CICS Programmer’s Toolkit
Programmer s Reference

INTERLINK

Computer Sciences

CICS Programmer’s Toolkit

Programmer’s Reference

Version 2.0
August 1994

Document Number 200801-024040-200100

Interlink Computer Sciences, Inc.
47370 Fremont Boulevard
Fremont, California 94538
U.S.A.

(510) 657-9800

¢k inTERUINK

Computer Sciences

IMPORTANT NOTICE

Second Edition (August 1994)

The information in this document applies to the Interlink CICS Programmer’s Toolkit™ Version 2.0 software. If
you would like additional copies of this or any Interlink documentation, contact the Customer Support Depart-
ment at our corporate address.

Copyright

Copyright © 1993, 1994 Interlink Computer Sciences, Inc. All rights reserved.

This document may not, in whole or in part, by copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior written consent from the copyright holder.

Disclaimer

All information in this document is subject to periodic change and revision.

While every effort has been made to ensure the information presented in this document is accurate, Interlink
disclaims liability for any inaccuracies or omissions that may have occurred.

If you find information in this document that is incorrect, misleading, or incomplete, we would appreciate your
comments and suggestions. Please use the reader comment form at the back of this manual to let us know how
we may improve the information we provide you.

Trademarks

This Interlink document often refers to numerous hardware and software products by their trade names. In most,
if not all cases, these designations are claimed as trademarks or registered trademarks by their respective com-
panies.

O

N ;

TN
/
/

T

(s hY

T \

Q/“

001002-0%0%20- 108002

Contents

|

Preface
AUdIENCE . ..t e e e P-2
Organization.o, P-2
Additional Information. o . pP-2
Command Notation, P-3
Chapter One CPT API SERVICES
OVBIVIBW . . e v e e e e e e e e e e e e e e e e 1-3
CPT Task-Related User Exit Interface (TRUE) 1-3
Application Programming Concepts. 1-3
TCP Connection Management. 1-4
LISTEN &ttt ettt e e e e et et e e et e e 1-4
CONNE T o v et et e e e e e e e e et e e 1-5
TCP DataTransfer. e e ee e 1-6
CEND .+ e e e e e e e e e e e e e e 1-6
RECETIVE &+ o v e e et e et e e e et et e e e e 1-6
UDP Data Transfer and Endpoint Creation 1-7

CICS Programmer’s Toolkit Programmer’s Reference T-1

SENDTO .« . etotottetee ettt e e e et e e et e 17

RCVEROM & 4ttt et e ettt it e et it et it ene e 1-7 _/
Connection and Endpoint Release 1-8
CLOSE &t ittt ettt e e e 1-8
Data Translation ivi.... 1-9
TRANSLATE 4 ottt ittt et ettt it ettt eaaen 1-9
Facility Management 1-10
GIVE &ttt e e e e 1-10
TAKE ittt e 1-11
Security Exit. 1-12
The Security Communications Block. 1-12
The Security Exit Program. 1-13
Sample CPT APIPseudoCode. 1-14
Client Application Example 1-14
Server Application Example 1 1-17
Server Application Example2..................... 1-19
Server Application Example 3..................... 1-21 N
Server Application Example 4 1-23 N
CPT APISamplePrograms. vo... 1-24
Client 1 Sample Program. 1-25
TCP Client 2 Sample Program 1-25
TCP Server 1 Sample Program.................... 1-26
TCP Server 2 Sample Program. 1-26 5’
Server 3 Sample Program........................ 1-26 5
Server 4 Sample Program........................ 1-27 g
UDP Client Sample Program. 1-27 "g’
UDP Server Sample Program 1-27 8

Chapter Two ASSEMBLER CALLS

CLOSE st ot et et et e e 2-3
AssemblerDataArea., 2-3
Completion Information 2-4
ReturnCodes. i i 2-5
Usage Information, o6

NS

T- 2 Contents

8

001002-0¥0%20- 108002

CONNECT &ttt teteiiiiiita e aa s iniaaanneeeens 2-11

AssemblerData Area............... oo, 2-11
Network Considerations. 2-16
Completion Information 2-16
ReturnCodes............ 2-17
Usage Information, 2-18
CIVE .t e ettt et e e et e et e e 2-22
AssemblerDataArea............... 2-22
Completion Information 2-23
ReturnCodes. i i 2-24
Usage Information 2-24
LISTEN o\ttt ettt ettt ettt et e e 2-30
AssemblerDataArea..................... 2-30
Network Considerations. 2-36
Completion Information 2-37
ReturnCodes.2-38
Usage Information 2-39
Client-Data Listener Option 2-41
RCOVEROM & vttt e ti ettt ettt et e 2-47
Assembler Data Area........... 2-47
Network Considerations 2-53
ReturnCodes. i i 2-54
RECEIVE & ittt ettt et ittt e e e 2-56
Assembler Data Area.................. ... 2-56
Completion Information 2-61
ReturnCodes. 2-61
Usage Information 2-62
SEN D .« ettt e e e 2-67
AssemblerDataArea............. 2-67
Completion Information 2-72
ReturnCodes.......... 2-72
Usage Information 2-73
SENDTO &ttt ettt ettt e e e et e e 2-78
AssemblerData Area.............. 2-78
Network Considerations. 2-83

CICS Programmer’s Toolkit Programmer’s Reference T-3

Return Codes. ... e i 2-85

Examples. 2-86
2N 2-88
AssemblerDataArea............................ 2-88
Completion Information 2-89
ReturnCodes. i 2-90
Usage Information. 2-90
TRANSLATE L o sttt ettt ettt et ettt 2-95
AssemblerDataArea. 2-95
Completion Information 2-97
ReturnCodes. i 2-98
Usage Information................cooouuvneoo.... 2-98
TOOMCALL .« v vttt ettt e ettt e e 2-102
ReturnCodes. i 2-103
CICS Storage Requirements 2-108

Chapter Three C SUBROUTINE CALLS

CLOSE st vttt et et et e e 3-3
Structure 3-3
Completion Information 3-5
ReturnCodes. i, 3-5
Usage Information. 3-6

CONNECT vt ettt ettt e ettt et et ettt ieenas 3-11
Structure 3-11
Network Considerations. 3-18
Completion Information 3-18
ReturnCodes. i 3-19
Usage Information. 3-20

GIVE &ttt ittt e et e e e e 3-24
Structure 3-24
Completion Information 3-26
ReturnCodes. i 3-26
Usage Information.............................. 3-27

LISTEN ettt et et ettt e et et et et e 3-30

T- 4 Contents

O

@

/

00 LOOZ'OVOVZO(X\DZ

001002-070¥20- 108002

StructuUre.o e e 3-30

Network Considerations. 3-37
Completion Information 3-38
ReturnCodes. i 3-39
Usage Information 3-40
Client-Data ListenerOption 3-42
RCVEROM & vttt ettt it e ettt ettt e e et e s 3-46
Structure. 3-47
Network Considerations 3-53
ReturnCodes. i i 3-54
RECEIVE &ttt ettt et ettt et e e ettt 3-56
Structure. 3-56
Completion Information 3-61
ReturnCodes. i e 3-62
Usage Information 3-62
SEN D & v vt et e e e e e e 3-65
Structure. 3-65
Completion Information 3-69
ReturnCodes. i e 3-70
Usage Information, 3-71
SENDTO v vt e vttt et ettt e e et e e e 3-74
Structure. 3-74
Network Considerations 3-81
Return Codes. 3-82
A2 3-84
Structure. 3-84
Completion Information 3-85
ReturnCodes. i 3-86
Usage Information 3-86
TRANSLATE &+ v vttt ettt ettt et e e e e e e e e et e aaeeee s 3-90
Structure. 3-90
Completion Information 3-93
ReturnCodes.t e 3-93
Usage Information 3-94

CICS Programmer’s Toolkit Programmer’s Reference T-5

Chapter Four COBOL SUBROUTINE CALLS

70 1 4-3
Structure e 4-3
Compiletion Information 4-5
ReturnCodes. 4-6
Usage Information. 4-7

0{0)111110 20 4-11
Structure 4-11
Network Considerations. 4-17
Completion Information 4-17
ReturnCodes.o i, 4-18
Usage Information 4-19

CIVE ittt ettt e e e e e 4-23
Structure 4-23
Completion Information 4-24
ReturnCodes. i 4-25
Usage Information. 4-25

1 1 4-27
Structure 4-27
Network Considerations. 4-33
Completion Information 4-34
ReturnCodes. i 4-35
Usage Information 4-36
Client-Data ListenerOption. 4-38

RCVEROM & ittt et ettt et ettt et e e e e 4-42
Structure e 4-42
Network Considerations. 4-49
ReturnCodes. i i 4-50

20 2 4-52
Structure 4-52
Compiletion Information 4-57
ReturnCodes.o i 4-58

T- 6 Contents

02
}

/

.

001002-0v0¥20#

001002-0v0+20-LuB00Z

SEN D .+ vttt et e e e 4-61
Structure. e 4-61
Completion Information 4-66
ReturnCodes. i 4-66
Usage Information 4-67

200151 1 © 4-70
Structure. 4-70
Network Considerations. 4-76
ReturnCodes. i 4-77

1280 4-79
Structure. 4-79
Completion Information 4-80
ReturnCodes. ... 4-81
Usage Information 4-82

TRANSLATE & it ittt et ee e e e et et e i e iae o 4-85
Structure. 4-85
Completion Information 4-88
ReturnCodes. o i 4-89
Usage Information, 4-89

ReturnCodes. e 4-92

OS/VS COBOL and VS COBOL Il Differences 4-98

CICS Storage Requirements 4-100

Chapter Five PL/1 SUBROUTINE CALLS

(0315713 5-3
Structure. 5-3
Completion Information 5-5
ReturnCodes. ... e 5-5
Usage Information 5-6

(07011, 5-10
Structure. e 5-10
NETWORK Considerations 5-17
Completion Information 5-17

CICS Programmer’s Toolkit Programmer’s Reference T-7

Usage Information.............................. 5-19
GIVE ittt it ittt e e e e 5-23
Structure e e 5-23
Completion Information 5-24
ReturnCodes., 5-25
Usage Information..................... 5-26
LIS EN « vttt ettt e et e e e e 5-28
Structure e 5-28
Network Considerations. 5-34
Completion Information 5-36
ReturnCodes.5-37
Usage Information............ 5-38
Client-Data ListenerOption. 5-40
RCVEROM &t vttt et it ettt ettt ettt et e e 5-44
Structure 5-45
Network Considerations. 5-50
ReturnCodes. 5-51
RECETIVE &ttt it ettt et e ettt et et et e e 5-53
Structure 5-53
Completion Information 5-58
ReturnCodes. i . 5-59
Usage Information. 5-60
SEND &ttt ettt e e 5-63
Structure 5-63
Completion Information 5-67
ReturnCodes. 5-68
Usage Information. 5-69
SENDTO &+ v v v vt et ettt ettt e et e e e e 5-72
Structure e 5-73
Network Considerations. 5-78
ReturnCodes. i 5-79
TAKE & ittt et e e e 5-81
Structure e 5-81

Contents

/
./

00L00z-0v0v2C” 0z
\\\

O

001002-0t0t20- 08002

Completion Information 5-82

ReturnCodes. 5-83
Usage Information 5-84
TRANSLATE & o\ttt ettt ettt et aei e, 5-87
Structure. e 5-87
Completion Information 5-89
ReturnCodes. i, 5-90
Usage Information 5-90
ReturnCodes i i 5-94
CICS Storage Requirements 5-99
Index
Glossary

Reader Comment Form

CICS Programmer’s Toolkit Programmer’s Reference T-9

/ﬂ\;\

/

Preface

- Read this guide for detailed information about the CPT services and support for Assembler, COBOL, C, and PL/1
(high-level languages. Read the CICS Programmer’s Toolkit Installation and Administration Guide for
information about installation and administration of the CPT Programmer’s Toolkit.

001002-00%20- 108002

CICS Programmer’s Toolkit Programmer’s Reference P-1

Audience This guide is intended for these audiences:
4 IBM CICS developers responsible for TCP/IP communication
applications.
Organization This guide includes these chapters and appendixes:

TITLE

|

DESCRIPTION

Chapter One - CPT API SERVICES

Describes the eight subroutines calls available in the CICS
Programmer’s Toolkit.

Chapter Two — ASSEMBLER CALLS

Provides detailed coding information for CPT assembler language
subroutine calls. It includes information about conventions and
terminology used to describe the associated data structures, and
defines the basic forms and formats that apply.

Chapter Three — C SUBROUTINE CALLS

Provides detailed coding information for CPT C language function
calls. It includes information about conventions and terminology used
to describe the associated data structures, and defines the basic
forms and formats that apply.

Chapter Four— COBOL SUBROUTINE CALLS

Provides detailed coding information for CPT COBOL language
subroutine calls. It includes information about conventions and
terminology used to describe the associated data structures, and
defines the basic forms and formats that apply.

Chapter Five — PL/l SUBROUTINE CALLS

Provides detailed coding information for CPT PL/I language
subroutine calls. It includes information about conventions and
terminology used to describe the associated data structures, and

defines the basic forms and formats that apply.

Additional Refer to the these documents for additional information:

Information *

From Interlink Computer Sciences

o
’0

o

SNS/API Programmer’s Reference Manual
From IBM

CICS/MVS Version 2.1.2 (or higher) Application
Programmer’s Reference Manual

CICS/MVS Version 2.1.2 (or higher) Resource Definition
Macro Manual

CICS/MVS Version 2.1.2 (or higher) Resource Definition
Online Manual

Preface

N

&: |

./

/

001002-070720% ‘\fz

001002-0%0%20- 108002

Command

The command notation used in this guide follows specific rules. This table

Notation illustrates these conventions:
" oy " o 1

*CONVENTION DESCRIPTION EXAMPLE

Initial Window and pop-up titles. Use the Local Output Data Set Specifications window to
Capitalized specify the MVS data set.

Bold, Initial Menu titles, menu options, functions, and fields. Enter your name in the User Name field, your password in
Capitalized the Password field, and then click on Accept.

Note: Click always refers to buttons.

BOLD, ALL Keyboard keys. Press RETURN.

CAPITALS

Italic The first use of words, acronyms, and phrases The address parameter is called the mask.

included in the glossary, if a glossary is included.
Nine point Default values in JCL statements, console These values may be set:
t commands, and Assembler operations.

Courier]r ll P [SYNC | ASYNC][,LOCAL | REMOTE]
Underline

Nine point
Courier

System output, data entry, example code, and file
names.

Note: As data entry, the text appears exactly as
you should enter it, including capitalization.

& The message SHOW MESSAGES displays.
& The 1pd server receives the data.

& Set the value of this argument to TRUE

Nine point

Data that you must specify or supply input for, or
variable information.

@ This is the command syntax

Courier df x nnn hostname

italic Note: This convention may appear in conjunction The system displays this message:
with nine point Courier bold. or nine point Process started for ID num
Courier

[] Optional arguments or commands.

(Square

brackets)

|
(Vertical bar)

A logical orindicating that you can select or specify
one or the other of the specified values.

{1}
(Curly braces)

Indicates a list of possible items. Generally, one
item appears in the message.

(Ellipsis)

Indicates that an item may repeat multiple times.

PORT = ({ipaddress | hostname} [, port])

LPDEFAULT= ("' :key=valuel:key=value...]")

CICS Programmer’s Toolkit Programmer’s Reference

(Y
N

Chapter i}
CPT API SERVICES

This chapter provides information about the CPT API services. It includes these sections:

L 4

001002-010%20- 108002

Overview

Provides a brief overview of this implementation of the CPT API facility and its subroutine calls.
Connection Management

Describes how to use the L1sTEN and coNNECT services to provide connection management.
Data Transfer

Describes how to use the sExD and RECEIVE services to provide data transfer.

Connection Release

Describes how to use the cLosE service to release a connection.

Data Translation

Describes how to use the TRANSLATE service to provide single-byte character set translation.
Facility Management

Describes how to use the cIvE and TAKE services to provide facility management.

Sample CPT API Pseudo Code

Provides sample pseudo codes for client and server applications.

CPT APl Sample Programs

Provides a table listing each sample program and its corresponding language, and sample client and
server programs that are in the T09samp data set.

CICS Programmer’s Toolkit Programmer’s Reference 1-1

Chapter One — CPT API SERVICES

L)

)
/

omooz-ovovaqf 0z
\

001002-0v0¥20- 108002

Overview

CPT Task-Related User Exit Interface (TRUE)

Overview

CPT Task-Related
User Exit Interface
(TRUE)

Application
Programming
Concepts

Implementation of the CPT API services is controlied through various
subroutine calls. There are internal subroutine calls used to support the CPT
environment and external subroutine calls used by applications for service
requests. The internal calls are used to manage resources associated with
connections and the Task-Related User Exit (TRUE) interface. The external
calls are used to generate service requests related to specific application
tasks.

The CPT environment management programs are responsible for initialization,
logging, and termination of the TRUE interface. The application management
programs are responsible for functions directly associated with user-written
applications. The application management routines are primarily concerned
with the recovery and cleanup of CICS, and non-CICS resources associated
with user-written applications during task termination.

There are some pseudo code samples illustrating the use of the CPT API
services at the end of this chapter.

CPT uses the CICS general-use programming interface facility called
task-related user exit (TRUE). The TRUE interface allows applications access
to an external, or non-CICS, resource. The external CICS resource utilized by
CPT is a communication subsystem based on open network protocols. The
communication subsystem is an Application Program Interface (API) to a
transport provider.

The CPT API facility supports communication with open network protocols
using a client/server model. The CPT API services are designed to
communicate with the transport layer of the Basic Reference Model of Open
System Interconnection (OSI).

A server application passively listens, or waits, for a connection request. Once
a connection indication from a client application has been received and
established, data transfer can begin. The server specifies a transport provider
address or port where it listens for connection requests. This port is called a
well-known port.

The client application actively connects to a server application. The client
contacts a well-known port for a server. A client determines the server's host
and port where it initiates the connection. If the server is not listening, the
connection request fails. Once a connection is established, data transfer
begins.

Both a client and server application can transfer data simultaneously over a full
duplex connection. Any dependence on data flow control is application
specific.

CICS Programmer’s Toolkit Programmer’s Reference 1-3

LISTEN

TCP Connection Management

TCP
Connection
Management

LISTEN

TCP connection management is accomplished using the LIsTEN and CONNECT
services. These services are responsible for the creation of resources and for
the establishment of connections. A connection is represented by a token.

The token is returned to the application in the Argument for Connection
Management (ACM). The token is used for all subsequent CPT service
requests related to that connection. Multiple connections or tokens can be
obtained by an application. However, the mechanism used to manage the
connections is controlled by the application.

TCP connection management services associate ownership of a newly
established connection to the calling task. This provides the TRUE
management routines the ability to release resources during normal or
abnormal task termination. Ownership of resources can be controlled
automatically by internal CPT routines, or explicitly by an application through
facility management services.

TCP connection management services set the operating environment for the
connection. Optional arguments specify transport provider buffering, CPT
internal tracing, connection statistics, and subtask initialization. Such
information can only be specified by connection management services and
cannot be modified after a connection has been established.

Information related to the newly established connection is returned within the
ACM. This information contains IP host names, IP addresses, transport
provider addresses, and more. The information can be used by the application
or ignored.

The L.ISTEN service is used by a user-written application to passively listen for
connection requests. This ability provides the application with server support.
The LISTEN service requires an ACM to be initialized by the user application
and a call to the L1sTEN service routine.

Successful completion of the L1sTEN service returns a token that represents
the established connection with a client. This token is used for all data transfer,
data processing, and connection termination service requests.

Two variations of the L1sTEN service allow a data processing transaction to be
initiated internally. The data processing transaction can be predetermined by
specifying the transid in the connection management argument or dynamically
by the connecting client. This option is selected by initializing a field within the
connection management argument. Completion of the LIsTEN service is
generally indicated by an error at CPT or transport provider termination.

Chapter One — CPT API SERVICES

N
_,/"/

/

001002-00v20* 02
\

00 LOOZ'OVO’VZO; LOBbOZ

TCP Connection Management CONNECT

CONNECT The conNECT service is used by a user-written application to actively establish
a connection with a server, thus providing it with client support. The coNNECT
service requires an ACM to be initialized by the user application and requires a
call to be made to the connecT service routine.

Successful completion of the conNECT service returns a token that represents
the established connection with a server. This token is used for all subsequent
data transfer, data processing, and connection termination service requests.

b]

CICS Programmer’s Toolkit Programmer’s Reference 1-5

SEND

TCP Data Transfer

TCP Data
Transfer

SEND

RECEIVE

TCP data transfer is accomplished using the sexp and RECEIVE services.
These services are responsible for reliable transmission of data to and from the
transport provider's API. Data Transfer services require an established
connection and a user application buffer.

The transport provider is not responsible for record or file boundaries. It cannot
be assumed that data transmitted will be received with the same logical
boundaries with which it was sent. Record and file boundaries are transparent
to the transport provider. Thus, applications should be designed with some
mechanism to distinguish logical record or file boundaries.

File boundaries may be the easiest to distinguish. It is possible that a
connection release could indicate the designated end of file, that the sender
has completed transmitting all data, and is closing its half of the full duplex
connection. The receiver can transmit data or simply close the connection.

If record orientated data is to be transmitted, then some pre-determined
mechanism used by both the client and server applications should be
designed. Mechanisms such as separator character(s), fixed length records, or
record header information can be used to delimit records. These mechanisms
are also used by the CPT tools.

The TCP data transfer services have several options that make programming
for stream oriented data easier. There are two variations of a timed RECEIVE
call that specify the amount of data to receive before returning to the caller.
There is an option to send and/or receive data in logical records where the
length of the record is stored in the first two bytes of the record. There is also
an option to send and/or receive data in logical records where the records are
separated by a predefined character sequence.

The seND service is used by a user-written application to send or output data
over the connection. The sEND service requires an Argument for Data Transfer
(ADT) to be initialized by the application and requires a call to be issued to the
SEND service. The data transfer argument contains a token, data buffer
address, and data buffer length.

Upon completion, a return code field in the ADT indicates success or failure of
request.

The RECEIVE service is used by a user-written application to receive or input
data from the connection. The RECETVE service requires an ADT to be
initialized by the application and requires a call to be issued to the RECEIVE
service. The data transfer argument contains a token, data buffer address and
data buffer length.

Upon completion, a return code field in the ADT indicates success or failure of
the request. The data transfer length field must be retrieved to determine the
amount of data received.

Chapter One — CPT APl SERVICES

O

/

/

00L002-0v0v20% 02
\\

001002-0¥0720- 108002

UDP Data Transfer and Endpoint Creation SENDTO

UDP Data
Transfer and
Endpoint
Creation

SENDTO

RCVFROM

Data transfer for UDP is accomplished using the sENDTO and RCVFROM Services.
These services also create an endpoint if the caller does not pass an existing
endpoint in the argument for data transfer. UDP endpoints are represented by
a token.

UDP does not provide the reliable data transmission capabilities that TCP does.
UDP works as well as the underlying IP internet and hardware network.
Applications developed for local area networks are probably quite reliable
while the same applications ported to a wide area internet might not be. UDP
applications generally should be developed with logic to account for datagrams
that are lost or out of sequence.

Because reliability is not built into connectionless data transmission, there is
no corresponding overhead for the transport provider. This makes UDP data
transmission faster than TCP data transmission. Since there is no notion of a
connection between two UDP endpoints, whenever data is sent or received it
is transmitted all at once. Applications do not have to be designed to extract
logical records from variable length streams of data.

The seNDTO service is used by a user-written application to send a datagram
to a remote UDP endpoint. The sENDTO service requires an argument for data
transfer (ADT) to be initialized by the application, which must include a buffer
address, buffer length, and remote endpoint address identification. If an
existing token is not passed, new token, send, and receive buffer queues are
created. The size and number of CPT senp and ReceIVE buffers for the
endpoint can be set in the ADT along with optional trace and statistics flags.

The rcvFROM service is used by a user-written application to receive
datagrams from remote UDP endpoints. The RcvFROM Service requires an ADT
to be initialized by the application, which must include a buffer address and
buffer length. If an existing token is not passed, new token, send, and receive
buffer queues are created. When a new token is to be created, the local
well-known UDP port must also be passed in the ADT. The size and number of
CPT seEnD and RecEIVE buffers for the endpoint can be set in the ADT along
with optional trace and statistics flags.

CICS Programmer’s Toolkit Programmer’s Reference 1-7

CLOSE

Connection and Endpoint Release

Connection
and Endpoint
Release

CLOSE

('/W\
N
Connection and endpoint release is accomplished using the cLosE service.
This service is responsible for the release of the connection and all internal

CPT associated resources. Connection Release requires either a listen or data
transfer connection to be established.

A connection or endpoint release is scheduled explicitly by issuing the cLosE
service request, or implicitly by the TRUE management routines during task
termination. If an explicit cLosE service is issued and no connections or
endpoints are owned by the task, the implicit close scheduled by the TRUE
management routines will not be issued.

TRUE management routines are responsible for managing connections and
associated resources. The releasing of resources is one facility provided by the
task-related user task management routines and is controlled by an ownership
mechanism. During task termination the TRUE management routines
automatically (implicitly) schedule a connection or endpoint release (cLosE)
request for owned resources. cLOSE, issued by the TRUE management N
routines for active connections, is abortive.

The facility management services can be used to man'ipulate connections,
endpoints, and associated resources owned by a task to avoiding implicit
termination.

A user-written application uses the cLosE service to release the connection or N
endpoint. The cLosE service requires an Argument for Close (ACL) to be

initialized by the application and requires a call to be issued to the cLosE

service. The ACL contains a token and termination options. The termination

options include orderly (graceful) and abortive connection release.

Upon completion, a return code field in the ACL indicates success or failure of
the request. When a connection or endpoint has been successfully released,
the token is no longer valid.

‘/’

(
\

001002-0v0v20% D2

AN

\&/’;

Chapter One — CPT APl SERVICES

(

s

00 LOOZ'OVOVZd; 108002

Data Translation

TRANSLATE

)

Daia
Translation

TRANSLATE

The TRANSLATE service provides support for single-byte character set
translation. This implies that any character set of 256 (or less) data
representations is supported. Translation service requires an established
connection and a user application buffer.

Applications with special translation requirements are able to select an
alternate translation table. Alternate translation tables must be customized to
the CPT system by applying an SMP/E usermod. Read Chapter Three —
INSTALLATION AND CONFIGURATION in the CICS Programmer’s Toolkit
Installation and Administration Guide for a detailed description of
Translation Table Customization.

The TRANSLATE Service uses a user-written application to translate EBCDIC
and ASCII data within a user buffer. The TRANSLATE service requires an
Argument for Translation (AXL) to be initialized by the application and requires
a call to be issued to the TrRansLATE service. The AXL contains a token, data
buffer address and length, and translation options. Translation options indicate
EBCDIC to ASCII or ASCII to EBCDIC translation. Optionally, a user application
can override the site default translation table.

Upon completion, a return code field in the AXL indicates success or failure of
the request.

CICS Programmer’s Toolkit Programmer’s Reference 1-9

GIVE

Facility Management

M

Facility
Management

GIVE

The c1vE and TaxE services provide facility management. These optional
services provide enhanced connection management support for multi-tasked
applications. Facility management services require an established connection.
A CPT connection that is used by several CICS tasks can define a multi-task
application. For example, the LIsTEN and RECEIVE tools used in conjunction
create a multi-task application.

A multi-threaded server application is an example of a multi-tasked application
where the CPT connection is established by a listening task and then a data
processing transaction is initiated to handle data transfer. Any application that
is designed to have multiple tasks processed by a single CPT connection can
benefit from facility management services.

A client or single-threaded server application that establishes a connection,
transfers data, and releases the connection all within the same task, does not
need to use the facility management services.

CPT connection management services (LISTEN and CONNECT) create
connections. By default, the task that issues a connection management
service obtains ownership of the connection and its associated resources. CPT
TRUE management routines are responsible for managing connections and
their associated resources. Releasing resources is one facility provided by the
TRUE management routines and is controlled by an ownership mechanism.
During task termination the TRUE management routines automatically
(implicitly) schedule a connection release (crosk) request for owned
resources.

The release of a connection and its associated resources is performed through
the explicit connection release request, or the implicit task termination release
facility. The cIve and TaKE services affect the implicit task termination release
facility by disabling (cTvE) and enabling (Taxe) ownership of a connection.

There is no restriction on the number of times a multi-tasked application can
issue a cIvE or Take facility management service. The mechanism used to
pass information related to a CPT connection between tasks is
application-dependent.

A user-written application uses the cIvE service to disable ownership of
internal CPT resources associated with a connection. This facility prohibits CPT
task-related user task management routines from releasing a connection and
associated resources during task termination. The cIvE service requires an
Argument for Facility Management (AFM) to be initialized by the application
and requires a call to be issued to the cIvE service. The version number and
token are the only arguments required.

The c1vE service provides a mechanism to disable the TRUE task termination
routine from releasing the connection and associated resources, thereby
allowing a connection and its associated resources to remain available after
task termination. This facility enhances multi-tasked application design.

Connections, and their associated resources, that have been given must be
taken by other tasks or explicitly released. Otherwise, the connections and

1-

10

Chapter One — CPT APl SERVICES

Pan

N

J/

00 Looa-ovovao,f Az

001002-0v0¥20- 108002

Facility Management

TAKE

TAKE

resources persist indefinitely. Resources that are not taken can lead to hung
connections, storage shortages within the CICS region or the transport
provider, or unpredictable results.

A connection can be closed via the cLosE service after it has been given. The
cIvE service only affects implicit release management services provided by
the CPT task-related user task management routines. Also, a connection that
can be taken is not required to be given. There is no restriction that a
connection and its associated resources must be given before they can be
taken.

Upon completion, a return code field in the AFM indicates success or failure of
the request.

A user-written application uses the TakE service to obtain ownership of internal
CPT resources associated with a connection. This facility enables CPT TRUE
management routines to release a connection and its associated resources
during task termination. The TAKE service requires that an AFM be initialized by
the application and requires a call to be issued to the Take service. The version
number and token are the only arguments required.

A connection that will be taken is not required to be given. There is no
restriction that a connection and its associated resources is given before it can
be taken. This provides a mechanism for ensuring proper connection and
resource termination, while still allowing a connection to be used by several
tasks.

The TaKE service is implemented implicitly within the SEND, RECEIVE, and
TRANSLATE services. This implies that the connection is automatically
associated with the last task that issued a SEND, RECEIVE, Of TRANSLATE
service request. Therefore, if a connection has been previously given by the
current task, an additional GIvE service request is required to release
ownership of the connection.

The implicit TAKE service within the SEND, RECEIVE, and TRANSLATE Services
allow facility management to be handled by the CPT TRUE management
routines. Hence, the TaxE and, to some extent, GIVE facility management
services are optional.

Upon completion, a return code field in the AFM indicates success or failure of
the request.

Read Chapter Two — ASSEMBLER CALLS, Chapter Three - C
SUBROUTINE CALLS, Chapter Four — COBOL SUBROUTINE CALLS, and
Chapter Five — PL/1 SUBROUTINE CALLS for detailed information about the
subroutine calls for each language. For installation and configuration
information, read Chapter Three —INSTALLATION AND CONFIGURATION
in the CICS Programmer’s Toolkit Installation and Administration Guide.

CICS Programmer’s Toolkit Programmer’s Reference 1-11

The Security Communications Block Security Exit

Security Exit

CPT provides a Security Exit for user evaluation of requests for the services of
local listeners/servers. If a Security Exit is implemented, the user program is
invoked for each connection request in a TCP environment. The appropriate
server transaction is initiated if authorized by the user security program.
Otherwise, the client is notified that the connection is terminated.

To implement the Security Exit in CPT, the sCcTYEXIT=program-name must be
coded in the To9McICs macro of the To9conre Configuration Table. The user
program will be CICS LINKed during the connection process and must conform
to CICS coding standards and be defined as a Processing Program Table (PPT)
entry.

¢ [fno SCTYEXIT=program-name is coded in the Configuration Table, all
connection requests will be authorized.

¢ If SCTYEXIT=program-name is coded but the program is missing or is
disabled, no connections will be permitted.

Note: The second condition may be checked by invoking the Administrator
Interface panel for the Configuration Table; however, the Security Exit
program is displayed only if it is disabled or if it is not in the PPT.

The Security The connection process and the user security program communicate through
Communicaﬁons the Security Communications Block. Connection provides information about
the request and its origin. The user program will determine whether the request
Block is to be authorized and, optionally, the name of a terminal facility to be
associated with a STARTed server transaction. A DSECT of the Security
Communications Block for Assembler programs may be generated with the
TO9DSCTY macro.
FIELD FORMAT DESCRIPTION
SECTRAN 4-byte character Requested server transaction
SECDATA 40-byte character Client data, if available
SECSTRT 2-byte character Method of server initiation: KC, TC, or IC
SECICTM 6-byte character IC Hours, Minutes, Seconds
SECAFAM halfword binary Address family: Inet domain=2
SECRPRT halfword binary Client remote port number
SECRHST fullword binary Client remote host IP address
SECACTN 1-byte character Authorization switch:
¢ Character ‘1’ = authorized
¢ Other = not authorized
1-byte character Reserved filler
1- 12 Chapter One — CPT API SERVICES

004002-0v0v2¢* 0z
o/

001002-0v0v20- 108002

Security Exit The Security Exit Program
1 FORMAT | pescaeTion EEs
SECTMID 4-byte character Associated terminal facility.
SECLPRT halfword binary Requested server local port
SECLHST fullword binary Local host IP address
The Security Exit The user application program is responsible not only for making the
Program determination of whether a connection is authorized, by also for any desired

logging or other capture of unauthorized requests. Because the exit will be
driven for each connection request, performance implications should be
considered in designing the user program.

The only fields which are checked upon return from the user program are the
authorization switch and the associated terminal facility. If the transaction is
authorized by virtue of a character ‘1’ in the action field, then the server
transaction will be initiated. If the terminal facility has been changed from any
CICS termid associated with the listener to a new CICS termid, then the
authorized transaction will be STARTed with that new termid, and any
applicable CICS security associated with the new termid will prevail.

The security exit is invoked only for connections for which the CPT Listen
service will start the server transaction. This may be by way of a transaction
specified in AcMTRNID or in a tool, or by use of the Client-Data feature. In other
client/server designs, the application receives control when the connection is
made, and the application should make any desired security checks before
beginning server activity.

CICS Programmer’s Toolkit Programmer’s Reference 1-13

Client Application Example Sample CPT API Pseudo Code

L R (‘/A:/\\\

N
Sample CPT This section provides some examples of pseudo code for client and server

AP' Ps eu d Fo) applications
Code

Client Application A CICS program is required to send and receive data to a server application

Example residing on a workstation. The CICS application reads and writes to temporary
storage. The CICS application is required to initiate the connection and send
the first packet.

The workstation or server's IP host name is SATURN and the well-known port
address on that machine is 1234. The server's data representation is ASCII.

. . . a
The server application expects data from the client and responds with data. {
The CICS client application attempts to establish a connection with the server
before processing any data. The client application reads temporary storage,
then translates the data into ASCII before sending it to the server. The client
application is then required to receive a response from the server. The data
received must be translated into EBCDIC before it can be written to temporary
storage. The application loops until all data has been processed, then closes
the connection gracefully. Any unexpected error causes the connection to
terminate abnormally. TN
\/ﬁ
Working Storage
Define Storage for Connection Management Argument
Define Storage for Data Transfer Argument
Define Storage for Data Translation Argument
Define Storage for Connection Release Argument
- 3
. Initialize Connection Management Argument and issue CONNECT service. A
Set transport protocol to connection-mode (TCP). &“S/
Set server well-known port to 1234. §
Set server IP host name to 'SATURN'. 3
Call CONNECT service with Connection Management Argument. =4
Check CONNECT service Return Code. é
If Return Code not zero, then log error and GOTO RETURN.
Retrieve connection Token.
Copy TOKEN from Connection Management Argument.
Read Temporary Storage Queue and check for end of queue.
READ_NEXT_TS label:
EXEC CICS READQ TS QUEUE(tsgnamel) SET() LENGTH() P
If Handle Condition is QEMPTY, then GOTO CLOSE_ORDERLY. &)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.)

1- 14 Chapter One — CPT API SERVICES

Sample CPT API Pseudo Code Client Application Example

(: . Initialize Data Translation Argument and issue TRANSLATE service.

Set connection TOKEN.
Set translation from EBCDIC to ASCII.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Initialize Send Data Transfer Argument and issue SEND service.

Set connection TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
Check SEND service Return Code.
(If Return Code error, then GOTO CLOSE_ABORTIVE.

. Initialize Receive Data Transfer Argument and issue RECEIVE service.

Set connection TOKEN.

Set address of receive data buffer.

Set length of received data buffer.

Call RECEIVE service with Data Transfer Argument.
Check RECEIVE service Return Code.

(7 If Return Code error, then GOTO CLOSE_ABORTIVE.

Retrieve length of network data RECEIVE service processed.

Copy RECEIVE service data length from Data Transfer Argument.

Initialize Data Translation Argument and issue TRANSLATE service.

. § Set connection TOKEN.
(8 Set translation from ASCII to EBCDIC.
o g Set address of translation data buffer.
PN Set length of translation data buffer.
g Call TRANSLATE service with Data Translation Argument.
g Check TRANSLATE service Return Code.
=4 If Return Code error, then GOTO CLOSE_ABORTIVE.
8
Write Data to Temporary Storage Queue.
EXEC CICS WRITEQ TS QUEUE (tsgname2) SET() LENGTH ()
If Handle Condition error, then GOTO CLOSE_ABORTIVE.
Loop application for more temporary storage data.
GOTO READ_NEXT_TS.
() . Initialize Connection Release Argument and issue CLOSE service.

CICS Programmer’s Toolkit Programmer’s Reference 1-15

Client Application Example Sample CPT API Pseudo Code

CLOSE_ORDERLY label: L
Set connection TOKEN. ¢
Set orderly release option. S~

Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.

If Return Code error, then log error.
GOTO RETURN.

. Initialize Connection Release Argument and issue CLOSE service.

CLOSE_ABORTIVE label:
Set connection TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.

Terminate Task SN

RETURN label:
EXEC CICS RETURN

/
/

00 Looz-ovovch‘ oz
AN

1- 16 Chapter One — CPT APl SERVICES

Sample CPT API Pseudo Code Server Application Example 1

Server A CICS program is required to receive and send data from a client application.

A icati The CICS server application listens for connection indications and then echoes
ppl cation any received data back to the client. Termination of the server application is

Example 1 determined by a CICS or API (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 2000. This server application handles data transfer in-stream and does not
initiate additional client connections until the current connection has been
terminated. Therefore, this is a single-threaded server application. The
application loops within the CPT receive/send logic until a CPT release
indication is determined and then closes the connection gracefully. Any
unexpected error while receiving and sending data causes the connection to
be terminated abnormally.

transfer connection and the other token represents the server connection. The
data transfer token is used with send and receive processing, while the listen
token can only be used during task termination.

(The LISTEN service request returns two tokens. One token represents the data

Working Storage

Define Storage for Connection Management Argument
Define Storage for Data Transfer Argument
Define Storage for Connection Release Argument

. Initialize Connection Management Argument and issue LISTEN service.

Set transport protocol to connection-mode (TCP).
Set server well-known port to 2000.

LISTEN_LOOP label:
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
If Return Code unknown, then log error and GOTO
CLOSE_LISTEN.

Retrieve Data Transfer Connection and Listen Tokens.

001002-00¥20- 108002

Copy DT_TOKEN from Connection Management Argument.
Copy LISTEN_TOKEN from Connection Management Argument.

. Initialize Receive Data Transfer Argument and issue RECEIVE service.

ECHO_LOOP label:

Set connection DT_TOKEN.
Set address of receive data buffer.
Set length of received data buffer.
Call RECEIVE service with Data Transfer Argument.

e Check RECEIVE service Return Code.

(If Return Code egual RELEASE, then GOTO CLOSE_ORDERLY.
If Return Code error, then GOTO CLOSE_ABORTIVE.

CICS Programmer’s Toolkit Programmer’s Reference 1-17

Server Application Example 1

Sample CPT API Pseudo Code

. Retrieve length of network data RECEIVE service processed.

Copy RECEIVE service data length from Data Transfer Argument.

Initialize Send Data Transfer Argument and issue SEND service.

Set connection DT_TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Loop application for more client data.

GOTO ECHO_LOOP.

Initialize Connection Release Argument and issue CLOSE service.

CLOSE_ORDERLY label:
Set connection DT_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO SERVER_LOOP.

Initialize Connection Release Argument and issue CLOSE service.

CLOSE_ABORTIVE label:
Set connection DT_TOXEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO SERVER_LOOP.

. Initialize Connection Release Argument and issue CLOSE service.

CLOSE_LISTEN label:
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.

. Terminate Task
RETURN label:
EXEC CICS RETURN

1-

18

Chapter One — CPT APl SERVICES

N
/ N

J

N

001002-0v0v20% 02

ﬁ“‘\

001002-00%20- 108002

Sample CPT API Pseudo Code Server Application Example 2

Server This example illustrates a multi-threaded CICS server application. In this

Application example, the CICS server application listens for connection indications and
starts a data processing transaction. Termination of the server application is

Example 2 determined by a CICS or API (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 3000. Once a connection has been established, the connection
management GIVE service is issued to release ownership of the connection. A
clcs starT command is then issued for a data processing transaction. Any
unexpected error causes the data transfer connection to terminate abnormally.

The L1sTEN service request returns two tokens, one token represents the data
transfer connection and the other represents the server connection. The data
transfer token is passed to the data processing transaction, while the listen
token can only be used during task termination.

Working Storage

Define Storage for Connection Management Argument
Define Storage for Facility Management Argument
Define Storage for Connection Release Argument

Initialize Connection Management Argument and issue LISTEN
service.

Clear Server Listen Token DT_TOKEN
Set transport protocol to connection-mode (TCP).
Set server well-known port to 3000.

LISTEN_LOOP label:
Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO
CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.
If Return Code unknown, then log error and GOTO
CLOSE_LISTEN.

Retrieve Data Transfer Connection and Listen Tokens.

Copy DT_TOKEN from Connection Management Argument.
Copy LISTEN_TOKEN from Connection Management Argument.

. Initialize Facility Management Argument and issue GIVE service.

Set connection DT_TOKEN.
Call GIVE service with Facility Management Argument.
Check GIVE service Return Code.
If Return Code error, then log error GOTO CLOSE_ABORTIVE.

Start Data Transfer Transaction.

CICS Programmer’s Toolkit Programmer’s Reference 1-19

Server Application Example 2 Sample CPT API Pseudo Code

EXEC CICS START TRANSID(transid) FROM(DT_TOKEN) LENGTH(4)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.

Loop for additional connection indications.

GOTO LISTEN_LOOP.

. Initialize Connection Release Argument and issue CLOSE service.

CLOSE_ABORTIVE label:
Set connection DT_TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO LISTEN_LOOP.

. Initialize Connection Release Argument and issue CLOSE service.

CLOSE_LISTEN label:
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.

Terminate Task
RETURN label:
EXEC CICS RETURN

1- 20 Chapter One — CPT API SERVICES

o/

004002-070v20* 0z

oomooa—ovovao-Loeboz

Sample CPT API Pseudo Code Server Application Example 3

Server This example illustrates a data processing program associated with a

Applicati multi-threaded server application. The transaction is initiated by a server
pplicaiion program after a client connection has been established. The program is

Example 3 responsible for processing data associated with a connection.

The TaKE service is an optional facility and is provided implicitly through the
SEND, RECEIVE, and TRANSLATE Services.

The application loops within the CPT receive/send logic until a CPT release
indication is determined, then closes the connection gracefully. Any
unexpected error while receiving and sending data causes the connection to
terminate abnormally.

. Working Storage

Define Storage for Facility Management Argument
Define Storage for Data Transfer Argument
Define Storage for Data Translation Argument
Define Storage for Connection Release Argument

Obtain Data Transfer Token for Server Transaction.

EXEC CICS RETRIEVE FROM(TOKEN) LENGTH(4)
If Handle Condition error, then GOTO CLOSE_ABORTIVE.

. Initialize Facility Management Argument and issue TAKE service.

Set connection TOKEN.
Call TAKE service with Facility Management Argument.
Check TAKE service Return Code.
If Return Code error, then log error GOTO CLOSE_ABORTIVE.

. Initialize Receive Data Transfer Argument and issue RECEIVE service.

RECV_LOOP label:

Set connection TOKEN.

Set address of receive data buffer.

Set length of received data buffer.

Call RECEIVE service with Data Transfer Argument.

Check RECEIVE service Return Code.
If Return Code equal RELEASE, then GOTO CLOSE_ORDERLY.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Retrieve length of network data RECEIVE service processed.

Copy RECEIVE service data length from Data Transfer Argument.

. Initialize Data Translation Argument and issue TRANSLATE service.

Set connection TOKEN.

Set translation from ASCII to EBCDIC.
Set address of translation data buffer.
Set length of translation data buffer.

CICS Programmer’s Toolkit Programmer’s Reference 1-21

Server Application Example 3

Sample CPT API Pseudo Code

Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.

. Application to process input and determine output.

Initialize Data Translation Argument and issue TRANSLATE service.

Set connection TOKEN.
Set translation from EBCDIC to ASCII.
Set address of translation data buffer.
Set length of translation data buffer.
Call TRANSLATE service with Data Translation Argument.
Check TRANSLATE service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Initialize Send Data Transfer Argument and issue SEND service.

Set connection TOKEN.
Set address of send data buffer.
Set length of send data buffer.
Call SEND service with Data Transfer Argument.
Check SEND service Return Code.
If Return Code error, then GOTO CLOSE_ABORTIVE.

Loop application for more client data.

GOTO RECV_LOOP.

Initialize Connection Release Argument and issue CLOSE service.

CLOSE_ORDERLY label:

Set connection TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.
GOTO RETURN.

Initialize Connection Release Argument and issue CLOSE service.

CLOSE_ABORTIVE label:

Set connection TOKEN.
Set abortive release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.

Terminate Task

RETURN label:

EXEC CICS RETURN

Chapter One — CPT API SERVICES

o
H
S
N
@
o
]
S
e
o
S

OOLOOZ'OVOVZO'LOQOOZ

Sample CPT API Pseudo Code Server Application Example 4

Server
Application
Example 4

This example is a variation of the multi-threaded CICS server application
shown in Server Application 2. The CICS server application listens for
connection indications and then causes the LISTEN service to initiate a data
transfer transaction. The initiated data transfer transaction could be Server
Application 3. Termination of the server application is determined by a CICS or
AP (transport provider) shutdown condition.

The CICS server application listens for connection indications on well-known
port 4000. A transaction ID is specified for the data transfer program. Once a
connection is established, the connection management cIve service and the
CICS sTarT command are issued from within the LISTEN service.

Return from the L1sTEN service request does not occur until an error has
occurred. The error could be either CPT and CICS termination, or some
unexpected error. CPT or CICS termination is considered graceful termination,
while anything else produces an error.

. Working Storage

Define Storage for Connection Management Argument
Define Storage for Connection Release Argument

Initialize Connection Management Argument and issue LISTEN
service.

Set transport protocol to connection-mode (TCP).
Set server well-known port to 4000.
Set Data Transactions ID.

Call LISTEN service with Connection Management Argument.
Check LISTEN service Return Code.
If Return Code equal CICS shutdown, then GOTO
CLOSE_LISTEN.
If Return Code equal API shutdown, then GOTO CLOSE_LISTEN.

Log LISTEN Service Unknown error

Log Connection Management Return Code.

. Initialize Connection Release Argument and issue CLOSE service.

CLOSE_LISTEN label:
Copy DT_TOKEN from Connection Management Argument.
Check for LISTEN_TOKEN.
If no LISTEN_TOKEN, then GOTO RETURN.
Set connection LISTEN_TOKEN.
Set orderly release option.
Call CLOSE service with Connection Release Argument.
Check CLOSE service Return Code.
If Return Code error, then log error.

Terminate Task

RETURN label:
EXEC CICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference 1-23

Server Application Example 4

CPT API Sample Programs

m

CPT API

These sample programs are in the cprsavp data set that was unloaded when

sampl e ;he CICs Programmer's Toolkit was insgalled. Descriptions of each program
ollows where x denotes the programming language from the table shown
Programs here.
This table illustrates the sample program name and its corresponding
language:

CPTSAMP MEMBER ;NAME"r ~ LANGUAGE TYPE
TO9PACL1 Assembler TCP Client 1 program
TO9PACL2 Assembler TCP Client 2 program
TO9PASV1 Assembler TCP Server 1 program
TO9PASV2 Assembler TCP Server 2 prﬁgram
TO9PASV3 Assembler TCP Server 3 program
TO9PASV4 Assembler TCP Server 4 program
TO9PACLU Assembler UDP Client program
TO9PASVU Assembler UDP Server Program
TO9PCCL1 COBOL TCP Client 1 program
TO9CCL2 CcOoBOL TCP Client 2 program
TO9PCSV1 CcOBOL TCP Server 1 program
TO9PCSV2 COBOL TCP Server 2 program
TO9PCSV3 coBOL TCP Server 3 program
T09PCSV4 coBOL TCP Server 4 program
TO9PCCLU CcoBOL UDP Client program
TO09PCSVU CcoBOL UDP Server program
TO9PPCL1 PUI TCP Client 1 program
TO9PPCL2 PLM TCP Client 2 program
TO9PPSV1 PLI TCP Server 1 program
TO9PPSV2 PLI TCP Server 2 program
TO09PPSV3 PL/I TCP Server 3 program
TO9PPSV4 PL/ TCP Server 4 program
TO09PPCLU PL/M UDP Client program
TO9PPSVU PLNM UDP Server program
TO9PSCL1 C TCP Client 1 program
TO9PSCL2 Cc TCP Client 2 program

1- 24 Chapter One — CPT APl SERVICES

\\ i

/

£
oowoa-ovovzo\" *}oa

001002-0¥0¥20- 1u800Z

CPT API Sample Programs

Client 1 Sample Program

Client 1 Sample
Program

TCP Client 2
Sample Program

I CPTSAMPMEMBERNAME | LANGUAGE R e

—‘Il‘-OQPSSVl C - TCP Server 1 program
T09PSSV2 C TCP Server 2 program
TO9PSSV3 Cc TCP Server 3 program
T09PSSV4 C TCP Server 4 program
TO09PSCLU C UDP Client program
T09PSSVU C UDP Server program

T09PxCL1 is an example of a client program that sends a message, (input at a
terminal) to a server program. It uses an L1 (length) convention to indicate
when all data has been sent. It sends the length first followed by the message.
The server (s) echoes back the 1.1, and data. When the message is fully
received, the client requests an orderly close of the connection.

This program is initiated at a terminal by entering the transaction ID, a server
transaction ID, and a text variable. If a server transaction ID omitted, the echo
port is requested. If a text variable is omitted, a dummy message is substituted.

T09PxCL2 is an example of a client program that sends a message to a server
program and then receives it back. The Client 2 sample uses special
processing options that cause CPT to format the stream data into logical
records. These sEnD and RECEIVE options make logical record programming
much easier from the CPT application standpoint.

These are the logical record options:
& Logical record based on separator characters
& Logical record based on length set in the first two data bytes

& The receiver defines what a full record length is and waits until it
receives that amount

This program is initiated at a terminal by typing in the transaction 10 followed
by an option: ruLL (default), L., or sEp. T09PxCL2 sends the data to the TCP
Echo server.

CICS Programmer’s Toolkit Programmer’s Reference 1-25

TCP Server 1 Sample Program

CPT API Sample Programs

TCP Server 1
Sample Program

TCP Server 2
Sample Program

Server 3 Sample
Program

T09PxsSV1 is an example of a server program, that can be initiated either during
CICS start up or dynamically using a supplied transaction ID. The server issues
a listen on a specific port and then remains active in CICS as a long-running
task. When a client program designates the same port for a connect, CPT
initiates this server for receive-and-send handshaking.

In this example, the server echoes back messages received from the client.
After the client requests an orderly release from the connection, the server
goes back to passive listening on the port. This server is single-threaded; any
subsequent requests for its services wait until preceding clients have
completed and closed connections.

T09PxSV2 is an example of a server program that does not issue a listen, but
takes the connection from the original listener. It is initiated by CPT when a
listening task detects a client request for the port number assigned to this
server. CPTPXSv2 can be initiated directly by another transaction that is a
listening server, by CPT from a listening transaction’s specification of AcMTrRNID
in its connection management argument, or by a listener specified in a
TO9MLSTN statement in the CPT tool configuration table.

In this example, the server receives one or more messages from the client,
then echoes it back. When the client requests a release, or when an error
occurs, the server disconnects and goes away.

A fresh copy of the server is activated as needed.

T09PxSV3 is an example of a server program that can be initiated either during
CICSs start up or dynamically using a supplied transaction ID. The server issues
a listen on a specific port and continues to remain active in the system as a
long running task. When a client transaction requests the service associated
with its port, T09pxsv3 is activated to connect with that client.

In this example, when the server is awakened to service a client, it spawns
another task to do the complex work requested by the client. This frees the
long-running server up to initiate a new listen and to respond to additional
clients in a timely manner.

This server task terminates when CPT is stopped.

1- 26

Chapter One — CPT APl SERVICES

00L002-0v0v20% 02
.\\ /

AN
B |

001002-0%70%20- 108002

CPT API Sample Programs

Server 4 Sample Program

Server 4 Sample
Program

UDP Client
Sample Program

UDP Server
Sample Program

T09PxSV4 is an example of a server program that can be initiated either during
CICS start up or dynamically using a supplied transaction ID. The server issues
a listen for a specific service, but also provides CPT with a transaction name
for an independent task to be started when a client requests a connection to
the service. That task does any complex work associated with the service,
while the server continues as a long-running task that listens for additional
requests for the service

This server task terminates when CPT is stopped.

T09PxCLY is an example of a UDP client program that calls the sexDTO service
to send a datagram, input at a terminal, to a server program that echoes the
datagram back. The default server is the UDP echo server with T09rxsvu being
the other possible destination by specifying the associated transaction ID.
When the datagram has been received back via the rcvrrom service, the
sample client closes the endpoint.

T09PxSVU is an example of a UDP server program that hangs a RcvrFroM ON &
well-known port and waits for incoming datagrams. When rcvrroM completes,
the server calls the senNDTO service to send the datagram back to its originator.

This program should be initiated as a started transaction.

|

CICS Programmer’s Toolkit Programmer’s Reference , 1-27

£

001002-00¥20- L ug002

Chapter P

ASSEMBLER CALLS

This chapter describes the assembler subroutine calls of CICS/API. These are:

L 2

* ¢ 6 6 O 0 0 o

*

CLOSE

CONNECT

GIVE

LISTEN

RCVFROM

RECEIVE

SEND

SENDTO

TAKE

TRANSLATE

It also describes the macro instruction T09McALL, return codes of the T09DrTCD macro instruction, and the CICS
storage requirements for a TCP connection or a UDP endpoint.

All messages are in Appendix C — MESSAGES AND CODES in the CICS Programmer’s Toolkit Installation
and Administration Guide.

CICS Programmer’s Toolkit Programmer’s Reference 2-1

Chapter Two — ASSEMBLER CALLS

001002-0v0v20* 02

J

//

\
AN

001002-0v0v20- 108002

CLOSE

Assembler Data Area

M

CLOSE The cLosE service closes an established connection. Both orderly (or graceful)
and abortive termination options are supported. The cLosE service performs
all associated functions required for CPT resource clean-up.

To invoke the cLOSE service, a user application is required to first build an
Argument for Close (ACL) and then to issue a call to the cLosk routine. Valid
arguments include the ACL version number, connection token, and termination
options. On completion, a return code is set to indicate success or failure of the

request.

This table describes the arguments for the cLosE service:

MACRO ID DSECT NAME SIZE CREATED BY
TO09DACL ACL 30 (X'1E") User application
Assembler Data This is what the psecT control block looks like in Assembler language:
AI'eG Name Operation Operands Description
ACL DSECT ,
ACLVERS DS H Version number
ACLFUNC DS H Function code
ACLTOKEN DS A Token (CEP)
DS A Reserved
DS F Reserved
ACLRTNCD DS F Return code
ACLDGNCD DS F Diagnostic code
ACLOPCDS DS OF Termination Option Codes
ACLOPCD4 DS X Termination Option Code 4
ACLOPCD3 DS X Termination Option Code 3
ACLOPCD2 DS X Termination Option Code 2
ACLOPCD1 DS X Termination Option Code 1
ACLORDER EQU X'00" - Orderly Release
ACLABORT EQU X'01! - Abortive Release
DS H Reserved
NAME OPERATION
ACLVERS Version number
Indicates the CPT version number of the argument list used by the calling
program. This required field must be set to a binary 2 for this release of CPT.
Default: None
ACLFUNC Function code
Indicates the function or callable service ID requested by the application
program. This field is not set by the application, but is initialized by the
Task-Related User Exit (TRUE) interface stub program.
Default: None

CICS Programmer’s Toolkit Programmer’s Reference 2-3

Completion Information

CLOSE

Completion
Information

ACLTOKEN | Connection or endpoint token

Specifies a token that represents a TCP connection, a TCP listening end
point, or a UDP end point. A token is created by the TCP connection initiation
routines or by the UDP data transfer and endpoint creation routines.

Note: The token is required.
Default: None

ACLRTNCD | Return code

Indicates the return code set by the CLOSE service. This value is also
returned in register 15 and indicates the success or failure of the service.

Default: 0

ACLDGNCD | Diagnostic code

Indicates the diagnostic code set by the service request. This value generally
indicates a transport provider return code.

Default: 0

ACLOPCDS | Specifies CLOSE service processing control options. These are the
supported options:

4 ACLORDER - Indicates a graceful termination. This option implements
orderly release of the TCP/IP connection. This is the preferred option for
terminating a connection, and is used when processing has completed
successfully.

¢ ACLABORT - Indicates abortive termination. This option implements a
disconnect or reset of the TCP/IP connection. This option is generally
used after an unrecoverable application error has occurred.

Note: The notion of orderly or abortive CLOSE for a UDP endpoint is
meaningless and the options specified when calling CLOSE for a UDP
token are not important. CPT knows if the token is UDP and will close
it properly.

Default: ACLORDER

The cLOSE service completes normally when the connection is terminated and
associated resources are released. Graceful termination waits for all pending
transport provider asynchronous senp and RECEIVE requests to complete.
Graceful termination also waits for both ends of the full-duplex connection to
close. Abortive termination closes the transport provider connection without
regard to pending transport provider requests. Abortive termination cause data
loss and should be used only when data integrity is not required.

On normal return to the application program, the general return code in register
15 (acLrTNCD) is set to zero (cPTIRCOK). The diagnostic code in register o
(acLpeNeD) is always zero.

If the cLosE service completes abnormally, some user data may be lost. The
general return code (ACLRTNCD) in register 15, and the diagnostic code
(acLpeneD) in register 0, indicate the nature of the failure. The diagnostic code
(aczpeNeD) may contain a specific code which identifies a particular transport
provider error.

Chapter Two — ASSEMBLER CALLS

TN

00+002-0v0v20#4 02
\) /'

'

001.002-0¥0¥20- 108002

CLOSE

Return Codes

Return Codes

The cLosE service returns a code in register 15 and 0 that indicates the results

of the execution. These values are in the AcLRTNCD (r15) and ACLDGNCD (RO)
within the ACL. The diagnostic code is optional and indicates the transport
provider return code. Read Appendix C — MESSAGES AND CODES in the

CICS Programmer’s Toolkit Installation and Administration Guide for the

return code cross reference table.

This table describes the c1L.osE service return codes:

RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful
CPTEVERS Control block version number is not supported.
CPTETOKN Specified token is not valid.
CPTEPRGE Yes CPT Interface is terminating.
CPTENAPI Yes Transport provider AP is not available.
CPTETERM Yes Environment is being terminated.
CPTERLSE Yes Release indication.
CPTEDISC Yes Disconnect indication.
CPTEINTG Yes Transport provider AP integrity error.
CPTEENVR Yes Transport provider AP| environment error.
CPTEFRMT Yes Transport provider API format error.
CPTEPROC Yes Transport provider API procedure error.
CPTABEND Abnormal exception occurred.
CPTEOTHR Yes An undefined exception occurred.

CICS Programmer’s Toolkit Programmer’s Reference

Usage Information

CLOSE

Usage
Information

The cLosE service terminates an established transport provider endpoint and
releases associated resources. Established transport provider endpoints can
be half of a TCP connection, a TCP listening endpoint, or a UDP endpoint, and
are represented by a token.

The cLosE service utilizes the ACL. The cLoSE service requires the application
to set the ACL version number and token fields. Optional control information
related to termination processing can be specified. The address of the ACL is
required to be loaded into register 1 before the cr.osE service.

The version number (acLVERS) indicates the CPT release level in which this
user application program is written. This required field must be set to a binary
1 and is validated by the cLosk service before it processes the request.

The function code (acLrunc) indicates the CPT callable service ID. The field is
not initialized by a user application program and has little value to the
application except for dump analysis. The function code can identify and map
an argument list with the error or trace log and dump analysis.

The token (acLTokEN) indicates the connection and internal resources that are
to be released. This is a required field and is validated by the cLosE service
before processing the request.

The acLorcDs field specifies cLoSE processing control options and provides a
mechanism for event notification on return to the application program.
Currently, AcLorRDER and ACLABORT are the only two options supported; no
facility exists for cLosk event notification, except by way of return code values.

If the option code acLORDER is selected, the cLosE service completes all
pending transport provider requests. These requests represent previous
asynchronous seNDs and/or RECEIVES that have neither completed yet, nor
had their completion checked. This may require the cLosE service to block the
application. This option will then perform an orderly release of the TCP/IP
connection. This is the preferred mechanism for connection termination.

If the option code acLARORT is selected, the cLoSE service terminates the
connection and no attempt is made to preserve data in transit. The remote user
will receive a disconnect indication.

Chapter Two — ASSEMBLER CALLS

N

004002-070¥20%< 202
{ J

N/

001002-00¥20-1u8002

CLOSE Usage Information

n@ Example:

This example establishes a connection, processes data, and closes the
connection. The token is loaded from the Argument for Connection
Management (ACM) and used by all of the following CPT service requests. The
ACL version number and the token are set before the cLosE service is issued.
No termination option is specified, so orderly release is selected as the default.
Register 15 is checked (on return from the cLosE service) and, if successful,
no error is logged:

Dsect's
TO9DACM MF=DSECT Argument for Connection Management
TO9DACL MF=DSECT Argument for Connection Release

*

* Working storage
*

DFHEISTG DSECT

ACMARG DS XL (ACMLEN) Argument for Connection Management

CLOSEARG DS XL (ACLLEN) Argument for Connection Release
*

* Entry

*

label DFHEIENT

: CPT Connection Management initialization and request

I; R9,ACMTOKEN Load ACM Token

: Application and CPT Data Transfer (SEND/RECEIVE) processing
*

* CPT Connection Termination
*

CLOSE DS 0H
LA R7,CLOSEARG Load CLOSE argument addr
USING TO09DACL,R7
MVC ACLVERS,=H'2" Set Version number
ST R9, ACLTOKEN Save connection token
LR R1,R7 Load ADT address in Reg 1
L R15,=V(TO9FCLOS) Load CLOSE service Stub address
BALR R14,R15 Issue CLOSE service
LTR R15,R15 Test Return Code
BZ END Good, Terminate transaction

Connection Release Error

I, R3,ACLRTNCDLoad ACL Return Code
I, R4,ACLDGNCDLoad ACL Diagnostic Code

Process and log application errors

DROP R7 ACL

*

* Terminate Transaction
*

END DS 0H

EXEC CICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference 2-7

Usage Information

CLOSE

I]%D Example:

In this example, an established connection receives an error while processing
data and aborts the connection. The ACL version and token are specified. The
ACL abort option is selected to indicate the type of connection termination
required. Register 15 is checked (on return from the cLosE service) to
determine request completion status.

*

* Dsect's
*
TO9DACL MF=DSECT Argument for Connection Release
*
* Working storage

*

DFHEISTG DSECT

CLOSEARG DS XL (ACLLEN) Argument for Connection Release

*

* Entry

*

label DFHEIENT

CPT Connection Management reguest
L R9,ACMTOKEN Load ACM Token
.CPT Data Transfer (SEND/RECEIVE) processing

LTR R15,R15 Test service return code
BNZ DTERROR Non-zero, Abort connection

Application processing

B LOOP Data processing loop

*
* Abort connection
*
DTERROR DS 0H
LA R5,CLOSEARG Load CLOSE argument address
USING TO9DACL,R5 .
MVC ACLVERS,=H'2" Set Version number
ST R9, ACLTOKEN Save connection token
MVI ACLOPCD1, ACLABORTSet Abortive
LR R1,R5 Load ADT address in Reg 1
L R15,=V(T09FCLOS) Load CLOSE service Stub address
LTR R15,R15 Test Return Code
BZ END Good, Terminate transaction
*
* Connection Release Error
*
L R3,ACLRTNCD Load ACL Return Code
L R4, ACLDGNCD Load ACL Diagnostic Code
Process and log application errors
DROP R5 ACL
*
* Terminate Transaction
*
ENDDS O0H

EXEC CICS RETURN

Chapter Two — ASSEMBLER CALLS

TN
{ \

NS

001002-0v0¥20% 02
L J

CLOSE

Usage Information

(' l@ Example:

*
*
*

DFHEISTG
(LSTNARG

CLOSEARG

*

*

*

label

*
*
*

CLOSEDT

001002-0v0¥20- 108002

CLOSESRV

This example terminates a single-thread server application. A
server application can contain two CPT connections; the first for
the data transfer connection and the second for the server or
listening connection. The tokens are loaded from the ACM. A~
CLOSE service is issued for both connections. This example uses
the To9McaLL macro instruction to set the version number and to
issue the cLosk service call. Register 15 is checked (on return
from each service call) and, if successful, processing continues.

Dsect's

TO9DACM MF=DSECT
TO9DACL MF=DSECT

Argument for Connection Management
Argument for Connection Release

Working storage

DSECT
DS XL (ACMLEN) Argument for Connection Management
DS XL (ACLLEN) Argument for Connection Release
Entry
DFHEIENT
CPT Server Connection Management Request
LTR R15,R15 Test Return Code
BNZ ERROR Non-zero, Log Error
L R9,ACMTOKEN Load Data Transfer Token
L R10,ACMTLSTN Load Listening Token
DROP R2 ACM

Application and CPT data transfer (SEND/RECEIVE)

processing

CPT Connection Termination

DS 0H

LA R7,CLOSEARG Load CLOSE argument addr
USING TO9DACL,R7

ST R9, ACLTOKEN Save Data Transfer token
MVI ACLOPCD1, ACLORDER Set Graceful

TO9MCALL CLOSE, PARM=CLOSEARG Issue Close request

LTR R15,R15 Test Return Code
BZ CLOSESRV Good, Close Server Connection
Data transfer Connection Release Error
L R3, ACLRTNCD Load ACL Return Code
Load ACL Diagnostic Code

L R4, ACLDGNCD
Process and log application errors

DS OH

XC ACL (ACLLEN) ,ACL Clear CLOSE argument
ST R10, ACLTOKEN Save Listen token
MVI ACLOPCD1, ACLORDER Set Graceful

TO9MCALL CLOSE, PARM=CLOSEARG Issue Close request

LTR R15,R15 Test Return Code
BZ END Good, Terminate transaction
Server (Listening) Connection Release Error
L R3, ACLRTNCD Load ACL Return Code
Load ACL Diagnostic Code

L~ R4, ACLDGNCD

Process and log application errors

CICS Programmer’s Toolkit Programmer’s Reference

Usage Information CLOSE

DROP R7 ACL / —~
* .
* Terminate Transaction N/
*
END DS 0H

EXEC CICS RETURN

J
e

oowoz-ovovzo\’(Nz
.

2- 10 Chapter Two — ASSEMBLER CALLS

001002-0¥0%720- 108002

CONNECT

Assembler Data Area

T

CONNECT

This service provides a client facility for use by an application program. The

CONNECT service establishes a session with the local transport provider, then
actively connects to a server. When connection is established with a server,
the coNNECT service returns control to the calling program. Information related
to the connection is updated and returned within the ACM.

To invoke the connNECT service, a user application is required to first build an
ACM and then to issue a call to the connecT routine. The minimum information
required by this service is version number, server host address, and
well-known port. Optional information related to data transfer buffering, CPT
statistics and tracing, and subtask initialization can be specified.

This table describes the connecT service arguments:

MACRO ID

DSECT NAME

SIZE CREATED BY

TO9DACM

ACM

676 (X'2A4") User application

Assembler Data
Area

Name

ACM
ACMVERS
ACMFUNC
ACMTOKEN

ACMRTNCD
ACMDGNCD
ACMSTATS

ACMSTAT
ACMSCONN
ACMSTERM

ACMTRACE

ACMTRAC2
ACMTTKNS
ACMTTPL

ACMTRLSE
ACMTSTOR
ACMTCLTD
ACMTRAC1
ACMTNTRY
ACMTARGS
ACMTRECV
ACMTSEND
ACMTTERM
ACMTPASS
ACMTCLSE
ACMTTERR

Operation Length

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
EQU

DS

DS

DS

EQU
EQU
EQU
EQU
EQU
DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

[Tes BLes e B -~ o i« R

XL3

X'o1!
X102

oF
XL2

X'01"
X'02"
X'04"
X'08"'
X'10"

X'01"
X'02!'
X'04"
X'08"
X'10"
X'20"
X'40"
X'80"

This is what the psecT control block looks like in Assembler language:

Description

Version number
Function code
Token (CEP)
Reserved
Reserved

Return code
Diagnostic code
Statistics flag

Primary statistics request byte
- Connection statistics
- Termination statistics

Trace flag

Second trace byte (for high level lang)
- Trace token information

- Trace TPL block

- Trace release information

- Trace getmain/freemain

- Trace TD from client (IBM style)
First trace byte (for high level lang)
- Trace entry points

- Trace arguments

- Trace trecv

- Trace tsend

- Trace termination

- Trace take

- Trace close

- Trace TPL errors

CICS Programmer’s Toolkit Programmer’s Reference

[/f“/\
NS

Assembler Data Area CONNECT

ACMQSEND DS F tsend queue size
ACMMSEND DS F Maximum tsend TPL buffer size
ACMQRECV DS F trecv queue size
ACMMRECV DS F Maximum trecv TPL buffer size
ACMTLSTN DS F Listen token
ACMUCNTX DS F User context field
ACMTRNID DS CL4 Transaction ID

DS X Reserved for C string

DS XL3 Unused - available
ACMLPORT DS H Local transport provider port
ACMRPORT DS H Remote tramnsport provider port
ACMSRVCE DS CL36 Local/remote service name

DS X Reserved for C string

DS X Unused - available
ACMOPTNS DS 0H ACM option flags
ACMOPTN2 DS X ACM option flag 2
ACMOPTN1l EQU X ACM option flag 1
ACMNODNR EQU X'04" - No local/remote name resolution
ACMLTRAN EQU X'02! - Listen start transaction
* specified in first 1-4 bytes of
* client data
ACMSYNC EQU X'01: - Issue syncpoint for listen
ACMLADDR DS A Local IP host address
ACMRADDR DS A Remote IP host address
ACMLNAME DS CL255 Local IP host name

DS X Reserved for C string
ACMRNAME DS CL255 Remote IP host name

DS X Reserved

DS H Reserved

DS H Reserved
ACMTIMEO DS F Timeout to recv client data

DS F

PARAMETER DESCRIPTION
ACMVERS Version.

Indicates the version number of the CPT argument used by the calling program. This required field must be set to a
binary 2 for this release of CPT.

Default: None

ACMFUNC

Function code.

Indicates the function or callable service ID requested by the application program. This field should not be set by the
application, but rather is initialized by the TRUE interface stub program.

Default: None (generated by service stub)

ACMTOKEN

TCP connection token.

Specifies the token is created and returned by the CONNECT service. This token is used for all subsequent service
calls for the client connection.

Default: 0 (token returned)

ACMRTNCD

Return code.

Indicates the return code set by the CONNECT service. This value is also returned in register 15 and indicates the
success or failure of the service.

Default: 0

2- 12

Chapter Two — ASSEMBLER CALLS

\

i
/
,/

oomoa—ovovao(f oz

001002-0v0¥20- Lu8002

CONNECT

Assembler Data Area

PARAMETER

 DESCRIPTION

ACMDGNCD

Diagnostic code.

Indicates the diagnostic code received by the CONNECT service for a transport provider request. A detailed
explanation of this value can be found in the transport provider's APl Programmer's Reference Guide.

Default: 0

ACMSTATS

ACMSCONN | ACMSTERM

Specifies statistics logging options for the application program. The facility can be used for debugging and tuning
during development.

& ACMSCONN — Specifies that a message(s) be generated on establishing either a listen service or a data transfer
connection. These messages are generated by the CPT LISTEN and CONNECT services. The message
numbers associated with this option are CPT802I and CPT8031T.

& ACMSTERM — Specifies that a message(s) is to be generated on terminating an established connection. These
messages are generated by the CPT CLOSE service. The message numbers associated with this option are
CPT807I,CPT808I,and CPT809T.

Default: 0 (no statistics logging)

ACMTRACE

Specifies trace logging options for the application program. The facility can be used for debugging during
development.

& ACMTNTRY — Specifies that a message be generated on entry to a CPT service routine. The message is
generated by all CPT service routines. The message number associated with this option is CPT9011I.

& ACMTARGS — Specifies that a hex dump of the caller's arguments be generated on entry and exit of a CPT service
routine. Messages are generated by the corresponding service routine. Message numbers associated with this
option are CPT9021, CPT903I,CPT904I,CPT911I,CPT912,CPT921TI, CPT9221,CPT9241,
CPT925I,CPT930I,and CPT9321I.

& ACMTRECYV — Specifies that a hex dump of the transport provider's input (RECEIVE) data be logged. Messages
are generated by the CPT RECV service. The message number associated with this option is CPT9131I.

& ACMTSEND — Specifies that a hex dump of the transport provider's output (SEND) data be logged. Messages are
generated by the CPT SEND service. The message number associated with this option is CPT9141.

& ACMTTERM — Specifies that a message be generated on termination of a CPT service routine. Messages are
generated by all CPT service routines. The message number associated with this option is CPT9081I.

& ACMTPASS — Specifies that a hex dump of resources related to a passed connection be logged. Messages are
generated by the CPT GIVE and TAKE services. The message numbers associated with this option are
CPT919I and CPT9201T.

& ACMTCLSE — Specifies that a hex dump of resources related to a CLOSE processing of a connection be logged.
Messages are generated by the CPT CLOSE service. The message number associated with this option is
CPT9061I

4 ACMTTERR — Specifies that a hex dump of a transport provider AP| parameter list that fails successful completion
be logged. The message number associated with this option is CPT4001.

& ACMTTKNS — Specifies that a hex dump of the connection token be logged. Messages are generated by all
services routines on entry. The message number associated with this option is CPT9091.

& ACMTTPL — Specifies that a hex dump of the transport provider API parameter list be logged. The message
numbers associated with this option are CPT917TI and CPT935T.

& ACMTRLSE — Specifies that a message indicating a transport provider release indication be logged. Messages
are generated by various CPT service routines. The message number associated with this option is CPT4141T.

& ACMTSTOR — Specifies that a hex dump of the storage management argument to be logged. Messages are
generated by various CPT service routines. The message numbers associated with this option are CPT9281
and CPT929T.

& ACMTCLTD — Trace transient data writes from the LI STEN service (used with the ACMLTRAN listen start
transaction option. The message number associated with this option is CPT9181.

Default: 0 (no trace logging)

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area

CONNECT

AP! send queue size.

ACMQSEND
Specifies the maximum number of uncompleted SEND requests that can be queued by the application to the
transport provider (API). This value lets applications control output processing and can affect throughput rates. The
value is negotiated with and can be modified by the transport provider. The total allocation for output processing is
the product of the SEND queue and buffer size values and cannot exceed 61K.
Default: 4

ACMMSEND API send buffer size.
Specifies the maximum number of user data bytes that can be transferred by the application in a single SEND
request to the transport provider (API). This value lets applications control output processing and can affect
throughput rates. The value is negotiated with and can be modified by the transport provider. The total allocation for
output processing is the product of the SEND queue and buffer size values cannot exceed 61K.
Default: 4096

ACMQRECV API receive queue size.
Specifies the maximum number of uncompleted RECETIVE requests that can be queued by the application to the
transport provider (API). This value lets applications control input processing and can affect throughput rates. The
value is negotiated with and can be modified by the transport provider. The total allocation for input processing is the
product of the RECEIVE queue and buffer size values cannot exceed 61K.
Default: 4

ACMMRECV API receive buffer size.
Specifies the maximum number of user data bytes that can be transferred by the application, in a single RECEIVE
request, to the transport provider (API). This value lets applications control input processing and can affect
throughput rates. The value is negotiated with and can be modified by the transport provider. The total allocation for
input processing is the product of the RECEIVE queue and buffer size values cannot exceed 61K.
Default: 1024

ACMTLSTN Listen service token.
This field is not used by the CONNECT service. The value in this field is not validated nor is it modified.
Default: None

ACMUCNTX One word of user context.
Specifies one arbitrary word of user context to be associated with the connection. The information provided is not
interpreted by CPT, and is merely saved with other connection information.
Default: 0 (no user context)

ACMTRNID Listen start transaction ID.
This field is not used by the CONNECT service. The value in this field is not validated nor is it modified.
Default: None

ACMLPORT Listen well-known service port.
This value represents the TCP port on the local host that was assigned to the client application by TCP. It is returned
to the caller of the CONNECT service. This field is an unsigned positive integer with a maximum value of 65,534.
Default: None

ACMRPORT Remote well-known service port.
Indicates the remote transport layer address or port. This value represents the TCP port on the remote host to which
the client application is trying to connect. It must be filled in by the calling client application unless the ACMSRVCE
field is specified. If ACMSRVCE is specified, ACMRPORT will be filled in with the resolved remote port number before
returning to the caller of the CONNECT service. This field is an unsigned positive integer with a maximum value of
65,534.
Default: None

2- 14 Chapter Two — ASSEMBLER CALLS

./

/

00 lOOZ'OVOVZC{'ﬁ }03
\

001002-00%20- 108002

CONNECT Assembler Data Area
"PARAMETER'”I L e DESCRIPRION.
ACMSRVCE Transport layer service name.
Indicates the local transport layer service name. This string is mapped into a transport layer address or port, through
internal Domain Name Resolution (DNR). The resolved value will be the well-known port to which the CONNECT
service attempts to establish a connection. This field has a maximum length of 36 bytes.
This field is optional and is not modified by the CONNECT service.
Default: None
ACMOPTNS TCP connection initialization options.

& ACMNODNR — DNR Suppression option. Skip internal DNR calls to resolve and return the remote IP address into
an IP name in the ACMRNAME field. If an application is designed such that TCP connection establishment and
release happens frequently, this option can save processing time.

& ACMLTRAN — Client-Data Listener option. This option is for the LI STEN service and is not validated or modified
by the CONNECT service.

¢ ACMSYNC — Listen Syncport option. This option is for the LI STEN service and is not validated or modified by the
CONNECT service.

Default: None

ACMLADDR Local IP host address.
Indicates the local host internet address. This field is an unsigned four-byte integer value. The local host internet
address is updated when a server connection is established, and is returned to the caller.
Default: None

ACMRADDR Remote IP host address.
Indicates the remote host internet address. Either this field or the remote host name (ACMRNAME) field must be
specified. This field is an unsigned four-byte integer value. The remote host internet address is updated when a
server connection is established, and is returned to the caller.
Default: None

ACMLNAME Local IP host name.
Indicates the local host internet name. This field is a 255-byte character string that is padded with blanks. The local
host internet name is updated when a client connection is established, and is returned to the caller.
Default: None

ACMRNAME Remote IP host name.
Indicates the remote host internet name. Either this value or the remote IP address (ACMRADDR) field must be
specified. This is a 255-byte character string that is padded with blanks. The remote host internet name is updated
when a server connection is established, and is returned to the caller.
Default: None

ACMTIMEO Client-Data Listener timeout value.
This field is optionally used by the LI STEN service and is not validated or modified by the CONNECT service.
Default: 1 second

CICS Programmer’s Toolkit Programmer’s Reference 2-15

Network Considerations CONNECT

Network
Considerations

The ACM is a common data structure used for both client and server
connection initialization. There are common and unique values specified for a
particular service request.

This table describes network considerations for Assembler API:

—

NAME

CLIENT CONDITIONS FOR

| sERvER conpITIONS FOR
. - CONNECT

- LISTEN

Listen token returned to user
application.

ACMTLSTN

ACMTRNID Listen START transaction ID.

ACMLPORT | Local server or listening transport Local assigned transport provider
provider well-known port selected by port returned to user application.

user application. (

ACMRPORT Remote client transport provider port

returned to user application.

Remote server transport provider
well-known port selected by user
application.

Local server transport provider
service name selected by user
application.

ACMSRVCE Remote server transport provider
service name selected by user

application.

ACMRADDR

Remote IP host address returned to
user application.

Remote IP host address selected or
returned to user application.

ACMLNAME

Local IP host name returned to user
application.

Remote IP host name returned to
user application.

ACMRNAME

Remote IP host name returned to
user application.

Local IP host name returned to user
application.

Completion
Information

ACMTIMEO Client-Data Listener timeout value.

The connEcT service completes normally when a connection with a server is
established. The conNECT service initializes the client environment with the
transport provider (API) and actively contacts a server and update connection
information within the ACM. Establishing a client connection is represented by
storage and is referred to as the token. When a connection is successfully
established the ACM is updated with information related to the connection.

The ACM is updated with information related to the new connection. The local
and remote port, IP address, and host names are resolved. Negotiated
transport provider sexp and rRece1VE buffering values are returned. Either the
ACM return code (AcMRTNCD) or register 15 should be checked to determine the
success or failure of the connecT service. A zero (0) return code indicates a
successful connection.

The return and diagnostic codes should be interpreted by the application to
determine the reason for failure. Errors indicating CPT, the transport provider
(API1), or CICS termination are minor. Errors should be interrogated for level of
severity.

2- 16

Chapter Two — ASSEMBLER CALLS

P

.’

J

/

001002-0¥0v20% 02
‘V\‘ .

CONNECT Return Codes
(
Return Codes The connECT service returns a code in registers 15 and 0 that indicates the
results of the execution. These values are in the AcMRTNCD (R15) and ACMDGNCD
(r0) within the ACM. The diagnostic code generally indicates the transport
provider return code. Read Appendix C - MESSAGES AND CODES in the
CICS Programmer’s Toolkit Installation and Administration Guide for the
return code cross reference table.
This table describes the connECT service return codes:
RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful.
CPTEVERS Control block version number is not supported.
(CPTECONN Yes Requested host/service/port is not found.
CPTEPROT Specified protocol is not supported.
CPTENAPI Yes Transport provider API is not available.
CPTETERM Yes Environment is being terminated.
CPTERLSE Yes Release indication.
CPTEDISC Yes Disconnect indication.
(7 CPTEPRGE Yes CPT Interface terminating.
CPTEINTG Yes Transport provider APl integrity error.
CPTEENVR Yes Transport provider API environment error.
CPTEFRMT Yes Transport provider API format error.
CPTEPROC Yes Transport provider API procedure error.
CPTABEND Abnormal exception occurred.
‘;(\ CPTEOTHR Yes An undefined exception occurred.

001002-050v20- LUB00Z

CICS Programmer’s Toolkit Programmer’s Reference

Usage Information

CONNECT

Usage
Information

The connEecT service lets user-written application programs implement TCP/IP
client facilities. The connEcT service generalized parameter list (ACM)
describes the application's communications requirements as well as
information related to established connections. On completion, the ACM
contains fields initialized by both a user application and by the connecT
service.

There are required and optional fields initialized by a user or calling application.
The ACM version number is required. The server must be identified by the
calling program. The server is specified by selecting the remote IP address
(acMrADDR) or host name (acMrN2ME) fields, and the remote port (acMRPORT) OF
service name (acMsrVCE). The selection of port or service name defines the
server well-known port address. Optional fields control data transfer buffering,
statistics, tracing, and subtask initialization.

On completion of the connecT service, the ACM contains information related to
the established connection. A token which identifies the connection is returned
in the ACM, and must be used in all subsequent requests that refer to the
connection. The user application program should make no assumptions
regarding the format of a token, other than that it is an unsigned, full word
value. Information related to the negotiated buffer values, host names, host
addresses, and transport provider addresses are returned in the ACM.

The version number (acMveRs) indicates the CPT release level in which this
user application program is written. This required field must be set to a binary
2 and is validated by the connEcT service before processing the request.

The function code (acurunc) indicates the CPT callable service ID. The field is
initialized by the CPT service stub program and has little value to the
application except for dump analysis. The function code can identify and map
an argument with the error or trace logs, and dump analysis.

The remote IP address (ACMRADDR) or remote host name (ACMRNAME) is
required. These fields identify the host to which the coxnecT service initiates a
connection request. The IP address has precedence over host name. This
implies that the host name field is only used if a IP address is not specified.

The transport provider port number (acMrRPORT) Or service name (ACMSRVCE) is
required. These fields identify the well-known port to which the connecT
service will initiate a connection request. The port number has precedence
over service name. This implies that the service name field is only used if a port
number is not specified.

User application programs have the ability to control CPT and transport
provider data transfer buffering. The AcMOSEND, ACMMSEND, ACMORECVY, and
acMMRECV specify the number and size of buffers allocated. The sexp and
RECEIVE buffers are allocated on initial entry into either the sEND or RECETVE
service. The corresponding values used by the sexp and RECETVE services are
independent of each other. The senD service multiplies the queue and buffer
values to determine output storage requirements. The RECEIVE service
performs a similar function to determine input storage requirements. The
product of the queue and buffer values cannot exceed 61,440. CPT requires
some additional storage to manage these buffers. This exira storage is
included in the allocation.

2-

18

Chapter Two — ASSEMBLER CALLS

AN

"~

N

004002-050v20% §ypz

001002-0t0t20-1 08002

CONNECT

Usage Information

The seND service uses the acMoseND value; the RECETVE service uses the
AcMORECY value. These values indicate the maximum number of uncompleted
SEND Of RECEIVE requests that can be queued by the application to the
transport provider. The CPT data transfer services schedule asynchronous
transport provider or API requests on the caller's behalf. These API requests
must be completed before they can be used again. If the queue values are too
small, the CPT data transfer service may block the caller's request and
schedule a watT command within the service routines. If the queue values are
too large, the user application may be wasting storage.

The senD service uses the acvuseND value; the RECEIVE service uses the
acMMrECY value. These values indicate the maximum number of user data
bytes that can be transferred by the application in a single SEND Or RECEIVE
request to the transport provider. The user application is not limited to these
values within the data transfer services. However, it is important to note that
multiple transport provider or API requests are issued to complete the caller's
request. Information on queue and buffer size can be found in the sexp and
RECEIVE service description section in this chapter.

Initially, the tuning of data transfer storage may not be a concern; however, the
ability to control storage allocation can prove beneficial to the application or
CICS region. Additionally, queue size can increase data transfer throughput.
Consider enabling the statistics option to gather CPT statistical information,
which can be used to set the sexD or RECEIVE queue and buffer size values.

The connEcT service can modify data transfer buffer allocation values. These
values are negotiated with the transport provider and, depending on the site
configuration, can be reduced. Any application dependent on these values
should check them on return. These values will generally not be modified when
giving reasonable numbers. However, it is advisable to check with the site
administrator for maximum values for the API transport services.

A number of arguments are not set by the calling application, but are returned
to the caller. These values represent information related to the client
connection and can be used by the application. The local port, host name, and
IP address are returned as well as the client's corresponding values.

CICS Programmer’s Toolkit Programmer’s Reference 2-19

Usage Information

CONNECT

[@ Example:

In this example a simple client ACM is built and the connecT service request is
performed. The application program sets the argument version number to 1
and the remote to 1234. Control is returned from the connecT service on
establishment of a connection, or else by some error occurring. Register 15 is
tested to determine the success of the request. If register 15 is non-zero, an
error has occurred and the diagnostic code will indicate the reason for failure.
If register 15 is zero, then the connecT service completed successfully and a
token representing the data transfer connection is returned. The token is used
for all CPT requests related to that connection.

*
*

DFHEISTG

CONNARG

*
*
*

label

LOADTOKN

* %

END

Dsect's
TO9DACM MF=DSECT Argument for Connection Management
Working storage

DSECT
DS XL (ACMLEN) Argument for Connection Management

Entry

DFHEIENT

CPT Connection Management request

LA R2, CONNARG Load Argument for Connection Management
USING TO09DACM, R2
MVC ACMVERS, =H'2" Set Version number

MVC ACMRPORT, =H'1234'Set Server well-known port
MVC ACMRNAME (9) , =C'LOCALHOST' Set Server Host name
LR R1,R2 Load ACM address in Reg 1

L R15,=V(TOSFCONN) Load CONNECT service Stub addr.
BALR R14,R15 Issue CONNECT service

LTR R15,R15 Test Return Code

BZ LOADTOKN Good, process data
L R4, ACMRTNCD Load Return Code
L R5, ACMDGNCD Load Diagnostic Code

Process and log Connection Management request error

B END Termination Transaction

DS 0H
L R6, ACMTOKEN Load Connection Token
DROP R2 ACM

. Application and CPT Data Transfer (SEND/RECEIVE) processing
CPT Connection Release
Terminate Transaction

DS O0OH
EXEC CICS RETURN

2-

20

Chapter Two — ASSEMBLER CALLS

0e

2N

oowoa-ovovzo’;

.
s

e

/

\\

001.002-0¥0¥20~ 108002

CONNECT

Usage Information

[@ Example:

In this example a simple client ACM is built and the connNECT request is
performed. The application program will connect to whatever port is mapped
into service name ecto. The To9McALL assembler macro instruction sets the
argument version number and call the connecT service. Control is returned
from the connECT service on establishment of a connection or by some error.
Register 15 is tested to determine the success of the request. If register 15 is
non-zero, an error has occurred and the diagnostic code will indicate the
reason for failure. If register 15 is zero, then the connEcT service completed
successfully and a token representing the data transfer connection is returned.
The token is used for all CPT requests related to that connection.

*
*
*

DFHEISTG

CONNARG
*

*
*

Dsect's
TO09DACM MF=DSECT Argument for Connection Management
Working storage

DSECT

DS XL (ACMLEN) Argument for Connection Management

Entry

label DFHEIENT

LOADTOKN

END

CPT Connection Management request

LA R3, CONNARG Load Argument for Connection Management
USING TO09DACM,R3
MVC ACMSRVCE(4) ,=C'ECHO" Set Server Service name

MVC ACMRNAME (9) , =C'LOCALHOST' Set Server Host name
TO9MCALL CONNECT, PARM=CONNARG Issue CONNECT Service

LTR R15,R15 Test Return Code

BZ LOADTOKN Good, process data

L R4, ACMRTNCD Load Return Code

L R5, ACMDGNCD Load Diagnostic Code

Process and log Connection Management request error

B END Termination Transaction

DS 0H
L R6, ACMTOKEN Load Connection Token
DROP R3 ACM

. Application and CPT Data Transfer (SEND/RECEIVE) processing
CPT Connection Release
Terminate Transaction

DS OH
EXEC CICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference 2-21

Assembler Data Area

GIVE

GIVE The c1vE service releases ownership of a connection and associated internal
CPT resources. The GIVE service is optional and does not affect an active
connection, nor does it issue any transport provider requests. This service
affects CPT TRUE management routines, scheduled on the user's behalf during
task termination.

To invoke the cIVE service, a user application is required to first build an
Argument for Facility Management (AFM) and then to issue a call to the cIvE
routine. The only valid and required arguments are the AFM version number
and the connection token. On completion, a return code is set to indicate the
success or failure of the request.

This table describes the cIvE service arguments:

MACRO ID DSECT NAME SIZE CREATED BY e
TO09DAFM AFM 34 (X'22') User application or the ‘\
LISTEN service.

Assembler Data This is what the pszcr control block looks like in Assembler language:

Al’ed Name Operation Operands Description ‘ ™
AFM DSECT , N~
AFMVERS DS H Version number
AFMFUNC DS H Function code
AFMTOKEN DS A Token (CEP)

DS A Reserved
DS F Reserved
AFMRTNCD DS F Return code
AFMDGNCD DS F Diagnostic code o
AFMOPTNS DS or Facility management option codes L
AFMOPCD4 DS X Option 4 (.
AFMOPCD3 DS X Option 3 I
AFMOPCD2 DS X Option 2 R
AFMOPCD1 DS X Option 1 3
DS H Reserved N
o
=)
o
PARAMETER DESCRIPTION
AFMVERS Version
Indicates the CPT version number of the argument list used by the
calling program. This required field must be set to a binary 2 for this
release of CPT.
Default: None
-
‘Jj\ :
'

2- 22

Chapter Two — ASSEMBLER CALLS

001002-0+0¥20- Lus002

GIVE Completion Information
(. PARAMETER _| o _ DESCRIPTION
AFMFUNC Function code
Indicates the function or callable service ID requested by the
application program. This field is set by the application, but is
initialized by the TRUE interface stub program.
Default: None
AFMTOKEN Connection or endpoint token
Specifies a token that represents a TCP connection, a TCP
listening endpoint, or a UDP endpoint. A token is created by the
TCP connection initiation routines or by the UDP data transfer and
endpoint creation routines. The token is required.
Default: 0
AFMRTNCD Return code
Indicates the return code set by the GIVE service. This value is
] also returned in register 15 and indicates the success or failure of
(the service.
Default: 0
AFMDGNCD Diagnostic code
Indicates the diagnostic code received by the GIVE service for a
transport provider request and is not set by the GIVE service. The
GIVE service does not issue transport provider requests; hence, it
never sets the diagnostic code.
Default: 0
) AFMOPTNS Options and events
(Specifies GIVE processing control options or events detected by
the GIVE service. Currently, this facility is reserved for internal
processing.
Default: 0
{) Compleilon The cIVE service completes normally when all resources associated with this
Informaﬁon connection are processed.

On normal return to the application program, the general return code in register
15 (AFMRTNCD) is set to zero (cprIRCOK). The diagnostic code in register O
(aFrMDGNCD) is always zero.

If the c1vE service completes abnormally, some resources associated with this

connection cannot be successfully transferred from one task to another. The
general return code (arMRTNCD) in register 15 and the diagnostic code
(arFMDGNCD) in register O indicate the nature of the failure. The diagnostic code
(aFMDGNCD) is not used by the cIvE service and no information is returned.

CICS Programmer’s Toolkit Programmer’s Reference

Return Codes

GIVE

Return Codes

Usage
Information

The cIVE service returns a code in register 5 that indicates the result of the
execution. This value can be found in the arMRTNCD (R15) within the AFM. Read
Appendix C - MESSAGES AND CODES in the CICS Programmer’s Toolkit
Installation and Administration Guide for the return rode cross reference
table. :

This table describes the cIVE service return codes:

RETURN = DESCRIPTION
CPTIRCOK Successful.
CPTEVERS Control block version number is not supported.
CPTETOKN Specified token is not valid.
CPTENAPI Transport provider APl is not available.
CPTABEND Abnormal exception occurred.
CPTEOTHR An undefined exception occurred.

The GIVE service releases ownership of a connection. This service is
non-blocking and does not affect any pending transport provider data transfer
requests. Disassociating resources from a task lets the CPT properly manage
resources during task termination. This ability to czve and Takz ownership of
connections offers the user a range of programming options, while still
providing CPT with resource management capabilities.

The cIVE service requires the application to set the AFM version number and
token fields. No other fields are referenced.

Note: When a connection is established there are internal CPT resources
associated with that connection. CPT is responsible for proper
clean-up of those resources on task or transaction termination. These
resources include storage allocated by CPT, the API, and the transport
provider storage.

A server application is a good example of how the cIvE service benefits a user
application. A listening task issues the c1vE service and starts a new
transaction to handle data transfer. The data transfer transaction then Taxzs
the connection. This sequence would prevent a connection from being closed
(implicitly by the CPT task termination exit) if the server application terminates.
However, if the data transfer transaction is terminated without issuing an
explicit close (CPT cLosE service) an implicit close is scheduled, and resource
management is handled by the CPT task termination exit.

2-

24

Chapter Two — ASSEMBLER CALLS

/
v

00 1002'0170173(?"{ :\\‘OZ
\

001002-070v20- 108002

GIVE

Usage Information

The version number (arMvERS) indicates the CPT release level in which this
user application program is written. This required field must be set to a binary
2 and is validated by the c1vE service before processing the request.

The function code (arMrunc) indicates the CPT callable service ID. The field is
not initialized by a user application program and has little value to the
application except for dump analysis. The function code can identify and maps
an argument list with the error or trace log and dump analysis.

The token (arMTOKEN) indicates the connection and internal resources to be
processed by the c1vE service. This is a required field and is validated by the
GIVE service before processing request.

The armopTeD field specifies cIVE service processing control options, and
provides a mechanism for event notification on return to the application
program. Currently, this field is not used by application programs.

CICS Programmer'’s Toolkit Programmer’s Reference 2-25

Usage Information

GIVE

n@ Example:

This example establishes a server data transfer connection, issues the cIvE
service, and starts a data processing transaction. The token is loaded from the
ACM and is used by the cIvE service. The AFM is initialized with the version
number and token before the cIvE service is called. On completion of the cIve
service, register 15 is checked and, if successful, processing continues.

*

*
*

*

DFHEISTG

LSTNARG
GIVEARG

*
*

*

label

LISTEN

Dsect's

TO9DACM MF=DSECT
TO9DAFM MF=DSECT

Working storage
DSECT

DS XL (ACMLEN)
DS XL (AFMLEN)
Entry

DFHEIENT

DS 0H

Argument for Connection Management
Argument for Facility Management

Argument for Connection Management
Argument for Facility Management

CPT Listen (Server) Connection Management request

L R6, ACMTOKENLoad CPT Token

CPT Facility Management GIVE service request

LA R4, GIVEARG
USING TO9DAFM, R4

Load Argument for Facility Management addr

MVC AFMVERS, =H'2' Set Version number

ST R6,AFMTOKEN Save FM conhnection Token
LR R1,R4 Load AFM address in Reg 1
L R15,=V(TO9FGIVE)Load GIVE service Stub address

BALR R14,R15 Issue GIVE service
LTR R15,R15 Test Return Code
BZ START Good, process connection

GIVE Facility Management Error

L R4, AFMRTNCD
L R5, AFMDGNCD

Load Return Code
Load Diagnostic Code

Log and process error

B CLOSE

Terminate Server and Transaction

2- 26

Chapter Two — ASSEMBLER CALLS

001002-0v0720* 02

00l003'070?30'l08602

GIVE

Usage Information

START

CLOSE

END

Issue CICS Start for Data Processing Task

DS OH .
EXEC CICS START TRANSID(trans-id) FROM(AFMTOKEN)

B LISTEN Listen for more Client connection

DS OH

CPT Connection Release

Terminate Transaction

DS 0H
EXEC CICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference 2-27

Usage Information

GIVE

l@ Example:

This example establishes a server data transfer connection, issues the cIve
service, and starts a data processing transaction. The token is loaded from the
ACM and is used by the c1vE service. The AFM is initialized with the token. This
example differs from example 1 in that the T09McaLL sets the version number
and issues the cIve call. On completion of the cTVE service, register 15 is
checked and, if successful, processing continues.

DFHEISTG

LSTNARG
GIVEARG

*
*

*

label

LISTEN

Dsect's
TO9DACM MF=DSECT Argument for Connection Management
TO9DAFM MF=DSECT Argument for Facility Management

Working storage

DSECT

DS XL (ACMLEN) Argument for Connection Management
DS XL (ACMLEN) Argument for Facility Management

Entry

DFHEIENT
DS OH

CPT Listen (Server) Connection Management request

L R9, ACMTOKEN Load Data Transfer Token

CPT Facility Management GIVE service request

LA R7,GIVEARGLoad Argument for Facility Management addr
USING TO9DAFM, R7

ST R9, AFMTOKEN Save FM connection Token
TO9MCALL GIVE, PARM=GIVEARGIssue GIVE service

LTR R15,R15 Test Return Code

BZ START Good, process connection

GIVE Facility Management Error

L R4, AFMRTNCD Load Return Code
L R5, AFMDGNCD Load Diagnostic Code

Log and process error

B CLOSE Terminate Server and Transaction

2- 28

Chapter Two — ASSEMBLER CALLS

)

001002-0v0v20* 02
\\‘

001002-0t0%20- 108002

GIVE

Usage Information

START

CLOSE

END

Issue CICS Start for Data Processing Task

DS 0H .
EXEC CICS START TRANSID(trans-id) FROM(AFMTOKEN)

B LISTEN Listen for more Client connection

DS 0HC

CPT Connection Release

Terminate Transaction

DS OH
EXEC C ICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference 2-29

Assembler Data Area

LISTEN

LISTEN

Assembler Data

This service provides a server facility for use by an application program. The
LISTEN service establishes a session with the local transport provider,
passively listens for connection requests, then accepts new connections.
When connection with a client is established, the L sTEN service either returns
control to the calling program or starts a defined transaction. Information
related to the connection is updated and returned within the ACM.

To invoke the LISTEN service, a user application is required to first build an
ACM, then issue a call to the 1.1sTEN routine. The minimum information
required by this service is the version number and either the local transport
provider port or the service name. Optional information related to data transfer
buffering, CPT statistics and tracing, and subtask initialization can be specified.
Completion of a LISTEN service depends on options selected within the ACM.

This table describes the L1sTEN service arguments:

MACROID]| DSECT NAME SIZE CREATED BY

TO9DACM ACM 676 (X'2A4") User application or common area
obtained by a RETRIEVE
command from a started transaction.

This is what the psecT control block looks like in Assembler language:

AI’eCI Name Operation Operands Description

ACM DSECT ,
ACMVERS DS H Version number
ACMFUNC DS H Function code
ACMTOKEN DS A Token (CEP)

DS A Reserved

DS F Reserved
ACMRTNCD DS F Return code
ACMDGNCD DS F Diagnostic code
ACMSTATS DS OF Statistics flags

DS XL3
ACMSTAT DS X Primary Statistics request byte
ACMSCONN EQU X'o1! - Connection statistics
ACMSTERM EQU X'02! - Termination statistics
ACMTRACE DS OF Trace flag

DS XL2
ACMTRAC2 DS X Second Trace byte
* (for high level lang)
ACMTTKNS EQU X'o1! - Trace token information
ACMTTPL EQU X'02" ~ Trace TPL block
ACMTRLSE EQU X'04" - Trace release information
ACMTSTOR EQU X'08" - Trace GETMAIN/FREEMAIN
ACMTCLTD EQU X'10" - Trace TD from client (IBM style)
ACMTRAC1 DS X First Trace byte
* (for high level lang)
ACMTNTRY EQU X'o1: - Trace entry points

2- 30 Chapter Two — ASSEMBLER CALLS

AN

.

001002-00720" oz

LISTEN Assembler Data Area
. ACMTARGS EQU X'02" - Trace arguments
(ACMTRECV EQU X'04: - Trace TRECV
ACMTSEND EQU x'08! - Trace TSEND
ACMTTERM EQU X'10" - Trace termination
ACMTPASS EQU X'20" - Trace TAKE
ACMTCLSE EQU X'40! - Trace CLOSE
ACMTTERR EQU X'80" - Trace TPL errors
ACMQSEND DS F TSEND queue size
ACMMSEND DS F Maximum TSEND TPL buffer size
ACMQRECV DS F TRECV queue size
ACMMRECV DS F Maximum TRECV TPL buffer size
ACMTLSTN DS F LISTEN Token
ACMUCNTX DS F User context field
ACMTRNID DS CL4 Transaction ID
DS X Reserved for C string
DS XL3 Unused - available
ACMLPORT DS H Local transport provider port
ACMRPORT DS H Remote transport provider port
ACMSRVCE DS CL36 Local/remote service name
] DS X Reserved for C string
- DS X Unused - available
ACMOPTNS DS OH ACM option flags
. ACMOPTN2 DS X ACM option flag 2
ACMOPTN1 DS X ACM option flag 1
ACMNODNR EQU X'04" - No local/remote name resolution
ACMLTRAN EQU X'02" - LISTEN start transaction
* specified in first 1-4 bytes of
* client data
ACMSYNC EQU X'0o1l! - Issue syncpoint for LISTEN
ACMLADDR DS F Local IP host address
ACMRADDR DS F Remote IP host address
ACMLNAME DS CL255 Local IP host name
- DS X1 Reserved for C string
(ACMRNAME DS CL255 Remote IP host name
DS X Reserved for C string
DS H Reserved
DS H Reserved
ACMTIMEO DS F Timeout to receive client data
DS F
PARAMETER DESCRIPTION
- § ACMVERS Version
(? Indicates the version number of the CPT argument used by the calling
PN program. This required field must be set to a binary 2 for this release of
IN CPT.
&2
=) Default: None
8
2 ACMFUNC Function code
o
© Indicates the function or callable service requested by the application
program. This field is not set by the application, but is initialized by the
TRUE interface stub program. i
Default: None (generated by service stub)
ACMTOKEN TCP connection token
Specifies the token created and returned by the LISTEN service. It will be
used in all subsequent calls for the client application.
Default: 0 (token returned)

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area

LISTEN

ACMRTNCD

Return code

Indicates the return code set by the LISTEN service. This value is also
returned in register 15 and indicates the success or failure of the service.

Default: 0

ACMDGNCD

Diagnostic code

Indicates the diagnostic code received by the LT STEN service for a
transport provider request. There is a detailed explanation of this value in
the transport provider's API Programmer's Reference Guide.

Default: 0

ACMSTATS

This field specifies statistics logging options for the application program.
The facility can be used for debugging and tuning during development.

4 ACMSCONN - Specifies that a message(s) be generated on
establishment of either a listen service or a data transfer connection.
These messages are generated by the CPT LISTEN and CONNECT
services. The message numbers associated with this option are
CPT802I and CPT8031I.

4 ACMSTERM - Specifies that a message(s) be generated on termination
of an established connection. These messages are generated by the
CPT CLOSE service. The message numbers associated with this option
are CPT807I,CPT808I,and CPT8091I.

Default: 0 (no statistics logging)

2-

32

Chapter Two — ASSEMBLER CALLS

001002-070v20# %02

001002-07020- LUB00Z

LISTEN

Assembler Data Area

F’ARAMETER DESCRIPTION
ACMTRACE This field specifies trace logging options for the application program. The

facility can be used for debugging during development.

® ACMTNTRY — Specifies that a message be generated on entry to a CPT
service routine. The message is generated by all CPT service routines.
The message number associated with this option is CPT901T.

& ACMTARGS — Specifies that a hex dump of the caller's arguments be
generated on entry and exit of a CPT service routine. Messages are
generated by the corresponding service routine. The message numbers
associated with this option are CPT902I, CPT903I, CPT9041,
CPT911I,CPT912,CPT921I,CPT922I,CPT924I,CPT9251,
CPT930I,and CPT9321I.

& ACMTRECV — Specifies that a hex dump be logged of the transport
provider's input (RECEIVE) data. Messages are generated by the CPT
RECV service. The message number associated with this option is
CPT913T.

& ACMTSEND — Specifies that a hex dump be logged of the transport
provider's output (SEND) data. Messages are generated by the CPT
SEND service. The message number associated with this option is
CPT914T.

& ACMTTERM — Specifies that a message be generated on termination of
a CPT service routine. Messages are generated by all CPT service
routines. The message number associated with this optionis CPT908T.

& ACMTPASS —Specifies that a hex dump of resources related to a passed
connection be logged. Messages are generated by the CPT GIVE and
TAKE services. The message numbers associated with this option are
CPT919I and CPT9201I.

& ACMTCLSE - Specifies thata hex dump of resources related to a CLOSE
processing of a connection be logged. Messages are generated by the
CPT CLOSE service. The message number associated with this option
is CPT9061I

& ACMTTERR — Specifies that a hex dump be logged of a transport
provider API parameter list that fails successful completion. The
message number associated with this option is CPT4001T.

& ACMTTKNS - Specifies that a hex dump of the connection token be
logged. Messages are generated by all services routines on entry. The
message number associated with this option is CPT909I.

& ACMTTTPL — Specifies that a hex dumped logged of the transport
provider API parameter list. The message numbers associated with this
option are CPT9171I and CPT935T.

& ACMTRLSE - Specifies that a message indicating a transport provider
release indication be logged. Messages are generated by various CPT
service routines. The message number associated with this option is
CPT4141.

& ACMTSTOR - Specifies that a hex dump of storage management
argument be logged. Messages are generated by various CPT service
routines. The message numbers associated with this option are
CPT928TI and CPT929T.

& ACMTCLTD- Tracetransientdata writes fromthe LI STEN service (used
with the ACMLTRAN listen start transaction option. The message
number associated with this option is CPT9181T.

Default: 0 (no trace logging)

CICS Programmer’s Toolkit Programmer’s Reference 2-33

Assembler Data Area LISTEN

ACMQSEND API send queue size

Specifies the maximum number of uncompleted SEND requests that can be
queued by the application to the transport provider (API). This value lets
applications control output processing and can affect throughput rates. The
value is negotiated with the transport provider and can be modified by the
transport provider. The total allocation for output processing is the product
of the SEND queue and buffer size values and cannot exceed 61K.

Default: 4

ACMMSEND API send buffer size

Specifies the maximum number of user data bytes that can be transferred
by the application in a single SEND request to the transport provider (API).
This value lets applications control output processing and can affect
throughput rates. The value is negotiated with the transport provider and
can be modified by the transport provider. The total allocation for output
processing is the product of the SEND queue and buffer size values and
cannot exceed 61K.

Default: 4096 SN

ACMQRECV API receive queue size

Specifies maximum number of uncompleted RECEIVE requests that can
be queued by the application to the transport provider (API1). This value lets
applications control input processing and can affect throughput rates. The
value is negotiated with the transport provider and can be modified by the
transport provider. The total allocation for input processing is the product of
the RECEIVE queue and buffer size values and cannot exceed 61K.

Default: 4

ACMMRECV APl receive buffer size N

Specifies the maximum number of user data bytes that can be transferred |
by the application in a single RECEIVE request to the transport provider
(API). This value lets applications control input processing and can affect
throughput rates. The value is negotiated with the transport provider and
can be modified by the transport provider. The total allocation for input
processing is the product of the RECEIVE queue and buffer size values
and cannot exceed 61K.

Default: 4096

ACMTLSTN Listen service token statistics

Specifies the token used by the LT STEN service. This token is not
available for data transfer. The only valid function that can be performed is a
CLOSE request for long running active listeners. Generally, this value is not
used by the application unless an explicit call to the CLOSE service is
required. Read the description for ACMTOKEN (earlier in this table) for all
other services.

Y,

\

Default: 0 (token returned)

00 1003'01701730‘{393

ACMUCNTX One word of user context

Specifies one arbitrary word of user context to be associated with the
connection. The information provided is not interpreted by CPT, and is
merely saved with other connection information.

Default: 0 (no user context)

ACMTRNID Listen start transaction ID

A four-byte character string that the LI STEN service starts on successful
establishment of a new connection. If TRANSID is specified, the LI STEN
server loops for new connections and does not return to the calling program
until CICS, CPT, or transport provider (API) termination. This field is optional
and is not modified by the listen service. This field should not be specified if ~
the ACMLTRAN option and ACMTIMEO value are specified. (i

Default: None \./

2- 34 Chapter Two — ASSEMBLER CALLS

001002-00%20-108002

LISTEN

Assembler Data Area

"PARAMETER

ACMLPORT

Listen well-known service port

Indicates the local transport layer address or port. This value represents the
well-known port on which a server application will listen for connection
requests. Either this value or the transport layer service name (ACMSRVCE)
must be specified. This field is an unsigned positive integer with a maximum
value of 65,534. The value must be unique for each server application.

Default: None

ACMRPORT

Remote well-known service port

Indicates the remote transport layer address or port. This value represents
the client port number. This value is returned to the caller. This field is an
unsigned positive integer with a maximum value of 65,534.

Default: None

ACMSRVCE

Transport layer service name

Indicates the local transport layer service name. This string is mapped into
a transport layer address or port, through internal DNR. The resolved value
is the well-known port to which the client application connects. This field has
a maximum length of 36 bytes. The value must be unique for each server
application. This field is optional and is not modified by the LISTEN
service.

Default: None

ACMOPTNS

TCP connection initialization options

& ACMNODNR — DNR Suppression option. Skips internal DNR calls to
resolve and return the remote |IP address into an IP name in the
ACMRNAME field. If an application is designed such that TCP connection
establishment and release happens frequently, this option can save
processing time.

& ACMLTRAN - Client-Data Listener option. Specifies that the Listen call
will receive the input datastream to determine the transaction ID to be
started. See Client-Data Listener option for the required input formats.
This option must be used with ACMTIMEO, and should not be used with
ACMTRANID.

@ ACMSYNC - Listen Syncpoint option. Issues a CICS syncpoint before
starting any transaction from the LISTEN service.

Default: None

ACMLADDR

Local IP host address

Indicates the local host internet address. This field is an unsigned four-byte
integer value. The local host internet address is updated on establishment
of a client connection, and is returned to the caller.

Default: None

ACMRADDR

Remote IP host address

Indicates the remote host internet address. This field is an unsigned
four-byte integer value. The remote host internet address is updated on
establishment of a client connection, and is returned to the caller.

Default: None

ACMLNAME

Local IP host name

Indicates the local host internet name. This field is a 255-byte character
string that is padded with blanks. The local host internet name is updated on
establishment of a client connection, and is returned to the caller.

Default: None

CICS Programmer’s Toolkit Programmer’s Reference 2-35

Network Considerations

LISTEN

ACMRNAME

Remote IP host name

Indicates the remote host intemet name. This field is a 255-byte character
string that is padded with blanks. The remote host internet name is updated
on establishment of a client connection, and is returned to the caller.

Default: None

ACMTIMEO

Client-Data Listener timeout values

Specifies the maximum number of seconds that a Listener can wait to
receive the client datastream when the ACMLTRAN option is specified.

Default: 1 second

Network The ACM is a common data structure used for both client and server
Considerations connection initialization. There are common and unique values specified for a
particular service request.
This table describes network considerations for Assembler API:
NAME SERVER CONDITIONS FOR CLIENT CONDITIONS FOR
LISTEN CONNECT

ACMTLSTN Listen token returned to user
application.

ACMTRNID Listen START transaction id.

ACMLPORT Local server or listening transport Local assigned transport provider
provider well-known port selected port returned to user application.
by user application.

ACMRPORT Remote client transport provider Remote server transport provider
port returned to user application. well-known port selected by user

application.

ACMSRVC Local server transport provider Remote server transport provider
service name selected by user service name selected by user
application. application.

ACMRADDR Remote IP host address returned Remote IP host address selected or
to user application. returned to user application.

ACMLNAME Local IP host name returned to Local IP host name returned to user
user application. application.

ACMRNAME Remote IP host name returned to Remote IP host name selected or
user application. returned to user application.

ACMTIMEO Client-Data Listener timeout value.

2- 36 Chapter Two — ASSEMBLER CALLS

o2
//‘

001002-0v0v20°

!

001002-0%0%20- Lug002

LISTEN

Completion Information

Completion
Information

Completion of a request to the LISTEN service depends on the arguments
selected. If no transaction ID is specified, the L1 sTEN service returns control to
the calling program when connection with a client is established. The caller's
argument list is updated with information related to the new connection. If a
transaction ID is specified, the LIsTEN service does not return control to the
calling program until a failure is detected. The caller's argument listis generally
not updated, with exception to the return code information.

The LISTEN service initializes the server environment with the transport
provider (API), waits for a connection request, establishes a connection with
the client, and updates connection information within the ACM. Establishing a
listening connection and a client connection are represented by storage and
are referred to hereafter as tokens. Establishing a client connection updates
the ACM with information relative to the connection. The information is
returned to the user or is passed to the data processing transaction.

The server application contains two tokens representing endpoints to the
transport provider. The first token (acMTOKEN) represents the client connection
and is used for data transfer. The other token (AcMTLSTN) represents the
listening connection. This listening connection can only be referenced within
the CPT cLosk service. This lets an explicit ability close a server or listening
connection. All other CPT services performed with the L1 sTEN token fail with an
invalid token. Implicit clean-up of the LIsTEN token is provided by the TRUE
interface. Therefore, an explicit call to the cLosE service is not required.

When the 1.TSTEN service is initiated without a transaction 1D, control is
returned to the calling program when a connection with a client is established.
The caller's argument list is updated with information related to the new
connection. The local and remote port, IP address, and host names are
resolved. Negotiated transport provider senp and RECEIVE buffering values are
returned. Either the ACM return code (AcMRTNCD) or register 15 must be
checked to determine the success or failure of L1sTEN service. A zero (0)
return code indicates a successful client connection is established.

When the L.I1sSTEN service is initiated with a transaction ID, it operates as a CICS
long running task. The LISTEN service establishes client connections and
starts a data processing transaction. The data processing transaction receives
a copy of the connection management argument. The data transfer or client
connection token is derived from the acvTokEN field. After the new transaction
is initiated the 1.TSTEN service continues waiting for new client connections.
The L.ISTEN service continues to listen and start client connections until an
error occurs.

The return and diagnostic codes should be interrogated to determine the
reason for failure. Errors indicating CPT, the transport provider (API), or CICS
termination are minor. Errors should be interrogated for level of severity.

CICS Programmer’s Toolkit Programmer’s Reference 2-37

Return Codes

LISTEN

Return Codes

The L1sTEN service returns a code in registers 15 and 0 that indicates the
results of the execution. These values are in the AcMRTNCD (R15) and ACMDGNCD
(r0) within the ACM. The diagnostic code is optional and indicates the transport
provider return code. Read Appendix C - MESSAGES AND CODES in the
CICS Programmer’s Toolkit Installation and Administration Guide for the
return code cross reference table.

This table describes the L.1sTEN service return codes:

RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful.
CPTEVERS Control block version number is not supported.
CPTECONN Yes Requested host/service/port is not found.
CPTEPROT Specified protocol is not supported.
CPTENAPI Yes Transport provider API is not available.
CPTETERM Yes Environment is being terminated.
CPTERLSE Yes Release indication.
CPTEDISC Yes Disconnect indication.
CPTEPRGE Yes CPT Interface terminating.
CPTEINTG Yes Transport provider AP integrity error.
CPTEENVR Yes Transport provider API environment error.
CPTEFRMT Yes Transport provider API format error.
CPTEPROC Yes Transport provider API procedure error.
CPTABEND Abnormal exception occurred.
CPTEOTHR Yes An undefined exception occurred.

2-

38

Chapter Two — ASSEMBLER CALLS

/

/

001002-0v0V2C* \%‘oz
N

001002-0%0%20-1 08002

LISTEN

Usage Information

Usage
Information

The LISTEN service lets user-written application programs implement TCP/IP
server facilities. Server applications passively wait, then establish connections
with single- or multi-thread support. The LISTEN service generalized
parameter list (ACM) describes the application's communications requirements
as well as information related to established connections. The ACM contains
fields initialized by both a user application and by the LIsTEN service, on
completion.

There are required and optional fields initialized by a user or calling application.
The ACM version number and the transport provider local port or service name
are required. The selection of port or service name defines the server
well-known port address. Optional fields control data transfer buffering,
statistics, tracing, and subtask initialization.

When the L1sTEN service completes or the data processing task executes, the
ACM contains information related to the established connection. A token that
identifies the connection is returned in the ACM, and must be used in all
subsequent requests that refer to the connection. The application program
should make no assumptions regarding the format of a token, other than it is
an unsigned, full word value.

Information related to the negotiated buffer values, host names, host
addresses, and transport provider addresses are returned in the ACM.

The version number (acMvERS) indicates the CPT release level in which this
user application program is written. This required field must be set to a binary
2 and is validated by the L.1sTEN service before processing the request.

The function code (acvrunc) indicates the CPT callable service ID. The field is
initialized by the CPT service stub program. The function code identifies
argument lists within the error or trace logs, and dump analysis.

The transport provider port number (ACMLPORT) Or service name (ACMSRVCE) is
required. These fields identify the well-known port to which a client initiates a
connection request. The port number has precedence over service name. This
implies that the service name field is only used if a port number is not specified.

The transaction ID field (acvTrRNID) identifies a data processing task. This is an
optional field that causes the 1.1sTEN service to execute continuously. The
LISTEN service starts a new transaction after a client connection is
established, then waits for additional connection requests. An updated ACM is
passed to the data processing task. Control is not returned to the calling
program until an error occurs. The return code indicates the reason for the
failure. Errors indicating the transport provider, CICS, or CPT termination are
acceptable. Errors indicating port in use, APl unavailable, or program checks
should be investigated.

User application programs can control CPT and transport provider data transfer
buffering. The AcMQSEND, ACMMSEND, ACMORECV, and ACMMRECV specify the
number and size of buffers allocated. The sexp and rReceIVE buffers are
allocated on initial entry into either the sexD or RECEIVE service. The
corresponding values used by the sexD and RECEIVE services are independent
of each other. The sexD service multiplies the queue and buffer values to
determine output storage requirements. The RECEIVE service performs a

CICS Programmer’s Toolkit Programmer’s Reference 2-39

Usage Information

LISTEN

similar function to determine input storage requirements. The product of the
queue and buffer values cannot exceed 61,440. CPT requires some additional
storage use to manage these buffers. This extra storage is included in the
allocation.

The CPT seND service uses the AcvMosEND value, and the CPT RECEIVE service
uses the acMpRECV value. These values indicate the maximum number of
uncompleted sEND or RECEIVE requests that can be queued by the application
to the transport provider. The CPT data transfer services schedule
asynchronous transport provider or API requests on the caller's behalf. These
API requests must be completed before they can be used again. If the queue
values are too small the CPT data transfer service may block the caller's
request and schedule a wait within the service routines. If the queue values are
too large the user application might be wasting storage.

The CPT sEND service uses the acMMsEND value, and the CPT RECEIVE service
uses the aAcMMRECV value. These values indicate the maximum number of user
data bytes that can be transferred by the application in a single sexD or
RECEIVE request to the transport provider. The user application is not limited
to these values within the data transfer services. However, it is important to
note that multiple transport provider or API requests are issued to complete the
caller's request. Information on queue and buffer size is in the descriptions of
RCVFROM on page 2-47 and SEND on page 2-67.

Initially, the tuning of data transfer storage may not be a concern. However, the
ability to control storage allocation can prove beneficial to the application or
CICS region. Queue size can increase data transfer throughput. You should
consider enabling the statistics option to gather CPT statistical information.
This information can set the sEND or RECEIVE queue and buffer size values.

The LISTEN service can modify the data transfer buffer allocation values.
These values are negotiated with the transport provider and, depending on the
site configuration, can be reduced. Any application dependent on these values
should check them on return. These values are generally not modified when
giving reasonable numbers. However, it is advisable to check with the site
administrator for the maximum values of the API transport services.

A number of arguments are not set by the calling application, but are returned
to the caller. These values represent information related to the client
connection and can be used by the application. The local port, host name, and
IP address are returned as well as the client's corresponding values. An ACM
is passed the started transaction when a TrRans1ID is specified in the caller's
listen argument list.

2- 40

Chapter Two — ASSEMBLER CALLS

/

001002-070v2C4 02

A

(4

001002-010¥20- LOBOOZ

LISTEN

Client-Data Listener Option

Client-Data
Listener Option

The option ACMLTRAN is used in conjunction with aAcMTIMEO and is mutually
exclusive of the use of the acMTrNID field. AcMLTRAN indicates to the LIsTEN
service that the connecting client application will specify what server functions
to execute. When the LISTEN service receives a CONNECT request and
ACMLTRAN is specified, it uses a partial record timed RECEIVE (See RECEIVE
service options) to get the client’s data. It uses acuT1MEO to know how long to
wait for the client data which can be in any of these formats:

TRAN

TRAN, UUUUUUUUUUUU

TRAN, UUUUUUUUUUUU, IC, HHMMSS
TDON, UUUUUUUUUUUU, TD

TRAN, , IC, HHMMSS

TDON, ,TD
PARAMETER DESCRIPTION
TRAN A 1- to 4-character transaction ID to start, passing CLNTPARM to the

started transaction

UUUUUUUUUUUU | A 1-to 35-byte user data and is passed to the started transaction or
. written to the transient data queue in the field CLNTDATA.

IC Specifies that TRAN is to be started in HHMMSS; if left blank, startup is
immediate.
HHMMSS Hours, minutes, and seconds for IC option.
D Indicates that CLNTPARM will be written into the transient data queue,
TDON.
CLNTPARM DS Oor
TOKEN DS F New token
DS CL16 Reserved
CLNTDATA DS CL36 Up to 35 bytes of client data
PROTADDR DS OF
DOMAIN DS H Family
RPORT DS H Remote port from ACMRPORT
RADDR DS H Remote IPADDR from ADMRADDR
DS XL8'00'Reserved
CLNTLEN EQU * - CLNTPARM

ﬁD Note: Using this option puts a listener at risk of being tied up until the client

actually sends the data. Set acvTIMEO With this fact in mind. The new
trace flag, acmMTcLTD, can optionally be specified to trace the cLNTPARM
written to Tpon transient data queue via cpT9181.

CICS Programmer’s Toolkit Programmer’s Reference 2-41

Client-Data Listener Option LISTEN

n@ Example: 0
_/

This example builds a simple server ACM and performs the LIsTEN. The
application program sets the argument list version to 1 and listens for
connection requests on port 1234. Control is returned from the L1sTEN service
on establishment of a connection or by some error. Register 15 is tested to
determine the success of the request. If register 15 is non-zero, an error has
occurred and the diagnostic code indicates the reason for failure. If register 15
is zero, then the LISTEN service completed successfully and a token
representing the data transfer connection is returned. The token is used for all
CPT requests related to that connection. After a CPT cLosE service is issued,
the token is no longer valid and the application reissues the L1sTEN service for
additional connection requests.

This sample program is generally not the preferred server model. The problem
is that after returning from the L1sTEN service the application blocks additional
incoming connection requests. A better example of this facility is shown in the p
next example. This single-threaded server model is really only suitable for
connections of a very short time duration. b

* Dsect's
*

TO9DACM MF=DSECT Argument for Connection Management

Working storage

*

DFHEISTG DSECT N
\\//

LSTNARG DS XL (ACMLEN) Argument for Connection Management

*

* Entry

*

label DFHEIENT

-
* (7
- 8
* CPT LISTEN Connection Management regquest &
x g
@
LISTEN DS OH 8
LA R2, LSTNARG Load Argument for Connection Management <
USING ACM, R2 8
MVC ACMVERS, =H'2" Set Version number
MVC ACMLPORT, =H'1234" Set Server well-known port
LR R1,R2 Load ACM address in Reg 1
L R15, =V(T09FLSTN) Load LISTEN service Stub address
BALR R14,R15 Issue LISTEN service
LTR R15,R15 Test Return Code
BZ LOADTOKN Good, process data
L R4, ACMRTNCD Load Return Code
L R5, ACMDGNCD Load Diagnostic Code
Process and log Connection Management regquest error (/\
B END Termination Transaction

2- 42 \ Chapter Two — ASSEMBLER CALLS

LISTEN Client-Data Listener Option

LOADTOKN DS 0H
(L R6,ACMTOKEN Load (Data Transfer) Connection Token
DROP R2 ACM

. Application and CPT Data Transfer (SEND/RECEIVE) processing

. CPT (Data Transfer) Connection Release
B LISTEN Listen for more Client connections

Terminate Transaction

END DS 0H
EXEC CICS RETURN

00+002-0t0%2¢0- 108002

CICS Programmer’s Toolkit Programmer’s Reference 2-43

Client-Data Listener Option

LISTEN

@ Example:

This example builds a simple server ACM and performs the LISTEN request.
The application program sets the argument list version to 1 and listens for
connection requests on port 1234. Control is returned from the LISTEN service
on establishment of a connection or by some error. Register 15 is tested to
determine the success of the request. If register 15 is non-zero, an error has
occurred and the diagnostic code indicates the reason for failure. If register 15
is zero, then the LIsTEN service completed successfully and a token
representing the data transfer connection is returned. The token is used for all
CPT requests related to that connection. In this example, the token is passed
to a new transaction and then the application reissues the L.1sTEN service for
additional connection requests.

This sample program differs from the previous example in that data transfer is
not performed by the listening transaction, but by a different transaction. This
allows for a more efficient server program. The server application is better able
to respond quickly to new connection requests, because itis notinvolved in the
tedious task of data transfer or connection management after the initialization
connection.

This example does not utilize the optional cTve Facility Management service.
The GIVE service is beneficial if this task was expected to terminate before the
data processing transaction initiated. However, since this task is not expected
to terminate any abnormal termination would release all CPT connections
currently associated with this task.

*

* Dsect's
*

TO9DACM MF=DSECT Argument for Connection Management
* Working storage

*

DFHEISTG DSECT

LSTNARG DS XL (ACMLEN) Argument for Connection Management

*
* Entry
*
label DFHEIENT
*
* CPT LISTEN Connection Management reguest
*
LA R5, LSTNARG Load Argument for Connection Management
USING TO9DACM, R5
MVC ACMVERS, =H'2" Set Version number
MVC ACMLPORT, =H'1234" Set Server well-known port
LISTEN DS 0H
LR R1,R5 Load ACM address in Reg 1
L R15,=V(TO9FLSTN) Load LISTEN service Stub address
BALR R14,R15 Issue LISTEN service

2-

44

Chapter Two — ASSEMBLER CALLS

001002-050v20% 0z

001002-0t0%20- 108002

LISTEN Client-Data Listener Option

LTR R15,R15 Test Return Code

BZ START Good, process data

L R3, ACMRTNCD Load Return Code

L R4, ACMDGNCD Load Diagnostic Code

Process and log Connection Management request error

B END Termination Transaction
START DS OH

EXEC CICS START TRANSID(trans-id)
FROM (ACMTOKEN) LENGTH(4)

B LISTEN Listen for more Client connections
DROP RS ACM

*

* Terminate Transaction

*

END DS 0H

EXEC CICS RETURN

n@ Example:

This example builds a server ACM and performs the LIsTEN request. The
application program listens for connection requests on whatever port is
mapped into service name DIscARD. A TRANSID is specified and statistic flags
are set. The T09McALL assembler macro instruction sets the argument version
number and calls the L1sTEN service. Control is not returned from the LISTEN
service until a failure has been detected. Register 15 is tested to determine the
success of the request. If register 15 is non-zero, an error has occurred and
the diagnostic code indicates the reason for failure. Errors indicating CPT or
transport provider (API) termination are acceptable. The argument fields are
not updated on return except for the return code (acvrTNCD) and diagnostic
code (ACMDGNCD).

This sample program differs from the previous example in that a sTarRT
command for a new transaction is performed by the L.1sTEN service and not by
the user application. Also, control is not returned to the calling application until
a failure occurs. Generally, this failure is due to termination of CICS, CPT, or the
transport provider (API).

In this example, transaction srv3 is automatically started by the L1sTEN
service for each connection established on the prscarp port.

*

Dsect's
TO9DACM MF=DSECTArgument for Connection Management
* Working storage

DFHEISTG DSECT

LSTNARG DS XL (ACMLEN) Argument for Connection Management
*

* Entry

CICS Programmer’s Toolkit Programmer’s Reference 2-45

Client-Data Listener Option

LISTEN

*label

END

DFHEIENT

CPT LISTEN Connection Management request

LA R7,LSTNARG
USING TO09DACM, R7
MVC ACMSRVCE (7) ,=C'DISCARD' Set Server Service name
MVC ACMTRNID, =C'SRV3' Set started trans id

oI ACMSTAT1, ACMSTCON+ACMSTFIN Set statistics flags
TOSMCALL LISTEN, PARM=LSTNARG Issue Listen request
LTR R15,R15 Test Return Code

Load Argument for Cormnection Management

BZ END Good, Terminate transaction
C R15,=A (CPTEDRAN) API drain RC?

BE END Equal, known RC

C R15, =A (CPTETERM) API term RC?

BE END } Equal, known RC

C R15, =A(CPTEPRGE) API purge RC?

BE END Equal, known RC

L R3, ACMRTNCD Load Return Code

L R4, ACMDGNCD Load Diagnostic Code

Process and log Connection Management request error

DROP R5 ACM

Terminate Transaction

DS OH
EXEC CICS RETURN

2- 46

Chapter Two — ASSEMBLER CALLS

AN

8

001002-0v0v2C% 0z

00}002-00t20-1 08002

RCVFROM

Assembler Data Area

W

RCVFROM

Assembler Data
Area

The rcvFROM service lets you develop connectionless client and server

applications. This service is UDP only. The rRcvFroM Service provides these

basic functions:

& Establishes a UDP server endpoint represented by a new token and

starts receiving datagrams on a user-specified well-known port.
Indicate this function to the rRcvFROM service by passing an ADTTOKEN
equal to zero. rcvFRrOM then creates all the internal control blocks and
the rcvFroM buffer queue. Even though the sexpTo buffer queue is not
allocated for this endpoint (token) until the sexpTO service is called, the
seENDTO buffer size and number must be specified at this time because
they are negotiated with the transport provider and recorded in the
internal CPT control blocks at endpoint creation time. Upon return from
the RCVFROM Service, ADTTOKEN contains the token value to be passed
to subsequent rcvFROM and SENDTO service calls.

Receives a datagram at a previously established UDP endpoint
represented by an existing token. This functionality makes the
rcvFROM service call just a data transfer call that can be used by a
client or server application. The rcvrroM buffer queue is only allocated
upon the first call to the rcvrroM service, whether or not ADTTOKEN is

equal to zero.

UDP tokens created with the RcvFRrROM Or SENDTO services cannot be passed to
the TCP-only services, CONNECT, LISTEN, SEND, and RECEIVE. All other CPT

service calls are available to UDP applications.

The non-blocking option of the RcvFroM service (ADTOPCD1=ADTNBLKR), allows
applications to be developed that can poll a well-known UDP port or sendto a
remote UDP server and then make a predetermined number of rcvrroM calls

to get back a response. Given the general unreliable nature of UDP, not

blocking on a rcvEroM call can build in some flexibility with regards to handling

lost datagrams.

This table describes the rRcvFrOM Service arguments:

MACROID DSECT NAME SIZE CREATED BY

TOSDADT ADT 644 (X'284") User application

This is what the psecT control block looks like in Assembler language:

Name Operation Operands Description

ADT DSECT
ADTVERS DS
ADTFUNC DS
ADTTOKEN DS
ADTBUFFA DS
ADTBUFFL DS
ADTRTNCD DS

Version number
Function code

Token (CEP)

Data buffer address
Data buffer length
Return code

oo P om W

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area RCVFROM
ADTDGNCD DS F Diagnostic code AN
ADTSTATS DS oF Statistics flag H

DS XL3 N
ADTSTAT DS Primary statistics request byte
ADTSTERM EQU X'02' - Termination statistics
ADTTRACE DS OF Trace flag
DS XL2
ADTTRAC2 DS X Second trace byte (for hi 1vl lang)
ADTTTKNS EQU X'01" - Trace token information
ADTTTPL EQU X'02" - Trace TPL block
ADTTSTOR EQU X'08! - Trace GETMAIN/FREEMAIN
ADTTRAC1 DS X First trace byte (for hi 1lvl lang)
ADTTNTRY EQU X0l - Trace entry points
ADTTARGS EQU X'Q2! - Trace arguments
ADTTRECV EQU X'04" - Trace TRECV
ADTTSEND EQU X'08' - Trace TSEND
ADTTTERM EQU X'10" - Trace termination
ADTTPASS EQU X'20" - Trace TAKE
ADTTCLSE EQU Xr40" - Trace close
ADTTTERR EQU X'80" - Trace TPL errors
ADTQSEND DS F TSEND queue size
ADTMSEND DS F Max TSEND TPL buffer size
ADTQRECV DS F TRECV queue size
ADTMRECV DS F Max TRECV TPL buffer size
ADTTIMEO DS F Seconds to wait for timed RECEIVE
DS 4F Reserved
ADTLPORT DS H Local transport provider port
ADTRPORT DS H Remote transport provider port TN
DS H Reserved \\ y,
ADTSRVCE DS CL36 Local/remote service name -
DS X Reserved for C string
ADTSEP# DS X Number of SEP chars-make fullwd
ADTSEP1 DS X First or only seperator character
ADTSEP2 DS X Second seperator character
DS H Unused
ADTLADDR DS A Local IP host address
ADTRADDR DS A Remote IP host address ~
ADTLNAME DS CL255 Local IP host name /;l\
DS X Reserved for C string '1 ‘
ADTRNAME DS CL255 Remote IP host name %g“/
DS X Reserved for C string 3
ADTUCNTX DS F User context field S
ADTOPTNS DS OF Data transfer option codes §
ADTOPCD4 DS X Option code 4 >
ADTOPCD3 DS X Option Code 3 ©
ADTOPCD2 DS X Option code 2
ADTFVLST EQU X'80' Vector list flag
ADTNOSTP EQU X'40' Do not strip LL or SEP SEQ on RECV
ADTOPCD1 DS X Option Code 1
ADTFDNR EQU X'80' Do DNR name resol. For UDP, Def=No
ADTNBLKR EQU X'40' Do not block on RECV/RECVFR (both)
ADTTMRCV EQU X'10' Timed fullblk RECV w/ADTTIMEO
ADTTMPRT EQU X'08' Timed partial RECV w/ADTTIMEO
ADTBLCKS EQU X'04' Block on SEND (ICS)
ADTTYPLL EQU X'02' LL type SEND/RECV .
ADTTYPSP EQU X'01' SEP type SEND/RECV <
~/

2-

48

Chapter Two — ASSEMBLER CALLS

001002-0v0720-108002

RCVFROM

Assembler Data Area

ADTVERS

Version

Indicates the CPT version number of the argument used by the calling
program. This required field must be set to binary 2 for this release of CPT.

Default: None

ADTFUNC

Function code

Indicates the function or callable service ID requested by the application
program this field should not be set by the application, but rather is initialized
by the TRUE interface stub.

Default: None

ADTTOKEN

Data transfer token

Specifies a token that represents a UDP endpoint. If the ADT is being passed
in a call to either the RCVFROM or SENDTO service, then the token can be
zero, indicating to either service, to first create a token before sending or
receiving a datagram. If the token is not zero, then it must be a token created
previously by either the RCVFROM or SENDTO service. It is not necessary or
efficient to create a token every time a CICS transaction calls the UDP data
transfer services. It is an error to pass a TCP token to the UDP data transfer
service routines, RCVFROM and SENDTO. Conversely it is an error to pass a
UDP token to the TCP data transfer routines, RECEIVE and SEND.

Default: 0

ADTBUFFA

User data address

Indicates the storage address into which the UDP datagram is received
(RCVFROM service). This is a contiguous segment of storage accessible to
the user task. The content of all user data is application dependent, and not
interpreted by either CPT nor the transport provider. The storage area can be
aligned on any boundary convenient for the application program.

Default: 0

ADTBUFFL

User data length

Indicates the length (in bytes) of the buffer specified in ADTBUFFA which is to
receive (RCVFROM service) the UDP datagram. If the incoming datagram
does not fit into ADTBUFFA for a length of ADTBUFFL, then the warning,
CPTWNEOM will be passed back to the caller in ADTRTNCD, indicating that
more RCVFROM calls will be required to get the entire datagram. ADTBUFFL
will indicate the actual length returned in ADTBUFFA. It is an error to call the
RCVFROM service with an ADTBUFFL of zero.

ADTRTNCD

Return code
Indicates the return code set by the RCVFROM service.
Default: 0

ADTDGNCD

Diagnostic code

Indicates the diagnostics code set by the RCVFROM service. This value
generally indicates a transport provider return code.

Default: 0

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area

RCVFROM

ADTSTATS

Specifies logging options for the application program. The faclhty can be used
for debugging and tuning during development.

¢ ACMSSTATS CONN- Specifies that messages be generated on the
closing of a UDP token. These messages are generated by the CPT
CLOSE service. The message numbers are CPT802Iand CPT8031.

€ ACMSSTATS TERM- Specifies that messages be generated on
terminating an established connection. These messages are generated
by the CPT CLOSE service. The message numbers are CPT807T,
CPT808I and CPT8091I.

Default: 0 (No statistics logging)

ADTTRACE

Specifies trace logging options for the application program. The facility can be
used for debugging during development.

¢ ADTTNTRY — Specifies that a message be generated on entry to a CPT
service routine. The message is generated by all CPT service routines.
The message number associated with this option is CPT9011.

¢ ADTTARGS - Specifies that a hex dump of the caller's arguments be
generated on entry and exit of a CPT service routine. Messages are
generated by the corresponding service routine. The message numbers
associated with this option are CPT9021, CPT903I, CPT9041T,
CPT911I,CPT912,CPT921I,CPT922I,CPT9241, CPT9251,
CPT930I,and CPT932T.

¢ ADTTRECV — Specifies a hex dump of the transport provider's input
(RECEIVE) data. Messages are generated by the CPT RCVFROM
service. The message number associated with this option is CPT913I.

4 ADTTSEND - Specifies a hex dump of the transport provider's output
(SEND) data. Messages are generated by the CPT SENDTO service. The
message number associated with this option is CPT9141T.

& ADTTTERM - Specifies that a message be generated on termination of a
CPT service routine. Messages are generated by all CPT service routines.
The message number associated with this option is CPT9081I.

¢ ADTTPASS — Specifies that a hex dump of resources related to a passed
connection be logged. Messages are generated by the CPT GIVE and
TAKE services. The message numbers associated with this option are
CPT919T and CPT9201.

¢ ADTTCLSE - Specifies that a hex dump of resources related to a CLOSE
processing of a connection be logged. Messages are generated by the
CPT CLOSE service. The message number associated with this option is
CPTI906I

¢ ADTTTERR — Specifies that a hex dump be logged of a transport provider
API parameter list that fails successful completion. The message number
associated with this option is CPT400T.

¢ ADTTTKNS — Specifies that a hex dump of the UDP token be logged.
Messages are generated by all service routines on entry. The message
number associated with this option is CPT9091I.

4 ADTTTPL — Specifies that a hex dumped logged of the transport provider
API parameter list. The message numbers associated with this option are
CPT917T and CPTO9351T.

¢ ADTTSTOR — Specifies that a hex dump of storage management
argument be logged. Messages are generated by various CPT service
routines. The message numbers associated with this option are
CPT928TI and CPT9291I.

Default: 0 (No trace logging)

2-

50

Chapter Two — ASSEMBLER CALLS

!

S/

001002-070v2C* oz
AN

001002-0t0%20-1 08002

RCVFROM Assembler Data Area

 DESCRIPTION

ADTQSEND | API send queue size (used when ADTTOKEN=0)

Specifies the maximum number of uncompleted SENDTO requests that can
be queued by the application to the transport provider (API). This value lets
applications control output processing and can affect throughput rates. The
value is negotiated with the transport provider and can be modified by the
transport provider. The total allocation for output processing is the product of
the SENDTO queue and buffer size values and cannot exceed 61K.

Default: 4

ADTMSEND] API send buffer size (used when ADTTOKEN=0)

Specifies the maximum number of user data bytes that can be transferred by
the application in a single SENDTO request to the transport provider (API).
This value lets applications control output processing and can affect
throughput rates. The value is negotiated with the transport provider and can
be modified by the transport provider. The total allocation for output
processing is the product of the SENDTO queue and buffer size values and
cannot exceed 61K.

Default: 4096

ADTQORECV | API RECEIVE queue size (used when ADTTOKEN=0)

Specifies maximum number of uncompleted RCVFROM requests that can be
queued by the application to the transport provider (API). This value lets
applications control input processing and can affect throughput rates. The
value is negotiated with the transport provider and can be modified by the
transport provider. The total allocation for input processing is the product of
the RCVFROM queue and buffer size values and cannot exceed 61K.

Default: 4

ADTMRECV | API RECEIVE buffer size (used when ADTTOKEN=0)

Specifies the maximum number of user data bytes that can be transferred by
the application in a single RCVFROM request to the transport provider (API).
This value lets applications control input processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified
by the transport provider. The total allocation for input processing is the
product of the RCVFROM queue and buffer size values and cannot exceed
61K.

Default: 4096

ADTTIMEO | RECEIVE time outvalue
Not used by the RCVFROM service
Default: 0

ADTLPORT | Local well-known service port (used when ADTTOKEN=0)

Indicates the local transport layer port that the calling application will be
receiving (RCVFROM) datagrams on. If the SENDTO service creates the
token, this port number is assigned by the transport layer and returned to the
caller. if the RCVFROM service creates the token, this is the well-known port
requested by the caller. If the RCVFROM service is creating the token, this
value or the transport layer service name (ADTSRVCE) must be specified.
This field is an unsigned positive integer with a maximum value of 65,534.
The value must be unique for each server application.

Default: None

ADTRPORT | Remote port

Indicates the remote transport layer port on which the incoming datagram
originated. This value is returned to the caller of the RCVFROM service and
may be different for each datagram received. This field is an unsigned positive
integer with a maximum value of 65,534.

Default: None

CICS Programmer’s Toolkit Programmer’s Reference 2-51

Assembler Data Area RCVFROM

ADTSRVCE | Transport layer service name (used when ADTTOKEN=0)
Indicates the local transport layer service name. This string is mapped into a
transport layer address or port, through internal DNR. The resolved value is
the well-known port to which the client application sends (SENDTO) UDP
datagrams. This field has a maximum length of 36 bytes. The value must be
unique for each server application. This field is optional and is not modified by
the RCVFROM service.
Default: None

ADTSEP# Number of separator characters for option ADTTYPSP.
Not used in the RCVFROM service.
Default: None

ADTSEP1 First or only spaceport character for option ADTTYPSP.
Not used in the RCVFROM service.
Default: None

ADTSEP2 Second character or separator sequence for option ADTTYPSP
Not used in the RCVFROM service.
Default: None

ADTLADDR | Local IP host address
Indicates the local host internet address. This field is an unsigned four-byte
integer value. The local host internet address is returned to the caller of the
RCVFROM
Default: None

ADTRADDR | Remote IP host address
Indicates the remote host internet address of the sender of the incoming UDP
datagram. This value is returned to the caller of the RCVFROM service and
may be different for each datagram received. This field is an unsigned
four-byte integer value.
Default: None

ADTLNAME | Local IP host name
Indicates the local host internet name. This field is a 255-byte character string
that is padded with blanks. The local host internet name is returned to the
caller of the RCVFROM service.
Default: None

ADTRNAME | Remote IP host name
Indicates the remote host internet name. This field is a 255-byte character
string that is padded with blanks. It is only resolved through internal DNR calls
and returned to the caller of the UDP data transfer service routines
(RCVFROM and SENDTO) if the ADTOPTNS flag, ADTFDNR is specified.
This is to prevent the DNR call overhead on every UDP data transfer call.
Default: None

ADTUCNTX | One word of user context
Specifies one arbitrary word of user context to be associated with the
endpoint. The information provided is not interpreted by CPT, and is merely
saved with other endpoint information.
Default: 0 (no user context)

2- 52 Chapter Two — ASSEMBLER CALLS

001002007204 0z
A

RCVFROM

Network Considerations

 DESCRIPTION

— ———

(" |

ADTOPTNS

Specifies data transfer options

These are the ADT options that apply to UDP data transfer requests:

¢ ADTFDNR — Execute internal DNR calls during UDP data transfer service
routine calls (RCVFROM and SENDTO) to resolve remote IP addresses
into IP names in the that is padded with blanks.

& ADTNBLKR — Do not block on a call to the RCVFROM service. If no
datagrams are currently available, the return code, CPTWBLCK, will be

returned in ADTRTNCD.
¢ Default: None

Note: These options can be toggled on every UDP data transfer call even if
the caller is using the same token.

— —

The ADT is a common data structure used for both client and server UDP
applications. There are common and unique values specified for a particular

CLIENT CONDITIONS FOR
SENDTO

Local assigned transport provider port
returned to user application.

Remote server transport provider
well-known port selected by user
application.

Remote server transport provider
service name selected by user
application.

Remote IP host address selected by or
returned to user application. The client
must specify this field or ADTRNAME.

Local IP host name Returned to user
application.

Remote [P host name selected by or
returned to the user application. The
client must specify this field or
ADTRADDR. If ADTRADDR is used
ADTRNAME will only be returned if
ADTFDNRisspecifiedin ADTOPCD1.

Network
Considerations ;
service request.
The table describes network considerations for Assembler API:
SERVER CONDITIONS FOR
NAME RCVFROM
(ADTLPORT | Local server well-known port
selected by user application.
ADTRPORT [Remote client transport provider
port returned to user application.
ADTSRVCE | Local server transport provider
service name selected by user
N application.
8 ADTRADDR | Remote IP host address returned
2 to user application.
— &
nN
S
s ADTLNAME | Local IP host name returned to
'8 user application.
o
) ADTRNAME | Remote IP host name returned to
e user application only if ADTFDNR
is specified in ADTOPCD1.

CICS Programmer’s Toolkit Programmer’s Reference

Return Codes RCVFROM

Return Codes The rcvFrOM service returns a return code in registers 15 and 0 that indicate
the results of the execution. These values are in the ApTRTNCD(R15) and
ADTDGNCD (R0) within the argument for data transfer. The diagnostic code is
optional and indicates the transport provider return code. Read Appendix C —
MESSAGES AND CODES in the CICS Programmer’s Toolkit Installation
and Administration Guide for the return code cross reference table. This
table describes the return codes for the rcvFroM service

RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful
CPTEVERS Control block version number is not
supported.
CPTECONN Yes Requested host/service/port is not
found.
CPTEPROT RCVFROM called with a TCP token.
CPTEBUFF Buffer address and/or length is invalid.
CPTENAPI Yes Transport provider API not available.
CPTETERM Yes Environment is being terminated.
CPTEPRGE Yes CPT interface terminating.
CPTEINTG Yes Transport provider integrity error.
CPTEENVR Yes Transport provider environment error
CPTEFRMT Yes Transport provider format error.
CPTEPROC Yes Transport provider procedure error.
CPTABEND Abnormal exception occurred.
CPTEOTHR Yes An undefined exception occurred.
Examples This example illustrates a simple connectionless server model. It accepts

(rcvrrOM) datagrams at a well-known port and echoes them back to their
originator (SENDTO).

K *
CPTPARMS DS F CPT CALLING PARAMETER

CPTADT TO9DADT MF=, PFX=ADT DATA TRANSFER ARGUMENT

CPTIOBUF DS XL80 CPT SENDTO/RECVFR BUFFER

2- 54 Chapter Two — ASSEMBLER CALLS

|

\

l

001L002-0v0v20# ™02

RCVFROM Return Codes

(n LABEL DFHEIENT CODEREG=(10)
K e *
*
* INDICATE TO RCVFROM THE WELL-KNOWN PORT FOR THIS
* UDP SERVER
*

*
* HANG A RCVFROM ON THE ENDPOINT FOR THE PORT UNTIL A
* DATAGRAM COMES IN
*
K o o e e e e e e e ——— ————— o —————— i —————— e — — — — — *

B RECVIT DS OH
(LA RO3,CPTADT LOAD DATA TRANSFER ARGUMENT ADDR
ST R03,CPTPARMS SAVE ARGUMENT ADDRESS

LA RO04,CPTIOBUF GET THE ADDRESS OF OUR BUFFER

ST R04,ADTBUFFA SET RCVFROM BUFFER ADDRESS

LA RO5,L'CPTIOBUF GET MAX LENGTH OF DATAGRAM TO
RCVFROM

ST RO5,ADTBUFFL SAVE RCVFROM BUFFER LENGTH

TO9MCALL RCVFROM, PARM=CPTPARMS TO9CRCFR ENTRY POINT

LTR R15,R15 GOOD RETURN CODE?
BNE EVALERR NO, SOME OTHER ERROR

* ECHO THE DATAGRAM BACK USING THE SAME ENPOINT (TOKEN)

*

BY USING THE SAME ADT, THE SENDTO CALL ALREADY HAS THE ADDRESS
AND LENGTH OF THE DATAGRAM JUST RECEIVED AS WELL AS WHERE TO
SEND IT BACK TO IN ADTRADDR AND ADTRPORT. NOTE THAT THERE IS
NO NEED TO CREATE ANOTHER ENDPOINT (TOKEN) SINCE ALLOCATING
THE BUFFER QUEUES AND INTERNAL CPT CONTROL BLOCKS WOULD JUST
BE ADDED OVERHEAD.

001002-0%0¥20- 108002
* * * *

*

TO9MCALL SENDTO, PARM=CPTPARMS T0SCSNTO ENTRY POINT

LTR R15,R15 GOOD RETURN CODE?
BZ RECVIT YES, GO WAIT FOR ANOTHER ONE
B EVALERR NO, GO DIAGNOSE ERROR

CICS Programmer’s Toolkit Programmer’s Reference 2-55

Assembler Data Area

RECEIVE

RECEIVE

Assembler Data

The rRECEIVE service receives data from a peer transport user connected to an
endpoint. The RECEIVE service receives data as input on either a
connection-mode (TCP) or connectionless-mode (UDP) transport service.

To invoke the RECETVE service, a user application must first build an Argument
for Data Transfer (ADT) and then issue a call to the RECETVE routine. The ADT
contains the version number, connection token, user buffer address, and
length. When the ReECEIVE service completes, the buffer length field is updated
to reflect the amount of data processed by the rRECEIVE service.

This table describes the RECETIVE service arguments:

MACRO ID

DSECT NAME

SIZE

CREATED BY

TO9DADT

ADT

644 (X'284")

User application

This is what the psecT control block looks like in Assembler language:

AI’eG Name Operation Operands Description
ADT DSECT ,
ADTVERS DS H Version number
ADTFUNC DS H Function code
ADTTOKEN DS A Token (CEP)
ADTBUFFA DS A Data buffer address
ADTBUFFL DS F Data buffer length
ADTRTNCD DS F Return code
ADTDGNCD DS F Diagnostic code
ADTSTATS DS OF Statistics flag
DS XL3
ADSTAT DS X Priimary statistics request byte
ADTSTERM EQU X'02"' - Termination statistics
ADTTRACE DS oF Trace flag
DS XL2

ADTTRAC2 DS X Second trace byte

(for high level lang)
ADTTTKNS EQU X'01" - Trace token information
ADTTTPL EQU X'02" - Trace TPL block
ADTTSTOR EQU x'08' - Trace getmain/freemain
ADTTRAC1 DS X First trace byte

(for high level lang)
ADTTNTRY EQU X'0o1! - Trace entry points
ADTTARGS EQU X'02! - Trace arguments
ADTTRECV EQU X'04" - Trace TRECV
ADTTSEND EQU X'08" - Trace TSEND
ADTTTERM EQU X'10" - Trace termination
ADTTPASS EQU X'20! ~ Trace TAKE
ADTTCLSE EQU X'40! - Trace CLOSE
ADTTTERR EQU X'80" - Trace TPL errors
ADTQSEND DS F TSEND queue size
ADTMSEND DS F Maximum TSEND TPL buffer size

2- 56 Chapter Two — ASSEMBLER CALLS

N

001002-0v0V204" 0z

001002-010%20-1 08002

Assembler Data Area

> oM X X XX

CL255

CL255

X'80"
X'40"

X'80"
X'40"
X'10"
X'08"
X'04:"
X'02!
X'01"

TRECV queue size

Maximum TRECV TPL buffer size
Seconds to wait for timed receive
Reserved

Local transport provider port
Remote transport provider port
Reserved

Local/remote service name
Reserved for C string

Number of SEP chars-make fullwd
First or only seperator character
Second seperator character

Unused

Local IP host address

Remote IP host address

Local IP host name

Reserved for C string

Remote IP host name

Reserved for C string

User context field

Data transfer option codes

Option code 4

Option code 3

Option code 2

Vector list flag

Do not strip LL or SEP SEQ on RECV
Option code 1

Do DNR name resol. for UDP, Def=NO
Do not block on RECV/RECVFR (both)
Timed fullblk RECV w/ADTTIMEO
Timed partial RECV w/ADTTIMEO
Block on SEND (ICS)

LL type SEND/RECV

SEP type SEND/RECV

DESCRIPTION

Indicates the CPT version number of the argument used by the calling
program. This required field must be set to a binary 2 for this release of

Default: None

RECEIVE
ADTQRECV DS
ADTMRECV DS
ADTTIMEO DS
DS
ADTLPORT DS
ADTRPORT DS
DS
ADTSRVCE DS
DS
ADTSEP# DS
ADTSEP1 DS
ADTSEP2 DS
DS
ADTLADDR DS
ADTRADDR DS
ADTLNAME DS
DS
ADTRNAME DS
DS
ADTUCNTX DS
ADTOPTNS DS
ADTOPCD4 DS
ADTOPCD3 DS
ADTOPCD2 DS
ADTFVLST EQU
ADTNOSTP EQU
ADTOPCD1 DS
ADTFDNR EQU
ADTNBLKR EQU
ADTTMRCV EQU
ADTTMPRT EQU
ADTBLCKS EQU
ADTTYPLL EQU
ADTTYPSP EQU
PARAMETER
ADTVERS Version
CPT.
ADTFUNC

Function code

Indicates the function or callable service ID requested by the application
program. This field should not be set by the application, but is initialized by
the TRUE interface stub program.

Default: None

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area RECEIVE

&
N
ADTTOKEN Data transfer token
Specifies a token that represents a TCP connection.
If the ADT is being passed in a call to either the RECEIVE or SEND
service, then it must be a token representing a previously established TCP
connection, via the CONNECT or LISTEN service. it is an error to pass a
zero ADTTOKEN to either the RECEIVE or SEND service.
It is an error to pass a TCP token to the UDP data transfer service routines,
RCVFROM and SENDTO. Conversely, it is an error to pass a UDP token to
the TCP data transfer routines. RECEIVE and SEND.
Default: 0
ADTBUFFA User data address
Indicates the storage address into which network data is placed. This is a
contiguous segment of storage accessible to the user task. The storage
area can be aligned on any boundary convenient for the application
program.)
Default: 0
ADTBUFFL User data length
Indicates the length (in bytes) of user data in the storage area as identified
by the ADTBUFFA operand. The length is updated when the request is
completed to reflect the actual length of user data received. This field must
be interpreted on completion to determine the amount of data actually
received. If a RECEIVE request is issued with a zero length, an error is
detected and the request fails.
Default: 0
ADTRTNCD Return code
. .
Indicates the return code set by the RECEIVE service. This value is also
returned in register 15 and indicates the success or failure of the service.
Default: 0
ADTDGNCD Diagnostic code
Indicates the diagnostic code set by the service request. This value
generally indicates a transport provider return code.
Default: 0 5
ADTSTATS This field is used only by the UDP calls RCVFROM and SENDTO. For TCP q
connections, this parameter is set in the equivalent ACM field. <
D
ADTTRACE This field is used only by the UDP calls RCVFROM and SENDTO. For TCP g
connections, this parameter is set in the equivalent ACM field. o
o
o
ADTQSEND This field is used only by the UDP calls RCVFROM and SENDTQ. For TCP b=
connections, this parameter is set in the equivalent ACM field. ©
ADTMSEND This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.
ADTQRECV This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.
ADTMRECV This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

w

2- 58 Chapter Two — ASSEMBLER CALLS

RECEIVE Assembler Data Area

 DESCRIPTION |

ADTTIMEO RECEIVE timeout value

Must be specified with these options:
¢ ADTTYPLL
¢ ADTTYPSP
4 ADTTMRCV
4 ADTTMPRT
Specifying any of the above options on a RECEIVE call with an

ADTTIMEO=ZERO will resultin CPTETIME being returned in
ADTRTNCD.

Default: None

ADTLPORT This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

(ADTRPORT This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

ADTSRVCE This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

ADTSEP# Number of separator characters for option ADTTYPSP (0 < ADTSEP# < 3)

If ADTSEP# is not equal to one or two, CPTESEP# will be returned in
ADTRTNCD.

Default: None

(ADTSEPL First or only separator character for option ADTTYPSP.

Default: None

ADTSEP2 Second separator character in a sequence of two for option ADTTYPSP.

Default: None

ADTLADDR This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

ADTRADDR This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

ADTLNAME This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

ADTRNAME This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

001002-0¥0¥20- 108002

ADTUCNTX This field is used only by the UDP calls RCVFROM and SENDTO. For TCP
connections, this parameter is set in the equivalent ACM field.

CICS Programmer’s Toolkit Programmer’s Reference 2-59

Assembler Data Area

RECEIVE

ADTOPTNS

This field specifies data transfer options.
These are the ADT options that apply to TCP data transfer requests:
4 ADTNBLKR — Do not block on a call to the RECEIVE service

If no data is currently available on the connection, CPTWBLCK will be
returned in ADTRTNCD.

4 ADTTMRCV — Timed full record RECEIVE

These fields (along with other required ADT fields) are used to request
a timed full record RECEIVE:

ADTOPCD1 = ADTTMRCV

ADTTIMEO > zero

ADTBUFFL set to the length expected

If the time limit expires before receiving any or all of the data specified

by ADTBUFFL, CPTWTIMO will be returned in ADTRTNCD along with
any data that was received.

¢ ADTTMPRT — Timed partial record RECEIVE

These fields (along with other required ADT fields) are used to request
a timed partial record RECEIVE:

ADTOPCD1 = ADTTMPRT
ADTTIMEO > zero
ADTBUFFL set to maximum length expected

If the time limit expires before receiving data, CPTWTIMO is returned
in ADTRTNCD. If the time limit expires and any data is received, the
data, along with a zero ADTRTNCD, will be returned to the caller.

& ADTTYPSP — SEP type RECEIVE

These fields (along with other required ADT fields) are used to request
a SEP type RECEIVE call:

ADTOPCD1 = ADTTYPSP

ADTSEP# =1or2

ADTSEP1 = character

ADTSEP2 = characterif ADTSEP# = 2
ADTTIMEO > zero

If the time limit expires and data is received, but no SEP characters are
found, the data, along with an ADTRTNCD of CPTWNSEP will be
returned to the caller.

€ ADTTYPLL — LL type RECEIVE
These fields (along with other required ADT fields) are used to request
a SEP type RECEIVE call:
ADTOPCD1 = ADTTYPLL
ADTTIMEO > zero
If the time limit expires before receiving any or all of the data specified
by the LL (first two bytes of the data stream), CPTWTIMO will be
returned in ADTRTNCD, along with any data that was received.

¢ ADTNOSTP — Do not strip record delimiter sequence
This can be used with ADTTYPSP or ADTTYPLL to return the actual
separator sequence or LL field in the buffer pointed to by ADTBUFFA.

¢ ADTBLCKS - Block on SEND service call (not used by RECEIVE
service).

¢ ADTFVLST - Currently internal use only

Note: It is an error to combine any of these RECEIVE service options:
ADTNBLKR, ADTTYPLL, ADTTYPSP, ADTTMRCV, ADTTMPRT .
An invalid combination causes CPTEOPTN to return in ADTRTNCD.

Default: None

2- 60

Chapter Two — ASSEMBLER CALLS

/

001002-0v0v20% ™oz

001002-00%20- LOQOOZ

RECEIVE

Completion Information

Completion
Information

Return Codes

The rRECEIVE service completes normally when the data is moved from the
transport provider buffer to the application program'’s storage area. A length is
returned to the application program, which is set to the amount of data actually
processed.

Normal completion of the rReceTVE service implies that data has been moved
to the user buffer. This does not necessarily indicate the application request
was completely satisfied, but that some amount of data was processed. The
user application is required to load the ApTBUFFL field to determine the actual
data received. The RECEIVE service returns control to the calling application on
receipt of a full buffer, a partial buffer, or an error indication. Control is returned
to the user application with a partial buffer to avoid a warT command within the
RECEIVE service. Additional requests to the RECEIVE service may be required
to completely satisfy the user application's requirement.

The presence of exceptions or error conditions do not always indicate serious
errors. A user application should check the return code to determine proper
flow control. The release indication return code is an example of a condition
that is not necessarily a serious error. This exception specifies that the remote
host closed its half of the full-duplex data connection and will not send any
additional data. This return code is acceptable, and generally indicates that
graceful termination of the connection should begin.

On normal return to the application program, the general return code in register
15 (ADTRTNCD) is set to zero (cPTIRCOK). The diagnostic code in register 0
(apTDGNCD) is always zero. The length field (apTBUFFL) indicates the amount
of data processed.

If the RECETVE service completes abnormally, some or no user data may have
been sent to the peer transport user. The general return code (ADTRTNCD) in
register 15, and the diagnostic code (aDTDGNCD) in register 0, indicate the
nature of the failure. The diagnostic code (apTDCNCD) generally contains a
specific code that is generated by the transport provider.

The RECEIVE service returns a code in registers 15 and 0 that indicates the
results of the execution. These values are in the ADTRTNCD (R15) and ADTDGNCD
(r0) within the ADT. The diagnostic code is optional and generally indicates a
transport provider return code. Read Appendix C — MESSAGES AND
CODES in the CICS Programmer’s Toolkit Installation and Administration
Guide for the return code cross reference table.

This table describes the RECEIVE service return codes:

RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful.
CPTEVERS Control block version number is not supported.
CPTETOKN Specified token is not valid.

CICS Programmer’s Toolkit Programmer’s Reference 2-61

Usage Information

RECEIVE

Usage
Information

CPTEBUFF Buffer addrt.asis and)or length |s invalid.‘
CPTENAPI | Yes Transport provider API is not available.
CPTETERM | Yes Environment is being terminated.
CPTERLSE | Yes Release indication.

CPTEDISC | Yes Disconnect indication.

CPTEINTG | Yes Transport provider API integrity error.
CPTEENVR | Yes Transport provider APl environment error.
CPTEFRMT | Yes Transport provider API format error.
CPTEPROC | Yes Transport provider API procedure error.
CPTABEND Abnormal exception occurred.
CPTEOTHR | Yes An undefined exception occurred.

The RECEIVE service receives normal data inputs through a CPT connection.

The data may be part of a byte stream being received over a connection (TCP),
or may be part of a datagram to be received via an association (UDP) to a peer
transport user.

If the transport service type or protocol selected is a connection-mode byte
stream (TCP), data is moved from the transport provider's storage area to the
user application’s storage area. Stream data may not be received with the
same logical boundaries with which it was sent. However, the data arrives in
the precise order in which it was sent. Possible fragmentation is a
characteristic of stream data.

User applications may be required to issue multiple REcEIVE service requests
to obtain all of the desired data. The data may arrive in particle segments. An
application should be designed to handle such a situation. Additionally, users
who write applications to process multiple record oriented data should
consider including a mechanism to delimit the data. Design options can include
a logical length field at the beginning of a record, or a special field, or fields, at
the end. This lets the application determine record boundaries.

The RECEIVE service request is a synchronous operation, which may require
the application to be blocked. The recEIVE queue (acMorECY) and buffer
(acrrECV) sizes, as specified during connection initialization, control input
queuing and buffering. The queue size represents the number of uncompleted
RECEIVE requests that can be pending to the transport provider. The default
value is generally sufficient to support most applications. The transport
provider normally completes a RECEIVE request on transferring data into the
user buffer. However, data over the network may be fragmented and may
require multiple requests to retrieve all of the data. The RECETVE service issues
a waIT command if no data is available.

2-

62

Chapter Two — ASSEMBLER CALLS

00 LOOZ'OVOVZGf r?’\,OZ

001002-070720- + 8002

RECEIVE

Usage Information

The queue and buffer size values are specified during connection initialization
and can be modified by either the LTsTEN or coNNECT services. An application
that is dependent on these values should validate the requested values,
compared with those values returned within the ACM. The values are modified
if the transport provider site administrator has configured limits and the
application request exceeds those values. If the requested values are
modified, verify site definition statements for API transport services.

The version number (apTVERS) indicates the CPT release level in which this
user application program is written. This required field must be set to a binary
2 and is validated by the rRecEIVE service before processing the request.

The function code (apTrunc) indicates the CPT callable service ID. The field is
not initialized by a user application program and has little value to the
application except for dump analysis. The function code identifies and maps
an argument list with the error or trace log and dump analysis.

The token (aDpTTOKEN) indicates the connection that is to receive data. This is
a required field and is validated by the RECEIVE service before processing the
request.

The data buffer address field ApTBUFFA is a full word. The application program
assures that the residency mode of data areas it manages (for example,
argument lists) is compatible with the addressing mode. The transport provider
performs consistency checks on the addressing mode whenever a service
request is issued. However, unpredictable results can occur before the
transport provider can perform this check.

The data buffer length is indicated by the apTBUrFL field. This is a full word
positive integer. The data buffer length field should be less than or equal to the
maximum receive buffer values. However, if the data buffer length is greater
than the maximum receive buffer, the RECEIVE service attempts to satisfy the
user's request with multiple transport provider requests. On return from the
RECEIVE service, the apTBUFFL is updated with a value that indicates the
number of bytes processed.

The apropTns field specifies ReEcETVE processing control options and provides
a mechanism for event notification on return to the application program.

CICS Programmer’s Toolkit Programmer’s Reference 2-63

Usage Information

RECEIVE

[@ Example: N
\\7—/
In this example, a message is received from a remote host. The token is
loaded from the ACM. The ACM contains the version number, token, buffer
address, and length. The return code is validated on return and the received
data length is reloaded to determine the amount of data processed.
*
* Dsect's
*
TO9DADT MF=DSECT Argument for Data Transfer
*
* Working storage
*
DFHEISTG DSECT
. e
RECVARG DS XL (ADTLEN) Data Transfer Argument {
BUFFER DS CL256 Data Buffer
*
* Entry
*
label DFHEIENT
. CPT Connection Management initialization and request
///7
L R9, ACMTOKEN Load ACM Token {
e
. Application and CPT Data Transfer RECEIVE processing
RECV DS HO
LA R8, RECVARG Load RECEIVE argument address
USING TO9DADT, R8
ST R9, ADTTOKEN Save connection token
MVC ADTVERS, =H'2" Set version number N
LA R3, BUFFER Load address of output buffer £
ST R3, ADTBUFFA Save buffer address in DT arg g y
L R3,L'BUFFER Load buffer length S
ST R3, ADTBUFFL Save buffer length in DT arg. §
LR R1,R8 Load Data Transfer Arg. in R1 g
L R15,=V(TO9FRECV) Load RECEIVE Service Stub address 8
BALR R14,R15 Issue Receive request é‘
LTR R15,R15 Test Return Code
BNZ ERROR Non-zero, process error
L R3,ADTBUFFL Load length of data received
Application processing
B RECV Receive more network data
*
* RECEIVE Data Transfer Error
- o
ERROR DS 0H N
L R3, ADTRTNCD Load ADT Return Code

2-

64

Chapter Two — ASSEMBLER CALLS

RECEIVE Usage Information

- C R3,=A(CPTERLSE) Test Release Indication
(BE ORDER Equal, graceful connection termination
L R4, ADTDGNCD Load ADT Diagnostic Code

. Process and log application errors

B ABORT Abort Connection

DROP R8 ADT
*
* CPT Connection Termination
*
ORDER DS 0H

Orderly Release of connection

B END Terminate Transaction
ABORT DS 0H
(4 . Abortive Release of connection
*
* Terminate Transaction
*
END DS OH

EXEC CICS RETURN

] l]%> Example:

(This example is similar to the first example, except the To9McaLL macro
instruction adds the version number and generates the CPT RECEIVE Stub
routine call. The return code is validated on return and, if successful,
processing continues.

*

Dsect's
N TO9DADT MF=DSECT Argument for Data Transfer
-~ 8 *
m .
(h 2 * Working storage
S *
>
g DFHEISTG DSECT
?
N
=)
2
S .
RECVARG DS XL (ADTLEN) Data Transfer Argument
BUFFER DS CL256 Data Buffer
*
* Entry
*
label DFHEIENT
. CPT Connection Management initialization and request
L R9, ACMTOKEN Load ACM Token
(. Application and CPT Data Transfer RECEIVE processing

CICS Programmer’s Toolkit Programmer’s Reference 2-65

Usage Information RECEIVE

. ,K/\\\
RECV DS HO G
- LA R8,RECVARG Load RECEIVE argument address S
USING TO9DADT, RS
ST R9, ADTTOKEN Save connection token
LA R3,BUFFER Load address of output buffer
ST R3,ADTBUFFA Save buffer address in DT arg
L R3,L'BUFFER Load buffer length
ST R3,ADTBUFFL Save buffer length in DT arg.
TO9MCALL »RECEIVE,PARM:RECVARGISSue RECEIVE request
LTR R15,R15 Test Return Code
BNZ ERROR Non-zero, process error
L R3,ADTBUFFL Load length of data received
Application processing
B RECV Receive more network data
* -
* RECEIVE Data Transfer Error \
*
ERROR DS OH
L R3, ADTRTNCD Load ADT Return Code
C R3,=A(CPTERLSE) Test Release Indication
BE ORDER Equal, graceful connection termination
L R4, ADTDGNCD Load ADT Diagnostic Code
Process and log application errors
77N
B ABORT Abort Connection i\\ p
DROP R8 ADT
*
* CPT Connection Termination
*ORDER DS OH
Orderly Release of connection
B END Terminate Transaction J;H
ABORT DS OH ‘
. -
Abortive Release of connection PN
g
Q@
X 8
* Terminate Transaction =4
*END DS 0H 8
EXEC CICS RETURN
Kf(N

2- 66 Chapter Two — ASSEMBLER CALLS

001002-0t0%20- 108002

SEND

Assembler Data Area

M

SEND The seND service sends data to a peer transport user connected to an
endpoint. The sExD service sends data as output on either a connection-mode
(TCP) or connectionless-mode (UDP) transport service.

To invoke the sEND service, a user application is required to first build an ADT
and then to issue a call to the sexD routine. The ADT contains the version
number, connection token, user buffer address, and length. When the sExD
service completes, the buffer length field is updated to reflect the amount of
data processed.

This table describes the seNnD service arguments:

MACRO ID DSECT NAME SIZE CREATED BY
TO9DADT ADT 644 (X'284") User application
Assembler Data This is what the psecT control block looks like in Assembler language:
Areq Name Operation Operands Description
ADT DSECT ,
ADTVERS DS H Version number
ADTFUNC DS H Function code
ADTTOKEN DS A Token (CEP)
ADTBUFFA DS A Data buffer address
ADTBUFFL DS F Data buffer length
ADTRTNCD DS F Return code
ADTDGNCD DS F Diagnostic code
ADTSTATS DS OF Statistics flag
DS XL3
ADTSTAT DS X Primary statistics request byte
ADTSTERM EQU X102 - Termination statistics
ADTTRACE DS OF Trace flag
DS X1.2
ADTTRAC2 DS X Second trace byte
* (for high level language)
ADTTTKNS EQU xX'01! - Trace token information
ADTTTPL EQU X'02" - Trace TPL block
ADTTSTOR EQU X'08"' _ Trace GETMAIN/FREEMAIN
ADTTRAC1 DS X First trace byte
* (for high level language)
ADTINIRY EQU X'01! - Trace entry points
ADTTARGS EQU X'02" - Trace arguments
ADTTRECV EQU X'04" - Trace TRECV
ADTTSEND EQU X'08' - Trace TSEND
ADTTPASS EQU X'20" - Trace TAKE
ADTTCLSE EQU X140 - Trace CLOSE
ADTTTERR EQU X'80" - Trace TPL errors
ADTQSEND DS F TSEND queue size
ADTMSEND DS F Max TSEND TPL buffer size

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area SEND
ADTQRECV DS F TRECV queue size
ADTMRECV DS F Max TRECV TPL buffer size
ADTTTIMEO DS F Seconds to wait for timed
* RECEIVE
DS 4F Reserved
ADTLPORT DS H Local transport provider
* port
ADTRPORT DS H Remote transport provider
* port
DS H Reserved
ADTSRVCE DS CL36 Local/remote service name
DS X Reserved for C string
ADTSEP# DS X Number of SEP chars
* make fullword
ADTSEPL DS X First or only separator
* character
ADTSEP2 DS X Second separator character
DS H Unused
ADTLADDR DS A Local IP host address
ADTRADDR DS A Remote IP host address
ADTLNAME DS CL255 Local IP host name
DS X Reserved for C string
ADTRNAME DS CL255 Remote IP host name
DS X Reserved for C string
ADTUCNTX DS F User context field
ADTOPTNS DS OF Data transfer option codes
ADTOPCD4 DS X Option code 4
ADTOPCD3 DS X Option code 3
ADTOPCD2 DS X Option code 2
ADTFVLST EQU X'8!' Vector list flag
ADTNOSTP EQU X140 Do not strip LL or SEP seq
* on RECV
ADTOPCD1 DS X Option 1
ADTFDNR EQU X'80" Do DNR name resolution for
* UDP, Default=No
ADTNBLKR EQU X'40" Do not block on
* RECV/RECVFR (both)
ADTTMRCV EQU X+'10" Timed fullblock RECV with
* ADTTIMEO
ADTTMPRT EQU X'08" Timed partial RECV with
* ADDTIMEO
ADTBLCKS EQU X'04" Block on send (ICS)
ADTTYPLL EQU X'02" LL type SEND/RECV
ADTTYPSP EQU X'01" SEP type SEND/RECV
PARAMETER DESCRIPTION
ADTVERS Version
Indicates the CPT version number of the argument used by the
calling program. This required field must be set to a binary 2 for this
release of CPT.
Default: None
2- 68 Chapter Two — ASSEMBLER CALLS

/

001002-070520% 02

00+002-0t0%20- 108002

SEND

Assembler Data Area

 PARAMETER

~ DESCRIPTION

ADTFUNC

Function code

Indicates the function or callable service ID requested by the
application program. This field should not be set by the application,
but rather is initialized by the TRUE interface stub program.

Default: None

ADTTOKEN

Data transfer token
Specifies a token that represents a TCP connection.

If the ADT is being passed in a call to either the RECEIVE or
SEND service, it must be a token representing a previously
established TCP connection, via the CONNECT or LISTEN
service. ltis an error to pass a zero ADTTOKEN to either the
RECEIVE or SEND service.

It is an error to pass a TCP token to the UDP data transfer service
routines, RCVFROM and SENDTO. Conversely, it is an error to
pass a UDP token to the TCP data transfer routines, RECEIVE
and SEND.

Default: 0

ADTBUFFA

User data address

Indicates the address of user data to be sent to the connected (or
associated) transport user. This is a contiguous segment of storage
accessible to the user task. The content of all user data is
application-dependent, and is not interpreted by either CPT or the
transport provider. The storage area can be aligned on any
boundary convenient for the application program.

Default: 0

ADTBUFFL

User data length

Indicates the length (in bytes) of user data in the storage area as
identified by the ADTBUFFA operand. The length is updated when
the request is completed to reflect the actual length of user data
sent. Generally, the length returned is equal to the length
requested. If a SEND request is issued with a zero length, an error
is detected and the request fails.

Default: 0

ADTRTNCD

Return code

Indicates the return code set by the SEND service. This value is
also returned in register 15 and indicates the success or failure of
the service.

Default: 0

ADTDGNCD

Diagnostic code

Indicates the diagnostic code set by the service request. This value
generally indicates a transport provider return code.

Default: 0

ADTSTATS

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTTRACE

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTQSEND

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area

SEND

ADTMSEND

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTQRECV

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTMRECV

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTTIMEO

RECEIVE timeout value
Not used by the SEND service.
Default: None

ADTLPORT

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTRPORT

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTSRVCE

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTSEP#

Number of separator characters for option ADTTYPSP
(0 < ADTSEP# < 3). If ADTSEP# is not equal to 1 or 2,
CPTESEP# will be returned in ADTRTNCD.

Default: None

ADTSEP1

First or only separator character for option ADTTYPSP.

Default: None

ADTSEP2

Second separator character in a sequence of two for option
ADTTYPSP.

Default: None

ADTLADDR

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field. :

ADTRADDR

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTLNAME

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTRNAME

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

ADTUCNTX

This field is used only by the UDP calls RCVFROM and SENDTO.
For TCP connections, this parameter is set in the equivalent ACM
field.

2- 70

Chapter Two — ASSEMBLER CALLS

£

N/

A

001002-0v0v20* ™02

001002-00t20- 108002

SEND

Assembler Data Area

- —

_ paRameTer |

——

ADTOPTNS

This field specifies data transfer options.

These are the ADT options that apply to TCP data transfer
requests:

& ADTNBLXKR - Do not block on a call to the RECEIVE service.
Not used by the SEND service.

& ADTTMRCV — Timed full record RECEIVE. Not used by the
SEND service.

4 ADTTMPRT - Timed partial record RECEIVE. Not used by the
SEND service.

& ADTTYPSP — SEP type SEND. These files (along with other
required ADT fields) are used to request a SEP type SEND call:

ADTOPCD1 = ADTTYPSP

ADTSEP# = 1 OR 2

ADTSEP1 = character

ADTSEP2 = character if ADTSEP# = 2

& ADTTYPLL — LL type SEND. These fields (along with other
required ADT fields) are used to request a SEP type SEND call:

ADTOPCD1 = ADTTYPLL

& ADTBLCKS - Block on SEND service call. The default for the
SEND service is to return control to the caller as soon as the
SEND request has been scheduled with the local transport
provider. Option ADTBLCKS will block the return to the caller
until the SEND data has been moved to the local transport
provider’'s address space (not the remote TCP). This can
provide TCP connection status at the SEND service call time
rather than at some later time (next SEND or RECEIVE call).

& ADTFVLST - Currently for internal use only.

Note: It is an error to combine any of these SEND service options:

ADTTYPLL
ADTTYPSP

An invalid combination will result in CPTEOPTN being returned in
ADTRTNCD.

Default: None

CICS Programmer’s Toolkit Programmer’s Reference

Completion Information SEND

Completion The sexD service completes normally when the data has been both moved
Information from the application program's storage area and forwarded to the transport

Return Codes

provider for sending to the connected (or associated) transport user. A length
is returned to the application program, which is set to the amount of data
processed.

Normal completion of the sExD service implies nothing in regard to when the
data is sent to the peer transport user. This only means that the transport
provider has taken custody of the user data and the storage area provided by
the application program can be reused. The transport provider generally sends
the buffered data, but this may not occur synchronously with the completion of
the sEND service.

On normal return to the application program, the general return code in register
15 (apTRTNCD) is set to zero (cpTIRCOK). The diagnostic code in register 0
(apTDGNCD) is always zero. The length field (apTBUFFL) indicates the amount
of data processed.

If the sEND service completes abnormally, some or no user data may have
been sent to the peer transport user. The general return code (ADTRTNCD) in
register 15, and the diagnostic code (apTDcNeD) in register 0, indicate the
nature of the failure. The diagnostic code (apTpceNeD) generally contains a
specific code that is generated by the transport provider.

The sEND service returns a code in registers 15 and 0 that indicates the results
of the execution. These values are in the ADTRTNCD (R15) and ADTDGNCD (RO)
within the ADT. The diagnostic code is optional and generally indicates a
transport provider return code. Read Appendix C - MESSAGES AND
CODES in the CICS Programmer’s Toolkit Installation and Administration
Guide for the return code cross reference table.

This table describes the sexD service return codes:

RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful.
CPTEVERS Control block version number is not supported.
CPTETOKN Specified token is not valid.
CPTEBUFF Buffer address and/or length is invalid.
CPTEPRGE Yes CPT Interface is terminating.
CPTENAPI Yes Transport provider API is not available.
CPTETERM Yes Environment is being terminated.
CPTERLSE Yes Release indication.
CPTEDISC Yes Disconnect indication.

2-

72

Chapter Two — ASSEMBLER CALLS

02

hS

\

001002-0v0v20”

(

00+002-0t0%20- LOQOOZ

SEND Usage Information
RETURN 1 DIAGNOSTIC CODE | DESCRIPTON

CPTEINTG Yes Transport provider API integrity error.
CPTEENVR Yes Transport provider APl environment error.
CPTEFRMT Yes Transport provider API format error.
CPTEPROC Yes Transport provider API procedure error.
CPTABEND Abnormal exception occurred.
CPTEOTHR Yes An undefined exception occurred.

Usclge The seND service sends normal data as output through a CPT connection. The

Information data may be part of a byte stream being sent over a connection (TCP), or may

be part of a datagram to be sent via an association (UDP) to a peer transport
user.

If the transport service type or protocol selected is a connection-mode byte
stream (TCP), data is moved from the application program's storage area to
storage areas maintained by the transport provider. The data is packetized and
sent to the connection transport user. Logical boundaries are not preserved in
the data stream. The data is delivered to the peer transport user in the precise
order in which it was sent. However, this data may be fragmented.

Data is not necessarily packetized and sent by the transport provider each time
a SEND service is issued, nor is it sent when a buffer boundary is indicated. The
transport provider may intentionally delay sending data as the result of

performance optimization or congestion avoidance algorithms. Normally, data
generated by the application is forwarded when it is sentin a continuous flow.

The seND service request is a synchronous operation, which may require the
application to be blocked. The sExD queue (acvosEND) and buffer (acMMSEND)
sizes, as specified during connection initialization, control output queuing and
buffering. The queue size represents the number of uncompleted SEND
requests that can be pending to the transport provider. The default value is
generally sufficient to support most applications. The transport provider
normally completes a sexD request within a reasonable amount of time, but a
congested network may cause the transport provider delays in completing
requests, and cause the application to be blocked.

Additionally, for an application that issues multiple sexD requests contiguously,
consider increasing the default queue size. The buffer size represents the
maximum number of user data bytes that can be transferred by the application
in a single sExD request to the transport provider. This value is application
dependent. A small value causes the SEND service to issue multiple transport
provider sEND requests. Multiple transport provider SEND requests do not
present a problem, but do reduce the queue size and can cause the application
to be blocked. A large buffer value can waste application storage.

The queue and buffer size values are specified during connection initialization
and can be modified on return. An application that is dependent on these
values should validate the requested values, compared with values returned
within the ACM. The values are modified if the transport provider site

CICS Programmer’s Toolkit Programmer’s Reference 2-73

Usage Information

SEND

administrator has configured limits and the application request exceeds those
values. If the requested values are modified, verify site definition statements
for API transport services.

The version number (AapTVERS) indicates the CPT release level in which this
user application program is written. This required field must be set to a binary
2 and is validated by the senD service before processing the request.

The function code (apTrunc) indicates the CPT callable service ID. The field is
not initialized by a user application program and has little value to the
application except for dump analysis. The function code identifies and maps
an argument list with the error or trace log and dump analysis.

The token (aDpTTOKEN) indicates the connection that is to transmit data. This
required field is validated by the senD service before processing the request.

The data buffer address field ApTsUFFa is a full word. The application program
assures that the residency mode of data areas it manages (for example,
argument lists) is compatible with the addressing mode. The transport provider
performs consistency checks on the addressing mode whenever a service
request is issued. However, unpredictable results may occur before the
transport provider can perform this check.

The data buffer length is indicated by the aprsurrL field. This is a full word
positive integer. The data buffer length field should be less than or equal to the
maximum send buffer values. However, if the data buffer length is greater than
the maximum send buffer, the sexp service fragments the user data into
multiple transport provider requests. The ADTBUFFL is updated on return from
the sEND service with a value that indicates the number of bytes processed.

The aprorrc field specifies sExp processing control options and provides a
mechanism for event notification on return to the application program.
Currently, this facility is reserved for internal processing.

Example:

In this example, a welcome message is sent to the remote connection. The
token is loaded from the ACM. The ADT contains the version number, token,
buffer address and length. The return code is validated on return and, if
successful, processing continues.

*

* Dsect's
*
TOSDADT MF=DSECT Argument for Data Transfer
*
* Working storage

*

DFHEISTG DSECT

SENDARG DS XL (ADTLEN) Data Transfer Argument

WELCOME DC C'Welcome to the wonderful world of CPT/APT.'
*

* Entry

*

label DFHEIENT

2-

74

Chapter Two — ASSEMBLER CALLS

TN

oowoa-ovovzo‘*‘\pz
o~/

001002-0t0%20- 108002

SEND

Usage Information

SEND

ERROR

ORDER

ABORT

END

CPT Connection Management initialization and request
L R9, ACMTOKEN Load ACM Token

Application and CPT Data Transfer SEND processing

DS HO

LA R7, SENDARG Load SEND argument address
USING TO9DADT,R7

ST R9, ADTTOKEN Save connection token

MVC ADTVERS,=H'2" Set version number

LA R3,WELCOME Load address of output buffer
ST R3, ADTBUFFA Save buffer address in DT arg
L R3,L'WELCOME Load buffer length

ST R3,ADTBUFFL Save buffer length in DT arg.
LR R1,R7 Load Data Transfer Arg. in R1
L R15,=V(TO9FSEND) Load SEND Service Stub address
BALR R14,R15 Issue SEND request

LTR R15,R15 Test Return Code

BNZ ERROR Non-zero, process error

Application processing

B 'SEND Send more network data

SEND Data Transfer Error

DS 0H

L R3, ADTRTNCD Load ADT Return Code

C R3,=A(CPTERLSE) Test Release Indication

BE ORDER Equal, graceful connection termination
L R4, ADTDGNCD Load ADT Diagnostic Code

. Process and log application errors
B ABORT Abort Connection
DROP R7 ADT
CPT Connection Termination
DS 0H
Orderly Release of connection

B END Terminate Transaction
DS 0OH

Abortive Release of connection

Terminate Transaction

DS 0H
EXEC CICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference 2-75

Usage Information

SEND

l]g Example:

This example is similar to the first example, except the T09McaLL macro
instruction adds the version number and generates the CPT sexD stub routine
call. The return code is validated on return and, if successful, processing

continues.
Dsect's
*
TO9DADT MF=DSECTArgument for Data Transfer
*
* Working storage

DFHEISTG DSECT

SENDARG DS XL (ADTLEN) Data Transfer Argument

WELCOME DC C'Welcome to the wonderful world of CPT/API.'
*

* Entry

*

label DFHEIENT

. CPT Connection Management initialization and request
L R9, ACMTOKEN Load ACM Token

Application and CPT Data Transfer SEND processing

SEND DS HO

LA R2, SENDARG Load SEND argument address
USING TO9DADT,R2

ST R9, ADTTOKEN Save connection token

MVC ADTVERS,=H'2" Set version number

LA R3,WELCOME Load address of output bufferd
ST R3,ADTBUFFA Save buffer address in DT arg
L R3,L'WELCOME Load buffer length

ST R3,ADTBUFFL Save buffer length in DT arg.
TOOMCALL SEND, PARM=SENDARG Issue SEND request

LTR R15,R15 Test Return Code

BNZ ERROR Non-zero, process error

Application processing

B SEND Send more network data
*
* SEND Data Transfer Error
*
ERROR DS 0H
L R3, ADTRTNCD Load ADT Return Code
C R3,=A(CPTERLSE) Test Release Indication
BE ORDER Equal, graceful connection termination
L R4, ADTDGNCD Load ADT Diagnostic Code

2-

76

Chapter Two — ASSEMBLER CALLS

/,

X,

00 lOOZ'OVOVZC‘QOZ

00+002-0+0%20-1 08002

SEND

Usage Information

ORDER

ABORT

. Process and log application errors

B ABORT Abort Connection

DROP R2 ADT
CPT Connection Termination
DS OH

. Orderly Release of connection

B END Terminate Transaction

DS 0H

Abortive Release of connection

Terminate Transaction

Ds OH
EXEC

CICS RETURN

CICS Programmer’s Toolkit Programmer’s Reference

Assembler Data Area

SENDTO

m

SENDTO

Assembler Data
Area

This service is provided to allow connectionless client and server applications
to be developed. This service is UDP only. The seNDTO service provides two
basic functions:

¢ Establish a UDP client endpoint represented by a new token and send
a datagram to a remote UDP server. This function is indicated to the
SENDTO service by passing an ADTTOKEN equal to zero. sENDTO Will
then create all the internal control blocks and the sexpTo buffer queue.
Even though the rcvrrom buffer queue will not be allocated for this
endpoint (token) until the rRcvrrom service is called, the rRcvEroM buffer
size and number must be specified at this time because they are
negotiated with the transport provider and recorded in the internal CPT
control blocks at endpoint creation time. Upon return from the sexpTo
service apTTOKEN Will contain the token value to be passed to
subsequent sENDTO and RCVFROM service calls.

¢ Send a datagram at a previously established UDP endpoint
represented by an existing token. This functionality makes the sexpTo
service call just a data transfer call that can be used by a client or
server application. The sexpTo buffer queue is only allocated upon the
first call to the sexpTO Service whether apTTOKEN is equal to zero or
not.

UDP tokens created with the RcvrFRoM or SENDTO services cannot be passed to
the TCP only services, CONNECT, LISTEN, SEND, and RECEIVE. All other CPT
service calls are available to UDP applications.

This table describes the arguments for the sexpTo service:

MACRO ID DSECT NAME SIZE CREATED BY

TO9DADT ADT 644 (X'284") User application

This is what the psecT control block looks like in Assembler language:

Name Operation Operands Description
ADT DSECT ,
ADTVERS DS H Version number
ADTFUNC DS H Function code
ADTTOKEN DS A Token (CEP)
ADTBUFFA DS A Data buffer address
ADTBUFFL DS F Data buffer length
ADTRTNCD DS F Return code
ADTDGNCD DS F Diagnostic code
ADTSTATS DS OF Statistics flag
DS XL3
ADTSTAT DS X Primary statistics request byte
ADTSTERM EQU X'02' - Termination statistics
ADTTRACE DS OF Trace flag
DS XL2
2- 78 Chapter Two — ASSEMBLER CALLS

001002-0v0v20% 0z

OOLOOZ'OVOVZO'LOQOOZ

SENDTO

Assembler Data Area

ADTTRAC2
*
ADTTTKNS
ADTTTPL
ADTTSTOR
ADTTRACL
*
ADTTNTRY
ADTTARGS
ADTTRECV
ADTTSEND
ADTTTERM
ADTTPASS
ADTTCLSE
ADTTTERR

ADTQSEND
ADTMSEND
ADTQRECV
ADTMRECV
ADTTIMEO

ADTLPORT
ADTRPORT

ADTSRVCE

ADTSEP#
ADTSEP1
ADTSEP2

ADTLADDR
ADTRADDR
ADTLNAME

ADTRNAME

ADTUCNTX
ADTOPTNS
ADTOPCD4
ADTOPCD3
ADTOPCD2
ADTFVLST
ADTNOSTP
ADTOPCD1
ADTFDNR

ADTNBLKR
ADTTMRCV
ADTTMPRT
ADTBLCKS
ADTTYPLL
ADTTYPSP

DS

EQU
EQU
EQU
DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
EQU
DS
EQU
EQU
EQU
EQU
EQU
EQU
EQU

X'01
X'02'
X'08"

X'0l"
X'02"'
X'04"
X'08"
X'10°
X120
X140
X'80"

X'80"
X'40!

X'80"
x40
X'10"
X'08"
X'04"
X'02"'
X'01"

Second trace byte (for hi 1vl
lang)

- Trace token information

- Trace TPL block

- Trace GETMAIN/FREEMAIN
First trace byte (for hi 1vl
lang)

- Trace entry points

- Trace arguments

- Trace TRECV

- Trace TSEND

- Trace termination

- Trace TAKE

- Trace CLOSE

- Trace TPL errors

TSEND gqueue size

Max TSEND TPL buffer size

TRECV queue size

Max TRECV TPL buffer size

Seconds to wait for timed RECEIVE
RESERVED

Local transport provider port
Remote transport provider port
Reserved

Local/remote service name
Reserved for C string

Number of SEP chars-make fullwd
First or only seperator character
Second seperator character
Unused

Local IP host address

Remote IP host address

Local IP host name

Reserved for C string

Remote IP host name

Reserved for C string

User context field

Data transfer option codes
Option code 4

Option code 3

Option code 2

Vector list flag

Do not strip LL or SEP seqg on RECV
Option code 1

Do DNR name resol. for UDP, Def=No
Do not block on RECV/RECVFR (both)
Timed fullblk RECV w/ADTTIMEO
Timed partial RECV w/ADTTIMEO
Block on SEND (ICS)

LL type SEND/RECV

SEP type SEND/RECV

CICS Programmer’s Toolkit Programmer’s Reference

2-79

Assembler Data Area

SENDTO

ADTVERS Version
Indicates the CPT version number of the argument used by the calling program. This required field must be
set to binary 2 for this release of CPT.
Default: None
ADTFUNC Function code
Indicates the function or callable service ID requested by the application program. This field should not be
set by the application, but rather is initialized by the true interface stub.
Default: None
ADTTOKEN Data transfer token
Specifies a token that represents a UDP endpoint. If the ADT is being passed in a call to either the
RCVFROM or SENDTO service, the token can be zero, indicating to either service, to first create a token
before sending or receiving a datagram. If the token is not zero, it must be a token created previously by
either the RCVFROM or SENDTO service. It is not necessary or efficient to create a token every time a CICS
transaction calls the UDP data transfer services. It is an error to pass a TCP token to the UDP data transfer
service routines, RCVFROM and SENDTO. Conversely, it is an error to pass a UDP token to the TCP data
transfer routines, RECEIVE and SEND.
Default: 0
ADTBUFFA User data address
Indicates the storage address from which the UDP datagram will be sent (SENDTO service). This is a
contiguous segment of storage accessible to the user task. The content of all user data is application
dependent, and not interpreted by either CPT nor the transport provider. The storage area can be aligned on
any boundary convenient for the application program.
Default: 0
ADTBUFFL User data length
Indicates the length (in bytes) of the buffer specified in ADTBUFFA which is to be sent (SENDTO service). It
is an error to call the SENDTO service with an ADTBUFFL of zero. Upon return to the caller, ADTBUFFL
reflects the number of bytes actually sent (generally the number requested). Indicates the return code set by
the SENDTO service.
Default: 0
ADTRTNCD Return code
Indicates the return code set by the SENDTO service. This value is also returned in register 15 and indicates
the success or failure of the service.
Default: 0
ADTDGNCD Diagnostic code
Indicates the diagnostics code set by the SENDTO service. This value generally indicates a transport
provider return code.
Default: 0
ADTSTATS ADTSTATS CONN | ADTSTSTS TERM
Specifies logging options for the application program. The facility can be used for debugging and tuning
during development.
¢ ADTSTATS CONN- Specifies that messages be generated on the closing of a UDP token. These
messages are generated by the CPT CLOSE service. The message numbers are CPT802 Tand
CPT8031I.
¢ ADTSTATS TERM- Specifies that messages be generated on terminating an established connection.
These messages are generated by the CPT CLOSE service. The message numbers are CPT8071,
CPT808I and CPT8091T.
Default: 0 (No statistics logging)
2- 80 Chapter Two — ASSEMBLER CALLS

)

AN

i

001002-00¥20% 0z

SENDTO Assembler Data Area

ADTTRACE This field specifies trace logging options for the application program. The facility can be used for debugging
during development.

& ADTTNTRY — Specifies that a message be generated on entry to a CPT service routine. The message
is generated by all CPT service routines. The message number associated with this optionis CPT9011I.

© ADTTARGS — Specifies that a hex dump of the caller's arguments be generated on entry and exit of a
CPT service routine. Messages are generated by the corresponding service routine. The message
numbers associated with this option are CPT902I, CPT903I, CPT9041I,CPT9111I,CPT912,
CPT9211I,CPT922T,CPT9241I,CPT925I,CPT9301, and CPT9321.

4 ADTTRECV — Specifies that a hex dump of the transport provider's input (RECEIVE) data. Messages
are generated by the CPT RCVFROM service. The message number associated with this option is
CPT913T.

4 ADTTSEND - Specifies that a hex dump of the transport provider's output (SEND) data. Messages are
generated by the CPT SENDTO service. The message number associated with this option is CPT9141.

ADTTTERM — Specifies that a message be generated on termination of a CPT service routine. Messages
are generated by all CPT service routines. The message number associated with this option is
CPT908I.

& ADTTPASS — Specifies that a hex dump of resources related to a passed connection be logged.
Messages are generated by the CPT GIVE and TAKE services. The message numbers associated with
this option are CPT919T and CPT920T.

€ ADTTCLSE — Specifies that a hex dump of resources related to a CLOSE processing of a connection
be logged. Messages are generated by the CPT CLOSE service. The message number associated with
this option is CPT906I

4 ADTTTERR - Specifies that a hex dump be logged of a transport provider API parameter list that fails
successful completion. The message number associated with this option is CPT4001.

€ ADTTTKNS - Specifies that a hex dump of the UDP token be logged. Messages are generated by all
service routines on entry. The message number associated with this option is CPT909!.

@ ADTTTPL — Specifies that a hex dump of the transport provider API parameter list be logged. The
message numbers associated with this option are CPT917I and CPT9351.

€ ADTTSTOR - Specifies that a hex dump of storage management argument be logged. Messages are
generated by various CPT service routines. The message numbers associated with this option are
CPT9281 and CPT9291.

Default: 0 (No trace logging)

001002-0¥0%20-108002

ADTQSEND AP! SEND queue size (used when ADTTOKEN=0)

Specifies the maximum number of uncompleted SENDTO requests that can be queued by the application to
the transport provider (API). This value lets applications control output processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified by the transport provider. The
total allocation for output processing is the product of the SENDTO queue and buffer size values and cannot
exceed 61K.

Default: 4

ADTMSEND API send buffer size (used when ADTTOKEN=0)

Specifies the maximum number of user data bytes that can be transferred by the application in a single
SENDTO request to the transport provider (API). This value lets applications control output processing and
can affect throughput rates. The value is negotiated with the transport provider and can be modified by the
transport provider. The total allocation for output processing is the product of the SENDTO queue and buffer
size values and cannot exceed 61K.

Default: 4096

CICS Programmer’s Toolkit Programmer’s Reference 2-81

Assembler Data Area SENDTO

ADTQRECV API RECEIVE queue size (used when ADTTOKEN=0)

Specifies maximum number of uncompleted RCVFROM requests that can be queued by the application to
the transport provider (API). This value lets applications control input processing and can affect throughput
rates. The value is negotiated with the transport provider and can be modified by the transport provider. The
total allocation for input processing is the product of the RCVFROM queue and buffer size values and cannot
exceed 61K.

Default: 4

ADTMRECV API RECEIVE buffer size (used when ADTTOKEN=0)

Specifies the maximum number of user data bytes that can be transferred by the application in a single
RCVFROM request to the transport provider (API). This value lets applications control input processing and
can affect throughput rates. The value is negotiated with the transport provider and can be modified by the
transport provider. The total allocation for input processing is the product of the RCVFROM queue and buffer
size values and cannot exceed 61K.

Default: 4096

ADTTIMEO RECEIVE timeout value
Not used by the SENDTO service
Default: 0

ADTLPORT Local well-known service port.

Indicates the local transport layer port that the calling application will be sending (SENDTO) UDP datagrams
from. If the SENDTO service creates the token, this port number is assigned by the transport layer and
returned to the caller. If the RCVFROM service creates the token, this is the well-known port requested by the
caller. This field is an unsigned positive integer with a maximum value of 65,534. The value must be unique
for each server application.

Default: None o

ADTRPORT Remote port.

Indicates the remote transport layer port destination for the datagram being processed by the SENDTO
service. This field is an unsigned positive integer with a maximum value of 65,534.

Default: None

ADTSRVCE Transport layer service name
Not used in the SENDTO.

Default: None

ADTSEP# Number of separator characters for option ADTTYPSP.
Not used in the SENDTO service.

Default: None

ADTSEPL First or only separator character for option ADTTYPSP

ootooz—ovovzc\/ Nz

Not used in the SENDTO service.

Default: None

ADTSEP2 Second character or separator sequence for option ADTTYPSP.
Not used in the SENDTO service.

Default: None

ADTLADDR Local IP host address

Indicates the local host internet address. this field is an unsigned four-byte integer value. The local host
internet address is returned to the caller of the SENDTO service.

Default: None

2- 82 Chapter Two — ASSEMBLER CALLS

001002-00%20- 108002

SENDTO Network Considerations

ADTRADDR Remote IP host address
Indicates the remote host internet address destination for the datagram being processed by the SENDTO
service. This field is a unsigned four-byte integer value.
Default: None
ADTLNAME Local IP host name
Indicates the local host internet name. This field is a 255-byte character string that is padded with blanks.
The local host internet name is returned to the caller of the SENDTO service.
Default: None
ADTRNAME Remote IP host name
Indicates the remote host internet name. this field is a 255-byte character string that is padded with blanks. It
is only resolved through internal DNR calis and returned to the caller of the UDP data transfer service
routines (RCVFROM and SENDTO) if the ADTOPTNS flag, ADTFDNR, is specified. This is to prevent the
DNR call overhead on every UDP data transfer call.
Default: None
ADTUCNTX One word of user context
Specifies one arbitrary word of user context to be associated with the endpoint. The information provided is
not interpreted by CPT, and is merely saved with other endpoint information.
Default: 0 (No user context)
ADTOPTNS Specifies data transfer options
These are the ADT options that apply to UDP data transfer requests:
4 ADTFDNR — Execute internal DNR calls during UDP data transfer service routine calls (RCVFROM and
SENDTO) to resolve remote IP addresses into IP names in the ADTRNAME field.
4 ADTNBLKR - Do not block on a call to the RCVFROM service (not used by the SENDTO service).
Detfault: None
Note: These options can be toggled on every UDP data transfer call even if the caller is using the same
token.
Network The ADT is a common data structure used for both client and server UDP
Considerations applications. There are common and unique values specified for a particular

service request.

This table describes network considerations for Assembler API:

NAME SERVER CONDITIONS FOR CLIENT CONTITIONS FOR
RCVFROM SENDTO

ADTLPORT | Local server well-known port Local assigned transport provider port
selected by user application. returned to user application.

ADTRPORT | Remote client transport provider Remote server transport provider
port returned to user by user well-known port selected by user
application. application.

ADTSRVCE | Local server trans port provider Remote server transport provider
service name selected by user service name selected by user
application. application.

CICS Programmer’s Toolkit Programmer’s Reference 2-83

Network Considerations

SENDTO

ADTRADDR

Remote IP host address returned
to user application.

Remote IP host address selected by or
returned to user application. The client
must specify this field or ADTRNAME.

ADTLNAME

Local IP host name returned to
user application.

Local IP host name returned to user
application.

ADTRNAME

Remote IP host name returned to
user application only if ADTFDNR
is specified in ADTOPCD1.

Remote IP host name selected by or
returned to the user application. The
client must specify this field or
ADTRADDR. If ADTRADDR is used,
ADTRNAME will only be returned if
ADTFDNR is specified in ADTOPCD1.

2- 84

Chapter Two — ASSEMBLER CALLS

/
/

/

001002-0v0v20* ™0z

001002-0¥0%20-1u8002

SENDTO Return Codes

Return Codes The sENDTO service returns a return code in registers 15 and 0 that indicate the
results of the execution. These values are in the ADTRTNCD(R15) and ADTDGNCD
(ro0) within the argument for data transfer. The diagnostic code is optional and
indicates the transport provider return code. Read Appendix C - MESSAGES
AND CODES in the CICS Programmer’s Toolkit Installation and
Administration Guide for the return code cross reference table.

This table describes the return codes for the sexpTO Service:

RETURN DIAGNOSTIC CODE DESCRIPTION
CPTIRCOK Successful.
CPTEVERS Control block version number is not

supported.

CPTECONN Requested host/service/port is not found.
CPTEPROT SENDTO called with a TCP token.
CPTEBUFF Buffer address and/or length is invalid.
CPTENAPI Yes Transport provider API not available.
CPTETERM Yes Environment is being terminated.
CPTEPRGE Yes CPT interface terminating.
CPTEINTG Yes Transport provider integrity error.
CPTEENVR Yes Transport provider environment error.
CPTEFRMT Yes Transport provider format error.
CPTEPROC Yes Transport provider procedure error.
CPTABEND Abnormal exception occurred.
CPTEOTHR Yes An undefined exception occurred.

CICS Programmer’s Toolkit Programmer’s Reference 2-85

Examples

SENDTO

Examples This example illustrates a connectionless client. It sends a datagram to a
well-known UDP port on a remote host, and then tries to receive it back with a
non-blocking rcvrrou call, up to ten times.

K e e *
CICS DSECTS AND WORKING STORAGE SECTION
K e *
CPTPARMS DS F CPT CALLING PARAMETER
CPTADT TO9DADT MF=, PFX=ADT DATA TRANSFER ARGUMENT
CPTIOBUF DS XL80 CPT SENDTO/RECVFR BUFFER
LABEL DFHEIENT CODEREG=(10)
K e *
SET UP REMOTE UDP SERVER ADDRESS AND PORT
*
K e e *
MVC ADTRPORT, =AL2 (7) UDP ECHO PORT
*
* SET REMOTE ADDRESS TO
* WHITEHOUSE.GOV
*
MVC ADTRADDR, =AL1 (198,137,240,100)
K e e *
*
* SENDTO USING UDP DATA TRANSFER, FIRST CREATING A CLIENT
* TOKEN
*
K e e *
LA R04,CPTIOBUF GET THE ADDRESS OF OUR DATAGRAM
ST RO4,ADTBUFFA SET SENDTO BUFFER ADDRESS
LA RO5,L'CPTIOBUF GET LENGTH OF OUR DATAGRAM
ST RO5,ADTBUFFL SET BUFFER LENGTH TO SENDTO
LA RO3,CPTADT LOAD DATA TRANSFER ARGUMENT ADDR
ST RO3,CPTPARMS SAVE ARGUMENT ADDRESS
*
TO9MCALL SENDTO, PARM=CPTPARMS T0O9CSNTO ENTRY POINT
*
LTR R15,R15 GOOD RETURN CODE?
BZ RECVIT YES, GO RECEIVE IT BACK
B EVALERR NO, GO DIAGNOSE ERROR
RECVIT DS 0H
K e *
*
* RCVFROM USING THE SAME UDP ENDPOINT TOKEN (USING SAME
* ADT)
*
K e e *
oI ADTOPCD1, ADTNBLKR DO NOT BLOCK ON RCVFROM CALL
2- 86 Chapter Two — ASSEMBLER CALLS

001002-0t0%20- 108002

SENDTO

Examples

LA

ST
LA

RECVLP DS
*

RO5,L'CPTIOBUF GET MAX LENGTH OF DATAGRAM TO

RCVFROM
RO5, ADTBUFFL SAVE RCVFROM BUFFER LENGTH
R06,10 TRY 10 TIMES TO GET IT BACK

OH

TO9MCALL RCVFROM, PARM=CPTPARMS TO9CRCFR ENTRY POINT

LTR
BZ

C

BNE

BCT
HOSTGONE DS

R15,R15 GOOD RETURN CODE?

HOSTALIV YES, FINISHED REMOTE HOST
IS THERE

R15, =A(CPTWBL<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>