ptrdiff t type definition 5-23.

i0-7, 11 73
punctuation character D-10
punctuation characters 2-1. 11-13
putc function 9-8, 11-108
putchar function 9-8. 11-109
puts function 9-8, 11-110
question mark character 2-1, 2-6
rand function 11-137
random numbers 11-137, 11-139
range error 8-6, 11-25, 11-34.

11-37, 11-42, 11-43. 11-44.
11-45, 11-48, 11-49. 11-50.
11-52, 11-54, 11-56, 11-58.
11-59, 11-60. 11-140, 11-141.
D-10

read/write error 8-6, 9-4, 9-5.
9-9, 11-77, 11-80

readability 2-7, 4-7. 4-8. 4-24.
4-25, 5-3, 10-1

reading complex attributes 4-18
reading streams 9-4, 9-7
reading type names 4-26
realloc function 11-13 8
record format 11-86
record length 11-86
recursion 5-1 7
redeclaration D-10
redeclaration; block level 4-6
redeclaration: file level 4-6
redeclarations 3-9. 4-5. 4-7.

\
I

)

4-19. 4-20. 4-21
redefine macros 3-7, 7-7
redirect standard input 8-4
redirect standard output 8-4
redundant parentheses 4-18, 4-25,

5-3. 5-5
reentrant code 1-2
reentrant program 2-8, 8-5, D-10
register allocation 1-2
register data objects 4-4, 4-5,

5-21, 11-62
register keyword 4-2, 4-21
regrouping 5-1, 5-3, 5-20, 5-22,

5-25
regrouping; defeat
relational operators

10-5

5-3
5-2, 5-24,

remainder operator 5-22
remove function 11-111
remove macro definitions 3-6,

7-10, 8-2
removing files 11-111
rename function 11-112
renaming files 11-112
representation 4-8, 4-9, 4-12,

5-11, 5-12, D-10
reserved identifier D-11
reserved identifiers 2-3, 4-7,

7-1, C-1
return statement 5-17, 6-1, 6-5,

10-5
rewind function 9-8, 11-113
rewrite variable length record

format files 9-2
right shift operator 5-23
RLINK program 8-5
rules; unsignedness preserving

1-3
rules; value preserving 1-3
runtime environment 3-10, 8-1.

11-19
runtime error message 8-7, 11-106
rvalue 5-5, 5-6, 5-15, 5-16, 5-17.

5-19, 5-20, 5-22, 5-23, 5-24,
5-25, 5-26, 5-27, 5-29. 6-1,
D-11

same type
same types

D-11
3-10, 4-8, 4-21, 5-13,

4-23, 4-26, D-11
D-11

5-14
scalar types
scan function
scanf function
scope D-11
scope of names

9-10, 11-114

3-1, 3-6, 4-20.

4-21, 7-7
scope; block 4-7
search modifier 7 - 2
search order for #include files

7-2
select member operator 5-2. 5-16
separate tokens 2-2, 2-9, 2-10
separators 2-1. 2-9, 11-163
sequences; escape 2-6
setbuf function 9-9, 11-115
setjmp function 11-63
setvbuf function 9-9, 11-117
short type 4-10
side effect D-11
side effects 5-1. 5-4. 5-19. 5-26.

5-27, 6-1. 8-2. 9-7. 9-8.
11-76

SIGABRT signal
SIGFPE signal
SIGILL signal
SIGINT signal
signal 11-127,
signal function

11-67

8-7, 11-66. 11-127
11-66

11-66
11-66
D-11
1-3, 8-4. 8-7.

signal handler 4-16, 4-17, 11-64.
D-11

signal handling under IMS 8-4
signals 4-16, 11-64
signed D-11
signed bitfield types 4-14
signed char type 4-10
signed int type 4-10, 4-14
signed integers 4-9, 5-10
SIGSEGV signal 11-66
SIGTERM signal 11-66
SIGUSRl signal 1-3. 11-66
SIGUSR2 signal 1-3. 11-66
sin function 11-53
single quotation mark 2-6
sinh function 11-54
size of data objects 4-9, 4-12,

4-14, 4-19, 4-20, 4-24. 5-11.
5-12, 5-16, 5-21, 10-7

size t type definition 5-21, 10-7.
- 11-73

sizeof operator 3-4, 5-21
solid vertical bar 2-10
source files 1-5. 7-1. 10-1
source formatting 2-2. 2-7. 10-1
source lines 2-2
space character 2-1, 2-2. 9-2.

11-14
special tag declaration 3-8, 4-12
SPIE system service 11-65

Index X - 9

sprintf function 9-11. 11-118
sqrt function 11-55
srand function 11-139
sscanf function 9-10, 11-119
standard error D-11
standard error stream 8-4, 9-5,

11-4
standard input D-11
standard input stream 8-4, 9-5
standard output D-11
standard output stream 8-4, 9-5
startup of program 4-4
statement D-11
statement; goto 3-2, 3-7, 3-8
statements 6-1
static data initializers 4-22,

5-30
static keyword 4-2
static lifetime 4-4, 4-5, 4-16,

4-22, 4-24, 5-30, 10-2, D-12
STAX system service 11-65
stderr macro 8-4, 9-5, 11-75
stdin macro 8-4, 9-5, 11-75
stdout macro 8-4, 9-5, 11-75
storage alignment 4-9, 4-13, 4-15.

5-11, D-12
storage allocation 4-4, 4-5. 4-8,

4-9, 4-22, 5-17, 6-4, 6-9,
9-9, 11-78, 11-115, 11-117,
11-131, 11-133, 11-135, 11-138,
D-12

storage class 4-1, 4-2, 4-8, 4-23,
D-12

storage overlap 5-13, 11-148,
11-154, 11-159

storing in string constants 1-4,
2-8

strcat function
strchr function
strcmp function
strcpy function
strcspn function
stream D-12

11-150
11-151
11-152

11-154
11-155

string 9-10, 9-11, D-12
string constant D-12
string constant concatenation

2-7
string constant; null 2-7
string constants 1-2, 1-3, 2-4,

2-7, 4-24, 7-8
string constants; construct 2-7
string constants; macro arguments

1-3
string constants; storing in 1-4,

X - 10 Index

2-8
strings 8-3, 9-5, 11-143
strlen function 11-156
strncat function 11-15 i
strncmp function 11-158
strncpy function 11-159
strpbrk function 11-160
strrchr function 11-161
strspn function 11-162
strtod function 11-140
strtok function 11-163
strtol function 11-141
struct keyword 4-13
struct tags 4-24
struct types 4-12, 4-13, D-12
structure expressions 5-17, 5-27.

5-29
structure member D-13
structure members 3-2. 3-5. 3-6.

3-7, 3-9. 4-1, 4-13, 4-14.
4-15, 4-16, 4-24, 5-16

structure of programs 1-5
structure rvalues 5-16
structure types 3-2, 4-12, 4-23.

4-26, 5-13. 5-16, D-13
structures; referring mutually

3-8
subexpressions 5-1. 5-5
subscript 4-18, 5-2, 5-15
subtract operator 5-23
successful termination 8-7. 11-132.

D-13
suffixes; floating constant 2-6
suffixes; integer constant 2-4
support for debugging 1-2
switch statement 6-2, 6-4. 6-9.

6-10, 10-5
system function 8-4, 11-142
System V; UNIX 1-3
System/370 2-5, 2-6, 2-7, 4-4.

4-9, 4-10, 4-11, 4-12, 4-14,
4-15. 4-18, 5-7, 5-9, 5-10.
5-11, 5-12. 5-19, 5-21, 5-23.
6-4. 10-2. 10-3. 11-27, 11-134

tag D-13
tags 3-2, 3-5, 3-6, 3-7. 3-8.

4-1. 4-12. 4-13. 4-15
tan function 11-56. 11-57
tanh function 11-57
temporary files 11-120. 11-121
tentative definition 4-3. 4-5,

4-6, 4-22, D-13
termination of program 4-4
test expression 6-1, 6-5, 6-7.

6-8. 11-4. D-13
text line D-13
text line; length of 2-2
text lines 7-1, 9-1
text stream D-13
text streams 8-4. 9-1. 10-6, 11-85
time conversion 11-170
time function 11-1 71
tmpfile function 11-120
tmpnam function 11-121
token D-13
tokens 2-1, 2-4, 7-1, 7-8. 7-9,

11-163
tokens; group
tokens; separate
tolower function
toupper function
trigraph D-13
trigraphs 2-1

2-10
2-2, 2-9
11-17
11-18

truncation 5-9, 5-10
TSO 1-2, 8-3, 11-84
two's complement integer 2-5.

4-14
type . 2-4, 4-7, 5-5, D-13
type attribute D-14
type cast operator D-14
type cast operators 3-4, 5-10,

5-12, 5-14, 5-21. 5-30
type definition D-14
type definitions 3-2, 3-5, 3-7,

3-8, 4-1, 4-2, 4-25, 10-2,
11-69

D-14 type name
type names

11-69
3-4. 4-20. 4-25, 5-21.

type qualifier
type qualifiers

4-26

D-14
4-8, 4-16, 4-19,

type specifiers 4-2, 4-8, 4-25
typedef keyword 4-2, 4-2 5
types; enumeration 3-2
types; structure 3-2
unary operators 5-2, 5-19
underscore character 2-1, 2-3
unexpected errors 5-9
ungetc function 9-7, 11-122
union keyword 4-15
union types 4-12, 4-15, 4-24,

D-14
UNIX System V
unknown content

4-14. 4-19,
5-13, 5-15,

unnamed bitfields

1-3
4-7, 4-8, 4-12.
4-22, 4-23, 4-26.
D-14
4-14

unrecognized character 2-10
unrecognized constant 2-10
unsafe macro 9-7, 9-8. 11-76
unsigned D-14
unsigned bitfield types 4-14
unsigned char type 4-10
unsigned conversions 5-10
unsigned int type 4-10
unsigned integers 4-9, 4-14. 5-10
unsigned long integer 2-5
unsigned long type 4-11
unsigned short type 4-10
unsignedness preserving rules

1-3
unsuccessful termination 8-7.

11-127. 11-132. D-14
update streams 11-85
uppercase letter 11-6. 11-7. 11-15.

11-17, 11-18
uppercase letters 2-1, 2-3. 3-10.

11-84
va arg function 11-69
va - end function 11-71
va-start function 11-72
valid pointers 5-12, 5-20
value D-14
value preserving rules 1-3
values 4-8, 4-9, 5-1
Variable Block Span files 11-100
variable length argument list

4-21, 9-9, 11-68, 11-88,
11-107, 11-114, 11-118. 11-119.
11-123, 11-124, 11-125. D-14

variable length record file format
11-99

variable length record format files
9-2

VBS files; restrictions on seeking
11-100

vertical tab character 2-6, 11-14
vfprintf function 9-11, 11-123
virtual tab character 2-1
visibility 3-1. 3-7, 3-9. 4-5.

4-7. D-15
VM/CMS 1-2, 7-2. 9-2. 9-3. 11-84.

11-101. 11-121. 11-166
void expression D-15
void expressions 5-4. 5-5. 5-6.

5-17. 5-27, 5-29, 6-1. 6-3
void type 4-7, 4-8, 4-9. 4-20.

4-26, 5-4. 5-5. D-15
volatile keyword 4-8. 4-16
volatile pointers 4-19. 5-14
volatile type qualifier D-15

Index X - 11

volatile types 4-17. 4-21. 4-26.
5-14

vprintf function 9-11, 11-124
vsprintf function 9-11, 11-125
while statement 6-7. 6-10, 6-11
whitespace D-15
whitespace character 2-1, 2-2,

2-10, 7-7, 11-14
widening arguments 5-18
widening conversion D-15
widening conversions 5-7
widening order 5-7
widening to int 5-7, 5-18. 7-12.

11-69
wraparound arithmetic 5-10
writing streams 9-4
writing type names 4-25
yO function 1-3, 11-58
yl function 1-3, 11-59
yn function 1-3, 11-60

X - 12 Index

C Compiler User's Guide
For MVS, MVS/XA

READER'S COMMENT FORM

SC09-1129-01

Please use this form only to identify publication errors or to request changes in publications. Direct any requests
for additional publications, technical questions about IBM systems, changes in IBM programming support, and so
on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your
comments about this publication, its organization, or subject matter with the understanding that IBM may
use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this box and do not
include your name and address below. If your comment is applicable, we will include it in the next revision
of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

Please contact your nearest IBM branch office to request additional
publications.

Name

Company or
Organization-----------------------

Address

SC09-1129-01

Reader's Comment Form

Fold and tape Please Do Not Staple

BU·SINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 6R1 T
180 Kost Road
Mechanicsburg, Pennsylvania 17055

ARMONK. N.Y.

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

0 s.
g .,,
0
a:
~
0
:J
IC

r :;·
CD

--·
Fold and tape

--...- ------- -- --- - -- -..· ---- - - ----------_ _..._,_
®

Please Do Not Staple Fold and tape
I
I
I
I
I
I
I
I
I
I
I
I
I
I

