

agree, e.g., OUTPUT specified against a read-only protection mode
indicator setting.

4. There is a mismatch in riata set names for a data set involved in a
volume switching operation. This is discussed in the next section.

Volume switching

The operating system end-of-volume routine does
password for a data set involved in a volume switch.
protection is handled in the following ways:

not request a
Continuity of

Input Data sets - Tape and Direct-Access Devices

Processing continues if there is an equal cOffiparison between the
data set name in the tape label or DSCB on the volume switched to,
and the name of the data set opened with the password. An unequal
comparison terminates processing.

output Data Sets - Tape Levices

The protection indicator in the tape label on the volume switched
to is tested.:

1. If the protection indicator is set ON, an equal comparison
between the data set name in the label and the name of the data
set opened with the password allows processing to continue. An
unequal comparison results in a call for another volume.

2. If the protection indicator is OFF, processing continues, and a
new label is written with the protection indicator set ON.

3. If only a volume label
processing continues, and a
protection indicator set cn.

exists on
new label

output Data Sets - Direct-Access Devices

the volun,e switched to,
is written with the

For existing data sets, an equal comparison between the data set
name in a DSCB on the volume switched to, and the name of the data
set opened with the password allows processing to continue. For new
output data sets, the mechanism used to effect volume switching
ensures continuity of protection and the DSCB created on the new
volume will indicate protection.

Data Set Concatention

A password is requested for every protected data set that is involved
in a concatentation of data sets, regardless of whether the other data
sets involved are protected or not.

SCRATCH and RENAME Functions

An attempt to perform the SCRATCH or RENAME functions on a protected
data set results in a request for the password. The protection feature
issues an operator's message when a protected data set is the object of
these functions. The Operator's Guide publication discusses the mes­
sage.

counter Maintenance

The operating system does not maintain the counter in the password
record and no overflow indication will be given (overflow after 67,535
openings). You must provide a counter maintenance routine to check and,
if necessary, reset this counter.

114

THE RESIDENT BLDL TABLE AND RESIDENT ACCESS METHOD OPTIONS

This chapter discusses the resident BLDI
table and resident access method options
and provides guidelines for their use.

Prerequisite Publications

The IBM System/360 Operating Systero:
Data Management publication (Form C28-6537)
contains a general discussion of the BLDL
routine.

The IBM Svstem/360 Operating System:
System Generation publication (Forn
C28-6554) describes how you specify the
resident BLDL table and resident access
method option in the SUPRVSOR macro­
instruction at system generation time.

The IBM Systern/360: Operating System:
utilities publication (Form C28-6586)
contains a description of the IEBUPDAT
utility which you use to construct lists of
load module names in the procedure liqrary
(SYS1.PROCLIB).

The IBM System/360 Operating System:
storage Estimates publication (Forro
C28-6551) provides storage requirement
information for the resident access method
option and resident BLDL table option.

The Resident BLDL Table and Resident Access Method Options 115

THE RESIDENT BLDL TABLE AND RESIDENT ACCESS METHOD OPTIONS

These options, when included in an Operating System/360 configu­
ration, provide you with the capabilities of placing in the system
nucleus:

1. All, or any selection of linkage library directory entries (40
bytes per entry).

2. A selected group of access method routines.

Placement occurs during the initial program load (IPL) process. You
include either or both of these options when the system is generated.
Parameters for specification of these options are provided in the system
generation SUPRVSOR macro-instruction. Operator communication with
these options may also be specified.

System issued ATTACH, LINK, LOAD, or XCTL macro-instructions request­
ing load modules in partitioned data sets require direct-access storage
device accesses to search the data set directory for the location of the
requested module (the BLDL table operation) and to fetch the module.
The resident BLDL table option reduces the number of accesses required
during execution of these macro-instructions when a load module (whose
directory entry is resident) is requested from the linkage library. The
resident access method option eliminates such accesses during execution
of a system issued LOAD macro-instruction that requests any of the group
of resident access method routines.

You specify the linkage library directory entries and the access
method routines to be made resident through lists of linkage library or
access method load module names placed in the procedure library
(SYS1.PROCLIB). A standard list and alternative lists may exist for
each option. IBM provides a standard list for the resident access
method option. The stanaard lists are processed without operator
intervention when the operator communication facility is not included
with the options. When the operator communication facility is included,
the operator must indicate the action to be taken. Selection of
alternative lists may not be made unless the operator corrmunication
facility is included. The Operator's Guide publication describes the
messages and replies associated with the two options.

The balance of this chapter discusses the function of each option,
the creaticn of the procedure library lists, the use of the operator
communication facility, and, in Appendix A, lists the content of the
resident access method standard list.

~rHE RESIDENT BLDL TABLE OprION

This option builds, in the system nucleus, a list of linkage library
directory entries for use by ATTACH, LINK, LOAD, or XCTL macro­
instructions requesting linkage library load modules. During execution
of the BLDL operation in the ~acro-instruction routines, the linkage
library directory is searched only when the directory entry for the
~equested load module is not present in the resident BLDL table.

You list, in a member of SYS1.PROCLIB, the load module name of
linkage library load modules whose directory entries are to be made
resident. The member name for the standard list is IEABLDOO. Creation
of procedure library lists is discussed later in this chapter. The next
section provides gUidelines for choosing the content of the list.

~ote: Directory entries in the resident table are not updated as a
result of updating the load wodule in the linkage library. The old

116

version of the load module is used until an IPL operation takes place
and the new directory entry for the module is made resident.

SELECTING ENTRIES FOR THE RESIDENT BLDL TABLE

Any load module in the linkage library may have its directory entry
placed in the resident BLDL table. Other items you should consider are:

1. Table size (each entry requires 40 bytes of storage).

2. Frequency of use of the load module.

Table Size

The resident BLDL table is incorporated in the system nucleus. The
additional storage required is governed by the number of table entries
and is acquired by reducing the amount of dynamic storage area
available, i.e., the system nucleus expands. Each installation using
the resident BLDL table option must determine the amount of storage it
can afford for the resident BLDL table.

Frequency of Use

Short of placing the entire linkage library directory in the resident
BLDL table, you make the option effective by selecting directory entries
representing the load modules which are called most frequently. Your
choice will depend on th~ system configuration and the operating
practices of your installation. You should give loaa modules of the
scheduling components of the system, linkage editor, and language
processor(s) thorough consiueration.

THE RESIDENT ACCESS METHOD OITION

This option places access rrethod load modules in the system nucleus
and creates a resident list cf the loaded modules. A LOAD macro­
instruction requesting any access method mCQule first scans the resident
list. If the module is listed, no fetch operation is required.

You list, in a member of SYS1.PROCLIB, the
access method load modules to be made resident.
standard list is IEAIGGOO. A standard list
access method roodules is supplied by IBM, and is
~tarter system under the standard member name.

load module names of
ThE:; member name for tne
of rrost frequently used
in SYS1.PROCLIB of the

The creation of procedure library lists and the content of the IBM
supplied standard list is discussed later in this chapter. The next
section discusses some considerations pertaining to the use of the
aCCESS method option.

CONSIDERATIONS FOR USE

The storage space requirea fOT each access method module consists of
the byte requirements of the module and its associated load request
block (LRB). The storage Estimates publication provides storage
requirements for'the resident access method option when used with the
standard procedure library list provided by IBM.

All access method modules placed in the system nucleus are "only
loadable". ATTACH, LINK, and XCTL macro-instructions cannot refer to
the resident modules.

The Resident BLDL Table and Resident Access Method Options 117

You may alter the standard access reethod list (or create alternative
lists) to include access method modules supporting program controlled
interrupt scheduling (PCI), exchange buffering, track overflow, and the
UPDAT function of the OPEN macro-instruction.

To te· el igible for use with the resident access method option, access
method load modules must be reenteratle. The IToodule name must be of the
form IGG019xx, where xx can be any two alphanurreric characters.

CREATING PROCEDURE LIBRARY LISTS

You use the IEBUPDAT utility program to construct the required lists
of load module names in the procedure library. Standard rrember names
for these lists are:

IEABLDOO for the BLDL tatle option
IEAIGGOO for the access method option

These are the member names that the nucleus initialization program
will recognize at IPL time in the atsence of any other specification,
i.e., the operator communication facility was not incorporated.

Your input format (to IEBUPDAT) for the lists is the same for either
option, consisting of library identification followed by the load module
names. You use eighty character records with the initial or only record
containing the library identification.. Continuation is indicated ty
placing a comma after the last name in a recora and a non-blank
character in column 72. Subsequent records must start in column 16.
The initial record forrrat (with continuation) is:

1

[b •••]
SYS1.LINKLIB
SYS1.SVCLIB

72

b ... namel,name2,name3, .•. X

Subsequent records do not contain the library name.

SYS1.lINKLIB indicates that linkage library load module names follow.

SYS1.SVCLIB indicates that SVC library module names follow. You list
linkage-library load rrodule names in the same order that they appear in
the linkage library directory.

You may construct alternative lists for either option and place them
in the procedure library. Member names for these alternate lists are of
the form:

IEABLDxx for the BLDL option
IEAIGGxx for the resident access method option

where xx can be any twc alphanumeric characters.

Use of the alternative lists is indicated by the operator at IPL time
and requires that the corrmunication facility be present. When the
operator communication facility is present, the operator must indicate
for either or both options that the standard list is to be used; that
alternative lists are to be used; or that, for this IPL, the option(s)
will not b~used. In the latter case, no resident BLDL table or access
method routines will be placed in the nucleus.

EXAMPLE

The following coding illustrates the format and content of a BLDL
option list that might be used to support the resident BLDL table
option. The operator, at IPL time, would have to indicate the member

118

name, IEABLDAE, to the system. The load module names listed are from
the Assembler (E), Linkage Editor, and scheduler components of the
operating system.

//BLDLIST EXEC PGM=IEBUPDAT,P~RM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=OLD
//SYSIN DD *
./ ADD IEABLDAE,OO,O,l
./ NUMBR 00000000,00000000,00000000,00000010

SYS1.LINKLIB GO,IEEGESTO,IEEGK1GM,IEEICIPE,IEEIC2NQ,IEEIC3JF, X
IEEQOTOO,IEFINrQS,IEFK1,IEFSD008,IEFW21SD,IEFXA, X

./ ENDUP
/*

IETASM,IETDI,I~TE1,IETE2,IETE2A,lETE3,IETE3A,IETE4M, X
IETE4P,IETE4S,IETE5,IETE5A,IETE5E,IETE5P,IETINP,IETMAC, X
IETPP,IETRTA,IETRTB,IET07,IET071,IET08,IET09,IET09I, X
IET10,IET10B,IET21A,IET21B,IET21C,IET21D,IEWL,IEWSZOVR

Note: The operator reply "L" may be used in conjunction with a list
specification and causes the content of the list to be printed. You
should use this feature initially (especially with extensive lists> so
that format errors, e.g., a 9 character name, and incorrect name
specifications way be easily identified.

The Resident BLDL Table and Resident Access Method Options 119

APPENDIX' A: RESIDENT ACCESS METHOD OPTION - STANDARD LIST IEAIGGOO

The content of the IBM supplied standard list for the resident access
method option is shown below. The modules are listed in an ascending
sequence by frequency of use, i.e., the least frequently used module is
first in the list. This arrangement ensures efficient scanning of the
resident list developed in storage.

J:.Jodule Name

IGG019AV
IGG019AN
IGG019Ar-J
IGG019AH

1GG019BE
IGG019AG

IGG019CB
1GG019CA
IGG019AK
IGG019AJ
1GG019AI
IGG019AC
IGG019AB
J.GG019AA
IGG019AR
IGG019AQ
IGG019AL
IGG019AD
IGG019BD
IGG019BC
1GG0198B
IGG019BA
IGG019CK
IGG019CJ

IGG019CI
IGG019CH

IGG019CL
IGG019CF

IGG019CE
IGG019CD
IGG019CC

120

Access Method

QSAM (SB)
QSAM <SB)
QSAM (SB)
QSAM (SB)

BSAM
QSAM (SB)

SAM
SAM
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
QSAM (SB)
BSAM
BSAM
BSAM
BSAM
SAr-l
SAM

SAM
SAM

SAM
SAM

SAL>:]
SAM
SAM

Functicn

PUT Locate for DUffITY Data Set
Backward Move - Format F, FB, U Records
Backward Locate - Format F, FB, U Records
GET Move with CNTL - Format V Records (Card
Reader)
Magnetic Tape Forward Space or Backspace
GET Move with CNTL - Format V Recoras (Card
Reader)
Space or Skip Printer
Stacker Select (Card Reader)
PUT Move, Format F, FB, U Records
PUT Locate, Format V, VB Records
PUT Locate, Format F, FB, U Records
GET MOVE, Format F, FB, U Records
GET Locate, Format V, VB Records
GET Locate, Format F, FB, U Records
PUT Synchronization Routine
GET Synchronization Routine
PUT Move, Format V, VB Records
GET Move, Forrrat V, VB Records
NOTE/POINT Tape
NOTE/POINT Disk
CHECK (all devices)
READ/WRITE (all devices)
SYSIN Delimiter Check (Appendage)
Read length Check, Forrr.at V Records
(Appendage)
Length Check, Format FB Records (Appendage)
End-of-Extent Check (Data Extent Block)
(Appendage)
Printer Test Channels 9,12 (Appendage)
ASA Character to Corrmand Code
(Printer-Punch)
End-of-Block (Printer-Punch)
Schedules I/O for Direct-Access output
Schedules I/O for Tape, Direct-Access
Input, Card Reader, Paper Tape Reader

SB=simple buffering
SAM=common sequential aCCESS method routines

CONSTRUCTING A DUMMY WAITR ROUTINE

This chapter discusses the preparation
of a dummy WAITR routine for use with
Option 2 (multiprogramming with a fixEd
number of tasks) of Operating System/360.

Recommended Publications

The IBM System/360 Oper~ting System:
Control Program Services publication (Form
C28-6541) describes the. WAITR rracro­
instruction.

The IBM System/360 Operating System:
Assembler Lanquage publication (Form
C28-6514) describes the assembler language
used to code the duwmy WAITR routine.

Constructing a Durorry ~AITR Routine 121

CONSTRUCTING A DUMMY WAITR ROUTINE

The multiprogramming with a fixed number of tasks option (MFT) of
operating System/360 requires programs scheduled into any higher
partitions to release the scheduler as soon after initiation as
possible. The mechanism for release is the WAITR macro-instruction
which causes the required scheduler shift to the next lower paitition.
You may desire to run programs not originally designed for the MFT
environment, i.e., not containing the WAITR macro-instruction, in one of
the higher partitions. In this circumstance you must provide a routine
that will cause the required scheduler shift; invoke the program you
desire to execute; and pass parameters to the invoked program. Your
routine is executed as the first portion of any job with which it is
associated.

The balance of this chapter discusses the functions of a dummy WAITR
routine, provides a coding example, and discusses the job control
language statements and programming considerations pertinent to use of a
dummy WAITR routine.

FUNCTIONS OF THE DUMMY WAITR ROUTINE

When coding a dummy WAITR routine, your code must:

1. Issue a WAITR macro-instruction.

2. Dynamically invoke a specified program.

3. Restore the PARM= field
execution of the WAITR
program to be invoked.

of the EXEC statement that initiated
routine, deleting only the name of the

You use the WAITR instruction to initiate the desired scheduler
shift. You dynamically invoke the program to be executed, i.e.,
transfer control via the XCTL macro-instruction, since once the WAITR
macro-instruction is issued, the scheduler is released. Your WAITR
routine identifies the program to be invoked by picking up its system
name from the PARM= field of the EXEC statement that initiated execution
of your WAITR routine.

Your WAITR routine must restore
parameter(s) present (other than the
picked up by the invoked program.

the PARM= field
invoked program's

so
name)

that
may

any
be

The next section, "A Coding Example" illustrates basic implementation
of these functions.

A CODING EXAMPLE

The following source statement sequence illustrates the implementa­
tion of the dummy WAITR routine functions described in the preceding
section. The statements are keyed to explanatory text by the circled
numbers.

122

DUMWAIT CSECT
SAVE
BALR
USING
ST
LA
L
LH

(14,12)
2,0
*,2
13,MYSAVE+4
13, MYSAVE
3,0(1)
5,0(3)

ADDRESS OF PARM AREA TO GR3
PARM AREA COUNT FIELD TO GR5

3

4

5

SCAN

HIT

XOUT

PARMOVE
MODMOVE
MYSAVE

MODNAME
XBCB

WAI'l'R
LA
LR
CLI
BE
LA
BCT
LA
SR
BCTH
LA
BCTH
EX
STH
LTR
BZ
BCTR
EX
L
L
L
XCTI,
MVC
MVC
DS
DS
DC
DC
END

1,ECB=XECB
3,0(3)
6,3
2(6),C','
HIT
6,1(6)
5,SCAN
5,1(5)
6,3
5,0
7,3(3,6)
6,0
6, MODIv'JOVE
5,0(3)
5,5
XOUT
5,0
5,PARMOVE
13,MYSAVE+4
14,12(13)

RELEASE SCHEDULER

SCAN FOR COMMA IN PARM FIELD
BRANCH IF FOUND
POIN'! TO NEXT CHARACTER

GR6 NOW CONTAINS NO. OF BYTES SCANNED
SUBTRACT 1 FROM COUNT FOR COMMA
GR7 NOW POINTS AT REMAINING PARAMETERS
SETUP GR6 FOR USE IN EX INST.

REMAINING COUNT TO PARM COUNT FIELD
CHECK COUNT FOR ZERO
IF ZERO, SKIP PARMOVE
SETUP GR5 FOR USE IN EX INST.

1,24(13)
(2,12),EPLOC=MODNAME
2(1,3),0(7)
MODNAME(1),2(3)
18F
OD
CL8' •
X'40000000'

1 The dummy WAITR macro-instruction must be coded as shown here. The
event control block must be specified as shown in statement 5, i.e.,
the complete bit is ON.

2 The subject instruction of this EX instruction places the name of the
program to be invoked in the MODNAME field -- statement 4.

3 The subject instruction of this EX instruction effectively deletes
the invoked program name from the PARM= area by moving the remaining
parameters in the area to the high order end of the area.

4 This field must contain blanks.

5 Coding the event control block as shown here sets the "complete bit"
ON. The wait routine will then allow execution of the WAITR routine
and the invoked program.

To the basic implementation shown in this example, you may wish to
add diagnostic code to inforrr the operator that the PARM= field has been
omitted from the EXEC statement. A count value of zero in the PARM=
area count field indicates that no information has been placed in the
PARM= area.

JOB CONTROL LANGUAGE STATEMENTS

You use the EXEC statement to initiate execution of the dummy WAITR
routine; to specify the name of the program to be invoked; and to
specify any parameters to be passed to the invoked program. A JOB
statement and any DD statements defining data sets used by the invoked
program must also be present in the input stream. A sample EXEC
statement follows. The dummy WAlTR routine has been cataloged as
DUMWAlT.

Constructing a Dummy WAITR Routine 123

//MFTJOB
//

JOB (any valid parameters)
EXEC PGM=DUMWAIT,PARM='PROGX,COMPUTE,BINARY'

(required DD statements for PROGX)

The name of the program to be invoked by DUMWAIT must be the first
entry in the PARM= paraneter list.

PROGRAMMING CONSIDERATIONS

A dummy WAITR routine itself does not require any special considera­
tions for use with MFT. MFT conventions that apply to the invoked
programs must be observed.

Note: Use of the dummy WAITR routine precludes the entering of input
data via the jot stream.

124

SYSTEM MACRO-INSTRUCTIONS

This chapter contains the description
and formats of macro-instructions that
allow you either to modify control tlocks
or to obtain information from control
blocks and system tables. Before reading
this chapter, you should be familiar with
the information contained in the prerequi­
site publications listed below.

Prerequisite Putlications

The IBM Sys1:em/360 Oper~ting System:
Control Program Services publication (Form
C28-6541) contains the notativn conventions
used to describe the macro-instructions in
this chapter.

The IBM Sys1:em/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information neces­
sary to code programs in the assemtler
language.

The IBM system/360 Operating System:
System Control Block publication (Forro
C28-6628) contains format and field de­
scriptions of the system control tlccks
referred to in this chapter.

System Macro-Instructions 125

LOCATE DEVICE CHARACTERISTICS (DEVTYPE) MACRO-INSTRUCTION

The DEVTYPE macro-instruction is used to request information relating
to the characteristics of an I/O device, and to cause this information
to be placed into a specified area.

r----------T----------T--,
I Nawe I Operation I Operand I
~----------+----------+--~
I [symbol] I DEVTYPE I ddloc-addrx,area-addrx[,DEVTAB] I l __________ L __________ i __ J

ddloc-addrx
specifies the address of a double word that contains the symbolic
name of the DD statement to which the device is assigned. The name
must be left justified in the double word, and must be followed by
blanks if the name is less than eight characters. The double word
need not be on a double-wcrd boundary.

area-addrx
specifies the address of an area into which the device information
is to be placed. The area can be either two full words or five
full wordS, depending on whether or not the DEVTAB operand is
specified. The area must bt on a full word toundary.

DEVTAB
If DEVTAB is specified, and the device is a direct-access device,
five full words of information are placed into your area. If
DEVTAB is specified, and the device is not a direct-access device,
two full words of information are placed into your area. If DEVTAB
is not specified, two full words of information are placed into
your area.

Note: Any reference to a durrmy DD statement
macro-instruction will cause invalid information to
the output area.

in
be

the DEVTYPE
placed in

Device Characteristics Information

The following information is placed into your area:

Word 1 Device Code from the UCB in which:

Byte 1

Byte 2

Byte 3

Byte 4

bit 0 Unassigned
bit 1 Overrunable Device
bit 2 Burst/Byte Mode
bit 3 Data Chaining
bit 4-7 Model Code

Optional Features

Device Classes

Unit Type

1 yes
1 = burst
1 yes

Note: Bit settings for Byte 2 -- Optional Features are noted in the ueB
format and field description in the System Control Blocks publication.

Word 2

126

Maximum tlock size. For direct-access devices, this
value is the maximum size of an un keyed block; for
magnetic or paper tape, this value is the maximum
block size allowed by the operating system. For all
other devices, this value is the maximum block size
accepted by the device.

If DEVTAB is specified, the next three full words contain the
following information:

Word 3

Word 4

Word 5

Bytes 1-2 The numcer of physical cylinders on the
device.

Bytes 3-4 The number of tracks per cylinder.

Bytes 1-2 Maximurr. track length.

Byte 3

Byte 4

Byte 1

Block Overhead the number of bytes
required for gaps and check bits for each
keyed clock other than the last block on a
track.

Block Overhead the number of bytes
required for gaps and check bits for a
keyed block that is the last block on a
track.

Block Overhead - the number of bytes to be
subtracted if a clock is not keyed.

Byte 2 bits 0-6 Reserved
bit 7 If 1, a tolerance factor must be

applied to all blocks except the
last block on the track.

Bytes 3-4 Tolerance Factor - this factor is used to
calculate the effective length of a block.
The calculation shculd be perforwed as
follows:

step 1 - add the block's key length to the
block's data length.

Step 2 - test tit 7 of byte 2 of word 5.
If bit 7 is 0, perform step 3. If bit 7
is 1, multiply the sum computed in step 1
by the tolerance factor. Shift the result
of the multiplication nine bits to the
right.

step 3 add the appropriate block
overhead to the value obtained above.

System Macro-Instructions 127

Output for Each Device Type

Maximum
UCB Type Field Record Size DEVTAB
(Word 1 (Word 2 (Words 3, 4, and 5
In Hexadecimal) In Decin1al} In Hexadecimal}

2540 Reader 10 00 08 01 80 Not Applicable

2540 Reader W/CI 10 01 08 01 80 Not Applicable

2540 Punch 10 00 08 02 80 Not Applicable

2540 Punch W/CI 10 01 08 02 80 Not Applicable

1442 Reader-Punch 50 00 08 03 80 Not Applicable

1442 Reader-Punch W/CI 50 01 08 03 80 Not Applicable

1442 Serial Punch 51 80 08 03 80 Not Applicable

1442 Serial Punch W/CI 51 01 08 03 80 Not Applicable

2501 Reader 50 00 08 04 80 Not Applicable

2501 Reader W/CI 50 01 08 04 80 Not Applicable

2520 Reader Punch 50 00 08 05 80 Not Applicable

2520 Reader Punch W/CI 50 01 08 05 80 Not Applicable

2520 B2-B3 11 00 08 05 80 Not Applicable

2520 B2-B3 W/CI 11 01 08 05 80 Not Applicable

1403 10 00 08 08 120* Not Applicable

1403 W/UCS 10 80 08 08 120* Not Applicable

1404 10 00 08 08 120* Not Applicable

1443 10 00 08 OA 120* Not Applicable

2671 10 00 08 10 32767 Not Applicable

1052 10 00 08 20 130 Not Applicable

2150 10 00 08 21 130 Not Applicable

2400 (9-track) 30 00 80 01 32767 Not Applicable

2400 (9-track
phase encoding) 34 00 80 01 32767 Not Applicable

2400 (9-track
dual-density) 34 20 80 01 32767 Not Applicable

2400 (7-track) 30 80 80 01 32767 Not Applicable

2400 (7-track and 30 CO 80 01 32767 Not Applicable
data conver-
sion)

128

2301 30 40 20 02 20483 000100C85003BA3535000200

2302 30 00 20 04 4984 00FAOQ2E1378511414010219

2303 30 00 20 03 4892 0050000A131C922626000200

2311 30 00 20 01 3625 OOCBOOOAOE29511414010219

2314 30 CO 20 08 7294 OOC800141C7E922D2DOI0216

CI=Card Image Feature

UCS=Universal Character Set

*Although certain models can have a larger line size, the minimum line
size is assumed.

Exceptional Returns

The following return codes are placed in register 15:

00 - request completed satisfactorily.

04 - ddname not found.

System Macro-Instructions 129

HOW TO READ A JOB FILE CONTROL BLOCK

To accomplish the functicns that are performed as a result of an OPEN
macro-instruction, the OPEN routine requires access to information that
you have supplied in a data definition (DO) statement. This information
is stored by the system in a job file control block (JFCB).

usually, the programmer is not concerned with the JFCB itself. In
special applications, however, you may find it necessary to modify the
contents of a JFCB before issuing an OPEN nacro-instruction. To assist
you, the system provides the RDJFCB rr.acro-instruction. This macro­
instruction causes a specified JFCB to be read into main storage from
the job queue in which it has been stored. Forroat and field description
of the JFCB is contained in the System Control Block publication.

When subsequently issuing the OPEN rracro-instruction, you must
indicate, by specifying the TYPE=J option, that you have supplied a
modified JFCB to be used during the initialization process.

The JFCB is returned to the job queue by the OPEN routine or the
OPENJ routine, if any of the modifications in the following list occur.
These modifications can occur only if the inforroation is not originally
in the JFCB.

• Expiration date field and creation date field merged into the JFCB
from the DSCB.

• Secondary quantity field merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DSCB.

• DCB fields merged into the JFCB from the DCB.

• Volume serial number fields added to the JFCB.

• Data set sequence number field added to the JFCB.

• Number of volumes field added to the JFCB.

If you make these, or any other rocdifications, and you want the JFCB
returned tc the job queue, you must set the high-order bit of field
JFCBMASK+4 to one. This field is in the JFCB. Setting the high-order
bit of field JFCBMASK+4 to zero does not necessarily suppress the return
of the JFCB to the job queue. If the OPEN or OPENJ routines have made
any of the above modif~cations, the JFCB is returned to the job queue.

OPEN -- Prepare the Data Control Block for Processing (S)

The OPEN macro-instruction initializes one or more data control
blocks so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro-instruction,
except for the TYPE=J option, is contained in the publication IBM
System/360 Operating System: Control Prograro Services. The TYPE=J
option, because it is used in conjunction with modifying a JFCB, should
be used only by the system programmer or only under his supervision.

r----------T----------T--,
I Name I Operation I Operand I
~----------+----------+--~ I [symJ:::ol] I OPEN I ({ dcb-addr, [(optl. -code [, opt2 -code]) 1 , } ••.) I
I I I [,TYPE=J] I L __________ L __________ L __ J

130

TYPE=J
specifies that, for each data control block referred to, the
programmer has supplied a job file control block (JFCB) to be used
during initialization. A JFCB is an internal representation of
information in a DD control statement.

During initialization of a data control block, its associated JFCB
may be modified with information from the data control block or an
existing data set label or with system control information.

The system always creates a job file control block for
control statement. The job file control block is placed
queue on direct-access storage. Its position, in relation
JFCBs created for the same job step, is noted in a main
table. '

each DD
in a job
to other

storage

When this operand is specified, the user must also supply a DD
control statement. However, the amount of information g~ven in the
DD statement is at the programmer's discretion, because he can
ignore the system-created jot file control block. (See the
examples of the RDJFCB macro-instruction for a technique for
modification of a systen-created JFCB.)

Note: The DD statement must specify at least:

• Device allocation.

• A ddname corresponding to the associated data control block DCBDDNAM
field.

RDJFCB -- Read a Job File Control Block (S)

The RDJFCB macro-instruction causes a job file control block (JFCB)
to be read from the job queue into roain storage for each data control
block specified.

r----------T----------T--,
I Nawe I Operation I Operand I
~----------+-~--------+--i
I [syml:olJ I RDJFCB I ({dcb-addr, [(opt :l-code[,opt2 -code])],} •.•) I L __________ ~ __________ ~ __ J

dcb, (opt:l I opt 2)

(same as deb, Opt:ll and Opt2 operands in OPEN macro-instruction)

Although the opt:l and opt2 operands are not meaningful during the
execution of the RDJFCB macro-instruction, these oper~nds can
appear in the L-form of either the RDJFCB or OPEN macro-instruction
to generate identical parameter lists, which can be referred to
with the E-forw of either macro-instruction.

Examples: The macro-instruction in EX1 creates a parameter list for two
data control blocks: INVEN and MA'STER. In creating the list, both data
control blocks are assumed to be opened for input; opt2 for both blocks
is assumed to be DISP. The macro-instruction in EX2 reads the
system-created JFCBs for rUVEN and MASTER frcm the job queue into main
~torage, thus making the JFCB's available to the problem program for
mooification. The macro-instruction in EX3 modifies the parameter list
entry for the data control block namEd INVEN and indicates, through the
TYPE=J operand, -that the problem is supplying the JFCB's for system use.

System Macro-Instructions 131

EXl RDJFCB (INVEN"MASTER),MF=L

EX2 RDJFCB MF=(E,EX1)

EX3 OPEN (, (RDBACK,LEAVE» ,TYPE=J,MF=(E,EX1)

Programming Notes: Any nurober of data control block addresses and
associated options ~ay be specified in the RDJFCB macro-instruction.
This facility makes it possible to read job file control blocks in
parallel.

An exit list address must be provided in each data control block
specified by an RDJFCB macro-instruction. Each exit list must contain
an active entry that specifiEs the rrain storage address of the area into
which a JFCB is to be placed. A full discussion of the exit list and
its use is contained in Appendix D of the IBM Systero/360 Operating
System: Control Program Services publication. The format of the job
file control block exit list entry is as follows:

r--------------T------------------T------------------------------------,
I Type of Exit I Hexadecimal Code I Contents of Exit List Entry I
I List Entry I (high-order byte) I (three low-order bytes) I
~--------------+------------------+--------------~---------------------i
I Job file I 07 I Address of a 176-tyte area to be I
I control block I I provided if the RDJFCB or OPEN I
I I I (TYPE=J) macro-instruction is used. I
I I I This area must begin on a full word I
I I I boundary. I L ______________ L __________________ ~ ____________________________________ J

The main storage area into which the JFCB is read must be at least
176 bytes long.

The data control block may be open or closed when this macro­
instruction is executed.

Cautions: The following errors cause the results indicated:

Error Result

A DD control statement has not been
provided.

A main storage address has not been
provided.

No action

Abnormal termination of task

L- and E-Form Use: The Land E forms of this IT.acro-instruction are
written as described in Appendix B of the IBM System/360 Operating
System: control Program Services publication.

132

Access method option
alternative list 118
eligible routines 118,120
function 117
operator communication 116,,118
procedure library list 118,119
standard list 120
storage requirements 117

Accounting routines
entry to 40
exit from 41
input to 40
insertion in control program 41
output from 41

BLDL table option
alternative list 118
eligible entries 117
entry size 117
function 116
operator communication 116.,118
procedure library list 118,119
standard list name 116
storage requirements 117

Catalog maintenance
alias entry 27
CAMLIST macro-instruction

11,12~13,14,15,16,17~18
CATALOG macro-instruction 17,18
control volume pointer entry 27
data set cataloging 17
data set deletion (direct-access

volumes) 19
data set pointer entry 26
data set renaming 20
generation index build 13
generation index pointer entry 27
index alias assignment 14
index alias deletion 15
index build 13
index control entry 25
index deletion 14
index link entry 2_6
INDEX macro-instruction 13,14,15,16
index pointer entry 26
LOCATE macro-instruction 11,12
volume control block contents 28
volume control block pointer entry 26
volume index control entry 25

Catalog and VTOC maintenance
device code designations 29

Control volumes
connection 15
disconnection 16

Data set protection
concatenation 114
counter maintenance 114
operating characteristics 113
SCRATCH and RENAME functions 114
termination of processing 113
volume switching 114

Device code designations
catalog and VTOC maintenance 29
DEVTYPE macro-instruction 127

DEVTYPE macro-instruction
DEVTAB operand 126,127
format 126
purpose 126

Dummy WAITR routine
example 122,123
EXEC statement PARM field 122,124
functions 122
input data via job stream 124

Editor routines
dual-density contiict 55
entry conditions 56,57
general logic flow 58
insertion in control program 63,64
module names 55
programming conventions 55
volume label conflict 55

EXCP macro-instruction
channel program 76
channel program completion 79
channel program dev~ge end errors 79
channel program initiation 78
CLOSE with EXCP 84,,92
control blocks 77
data control block format 86
DCB with EXCP 77,84
DEB with EXCP 77,96
ECB with EXCP 77,95
EOV with EXCP 84,91
lOB use with EXCP 77,93
OPEN with EXCP 84,90
programmer use 77
system use 75

IECDSECT macro-instruction
format 65
macro-definition 65
purpose 65
use in editor routines 61
use in nonstandard label routines 52

IEFJFCBN macro-instruction
format 71
macro-definition 73
purpose 71
use in editor routines 61,63

IEFUCBOB macro-instruction
format 70
macro-definition 70
purpose 70
use in editor routines 61,,63
~se in nonstandard label routines 52

JFCB modification 130

Nonstandard label routines
control information 47
design 45
entry point 45

Index 133

C28-6550-2

.EXCP usage 46
exit from 45,53
input header 44
input trailer 44
insertion in control program 53,54
output header 44
output trailer 45
register usage 45,47
size 45

OPEN macro-instruction
use with RDJFCB 130
type=J operand 130

PASSWORD data set
binary counter 113
characteristics 112
creation 113
protection 113
protection mode indicators 113
record format 112

RDJFCB macro-instruction
DCB exit list address 132
error conditions and results 132
format 131

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Land E-form use 131
purpose 131

SVC routines
design 32
exit from 33
insertion in control program 37
interruption 32
location 32
naming 33
number assignment 33
programming conventions 33
size 32,33

Tracing routine
table entry formats 109
table location 109

VTOC maintenance
CAMLIST macro-instruction
OBTAIN macro-instruction
RENAME macro-instruction
SCRATCH macro-instruction

WAITR macro-instruction

:; 132

19,20.,21
19
21

20

use in MFT shift initiation 122,123

(')
I\J
00
I

0'1
lJ1
lJ1
o
I

I\J

READER'S COMMENTS

" I' Title: IBM System/360 Operating System
System Programmer's Guide

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?

Yes No

Form: C28-6550-2

_ As an introduction t.:> the subject ___ For additional knowledge Other ________________________________ __

Please check the items that describe your position:
_ Customer personnel _Operator
_ IBM personnel _ Programmer
_ Manager _Custome~ Engineer
_ Systems Analyst _ Instructor

fold

_ Sales Representative
_ Systems Engineer
_Trainee

Other _____________ __

Please check specific criticism(s), give page number(s),and explain below:
___ Clarification on page (s)
_ Addi tion on page (s)

~ _ Deletion on page (s)
~ I - Error on page (s)
~

t.? I Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

C2:8- 6550- 2

st~aple

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L _______________________________ . _________________ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58

told

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[Internationalj

staple

r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I L ____________________ J

111111

111111

111111

111111

I1III1

111111

111111

"'d
Ii
1-'-
::s
it
CD
0..

1-"
::s
c:: · Cfl · :J:lI ·
()
N
ex>
I

'" U'I
U'I
0
I

N

fold

fold

staplt

