.Iummjr

HEWLETT' ﬁl PACKARD

HP 3000 SERIES III
COMPUTER SYSTEM

REFERENCE/TRAINING MANUAL |

Manual Part No 30000 90143

Printed in U.S.A. 6/79

Fon

HEWLETT-PACKARD COMPANY
5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95060

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied or reproduced without the prior written consent of
Hewlett-Packard Company.

Copyright ©1979 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

All pages in this manual are original issue.

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition

are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

First Edition. Jun 1979

PREFACE

This manual contains hardware-oriented reference information for
the HP 3000 Series III Computer Systems. Specifically, this man-
ual contains reference reading material for all persons that are
to attend Hewlett—Packard’s 3000 Series III Computer System Hard-
ware Training Cour ses. Since the information contained in this
manual 1is approximately the same as that presented during class-
room lectures, this manual should be used for classroom refer-
ence, ncte taking purposes, and post schocl reference.

The HP 3000 Series III Computer Systems are divided into two pro-
duct lines; the HP 32421A Series III and the HP 32435A Series
III. Unless otherwise stated, the content of this manual applies
equally to both product lines.

CONTENTS

SECTION I - INTRODUCTION
Paragraph

SYSTEM FEATURES
Stack Architecture

® © 9 0 0 ¢ 0 O 0O 00 PP L OO OGN 0 C OO L 00 L LRSI OEEEL OGO

© 0 © 00 00 00 0 0 00 00 0 0 0SB L0000 0O eSS0 e 0o

Microprogrammed OperatiONS ..e.eeeeceesccecscscsssssccncnns

Data Base Management Facilities
Five Programming Languages

Virtual Memory

® 0 00 0 ° 00 00 00 00000000000

® © 00600 00 00 0 00 00 0000000000000

Fault COntrol MEMOIY .seeeccccecsescccssssesossssssssscsscs

Concurrent I/0 and CPU

Reentrant Code and Private Data

Operations ..eecececccscessccccsese

e 0 0 0 0 0 00 20 00 000000

Operating System ® 6 6 0 0 06 0 00000 069 00600060 00000 0002000000000

HARDWARE FEATURES
SOFTWARE FEATURES
SYSTEM CONFIGURATIONS ...

© 6 6 0606 006 00 000 000 00 0000000 e

SECTION I1 - SYSTEM/CPU OVERVIEW

Paragraph

HARDWARE ORGANIZATION ...
Bus System ..eeeecceee
CTL BUS ® ® o 0 0 0 0 0 00

IOP BUS ® e 0 00000000

SELECTOR CHANNEL BUS

PORT CONTROLLER BUS
MULTIPLEXER CHANNEL
POWER BUS

MAIN MEMORY
MULTIPLEXER CHANNEL

PORT CONTROLLER/SELECTOR CHANNEL

DEVICE CONTROLLERS
CTL Bus Priority

OPERATING ENVIRONMENT ...
Virtual Memory ...

® 0 0 0006000 00 000 00 00 0000000000000
© © 0606 00000 00600600005 00000000000
® 0 6.0 06 02 0 9 5 0 0 0 00 0 000 00 000200000t
© 6 06 0 000 0 00 00 095 00000000 00000000000

® 0 0 00 00 ¢ 00 00 0 000000000000 e
® 9 © 9 0 9 065 00 5000 9 0000 00 0000l

BUS ® 0 00 00 00 0 0 00 00 00000000 0o

® © 0 0 0 0 0 0 09 O SO0 0E PO GO PO LE OO NN SO0l eN o

Functional Hardware Elements
CENTRAL PROCESSOR MODULE cceecoe

® ©6 06 00 0009 00 06000 00000000000

® e 0 00600 0000000000000

® 8 0 8 060 00 0 0606000 06000000 0000000000
® @00 00 09 00000000000
® 8 92 0 00000 000 000 0° 000 00 00000000

® 5 2 9 9 6 0 00 0 0 0 0 05 0 006 560000000

® 0 0 0 0600 00 0 060 00 06000 0000000000000 00

® 0 060 0 2 0 00 00 0 00 000 0000000000 LL L sEe 00 e

® © 0 0 00 05 0 00 00 ¢ 00 08 0 00000 00" SO0 eSO

Variable—-Length Segmentation .cccececsesoscescccsccssssses

Processes
Data Stacks
CPU Registers

Basic Table Structures

® 08 00 0 06 000 0 e 00 00000 0s 0000000
® 060 0 06 085 000 00 00000200

CODE SEGMENT TABLE AND CODE SEGMENT TABLE EXTENSION

vi

® ® 2 0 09 000 0 0 092 0 00 ¢ 00 00 000000000 L NN ESOE
® © 00 00 0 00 000 00000 0P PO NSO EL NSNS e

0 00 0 0 0 0 00 00 00 L OGO B OO N DTS00 E N0 0s0e e0

CODE SEGMENT REGISTERS
DATA SEGMENT REGISTERS

Page

1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3

1-4
1-4

)
[V}
Q
D

NN DN N
[T S T T N TR B
AP WWWWWNN =

f
W0 W o3~ IO

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page

DATA SEGMENT TABLE .vcececccesccoccessccccsssccccscsscces 2-16

Code Segment LinNKage «.eeeeececcccecsccescsccssscscssssses 2-16
Stack OperatioOn eceeeecessscesosssscssssacsscssssscsscsnsssas 2—22
INSTRUCTION AND STATUS WORD FORMATS teesecocccscccccocccses 2-27
Instruction FOrmats ieeeeeeeeeeceseceeeescnosonsnanansnas 227
GENERAL FORMAT +eceeecsocoecasossonoosscscsscssssssssescs 2-28

STACK OP

SHIF T uteeeeeeeeeessoeasoacsasessnsssssssscsssncsses 2-28
BRANCH 4 vteeceoccoscoosasoscscsscsoasscnscssnosssscscossscsss 2-28

BIT TEST eeeecocsccsocecsscecassoscccssscsscscssosnssssssca 2-30

MOVE ciceveeoroascsnssscsssssscsssscssossssossesssssssscsecss 230
SPECIAL teeosceecoccsoscscacscscscssscsscssascscsscscsssscsoscssa 2-30
IMMEDIATE 4 eeececocooscssccssscescsasncscscscssoasssscsssssse 2-30
FIELD 4 ieecocessocscsccccascscsssasoscssccsososssscscsscscse 2-30
REGISTER CONTROL sveeesoocccccccccscsscsoscsscsscsascsss 2-30
PROGRAM CONTROL +sesesecccsscssccscccscssscscsscssssese 2-30
I/0 AND INTERRUPT tvcecocsccccccsccsoscsccsosscsccccncnes 2-30
LOOP CONTROL .oeeeceocscsccccscesasasnsscsssascssssscsscscs 2-30
MEMORY ADDRESS ceececcooscoscscsososoasoosssscssscnscsssoss 2-31
Status Word FOrmat .eeeececsccscsesscscseasosscasssesscseasssss 231
Condition COAES ceeeescescosesscsscssonssosescasscssosans 2-32
OPERATING MODES .+ eeeeoescsccsescssscsssscsscscsoscscsssssssscsoss 2-34
ADDRESSING CONVENTIONS cceeceecvoccsscsosccscsccscssnsossssceos 2-35
Memory AJAreSSiNg ceeeesecccscssssscccssssssssssocccssssas 2-35
Indirect AQAresSSinNg .ceeececcecccsccsccscscssssccsccssnsnase 2-36
CODE INDIRECT ..ceocececcecscccscacsesoscscscsasacscscssanssscs 2-38
DATA INDIRECT teeeececoccocccscscsscoscscsocsssssssnscscnscses 2-38
INAEXIiNg tueveeececccoccaccocsocsssscsossssssccssscssssese 2-38
CODE INDEXING tveeeeccoscoscscscecsccsscosscssscscscsncsesns 2-38
DATA INDEXING ceecococoscscocosscasscscccscscsscsoassesocscssscs 2-40
Byte AdAressing .eeeeececseccscsccsccccccsscssscscoccssssssses 2-40
DIRECT BYTE ADDRESSING tceeeecccvccccsoccsscscsssesscscnscs 2-40
DIRECT, INDEXED BYTE ADDRESSING :tecceocccccccccsccansce 2-41
INDIRECT BYTE ADDRESSING teceeecoccccscscccoccscccssecss 2-41
INDIRECT, INDEXED BYTE ADDRESSING sececccecoccccccccsccs 2-41
Double-Word INdeXinNg eeeesecesscessscossccsssssscscssecncs 2-42
ACCESSING DB~ AY€A eeoeescccccccocscsoccccccscsssscsccssoconses 2-42
WORD ADDRESSING ceccecescecescscccsascscscssascsssascanccas 2-42
BYTE ADDRESSING .eeeescccccccccsccccsccccsscasosssasnses 242
Bounds CheCKINg ceveeeeeoescccscesosscacscscccsscvsssnscosnees 243
PROGRAM TRANSFER LIMIT .veceecscccecccscsccssnnscscscnass 2-45
PROGRAM REFERENCE LIMITS ceeecccocccccccosccccccccanse 2-45
DATA REFERENCE LIMITS .cecccscccescscoccssacssssscscsos 2-45
STACK OVERFLOW LIMIT coccccsccccscscsssassscssssconccscacs 2-45
STACK UNDERFLOW LIMIT veceoovoccscscossascccsssscssansess 2—-45
CPU OVERVIEW 4 vevseveeescaseccccseonoeosacasssassssasnessnee 2-45
PIPEliNeS teitiuieeeeeeeneoseosaesssasonssesnsesnnnnnnee 2-46
DATA PIPELINE 4eeeececceccceecsosocaocssascsscscscsoses 2-46
MICROCODE PIPELINE 4teeeeecocccececscsosocoosansscsseaes 2-49

CPU Component DesSCriptiOnS .seeececescccccscssscscscseass 2-50
NIR

® 006 000 0 060600 00 8000000900002 0000000000000 000 0000 2“28

® © 000000000 00000 00000008 P 0O L OE OO PO LOLIOEOBNLE OSSOSO SO 2“50

vii

CONTENTS (continued)

SECTION II (CONT)

Paragraph

CIR ® 0 0 0 6060606000 00000060 02 000 00 6000000000000 00000000000

CMUX AND CMUX CONTROL

MAPPER AND MAPPER CONTROL

® ® 00 0 00060 0000 000N Oes 0L s 0 e

® 0 0 00 0000000000000 00000 00

LUT ROM ® 0 ® 0 0 0 ° 0 0 P 0 0P OO O C OGO 00000 LS00 e0 L0000 00 s o

VBUS MUX AND VBUS CONTROL

® 0 0 0 0 0606 006 060 0000000006000 00000

RAR ® 0 0 9 00 00 00000 00008 060600000 0000600 0500806000900 085000000

SAVE REGISTER ® 0 0 060 95 00 05 00 0 00 00 0SSO C O LSOO OEEPP S OSSP

ROM
ROR1 AND ROR2

® 0 0 0 0 000060600 000 900 00 500 OGSO 0P S0 0O S0 000 e

® © © 0 0 0 0000 000 00 0PGSO OO Ce SN eOes NSNS

Microcode Jumps ® ® O & 0 © 6 6 & O &6 0 0 0 0 00 00 OO OO BSOSO SN PG
S“BUS Fie ld Decoder (S) ® ® 00 0000000000 0800000000000
Store Field Decoder (STORE)

Function Field Decoder

Skip Field Decoder

(SKIP)

MCU Option Field Decoder

R-Bus Field Decoder (R)

PROCESSOR REGISTERS

(FCN)

® 0 8 0 069 06000 000000000000

® 060 000000000 000000000

Shift Field Decoder (SHIFT)
Special Field Decoder (SP

(MCU)

® 06 8 06008 000000000000

® © 6 9 006 0 0 0 00 0000 L0000 00NN eSS

Renamer LOgiC ® 0 0 0 0 0 0 00 0 00 0000 00 09 000000000000 00000
TOS Registers ©® 0 0 0 00 060 0 08 00 50 000 0 000000 O LSS

Index Register (X)

Stack Register

Data Limit Register

Stack Memory Register (SM)

Data Base Register

Scratch Pad 3 Register
Process Clock Register

.
© 0 065 06000 00 0060 0000000000000 0000

Stack Limit Register (2)
Program Limit Register (PL)
Scratch Pad 0 Register (SPO0)
Scratch Pad -1 Register (SP1l)

(DL)

(PB)

® 9 00000008000 00 00

(SR) eeveeeosescsacsssssscsscsssonses

Program Base Register

® © 05 0606000000060 0000000 00

® ©® 000 900 0000000000000

(DB) ® © 00 00 0600 000000000000 0000

QRegister (Q) ® ® © © 6 0 0 0 0 0 0 0 O 6 OO O OO SO O N O OSSN S0 0o
Scratch Pad 2 Register (SP2)

Program Counter Register

Operand Register (OPND)
Status Register (STA)
Counter Register (CNTR)
OVERFLOW FLIP-FLOP (OVFL)

CARRY FLIP-FLOP (CRRY)

CONDITION CODE LOGIC (CCO AND CCl)

(SP3)
(PCLOCK) eoeoscecocsccs

(P)

® 0 00 006 ¢ 0060 00000000000 00000

® 0606 0 060 000600000 00060000000 0000

® ® 606 00 000 00000 000000000000

® 00 00 5 0606 060000 090 0600000600000

PRE‘ADDER ® 60 00006 00 000060 00 0 00005 000000000000 ONSE OSSN TCLIOS
R.‘BUS REGISTER ® 0 0 0 00 0 0 0 00 0 00 0 000000000 LOL OSSOSO OS DSOS DNOES

S-BUS REGISTER
ALU
SHIFTER

® © 0006000000000 0000080000000

® 0 0 5 0 0 0 0 0000000000 0000 0E S0 0 0O N0 PO NSNS NDNO

DECIMAL CORRECTOR ® 00 0 00 00 000 9 0 8 00 00000000 S LN EL N OINOSODS

ADDRESS COMPUTER OUTPUT REGISTER (ACOR)
DATA COMPUTER OUTPUT REGISTER (DCOR)
INTERRUPT STATUS REGISTER 1 (CPX1)

viii

® e o 00000 09000

® 0 & 0 0 0600 0000 0 080 0

Page

2-50
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-54
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-55
2-56
2-56
2-57
2-57
2-57
2-57
2-57
2-57
2-57
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-58
2-59
2-59
2-59
2-59
2-59
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-60
2-61

CONTENTS (continued)

SECTION II (CONT)

Paragraph Page
INTERRUPT STATUS REGISTER 2 (CPX2) ceeecesccoccenssnse 2-61
CPU Servicing INnformation eceececeeccesessasssassscsscssssce 2-61
READ-ONLY MEMORY (ROM) PCA .cececcesoscccscscscsscscsccse 2-61
SKIP AND SPECIAL FIELD (SSF) PCA
S-BUS PCA teeececosscscssscssossnscscscscsssssssssssssacsse 2-63
CURRENT INSTRUCTION REGISTER (CIR) PCA .veeeccoccsces 2-64

e s s 000 0s0 0 2—62

SECTION III - SYSTEM VERIFICATION AND TROUBLESHOOTING

Paragraph

g
s}
Q
®

DIAGNOSTIC AND VERIFICATION PROGRAMS
On-Line Verification ProOgramsS ..eececssscccccccoccssssossse
Stand-Alone DiagncstiC PrOgramsS cessescescsscscscocsocscs
Microdiagnostics .
SLEUTH 3000 ciceeeeccscccsansscoccssoossosscsososcsssasssccnccss

SYSTEM TROUBLESHOOTING AND REPAIR tceceocccccsocccsnscscac

SYSTEM CONTROL PANEL

MAINTENANCE PANEL cecececoccocscscsccscsccscsscsocsscocssscsnscscscoca
Switch/Lamp Identification and Description ..cceececeses
Operating PrecautiOnsS ..eeeecsccceccssssssccssscssscsscscs
Preparation FOr USE .eesesssccssccccccesssscssscsscnsssoss
General Operating Method ..ceceececcscccccccoccssosssonss
Using Maintenance Panel and System Control Panel .ceeeee
Stack Register LoadinNg .ececeececscccccoscscscsssosssnccns
CPU Register DiSPlayS seeseccecscececsccnssccscscccssssnosse
General -Use DiSPlay eececececsssossessssasscsscscsscsssssnss 3-26
Maintenance Panel TeSt .eeeececscscscccsccccscscsssccsscsss 3-26

LAMP TEST ceceoecsccecccoscssscsscscssscscssscssocccssassscscsssce 3-26
SWITCH TEST

[

]

wwww
t

© 0 0 60 0000 06 0060 0000000606500 0006000000000

t

[{
MO NDNDNDEEREE

.
wwwwutfwwwww

® ® 06 0 0 000060060000 0006000000000 000000008080 3‘.28

SECTION IV - MACHINE INSTRUCTIONS AND STACK OPERATIONS
Paragraph Page

INSTRUCTION DECODING ceeocescscsccsscsoscccoscssccsonsscacssssssse 4-1
TRAPS AND INTERRUPTS ccoeccccccccccscsccsosscscscscsscsscsssosscsce 4-1
CONDITION CODE coeecccecssoosocssssscscsscscssssscssssasssssscss 4-3
INSTHJCTION FORMATS © © 0 000060 0606 0600606060060 000600060060 806000600 006000 4"‘3
INSTRUCTION DEFINITIONS ceececcccoccscccsscscscocssssscsscscscssccos 4-3
Stack Op INSErUCLiONS eeveesvecsssscsssccassssscosnasnsee 4-3
Shift INStrUCLIONS sevevscscccscsccscsssscsasascscssssasss 4=1
Branch INStrUCtiONS sueeseosesescccsscssssasssssscsssess 4-11
Move INStrUCLiONS ceeeesccoscescssccsscssscscscssassnosses 4-12
Privileged Memory Reference INStructionsS .cceeeesscssses 4-13
Immediate INStruUCtiONS sveeeessecsccsesosssscsssscccsnses 4-13
Register Control INStrucCtiOnNS .s.ceeeseccccccsscsccssscsecss 4=14

Program Control and Special Instructions .eeeecesecceeses 4-15
I/O Instructions ® 9 © 0 0 ©® 9 O O " OO O OO O S OO OO 0 OSSO OO e SO SO SO 4‘17

ix

CONTENTS (continued)

SECTION IV (CONT)
Paragraph

Memory Address INStructionNsS .ecescccescscsccccecccosccccne

Instruction Commentary ® 9 © & 0 0 0 0 0 00 5 0 0O 00 OO0 OSSOSO SO PN
STACK OPERATION EXAMPLES

Basic Arithmetic
Procedure Calls
RECUISION +veeecsscesssccsscscssosscssscsssssosscsscscsosscscscscess

MAIN PROGRAM CALL

TEST FOR ZERO ®© 9 00 0600 0 0006000600606 060 0000000000000 000000
FIRST RECURSIVE CALL

SUCCESSIVE RECURSIONS
FIRST EXIT ccecocssocccscscscecscascsscoscscsscccscsscsane
FIRST RECURSIVE EXIT
SUCCESSIVE EXITS

® 06 0 000 0000 00 00000 000000 0N o
® 9 0 00 0 00 00 00 000 00 00 OO0 OLP OO LSS SE N e

® 0 0 6 002 9200 00 00 000 00 0 8 0D 0 S OO OO OeLS LSS
© 0 8 0 0006000000 00000 000000000050 000000

®© 0 0 00 006 006060600000 00000800000 0000 00

® © 6 0 006 0 006 0 006060 06 5600060000085 00 0000

® ® © © 0 9 9 0O P OO O SO C O OO P OO O eSS0 0N s 0

SECTION V - SYSTEM MICROCODE
Paragraph

GENERAL INFORMATION . cceccsoccoccoccssocccsscscoscscccsssscscsscscccce
Stack Element LOCAtiONsS eececessssccccscsscccsscsossosce
PUSH

POP

QUP vteeeoesscscsscssososssssscsssscscsossoncscessscsscsnscscsscs
ODWN 4 eeeecscsccscososcssssoscsssscsssessssscnsssnsnsocsssss
Reading Microprogram LiStingsS eececececssscscccscscsnscse
MICROINSTRUCTION DESCRIPTIONS
R-Bus Field
S-BUS Field .ceveecececscosassosssssccssesscssscsscssscsncscossssacs
Function Field
Shift Field
StOre Field eeeeeceoscscecccsscsosscssssossossosscsscsscsccsssossssconcs
Special Field .iceeeesesssccscccscssccssscccssccsscscsocccnce
MCU Option Field

Skip FiEld © 9 0600660008066 00060606 0060060600606060 0000000000080 00 0000
MICRODIAGNOSTICS

© © 06 00 000060060060 0600000606060 0060606000000 000000000000 00

© 92 060 069 0860600600030 0606006606000 0600060060080 000000s00000000 0

2 ® 06 0 0 0 06 06060060606 0000 060000000 050 00

© 0 0 0000 006 0 60 0606000606000 0006006006000 00000 00000

® 060 00 00660000000 06060060 0500006000600 0000000000 0000

© 0 0 0 0 000 0000600000000 0060000000000 000 000>

9 00 006 0060606060606 0608 0000006060060 0000600000000 0000

SECTION VI - MODULE CONTROL UNIT/MAIN MEMORY OVERVIEW
Paragraph

MCU OPERATIONS ceccecoovocccscsscoscscescscscscsscsccscscscscssossccnsccocse
Fetch Next Instruction QperatiOnsS .cceececesessscsccccscs
CPU ADDRESS TRANSMIT .cccecceccocscccscosccaccscsccccacse
MEMORY RECEIVE AND TRANSMIT

CPU RECEIVE .ttteecscscccssaccssosesscsccsssssssssoccas

Fetch An Operand OperatioOnNsS .eceeececessossoscscccscocsss
CPU ADDRESS TRANSMIT .cccsoscccccsccocsosscssscoccsccance

MEMORY RECEIVE AND TRANSMIT ® 6 06 00 @0 00 00 00000000000
CPU RECEIVE 9 6066 0060 00606006000 0009 0006060060000 0000000000 0>

®© 9 0 00 60 00 0060000600008 00 0500

Page

4-19
4-21
4-37
4-37
4-39
4-43
4-46
4-46
4-46
4-46
4-48
4-48
4-48

Page

Y

w NN

oo o,
[S A

t
ottt LTI LT > WW

)
8% (B

t
oo WiE - Q

e

0\0\0\?0\0\
t

!

i

A O

CONTENTS (continued)

SECTION VI (CONT)

Paragr aph

g
[}
Q
o

Store An Operand OperatiOnNS .eceeceececcoccsccscsscssssscccs
CPU ADDRESS TRANSMIT cecccoscccccoscccscsssossccsscsscssnse
MEMORY RECEIVE cececeocsccsecsccossccscccsccsscscscccssscsscsosce
CPU DATA TRANSMIT
MEMORY RECEIVE

Command A MOAULE .ececovssocsosssoscsscascsscscsscscsccsocssse

MCU SERVICING INFORMATION
ENABLE
READY tceecececccscecsooscscscsosscccsosscscsossoscsscscscsasscssccse
CPU NUMBER teeeescecscecsscscesasancscssscscoscsscsscssscsce
CPU MODULE NUMBER ctcccocecccccsccancscssscscccscscccsscs
MCU RESET
MAIN MEMORY ceeeecooccococncocsscccscsssosscsssscscsscssosecsssosca

Memory PCA INterfaCiNg eeeecececcccccssscsssccccssscsense

CTL BUS

IOP BUS ® © 9 0 00 00000 00 ¢ 0006 20 00 050000 0850000000000 00000

FAULT LOGGING INTERFACE BUS ® 00 0 006 0600600 0060000000080
POWER BUS T EEEEEEEEEXE I I A I A I A I R AR B A I A A N A N

Memory PCA DeSCriptiOnsS seeeecesccscscsscssscsscscccscsssnce

SMA PCA ® © 0 0 0 9 0 00 000 006006000005 00000000 0000000000000

MCL PCA ® 0000000000000

FLI PCA ® © 9 0 5 0 0 060 2 0 00 000 00000005 005 5005 80000 6-12
Memory Operations ® 0 0 0 0 8 00 0 0000 000000 2000 OSSSL LN e e 6—12

o O
t ot

® © 0 0 060 0600000800 08 0000000000 S OO eSS T OO

{

® © 6 0 006 06 59 000005000 05 000 000000000000 LSS LL NS OSLOSS

[

mﬁxac?c\?<moxoxm
1
i WOWW VWD ODD AR AN

© 0 0 006 0 000006060 0200606000 060000000 060000000 000000

(B}

® © 9 85 © 0 0 0060000 0 00 08 00000 000 00000000000

|

o

!

AN OY D
{

'

t
el el
NN

® © 00 0060 06006 0600000000000 0660000 05000 6.‘12

READ ® © 6 0 000006 06006000 000060000000 00006050000 0000s090 000000 6_.]_3
WRITE ® © 0 0 0 0 0 O O SO OO C OO OO OO OO0 S 0L 00 L 0O LO LS 0NN Se NS e 6-].3
NOP ® 0 0 0 86 0600600 0000000600006 0000000600800 00000000 509006000 6—14

FAULT CORRECTION AND ERROR LOGGING :vocesesccsccceceses 0-14
Memory Servicing INformation s..eeeecesesssssccccscsssecse 6-14
FAULT CORRECTION +eveeeeececsccccscscsasssasccasescccsssecs 0-14
MEMORY ERROR LOGGING FACILITY ceeececcccsncsoscascses 0-17
OULPUL ceeevecocoscsocscscscscsscsossssssccsssnsssse 021

Errors‘......l..‘....................‘.. 6.‘21
Obtaining Memory Errors COPY sesscecsccssscesessass 621

FLI PCA PROGRAMMING .+2eeessnecoscsccscssscsscosnccssecs 0-21
TIO COMMANA s eeeesecconoocssccscnssssssssesscsssses 023
CIO COMMANA seseessceossosnssnssnsssssonsnsonssasss 0-24
WIO Command
RIO COMMANA eeveesssoccccossssscosssscscssassasnsss 60=27

SMA PCA SERVICING

MCL PCA SERVICING eeceeccccocossscsossnssscosscocsssss 0-28

FLI PCA SERVICING cceeeccecocscccscsssscccccssscncosscssocse 6-29

© ©® 0 0 0 0 000 00 000 000 PO 0O 0L OOL S OSSO L e e o0 6—26

® © 0 000 00 0 006 0 0060000 00000000000l 6‘27

SECTION VII - I/O SYSTEM

Paragraph Page

INTRODUCTION «ecoeecosocccossssoccooscssscsccsossscoscssoscscsss
FILE SYSTEM OPERATION
DEFINITION OF TERMS
I1/0 INSTRUCTIONS

3 8 9 25 9 3 9 5 2 0 P S 8 0 P N OB OO0 LN LN e e

® 9 6 00 88 C TG 0 PO OE PO OIS PSP L LD LS SN S PO

\l\l\‘l\l
ANw D+

® 8 T 9 2 3 0 6 O E T 9 S O L E S PSSO D P S eSSBSy

xi

CONTENTS (continued)

SECTION VII (CONT)
Paragraph

GENERAL I/0 OPERATION e eececocccoccocnsoocsnsnsaccoacocssscsss
DIRECT I/0 OPERATION seeeccecccacscocscccasocscccosscsccsecsss
Direct Read
DireCt WEIte ceeeecevsccecccssccsoscsccsoocacsassscssssoncscsss
BLOCKELD /UNBLOCKED I/0 ceesoceosccsccacescscsccscssscssescsscesse
BloCked I/0 ceececocscscsossscscscoscssoccscoscscscncsnscsnccsccsnss
Unblocked I/O ® O O 0 0 0 5 O P OO O OO OO OO OO OO L O OO N OO0 C OO OO e 0
I/0 HARDWARE ELEMENTS eececececcccecscsscccscsocscscsssoccoscssccscs
I/O PrOCESSOL cocecccoocscscscsceoosossososssscsccsscsososcscsosse
I/0 COMMAND teeoeccsoccoscossccscsosssscssecssocsscsseocs

JOP CONTROL ceecceccoancscscssossosscsssoscsssonscscsasssasssscs
INTERRUPT CONTROL

INT DEVNO 4eceecceecccaacsacstsoanncoososossacescccescnss

DATA OUTPUT REGISTERS

DATA INPUT REGISTERS
Module CONtrol UNit ceeececcsscosccccsascscssssscsscsccscse
Multiplexer ChannNel ..eeeeesescsccscscsscscssscssscsscsscecs
Selector ChannNel ..cececcccccscoccsscscscsoscsscsasnscssnccccs
I/0 SYSTEM FUNCTIONAL OPERATION .coceocccccocscsscscsccssccaccses
I/O Prioriti€sS seeeesccccecssccocsossassscasssscsssssccsescs
I/0 Data ROULES eececosoccccstssssosscssosnosnnsncssasnscssssass
I/0 Transfer MOAES eeseccccosscscocscsssssonasssssossscscccss
DIRECT I/0 ceececesoscsacoscscsososssscsscssscsncsscsssscss
PROGRAMMED I/0 ceeeescosscscsacsnsosscscscscssscssosssscncssssssce

I/0 Program WOrd eeeceeecececocssccssssccasscsscscss

Typical I/0 Program OperatiOn ceeeesescccsscccccses
Multiplexer Channel Transfers .seeeeecceccssccscscccscs

Selector Channel TransferS ceeececcscecscssccccccccsns

Multiplexer Channel OperatioOnNS .seeessescccscecccccccecosns
INI.IIIALIZE ® & 0 5 0 & O & OO & O O SO O O OB SO OO SO OO B O OO OO S S0 SO0

DRT FETCH ® 0 0 5 0 0 0 00 9O 0O OO O O ORGSO OSSO E SO PNDS

I/O PROGRAM WORD TRANSFERS ® 9 S % 06 0 0 e PO eSS S0 CO OO SN PO
IOCW FetCh ® 0 0 0 0 00 0 00 00 00 S0 O0 OO0 SO OL O N OSSNSO

JOAW FetCh seeeeecscsscssscccsnscsssssscssscccsccssssns
IOAW Store ® 9 © 0 0 0 0 0 0 0 0 0D OO OSSP OO OSSP e eSS0 0O 0
Next OperatioOn cieeeesececscscsscsccscsssscsscscsccscans
DATA TR.ANSFERS ® 0 @ 0 0 0 0 0 O OO O GO SO OO OC L OO O E OO OO OO OO e e
Address TransSfer ceeeeesssssssosesssssscssccccscsssns
Output Transfer .ececeesecsccccccsscssccscssscssscsas
Input Transfer ceeeeeecccsossccccensssscscscncoccans
End Of Transfer By Word COUNt .s.ceeescccccccsnscns
End Of Transfer By DEVICE ceesesssccsssscssncsscscscs
Selector Channel and Port Controller OperatiOnNsS eceeeseaes
PORT CONTROLLER ® @ 0 ¢ 0 00 8 0 O O OO OO ST OO0 OO S SO O OO OO N e OO O
INITIATOR SEQUENCE +ceeevoccecscscoccccsssocscscscscsccnssass
FETCH SEQUENCE . cecescoscescsscascscacsscsscesoscsssnncsss
EXECUTE SEQUENCES ® 0 ¢ 6 & 5 0 0 OO0 ¢V OO SO OO OSSO SO OSSO e 0D
Sense ® ® 0 ¢ O 0 0 0 0 O ST O OO O OO GO O E O eSO E SO0

Interrupt ® ® ® 0 0 0 00 000 00D OO OO OGO E OO0 OO OSSN SN OS PSS O

Jump ...'C.......QQ.........."'..O.....'..bl.....

® 9 5 0 5 0 00 00 0T S OO OO OO OSSO BSOS OO SN 0

® 0 5 0 0 0 0 0 9 0 90 00 000 O SO0 OSSO0 0 0

LI I I B N B B IR I BN BN BN B BN BRI BN B BN I B N

Control 90 © & 06 00 0 00 8 00 O OV OO 00T OS VO LSOO NE OO OO ECOE PSS

xii

- CONTENTS (continued)

SECTION VII (CONT)
Paragraph Page

Set BANK seeececesscssscccsaccscsscosssoassocnassscsee [1—43

Read R E R EEEEEE R T ar ar By A B B N R B B B B B NN B Y) 7”43
REtUrn RESIidUE ceveesceccsssssossssacosnsesssncssees [/—44

Write

ENQ teeeeeooccesosssscsosssssscsosnssasssssosssssssse 1—46

I/0 SYSTEM SERVICING INFORMATION eceecesvocscscscecsccscecsnsssscs 7-46
IOP PCA Servicing
ENABLE/DISABLE cececcccccccaccssoscscsnsscccscsscascnseas [—46
MEMORY SIZE eeeeecsesesssacsssecascsscscsccsssossscsccocsscsss 1—46
MEMORY INTERLEAVING cecoococcsocscscoscscascscscsscscsscosse 7-46
Selector Channel Maintenance Board PCA .ceeocesssnsaseee 1—46
Multiplexer Channel PCA ServiCing ceeeeeecsscccscccsccses [1—47
Port Controller PCA Se€rviCinNg seeececsscesscscccssssecccccs [/—48
Selector Channel ServiCiNg ceeessesacssssscsssccssocssese [1—48
SELECTOR CHANNEL REGISTER PCA ccesecoccscsessssosscsce 748
Port Controller Channel NUMDEr seccescecsccsssscsss 71—48
MEMOrY SiZ@ eveeecoccsccssscsssssssssssssoscsssssese 7—48
Memory Interleaving ceeeceseccecssscesscssscsssssse 1—48
SELECTOR CHANNEL CONTROL PCA ctececececcessccssossoscsscssce 7-48
SELECTOR CHANNEL SEQUENCER PCA ceceeccscscoscscsosccsse 7-48

® ® 9 52 0 50 ¢ 60 S G0 OO0 0SS T 0000 OO L SO E SO SNBSS PN TDNDS 7—45

® 9 0 0 0 00000 000 00T B EOE O OO L OSSO S SOOI 7-46

SECTION VIII - INTERRUPT SYSTEM

Paragraph

)
Q
Q
o

INTRODUCTION c.ceocecoccccsccscssssoscsscssssscossssoscsnascasccocs
INTERRUPT SYSTEM OVERVIEW e4vcececcccccscccsscsssoscacscsasscocs
INTERRUPT CONTROL STACK cccccscssccsascscsscsscssssacccsssccce
INTERRUPT TYPES cceeccsccscrcccscccscssascscsssssscsscscascsccans
External INterruUptsS ceeeceessesceccsceccsctscsssssccssnssancsne
ICS Internal INtErrUPtS ceccesescccssssaccccccsssnocsnsnse
Non-ICS Internal Interrupts .sceececececccccsccccoccsossnsscnnse
EXTERNAL INTERRUPT PROCESSING sescscccccesccccsccscscscccccscns
Interrupt PrioritieS ceeececccccccccccsossscsscccscsccsccans
Interrupt Program POINtEr ..ceececcccccsoscccccsscscacncans
Sequence Of OperatiOnNS .eecasssescescccrssscscssccscscsscccscse
INTERNAL INTERRUPT PROCESSING ccccoccscocscscscsoscscsscccsoesce
General DeSCriptiONS ceeeecscssssesscccsscssccscssscscacosne
BOUNDS VIOLATION @ 9 8 ¢ 0 05 5 08 8¢ 000 00 00O OO OO0 0O SO S OGS e
ILLEGAL MEMORY ADDRESS tceeccccocccococsssssancsscsscccs
NON“RESPONDING MODULE 8 8 0 0 00 0 0 9 85 5O 000V G OO OSSOSO SO OSSO
SYSTEM PARITY ERROR e 00 060000000000 00RO LOERIOEOIEPODOTOTOD 8“14
ADDRESS PARITY ERROR © 00 00000 CLOCOEGEOLEOIOOIIOEOCEOEECROIOSEEDOSEOEOLNEOOLTCOODC 8'14

DATA PARITY ERROR R EEEER R EEE T I S I A B B NN N S Y) 8‘14
MODULE INTERRUPT © 0060 ¢6 0000000000 ORCOLEOCEOOIOEOEPBOSOICGEOIEGOOINOTOEEOSESTOSIO 8”15
POWER FAIL 9 0 0 0 00 60 © ¢ 0 0O 000 OO OO T O OO L CO OO Ne LRSS NS 8‘15
UNIMPLEMENTED INSTRUCTION secesecacscescscscsscsnsssssass 8-15
STTVIOLATION ® 8 0 00 000 00 000 00 80 0 00 08T OO0 S OE SO OE RN NS 8.‘15

CST VIOLATION © 00920 60 00000000 C000QC0ECSEIRROGEOEOEOCRORIRTOEOIOCOTOTCETE 8—15

DST VIOLATION ® 8 © 8 ¢ 0 0 0 000 00 00O 00N O C OB L OO S OL OO 8.-]-5

{
WO UVTWH M-

>

w

!
i
PN

0000 CO COCO OO 0O CO 00 00 00 OO 0 OO OO O
!

xidi

CONTENTS (continued)

SECTION VIII (CONT)

Paragraph

STACKUNDERFLOW ® © 0 9 0 09 0 00 00 0 0SSO PO OO OSSO0 0N OO SC PN CEE

PRIVILEGED MODE VIOLATION ® 0 @ & 0 000 00 00" OO PO SO0 OSSO0
STACK OVERFLOW IR I IR S B SR S B Y B B R BRI B B BN BB B BN B BN I LI R N R A A AR A J

INTEGER OVERFLOW S 9 9 0 5 9 8 0 0 0 000 0 08 00O OO 0T OGO OO0 OO OO SO OE

FLOATING-POINT OVERFLOW

® @ 8 9 00 0 0 9 S0 SO OO0 OSSOSO OSSOSO

FLOATING—POI‘-‘]T UNDERFLOW ® 90 6 9 6 00008 ¢SO0 OSSO SO OISO

INTEGER DIVIDE BY ZERO

FLOATING-POINT DIVIDE BY ZERO

® 0 ® 00 0 00 002 O C 000 OO ON eSO OO NSO

EXTENDED PRECISION FLOATING-POINT OVERFLOW .cceeceses
EXTENDED PRECISION FLOATING-POINT UNDERFLOW ..ccceeee
EXTENDED PRECISION FLOATING-POINT DIVIDE BY ZERO

DECIMAL OVERFLOW ¢ccees
INVALID ASCII DIGIT
INVALID DECIMAL DIGIT
INVALID WORD COUNT

® © 0 02 0 0 0 000 00 OO0 SO OB OO Oe O PN SOOS

® 9 0 0 0 0 090 0 0 0 S 0GP O CO OO RO OC OSSO POTSONTS
® 9 0 0 09 0 0 0 00 S S0 00O OO OO OCE NS S OOCE

IEEEEEEEE I I A I R R I I BRI R BRI I I B A

RESULT WORD COUNT OVERFLOW ® 0 095 060 0 00 0209 00000 S0 OO0 e

DECIMAL DIVIDE BY ZERO
ABSENT CODE SEGMENT
TRACE
STT ENTRY UNCALLABLE
ABSENT DATA SEGMENT
POWER ON
COLD LOAD s ceceoccorcnn

® 9 ©® 060 000 0 ¢ ¢ 00T OSSOSO OSSO

® @ 0 0 00 00 0 9T 000 GO O E O OL S OCL OSSOSO
R R EEEE I I A A I B A S B AN SR B BRI B I I BN B I I LI A

® 00 00 060 5 00 000 00 00000 0O GOSN OGP GLSODS
 © 0 060 00 0 20000 PP OO0 OO OSSP S OO N S0

R EREEEEEEEE I I A S A I A I BT A BN A S A B I I I A R A A

© 00 000 020 000 00000 S OO OO SO 0L

Sequence For ICS-Type InterruptsS ceiceceescscescccscccsacs
Sequence For Non-ICS Type Interrupts .eceecececccecccccsscas

INTERRUPT HANDLER ® @ & 0 " 0 0 0 00
DISP Instruction .eceeeeese

® 9 9 © 00 0 0 6 00 00 0O O OGO OL OO OO TCCS

© 9 0 0 ¢ 0 8 00 00 20 8000 000NN e SR

Pseudo Enabling/Disabling The Dispatcher .ceceeccccecscsee

IXIT Instruction

SECTION IX - HP 32421A SERIES
Paragraph
INTRODUCTION

HP 30310A OPERATION (ceeooces
Primary Power Circuit

® ® 0 00 00 0 9 000 00 S 00 S0 OO OO OSSOSO L LIS

INTERRUPT SYSTEM SERVICING INFORMATION

® 90 000 00000 s 000 e

III POWER SUPPLIES

R EEEEEREEEEEEEEE I I A A N B N A R SR B AN IR A A A IR A A

® 92 0 0 00 0 0 0 00 G E LSOO OE OIS OSSOSO

® ® 0 00 0 60 200 00 008 SO0 O OO SO PN

Prereglllator A9 © © 9 00 0 00 000G CEI S0 OO0 S0 OOOOEOSOIOOGEINOLESEOIEBOEOEIETTE

Preregulator Control Al ..
Inverter A7

® © 2 0 00 00 0 000 2 O SO0 OOO OGP PSES

EEEEREEEEEEN I E SR SN B AN I EE IR R I N R I I I B A A

Inverter Driver A2 ® © 0 0 0 0 00000 00 0 00 00 000 OO 0N LSS SL SIS TOES

Full-Wave Rectifiers and Filters

20-Volt Regulators
Current Limiter A4

® 00 0 000 0 OB E SO0 OSSOSO

€ ® 8 0 0 0 00 0O I OO OO OO OO L O e OSSO OSSOSO

® ® © 0 0 0 0 0 0 0 000 0000 S0P LSS e eL NS Es e

Voltage Protection and Control A5 .ceceecceccccceccnnnce
HP 30310A SERVICING INFORMATION cseccesesccscoccscccoscscccscos

Preventive Maintenance

PREREGULATOR ADJUSTMENT

® © 9 0 00 00 0 9SO OET OO PO OO eSS N0t s

HP 30310A Adjustments ® 0 ® 00 000 000000 oo

e o o000 8000000

9 8 00 9 0 0 0 0 00 0 0GOSV EN S OO PSS PO O

Xiv

)
Q
Q
(0]

t t

[

\O\O\O\D\O\!D\O\D\O\D\D

{
WWOWOOUI UL DD

\O\.'O\D\O
!

CONTENTS (continued)

SECTION IX (CONT)
Paragraph

ZO‘VOLT ADJUSTMENT R R R R R R R N I N I I I B RN N N N N A) 9“10
VOLTAGE PROTECT PCA ADJUSTMENT
HP 30310A TroubleshoOtinNg eeeeececcccoscssocsssssecsoccsasss 9I—11
303112 OPERATION cecesccsoscccoscscssscscssscsssccsscsscscses 9-11

303llA SERVICING INFORMATION ® ® © © © © 0 9 & 8 O 08 PO O OO OO OO PSS 0 9_14
Preventive Maintenance

® 9 9000 0 0009000000 00 e 9“10

ZRE

- A

VOLATGE CHECKS LR R A S A N A AN IR A IC R S A B Y S AP S B R R B B R B SR N B) 9"15
BATTERY TEST 00000000 0000000000000 0 000G RCEELEOLIEOCSEOEOSTOTTSETS 9—16

HP 30311A Adjustments LI R A A A A A A I I I IR IR A O B A A B A B B B I I B I 9“16

BATTERY (FLOAT) VOLTAGE ADJUSTMENT
+12 VOLT ADJUSTMENT cecoescoocoscesosasssacsscassccscssce 9-18
+5,00 VOLT INTERNAL REFERENCE ADJUSTMENT eseececcescca 9-19
Replacement ProCedUrES ..eeeseccccsccsscscsccssscscsccscses I—19

e 000 s e st 0 0000 9-.]_6

POWER SUPPLY REPLACEMENT ® 0 © 8 99 006009 9000 00000 0000000 9—19
BATTERY PACK REPLACEMENT ® 8 0 56 00 00 508 00 000000 ON SNBSS 9-20
CONTROL PCA RE PLACEMENT ® © 0 00 000 0000000000 s s S0 es L Oe e 9-20

MOTHERBOARD PCA REPLACEMENT
I-IP 30312A OPERATION ® © 9 © © O O VO VOO SO OO OSSOSO OGO T OSSO E OO 9..2]—

Overcurrent ProtecCtioOn .eeeecescecescscssccssescsccsnssssce 922
Undervoltage ProteCtiON .ceeeecccccscsssssscsscscnsnsnces 9I—22
Power Failures
DC ENGD1le cesevecossccsvsscoscsocsssnsscssssncsscscasssncsss I-24
HP 30312A SERVICING INFORMATION eeeceecscccscsccsscsscscscscsce 9-24

® 60 08 00 00 0P C LT O SO OSSO OO 9_20

® ® 8 0 0060 00869 0000005 0 O C SO0 s N OSSOSO S D 9—22

SECTION X — HP 32435A SERIES III POWER SUPPLIES
Paragraph Page

INTRODUCTION ® © 0 0 0 00 0% 00 PSS SO LT SO GOS0 EL SN0 SO0 00 0S SO N0 10‘.1
POWER SUPPLY TROUBLESHOOTING ® 98 & 0 0 0 0 00 0SSN 0P OSSN B NSO lO"l

POWER SUPPLY ADJUSTMENTS cceeevccsccsscscscacscncsacessssass 10-3
REPAIRAND REPI_IACEMEN.P 2 0 0 0 00 0 0P 2P E SR T L P T ST TSSO PO OE OSSO OO OE 10“5

SECTION XI - SYSTEM INSTALLATION
Paragraph Page

PART 1
HP 32421A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION
Power Distribution Unit
Power Control Unit ® 90 006 000 0606060006060 006009006 0600080 00060060000 11“5
Power Control Module .eeeececes
Bus Cable CONNECtiONS eeeeescecsscccscosssssssccssccssssce 11-9
Interrupt Poll, Data Poll, and MCU Clock Connections ... 11-9

PERIPHERAL DEVICE INSTALLATION eveccococssccoccssccossasnssssse 11-11

NEW INSTALLATION TURN-ON +eceeococscsosccsoossssasascnsessecsses L1-11

SYSTEM VOLTAGE ADJUSTMENTS eeeooccecccccsoscsscscscsaccassccsss 11-12

® © 0 0 9 5 00 0005000 T E P 00O OO OO e e ll-‘l

® 0 © 0 8 000 060000 28 000008 CE oSO OD 11-2

S0 0000 eeece 2000 0RO LTOEOINOLTLTOES 11“8

Xv

CONTENTS (continued)

SECTION XI (CONT)
Paragraph
SYSTEM VERIFICATION

PART 2

® ¢ 00 0 006 00 0 000 00 000000000

HP32435A SERIES III COMPUTER SYSTEM INSTALLATION

EQUIPMENT BAY INSTALLATION

Isolation Transformer Strapping

® 6 0606 0 000 00 00 00 000000 0

Cable CONNECLiIiONS teveeerseccesocecccsscsssascessssscssace
PERIPHERAL DEVICE INSTALLATION . ¢ececcececeacsasacocssonassscs
NEW INSTALLATION TURN-ON .cceocoeesocccascssccoscsccssocssscass
SYSTEM VOLTAGE CHECKS .t eceeeceocossoscscscoscssscecscssscscocescos
SYSTEM VERIFICATION .cceeccocccoosoccscsccascccsoscsscsssocscsscss

xvi

Page

11-14

11-15
11-15
11-18
11-18
11-18
11-19
11-19

ILLUSTRATIONS

Title Page

HP 3000 Series III Computer System Software eeceeecseeccecse 1-5

HP 32421A Series III Computer System, 2-Bay Model .eeeeee. 1-6

HP 3242]1A Series III Computer System, 3-Bay Model ..eecec. 1-6

HP 32435A Series III Computer System, 1-Bay Model .ceecees 17

HP 32435A Series III Computer System, 2-Bay Model eeeveees 1-7

HP 3000 Series III Computer System Hardware Organization . 2-2

CTL Bus Priority Number ASSignments .seecececcsssccccscssss 28

Typical Data StaCK ececescsssscssssssssscssscsscsssaccssss 2-10
CPU Segment Pointer Registers
Basic Data StrUCLULES .eeeececccccscsssosssessssssccccsnscs 2-17
Formats Associated With Code SeGMENLS cessesssasccsccssees 2-18
Data Segment Table Entry FOrMAt eeecescecscsscccscsacccscess 2-19
Code Segment Linkage ceeeeecccsscccccassssassssscsccccsscecse 2-20
CPU Registers and Stack Basic Operations .eeseceescececcssse 2-23
CPU TOS RegiSterS $6 6000060000000 000 0000000000000 0000c0sOIECDS 2"24
StaCk Dda.rk Chain R R EEREEEEEEE N E N I A A I S A Y B B N R N BB R NI R 2"25
Standard Stack Marker FOrMAt eeeececcecessosssscssscsscscse 228
INStrUCtion GrOUPS eeeeecsscssascascssossssscsssscascssscsss 2729
Memory Addressing MOAES eseececsccscsssscsscsccscsccssssscscss 236
Indirect Addressing EXampPleS eeeeeescccssscsscccscccssosss 2-37
Indexing Examples R N NN RN NN NN NN NN 2"39
Byte Addressing EXamMPleS ceeecsssccssscsccscsccccsnssssssces 2-41
ACCESSING DB= AIL€3 eesevsceosscscacssssascsssscssssscccccsces 2-43
Addressing and Stack BOUNAS eececsccssccssssscscccsssscses 244
CPU Simplified LOgiC Diagram © 9 0 06060 000000000 C0QOOOLOEESIOSEOSOSTLEE 2"47
ROM PCA Jumper LOCAtiONS ciceesssessscsccscscssccscccscssass 2762
SSF PCAJumper T_Dcations R R E R R EEEEEE N I I I I SN B B IR B] 2"63
S-Bus PCA Switch LOCAtiONS cecssceccscsccscssssaccsccssscsas 2-65
CIR PCA Jumper LOCAtiOnS tieeeesescscsscssscscscccsccscccces 266
System Control Panel
Maintenance Panel €0 060000000600 00606068 000000000000 0060C0OCO0CIOCEGSIESES 3"5

Maintenance Panel I/O OVErlay seeecsccscsscsscecsssccscocsss 3—24
Maintenance Panel Operating COnnectionsS .eeesecescscceceess 3-25
Switch Test Lamp Indications
Sub-Opcode (00 Formats
Sub-Opcode 01 Formats
Sub-Opcode 02 Formats
Sub-Opcode 03 FOrMAtS ececeecccccccssoosscscsscccssscscscccncscs
Sub"'OpCOde 04 thru 17 Formats 200006 00006000 ¢0000006000000O0TOCEL
Deleting A High Order WOrd eeeseecesccccecsssssscscscccccce
Single mrd Shifts .00..0...l..‘...........’..Q..l....l.l.
Indirect Branch Via Stack
Move EXampPleS .ecececcecccscscsscssccscscnscasscsascsscccccansocns
Subroutine Call and Exitl...."".'..l..........O....
PCAL Instruction Flowchart cececcecccescccccecssccsassscssccns
EXIT Instruction Flowchart ceceeeecscccesscscccscccscscccsns

96 0 00 0 0606 00 008 00 500000000000 2—-13

© 6 0 0 6 00 00 0 ¢ 00 0 000 00O P E0 O ES OO SONEEDO NS 3..3

® 0 & 0 00 00 00 0 00 500 000000000 3‘-29

© 0 € 0 06 02 6 00 0 ¢ 00 060600 00000 00 55800000 000 4..4

9 0 ©@ 0 00 00 0060 060 00600 000 008000 ¢ 00 00900800

® 9 © 0 2 0 00 80 000 00O 00 0SSOSO HO S ON ORI NS

B>
|

t

t
W NN DD JOOV
O N0 Wk

® 80 000060000608 00 00000000000 ee 0o

.h.bnbu'b-h L

xvii

ILLUSTRATIONS (continued)

Title

IXIT Instruction Flowchart
I/O Order Pairs ®. 0 0 0 0 0 & 0 0 00 O 00 O OO OO OO O SO OO O OO OO O E O OO OO S POOSOS
Basic Arithmetic Stack Operations .eeeececececsccscscsccscss
Declaring and Calling A ProCedUrL€ ..eseessscessssssscsccss
Executing A Simple ProCe€dUrE .eceesscscscscsccccscscscscse
RECUrSive PrOQIrAM seeesecsscsccscsossscssccscsssancscsssnssnsses
Recursive Procedure Flowchart ..eeeeecesccsoccscsccsscscsces
Stack Operations During Recursive CallS .eceecccccccscscnns
Stack Operations During Recursive EXitS seecececscceccscns
Microinstruction SUMMALY cececeescsccscccsssscsscscsscsccns
MCU Simplified LogiC Diagram seeesecceccceccoascsscsssscscsacscs
Memory Module Simplified LogiC Diagram ..eseeccesceccceccccsce
MCU PCA Jumper LOCatiONS .seeeescecossscssccscssscnsossnccsns
Memory Module Interface Diagram ..ecececccceccssccccccsascse
SMA PCA Chip Arrangement sceeesescesesescscsssscscssssscas
Error Correction COdeS ceeesecsesssnsasssscscessssscsssnasscse
Decode of HOl through HO5 tceeecccococsessccscscscssnssssances
NEMLCGAN Table ® & & 0 0 ¢ 5 005 P O 0 O O OO O OO OO OO OSSO0 e OO OO OSSOSO
Typical ME MLOGAN Printout e 0 ecsesssscescsessss o000 0es0ROOLOLE
TIO Word Format
CIO Word Format
WIO Word Format
RIO WOrd FOIMat eceeeeccesccscscassscocssssscsssssscsscsscacsnos
SMA PCA Switch Location
MCL PCA Switch Locations
Basic I/0 Access MethOdS ceeeeccececccscscsssscssssccsscnscne
File System Basic Operation .cescesccscccescsscccsssscsccs
I/0 System Fundamental ElemMeNtS ceeecccccscccsossscccsssccscse
Device Reference Table seesesecscsccscsscssessscnsssasscas
I/0 System OVEIVIEW eeeeeecsccccscsccccossssssscssssnssasscs
Direct Read For Terminal DEVICES eeeececcccsccscsscsnsccns
Direct Write For Terminal DEViICES eseecsccccccocoscncsscas
Blocked and Unblocked I/0 steeececseccccscccssccscssccssssncocs
I/0 Hardware ELEementS cueeeesescsosscssssessssscsssnsosses
IOP Simplified LOQicC DiQgram eeceecsssecscscsscsasssssscsscs
Interrupt Poll and Data POl]l ccceoeccecscccscscscscssnsans
I/O Data Routes ® 9 0 9 0 S O O O OO O PO P OO OO O OO OO SO OO0 OO OSSOSO S SO OOSS
I/0 Program OperatiOn seessesssessescsscscsaccsssscsscssens
Multiplexer and Selector Channel COMPAriSONS eeesseeccsoces
Multiplexer Channel and Device Contrcller Simplified

LOgiC DiAgram sececececoccsccsccscsccsocssscscsossscsscccsccss
Multiplexer Channel Simplified Logic Diagram seeeseecscesse
Port Controller Simplified LOGiC Diagram eecesssccossssccese
Selector Channel and Device Controller Simplified

Logic Diagram ® & 5 0 0 0 & 0 6 ¢ O O O OO S OO O OO OO OO OO GO OO 0SS SO OO O
Selector Channel Simplified Logic Diagram ceecesceccccscces
IOP PCA Jumper and Switch LoCatiOnsS seeeeccscccccccscsccscse
Multiplexer Channel PCA Jumper LOCAtiONS seeeeececcccccces
Selector Channel Register PCA Jumper /Switch Locations
ICS Dispatcher Marker .eeeeescessesscsscsscscsscacsssscnss
Interrupt System OVEIVIEW eecsecossccsscosscsscsccssscsssnses
First Level External INterruPt eeeeescsccccsscscscsccscses
Second Level Interrupt or Dispatcher Interrupted .eceeeecese

® 9 © 0 9 0 00 00 OO TSSOSO e OO OSSP SO

® © 0 5 00 00" 000 OO OO0 OSSO OO OSSOSO SO0 O NS OSSOSO
® 000 00000000 H PO LLOOLROLEOEELINOEOINOIOGEOIOEOINOEOEOCEOETOSPOEONTOITOTS

® 9 0 09 0 0 S OO0 SO O OO OO OSSOSO Oe OO OSSOSO SIS

® 0 0 0 000 OO OO OO OO OO OO OO OSSO O PO

xviii

ILLUSTRATIONS (continued)

Title Page

ICS-Type Internal INterrupt .seeeesccecsscscccscscsscsssccsess 0-20
Non-ICS Type Internal INterruptsS eeeeceececcccccssscscsssces 8-22
Interrupt Handler FlowcChart seeeececscccccccscsccsescscsaes 8-25
Power Controls and INdiCatOrS seecesccsscecccccccsccsossse 92
HP 30310A Power Supply Block Diagram .eeeesecececcccsssccsecs 93
HP 30311A Power Supply Block Diagram seeeeececccccccccscss 9-1
Control Board Adjustment LOCAtiONS seeecceccccscsccsscsces I—1
HP 30312A Power Supply Block Diagram eeeeececcscecccsessess 9-23
Power Supply Control and Display AsSembly ecececcccsccccess 10-2
PDU SchematicC DiAgram eecececceccecesscssacscsossscscnscscsssese Ll—4
PCU SchematicC Diagram eeececececccescsccoscscsscsssssenscssscoscsss L1—6
PCU/PCM Line Filter CONNECLtiONS ceessscscescscsccssscssccece 11=7
PCU to PCU/PCM Interconnecting Cable eesesecscsccccscocsssese 117
PCM SchematicC Diagram eeecececesescasscscesscsconssscscscsccsssssse 11-10
Isolation Transformer Strapping OptionNsS .eseesecccsecsccses 11-17

Xix

TABLES

Title Page
HP 32421A Series III 2-Bay Model PCA Slot Assignments 1-8

HP 32421A Series III 3-Bay Model PCA Slot Assignments e... 1-9

HP 32435A Series III PCA Slot Assignments
Central Processor Module FeatuUreS ..eseecccccccccsssscecces 2-5

Main Memory ConfigurationsS ceeeeeecceeccosccscssessccnssocece 2-6

Machine REgIiSterS seeeccescccocnosssessssosscsssscsssasssnsss 212
Recserved Low Main Memory LOCALiONS seceesscoccsscssesscecsse 216
Condition COde‘s ® 0 0 O 0 0 O O O O OO S OO0 OSSO OO PO N OO OSSO ON 9SO NN e 2..33
Bounds CheCKkS SUMMALY eececcsccescsscscsaccsosccscscsssssssss
TOS Namer RelatioOnShipPsS eceesccesscsscsscsccscoscsccsscccscsse
Memcry Interleaving Switch ConfigurationsS eeeeecccecccsccosce
System Control Panel Switches and LamPS seeecessccccccccss
Maintenance Panel Switches and LamPS eeeessscssccssssssccss
MPI PCA J3 Pin ConnecCtiONS seesececsscsscsccsss
Stack Element LOCALiONS seeeescescccossscccosssssscscssssscs
R-Bus Field Code Definitions
S"'Bus Field &)de Definitions ©06 060600 0000000 ss RS RINCSEOEOSIOIEOEOSIEPOETOEOS
Function Field Code Definitions
Shift Field Code Definitions
Store Field Code DefinitioOns eeeeeccccssccococcssccssscccnce
Special Field Code DefinitiONS seeesccesscssccoscscsccscsncnse
MCU Option Field Code DefinitiONS ceeeecsesscscccccscsscssssce
Skip Field Code Definitions
Interrupt TYPES eccoceoscccccsocssscscsssscssscsscasccsscscocssse
HP 30310A Dc Output VOltagesS sececcecesccsssscscscsccccccsccs
HP 30311A Power Supply Controls and InGicatOrs eeeecescsccs
Dc Output VOltageS eeeesccssscsscsssscoscscscscscsssossccssccs
Float Voltage Versus TemperatUr® .eeeseesesccsssscscssssscce
DC Power Supply SpcificatioOnsS .eecesecevrssccsccsscccccsees 10-3
DC STATUS/POWER Indicators and SwitcCheéS ceeeeeecccsccceess 10-4
PDU Strap Connections at TBl eeeeeessccsoscscscssssscosssssse 11-3
PDU to PCM CONNECLIONS ceseesssescccssscssccssosssosnsessses 11-5
PDU Ac Service Strip Wiring
HP 30311A Test Jack VOltagesS eeeeevreccocccccsoncscsoscecsococse 11-14
Primary Power Voltage TOLEranCeS eeeececsccsccsccssccsssee 11-16
System DC Voltage TOleranCesS sesceecsccoccsssrssccrcecsseess L1119

es 000 eeer s 1*10

!
>
)]

i
w O U
> Oy

t

~

® @ 0 00 000 000

® ® 0 0 O O O 0O PO SO S OO O OSSO OO O SS

U'lkJ’IUIw(iJWNNN

® 9 9 0 0 000 00 00O OO C OSSP OE IO

® 0 0 0 &0 00 00" O O PO OO0 OSSO ee SN

t

Q>0 U W

® 0 8 9 00V S OO S E OC T PO O S L OE SO N0

t
FFRPOMNMNWWNONNMHOYOAOANNS

U >

[VeRVeJVo VN e JU, WO, O O, VLR
f

{
[
[e o}

® 5 0 00 00 0 0 0 0P OO PO OO O SO e O OO PO EOC OO 11—5

XX

INTRODUCTION

The HP 3000 Series III Computer Systems are general purpose com-
puters with true multiprogramming and multilingual capabilities.
They can simultaneously handle many interactive and batch opera-
tions; each in any of several programming languages. The HP 3000
Series III Computer Systems feature hardware stack architecture,
variable-length code segmentation in a hardware-—assisted virtual
memory scheme, user protection, dynamic storage allocation, and
integrated hardware/software design. The hardware and software
work together in an interrelated manner with the hardware per-
forming many operations conventionally performed by software.
The HP 3000 Series III Computer Systems have a single, comprehen-
sive operating system, the Multiprogramming Executive (MPE). MPE
is a general-purpose, disc-based software system that supervises
the processing of user programs. MPE relieves the user of many
program control, input/output, and other housekeeping responsi-
bilities by monitoring and controlling the compilation, run prep-
aration, loading, execution, and output of user programs. MPE
also controls the order in which programs are executed and allo-
cates the hardware and software resources they require.

H. SYSTEM FEATURES
The HP 3000 Series III Computer Systems incorporate many features
usually found only on very large computer systems. These fea-

tures are summarized in paragraphs 1-2 through 1-10.

12 Stack Architecture

The system’s stack architecture provides private, hardware-
protected data storage for each user as well as an automatic
method for moving this data to and from the central processor
registers. The major operating features derived from this design
are:

a. Fast execution

b. Code compression

c. Hardware-protected execution

d. Dynamic allocation of subprogram data space

e. Ease of parameter passing

f. Efficient subprogram linkage

g. Rapid interruption and restoration of user environments

h. Subprograms being able to call themselves (recursion)

1-1

Introduction

13. Microprogrammed Operations

Many system operations that were previously programmed in soft-
ware are now microprogrammed. These operations are requested by
machine instructions which in turn execute multiple microin-
structions built into the central processor hardware. Micropro-
gramming eliminates repetitive coding otherwise required for
recurring operations.

H4. Data Base Management Facilities

The computer systems provide software facilities that allow the
user to create, access, and maintain large data bases. The in-
formation in these bases can be accessed both interactively from
a keyboard terminal and programmatically from user programs writ-
ten in any of the the available programming languages.

15. Five Programming Languages

The computer systems provide the user with a true multilingual
programming environment. The six available languages are COBOL,
RPG, FORTRAN, BASIC, SPL (a language developed especially for the
HP 3000 Series Computers), and APL.

16. Virtual Memory

The operating system’s hardware-assisted virtual memory scheme
offers each user program a memory space that exceeds the maximum
main memory size of 1024K words. Virtual memory consists of both
main memory and a flexible storage area on disc. Virtual memory
is implemented using a segment trap frequency algorithm that en-
sures the automatic presence in main memory of only those seg-
ments of code and data which are «currently required by the
executing program. Main memory is thus efficiently shared by
the users in a manner that gives each programmer the impression
of working with a much larger computer system.

+. Fault Control Memory |

The computer systems employ high-speed semiconductor memory mod-
ules that provide automatic fault detection and single-bit cor-
rection with no loss in per formance.

18. Concurrent 1/0 and CPU Operations

Many I/0 operations can be performed concurrently with Central
Processor Unit (CPU) and memory operations. This is possible
because, in addition to the CPU, the computer has an Input/Output
Processor (IOP) with its own dedicated data transfer path (IOP
bus) to which are connected a Multiplexer Channel(s) and one or
more Asynchronous Terminal Controllers. All of this hardware
operates under control of the MPE operating system which handles
all queuing and device scheduling.

Introduction

19. Reentrant Code and Private Data

Within the MPE environment, many user and system functions can be
active concurently without interferring with each other because
the hardware provides protection of programs and guarantees the
privacy of user data areas. The hardware keeps code and data
physically separate by organizing them into reentrant code seg-
ments and data segments. (The code segments can be shared among
users, but not altered. The data segments cannot be shared, but
can be altered by the creating user.) This segmenting ability
facilitates the operation of virtual memory in that 1; code seg-
ments need never be swapped out since an identical copy always
exists on disc, and 2; code segments can be swapped indirectly
from wherever the program file resides on disc without having to
be copied first to a special swapping disc.

+10. Operating System

A single, comprehensive operating system (MPE) supervises the
processing of all user programs and provides the user with an
extensive set of system functions. The major features of MPE are:

a. Interchangeable batch and interactive processing

b. Uniform, device-independent, and language- independent file
system

c. File coordination and security
d. Input and output spooling (concurrent usuage of I/0 devices)
e. Console job control

f. Automatic scheduling (under control of the installation’s
management)

g. System back-up facility

h. Power fail/auto restart

i. System tailoring (under control of installation’s management)
j. System logging facility

1. HARDWARE FEATURES

The hardware design of the HP 3000 Series 1III Computer System
will be discussed in detail throughout the remainder of this man-

ual. Briefly, the hardware features are:

a. Up tc 1024K words of high-speed, fault correcting, semicon-
ductor memory

b. High-speed selector channels for block transfers between main
memory and high-speed I/0 devices such as discs

1-3

Introduction

c. I/0 multiplexer channels for word transfers between main
memory and low- to medium-speed I/0 devices such as card
readers, line printers, and magnetic tape units

d. Asynchronous terminal controllers for data transmissions be-
tween main memory and interactive terminals

e. High-speed disc storage devices that provide storage capaci-
ties from 15 to 120 million bytes and data transfers of near-
ly one megabyte per second

f. 800 or 1600 character-per-inch magnetic tape units

g. Line printers with operating speeds from 165 to 1800 lines
per minute

h. CRT display terminals

i. Card readers and high-speed punched tape equipment

+12. SOFTWARE FEATURES

The HP 3000 Series III Computer Systems offer a wide range of
software including the MPE operating system, six programming lan-
guages, a text editor, a flexible file copier, a fast sort/ merge
package, two libraries of commonly used mathematical, statisti-
cal, and utility procedures, data base management facility, and
data communications products. Currently available software is
shown in figure 1-1.

+13. SYSTEM CONFIGURATIONS

The HP 3000 Series III Computer Systems are available in two pro-
duct lines; the 32421A Series III and the 32435A Series III. The
32421A Series III is available in two hardware models; a standard
2-bay model and an optional 3-bay model (Option 200). The 32435A
Series III 1is also available in two hardware models; a standard
l-bay model and an optional 2-bay model (Option 200). All models
use the same operating system, language processors, utility pro-
grams, data base management programs, and data communications
programs. All models operate in both batch and interactive modes
with full spooling capabilities. Rack layouts for the four mod-
els are shown in figures 1-2 through 1-5. (HP 29425A Cabinets
that contain the system discs are not shown.) The printed cir-

cuit assembly (PCA) slot assignments for the models are listed in
tables 1-1 through 1-3.

Introcduction

OPERATING SYSTEM
System c d File Input/
Configurator Initiator Console | :mma: Management Output
Manager nterpreter System System
Virtual Disc Private Serial Tape
Memory Space Volumes Disc Labels
Manager Manager Facility Interface Facility
. . User
Spooling Job/Session Process
Facility Scheduler Dispatcher Segmenter Loader Trap
Manager
Utility Accounting Logging Backup/ Povyer
Intrinsics Facilit Facilit Restore Fail/
acility acility Facility Auto Restart
LANGUAGES
COBOL RPG FORTRAN BASIC SPL APL
UTILITIES
Data
. File Compiler Scientific
Text Editor . Sort/Merge - . Entry
Copier Library Library Library
DATA MANAGEMENT DATA COMMUNICATIONS
DBMS
KSAM (Image & Query) FORMS DS RJE MRJE MTS

Figure 1-1.

HP 3000 Series III Computer System Software

Introduction

BAY NO. 2

PERIPHERAL BAY

1 N

T [(g
o Wis
|
- HP 79708 i
Tape ORIve | CARD CAGE NO. }

/
i

N~

o)

i

| CARD CAGE NO.7

INOT USED}

i FAN FILTER

i

CARD CAGE NO. 2

CARD CAGE NO. 3
CABLE GAP

CARD CAGE NO. 4

FAN FILTER

FRONT VIEW

(DOORS OMITTED FOR CLARITY)

BAY NO. BAY NO. 2
CPU BAY - PERIPHERAL 1/0 BAY
. .
°° MR 30310 ° % HP30310A
frebvuyppaurLuLy
o HP 300624 -
POWER
DISTRIBUTION UNIT
POWER CONTROL [O)]
[‘I MODULE
O
C
-
[|

REAR VIEW
(DOORS REMOVED FOR CLARITY)

Figure 1-2.

HP 32421A Series

III

Computer System, 2-Bay Model

BAY NO. 3 BAY NO. 2 BAY NO. 1 BAY NO. 1 BAY NO. 2 8AY NO. 3
PERIPHERAL BAY 1/0 BAY CPU BAY o CPU BAY 1/0 BAY. PERIPHERAL BAY
I l Oees voe
) D CARD CAGE NO. §
HP 7970E
TAPE DRIVE CARD CAGE NO. 1
|| =
i .
ii CARD CAGE NO. 6 A HP 30310A °
i CARD CAGE NO. 2
| | S
[] “ Q CABLE GAP
CARD CAGE NO. 7 CARD CAGE NO. 3
CABLE GAP
(BLANK PANEL)
HP 303134 JuuptuugnbLULLY
INOT USED) CARD CAGE NO. 4 = HP 300624 o
= == =
POWER O O power
' DISTRIBUTION UNIT DISTRIBUTION UNIT
{NOT USED) HP 30311A POWER CONTROL {BLANK PANEL)
| MODULE
C] 3
s _@ 0| ‘FAN FILTER
FAN FILTER FAN FILTER AN FLTER | S
L1l Ll | [[|
. FRONT VIEW REAR VIEW
{DOORS OMITTED FOR CLARITY) (DOORS REMOVED FOR CLARITY}

Figure

1“’30

HP 32421A Series III Computer System, 3-Bay Model

1-6

Introduction

[0
SYSTEM CONTROL PANEL

P02 P31
HP 63312F HP 62606M

suyuuuLLUVILY

= HP30062a 9
= e —

CARD CAGE NO. 1

CARD CAGE NO. 2 CARD CAGE NO. 2

CARD CAGE NO. 3
CARD CAGE NO. 3

o o

CARD CAGE NO. 4

CARD CAGE NO. 4

POWER SUPPLY CONTROL
AND DISPLAY ASSY
o o]
o|
O
o
FILTER o
o o
g e °
ISOLATION I o 9|
«f| TRANSFORMER o |, POWERCONTROLUNIT |
el 5 >
FRONT VIEW REAR VIEW
(DOOR REMOVED FOR CLARITY} (DOOR REMOVED FOR CLARITV!

Figure 1-4. HP 32435A Series III Computer System, 1-Bay Model

1/0 BAY CPU BAY CPU BAY 1/0 BAY
o) o o 0 o
SYSTEM CONTROL PANEL Po2 P31 P31 H
WP 63312F | | HP 62605M HP 62605M o
o o o ° L o
juuoauuyeuLY o
CARD CAGE NO. 5 CARD CAGE NO.1 = Hp30062A = CARD CAGE NO. 6
— | mmnnem | —_—
H [o
CARD CAGE NO.2 CARD CAGE NO. 2
CARD CAGE NO. 6 CARD CAGE NO. 6
CARD CAGE NO.3
CARD CAGE NO. 3
o[s =
HI [o
CARD CAGE NO. 4
CARD CAGE NO. 4
POWER SUPPLY CONTROL ° °
AND DISPLAY ASSY
o
cl -]
f d
o ol [°
o
0
. m"f‘,:;:g,"?‘"“ : POWER CONTROL UNIT ° °
o 0 Y L3 o o
FRONT VIEW REAR VIEW
(DOOR REMOVED FOR CLARITY) (DOOR-REMOVED FOR CLARITY)

Figure 1-5. HP 32435A Series III Computer System, 2-Bay Model

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY
Al Reserved for maintenance panel PCA.
A2 30012-60001 Expanded Read Only Memory
A3 30003-60021 Read Only Memory
A4 30003-60022 Skip and Special Field
CARD AS 30003-60003 Arithmetic and Lagic Unit
CAGE AB 30003-60004 R Bus
NO.1 A7 30003-60025 S Bus
A8 30003-60006 Current Instruction Register
A9 30003-60007 Module Control Unit
A10 30003-60028 Input Output Processor
Al 30032-60001 Terminal Data Interface
A2 30061-60001 Terminal Control Interface
A3 Reserved for 204 Modem capability
A4 30009-60002 Fault Logging Interface
CARD A5
CAGE AB 30008-60003 Memory Array {128K)
NO.2 A7 Available to add 128K
A8 Available to add 128K
A9 Available to add 128K
A10 30007-60005 Memory Control and Logging
Al Available for add-on memory
A2 Available for add-on memory
A3 Available for add-on memory
A4 Available for add-on memory
CARD A5 Available for add-on memory
sLoT PRINTED CIRCUIT ASSEMBLY CAGE A6
NO.3 A7 30030-60020 Selector Channel Port Controller
A1l Available for programmed (S10) or direct 1/0 A8 .30030-60021 Selector Channel Register
A2 30215-60002 Magnetic Tape Controlier Processor A9 30030-60003 Selector Channel Control
A3 30215-60006 Magnetic Tape Controller A10 30030-6001 1 Selector Channel Sequencer
A4 Available for programmed (SIO) or direct 1/0
CARD A5 Available for programmed (SIO) or direct 1/0 Al 30036-60002 Multipiexer Channet
CAGE A6 Available for programmed (SIO) or direct 1/0 A2 Available for programmed (SI10) or direct 1/0.
NO.7 A7 Available for programmed (SIO) or direct 1/O A3 Available for programmed (S10) or direct 1/0.
A8 Available for programmed (SIO) or direct 1/0 A4 Reserved for Selector Channel maintenance.
A9 Available for programmed (SI0) or direct 1/0 CARD A5 30031-60001 System Clock
A10 Available for programmed (S10) or direct |/O CAGE A6 Reserved for maintenance.
NO.4 A7 30229-60001 7905A/20A/25A Interface
A8 13037-60028 Disc Controller
A9 13037-60024 Error Correction
A10 13037-60001 Microprocessor
Table 1-1, HP 32421A Series III 2-Bay Model PCA Slot Assignments

Introduction

SLOT PRINTED CIRCUIT ASSEMBLY sLoT PRINTED CIRCUIT ASSEMBLY
A1l 30036-60002 Multiplexer Channel Al Reserved for maintenance panel PCA.
A2 30215-60002 Magnetic Tape Controller Processor A2 30012-60001 Expanded Read Only Memory
A3 30215-60006 Magnetic Tape Controller A3 30003-60021 Read Only Memory
A4 30031-60001 System Clock Ad 30003-60022 Skip and Special Field
CARD A5 Available for programmed (SIO) or direct 1/0 CARD A5 30003-60003 Arithmetic and Logic Unit
CAGE A6 Available for programmed (S10) or direct 1/0 CAGE A6 30003-60004 R Bus
NO5 A7 Available for programmed (SI0) or direct 1/0 NO.1 A7 30003-60025 S Bus
A8 Available for programmed (S10) or direct 1/O A8 30003-60006 Current Instruction Register
AS Available for programmed (SIQ) or direct 1/O A9 30003-60007 Module Control Unit
A10 Available for programmed (SI10) or direct 1/O A10 30003-60028 Input Output Processor
Al Available for programmed (S10) or direct 1/0 Al 30032-60001 Terminal Data Interface
A2 Auvailable for programmed (SIO) or direct /O A2 30061-60001 Terminal Control Interface
A3 Auvailable for programmed (SI0) or direct 1/O A3 Reserved for 203 Modem capability
Ad Available for programmed (SI0) or direct 1/0 A4 30009-60002 Fault Logging Interface
CARD A5 Available for programmed (S10) or direct 1/O CARD A5
CAGE A6 Available for programmed (SI0) or direct 1/0 CAGE A6 30008-60003 Memory Array (128K)
NO.6 A7 Available for programmed (SIQ) or direct 1/0 NO.2 A7 Auvailable to add 128K.
A8 Available for programmed (S10) or direct 1/0 A8 Available to add 128K.
AS Auvailable for programmed (SI10) or direct 1/O A9 Available to add 128K.
A10 Available for programmed (SI10) or direct 1/0 A10 30007-60005 Memory Control and Logging
A1l Available for programmed (SI10) or direct 1/0 Al Available for add-on memory
A2 Available for programmed (S10) or direct 1/0 A2 Auvailable for add-on memory
A3 Available for programmed (SIO) or direct 1/0 A3 Available for add-on memory
A4 Available for programmed (SI10) or direct |/O Ad Available for add-on memory
CARD A5 Available for programmed (S10) or direct 1/0 CARD A5 Available for add-on memory
CAGE A6 Available for programmed (SI10) or direct 1/0 CAGE AB
No.7 A7 Available for programmed (SIO) or direct 1/0 NO.3 A7 30030-60020 Selector Channel Port Controller
A8 Reserved for second disc controller AB 30030-60021 Selector Channel Register
A9 Reserved for second disc controller A9 30030-60003 Selector Channel Control
A10 Reserved for second disc controller A10 30030-60011 Selector Channel Sequencer
Al Reserved for second Selector Channel
A2 Reserved for second Selector Channel
A3 Reserved for second Selector Channel
. . A4 Reserved for Selector Channel maintenance.
CARD AB Reserved for second 7905A/20A/25A Interface
CAGE - A6 Reserved for maintenance.
NO4 A7 30229-60001 7905A/20A/25A Interface
A8 13037-60028 Disc Controller
A9 13037-60024 Error Correction
A10 13037-60001 Microprocessor

Table 1-2., HP 32421A Series III 3-Bay Model PCA Slot Assignments

Introduction

Slot PRINTED CIRCUIT ASSEMBLY Slot PRINTED CIRCUIT ASSEMBLY
A1l Available for programmed (S10) or direct 1/0 Al Reserved for maintenance panel PCA.
A2 Auvailable for programmed (S10) or direct 1/0 A2 30012-60001 Expanded Read Only Memory.
A3 Auvailable for programmed (S10) or direct 1/0 A3 30003-60021 Read Only Memory
A4 Available for programmed (S10) or direct |/0 A4 30003-60022 Skip and Special Field
. CARD | A5 | Available for programmed (SIO) or direct 1/0 CARD [A5 | 30003-60003 Arithmetic and Logic Unit
CAGE | A6 | Available for programmed (SIO) or direct 1/0 CAGE | A6 | 30003-60004 R Bus
NO.5 | A7 | Available for programmed (SIO) or direct 1/0 NO.1 | A7 | 30003-60025 S Bus
A8 Available for programmed (S1Q) or direct 1/0 A8 30003-60006 Current Instruction Register
A9 Available for programmed (S10) or direct 1/0 A9 30003-60007 Module Control Unit
A10 Available for programmed (SI10) or direct 1/0 A10 | 30003-60028 Input Output Processor
A1l Available for programmed (SI10) or direct 1/0 A1l 30008-60003 Memory Array {128K)
A2 Auvailable for programmed (SI10) or direct 1/0 A2 Available to add 128K
A3 Available for programmed (SI10) or direct 1/0 A3 Available to add 128K
A4 Available for programmed (SIO) or direct 1/O A4 Available to add 128K
CARD A5 Available for programmed (SI0) or direct 1/0 CARD A5 30007-60005 Memory Control and Logic #1
CAGE A6 Available for programmed (S10) or direct I/0 CAGE A6 Available to add Memory Control and Logic #2
NO. 5 A7 Auvailable for programmed (SI10) or direct 1/0 NO.2 A7 Available to add 128K
A8 Available for programmed (SI10) or direct 1/0 A8 Available to add 128K
A9 Available for programmed (SI0) or direct 1/0 A9 Available to add 128K
A10 Available for programmed (SIO) or direct 1/0Q A10 Available to add 128K
A1l 30135-60063 System Clock/FLI
A2 30032-60001 Terminal Data Interface
1/0 BAY A3 30061-60001 Terminal Control Interface
A4 30030-60020 Selector Channel Port Controller
CARD | A5 | 30030-60021 Selector Channel Register
NO. 3 A6 30030-60003 Selector Channel Control
' A7 30030-60011 Selector Channel Sequencer
A8 Available for programmed (SIO) or direct 1/0
A9 Available for programmed (SI10) or direct 1/O
A10 Available for programmed (SI0) or direct 1/0
A1l Available for programmed {SIO) or direct |/O
A2 Available for programmed (SIO) or direct 1/O
A3 Available for programmed (SI0) or direct 1/0
CARD A4 Available for programmed (SIO) or direct 1/0
CAGE AB Available for programmed (SI10) or direct 1/0
NO. 4 A6 Available for programmed (SIO) or direct 1/O
’ A7 30215-60002 Magnetic Tape Controller Processor
A8 30215-60006 Magnetic Tape Controller
A9 30036-60002 Multiplexer Channel
A10 30229-60001 Disc Control Interface

CPU BAY

Table 1-3. HP 32435A Series III PCA Slot Assignments

1-10

Introduction

NOTES

1-11

Introduction

NOTES

1-12

SYSTEM/CPU OVERVIEW

This section contains a brief description of the computer sys-
tem’s hardware organization and detailed discussions of the sys-
tem’s operating environment, instruction formats, addressing
conventions, and CPU operations. The topics that are summarized
in this section are discussed in more detail throughout the re-
mainder of this manual. 1In addition, this section contains prin-
ciples of operation and servicing information for the CPU.

21 HARDWARE ORGANIZATION

The hardware elements of the computer system are organized as
shown in figure 2-1. This basic structure of independent modules
organized around a Central Data (CTL) Bus permits high-speed in-
ternal data rates. When not communicating over the CTL Bus, each
module can run independently at its own speed. This structure
also allows new equipment to be added without going through a
major hardware reconfiqguration. The separate Input/ Output Pro-
cessor (IOP) Bus is totally dedicated to input/output (I/0) data
transfers which allows the computer system to immediately respond
to I/0 device needs regardless of what transfers are currently in
progress between the various system modules. The 1IOP Bus also
permits many I/0 operations to be handled concurrently with CPU,
Main Memory, and Selector Channel operations. Data can be
transferred directly between Main Memory (Bank 0 through Bank 15)
and high-speed I/0 devices in block mode via the Selector Channel
Bus, Selector Channel, Port Controller, and CTL Bus. For lower-
speed I1/0 devices, data can be multiplexed on a word-by-word
basis via the IOP, IOP Bus, Multiplexer Channel, and Multiplexer
Channel Bus. 1In both cases, the I/0O channels operate in parallel
with CPU operations. 1In addition, 1I/0 devices attached to the
IOP Bus can be directly controlled through the use of the CPU’s
direct I/O instructions.

2-2. Bus System

The computer s bus system is a network of data, control, and pow-
er lines necessary to effect the transfer of data between comput-
er modules and between I/0 devices and memory. The individual
buses are discussed in paragraphs 2-3 through 2-8.

2-3. CTL BUS. The CTL Bus provides the communications path
between all computer modules. This bus consists of a 50-conductor
flat cable and connectors and is connected to each Module Control
Unit (MCU) and Port Controller in the computer system. (Refer to
paragraph 2-15.)

System/CPU Overview

M

C |Banks0-7

U

Lower Memory Module

M

C|Banks8-15

U

Interactive Terminals
Upper Memory Madule (Up to 16 terminals per controller)
Central Multiplexer
g Processing Multiolex Channel Bus ' Asynchronous Asynchronous
@ ™ Unit (l;h“r)\: ler Terminal Terminal
« CPU anne Contrcllsr Controller
- C
g U - X __
Upto 16

3 Input/Output Device additional
E Processor Controller | device
2 1op IL controllers J'
& B

|
¥

I0P BUS

Device
Controller

Note: Each device controller on

the Multiplexer Channel can
Port Selector have from 1 to 8 devices
Controller Channel connected to it depending
Selector Channel Bus on the type of device.

Figure 2-1. HP 3000 Series III Computer System Hardware
Organization

2-4. 1I0P BUS. The IOP Bus provides the means for the IOP to
send control signals and control words to any Device Controller
and for the IOP to accept interrupts from any Device Controller.
(For multiplexed 1I/0 devices, all data transmissions also occur
via the IOP Bus. For high-speed devices connected to the Selec-
tor Channel Bus, data transmissions for direct I/O instructions
also occur via the IOP Bus.) This bus consists of a 50-conductor
flat cable and connectors and connects the IOP to every Device
Controller and Multiplexer Channel in the computer system.

2-5, SELECTOR CHANNEL BUS. The Selector Channel Bus (one for
each Selector Channel) provides the communication path for the
Selector Channel to select one of up to eight I/0 devices for
transmission. Data transmissions on the Selector Channel Bus,
occuring as a result of an SIO instruction, are by block transfer
(data burst). This bus consists of a 50-conductor flat cable and
connectors and connects a Selector Channel to each of its as-
sociated high-speed Device Controllers.

System/CPU Overview

2-6. PORT CONTROLLER BUS. The Port Controller Bus (not shown
in figure 2-1) provides the communication path between each
Selector Channel and the Port Controller which interfaces with
the CTL Bus. This bus consists of a 50-conductor flat cable and
connectors and connects each Selector Channel to the Port
Controller.

2-7. MULTIPLEXER CHANNEL BUS. Except for minor signal nomen-
clature differences, the Multiplexer Channel Bus (one per Multi-
plexer Channel) 1is identical to the Selector Channel Bus. This
allows certain high-speed 1I/0 devices to be connected inter-
changeably to either bus. The major difference 1is that data
transmissions are under control of a Multiplexer Channel instead
of a Selector Channel. All data transmissions in this case are
via the IOP Bus and are multiplexed among the I/0 devices on a
word-by-word basis. (The equivalent data lines on the Selector
Channel Bus are used as service request lines on the Multiplexer
Channel Bus.) This bus consists of a 50-conductor flat cable and
connectors and connects each Multiplexer Channel to each of its
associated Device Controllers.

2-8. POWER BUS. The Power Bus (not shown in figure 2-1), unlike
the previously discussed flat-cable buses, 1is a rigid PCA with
fixed 56-pin connectors. The Power Bus provides dc power and and
some IOP Bus related signals for each PCA mounted in a particular
card cage module. There is one Power Bus for each card cage mod-
ule and each Power Bus is individually wired to the computer’s
power supply. Al though dc power is not distributed from card
cage module to card cage module via the Power Bus, a 20-conductor
flat cable is connected between the Power Buses for the distribu-
tion of the IOP Bus related signals. In addition, each Power Bus
contains connector pins reserved for the data poll, interrupt
poll, and system clock signals.

2-9. Functional Hardware Elements

Brief descriptions of the principal hardware elements illustrated
in figure 2-1 are contained in paragraphs 2-10 through 2-14.

2-10. CENTRAL PROCESSOR MODULE. The Central Processor Module
determines the basic characteristics of the computer system’s
hardware and consists of the MCU, CPU, and 1IOP. Significant
features of the module are listed in table 2-1.

The MCU resolves CTL Bus priority conflicts between the CPU and
IOP and interfaces both to the CTL Bus. Refer to paragraph 2-15.
A detailed discussion of the MCU is contained in Section VI.

The CPU translates received instruction words into microprogram
starting addresses, decodes microprograms into fixed control sig-
nal sequences, executes various arithmetic functions, and either
transfers the results out of the Central Processor Module or
stores the results in various internal registers for future use.
The CPU shares the MCU with the IOP. A detailed discussion of
the CPU is contained in paragraphs 2-71 through 2-133.

2-3

System/CPU Overview

The IOP provides the I/0 control link for the computer system and
resolves priority conflicts for 1I/0 interrupts and multiple
Multiplexer Channel access tc the CTL Bus. The IOP performs
different functions for each of the three T/0 transfer modes.
(Refer to Section VII.) During direct F/0 transfer mcde and
depending on received direct I/0 instructions (RIO, WIO, TIO,
CIO, SIN, and SMSK), the 1IOP transfers either data, device
status, or control information between the CPU and a Device Con-
troller. During programmed I/0 transfer mode via a Multiplexer
Channel, the IOP transfers I'/O program words between memory and
the Multiplexer Channel, and transfers data between memory and a
Multiplexer—-Channel-selected Device Controller. During pro-
grammed I/O transfer mode via a Selector Channel, the IOP only
transfers initialization information tc a Device Controller
asscciated with the Selectcer Channel; it does not become invclved
in any part of the I/O program execution. During all I/O trans-
fer modes, the IOP interrupts the CPU on behalf of the Device
Controllers. The IOP shares the MCU with the CPU.

Physically, the Central Processor Module consists of nine PCA’s
contained in slots A2 through Al0 of Card Cage No. 1 of all HP
3000 Series III Computer System models. Card Cage No. 1 is a
dedicated card cage module and the nine PCA’s must be installed
exactly as shown in tables 1-1 through 1-3.

2-11. MAIN MEMORY., Main Memory is a high-speed, semiconductor,
randan access memory that provides high-speed stcrage for the
computer system. Main Memory operates as an error correcting
memory with single-bit fault correction and some double-bit de-
tection. (Main Memory can operate as a non-error correcting mem-
ory with a parity bit, but this is not the normal operating
mode.) Main Memory can vary in size from 128K (K=1024) words to
1024K words and, due to its modular design, it can easily be ex-
panded from one size toc another.

A maximum word capacity system .consists of 16 64K-wcrd memory
banks (Bank 0 through Bank 15) divided into twc 512K-word memory
modules. Each 512K-word memory module contains its own MCU which
controls werd transfers between the module and the other system
modules connected to the CTL Bus. The word length transmitted
over the CTL Bus is 17 bkits; 16 bits of data (one word or two
bytes) and one parity bit. (Within the memory modules, word
length is expanded to 22 bits; 16 bits of data and six bits for
automatic fault detection and correction.) A detailed discussion
of Main Memory is contained in Section VI.

Physically, Main Memory consists of three basic PCA%s configured
as shown in table 2-2. It should be noted that each Semiconduct-
or Memory Array (SMA) PCA contains 128K words of memory, that one
Memory Control and Logging (MCL) PCA canh support up to four SMA
PCA’s (512K), and that one Fault Logging Interface (FLI) PCA can

support the computer system’s maximum memory capacity of eight
SMA PCA’'s (1024K). The Main Memory PCA’s are arranged in Card

Cages No.2 and No.3 as shown in tables 1-1 thrcugh 1-3. Conven-
tionally, card cage slots 2346 through 2A9 (HP 32421A Series III)

2-4

System/CPU Overview

Table 2-1. Central Processor Module Features

I
ARCHITECTURE

Hardware-implemented stack
Separate code and data
Non-modifiable reentrant code
Variable-length code segmentation
Virtual memory for code

Dynamic relocatability of programs

IMPLEMENTAT ION

I
I I
| I
I I
I I
| I
| I
| |
I I
I I
I |
I I
I Microprogrammed CPU I
I 175 nanosecond microinstruction time I
| Automatic restart after power failure |
| CTL Bus |
| Bus parity checking I
: Concurrent CPU and I/0 operations 1
‘ INSTRJCTIONS l
I I
I I
I I
| |
I |
| |
| I
I I
I I
I

209 instructions

All instructions except stack operations are 16 bits
in length. (Stack operations can be packed two per
per word.)

16- and 32-bit integer arithmetic

32- and 64-bit floating point arithmetic

28-digit packed decimal arithmetic

Special instructions that optimize operating system
efficiency

or 2A1 thrcugh 2A4 (HP 32435A Series IIL) are reserved for the
Lower Memory Module (Banks 0 - 7) and card cage slots 3A2 through
3A5 (HP 32421A Series II1) or 2A7 through 2A10 (HP 32435A Series
III) are reserved for the Upper Memory Module (Banks 8 - 15).

2-12. MULTIPLEXER CHANNEL. The Multiplexer Channels are design-
ed to operate with moderate-speed I/0 devices. Each Multiplexer
Channel can handle up toc 16 Device Controllers. The Multiplexer
Channel, in conjunction with the IOP, allows its associated De-
vice Controllers to run concurrently, interleaving their trans-
fers to or from Main Memory on a wcrdi-by-word basis. The
Multiplexer Channel resolves priority conflicts between its
associated Device Controllers for access to the 1IOP, translates
I/0 program doubleword instructions intc operating commands for
its Device Controllers, and maintains the operating status of
each Device Controller. Physically, the Multiplexer Channel con-
sists of one PCA which is conventicnally installed in Card Cage
No. 4 or 5 (depending on the ccmputer system model) as shown in
tables 1-1 through 1-3. A detailed discussion of the Multiplexer
Channels is contained in Section VII.

2-5

System/CPU Overview

Table 2-2. Main Memory Configurations

| T T I
| | | PCA ‘s Required |
| | | I
| Bank | System I T77771 T |
| No. | Word Capacity | MCL | SMA | FLI | Total |
I I | I I I I
| | - T T I T T
I 2 I 128K Il 1 | 1 1 1 | 3 I
| 4 | 256K I 1 | 2 | 1 | 4 |
| 6 | 384K I 1 | 3 |1 1 | 5 |
| 8 | 512K | 1 | 4 | 1 | 6

| 12 | 768 K I 2 | 6 | 1 | 9 |
} 16 % 1024K i 2 | 8 | 1 | 11 |

—— . — | ——— o - " " ——— .- t— S———

2-13. PORT CONTROLLER/SELECTOR CHANNEL. The Port Controller and
Selector Channels are designed to operate with high-speed 1I/0
devices. The Port Controller contains the MCU logic required to
interface the Selector Channels with Main Memory via the CTL Bus
and also resolves priority conflicts between Selector Channels
for accessing the CTL Bus. (Although the Port Controller contains
three selector channel ports, only two Selector Channels can be
installed in the computer system at one time.) Physically, the
Port Controller <consists of one PCA and, as shown in tables 1-1
through 1-3, is conventionally installed in Card Cage No. 3. De-
tailed discussions of the Port Controller and Selector Channel
are contained in Section VII.

Each Selector Channel can handle up to eight Device Controllers.
Unlike the Multiplexer Channel which switches between Device Con-
trollers on demand (based on hardware priority), the Selector
Channel uses only one Device Controller at a time and that Device
Controller monopolizes the channel until the device’s I/0 program
is complete. Thus, only one I/O program is current at a given
time for any one Selector Channel. Also, the Selector Channel
directly accesses Main Memory for data and 1I/0 program word
transfers rather than indirectly as the Multiplexer Channel does
through the IOP. Physically, each Selector Channel consists of
three PCA's and, as shown in tables 1-1 through 1-3, are conven-
tionally installed in Card Cage No. 3 and Card Cage No. 4 depend-
ing on the computer system model.

2-14, DEVICE CONTROLLERS. The computer system can handle up to
125 Device Controllers. Device Controllers provide the hardware
I1/0 linkage between the computer system and external I/0O devices.
Primarily, a Device Controller translates programmed I/O commands
(from a Multiplexer or Selector Channel) or direct I/0 commands
(from the IOP) into unique control signals required by its as-
sociated external I/0 device(s). A Device Controller also gen-
erates the interrupts required by its associated I/0 device (s)
and the interrupts required by direct or progr ammed commands.

2-6

System/CPU Overview

A Device Controller consists of one or more PCA’s and, depending
on the particular type of controller, can drive one or several
external I/0 devices. There are three types of Device Control-
lers; controllers used only for direct I/0, controllers used only
for programmed I/O, and controllers used for both direct and pro-
grammed I/0. Regardless of the type, every Device Controller can
accept all or some direct I/O instructions, can dJenerate inter-
rupts, and has a unique device number for addressing. Device
Controllers can be installed in any of the available card cage
slots designated in tables 1-1 through 1-3.

2-15. CTL Bus Priority

All computer system modules contain MCU logic that interfaces
each module to the others via the CTL Bus. Each module gains
access and control of the CTL Bus on a priority basis via its MCU
logic. (The CTL Bus is only available to one module at a time.)
For example; if two modules attempt to gain access to the CTL Bus
simultaneously, the module with the higher priority will get the
bus and the module with the lower priority will not get the bus
until it is released by the higher-priority module. CTL Bus
priority is resolved by assigning priority numbers to each system
module with jumper switches located in each module’s MCU logic.
The system modules assigned the lowest priority numbers have the
highest priority for accessing the CTL Bus.

Figure 2-2 illustrates the CTL Bus priority number assignments
for each module in a typical computer system. It should be noted
that the highest CTL Bus priorities (lowest priority numbers) are
reserved for Main Memory and that the lowest CTL Bus priority
(priority number 5) is reserved for the Central Processor Module.
The lower memory module responds to both priority numbers 0 and
1. The upper memory module responds to both priority numbers 2
and 3. The required MCU logic for Main Memory is contained on
the MCL PCA(s). (Priority for Memory Banks 0 through 7 is con-
trolled by one MCL PCA and priority for Memory Banks 8 through 15
is controlled by a second MCL PCA.) If installed, the Selector
Channel(s) has the next highest CTL Bus priority (priority number
4) after Main Memory. The required MCU logic for the Selector
Channel(s) is contained on the Port Controller PCA. As previous-
ly discussed, the Central Processor ‘s MCU resolves CTL Bus prior-
ity conflicts between the IOP and CPU. The IOP always has higher
priority than the CPU. Therefore, the CPU always has a lower CTL
Bus priority than any other module in the computer system.

2-16. OPERATING ENVIRONMENT

2-11. Virtual Memory

Virtual memory is a memory management scheme that uses semicon-
ductor Main Memory and disc storage secondary memory. Due to a
technique called memory segmentation, many programs stored in
secondary memory can concurrently access the computer system and
share its Main Memory. The system organizes programs into vari-
able-length segments of code and data in secondary memory which

2-7

System/CPU Overview

CTL BUS
PRIORITY PRIORITY PRIORITY PRIORITY
NO. @ AND 1 NO. 2 AND 3 NO. 5 NO. 4
512 K WORDS 512 K WORDS
PORT
LOWER MEMORY MODULE UPPER MEMORY MODULE CPU/ioP COTEQOb
BANKS @ -7 BANKS 8- 15

Y
MAIN MEMORY

Figure 2-2. CTL Bus Priority Number Assignments

can be transferred in and out of Main Memory on demand. (Code
consists of executable instructions and unchanging constants of a
program or subprogram. As the code is executed, the manipulated
values are referred to as data.) When a program is executed, only
those segments of code and data required at a particular time
actually reside in Main Memory and all other related segments
remain in secondary memory until they in turn are required. When
a particular code segment is no longer needed, it is overlayed in
Main Memory by the next required code segment. (Code segments
are non-modifiable and reentrant.) If a code segment is needed
again, it is again copied from the secondary memory disc where it
resides. Data segments, howevér, are dynamic and their contents
can be changed during the programs execution. Therefore, when a
particular data segment is no longer needed, it is copied back
into the secondary memory disc and replaces the original data
segment version. The vacated Main Memory space is then available
for other segments. This process of transferring segments be-
tween secondary memory and Main Memory is referred to as swapping
and permits large programs that actually exceed Main Memory’s
word capacity to be executed concurrently and still allow Main
Memory space for additional user programs.

2-18. Variable-Length Segmentation

Var iable-length segmentation of code and data is used to facili-
tate multiprogramming. It minimizes waste of memory resources
due to internal fragmentation and allows the operating system to
deal with logical rather than physical entities. This means that
a particular subprogram can be contained within one segment
rather than arbitrarily divided between two physical pages, thus
minimizing the amount of swapping that need be accomplished while
executing the subprogram. The location and size of all executing
code segments are maintained 1in a Code Segment Table and the lo-
cation and size of all associated data segments are maintained in

2-8

System/CPU Overview

a Data Segment Table. These tables are known to both software
and hardware. Software uses the tables for dynamic memory man-
agement by the operating system. Hardware uses the tables to
perform references and transfers between segments and to make
sure that all the segments required for current execution are
present in Main Memory. (Refer to paragraph 2-24.) Code segments
can be up to 16K words in length and data segments can be up to
32K words in length.

2-19. Processes

In an MPE environment, programs are run on the basis of processes
created and handled by the operating system. A process is the
basic executable entity in MPE. A process is not just a parti-
cular program; it is the unique execution of a particular program
by a particular user at a particular time. When a user requests
the execution of program, the system creates a private, hardware-
protected data segment called a stack for that particular execu-
tion. Data segments separate from the stack can be obtained
dynamically during process execution. Data segments can also be
expanded and contracted by the operating system as required.
This includes system handling of the stack overflow interrupt
(paragraph 2-69) during which the data segment may automatically
be expanded to accommodate operation of the stack. The program’s
changing set of code segments operating on the data stack consti-
tute the process. (The code segments used by a particular pro-
cess can be shared with other processes, but each individual
process data stack is private.) In order for a process to exe-
cute, its data stack and code segment containing the procedure
currently in execution by the CPU must be present in Main Memory.

2-20. Data Stacks

As previously discussed in paragraph 2-19, data for each user is
organized into a data stack. In general, a stack is a storage
area where the last item stored in is usually the first item tak-
en out. In actual use, programs have direct access to all items
in the stack by specifying addresses relative to several CPU reg-
isters. (Refer to paragraph 2-21.) All features of the stack,
including the automatic transferring of data to and from CPU reg-
isters and checking for stack overflow and underflow, are imple-
mented in the hardware. When programming in high-level languages
such as COBOL or RPG, all stack manipulations are accomplished
autcmatically by the language processor. The user can, however,
manipulate the stack directly by writing programs in SPL. Figure
2-3 illustrates the general structure of a data stack as viewed
from a subprogram. The white areas represent locations filled
with valid data and the shaded area represents available unfilled
locations. The stack area is delimited by the locations defined
as Data Base (DB) and Stack Pointer (S-pointer). The DB and S-
pointer addresses are retained in dedicated CPU registers. (Re-
fer to paragraph 2-21.) The Q-minus relative addressing area con-
tains the parameters passed by the calling program. The area
between the S-pointer and Q contains the subprogram’s local and
temporary variables and intermediate results.

2-9

System/CPU Overview

bB

GLOBAL VARIABLES DB - plus direct relative
addressing {up to DB+255)

GLOBAL ARRAYS DB - plus indirect relative
addressing

PARAMETERS Q minus relative

addressing {up to Q - 63)

LOCAL VARIABLES Q - plus direct relative

addressing (up to Q+127)

LOCAL ARRAYS Q - plus indirect relative

addressing

TEMPORARY VARIABLES &

INTERMEDIATE RESULTS S - minus relative

addressing (up to S - 63)

P U7 A N

Z

Figure 2-3., Typical Data Stack

The data in the DB location is the oldest element on the stack.
The data in the S-pointer location is the most current element on
the stack. (The S-pointer location is referred to as the Top of
the Stack (TOS). Conventionally, TOS is represented downward
from DB to correspond to the normal progression of writing soft-
ware programs where the most recently written statement is fur-
ther down the page than previously written statements. The area
from S+1 to Z is available for adding elements to the stack.
When a data word is added to the stack, it is stored in the next
available 1location and and the S-pointer is automatically incre-
mented by one to reflect the new TOS. (This process 1is said to
"push" a word onto the stack.) When data is deleted from the
stack, the S-pointer is decremented which puts the deleted word
in an undefined area. S-minus relative addressing is used to
refer to recently stacked elements of data and is one of the
standard addressing conventions. Under this convention, S-1 is
the second element on the stack, §S5-2 is the third element on the

stack, etc. The other standard addressing conventions are
DB-plus relative addressing, Q-minus relative addressing, and

2-10

System/CPU Overview

Q-plus relative addressing. (Q separates the data of a calling
program or subprogram from the data of a called subprogram.)

Since the four TOS elements are the most frequently used, there
are four corresponding CPU registers (RA, RB, RC, and RD) that
can at various times contain these four elements. The use of the
four CPU registers increases stack operation execution speed by
reducing the number of memory references needed when manipulating
data at or near TOS. The four CPU registers are implicitly ac-
cessed by many of the machine instructions and whenever stack
locations S, S-1, S-2, or S-3 are specifically referenced. (Refer
to paragraphs 2-96 and 2-97.) During execution, data stacks are
automatically expanded by the operating system up to a maximum of
32K words.

The system is also capable of operating in a split-stack mode.
(Refer to paragraph 2-64.) In split-stack mode, the DB Register
points to the current extra data segment and the other stack reg-
isters continue to point to the stack data segment. This is par-
ticularly efficient for system routines with tables in system
data segments. In split-stack mode, these data segments can be
accessed relative to the DB Register while using the other stack
registers for computation. In addition to split-stack mode, the
system contains instructions for moving data between data seg-
ments. These instructions cause an "absence trap" if either of
the required data segments is not present in Main Memory. There-
fore, the system can access very large address spaces outside of
the stack and can provide buffering and other data storage facil-
ities without having to reserve space for these functions within
the stack data segment.

2-21. CPU Registers

The computer system contains 38 special purpose registers which
perform the specific functions summarized in table 2-3. Since
all addressing of code and data segments is accomplished relative
to hardware address registers, the segments can be dynamically
relocated in memory by simply changing the register base
addresses. (The few instances where absolute addresses are re-
quired are privileged operations handled by the operating
system.) Several of the hardware registers are used for defining
the 1limits and operating elements of the code and data segments.
As shown in figure 2-4, four of the CPU registers point to loca-
tions in a code segment and eight of the CPU registers point to
locations in a data segment. It should be noted that there will
normally be several segments in Main Memory at one time, but only
one code segment and one data segment will be active at any given
time. The CPU registers always point to the currently active
segment. The functions of the CPU segment pointer registers are
discussed in paragraphs 2-22 and 2-23. The remaining special
purpose registers will be discussed later in this manual.

System/CPU Overview

Table 2-3. Machine Registers

| 1 [1 |
| Register | Function | Register | Function n
| | I |

I I | l |
PB		SWCH	Switch Register
P	Code Segment		
PL	Pointers	PCLK	Process Clock
PB-Bank	: I Register =		
I			

| CIR | Current Instruction| SPO | |
| | Register | SP1l | |
| | | sp2 | I
| NIR | Next Instruction | sP3 | Scratch Pad, Flag, |
I | Register | CTR | and Interrupt |
| | | ABS-Bank | Registers |
| DL I | CPX1 I |
| DB | | CPXx2 I I
I Q I | MOD I I
| sM | Data Segment | | |
| SR | (Stack) Pointers | I0A | I/0 Registers |
| 2 I | 10D I I
DB-Bank			
S-Bank		ACOR	Memory Address and
		DCOR	Data Registers
RA		OPND I , I	
RB	Top Of Stack (TOS)		
RC	Registers	RAR	Firmware Address
RD		SAVE	Registers ’

| X | Index Register | STA | Status Register I
| | | I

!
!
!

2-22. CODE SEGMENT REGISTERS. The functions of the CPU code
segment registers are as follows:

The PB Register defines the program base of the cocde segment be-
ing executed. The PB Register contains a 16-bit absolute address
pointing to the first memory location of the code segment.

The PB-Bank Register is a 4-bit register used in conjunction with
the PB Register to define in which memory bank the code segment
resides.

The PL Register defines the program limit of the code segment
being executed. The PL Register contains a 16-bit absolute ad-
dress pointing to the last memory location of the code segment.

The P Register is the program counter. The P Register contains a
l6-bit absolute address pointing to the memory location of the

instruction being executed. The P Register can never point to a
location beyond the 1limits defined by the PB and PL Registers.

2-12

System/CPU Overview

CODE SEGMENT DATA SEGMENT
POINTING POINTING
REGISTERS REGISTERS

PB Stack
CODE DATA
Bank SEGMENT Bank SEGMENT
D h PB Register l——> D l DL Register } >
(Program Base} (Data Limit)
DB
Bank
D I DB Register
(Data Base)
I P Register }——b
(Program Counter)
I PL Register -

(Program Limit) [Q Register

{Stack Marker)

(Top-of-Stack in Memory)
{ [SM Register }
; r-——--=="
Displacement S Pointer
=0,1,23,4 e e - —
@ I/L\‘SSFESSSS'ES (Logical Top-of-Stack)
r Z Register J >
(Stack Limit)

Figure 2-4. CPU Segment Pointer Registers

2-23. DATA SEGMENT REGISTERS. The functions of the CPU data
segment (stack) registers are as follows:

The DL Register defines the data limit of the current data seg-
ment. The DL Register contains a 16-bit absolute address point-
ing to the first word of memory available to the user’s data
space.

System/CPU Overview

The DB Register defines the data base of the current wuser’s
stack. The DB Register contains a 1l6-bit absolute address point-
ing to the first memory location of the directly addressable glo-
bal area of the stack.

The DB-Bank Register is a 4-bit register used in conjunction with
the DB Register to define in which memory bank the stack or split
stacks (paragraph 2-64) reside.

The Q Register defines the current stack marker in the current
data segment. The area of the stack between Q and S represents
data that is incurred by the current procedure or routine. The
Q Register «contains a 16-bit absolute address pointing to the
fourth word of the current stack marker being used within the
stack. The location pointed to by the Q Register must be within
the limits defined by the DB Register and Z Register. (During
privileged mode (paragraph 247), Q can be moved below DB.

The SM Register defines the last memory location of the current
stack. The SM Register contains a 16-bit absolute address point-
ing to the 1last accessed data location in memory. It should be
noted that the contents of the SM Register may not necessarily
point to the actual (or logical) TOS. The location pointed to by
the SM Register must be within the limits defined by the DB Reg-
ister and Z Register.

The SR Register defines the number of TOS elements that are 1in
the CPU stack registers. The SR Register contains a 3-bit number
that has a value from 0 and 4. This number is a positive dis-
placement which, when added to the address contained 1in the
SM Register, indicates the logical TOS. (The contents of the
SM Register plus the contents of the SR Register always defines
the S-pointer.)

The S-pointer is not a physical register, but is logically com-
posed by adding together the contents of the SM Register and
SR Register. The S-pointer always defines the logical TOS. (The
principle of using two physical registers to create the S-pointer
is employed for hardware convenience in achieving fast execution
times.) The following relationship exists between the S-pointer
and the CPU stack registers:

RA = S-pointer = SR Register + SM Register
RB = S-pointer - 1
RC = S-pointer - 2
RD = S-pointer - 3

The Z Register defines the stack 1limit of the current user’s
stack. The Z Register contains a 16-bit absolute address point-
ing to the last memory location available to the stack. (Actual-
ly, each data segment has several locations beyond Z that are
used for bounds checks (paragraph 2-65) and stack markers due to
an interrupt (paragraph 2-28).

2-14

System/CPU Overview

The S-Bank Register is a 4-bit register used in conjunction with
the S-pointer and DL, Q, and Z Registers to define which memory
the S-Bank is not necessarily equal to the DB-Bank.

2-24. Basic Table Structures

The first few locations of Main Memory are reserved for the sys-
tem pointers 1listed 1in table 2-4. During system c¢old load,
memory location 0 1is set to point to the location of the Code
Segment Table (CST) as shown in (1), figure 2-5. The CST con-
tains a single four-word entry for each Segmented Library segment
currently in use in the system. (Segmented Libraries permit
separate programs to share procedures.) Memory location 1 (2),
figure 2-5 points to the Code Segment Table Extension (CSTX) area
allocated to the program being executed by the CPU. The CSTX is
used to keep track of the code segments in the various program
files being executed. Therefore, the contents of memory location
1 will shift to point to various sections of the CSTX as differ-
ent programs are executed by the CPU. For example, figure 2-5
shows that Program X is currently being executed by user process
A. Also during system cold load, memory locations 2 and 3 are
set to point to the Data Segment Table (DST) and Process Control
Block (PCB) Base respectively. See (3) and (4), figure 2-5.
There is a four-word DST entry for each data segment 1in use in
the system as discussed in paragraph 2-26. There is a PCB allo-
cated to each process running in the system. The PCB entry for a
process points to the DST entry for 1its stack data segment
although, for simplicity, this is not shown in figure 2-5.
Memory location 4 is set by the software to point to the PCB of
the currently executing process (5), figure 2-5. The linkage
from the PCB to the CSTX area (6) is used to set memory 1location
1. It should be noted that if process B and process C happen to
be executing the same program (7), the program file segments will
be shared. The CPU Status Register (STA Register) then points to
the current segment of the current process holding CPU resources.

2-25., CODE SEGMENT TABLE AND CODE SEGMENT TABLE EXTENSION. The
CST contains a list of code segments that are being referenced by
executing programs. Its length is determined at system genera-
tion time. The actual number of entries in use at any time is
variable, limited only by the length of the table. Entries are
dynamically allocated by the operating system as programs are
loaded and unloaded. Each entry contains control information
about the segment and gives its length and starting address in
the format shown in figure 2-6. The first %300 entries are re-
served for Segmented Library segments. The CST entry for segment
0 contains control information. Segment 1 contains the routines
needed to service internal interrupts. Segments 2 through 191
(%277) contain code such as service routines for external inter-
rupts, system intrinsics, and library procedures. The remainder
of the CST entries fall in the CSTX area and keep track of pro-
gram segments. Each program can have up to 63 segments. The
table is accessed via the PCAL, EXIT, IXIT, and DISP instructions
(Section IV) and is completely invisible to the user. ,

System/CPU Overview

Table 2-4. Reserved Low Main Memory Locations

Memory Location Contents

|

I

|

I
Code Segment Table Base |
de Segment Table Extension |
Data Segment Table Base |
| Process Control Block Base |
| Current Process Control Block]|
| Interrupt Stack Base l
| |
I I
l

|

I

|

I

|

I

|

NoundWuro

Interrupt Stack Limit
Interrupt Mask
$10-%13 | Reserved
$14-%777(max.) | Device Reference and External
| Interrupt Table
%$1000 | System Global Table (Pointers
I

to resident tables, etc.)

Note: The % symbol preceding a number indicates
an octal value.

2-26. DATA SEGMENT TABLE. The DST contains a list of the various
data segments currently in use by the operating system and user
programs. These segments include I/0 buffers, system and user
process stacks, and extra data segments. The DST length is de-
termined at system generation time and it contains a four-word
entry for each data segment in the format shown in figure 2-7.
The actual number of entries in use at any one time is variable,
limited only by the length of the table. Entries are dynamically
allocated by the operating system as programs are loaded and un-
loaded or as special capability processes request or release ad-
ditional data segments.

2-21. Code Segment Linkage

During the execution of one user process, there will usually be
several code segments in memory and a single data segment. As-
sume that the current process presently has two code segments in
memory as shown in figure 2-8. The purpose of figure 2-8 is to
illustrate how the system keeps track of where code segments are
and to show how references can be made from one segment to anoth-
er. Although figure 2-8 illustrates hardware, it is the respon-
sibility of the MPE operating system to control the tables shown.

The CST Pointer is permanently resident 1in ILocation 0 and it
contains an absolute address pointing to the starting location of
the CST (1), figure 2-8. The CST tells where each code segment
(present or absent) is located. If the segment 1is a program
segment, Location 1 is used. Each entry in the CST has a unique
number (code segment number) that identifies the particular seg-

2-16

System/CPU Overview

Low Main Memory
CSTBase L
CST Extension . @
[~ DST Base
- PCB Base
Process Control — Current PCB .
Block Table L Segment Tables (4-w03d entries)
I I]
: | | |
| paTa I
I |) SEGMENT Data
- | TABLE | Segment
Process @ | I Entries
A
PCB T I |
I\ l]
| I I 1
| | | '
Process | Segmented
8]) I CODE [Library
PcB ©) | SEGMENT Code
TABLE ' Segment
, ! | | Entries
| | ' |
Process
¢ 7 CST
pce EXTENSION
_ —
' 7 Program X
: Code Segment
|\ é Entries
Program Y
Code Segment
& Entries

Figure 2-5. Basic Data Structures

2-17

System/CPU Overview

CODE SEGMENT TABLE Doubleword

071727374 5 6 7 8 91011112713 1415
AlMIRlTl L/a
Reserved
Reserved 8
Address

A Absence Bit = 1 if segment is absent from main
memory.
M Mode Bit = 1 if segment executes in Privileged
Mode (Code only).
R Reference Bit = 1 if segment has been referenced
{set by microcode}.
T Trace Bit = 1 if trace feature is used. Checked by
PCAL instruction.
* L Length Field = segment length divided by 4.
B Bank Address. Points to memory bank (if resident
in main memory) in which segment resides.
ADDRESS Absolute address of PB within B if the
segment is present, otherwise the 3rd
and 4th words contain the absolute
disc address.

SEGMENT TRANSFER TABLE Words
STT Length
1'2'3]4'5'617'8'9110'11'12'13'14'15

=)

[ofufo o o o o o] LENGTH

U Uncallable bit

LENGTH Maximum = 255 (Calls from external
segments may reference only the first 127
entries. PL-1 thru PL-127 {PL-0= STTL.)

Local Program Label
0 1'2'3'4‘ 5 sl 77 s'9|m'n'uzl13'u‘1s

lo]u] ADDRESS

U Uncallable bit
ADDRESS PB relative, + only

External Program Labe!
o1 2" 314' 5'5]7' 8" 9|w'n'12|13’14 15

| STT # | SEG #

STT # STT entry number in target segment,
maximum = 127

SEG # Target segment

STATUS word

of172"3 4'5'617'8'9]10'11'!2'13'14'15

[m]ifr[r]o]c] cc] SEGMENT #
M Mode bit (=1 for privileged mode)

| Interrupt enable (1)/disable(0), external

T Traps enable(1)/disable(0), user

R Right Stack Opcode bit (pending = 1)

O Overflow bit

€ Carry bit

CC Condition Code
SEGMENT # currently executing

Figure 2-6. Formats Associated With Code Segments

2-18

0'1 2 34 5 6 7 8 910 11 12 13 14'15

A|C|R L/4
Reserved
Reserved B
Address

Absence Bit = 1 if segment is absent from main memory.
Clean bit. Used to eliminate unnecessary output swapping.
Reference Bit = 1 if segment has been referenced (set by microcode).
Length Field = segment {ength divided by 4.

= Bank Address. Points to memory bank (if resident in main memory) in which segment resides.
DDRESS = Absolute Segment Address within given bank in third word of segment. If segment is
absent, words 3 and 4 contain absolute disc address.

won

A
Cc
R
L
B
A

90020-6

Figure 2-7. Data Segment Table Entry Format

ment. Each entry consists of a four-word descriptor which in-
cludes the absolute address of the related segment and its
length. Entry number 0 in the table is unique in that it simply
points to the final entry in the table (2). This defines the
length of the table for the benefit of the operating system in
allocating space for the table itself. Segment number 0 does not
exist. Assume that one wuser is executing a process which re-
quires code segments 22 through 25. Also assume that segments 22
and 23 are in Main Memory and that segments 24 and 25 are not
presently needed and, therefore, are on disc. The process is
presently executing instructions in code segment 23. This means
that the address value contained in the fourth word of CST entry
23 has been loaded into the PB Register. Therefore, the PB
Register is pointing to PB(a) as shown in (3), figure 2-8. The
PL Register, using a value derived from the segment length, is
pointing to PL(a). The P Register is advancing from PB(a) toward
PL(a) .

The last nine 1locations of segment 23 are not part of the seg-
menit s code, but are added by the operating system when the seg-
ment is loaded into virtual memory. These locations contain
linking references for every procedure call (PCAL) in the Segment
Transfer Table (STT). A PCAL is an instruction that references a
set of instructions elsewhere in the code segment. This set of
instructions is structured as a procedure to perform a standard-
ized operation or computation and then return control to the
instruction immediately following the <call instruction. It
should be noted that entries in the STT are numbered from the end
back towards the code. Entry number 0 gives the STT length as
shown in figure 2-6. This indicates the number of the last STT
entry (4), figure 2-8 , so that the hardware can make validity

2-19

System/CPU Overview

L CST POINTER Location O or 1
— _CSTEND _
——————— ®
I . I
Code :
Sogmeml P I
Number | M l @ CODE SEGMENT 22
. PB(b)
G :
2f— — — — — —; .
——FB(F)__ BEiIN <+
I END
______ (30) .
(® PB(a) AN \ :
_______ 5
28— — — — — e o] U] PB Rel Address SEGMENT
——————— : 3 TRANSFER
________ | f TABLE
]
________ PL(b)
A % -) 0
———t
o)
SEG I [' |
[
No 22 | . | | CODE SEGMENT 23
I : I | —p PB(a)
_______ — | :
_______ 1 I PCAL (4) ————u
——————— | .
. : ®
l L]
| PCAL (5) ———
I .
. : D
| —» BEGIN
3 ¥
T TETRS T T T - EvP
Entry :
Number []
8
7
6)
—_ 5[1] sTT# | sec# SEGMENT
—1 4 [0]u] PB Rel Address J&——— } TRANSFER
3 TABLE
2
@
N—— 0 LastSTT# =8 PL(a)

Figure 2-8.

Code Segment Linkage

2-20

Systemi/CPU Overview

checks on PCAL references. For example, a call toc entry to num-
ber 9 would be invalid. (If a call from within the segment is
made to entry 0, the reference will be taken from the TOS instead
of from the STT. A call from outside a segment toc entry 0 starts
execution at P = PB after checking the U bit.) When the execution
sequence reaches the first PCAL instruction, a reference (5) 1is
made to the fourth entry of the STT. (Since the PCAL instruction
uses PL-addressing, the instruction references cell PL -4.) This
location contains a local program label (figure 2-6) which im-
plies that the called procedure is located within the same seg-
ment. The reference 1is a PB-relative address pointing to the
beginning of a procedure or block (6), figure 2-8. After some
preparatcry operations, which include saving the return address
on the stack, the PCAL instruction transfers control toc the pro-
cedure. When an EXIT instruction is encountered in the proced-
ure, control is returned to the instruction immediately following
the first PCAL. In this example there were no references outside
the current segment. In the following example, an external ref-
erence is made.

When the execution sequence reaches the second PCAL, another call
(7), figure 2-8 is made to the STT. The call requests the fifth
entry in the table which happens tc be an external program label
(indicated by a logical 1 in bit 0). This implies that the called
procedure is in some other segment. The 1label contents tell
which segment and alsc give the STT number in that segment which
must contain the lccal reference. The PCAL instruction, after
the usual preparatory operations (which include bringing the seg-
ment intc Main Memory if it is absent), transfers control to the
called procedure as follows. The segment number given in the
external program label (8) points tc a specific entry in the CST,
assumed to be entry number 22. A value for PB is picked up in
the fourth wcrd of this entry and lcaded intc the PB Register.
This causes the PB Register to point (9) to the starting location
of code segment 22; PB(b). The limit, PL(b), is also establish-
ed. Meanwhile, the STT value given in the external program label
is pointing to entry number 4 (10) of the STT. This causes a
PB-relative address to be picked up for the P Register. The P
Register now points tc the starting address of the procedure or
block (11) and execution begins. If an STT number of 0 was giv-
en, execution would begin at PB(b). Calling procedures outside
the segment in this manner 1is subject to a number of rules,
checks, and safeguards to ensure that the call is allowable and
that other users are fully protected from invasions of privacy.
The manner in which the operating system sets up the STT ensures
that all transfers are legal for that process. At the conclusion
of the called procedure, control is returned to the original seg-
ment by the EXIT instruction. This instruction restores the STA
Register which gives the caller s segment number, and the PB Reg-
ister value (12) returns back to PB(a). The saved P-relative
address on the stack reestablishes the return point and execution

continues at the location immediately follcwing the second PCAL
instruction.

[*]
|

21

System/CPU Overview

2-28. Stack Operation
No te

When the letters P, @, DB, etc., are
used alone in the follcwing paragraphs,
the letter is interpreted to mean "the
location pointed to by the P Register,
Q Register, DB Register, etc."

Figure 2-9 1illustrates the basic construction of the stack area
and how the CPU stack registers delimit the various areas. It
should be noted that there will normally be several stacks 1in
memcry (one for each process), but only one stack will be active

at a given time. The CPU stack registers always point to the
currently active stack.

As shown in figure 2-9, the stack area is bounded at the low end
by the DL Register and bounded at the high end by the Z Register.
The DB Register points to the base location of the stack and di-
vides the stack area into two major parts. (The area between DB
and Z is the actual user stack. The area between DB and DL is
not part of the stack itself, but is closely associated with the
stack. This area provides a dynamic area for such applications
as dynamic arrays, symbol tables, etc.) The SM Register points to
the current top-of-stack (TOS) location in memory.

Whereas the contents of the DB Register and Z Register are stat-
ic, the content of the SM Register is constantly changing as the
program progresses, moving up and down the stack area. The area
between DB and SM is always filled with valid data and the area
between SM and Z is always available for additional data. (If the
quantity of data should exceed the available space, the attempt
to move SM past Z will cause an interrupt to the operating system

which may then grant additional space (new Z value) one or more
times.

Unl ike the cell-at-a-time movement of SM, Q moves sporadically in
jumps. The purpose of the Q Register is to retain the starting
point of data relating to the current procedure. Therefore, when
a new procedure begins, Q jumps ahead to establish a new starting
point at the current TOS. Conversely, when a procedure ends, Q
jumps back to the place it had marked previously for the preced-
ing procedure. As far as the current procedure is concerned,

stack data consists of the locations from a base of Q to the
current TOS.

In the previous discussion, the SM Register was assumed to point
at the absolute TOS. This is true only for the portion of the
stack in memory. Actually, as many as four of the top words of
the stack <can spill over into TOS registers RA, RB, RC, and RD.
Figure 2-10 illustrates where three of the topmost words are in
TOS registers RA, RB, and RC. It should be noted that the SM
Register points to the last stack element in memory, but that

2-22

System/CPU Overview

CPU MEMORY
Stack Registers Stack and Array Area
I DL Register 'r P I
® Own
® Array
) . Area
L]
L]
L]
1 _ ——“——-
r DB Register | P [}
Base
of *
Stack :
[]
L]
L]
L]
: Filled
I Q Register }
- []
.
L]
L]
I SM Register } } -y
‘ ﬁ i
Top *
of *
L]

Increasing
Addresses

Avail-
l able

l Z Register T /

90020-35

Figure 2-9. CPU Registers and Stack Basic Operations

the 1logical TOS is in the third CPU register and is defined by
the S-pointer (S). The four TOS registers are reserved for the
four topmost wcrds of the stack and are employed only by CPU
hardware. The TOS registers cannct be addressed externally.
Externally, the programmer is interested only in location S and
and the hardware defines this address for him. Using figure 2-10

2-23

System/CPU Overview

CPU MEMORY

Stack

[Q Register IL »

| SM Register i

SR Register
| S U U |
S _ (SM) + (SR)

Address Address + 3

Figure 2-10. CPU TOS Registers

as an example, the hardware will define address S as being equal
to the SM Register value plus three. The value three is obtained
from the SR Register which, as previously discussed, retains the
number of TOS elements that are in the TOS registers. (S = SM +
SR; RA =S, RB =S - 1, etc.) The address value S cbtained by
adding the SR Register contents to the SM Register contents is a
completely valid address. In fact, when the CPU must be cleared
for some other operation (e.g., a new procedure or an interrupt),
the register cocntents are physically transferred to the numeri-
cally corresponding memory locations. In this example, SM would
move up by three and the SR Register contents would become zero.

Figure 2-11 illustrates the actions of the C Register in marking
the starting 1location for each procedure’s data. Figure 2-11
shows that the currently executing code segment was working with
data in the temporary stcrage area immediately following the
First Q area. At that time, the 0 Register was pointing at First
Q, S was defining TOS, and the Z Register was pointing to the end
of the data segment. (If the executing code segment never <called
another procedure, the stack would never get more complicated.)
As illustrated however, the code called a procedure at some point
by means of a Procedure Call (PCAL) instruction that caused ad-
ditions to the stack as indicated by Procedure A. New data was
incurred as the procedure began and S pointed to the top of that
data as it was generated. Then, Procedure A called Procedure B

2-24

System/CPU Overview

DB—
GLOBAL
- —— —DATA — — —
AREA
First @
(
1
|
|
|
! Temporary
: Storage
|
|
!
|
|
. |
| I
) Procedure Parameters
I
\ ~
Previous Q
(
i
Procedure A :
|
I
|
{
i
|
|
_[__ |
|
| Procedure Parameters
1
\\
Previous Q
(
1
1
Procedure B |
t
|
i
t
|
|
|
y I
1
Alg)cattnons $— | P! procedure Parameters
ue to
calling ! '\
Procedure C | S
=10
| Local Variables
|l F_e_——_——_———— —
|
Allocations :
local to <
Temporary
Procedure C : Storage
|
|
IR
Z ——p

}

}

Primary
{256)

Secon-
dary

Stack
Marker

Stack
Marker

Stack
Marker

Figure 2-11.

Stack Mark Chain

2-25

System/CPU Overview

and caused new additions to the stack as indicated. Next, Pro-

cedure B called Procedure C and caused the final stack picture as
shown.

As the program progresses, Procedure C will end and, after saving
its answer in a convenient place for Procedure B to access, issue
an EXIT instruction. Then, all the other stack additions due to
Procedure C will be eliminated by moving S and Q back and Pro-
cedure B will <continue its computations on its own data stack.
In the same manner, Procedure B will end, save its data, and
exit. This eliminates the data stack for Procedure B. Finally,
Procedure A will exit and return the net answer to the new TOS on
the main temporary storage area.

Each time control is returned from the called procedure tc the
caller ‘s procedure (within the code segment), the stack registers
also return to the <caller’s data area. Thus, the stack marker
chain virtually eliminates system overhead in keeping track of
nested procedures. For example, the simple return sequence pre-
viously discussed (C-to-B-to-A-to main program) is not impera-
tive. Procedure C could have been called again before the return
to the main program was complete or other procedures could have
been called. Regardless, the return for both code and data will
always remain perfectly in step; from the called to the caller.

Note that the area between DB and First Q in figure 2-11 is the
global data area. The locations in this area are reserved by the
process for variables which the process has declared tc be global
for all procedures called by that process. That is, any proce-
dure wusing this particular data segment may reference the vari-
ables in this area. The individual locations in the glcbal area
can contain an actual value or an indirect address pointing to
some other location that either contains the value or is the
start of an array. Since DB-relative addressing (paragraph 2-49)
is restricted to a maximum of DB+255, only the first 256 loca-
tions of this area can be addressed directly. These areas are
called the primary global data area. If the number of entries
exceed 256, indirect addressing (paragraph 2-50) must be used.
These locations are called the secondary global data area.

When the operating system has completed assigning space for the
global variables, it points Q at the next succeeding location
(First Q, figure 2-11). This is the actual start of the data
stack. Since there is not data on the stack, S also points to
this location. As the executing code segment proceeds to obtain,
manipulate, and generate data for the stack, S moves away from Q,
always indicating the top of such data. At some time during the
execution of the code segment, it is assumed that Procedure A is
called. Usually, a set of procedure parameters accompany the
call and these parameters are placed on the stack just prior to
the issuance of the PCAL instruction. These are actual param-
eters to be substituted for formal parameters in the procedure
and are referenced by Q addressing. (Refer to paragraph 2-49.)

System/CPU Overview

Calling the procedure causes a four-wcrd stack marker to be
placed on the stack as shown in figure 2-11. The marker format
is shown in figure 2-12. The first word saves the current con-
tents of the Index Register (X Register). The second word saves
the return address for the code segment (P Register address plus
one relative to the PB Register contents). The third word saves
the STA Register contents (M, I, T, R, 0, C, and CC) and the code
segment number of the caller in <case the called procedure is
external to the current code segment. The fourth word contains a
value called Delta Q which designates how far back it is to the
previous location to which the Q Register was pointing. In this
case, Delta Q is pointing to First Q. The Q Register now points
at this Delta Q location.

The previously described sequence of events are repeated when
Procedure B (figure 2-11) and Procedure C are called. Each time,
the Q Register will point to the Delta Q liccation of the <current
stack marker and the contents of that location will point to the
previous Q setting. Therefore, when Procedure C 1is executing,
there 1is a chain of Delta Q stack marks linking the present Q
setting back to the First Q.

The links are used and eliminated as the procedures are exited
the same as they were established when the procedures were
called. When Procedure C ends, the EXIT instruction returns S to
equal Q, essentially placing the Delta Q value temporarily on the
TOS. This allows the EXIT instruction to compute a new value for
the Q Register (Previous Q) and it appropriately moves Q back.
The EXIT instruction causes S to decrement step-by-step through
the staick marker, restoring status, P Register contents, and X
Register ccntents for Procedure B.

Lastly, S is moved back to eliminate the unwanted parameters of
Procedure C. Presumably, one or more parameters will be answers
computed by procedure C and, therefore, S is only moved back so
far as tc preserve the desired answers which are now on the TOS.
The sequence of events discribed in the last two paragraphs is
repeated wuntil all stack marks are eliminated and only the final
answer is on the TOS. For additional information on stack oper-
ations, refer to paragraph 4-17.

2-29. INSTRUCTION AND STATUS WORD FORMATS

2-30. Instruction Formats

The machine instruction set is designed for maximum efficiency of
bit usage in the instruction words and, therefore, the instruc-
tion formats do not necessarily fall into rigid field boundries.
There are 23 distinct instruction set formats. In addition to
the instruction formats, there are 13 instruction groups as shown
in figure 2-13. The formats of the individual instruction groups
are discussed in paragraphs 2-31 through 2-44. For additicnal
information, refer to Section 1IV.

System/CPU Overview

ol1'2'3]la's' 6|7 8 910 11 12[13 14 15

X Register Contents

PB Relative Return Address for P Reg
mii[T[rR[o][c| cc | codesegment #
Delta Q

Figure 2-12. Standard Stack Marker Format

2-31. GENERAL FORMAT. The first format shown in figure 2-13 is
the general scheme for dividing the instruction word into code
fields. Only the first field is rigidly adhered to. This field
(bits 0 through 3) defines either a specific instruction code in
the memory address group (or loop control group) or one of the
sub-wopcode groups. There are four sub-iopcode groups; 1, 2, 3,
and stack ops. The field for the sub-cpcodes varies. For sub-
opcode groups 2 and 3, bits 4, 5, 6, and 7 are used as shown.
For subopcode group 1, bits 5 through 9 are used and, for stack
ops, the remainder of the word is used. In some cases, the sub-
opcode will enable a third field (mini-opcode or special opcode)
in bits 8 through 11. The remainder of the word has a variety of
special uses and commonly is part of an argument field.

2-32, STACK OP. The stack op format is defined by four 0°s in
the first four bits. The remaining 12 bits are divided into two
fields; stack op A and stack op B. Either or both of these
fields may contain any of the 63 stack cp instruction codes.
Execution sequence is from left to right (A first, then B). 1In-
terrupts may occur between the execution of A and B. It should
also be noted that indicators (Carry, Overflow, and ondition
Code) are set by the last executed stawck cp. If using only one
of the two stack op fields, it is more efficient to use stack op
A since the hardware always looks ahead to see if stack op B is a

NOP. This permits the hardware to ignore the second field which
results in saving time.

2-33. SHIFT. The shift instructions use about half of the sub-
opcode group 1 codes. . Sub-opcode group 1 is defined by 0001 in
the first four bits. If the index bit (bit 4) is 1, the contents
of the Index register (X Register) is added to the shift count in
bits 10 through 15 tc specify the number of places each data bit

is shifted. Bits 5 through 9 encode the specific shift
instruction.

2-34. BRANCH. The branch instructions use 11 of the sub-opcode
group 1 codes. Bit 4 is used as an indirect bit (indirect if bit
4 is 1 and direct if bit 4 is 0). Bits 5 through 9 encode the
specific branch instruction. Bits 11 through 15 give a P-rela-

tive displacement from 0 through 31 and bit 10 specifies whether
the displacement is + or - relative to P (0 =+, 1 = =).

System/CPU Overview

01 234566 7 8 9101112131415

CoRma L] l [1] I | | I [[[11]
" S b de M o
Opcode " 4
or Special
Sub-opcode Opcode
Group
01 23456 7 8 9101112131415
STACK

op [ofefefol [ITTTTTTIT[]

Stack Op A

Stack Op B

01 23456 7 8 9101112131415

SIFT [ofolob I TTTTTTITII]
\ A J
Sub-o;code 1 Slzﬂ
Index Count
Bit
01 23 45 6 7 8 910111213 1415
BRANCH [ololo DT TTTTI-TTTTT]
Except [v VI XN v Y]
BR, BCC Sub-opcode 1 ’ P Relative
Indirect +/ Displacement
Bit Relative

01 2 3 45 6 7 8 910 111213 1415

FIELD AND [oToTo[1]x]] | | | [[[1 14

BIT L

v v
Sub-opcode 1 Bit Position

Index
Bit

0O 1 2 345 6 7 8 910111213 1415

1 2 3 4 5 6 7 8 9101112131415

|MMED|ATEI[I1IOJIIIIII|I|IIJ

Sub- opcode 2
or: 1 Sub-opcode 3

Immediate
Operand

01 2 3 456 7 8 9101112131415

FIELD [ofolifo] TT T IHERREEEN
\ A J
Sub- opcode 2 J- Flold K-F;old

REGISTER 01 23 456 7 8 910112131415

controt Lofeftfof [[flef [T T TT1]

Except e——\—— DBDL ZStaX Q S

XCHD, ADDS, Sub-opcode 2 .

SUBS R:'gl:::r
PROGRAM 01 2 34 56 7 8 91011121314 15
contror Lololt [l [[T [ITTT][]]
AND gfig: AL Sub-opvcoda 3 N-Fvield

PAUS, HALT

XEQ, IXIT,
DiSP
01 2 3 45 6 7 8 9101112131415
1/0 AND

m'rsnaup'rlolol'[Iol Iolol 11 I [11]

K- led
(or not
used)

Spocual
Opcode

Sub- opcode 3

0 1 2 3 4 5 6 7 8 9101112131415

MOVE [oToTtToloJofolo] TTTRI T T 1] |conrror [l Tel T TTelsITTTTTTTT]
Except ————— A —_ \ J [y)
M)‘\"'B‘;V Sub-opcode 2 Move SDEC Opcode 'P Relstive

Opcode PB/DB Displacement
Relative or +/-
Additional Relative
Code Bit
0 1 2 3456 7 8 9101112131415 0 1 2 3 45 6 78 9101112131415
S’E?AL [oToT*TofoToTolol T T [[ofoo]] |Mooness LII T X' TTTTTTTTTT]
xcept \ v A v J \ v J \ v I}
LLBE Sub-opcods 2 oMini;” E"‘Dc;g' Pgom‘:‘ry D]Vk:dc and
pco Additional LDPN peods isplacement
Code Bit Index Indirect
Bit Bit
2152-33

Figure 2-13.

Instruction Groups

2-29

System/CPU Overview

2-35. BIT TEST. The bit test instructions are also in subop—
code group 1 and use bits 5 through 9 to encode the spe01flc in-
struction. Bits 10 through 15 specify a bit position in the TOS
word for testlng. If the index bit (bit 4) is 1, the contents of
the X Register is added to the specified bit position.

2-36. MOVE. The move instructions use 12 of the codes spe01f1ed
by the sub- opcode group 2 code 0000. Sub-opcode group 2 1is de-
fined by 0010 in the first four bits. Bits 8 through 10 encode
the specific move instruction. Bit 11 is used by some instruc-
tions to specify whether the source of the moved data is PB-rela-
tive (bit 11 = 0) or DB-relative (bit 11 = 1). In some cases,
bit 11 is also used as an additional code bit for specifying the
instruction. Bits 12 and 13 are not used. Bits 14 and 15 are
used to specify an S-decrement value to delete, if desired, the
move parameters from the TOS.

2-37. SPECIAL. The special instructions use four mini-opcodes.
The mini-opcode group is also specified by the sub-opcode group 2
code 0000. Bits 8 through 11 plus bit 15 encode the specific
special instruction. Bits 12 through 14 are not used.

2-38. IMMEDIATE. The immediate instructions use codes in both
sub-opcode group 2 (coded 0010) and sub-opcode group 3 (coded
0011). Bits 4 through 7 encode the specific immediate instruc-
tion. Bits 8 through 15 are used for the immediate operand.

2-39. FIELD. The field deposit and extract instructions are
specified by two of the sub-opcode group 2 codes. Bits 4 through
7 encode the specific field instruction. Bits 8 through 15 are
divided into a J-field and a K-field. The J-field specifies the
starting bit number and the K-field specifies the number of bits.

2-40. REGISTER CONTROL. The register control instructions use
bits 9 through 15 to name a register. Bits 4 through 7 encode
the specific register control instruction.

2-41. PROGRAM CONTROL. The program control instructions use four
of the sub-opcode group 3 codes. Sub-opcode group 3 is specified
by 0011 in the first four bits. Bits 4 through 7 encode the spe-
cific program control instruction. The N-field (bits 8 through
15) is used for either a PL-displacement (PCAL and SCAL) or to
specify a number of parameters to be deleted on return from a
procedure or subroutine (EXIT or SXIT).

2-42. 1/0 AND INTERRUPT. The I/O and interrupt instructions use
11 of the special opcodes (bits 8 through 11) defined by the
subopcode group 3 code 0000. The K-field (bits 12 through 15) is
used by some of the instructions for an S-displacement to 1locate
a device number given in the stack.

2-43. LOOP CONTROL. The loop control instructions are defined by
a special coding of bits 4, 5, and 6 for memory opcode 05 (which
is otherwise defined as the STOR instruction). Bits 8 through 15
give a P-relative displacement for a branch address and bit 7

2-30

System/CPU Overview

specifies whether the displacement is + (bit 7 = 0) or - (bit 7 =
l) relative to P.

2-44. MEMORY ADDRESS. Bits 0 through 3 encode the specific mem-
ory address. Bits 6 through 15 give both an addressing mode and
a displacement. (Refer to paragraph 2-48.) Bit 5 is wused to
specify direct or indirect addressing (1 = indirect, 0 = direct).
Bit 4 is used to specify indexing (1 = indexing), if desired. If
both indirect addressing and indexing are specified, post-index-
ing (paragraph 2-54) will occur.

2-45. Status Word Format

There is a status word for each code segment in the system. At
all times, the status word associated with a given process indi-
cates the machine status following the execution of the most re-
cent instruction in that segment. The status for the currently
executing segment is resident in the STA Register and is con-
stantly being updated as each instruction is executed. For seg-
ments that are not current (suspended by either an interrupt or
procedure call), the status word exists in a stack marker in a
data stack as discussed in paragraph 2-28. As shown in figure
2-6, status word bits 8 through 15 indicate the segment number of
the currently executing code segment (when the particular status
word is resident in the STA Register). Therefore, when a status
word is pushed into a stack marker by an interrupt or procedure
call, bits 8 through 15 identify the segment that is to be re-
turned to when execution is later resumed. The following des-
criptions of the status bits assume that the status word under
discussion is resident in the STA Register. All references to
"current" conditions can also be inferred as "then current" con-
ditions in the case of suspended segments or procedures.

Bit 0 is used to indicate whether the current segment is running
in privileged mode (bit 0 = 1) or user mode (bit 0 = 0). (Refer
to paragraph 2-47.) The state of this bit cannot be changed by
machine instructions while resident in the STA Register except in
privileged mode. (The PCAL, IXIT, and EXIT instructions include
checks to prevent illegal mode changes by altering the noncurrent
status mode bits.)

Bit 1 is used to enable or disable external interrupts. This bit
cannot be changed in user mode while current and the EXIT in-
struction invokes a trap if a non-privileged user illegally al-
ters the bit while non-current. The state of bit 1 can only be
changed in privileged mode.

Bit 2 is used to enable or disable user traps. The state of this
bit can be changed in any mode while current or non—current with
a SETR instruction. (The state of this bit is not affected by the
EXIT instruction.)

System/CPU Overview

Bit 3 is normally used only by the hardware which sets this bit
to 1l if the right stack opcode (bits 10 through 15) contains a
valid instruction other than NOP. The hardware redquires this
information in case an interrupt occurs between the execution of
the left and right stack ops. The state of bit 3 cannot be
changed in user mode while current.

Bit 4 is the overflow bit and is one of the three indicators
which are set or cleared as an incidental operation by many of
the machine instructions. 1In general, bit 4 is used only by
signed integer and floating-point computations. If bit 4 is set
(1), it indicates that the result of the computation is too large
to be represented in the number of available bits in the data
format. (For floating point, it can also indicate that the result
is too small.) If user traps are enabled (bit 2 = 1), an inter-
rupt to segment 1 will occur in lieu of setting bit 4; except for
integer overflow which causes both bit 4 to be set and an inter-
rupt to segment 1. This permits the system to generate a message
to the user which indicates which type of overflow or underflow
occurred. All user traps will set bit 4 if traps are disabled.

Bit 5 is the carry bit and is one of the three indicators which
are set or cleared as an incidental operation by many of the
machine instructions. Bit 5 is used primarily by logical and
integer arithmetic and wusually indicates a carry (bit 5 =1) or
lack of carry (bit 5 = 1) out of the most significant bit during
a computation. Bit 5 is also used by some instructions as an
indicator for special purposes which are stated in the individual
machine instruction definitions. (Refer to Section IV.)

Bits 6 and 7 are used to encode the condition codes discussed in
paragraph 2-46 and are one of the three indicators which are set
or cleared as an incidental operation by many of the machine
instructions.

2-46. Condition Codes

Although several instructions make special use of the condition
code bits (status word bits 6 and 7), the condition code typi-
cally indicates the state of an operand or a comparison result
with two operands. The operand can be a word, byte, double word,
or triple word and can be located on the TOS, in the X Register,
or in a specified memory location. Three codings are used; 00,
01, and 10. (Code 1ll1l.is not used.) Except for special interpreta-
tions, there are four basic patterns for interpreting the codes.
The four patterns (CCA, CCB, CCC, and CCD) are summarized in
table 2-5 and discussed in the following paragraphs.

2-32

System/CPU Overview

Table 2-5. Condition Codes

. o o it S . P T S T, ——— .

Q
0
>
0
o
ct
0]
Q
O
"

l

| CCG (00) if operand > 0
| CCL (01) if operand < 0
| CCE (10) if operand =

l

I

|

o . - . " T 2 . OO . o —

CCB sets CC = CCG (00) if numerical (%060 - 071)
CCL (01) if special character (all
other octal values)
CCE (10) if alphabetic (uppercase,
$101 - 132; lowercase, %141 -
172)

— .t . e T S o Sk k. V. W " T+ O o - ———— -

CCC sets CC = CCG (00) if operand 1
CCL (01) if operand 1
CCE (10) if operand 1

WAV
DN

— -——— ———— — ——

CCD sets CC = CCG (00) if device is not ready
CCL (01) if non-responding Device
Controller
CCE (10) if responding Device
Controller and/or external
device is ready

—— —— —— - —— ——

|
|
|
|
Notes: CC = Condition Code |
[
|
|
|

CCG = Condition Code Greater
CCL = Condition Code Less
CCE = Condition Code Equal
The most common condition code pattern is pattern A (CCA). In

CCA, the condition code is set to 00 if the operand is greater
than zero; to 01 if the operand is less than zero; and to 10 if
the operand is exactly zero.

Condition code pattern B (CCB) is wused with byte oriented
instructions. In CCB, the condition code is set to 00 if the
operand byte is an ASCII numerical character which would be
represented by octal values 060 through 071. The code is set to
10 if the byte is an ASCII alphabetic character which would be
represented by octal values 101 through 132 for upper-case
letters and 141 through 172 for lower-case letters. The code 1is
set to 01 if the byte is an ASCII special character which would
be represented by the remaining octal values.

Condition code pattern C (CCC) is used with comparison instruc-
tions. In CCC, the condition code 1is set to 00 if operand 1 is
greater than operand 2; to 0l if operand 1 is less than operand
2; and to 10 if operand 1 is equal to operand 2.

2-33

System/CPU Overview

Condition code pattern D (CCD) is used with some (not all) I/0’
instructions. In CCD, the condition code 1is set to 00 if the.
external device is not ready. (This condition is wusually caused
by the device being busy.) This code is only used with instruc-
tions that will (WIO and RIO) or could (SIO) require data to be
moved. The code is set to 01 if the Device Controller does not
respond. (This condition can be caused by loss of power in the
external device or Device Controller, a malfunction in the ex-
ternal device or Device Controller or, more normally, the ex-
ternal device or Device Controller waiting for a response to an
interrupt request.) The condition code is set to 10 if the ex-
ternal device or Device Controller has responded normally and the
instruction has been completed properly.

2-4]. OPERATING MODES

The computer system can be operated in either privileged or user
mode and has the capability of switching from one mode to the
other depending on the type of operation being executed at a
given instant. The operating mode currently in effect is indi-
cated at all times by the STA Register ‘s bit 0 as discussed in
paragraph 2-45,

Privileged mode operation is characterized by the ability to ex-
ecute privileged instructions and to call segments that have been
declared uncallable. (The method of declaring a code segment un-
callable 1involves the use of the uncallable bit (bit 1) in the
associated STT 1local program label shown in figure 2-6.) Priv-
ileged operations such as I/0 operations are performed by the
operating system operating in privileged mode. For an non-priv-
ileged wuser to perform such operations, it is necessary to call
one of the callable intrinsics of the operating system which, in
turn, will call the uncallable intrinsics that will perform the
operation on behalf of the nonprivileged user. However, a priv-
ileged mode user can use the computer as if he were the operating
sys tem.

CAUTION

The normal checks and limitations that apply to
the standard non-privileged users in MPE are
bypassed during privileged mode. It is possi-
ble for a privileged mode program to destroy
file integrity including the MPE operating sys-
tem software. Hewlett-Packard cannot be respon-
sible for system integrity when programs
written by wusers operate 1in the privileged
mode.

2-34

System/CPU Overview

2-48. ADDRESSING CONVENTIONS
2-49. Memory Addressing

Throughout this manual the terms "displacement", "effective ad-
dress", "relative address", and ‘"base" are used in connection
with memory addressing. These terms are defined as follows:

Displacement is a positive number given in the instruction
word pointing to a location plus or minus that number of lo-
cations from a given reference cell which is also given in the
instruction word.

Ef fective address 1is always an absolute address. It may or
may not be the location indicated by the displacement number.
The effective address is the final computed address after
displacement calculation, indirect addressing (if any), and
indexing (if any) have all been resolved.

Relative address 1is the address obtained by subtracting the
base from the effective address.

Base is either the program base (PB) address or the data base
(DB) address.

The computer system uses relative addressing almost exclusively.
Addressing can be relative to the location pointed to by the
P Register, DB Register, Q Register, or S-pointer. As shown in
figure 2-14, memory address instructions (paragraph 2-44) use
bits 6 through 15 for "mode and displacement" and addressing can
be + or - relative to P or Q, but only + relative to DB and -
relative to S. The relative addressing displacement ranges for
the various modes are also shown in figure 2-14. (It should be
noted that these ranges apply only to direct, unindexed addres-
sing. 1Indirect addressing and indexing are discussed separately
in paragraphs 2-50 and 2-53.) The variety of displacement ranges
is due to the particular coding required to specify a given mode.
For example, only two bits (6 and 7) are required to specify the
P+, P-, and DB+ relative modes. This leaves bits 8 through 15
available for displacement which, therefore, can be any value
from 0 through 255. For Q+ relative mode, bits 9 through 15 give
a displacement range from 0 through 127. For Q- and S-relative
modes, bits 10 through 15 give a displacement range from 0
through 63. 1In order to provide the most efficient usage of
bits, the mode codes are assigned according to the respective
needs of each displacement range.

Referring to figure 2-14, note that the DB+, Q-, Q+, and S-ranges
can overlap. Also, DB+, Q+, and S- can actually address words
currently held in the TOS registers. P+ and P- addressing modes
are typically used for branches and referencing of literals. The
DB+ mode is used for referencing global variables and pointers
(i.e., indirect addresses). The Q+ and Q- modes are useful for
local variable storage and passing of procedure parameters
respectively. The S- mode is typically used for accessing param-

2-35

System/CPU Overview

ADDRESS INSTRUCTION BITS
MODE 6 l 7[8 I 9 1101 1 112] 13 1141 15
P+ Relative 0 0 |« Displacement 0: 255 ———»
P- Relative 0 1 Displacement 0: 256 ———»
DB+ Relative 1 0 e Displacement 0: 255 ———
Q+ Relative 1 1 —0—!1————— Displacement 0: 127 ——»
Q- Relative 1 1 1 0 [4—— Displacement 0: 63 ——»
S- Relative 1 1 1 1 |&——— Displacement 0: 63 —»
CODE DATA
SEGMENT SEGMENT
P8 DL
DB —
DB+ Relative 255
P- Relative 255 Q- Relative }63
Q—»
P— Q+ Relative } 127
P+ Relative 255
S- Relative }63
S
PL > 4 >

Figure 2-14. Memory Addressing Modes

eters in subroutines. Not all memory address instructions are
capable of using all six relative modes. Each instruction defi-
nition (Section IV) will specify which modes are applicable for
each instruction.

2-50. Indirect Addressing

As shown in figure 2-15, indirect addressing uses the location
referenced by the initial displacement (the Indirect Cell) to
specify another location within the same code or data segment.
For code references, the Indirect Cell <contains a self-relative
address. For data references, the Indirect Cell contains a DB+
relative address. For memory address instructions (paragraph
2-44) , indirect addressing is specified by bit 5 of the instruc-

2-36

System/CPU Overview

CODE, Indirect

LOAD P+4, | LOADP-4,1
PB P8
P-7 j
P-4 3 Indirect
j Cell
P —» j P —
P+4 3 Indirect
) Celi
P+7
PL —» PL—w
DATA, Indirect
LOAD Q-4.!
LOAD DB+4,1 LOAD Q+4,1 or LOAD S-4,1
DB DB DB
DB+4 7 Indirect
Cell
DB+7 DB+7 DB+7

Q-4 7 Indirect
j Cell
Q —¥»f

Q —» :]
Q+4 7 indirect

Cell S-4 7 Indirect
Celt
S —¥
Z —+ z—» Z —»

Figure 2-15. Indirect Addressing Examples

2-37

System/CPU Overview

tion word. (A logic 1 specifies indirect addressing.) For most
branch instructions (paragraph 2-34), indirect addressing is
specified by bit 4.

2-51. CODE INDIRECT. Both P+ and P- examples of indirect ad-
dressing in a code segment are shown in fiqure 2-15. The first
example shows the actions occuring for an assumed "LOAD P+4, 1I"
instruction. The displacement (+4) points to the Indirect Cell
at P+4. The Indirect Cell contains a +3 self-relative address.
This points to a location three addresses higher, or P+7. 1It is
the contents of P+7 that will be loaded onto the TOS by the "LOAD
P+4, I" instruction. The second example shows the actions occur-
ing for an assumed "LOAD P-4, I" instruction. The displacement
(-4) points to the Indirect Cell at P-4. The Indirect Cell con-
tains a -3 self-relative address. This points to location P-7
which is the effective address for th "LOAD P-4, I" instruction.

2-52. DATA INDIRECT. The first example in figure 2-15 of indi-
rect addressing in a data segment shows the actions occur ing for
an assumed "LOAD DB+4, I" instruction. The displacement (+4)
points to the Indirect Cell at DB+4. The Indirect Cell contains
a DB+7 relative address. This is not a self-relative address
and, therefore, the effective address is at location DB+7. It
should be noted that it is possible for the effective address to
be below as well as above the Indirect Cell. The second example
shows the actions occuring for an assumed "LOAD Q+4, I" instruc-
tion. The displacement (+4) points to the Indirect Cell at Q+4.
The Indirect Cell contains a DB+7 relative address and, therefore,
the effective address is again at location DB+7. The third ex-
ample shows the actions occuring for an assumed "LOAD S-4, I" or
"LOAD Q-4, I" instruction. The displacement (-4) points to the
Indirect Cell at either S-4 or Q-4 depending on the instruction
and, since the contents of the Indirect Cell is assumed to be+7,
the effective address for both instructions is again DB+7.

2-53. Indexing

The memory address instructions (paragraph 2-44) use indexing to
modify an operand address. Indexing is specified by bit 4 of the
instruction word. (A logical 1 specifies indexing.) Figure 2-16
shows examples of indexing when combined with positive and neg-
ative addressing modes (both direct) and an example of indirect,
indexed addressing (positive mode only) for both code and data
segments. It should be noted that in each example, the index is
assumed to be 5. This is established by the "LDXI5" instruction
that preceds each LOAD instruction used in the examples. This
instruction loads the value 5 in the Index Register (X Register).

2-54. CODE INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD P+4, X" instruction. The
displacement (+4) would by itself point to location P+4. How-
ever, by adding the index of 5 to the displacement, the 1locaticn
P+11 (octal) 1is addressed. It is the contents of this location
that will be loaded onto the TOS by the "LOAD P+4, X" instruc-
tion. The second example shows the actions occuring for an

2-38

System/CPU Overview

CODE, Indexed

LDX! 5 LDXI 5 LDXI &
LOAD P+4, X LOADP-11, X LOAD P+4,1, X
P8 —+] P8 P8
(LIS RTY
? P —»
X=6
P-4 ‘
P+4 3 indirect
Cell
F—s P—» | (2] St
j X :=5
@[TITIIIC] bra
X 5
P+11
PL PL—» PL —
DATA, Indexed
LDXI 5 LDXiI 5 LDXI 5
LOAD DB+4, X LOADS 11, X LOAD Q+4, 1,X
o8 DB 0] :] >
o3 [T T T
11T T3 I
X 5
X =6
DB+10
DB8+11
A
X=5
'
a R —
S —» / j
Q-+4 3 Indirect
Cell
z Z 2 —>
Note: Address Calculations in Octal

Figure 2-16. 1Indexing Examples

2-39

System/CPU Overview

assumed "LOAD P-11, X" instruction. The displacement (-11) is
added to the positive index of 5 and the final address is P-4.
The third example shows code indexing combined with indirect
addressing. In all cases, post-indexing 1is used; i.e., the
indirect addressing is accomplished first (either positive or
negative direction), and then indexing proceeds in a positive or
negative direction from the indicated location. As shown in the
example for the "LOAD P+4, I, X" instruction, the displacement of
+4 points to the Indirect Cell at P+4. The contents of P+4 is a
self-relative address of 3 that points to P+7. However, indexing
adds 5 to this value and the final effective address becomes P+14
(octal).

2-55. DATA INDEXING. The first example in figure 2-16 shows the
actions occuring for an assumed "LOAD DB+4, X" instruction. The
displacement (+4) points at DB+4 which is then modified by the
index of 5 to point at DB+l1. The second example shows the ac-
tions occuring for an asumed "LOAD S-11, X" instruction which is
similar to the actions occuring for the "LOAD P-11, X" instruc-
tion discussed in paragraph 2-54. Since a positive 1index 1is
specified, indexing proceeds in a positive direction from the
location indicated by the displacement. The third example shows
data indexing combined with indirect addressing. Again, post-
indexing is used. The displacement (+4) points to the Indirect
Cell at Q+4 which contains the value 3. Since indirect addresses
for data are always DB+ relative, this points at 1location DB+3.
This is modified by the addition of the index 5 and the final
effective address becomes DB+10 (octal).

2-56. Byte Addressing

The Load Byte (LDB), Store Byte (STB), and five Move Instructions
(Section IV) use the byte addressing convention. Since the CPU
is not specifically organized as a byte processor, the byte ad-
dressing convention uses the contents of the X Register, an in-
direct «cell, or a stack word to specify the desired byte. For
memory addressing (Load Byte and Store Byte instructions), the
displacement value remains a word displacement. The byte data
label in an indirect cell is an inflated value of two times the
word displacement from DB. The contents of the X Register and/or
an indirect cell indicate the desired byte in a byte array. For
Move instructions, one or two of the TOS locations give a PB+ or
DB+ relative byte index. The byte addressing range is therefore
restricted to 32K words; 15 bits for word addresses and one bit
for byte number. Four examples of byte addressing for memory
address instructions (LDB and STB) are shown in figure 2-17. (The
convention for the Move Instructions corresponds to the Direct,
Indexed example in figure 2-17. The difference is that the byte
index would be obtained from a TOS word rather than the
X Register.)

2-57. DIRECT BYTE ADDRESSING. For direct, unindexed byte ad-
dressing, the displacement value given in the instruction word is
strictly a word displacement and only the left byte of each word
is addressable. As shown in figure 2-17, an "STB DB+7" instruc-

2-40

System/CPU Overview

DIRECT DIRECT, INDEXED INDIRECT INDIRECT, INDEXED
LDXI 5 LDXI 5
STB DB+7 STB DB+7, X STB DB+7,1 STB DB+7,1, X
DB —¥ DB DB —¥ DB—T
+1 +1 +1 ’
+2 +2 +2 +2
‘3 Not +3 +3 3
> Acces > ' ¥
+5 +5 +5 ‘5
+6 +6 +6 +6
+7 +7 0 1 —+7 46 +7 40
2 3
4 5
+20 |- 40 41 +20 0 1
+21 42 43 +21 2 3
+22 44 45 +22 4 5
\» .23 a6 47
S —9 S — S —» S —

Figure 2-17. Byte Addressing Examples

tion would store a byte from the TOS into the left byte of the
DB+7 location.

2-58. DIRECT, INDEXED BYTE ADDRESSING. In the examples shown in
figure 2-17, the index is assumed to be 5. This is established
by the "LDXI5" instruction that precedes each STB instruction.
The "STB DB+7, X" instruction directly addresses location DB+7
and the index of 5 accesses the sixth byte. It should be noted
that the byte index starts at zero and that all even indexes are
left bytes and all odd indexes are right bytes.

2-59., INDIRECT BYTE ADDRESSING. For indirect, wunindexed byte
addressing, the byte index is given in the indirect cell. As in
all indirect data addressing, the indirect reference is relative
to DB. Therefore, the "STB DB+7, I" instruction shown in figure
2-17 initially addresses the 47th byte in respect to DB. This
will be the 1left byte of DB+23. (Since there are two bytes per
word, divide the byte index by two to identify the word location;
a remainder of =zero indicates the left byte and a remainder of
one indicates the right byte.)

2-60. INDIRECT, INDEXED BYTE ADDRESSING. For indirect, indexed
byte addressing, the displacement points to the indirect cell,
the indirect cell points to the start of the byte array, and the
index in the X Register points to the desired byte in the array.
This is shown by the "STB DB+7, I, X" instruction in figure 2-17.
The index in the X Register is again assumed to be 5. The dis-

2-41

System/CPU Overview

placement points to the indirect cell at location DB+7 that con-
tains the value 40. Dividing 40 by two gives the starting word
address of the array as DB+20. Since the index is five, the lo-
cation accessed is the sixth byte of the array. In this manner,

the X Register acts as a byte index for ease of stepping through
byte strings or byte arrays.

2-61 Double-Word Indexing

The Load Double Word Onto Stack and Store Double On TOS Into Mem-
ory instructions (Section IV) permit double-word indexing. When
indexing 1is specified for these instructions, the hardware auto-
matically multiplies the X Register contents by two during compu-
tation of the effective address. Therefore, an index value of 4
would imply the fifth double word in a double-word array.

2-62. Accessing DB- Area

The area between DB and DL can be accessed through indirect ad-
dressing and indexing. Figure 2-18 illustrates the technique of
indirect addressing to access this area using both word address-
ing and byte addressing.

2-63. WORD ADDRESSING. The first example in figure 2-18 shows
how to load the contents of the location at DB-10 onto the stack
assuming that location DB+4 can be used for the indirect cell.
The "LOAD DB+4, I" instruction initially references the indirect
cell at DB+4. Instead of the usual positive number, location DB+4
contains the two s complement of the desired DB displacement. In
octal, the two’s complement of 10 is 177770. Remember that the
contents of an indirect cell in a data segment is always DB+ re-
lative displacement. Therefore, since addressing arithmetic is
modulo 65K, adding 177770 to DB causes wrap-around and addresses
the desired DB-10 location. From this point, indexing via the
X Register can be applied.

2-64. BYTE ADDRESSING. The second example in figure 2-18 shows
how the DB-10 byte can be loaded onto the stack assuming that
location DB+4 can again be used for the indirect cell. The "LDB
DB+4, I" instruction initially references the indirect cell which
contains the two’s complement (177770) of the desired byte dis-
placement (-10) from DB. Remember that byte indexes are con-
verted to word indexes by dividing by two. This would indicate
location DB+77774 (left Dbyte) which may or may not exceed the
upper limit of memory, depending on the current absolute value of
DB. (To allow for byte addressing in additional data segments
where DB may not be between DL and Z, a check for this condition
is made. Refer to paragraph 2-65.) If DB is not between DL and 2
(this should happen only during privileged mode and is then
called split stack), the byte will then be accessed without fur-
ther bounds checking. If DB is between DL and Z, then the LDB
instruction (or any other byte addressing instruction) tests this
address to see if it is within the required DL to Z range. If
the address is not within the range (which should be the case
whe ther or not wrap-around has already occured), the instruction

2-42

System/CPU Overview

WORD BYTE
ADDRESSING .) ADDRESSING o] ‘
LOAD DB+4, | LDB DB+4, |
oL —¥
DL—¥ \ 4
D8-4 -10

+

IR IRK
el B (2] B EF]

<
(o] LN1R3 [o2] Bed

DB-10 DB —¥

DB+4 177770
DB —»
S —¥
DB+4 177770
Z—» j
LLRZZ2] it aiain Y \
177777 177777]

Address Calculations in Octal: WORD DB+ 177770-DB- 10
BYTE DB+ (177770~ 2) + 100000 = DB - 10

Figure 2-18. Accessing DB- Area

will add 32K (%100000) tc the DB+77774 value. Assuming that
wrap-around has not yet occured, this addition will cause it to
occur and thus address the byte at byte address DB-10 (left byte
in location DB-4). At this time, a second test is made to check
if the effective address is within the DL to Z range. If the
technique has been applied properly, the test will be affirmative
and the byte will be transferred. If the test fails during user
mode, there will be a bounds violation interrupt. If the test
fails during privileged mode, the test results will be ignored
and execution will continue (even if out of bounds), wusing the
second referenced byte.

2-65. Bounds Checking

The CPU routinely checks all address references and TOS movements
to ensure that such operations remain within legal bounds. Suf-
ficient <checks are made for all machine instructions to ensure
that a nonprivileged user cannot adversely affect other users or
the operating system. The basic bounds checks that are made for
the applicable instruction types are discussed in paragraphs 2-66
through 2-70 and summarized in table 2-6. The boundry 1limits
checked are illustrated in figure 2-19. 1If any of the bounds
check fail during non-privileged user mode, there will be a
bounds violation interrupt. Those checks whose results are ig-
nored during privileged mode are so indicated.

2-43

System/CPU Overview

CODE
PB — -
Legal
Addresses
\ (for Program
Transfers
P —» and User
References}
PL —] J
DATA
Stack
Underflow
DL—¥
DB —» <
Legal
Addresses
for
User
References
User
» Stack
Area
SM —>
S —
z ’ <
Stack
INCREASING
ADDRESSES Overflow
: J

Figure 2-19. Addressing and Stack Bounds

2-44

System/CPU Overview

2-66. PROGRAM TRANSFER LIMIT. Program control cannot be passed
to any location beyond the 1limits defined by the contents of the
PB and PL Registers. For indirect branches, both the indirect and
direct references must be within limits. This also applies when
branching indirect via the data stack, except that the initial
reference must be within data stack limits DB and S rather than
code segment limits PB and PL.

2-67. PROGRAM REFERENCE LIMITS. Some of the Memory Address in-
structions, all Ioop Control instructions, and some Move instruc-
tions are capable of addressing locations in the code segment.
During privileged mode, these references can be made as desired.
During non-privileged user mode however, these references (both

direct and indirect) must be within the limits defined by PB and
PL.

2-68. DATA REFERENCE LIMITS. During privileged mode, data ref-
erences are not subject to bounds checking. During non-privileged
user mode however, these references (both direct and indirect)
must be within the user’s area defined by DL and S.

2-69. STACK OVERFLOW LIMIT. Stack overflow is defined as moving
the S-pointer beyond the stack limit. Stack overflow occurs when
SM exceeds Z. Since SM is not necessarily the actual TOS (SM may
equal S or be up to four 1locations lower) and to allow marker
space for the remote possibility of a procedure call and an in-
terrupt while SM is at 2, there is a zone of approximately 128
locations beyond % which could be filled with stack related data.
A stack overflow causes an interrupt which, under discretion of
the operating system, may extend the stack limit.

2-70. STACK UNDERFLOW LIMIT. Stack underflow is defined as mov-
ing the S-pointer below the data base or, more strictly, moving
SM below DB. Since SM may not equal S, underflow can occur even
though S is up to three locations above DB. During privileged
mode, stack underflow 1is not subject to checking. buring non-
privileged user mode however, stack underflow will cause an in-
terrupt. Users can access the area between DL and DB by indirect
addressing or indexing (paragraph 2-62) as long as SM does not
become less than DB. Although the hardware does address arithme-
tic modulo 64K, code segments and data stacks can not cross mem-—

ory bank boundries. This restriction is handled by the operating
system.

2. CPU OVERVIEW

Operation of the CPU is controlled by the software set of in-
structions and the microprogram. Logically, the CPU (figure
2-20) consists of three sections; a microprocessor, processor
registers, and an arithmetic logic unit (ALU). The microproces-
sor receives an instruction word from Main Memory and translates
it into a microprogram starting address. The microprogram is
then read out of read-only memory (ROM) and is decoded into a set
sequence of control signals. The processor registers are flip-
flop registers that can be loaded from the U-Bus (i.e., output of

2-45

System/CPU Overview

Table 2-6. Bounds Checks Summary

Check Definition Mode
Program Transfer PB < E < PL Privileged, User
Program References PB ¢ E < PL User only

(except moves)

Data References DL < E < S User only
Stack Overflow SM > Z Privileged, User
Stack Underflow SM < DB User only

‘

E = effective address of memory address

the ALU) and read onto the R-Bus and/or S-Bus (inputs to ALU).
The ALU executes various functions (add, subtract, etc.) on the
R- and S-Bus inputs (with or without a shift) and outputs the
result to either of the CPU registers for transmission out of the
Central Processor Module or to the U-Bus for storage in one of

the internal registers. For a more detailed discussion of the
CPU logical components, refer to paragraph 2-75.
2-712. Pipelines

There are two pipelines in the CPU; a microcode pipeline and a
data pipeline. Basically, the microcode pipeline consists of the
Current Instruction Register (CIR), CMUX, Mapper, Look Up Table
(LUT), VBUS MUX, ROM, RORl, and ROR2. See figure 2-20. The data
pipeline basically consists of the Store Iogic, various regis-
ters, R- and S-Bus Logic, ALU, Shifter, and Decimal Corrector.

2-73. DATA PIPELINE. In general, the data pipeline picks up two
operands via the R- and S-Bus Logic and R- and S-Bus Registers
(figure 2-20) and inputs them to the ALU where a mathematical
calculation can be performed. The result is then outputed to
either the Shifter or Decimal Corrector where it can be either
shifted (shift left 1, shift right 1, or swap bytes with or
without clearing either byte), or its decimal arithmetic cor-
rected. The final result is then put on the U-Bus and either
stored in any one of the registers or input to the ALU a second
time for additional calculations.

To give the data time to propagate through the entire pipeline,
the data 1is stepped through in two steps. The first step is to
read the operands from the two source registers to the input
lines for the R- and S-Bus Registers. This is accomplished in
one l75-nanosecond clock cycle. The second step is for the data

to go through the ALU, Shifter or Decimal Corrector, and Store
Logic and then be on the input to the selected store register.

This is accomplished by the next 175-nanosecond clock cycle.

2-46

System/CPU Overview

CIR
PREADOER CONT PREADDER CONT
usuUs N U-BUS
ROM OPND
PRE
b ADOER savE RAR
CONT
Ly
NG
A .
)
o
° " v ROR1
€ " . s ROR2
- s v STORE STORE }——
A Rl S WO s FON FoN_H—
, RAR T
e ~ rom +—{ sk SKIP
€ ot J— u SHIFT SHIFT
R et x 5P/ MCU| SP/MCU
SRPY = -
™ [srez
mMcuo NOP:
z2 H A A NOP 2
o H
rct 12
NIP w
F ==
CMUX MAPPER
CONT CONT
SP/MCU
NEXT AN
CONT C SKIP
Qg J
BMuU X
—— R PRE veus
cont [arenomng | SoometorUST s CONT FCN
SR
INT
ADDRESS
Vv EXT INT EXTINT
CPX 2
r CPX 1
e |
R] CPX1 (8 BITS r
CPU

Figure 2-20. CPU Simplified Logic Diagram (Sheet 1 of 2)

2-47

System/CPU Overview

MATES WITH 10P

cR
PREADDER CONT
uBUS U.8US
—
SHIFT
FCN FCcN
1
MOD
STORE ~4—f— DCAD
FCN 4= <
0o
€ R
SHIFT — \ Y
_ PRE. Ve
X ADDER Me
x| ™ AT —<
[Lo
x R
R
R
ROM OPND ROMOPND 8
v 8
r <~ TROR 1 M s g M
M | _—
: AN TRIR —— ; L A A
- TR2R 1 o R L F »—4
sP/MCU 4 o e £ P € v ets] T
R R+ TR3IR - R ¢ : — sus| [
—] - d ¢] ul — CRL
L Z s
o PL
G
! SPo
c sP1 ~
M
{sr A
+ STORE 1 MOD RRY .
E
4 s s
cco
. J TNAMEO) 8 w
EanEns —1] WU .
cPx2 cc M
., a "
3
PANEL G M
“WITCHES Cc
R U.BUS U
cPX1 PREG
ACOR & MUX
N TROS ™ R
U-BUS TRIS — 4
TRz —1 ¢ .
TR3S — & .
i — SP/MCU
DL L
s o “
M
¥ G ‘
o o8 |
R [c MOD
E P2 s SELECT
L—- i
. SP3 TO1 T02
PCLOCK AT01,AT02
o —>ACOR MAP
G P
' OPND r
¢ FAST OPND
LCNTR |
STORE G loaw 77
8 L ABS BANK
o ™
a2 PB BANK "
Ny DeBANK |]
X ¢ STACK BANK |—
SP/MCU B J
uBUS 1oN SP/MCU
OPINP
19
T — -
ePxt ONIR ¢ 7 x1
T
STORE U-_US 10A 10D :'Wl'
PARITY

Figure 2-20.

2-48

CPU Simplified Logic Diagram (Sheet 2 of 2)

System/CPU Overview

The entire data calculation is accomplished by one microcode in-
struction which is also executed in two steps. During the first
step, the microcode instruction is held in RORL. Ef fectively,
the only two microcode instruction fields being decoded during
this clock cycle are the R- and 5-Bus fields. (Refer to Secticn V
for microcode instruction format descriptions.) These two £fields
cause the R- and S-Bus Logic to select the correct registers for
the two operands and gate the operands to the R- and S-Bus Reg-
isters. The same clock cycle that gates the operands into the
R- and S-Bus Registers also gates the current microcode instruc—
tion into ROR2 and gates the next microcode instruction into ROR1
as discussed in paragraph 2-74. It also gates the previous mic-
rocode instructions’s final result into the register specified by
the instruction’s Store field. ©During the second step (current
microcode instruction in ROR2) , the instruction’s Function field
specifies what calculation is to be accomplished by selecting
either the Shifter or Decimal Corrector and the instruction’s
Shift field specifies what the Shifter or Decimal Corrector is to
accomplish. Also, the instruction’s Store field specifies to the
Store Iogic which register to select to gate the final result
appearing on the U-Bus. During the next clock cycle, the now
conpleted microcode instruction is discarded by loading the next
microcode instruction into ROR2 and the final result of the exe-
cuted instruction 1is gated into the register specified by the
Store Iogic.

Each microcode instruction also contains two octher fields that
are decoded during execution; a Skip field and a Special field.
The Special field controls the hardware that performs such oper-
ations as setting condition codes, popping the stack, and incre-
menting and decrementing the stack’s SR Register. A complete
listing of the operations specified by the Special field is con-
tained in Section V. The Skip field specifies test conditions
such as the status of internal flags, the contents of the
SR Register as compared to zero through four, and operand results
that appear on the T-Bus as compared to zero, non-zero, odd, and
even. A complete listing of the test conditions specified by the
Skip field is contained in Section V. The Skip field determines
which condition will be tested for a possible skip. If the con-
dition is met, ROR2 executes a No Operation (NOP), effectively
skipping one microinstruction word. Other signals, such as NEXT,
also come from the Skip field.

2-74. MICROCODE PIPELINE. 1In general, the microcode pipeline
receives a requested instruction from Main Memory via the CTL
Bus, MCU, and Next Instruction Register (NIR). See figure 2-20.
The instruction 1is clocked into the CIR and then intoc the CMUX.
If the pipeline has not been previously filled, the NIR output is
clocked into the CIR and CMUX simultanecusly, thus saving one
clock cycle. Ten bits of the CMUX output go to the Mapper and 8
bits go to the Mapper Control. The 8-bit cutput of the Mapper
goes to the Look Up Table (LUT) ROM. The LUT ROM produces a
12-bit microprogram starting address from the received instruc-
tion and also eight special use bits. The SRP0, SRP1, and SRP2
special use bits go to the SR Preadjust Adder. The Z, PCO, PCIL,

2-49

System/CPU Overview

and W special use bits go tc the Preadder Control. (The W bit
also goes to the Mepper Contrcl.) The JULI special use bit goes
to the BMUX Control and CMUX Control.

The 12-bit microprogram starting address from LUT is applied to
the VBUS MUX. The VBUS MUX outputs 16 bits tc the ROM and In-
crement (INC). The 16 bits applied to the ROM 1is the starting
address for the microcode instruction providing no special con-
diticns such as stack pre-adjust are needed. The 32-bit RCOM
output 1is clocked 1into ROR1. At the same time that the ROM is
being accessed, the starting address is being sent tc the INC
circuit. During the same clcck cycle that clocks the RCM output
tc RORl, the address-plus-one 1is applied to the Address Register
(RAR) . The output of RAR goes back to the VBUS MUX. When, docing
the next clock cycle, the incremented address goces to ROM, the
new microcode instruction goes tc RORL and the criginal microccode
instruction g¢oes from RCR1 to ROR2. The microcode pipeline is
now packed, functioning, and incrementing one stepr at a time
through the microccode. (Refer tc paragraph 2-86 for microcode
jump information.)

2-75. CPU Component Descriptions

The logical components of the CPU shown in figure 2-20 are des-
cribed in paragraphs 2-76 through 2-128.

2-76. NIR. The NIR is a 1l6-bit register that is Joaded with an
instruction from Main Memory and provides storage for that in-
struction until the current instruction has been executed. This
allows an instruction to be fetched from memcry concurrently with
the execution of the current instruction. The NIR is 1lcaded by
an NIP signal from the MCU operation decoder. The NIP signal is
gdenerated as a result of a microccde instruction Skip field code
NEXT or the MCU field code NIR as described in Section V.

2-77. CIR. The CIR is a 16-bit register that contains the in-
struction currently being executed by the CPU. The CIR is lcaded
by an NIRTOCIR signal from the Next Control. The NIRTOCIR signal
is generated as a result of a microcode instruction Skip field
code NEXT or by the clock cycle after a Special field code CCPX
as described in Section V. As previously discussed, if the pipe-
line has nct been filled, the contents of the NIR goes directly
tc both the CIR and CMUX to save cne clock cycle. The NIR and
CIR allow one clock cycle to fetch one instruction from memory
while the previous clock cycle is still executing an instruction.
Instruction translation is accomplished from the CIR two clcck
cycles after the execution has begun until the execution is com-
plete unless it is the right instruction of a stack-op. In the
case of a Right Stack-Op instruction, the entire translation is
accomplished from the CIR. The controlling factor concerning the
execution of a Right Stack-Op instruction is the BMUX Control.

System/CPU Overview

2-78. CMUX AND CMUX CONTROL. The CMUX is controlled by the Next
Control and CMUX Control to determine whether the instruction

from the NIR or CIR goes into the Mapper.

2-79. MAPPER AND MAPPER CONTROL. The Mapper comb ines the inputs
from the CMUX and Mapper Control and generates an 8-bit output
that addresses a specific location in the LUT ROM.

2-80. LUT ROM. The LUT ROM outputs a 12-bit address and eight
special use bits as determined by the Mapper. The 12-bit address
is applied to the VBUS MUX and the VBUS MUX generates a l6-bit
output that addresses the initial microccde instruction that
starts the accomplishment of the instruction from the NIR or CIR.
The eight special use bits specify the mode of addressing being
utilized for the memory reference instructions. The SPO, SP1,
and SP2 bits are applied to the SR Preadjust Adder to define how
many TOS registers must be valid before execution of the in-
struction can begin. Data bit 0 in the LUT ROM is the W-bit and
bits 1 through 12 contain the starting address of the micropro-
gram for the instruction to be executed. When a new instruction
is to be executed, the W-bit is stored in the W-Bit Register.
The W-bit has different meanings for different instructions and
has a fixed, known value for every instruction as follows:

a. For STACKOPS (CIR (0:3) = %00) instructions, the W-bit has no
meaning; it is set to logic 1 merely for convenience.

b. For SUBOP 1 (CIR (0:3) = %01) instructions:

(1) The W-bit is set to logic 1 for instructions regarding
P-relative addresses (some branches). In this case, CIR
(10) is treated as a sign bit for the P-relative dis-
placement in CIR (11:15). This bit controls the function
of the Pre-Adder (add or subtract) so that a positiv or
negative number can be obtained from it. -

(2) The W-bit is set equal to logic 0 for shift instructions.

In this case, the pre-added output is CIR (10:15), a
6-bit shift count, with zeros in all other bit positions.

c. For SUBOP 2 (CIR (0:3) = %02) instructions, the W-bit con-
trols the function of the Pre-Adder. 1In all cases, the input
to the Pre-Adder is CIR (8:15). When the W-bit is logic 0,
the Pre-Adder is set to add. Since the second input to the
Pre-Adder is logic 0 (no indexing), the output is -CIR (8:15)

= 317 - CIR (8:15)), a negative number.

d. For SUBOP 3 (CIR (0:3) = %03) instructions:

(1) For SPECOP 00 (CIR (0:3) = %03), the W-bit 1is set to
logic 0 which forces the Pre-Adder to the add function.
In addition, only CIR (12:15) is applied to the Pre-Adder
input. Therefore, the output is the K-field CIR (12:15).

System/CPU Overview

(2) For SPECOP 01 through 17 (CIR (4:7) = %01 - $17), the WwW-
bit causes the same action as in paragraph c akove.

e. SUBOP %04 through %17 (CIR (0:3) = %04 - %17) instructions
generally reference an operand in memory. The operations
necessary to obtain the effective address is this operand are
common to most of the instructions and, therefore, one micro-
program is used for this calaculation. When one of these
instructions is to be executed, it maps through the LUT to
this microprogram to obtain the operand address. When this
is done, the instruction then jumps to the microprogram that
executes the specified instruction and the W-bit now becomes
effective. The W-bit is set to logic 1. When the foregoing
address calculation routine has been completed, a micro-
operation (JLUI) in the ROM Skip field is executed. If the
instruction dces not specify indirect addressing or if one
level of 1indirect addressing has been completed, the execu-
tion of JULI forces a microprogram Jjump to an address
contained in the LUT. Since the contents of the CIR have not
changed, the LUT would normally still be pointing to the
address of the foregoing address calculation routine and an
infinite loop would result. However, the W-bit now modifies
the LUT entry address to a different, but related, address.

This LUT address contains the microprogram address of the
desired instruction tc be executed.

2-81. VBUS MUX AND VBUS CONTROL. One of the nine inputs to the
VBUS MUX is selected by the VBUS Control to be fed through the
VBUS MUX which becomes a 16-bit address for the ROM. This ad-
dress 1is also applied to the 1Incrementor (INC) which increments
the address by one and applies this new address to the ROM Ad-
dress Register (RAR).

2-82. RAR. The RAR is a 16-bit register that holds the address of
the next microinstruction to be executed if no preempting condi-

tions (interrupt, jump, etc.) occur. The RAR is loaded with the
ROM address incremented by cne and is automatically incremented
every 175 nanoseconds by the INC until the end of the micropro-
gram for the instruction is reached. Normally, the RAR is loaded
from the INC. However, if a repeat is specified, the contents of
the RAR does not change until the repeat is terminated. In ad-
dition tc the 12-bit output from the LUT ROM, the RAR can be
locaded from the ROM Output Register Rank 2 (ROR2), by a JMPGATE
signal generated in response to a Function field code Jump (JMP)
or Jump .To Subroutine (JSB), by the interrupt logic due to an
interrupt or power failure, from the U-Bus in response to an RAR
store specified, or from the Hardware Maintenance Panel.

2-83. SAVE REGISTER. When a JSB is decoded by the Function Field
Decoder, a JSB1 signal is generated and the contents of the RAR
is lcaded into the Save Register until a Return from Subroutine
(RSB) is decoded by the Skip Field Decoder. The RSB signal lcads
the contents of the Save Register back into the VBUS MUX and from
there back into the ROM which continues executing the micropro-
gram with the microinstruction follocwing the JSB.

2-52

System/CPU Overview

2-84. ROM. The ROM accepts 16-bit addresses from the VBUS MUX
and outputs 32-bit microinstructions of a microprogram toc the ROM
Output Registers (ROR1 and ROR2). The ROM contains 4096 (%7777),
32-bit instruction words. Each instruction generally calls sev-

eral microinstructions from the ROM. For example, instructions
that affect TOS will first call a microprogram routine to check
that there are encugh filled or vacant TOS registers tc carry out
the operation. Then, after one or more memory transfers to ad-
just the stack, the remaining microinstructions called by the
instruction will begin. Updated addresses for succeeding micro-
instructions called by the instruction are furnished to the ROM
every 175 nanoseconds by the RAR.

2-85. ROR1 AND ROR2. The 32-bit microinstruction words from ROR1
and ROR2 are divided into eight fields, each field containing
from three to five bits. Each field, when decoded, produces a
set of microcode signals that control the operation of the CPU.
(Refer to Section V of this manual.) The 32-bit output of the ROM
is lcaded into ROR1l on each 175-nanosecond clock cycle. On the
next clock cycle, six of the seven microinstruction word fields
are transferred from ROR1 into ROR2 while ROR1l is receiving the
next microinstruction word. (Initially, it takes two clock cycles
to fill the pipeline, but thereafter ROR2 receives a new micro-
instruction wocrd on each successive clock cycle.) Twc ROM output
registers allow the S- and R-Bus fields to be decoded in advance
of the rest of the instruction word. Therefore, the S- and R-bus
selection occurs is ROR1 and the selected data will be ready and
waiting on the U-Bus by the time the rest of the word is decoded
in ROR2. Each field of the ROM output word is separately decoded
as discussed 1in Section V. The S-Bus field selects one of 31
registers or sets of lines to be locaded intc the S-Bus Register.
The R-Bus field selects one of one of 15 processor registers or
sets of lines to be loaded into the R-Bus Register. The Stcore
field selects one of 29 registers in which to store the U-Bus
data. The Function field specifies the function that the ALU is
to perform on the two operands in the S- and R-Bus Registers. The
Shift field specifies how the T-Bus data will be shifted ontc the
U-Bus. The Special field performs many varied operations in-
cluding the generation of POP and memory opcode and CTL Bus re-
quest signals.

The Skip field specifies a test condition, which if true, causes
the microcode instruction in the next ROM address not to be exe-
cuted. (A complete list of test conditions that can be specified
by the Skip field is contained in Section V.) However, if the
current instruction is a microcode jump instruction, the jump
will be executed only if the condition being tested is true. In
the case where the next microcode instruction is not to be ex&-
cuted, the skip condition is tested while the microcode instruc-
tion 1is in ROR2. This means that the instruction to be skipped
is in RORl. The clock cycle that moved the instruction to be
skipped from ROR1 into ROR2 also sets the NOP2 flip-flop. This
causes the ALU to add, forces the shift field to a pass function,
and the Store field not to be decoded. However, the operands
specified by the R- and S-Bus fields of the instruction to be

2-53

System/CPU Overview

skipped were already clocked into the R- and S-Bus Registers so
that the data on the U-Bus at the end of the NOP cycle is the sum
of the contents of the source registers.

2-86. Microcode Jumps. Microcode jumps can be taken from either
ROR1 or ROR2. The jumps can be taken from ROR1 only under the
condition that the jump has an unconditional skip code and the
instruction in ROR2 meets one or more of the following condi-
tions: 1is cancelled by NOP2; is a ROM Immediate type instruction
without a data-dependent skip; contains a NOP skip function;
and/or contains a non-data-dependent skip test (skip codes 14
through 27, 32, 33, and 34) which is not met or if an ROR1l jump
has just been completed. All other microcode jumps will be ex-
ecuted from ROR2.

An unconditional jump is a jump that occurs without regard to the
data. If the microcode calls for an unconditional jump, a jump
target address is selected out of the Shift, Special, and R-Bus
fields of the microcode instruction in ROR1 (ROR2 if previous
microcode instruction contained a data-dependent skip condition)
and applied back to the VBUS MUX so that the new ROM microcode
instruction is sent to RORl. The target address goes to the INC,
is incremented by one, and the new target address plus one is
stored in the RAR until the next clock cycle when it is applied
to the VBUS MUX for consecutive addressing of the micrococde in-
structions.

The jumps that are executed from ROR2 because none of the
fast-jump conditions were present for RORl and the conditional
jumps that are always executed from ROR2 behave as follows: Not
Taken, next line in sequence executed on next clock;
Non-Da ta -Dependent Taken, one overhead clock required (NOP2 ef-
fective) before target line executed; Data-Dependent Taken, two
overhead clocks required (FREEZE, NOP2) before target line ex-
ecuted. Execution of jumps in ROR2 inhibit any fast jumps from
ROR1 being executed. Therefore, if there are two consecutive
lines of microcode containing jumps, the jump in ROR2 will be
taken and the jump in RORl will be ignored.

The microcode instruction calling for a jump comes out of ROM and
into ROR1 which decodes the R- and S-Bus fields as discussed in
paragraph 2-85. The R- and S-Bus field information 1is sent
through the R- and S-Bus Iogic and is waiting at the inputs of
the R- and S-Bus Registers. On the next clock cycle, the jump
instruction goes to ROR2 and the R- and S-Bus field data is
clocked fthrough the R- and S-Bus Registers. The T-Bus data is
loaded from ROR2 to feed ROM so that, on the next clock cycle,
the address of the jump-tc-microcode instruction goes to ROM. As
the new instruction is clocked intc ROR2, the jump-to-microcode
address plus one goes into the RAR and the operation resumes
stepping through the microcode.

2-54

System/CPU Overview

2-87. S-Bus Field Decoder (S). The S-Bus Field Decoder (bits 0
through 4) selects one of 32 registers or sets of lines to be

loaded into the S-Bus Register. S-Bus field code definitions are
contained in Section V.

2-88. Store Field Decoder (STORE). The Store Field Decoder (bits
5 through 9) selects one of the Store ILogic registers or other
destinations outside the CPU for the U-Bus data. Steore field
code definitions are contained in Section W.

2-89. Function Field Decoder (FCN). The Function Field Decoder
(bits 10 through 14) specifies the function to be performed by
the ALU on the twc operands in the R- and S-Bus Registers. Func-
tion field code definitions are contained in Section V.

2-90. Skip Field Decoder (SKIP). The Skip Field Decoder (bits 15
through 19) determines which condition will be tested for a pocs-
sible skip. If the condition is met, ROR2 will execute a NOP,
effectively skipping one microinstruction word. The Skip field
also specifies the conditions under which a JMP or JSB will be
executed if coded in the microinstruction. Other signals, such
as NEXT which calls the next instruction from memory, are also
decoded from the Skip field. Skip field code definitions are
contained in Section V.

2-91. Shift Field Decoder (SHIFT). The shift Field Decoder (bits
20 through 22) specifies how the T-Bus data will be shifted. 1In
addition, the shift field generates the Scratch Pad 1 and Scratch
Pad 3 Register shift signals used in conjunction with the Func-

tion field. The Shift field code definitions are contained in
Section V.

2-92. Special Field Decoder (SP). The Special Field Decoder (bits
23 through 27) performs varied operations such as generating mem-
ory operation code signals and the POP signal. Special field
code definitions are contained in Section V.

2-93. MCU Option Field Decoder (MCU). The MCU Option Field De-
coder (bits 23 through 27) uses the same bits as the Special
Field Decoder. The Special Field Decoder is disabled and the MCU
Option Field Decoder is enabled when executing an S-Bus field
code RBR or a Store field code BUS, BSP0O, BSPl, or SBR. The MCU
Option Field Decoder initiates transfers to or from memory and
transfers from ACOR to the Operand, Next Instruction, or Command

Registers via the CTL Bus. MCU Option field code definitions are
contained in Section V.

2-94. R-Bus Field Decoder (R). The R-Bus Field Deccder (bits 28
through 31) selects one of 16 registers or sets of lines for
loading into the R-Bus Register. R-Bus field code definitions
are contained in Section V.

2-55

System/CPU Overview

2-95. PROCESSOR REGISTERS. Except for the Operand (OPND), 1I/0
Address, 1I1/0 Direct Data In, CPX1l, and CPX2 Registers, the pro-
cessor registers «can be selectively loaded from the U-Bus and
selectively read into the R- and/or S-Bus Registers. The proces-
sor registers are illustrated in similar readout groups in figure
2-20. For example, the X, Z, PL, SP0O, and SR Registers can be
read out only to the R-Bus Register. The SPl Register can be
read out to either the R- and/or S-Bus Registers. Similarily,
the ©PB, DL, SM, DB, Q, SP2, SP3, PCLOCK, and OPND Registers can
be read out only to the S-Bus Register. Descriptions of the ird-
dividual processor registers, including the renamer logic, are
contained in paragraphs 2-96 through 2-115. In addition, the
actions of many of the processor registers in an operating envi-
ronment are discussed in paragraphs 2-16 through 2-70.

2-96. Renamer Logic. The renamer logic consists the Namer, Adder,
three Mappers, four TOS registers (TRO through TR3), and the
SR Register. These components are designated as the TOS register
renamer, or simply, the renamer. The renamer permits fast access
to the TOS elements by renaming the registers when stack elements
are added or deleted (rather than transferring data from register
to register). The ROM microprograms know TR0 through TR3 only by
the names RA (top), RB, RC, and RD. The namer includes a 2-bit
Namer Register that tells the Mappers which of the four TOS reg-
isters (TRO through TR3) is RA, RB, RC, and RD as listed in table
2-7. [The Namer Register is decremented each time a stack element
is added (PUSH) and incremented each time a stack element is de-
leted (POP). To keep track of how many elements are in the TRO
through TR3 registers, the 3-bit SR Register 1is incremented by
PUSH and decremented by POP in step with the Namer Register.
When the SR Register count is zero, there are no elements in the
TRO through TR3 registers. This would indicate to a ROM micro-
program not to look for the TOS in the CPU and that one or more
memory fetches may be required. The Adder combines the outputs
of the Namer Register, SR Register, and Scratch Pad 1 Register
(SP1) and generates the TNAME signals (bits 0 and 1) for the
Mappers. (Refer to table 2-7.) The Mappers use the TNAME code to
control access to the TOS registers (TR0 through TR3). The TNAME
code specifies which of the TOS registers is RA, RB, RC, and RD
as listed in table 2-7.

Table 2-7. TOS Namer Relationships

| |
I I
I RA = TRO TR1 TR2 TR3 |
| |
| RB = TR1 TR2 TR3 TRO |
| , |
: RC = TR2 TR3 TRO TRl |

[
| RD = TR3 TR0 TR1 TR2 |
|

T - —" —_——— Y —— " ——— . —— .~ — ———————— -

System/CPU Overview

2-97. TOS Registers. The TOS registers consist of eight 16-bit
registers designated TROR through TR3R and TROS through TR3S.
The two groups of registers always contain the same data (i.e.,
TROR = TROS, TRIR = TR1S, etc.). The registers contain up to
four of the top elements of the current data stack. The TOS
registers are read by R-Bus field ccdes RA, RB, RC, RD, and MREG
and by S-Bus field codes RA, RB, RC, RD, and QDWN as discussed in
Section V. The TOS registers are licaded by Store field codes RA,
RB, RC, RD, PUSH, and QUP as discussed in Section V.

2-98. 1Index Register (X). The Index Register (X Register) is a
16-bit register that contains the index word to be used by memory
reference instructions if indexing is specified. Certain other
instructions use the X Register for parameters or addresses.
(Refer to paragraph 2-48.) The X Register is read by R-Bus field
codes X and XC and locaded by Store field code X.

2-99. Stack Limit Register (2). The Stack Limit Register (Z
Register) 1is a 16-bit register that contains an absolute address
pointing to the top memory location available tc the current data
stack. Al though there are 128 word 1locations above the stack
limit, they are reserved for stack markers in the event of .an
interrupt. (Refer to paragraph 2-28.) The Z Register is read by
R-Bus field code Z and locaded by Store field code Z.

2-100. Program Limit Register (PL). The Program Limit Register
(PL Register) 1is a 16-bit register that contains the absolute
address of the upper location of the current program segment.
(Refer to paragraphs 2-24 through 2-23.) The PL Register is read
by R-Bus field code PL and lcaded by Store field code PL. ’

2-101. Scratch Pad 0 Register (SP0). The Scratch Pad 0 Register
(SPO Registeri) is a 16-bit register that is used by the CPU to
store partial results during various CPU routines and as address-
es during memory transfers. The SP0 Register is read by R-Bus
field code SP0 and lcaded by Store field codes SP0O and BSPO.

2-102., Scratch Pad 1 Register (SP1l). The Scratch Pad 1 Register
(SP1 Register) 1is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP1 Register can be left shifted and provides serial data input
to bit 15 and output from bit 0. The SPl Register is read by
R-Bus field code SP1l, loaded by Store field code SPl, and shifted
by PFPunction field codes CTSD, DVSB, and QASL. In addition, the
SP1 Register can be read onto the S-Bus by S-Bus field cocde SP1
(code is not the same as R-Bus field code SPl).

2-103. Stack Register (SR). The Stack Register (SR Register) is
a 3-bit register counter that provides the number of TOS regist-
ers that are currently in use. The SR Register works in con-
junction with the Namer Register to lccate and access any of the
top four elements of the data stack. (Refer to paragraph 2-21.)
The SR Register is read by R-Bus field code SR and modified by

Store field code PUSH and Special field cocdes INSR, DCSR, POPA,
CLSR, and POP.

System/CPU Overview

2-104. Program Base Register (PB). The Program Base Register (PB
Register) is a 1l6-bit register that contains the absolute address

of the bottom location of the current program segment. (Refer to
paragraphs 2-21 through 2-28.) The PB Register 1s read by S-Bus

field code PB and loaded by Store field code PB.

2-105. Data Limit Register (DL). The Data Limit Register (DL
Register) is a 1l6-bit register that contains the absolute address
of the bottom usable location in the current data stack. (Refer
to paragraphs 2-21 through 2-28.) The DL Register is read by
S-Bus field code DL and loaded by Store field code DL.

2-106. Stack Memory Register (SM). The Stack Memory Register (SM
Register) is a 16-bit register that contains the absolute address
of the top element of the data stack in memory. Depending on the
number of TOS registers in wuse (specified by contents of
SR Register), this address can be from zero to four locations
below the actual TOS. (Refer to paragraphs 2-21 through 2-28.)
The SM Register 1is read by S-Bus field code SM and 1loaded by
Store field code SM.

2-107. Data Base Register (DB). The Data Base Register (DB
Register is a 16-bit register that is one of the stack limit reg-
isters. The DB Register contains the absolute address of the
first 1location of directly addressable storage in the current
data stack. (Refer to paragraphs 2-21 through 2-28.) The DB
Register is read by S-Bus field code DB and loaded by Store field
code DB.

2-108. Q Register (Q). The Q Register is a 16-bit stack marker
register that contains the absolute address of the current stack
marker being wused within the data stack. (Refer to paragraphs
2-21 through 2-28.) The Q Register is read by S-Bus field code Q
and loaded by Store field code Q.

2-109. Scratch Pad 2 Register (SP2). The Scratch Pad 2 Register
(SP2 Register) 1is a 16-bit register that is used by the CPU to
store partial results during various microprogram routines. The
SP2 Register is read by S-Bus field code SP2 and loaded by Store
field code sP2.

2-110. Scratch Pad 3 Register (SP3). The Scratch Pad 3 Register
(SP3 Register) 1is a 16-bit register used by the CPU to store
partial results during various microprogram routines. The
SP3 Register can be right shifted and provides serial data input
to bit 0 and output from bit 15. The SP3 Register is read by
S-Bus field code SP3, loaded by Store field code SP3, and shifted
by Function field codes CTSD, MPAD, and TASR.

2-111. Process Clock Register (PCLOCK). The Process Clock Reg-
ister (PCLOCK Register) is a 16-bit register counter. The
PCLOCK Register is 1loaded and read by software instructions and

is continuously incremented as long as the CPU is not executing
on the Interrupt Control Stack (ICS FLAG = 0) or is not halted.

2-58

System/CPU Overview

The clocking interval is 1.001 ms. The maximum range of the
clock before rollover is approximately 65.5 seconds.

2-112. Program Counter Register (P). The Program Counter Regis-
ter (P Register) is a 16-bit register that contains the absolute
address of the next program instruction to be fetched from mem
ory. During execution of Skip field code NEXT, the P Register and
PB-Bank Register are used to select a memory module and prefetch
the instruction following the one which is about to be executed.
(Refer to paragraphs 2-21 through 2-28.) The P Register 1is read
by S-Bus field code P and loaded by Store field code P.

2-113. Operand Register (OPND). The Operand Register (OPND
Register is a 16-bit register that provides storage for data read
from memory by the CPU. The OPND Register is loaded by an OPINP
signal from the Operand In Process (OPINP) flip-flop in the MCU
operation decoder as a result of MCU options OPND, RNWA, RWA, and
RWAN. The OPND Register is read by an RDOPND signal from the
S-Bus Decoder as a result of S-Bus field code OPND. When the CPU
freezes for an operand, the operand from memory goes directly to
the S-Bus Logic as well as into the OPND Register. It is then
loaded into the S-Bus Register to await CPU operation.

2-114. Status Register (STA). The Status Register (STA Register)
is a 16-bit register that indicates the current status of the CPU
hardware. (The status word format is discussed in paragraph 2-
45.) The STA Register 1is read by ©S-Bus field code STA and
loaded by Store field code STA. Status bits are also affected by
Function field codes CADO, SUBO, INCO, and ADDO; and by Special
field codes CCB, SCRY, CCRY, POPA, SOV, CLO, CCZz, CCL, CCG, CCE,
and CCA.

2-115. Counter Register (CNTR). The Counter Register (CNTR
Register 1is a 6-bit register that is used as a repeat counter by
the CPU. The two’s complement of the desired count is loaded into
the CNTR Register and the register is then incremented for each
repeated execution until it contains all ones as 1indicated by a
CTRM code from the Skip field. The CNTR Register is affected or
referenced by S-Bus field <codes CTRI and CTRH, Function field
code REPN, Store field codes CTRL and CTRH, Special field code
INCT, and Skip field ccde CTRM. Additionally, the CNTR Register
saves the contents of the SR Register when the CPU is put in the
Halt Mode. Therefore, after a halt has occured, the CNTR Register
can be displayed to show what the contents of the SR Register was
just prior to the halt.

2-116. OVERFLOW FLIP-FLOP (OVFL). The Overflow flip-flop con-
trols the status word overflow bit (bit 4) and stores the state
of the Overflow signal from the ALU when the OFCENB signal is
true. The Overflow flip-flop is set and cleared by Special field
codes SOV and CLO respectively. Refer to paragraph 2-45.

System/CPU Overview

2-117. CARRY FLIP-FLOP (CRRY). The Carry flip-flop controls the
status word carry bit (bit 5) and stores the state of the Carry
signal from the ALU when the OFCENB signal is true. The Carry
flipflop is set and cleared by Special field codes SCRY and CCRY
respectively. Refer to paragraph 2-45.

2-118. CONDITION CODE LOGIC (CCO AND CCl). The condition code
logic controls the condition code. Refer to paragraph 2-46.

2-119. PRE-ADDER. The Pre-Adder is used to gain a speed in-
crease for instructions that use or perform computations on CIR
bits. For example, when executing indexed memory reference in-
structions (not indirect), the proper CIR displacement field is
pre-added to the X Register contents. Therefore, the final abso-
lute address can be computed in only one clock «cycle by adding
the output of the Pre-Adder to the contents of the base register
(B, DB, Q, or Z).

2-120. R-BUS REGISTER. The R-Bus Register is a 1l6-bit register
that provides buffer storage between the R-Bus and the ALU. The
R-Bus Register <can be left-shifted one bit position (refer to
Function field code QASL, Section V) and is 1loaded from the
R-Bus. Refer to R-Bus field code definitions.

2-121. S-BUS REGISTER. The S-Bus Register is a 16-bit register
that provides buffer storage between the S-Bus and the ALU. The
S-Bus Register can be right-shifted one bit position (refer to
Function field code QASR, Section V) and is locaded from the
S-Bus. Refer to S-Bus field code definitions.

2-122. ALU. The ALU combines the R- and S-Bus data and gener-
ates functions that are divided into two modes or groups; arith-
metic functions and 1logic functions. The 16-bit output of the
ALU is placed on the T-Bus for either the Shifter or Decimal
Corrector.

2-123. SHIFTER. The Shifter performs all shifts and rotates (left
shift, right shift, right-left swap, etc.) on the T-Bus data as
directed by the Shift Field Decocder. The output of the Shifter
is placed on the U-Bus for storage in one of the U-Bus registers.

2-124. DECIMAL CORRECTOR. The Decimal Corrector adds six to each
group of four bits in the output from the ALU and generates car-
ries to the next group as required to yield a correct decimal
addition. Each group of four bits in the source operands must be
in the range of 0 to 9. If an invalid digit is detected during
the add cycle, overflow will be true.

2-125. ADDRESS COMPUTER OUTPUT REGISTER (ACOR). The ACOR is a 16-
bit register that functions as a memory address buffer between
the U-Bus and the CTL Bus. -

2-126 . DATA COMPUTER OUTPUT REGISTER (DCOR). The DCOR is a 16-

bit register that functions as a buffer for memory bound data and
operand address transfers between the U-Bus and the CTL Bus.

2-60

System/CPU Overview

2-127. INTERRUPT STATUS REGISTER 1 (CPX1l). The Interrupt Status 1
Register (CPX1l Register) provides 16 bits that are used to monit-
or the system Run Mode interrupt status. When a Run Mode inter-
rupt occurs, the CPU reads the CPX1l Register and checks its con-
tents for the cause of the interrupt. The CPX1l Register is read
by S-Bus field code CPX1l and is affected by Special field code
CCPX as discussed in Section V. Each of the CPX1 Register's 16
bits (when true) signifies a specific Run Mode interrupt as fol-
lows:

Bit 0: Integer Overflow Bit 8: External Interrupt
Bit 1l: Bounds Violation Bit 9: Power Fail Interrupt
Bit 2: Illegal Address Bit 10: O

Bit 3: CPU Timer Bit 11: ICS Flag

Bit 4: System Parity Error Bit 12: DISP Flag

Bit 5: Address Parity Error Bit 13: Emulator

Bit 6: Data Parity Error Bit 14: I/0 Timer

Bit 7: Module Interrupt Bit 15: Option Present

2-128. INTERRUPT STATUS REGISTER 2 (CPX2). The Interrupt Status 2
Register (CPX2 Register) is used to monitor the system’s Halt
Mode interrupt status. When a Halt Mode interrupt occurs, the
CPU reads the CPX2 Register and checks its contents for the cause
of the interrupt. The CPX2 Register is read by S-Bus field code
CPX2 and is affected by Special field code CCPX as discussed in
Section V. Each of the CPX2 Register’s 16 bits (when true) sig-
nifies a specific Halt Mode interrupt as follows:

Bit 0: Run Switch Bit 8: Execute Switch

Bit 1: Dump Switch Bit 9: Increment Address
Bit 2: Load Switch Bit 10: Decrement Address
Bit 3: Load Register Bit 11: O

Bit 4: Load Address Bit 12: 0

Bit 5: Load Memory Bit 13: Inhibit PFARS

Bit 6: Display Memory Bit 14: System Halt

Bit 7: Single Instruction Bit 15: Run Flip-Flop

2-129. CPU Servicing Information

Physically, the basic CPU consists of the nine PCA’s contained in
slots A2 through Al0 of Card Cage No. 1 as shown in tables 1-1
through 1-3. All CPU PCA’s are nonrepairable PCA’s and must be
replaced if found defective. No repair procedures are required.
However, four of the six CPU PCA’s contain jumpers or switches
that must be properly configured as discussed in paragraphs 2-130
through 2-133,

2-130. READ-ONLY MEMORY (ROM) PCA. The ROM PCA contains four
jumpers (W5 through W8) that must be installed to reflect the
type of ROM's loaded on the PCA. If the ROM PCA is 1loaded with
ROM’s having a capacity of 1K words, install the four Jjumpers
nearest the 1K marking as shown in figure 2-21. If the ROM PCA

is loaded with ROM’s having a capacity of 2K words, install the
four jumpers nearest the 2K marking.

System/CPU Overview

TOP 1,3, 79

BOTTOM 2,4, 80 , 4,
CUTITTINIIO (W

N
aw
8

ROM PCA
30003-60021

BOTTOM 1,3, =49

} 1K POSITIONS

s
a

} 2K POSITIONS

N
Vel

Figure 2-21. ROM PCA Jumper Locations

2-131. SKIP AND SPECIAL FIELD (SSF) PCA. The SSF PCA contains
two synchronizing jumpers (Wl and W2) that must be installed to
reflect that there is only one CPU in the system. Ensure that
jumpers W1 and W2 are installed exactly as shown in figure 2-22.

2-62

System/CPU Overview

TOP 1,3,
BOTTOM 2,4

o1 [TTTTTTTTTNVON TV ORTRININN T mmmm | TR

3

&

N
o
283

u1s

u3s

u1?
u27
u37

._E_. SKIP AND SPECIAL

FIELD PCA
II\ g
w2} m
oS

30003-60022
J1 J2 J3

TOP 2,4, ~———*50
BOTTOM 1,3, =49

- N
w

g
N
W
&8

Figure 2-22., SSF PCA Jumper Locations

2-132. S-BUS PCA. The S-Bus PCA contains three selector switch-
es (S1, S2, and S3) as shown in fiqure 2-23. Set switch 83 to
match the computer system’s Main Memcry size. Switches S1 and S2
are used for memory interleaving. At present, memory interleav-

ing 1is not factory supported and switches S1 and S2 must be con-
figured for non-interleaving in accordance with table 2-8.

Memory interleaving requires two Memory Control and Logging PCA ‘s
be installed in the system, each supporting one, two, or four
Semiconductor Memory Array PCA's. The memory sizes that can be
interleaved are limited toc 256K, 512K, and 1024K words. The re-
quired switch configurations of switches S1 and S2 on the S-Bus,
IOP, and Selector Channel Register PCA’'s for memory interleaving
are listed in table 2-8.

System/CPU Overview

Table 2-8. Memory Interleaving Switch Configurations

A S —— - " — Y ——— —- - ———]~ - —— o — ——— L —— — ————— - ——— v ——

11 213141516111 21314151]°¢6]I

—— o

|
1
|
|
|
)
!
{
i

|

| | |
Mode :—‘-T"'T"'T'-'T""T"“-I””‘T"-_T--’T""T-—"T'-‘I

|

|

ing 1 to 4
PCA’ s/MCL

O
@]
{
; *0

{
|
{
|
i
|
|
1
|
{
{
|
|
|
|

Interleaving
1024K
4 PCA ‘s/MCL

@]
(@]
* 0

——

512K
2 PCA“s/MCL

* 0

|
i
|

Interleaving
256K
1 PCA/MCL

*

I
I
I
I
|
|
|
|
|
Interleaving ;
|
I
|
|
|
|
|

0

On the S-Bus, IOP Bus, and Selector Channel Register PCA’s,
open all switch positions of S1 and S2. Then, close those
switch positions indicated with a C on all three PCA’s for the
applicable mode.

2-133. CURRENT INSTRUCTION REGISTER (CIR) PCA. The CIR PCA con-
tains eight jumpers (W1l through W8) as shown in figure 2-24. If
neither the HP 32105A APL (A Programming Language), HP 32233A
COBOL ‘74 or, the Extended Instruction Set (EIS) PCA, part no.
30012-60001 are installed in the system, W1 through W8 are all
installed. If the EIS PCA is installed in the system, remove
jumpers W1 and W8 from the CIR PCA. Removing jumper W1 enables
the floating point instructions and removing jumper W8 enables
the decimal instruction set. If the HP 32105A APL ROM’'s are in-
stalled on the EIS PCA, remove jumper W2 from the CIR PCA to en-
able the APL instructions. If the HP 32233A COBOL ‘74 ROM s are
installed on the EIS PCA, remove jumper W4 to enable the COBOL
“74 instructions.

System/CPU Overview

TOP 1,3,

82

BOTTOM 2,4

5
TOP 2,4, =60
BOTTOM 1,3, 49

MEMORY SIZE

(WORDS)
S3

1-128K
2 - 256K
3 - 384K
4-512K
5-768K
6-1024K

S-BUS PCA

[st][s2]

2,4 ~—"50

1,349

N
o
83

O,

2,4~—"50

1,349

Figure 2-23.

S-Bus PCA

2-65

Switch Locations

System/CPU Overview

TOP 1,3,
BOTTOM 2,4

83
[y
s W
83

CIR PCA
30003-60006
XwW
o
N 92 43
TOP 2,4, ~———*50 2,4=———*50 2,450
BOTTOM 1,3, ~—————49 1,3~——=49 1,3——=49

P1 ﬂlll|lllllllllllllllllllllllllllllllllm |

7522-37
Figure 2-24. CIR PCA Jumper lLocations

2-66

System /CPU Overview

NOTES

System /CPU Overview

NOTES

SYSTEM VERIFICATION AND
TROUBLESHOOTING || m

This section contains a brief discussion of available verifica-
tion procedures that can be used to determine if the computer
system is operating properly, a brief discussion of system
troubleshooting procedures, and a discussion of how to use the
System Control Panel and the HP 30354A Maintenance Panel.

3-1. DIAGNOSTIC AND VERIFICATION PROGRAMS

The computer system uses three types of test programs; on-line
verification programs, stand-alone diagnostic programs, and
microdiagnostics.

3-2. On-line Verification Programs

The on-line verification programs are used to confirm proper op-
eration of peripheral devices (i.e., printer, terminals, readers,
punches etc). These programs run concurrently with other programs
under control of the Multiprogramming Executive Operating System
(MPE) and permit uninterrupted system operation. If the minimum
hardware configuration required for MPE is inoperable, on-line
verification programs cannot be run and the stand-alone diagnos-
tics must then be used. For detailed information on the use and
functions of the on-line verification programs, refer to the in-
dividual on-line verification program manuals.

3-3. Stand-Alone Diagnostic Programs

The stand-alone diagnostic programs allow Customer Engineers to
run maintenance and troubleshooting tests on system hardware and
peripheral devices. Each of these programs 1is independently
operated and runs directly on the central processor. MPE is not
required and the operating system is shut-down while stand-alone
programs are running. When a problem occurs that prevents the
use of both on-line or stand-alone programs, then the microdiag-
nostics must be used. The stand-alone diagnostic tapes are cre-
ated under control of SDUPII (Stand-Alone Diagnostic Utility Pro-
gram II). Updating stand-alone diagnostics is also accomplished
under control of SDUPII. For detailed information on the use and
functions of SDUPII, refer to the Diagnostic Utility Program II
Manual, part no. 03000-90125. For detailed information on the
use and functions of stand-alone diagnostic programs, refer to
the individual stand-alone diagnostic program manuals.

3-4. Microdiagnostics

The microdiagnostics are microprograms that are built into the
system. These are microprograms that replace the instruction set
microprograms in the central processor and in some controllers.

3-1

System Verification and Troubleshooting

They identify problems by checking the hardware from the most
basic level. The operating procedures for the built in micro-
diagnostics are contained in the HP 3000 Computer System Install-
ation Manual, part no. 30000-90147. The program is listed in the
HP 3000 Series III1 Computer System Microprogram Listing, part no.
30000-90136.

3-5. SLEUTH 3000

SLEUTH 3000 is a stand-alone utility written in SPL/3000. It 1is
designed to give Customer Engineers the capability of generating
unique I/O test programs that run under the <control of SLEUTH
3000. These programs allow isolation of I/0 problems and ease
the troubleshooting of these problems. SLEUTH 3000 has the abil-
ity to run up to five different types of I/0 devices concurrent-
ly. It can also write and execute SIO programs, store and
restore programs on magnetic tape, and edit the programs.
Peripheral devices that do not have on-line and/or stand-alone
verification programs require that SLEUTH 3000 programs be writ-
ten to test these devices. For additional information, refer to
the Stand-Alone SLEUTH Diagnostic D411A, manual part no. 03000-
90123.

3-6. SYSTEM TROUBLESHOOTING AND REPAIR

The HP 3000 Series III CE Handbook, part no. 30000-90172 con-
tains system troubleshooting procedures that are designed to iso-
late malfunctions to specific functional areas of the system.
Repair of a defective functional area is usually accomplished by
replacing the defective PCA. Only the main memory PCA's are re-
paired to the component level.

In order to run the available diagnostic and verification pro-
grams and to be able to perform the system troubleshooting pro-
cedures, it is mandatory that Customer Engineers know how to use
both the System Control Panel and the Mintenance Panel. De-
tailed information on how to use these panels and "hands-on" ex-
perience will be obtained while attending the hardware training
course. For reference purposes, the panels are described in par-
agraphs 3-7 and 3-8.

3-7. SYSTEM CONTROL PANEL

The System (ntrol Panel (figure 3-1) is located at the top front
of the CPU Equipment Bay and provides the switches and lamps re-
quired to perform the following operations:

a. Cold load and run diagnostics.

b. Load and run user programs.

c. Halt programs.

d. System dump.

e. Observe Current Instruction Register.

f. Reset CPU.

g. Enable and disable auto restart function after power failure.

System Verification and Troubleshooting

PF/ARS PANEL cpPu
DS8L ENBL DSBL ENBL RESET

X X
NOTE: \ \ 4
1. SWITCHES LOCATED BEHIND FACEPLATE. f\’. ."\ H
' Lo [
2. PLACARDING LOCATED ON REAR COVER PLATE
OF SYSTEM CONTROL PANEL.

-
])
1 L4

CURRENT INSTRUCTION REGISTER SYSTEM HALT RUN

o 1 2 3 a 5 3 7 8 9 10 " 1”2 13 14 15

SYSTEM SWITCH REGISTER

[1 2 3 a 5 L} 7 8 9 10 1" 12 3 14 15

10BEBRAHBRABEBEBE HLAB

oump

ENABLE

Figure 3-1. System Control Panel

All front panel switches are three-position, spring-return, rock-
er switches with a center-off position. To perform a specific
operation, press either the top or bottom half of the appropriate
switch as indicated by the placarding. When released, the switch
will return to its center-off position. The switches and lamps
shown in Figure 3-1 are identified and described in table 3-1.

In addition to the switches described in table 3-1, there are
three switches locted behind the upper-right corner of the panel
that are accessible when the cabinet door is opened. See figure
3-1. The CPU RESET switch is a two-position, spring-return
switch that resets the CPU circuits. The PANEL DSBL/ENBL switch
is a two-position switch that disables or enables the System Con-
trol Panel for use. The PF/ARS DSBL/ENBL switch is a two-posi-

tion switch that disables or enables the auto restart program in
the event of a power failure.

Table 3-1. System Control Panel Switches and Lamps

Panel Marking | Function

CURRENT INSTRUCTION
REGISTER (lamps)

Displays the contents of the CIR.

| I
| I
| l |
I ! |
| l I
I I |
I | I
| SYSTEM SWITCH REGISTER | Displays the contents of the Switch|
| (lamps and switches) | Register as determined by pressing |
I | the switches on or off. Switches |
| | provide a 16-bit word to be used as |
I | a device number and control byte |
I | for cold load procedure. }
| |

| | I
l |

l |

RUN (lamp) Indicates the system is executing a
program.

s

System Verification and Troubleshooting
Table 3-1. System Control Panel Switches and Lamps (Continued)

I Panel Marking I Function |

Indicates a system halt caused by
an irrecoverable error detected by
the firmware.

SYSTEM HALT (lamp)

I
I
[
I
RUN/HALT (switch) Reverses the run/halt condition of |
the system. |
|
|
|
|
|
|

ENABLE (switch) Must be held in the ENABLE position
| to permit the LOAD or DUMP switch
| function to become active.
I
DUMP (switch) Sends the contents of memory and
CPU registers to the system mag-
netic tape unit.
LOAD (switch) Used to load memory from a device
specified by the SYSTEM SWITCH
REGISTER contents.

3-8. MAINTENANCE PANEL

The Maintenance Panel (figure 3-2) is a troubleshooting aid for
the computer system. When the pPanel is connected to the system,
switches on the panel are used to select specific registers whose
content may be observed or changed to assist in localizing system
faults. Additionally, lamps on the panel show the contents of
many computer registers and the state of principal signals, al-
lowing analysis of system functioning. (For the most part, the
visual displays are used only when the computer is halted.) Op-
erating power is provided by the computer system. An interface
PCA, installed in the CPU card cage, 1is required for the Main-
tenance Panel.

The names of switches and indicators on the Maintenance Panel are
marked on an overlay which installs on the face of the unit. A
smaller overlay (the 1I/0 overlay) can be placed over a certain
row of lamp names on the main overlay to extend the display func-
tion of those lamps. A switch permits display of the signals
named on the small overlay; other displays remain unchanged. The
small overlay can be turned over to provide another set of names;
these signals are displayed by making an additional cable connec-
tion to the computer. The Maintenance Panel also has a self-test
capability which allows the operability of most panel circuits to
be verified without the use of test equipment .

3-4

System Verification and Troubleshooting

(REF.
ONLY)
CENTRAL DATA BUS
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 i5
~To o olo o olo o ols o> olo o O |
MCUD MCUD DATA SYSTEM SYSTEM TO T0 T0 FROM FROM FROM MOP MOP CPU cPU CPU
PARITY PE PE PE PARITY 0 1 2 1 2 0 1 LORQ HIRQ SELECT
McTo o ololo o olo o olTo olo o © |
READY READY READY READY READY READY ENABLE ENABLE ENABLE ENABLE ENABLE o o uo
[+] 1 2 3 a 5 cB14 o 2 3 4 CcB1S LORQ HIRQ SELECT
[fo o o 5o o olTo o o o o olo o ol
FLAG FLAG FLAG TNAME TNAME ALY ALU CcPU OPND INSTR "o PANEL
1 2 3 o 1 SKIP NOP 2 REPEAT CARRY OVFL TIMER WAIT WAIT WAIT FREEZE FREEZE
MR- o olo olo o olo olo o o ©o ©0 O |
ics DIsP c NEXY‘ INTRPT JsB LT INTRPT u RAR SAVE JUMP JUMP 2 JUMP
FLAG FLAG MUX +1 FF FLAG NOP BNDV GATE GATE GATE GATE GATE GATE GATE FREEZE
N oTo o o o o olo o o o o o o ol
DIRECT SERVICE SERVICE DATA SI0 DRT 108 DRT Ho XFER INTRPT INTRPT INTRPT EXT
ACTIVE uT IN POLL ACTIVE INBOUND REQ JUMP ENABLE SYOﬁE TIMER ERROR REQ POLL ACK INTRPT
o o) 5 o o o o o o o olo o o ol
o 1 l 2 3 a l 5 6 7 I 8 9 10 l 112 13 |I4 15 16 l 17 18 19 lzn 21 22 I 23 24 25 lze 27 28 | 29 30 31
S0 0000000000000 00000C000O0O00000000
FUNCTION sKIp [swer | SPECIAL 1 R
S STORE JMP, JSB 3 JUMP TARGET
ANY ROM I ROM CONSTANT
Vv BUS
B12 B13 2 3 L} 5 6 8 9 10 1" 12 13 14 15
lNlo o olo o olo o olo o olo o o |
Vv BUS COMPARE REGISTER
6 13 14

[DI

o 0 al

«© *
«© -

lolo o ol 0

V BUS JUMP REGISTER

| B12 | B13 2 3 4 5 6 | 7 8 9 | 10 " 12 | 13 14 15 |
y 8us SINGLE CYCLE | yyqeps | ERROR | \yTReT | 10P SINGLE STEP RESET cLock
COMPARE I REGISTER DISPLAY FREEZE
ENABLE HALT REGISTER ALT INHIBIT ENABLE INHIBIT ENABLE EXT INHIBIT
INHIBIT JUMP HALT EXECUTE U BuS NORMAL ENABLE INHIBIT ENABLE INHIBIT EXECUTE cPU "o INT FREE SINGLE
EXIT JumP RUN CYCLE
REGISTER SELECTION ’
O O O O O @] O O O O O O O O O O O O
MOD CMD "o Ule]
SP2 sP3 OPND PADD CcPXY CPX2 SR NO. IDN DEV NO. 100 op DATA MAP PCLK TEST R RGTR S RGTR
R B8 8 & 8 £ 8 6 5 3 8 68 3 8
MEM MEM
ADRS DATA STATUS x P8 P PL oL oB Q S 2z RA RB RC RD CNTR CIR
O O O O O O O O O O O O O O O O O O
REGISTER DISPLAY
814 B15 [1 2 3 4 5 8 7 8 9 10 1 12 13 14 15
Mo ololo o olo o olo o olo o olo o o |
L 'l L ! d
Lo L] L] T 1
SWITCH REGISTER
| Bta 815 || o | 1 2 3 I 4 5 L] | 7 8 9 | 10 " 12 13 14 15
~
¢ olloclo 9 0lg 0 010 @ Jfe @ 4 lg 0 ¢ |
BKPT SYSTEM
HALT HALT RUN
LOAD REGISTER ADDRESS CONTROL MEMORY BREAKPOINT EXECUTE e} e} O
DECR INCR READ WRITE
ENABLE ENABLE ENABLE ENABLE
FROM MEM ADRS INMIBIT INHIBIT DISPLAY STORE INHIBIT INHIBIT SW RGTR SINGLE SYSTEM LOAD RUN/HALT
SW AGTR FROM DSPL INSTR RESET

Figure 3-2. Maintenance Panel

3-5

System Verification and Troubleshooting

3-9. Switch/Lamp Identification and Description

Figure 3-2 illustrates Maintenance Panel switches and lamps. The
shaded numbers on the right side of figure 3-2 identify the row
number of lamps or switches and are used in table 3-2 as an aid
to locating the switch or lamp. The I/0 overlay is shown in fig-
ure 3-3. When referring to a switch or lamp, this manual uses the
name physically marked on the equipment. The name is quoted in
capital letters to indicate it is an equipment marking. There
are three types of switches on the panel as follows:

a. Bistable switches. These switches have two positions, and
can remain in either the up or the down position. In the
down position they have no effect on normal computer func-
tioning, and they are left in this position except when their
particular function is required. 1In figure 3-2, the bistable
switches can be identified by the fact that they are in the
down position.

b. Two-position spring-return switches. These switches are
pressed down when their function is required. When released,
they return tc the up position.

c. Three-position spring-return switches. These switches have a
center-off position. They are pressed up or down to produce
the desired function. When released, they return to the cen-
ter position. All switches of this type are in row 12 of
figure 3-2.

Lamps which display register contents are lighted when the par-
ticular position of the register contains a binary 1. Lamps
which display the state of a signal are lighted when the signal
is in the asserted state. That is, a lamp is lighted when a
"not" signal is low; for other signals, a lamp is lighted when
the signal is high.

3-10. Operating Precautions

The operating system, if in use, may cause unexpected changes in
computer functioning when the Maintenance Panel switches are ac-
tuated. These unexpected changes result from such factors as
stack overflow, etc. Therefore, the operator should be thorough-
ly familiar with the operating system before attempting to use
the Maintenance Panel.

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps

T 1
|Panel| Panel Marking |
| Row |
| | 1
| | |
| 1 | CENTRAL DATA |
I | BUS 0 through |
| | 15 (lamps) :
I |
| 2 | MCUD PARITY |
| | (lamp) |
I I I
} 2 = MCUP PE (lamp)}
| | [
| 2 | DATA PE (lamp) |
| | |
I | |
I | |
2	SYSTEM PE
	(lamp)
I	
2	SYSTEM PARITY
	(lamp)
I	I
	I
2	TO 0, TO 1,
: 1 TO 2 (lamps)	
2	FROM 0, FROM 1
	FROM 2 (lamps)
I	
I	
2	MOP 0, MOP 1
I	(lamps)
I	
I	
2	CPU LORQ
I	(lamp)
I	I
I I	
2	CPU HIRQ I
RO	
2	CPU SELECT I
e	
3	READY O
	through 5
= I (Lamps) I
I I

Use

-

These lamps display the data word which
is on the CTL-Bus (MCUD 0:15).

Indicates the state of the CTL-Bus par-
ity bit.

tected on the CTL-Bus.

I
|
I
I
I
|
Indicates a parity error has been de- 5
I
Indicates there was a parity error de- |
tected in the data received by the cepu |
from memory. |
Indicates a parity error was detected in
the information transferred on the TO,
FROM, MOP, and SYSTEM PARITY lines.

Indicates the state of the parity bit
generated from the TO, FROM, and MOP
codes .

|
|
l
|
I
|
|
|
|
Display the address for which the word |
on the CTL-Bus is intended. |
I
l
|
|
l
I
l
|
l
I
|

Display the address of the module from
which the word on the CTL-Bus is being
sent.

Display the memory operation code. This
code is used by the addressed memory
module.

Indicates the CPU is issuing a low pri-
ority request for a transfer to a mod-
ule.

Indicates the CPU is issuing a high pri-
ority request for use of the CTL-Bus.

I
|
I
I
I
Indicates the CPU is currently selected |
to use the CTL-Bus. I
I
I
I
I
|

Display the module ready lines. Each
line is associated with a like numbered
module and, when true, indicates the
module is ready to receive a transfer.

3-7

System Verification and Troubleshooting

I ——-—_T---—-——'----—--—__

Panel| Panel Marking

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

Row

. o e

3

4

——— e

——— o ——_— — -

ENABLE 0
through 4
(lamps)

CB14, CB15
(lamps)

1/0 LORQ
(lamp)

1/0 HIRQ
(lamp)

1/0 SELECT
(lamp)

FLAG 1, FLAG 2
FLAG 3 (lamps)

TNAME O, TNAME
1 (lamps)

SKIP (lamp)

NOP 2 (lamp)

ALU CARRY
(lamp)

ALU OVFL

|
|
|
|
[
I
|
I
|
I
|
REPEAT (lamp) |
I
|
I
I
I
I
I
|
(lamp) 1

— - -

———— i ———— o ——— -~ — v — -

- — " —— - Yo — . —, a7 o — —— — —p— - " -~

Display the module enable lines. Each
line is associated with a like numbered
module and, when true, indicates a mod-
ule is transferring data. The enable
lines are monitored by the modules to
resolve priorities.

Display MSBs of address on CTL-Bus.

Indicates the IOP
ority request for

Indicates the IOP
ority request for

Indicates the IOP
CTL -Bus.

is issuing a low pri-
use of the CTL-Bus.

is issuing a high pri-
use of the CTL -Bus.

is selected to use the

Indicate the states of the three Flag
flip-flops controlled primarily by the
Special Field microinstructions.

Indicate the states of the TOS namer

bits. These bits

specify the mapping

between the TOS registers RA, RB, RC,
RD, and the associated physical regist-

ers.

Indicates a skip condition is met during
the current clock cycle.

Indicates the state of the NOP 2 bit.
When true, causes a "no operation" by
Rank 2 of the ROM Output Register.

Indicates the Repeat bit is true, caus-
ing the microporcessor to repeat the
current microinstruction until the skip

condition is met.

Indicates the carry signal from the
microprocessor ALU is true.

Indicates the overflow signal from the

microprocessor is

T . ——— ——— — ————— ——— ———-—

true.

. —— ——— - - ——— ———— — i —

|
I
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

System Verification and Tr oubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

the V-Bus are turned off caused by any
one of the following:

CPU Reset
PWR ON
UGATE on (RAR in the Store Field)

I I |
Panel| Panel Marking | Use |
Row | | |
I | |
I I I
4 | CPU TIMER | Indicates that a module did not respond |
| (lamp) | to the CPU within a specified time. |
I I |
4 | OPND WAIT | Indicates the CPU is waiting for an op- |
| (lamp) | erand from memory. I
I I I
4 | INSTR WAIT | Indicates the CPU is waiting for an in- |
| (lamp) | struction from memory. |
| I I
4 | I/0 WAIT | Indicates a multiplexed I/O operation is|
| (lamp) | fetching a word from memory. |
I I |
4 | PANEL FREEZE | Lighted when a microprogram halt is in |
(lamp)	effect or when the V-Bus carries the
	same number as the V BUS COMPARE REGIST-
	ER switches.
I I	
4	FREEZE (lamp)
	stopped.
I	
5	ICS FLAG
(lamp)	flop is set.
I I	
5	DISP FLAG
(lamp)	
I [
5	C MUX (lamp)
	coded. Lighted = current instruction;
	off = next instruction. :
I I	
5	NEXT + 1
(lamp)	sequence" state. I
I I	
5	INTRPT FF
(lamp)	flip-flop. When lighted, an external or
	internal interrupt is pending.
I I	
5 JSB FLAG	Indicates the microcode is executing a
(1 amp)	subroutine.
I I	
5 NOP (lamp)	Indicates one of the normal inputs of ‘
I	
I |

o v——a

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I
|
|
I
|
I
|
| For direct commands; the command
|
|
|
I
|
I

code, device address, and data on
on the bus are valid.
For SIO transfers inbound; data on

For SIO transfers outbound; data on
bus is valid. :

| T [- B |
|Panel | Panel Marking | Use i
| Row | | I
| | I . _
I		
5	NOP (lamp) [INTG on (A CPU interrupt is forcing	
	(Cont)	the V-Bus to address 3).
I I The execution of a V-Bus jump with I		
I	panel switches.	
I I		
5	BNDV (lamp)	Indicates a memory instruction refer- [
		ences an address outside the limit reg-
I I	isters.	
I I	I	
5	LUT GATE	Indicates an instruction target address
	(lamp)	is being sent to the V-Bus. I
		I
5	INTRPT GATE	Indicates when doing a NEXT + 1 cycle
I	(lamp)	and a microcode interrupt is pending or
		when a bounds violation has been de- I
I		tected. I
I I I		
5	U GATE (lamp)	Indicates the U-Bus is gated onto the V-
I		Bus.
I I I I		
5	RAR GATE	Indicates the current address + 1 is put
	(lamp)	on the V-Bus. I
I	I	
5	SAVE GATE	Indicates the microcode return address
	(lamp)	is being gated onto the V-Bus.
I		
5	JUMP 1 GATE	Indicates the jump target from Rank 1 is
I	(lamp)	being gated onto the V-Bus. I
I I I I		
I 5	JUMP 2 GATE	Indicates the jump target from Rank 2 is
	(lamp)	being gated onto the V-Bus.
I	I	
5	JUMP FREEZE	Indicates a one cycle freeze is taking
	(lamp) place to allow a new V-Bus address. I	
6	DIRECT ACTIVE Indicates the IOP is sending out a di-	
	(lamp) rect I/0 command. [
	I	
6	SERVICE OUT Indicates to device controller: [
I (lamp) I
I

I

I

I

I

|

|

I

I
|
|
|
the bus is anticipated. I
I
I
I

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

a
Row

|]
| Panel |

Panel Marking

T

Use |

6

I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I

|
I
I
I
I

SERVICE IN
(lLamp)

DATA POLL
(lamp)

SIO ACTIVE
(lamp)

-

INBOUND (lamp)

DRT REQ (lamp)

JUMP (lamp)

I0B ENABLE
(lamp)

DRT STORE
(lamp)

1/0 TIMER
(lamp)

XFER ERROR
(lamp)

INTRPT REQ
(lamp)

INTRPT POLL
(lamp)

INTRPT ACK
(lamp)

EXT INTRPT
(lamp)

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I

Indicates a response to an IOP Service
Out or Data Poll.

Indicates the IOP has received a request
for a transfer to or from memory.

Indicates a multiplexed I/O operation is
in progress.

Indicates the IOP is executing an in-
bound memory transfer.

from an SIO multiplexer to fetch a DRT
entry.

Indicates the IOP is currently updating
the DRT pointer during the execution of
a jump order.

Indicates the outbound data is on the
IOP Bus.

|
I
|
I
I
|
|
|
|
|
I
I
|
Indicates the IOP has received a request|
I
I
I
|
|
|
|
I
|
‘ |
Indicates the IOP is updating the DRT |
pointer. :
Indicates the Service In signal has
failed to occur within a period of time
after a Service Out signal.

|
[
|
|
Indicates an I/0 data parity exists. |
|
[
Indicates the state of the Int Req line |
from the devices.

I
|
Indicates the state of the Int Poll sig-|
nal from the IOP to the devices. ‘

I

Indicates that an Interrupt Acknowledge
signal has been received in response to
an interrupt poll.

|
I
|
Indicates an external interrupt has been|
acknowledged by the IOP. |

|

I

-

System Verification and Troubleshoot ing

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

——

——

|) 1 T |
|Panel | Panel Marking | Use I
| Row | I I
		_ R
	I	
7	ROM 0 through	Displays the contents of the ROM output
	31 (lamps)	registers. Lamps (0:4) and (28:31) dis-
: I : play ROR1. Lamps (5:27) display ROR2. ‘		
7	Bl2, B13	Display two MSB bank bits.
	(lamps) I I	
8	V BUS 2	Display the address of the ROM data cur-
	through 15	rently being accessed. Since the ROM is
	(lamps)	two levels removed from the actual mic-
I	roinstruction being executed out of I	
		ROR2, the address is normally two ahead
: | | of the address being executed. ' !

I |
| 9 | V BUS COMPARE | These switches specify the microprogram |
I | REGISTER 0 | address at which a V TRIG pulse will be |
| | through 15 | supplied. (The pulse is available at I
	(bistable	test point E3 at the front of the MPI
	switches)	PCA. It is also available at J3, pin 3
		on the MPI PCA.)
I I		
I I	These switches also specify a micropro-	
I		gram jump address or halt address when
I I	the V BUS COMPARE ENABLE/INHIBIT switch	
l		is at ENABLE.
I	I	
		The V TRIG pulse or breakpoint halt
l I	takes place at the completion of a par-	
I		ticular clock cycle. To bring about the
		effect at the desired clock cycle, the
		microinstruction address set into the
I		V BUS COMPARE REGISTER switches should
I I : be as follows: I		
		Address +1 for completion of execution]
		of the R-Bus and S-Bus fields.
	I	
		Address +2 for completion of execution
		of the remaining microinstruction
I	I fields.	
I I I		
10	B12, B13 (bi-	Used to set bank bits B12 and B1l3.
	stable	
I | switches) |

I I
| 10 | Vv BUS JUMP | These switches specify the jump target
| | REGISTER 2 | for:
: | through 15 I

I

3-12

Table 3-2. Maintenance Panel Switches and Lamps

System Verification and Tr oubleshoot ing

(Cont inued)

lamp.

With the switch at the U BUS posi-
tion the U-Bus is displayed. For
this function, the CLOCK INHIBIT/
FREE RUN switch (panel row 11)
must be at INHIT (single cycle
operation).

I T 1 T
|Panel| Panel Marking | Use
| Row | |
| | |__ L
I | |
| | (bistable I Jump resulting from the V-Bus contents
| | switches) | being equal to the contents of the
| I | V BUS COMPARE REGISTER switches.
| I I
| I I Jump resulting from the V BUS EXECUTE
| | | JUMP switch being pressed.
I | |
| 11 | V BUS COMPARE | Enables the V BUS COMPARE HALT/JUMP
| | ENABLE/INHIBIT| switch.
| | (bistable |
= : switch) ‘
| 11 | V BUS COMPARE | When enabled by the switch listed above, |
| | HALT/JUMP | selects halt or jump when the V-Bus con- |
| | (bistable | tents are the same as the V BUS COMPARE
| | switch) | REGISTER switches.
l | I
| 11 | V BUS COMPARE | When pressed, starts the microprogram
| | HALT EXIT | after:
| | (spring-return|
| | switch) | A halt brought about by the V BUS
| I | COMPARE REGISTER switches.
| | |
| | | A freeze brought about a CCPX-14
: : | Special field microinstruction.
|
| 11 | V BUS EXECUTE | When this switch is pressed, the micro-
| | JUMP (spring- | program jumps to the address in the V
| | return switch)| BUS JUMP REGISTER switches. This func-
| | | tion should be used only when the com-
I | | puter is halted.
I | |
| 11 | SINGLE CYCLE | Selects the REGISTER DISPLAY lamp read-
| | REGISTER | out as follows:
I | DISPLAY, |
I | REGISTER/U BUS| With the switch at the REGISTER posi-
I | (bistable I tion, the display is identified by
‘ switch) = the lighted REGISTER SELECTION
| |
I |
| |
| |
| |
| l
I I
|

3-13

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

—m——y—- [- -
Panel| Panel Marking | Use
Row | |
I | _
| |
11 | SINGLE CYCLE | With this switch at the NORMAL position,
| REGISTER | RA, RB, RC, and RD on the S-Bus PCA can
| DISPLAY, ALT/ | be displayed by the REGISTER DISPLAY
| NORMAL | lamps. With the switch at ALT, RA, RB,
| (bistable | RC, and RD on the R-Bus PCA can be dis-
| switch) | played. Also, with the switch at NOR- |
| | MAL, SP1 and Pre-adder are displayed I
| | from the S-Bus; with the switch at ALT, |
| | SP1 and the Pre-adder are displayed from|
I : the R-Bus. 1
I | This switch must be at NORMAL to store |
| | into RA, RB, RC, RD, or SP1 from the |
I | Maintenance Panel. I
I I I
11 | TIMERS (bi- | Enables or disables the CPU, memory, I
| stable switch)| IOP, and Selector Channel timers. {
| I
11 | ERROR FREEZE | In the ENABLE position, this switch |
| (bistable | causes a freeze when any of the follow- |
| switch) | ing occurs: :
I |
| | Illegal memory address |
I l Memory address parity error |
| I MCUD parity error |
I I System parity error I
I I I/0 data parity error |
I | I/0 address parity error :
| I
| | To end the freeze, the ERROR FREEZE |
: | switch is set to the down position. I
I I
11 | INTRPT (bi- | When the computer is running, setting |
| stable switch)| this switch to INHIBIT causes all inter- |
| | nal and external interrupts to be ignor-|
| | ed, with the exception of the power fail]
| | interrupt. When the switch is returned
I | to the ENABLE position, the previously
| | ignored interrupts are processed. The
| | switch performs no function when the
I | computer is halted.
I |
11 | IOP SINGLE | Enables or disables the IOP SINGLE STEP
| STEP ENABLE/ | EXECUTE switch.
| INHIBIT |
| (bistable |
: switch) I
I

3-14

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I 1 T |
|Panel | Panel Marking | Use |
Row | | l
|
|
11 | IOP SINGLE When enabled by the IOP SINGLE STEP EN- |
| STEP EXECUTE ABLE/INHIBIT switch, the IOP executes I
| (spring-return| one step each time this switch is used. |
| switch) |
| |
11 | RESET CPU The CPU and MCU are reset when this |
| (spring-return| switch is pressed. To avoid improperly |
| switch) changing the contents of registers, the |
| switch should be pressed only when the |
u computer is halted. |
|
11 | RESET 1/0 All I/0 subsystems are reset when this |
| (spring-return| switch is pressed. |
switch) :
11 CLOCK EXT/INT At the INT position, this switch allows |

(bistable
switch)

the CPU to use the clock pulse generated|
within the CPU. At the EXT position, thel
switch selects a clock pulse produced byl
an external pulse generator. =
|
I

The external clock pulse must have the’
following characteristics:

Source impedance: 50 ohms or less |
Source must sink up to 60 ma. I
High level: +2.5V to +5.0V |
Low level: 0.0V to +0.4V : I
Maximum rise time: 10 nsec |
Maximum fall time: 10 nsec |
High time: 20 nsec to infinite time |
Low time: 20 nsec to infinite time |
Maximum frequency: 25.0 MHz |
Minimum frequency: 0 Hz :

To equal the internal clock-pulse rate,
the external clock-pulse frequency must
be 22.8571 MHz. This corresponds to a
period of 43.75 nsec, which, because of
a divide-by-four action in the CPU, pro-
vides a 175-nsec computer clock cycle.

The external clock pulse is supplied to
a BNC-type connector on the CPU back-
plane. The connector is labeled EXT -
CLOCK. A 50-ohm termination impedance
is provided in the CPU.

o s o

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I 1 T - o
|Panel| Panel Marking | Use
Row | |
I | .
I |
11 | CLOCK INHIBIT/| In the INHIBIT position, this switch
| FREE RUN | permits the CPU to execute one machine
| (bistable | cycle each time the CLOCK SINGLE CYCLE
| switch) | switch is pressed. In the FREE RUN po-
| | sition, the CPU operates continuously
I | using either internal or external clock
: | pulses.
I
11 | CLOCK SINGLE | When enabled by the CLOCK INHIBIT/FREE
| CYCLE (spring-| RUN switch, pressing this switch causes
! return switch)} execution of one CPU machine cycle.
12 | REGISTER | When pressed up or down, each switch
| SELECTION | lights the lamp above or below it, and
I
|

I
I
I
I
|
I
|
I
|
l
I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
l
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
[

(Lamps and
center-off
spring-return
switches)

turns off any other lighted lamp in the
group. The lighted lamp identifies the
register displayed by the REGISTER DIS-
PLAY lamps. The Bl4 and Bl5 lamps re-
main extinguished except as stated be-
low.

The lighted REGISTER SELECTION lamp also

identifies the register which will be
loaded by either of the LOAD REGISTER
switches.

The following registers cannot be loaded
by the LOAD REGISTER FROM SW RGTR
switch; these are identified below as
"display only" registers. Special com-
ments are as follows:

OPND, display only.
PADD, display only.
CPX1l, display only.
CPX2, display only.
SR, display only

. MOD NO., display only. The module
number appears in positions 5, 6, and
7 of the REGISTER DISPLAY lamps.
REGISTER DISPLAY lamp 13 is lighted
indicating CPU No. 1.

IDN, display only.

3-16

Table 3-2.

System Verification and Troubleshooting

Maintenance Panel Switches and Lamps (Continued)

r

Panel Marking

r

Use

I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I
I
I
I
I
I
I
I

CMD DEV NO., display only. The I/O
command is displayed in positions 5
through 7; the device number is in
positions 8 through 15. Positions 0
through 4 of the display do not 1light

I
|
I
I
7
I
I
I
I
I
I
10D, display only. Displays (via the|
S- Bus) the contents of the IOD Input |
Register. I
I

10P, display only. Displays the con-|
tents of the Data-In Register. |
I

I

I

I

|

I

|

|

I

1/0 DATA, display only. Displays the
data on the IOD (0:15) bits. On the
I0P bus,these bits are in "not" form;
however, the "not" bits are inverted
before display. Thus, there is no
overbar over the mnemonic.

1/0 MAP, display only. To identify
the I/0 Map bits, the I/O overlay
(part no. 30354-80012) is placed over
the REGISTER DISPLAY lamps.

PCLK, display only.

TEST, display only. Displays any 16
bits applied to J3 on the Maintenance
Panel Inter face PCA.

R RGTR, display only.
S RGTR, display only.

MEM ADRS displays the memory address
(SPO) in REGISTER DISPLAY (0:15), and
the ABS-Bank Register in Bl4 and B1l5.
This lamp is called MEM ADRS because
SPO contains the address when memory
is accessed by means of the MEMORY
STORE or MEMORY DISPLAY switches.

I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
|
|
|
I
|
|
|
MEM DATA displays the memory data |
(SP1) in REGISTER DISPLAY (0:15). |
Bl4 and B1l5 will be zero. This lamp |
is called MEM DATA because SPl re- I

3-17

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

r —_—
Panel| Panel Marking
Row |

Use

I
|
I
I
I
I
I
I
I
I
I
|
I
I
I

|
I
I
I
I
I
I
I
|
I
|
l
I

I
I
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I
I
I |
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
[
I

—— s o e S . .

played by means of the MEMORY DISPLAY
switch.

SP2 displays the contents of the
Scratch Pad 2 Register, used by the
microcode. B1l4 and B1l5 will be zero.

|
|
|
|
|
ceives the data when memory is dis- |
I
I
|
I
I

SP3 displays the contents of the
Scratch Pad 3 Register, used by the
microcode. Bl4 and B1l5 will be zero.

RA displays the contents of the TOS
register. Bl4 and B1l5 will be zero.

RB displays the contents of the 2nd
stack register. Bl4 and B1l5 will
zero.

RC displays the contents of the 3rd
stack register. Bl4 and B1l5 will be
zero.

RD displays the contents of the 4th
stack register. B1l4 and B1l5 will be
zero.

ister.

PB displays the PB Status Register
in REGISTER DISPLAY (0:15). B1l4 and
B1l5 display the PB-Bank Register.

P displays the P Register in REGISTER
DISPLAY (0:15). B1l4 and B1l5 display
the PB-Bank Register.

PL displays the PL Register in REG-
ISTER DISPLAY (0:15). Bl4 and B15
display the PB-Bank Register; these
two bits are display only.

DL displays the contents of the DL
Register in REGISTER DISPLAY (0:15).

B1l4 and B15 display the stack regist-

I
|
|
I
|
|
|
I
I
I
|
I
|
|
|
I
I
I
|
I
I
STATUS displays the CPU Status Reg- |
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
er; these two bits are display only. |
|

3-18

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I I

Panel Marking

Panel

e Use
Row

I
|
|
|
I
DB displays the Data Base Register in|

REGISTER DISPLAY (0:15). Bl4 and B1l5|
display the DB-Bank Register. |

I |

I I

I |

| I

I |

I |

| |

I |

| | Q displays the Q Register in REGISTER

| | DISPLAY (0:15). Bl4 and B1l5 display

| [the Stack-Bank Register; these two

| | bits are display only.

| I
| S displays the S Register in REGISTER

| | DISPLAY (0:15). B1l4 and B1l5 display
| the Stack-Bank Register; these two
I bits are display only.
I
I
I
I
I
I
|
I
|
I
I
I
I
I

Z displays the Z Register in REGISTER
DISPLAY (0:15). Bl4 and Bl5 display
the Stack-Bank Register.

CIR, display only. Display valid only
| when the CLOCK INHIBIT/FREE RUN switch
| is at INHIBIT position (single cycle

| operation).

I

13 | REGISTER Display the register identified by the

| DISPLAY 0 lighted REGISTER SELECTION lamp. The

| REGISTER DISPLAY lamps also indicate the
| data which will be loaded by the LOAD

I

|

|

I

REGISTER, MEM ADDRS FROM DISPL switch.

through 15,
B15, and Bl4
(lamps)
14 SWITCH
REGISTER
| 0 through 15, |
| B15, and Bl4
| (bistable
| switches)

|
|
I
I
|
|
|
I
I
|
I
I
|
I
I
CNTR, display bits 10:15. I
I
I
|
|
I
|
|
I
|
I
I
|
Switches 0 through 15 provide a 16-bit |
word to: :
Load in a selected register by means
of the LOAD REGISTER FROM SWITCH RGTR
switch.

Store in memory by means of the MEMORY
STORE switch.

Use as an instruction word when the
EXECUTE SW RGTR switch is pressed.

Match with a word read from memory to
cause a read breakpoint halt (using

I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
I
I
I
|
| the BREAKPOINT READ ENABLE switch).
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

3-19

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

i

Panel Marking

R e ———

Panel Use

Match with a word stored in a memory
storage operation to cause a store
breakpoint halt (using the BREAKPOINT
STORE ENABLE switch).

|
I
I
|
I
|
I
|
| Switches B14 and B1l5 (row 14) and B1l2
| and B13 (row 10) are used to change the
| contents of the following bank registers
| by means of the LOAD REGISTER FROM SW
I RGTR switch:
I ABS-Bank Register (MEM ADRS Register
selected)

PB-Bank Register (PB Register select-
ed)

Stack-Bank Register (Z Register sel-
ected)

DB-Bank Register (DB Register select-
ed)

Except as listed above, switches Bl4 and|
B15 produce no effect when registers arel
manually loaded. I

—_—_—————,—, e —_—

A further use of switches Bl4 and B1l5 is
to specify the memory module number for
breakpoint halts (using the BREAKPOINT
STORE ENABLE/INHIBIT switch).

BKPT HALT
(Lamp)

Lighted during a breakpoint halt caused
by either of the following switches:

BREAKPOINT READ ENABLE/INHIBIT

SYSTEM HALT
(lamp)

Lighted during a system halt (caused by
an irrecoverable error).

RUN (lamp) Lighted when the CPU is running.
LOAD REGISTER

FROM SW RGTR
(spring-return

When pressed, the register indicated by
the lighted REGISTER SELECTION lamp is
loaded with the contents of the SWITCH

— -

I
I
I
I
I
I
I
I
I
I
I
BREAKPOINT STORE ENABLE/INHIBIT 1
I
I
I
I
I
I
I
I

— — e e —— T — — — — — — A s e — — T . . s s . — — — T . e

3-20

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

7
|Panel |

| Row

T
Panel Marking |
|

———— -

Use

16

16
16

I
I
|
I
I
l
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
|
l
I
I
| 16
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I

switch)

LOAD REGISTER, |
MEM ADDRS FROM|
DISPL (spring-|
return switch) |

ADDRESS
CONTROL, DECR
ENABLE/INHIBIT
(bistable
switch)

ADDRESS
CONTROL INCR
ENABLE/INHIBIT
(bistable
switch)

MEMORY DISPLAY
(spring-return

|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
switch) |
|
|
|
|
|
|
I
|
|
|
|
I
I
I
|
|
|
I

- —

REGISTER switches. The bank registers
may also be loaded, as explained in the
SWITCH REGISTER description above.

I
I
|
I
|
|
|
I
I
When pressed the Memory Address Register|
(SPO) is loaded with the bits displayed |
by the REGISTER DISPLAY (0:15) lamps. I
Also, the ABS-Bank Register is loaded I
with the bits displayed by the REGISTER |
DISPLAY B14 and B15 lamps. The MEMORY |
DISPLAY or MEMORY STORE switch can' then |
display or store at the 18-bit address. 1
|
I
|
|
I
I
|
|
|
I
|
I
|

When this switch is at ENABLE, the Mem-
ory Address Register (SPO) is decrement-
ed by 1 each time the MEMORY DISPLAY oOr
MEMORY STORE switch is pressed. (The
ADDRESS CONTROL INCR ENABLE/INHIBIT
switch should be at INHIBIT.

When this switch is at ENABLE, the Mem-
ory Address Register (SPO) is increment-
ed by 1 each time the MEMORY DISPLAY or
MEMORY STORE switch is pressed. (The
ADDRESS CONTROL DECR ENABLE/INHIBIT
switch should be at INHIBIT.
When this switch is pressed, the follow-
ing takes place:

|

I

|

I

The REGISTER SELECTION MEM DATA lamp |
lights. Any other lighted lamp in this|
group goes out. I
The REGISTER DISPLAY (0:15) lamps show|
the contents of the memory address |
specified by the ABS-Bank Register and |
the Memory Address Reglster (SPO). |
Lamps Bl4 and Bl5 remain ext1ngu1shed.=
I

I

I

I

|

|

I

|

The Memory Address Register (SPO) is
incremented or decremented by 1 if one
of the ADDRESS CONTROL switches is at
ENABLE. A carry from SPO does not en-
ter the ABS-Bank Register.

3-21

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

1
Panel |
w |

__

%"

. e . =

I
I
I
I
I
I
I
I
I
I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

| 16
I

I

I

I

I

I

|

I

I

I

I

I

I

I

I

I

I

|

| 16 |
I
I
I
I
I
I
I

Panel Marking

MEMORY STORE
(spring-return
switch)

BREAKPOINT
READ ENABLE/
INHIBIT
(bistable
switch)

BREAKPOINT
WRITE ENABLE/
INHIBIT
(bistable
switch)

EXECUTE SwW
RGTR (spring-
return switch)

EXECUTE SINGLE |
INSTR (spring-|
return switch) |

Use

— - - - -

When this switch is pressed, the follow-
ing takes place.

The contents of the SWITCH REGISTER
(0:15) switches are stored in memory
at the address indicated by the ABS-
Bank Register and the Memory Address
Register (SPO).

|

|

|

I
T

I

I

|

l

I

I

I

I

I
The Memory Address Register (SPO) is |
incremented or decremented by 1 if one|
of the ADDRESS CONTROL switches is at |
ENABLE. A carry from SPO does not en- |
ter the ABS-Bank Register. |
I

|

I

I

I

I

I

|

I

I

[

I

[

I

In the ENABLE position,this switch halts
the CPU when a 16-bit word read from
memory is the same as the word in the
SWITCH REGISTER (0:15) switches.

In the ENABLE position,this switch halts
the CPU when memory storage takes place
at an address which is in the SWITCH
REGISTER B14, Bl5, and (0:15) switches.

When this switch is pressed, the CPU
executes the instruction in the SWITCH |
REGISTER (0:15) switches. The P Register |
contents do not change when the instruc-|
tion is performed unless the instruction|
is a branch type; in this case, the P |
Register receives the target address if |
the branch condition is met. If a stack]
operation is performed, stack operation |
B should be NOP. (That is, positions 10 |
through 15 of the SWITCH REGISTER must |
contain zeros. I
I

When this switch is pressed, the in-
struction indicated by the P Register is]|
executed. The P Register is incremented|
by 1, or it is loaded with a target ad- |
dress if the instruction is a branch |
type and the branch condition is met. I
|

3-22

System Verification and Troubleshooting

Table 3-2. Maintenance Panel Switches and Lamps (Continued)

I 1 1
I

struction are always completed before
while an SIO operation is in progress,

mal completion.

the SIO operation continues to its nor-

Panel| Panel Marking | Use

| Row | I

I I _

I I |

| 16 | EXECUTE SINGLE| If the instruction is of the double

| | INSTR (Cont) | stack type, the switch must be pressed

| | | twice to execute both halves of the in-

| | | struction. The first depression causes

I I | execution of stack operation A. The sec-|

I | | ond depression causes execution of stackl|

| I | operation B. If operation B is other

I | | than NOP, bit 3 of the CPU Status Regis-|

| | | ter is set to 1 during stack operation

| I | A. This bit is cleared at the start of

| | - | stack operation B. The P Register is in-

| | | cremented during stack operation B un-

| | | less B is NOP, in which case it is in-

| | | cremented during A.

| I |

| 16 | SYSTEM RESET | When pressed, this switch resets the CPU

| | (spring-return| and the I/0 system.

| | switch) |

I | I

| 16 | LOAD (spring- | Stores in memory from an I/O device

| | return switch)| specified in the SWITCH REGISTER

| | | switches.

I I

| 16 | RUN HALT Pressing this switch halts the CPU if it

I | (spring-return| is running or starts the computer if it

: | switch) is halted. Both halves of a stack op in-
|

l I

| |

I

I

|

I
|
I
I
| the halt takes place. If the CPU halts
|
I
I
I

3-11. Preparation for Use

To use the Maintenance Panel, make preparation as follows:

a. Ensure that the computer system is not in use.

b. Inform potential users that the system is unavailable until

further notice.

c. For HP 32421A Series III systems, set the SYSTEM DC POWER
switch (inside top of CPU equipment bay door) to STANDBY.
For HP 32435A Series III systems, set the DC POWER switch (on

Power Control and Display Panel) to DISABLE.

3-23

System Verification and Troubleshooting

110 MAP

[vo
ADRS 10 102

REAR VIEW

CHANNEL STROBES
O O 0] (¢] e} ¢] ©] @] O O O O QO e] 0 O O O
CHAN CHAN CHAN XFER €01 nx TOX 1810 PCMD1 PCONT PSTAT PWRITE PREAD RD NEXT SET SET
SR so ACK ERROR STRB STR8 STRB STRE WORD Jump INTRPT

FRONT VIEW

Figure 3-3. Maintenance Panel I/0 Overlay

d. Install Maintenance Panel Interface PCA, part no. 30354-60003
in CPU equipment bay card cage slot 1Al.

e. At the front of the MPI PCA, set switch S1 to the NORMAL po-

sition. (This switch is labelled NORMAL/LAMP TEST/SWITCH
TEST.)

f. Make the connections shown in figure 3-4.

g. If required, install the 30354-80012 I/0 overlay over the
REGISTER DISPLAY lamps. If using the CHANNEL STROBES side of
this overlay, connect jack J3 on the MPI PCA to Jl on the
Selector Channel Maintenance PCA.

h. Set all Maintenance Panel bistable switches to the down posi-
tion.

i. Reapply DC power to the computer system.

3-12. General Operating Method

When using the Maintenance Panel, operate switches to achieve the
desired results, observing lamp indications. Refer as necessary
to table 3-2 and the applicable program documentation. To pre-
vent unauthorized use of the Maintenance Panel, set switch S1 on
the MPI PCA to the SWITCH TEST position. This prevents Mainten-
ance Panel switch information from entering the computer system.
Note that if a power failure occurs with S1 at SWITCH TEST, the
switch must be returned to the NORMAL position to permit ini-
tialization of the computer system for restart after power is
restored.

System Verification and Tr oubleshoot ing

MAINTENANCE PANEL INTERFACE PCA
— 30354-60003

FLAT CABLE

3035460013

TOJ3

REAR OF BAY 1

TO J2
OF CIR PCA
(A8)

™~

POWER CABLE

30354-60005
INTERFACECABLE’//’

3035460007

[e

\

MAINTENANCE PANEL

.)

Figure 3-4. Maintenance Panel Operating Connections

3-13. Using Maintenance Panel and System Control Panel

When the Maintenance Panel is in use, switches and indicators on
the System Control Panel (figure 3-1) function in the normal
manner. The following points apply:

a.

The CPU can be started or halted either by the RUN-HALT
switch on the Maintenance Panel or by the RUN/HALT switch on
the System Control Panel.

If the LOAD switch on the System Control Panel is used, the
appropriate information must be set into the SWITCH REGISTER
on the System Control Panel. Similarly, use of the LOAD
switch on the Maintenance Panel requires that the SWITCH REG-
ISTER on the Maintenance Panel be used.

The RSW instruction acquires the 16-bit word which is in the
SWITCH REGISTER on the System Control Panel, as in normal
operation.

System Verification and Troubleshoot ing

3-W. Stack Register Loading

Because of the queue-down function which occurs when the CPU
halts, stack registers must be loaded at their location in mem-
ory. For test purposes it is possible to load the stack regis-
ters which are on the S-Bus PCA and R-Bus PCA. However, when
queue-up takes place after the CPU is started, the register con-
tents will be destroyed.

3-15. CPU Register Displays

When CPU registers are displayed, the register contents are ac-
quired either from the computer S-Bus or R-Bus. A switch on the
Maintenance Panel permits display from either the S-Bus or the
R-Bus. This switch is titled SINGLE CYCLE REGISTER DISPLAY, ALT/
NORMAL (panel row 11).

3-16. General-Use Display

When the REGISTER SELECTION TEST lamp is lighted, any 16 bits or
16 binary signals can be applied for display to jack J3 of the
MPI PCA (figure 3-4). The bits or signals must have TTL silicon
logic levels. They are displayed in the REGISTER DISPLAY (0:15)
lamps on the Maintenance Panel. The pins in J3 to which connec-
tion is made are listed in table 3-3. The table also shows two
trigger pulses and a +5 volt source. These are supplied by the
MPI PCA. The MR signal is an input to the PCA that is used for
factory test purposes. For any particular application of the
general-use display, a cardboard overlay can be made for the
REGISTER DISPLAY lamps with appropriate signal names marked on
the overlay. (A ticket punch is a suitable device for making the
holes in the cardboard.)

3-17. Maintenance Panel Test

The following tests check the operability of most circuits in the
Maintenance Panel. Most circuits in the MPI PCA are not checked.
If performed as described, and if step a 1in paragrah 3-18 has
previously been completed, the test can be executed without in-
terfering with normal computer functioning. (Switch information
from the Maintenance Panel does not enter the computer system
when switch S1 on the MPI PCA is at the SWITCH TEST position.)

3-18. LAMP TEST. Perform the lamp test as follows:
a. Connect the Maintenance Panel to the computer system in the
normal manner (figure 3-4). Before making connections be sure

+5 volts has been removed from the system and ensure that all
bistable switches on the Maintenance Panel are down.

3-26

b.

C.

System Verification and Troubleshooting

Table 3-3. MPI PCA J3 Pin Connections

Note: All even-numbered pins are ground.

| T [
Pin	Signal
1	MCU TRIG
3	V TRIG
	.
I 5	MR I
7	+5 volts (100 source)
19	REGISTER DISPLAY 0
21	REGISTER DISPLAY 1
23	REGISTER DISPLAY 2
25	REGISTER DISPLAY 3
I 27	REGISTER DISPLAY 4
29	REGISTER DISPLAY 5
31	REGISTER DISPLAY 6
33	REGISTER DISPLAY 7 I
35 I REGISTER DISPLAY 8	
37	REGISTER DISPLAY 9
39	REGISTER DISPLAY 10
41	REGISTER DISPLAY 11
43	REGISTER DISPLAY 12
45	REGISTER DISPLAY 13 [
47	REGISTER DISPLAY 14
[49 | REGISTER DISPLAY 15

|

|

|

l_

At the MPI PCA,

set switch Sl

to the

LAMP TEST position.

Every lamp on the Maintenance Panel should light.

Set S1 to the SWITCH TEST position. Some lamps should go out.

Before performing step d below,
S1 has been set to the SWITCH
Otherwise,
enter the computer
information

sure

TEST position.

CAUTI

ON

information may
system. The switch
the result of

duced when the plug is removed

Jl.

be

switch

is

vol tage spikes pro-

from

System Verification and Troubleshooting

d. Remove the plug from receptacle J1 on the Maintenance Panel.
All lamps should go ocut. Replace the plug.

3-19. SWITCH TEST. The switches on the Maintenance Panel can be
tested by placing the switch on the MPI PCA to the SWITCH TEST
position. This routes the switch information back to the Main-
tenance Panel toc be displayed by lighting or extinguishing cne or
more lamps for each switch. The data from the switches will be
displayed by nine groups of lamps. See figure 3-5. :

The information for the REGISTER SELECTION switches is coded into
Six binary bits. These bits are displayed twice by the lamps in
group five. Figure 3-5 illustrates the individual groups of
lamps and also indicates by each switch which lamp(s) will illum-
inate or extinguish when the switch is exercised.

Note

Although twelve groups of lamps are
designated in figure 3-5, not all
of the groups cf lamps will be ex-
er cised during the switch test.

The bistable switches, shown in the down positicn, will illumi-
nate the lamp/lamps indicated by the numbers above the switch
when the switch is placed up. The twc-position spring return
switches, shown in the up position, will extinguish the lamps
indicated by the numbers belcw the switch when the switch is held
down. The three-position spring return switches (REGISTER
SELECTION switches) have a code above and below the switch that
will be displayed when the switch is held in that position.
Stenciling on the panel has not been shown for clarity. Where
two pairs of numbers are present, twc lamps will be illuminated.
For example, 1,8 and 9,8 signify that group 1 lamp 8 and group 9
lamp 8 will be illuminated when the switch is exercised; the
lamps will extinguish when the switch is off. The reverse condi-
tion applies to the twc-position spring return switches, extin-
guishing the lamps when the switch is exercised. When exercising
the REGISTER SELECTION switches, a binary coded value is present-
ed by the lamps in group five. The coded value appears twice, in
bits 0-5 and bits 8-13. The indications presented by bits 8-13
should be ignored.

CAUTION

After the switch test is complete, be sure all bistable
switches on the Maintenance Panel are in the down posi-
tion before restoring S1 on the MPI PCA to the NORMAL
position. This will prevent information from entering
the computer when the switch is returned to NORMAL.

System Verification and Tr oub leshoot ing

0) 2 3 4 5 [] 7 8 E] 10 " 12 13 14 15
w5 To5 o olo o olo 5 olo o olo o ol
0 1 2 3 4 [[7 8 9 10 1" 12 13 14 15
w5 To o ololo o olo o O To olo o ol
0 1 2 3 4 1 (] 7 8 9 10 1" 12 13 14 1%
w25 o o o o o olo o o o O oTo o ol
0 1 2 3 4 5 [7 8 9 10 1" 12 13 14 15
w5 o olo olo o Olo oclTo o o o o ol
] 1 2 3 4 5 3 7 8 9 10 1 12 13 14 15
wwri 5 olo o o o o olo o o o O o O Ol
0 1 2] 7 8 9 10 " 12 13 14 15
wwrs 5 o O O O o o O o o o O To o o ol

IBOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQ‘
\ GROUP 6 —/ \ GROUP 7 -/

[1 2 3 4 5 8 9 10 11 12 13 14 15

s[5 o olo o olo © 5lTo o olo o ol

o
~

00 0,1 02 03 04 05 08 07 08 09 0,10 011 0,12 0,13 0,14 0,15
| 8,0 I 8.1 82 83 | 84 85 86 I 87 88 89 Is,w 8.1 812 | 8,13 8,14 8.15 |

1.0 1, 12 13 14 15 18 17 18 19 1,10 IR1] 112
| 920 | 91 9.2 923 | 94 95 26 I 97 98 9.9 | 1 11 9,12 |
olog o0 ¢lg ¢ olo 0 0lg 06 @

REGISTER

SELECTION 20 2,1 24 25 26 27 28 29 2,13 2,14
SWITCHES 10,0 101 104 105 106 107 108 109 10,13 10,14
156 0 olc o]0 o Cloolonltd 0 |
2,2 23 2,10 211 212 2,15
10,2 10,3 10,10 10,11 10,12 1015
GROUP 12
2 3 /T 1 2 3 4 5 6 GR'IOUP9 8 9 10 n 12 13 14 15\
5 o/l o o o o o o o o o o O o o O
42 43 0 1 2 3 4 s [] 7 10 1" 12 13 14 15 16 17
5 8 8 8 8 8 8 8 8 8 68 8 8 8 8 8 8 8
“ 20 21 2 2 2% % % 27 30 Nn 32 33 * 35 a7
1 1] 1 2 3 4 5 [7 8 9 10 1" 12 13 14 15
6 ol o o o o o o o o o o O o o o o ©
12 13 \ GROUP 10 _/
N oWolo o olo o 5lTo o olo o olo o ol
\ GROUP 11 /7
56 57 40 441 42 43 48 410 411 412 413
5,14 5,15 120 121 12,2 123 44 45 48 47 128 49 12,10 VAR 12,12 12,13 414 415
B0 e v sl s ele o dld o ela o 0l
10 1 j
O O O

32 33 37 38
‘ l I 12 n3 | | | | "7 1ms l I I
3.0 31 34 35 3,10 311 313 314 315
noe 1,1 1na 1.5 1,10 AIRE 113 11,14 1,18

Figure 3-5. Switch Test Lamp Indications

3-29

System Verification and Trcuw leshooting

NOTES

MACHINE INSTRUCTIONS AND |
STACK OPERATIONS || Iv

This section contains information on the computer system’s basic
instruction set and describes representative instructions for
most of the 13 instruction groups and how some of these instruc-
tions affect stack operations. For complete descriptions of all
the machine instructions, including extended instruction sets
refer to the HP 3000 Series II/III Computer System Machine In-
struction Set Manual, part no. 30000-90022.

4-1. INSTRUCTION DECODING

As the CPU executes a user program, it fetches the required ma-
chine instructions from memory. A ROM address of a microprogram
stored in a microprogram ROM is generated for the instructions.
There is a microprogram in ROM for each of the machine instruc-
tions. The ROM address is stored in the ROM Address Register
(RAR). The RAR is used first to access the initial microinstruc-
tion and is then incremented to point to the next microinstruc-
tion. Thus, the entire microprogram for a particular machine

instruction is called and executed by the CPU as discussed in
Section II.

4-2. TRAPS AND INTERRUPTS

Only those traps and interrupts which occur as a result of in-
struction execution over which the user has some control are used
in the instruction descriptions provided in this section. They
are defined here by segment #1 Segment Transfer Table (STT)
number .

a. STT #1; BNDV - Bounds Violation. An operand or instruction

is outside of the legal bounds for a particular mode of
addressing.

b. STT #17; STTV - Segment Transfer Table Violation. A variety
of conditions can force this trap as follows:

(1) The STT number in an external progam label is dgreater
than the STT length pointed to by PL in the referenced
segment. This error can occur in PCAL, LLBL, and the

firmware interrupt handler while attempting to set up a
new segment.

(2) In LLBL, the label fetched from PL-N is an internal
label and N is greater than 128 (%177). This would re-
quire too large an STT number when creating the external
label.

Machine Instructions and Stack Operations

(3) In PCAL and interrupt handler when setting up a new
segment, the STT number in the external program label
points to an external program label in the new Segment.

(4) 1In SCAL, (PL-N) is an external label.

STT #18; CSTV - Code Segment Table Violation. An attempt is

made to transfer to Segment 0 or 192, or a segment number is
greater than the CST length.

STT #19; DSTV - Data Segment Table Violation. The data seg-
ment number referenced by MFDS, MTDS, or MDS is greater than
the DST length or is 0.

STT #20; STUN - Stack Underflow. The process being executed

or being transferred to is non-privileged and SM is less than
DB.

STT #21; MODE - Privileged Mode Violation. The code segment
being executed is non-privileged (bit 0 of the Status Reg-
ister is 0) and an attempt is made to execute a privileged
instruction. This violation also occurs in EXIT if an at-
tempt is made to exit from user to privileged mode or, if
exiting from user mode, the External Interrupts bit in the
Status Register has been altered.

STT #24; STOV - Stack Overflow. SM is greater than Z or may
become greater as a result of the current instruction.

STT #25; ARITH - Arithmetic. All User Traps will be executed
in the segment #1 routine pointed to by STT #25. The error
conditions and their parameters are as follows:

Octal
Interrupt Type Parameters
Integer Overflow 000001
Floating Point Overflow 000002
Floating Point Under flow 0006003
Integer Divide-by-Zero 000004
Floating Point Divide-by-Zero 000005

STT #31; ABS CST - Absent Code Segment. The absence bit in

the CST entry for the referenced segment is set. The inter-
rupt handler and PCAL stack a (second) marker; others in-

cluding EXIT, IXIT, etc., do not.

STT #32; TRACE -~ Code Segment Trace. Code segment is being
traced.

STT #33; UNCALL - Uncallable STT Entry. The uncallable bit

in a local label or, if the STT number is 0, in (PL) is set.
This trap does not stack a (second) marker.

Machine Inst:uctions and Stack Operations

1. STT #34; ABS DST - Absent Data. Segment. The absence bit
the DST entry for the referenced segment is set.

4-3. CONDITION CODE

in

Bits 6 and 7 of the CPU Status Register are used for the condi-
tion code. Although several instructions make special use of the
condition code, the condition code typically indicates the state
of an operand (or a comparison result with two operands). The
operand may be a byte, word, doubleword, tripleword, or quad—
rupleword and may be located on the TOS, in the Index Register,
or in a specified memory location. Refer to paragraph 2-46 for
condition code interpretaticns.

4-4. INSTRUCTION FORMATS

The machine instruction formats are shown in figures 4-1 through
4-5. For a general discussion of the formats, refer to para-
graph 2-30. ‘

4-5. INSTRUCTION DEFINITIONS

Paragraphs 4-6 through 4-15 contain definitions for 36 of the 191
machine instructions. The definitions are arranged in mnemonic
alphabetical order within each of the instruction groups. When
additional information is required to fully define a particular
instruction, an Instruction Commentary number reference is made
immediately following the instruction’s definition. In such
cases, refer to the corresponding reference number in paragraph
4-16. Also, some of the instruction definitions refer to the
first five elements of the stack as A, B, C, D, and E. With this

convention, A is the TOS (S), B is S-1, C is S-2, D is S-3, and D
iS S_4 .

4-6. Stack Op Instructions

ADD Add
o 1]2]3 a[s[e]7]8]o 1o[n[i2]rafia]rs
[oJo o ofo 1 o]o 0 o
Altevrnate ’
Position

The top two words of the stack are added in integer form and are
then deleted. The resulting sum is pushed onto the stack.

Stack opcode: 20
Indictors: CCA, Carry, Overflow
Traps: STUN, ARITH

Machine Instructions and Stack Operations

SUB OP CODE 00, STACK OP CODE 00 - 77
o|1]2[3|a]|s[e]7][8 9 [10]11]12]13]ra]is
lofo o o

T 1 1]

00
Bits4 -9 Bits 4 -9

Mnemonic or10-18 Mnemonic or10-16
NOP 00 DEL 40
DELB 01 ZROB 41
DDEL 02 LDXB 42
ZROX 03 STAX 43
INCX 04 LDXN 44
DECX 05 DUP 45
ZERO 06 DDUP 46
DZRO 07 FLT 47
DCMP 10 FCMP 50
DADD 1 FADD 51
DSUB 12 FSUB 52
MPYL 13 FMPY 53
DIVL 14 FDIV 54
DNEG 15 FNEG 56
DXCH 16 CAB 56
CMP 17 LCMP 57
ADD 20 LADD 60
SUB 21 LsuB 61
MPY 22 LMPY 62
DIV 23 LDIV 63
NEG 24 NOT 64
TEST 25 OR 65
STBX 26 XOR 66
DTST 27 AND 67
DFLT 30 FIXR 70
BTST 31 FIXT 7
XCH 32 INCB 73
INCA 33 DECB 74
DECA 34 XBX 75
XAX 35 ADBX 76
ADAX 36 ADXB 77
ADXA 37

Figure 4-1. Sub-Opcode 00 Formats

4-4

Machine Instructions and Stack Operations

SUBOPCODE 01, OPCODES 00 - 17 SUBOPCODE 01, OPCODES 20 - 37
o]1[2]3]a]s[e][7][8]9 J10[11]12}i3]ra]ss of1[2[3]als]e]7]8][9 [10][11]12]13ha]15
{ofo o 1 0
L T] L. T } L T _J L J 0 J
01 01

Mnemonic | 4 | Bits5-9 Bits 10- 15 Mnemonic | 4 | Bits5-9 | Bits 10- 15
ASL x 00 | SHIFT COUNT DASL | x 20 | SHIFT COUNT
ASR x 01__| SHIFT COUNT DASR__| x 21| SHIFT COUNT
LSL x 02 | SHIFT COUNT DLSL | x 22| SHIFT COUNT
LSR x 03 SHIFT COUNT DLSR x 23 SHIFT COUNT
cst x 04| SHIFT COUNT DCSL | x 24| SHIFT COUNT
CSR x 05 | SHIFT COUNT DCSR__| x 25 | SHIFT COUNT
SCAN x 06 CPRB | 26 | DISPLACEMENT
1ABZ__| |1 07 | #| DISPLACEMENT DABZ | | 27| 2| DISPLACEMENT
TASL | x 10| SHIFT COUNT BOV 1 30 | #| DISPLACEMENT
TASR_ | x 11__| SHIFT COUNT BNOV | | 31| ¢| DISPLACEMENT
IXBZ | 1 12| 2] DISPLACEMENT TBC x 32| BITPOSITION
DXBZ | 1 13__| #| DISPLACEMENT TRBC | x 33| BIT POSITION
BCY] 14| 2| DISPLACEMENT TSBC | x 34| BIT POSITION
BNCY | | 15 | #| DISPLACEMENT TCBC | x 35 | BIT POSITION
TNSL | x 16 BRO i 36| 8] DISPLACEMENT
QASL__ [0.| 17| SHIFT COUNT BRE i 37 | ¢| DISPLACEMENT
QASR 1 17 SHIFT COUNT

X = INDEX BIT

1 = INDIRECT BIT

SHADED BITS ARE RESERVED BITS

Figure 4-2. Sub-Opcode 01 Formats

CMP Compare

1 [2]aTalsTe[7 8 [o o] [iz]a]ra]rs

[o]o o oJo o 1]1 1 1

(o]

v
Alternate
Position

The Condition Code is set to pattern C as a result of the integer
comparison of the second word of the stack with the TOS. Both
words are deleted.

Stack opcode: 17
Indicators: CCC
Traps: STUN

Machine Instructions and Stack

Operations

SUBOPCODE 02, MOVE OPCODES 00,0 -5

0

1]2]3

4[s]s|7]8]9 J10]11]12]13]14]15

{0

010

00 0}0

L J 1)

02

[1
T
00

Bits8 - 10

Bits 11- 156

MOVE

MvB

MVBL

MABS

SCW

MTDS

MVLB

MDS

SCU

MFDS

-|o|l=|o|=|Oo]|=|0

MVBW

CMPB

olalw|w|jw]lwn|nin|vi-|lo

olz|=|=|o|o|=|=]|o|o|®|w®

SUBOPCODE 02, MINI OPCODES 00, 14 - 17

0

1]2]3

ais5[6[7]8]9[10]11]12]13]14]15

[o

010

000O0]|O

—

J

8 —| L J

|
02

L J
U

00

Mnemonic

Bits 8- 11

Bits 12 - 18

RSW

LLSH

PLDA

PSTA

LSEA

SSEA

LDEA

SDEA

IXIT

PCN

Shaded bits are reserved
A = Alphabetic

8 = PB/DB
N = Numeric

SDEC = S Decrement

U = Upshift

SUBOPCODES 02, OPCODES 01 - 17

o|1]2[3]a[s[e[7]8]s Jro]11[rizfisfrars
[o]o 1 0

L T] L) L— J
02
Mnemonic | Bits 4 -7 Bits 8 - 16

DMUL 01 CIR (8:15) =% 170
DDIV 01 CIR (8:15) = % 171
LDI 02 IMMEDIATE OPERAND
LDX! 03 IMMEDIATE OPERAND
CMPI 04 IMMEDIATE OPERAND
ADDI 05 IMMEDIATE OPERAND
SUBI 06 IMMEDIATE OPERAND
MPY!| 07 IMMEDIATE OPERAND
DIVI 10 IMMEDIATE OPERAND
PSHR 1" t
LDNI 12 IMMEDIATE OPERAND

__I.QXN 13 IMMEDIATE OPERAND
CMPN 14 IMMEDIATE OPERAND
EXF 15 START BIT # | # OF BITS
DPF 16 START BIT # | # OF BITS
SETR 17 4

$BIT 8= STACK BANK REGISTER
BIT 9 = DB-BANK, DB REGISTER
BIT 10 = DL REGISTER
BIT 11 = Z REGISTER
BIT 12 = STATUS REGISTER
BIT 13 = X REGISTER
BIT 14 = Q REGISTER
BIT 15 = S REGISTER

Figure 4-3.

Sub-Opcode 02 Formats

4-6

Machine Instructions and Stack Operations

SUBOPCODE 03, SPECIAL OPCODES 00 SUBOPCODE 03, OPCODES 01 - 17
o[1T2]3]a]s]e [7]8]9 [10][11[12]13)14]15 o[1T2]3]a]s]e [7]8]o Jro[11]12|13]1415
[o]o 1 1]o 0 o]0 [oJo 1 1]1

L T J 0 T 1 L 1 L 1 L T J v o J

03 00 03
Mnemonic | Bits8 - 11 Bits 12 - 15 Mnemonic | Bits 4 -7 Bis8- 15

LST 00 K FIELD SCAL o1 N FIELD
PAUS 01 ol o jlolo PCAL 02 N FIELD
SED 02 o] ool x EXIT 03 N FIELD
XCHD 03 o[l ofo] o SXIT 04 N FIELD
PSDB 03 o] o | o] 1 ADXI| 05 IMMEDIATE OPERAND
DISP 03 o]l ofl1]oe SBXI 06 IMMEDIATE OPERAND
PSEB 03 o] o [1 1 LLBL 07 PL — DISPLACEMENT
SMSK 04 0] ool o LDPP 10 P+ DISPLACEMENT
SCLK 04 o] o | o | 1 LBPN T P- DISPLACEMENT
RMSK 05 0] o0 |o] o ADDS 12 IMMEDIATE OPERAND
RCLK 05 o] o | o 3 SUBS 13 IMMEDIATE OPERAND
XEQ 06 K FIELD ORI 15 IMMEDIATE OPERAND
Sio 07 K FIELD XORI 16 IMMEDIATE OPERAND
RI10 10 K FIELD ANDI 17 IMMEDIATE OPERAND
WIO 1 K FIELD
T10 12 K FIELD Shaded bits are reserved and ignored.
cio 13 K FIELD x=1or0.
CMD 14 K FIELD
SST 15 K FIELD
SIN 16 K FIELD
HALT 17 K FIELD

Figure 4-4. Sub-Opcode 03 Formats

DDUP Double Duplicate

of 1] 2} als]s 718]9 1012 13114]15
[ofo o ofr o of1 1 0

\ v —
Alternate
Position

The double_'word in the top two words of the stack is duplicated
by pushing a copy of it onto the stack.

Stack opcode: 46
Indicators: CCA on new TOS double word

Traps: STUN, STOV

Machine Instructions and Stack Operations

o]1]2]|3]a]s]e

7|89

10]11]12]13)14]15

I = INDIRECT BIT

L L] L]
Mnemonic | Bits0- 3 Bits4- 16
LOAD 04 X | 1 | MODE AND DISPLACEMENT
TBA 05 0 [o [o] %] DISPLACEMENT
MTBA 05 0 | v [o] #] DISPLACEMENT
TBX 05 1] o | of]] DIsPLACEMENT
MTBX 05 1 1 | o] *| DISPLACEMENT
STOR 05 x | 1 1| MODE AND DISPLACEMENT
CMPM 06 x | | MODE AND DISPLACEMENT
ADDM 07 x | 1 MODE AND DISPLACEMENT
SUBM 10 x | | MODE AND DISPLACEMENT
MPYM 11 x | 1 MODE AND DISPLACEMENT
INCM 12 x_| 1 | o] MODEAND DISPLACEMENT
DECM 12 x | 1 1| MODE AND DISPLACEMENT
LDX 13 x | 1 MODE AND DISPLACEMENT
BR 14 x | 1 [o]] DISPLACEMENT
BR 14 x | 1 1| MODE AND DISPLACEMENT
BCC 14 I 0 | 1] >[=]<][] pispLaceEmenT
LDB 15 x | 1 | o] MODEAND DISPLACEMENT
LDD 15 x | 1 1| MODE AND DISPLACEMENT
STB 16 x | 1+ | o] MODE AND DISPLACEMENT
STD 16 x I 1| MODE AND DISPLACEMENT
LRA 17 x | 1 | MODE AND DISPLACEMENT
X = INDEX BIT

Sub-Opcode 04 thru 17 Formats

Figure 4-5.
DEL Delete A
of1]2]3 a[s[ef7]s]o [13f1a]1s
(0]Jo o o1 o0 ofo o0 o
) Altevrna'!e ’
Position

The top word of the stack is deleted.

Stack opcode: 40

Indicators: Unaffected

Traps: STUN

Machine Instructions and Stack Operations

DIV Divide

of 1J2]3]4]s]s 7[8]o o]]i2]i3]ra]1s
[olo o ofo 1 o]0 1 1

« J
v
Alternate
Position

The integer in the second word of the stack is divided by the in-
teger on the TOS. The two words are then deleted. The second

word is replaced by the quotient, and the top word is replaced by
the remainder.

Stack opcode: 23
Indicators: CCA on gquotient, Over flow
Traps: STUN, ARITH

DUP Duplicate A

[=]

1[2]3]a]s]e]7]8]s 1w][n]iz]isfia]rs
[o]o o of1 o o1 0 1

\ J
v
Alternate
Position

The top word of the stack is duplicated by pushing a copy of the
TOS onto the stack.

Stack opcode: 45
Indicators: CCA
Traps: STUN, STOV

INCA Increment A

0 1]2]3 415[6 7[8]9 10!11[12 13]14115
[o]Jo o ofo 1 1]o 1 1

\ J
v
Alternate
Position

The TOS is incremented by one in integer form.
Stack opcode: 33

Indicators: CCA, Carry, Overflow

Traps: STUN, ARITH

MPY Multiply

of 1[2]3 als]e 18[9]iofin]2 1314 [1s
[oJo o ofo 1 0Jo 1 0
-« v —
Alternate
Position

The top two words of the stack are multiplied in integer form.The
two words are deleted and the least significant word of the docub-
le length product is pushed onto the stack. If the high order 17
bits of the double length product (including the sign bit of the
second word) are not all zeros or all ones, Overflow is set.

4-9

Machine Instructions and Stack Operations

Instruction Commentary 1.
Stack opcode: 22
Indicators: CCA, Overflow
Traps: STUN, ARITH

TEST Test TOS

of 1]2]3]a]s]s 78 [9]ro]11]i2 13[14]1s
toJo o ofo 1 of1 0 1

\ J
v
Alternate
Position

The Condition Code is set to pattern A according to the content
of the TOS word.

Stack opcode: 25
Indicators: CCA
Traps: STUN

XOR Logical Exclusive-OR

[=]

1]2]3 als]e 7]8]o 0] [12]isia]is
[0Jo o of1 1 0]1 10

— J

Alternate
Position

The top two words of the stack are combined by a logical
exclusive-OR. The two words are deleted and the result is pushed
onto the stack.

Stack opcode: 65

Indicators: CCA on the new TOS
Traps: STUN

4-7. Shift Instructions

ASL Arithmetic Shift ILeft

o] 1]2[3]a s{ef[7]8]o 10[11]12 13[141s
0J0 0 1|x|/0 00 0 O

- J
Shift
Count

The TOS is shifted left n bits, preserving thg s%gn bit. The
value of n (modulo 64) is the number specified in the argument

field plus, if X is specified (bit 4), the content of the Index
Register.

Instruction Commentary 2.
Sub-opcode 1: 00
Indicators: CCA

Traps: STUN

Machine Instructions and Stack Operations

CSL Circular shift Left

of 1T2]s]s s[e[7]8]0 S B E
[ofo o 1]x]o of1 0 o

\ v J
Shift
Count

The TOS is shifted left n bits circularly. The value of n (modu-
lo 64) is the number specified in the argument field plus, if X
is specified, the content of the Index Register.

Instruction Commentary 2.
Sub-opcode 1: 04
Indicators: CCA

Traps: STUN

4-8. Branch Instructions

BCC Branch On Condition Code
1[2[3 4 5[6 28E w12 13[14[15
[1]1 0 o]i1]o 1]c E L]+

—_—
CCF Displacement

[=]

The Condition Code in the Status Register is compared with condi-
tions named in the CCF field of the instruction. If the named
conditions are met, control is transferred to P +/- displacement;
otherwise to P+1. The displacement is limited to +/-31. Control

is transferred to the branch address under the following condi-
tions:

If CCF = 0, never branch
= 1, branch if CC = CCL
= 2, branch if CC = CCE
= 3, branch if CC = CCL or CCE
= 4, branch if CC = CCG
= 5, branch if CC = CCG or CCL
= 6, branch if CC = CCG or CCE

7, always branch

Memory opcode: 14, bits 5,6 = 01
Indicators: Unaf fected

Addressing modes: P relative (+/-), direct or indirect
Traps: BNDV if user or privileged

BR Branch Unconditiocnally

[=]

1]2]3]als[s]7 8[o]rofni2]riz]ralss
[1]1 o ofx]1 o]:

\ ~ - J
Displacement
P Relative

Machine Instructions and Stack Operations

For P relative mode, control is transferred unconditionally to P
+(— displacement, plus (if specified) the value in X; may be in-
direct. For DB, Q, and S relative modes, control is transferred
indirectly (only) via the 1location specified by DB, Q, or S +/-
this displacement; the content of the location so specified is
added to PB (plus post-indexing if X is specified) to obtain the
effective address for P.

Instruction Commentary 3.
Memory opcode: 14, bits 5,6 = 00, 10, or 11
Indicators: Unaffected

Addressing modes: P relative (+/-), direct or indirect
DB+ relative, indirect
Q+ relative, indirect
Q- relative, indirect
S- relative, indirect
Indexing available
Traps: BNDV, BNDV on P and P relative if user or privileged

4-9. Move Instructions
Note
All Move instructions are interruptable af-
ter each word (or byte) transfer and will
continue from the point of interrupt when
control is returned to the instruction.

CMPB Compare Bytes

of1[2]3]a]s]e]7[s]o]ro]si]rz]ia]ra]is
{o]o 1 ofo o ofol1r o] N

PB/DB —
SDEC

This instruction scans two byte strings simultaneously until the
compared bytes are unequal or until a specified number of compar-
isons have been made. CMPB expects a signed byte count in A, a
DB or PB relative displacement for a source byte address in B,
and a DB relative displacement for a target byte address in C.

As 1long as the word count in A has not been counted to zero, the
comparison proceeds as follows: The content of the byte address

location specified by DB + B or PB + B is compared with the con-
tent of the byte address location specified by DB + C. If the
byte count 1in A is positive, the source and target displacement
values in B and C are incremented by one after each comparison,
and the byte count is decremented by one. If the byte count in A
is negative, the source and target displacement values in B and C
are decremented by one after each comparison, and the byte count
is incremented by one. Note that the byte count is always chang-
ed by one toward zero. The instruction terminates when either a
comparison fails or the byte count in the TOS reaches zero. The

Condition Code is set to a special pattern to indicate the term-
lnating condition. On termination, the instruction deletes from

the stack the number of words (0, 1, 2, or 3) specified by the

4-12

Machine Instructions and Stack Operations

SDEC field of the instruction.

Instruction Commentary 4.
Move opcode: 5

Indicators: CCE if byte count = 0
CCG if target byte > source byte (final)
CCL if target byte < source byte (final)

Addressing modes: Byte addressing
DB+ or PB+ for source
DB+ for target
Traps: STUN, STOV, BNDV, BNDV on P relative if user or privileged

4-10. Privileged Memory Reference Instructions

LSEA Load Single Word From Extended Address
of1]2]3]als[e]7]8a]o]iofn|i2]r3]1a]is
[o]o 1 o]Jo o oJo 1 1]1 o[pfpio o

A bank address is in B and a 1l6-bit absolute address of a loca-
tion in that bank is in A. The word at that address is pushed
onto the stack.

Mini-opcode: 16, bits 14, 15 = 00
Indicators: CCA

Addressing mode: Absolute
Traps: STUN, STOV, MODE
This is a privileged instruction.

PLDA Privileged Load From Absolute Address
1]2]3]a]s|e|7]8]o]io]1i|12]13]1a]1s
[oJo 1 0ofo o ofo[1 1]0 TR 0

o

The content of the Index Register is a 16-bit absolute address in
bank 0; the content of this address is pushed onto the stack.

Mini-opcode: 15, bit 15 = 0
Indicators: CCA

Addressing mode: Absclute

Traps: STOV, MODE

This is a privileged instruction.

4-11. Immediate Instructions

ADDI Add Immediate

of1]2]3fa]s[ef7[8]o]ro]r]r2]ia]ra]ss
[ofJo 1 ofo 1 o1

\ J
v

Immediate Operand

The immediate operand N is added to the TOS in integer form, and
the sum replaces the TOS. The value of N is given in the arqgu-
ment field of the instruction, and is expressed as a positive
integer in the range 0 through 255.

4-13

Machine Instructions and Stack Operations

Sub-opcode 2: 05

Indicators: CCA on the new TOS,
Carry, Overflow
Traps: STUN, ARITH

LDI Load Immediate

1] 2] 3]als[e]7]8]o]ro]1r]r2]r3]ra]ss

[o]Jo 1 oJo o 1]o0

o

\ J
g

Immediate Operand

The immediate operand N is pushed onto the stack. The value of N
is given in the argument field of the instruction, and is expres-
sed as a positive integer in the range 0 through 255.

Sub-opcode 2: 02

Indicators: CCA on the new TOS
Traps: STOV

4-12. Register Control Instructions

PSHR Push Registers

ofr1]2]3fals]e]7[s]ofro]ri]iz]ia]ia]is
JoJo 1 of1 o0 o]

tDBDLZSuX Q s
S-Bank

The content of a register (or the displacement it represents)

specified by any bit 8 through 15 is pushed onto the stack. If
more than one register (or displacement) is specified, the con-

tents will be stacked in the order shown below, such that if all

nine were specified, S-Bank would be on the TOS after execution,
DB next, etc. Note that when S-DB is pushed, the value stacked

will be as it existed before the execution of this instruction.

Stack overflow occurs if the original S+9 exceeds Z, regardless
of the number of registers pushed.

If bit 15 = 1, push S-DB

If bit 14 = 1, push Q-DB

If bit 13 = 1, push Index Register

If bit 12 = 1, push Status Register

If bit 11 = 1, push Z-DB

If bit 10 = 1, push DL-DB
*If bit 9 = 1, push DB-Bank and DB Register
*If bit 8 = 1, push S-Bank

Sub-opcode 2: 11
Indicators: Unaffected

Traps: STOV, MODE
*These are privileged operations.

4-14

Machine Instructions and Stack Operations

4-13. Program Control and Special Instructions

DISP Dispatch
of1]2]s als]e 7[8]9 lOl‘H]tz 13)1a|1s
[o]Jo 1 1Jo o oJo 0 0|1 1 oJo 1 ©

This instruction is used to transfer to the Dispatcher’s entry

point; or to request such a transfer if executed while on the ICS
or within the range of a PSDB-PSEB pair.

Instruction Commentary 7.
Special opcode: 03, bits 12-15 = 0010
Indicators: See instruction commentary.

Traps: MODE, CSTV, TRACE, ABS CST, BNDV if user or privileged
This is a privileged instruction.

EXIT Exit From Procedure

of1]2]s als|ef7 8|9]ro]r1]i2 13]14 |15
[ofo 1 1]Jo 0 1]1

\ d

N

This instruction is used to return from a procedure called by the
PCAL instruction or by some interrupts. A normal exit occurs by
restoring the return address to P, restoring the previous con-
tents of the Index and Status Registers, and deleting all stack
variables incurred by the called routine plus its marker, plus N
number of procedure parameters. The value of N may be any number
from 0 to 255 for exits from PCAL routines; it must be 0 for ex-
its from interrupt routines. If bit 0 of the return-P marker
word is a "1", control is transferred to Trace, segment #1, STT
#32 (decimal).

Instruction Commentary 6.

Sub-opcode 3: 03
Indicators: Restored to values before PCAL

Traps: STUN (going to user mode), STOV, MODE, CSTV,TRACE, ABS CST,
BNDV if user or privileged

IXIT Interrupt Exit

o1 [2]3]a]s 678 o]t [12]13fra]1s
[ofo 1 ojo o ofo 1 1]1 1 0jo 0 0O

This instruction is used to exit from those interrupt service
routines which always run on the Interrupt Control Stack (ICS).
This results in a return to the interrupted process (which may be
another interrupt or the Dispatcher) or a transfer to the Dis-
patcher’s entry point. The action taken depends in part on the
sequence of DISP, PSDB, and PSEB instructions which have been ex-
ecuted. IXIT is also used by the Dispatcher to exit to a process
being launched.

Machine Instructions and Stack Operations

Instruction Commentary 7.

Mini-opcode: 17, bits 12-15 = 0000

Indicators: Restored to those before interrupt or as specified
for the Dispatcher

Traps: MODE, STOV,CSTV,TRACE,ABS CST, BNDV if user or privileged

This is a privileged instruction.

PAUS Pause

of 1] 2] 3BEE 8o 0|1 12]13]ra]is
(0Jo 1 1Jo o ofo]o ofo 1 KON
[—’

Not Used

The computer hardware pauses; interrupts may occur. Bits 12
through 15 are ignored.

Special opcode: 01

Indicators: Unaffected

Traps: MODE

This is a privileged instruction.

PCAL Procedure Call
112]3]«]s]e]7 8|9]ro]n]r 13[1a]1s
01 1]0 0 1]0

o

[0

| — J
v

N

Control is transferred to the location pointed to by the evalua-

tion of the program label at PL-N, unless N is zero, the program
label is taken from the TOS and then deleted. Then a four word

stack marker 1is placed on the stack, and Q and S are updated to
point at this new marker. The program label may be local or ex-
ternal. If the Trace bit is on in the target CST entry, a call
will be made to Trace, segment #1, STT #32 (decimal). If a priv-

ileged user is calling a user segment, it will run in privileged
mode.

Instruction Commentary 6.
Sub-opcode 3: 02
Indicators: Unaffected
Addressing modes:
Indirect via: PL - N (if N does not equal 0)
TOS (if N = 0)
Local Label: PB+
External Label: via CST to local label in target
segment
Traps: STUN, STOV, CSTV, STTV, ABS CST, TRACE, UNCALL, BNDV if
user or privileged

Machine Instructions and Stack Operations

4-14. 1/0 Instructions

CIO Control I/0

of1]2]3]a]s]e]7[s]o]tof[r12]1a]r1a]rs
JoJo 1 1Jo o ofo|1 o]1 1

—
K

This instruction assumes that the TOS contains a control word and
expects a device number to be given in the stack at S-K. CIO

transmits the TOS to the specified device controller, along with
a CIO signal. If the device controller acknowledges receiving

the word, the TOS 1is deleted and the Condition Code is set to

CCE. If the device controller does not respond, the Condition
Code is set to CCL and the instruction is terminated.

Special opcode: 13
Indicators: CCE = responding device controller

CCL = non-responding device controller
Traps: STUN, MODE
This is a privileged instruction.

CMD Command

o[1T2]3]a]s]|e]7]8]e] i2]i3]iais
[0]o 1 1]Jo o oJof1 1]o O

————
K

This instruction assumes that the TOS contains a 16-bit data word
to be sent to a system hardware module and expects a command word
in the stack at S-K. Bits 13 through 15 of the command word
specify the module number, and bits 10 and 11 are used to specify
a module command. (The four possible commands are interpreted by
the target module and do not form a part of this instruction’s
definition.) CMD sends the 16-bit data word and the 2-bit command
over the Central Data Bus to the specified module, and then de-
letes the TOS. (Note: If the destination module is not ready, the

CPU will not proceed until that module becomes ready.)

Special opcode: 14

Indicators: Unaffected
Traps: STUN, MODE
This is a privileged instruction.

RIO Read I/0

1[2]a]a]s]e]7 8[o]ro]n]i2]r3]1a]1s
0o 1 1]0 0 ofjo0}j1 OojJoO0 O

[=]

[o

[——
K

This instruction expects a device number to be given in the stack
at S-K. RIO first checks if the device is ready by checking bit
1 of the device controller’s Status Register. 1If it is ready
(bit = "1"), the 16-bit data word from the device is pushed onto
the stack and the Condition Code is set to CCE. If it is not

4-17

Machine Instructions and Stack Operations

ready (bit = "0"), the content of the device controller’s Status
Register is pushed onto the stack and the Condition Code is set
to CCG. If the device controller does not respond to the readi-
ness test, the Condition Code is set to CCL and the instruction
is terminated.

Special opcode: 10

Indicators: CCL non-responding device controller
CCE device ready
CCG =device not ready

Traps: STOV, MODE

This is a privileged instruction.

SIO Start I/0
of1]2]3]a]s]e]7]8]ofro]ii]i2]ra]sa]is
[ofo 1 1Jo o0 ofJofo 1]1 1

[
K

The SIO instruction expects the absolute starting address of an
I/0 program to be on the TOS, and a device number to be in the
stack at S-K. The instruction first checks if the device |is
ready for an SIO by checking bit 0 of the device controller’s
Status Register. Bit 0 is the "SIO OK" bit. If it is ready (bit
= "1"), the TOS is stored into the first location of the DRT en-

try for the device specified at S-K; an SIO command is then issu-
ed to the device controller to begin execution of its 1I/0 pro-

gram. If the device is not ready (bit 0 of the device status =
"0"), the content of the device controcller’s Status Register is
pushed onto the stack and the Condition Code is set to CCG. If
the device controller does not respond, the Condition Code is set
to CCL and the instruction is terminated. If the device is
ready, the TOS is deleted and the Condition Code is set to CCE.

Instruction Commentary 8.

Special opcode: 07

Indicators: CCL = non-responding device controller
CCE device ready
CCG device not ready

Traps: STUN, STOV, MODE

This is a privileged instruction.

TIO Test I/0

of1]2]3]a]s]e]7[8[o]ro]i]s
lo]Jo 1 1]o o oJoj1 o1 o

~

i3)14 [15

e
K

This instruction expects a device number to be given in the stack

at S-K. TIO obtains a copy of the device status word from the
device controller, pushes it onto the stack, and sets the Condi-

tion Code to CCE. If the device controller does not respond, the
Condition Code is set to CCL and the instruction is terminated.

Machine Instructions and Stack Operations

Special opcode: 12
Indicators: CCE = responding device controller
CCL = non-responding device controller
Traps: STOVE, MODE
This is a privileged instruction.

WIO Write I/0
of1]2]s als|e]? 3E I E 1314 15
oflo 1 1}J0o o0 ojol1 0O 1

[
K

This instruction assumes that the TOS contains a data word and
expects a device number to be given in the stack at S-K. WIO
first checks if the device is ready by checking bit 1 of the de-
vice controller’s Status Register. If it is ready (bit = "1"),
the word is transmitted to the specified device and then deleted
from the stack; the Condition Code is set to CCE. If it is not
ready (bit = "0"), the content of the device controller’s Status
Register is pushed onto the stack and the Condition Code is set
to CCG. 1If the device controller does not respond, the Condition
Code is set to CCL and the instruction is terminated.

Special opccde: 1l
Indicators: CCL non-responding device controller
CCE device ready
CCG device not ready
Traps: STUN, STOV, MODE

This is privileged instruction.

4-15. Memory Address Instructions
ADDM Add Memory To TOS

of 1]2]3]sels]s 7]8]9 10[11]12 13[14 15
[ofr 1 1]x]!

(6)

Mode and Displacement

The content of the effective address memory location is added in
integer form to the TOS. The result replaces the operand on the
TOS.

Memory opcode: 07

Indicators: CCA, Carry, Overflow

Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect '
Indexing available

Traps: STUN, BNDV, ARITH

CMPM Compare TOS With Memory

of1]2]3]4]s]s dBE []iz]izfrafts
(o7 1 ofx[1

\ J
v

Mode and Displacement

Machine Instructions and Stack Operations

The Condition Code is set to pattern C as a result of the compar-

ison of the TOS with the content of the effective address loca-
tion. The TOS is then deleted.

Memory opcode: 06

Indicators: CCC

Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: STUN

LDD Load Double
1]2[345
1 0 1|x[

o
[}

2BE 10]n]i2 13laa]s

—
-

— J

Mode and Displacement

The contents of the effective address memory location (E) and the
succeeding location (E + 1) are pushed onto the stack. The con-
tent of E, the most significant word, is loaded into B; the con-
tent of E + 1, the least significant word, is loaded into A. If
indirect addressing 1is used, the word referenced by the initial
address (base + displacement) contains a DB+ relative word ad-
dress. 1If indexing is used, the effective address is obtained by
adding twice the contents of the Index Register to the relative
word address.

Memory opcode: 15, bit 6 = 1

Indicators: CCA

Addressing modes: DB+, Q+, Q-, S- relative
Direct or indirect
(for final indirect: DB+ only)
Doubleword Indexing available

Traps: STOV, BNDV

LOAD Load Word Onto Stack
of 1[2]3]a]s]s 7]8]9 1011]2 13[14[1s
(o] o ofx]:

\

Mode and Displacement

The content of the effective address location is pushed onto the
stack.

Memory opcode: 04
Indicators: CCA
Addressing modes: P+, P-, DB+, Q+, Q-, S- relative
Direct or indirect
Indirect Indexing available
Traps: STOV, BNDV

4-20

Machine Instructions and Stack Operations

STOR Store TOS Into Memory

of1]2]3]4s]se
[of1 o 1fx]i]n

7[8] 9 0] jrz]ra1a]ts

« J
v

Mode and Displacement

The content of the TOS is stored into the effective address
ory location, and is then deleted from the stack.

mem-

Memory opcode: 05, bit 6 =1

Indicators: Unaffected

Addressing modes: DB+, Q+, Q-, S- relative
Direct or indirect
Indexing available

Traps: STUN, BNDV

4-16. Instruction Commentary

l. MPYL, MPY, DTST, FIXR,
provide for the deletion
doubleword result. The assumption
struction (e.g., multiplication
than 16 bits to represent it. The
matically during execution; the

FIXT, LMPY. These six instructions

of the most significant word of a
is that the result of the in-
product) does not require more
MPY instruction deletes auto-

remaining five instructions
to

simply test the result and provide

note whether or not the low order
result. Thus, for these five, the
sert

word if it is insignificant.

an indication (Carry bit)
word fully represents the true
programmer may choose to in-

a delete sequence (see figure 4-6) to delete the high order

Sign of a Sign of a
Double-length Single- length
Integer Integer
0] 15 0 15
OO TTIIT I T OO IIT I i L iefyd
0000000000000000 OX------~=-~-~--~ X
1711111111111 111 1 1 X---~--=--=-==~=-~-- X
\ -~ N v -/
High Order Significant
17 Bits Data Bits
Exampte delete sequence:
/ :
MPYL;
BCY - +2;
DELB;

Figure 4-6. Deleting A High Order Word

For MPYL, DTST, FIXR, FIXT, and LMPY, the Carry bit is cleared if
the high order 17 bits are all zeros or all ones. This test en-
sures that the sign bit of the single-length result will be the
same as the sign of the double-length result. If this is not the

4-21

Machine Instructions and Stack Operations

case, Carry is set, and the most significant word should not be
deleted. For MPY, Overflow will be set if the test fails, mean-
ing that MPYL should have been used instead of MPY.

2. ASL, ASR, LSL, LSR, CSL, CSR. The actions of the six-single
word Shift instructions are shown in fiqure 4-7. It is assumed

that the shift count specified in the argument field of the in-
struction, is 3 in each case. The before and after conditions of

the TOS word are shown for each example.

In the case of arithmetic shifts, the sign bit is always pre-
served. When shifting left, the bits shifted out of bit 1 (most
significant bit next to the sign bit) are lost; zeros are filled
into the vacated low order bit positions. When shifting right,
the sign bit is copied into the vacated high order bit positions,
and bits shifted out of bit 15 (least significant bit) are lost.

In the case of logical shifts, all bits are shifted. Bits are
lost out of the high end when shifting left and out of the low
end when shifting right. Zeros are filled into the vacated bit
positions.

In the case of circular shifts, no bits are lost. Bits shifted
out of the high end when shifting 1left are filled into the va—
cated low order bit positions. When shifting right, bits shifted
out of the low end are filled into the vacated high order bit

positions.

Note that, for all Shift instructions, the number of shifts is
determined either by the value specified in the argument field of
the instruction or, if X .is specified ("1" in bit 4), by adding
the argument field value to the Index Register contents. This
permits the number of shifts to be computed as well as explicitly
specified.

All shift instructions except TNSL use the shift count in a mod—
ulo 64 manner. Thus if the final shift count is 100 octal (64
decimal), the data is not shifted at all. Furthermore, if the
number of shifts equals or exceeds the number of magnitude bits
(whether single, double, or triple word), the following will
occur: for 1left arithmetic shifts and all logical shifts, the
magnitude will be all-zero; for right arithmetic shifts, all mag-

nitude bits will be the same as the sign bit; for «circular
shifts, the «circular shifting will continue until the specified

number of shifts (up to 63) have been achieved. Except for TNSL,

the execution of shift instructions does not alter the contents
of the Index Register.

3. BR. The P-relative mode of BR, the unconditional branch in-
struction, is a conventional P relative branch except for the in-
dexing capability and the extended displacement range. Bits 8

through 15 are available to specify displacement, which therefore
can be up to +/-255,

Machine Instructions and Stack Operations

Arithmetic Shift Left ASL 3
Lost
Isll EREREREREN

MLH

[1T]1fo]oJoj=o

Arithmetic Shift Right

ASR 3
Lost

SNEEEEE

IEEENEEE

és s{s| [11

HEEREE

—_

Logical Shift Left

Lost

LSL 3

Ao\
CLL DT

[T

[TTTT1

[T[]][Jo]efo}o

Logical Shift Right

LSR 3
Lost

IREEEEN

il
[TTTT 1)1

h

o—~fofofo[[][]

HEEEEN

Circular Shift Left

CSL 3

el [T]1

[TTTTTTT]

[TIT7]

l[lllﬁclj

Circular Shift Right

CSR 3

IEREEEE

[T T Je]efe

cfefs] 111

PTTTIT]

Figure 4-7.

Single Word Shifts

4-23

Machine Instructions and Stack Operations

The DB, Q, and S relative mode, however, are unconventional in
that they permit indirect branches through the data stack. (It
is both illegal and impossible to have a direct branch to the
stack; the coding of "01" for bits 5 and 6 encodes the BCC
instruction.)

Figure 4-8 shows an example of the S- relative mode. Assume that
the instruction 1in location P specifies the S- relative mode,
with a displacement of 4, and indexing. This causes an indirect
branch to S-4 in the data stack. The content of S-4 is then ad-
ded to PB, thus pointing at location "a" in the code segment.
Since indexing is specified, the value contained in the Index
Register is also added to the address being computed. Thus the
ultimate effective address for the branch (next P) is location
"a" displaced by the index value.

CODE DATA
)
P8

DB

a PB + (S-4)

Next P i PB+(S-4) + X
P Q
S-4
S T Displacement
=4

Figure 4-8, 1Indirect Branch Via Stack

Note particularly that the indirect address given in the stack is
relative to the program base, PB, not to P as is wusually the
case. Also note that the displacement is relative to a location
in the stack (DB, Q, or S), and that indexing 1is applied after
the indirect addressing has been accomplished. .

The displacement range for the DB, Q, and S modes depends on
which mode is selected. For DB+, bits 8 through 15 provide a
range of 0 through +255. For Q+, bits 9 through 15 provide a
range of 0 through +127. For Q- and S-, bits 10 through 15 pro-
vide a range of 0 through -63.

Machine Instructions and Stack Operations

4, MOVE, MVB, MVBW, CMPB, SCU, SCW. These six instructions are
members of the move group and as such deal with strings of words
or bytes. The first three physically move a word or byte string
from one block of locations in primary memory to another. The
CMPB instruction does not move data but compares data in two
complete strings, byte by byte. The last two also do not move
data but scan a data string testing the string byte by byte
against a test character and a terminal character.

SOURCES. The MOVE, MVB, and CMPB instructions may take source
data from either the code segment or the data segment. (For ref-

erence purposes, ‘"source" and "target" terminology is retained
for CMPB, even through there is no move operation.) If bit 11 of
the instruction is a "0", source addresses are PB+ relative;

i.e., from the code segment. If bit 11 is a "1", source addresses
are DB+ relative; i.e., from the data segment. Figure 4-9 illus-
trates both cases. Note that the target for either case 1is in
the DB+ area. (Disregard move-direction arrows for CMPB.) Both
source and target (MVBW) addresses are DB relative for MVBW, SCU,
and SCW. The target need not be "higher" than the source; figure
4-9 shows examples only.

CODE DATA

SEGMENT SEGMENT
PB oL
(-Count)
¥ > 2
PB Relative Source DB
(+Count) o

P (-Count)

v DB Relative Source *

(+Count)
PL
A 4

(-Count)

A = ’

Target
|- e #
(+Count)
INCREASING (+) (-)
ADDRESSES Incr Decr C Target
B Source
A |:] Count

tner Decr
! ! Decr Incr

Figure 4-9. Move Examples

4-25

Machine Instructions and Stack Operations

ASCENDING/DESCENDING ADDRESSES. The MOVE MVB, and CMPB instruc-
tions have the capability of generating ascending or descending
addresses for source and target locations. The direction is es-
tablished by the sign of the count word, which is bit 0 of A, as
shown in figure 4-9. 1If this bit is a "0", the sign is "+", and
successive addresses are ascending (B and C incremented). 1If
this bit is a "1" the sign is "-", and successive addresses are
descending (B and C decremented). Note the +Count and —-Count
arrows in figure 4-9. The MVBW instruction uses only ascending
addresses; this instruction does not use a count word, and the
source and target pointers are in A and B instead of B and C.
SCU and SCW also only use ascending addresses; terminal and test
characters are in A, the source pointer is in B.

METHOD OF TERMINATION. The MOVE and MVB instructions are termin-
ated only when the word or byte count becomes zero. The MVBW
instruction is terminated only when a character of a specified
type, either alphabetic or numeric, 1is encountered. The CMPB
instruction has two methods of termination; when the byte count
becomes zero, or when any two bytes being compared are unequal.
SCU scans until the terminal or test character is found; SCW
scans while the string equals the test character.

SPECIAL FEATURES. The MVBW instruction includes an "upshift" bit
(bit 13). This bit, when set ("1"), will transpose any lower case
source characters to upper case during the transfer. If not set
("0"), the source characters are unaltered by the instruction.

MOVES BEYOND TOS. In the event that the source or target of any
move instruction advances into the instruction parameters on the
TOS or beyond, the paramters (top four if more than four) will
not be affected since these values are contained in the TOS reg-
isters. The memory locations directly corresponding to these
registers will be used for the move (or comparison). However,
‘this situation is normally a software error.

INTERRUPTS. All Move instructions are interruptable and will
continue their operation after return from the interrupt. To do
this, the count, source, and target addresses are kept updated
and deleted from the stack (if specified) only upon completion of
the instruction.

5. SCAL, SXIT. Figure 4-10 illustrates the operations for call-
ing and exiting from a subroutine. Since only local labels may
be used, operation is entirely within the current code segment.
Assume that the system is executing instructions in the code seg-
ment shown in figure 4-10. At some point, P will encounter the
"SCAL N" instruction, where N is some value 0 through 255. 1If
the value of N is not 0, e.g., 8, this value will be subtracted
from PL (i.e., PL-8), thus pointing at the ninth cell counting
backward from PL. This must be within the Segment Transfer Ta-
ble, whose first entry is PL-1. The eight entry, in this case,
contains a local program label (bit 0 = 0), which is a PB rela-
tive address pointing to the start of the subroutine. This
address is converted to absolute (add to PB) and is loaded into

4-26

Machine Instructions and Stack Operations

the P Register, while the former value of P, plue one, is stored
in the TOS as the return address. However, if N were 0, it would
be assumed that the TOS contains the 1local label (subroutine
starting address). This address, then, (made absolute) would be
loaded into the P Register, while the former value of P, plus
one, replaces the 1label on the TOS as the return address. 1In
either case, once the P Register has its new address, the loca-
tion so indicated will be fetched and subroutine execution
begins.

SCAL SXIT-

Code Stack Code Stack
PB P8

P SCAL N
P
/ / /'
(
! -—-
| Subroutine SN N {'
: S\ 3 Q-\' SXIT —L' S Return P
: |
| i
|
| \ Segment !
| Transfer |
: PL } N | Table : PL
L S J \ <
IfEN=0

*Store P+1.n TOS

Figure 4-10. Subroutine Call and Exit

The final instruction of the subroutine is SXIT. At this time
the return address, pushed onto the stack by SCAL, is assumed to
be on the TOS. It is the responsibility of the subroutine to
provide this condition, which normally means deleting all vari-
ables incurred by the subroutine. The SXIT instruction simply
takes the address contained in the TOS and puts it in the
P-register, thus effecting a return to the calling routine. As a
final step, SXIT deletes the TOS, since the return address is no
longer needed, and may additionally move S back some number of
locations specified by N. This would typically be used for
deleting some of the parameters passed to the subroutine.

6. PCAL, EXIT. These two instructions perform basically the same
function as the SCAL and SXIT instructions described above (In-
struction Commentary 5). That is, to call a routine and return
from it to the point where it was called. However, since the
routines in the case of PCAL/EXIT may be external to the current
segment, possibly not even present in main memory, the operation
is somewhat more complex.

Machine Instructions and Stack Operations

The following paragraphs describe the operations of PCAL and EXIT
on a step-by-step basis, referring to flowcharts. It will fre-
quently be assumed that the reader has a working knowledge of the
intents and purposes of the various steps.

PCAL Sequence. Figure 4-11 illustrates the operations of the
PCAL instruction. If the «call is within the current segment
(Local label), only the steps shown on the left side of the dia-
gram are performed. For calls outside the current segment, the
steps on the right side are added.

The first step 1is to fetch the program label. From the PCAL in-
struction definition, we see that the label can be obtained from
one of two places: from the TOS if N is zero, or from PL-N if N
is not zero. This operation can be seen in the SCAL operation of
figure 4-10, where the label is fetched from either the Segment
Transfer Table, at PL-N, or from the TOS.

Thus, referring to figure 4-11, PCAL initially checks N to see if
the label is on the TOS. If not (block 1), the label 1is fetched
from PL-N and a check is made to see if that location is actually
within the bounds of the Segment Transfer Table. (N must be <STTL
value in the PL location.) If out of STT bounds, an STT violation
is incurred; otherwise, the PCAL sequence continues. If the la-
bel is on the TOS (block 2), the label 1is put into temporary
storage in the CPU and S is decremented to delete the label from
the stack. At this time, the CPU has the label but does not know
whether it is local or external, or if it is valid.

The next step is to place a standard four-word stack marker onto
the stack (block 3) and update the Q pointer by loading it with
the content of S (block 4). Both Q and S are now pointing at the
last word (Delta Q) of the new stack marker.

Now the label is checked to see if it is a local label (bit 0=0).
If it is, the sequence goes to block 8 (skip to paragraph start-
ing "Block 8 sets").

If the 1label is external (bit 0 = 1), bits 8 through 15 are
checked to see if the segment number specified is valid. If the
segment number does not have an entry in the Code Segment Table,
a CST violation is incurred. Otherwise, the PCAL sequence con-
tinues. Next, absolute addresses for PB and PL are calculated
from the CST entry and loaded into these two registers (block 5).

Block 6 sets the privileged mode in the Status Register if the
mode bit in the CST entry indicates privileged mode, or if the
caller was executing in privileged mode (i.e., if the privileged
mode bit in Status already was set). (Although not shown, the

Reference bit in the CST is set at this time for statistical
purposes.)

Machine Instructions and Stack Operations

5 Set PB, PL from

> CST entry

Fetch [
label from ﬂ
PL-N
Set or clear

privileged
mode bit M

in Status

I

Put segment

number of
called seg in

Status (8:15)

Is
label on
TOS
?

Fetch label
from TOS
and delete

IsN
within STT
bounds

Push 4-word
stack marker
onto stack STT

Violation ABS CST

l Interrupt

Move Q up
to S (AQ
marker word)

Is
called segment
absent

Is
Trace bit
on
?

TRACE
Interrupt

Local
label

Segment
number legal

? STT Is
Violation focal label
CST Interrupt legal

Violation

Is
procedure
callable*
?

Bounds
Violation

*and being
called from
user mode

Set new P l Replace
8 from local Procedure local label
label with 0 STT Uncallable

Figure 4-11. PCAL Instruction Flowchart

4-29

Machine Instructions and Stack Operations

Block 7 stores bits 8 through 15 of the label into bits 8 through
15 of the Status Register. This indicates to the system that we
are now operating in the called segment. A check is then made to
see if the called segment is absent from main memory. If it is,
an absent code segment trap is incurred. A similar check is made
for TRACE by checking the CST entry for the called segment.

The next check is to see if bits 1 through 7 of the label are 0.
These bits specify which STT entry in the target segment contains
the desired local label. Since a value of 0 would point at the
STTL word in PL, the value of 0 is specially defined to indicate
that P should be set to PB of the called segment; i.e., the local
label equals 0. A check is then made to see if the PB entry is
callable if it is being called from user mode. Assuming that
bits 1 through 7 of the external label are not 0, the value so
indicated will point to one entry in the Segment Transfer Table.
If it does not (i.e., if the value exceeds the STTL value), or if
the entry pointed to is not a local label (i.e., if bit 0 = 1),
there will be an STT Violation. But if the label is valid, it is
then checked to see if the procedure is callable if being called
from user mode by checking bit 1 (must be 0).

Block 8 sets the P Register to the starting address of the pro-
cedure. The CPU at this point has a local label, whether it is
in the same segment as the PCAL or in a segment external to the
calling segment. The value for P is calculated by adding the
contents of bits 2 through 15 of the local label to the contents
of PB. As a final check, this value for P is checked to see if
it is between PB and PL. The resultant absolute value is then
loaded into the P Register, and the location so indicated is
fetched and execution of the procedure begins.

EXIT Sequence. Figure 4-12 illustrates the operation of the EXIT
instruction. If the exit is within the current segment, only the
steps on the left side of the diagram are performed. For returns
to another segment the right side is also executed.

The first step (1) is to fetch the 4-word marker pointed to by Q,
which was placed on the stack when the current procedure was
called. S is set equal to Q, deleting any local storage being
used by the current procedure. If the current procedure is exe-
cuting in user mode, the privileged and external interrupt enable
bits in the marker status are compared with the current status to
ensure that the user has not modified these in the marker. Then
X is restored from the marker.

In step 2, if the current segment and the segment in the marker
are the same, steps 3 through 6 are omitted; otherwise continue.

Steps 3 and 4 are similar to the equivalent steps in PCAL (figure
4-11) .

Machine Instructions and Stack Operations

EXIT

REPLACE SWITH Q
FETCH 4-WORD SET PBAL
MARKER AT (Q) ‘ (:L
Sm— ROM CST
THRU (Q-3) FE:::i
ﬂ CHECK PRIVILEGED
YES AND EXTERNAL CHECK
INTERRUPT BITS IN PRIVILEGED
MARKER BIT IN CST
ENTRY
NO
RESTORE X
—
FROM MARKER 1S
RETURN :
SEGMENT ABS CST
ABSENT INTERRUPT
SEGMENT

NUMBER
LEGAL
?

TRACE
INTERRUPT

CST VIOLATION

BOUNDS
VIOLATION

RESTORE STATUS
FROM MARKER
SET $:=Q-4-N
SET Q:=Q-dQ FROM
MARKER
SET P

RETURN
PROCEDURE

Figure 4-12. EXIT-Instruction Flowchart

Machine Instructions and Stack Operations

In step 5, if in user mode, the privileged bit in the CST entry
for the return segment must be off. (Although not shown, the ref-
erence bit in the CST entry is set at this time for statistical
purposes.)

An absent code segment trap occurs following step 5 if the return
segment is absent. A trace trap occurs in step 6 if bit 0 of
Delta P in the marker is set. This bit is normally set by the
trace routine which would have been called when the current pro-
cedure was entered.

At step 7, return "P = P-Delta P" from the marker must be between
PB and PL. The Status Register is restored from the marker; Q is
set pointing to the previous marker, then S is decremented by 4
to delete the marker on the top of the stack and by N (specified
in the EXIT instruction) to delete any parameters passed to the
procedure being exited. P is set to return P and execution be-
gins within the return procedure.

7. DISP, IXIT, PSDB, PSEB. The Dispatcher, external interrupts,
and some internal interrupts execute on the Interrupt Control
Stack (ICS). Normally the Dispatch (DISP) instruction is used to
enter the Dispatcher and the Interrupt Exit (IXIT) is used to
exit from the Dispatcher. Also, when "ICS" type interrupt ser-
vice routines are entered in response to appropriate events, the
instruction IXIT 1is used to exit from these. The exit may be
from the Dispatcher to the process being launched or from inter-
rupt service routines to the interrupted procedure or, in certain
cases, to the Dispatcher entry point. The instructions Pseudo
Interrupt Disable (PSDB) and Pseudo Interrupt Enable (PSEB) are
used to prevent entry to the Dispatcher during critical sections
of code.

The instruction DISP causes a transfer to the Dispatcher s entry
point unless it 1is executed while on the ICS or while the Dis-
patcher is disabled. The Dispatcher is disabled when the Dis-
patcher Flag is non-zero, (QI-18) not 0. The address of QI is
located at 4 times the CPU number plus 1. Condition code CCE is
set when the Dispatcher is entered; the Status Register is set as
specified for the Dispatcher. The transfer 1is executed in a
manner similar to an ICS interrupt. If a DISP instruction is
executed on the ICS or while the Dispatcher is disabled, bit 0 of
(QI) is set and CCG is set in the Status Register. This bit is
checked by those instructions (IXIT and PSEB) which may remove
the conditions inhibiting the Dispatcher.

The instruction PSDB increments (QI-18); PSEB decrements (QI-18).
Starting the Dispatcher is disabled unless this location is zero.
Outside the Dispatcher and not on the ICS, a PSEB which decre-
ments (QI-18) to zero effectively does a DISP instruction if bit
0 of (QI) is set.

Machine Instructions and Stack Operations

Within the dispatcher, a PSEB which decrements (QI-18) to zero,
clears (QI) eliminating any pending Start Dispatcher requests.
PSDB and PSEB are used at the beginning of the Dispatcher to
prevent any interrupts which request a dispatch from causing the
first portion of the Dispatcher to be unnessarily repeated. PSEB
instructions which do not transfer to the Dispatcher set CCG in
the Status Register.

Figure 4-13 1is a simplified flowchart of IXIT operation. IXIT
operates in one of two manners. The first, (1) in the figure, is
by the dispatcher to transfer to a process being launched; the
second, (2) through (6), 1is to exit from ICS interrupt service
routines.

If an interrupt service routine is not in segment #1, it is as-
sumed to be an external interrupt routine and a "Reset Interrupt"
is sent to the device whose device number is at Q+3. (Q+3) is
assumed to be valid in memory, which is normally the case since
the device number supplied to external interrupt routines as a
parameter is written into memory.

If bit 0 of (Q) is zero, (Q(0))= 0, then if Q=QI, the return is
to the interrupted process (2). Otherwise the return 1is to a
lower priority interrupt which was interrupted (3).

If (Q(0))=1 and (QI(0))= 0, the return 1is to the Dispatcher
which was interrupted (4).

If (Q(0))= 1 and (QI(0))= 1, a DISP instruction has been executed
and the request to start the Dispatcher 1is still pending. If
(QI-18)= 0, the Dispatcher is not disabled, QI is cleared, and a
transfer is made to the Dispatcher’s entry point (5) or (6). It
doesn’t matter whether a process, Q=QI, or the Dispatcher, Q not
=QI was interrupted. If (QI-18) not 0, starting the Dispatcher is
disabled and the DISP request cannot be carried out at this time.
Instead IXIT returns to the interrupted Dispatcher,Q not =QI(4a),
or to the interrupted process, Q=QI (2a). The "Start Dispatcher"
request is still pending, (QI(0))= 1.

8. SIO. The 1/0 instructions in the HP 3000 Command System in-
struction set are as follows:

SI10 Start I/0
RIO Read I/0
WIO Write I/0
TIO Test I/0
CIO Control 1/0

Additional information for these instructions 1is contained in
Section VII. The distinction to note here is that the SIO in-
struction is wused in conjunction with an I/O program and the
others are not. That is, the SIO instruction commands a device
controller to begin executing its associated I/0 program, which
effects a block transfer of data between an I/0 device and mem-
ory. This is termed as "SIO transfer" mode. The other instruc-

4-33

Machine Instructions and Stack Operations

START
_(ICSFLAG=1) |

IN DISPATCHER
YES EXIT TO

DISPATCHER >
PROCESS

FLAG = 1?

SEND RIL TO
DEVICE

]

RETURN TO
INTERRUPTED
PROCESS.

©)

(afo) =12

RETURN TO A
LOWER PRIORITY
INTERRUPT
ROUTINE THAT
WAS
INTERRUPTED

A 4

RETURN TO
NO INTERRUPTED
P> DISPATCHER.

@

(aion=1?

START OR
RESTART
(i - 18) = 0? —»| DISPATCHER.
® or
RETURN TO
TRIED TO GO TO
DISPATCHER BUT INTERRUPTED
WAS PSEUDO- ——® PROCESS.
DISABLED. @
TRIED TO RESTART RETURN TO
BUT WAS PSEUDO- INTERRUPTED
${ DISABLED SO CONT-|——————p DISPATCHER.
INUE WHERE LEFT ®
OFF,

Figure 4-13. IXIT Instruction Flowchart

Machine Instructions and Stack Operations

tions, on the other hand, transfer only one word per instruction,
between the device and the TOS in the CPU.

An SIO type data transfer is initiated by the CPU executing a
Start I/0 instruction for a particular device. The instruction
assumes that there is an I/O program stored in main memory. The
hardware I/0 system executes the I/O program 1ndependently of the
CPU. The CPU is then free to continue processing in parallel
with the I/O operations.

Figure 4-14 illustrates the order pair format of the double words
which are used in I/0 programs. The general format is shown at
the top of the figure and then the actual format of each of the
nine orders is shown beneath., The first word of an order pair is
designated as the I/0 Command Word, or IOCW, and the second word
is designated as the I/0 Address Word, or IOAW. The IOAW does
not necessarily always contain an address, as the figure shows.

The nine I/0 orders are defined as follows:

JUMP . If bit 4 of the IOCW is a "1", a conditional jump of I/O
program control is made to the address given by the IOAW at the
discretion of the device controller. If bit 4 of the IOCW 1is a
"0", an unconditional jump is made.

RETURN RESIDUE. This causes the residue of the count to be re-
turned to the IOAW. The residue is obtained from the Multiplexer
or Selector Channel. Each Multiplexer or Selector Channel has
its own count. The count is initialized from the least signifi-
cant 12 bits of all IOCWs except Return Residue and Set Bank.

SET BANK. This instruction 1loads the Bank Register of the Mul-
tiplexer or Selector Channel with bits 12 through 15 of its IOAW.
The execution of an SIO instruction automatically clears the Bank
Register. Therefore, if the data buffer for this device resides
in some bank other than 00, the I/0O program must contain a SET
BANK order prior to a READ or WRITE order.

INTERRUPT. This order pair causes the device controller to set
its Interrupt Request flip-flop and, therefore, to interrupt the
CpU.

END. End of the I/O program. If bit 4 of the IOCW is a "1", the
device controller also interrupts the CPU. Returns device status
to the IOAW.

CONTROL. This causes transfer of a 1l6-bit control word in the
IOAW to the device controller, as well as the 12 low order bits
of the IOCW.

SENSE. This causes transfer of a 16-bit status word from the
device controller to the IOAW.

4-35

Machine Instructions and Stack Operations

0 13 4 15
10cw [DC| ORDER |# OF WORDS (NEGATIVE)*/CONTROL INFO
10AW DATA ADDRESS/CONTROL INFO/SENSE STORAGE

ORDER 0 1-3 4 § 15
000 [T juwe JcJ
JUMP TARGET ADDRESS
10CW {4) = 1 = CONDITIONAL
0 1.3 & 15
RETURN
s Resioue | °

RESIDUE OF WORD COUNT

0 1-3 4 12 1314 15
SET
B8ANK

90

[x]x]x]x

XX=BANK ADDRESS

0 1.3 4 15
(31} JINTERRUPT]

0 1.3 &4 5 15
(1} 1 €eND [INT]

STATUS {will be returned)
IOCW (4) = 1 = INTERRUPT

0 _1-3 4 15
100 JconTROL| CONTROL WORD #1 12 BITS
CONTROL WORD #2
0__1-3 4 15
101 | sense |

STATUS (will be returned)

0 1.3 4 18
110 [oc| WRITE T #OF WORDS INEGATIVE COUNT)
ABSOLUTE ADDRESS

1OCW {#) = 1 +DATA CHAIN

0 1-3 4 15
11 |oc] ReaD | # OF WORDS (NEGATIVE COUNT)
ABSOLUTE ADDRESS

*#OF WORDS for 1/O order pair |-4096
DC = DATA CHAINING

Figure 4-14. 1/0 Order Pairs

WRITE. This causes "count" words of data to be transferred be-
tween main memory and the device, starting at the address given
by the IOAW, within a given bank.

READ. fhis causes "count" words of data to be transferred be-
tween the device and main memory, starting at the address given
by the IOAW, within a given bank.

Data chaining occurs for Write and Read orders if bit 0 of the
IOCW is a "1". This bit may be a "1" for a Write order followed
by a Write or for a Read order followed by a Read. This will
permit the hardware to treat the counts of each order as a con-
tinuous chained count, without re-initializing for each order.
The DC bit should be "0" for all other orders.

Machine Instructions and Stack Operations

The count field for Read and Write orders contains the least
significant 12 bits of a negative two’s complement count value.
The count is a word count, independent of the particular record-
ing format (bytes, words, or records). For a Control order,
these 12 bits are used for control information in addition to the
16 bits in the IOAW (a total of 28 bits).

4-17. STACK OPERATION EXAMPLES

4-18. Basic Arithmetic

Figure 4-15 shows a sequence of basic instructions being executed
on some data which is presumed to exist in the stack. The upper
row shows the most elementary method of adding and removing data
to and from the stack via 1load and delete instructions. The
lower row shows the effects of four arithmetic instructions. As
shown for the initial stack condition (A), the data consists of
six numbers in six consecutive locations. The Q Register points
to the oldest element of the group, and S points to the element
currently on the TOS. A Delete instruction (DEL), executed be-
tween (A) and (B), causes the number 44 to be removed from the
stack. This is accomplished by simply decrementing the S-pointer
by one. Then, between (B) and (C), a LOAD instruction causes the
number 37 to be 1loaded onto the stack. This is accomplished by
storing the number 37 (from another memory location) into the
location formerly occupied by the number 44 and then incrementing
the S-pointer by one.

Between (C) and (D) an ADD instruction is executed. This in-
struction adds the two top elements of the stack together, de-
letes both from the stack, places the answer (100) on the TOS,
and points S at the answer.

Note

As previously discussed, up to four
of the top stack elements may exist
in CPU registers. Obviously, to ex-
ecute the ADD instruciton, at least
the two top elements must exist in
the CPU.. To ensure that this is the
case, the hardware checks the con-
tents of the SR Register. If the
contents of the SR Register is not at
least two, one or more memory fetches
will be made so that the instruction
can be carried out.

Between (D) and (E) a Multiply instruction (MPY) 1is executed.
This instruction multiplies the two top elements of the stack
together, deletes both from the stack, places the answer (700) on
the TOS and points S at the answer. ’

Machine Instructions and Stack

Operations

LOAD/ DELETE After Delete After Load
Initial Stack Instruction Instruction
Q —P 1 Q—¥ 1 Q—» 1
1 1 1
500 500 500
7 7 7
63 S —» 63 63
S —» 44 S—» 37
® ©
ADD/MU LTIPLY/SUBTRACT/NEGATE
After Add After Multiply After Subtract After Negate
Instruction Instruction Instruction Instruction
Q—» 1 ' Q—» 1 Q—» 1 Q—» 1
1 1 1" 1
500 500 S—» -200 S —¥ 200
7 S—» 700
S —¥ 100

O

®

®

®

Figure 4-15. Basic Arithmetric Stack Operations

To subtract (SUB), the top element is subtracted from the next-
to-top element. Thus the answer at (F) is the result of 500-700,
or -20Q. (As before, only the answer remains after computation
is performed.) Finally, at (G), negation is performed. This
simply reverses the ‘'sign of the number of the TOS. In binary
form, a two’s complement operation is performed.

Although the sequence (A) through (G) in fiqure 4-15 is a very
simple series of operations, it does illustrate the advantages of
the stack technique in computation. First, note that regardless
of how many elements of data there are or what memory cells they
occupy, the operand for each instruction is consistently the same
i the TOS. This permits implicit addressing; i.e., since the
operand 1is understood to be the TOS, it is not necessary to dive
an operand address in the instruction word. Thus (except for
LOAD which must specify a relative address to load from), the
instruction can simply say "add", or "multiply", etc. The im-
mediate benefit of this is that it allows code compression. Two
instructions can be given in a single word. The sequence (D)
through (G) for example, can be given in two instruction words.
Since this reduces the number of memory fetches, the speed of
computation is considerably increased. A second point to note is
that temporary storage of intermediate results 1is automatically
provided. For example, once the parameters 63 and 37 (C) have
been added, they are no longer required and are deleted. The
answer however, which is substituted on the TOS, is automatically

4-38

Machine Instructions and Stack Operations

in position (adjacent to 7) for the ensuing multiplication.
Therefore, there is no need to provide a dedicated location to
save the temporary quantity 100 or any of the other intermediate
results.

4-19. Procedure Calls

Figures 4-16 and 4-17 1illustrate the operations involved in a
procedure call. Figure 4-16 shows programmatically how a pro-
cedure is set up and called, and figure 4-17 shows what happens
to the stack when the procedure is called and executed. As shown
in the bottom block of figure 4-16, the calling of a procedure
has an equivalency in mathematical terms. That is, a procedure
is like a request to solve the equation for the specific values
of 25 for J and 10 for K. Executing the procedure 1is to perform
the computation; in this case getting an answer of 2. (To keep
things simple, the example procedure will be made to work strict-
ly with integer numbers; thus the fractional remainder 5/10 will
automatically be discarded.) The upper two boxes in figure 4-16
list two forms of the program that will accomplish the example
procedure. The top box shows how the program is written in the
source programming language. The middle box shows the machine
language code that will be emitted by the compiler. The machine
language code is shown both in assembly or mnemonic form, and in
an octal form of the actual binary machine code.

As shown in figure 4-16, 1line 1 begins the source language pro-
gram block and line 9 ends it. Although the entire program con-
sists of only one procedure and a call to that procedure, it is
necessary to enclose the program between a BEGIN statement and an
END statement. These statements define a program. ANSWER 1is
declared to be a global variable for this program by giving its
name within the BEGIN statement. This will cause the variable
ANSWER to reside in the global data area and thus allow its ac-
cess by another procedure; such as an output routine to print out
the result. The type declaration INTEGER specified that ANSWER
will always be an integer and tells the compiler to reserve one
word for the result rather than two or three. ANSWER is allo-
cated the word at DB+0. Lines 2 through 7 comprise the procedure
declaration which includes the procedure head (lines 2, 3, and
4) and the procedure body (lines 5, 6, and 7). The procedure
declaration in a program cannot cause execution by itself, but it
must be called before any execution can take place. Therefore,
the procedure declaration is always separate and distinct from
the procedure call. They need not be immediately adjacent, how-
ever, as in this example. Line 2 gives the procedure name, QUO-
TIENT, and declares that the procedure is of type INTEGER. This
means that the result will be in integer form. It also gives the
names of the formal parameters, J and K. Line 3 is the value
part of the procedure declaration. Declaring J and K as values
means that a value (rather than a pointer) will be passed as a
procedure parameter in both cases. This permits working with a
copy and eliminates any need to change the actual parameter.
Line 4 declares that actual parameters for J and K must be inte-
gers. If any other type is given (e.g., floating point), a com-

4-39

Machine Instructions and Stack Operations

SOURCE LANGUAGE

i BEGIN INTEGER ANSWER;
[2 INTEGER PROCEDURE QUOTIENT (J,K);
3 VALUE JK;
Pro-) 4 INTEGER JK;
cedure | 5 BEGIN
6 QUOTIENT =— J/K;
7 END;
Call ts ANSWER =—— QUOTIENT (25,10);

9 END:

MACHINE LANGUAGE

Assembly Octal

(10 LOAD Q-5 041605

11 LOAD Q4 041604

:;g; o112 DIV,DEL 002340
13 STOR Q-6 051606

14 EXIT,2 031402

15 ZERO, NOP 000600

16 LDI, 31 021031

Cal {17 LDI,12 021012
18 PCAL, 20 \ 031020

(19 STOR DB+0 051000

20 PCAL (to system) 031xxx

MATHEMATICAL LANGUAGE
Procedure: ANSWER = J/K

Cali: Solve ANSWER for
J=25 and K=10

Execution: ANSWER = 25/10
= 2, remainder 5

Note: Decimal 25 = Octal 31
Decimal 10 = Octal 12

Figure 4-16. Declaring and Calling A Procedire

pilation error will result. Line 5 begins the procedure body.
Actually, since this procedure consists of only one statement,
the BEGIN statement and END statement (line 7) are superfluous.
They are included here, however, to illustrate the common form
for a procedure (normally involving a compound statement). Line

4-40

Machine Instructions and Stack Operations

6 is the procedure statement which is the executable part of the
procedure body. This is the statement that will cause the divi-
sion of J by K and temporarily store the quotient as a procedure
result, identified by the procedure name QUOTIENT. The call to
the procedure is given at line 8. This is an executable state-
ment as opposed to a procedure declaration. When this statement
is encountered in the program, it causes the procedure named
QUOTIENT to be executed, passing actual parameter of 25 and 10 to
the procedure, and causes the global variable ANSWER to assume
the value of the result. This completes the program.

Lines 10 through 19 show the machine language code that the com-
piler emits for the two executable statements in the program
(i.e., line 6 causes line 10 through 14 to be generated and line
8 causes lines 15 through 19 to be generated). In order to ex-
plain the operation of the program in machine language, it is
necessary to examine what is happening on the stack. It is as-
sumed that the user has logged onto the system, has compiled the
program, and is ready to run (or is running a program that will
shortly encounter the statement in line 8). Loading the program
causes space to be allocated for the one global variable, AN-
SWER, which is at DB+0 as shown in (A), figure 4-17. Since there
are no other global variables, Q and S initially point at the
immediately following location. (The content of that location
will never be signifiant; in essence it is a dummy Delta Q loca-
tion.) Additionally, during program loading, the operating system
evaluates the program in order to set the Z Register appropr iate-
ly for an initial estimated stack size. Also, since no dynamic
arrays are declared, DL is set coincident with DB, therefore DL
is not shown. (Refer to paragraph 2-28.)

It is assumed that the user has issued a system command to exe-
cute the procedure call given in line 8 of figure 4-16. This
causes control to be passed to line 15 in the machine language
program where the sequence to call the procedure begins. The
first instruction is a ZERO,NOP. Executing this instruction puts
a "0" on the stack and increments the S-pointer, (A), figure
4-17. This reserves a location for the procedure result. Next
at (B) and (C) (lines 16 and 17), the parameter values 31 and 12
are passed directly from the instruction words to the stack (area
reserved for procedure parameters). Octal notation is wused for
these values. Then at (D), a procedure call instruction (PCAL)
causes a four-word stack marker to be placed on the stack. The
S- and Q-pointers point to the Delta Q location of the marker
which now indicates 7 (the number of locations back to the ini-
tial Q location). It is assumed that entry number 20 in the Seg-
ment Transfer Table will direct the call to the correct procedure
starting point. (Refer to paragraph 2-24.)

Execution of the procedure now begins (line 10). The first two
instructions (lines 10 and 11) load copies of the procedure par-

ameters onto the TOS (E) and (F), wusing Q-relative addressing.
The next instruction (line 12) divides the top-of-stack parameter

into the next-to-top parameter and substitutes the quotient "2"
and the remainder "5" on the TOS as shown at (G). The second

4-41

Machine Instructions and Stack

Operations

Stack After

CALLING THE PROCEDURE

After

After

After

©

@

®

ZERO Instruction LDI 31 LDI 12 PCAL 20
DB—» (Answer) DB —» DB —¥ DB —»
Q—» Q—» Q — =
S —»f 0 0 0 | 0
S —» 31 31 ! 31
s— 1 l 12
! X
| Return P
: Status
S,Q —» 7
® © O,
EXECUTING THE PROCEDURE
After After After After
LOAD Q-5 LOAD Q-4 DIv DEL
DB —» DB —» DB —¥| DB —¥]
0 0 0 0
31 31 31 31
12 12 12 12
Q— Q —» Q—» Q—»
"'““‘«S_‘-_’ 31 31 2 S —» 2
S —» 12 S —> 5
SAVING PROCEDURE RESULTS
After After After
STOR Q-6 EXIT 2 STOR DB+0
DB—_:I | DB—» DB —» 2
r- ‘ Q—¥ $,Q—¥
: 2 s —» 2
| 31
: 12
| X
: Return P
I Status .
S,Q—» 7

Figure 4-17.

Executing A Simple Proccedure

Machine Instructions and Stack Operations

half of the same instruction (DEL) discards the remainder word by
decrementing S as shown at (H). To save the result, the STOR Q-6
(Line 13) first copies the TOS into the location reserved for the
procedure result, formerly occupied by a 0, as shown at (I).
Then it is possible to exit from the procedure. The EXIT in-
struction (line 14) restores Q to its initial setting, and the
"2" included with the instruction causes S to move back two
locations past the stack marker. As shown at (J), this leaves
the result, 2, in the location reserved for QUOTIENT (now on the
TOS). The EXIT returns program control to line 19 which causes
the content for QUOTIENT to be stored in the location for ANSWER
in the global data area. This produces the final result shown at
(K). Finally (line 20), a procedure call to the system returns
control back to the system.

4-20. Recursion

This example demonstrates the stack principles involved in a re-
cursive procedure. A recursive procedure is one which calls it-
self one or more times during execution. The form of the source
language program for this example (figure 4-18) is nearly iden-
tical to that of the preceding example in figure 4-16. The pro-
cedure simply computes N! (N factorial), where N is the formal
parameter. The procedure will be called with an actual parameter
of 4 so that computation of 4! will be: 1 x 2 X 3 x 4 = 24,

This problem consists of repetitively multiplying the previous
product by a parameter which is incremented by one on each repe-
tition. To provide a starting point (initial previous product),
the value 1 is automatically given. The procedure is designed to
perform this multiplication sequence by repetitively calling it-
self after it has been called once by the main program. Thus for
any N, the procedure will be called N+l times. In this example
there will be one call by the main program and four recursive
calls. Figure 4-18 lists the source and machine 1language forms
of a program block to solve this problem.- Since the source lang-
uage program is similar to the preceding example, it need not be
discussed at this point. The machine language form has been
slightly changed to more closely resemble an actual program list-
ing. Some assumed PB-relative addresses are given for each in-
struction, beginning at address 00114. The assumption is that
this program block is embedded in a larger main program. (Note
that the assigned STT entry for this procedure is assumed to be
026 and that the global assignment for Y is DB+15.) The starting
point for execution is at address 00130.

Figure 4-19 illustrates the program in flowchart form. Box 1 in
the diagram calls the procedure (boxes 2 through 9), box 10 saves
the result, and then control reverts to the main program at box
11. The procedure consists of two phases. The call phase begins
when the procedure is called by the program and is repeated four
times. In this phase, N values are placed on the stack along
with a space for intermediate answers. The N values are decre-
mented to zero and then the exit phase begins. This phase suc-
cessively multiplies an accumulating precduct by each of the N

4-43

Machine Instructions and Stack Operations

SOURCE LANGUAGE

BEGIN INTEGER Y;
INTEGER PROCEDURE FACTORIAL (N);
VALUE N;
INTEGER N;
FACTORIAL := IFN = 0 THEN 1 ELSEN * FACTORIAL (N-1);
Y := FACTORIAL (4)
END;

MACHINE LANGUAGE

PB Relative Octal

Addresses Instructions Code Comments
00114 LOAD Q- 004 041604 Load parameter
00115 CMPI, 000 022000 Test it for zero
00116 BNE P+ 003 141503 If not zero, branch to 00121
00117 LDI, 001 021001 If zero, load 1 as initial multiplicand
00120 BR 006 140006 Branch to 00126 (to Exit loops)
00121 ZERO, NOP 000600 Save space for intermediate product
00122 LOAD Q- 004 ; 041604 Load parameter
00123 SuUBI, 001 023001 Decrement for use as new parameter
00124 PCAL, 026 031026 Recursive call
00125 MPYM Q- 004 111604 Multiply parameter by TOS
00126 STOR Q- 005 051605 Store this recursion’s product
00127 EXIT, 001 031401 Save the product and exit
00130 ZERO, NOP 000600 Save space for final product
00131 LDI, 004 021004 Load initial actual parameter
00132 PCAL, 026 031026 Main program’s call to the procedure
00133 STOR DB 015 051015 Save final product in global area
00134 PCAL, XXX 031xxx Return to system

Figure 4-18. Recursive Program

values loaded on the stack in the call phase, in the reverse or-
der. On each loop, unneeded stack information is deleted, saving
only the answer for that loop, until only the final answer is
left. At that time (box 9) the final EXIT instruction finds that

its return address points back to the calling block and the final
answer is stored in the global area. Control then reverts to the

main program. As will be shown in the following detailed discus-
sion, the return address check at box 9 is not literally a test
for a specific address. Rather it specifies a return to the ad-
dress given in each stack marker. Obviously, the last return
(first one placed on the stack) will be a return to the outer
block. Figures 4-20 and 4-21 show the overall process of build-
ing up the stack by recursive calls, and then reducing it with

recursive exits. These two figures are used in _the following
discussions. Also, the machine language program in figure 4-18

will be referred to. 1Individual lines will be identified by PB-
relative addresses, omitting the leading zeros.

4-44

Machine Instructions and Stack Operations

® 4

Main Program
Call to Call
Procedure

p = o —— -

Y -——FACTORIAL (4) D

Recursive
Calls

|
@ § ¢
CALL Load on Stack:
PHASE

1. Space for result
2. Parameter (N)
3. Stack Marker

Yes 0
S
@ No
l Decrement N l-J

— TOS =—1
(Initial *‘Result’’)

Result N (:))

I1x1=1 Multiply Result
1x2=2 by Previous N

2x3=6
6x4=24 7

Fill Space Reserved
for Result

Delete Marker
and Parameter

EXIT
PHASE

Main
Program
Return
?

Recursive
Exits

Exit to
Main Program

y
Save Result in
1

Global Area

|
Continue)
(Write Answer) ¢+ ——————-

I

Figure 4-19. Recursive Procedure Flowchart

4-45

Machine Instructions and Stack Operations

4-21. MAIN PROGRAM CALL. As in previous examples,the main program
has already reserved glcbal space for the final answer (Y) before
the procedure is called. When the call is given, the ZERO,NOP
instruction at address 130 reserves space for the procedure re-
sult, FACTORIAL. (Compare stacks (a), figure 4-20 and (%), figure
4-21. This is the first stack addition due to calling the pro-
cedure. Next, the actual parameter 4 is loaded on (B), and then
the PCAL instruction is issued. This causes the first stack
marker to be loaded (C). This marker differs from the ones that
follow in that is contains return information to the outer block
which called the present procedure (i.e., the return P word is a
P-relative address for return to the caller in the code segment
and Delta Q points back to the Q value that the caller was using
earlier in the stack). Now, S and Q are both pointing at the last
word of the first marker for this procedure.

4-22. TEST FOR ZERO. At addresses 114 and 115 (stack (D) and (E),
figure 4-20), the procedure parameter is first tested for zero.
This is done by copying it onto the top of the stack (LOAD Q-4)
and a CMPI 0 instruction. This instruction sets the condition
code according to comparison results and deletes the tested word
(E). Since the first test is non-zero (i.e., 4), the branch
instruction at 1line 116 transfers control to address 121 (i.e.,
P+ 4)., This test and branch will be repeated in each of the fol-
lowing recursion loops until the parameter has become zero.

4-23. FIRST RECURSIVE CALL. The branch to address 121 causes the

procedure to call itself. As usual, the first action of the call
is to load the procedure parameters onto the stack. The para-

meters 1in this case are the variable FACTORIAL and a decremented
form of the original passed parameter. Thus the ZERO, NOP in-
struction reserves a location for FACTORIAL (F), figure 4-20
strictly for use by this recursion (i.e., distinct from the final
FACTORIAL location reserved at (A). Then (G and H), the new par-
ameter, is obtained by copying the preceding value to the top of
the stack (LOAD Q-4) and decrementing with a SUBI 1 instruction.
After loading parameters for the new call, another PCAL instruc-
tion is issued. This causes a new stack marker (I), figure 4-20
and, via the Segment Transfer Table, control is transferred back

to the starting point of the procedure at address 114. The new
stack marker gives as its return P value the address immediately

following the PCAL which is 125. (This will be important to re-

member when the exit sequence is discussed.) Also, the Delta Q
value is 6 since the previous Delta Q was six locations back.

4-24. SUCCESSIVE RECURSIONS. Next, all the previously described
steps are repeated, beginning with paragraph 4-22. Since the
parameter is 3 on the second recursion, the branch to address 121
again occurs. The first actions, again, are to reserve a loca-
tion for this recursion’s answer (J), figure 4-20 and to locad a
decremented parameter value of 2 (K) and (L). After this, the
procedure call back to the beginning is made again which results
in another stack marker (M) that is identical to the one gen-
erated on the first recursion. The third and fourth recursions
repeat the entire process again, loading parameters of 1 and 0

4-46

Machine Instructions and Stack Operations

CALL, AND FIRST TEST FOR ZERO

After After After After After
ZERO Instruction LDI 4 PCAL 26 LOAD Q-4 CMPI 0
| Data Of |
| Previous _|
Procedure
S —» 0 0 0 0 0
S —» 4 4 4 4
X
133
STA
S,Q —¥ AQ Q—¥ S,Q
s—f 4

® © ®© ®

FIRST RECURSIVE CALL
After ' After After After
ZERO LOAD Q-4 SUBI 1 PCAL 26 AFTER LAST
RECURSIVE CALL
0 0 0 0 {and LOAD Q-4)
4 4 4 4
4 0
! 4
Q—» Q—» Q—» !
S —¥ 0 0 0 0 |
S —» 4 S —» 3 3 ‘o
X ~
125 (0
STA i 3
S,Q—» 6 i X
| 125
® ® ® ®
. 6
SECOND RECURSIVE CALL ¢ 0
After After After After ! 2
ZERO LOAD Q-4 SUBI 1 PCAL 26 : 1’2(5
0 0 0 0 L LSTA
4 4 4 4 6
¢ 0
I 1
| X
! 125
0 0 0 0 L sTA
3, 3 3 3 6
X X X X (0
125 125 125 125 | 0
STA STA STA STA | X
Q—» 6 Q¥ 6 Q—» 6 6 | 125
S — 0 0 0 0 . STA
S—» 3 S —» 2 2 Q 6
X S 0
125
STA
S,Q—» 6 ®

Figure 4-20. Stack Operations During Recursive Calls

4-47

Machine Instructions and Stack Operations

followed each time by a stack marker. Thus, when the final LOAD
Q-4 occurs in preparation for the zero test, the stack appears as
shown at (N).

4-25. FIRST EXIT. The check at address 115 now finds that the
parameter is zero. The checked copy of the parameter is deleted
from the stack (P), figure 4-21 and the branch at address 116
transfers control to address 117 (rather than 121). As mentioned
earlier in paragraph 4-20, an assumed value of 1 is necessary as
an initial previous product in order to begin the multiplication
loops. This is accomplished by a LDI 1 instruction (address 117),
which puts a 1 on the top of the stack (Q). Then an uncondition-
al branch at address 120 transfers control to address 126, where
the "1" on the top of the stack is stored into the location re-
served for this recursion’s answer as shown at (R) . The next
instruction is the EXIT 1 instruction at address 127. This caus-
es Q to move back six locations (Delta Q = 6) and S five loca-
tions (EXIT 1 deletes one of the two parameters), as shown at
(8) . The return address for the P Register is the MPYM Q-4 in-
struction at address 125. This causes the parameter at Q-4 (1)
to be multiplied by the 1 on the top of the stack, leaving the
answer as the new TOS element. Since 1lxl1 = 1 there is no appar-
ent change from (S) to (T) but, in fact, a multiplication has
occurred.

4-26. FIRST RECURSIVE EXIT. The answer of the first multiplica-
tion is now stored in the location reserved for it (Q-5) as shown
at (U), figure 4-21 by the STOR Q-5 instruction at address 126.
The next instruction, at 127, 1is again the EXIT 1 instruction
which moves back the stack as shown at (V) and returns the P Reg-
ister to the MPYM Q-4 instruction at address 125. The parameter
for multiplication (at Q-4) is now 2 and, therefore, the multip-
lication result at (W) is 2. Again, this is stored back in the
location reserved for it (Q-5) as shown at (X).

4-27. SUCCESSIVE EXITS. After saving the result, the next EXIT 1
is encountered again, causing the S and Q stack pointers to move
back to the next marker, leaving the answer 2 on the TOS. The
return for the P Register is again 125, the MPYM Q-4 instruction
multiplies 2x3, and the following STOR Q-5 puts the answer 6 into
the reserved location as shown at (Y), figure 4-21. Similarly,
the 1last recursive exit causes the value 6 to be left on the TOS
when the last return to address 125 is made. Then the final mul-
tiplication multiplies 6x4 and the last STOR Q-5 instruction puts
the answer 24 into the location originally reserved for the end
result FACTORIAL. The last EXIT instruction finds the return for
the Q Register (Delta Q) pointing back to the origin of an earl-
ier procedure and therefore, is not shown in the stack diagram at
(Z) . However, since one parameter is saved, the final answer re-
mains on the TOS as shown. Meanwhile, the P Register returns to
the next instruction in the outer block which is the STOR DB 15
instruction at address 133. This saves the answer in the global
area and a final PCAL returns control to the system.

Machine Instructions and Stack Operations

O

O,

®

®

FIRST MULTIPLICATION
After After After After After
CMPI 0 LOI 1 STOR Q-5 EXIT 1 MPYM Q-4
0 0 0 0 0
a 4 4 4 a
o b o L I
o b b | I
| I o o i
0 0 0 0 0
1 1 1 (Q-4) 1 1
X X X X X
125 125 125 125 125
STA STA STA STA STA
6 6 6 Q—» 6 Q—¥ 6
0 0 (1 S —» 1 S —» 1
0 0 | 0
X X | X
125 125 | 125
STA STA L STA
S,Q—» 6 Q—¥ 6 $,Q % 6
S —» 1
® © ® ® ©)
SECOND MULTIPLICATION AFTER NEXT
After After After After STOR Q-5
STOR Q-5 EXIT MPYM Q-4 STOR Q-5
0 0 0 0 0
a 4 4 4 4
+ x
f 133
‘o STA
1 aaQ
0 0 0 0 "~ 6
3 3 3 3 | 3
X X X X | X
125 125 125 125 | 125
STA STA STA STA L STA
6 6 6 » 6 S,.Q—¥ 6
0 0 0 (2
2 (Q-8) 2 2 | 2 C)
X X X : X
125 125 125 125
STA STA STA \ STA AFTER FINAL
a6 o 6 a— & s.Q 6 STOR Q-5
(1 S —f 1 S — 2 {and EXIT 1)
f 1
! X - .
L 125 = —
N STA —» 24
&Q—ﬂ 6 ‘ S

Figure 4-21.

Stack Operations During

4-49

Recursive Exits

Machine Instructions and Stack Operations

NOTES

SYSTEM MICROCODE

This section contains a description of the computer system’s mic-
rocode and an introduction on how to read the system’s Look Up
Table (LUT) and Microprogram Listings. During the hardware
training course, detailed instructions on how to read the LUT and
Microprogram Listings will be presented as well as instructions
on how to use the microcode in conjunction with the Maintenance
Panel as a troubleshooting aid. (Complete LUT and Microprogram
Listings are contained in the HP 3000 Series III Computer System
Microprogram Listing Manual, part no. 30000-90136 and are not
repeated in this manual.)

51 GENERAL INFORMATION

The microcode causes the CPU’s hardware to execute the functions
required to perform the operations specified by the machine
instruction set. Therefore, in order to fully understand the
microcode definitions <contained in this section, it is first
necessary to be completely familiar with the stack and pipeline
operations discussed 1in Section II. Specifically, review para-
graphs 2-16 through 2-28 and 2-71 through 2-128.

b-2. Stack Element Locations

The stack has a topmost element (TOS) which is logically quantity
A. Similarly, the stack has logical quantities B, C, and D that
correspond to the second (TOS-1), third (TOS-2), and fourth
(T0S-3) words of the stack, respectively. The logical quantities
A, B, C, and D can be either in the CPU TOS registers or in mem-
ory as determined by the Stack Register (SR Register). If the
SR Register’s contents equal zero, none of the logical quantities
(A, B, C, or D) are in the TOS registers, but are located in some
memory locations SM, SM-1, SM-2, and SM-3, respectively. At all
times however, there are four TOS registers (RA, RB, RC, and RD
Registers) that are named by the renamer logic as discussed in
paragraph 2-96. In the microprogram field codes, RA, RB, RC, and
RD refer to the hardware RA, RB, RC, and RD Registers and not to
the 1logical quantities A, B, C, and D. There is a relationship
however. For any of the logical quantities (A, B, C, and D), the
state of the SR Register indicates where the quantity is as list-
ed in table 5-1. For example; if the SR Register contents equal
zero (table 5-1), then the logical quantity B is in memory loca-
tion SM and, if the field code RB is used, the content of the
register named RB is affected and not the logical quantity B.
That is, for this case, the RB, RC, and RD Registers can be used
as scratch pads without affecting the logical quantities B, C,
and D. Manipulation of the TOS registers is discussed further in
paragraph 5-3 through 5-6.

5-1

Sys tem Microcode

Table 5-1. Stack Element Locations

I T |
| | Locations |
| SR Register l_ o |
| Contents T 1 1 I
| |l A | B | C | D |
U AR NN A R
| I I I I |
| 0 | SM |SM-1]|SM-2]|SM-3]|
I 1 | RA | SM |SM-1|SM-2|
I 2 | RA | RB | SM |SM-1]|
| 3 RA | RB | RC | SM |
[4 | RA | RB |

| I

|
RC | RD |
_ | |

5-3. PUSH. The microinstruction Store Field code PUSH accom-
plishes three things:

T —— "t ——— - —————— " St o

a. It stores the output of the Shifter in the RD Register.
b. It increments the SR Register.

c. It renames the TOS registers so that the register named the
RA Register becomes (:=) the RB Register; the register named
the RB Register:= the RC Register; the register named the
RC Register := the RD Register; and the register named the
RD Register := the RA Register. Effectively, combining steps
a and ¢, PUSH stores the contents of the U-Bus in the TOS
location.

5-4. POP. The microinstruction Special Field code POP accom-
plishes two things.

a. It decrements the SR Register.

b. It renames the TOS registers so that the register named the
RA Register:= the RD Register; the register named the RB Register
:= the RA Register; the register named the RD Register := the
RB Register; and the register named the RD Register := the RC
Register. Effectively, POP removes or "pops" the top element
from the stack.

5-5. QUP. The microinstruction Store Field code QUP (Stack
Marker Pointer Up) effectively stores the contents of the U-Bus
in the stack at location SM+l. For example, if stack locations S
and S-1 are in the TOS registers and locations S-2 is the first
stack element in memory (SM),QUP places the contents of the U-Bus
in a TOS register at stack location S-2 and SM := S=3. (To main-
tain stack integrity, the SR Register must be incremented with
the Special Field code INSR to indicate the addition of the TOS
register element.) When QUP is executed, TNAME (output of the
'Adder for the Mapper) := NAME (output of Namer Register) plus the
contents of the SR Register to rename the TOS registers. (Refer
to paragraph 2-96.) The register temporarily named RA := U-Bus as

5-2

System Microcode

follows:

If TNAME = 00 then TRO := U-Bus
= 01 then TRl := U-Bus
= 10 then TR2 := U-Bus
= 11 then TR3 := U-Bus

TOS registers referenced in the R- and S-Bus fields (RA, RB, RC,
and RD) of the following microinstruction will assume the tem-

porary name.

5-6. QDWN. The microinstruction S-Bus field code QDWN (Stack
Marker ©Pointer Down) effectively stores the contents of the low-
est valid TOS register in the S-Bus Register. (To maintain stack
integrity, the SR Register must be decremented with the Special
Field code DCSR to indicate the deletion of the TOS register el-
ement.) When QDWN is executed, TNAME (output of the Adder for the
Mapper) := NAME (output of Namer Register) plus the contents of
the SR Register to rename the TOS registers. (Refer to paragraph
2-96.) The register temporarily named RD := S-Bus Register as
follows: '

00 then TR3S
01 then TROS
10 then TRI1S
11 then TR2S

If TNAME S-Bus Register
S-Bus Register
S-Bus Register

S-Bus Register

The TOS registers are returned to their former names on the fol-
lowing <clock cycle. TOS registers referenced in the Store Field

(RA, RB, RC, and RD) of the previously executed microinstruction
will assume the temporary name.

5-7. Reading Microprogram Listings

Briefly, to determine what hardware operations are required to
execute a specific machine instruction, it is first necessary to
locate the instruction’s mnemonic in the LUT Listing’s INSTR
(instruction) column and then to read the instruction’s associ-
ated microprogram starting address in the RAR column. (Addi-
tional information that can be obtained from the LUT Listing and
how it can be used will be discussed during the training course.)
After the microprogram’s starting address is obtained, refer to
that address 1in the Microprogram Listing’s ADDRESS column and
read the associated microinstructions 1in accordance with the

following paragraphs.
5-8. MICROINSTRUCTION DESCRIPTIONS

As previously discussed in paragraphs 2-84 through 2-94, each
microinstruction is a 32-bit word divided into eight fields. Each
field, when coded with a particular micro-order, causes the
hardware to perform a specific operation. Figure 5-1 lists the
micro-orders that can be coded 1into each field and illustrates
the bit number assignments for each field. The eight fields of a
microinstruction are discussed in paragraphs 5-9 through 5-16.

5-3

System Microcode

R-BUS S-BUS FCN SHIFT STORE SPECIAL SKIP MCU

00 PL CiR QASL LRZ PCLK cecs ZEROT ABS 00
01 SR SP1 QASR LLZ 10A CCPX NZRO T CRL 01
02 z PADD ROMX SL1 10D CLSR EVEN CMD 02
03 MREG RBR * ROMN SR1 MREG SF3 oDD 03
04 PADD CPX1 JSB RRZ BSP1 * SIFG NSME T 04
05 RBUS MOD CAND RLZ BSPO * SDFG BIT6 05
06 X CPX2 XOR SWAB SBR * CTF BIT8 WRA 06
07 XC SWCH. AND NOP BUS * CF3 NOFL ROA 07
10 RD QDWN DVSB PUSH INSR CRRY PB 10
11 RC 10A UBNT PL DCSR NCRY NIR 11
12 RB 10D CADOT 2 INCN POS 12
13 RA PCLK SUBO T Qup INCT NEG RONP 13
14 SP1 CTRL JMP SP1 HBF F1 RNP 14
15 SPO CTRH BNDT SPO FHB NF1 15
16 UBUS UBUS CAD CTRL CcLIB F2 16
17 NOP SBUS suB CTRH LBF NF2 ROP 17
20 P PNLR+ P SF2 SRz DB 20
21 Q PNLS+ Q CF2 SRNZ DATA 21
22 DB ROMI DB CF1 SR4 DPOP 22
23 SM ROM + SM SF1 SRN4 ROND 23
24 STA REPC+ STA SCRY INDR RND 24
25 SP3 REPN+ SP3 CCRY SRL2 25
26 OPND IOR X POPA T NPRV WRD 26
27 cc CTSD+ RAR POP SRL3 ROD 27
30 RD MPAD+ RD sov RSB s - 30
31 RC INCO+T RC CLO JLUI OPND 31
32 RB CRS + RB CCZT TEST 32
33 RA ADDO+T RA ‘CCL CTRM RONS 33
34 DL CTSSs+ DL CCG F3 RNS 34
35 SP2 INC + SP2 CCE NEXT 35
36 PB DCAD+ PB CCAT UNC WRS 36
37 NOP ADD + NOP NOP NOP ROS 37

* These options inhibit execution of the Special field options and enable the MCU field options in their place.

+ These functions cause an “ADD".

T Test is made on the T-Bus,

0 1]2 3 4|/5 6 7 8 9|10|11 12 13|14 15 16 17 18 19|20 21 2223 24 25|26 27 28|29 30 31

REPN COUNT SPECIAL
S-BUS STORE FUNCTION SKIP SHIFT MCU R-BUS
JMP,JSB JUMP TARGET
ANY ROM 0 | SKIP 00-17 ROM CONSTANT
1

Figure 5-1.

5-9. R-Bus Field

The R-Bus field
contents to be placed into the R-Bus Register.
code definitions are contained in table 5-2.

(bits 28 through 31)

Microinstruction Summary

selects one of 16 register

The R-Bus

fielad

System Microcode

5-10. S-Bus Field

The S-Bus field (bits 0 through 4) selects one of 32 register
contents to be placed into the S-Bus Register. The S-Bus field
code definitions are contained in table 5-3.

5-1. Function Field

The Functicn field (bits 10 through 14) specifies the function to
be performed by the ALU on the two operands in the R- and S-Bus
Registers or a special function. The Function field code defin-

itions are contained in table 5-4.

5-12. Shift Field

The Shift field (bits 20 through 22) specifies how the T-Bus data
will be shifted. The shift field code definitions are contained
in table 5-5.

5-13. Store Field

The Store field (bits 5 through 9) selects one of the Store Iogic
registers or other destinations outside the CPU for the U-Bus
data.The Store field code definitions are contained in table 5-6.

5-14. Special Field

The Special field (bits 23 through 27) codes perform the various
operations listed in table 5-7.

5-15. MCU Option Field

The MCU Option field (bits 23 through 27) is executed in place of
the Special field when the S-Bus field contains RBR or the Store
field contains BUS, BSP0O, BSPl, or SBR. The MCU Option field
codes perform the various operations listed in table 5-8.

5-16. Skip Field

The Skip field (bits 15 through 19) determines which condition
will be tested for a possible skip and specifies the conditions
under which a JMP or JSB will be executed. The Skip field code
definitions are contained in table 5-9.

5-17. MICRODIAGNOSTICS

The system’s microcode also contains diagnostics to test the CPU
registers, Main Memory, I/0 channels, maghetic tape subsystem,
and the Asynchronous Terminal Data PCA’s. These diagnostics are
executed from the system’s Control Panel. Complete information
for these diagnostics is contained in the HP 3000 Computer System
Installation Manual, part no. 30000-90147.

Sys tem Microcode

Table 5-2. R-Bus Field Code Definitions

-

Field |
Code

—a— - o

1111

Label and Name

—— ———— ~—

NOP
(No Operation)

MREG 0011

0100
(Pre-Adder)
PL ‘0000

RA 1011

I
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
l
I
|
I
I
I
I
I
|
I
I
I
I
I
I

—1

—— S . -~ . ——— T Y—~——— -

——————— " —— -

Description

No Operation.

The MREG R-Bus field code is used
to fetch a memory element that hap-|

pens to lie in a TOS register |
(i.e., E is greater than SM). Pri-|

or to executing MREG, the value of |
S minus E must be placed in the SP1|
Register. During execution of MREG, |
TNAME becomes the sum of NAME and |
SP1(14:15) and the R-Bus Register |
is loaded as follows: |

If TNAME
If TNAME
If TNAME
If TNAME

00 then R-BUS
01 then R-BUS
10 then R-BUS
11 then R-BUS

Due to the pipeline affect, a TOS

register referenced in the Store
field of the preceding microin- |

struction assumes the above TNAME. |

|
The 16-bit content of the Pre-Adder |

is loaded into the R-Bus Register.

I
I
|
I
R3R |
|
I
I

|
I
The 16-bit content of the PL Reg- |
ister is loaded into the R-Bus Reg-|
ister. |

I

I

The RA R-Bus field code is used to
read the content of the first TOS
register (location S). SR must be
greater than 0.* During execution,
TNAME becomes NAME and the R-Bus
Register is locaded as follows:

If TNAME = 00 then R-BUS := TROR
If TNAME = 01 then R-BUS := TRIR
If TNAME = 10 then R-BUS :=

If TNAME = 11 then R-BUS := TR3R

— ———

*True only if RA:RD are being used as part of the stack. RA:RD
are used by the microprogram as scratch pad registers when not

used otherwise.

|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
I
|
|
|
I
|
[
|
|
|
| PADD
|
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
I
|
I
|
I

|
I
I
|
I
I
T |
T |
TR2R |
T |
I
I
I
I
I
I

5-6

System Microcode

Table 5-2. R-Bus Field Code Definitions (Continued)

1 1
Field |
Code |

I

Label and Name

RB

R-BUS

RC

I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I

I
I
I
I
|
I
I
I
I
I
I
RD | 1000
I
I
I
I
I
I
|
I
I
|
|
!

Description

The RB R-Bus field code is used to

read the

tion s-1).

——

I
I
I

I

second TOS register (loca-|

l1.* During execution, TNAME be-
comes NAME and the R-Bus Register
is loaded as follows:

If TNAME
If TNAME
If TNAME
If TNAME

The RBUS

00 then R-BUS
01 then R-BUS
10 then R-BUS
11 then R-BUS :

R-Bus field code causes

SR must be greater than|

R-Bus Register to remain unchanged. |

The RC R-

read the

Bus field code is used to
third TOS register (loca-

tion S-2). SR must be greater than
2.* During execution, TNAME be-

comes NAME and the R-Bus Register
is loaded as follows:

If TNAME

If TNAME
If TNAME

If TNAME

The RD R-
read the fourth TOS register (loca-

00 then R-BUS :
01 then R-BUS :

10 then R-BUS
11 then R-BUS

Bus field code is used to

tion S-3). SR must be equal to 4.*
During execution, TNAME becomes

NAME and the R-Bus Register is

loaded as follows:

If TNAME = 00 then R-BUS := TR3R

If TNAME = 01 then R-BUS := TROR

If TNAME = 10 then R-BUS := TRIR

If TNAME = 11 then T-BUS := TR2R
True only if RA:RD are being used as part of the stack. RA:RD|

often are used by the microprogram as scratch pad registers

when not used otherwise.

System Microcode

Table 5-2. R-Bus Field Code Definitions (Continued)

(Stack Limit)

er is loaded into the R-Bus Regist-|

1 T
| Field |
Label and Name | Code | Description |
I I
I |
SPO | 1101 | The 16-bit content of the SPO Reg- |
(Scratch Pad 0) | | ister is loaded into the R-Bus Reg-|
| | ister. |
I I |
SP1 | 1100 | The 16-bit content of the SPl Reg- |
(Scratch Pad 1) | | ister is loaded into the R-Bus Reg-|
I | ister. .
| |
SR | 0001 | The 3-bit content of the SR Regist-|
(Stack Register) | | er is loaded into R-Bus Register |
I | bits 0 thru 2. R-Bus Register bits]|
| | 3 thru 15 become zeros. |
| I
UBUS | 1110 | The l1l6-bit U-Bus data word is load-|
	ed into the R-Bus Register. The U-
	Bus data is established by the pre-
	ceding microinstruction.
l	
X	0110
(Index)	
	er. I
I	
XC	0111
(X Conditional)	
	the index bit of the current in- I
	struction (CIR bit 4) is zero, the
	R-Bus Register is loaded with zer-
	os. Otherwise, the R-Bus Register
	is loaded with the 16-bit content
	of the X Register. I
I	
Z	0010
I	

er. |

5-8

Table 5-3.

System Microco

S-Bus Field Code Definitions

de

Label and Name

CC
(Condition Code)

CIR
(Current Instruc-
tion Register)

CpPX1
CPX2

CTRH
(Counter High)

CTRL
(Counter Low)

DB
(Data Base)

DL
(Data Limit)

Field
Code

00000

00100

00110

01101

01100

10101

11100

I
I
|
I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
|

Description

The CC S-Bus field code is used to
retrieve the condition code (CC)
portion of the status word for use

with certain conditional branch in-

structions. When executed, bits 6
and 7 of the status word are load-
ed into bits 8 and 9 of the S-Bus

Register and, if both of these bit

are zeros, S-Bus Register bit 7 be-

comes a one. All other S-Bus Reg-
ister bits become zeros.

The 16-bit output of the CIR is
loaded into the S-Bus Register.

CPX1l, a collection of 16 special
signals, is loaded into the S-Bus
Register. Refer to para 2-127.

CPX2, a collection of 16 special
signals, is loaded into the S-Bus
Register. Refer to para 2-128.

The 6-bit content of the CNTR Reg-
ister is loaded into bits 4 thru 9

of the S-Bus Register. All other
S-Bus Register bits become zeros.

The 6-bit content of the CNTR Reg-
ister is loaded into bits 10 thru

15 of the S-Bus Register. All

other S-Bus Register bits become
Zeros.

The 16-bit content of the DB Reg-
ister is loaded into the S-Bus Reg

ister.

The 16-bit content of the DL Reg-
ister is loaded into the S-Bus Reg
ister.

S

I
I
I
-1
I
I
I
-1
|
|
I

5-9

System Microcode

Table 5-3. S-Bus Field Code Definitions (Continued)

Label and Name

I10A
(I/0 Address)

IOD
(I/0 Data)

MOD
(Module Number)

NOP
(No Operation)

OPND
(Operand)

P
(Program Counter)

PADD
(Program Base)

PB
(Program Base)

1
I
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
I
!
I
I
I
I
I
I
I
I

Description

11111

10110

10000

00010

11110

The 8-bit content of the IDN Regis-
ter is loaded into bits 8 thru 15
of the S-Bus Register. Bits 0 thru
7 of the S-Bus Register become
zeros.

The 1l6-bit content of the Direct
Input Data (DID/MUXMA) Register in
the IOP is loaded into the S-Bus
Register.

The MOD S-Bus field code provides
the CPU with two pieces of infor-
mation. When executed, the 4-bit
content of the IMN Register is
loaded into bits 4 thru 7 of the
S-Bus Register. Also, bit 13 of
the S—-Bus Register becomes a 1, in-
dicating MOD 1. These bit are used
to fetch the correct Q1 and Z1l en-
tries in the CST. All other bits
of the S-Bus Register become zeros.

No operation.

The 16-bit content of the OPND Reg-|
ister is loaded into the S-Bus Reg-|
ister. An attempt to execute an |
OPND while an MCU operand directed |
operation is in progress results in]
a CPU freeze until the MCU opera- |
tion is complete.

The 16-bit content of the P Regis-
ter is loaded into the S-Bus Regis-
ter.

|
|
|
|
|
I
The 16-bit output of the Pre-Adder |
is loaded into the S-Bus Register. |
I
|
|
I
I
R

The 16-bit content of the PB Reg-
ister is loaded into the S-Bus Reg-
ister.

5-10

I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
|
I
I
I
I
I
I
I
|
I
I
I
!
I
I
I
I
I
I
I
|
[
I
|
I
I
I
I
I
I
I
I
I
I
|
I

System Microcode

Table 5-3. S-Bus Field Code Definitions (Continued)

g9
ister content to remain unchanged.

1 1
| Field |
Label and Name | Code | Description
| |
PCLK | 01011 | The 16-bit content of the PCLK Reg-
(Process Clock) | | register is placed in the S-Bus
: ’ Register.

o] | 10001 | The 16-bit content of the Q Regis-
(Stack Marker | | is loaded into the S-Bus Register.
Pointer) | |

| |
QDWN | 01000 | The QDWN S-Bus field code is used
(Stack Marker | | to put the content of the lowest
Pointer Down) | | valid TOS register in the S-Bus
| | Register. Refer to para 5-6.
I I
RA | 11011 | The register named RA by the Namer
| | Register is placed in the S-Bus
| | Register.* Refer to para 2-96 and
| | 5-2.
| |
RB | 11010 | The register named RB by the Namer
I | Register is placed in the S-Bus
| | Register.* Refer to para 2-96 and
I | 5-2.
I |
RBR | 00011 | Read Bank Register onto S-Bus (12:
(Read Bank | | 15). The S-Bus bits 0 - 11 are
Register) I | zeroed. The Bank Register to be
| | read is specified in the MCU field.|
| | Execution of the Special field is |
| | inhibited. I
| |
RC | 11001 | The register named RC by the Namer |
| | Register is placed in the S-Bus |
| | Register.* Refer to para 2-96 and |
I | 5-2. I
I I

RD | 11000 | The register named RD by the Namer |
| | Register is placed in the S-Bus
I I
: I 5-2. |

SBUS | 01111 | The SBUS code causes the S-Bus Re

I |
| I

*True only if RA:RD are being used as part of the Stack. RA:RD
are often used by the microprogram as scratch pad registers

when not used otherwise.

I
Register.* Refer to para 2-96 and |
I
I

I
-1
I
I
|
I

System Microcode

I
I
I
I
I
[
I
I
I
I
I
I
|
I
|
I
|
|
I
I
I
I
I
|
I
I
I
|

— -

Table 5-3. S-Bus Field Code Definitions (Continued)

ed into the S-Bus Register. The U-|
Bus data is established by the pre-|

ceding microinstruction. |

[|
| Field |
Label and Name | Code | Description
A —
| I
SM | 10011 | The 16-bit content of the SM Regis-
(Stack Memory) | | ter is loaded into the S-Bus Regis-
{ } ter.
SP1 | 00001 | The 16-bit content of the SP1l Reg-
(Scratch Pad 1) | | ister is loaded into the S-Bus Reg-
| | ister.
I |
SP3 | 10101 | The 1l6-bit content of the SP3 Reg-
(Scratch Pad 3) | | ister is loaded into the S-Bus Reg-:
| | ister.
I |
STA | 10100 | The 16-bit status word is loaded
(STATUS) | | into the S-Bus Register.
| |
SWCH | 00111 | The 1l6-bit content of the Switch
| | Register is loaded into the S-Bus
I I Register.
UBUS | 01110 | The 16-bit U-Bus data word is load-|
| I
| |
| I
| |

e

5-12

|
|
I
I
I
I
I
|
|
|
I
I
I
!
|
|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I
|
I
I
I
I
I
|
I
|
I

System Microcode

Table 5-4. Function Field Code Definitions

Label and Name

Description |

——— e

ADD

ADDO
(Add-Enable Over-
flow)

AND

BNDT
(Bounds Test)

CAD
(Complement and

;
}

I

I

I

|

I

I

I

|

I

I

I

I

|

I

|

[

I

I

|

|

I

I

|

I

I

I

I

I

I

|

|

|

I

I

I

I

I

|

I

|

|

I

I

Add) I
|
|
I
I

11011

00111

01101

01110

- —

The content of the R-Bus Register |
is added to the content of the S- |

Bus Register and the result is
placed on the T-Bus.

The content of the R-Bus Register
is added to the content of the S-
Bus Register and the result is |
placed on the T-Bus. {

The content of the R-Bus Register
is logically "anded" with the con-
tent of the S-Bus Register and the
result is placed on the T-Bus.

!
|
I
|
|
The Function field code BNDT is us-|
ed to perform a bounds test of an |
address. Execution of this code |
results in the content of the R-Bus|
Register minus the content of the |
S-Bus Register being placed on the |
T-Bus. If RRZ, RLZ, LRZ, or LLZ is]|
specified, then BNDT does a "CAD"
instead of a "SUB". The R- and S- |
Bus fields are coded so that this |
result is a negative number (CARRY=|
0) if a bounds violation occurs. |
If the CPU is not operating in the |
priviledged mode (STATUS(0) = 0), |
and a bounds violation occurs, a |
microjump to ROM address 0003 is I
executed. If no violation has oc- |
curred (CARRY = 1) or the CPU is |
operating in the priviledged mode |
(STATUS (0) = 1), the next microin-|
struction will be executed in the |
usual manner. |
|
|
|
|
|
I

The content of the R-Bus Register

is added to the one’s complement of
the content of the S-Bus Register
and the result is placed on the T-
Bus. If the S-Bus Register con-
tains all zeros, CAD results in the|

5-13

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

|
| Field
Label and Name | Code
' I
I
CAD (Cont) |
|
CADO | 01010
(Complement and |
Add-Enable Over-|
flow) {
I
I
I
|
CAND | 00101
(Complement-And) |
|
I
|
CRS | 11010
(Circular shift) |
I
|
|
I
I
|
CTSD | 10111
(Controlled Shift |
Double)

Description |

R-Bus Register contents minus 1 on |
the T-Bus.

I
|
The content of the R-Bus Register |
is added to the one ‘s complement of]|
the content of the S-Bus Register |
and the result is placed on the T- |
Bus. Carry and overflow are modi- |
fied in the Status Register and the|
condition code is set to CCA on the|
T-Bus data.

|
I
The R-Bus Register content is log- |
ically "anded" with the complement |
of the S-Bus Register content and |
the result is placed on the T-Bus. |
|
I
I
I
I

The R-Bus Register content is added
to the S-Bus Register content and
the result is placed on the T-Bus.
The T-Bus is then circular shifted
one place right or left as speci-
fied in the Shift field (SR1 orSL1)
and placed on the U-Bus.

|

I

I

I

The Function field code CTSD adds |
the contents of the R-Bus Register |
and the S-Bus Register, puts the |
result on the T-Bus, and performs |
a double word shift of the T-Bus |
and a scratch pad left or right as |
specified by the Shift field code |
(SR1 or SL1l). The type of shift is|

determined by the content of the |
CIR as follows: I
I

If CIR(7) = 1 then circular shift |
If CIR(7:8) |
If CIR(7:8) }
I

I

I

I

I

I

I

I

01 then logical shift
00 then arithmetic
shift

The most significant word is on the
T-Bus. If a left shift is speci-
fied, SP1 Register contains the

least significant word. If a right
shift is specified, SP3 Register
contains the least significant

5-14

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

Label and Name

Description |

CTSD (Cont)

CTSS
(Controlled T-Bus
Shift Single)

DCAD
(Decimal Add4d)

DVSB
(Divide-Subtract)

word. Regardless of the direction
of the shift, both the SP1 and SP3
Registers are shifted left and
right respectively.

The R-Bus Register content is added
to the S-Bus Register content and
the result is placed on the T-Bus.
The T-Bus is then shifted left or
right as specified by the Shift
field code (SRl or SLl1l) . The type
of shift is determined by the con-
tent of the CIR as follows:

|
I
|
|
If CIR(7) = 1 then circular shift |
If CIR(7:8) = 01 then logical shift|
If CIR(7:8) = 00 then arithmetic |
I
|
|
I
|
I

shift

The contents of the R- and S-Bus
Registers are added and the result
is placed into the Decimal Correct-
or Adder. The Decimal Corrector
Adder output is placed on the U-
Bus.

|
I
|
The Function field code DVSB per- |
forms the subtract, shift, and test]|
necessary to execute a divide algo-|
rithm. The R- and S-Bus fields of |
the microinstruction are coded so |
that initially the 16-bit divisor |
is in the S-Bus Register and the |
most significant 16-bits of the |
dividend are in the R-Bus Register. |
The least significant 1l6-bits of |
dividend are in the SP1l Register. |
Both divisor and dividend must be |
positive numbers upon execution of |
the DVSB code and Flag 2 (F2) must |
be 0 (cleared). An SL1 code in thel
Shift field of the microinstruction]|
directs the left shift on the T- |
Bus. The following algorithm, is |
then executed repeatedly to perform|
the complete divide. |

5-15

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

Label and Name

— e

——

Description

— ——

DVSB (Cont)

I
I
I
I
I
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
I
|
I
|
I
|
I
I
I
|
I
I
I
I
I
I
I

INC
(Incremented Add)

INCO

(Incremented Add-

|
|
|
|
|
I
|
I
|
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
I
I
|
|
|
I
|
|
|
|
|
|
| |
| I
I |
I |
I |
| |
| Enable Overflow)|
I I
| |
| |
I |
I |

I
I
I
I
I
I
I
I
I
I
I
I
|
|
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I
I
I
I
I
I
I
I

TBUS := RBUS - SBUS
UBUS(0:14) := TBUS(1l:15)
If ALU carry or F2=1 then:

BEGIN

RREG(0:14) :
RREG(15) :=
SP1(0:14) :
SP1(15) := 1
F2 := TBUS(0)

= UBUS(0:14)
SP1(0)
= SP1(1:15)

END
else:
BEGIN

RREG(0:14) := RREG(1l:15)
RREG(15) := SP1(0)
SP1(0:14) := SP1(1l:15)
SP1(15) =0 |
F2 := RREG(0)

|

END

For example, after 17 executions of
the above algorithm, a 16-bit quo-
tient is contained in the SPl-Reg-
ister and the remainder times 2 is
contained in the R-Bus Register.
When the remainder is unloaded from/|
the R-Bus Register, it is shifted
right one place (divided by 2).

[
I
I
I
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
:
I
|
I
I
I
I
I
I

to the S-Bus Register content plus
1. The result is placed on the T-

Bus. I
I
The R-Bus Register content is added|

to the S-Bus Register content plus |
1, the result placed on the T-Bus, |

and the carry and overflow is modi-|
fied in the Status Register. The |
condition code is set to CCA on the|
T-Bus Data. I

I

I
I
|
The R-Bus Register content is added|
I
|

5-16

System Microcods

Table 5-4. Function Field Code Definitions (Continued)

1 I
I
|
I

Label and Name Description |

IOR
(Inclusive OR)

|

I

I

The content of the R-Bus Register |
is logically inclusively "ored" |
with the content of the S-Bus Reg- |
ister and the result is placed on |
the T-Bus. :
The JMP Function field code directs|
a micro-jump to the ROM address |
(jump target) specified by bits 20 |

thru 31 of the ROM Output Register |
if the Skip field condition is met |
(a condition must be specified). I

The R-Bus, Shift, and Special Field|
Decoders are disabled and the U-Bus|
and T-Bus become the S-Bus Register|
content. |
I

I

The JSB Function field code directs
a micro-subroutine jump to the ROM |
address specified by bits 20 thru |
31 of the ROM Output Register if I
the Skip field code condition is |
met. If the condition is met and |

I
I
|
I
|
|
|
I
|
I
|
I
|
I
I
I
I
I
I
JSB I
I
I
I
|
I
| the JSB is executed, the Save Reg- |
I
|
!
|
I
I
I
|
I
I
I
|
I
I
I
I
I
I
|
I
I
I

I

|

I

l__

I

|

I

|

I

|

I

I

I

|

|

|

|

I

I

I

|

|

I

|

| (Jump to Sub-
} routine)
I
|
I
|
|
|
I
|
|
I
|
I
I
I
I
I
|
I
I
I
I
I
|
I
|

ister is loaded with the address of|
the line following the JSB and is |
used as a return address at the |
subroutine end (see Function field |
code RSB). During execution of the]|
JSB, the R-Bus, Shift, and Special |
Field Decoders are disabled and the]|
T-Bus and U-Bus become the S-Bus I

Register contents. |

|
MPAD I
(Multiply-Add)

The Function field code MPAD per-
forms the add, shift, and test nec-|
essary to execute a multiply algo- |
rithm. The R-Bus field of the mic-|
roinstruction is coded so that ini-|
tially the 16-bit multiplicand is |
in the R-Bus Register. The S-Bus |
field code is UBUS which is initi- |
ally all zeros. The SP3-Register |
contains the 16-bit multiplier. |
Both multiplier and multiplicand |

I

5-17

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

Label and Name

T T I

MPAD (Cont)

PNLR
(Panel Read)

|

Description |

|
must be positive numbers upon exe- |
cution of the MPAD code. An SRl |
code in the Shift field directs thel
right shift of the T-Bus. The fol-|
lowing algor ithm is executed re- |
peatedly to perform a complete mul-|
tiply.

T-BUS := R-REG plus S-REG

U-BUS(1l:15) := T-BUS(0:14)
U-BUS(0) := ALU carry
If SP3(15) = 1 then:
BEGIN
S—-REG := U-BUS
SP3(1:15) := SP3(0:14)
SP3(0) := T-BUS(1l5)
END
else:
BEGIN
S-REG(1:15) := S-REG(0:14)
SP3(1:15) := SP3(0:14)

SP3(0) := S-REG(15)
END

I
I
|
I
|
I
I
I
|
I
|
|
I
I
|
l
|
|
I
I
|
|
|
I
I
After l6-executions of the above |
algorithm, the result is a 32-bit |
word with the most significant 16 |
bits in the S-Bus Register and the |
least significant 16 bits in the |
SP3 Register. I
|
The PNLR Function field code allows]
the auxiliary control panel to sel-|
ect and display a CPU register. |
This code appears in the micropro- |
gram during execution of HALT and |
PAUSE routines. When PNLR is exe- |
cuted, the ROM Output Register |
(ROR1) and R- and S-Bus fields are |
disabled. The maintenance panel |

5-18

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

Label and Name

T

Field
Gode

T

Description

PNLR (Cont)

PNLS
(Panel Store)

QASL

I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
|
I
I
|
I
I
I
I
I
I
I
I
[
I

10001

00000

I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
interface supplies these field |
codes which put the content of the |
selected register in the associated]|
register (R- or S-Bus). The T-Bus |
and U-Bus become the R-Bus Register |
content plus the S-Bus Register |
content (one of which will be zer- |
0s). The auxiliary control panel |
completes this operation by dis- |
playing the U-Bus as the selected |
register.

[
I
The PNLS Function field code allows|
the auxiliary control panel to load|
a CPU register with the content of |
one of its switch registers. This |
code is part of the halt mode in- |
terrupt micro-routine for servicing|
a maintenance panel interrupt. When]|
PNLS is executed, the ROM Output |
Register (ROR2) Store field is dis-|
abled and the maintenance panel in-|
terface card supplies the Store |
field code respective of the sel- |
ected CPU register. A SWCH S-Bus |
field code causes the S-Bus Regist-|
er to be loaded with the content of|
the selected auxiliary control pan-|
el switch register. The T-Bus and |
U-Bus become the R-Bus Register I
content (zeros) plus the S-Bus Reg-|
ister content and, at the end of the|
cycle, the selected register is |
loaded with the U-Bus data.

|
I
The QASL Function field code causes|
a four register arithmetic shift |
left of the U-Bus, SP3 and SP1 |
Registers, and the R-Bus Register |
containing the most, next most, |
next least, and least significant |
words respectively. Shift Left One|
code (SL1l) is required in the Shift]
field. The sign bit is preserved. |

|

I

5-19

System Microcode

Table 5-4.

Function Field Code Definitions (Continued)

Label and Name

— - v -

Description

QASL (Cont)

QASR

REPC
(Repeat Until
Condition)

T-BUS := S-REG

U-BUS(0) := T-BUS(0)
U-BUS(1:14) := T-BUS(2:15)
U-BUS(15) SP3(0)
SP3(0:14) := SP3(1:15)
SP3(15) : P1(0)
SP1(0:14) := SP1(1:15)
SP1(15) := R-REG(0)
R-REG(0:14) := R-REG(1:15)
R-REG(15) := 0

n
nw oo

The QASR function field code causes
a four register arithmetic shift
right of the U-Bus, SP3 and SP1
Registers, and the S-Bus Register
containing the most, next most, next
least, and least significant words
respectively. Shift Right One code
(SR1) is required in the Shift
field. The sign bit is propagated.

T-BUS := R-REG

U-BUS(0:1) := T-BUS(0)
U-BUS(2:15) := T-BUS(1l:14)
SP3(0) := T-BUS(15)
SP3(1:15) := SP3(0:14)
SP1(0) := SP3(15)
SP1(1:15) := SP1(0:14)
S-REG(0) := SP1(1l5)
S-REG(1:15) := S-REG(0:14)

The REPC Function field code causes|
the next microinstruction to be ex-|
ecuted repeatedly until the Skip |
field condition of that microin- |
struction is met. During execu- |
tion, the T-Bus becomes the R-Bus |
Register content plus the S-Bus |
Register content. The REPC code is|
decoded from ROR2 and, at that time|
disables the RAR increment function]
and ROR1l load function and sets the|
Repeat FF. The RAR then contains |
the address of the microinstruction]|
following the one to be repeated l
and ROR1 contains the microinstruc-|
tion to be repeated. The next cycle|

[

5-20

|
I
I
I
I
I
|
I
|
|
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
|
I
I
I
I
I
I
|
I
I
l
|
I
I
I
I
I
I
I

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

— . — I

Label and Name Description |

I
REPC (Cont) loads ROR2 and executes the micro- |
instruction to be repeated. As long|
as the Repeat FF remains set, the |
content of ROR1 and ROR2 does not |
change and is executed each cycle. |
When the Skip field condition is I
met, the Repeat FF is cleared, the |
pipeline is filled correctly, and |
the next microinstruction is fetch-|
ed in the usual manner. 1

|

REPN
(Repeat N Times)

|

I

|

I

I

I

I

I

I

I

I

|

I

I

I

| The REPN Function field code oper-

| ates in the same manner as the REPC|
| code previously described. The |
| difference is that REPN loads a Re-|
| peat Counter Register with the con-|
| tents of the microinstruction Skip |
| field. Bits 1 thru 5 of the count-|
| er become ROR2 bits 5 thru 9; bit 0]
| of the counter becomes a 1. The |
| counter content is then the two’s |
| complement of the number of repeats|
| to be performed. To utilize the I
| counter, the repeated microinstruc-|
| tion contains a Special field code |
| INCTR (Increment Counter) and a |
| Skip field condition CTRM (Counter |
| Maximum) . |
I I
I I
I |
I

I

|

I

I

I

|

I

I

|

I

I

|

I

I

I

|

The Function field code ROM loads
the R-Bus Register with a 16-bit
constant obtained from the microin-|
struction. The ROM code is decoded |

ROM

from RORl, loading the the R-Bus |
Register with bits 16 thru 31 of |
ROR1. The T-Bus then becomes the |
R-Bus Register content plus the S- |
Bus Register content. The R-Bus, |
Shift, Special, and Skip Field De- |
coders are disabled by the ROM |
code. |

|

I

I

The Function field code ROMI loads
the R-Bus Register with a 16-bit
constant obtained from the microin-|
struction. The ROMI code is decod-|
ed from RORl, loading the R-Bus |
l

ROMI
(ROM Inclusive)

5-21

System Microcode

Table 5-4. Function Field Code Definitions (Continued)

Label and: Name

ROMI (Cont)

ROMN
(ROM And)

ROMX
(ROM Exclusive)

SUB
(Subtract)

SUBO
(Subtract—-Enable
Over flow)

1
I
I
l

Field
Code

Description |

00011

00010

01111

01011

——— e ——— e —_—_— e ——_ e ———

~— - et W . o "t . T o S ot

|
Register with ROR1 bits 16 thru 31.|
The T-Bus then becomes the R-Bus |
Register content inclusive "ored" |
with the S-Bus Register content. |
The R-Bus, Shift, Special, and Skip]|
Field Decoders are disabled by the |
ROMI code. I
I
|
|

The Function field code ROMN loads
the R-Bus Register with a 16-bit
constant obtained from the microin-|
struction. The ROMN code is decod-|
ed from RORl, loading the R-Bus |
Register with RORl bits 16 thru 31.|
The T-Bus becomes the R-Bus Regist-|
er content logically "anded" with |
the S-Bus Register content. The R-|
Bus, Shift, Special, and Skip Field|
Decoders are disabled by the ROMN |
code. |
|
|

The Function field code ROMX loads
the R-Bus Register with a 16-bit |
constant obtained from the microin-|
struction. The ROMX code is decod-|
ed from RORl, loading the R-Bus |
Register with ROR1l bits 16 thru 31.]|
The T-Bus becomes the R-Bus Regist-—|
er content exclusive "ored" with |
the S-Bus Register content. The R-|
Bus, Special, Shift, and Skip Field|
Decoders are disabled by the ROMX |
code.

The content of the S-Bus Register
is subtracted from the content of
the R-Bus Register and the result
is placed on the T-Bus.

is subtracted from the content of
the R-Bus Register and the result
is placed on the T-Bus. Carry and
overflow are modified in the Status
Register and condition code CCA is

I
|
I
|
I
|
|
The content of the S-Bus Register |
I
I
|
I
I
set on the T-Bus data. g

System Microcode

Table 5-4. Function Field Code Definitions (Continued)
1 1
Field
Label and Name Code Description
. UBNT 01001 The Function field code UBNT is
(Unconditional used to perform an unconditional

Bounds Test)

XOR
(Exclusive OR)

I
I
I
I
[
I
|
|
|
I
I
|
|
I
I
I
I
|
|
I
I
I
I
| 00110
|

I

|

I

I
I
|
I
|
I
I
|
|
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I

bounds test of an address. Execu-
tion of this code results in the
content of the R-Bus Register minus
the content of the S-Bus Register
being placed on the T-Bus. If RRZ,
RLZ, LRZ,LLZ is specified, then UBNT
does a "CAD" instead of a "SUB".
The R- and S-Bus fields are coded
so that this result is a negative
number (CARRY = 0) if a bounds vi-
olation occurs. The response to a
bounds violation is a micro-jump to
ROM address 0003. If no violation
occurs (CARRY = 1), the next micro-
instruction is executed in the us-
manner.

— T — — s —— ——— —— — e, e\ . e, . e — — e, e e

The content of the R-Bus Register
is exclusive "ored" with che con-
tent of the S-Bus Register and the
result is placed on the T-Bus.

System Microcode

Table 5-5. Shift Field Code Definitions

o ——— ———— - ——— Y - ———— — o —— | ———— — Y — — - —. - —— o —_————. -— ——

(Shift Right 1)

"""""""""""" T T
| Field |
Label and Name % Code :
| I
(blank) | 111 |
| |
| I
LLZ | o001 |
(Left to Left and| |
Zero) | |
| |
I |
LRZ | 000 |
(Left to Right | |
and Zero) |]
I |
I I
RLZ | 101 |
(Right to lLeft | I
and Zero) I |
| I
f |
SWAB | 110 |
(Swap Bytes) | |
| I
I |
I |
| I
RRZ | 100 |
(Right to Right | |
and Zero) } }
| I
SL1 | 010 |
(shift Left 1) | |
| I
I I
I |
| |
I |
| I
SR1 | 011 |
| |
I I
| I
I |
I I
I I
I

|
I
_
|
No shift, the T-Bus word is placed |
directly on the U-Bus. |

The Shift field code LLZ places the
left byte of the T-Bus in the left

byte of the U-Bus and places zeros
in the right byte of the U-Bus.

The Shift field code LRZ places the
left byte of the T-Bus in the right
byte of the U-Bus and places zeros
in the left byte of the U-Bus.

|

I

l

|

[

|

|

I

|

|

I

The Shift field code RLZ places thel
right byte of the T-Bus in the left|
byte of the U-Bus and places zeros |
in the right byte of the U-Bus. |
I

|

|

|

|

|

|

|

|

|

The Shift field code SWAB places
the left byte of the T-Bus in the
right byte of the U-Bus and the
right byte of the T-Bus in the left
byte of the U-Bus.

The Shift field code RRZ places the
right byte of the T-Bus in the

right byte of the U-Bus and places
zeros in the left byte of the U-Bus|

|
The Shift field code SL1 shifts thel
T-Bus one place left onto the U- I
Bus. Refer to the Function field |
code descriptions for the. action |
taken when used with Function field|
codes CRS, CTSD, CTSS, DVSB, and |
TASL. I

The Shift field code SR1 shifts the]
T-Bus logically one place right on-|
to the U-Bus. Refer to the Function|
field code descriptions for the ac-|
tion taken when used with Function |
field codes CRS, CTSD, CTSS, MPAD, |
and TASR. |

I

—— - ————— — T ——— - — —— - p— - — - —— " ",V -~ — ——— -, — . -~ . . - " . . - — - v o -

5-24

System Microcode

Store Field Code Definitions

Table 5-6.
S B
	Field
Label and Name	Code
Y	
I NOP	11111
(No Operation)	
	o
BSPO	00101
(Bus to Scratch	
Pad 0)	
I	
I BSP1	00100
(Bus to Scratch	
Pad 1)	:
I	
I BUS	00111
[[
CTRH	01111
: (Counter High) “ ﬂ	
I	
I CTRL	01110
(Counter Iow)	
	[
I DB | 10011 |
I (Data Base) : |

|

| | I
[DL | 11100 |
: (Data Limit) | |
| |

I I I
| I0A | 00001 |
| (I/0 Address) | |
I | |
| | |
| ! |
| | |
| | |
I I0D | 00010 |
I (I/0 Data) | |
| | |
I I I
| I |

———

Description

" -

The Store field code BSPO stores
the U-Bus into ACOR or DCOR, de-
pending on the MCU field option se-
lected and into SPO. Disables the
Special field and enables the MCU
options, one of which must be used.

Same as BSPO except SP1l is used.

Same as BSPO except none of the
scratch pad registers are used.

The Store field code CTRH stores U-
Bus bits 4 thru 9 in CNTR Register
bits 0 thru 5.

The Store field code CTRL stores U-
Bus bits 10 thru 15 in CNTR Regist-
er‘bits 0 thru 5.

DB stores the
the DB Regist-

The Store field code
16-bit U-Bus word in
er.

DL stores the
the DL Regist-

The Store field code
16-bit U-Bus word in
er.

The Store field code IOA sends the
command on the U-Bus (bits 5 thru
7) to the device whose address is
on the U-Bus in bits 8 thru 15.
U-Bus bit 0 = 1 sends a service-out
signal to the device.

The Store field code IOD stores the
16-bit word currently on the U-Bus
in the Direct Output Data (DOD)
Register.

I
I
I
I
I
I
|
I
|
|
I
I
|
I
|
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
|
I
|
I
I
I
l
I
|
I
I
|
|
I
l
I
l
I
I
I

5-25

System Microcode

Table 5-6. Store Field Code Definitions (Continued)

— - -7 S e o e

(Memory Register)

|
| | Field |
: Label and Name : Code :
|7 T T | T
MREG | 00011 |
| |
I I

P 10000
(Program Count)
PB 11110
(Program Base)
PCLK 00000
(Process Clock)
I
PL | 01001
(Program Limit) |
|
|
PUSH | 01000
| ~
I
|
|
I
Q | 10001
(Stack Marker |
Pointer) |
I

————— —-— - ——

|
I
Description |
I
|

The Store field code MREG is used |
to store data in an address that I
lies in a TOS register (i.e., S > E|
> SM where 8 = SR + SM). Prior to |
executing MREG, the value E minus |
S is placed in the SP1l Register. I
During execution, TNAME becomes the
sum of NAME and SP1(14:15) and the
TOS registers are loaded as fol-
lows:

If TNAME = 00 then TR0 := U-BUS
If TNAME = 01 then TRl := U-BUS
If TNAME = 10 then TR2 := U-BUS
If TNAME = 11 then TR3 := U-BUS

Due to the pipeline effect, a TOS
register referenced in the R- or S-
Bus field of the following microin-
struction assumes the above des-
cribed TNAME,

The Store field code P stores the
16-bit U-Bus word in the P Regist-
er.

16-bit U-Bus word in the PB Regist-
er.

The Process Clock, PCLK, is placed
in the S-Bus Register.

The Store field code PL stores the
16-bit U-Bus word in the PL Regist-
er.

The Store field code PUSH effec-
tively moves all stack elements
down one location and loads the U-
Bus word on the TOS. Refer to par-
agraph 5-3.

The Store field code Q stores the
16-bit U-Bus word in the Q Regist-

|
I
I
I
|
|
I
I
|
I
I
I
I
|
I
I
I
|
I
I
The Store field code PB stores the |
I
I
|
I
|
I
I
|
I
I
|
I
I
I
I
I
|
I
er. |
I

— ————

5-26

SyStem Microcode

Table 5-6. Store Field Code Definitions (Continued)

Label and Name Description

The Store field code QUP effective-
ly inserts the U-Bus word into the
stack at location SM plus one.
Refer to para 5-5.

QUP
(Stack Marker
Pointer UP)

The Store field code RA stores the |
U-Bus word in the register named RA

by the Namer Register.* Refer to
para 2-96 and 5-2.

RA

The Store field code RAR stores
bits 0 thru 15 of the U-Bus in ROM
Address Register bits 0 thru 15.
The intent of this code is to force|

I
I
I
|
[
I
I
I
I
I
|
|
I
|
I
RAR I
I
|
I
: the processor to a new microprogram|
I
I
I
I
I
I
I
I
I
I
|
I
I
[
I
I
I
I

|
|
|
|
I
|
|
|
|
I
I
|
I
I
(ROM Address |
Register) I
address specified by the U-Bus |

word. Execution of the RAR code re-|

quires three microcycles. The first|
cycle loads the ROM Address Regist-|
er and the next two cycles are NOPs |
allowing the ROM Output Registers
(ROR1 and ROR2) to be loaded with
the new microinstruction.

RB 11010 The Store field code RB stores the
U-Bus word in the register named RB
by the Namer Register.* Refer to
para 2-96 and 5-2.

RC

11001 The Store field code RC stores the

I
|
I
|
I
I
|
I
I
I
U-Bus word in the register named RC|
by the Namer Register.* Refer to |
para 2-96 and 5-2. {
|
|
I
I
I
I
|

11000 The Store field code RD stores the

U-Bus word in the register named RD
by the Namer Register.* Refer to

para 2-96 and 5-2.

SBR
(Stack Bank
Register)

00110 The Store field code SBR stores U-
Bus bits 12:15 in the Bank Register

specified in the MCU field code.

— S -

often are used by the microprogram as scratch rad registers
when not used otherwise.

|
I
I
*True only if RA:RD are being used as part of the stack, RA:RD |
I
I
!

-

— " —— - o ———

System Microcode

Table 5-6. Store Field Code Definitions (Continued)

w—— .,-l-._—».-»-.-.-—.—r— - o - —

| Field |
Label and Name | Code |
|__ I
| |
SBR (Cont) |
I
|
SM | 10010
(Stack Memory |
Pointer) |
|
SPO | 01101
(Scratch Pad 0) }
SP1 | 01100
(Scratch Pad 1) |
|
Sp2 | 11101
(Scratch Pad 2) |
I
SP3 | 10101
(Scratch Pad 3) |
|
STA | 10100
(Status) |
|
X | 10110
(Index) ‘
Z | 01010
(Stack Limit |
Pointer) |

— - ———— "

Description

S <~ W Sk S ———

Execution of the Spec1al field is
inhibited.

The Store field code SM stores the
U-Bus word in the SM Register.

The Store field code SP0 stores
U-Bus word in the SP0 Register.

The Store field code SPl stores
U-Bus word in the SP1l Register.

The Store field code SP2 stores
U-Bus word in the SP2 Register.

kThe Store field code SP3 stores
U-Bus word in the SP3 Register.

The Store field code STA stores
U-Bus word in the Status Reglste

The Store field code X stores the
U-Bus word in the X Register.

The Store field code Z stores the
U-Bus word in the Z Register.

he

(D

(D

(D

he

|
I
|
I
|
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I

- — - ———————— " - - o ~——

System Microcode

Table 5-7. Special'Field Code Definitions

—

(Clear CPX1) er bits as specified by the true

bits on the U-Bus.

U-Bus Bit 0 Halt

1 Run
2 System Halt
3 (Unused)

Bits 4 (MSB) through 7
(LSB) code the following
functions:

Octal Code 0 NOP
1 Clear BNDV
2 Clear Ille-|
gal Address]|

| o | [|
| | Field | I
| Label and Name | Code | Description |
II____,W___,-,.*_‘__\. ““'Il - || - I :
| (blank) | 11111 | No Special field operation. :
| | I
| cca | 11110 | The Special field code CCA sets thel
(Condition Code A)		condition code bits to CCL (01) if
		the T-Bus word is less than zero
		(T(0) = 1), CCE (10) if the T-Bus
		word is equal to zero (Signal T = 0}
		is true), or CCG (00) if the T-Bus
		word is greater than zero (T(0) = 0
		and signal T = 0 is false). I
CCB	00000	The Special field code CCB sets the]
(Condition Code B)		condition code to CCL (01) if bits
[8:15 of the U-Bus form a special	
		ASCII character, CCE (10) if an
l I	alphabetic ASCII character, or CCG	
		(00) if a numeric ASCII character.
I CCE	11101	The Special field code CCE sets the]
(Condition Code E)		condition code bits to CCE (10).
[
CCG	11100	The Special field code CCG sets the]
(Condition Code G)		condition code bits to CCG (00).
		[
I CCL	11011	The Special field code CCL sets thel
:(Condition Code L)		condition code bits to CCL (01).
CCPX	00001	Clears the Interrupt Status Regist-
I	I	
[
[
I I		
I	I I	
I		
	I	
I		
	I	
I		
l | |
I | |

— ————— - ———— -

5-29

System Microcode

Table 5-7. Special Field Code Definitions (Continued)

CCRY
(Clear Carry)

CCz
(Condition Code
Zero)

Descr iption

10

11

16

17

Clear CPU
Timer
Clear Sys-
tem Parity
Error

Clear Ad-
dress Par-

ity Error
Clear Data
Parity Er-
ror

Clear Mod-
ule Inter-
rupt

Clear Ex-
ternal In-
terrupt
Power Fail
Turn-Off
Interrupt
Reverse
System Par-
ity
Reverse

MCUD Parity

8 Diagnostic NIRTOCIR

9 (Unused)

10 Diagnostic Set CPX1l
(Bits 1:18)

11 Clear ICS Flag

12 Clear DISP Flag

13 (Unused)
14 Diagnostic Freeze
15 Clear Panel FF's

The Special field code CCRY clears
carry in the Status Register.

The Special field code CCZ sets the
condition code bits to CCE (10)

if

the T-Bus word is equal to zero

(signal T

0 true) or CCG (00)
the T-Bus word is not equal to zero

(signal T = 0 false).

if

5-30

System Microcode

Table 5-7. Special Field Code Definitions (Continued)

Description

1
| Field
Label and Name | Code
|
I
CF1 | 10010
(Clear Flag 1) |
I
CF2 | 10001
(Clear Flag 2) |
I
CF3 | 00111
(Clear Flag 3) |
I
CLIB | 01110
(Clear Indirect |
Bit) I
|
[
|
CLO | 11001
(Clear Overflow) |
I
CLSR | 00010
(Clear SR) |
|
|
|
CTF | 00110
(Set Carry to |
Flag 1) |
I
DCSR | 01001
(Decrement SR) |
[
I
FHB | 01101
(Flag to High |
Bit) |
[
HBF | 01100
(High Bit to
Flag 1) |
|
INCN | 01010
(Increment Name) |
|
I
INCT | 01011
(Increment |
Counter) |
|

The Special field code CFl clears
CPU Flag 1 FF.

The Special field code CF2 clears
CPU Flag 2 FF.

CPU Flag 3 FF.

At the end of the cycle, CLIB sets
the Indirect Bit FF which masks the
indirect line until a NEXT or JLUI
option in the Skip field is en-
countered.

I

|

|

|

I

|

|

|

|

|

|
The Special field code CF3 clears :
I

|

I

I

|

|

|
The Special field code CLO clears |
the status word overflow bit. |
I

The Special field code CLSR clears |
the SR Register. This is an asyn- |
chronous reset. No other SR opera-|
tion is allowed during that time. |
|

|

The Special field code CTF stores
the ALU carry bit in the Flag 1 FF.|
|

|
The Special field code DCSR decre- |

ments the content of the SR Regist-
er by a count of one.

fers the content of the Flag 1 FF

|
I
I
The Special field code FHB trans- |
|
to bit 0 of the U-Bus. [

I

|

The Special field code HBF trans-
fers the content of U-Bus bit 0 to |

the Flag 1 FF. I

The Special field code INCN incre- |
ments the content of the Name Reg-
ister by a count of one.

ments the content of the Counter

|
I
I
The Special field code INCT incre- |
|
Register by a count of one. I

I

5-31

System Microcode

(Set Flag 3)

Flag 3 FF.

Table 5-7. Special Field Code Definitions (Continued)

I 1] T o I
| | Field | |
| Label and Name | Code | Description |
I | | _ R
I I I |
| INSR | 01000 | The Special field code INSR incre- |
| (Increment SR) | | ments the content of the SR Regist-|
{ ; | er by a count of one.

I I
| LBF | 01111 | The Special field code IBF trans- |
| (Low Bit to | | fers the content of U-Bus bit 15 to]
I Flag 2) l | the Flag 2 FF. I
I I | I
: NOP I 10111 : No Operation {
| POP | 10111 | The Special field code POP moves I
| I | the stack elements up one location |
| | | such that the second element of thel
| I | stack (S minus one) becomes the top|
I I | element (S), etc. The previous top|
I | | of stack element is lost. When ex-|
		ecuted, this is accomplished by de-
I	crementing the SR Register and in-	
[crementing the Namer Register.	
		Refer to para 5-4. ‘
I I I I		
POPA	10110	The Special field code POPA func-
(Pop setting CCA)		tions the same as Special field
		code POP with the addition that the]
		condition code is set ta CCL (01)
		if the T-Bus word is less than ze-
I	ro, to CCE (10) if the T-Bus word	
I I	is equal to zero, or to CCG (00) if]	
I		the T-Bus word is greater than zero
I		I
SCRY	10100	The Special field code SCRY sets I
(Set Carry Bit)		Carry in the Status Register. I
	I I	
SDFG	00101	The Special field code SDFG sets
(Set Dispatcher		Dispatcher Flag (bit 12 of Inter-
Flag) I	rupt Status Register CPXl). 1	
I [
SF1	10011	The Special field code SF1l sets CPU
(Set Flag 1) I	Flag 1 FF. I	
I I I		
I SF2	10000	The Special field code SF2 sets CPU
(Set Flag 2)	‘ Flag 2 FF. I	
I |
[SF3 | 00011 | The Special field code SF3 sets CPU|
[| I I
I I N I

5-32

System Microcode

(Set Overflow)

status word overflow bit.

Table 5-7. Special Field Code Definitions (Continued)
T 1 I o T T
| Field | |
Label and Name | Code | Description |
N l |
| | |
SIFG | 00100 | The Special field code SIFG sets |
(Set Interrupt | | the Interrupt Flag (bit 11 of In- |
Flag) | | terrupt Status Register CPX1). |
| | |
SOV | 11000 | The Special field code SOV sets the]|
| | I
| | |

—— —— ——— - — ———

—

5-33

System Microcode

——— s i e e e — . — ———— — —— — — — —— — — — —— — — —— ———— —— — — oo oo oomns S st e, S

Table 5-8. MCU Option Field Code Definitions

(DB-Relative)

T 1
| Field
Label and Name | Code
|
- T
ABS | 00000
(Absolute) |
|
|
|
|
I
I
CMD | 00010
(Command) :
I
|
|
I
I
|
|
|
CRL | 00001
(Control) I
|
|
|
|
I
|
|
I
[
I
|
|
DATA | 10001
I
|
I
|
DB | 10000
|
|
|
|

——

Description

I
|
|
|
|
The MCU option code ABS specifies |
the ABS Register which may be read |
into S-Bus (12:15) with "RBR" or |
stored from U-Bus (12:15) with |
"SBR". This bank register is used |
as a scratch pad bank register by |
the microcode. I

|

|

|

The MCU option code CMD enables the
bus options (BUS, BSPO, and BSP1l)

in the Store field to store the U- |
Bus into the address CPU output
register, ACOR, and to initiate a
low-request command. When selected,
the ACOR is outputed to the MCU-Bus
and the command and module number
("TO" lines) are cbtained from the
TO and MOP Registers.

The MCU option code CRL enables the
Store field bus options (BUS, BSPO,
and BSPl) to load the TO and MOP
Registers from the U-Bus.

MOP(0:1) := U-BUS(10:11) Command
TO(2:4) := U-BUS(13:15) Address

user defined command for the module
whose address is contained in the
TO Register. The CPU freezes until
any pending MCU redquests are com-
pleted.

The MCU option code DATA enables
Store field bus options (as in CRL)
to store the U-Bus into DCOR and to
initiate a high-request command.

The MCU option code DB functions
the same as ABS except that it
specifies the DB-Bank Register used

|
I
|
I
|
|
|
|
I
|
|
I
|
|
|
|
The MOP Register then contains a |
I
|
I
|
I
I
|
I
I
|
|
|
I
|
with DB-relative addressing. I
I

—— ———— - —— -

5-34

Table 5-8. MCU Option

System Microcode

Field Code Definitions (Continued)

Label and Name

Field
Code

Description

DPOP
(Data-POP)

NIR
(Next Instruction
Register)

OPND
(Operand Register)

PB
(PB-Relative)

|

!

|

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I RND
} (Returned Data)
|
|
|
[
|
I
I
I
|
I
|
I
I
I
|
I
I
|
|
|
|
|
|
I

ROA

ROD

- —

10010

01001

11001

01000

10100

10111

11100

00111

10111

The DPOP MCU option code functions
the same as DATA and also pops the
stack.

The MCU option code NIR enables thel
Store field bus options (as in CRL) |
to store the U-Bus into DCOR and to|
initiate a high-request command. On]|
the following select cycle, DCOR is]|
read into the MCU-Bus and stored in]|
the CPU NIR Register. I

I
Same as NIR except that the MCU-Bus|
is stored in the CPU OPND Register.|

I
Same as ABS, except that it speci- |
fies the PB-Bank Register used in |
PB-relative addressing. 5
The MCU option code RND enables the|
Store field bus options (as in CRL)|
to store the U-Bus in ACOR and to |
initiate a low-request command. The]|

DB-Bank Register generates the mod-|
ule number used to initiate a data

fetch from memory. The returned
data is loaded into the NIR.

I
I
I
|
Same as RND, except that the PB- |
Bank Register generates the module |
number. I

I

|

I

Same as RND, except that the Stack-
Bank Register generates the module

number. |

I
Same as RND, except that the ABS- |
Bank Register generates the module |
number and the returned data is |
loaded into the OPND Register. |
I

Same as RND,except that the DB-Bank|
Register generates the module num- |

ber and the returned data is loaded|

into the OPND Register. I
I

5-35

System Microcode

5-8. MCU Option Field Code Definitions (Continued)

- -1

Label and Name |

i

Field
Code

Descr iption I

-~ — A . — s Sk o . o, ek e ?

|
ROND |

RONP I
RONS
ROP

ROS

WRA

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
|
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

wn

f

10011

01011

11011

01111

11111

11000

00110

10110

|

Same as RND, except that the re- I
turned data is stored in both the |
NIR and the OPND Register. {

|

Same as RNP, except that the re-
turned data is stored in both the
NIR and the OPND Register.

Same as RNS, except that the re-
turned data is stored in both the
NIR and the OPND Register.

Same as RNP, except that the re-
returned data is stored in the OPND
Register.

Same as RNS, except that the re-
turned data is stored in the OPND
Register.

I

i

I

I

|

I

I

I

I

I

|

|

I

I

I

Same as ABS, except that the Stack-|
Bank Register is specified and is |
used with DB-, Q-, or S-relative I
addressing. 1
The MCU option code WRA enables the|
Store field bus options (as in CRL)|
to store the U-Bus in ACOR and to |
initiate a low-request command. The|l
ABS-Bank Register generates the I
module number used to initiate a I
data store into memory. On the sel-|
ect cycle, the addressed memory |
module interprets the MCU-Bus data |
as an address and goes busy. The |
module stays busy until it receives|
the data to be stored (normally I
sent on the following cycle with a |
microcode BUS DATA instruction) and|
completes the write cycle, or until|
its timer runs down. |
|

I

Same as WRA, except that the DB- -
Bank Register generates the module |

number. |

e o

5-36

System Microcode

Table 5-8. MCU Option Field Code Definitions (Continued)

—— — — o e S .

Bank Register generates the module
number.

T 1 I
| Field | I
Label and Name | Code | Description |
_ | I , |
I I |
| I l
WRS | 11110 | Same as WRA, except that the Stack-|
| |
| |
l

System Microcode

Table 5-9.

Label and Name

—— -

Skip Field Code Definitions

Description

BIT6

BITS8

CRRY
(Carry)

CTRM

EVEN

Fl
(Flag 1)

F2
(Flag 2)

F3
(Flag 3)

INDR
(Indirect)

JLUI

NCRY

(Counter Max)

I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
|
|
I
|
I
l
I
l
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I

The Skip field
NOP2 FF if bit
is a logic 1.

The Skip field
NOP2 FF if bit
is a logic 1.

The Skip field
NOP2 FF if the
logic 1.

The Skip field
NOP2 FF if the
ones.

The Skip field
NOP2 FF if the

even number (U-Bus bit 15 is a

logic 0).
The Skip field

NOP2 FF if Flag 1 FF is set.

The Skip field

"NOP2 FF if Flag 2 FF is set.

The Skip field

NOP2 FF if Flag 3 FF is set.

The Skip field
NOP2 FF if the

set and the indirect signal is a

logic 1.

The Skip field

microjump to the ROM address speci-
fied by the LUT providing the indi-

rect condition

code) is not met. If the indirect
condition is met, the microjump is

not executed.

The Skip field

o —) s —— o s, b

code BIT6 sets the
6 of the U-Bus word

code BIT8 sets the
8 of the U-Bus word

code CRRY sets the
ALU carry out is a

code CTRM sets the
counter contains all

code EVEN sets the
U-Bus word is an

code F1l sets the

code F2 sets the

code F3 sets the

code INDR sets the
Indirect Bit FF is
code JLUI causes a

(Skip field INDR

code NCRY sets the

5-38

Table 5-9. Skip Field

System Microcode

Code Definitions (Continued)

—r-
| Field

Label and Name Code

Descr iption |

NCRY (Cont)

NEG 01011

11101

r
|
I
I
I
I
|
I
|
I
I
I
|
NEXT ;
|
|
|
I
I
I
|
|
I

a b

...Mem. Sel.

cycle

DATA->NIR NIR->LUT

~

I
I
I
I
I
|
|
|
I
I

C

|

I
NOP2 FF if the carry out from the |
ALU is zero.

NOP2 FF if the U-Bus word is a heg-

I

|

The Skip field code NEG sets the I
|

(U-Bus bit 0 is a |

ative number
logic 1).

Terminates current instruction and
initiates the sequence necessary to
begin execution of the next in-
struction. If stackop A has just
been executed and stackop B is not
a NOP, then the hardware executes
stackop B. Otherwise, the action
shown in the timing figure below
takes place (a,b,c,d,e, f are equal
length CPU clock cycles).

f

d e

Execute
l1st line
of mic-
r ocode
of new
instr.

NEXT NOP 2
P+1->P

Select cycle

RANK1->
RANK?2

(If memory
reference,
force PADD, |
BASE to R, |
S-BUS Reg’s.)

BUSL, RWP
Issue LOREQ
LuT->
VBUS->
ROM~->
RANK1
NIR->CIR

|

I

|
Time periods a, b, ¢ (if present), |
and d occur in the currently exe- |
cuting instruction. Time periods al
and b must occur before d for maxi-|
mum execution speed. Otherwise, a |
CPU freeze will occur at 4. Time |
periods a and b result from the I
next instruction prefetch of the |
I

System Microcode

Table 5-9. Skip Field

Code Definitions (Continued)

I T
| Field |
Label and Name | Code |
| |

NEXT (Cont)

NF 1
(Not Flag 1)

NF2
(Not Flag 2)

NOFL
(Not Overflow)

e e e e — — — — — St— S — — e s et S S e i et S St o S St ebree e s oo e s, o e e i e S s St e st s ot tere e e e

I
I
I
I
[
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I
[
I
I
I
I
|
I
l
I
I
l
I
I

I
|
Descripticn |
I
|

current instruction. Time period c|
may or may not be present depending|
on the length of the instruction. |
Time period d is the last line of |
the current instruction. It initi-|
ates a next instruction prefetch, |
transfers NIR to CIR, and applies |
the address on the VBUS (normally |
using the LUT output) to the ROM |
input. The ROM word at this ad- |
dress is stored in RANKl. 1In addi-|
tion, the NOP2 FF is set. Time |
period e is used to increment the P|
Register, transfer RANK1l to RANK2, |
and, if the new instruction is a |
memory-reference type, load the R- |
and S-Bus Registers with the Pre- |
adder output and the proper base |
register. This is also the select |
cycle for the next instruction pre-|
fetch if there is no MCU conflict. |
During time period f,the first line|
of the new instruction is executed.|

I
The above is the normal sequence of|
operation of NEXT. This sequence is|
modified in the event an interrupt |
is pending or the microcode line is|
"...DATA NEXT". NEZXT also clears
Fl, F2, F3, CNTR, Subroutine Flag
FF, and the ABS-Bank Register.

The Skip field code NF1l sets the
NOP2 FF if Flag 1 FF is cleared.

NOP2 FF if Flag 2 FF is cleared.

The Skip field code NOFL sets the
NOP2 FF if the ALU overflow bit is
not a logic 1. Causes conditional
jump and JSB to be two—cycle in-

I
I
I
I
I
|
|
The Skip field code NF2 sets the f
I
I
|
I
|
structions. {

System Microcode

Table 5-9. Skip Field Code Definitions (Continued)

(SR Not Zero)

NOP2 FF if the SR Register content
is not zero.

I
I
I
I
I
I
I
I
I
I
I
[
I
l
I
I
I
I
I
I
I

- 1]
| Field |
Label and Name | Code | Description
I I _
| I
NOP | 11111 | No operation.
| |
NPRV | 10110 | The Skip field code NPRV sets the
(Not Privileged) | | NOP2 FF if the privileged mode bit
| | (status word bit 0) is zero.
| I
NSME | 00100 | The Skip field code NSME sets the
(Not Same) | | NOP2 FF if all bits of the T-Bus
[| are not the same.
I |
NZRO | 00001 | The Skip field code NZRO sets the
(Not Zero) | | NOP2 FF if the T-Bus word is not
| | equal to zero.
| |
ODD | 00011 | The Skip field code ODD sets the
| | NOP2 FF if the U-Bus word is an oddl|
| | number (U-Bus bit 15 is a logic 1).
| |
POS | 01010 | The Skip field code POS sets the
(Positive) | | NOP2 FF if the U-Bus word is a pos-
| | itive number (U-Bus bit 0 is a log-
| | ic 0).
| |
RSB | 11000 | The Skip field code RSB causes a
(Return from | | microjump to the ROM address con-
Subroutine) | | tained in the Save Register.
| I
SR4 | 10010 | The Skip field code SR4 sets the
(SR=4) | | NOP2 FF if the SR Register content
I | is equal to four.
I |
SRL2 | 10101 | The Skip field code SRL2 sets the
(SR<2) | | NOP2 FF if the SR Register content
| | is less than two.
I I
SRL3 [10111 | The Skip field code SRL3 sets the
(SR<3) | | NOP2 FF if the SR Register content
| | is less than three.
| |
SRN 4 | 10011 | The Skip field code SRN4 sets the
(SR Not 4) | | NOP2 FF if the SR Register content
| | is not four.
| I
SRNZ | 10001 | The Skip field code SRNZ sets the
I |
| |
I |

System Microcode

Table 5-9. Skip Field

Code Definitions (Continued)

Description

| 1]
I | Field |
| Label and Name | Code |
| [|
| | |
| SRZ | 10000 |
| (SR Zero) I |
| | |
[| |
| TEST | 11010 |
| | |
| I |
I | |
UNC	11110
(Unconditional)	
: ZERO : 00000 :	
I	
I | [
I | |

The Skip field code SRZ sets the
NOP2 FF if the SR Register content
is equal to zero.

The Skip field code TEST sets the
NOP2 FF if any enabled interrupt is
pending.

The Skip field code UNC and/or un-
conditional JMP ‘s set the NOP2 FF.

The Skip field code ZERO sets the
NOP2 FF if the T-Bus word is equal
to zero.

5-42

NOTES

System Microcode

System Microcode

NOTES

5

44

MODULE CONTROL UNIT/
MAIN MEMORY OVERVIEW || vi

This section contains principles of operation and servicing in-
formation for the computer system’s Module Control Unit (MCU) and
Main Memory.

6-1 MCU OPERATIONS

As previously discussed in paragraph 2-15, each computer module
gains access to the CTL Bus through its MCU. For any given mod-
ule, the MCU may be located on a single dedicated PCA, distrib-
uted on multiple PCA’s, or located on a small part of a PCA.
Whatever its physical configuration may be however, each MCU
per forms the same function of interfacing its associated module
with all other modules connected to the CTL Bus. Although the
following discussion of MCU operations is specifically for the
Central Processor Module MCU and Main Memory s MCU logic circuit,
it is representative of any of the other MCU logic circuits.
Since the purpose of the MCU is to control CTL-Bus transmissions,
its operations will be discussed dynamically by following the
sequence of logical operations involved for each of the different
types of CTL-Bus transmissions between the CPU and memory. (For
information concerning the MCU’s operations with the I1/0 Proces-
sor, refer to Section VII.)

6-2. Fetch Next Instruction Operations

The operations involved in order to fetch an instruction from
memory consist of three major steps.

a. The CPU transmits the address of an instruction word to mem-
ory and tells memory what to do with that address.

b. Memory receives the address, reads the contents of the ad-
dressed location, and transmits the contents back to the CPU.

c. The CPU receives the instruction word and loads it into the
NIR.

6-3. CPU ADDRESS TRANSMIT. When a NEXT instruction 1is decoded
from the ROM Skip field, a NEXT signal loads the contents of the
P Register (address of instruction to be fetched) into the ACOR
Register. (See figure 2-20.) NEXT also transfers the contents of
the NIR into the CIR. The CPU executes the CIR contents. The
objective is to refill NIR while the CIR instruction is being
executed so as to implement the CPU instruction look- ahead fea-
ture. Assuming that the transmission may proceed, NEXT sets the
CPU Low Request (LREQ) flip-flop (figure 6—1) in the MCU. (The
difference between low request and high request is that low re-
quest always checks to see if the destination module is ready to

6-1

MCU/Main Memory Overview

MOD —f

READY
come
ARATOR

CPU SEL

¥F
N
|
FAOM
Mor L Icownnon
\J ROY .
ruLL
on Down
\ - [Tocow I:
NIR ARATOR
v/ wev
— or ~
Mcu ENCODER ad
3
oriNp
FF
map
A
T
E
S
w
1
T
H
OPINE
c MCUD + PARITY
p cex1
v 10STROB
MODULE
CONTROL
UNIT
M FROM
A come .
T ARATOR
E
. Y
w
I
T OLRED { owea H< 10LSEL
H | FE l P
[
. >
P
)| 1oMSEL ./
ionREQ 10HREQ -
F
JOMSE L
101 SEL
iomoe
oo

READY
cow
ARATOR

MrCOUO0X <XXOZXZMZT IH—-35 oom-Ap g

wCcwm r-40

Figure 6-1.

6-2

MCU Simplified Logic Diagram

MCU/Main Memory Overview

receive a transmission because a memory operation is being initi-
ated, whereas high request assumes that the destination module is
expecting the transmission of data to complete a memory write
operation.) By this time, the MCU Encoder has encoded the appro-
priate memory opcode (MOP), which is now in the MOP Register.
The memory opcode is a two-bit code which tells memory what to do
when it receives bus data. There are three possible memory oOp-
codes: No Operation (NOP), Write (W), and Read (R). NEXT locks
the code in the MOP Register and sets the Next In Process (NIP)
flip-flop. Setting NIP opens the next instruction register so
that all CTL-Bus transmissions are gated to NIR until NIP is re-
set. NEXT also locks the TO Register which now contains the des-
tination module number.

The LREQ signal reads the contents of the TO Register into the
Ready Comparator which checks the Ready (RDY) 1line for the in-
tended destination to see if that module is ready to receive. If
not, nothing further happens until the the RDY line is true. The
output of the Ready Comparator, through a set of changeable jump-
ers, pulls the Enable (ENB) line low for this module number.
Since no module can transmit unless all ENB lines of higher pri-
ority modules are high, pulling the ENB line low disables all
lower priority modules. Provided that no higher priority module
has pulled its ENB line low to this module (through a second set
of jumpers), and provided the I/O Processor is not requesting the
bus, the output of the Ready Comparator now sets the CPU Select
(SEL) flip-flop. The SEL signal reads out the ACOR contents to
the CTL Bus as well as TO and FROM module numbers and the memory
opcode. SEL also pulls the destination module’s RDY line low for
one cycle so that other modules will not assume that the memory
module is ready before memory has a chance to pull the RDY line

low itself on the next cycle.

6-4. MEMORY RECEIVE AND TRANSMIT. The memory module’s TO Com-
parator (figure 6-2) identifies the code on the TO lines as its
own module number and sets the Ready flip-flop and Address Latch
flip-flop which locks the address word from the bus into the Ad-
dress Register and the FROM address into the From Register. The
Ready signal also keeps the module s RDY line pulled low (the CPU
had pulled it low temporarily in the preceding cycle) and, to-
gether with the decoded memory opcode, begins the read memory
cycle. The addressed memory location is read into the Read Data
Register. Meanwhile, on the next clock edge, the MCU begins the
process of requesting access to the bus by setting the Enable
flip-flop. (Since memory transmits only to modules that are ex-
pecting the transmission, only high requests are used.) The En-
able signal pulls its enable (ENB) line low to lower priority
modules and, provided no high priority module has pulled 1low on
its ENB to this module, sets the Data Out flip-flop on the next
clock edge. The memory location contents are in the Read Data
Register and the Data Out signal reads the contents out to the
CTL Bus. The Data Out signal also reads out the wired FROM code
and TO code (which is simply the saved FROM code, since transmis-
sion is back to the CPU).

MCU/Main Memory Overview

8

R
5|
E
o
38
it
L
2
H
g H
B
I 3oz .3 3
H i 3 M
H
ﬁg 8
<] < o
B £3 s ' g
B 52 H H H
g 5% H
o isg
3) HH
igs b
3
H L
. e o
H §
al :
§x
i
4l 4 =
EE i
< 2| 8 gg
£ °
Fe

Y
MATES WITH PORT CONTROLLER

>
Y
F
&9
z3 0

g
wor
P

ssomy

-0

Figure 6-2. Memory Module Simplified Logic Diagram

6-4

MCU/Main Memory Overview

6-5. CPU RECEIVE. The MCU’s TO Comparator (figure 6-1) identi-
fies the code on the TO lines as its own module number, and gives
a true output. Also, the FROM Comparator identifies the trans-
mission as the one it is waiting for by comparing the saved TO
Register contents with the FROM lines of the bus; it therefore
also gives a true output. If the FROM code is not the expected
one, it is loaded into the MOD Register and a module interrupt is
generated to the CPU. The two true outputs together reset the
NIP flip-flop. The NIR, which up until now has been loading all
bus transmissions into itself, 1is now inhibited from further
loading because it now contains the expected next instruction.

6-6. Fetch An Operand Operations

The operations for fetching an operand from memory are very sim-
ilar to the operations for fetching an instruction. The main
differences are that the initiating signals are different and the
receiving register is the Operand (OPND) Register rather than the
NIR. Therefore, the following discussion primarily only gives
the overall flow of information. Refer back to paragraphs 6-2
through 6-5 for additional details.

6-7. CPU ADDRESS TRANSMIT. The process of sending an address to
memory begins when a signal from the ROM Store field loads the
U-Bus contents into the ACOR Register on the CPU and sets the
LREQ flip-flop on the MCU. (See figures 2-20 and 6-1.) The MCU
Operation Encoder gives a memory opcode to the MOP Register and
sets the Operand in Process (OPINP) flip-flop. The LREQ signal
causes the Ready Comparator to check if the destination module is
ready and, if so, enters the priority. When priority allows (ENB
present), the Select flip-flop is set, causing the address stored
in ACOR to be read out to the CTL Bus.

6-8. MEMORY RECEIVE AND TRANSMIT. The memory module (figure 6-
2), after recognizing its TO code and setting the Ready flip-
flop, locks the address from the bus into the Address Register.
The Ready signal, together with the decoded memory opcode, ini-
tiates the reading of the addressed location into the Data Regis-
ter. Meanwhile, the Enable flip-flop 1is set and priority is
established. When the module has priority to use the bus on the
next clock cycle, the Data Out flip-flop is set causing the oper-
and, now in the Read Data Register, to be read out to the CTL
Bus. The saved FROM code is used to identify the destination
(TO) as the CPU.

6-9. CPU RECEIVE. The TO and FROM Comparators together cause
the OPINP flip-flop to reset, thus locking the operand from the
bus into the OPND Register.

Note

If the CPU is frozen awaiting the operand, the operand
in addition to being loaded into the OPND Register, is
also loaded into the CPU S-Bus Register, thus saving one
clock of instruction execution time.

6-5

MCU/Main Memory Overview

6-10. Store An Operand Operations

The operations for storing an operand in memory involves much the
same logic operations that were discussed in the preceding fetch
transmissions. The main difference is that instead of a CPU to
memory transmission and then a memory to CPU transmission, there
are two consecutive transmissions from CPU to memory. The first
transmission is the address and the second is the operand. The
following paragraphs are again condensed to 1illustrate only the
overall flow of information.

6-11. CPU ADDRESS TRANSMIT. A signal from the ROM Store field
loads the U-Bus contents into the ACOR Register on the CPU and
sets the LREQ (low request) flip-flop on the MCU. (See figures
2-20 and 6-1.) The MCU Operation Encoder gives a memory opcode to
the MOP Register. 1In this case, the opcode is Write rather than
Read as in the previous cases. (Neither the NIP nor OPIND flip-
flops are set.) After checking to see if the destination module
is ready and the Enable (ENB) signals are present, the LREQ sig-
nal sets the Select flip-flop which causes the address to be read
out to the CTL Bus.

6-12. MEMORY RECEIVE. The memory module (figure 6-2) after recog-
nizing its TO code and setting the Ready flip-flop, locks the ad-
dress from the CTL Bus into the Address Register. The FROM, MOP,
and Address Registers remain locked and the RDY line goes low so
that no other module can send a new address to this memory
module.

6-13. CPU DATA TRANSMIT. Meanwhile, the CPU has put the operand
on the U-Bus, and a DATA signal from the ROM Store field loads it
onto the CPU DCOR (figure 2-20). The DATA signal also sets the
High Request (HREQ) flip-flop on the MCU (figure 6-1). Destina-
tion readiness does not need to be checked, however, since memory
is expecting a data transmission from this module. After prior-
ity checks, the HREQ signal sets the CPU Select flip-flop which

reads out the operand to the CTL Bus. (The memory opcode is NOP,
since memory is already holding the appropriate opcode.)

6-14. MEMORY RECEIVE. 1In the memory module the TO Comparator
recognizes its TO code and the FROM Comparator verifies trans-
mission from the correct module. The true ouputs from both of

these comparators cause the operand from the bus to be loaded
into the Write Data Register and cause the memory timing to start

the memory write cycle. This causes the operand to be stored
into the addressed location.

6-15. Command A Module

The machine instruction set includes a Command (CMD) instruction
that permits privileged mode programs to issue commands directly
to a module (assuming the module is equipped to handle such com-
mands). When programmed, the CMD instruction takes a l6-bit word
from the TOS and sends it to a module whose module number (and

6-6

MCU/Main Memory Overview

two-bit opcode) are given in another word in the stack. (Refer
to Section IV for the CMD instruction definition.)

WARNING

The normal checks and limitations
that apply to the standard users in
MPE are bypassed in privileged mode.
It is possible for a privileged mode
program to destroy file integrity,
including the MPE operating system
software itself. Hewlett-Packard
cannot be responsible for system
integrity when programs written by
users operate in the privileged
mode .

The ROM MCU field codes of Control (CRL) and Command (CMD), in
that order, are used to effect the execution of the CPU instruc-
tion CMD. When the hardware decodes a CRL in the MCU field, it
gates bits 13 through 15 from the U-Bus, through the TO MUX lines
in the MCU, and these bits are clocked into the TO Register
(figure 6-1). U-Bus bits 10 and 11 are clocked into the MOP
Register. A following line of microcode then executes a CMD MCU
function which gates that line’s U-Bus data into ACOR and issues
a Low Request (LREQ).

The MCU logic performs the normal sequence of checking for bus
priority. Then the contents of the TO Register are gated to the
TO lines of the CTL Bus, the contents of the FROM jumpers in the
MOD Register are gated to the FROM lines on the CTL Bus, and the
contents of the MOP Register are gated to the MOP 1lines of the
CTL Bus. The contents of ACOR (figure 2-20) are placed on the
MCUD lines of the CTL Bus. What affect the MOP and MCUD lines
have on the addressed module depends on the design of the module.

When a module needs to communicate with the CPU, it cannot pass a
data word to the MCUD lines because the MCU is not expecting the
communication and will not gate the MCUD lines back. The CTL
Bus, however, since it does not use a handshake signal sequence,
is monitoring the bus at all times and the CPU is able to detect
that the module is trying to communicate. The hardware generates
a module interrupt and sets CPXl (bit 7).

When the module has priority to use the CTL Bus, it places the
CPU module number on the TO lines, CPU address on the FROM lines,
and a value on the MOP lines. The MCU logic recognizes its own
address, but because it is not expecting a value from the calling
module, the FROM lines value is sent to bit positions 5, 6, and 7
of the MOD Register and the MOP value is sent to bit positions 2
and 3. (See figure 6-1.) The microcode will fetch these values

6-7

MCU/Main Memory Overview

from the MOD Register and pass them to the interrupt handling CPU
instruction. To command the TO ME - FROM ME lines, the CPU in-
struction XEQ takes the 16-bit TOS value and executes it as an
instruction. In order to do this, the value must be placed in
the NIR before it can be gated to the CIR to be executed. Be-
cause the CTL Bus is the only data path into NIR, the value is
placed on the FROM lines of the CTL Bus with an address of TO the
CPU (in essence, TO ME). The FROM lines will have the CPU’s port

number (FROM ME).

The TO ME - FROM ME action is caused by a code of NIR in the MCU
field of a microinstruction. When the MCU detects the NIR code,
the High Request (CPU HREQ) flip-flop and the Next-In-Process
(NIP) flip-flop (figure 6-1) are set and the value placed on the
U-Bus is clocked into DCOR (figure 2-20) . The hardware places a
NOP code in the MOP Register and clocks the FROM jumper value
through TO MUX into the TO Register. The MCU, when granted pri-
ority to use the CTL Bus, gates the contents of the TO, MOP, and
DCOR Registers onto the CTL Bus. Because the MCU for the CPU is
monitoring the CTL Bus at all times, the TO Comparator recognizes
that the CPU is being addressed and that the CPU is expecting the
communication (determined by the fact that the values on the FROM
lines match the contents of the TO Register). The MCU, there-
fore, will accept the value on the MCUD lines and, because the
NIP flip-flop has been set, the value is clocked into NIR. The
Same sequence as described for TO ME - FROM ME will occur if an
Operand (OPND) code is decoded in the MCU field of a microin-
struction. The only difference is that the MCU’s OPINP flip-flop
(fEigure 6-1) is set instead of the NIP flip-flop and the value
will be gated into the OPND Register instead of the NIR.

6-16. MCU SERVICING INFORMATION

The Central Processor Mdule MCU PCA is a nonrepairable PCA and
must be replaced if found defective. No repair procedures are
required. However, the MCU. PCA does contain jumpers that must be
properly configured. The jumper configurations are discussed in
paragraphs 6-17 through 6-21 and identified in figure 6-3. (Ser-
vicing information for other computer module MCU circuits is pro-
vided with the discussions of the individual mecdules.)

6-17. ENABLE. The ENABLE signal is used to establish priority for
accessing the CTL Bus. The insertion of jumpers W1 through W4 es-
tablish the priority of the MCU PCA. Jumper W1 must be installed.

6-18. READY. The READY signal is used to signify that a module
is ready to communicate with memory. The insertion of jumpers W5
(READY 4) through W7 (READY 6) determine which READY line is as-
signed to the MCU PCA. Jumper W6 (READY 5) must be installed.

6-19. CPU NUMBER. The system is designed to have only one CPU
which must be designated as CPU number 1. Ensure that jumper W10
is installed and that jumper W1l has been removed.

MCU/Main Memory Overview

TOP 1,3, 7
BOTTOM 2,4 80

p1|||“|||||'||||““|‘||“|||m“|“m|||]‘| m“m"mm"mmmmmmm |

w8 e——— MCU RST
W9 - .

W10 e—— CPU 1
Wil e e CPU?2
W12 » .

N
w0
83

CcPU
a:i. . } mopuLE
NUMBER

MODULE NUMBER
W13 = 5
MCU PCA
30003-60007
NOTE: JUMPERS ARE SHOWN

INSTALLED FOR THE

W1 e
NORMAL CONFIGURATION W2 . * \ ENABLE
OF CPU NO. 1, MODULE NO. 5 W4 *
W5 . .
W7 .)READY
n J2 J3
()

TOP 2,4, =~ =50 2,4 —=50 2,4,
BOTTOM 1,3, =49 1,3 1.3

Figure 6-3. MCU PCA Jumper Locations

6-20. CPU MODULE NUMBER. The CPU connected to the CTL Bus is as-
signed a module number between 4 and 6 by insertion of jumpers
Wl3 and W1l4. The module number 5 must be assigned to the CPU by
installing jumper W13.

6-21., MCU RESET. Jumper W8 is always installed.

6-22. MAIN MEMORY

As previously discussed in paragraph 2-11, Main Memory is an ex-
pandable memory module that consists of at least three PCA’s as
shown in figure 6-4.

6-23. Memory PCA Interfacing

6-24. CTL BUS. As shown in figure 6-4, the CTL Bus provides for
the transfer of data between the memory module and the other mod-

6-9

MCU/Main Memory Overview

POWER BUS
SEMICONDUCTOR
MEMORY ARRAY PCA(S)
{1 TO 4 PCA's)
J1 J2 J3
4 a
DATA
ADDRESSING
TIMING
y
PWR ON
E——NTIMER MEMORY CONTROL
FRUN CLKIN FAULT
P ——— P1 & LOGGING PCA LOGGING
MCU CLK 30007-60005 P3
PE WARN INTERFACE
FRUN CLKOUT | / BUS
< / P2 N
A A A) b a 4
.)
>IN o 8 2
E S o S 8 8 = w| >f =
0.898>,u_'1"wn.lém
ol 32| 2|0l a 3(1¢lio &=
3| 3l o 2| = 3I8leli3] 2|2
HEGEHREEH GG
Yy y LA Y
CENTRAL (CTL) DATA BUS \
CPU
MCU
10P

10P BUS

P> =

¥

P2

P1

FAULT LOGGING
INTERFACE PCA*

- P3
4

P

*Fault logging interface PCA 30009-60002 for HP 32421A Series 111

System Clock/FLI PCA 30

135-60063 for HP 32435A Series 111

Figure 6-4.

Memory Module Inter face Diagram

6-10

MCU/Main Memory Overview

ules on the bus via the MCUD (00-15) lines. Data parity is pro-
vided by the MCUD PRTY 1line. Addressing information used to
select a specific address of a word in memory is transferred via
the data lines. Control information is provided for the follow-

ing functions:
a. To select a module, TO (00-02).
b. To designate the requesting module, FROM (00-02) .

c. To indicate whether the module 1is ready or not, READY
(00-03).

d. To resolve priority considerations, ENABLE (00-03).

e. To select a specific memory operation, MOP (00-10).

f. To indicate a parity error on transfer of control information
and data parity error during a write cycle, NSYS PE.

g. To indicate parity for the control lines, SYSPRTY.

h. The "not" master reset (NMCU RST) pulse initializes the MCL
PCA during initial power turn-on and during power failure.
Control can be reset during a refresh cycle without loss of
stored data.

i. To indicate an address parity error, NMCUD PE.

6-25. IOP BUS. The FLI PCA interfaces with the IOP Bus to exe-
cute direct I/O commands. The FLI PCA interrogates the MCL fault
logging array and stores the contents into the FLI 1/0 logging
array. Commands on the IOP Bus then cause a read of the I/0 log-
ging array and transfer the contents into a disc file for future
analysis.

6-26. FAULT LOGGING INTERFACE BUS. The Fault Logging Interface
Bus is a flat cable connected between P3 on the MCL PCA and P2 on
the FLI PCA. All communication between these two PCA’s occurs on
this bus. When a memory is configured above 512K words, this bus
extends to P3 of the upper 512K MCL PCA. A single FLI PCA can
communicate independently over the bus to the selected (upper or
lower 512K) MCL PCA.

6-27. POWER BUS. The CPU applies an ENTIMER signal to the MCL
PCA via the Power Bus to enable a timer during every write cycle.
If the data is not received within 2.87 msec during a write oper-
ation, the timer resets the control circuits to prevent memory
from waiting for data. No loss of memory data occurs during an
incomplete write cycle. The system clock (NMCUCLK) is a l75-nsec
square wave from the CPU that provides timing to the MU cir-
cuits. The NMCUCLK can be halted and pulsed for maintenance pur-
poses, NMCUCLK can be disconnected and replaced with an external
timing signal. Refresh clock timing is automatically selected
from an oscillator internal to the MCL PCA or from the NFRUNCLK

6-11

MCU/Main Memory Overview

signal input. NFRUNCLK is in sync with NMCUCLK, but cannot be
halted with the single-cycle switch. Power failures are sensed
in the power supplies (Sections IX and X) to initiate the NPF
WARN (power fail warning) to the CPU and memory. The MCL PCA
guarantees 3.0 msec for the CPU to execute its power fail routine
and store the necessary information into memory. After this 3.0-
msec interval, clock timing to memory is disabled to prevent any
further read or write operations until power is restored.

6-28. Memory PCA Descriptions

Brief descriptions of the memory PCA’s are contained in para-
graphs 6-29 through 6-31. The various memory PCA configurations
are discussed in paragraph 2-11.

6-29. SMA PCA. The SMA PCA contains the data and check bit stor-
age array for the 128K-word dynamic semiconductor memory. The
address/data receivers and drivers that interface with the MCL
PCA are also contained on this PCA. All communication with the
SMA PCA is governed by the MCL PCA. SMA PCA operations are dis-
cussed in paragraphs 6-32 through 6-36.

The individual semiconductor memory chip is a 16K by 1 storage
device (16 thousand one bit words). On the SMA PCA, the chips
are physically arranged in eight rows with 22 chips on a line as
shown in figure 6-5. Since a maximum of eight SMA PCA’s can be
contained in memory, each SMA PCA contains Switch S1 that iden-
tifies the portion of memory represented by that SMA PCA. Refer
to paragraph 6-48 for the proper setting of Sl1.

6-30. MCL PCA. The MCL PCA contains the read/write control cir-
cuits, MCU logic, refresh circuits, address and data registers,
MCU logic, refresh circuits, error logging array, and error cor-
rection logic for the memory module. This PCA also contains the
check bit parity generators and checkers. Since the MCL PCA can
support up to four SMA PCA’s, it must be configured to its asso-
ciated memory module size. Refer to paragraph 6-49 for the var-
ious switch settings. MCL PCA operations are discussed in para-
graphs 6-32 through 6-36.

6-31. FLI PCA. The FLI PCA (part no. 30009-60002 for HP 32421A
Series III and part no. 30135-60063 for HP 32435A Series I11)
contains the control «circuits and I/0 logging array for interro-
gating the MCL PCA’s error logging array. Refer to paragraph
6-50 for FLI PCA switch settings. FLI PCA operations are discus-
sed in paragraphs 6-32 through 6-36.

6-32. Memory Operations
Memory has the following operating modes and specifications:

a. WRITE; 700 nsec cycle time (minimum)

MCU/Main Memory Overview

P1
— P2 | — P3 | .
ROW 1
ROW 2
ROW 3
ROW 4
ROW S5
g g ROW 6 g g
2lslslelzlslels(z]g|E] Rowr |5|E|3|E|El8|s|s|s|8|s
g B N e IS m ISR S oo

n Figure 6-5. SMA PCA Chip Arrangement

b. READ; 350 nsec access, 700 nsec cycle time

c. NO OPERATION (NOP); 700 nsec cycle time

These operations plus fault correction and error logging are dis-
cussed briefly in the following paragraphs.

6-33. READ. A read operation (MOP 10) outputs 17 data bits and

a parity bit from the addressed location to the requesting module
via the CTL Bus. Refer to paragraphs 6-2 through 6-14.

6-34. WRITE. A write operation (MOP 01) loads 17 data bits and
a check bit into a given address location. Two transmissions to
the memory module are required to initiate a write operation.
Refer to paragraphs 6-2 through 6-14.

6-13

MCU/Main Memory Overview

6-35. NOP. A NOP (No QOperation) memory operation (MOP 00) is
similar to a read operation. However, no data is transferred to
the originating module. The NOP can occur during an address
phase when there 1is a system address parity error. During a
write operation, the MOP code sent with the data is a NOP.

6-36. FAULT CORRECTION AND ERROR LOGGING. During a- read opera-
tion, the error handling circuits detect, 1log, and correct all
single-~bit data errors. These circuits also detect double-bit
errors and force bad CTL Bus data parity to alert the receiving
module. Error .checking and correction takes place during the
normal memory cycle. An error logging scheme uniquely reports
all single-bit errors (or groups of double-bit error pairs) so
that problem chips on the SMA PCA°s can be replaced during sched-
uled maintenance. Refer to paragraphs 6-38 through 6-42.

6-37. Memory Servicing Information

Since the fault correction and error logging features of memory
are useful maintenance tools, they are discussed briefly in para-
graphs 6-38 through 6-47 on a how-to-use basis when maintaining,
troubleshooting, or repairing Main Memory. For a more detailed
discussion of these features, refer to the Stand-Alone Memory
Diagnostic D430B, part no. 30000-90004. In addition, the repair
philosophy for each of the memory module PCA’s are discussed in
paragraphs 6-48 through 6-50.

Note

Throughout the following fault correction and
error logging discussion, the term "FLI PCA"
pertains to the Fault Logging Interface PCA,
part no. 30009-60002 for the HP 32421A Series
III and to the System Clock/FLI PCA, part no.
30135-60063 for the HP 32435A Series III.

6-38. FAULT CORRECTION. The fault correction logic on the MCL
PCA generates a six-bit check field for each 16-bit memory word
and stores this field along with the data on the SMA PCA. The
construction of the check field 1is shown in figure 6-6. It
should be noted that check bits C5, C3, Cl, and CO are generated
to provide even parity for the eight data bits they check and
that check bits C4 and C2 are generated to provide odd parity for
the eight bits they check. Each check bit is generated over a
different eight bits of the data word. The check bits are gener-
ated on each data word for each write operation to memory. The
hardware checks parity over the same data word when the location
is read back from memory. The read from memory includes the
check bits processed on a write operation. If the resulting
check of the data with the check bits is zero, no error has oc-
curred in the write-read sequence. If the resulting check of the
data word with the check bits is non-zero, the parity checker
outputs HOl through HO5 which are decoded as shown in figure 6-7
ﬁnd any single data bit error is corrected by complementing that
it.

6-14

ST-9

S9pPO) UOTIDSII0) I0I 1T

*9-9 2Inb1g

*BB = 5-bit octal error logging address HO1 — HO5

DATA BITS CHECK BITS
PARITY
o|1]|2|3|a|s5]e| 7| 8|9 |10|11]12]13]1a]|15] colc1]|c2]|c3|calcs
* x | x | x| x| x| x| x| x x | Even
5| wsB| x | x| x| x x| x| x| x X oDD
B X x| x x| x| x X EVEN
|
g X X X X X x| x X X oDD
MSB X X X x | x x | x X EVEN
X x| x X X x| x| x| x EVEN
58* | 07 |13 | 23| 03] 15| 25| 11| 21| 16| 06 | 32| 22 |38 | 14 |24 | 30| 00| 20| 10| 0a | 02 | 01

207

MOTAIDAQ AJIOWSW UT W/ ADW

MCU/Main Memory Overview

ERROR LOGGING ARRAY ADDRESS STRUCTURE

BDO BD1 ROWO | ROW1 ROW2 HO1 HO02 HO3 HO04 HO5
OCTAL OCTAL 5-BIT OCTAL ADDRESS OF
SMA ADDRESS ROW ADDRESS DATA BITS 0-15 AND
(0-3) (0-7) CHECK BITS CO - C5
5-BIT OCTAL ADDRESS TO DATA OR CHECK BIT
CONVERSION TABLE
HO1 - HO5 BIT HO1 - HO5 BIT
00 Co 20 C1
01 Cb 21 D7
02 c4 22 D11
03 D3 23 D2
04 C3 24 D14
05 Note 1 25 D5
06 D9 26
07 DO 27
10 C2 30 D15
11 D6 31
12 Note 2 32 D10
13 D1 33
14 D13 34 D12
15 D4 35
16 D8 36
17 37
Note 1. Forced double error write.
Note 2. Missing SMA.

Figure 6-7.

Decode of HO1l through HO05

6-16

MCU/Main Memory Overview

Check bit CO0 is instrumental in detecting double-bit errors.
Double-bit errors are logged, but a unigue address is not gener-
ated for each double-bit error pair and errors are not corrected.
Instead, bad parity is generated on the CTL Bus requesting the
receiving module to flag the error. The MCL PCA includes logic
circuits to detect double errors and to force bad CTL Bus parity.
The MCL PCA also includes logic circuits to log an error in the
Error lLogging Array (ELA) during read operations.

For diagnostic purposes, the SMA PCA(s) can be programmed through
the FLI PCA to disable write error correction. The check bits
write control 1logic can be disabled during a write operation to
allow data bits to be changed without modifying the check bits.
Error correction is always enabled during read operations. All
detected errors are recorded regardless whether they are single
bit or multiple bit. Each single-bit detected error is logged
according to chip location in the ELA. The ELA uses static a 1K
RAM located on the MCL PCA. Five bits of memory address and five
bits of error code determine the error logging address in which a
"1" is stored in the ELA.

The 1K RAM is organized as a 1024 x 1 bit array requiring 10 bits
of address. The five most significant bits of ELA address cor-
respond to the five most significant bits of memory address; two
bits define one of four SMA PCA’'s and three bits define one of
eight rows of chips on the particular SMA PCA. The five least
significant bits define one of 22 chips in a particular row and
correspond to the error code HOl through HOS. Refer to figures
6-5 through 6-7. The ELA can be read under program control Dby
means of the FLI PCA. Any ELA location containing a "1" signi-
fies that an error was detected. The location of the faulty chip
can be found by using the 5-bit octal address portion of the ELA
address and then 1looking up the bit in the conversion table of

figure 6-7.

6-39. MEMORY ERROR LOGGING FACILITY. The memory error logging
facility permits the system’s user to examine the error history
of Main Memory. The facility consists of the following elements.

a. Error correcting memory and the FLI PCA

b. Memory error logging system process (MEMLOGP)

c. Memory error log analysis program (MEMLOGAN)

d. Memory error logging internal update program (MEMTIMER)

Memory error logging is in no way connected to or related to
standard system 1logging. Both function independently. None of
the operator interfaces to system logging have an effect on mem-
ory logging. Memory error logging will always be invoked if er-
ror correcting memory is present in the system. MEMLOGP 1is a

system process that runms under MPE. Once initiated, MEMLOGP
automatically and periodically interrogates the FLI PCA to obtain
the latest error information. MEMLOGP is activated during the

6-17

MCU/Main Memory Overview

initialization phase of MPE (coolstart, warmstart, coldstart, re-
load, update). MEMLOGP cannot be activated at any other time.
If MEMLOGP cannot be initiated successfully during initializa-
tion, another attempt cannot be made until the system is brought
up again. Initially, MEMLOGP attempts to obtain the status of
the FLI PCA (DRT 2). If the PCA does not respond, error correct-
ing memory is absent from the system and MEMLOGP immediately ter-
minates. If this occurs, no message relating to error logging
will appear at the system console. If MEMLOGP initiation is suc-
cessful, the following message appears at the system console:

ST/<TIME>/MEMORY ERROR LOGGING INITIATED

The message occurs after the DATE/TIME messages and before the
WELCOME message. MEMLOGP attempts to open the system memory er-
ror disc file MEMLOG (MEMLOG.PUB.SYS). If no such file exists on
the system, a new file will be created. If MEMLOG already ex-
ists, the file will be opened without altering the information
contained in the file. The file remains open as long as the sys-
tem is up. During those periods when MEMLOGP is accessing the
file, it will lock and unlock the file as necessary to ensure no
other access to it. The log analysis program (MEMLOGAN) similar-
ly locks and unlocks the file when it is accessing it. If an
operational error 1is encountered by MEMLOGP, the process will
display an error message and terminate. The message displayed
is:

ST/<TIME>/MEMORY LOGGING ERROR# <ERRNUM>. LOGGI NG STOPPED
The range and definitions for <ERRNUM> are:

1-10 Internal MEMLOGP errors.

FLOCK error on MEMLOG file.,

FUNLOCK error on MEMLOG file.

TIO error., Error logging hardware not ready.

CIO error during copy operation from logging array.

RIO error during scan of logging array. (Errors 6-10

reserved for future use.)

20-500 File system errors involving MEMLOG file. All file
errors encountered by MEMLOGP are fatal to the process
and cause it to terminate. Refer to the MPE Intrinsics
Reference Manual, part no. 30000-90010 for definitions
of the file system error numbers.

U w -

Once the MEMLOG file has been opened, MEMLOGP periodically inter-
rogates the error logging array in the MCL PCA via the FLI PCA.
If errors have occurred, the MEMLOG file is updated. The error
logging array is interrogated via the FLI PCA when MEMLOG is
first activated and thereafter once approximately every hour. If
one or more errors have occurred in the hour interval since the
last log update, MEMLOGP will perform the following operations:

6-18

MCU/Main Memory Overview

a. Read the appropriate MEMLOG from disc.
b. Scan the error logging array for errors.

c. Update the error counter in the MEMLOG record for each loca-
tion where an error occurred.

d. Reset the error logging array to a no-error condition.
e. Write the updated MEMLOG record to disc.

MEMLOGAN (MEMLOGAN.PUB.SYS) is the utility that reads and inter-
prets the error information logged and kept in the MEMLOG file.
Because of the security placed on the MEMLOG file by the system,
MEMLOGAN can successfully run from an account other than PUB.SYS
if:

a. The RELEASE command was entered for MEMLOG by the system
mahager, or

b. The log on account has system manager capability.

MEMLOGAN will read MEMLOG and output its contents in a meaningful
manner. The formal designator of the output device is "OUT". To
direct output to the line printer, the following file equation
must be entered:

:FILE OUT;DEV=LP

There is no user dialogue with MEMLOGAN. However, certain MEMLOG
file handling operations are available through the PARM parameter
of the RUN command. The following PARM values are recognized by
MEMLOGAN:

PARM=0'Causes the current contents of MEMLOG to be printed on the
output device. The contents of the file will not be
changed. This is the default PARM value.

PARM=1 Causes the current contents of MEMLOG to be printed on
the output device after which the file is reset to a
no-error state. All previously logged errors are deleted
from the log file.

Note

When a system with error correct-
ing memory is initialized for the
first time or the memory size is
changed to cross the 512K bound-
ary, MEMLOGAN should be run with
PARM=1 as soon as the system is up
and running. This will ,ensure a
clean MEMLOG file and that subse-
quent error counts are valid.

6-19

MCU/Main Memory Overview

PARM=2 Causes the current contents of MEMLOG to be printed on the
output device after which the file is deleted from the
system, (This is the only way to remove the MEMLOG file
from the system and normally only the system manager would
use this PARM value.)

MEMTIMER (MEMTIMER.PUB.SYS) 1is the utility program which allows
the user to modify the interval of time between successive memory
log updates. The normal default interval is 60 minutes. This
interval provides the average installation with an adequate log
of the memory system. For other reasons, it may be desirable to
modify the interval to allow increased monitoring of the memory
per formance. It is the function of MEMTIMER to modify the time
interval. MEMTIMER alters the current timing interval to a new
value and terminates the current interval. This causes MEMLOGP
to update the memory log file immediately and periodically
thereafter according to the new interval specified. A new timing
interval is specified through the PARM parameter of the RUN com-
mand. There is no user dialogue with MEMTIMER. The PARM value
is given as a positive integer greater than zero which represents
the number of seconds between log file updates. To begin memory
logging at 10 second intervals, the following RUN command would
be entered:

:RUN MEMTIMER; PARM=10

To return logging to the default interval (60 minutes), the fol-
lowing RUN command would be entered:

:RUN MEMTIMER; PARM=3600

Three error conditions are detected by MEMTIMER. If the PARM
parameter of the RUN command is equal to or less than zero, then
MEMTIMER will terminate after printing the following message:

** INVALID PARM (DELAY) VALUE *%*
The current time interval remains unchanged.

If MEMLOGP has been terminated, then MEMTIMER will terminate it-—
self after printing:

** MEMORY LOGGING PROCESS NOT ACTIVE **
In this case there is no timing interval update.

If MEMLOGP is currently updating the memory log file, the follow-
ing message will appear:

** MEMLOGP TIMER ENTRY NOT FOUND **

In this case, the timing interval will be updated. MEMTI MER
should be run again to ensure that MEMLOGP will recognize the
updated interval immediately. Note that the default timing in-
terval will become the current timing interval each time the sys-—

6-20

MCU/Main Memory Overview

tem is brought up. Therefore, if a non-default timing interval
is desired, MEMTIMER must be run after each initialization of the
system.

6-40. Output. MEMLOGAN output will vary according to whether
the MEMLOG file is null or updated and, 1if updated, whether er-
rors have occurred. If the MEMLOG file is null (after running
MEMLOGAN with PARM=1) MEMLOGAN will terminate after displaying
the message:

NO ENTRIES IN MEMLOG FILE¥

If the MEMLOG file is not empty, MEMLOGAN will print the date and
time of the first and last log wupdates. If errors have been
logged, the date and time of the first and last error logged will
also be printed. 1If no errors have been 1logged, MEMLOGAN will
terminate after displaying the message: :

LOGGING STARTED -DATE:
LAST LOG UPDATE -DATE:
NO ERRORS LOGGED

If errors have been logged, MEMLOGAN will continue by printing a
tabular interpretation of the information in the MEMLOG file.
The format of the printout is shown in figure 6-8. A typical
printout is shown in figure 6-9.

6-41. Errors. If an operational error is encountered by MEMLOGAN,
the program will print the appropriate error information and then
terminate. A non-file system error causes the following message
to be displayed:

*MEMLOGAN ERROR:<ERRNUM>:
Where

<ERRNUM> 1= FLOCK ERROR ON MEMLOG FILE
2= FUNLOCK ERROR ON MEMLOG FILE

The occurrence of a file system error will cause an error tomb-
stone to be displayed followed by either *QOUT FILE ERROR* or,
LLOG FILE ERROR¥,

6-42. Obtaining Memory Errors Copy. Use the following commands
to obtain a line printer copy of the log file:

¢tHELLO FIELD.SUPPORT ,HP 32230
:FILE OUT;DEV=LP
:RUN MEMLOGAN .PUB .SYS

6-43. FLI PCA PROGRAMMING. The FLI PCA only accepts direct 1I/0
commands. These commands cause the FLI PCA to copy the contents
of the MCL PCA‘s Error logging Array into the FLI PCA’S I/0 Log-
ging Array (CIO-Read Copy), determine if an error log (1) was
transferred (TIO-Read (opy Error), search the I/0 Logging Array

6-21

MCU/Main Memory Overview

hahadndb A el A A A A A X A A L LA A X KX X2 2 X X X X X F F X B R ey v ey

I ADDRESS I EPROK TYPE I ERROR 1
I CONTFOLLFER I BOARD T ROW 1 TYPF BRIT CHIP I COUNT 1
I controller { board ; row % type bit chip i cnt i
[1 I 1 I I
I I I 1 1 I
where:

controller The memory controller where the error occurred, shown as CONTROLLER A or

CONTROLLER B.

board The memory module board on which the error occurred, indicated by a digit from
0 through 3.

row The row designation on the board in which the failing chip is located, indicated as

a digit from O through 7.

type Type of error detected, as follows:
CHECK Check bit error.
DATA Data bit error.
MULTIPLE BIT Error in more than one bit.
ERROR
FORCED D.E.W, Forced Double Error Write. Indicated data parity error on
the data transmitted to memory.
MISSING ARRAY Non-responding array board.
BOARD
bit If type = CHECK, bit refers to the failing check bit — CO through C5.

If type = DATA, bit refers to the failing data bit — 0 through 15.

chip Chip on which error occurred, in format:
Un
The variables n is a digit indicating the chip number.
ent ' The number of logging intervals during which this error was detected at least once.
NOTE

This value does not represent the number of times that an
error was actually detected.

Figure 6-8. MEMLOGAN Table

6-22

MCU/Main Memory Overview

RGO E OB PP PO TP OV WV DTN EBBRNORTNWDCTONORTOAROTONRVTOTPERETRERE O w

I ADDRESS T ERROR TYPE 1 ERROR I
T CONTROLLER I BOARD T ROW I TYPE BIT CHIF I COUNT I
I CONTROLLFR A T 0 T 1 T CHECK 0 1198 I 21
1 1 T 6 T DATA 9 1103 1 13 1
1 1 1 T 0 T DATA 0 19 1 4 1
7 1 T 0 T HMULTIFLE RIT ERROR I 11
T I T 0 T DAfA 11 U149 1 31
1 1 2 T 7 1 DAT»A 14 1172 1 21
1 I 3 1 3 T CHECK B U246 1 31
1 CONTROLLER B8 T 2 I o T C(CHECK ? U219 I 11
I 1 T 6 T DATA 11 ui43 I 31
1 I 3 I 2 1 DATA 1% u187 i 4 I

Figure 6-9. Typical MEMLOGAN Pr intout

for the presence of a "1" (CIO-Read Scan) and send the address of
where the "1" was stored to the IOP Bus (RIO-Address). Direct
commands clear the I/O Logging Array (WIO-Load Block) and then
transfer these zeros into the Error Logging Array (WIO-Write
Copy). The Error Logging Array would then be cleared and able to
start a new fault logging sequence. Interrogating and writing
into the Error lLogging Array can only occur during refresh time.
The following paragraphs explain in detail the control word
formats.

6-44. TIO Command. Figure 6-10 shows the word format for a TIO
instruction. This instruction can be executed any time.

Bit 0,1, These bits have the standard I/0 significance.
and 2

Bit 3 Read Scan. This bit is set when a Read Scan is 1in
‘ process and remains set until the completion or term-—
ination of the scan.

Bit 4 DISWEC. This bit is set if the Disable Error Correc-
tion flip-flop (DISWEC) is set. .

Bit 5 L/NU 512K. If bit 5 =1, then the upper 512K Error
Logging Array has been selected. If bit 5 = 0, then
the lower 512K Error ILogging Array has been selected.

Bit 7 Read Copy Error. This bit is set if there are one or

more errors (l°s stored in Error Logging Array) during
a Read Copy. This bit is cleared by any CIO or WIO
Instruction.

6-23

MCU/Main Memory Overview

TI0 | | |] |
012346546 17|89 1011 12 13 14 15

snoox—J w Y,
RIW OK — Y

ZEROS
INT. PENDING

READ SCAN
DISWEC
L/US12K

=0
READ COPY ERROR

Figure 6-10. TIO Word Format

6-45. CIO Command. CIO instructions may be executed only if TIO
bit 1 =1 (R/W OK) except for a CIO master clear which can be
executed at any time. Figure 6-11 shows the word format of the
CIO instruction.

Bit O Master Clear. When set, causes the FLI PCA to reset
and inhibits simultaneous Read Copy, Read Scan and/or
DISWEC CIO instructions, or aborts any of these
operations.

Bit 2 Read Copy. Causes the contents of the lower or upper
512K Error Logging Array to be transferred to the I/0
Logging Array starting at the address location speci-
fied by bits 6 through 15 and ending at %1777. The
Read Copy is completed when the Address Counter rolls
over to %0000. During a transfer, TIO bit 1 =0 (R/W
not OK) and goes to a 1 within 50 usec after comple-
tion of a copy. A Read Copy will be terminated by the
occurrence of a PFW, PON, I/O Reset or CIO Master
Clear. Read Copy will inhibit a simultaneocus Read
Scan and is aborted by a Master Clear.

6-24

MCU /Main Memory Overview

Clo 1 1 1 1 1
0123 4656 7|89 10 1 12 13 14 15
MST. CL. MSB LS8
NOT USED —— — ~ _J
READ COPY 10 BIT ADDRESS
READ SCAN
DISWEC
L/UB12K

Bit 3

Bit 4

Bit 5

Bits 6-15

Figure 6-11. CIO Word Format

Read Scan. The I/O Logging Array contents are inter-
rogated starting at the address specified by bits 6
through 15 and finishing at address %1777. The scan
is completed when the Address Counter rolls over to
%0000. The scan will halt at any I/0 Logging Array
location containing an error. An RIO instruction may
be executed to retrieve the address of that error lo-
cation. After the RIO completion, the scan will re-
sume. During a scan, TIO bit 1 =0 (R/W not OK) and
goes to a 1 two usec after a halt on error or a scan
completion. A read scan can be aborted by a Master
Clear.

DISWEC. The Disable Write Error Correction flip-flop
is set on the FLI PCA resulting in a memory operation
with the error <correction logic disabled. Dur ing a
write operation, the data bits can be changed without
modifying check bits C8 through C5. Note that error
correction is disabled on all MCL PCA’s. Bit 4 can be
cleayed by I/O Reset, PFW, PON, completion of a Read
Copy or Write Copy (WIO instruction), CIO Master
Clear, or setting bit 4 to a 0.

L/NU 512K. 1If bit 5 = 1, then the upper 512K Error
Logging Array 1is selected. If bit 5 = 0, then the
lower 512K Error Logging Array 1is selected. The

upper or lower 512K Error Logging Array 1is selected
after one CPU clock cycle.

Address. The 10 bit address (1024 locations) 1is the
starting address for a Read Copy of the Error Logging
Array to the I/0 Logging Array or a Read Scan of the
I1/0 Logging Array. The address is loaded on all CIO
instructions and is not affected by Master Clear.

6-25

MCU/Main Memory Overview

6-46. WIO Command. WIO instructions may be executed only if TIO

bit 1=1

(R/W OK). Figure 6-12 is the word format for a WIO

instruction.

WIO \ A \ L \

01234567|89 10 11 12 13 14 15

DATA—J MSB Lse

NOT usED — | L)
WRITE COPY

LOAD BLOCK 10 BIT ADDRESS

LOAD SINGLE
L/Us12K

Bit 0

Bit 2

Bit 3

Bit 4

Bit 5

Figure 6-12. WIO Word Format

Data. This bit is used as the data in a WIO Load
Block and Load Single instruction.

Write Copy. The contents of the I/0 Logging Array are
transferred into the upper 128K Error Logging Array or
the lower 512K Error Logging Array starting at the
address specified by bits 6 through 15, and ending at
address %1777. At the completion of the transfer, the
Address Counter is set to %$0000. During a transfer,
TIO bit 1 = 0 (R/W not OK) and goes to a 1 at 50 usec
after a transfer. A CIO Master Clear will abort a
Write Copy.

Load Block. The data in bit 0 (Data) 1is transferred
to the I/0 Logging Array in all locations starting at
the location specified by bits 6 through 15 and ending
at %1777. Upon completion of the transfer the Address
Counter is set to %0000. During the transfer, TIO bit
1 =0 and goes to a 1l two usec after a transfer. A
Load Block will override simultaneous Write Copy
and/or Load Single.

Load Single. The data in bit 0 (Data) is transferred
to the I/0 Logging Array at the address location
specified by bits 6 through 15. The Address Counter
is not changed after the completion of the transfer.

L/NU 512K. If bit 5 = 1, then the upper 512K Error
Logging Array is selected and, if bit 5 = 0, then the
lower 512K Error Logging Array is selected during a
Write Copy execution. The upper or lower 512K Error
Logging Array is selected after one CPU clock cycle.

6-26

MCU/Main Memory Overview

Bits 6-15 Address. The 10 bit address (1024) locations is the
starting address for a Write Copy of the I/O Logging
Array to the Error Logging Array, a Load Block of the
I1/0 Logging Array, or the address for a Load Single of
the I/0 Logging Array.

6-47. RIO Command. Figure 6-13 shows the word format for the
RIO instruction.

RIO 1 1 1 1 1
0123456 7|69 10 11 12 13 14 15
ERROR J MSB LSB
RMW OK —— “ ~ J
=0 Y
10 BIT ADDRESS
READ SCAN
DISWEC
L/U512K
Figure 6-13. RIO Word Format
Bit O This bit is set if there was an error logged in the

I/0 Logging Array during a Read Scan and the address
of that error is specified by bits 6 through 15.

Bit 1 R/W OK. This bit contains the same information as R/W
OK on a TIO instruction.

Bit 3 Read Scan. This bit is set when a Read Scan is 1in
process and remains set until the completion or ter-
mination of a scan.

Bit 4 DISWEC. This bit is set if the ‘Disable Error Correc-
tion flip-flop is set.

Bit 5 L/NU 512K. If bit 5 =1, the upper 512K Error Logging
Array has been selected and, if bit 5 = 0, the lower
512K Error Logging Array has been selected.

Bit 6-15 Address. This is the I/O Logging Array address of a
logged error during a Read Scan.

6-48. SMA PCA SERVICING. Although the SMA PCA can be repaired to
the component level, repair procedures should be attempted only
by persons specificaly trained for such tasks. The replaceable
components are identified in figure 6-5. (For additional informa-
tion, refer to the HP 3000 Series III Computer System Engineering
Diagrams Set, part nc. 30000-90173.) Each SMA PCA in the memory

6-27

MCU/Main Memory Overview

module contains Switch S1 that must be set to reflect which des-
ignated PCA number it is in the memory module (e.g., first 128K
of memory, second 128K of memory, etc.). The SMA PCA ‘s Switch S1
is identified in figure 6-14. As a convention only, S1 is set to
3 on the PCA installed closest to the MCL PCA, 2 on the next
closest PCA, 1 on the next PCA, and 0 on the SMA PCA installed
furthest from the MCL PCA.

‘_JnnnnnnnnnnnnnnL____Jnmmmmmmmmn__.___mmmmmmwmmn_____

P1 P2 P3

SMA
30008-60003

M

J1 J3

204 Figure 6-14. SMA PCA Switch Location

6-49. MCL PCA SERVICING. The MCL PCA is a nonrepairable PCA and
must be replaced if found defective. However, the MCL PCA con-
tains two switches, one of which (S2) must be set to reflect the
memory module configuration. Both switches are identified in
figure 6-15. In systems with over 512K words of memory, set
Switch S2 to position A on one MCL PCA and to position B on the
other MCL PCA. As a convention only, Switch S2 is set to posi-
tion A on the MCL PCA installed for lower memory (banks 0-7) and
and to position B on the MCL PCA installed for upper memory
(banks 8-15). Switch S1 is the ELA Manual Clear Switch and can
be used to clear the MCL PCA’s Error Logging Array.

6-28

MCU /Ma in Memory Overview

P1 P2 P3

MEMORY CONTROL
AND LOGGING PCA
30007-60005

Figure 6-15. MCL PCA Switch Locations

6-50. FLI PCA SERVICING. The FLI PCA’s are non-repairable PCA’s
(part no. 30009-60002 for HP 32421A Series III and part no.
30135-60063 for HP 32435A Series III) and must be replaced if

found defective. Both PCA’s are preconfigured at the factory
with a DRT number of 2 and their jumpers should not be changed.

No repair or servicing procedures are required.

6-29

MCU/Main Memory Overview

NOTES

6-30

SECTION

Vil

I/0 SYSTEM

This section contains an overview of the computer’s I/0 system
which includes discussicns on file system operation, 1/0 system
operation, I/0 instructions, and I/0 system hardware. In addi-
tion, this section contains principles of operation and servicing
information for the computer system’s Input/Output Processor
(10P), Multiplexer Channel, Port Controller, and Selector
Channel. .

7-1. INTRODUCTION

The general purpose of any computer system is to input, process,
and output information. Under MPE, this information may be cre-
ated and used by the operating system itself, by compilers or
other systems, by user programs, ©or by users themselves. To
handle all information in a uniform, efficient way, MPE treats it
as groups of data called files. Specifically, a file is a col-
lection of information or data identified by a name recognized by
MPE. MPE uses media such as discs, cards, and tapes for storing
the information. On any of these media, a file may contain MPE
commands, system or user programs, or data; alone or in any com-
bination. Within a file, all information is organized into units
of related data called logical records that for most applications
are similar in form, purpose, and content. The records in the
file can be arranged in almost any order; alphabetically, numer-
ically, chronologically, by subject matter, etc. The logical
record 1is the smallest grouping of data that MPE can address di-
rectly; you specify its length when you create the file. Indi-
vidual subsystems and user programs, however, also can recognhize
fields for data items within each record. In addition, programs
can also recognize and manipulate individual words, eight-bit
bytes, and bits within a byte.

Data is transferred to and from files in wunits called blocks.
These are the basic units that are physically transferred between
Main Memory and the peripheral device on which the file resides.
On disc and magnetic tape files, a block consists of one or more
logical records; on files of other media, a block normally is
equivalent to one logical record (unless you request input/output
under the multi-record mode). To summarize the interrelation of
files, logical records, and blocks: a file is a collection of
records treated as a unit and recognized by a name; a logical
record is a collection of fields treated as a unit, residing in a
file; and a block 1is a group of one or more logical records
transmitted to or from a file by an input/output operation. The
purpose of the I/O system, then, is to perform actual physical
input/output operations for the file system of the MPE operating
system. The user normally does not interact directly with the I/0
system; only indirectly via the file system as shown in figure
7-1. Normally, all I/O operations are invisible to the user.
However, as shown in figure 7-1, privileged users may access the
I/0 system directly.

I/0 System

FILE SYSTEM I/O

FILE 10 '
PROCESS T SYSTEM SYSTEM @
N\ 1/0
SYSTEM

Figure 7-1. Basic I/0 Access Methods

PRIVILEGED I/O

7-2. FILE SYSTEM OPERATION

Figure 7-2 illustrates the function of the I/0 system in the
overall handling of files. The I/0 system, as shown, 1is part
software and part hardware. Several peripheral devices are shown
connected to the I/0 system, each of which has some capability
for handling files; entering files, storing files, or both. of
particular interest in this discussion are the files stored on
disc. (Several physical disc units might be used.) Each disc file
is broken up into one or more extents. (Disc extents are composed
of a number of blocks.) When the file system causes the I/O sys-
tem to transfer data to or from the disc, it does so one block at
a time. As noted previously, the blocks are further subdivided
into records and then into individual words. When the file sys-
tem processes user file requests, it does so on the basis of
records.

The memory management routine is also shown in figure 7-2 (dotted
line) since it frequently makes its own requests to the I/0 sys-
tem. Memory management calls the I/O system in order to bring
code and data segments into Main Memory where they can be ac-
cessed by user processes. In a typical operation, a user process
might request the file system to read a file using the FREAD
intrinsic (1). (Refer to the MPE Intrinsics Reference Manual for
a discussion of the FREAD intrinsic.) The file system reads the
stack associated with the user process (3). Note that in this
example, no input/output has taken place. This 1is because the
named record is already present in a buffer (BUFFER 0) in Main
Memory.

Assume another case in which the requested record is not present.
In this case, the file system makes a request to the I/O system
(A) to read the block containing the particular record. The 1I/0
system accordingly reads this block from the disc (B) and loads
it into one of the buffers (BUFFER 1) allocated to the named file
(C). (When you open a file, you specify how many buffers should

7-2

I1/0 System

PROCESS Magnetic
Tape
Stack
Memory
Management
:\ T
' DISC
¥ EXTENT
Fi FILE @
R::uest SYSTEM 1/0
SYSTEM Disc
@ ¢
Block Block
Record 0 Card
Record 1 Reader
Record 2
etc
Line
BUFFER O BUFFER 1 Printer
SOFTWARE HARDWARE

be allocated for
fers directly;

sys tem

cord to
did the
may or

of such
devices
logical

outputting files
printer.

Figure 7-2. File System Basic Operation

that file. However, you cannot access the buf-
only by naming records within files.) The file
can now complete the request by reading the requested re-
the stack. Note that in none of the preceding operations
user process specify a device. An actual I/0 operation
may not have occurred and the user is completely unaware
an occurrence. The operating system, however, allows
to be specified either by class name or by a specific
device number. This permits, for example, inputting or
via a specific terminal, <card reader, or line

1-3. DEFINITION OF TERMS

As shown in figure 7-3,
the hardware
typically
particular controllers,
peripheral (such as a card reader)

several

a Device Controller in the I/0 system is
I/0 linkage between the CPU and 1I/0 device. It
one or more logic cards. Depending on

the Device Controller may drive only one
or may be capable of driving
Figure 7-3 illustrates

consists of

peripherals (such as disc units).

7-3

I/0 System

DATA AREA
Interrupt —
Linkage .
1/0 QUEUE Table Unit 0
3 3 Device DEVICE
= 3 tnformation REFERENCE .
- 3 Table TABLE Unit 1
= = Unit 0 DEVICE
- 3 1/0 Prog Pointer CONTROLLER
= = Device Ext. Prog. Label Unit 2
E = Information
3 = Table 1 DBI
= :; ~ Unit1 Reserved Unit 3
f‘ f Device
3 - Information
Table
Unit 2
| Device
| | Information
L | Table
3 3 Unit 3

SOFTWARE HARDWARE

Figure 7-3. 1/0 System Fundamental Elements

some of the important elemeuts of the I/O system. (This figure is
by no means complete, but rather is intended to define the chain
of 1linkages that are basic to the I/O system.) For each Device
Controller there is a four-word entry in the Device Reference
Table (DRT). The third word in the four-word table entry con-
tains a pointer to a data area uniquely associated with that
table entry. The data area consists of an Interrupt Linkage
Table (ILT), one or more Device Information Tables (DIT) (depend-
ing on how many units the Device Controller is driving), and an
I/0 program area. Along with various other information, the
Driver Linkage Table (DLT) contains Code Segment Table (CST) and
Segment Transfer Table (STT) values for defining the location of
the driver routines associated with that particular Device Con-
troller. The DIT contains information relevant to one physical
I/0 device and is configured differently for each type of device.
In each case, however, the third word of this table points to an
entry in the I/O Queue (IOQ) when a request is being made.

The IOQ is a single table (only one per system) containing a
fixed number of entries having a fixed number of words per entry.
If there are no I/0 requests pending in the system, none of the
DIT entries will be pointing to the I0Q. In this case, all en-
tries of the IOQ are unused, and the second word of each entry
points to the first word of the next entry. Thus, all unused
entries are linked together. Assume that the file system makes a
request to use Unit 1 of the Device Controller shown in figure
7-3. The I/O system will unlink the first free entry in the 1I0Q
and fill it with information pertaining to the request (including
buffer address and logical device number). Assume that the next

7-4

1/0 System

request is for Unit 2 (uses the next available entry), followed
by a second request for Unit 1. This second request for Unit 1
causes the first word of the initial request to point to the next
unused entry, which is then filled with information pertaining to
the second request. Therefore, eventually the IOQ will contain a
queue of requests for Unit 1, a separate queue for Unit 2, and so
on, plus a linked list of free entries.

Next, an I/O driver is executed to initiate the request. An I/0
program will then be run on a device, using the request parame-
ters given in the I0Q. When the request is completed, the I0Q
entry is returned to the free list. Note that the IOQ only es-

tablishes the priority of requests for each device on a first-in
first-out basis. Questions of priority in executing I/0O drivers
are resolved by the Dispatcher. (Refer to the MPE General Infor-
mation Manual for a description of the Dispatcher.) Once several
Device Controllers are running I/O programs, priority conflicts
are resolved by hardware service priority.

The DRT (figure 7-4) consists of a number of four-word entr ies
corresponding to the number of Device Controllers present in the
system. The DRT is located in fixed memory locations beginning
at octal address 14. (Locations 0 through 13 are allocated to
other purposes; refer to table 2-4.) The wupper 1limit for the
table is 1location 777 which limits the maximum number of four-
word entries to 125 (decimal). Because each DRT entry is always
four words in length, it is convenient for the hardware to map
device numbers to DRT addresses simply by multiplying by four.
(Leftshift device number two binary places.) Thus the entry for
device number 3 begins at octal location 14 (i.e., %(3x4) = %14).
Because the DRT begins at location 14, device number 3 is the
lowest device number. (Devices 0, 1, and 2 do not exist.)

Note

The device number associated with a par-
ticular DRT entry defines a Device Con-
troller, and not necessarily an actual

physical device. Also remember that some
controllers identified by one device num-

ber are capable of driving several physi-
cal devices. Individual identification of
physical devices is made by logical device
numbers. The logical device number is the
value used by the file system in request-
ing 1/0, and the I/0 system software per-
forms the logical to physical device
number translation.

I1/0 System

Octal
Memqry
Device Location DRT
Controller » 14
3 3, x4 15
16
Device 17
Controller 2 2 —» 20
#a s X 21
22
Device 23
Controller —» 24
#5 5 x4 25
26
27
30
31
32
FORMAT 33
1/0 Program Pointer
Ext. Prog. Label
DBI Address .
(Reserved) //
| |
| 1
| l
Device 77
Controller 4
#1778 1778 x 4 775
776
777
e

Figure 7-4. Device Reference Table

7-4. 1/0 INSTRUCTIONS

There are ten 1I/0 instructions in the system’s instruction set,
six of which are defined in paragraph 4-14 of this manual. (A1l
of the I/0O instructions are fully defined in the HP 3000 Series

II/III Computer System Machine Instruction Set, part no. 30000-
90022.) The distinction to note here is that the SIO instruction

is used in conjunction with an I/0 program and that the other

instructions are not. That is, an SIO instruction commands a
Device Controller to begin executing its associated I/0 program

which effects a block transfer of data between an I1/0 device and
memory. This is termed an SIO transfer mode. The other I/O in-
structions transfer only one word per instruction between the

device and TOS in the CPU. This is termed a direct trans fer mode
and is used primarily with terminal devices.

7-6

I/0 System

7-5. GENERAL 1/0 OPERATION

An overview of the I/0 system’s operations for I/O transfers is
illustrated in figure 7-5. (It should be noted that figure 7-5
does not apply to direct I/O devices.) To provide a complete se-
quence of operations, it is assumed that the file request results

in a need for physical I/0 to be performed. (As previously dis-
cussed in paragraph 7-2, this is not always the results.) The
sequence of operations is as follows:

a. An executing user process generates a file request (1, figure
7-5) to the file system.

b. The file system tests the validity of the request and calls
the Attach I/O (ATTACHIO) procedure (2). This is the entry
point to the I/O system.

c. Attach I/0 inserts the request parameters (3) in the 1I/0
Queue for the requested device.

d. When all earlier requests for the device have been completed
(4) , the I/0 Monitor Procedure begins execution for this
request.

e. The I/O Monitor ensures that the data buffer for the file is
present in memory. It then issues a procedure call (PCAL) to
the initiator section (5) of the device driver, passing the
request parameters to that routine.

£. The initiator section assembles the I/O program (using the
request parameters), issues an SIO instruction to the Device
Controller, and exits back to ‘the I/0 Monitor. The SIO in-
struction initializes the DRT to point at the starting loca-
tion (6) of the I/0 program.

g. The I/0 program issues commands (7) to the Multipleker or
Selector Channel.

h. The Multiplexer Channel or Selector Channel enables (8) the
Device Controller.

i. The Device Controller, on receiving a read or write command
from the 1I/0 program, transfers a block of data (9) to or
from the data buffer. The length of the block is specified
by the I/0 command.

j. On completion of the data transfer, the I1/0 program commands
the Device Controller to request an interrupt (10) via the
Multiplexer or Selector Channel. The I1/0 program then ends.

k. The Device Controller causes a CPU interrupt to an interrupt

routine (11) which tells the I/O Monitor that an interrupt
has occurred.

I/0 System

USER

INTERRUPTED
PROCESS

1/0 MONITOR
PROCEDURE

USER
PROCESS

File Request

B

DATA
BUFFER

7

FILE 1o)
@ @ SYSTEM
Yy v
i
DEVICE DRIVER ;
i
E DATA
| Bl AREA
13 l’---
INITIATOR COMPLETION_--_; __________ i ILT
Section Section !
' DIT
L, :
! ©® !
! 110 _@
I Program
-
I S—
END, |
! L =2 1Y
: : STATUS
=
1 I
DRT ENTRY 0 .
Next 1/0 Command } - -~ MULTIPLEXER CHAN
(T T T T e e e Ext. Prog. Label | or
) DBI Pointer |- SELECTOR CHANNEL| Bpata
)
~ Reserved @
INTERRUPT
ROUTINE
(GIP) !
[T IXiT "]
L (2 DR D) | opevice
< s < CONTROLLER
al
Ics
Interrupt @
Control
2 Stack

Figure 7-5.

I1/0 System Overview

7-8

I/0 System

Note

There are several interrupt routines for
external interrupts. For example, one is
the General Interrupt Processor (GIP) for
all types of devices except terminals, and
another is the Terminal Interrupt Proces-
sor (TIP) for terminals.

1. The interrupt routine (or the last routine to use the Inter-
rupt Control Stack) exits (12) to the Interrupted User Pro-

cess. (Refer to Section VIII.) It also may activate the
related 1/0 process if necessary.

m. When the I/0 Monitor Procedure is executed again, it recog-
nizes that an interrupt has occurred and accordingly calls
the completion section (13) of the device driver.

n. The completion section checks the results of the transfer.
If necessary, it may initiate additional transfers by telling
the I/0 Monitor Process to call the initiator section again.
Otherwise, it updates the I/O Queue with information regard-
ing results of the original request (14). The file system
may then check these results (15).

o. When the user process is dispatched again, a return is made
to a point following the file request (16), depending on
whe ther blocked or unblocked I/0 was specified. (Refer to
paragraph 7-9.)

7-6. DIRECT 1/0 OPERATION

The operations for direct I/0 transfer mode involve considerably
more software overhead than the operations for the SIO transfer
mode . This is due to the varied nature of the terminal devices
that use direct I/0. The following sequence descriptions present
only a broad generalization of direct 1I/0 terminal operations.
The sequences given should not be construed as representing any
particular device or even a typical device. It is assumed that
the log-on sequence has been accomplished.

Figures 7-6 and 7-7 1illustrate the handling of data via direct
1/0 terminal devices. Figure 7-6 illustrates input (read) oper-
ations and figure 7-7 illustrates output (write) operations.

In comparison with figure 7-5, note that there is no I/0 program
in the data area. Instead, the interrupt routine performs the
functions of an I/0 program. The interrupt routine, in this
case, is part of the device driver. It should also be noted that
direct write uses no completion section, and that no Multiplexer
Channel or Selector Channel is involved.

7-9

I1/0 System

DISPATCHER
USER
PROCESS
L @ File Request |
Ty) DATA
‘ ‘ ‘ BUFFER
Other Processes
@) [atracr],_@ Fee |
10Q 1/0 SYSTEM
3 " @
é : Check CTTTT T P
* 0 } Results |
______________ P]
e ‘| | ~-»| LINE BUFFER
1
: Update : " .
]
DEVICE DRIVER ! | !
T T
1
i i :
| |]
] \ 1
t 1 \
‘ : o
p @ TERMINAL | _ _________ N R ' :
cio MONITOR !
T) r |
o ®
| 'y Dat.
™ INTERRUPT | E : -
i ROUTINE : o &
} TIP) t !
| N c—s— S)
I T -l;ﬁ'- 7 1
|
I]
|]
! i
! i
I
|
DRT ENTRY | Q) !
Not Used : 1
Ext. Prog. Label p--' :
DBI Pointer pe~e—mmm e e e |] R ! al
Reserved To Tio 4 ICS
\ ———J
Interrupt
Control
Stack
Figure 7-6. Direct Read For Terminal Devices

I/0 System

DISPATCHER
USER
PROCESS
L @ File Request ™)
AR : DATA
v v ¥ BUFFER
Other Processes
3 ® [atTacH @ FILE g =
10Q 1/0 SYSTEM
= § (®
: Check TS T T T T T T —»
T - Results :
M e o et e = /' I
\e _ oo CTIZIIIIlil | -—»[LINE BUFFER
1 | T
: Update | :
DEVICE DRIVER } : |
I | T
| |
i ! i
3\ t \ {
| | |
| \ |
I | t
TERMINAL § Lo S B |
|
MONITOR | pel _DATAAREA |
|
l Voo I I Data
1 | |
;'— b : @
I
i INTERRUPT W C OIT :
! ROUTINE [~ [|
i (TIP) : __J'
: EERT LS N :
: i
cio] i
' 1
: 1
®) DRT ENTRY | % \
Not Used | :
Y Ext. Prog. Label - 'l
DBl Pointer fp-—-==———=——=——-- t--——-t—-——=--- al
Reserved To r §
Cispatcher 1 TIO ICS
fc10 interrupt
¥ WIO
L) DEVICE P—
CONTROLLER z :;
0 Interrupt
Control

@ 20 Stack

Figure 7-7. Direct Write For Terminal Devices

I/0 System

One element not previously present is the terminal buffer. The
terminal buffer consists of a linked list of buffers, which are
pointed to by an address word in the Device Information Table
(DIT) for a particular terminal. A sufficient number of these
buffers are used to accommodate the line or record length of the
associated device. Data is transferred between the terminal
buffer and the data buffer on a record basis. Thus, the terminal
buffer reads characters from the device until the complete line
(or record) is read, then transfers the complete line (or record)
to the data buffer. This scheme conserves Main Memory space by
allowing the data buffer to be absent on disc while the compara-
tively slow terminal device is transferring individual char-
acters.

7-1. Direct Read

The sequence of operations for direct read, illustrated in figure
7-6, is as follows. (It is assumed that the file request requires

a physical read from the terminal.)

a. The executing user process generates a file request (1, fig-
ure 7-6) to the file systenm.

b. The file system tests the validity of the request and calls
the Attach I/O procedure (2).

C. Attach I/O inserts the request parameters (3) in the 1/0
Queue for the requested device. Unlike SIO which wuses a
first-in/first-out queue for the requests, terminal requests

are analyzed for relative importance and are then inserted
into an appropriate place in the queue. (For example, factors
such as whether the request is from the system console are
considered.)

d. When all higher priority requests have been completed, the
TERM procedure (4) begins execution for this request.

e. The Terminal Monitor issues a CIO instruction (5) directly to
the Device Controller, causing TIP to initiate the read
operation.

f. The Device Controller enables the device to transmit a char-
acter (6). When a key is pressed, the device returns the the
character to the controller.

g. On receipt of the character, the Device Controller causes a
CPU interrupt (7) to the interrupt routine for terminals

(TIP) .

h. TIP issues an RIO instruction to the Device Controller. This
causes the character (8) to be loaded onto the ICS and also

causes a command to be issued to the device to transmit the
next character. TIP now checks the character on the ICS to
determine if it is a data character or a control character.

7-12

1/0 System

If the character on the ICS is a data character, it is trans-
ferred (9) by TIP to the terminal buffer. If it is a control
character, TIP performs the appropriate control function.

TIP exits (10) to the Dispatcher and the sequence repeats
back to step g until the entire record has been read.

When a CR (Carriage Return) control character 1is detected,
TIP sets a flag in the DIT to signify that the record is
complete, then causes the Terminal Monitor to be executed
(11) .

The Terminal Monitor transfers the content of the terminal
buffer to the user stack (12) and the transmission log in the

I10Q is updated.

The Terminal Monitor releases the line buffer and control is
returned to the user process (13). To read another record,
the file system must make another I/0 request to Attach I1/0.

1-8. Direct Write

The sequence of operations for direct write is illustrated in
figure 7-7. The sequence of operations is as follows:

a.

b.

The executing user process generates a file request (1, fig-
ure 7-7) in the file system.

The file system tests the validity of the request and calls
the Attach I/0 intrinsic (2).

Attach I/0 inserts the request parameters (3) 1in the I/0
Queue for the requested device.

When all higher priority requests have been completed, the
Terminal Monitor begins execution for this request (4).

The Terminal Monitor transfers the data (5) fromhthe data
buffer to the line buffer.

A CIO instruction (6) is issued to the Device Controller to
initiate the write operation.

The Device Conroller causes the CPU to interrupt to TIP (7).

TIP transfers a character (8) to the ICS.

TIP executes a WIO instruction, transferring the character
(9) from the ICS to the Device Controller.

TIP then exits to the Dispatcher (10), and hardware takes
control.

The Device Controller writes the character (1l1l) out to the
device.

I/0 System

1. On completion of the write, the Device Controller generates
another interrupt (12) to TIP. The sequence repeats back to
step h until all characters in the record have been written
out to the terminal.

m. The Dispatcher then returns control (13) to the user process.

7-9. BLOCKED/UNBLOCKED 1/0

At the conclusion of all three of the preceding operating se-
quences (general I/0, direct read, and direct write), control is
returned to the user process. While the I/0O operation was in
progress, the wuser process may have been suspended to await I/0
completion (blocked 1/0), or may have continued to execute while
periodically checking for 1I/0 completion (unblocked I1/0). The
choice of blocked or unblocked I/O is made in the call to
ATTACHIO. (The file system nearly always uses unblocked 1/0.)
Paragraphs 7-10 and 7-11 contain a description of the character-
istics of blocked and unblocked I/O.

7-10. Blocked 1/0

As shown in figure 7-8, the user process goes into an I/0 wait
state as soon as the I/O request is given. The user process re-
mains in the wait state while the I/O operations proceed. The
request is entered into the I/0 Queue and is ultimately processed
via the hardware I/O system. At the end of the 1I/0 operation,
the results of the transfer are entered into the IOQ. Control is
then returned to the user process. During terminal writes, the
operation is considered completed when the data has been trans-
ferred to the terminal buffers. The user process now continues
to execute from the point following the I/O request.

7-1. Unblocked 1/0

During unblocked I/0 (figure 7-8), privileged capability is as-
sumed. The process must also specify the action to be taken on
completion of I/0O; either no action or reactivate the process if
in an I/O wait state. This specification (like the blocked/un-
blocked I/0 choice) is made in the call to ATTACHIO. After call-
ing ATTACHIO, the process may then continue to execute and may
generate other unblocked I/0 requests. It is the responsibility
of the process to synchronize all unblocked requests and to check
for I/0 completion. The process also has the capability to put
itself into the I/0 wait state and to change the 1I/0 completion
action for any unblocked request at any time. Obviously, how-
ever, the process should not specify no action for all unblocked
requests and then go into the 1I/0 wait state since there is no
way to recover from this situation. At least one request must
reactivate the process.

While the process continues to execute, ATTACHIO enters the re-

quest into the I/0 Queue and hardware processing of the request
begins. At the end of the 1I/0 operation, the results of the
transfer are entered into the I0Q. Then the completion action

7-14

I/0 System

BLOCKED I/0 UNBLOCKED /0

Continue

i0Q
ATTACH Index

10

ATTIO

| check for

I

|

I

I

|

1

l

! r WAIT Eﬁfjr
: 10 {User 100
1

I

]

I

I

I

]

:

1

1/0
Operation

Option)
1/0
Operation

|
Continue Continue
USER USER
PROCESS PROCESS

I
1
|
|
[
|
|
|
I

Figure 7-8. Blocked and Unblocked I/O

bit is examined. If the awaken process is specified, the process
will be reactivated if it has put itself into the I/O wait state.
If no action is specified, presumably the process has continued
to execute without any wait, or will be reactivted by some other
process. In any case, the process checks for I1/0 completion.

7-12. 1/0 HARDWARE ELEMENTS

The I/0 hardware elements are responsible for a large portion of
the execution of an I/0 request. When software passes control to
hardware, the I/O hardware elements assume full control from that
point while the software performs other functions. The comput-
er’s I/0 hardware elements are the 1/0 Processor (IOP), part of
the Module Control Unit, the Multiplexer Channel, and Selector
Channel. The following paragraphs contain detailed discussions
for each of these elements.

7-13. 1/0 Processor

In addition to interrupting the CPU on behalf of the Device Con-
trollers (Section VIII), the IOP performs three specific func-
tions relating to the three different I/0 transfer modes shown in
figure 7-9. For direct I/O transfers, the IOP executes the di-
rect I/0 instructions (RIO, WIO, TIO, CIO, SIN, and SMSK) and
transfers data, device status, and control information between
the CPU and a Device Controller. For programmed I/O transfers
via a Multiplexer Channel, the IOP transfers 1I/0 program words
between Main Memory and the Multiplexer Channel and transfers
data between Main Memory and the Device Controller. For pro-
grammed I/O transfers via a Selector Channel, the IOP only trans-
fers initialization information to the Device Controller and is

7-15

I/0 System

DIRECT I/0

CPU
Terminal
t/0 10P Bus Device
Processor A Controller
A
0| bata . PROGRAMMED I/
Program . via MULTIPLEXER CHANNEL
Words
L |OP Bus < Device
Controlier
i Multiplexer -
IEem— p M Device
o Channel Controller |7 Dev
Memory
Multiplexer i
Channel Bus
PROGRAMMED 1/0
1/0 Data "~ viaSELECTOR CHANNEL
Pro g
V‘?c;?gs] — - IOP Bus < Device

Controller

o Selector
Channel NM— Device
Controller

o

Selector |
Channel |
Bus 1

Figure 7-9. 1I/0 Hardware Elements

not involved in any part of the I/0 program execution. A simpli-
fied logic diagram of the IOP is shown in figure 7-10 and discus-
sed in paragraphs 7-14 through 7-19. For additional information
concerning IOP operations in conjunction with the Module Control
Unit (MCU), Multiplexer Channel, Selector Channel, and system in-
terrupt system, refer to paragraphs 7-20, 7-33, 7-42, and Section
VIII, respectively.

7-14. 1/0 COMMAND. The I/O instruction information is combined
by the CPU into a single word, placed on the U-Bus, and sent
through the IOA logic to the IOP Bus. (See figure 7-10.) The in-
struction from the code segment has been translated into a three-
bit command (IOCMD). The command can now be read out onto the
IOCMD lines of the IOP Bus. The device number has been obtained
from the stack, and can now be read out on the device numbers
(DEVNO) lines of the IOP Bus. The Service Out (S0) bit tells the
addressed device, via the IOP control, to accept and respond to
the accompanying information. (The Device Controller must return
a Service In (SI) handshake signal.)

7-16

I/0 System

MATES WITH CPU
A
r N B
STORE | [ves 10A
10STROB
EXT
INT r 10D DATA OUT] r 10A (815) l L 1OD DATA IN
STORE
)
ORTSTOR
194
EXTINT INTERRUPT
CONTROL 1OP DATA IN
‘ TO0
10t REQ MCU
INPUT/OUTPUT
10P CONTROL
PROCESSOR
L IOHREQ :
4 I0HSEL
oLser
OMOP
loto
-/
W MOD
SELECT
(" 100+ PARITY,17 A .
DEWNO 7 A [A
10CMD _ 3 A A
—
so N
s A
0P { HSREQ A
g
BUS DATA POLL A

INT REQ] .

INT POLL A

INT ACK _

q 10,4 A
DATA DATA
HSREQ {sO st 10CMD g%'.‘r" :’3 LL 100 ox/4 OEVINO
~—
TO MUX CHANNEL

Figure 7-10. IOP Simplified Logic Diagram

7-17

1/0 System

7—15. IOP CONTROL. The IOP control block represents sequencing
logic for transfers between the device and memory, and between
the device and the CPU. Each of the 1lines shown entering or

leaving this block are discussed with their associated transfer
sequences.

7-16. INTERRUPT CONTROL. The interrupt control 1logic accepts
an Interrupt Request (INTREQ) from the Device Controllers on the
IOP Bus, interrogates the Device Controllers with INTPOLL to find
the highest-priority request, and, when Interrupt Acknowledge
(INTACK) is received, 1loads the device address into the IOA Reg-
ister.An External Interrupt (EXTINT) signal is issued to the CPU.

7-17. INT DEVNO. The 1I/0 Address (IOA) Register holds the
device number of the interrupting device so that, upon command,

the CPU can read the contents onto the S-Bus for interrupt
processing.

7-18. DATE OUTPUT REGISTERS. There are two data output
registers, the IOP Data Out Register for memory data received
from the CTL Bus, and the IOD Data Out Register for direct data
received via the U-Bus from the CPU. Signals from IOP control
can either read the contents out onto the IOP Bus or transfer the
contents into MUX for restoring a DRT entry.

7-19. DATA INPUT REGISTERS. There are two input registers. The
IOP Data In Register is used for sending data to memory via the

CTL Bus. This reglster is loaded from either the IOP Bus or, for
DRT entry restoring, from the IOP Data Out Register. When doing

a DRT store, the IOP Data In Register is incremented by two be-

fore the transfer is made. The second input register, 1IOD Data
In, may be used either as a direct data input register or as a

memory address register. It is loaded from the IOP Bus. During

direct I/0 execution, the register contents are read onto the CPU
S-Bus. When addressing memory, the register contents are read

out to the CTL Bus.
7-20. Module Control Unit

As previously discussed in Sections II and VI, the Module Control
Unit (figure 6-1) contains MCUs for both the CPU and the 1IOP.
The MCUs operate basically in parallel, but not independently.
Since both MCUs share the same access to the CTL Bus, and also
share the same module number, it is necessary to resolve priority
when both the IOP and CPU simul taneously attempt to use the bus.
Priority is resolved so that IOP requests take precedence over
CPU requests except that a CPU high request takes precedence over
an IOP low request. This exception means that the CPU is in the
middle of a memory write operation, having sent an address to
memory, and the high request is an attempt to follow up by send-
ing the data. CPU 1low request represents the beginning of a
transfer (attempt to send an address) and any IOP regquest will
have priority over the CPU low request.

I/0 System

An IOP Request (IOP REQ) signal (figure 6-1) 1is generated when
either a low request (IOLREQ) signal or a high request (IOHREQ)
is about to set one of the select flip-flops (IOLSEL or IOHSEL).
The IOP REQ signal inhibits the setting of the CPU Select flip-
flop. However, a (PU HREQ signal will inhibit IOLRQ from gener-
ating the IOP signal. When data is returned from memory the FROM
comparator compares the data with the contents of the TO Register
to check that the transmission is from the same memory module to
which the address was sent. The TO Comparator also checks that
the transmission is to this module. Together, the outputs of the
two comparators generate an I/0 Strobe (IOSTRB) signal which
locks the IOP Data Out Register (see figure 7-10), because it now
contains the correct information from the CTL Bus. The IOSTRB
also tells the IOP that the data is ready for output via the IOP
Bus. The MCU Ready comparator checks to see if a destination
module is ready or that an I/0 low request signal can set the I/O
Low Select (IOLSEL) flip-flop. Setting the IOLSEL flip-flop
causes the contents of the IOP Data In Register, FROM, TO, and
MOP signals to be read out onto the CTL Bus for transmissicn to
Main Memory.

7-21 Multiplexer Channel

The Multiplexer Channel (figure 7-9) acts as a switch to enable
one of its associated Device Controllers to transfer one word of
data to or from memory via the IOP and then to allow another con-
troller, based on priority, to perform its transfer. At all
times, the Multiplexer Channel contains the current I/0 program
doubleword (paragraph 7-28) for each of the possible 16 Device
Controllers. To accomplish this, the Multiplexer Channel has a
16-1location, solid-state memory to contain the 16 I/0 program
words, and 1is responsible for fetching the next I/0 progam dou-
bleword when necessary. A more detailed discussion of Multi-
plexer Channel operations is contained in paragraph 7-33.

7-22. Selector Channel

The Selector Channel (figure 7-9) acts as a switch, but in a man-
ner different from a Multiplexer Channel. The Multiplexer Chan-
nel switches between Device Controllers on demand, based on
hardware priority, wheras the Selector Channel maintains the con-
nection for one Device Controller until it has completed the 1I/0
progr am. Therefore, only one I1/0 program is current at a given
time for one channel. Another major difference, as shown in
figure 7-9, is that the Selector Channel accesses memory directly
for data and I/0 program word transfers, rather than indirectly
through the 1IOP. These features permit a very high speed data
transfer rate. A more detailed IOP discussion of Selector Chan-
nel operations is contained in paragraph 7-47.

7-23. 1/0 SYSTEM FUNCTIONAL OPERATION

The following paragraphs contain discussions of I/0 priorities, a
summary of data routes, a comparison of basic transfer modes, and
detailed discussions of the I/0 hardware operations.

7-19

I/0 System

7-24. 1/0 Priorities

There are two types of priority in the 1I/0 system; interrupt
priority and service priority. The ability of a device to inter-
rupt the CPU is based on a priority structure that is separate
and distinct from the priority structure that handles service
requests.

The interrupt poll determines the prlorltles of all 1I/0 inter-

rupts. The 1nterrupt poll originates in the IOP (flgure 7-11)
and is wired in series through every Device Controller in the
sys tem. The proximity to the IOP on this line determines the

interrupt priority of each controller. The desired wiring se-
quence is dependent on system conflguratlon. Physically, the
interrupt poll is a twisted-wire pair (signal and ground) con-
nected into and out of each unit at INT POLL IN and INT POLL OUT
connector pins. Functionally, the interrupt poll is an IOP
response to a received Interrupt Request (INT REQ line in the IOP
Bus). The poll propagates through each non-requesting unit and
stops at the first requesting unit. The unit then returns INT
ACK (Interrupt Acknowledge) and its device number to the 1IOP.
The IOP then generates an interrupt signal to the CPU. When the
CPU is ready to process the interrupt, it uses the device number
saved in the IOP (Interrupt DEVNO Register) to refer to the
device.

Service prlorlty, unlike the series-linked structure of interrupt
priority, 1is determined in two levels. For Multiplexer Channel
devices, the first level determines the priority among two or
more Multiplexer Channels. The second level determines the pri-
ority of each Device Controller associated with that Multiplexer
Channel. Figure 7-11 shows only the first-level determination of
priority among Multiplexer Channels by means of a data poll; the
remaining priority determination is by logic not shown. The data
poll operates very much like the interrupt poll. That is, when
the IOP receives a Service Request, it sends out a data poll.
The first requesting Multiplexer Channel encountered by the poll
stops propagation of the poll and proceeds to spec1fy the kind of
service required. Therefore, since priority is determined by
proximity to the IOP, the poll is wired through each Multlplexer
Channel in the desired priority segquence. The second-level pri-
orlty determination for Multiplexer Channel devices is by a ser-
vice request number. Since each Multiplexer Channel can handle
16 Device Controllers, there are 16 service request numbers (0
through 15). Each Device Controller associated with a given Mul-
tiplexer Channel is uniquely wired by a jumper to connect to one
of these 16 numbers to give the Device Controller a specific pri-
ority level. (Service request number 0 is the highest priority
and 15 is the lowest priority.)

I/0 System

Memory Memory
Module Module
CENTRAL (CTL) DATA BUS
Port
CPU M Cont.
\ c
o V]
Ld Select.
Interrupt Chan.
Poll
| . SELECTOR CHANNEL BUS®
> System
Clock
High Speed
Data — Device Cont. O
Poll
10P BUS .
r_.__.._-._._.-_1 \
! | 3
‘Device T C | J Device
: Cont. | MUX Cont. O
| DIRECT 1/O DEVICE |
LSONTROLLER] v
_ MUX CHANNEL BUS

Figure 7-11. Interrupt Poll and Data Poll

Note

The service request number has no asociation with
the devuce number. It is simply a convenient way
by which a Multiplexer Channel can communicate
with and assign priorities to its set of Device
Controllers.

For high-speed Device Controllers, the Port Controller determines
the first level of priority. Selector Channel 1 has highest pri-
ority and Selector Channel 4 has lowest priority. Although three
Selector Channel ports are available (port 2 cannot be used), two
Selector Channels is the maximum system configuration. The sec-
ond-level determination is a simple preemptive process. The
first device to be given an SIO instruction on a particular chan-
nel will have exclusive use of that channel until its I/O pro-
gram is finished. No further SIO instructions for devices con-
nected to that channel can be honored until that time.

I1/0 System

Memory Memory
C;J Module 0 Module
j |
| CENTRAL.(CTL) DATA BUS HIGH SPEED S$10 DATA
Port
CPU Cont.
(] M
] c
A l
elect.
:)/i(r)ect - Chan.
Data 2*13/4;
System SELECTOR CHANNEL BUS
Clock
High Speed Ne High Speed
; Device Cont. Device
10P BUS I
— — — —||B'RECT /O DATA MULTIPLEXED
n Direct | $10 DATA
I I/o , ' b
[Device Devolce | Device
| Cont. [MUX Cont. q)
| DIRECT 1/0 DEVICE | Multiplexer
LCONTROLLER _ Channel
________ Device
* PORT 2 NOT AVAILABLE FOR USE. MUX CHANNEL BUS

Figure 7-12. 1/0 Data Routes

7-25. 1/0 Data Routes

Data transfer routes for both low- and high-speed devices and
direct I/0 are shown in fiqure 7-12. At least one of each type
of unit (two low-speed Device Controllers, one high-speed Device
Controller, one Multiplexer Channel, two memory modules, etc.) is

shown. The routes shown in figure 7-12 are the normal input/
output data routes.

For direct I/O instructions to a Multiplexer Channel device, in-
formation is transferred to or from the TOS in the CPU via the
IOP and IOP Bus. The information could be device status (for TIO
or rejected SI0, RIO, or WIO), control information (CIO), or data
(RIO or WIO). For SIO operation, data is transferred to and from
memory via the CTL Bus, IOP, and IOP Bus.

For direct 1I/0 instructions to a Selector Channel device, the
data route is the same as for a Multiplexer Channel device; to or
from the TOS in the CPU via the IOP and IOP Bus. For SIO opera-
tion, data is transferred to and from memory via the CTL Bus,
Port Controller, Selector Channel, and Selector Channel Bus.

7-22

I/0 System

7-26. 1/0 Transfer Modes

There are three basic modes of data transfer; direct I/0 and two
SIO type transfers. Direct I/0 operation consists of the trans-
fer of a single word (per CPU instruction) between the CPU and a
Device Controller. The Multiplexer and Selector Channels are not
involved. Direct I/O operations are discussed in paragraph 7-27.

Dur ing the two SIO type transfers, the CPU gives the I1/0 system a
command to "start I/O" for a particular device and the I/O system
proceeds to execute an I/O progam for that device. The program,
which resides in memory, controls the input and output of data.
Specifically, the two SIO transfer modes are moderate-speed
transfers via the Multiplexer Channel and high-speed transfers
via the Selector Channel. Figure 7-12 illustrates the difference
in data routes for these two modes. However,the significant dif-
ference is in the sequencing of transfers for multiple Device
Controllers. Paragraphs 7-31 and 7-30 describe the difference
between Multiplexer Channel and Selector Channel transfers.

7-27. DIRECT I1/0. During direct I/0 operations, the CPU trans-
fers information directly to and from a Device Controller without
involving memory, the Multiplexer Channel, or Selector Channel.
(Ssee figure 7-12.) For each I/0 instruction, one word is trans-
ferred either to or from the CPU TOS. The CPU has four direct
I/0 instructions; Test 1I/0 (TIO), Control I/O (CIO), Read I/O
(RIO), and Write I/O (WIO).

Note

Some Device Controllers cannot accept all
direct I/0 commands (see the specific sub-
system manual). However, all Device Con-
trollers will accept a TIO or CIO using
bits 0 and/or 1. Bit 0, the standard con-
trol bit, causes a master clear of the
subsystem. Bit 1 causes the subsystem in-
terrupt logic to reset.

The TIO instruction obtains the contents of the Device Control-
ler’s Status Register and pushes it onto the TOS. When the CPU
encounters a TIO instruction, its TIO microprogram sends a com-
mand word to the IOP Control circuit (figure 7-10) in the IOP.
The IOP then issues a Service Out (SO) and a TIO command on the
IOCMD lines via the IOP Bus to the device addressed by the Device
Number (DEVNO) code. The addressed device is therefore enabled
to accept and decode the command, and accordingly, reads the con-
tents of the Status Register onto the IOD lines. SI is also is-
sued which causes the IOP to load the status word into the IOD
Data In Register and informs the CPU that the word is present.
The CPU then issues a Read signal which reads the contents of the
IOD Data In Register to the S-Bus. From the S-Bus, the status
word is placed on the U-Bus and pushed onto the stack.

7-23

I/0 Systemn

The: RICG instruction begins by performing a TIO to the Device Con-
troller as previously discussed to check the Read/Write OK status
bit (bit 1). If status is acceptable, the same sequence is re-
peated except that the command is RIO and data is transferred
from the Data In Buffer rather than the Status Register.

The CIO instruction obtains a control word from the TOS register
(RA) and sends it to the Device Controller’s Control Register.

When the CPU encounters a CIO instruction, its CIO microprogram

1qa§s the RA contents into the IOD Data Out Register and then
isstes a command word to the IOP. The command word causes a CIO
IOCMD to be issued to the Device Controller addressed by the
DEVNO code along with SO. Simultaneously, the contents of the
IOD DPata Register are read out onto the IOD lines. When the De-
vice Controller decodes the IOCMD, it loads the word on the 1IOD
lines into its Control Register and returns SI to the IOP. When
the IOP receives SI, the IOP returns a signal to the CPU, indi-
cating completion cf the instruction.

The WIO instruction begins by performing a TIO to the controller
to check the Read/MWrite OK status bit. If status is acceptable,
the remaining operations for the Write I/0 instruction are the
same as for CIO except that the information sent is a data word,
the IOCMD is WIO instead of CIO, and the information is loaded
into the Device Controller’s Data Out Buffer instead of its Con-
trol Register.

7-28. PROGRAMMED I/0. When a driver issues an SIO instruction to
a requested Device Controller, the I/0 hardware begins to execute
the I/0 program independently of the CPU. The CPU is then free
to continue processing in parallel with the I/0O operations. Par-
agraphs 7-29 and 7-30 define the elements of an I/0O program and
describe the hardware actions occurring after the SIO instruction
is issued.

7-29. 1I/0 Program Word. The format of an I/0 program word is
illustrated in figure 4-14. Two computer words are used to ac-
commodate the 32-bit word length. The first word is designated
as the I/O Command Word, or IOCW, and the second word is des ig-
nated as the I/0 Address Word, or IOAW. Data chaining occurs for
WRITE and READ orders if bit 0 of the IOCW is a "1". This bit
may be a "1" for a WRITE order followed by a WRITE or for a READ

order followed by a READ. This will permit the hardware to treat
the counts of each order as a continuous chained count, without

reinitializing for each order. The DC bit should be "0" for all
other orders. The count field of the IOCW contains the least
significant 12 bits of a two’s complement negative count value
for WRITE and READ orders. The count is a word count, indepen-

dent of the particular recording format (bytes, words, or re-
cords). For a CONTROL order, these 12 bits are used for control

information in addition to the 16 control bits in the IOAW (a

total of 28 bits). Complete definitions of the 1I/0 orders are
contained in paragraph 4-16, Instruction Commentary number 8.

I/0 System

7-30. Typical I/0 Program Operation. Figure 7-13 illustrates the
sequence of operations occurring as the result of an SIO instruc-

tion. The sequence is as follows:

Q.

The SIO instruction (decoded by the CPU) fetches the device
number given at S-K (1, figure 7-13) in the stack (2), and
puts the TOS into the first word of its DRT entry as the 1I/0
program pointer.

SIO then sends the device number (3) to the IOP Control Reg-
ister and sends an SIO command (4) to the IOP.

The IOP issues the SIO command (5) to the Device Controller
and execution by the hardware begins. The CPU is now free to
continue execution elsewhere.

On demand from the Multiplexer Channel, the IOP obtains the
pregram pointer (6) from the DRT. (The Selector Channel ob-
tains the program pointer directly, not via the IOP.) As il-
lustrated previously in figure 7-4, the address is obtained
by multiplying the device number by four. The program point-
er is the first word of the four-word DRT entry.

The program pointer points to the first doubleword of the 1/0
program (7). The pointer is updated to point at each 1/0
program double word as the program progresses. (The Selector
Channel, to minimize memory fetches, copies the pointer value
into a register and updates the pointer internally; the Mul-
tiplexer Channel updates the pointer directly in the DRT.)

The sample I/0 program operates as follows. The first dou-
bleword (7) contains a CONTROL order which enables the hard-

ware I/0 subsystem for this device. The second doubleword

contains a READ order which causes the subsystem to read 4096
words (or 8192 bytes) into the data buffer (8) whose starting

location is given in the IOAW word. Since the data chaining
bi; is on, the next (third) doubleword is also a READ order
which specifies the remaining count required to fulfill the

I/0 request. (Additional READ orders could be given for larg-

er requests.) The IOAW will either specify an additional buf-
fer area contiguous to the first 4096-word buffer if desired

or, in another part of memory.

When the transfer is complete, the final doubleword contains
an END order, which obtains the result of the transfer (de-

vice status) and loads it into the IOAW; the END order then
tells the controller to generate an interrupt to inform the

software that the transfer is complete.

At the completion of an I/O program, the Selector Channel
returns the current program pointer value to the DRT. The

Multiplexer Channel does not take any special action since it
updates the DRT after each order fetch.

I/0 System

DEVICE
STACK REFERENCE
TABLE
o 1/0
PROGRAM
P[5 [50] <] @ ORI
1 f " " Enable]
K IDEV NO. r’ PROG PTR .l_s_B_ __] DATA
- - BUFFER
1] Read
@ [Read] _Rem]
Addrass
S el]
Disable
et | | %
Status
IOP Control | | l
LLS'O % DEV NO.] Register | '
' |
J “
@ 4 times Remainder
Start 1/0 Dev No. l
to Hardware Note: SB = SET BANK

SIO INSTRUCTION

Figure 7-13. 1/0 Program (peration

7-31. Multiplexer Channel Transfers. A multiplexer transfers

data from many sources on an apparently simultaneous basis.
Therefore, it is the function of the Multiplexer Channel to per-
form one discrete operation for one Device Controller (such as to
transfer one word to or from memory), and then check to see which
Device Controller has highest priority for the next discrete
Operation. The Multiplexer Channel includes a 16-location solid-
State memory as shown in figure 7-14. Each location in this mem-
ory corresponds to one of the 16 Device Controllers connected to
the Multiplexer Channel Bus. Each location contains the informa-
tion required to execute the next operation for that device.
Typically, this would be the current I/0 program word. When a
particular Device Controller is selected for service, the stored
word is read out to a set of registers and the Multiplexer Chan-
nel executes the indicated operation. Then, the information is
updated for the next anticipated operation and is stored back in
the memory location. ‘

The overall Multiplexer Channel operating sequence is as follows.
Each time a Device Controller requires a new I/0 program, it
causes the Multiplexer Channel to fetch an address from the DRT
(1, figure 7-14) and load it into its solid-state memory loca-
tion. (Some other operation for another device could be inter-
leaved after each of these steps.) Then (2), the I/O program
doubleword is fetched and loaded into the same memory location.
This I/0 program word is then read out (3), control signals are
issued to the Device Controller (4) , and the updated operation
information is stored back into the memory location (5). If the
Device Controller was commanded to transfer data, it issues a

7-26

I,/0 System

MEMORY
MULTIPLEXER CHANNEL DRT
16-Cell
Solid-State @ J
Memory f
» & 1/O Prog 1/0 Prog
0, k - D
o 1/0 Prog
Device
Cont. '\\ -
Control
Data Data Data
Device ‘,/
Cont.
t > _ a > _J/
" Data
MEMORY
DRT
SELECTOR CHANNEL
_____ N
1/0 Prog 1/0 Prog
© -
| Buffers | Jop
Device rog
Cont. S -
~<
~
B3 S~
-_——— Y
_ —> Control
Device - -y == ¢ 1 (@ e
4 ~N “\
Cont g i i
Q_ — =\ ¢ @ » [} {
Data Data 9! Data ~{ Data
| BufferB |

Figure 7-14. Multiplexer and Selector Channel Comparisons

service request when it is ready (6), causing another readout of
the stored information (7) and a transfer of data (8). Updated
operation information is restored (9). Steps (6) through (9)
are repeated for each word transferred. (For a more detailed
discussion, refer to paragraph 7-33.)

7-27

I/0 System

7-32. Selector Channel Transfers. A Selector Channel transfers
data from many sources in a data block manner. That is, it locks
onto one Device Controller until the I/O program for that device
is completed. Then, a check is made to see which Device Control-
ler has highest priority for the next block transfer. Since only
one I/0O program will be in progress as long as a particular de-
vice is selected, the Selector Channel is designed to facilitate
very high speed transfers. The Selector Channel uses double-buf-
fering for both data and 1/0 program words. (See figure 7-14.)
For data, this permits device/channel transfers to overlap chan-
nel/memory transfers. For I/0 program words, this permits the
next program word to be fetched from memory while the current
word is active. Both of these features contribute to the speed
capablity. In addition, the necessity to repeatedly fetch a DRT
entry for the address of the current I/0 program word (as is done
by the Multiplexer Channel) is eliminated by including a Program
Counter in the Selector Channel. The Program Counter is loaded
with the initial address contained in the DRT, but is thereafter
incremented (or altered for jumps) internally in the Selector
Channel. To provide software compatibility with Multiplexer
Channel transfers, the final value of the Program Counter is
automatically restored in the DRT at the end of the program.
Software cannot distinguish whether the transfer occurred by way
of the Multiplexer Channel or the Selector Channel.

The overall Selector Channel operating sequence is as follows.
When the Device Controller is commanded by the CPU to ‘"start
I/0", it causes the Selector Channel to fetch the starting ad-
dress of the I/0 program from the DRT (A). This address is used
to fetch an 1I/0 program doubleword (B) and load it into either
the active control registers or, during order prefetch, into the
buffers (C). The Program Counter is incremented after each
fetch. Control signals are issued to the Device Controller (D),

and (E), 1if the command is a Read, the Device Controller reads
data into buffer A (or buffer B if A is full). 1If the command is

a Write, the Device Controller writes data from buffer A (or buf-
fer B if A is empty). Meanwhile (F), the Selector Channel at-
tempts to keep both buffers full for output or both empty for
input, by transmissions to or from memory. At the end of the
block transfer, the next I/0 program word is fetched. Repeat
back to step (B). At the end of the I/0 program, the Selector
Channel stores its Program Counter contents into the DRT (G) .
(For a more detailed discussion, refer to paragraph 7-47.)

71-33. Multiplexer Channel Operations

A detailed discussion of Multiplexer Channel operations 1is con-
tained in paragraphs 7-34 through 7-46.

7-34. INITIALIZE. When the CPU encounters an SIO instruction,
the CPU outputs a command word to the IOP Control Register. (See
figure 7-10.) The IOP relays this information to the Device Con-
troller (figure 7-15) via the IOP Bus. The DEVNO on the IOP Bus
is compared with the internally wired device number. A true re-
sult, together with the SO signal from the IOP, enables the IOCMD

7-28

1/0

Sys tem

TO 10P BUS
A

§1 LOGIC

MASK
PIN
WHEEL

$I0 - SMSK

10CMD
3

7

DEVNO

INT DEVNO

10CMD
DECODER

A_RIL

DEVNO

come

INT REQ

IACTIVE
FF

INT
POLL 6
IN

SMSK

SIN

]

INT LATCH
e
FE

DATA OUT BUFFER

CONTROL

1w v

DEVICE STATUS

DATA INBUFFER

S0
RIO
Wi

DEV
INT

CONTROLLER
LOGIC

SET SR

DEVICE
CONTROLLER
ON A
MULTIPLEXER
CHANNEL

SR

FF

PIN
WHEEL

15,

L 18 SR LINES

CHAN SO

DEV END

ACK SR

CHAN ACK

O VNO D8

$10 ENABLE

JUMP MET

TOGGLE INXFER

TOGGLE SR

TOGGLE OUTXFER

TOGGLE $10 OK

REC

PCMOD}

¥

SET JWP

PSTAT ST

P CONT STB

PWRITE STB

RD NEXT WO

P READ STB

SET INT

[{:)

SR CLOCK

mux

TO MUX
CHANNEL

Figure 7-15.

Multiplexer Channel and Device Controller
Simplified Logic Diagram

7-29

I/0 System

to be decoded. The IOCMD in this case is SIO which, when decod-
ed, sets the Service Request (SR) flip-flop. The Service Request
(SR) along with a Request (REQ) signal is sent Multiplexer Chan-
nel Bus to the Multiplexer Channel. (See figure 7-16.) The SR and
REQ cause the Multiplexer Channel, instead of the Device Control-
ler, to return SI and force a DRT FEtch to be the first operation
performed for the Device Controller on the next Service Request
from the Device Controller. An SIO to a Device Controller temp-
orarily inhibits service requests from all other Device Control-
lers. Therefore, the only Device Dontroller requesting 1is the
one receiving the SIO command. The Priority Encoder/Select De-
coder then issues a 4-bit binary code which corresponds to the SR
line number. The binary code is used as a RAM address to enable
one of the 16 locations in the solid-state multiplexer memory.
The solid-state memory contains separate RAM for each of the IOCW
and IOAW parts of the I/0 program doubleword, and one to specify
the state (or next operation). In this case, a DRT fetch and an
Auxiliary RAM containing the I/O order. The IOCW is contained in
the Order RAM (16 bits), the IOAW is contained in the Address RAM
(16 bits) and the state is contained in the State RAM (4 bits).
Each of the addressable locations therefore contains 36-bits.

For the initialize operation, the State RAM location for the re-
questing device is forced to the condition required for a DRT
fetch. Once this is done, the Multiplexer Channel returns a DI
signal to the IOP, which in turn, causes the IOP to free the CPU
to execute other instructions. The Auxiliary RAM uses bits 12
through 15 of the Set Bank I,/0 order on the IOD lines to send IOX
(B12 and B1l3) to the CPU Mod Select switches (see figure 7-10)
and to send IOX (Bl4 and B1l5) to memory (see figure 6-2) as part
of the 18-bit memory address. The IOP Mod Select Switches (fig-
ure 7-10) supply an IOTO signal to the MCU where it is gated to
memory (figure 6-2). The Multiplexer Channel will transmit a
bank number of 0 unless actually moving data for a Read or Write
order pair. In the following description, unless otherwise spec-
ified, the bank number will be considered to be zero.

7-35. DRT FETCH. The Service Request received at the Multiplexer
Channel from the Device Controller (figure 7-16) causes the
Transfer /Control 1ILogic to send a Multiplexer Channel Service Re-
quest (HSREQ) to the IOP and also sets the SR latch. Any of the
16 SR inputs can set this latch and generate an HSREQ signal.
However, only the highest priority requests will be honored by
the Priority Encoder. The IOP, when it receives an HSREQ, issues
a DATA POLL to all Multiplexer Channels. The highest priority
Multiplexer Channel stops the propagation of the poll (since SR
Latch is set), and its transfer logic is enabled. First, the
contents of the address RAM location are loaded into the State,
Address, Auxiliary, and Order Registers. The state bits tell the
transfer logic to send out a command to the Device Controller via
the Multiplexer Channel Bus along with the Service Request number
signal (which is returned on the same line used for Service Re-
quest) and SO. This command tells the Device Controller to read
out its device number to the IOP Bus.

7-30

I1/0 System

TO 10P BUS
A
r h
DATA DATA
PO PO
ouLTL o 70EVNO
|- - -7
e ' !
! |
| 3 pevNo | |
4 VLI PN m— CoMP
| | oecooer ARATOR| |
| TI0 |
i clo 3 |
TRANSFER/ wio
CONTROL WR RAMS | RIO |
LOGIC
! DEVNO |
| JUMPERS
4 | |
e | DIAGNOSTIC |
WR ORDER RAM LoGIC
Lo e e e —
INC ADDR
4 BITS 12.15
INCWC
3 3
I STATE l J
RAM RAM
[«T&]cTo] B812| B13] B14[B15]
e %
\
3
RR
[RAM ADDR 4 ——
ADDRESS RAM | Joroer| woro count
RAM RAM
PRIORITY
ENCODER/
SELECT L
DECODER ORDER | WORD COUNT
°° il I
o] L
CHAN SO J
DEV END J
ACK SR
DEVNO DB N
CHAN ACK
S10 ENABLE
JUMP MET)
TOGGLE INXFER w,
TOGGLE SR MUX
TOGGLE OUT XFER J L BUS
TOGGLE 510 Ok — 0 MULTIPLEXER
REQ DEVICE
] i CONTROLLER CHANNEL
SET JMP
PSTAT5TB ~)
P CONT STB)
P WRITE STB)
RD NEXT WD)
P READ STB)
SET INT -)
EOT
h J
SR CLOCK)
-

Figure 7-16. Multiplexer Channel Simplified Logic Diagram

7-31

1/0 System

The Device Controller, for a DRT fetch, reads out its device num-
ber (DEVNO) onto the IOD lines. Instead of being read onto the
eight least significant lines of the bus (8 through 15), the num-
ber is read onto lines 6 through 13, which is left-shifted by two
bits. This effectively multiplies the number value by four, thus
automatically providing the correct address for that device’s DRT
entry. (Remember that each device uses four 1locations in the
DRT.) Simultaneously, the Miltiplexer Channel is returning an SI
response to the 1IOP along with an IOCMD which tells the IOP to
accept the address existing on the IOD lines and that a DRT fetch
from that address is required.

The IOP then proceeds to fetch the DRT entry. (See figures 6-1
and 7-10.) The IOP issues an IOLRQ to its MCU with an appropriate
MOP to read memory. When select occurs, the address is transmit-
ted to memory. When memory returns the DRT entry contents, 1I/0
Strobe (IOSTRB) 1loads the word into the 1IOP Data Out Register.
The IOP Data Out contents are then read out onto the IOD lines
and SO is issued. Upon receipt of SO, the Multiplexer Channel
loads the DRT word into the Address RAM, restores the Order Reg-
ister contents into the Order RAM, and sets the State RAM to the
condition required for an 1/0 program word fetch. Meanwhile, the
IOP transfers its copy of the DRT word from the Data Output Reg-
ister to the Data Input Register, increments it by two, and sends
it back to the DRT in memory. (This is an anticipatory move, as
the Address RAM presently contains the desired address for the
next operation; the incremented address in the DRT will not be
used until the next DRT fetch.)

7-36. 1/0 PROGRAM WORD TRANSFERS. Each I/0 program word consists
of two words in Bank 0 of Main Memory; the IOCW and the IOAW.
Therefore, two memory transfers are required. The first transfer
is to fetch the IOCW. Depending on the order that the IOCW con-
tains, the second transfer may be either a fetch or a store.

7-37. IOCW Fetch. The SR flip-flop in the Device Controller 1is
still set from the previous procedure (DRT Fetch, paragraph 7-4),
SO HSREQ is still present at the IOP. The IOP therefore issues a
new DATA POLL. The SR Latch in the Multiplexer Channel, which
had reset on the trailing edge of the previous SO, has become set
again since the SR input was still present at the next clock.
Thus DATA POLL 1is stopped from further propagation, and the
Transfer/Control Iogic is enabled again.

The contents of the Address RAM location are loaded into the
State, Address, and Order Registers. The state specifies an IOCW
fetch, so the transfer logic reads out the contents of the Ad-—
dress Register and issues SI and the IOCMD "transfer from memory"
to the 1IO0P. The address now on the 1IOD lines is the word pre-
viously fetched from the DRT, indicating the address of the 1/0
program word. The IOP issues an IOLRQ to the MCU. When priority
allows, the MCU transmits the address to memory. When memory
returns the IOCW, IOSTRB loads this word into the IOP Data Out
Register in the IOP. The IOP then reads the word out to the IOD
lines and issues SO.

7-32

I1/0 System

Upon receipt of SO, the Multiplexer Channel loads the IOCW into
the Order RAM. If the order is Control, the Multiplexer Channel
issues a command through the Multiplexer Channel Bus so that the
Device Controller will also load the IOCW into its Control Reg-
ister. The contents of the Address Register/Counter is incre-
mented by one and restored in the Address RAM. The next state,
fetch or store IOAW, is stored in the State RAM.

The next operation, transfer of the IOAW, begins the same way for
each of the orders. That is, SR to the Multiplexer Channel
causes a HSREQ to be sent to the IOP. The IOP returns a DATA
*POLL which enables the Multiplexer Channel to load the addressed
RAM location into the State, Address, and Order Registers. Ac-
tion after this point varies depending on the order that the IOCW
contains.

7-38. IOAW Fetch. The Read, Write, Jump, Control, and Interrupt
orders each cause an IOAW fetch. However, the action taken upon
receipt of the 1IOAW is different in each case. . The IOAW fetch
begins by reading the contents of the Address Register (incre-
mented on the trailing edge of DATA POLL in the IOCW fetch pro-
cedure) to the IOD lines. The Multiplexer Channel also issues SI
and the IOCMD "transfer from memory" to the IOP. The IOP issues
IOLRQ with MOP to its MCU to request a memory read. When memory
returns the contents of the address location, IOSTRB loads it
into the IOP Data Out Register. The IOP then reads the contents
of the IOP Data Out Register to the IOD lines and issues SO. For
Read, Write, Interrupt, and Jump orders, the Multiplexer Channel
will store the word (IOAW) into the Address RAM. For a Control
order, the Multiplexer Channel issues a command via the Multi-
plexer Channel Bus to tell the Device Controller to load the word
into its Control Register. For an Interrupt order, the fetched
information is loaded into the Address RAM but is disregarded.

For Read, Write, and Conditional Jump, a command is sent to the
Device Controller to specify conditions for the next action. For
Read, the in-transfer condition is set. For Write, the out-
transfer condition is set. For Conditional Jump, the Device Con-
troller is given the choice of setting or not setting the "jump
met" condition. If "jump met" is true in the next DRT fetch se-
quence (or if an unconditional jump was given), a store operation
(instead of fetch) will occur. That is, the Multiplexer Channel
will cause the contents of the Address Register to be sent to the
IOP which will increment the value by two before storing in the
DRT. (The Address RAM already contains the correct jump address,
so a DRT fetch is not necessary.)

7-39. IOAW Store. The Sense, End, and Return Residue orders each
cause an IOAW store operation. This operation begins as the Mul-
tiplexer Channel reads the incremented contents of the Address
Register out to the IOD lines and issues SI with a "transfer-to-
memory" IOCMD. The IOP loads this address into its Memory Ad-
dress Register (MAR) and issues IOLRQ to its MCU with a Clear/
Write MOP. The insuing CTL Bus transmission prepares memory for
receiving data. Simultaneously, the IOP has issued SO to the

7-33

I/0 System

Multiplexer Channel to ask for data. Depending on the current
order, the Multiplexer Channel either gates the Order Register
contents out to the IOD lines (Return Residue order) or issues a
command to the Device Controller, telling it to read out its
Status Register contents (Sense or End orders). When either ac-
tion occurs, SI is returned to the IOP which causes the 1IOP to
load the IOD information into its Memory Data Input Register.
The IOP then proceeds to transmit this information tc memory by
issuing IOHRQ to its MCU. When the transmission occurs, the ap-
propriate information will be stored into the IOAW location of
the I/0 program doubleword.

7-40. Next Operation. At this point (after the IOAW fetch or
store), the I/O program word transfer is complete. 1In addition,
all orders except Read and Write (i.e., Control, Set Bank, Sense,
Return Residue, End, Jump, and Interrupt) are fully executed.
The next operation for any of these orders (except End, which
terminates the program) is to return to the DRT fetch operation.
For Read or Write, however, a data transfer is indicated.

7-41. DATA TRANSFERS. Data transfers are very similar to the I/0
program word transfers previously described, in that the basic
operation is to fetch or store information using a memory address
that has been put in the Address RAM by a previous operation.
For I1/0 program word transfers, the previous operation was the
DRT fetch; for data transfers, the previous operation is the I/0
prcgram word transfer. The main difference is that the data
transfer is device-initiated. That is, when a device is ready
for a transfer, it informs its Device Controller which then is-
sues an SR to the Multiplexer Channel. Another difference is
that the word count and memory address contained in the Order and
Address Registers must be incremented during each word transfer.
Each data transfer consists of two distinct steps; the transfer
of an address to memory and the transfer of data to or from that
address. The first step (address to memory) is the same for ei-
ther output or input.

7-42. Address Transfer. When the device sets the Device Control-
ler’s SR flip-flop, the SR signal to the Multiplexer Channel gen-
erates an HSREQ signal to the IOP. The IOP returns DATA POLL
which enables the Multiplexer Channel to begin its transfer.
First, the addressed RAM location is read out to the State, Ad-
dress, Auxiliary, and Order Registers. Then the Address Register
contents are read out to the IOD lines and the Auxiliary Register
to the I0X lines. Also, SI and an appropriate IOCMD ("transfer
to memory" or "transfer from memory") are sent to the IOP. The
IOP loads the address and issues IOLRQ to its MCU with a Read/
Restore or a Clear/Write MOP. When priority allows, the MCU will
transmit the address to memory. Simultaneously, the Multiplexer
Channel resets the Device Controller’s SR flip-flop via the Mul-
tiplexer Channel Bus and increments the Address and Order
Registers.

7-34

I/0 System

7-43. Output Transfer. When memory returns a data word, TIOSTRB
loads the word into the 1IOP Data Out Register. The IOP then
reads the contents of this register out to the IOD lines and is-
sues SO. Upon receipt of SO, the Multiplexer Channel issues a
command to the Device Controller via the Multiplexer Channel Bus
telling the Device Controller to load the word on the bus into
its Data Out Buffer. The Device Controller returns SI to the IOP
and proceeds to output the word to the device. Simultaneously,
the Multiplexer Channel restores the contents of the State, Ad-
dress, and Order Registers into the RAM location, and the output
data transfer is complete. Some other operation for another de-
vice could be interleaved here. Otherwise, the entire data
transfer procedure repeats.

7-44. Input Transfer. As the input data transfer procedure be-
gins, memory is expecting the data. The procedure begins when
the IOP sends SO to the Multiplexer Channel to ask for data.
Upon receipt of SO, the Multiplexer Channel issues a command to
the Device Controller via the Multiplexer Channel Bus, telling
the Device Controller to read the contents of its Data In Buffer
out to the IOD lines. When the Device Controller does this, it
also sends an SI response which causes the IOP to load the data
into its Memory Data Input Register. The IOP then issues IOHRQ
to its MCU with a Write MOP, causing a data transmission to mem-
ory via the MCU Bus. Simul taneously, the Multiplexer Channel
restores the contents of the State, Address, Auxiliary, and Order
Registers into the RAM location, and the input data transfer is
complete. Some other operation for another device could be in-
terleaved here. Otherwise, the entire data transfer procedure
repeats.

7-45. End Of Transfer By Word Count. If the word count rolls
over while incrementing (during the address transfer sequence),
then in the data transfer sequence the Multiplexer Channel will
issue a command which will reset the in-transfer or out-transfer
condition in the Device Controller. Also, an End-of-Transfer
(EOT) signal accompanies the last command from the Multiplexer
Channel to read or write. The Device Controller logic will there-
fore not transfer any more data to or from the device. It will,
however, 1issue one more SR. In the Multiplexer Channel, the
transfer logic sets the next state to DRT fetch, when restoring
the RAMS at the end of the final data transfer. When the Multi-
plexer Channel receives the SR from the Device Controller and
when priority conditions are satisfied, a new DRT fetch procedure
will begin. This advances the I/O program to the next IOCW.

7-46. End Of Transfer By Device. On termination of a transfer
by a device, the Device Controller issues an SR to the Multiplex-
er Channel. The Multiplexer Channel responds with CHAN SO. The
Device Controller returns a Device End signal that causes the
Multiplexer Channel to initiate a DRT fetch, thus advancing the
1/0 program to the next IOCW.

7-35

I/0 System

71-41. Selector Channel and Port Controller Operations

A Selector Channel operates only one I/0 program and transfers
blocks of data for only one device at a time. Data is passed
back and forth from memory, through the CTL Bus, to the Port Con-
troller, Selector Channel, and through the Selector Channel Bus
to the Device Controller and the operating device. (See figure
7-12.) A detailed discussion of Selector Channel and Port Con-
troller operations is contained in paragraphs 7-48 through 7-60.
Since there may be two Selector Channels operating in the system,
the Port Controller 1is discussed first to explain how each Sel-
ector Channel gains access to the CTL Bus.

7-48. PORT CONTROLLER. The Port Controller (figure 7-17) pro-
vides three ports (ports 1, 3, and 4) to the CTL Bus for I/0 pro-
grams and data transfers between Selector Channels and Main Mem-
ory. Figure 7-17 illustrates the logic for only one port; logic
for the remaining ports is identical to the one shown. The Port
Controller Bus contains five sets of signal lines; one set for
each of four ports (port 2 is not available for use) and one set
to data lines which is shared by all four Selector Channels. (It
should be noted that although three ports are available for Sel-
ector Channels, only two Selector Channels can be installed in
the system simultaneously.)

The Port Controller is assigned a module number 4 which gives the
Port Controller a transmission priority higher than the CPU or
IOP as discussed 1in Section II. A Selector -Channel requiring
transfer of a word to or from memory, presents the Port Controll-
er with a request for a Write or a Read operation along with the
memory module number (0,1,2, or 3) to which the address will be
sent. A Write operation consists of a Low Request (LREQ) for an
address transfer followed by a Low Select (LSEL) of that address
from the Selector Channel to memory via the CTL Bus; then a High
Request (HREQ) for a data transfer followed by a High Select
(HSEL) of that data to memory, via the CTL Bus. A Read operation
consists of a LREQ for an address transfer followed by a LSEL of
the address to the bus and memory. Then, a wait for a return
transfer of data to the Port Controller from the module to which
the address was sent. This return transfer of data is indicated
to the Selector Channel by the STRB (Strobe) signal. While one
section of the Port Controller is waiting, another section could
be intructing another part of memory to fetch or store a data
word for another Selector Channel. Priority is resolved among
the three ports in the Port Controller on the following basis:
Low requests with the desired destination module ready are grant-
ed first to Selector Channel 1, next to Selector Channel 3, and
last to Selector Channel 4. A High Request for any Selector
Channel takes precedence over all Low Requests.

The Write sequence is as follows: A Write on the request lines to
the Port Controller sets the LREQ flip-flop and sets the MOP
flip-flop to the Write state. The TO lines from the Selector
Channel are clocked into the TO Register and the content is then
compared with the Ready (RDY) 1line for that module. When the

7-36

I1/0 System

EACH PORT CONTROLLER SIGNAL
(EXCEPT PCD LINES) ARE DUPLICATED
A TIMES ONCE FOR EACH CHANNEL

TOCTL BUS"
A
r \
READY FROM 10 MOP MCUD ENB
03 t3 3 2 + 04
PARITY
: (u
READY FROM TO
comp. come comp]
ARATOR ARATOR ARATOR i D D el
ROY
PULL § °1:
DOWN L B
3 5V
p
Y
PORT
CONTROLLER
LSEL T
k Yy
PARITY
WAIT — CHECKER
[
READ
MoP
XFER ERROR
F WRITE TO DEVICE
’ READY COMPARE]
LSEL
LREQ TS
FF
HREQ HSEL —ﬁ
A) FF
PC HAS PRIORITY 4 I(NB. 3
ENB4
) PCO + PARITY
READ REQ READ REQ
WRITE REQ WRITE REQ
STROB stros | PORT
0 P C BUS 7o CONTROLLER
BUS
LSEL LSEL
l A HSEL
/
rcp
.)
10/2| sTROB| WRITE| READ| HsEL| LSEL nm'rvr‘
REQ | REQ
(N J
Y
T0
SELECTOR 1/4 LOGIC SHOWN THE OTMER 3
CHANNELS EACH MAVE THIS
CHANNEL LOGIC DUPLICATED

Figure 7-17.

7-37

Port Controller Simplified Logic Diagram

I/0 System

destination is ready, the ENB is present, the Port Controller has
priority, and the LSEL and HREQ flip-flops are set. LSEL gates
the address from the Selector Channel to the CTL Bus along with
TO, FROM, and MOP. LSEL also pulls the destination’s RDY 1line
low. Then, when ENB is present, the HSEL flip-flop is set. HSEL
gates data form the Selector Channel to the CTL Bus along with
TO, FROM, and MOP.

The Read sequence is as follows: A Read on the request 1lines to
the Port Controller sets the LREQ flip-flop and sets the MOP
flip-flop to the Read state. The TO lines from the Selector
Channel are clocked into the TO Register and the content is com-
pared with the RDY line for that module. When the destination is
ready, the ENB is present, the Port Controller has priority, and
the LSEL flip-flop is set. LSEL gates the address from the Se-
lector Channel to the CTL Bus along with TO, FROM, and MOP. LSEL
also sets the Wait flip-fop. Then, when returning data is pre-
sent on the bus and the TO and FROM comparisons match, a STRB
signal is sent to the Selector Channel to tell it to accept the
data on the Port Controller Data (PCD) lines. '

7-49. INITIATOR SEQUENCE. The following paragraphs describe how
the Selector Channel’s program counter is initialized as the
first step in executing an I/0 program for one device. The Sel-
ector Channel Bus originates at the Selector Channel and is rout-
ed to all Device Controllers controlled by this Selector Channel.
The Selector Channel Bus is similar to the Multiplexer Channel
Bus in purpose, but differs in that it uses 16 lines for transfer
of control, status, and data words between the Device Controller
and Selector Channel; the corresponding Multiplexer Channel Bus
lines are used as service request lines for up to 16 devices.

The initiator sequence begins when the CPU encounters an SIO
instruction. The CPU, under control of its SIO microprogam, out-
puts a command word to the IOP Control Register. (See figure
7-12.) This initial command is a TIO to see if there is already
an I/0 program active on the channel. The IOP issues the TIO
with SO and DEVNO on the IOP Bus. The Device Controller compares
DEVNO with its internal wired device number and a true compari-
son, with SO, causes the Device Controller to return SI to the
IOP with a 16-bit status word on the IOP Bus. (See figure 7-18.)
The CPU microprogram obtains this status word from the IOP and
checks to see that bit 0, the SIO OK bit, is true. This bit will
be true if the device is ready and the Selector Channel is inac-
tive. Assuming that the SIO OK bit is true, the CPU microprogram
outputs an SIO command to the IOP Control Register and the 1IOP
issues the SIO command to the Device Controller. The DEVNO on
the bus is again compared with the internally wired device number
(figure 7-16) and the true result, with SO, enables the I/0 Com-
mand (IOCMD) to be decoded. The IOCMD is now SIO which, when
decoded, issues a Request (REQ) signal to the Selector Channel
control 1logic. The channel then returns SI to the IOP as an
acknowledgement response. From now on (except for processing an
interrupt), the 1IOP is not involved. The data gating logic
routes all data transmissions to the DATA lines of the Selector

7-38

I1/0 System

TO I0P BUS
—A

st

$1LOGIC

SO

10CMD
3

10CMD
DECODER

A\ RIL

/1 DEVNO!

DE VNO

comp ©
DEVNO

JMPRS/8

INT BEVNO

INT
REQ

INT
ACK

INT INT
POLL POL
IN ourt

1 ACTIVE

SMSK

SIN

FF

INT REQ
FF

o

INT LATCH

FF

DATA OUT BUFFER

o CONTROL

DEVICE STATUS

DATA N BUFFER

STATUS TI0 .

cio

$10
RiO
WIO

DEV
INT

o]

CONTROLLER
L0GIC

DEVICE
CONTROLLER
ON A
SELECTOR
CHANNEL

16 SR(DATA)

CHAN SO

DEV END

ACK SR

CHAN ACK

DEVNO D8

SI0 ENABLE

JUMP MET

TOGGLE INXFER

CHAN SR

TOGOLE OUTXFER

TOGGLE $10 0K

PCMD1

SET JUMP

PSTAT ST8

P CONT STB

PWRITE ST8

RD NEXT WO

PREAD ST8

SEV INY

EOT

SR CLOCK

SC BUS

TO

DEVICE
CONTROLLER

Figure 7-18.

Selector Channel and Device Controller Simplified
Logic Diagram

7-39

I/0 System

Channel Bus rather than to the IOD lines of the IOP Bus.

When the Selector Channel (figure 7-19) receives a Request (REQ)
from the Device Controller, it sets the control logic to "ac-
tive". The Selector Channel then issues the Device Number Data
Base (DEVNO DB) to the Device Controller. The Device Controller
gates the DEVNO, left shifted by two, onto the SR (Data) lines of
the Selector Channel Bus. The DRTE address is then loaded into
the DEVNO DBV Register. The Selector Channel is now exclusively
reserved for that device. Only this Device Controller will re-
spond to Channel Service Out (CHANSO) from the Selector Channel.
The Selector Channel now reads the device number from the DEVNO
DB Register and requests a memory transfer by issuing a Read to
the Port Controller (figure 7-17). The Port Controller checks if
memory is ready and, when Enable (ENB) is present, sets the LSEL
flip-flop. The LSEL signal is returned to the Selector Channel
(figure 7-19), where it reads the DRTE address onto the PCD 1lines
on the PC Bus. LSEL also reads out the TO, FROM, and MOP codes
in the Port Controller, thus effecting an address transmission to
memory.

When memory returns the DRT contents, the Port Controller issues
STRB to the Selector Channel. Since the Selector Channel control
logic is expecting a DRT word, it locads the bus data into the 1/0
Program Counter. The contents of the I/0 Program Counter will
hereafter be used to address the individual locations of the 1/0
program and no further DRT fetches are necessary. Prodgram execu-
tion will occur as a result of fetch and execute sequences.

7-50. FETCH SEQUENCE. Fetching an I/0 program doubleword re-
quires two memory fetches. Unlike the Multiplexer Channel which
examines the IOCW to determine what to do about the IOAW (fetch
it, store into it, or gate it out to the device controller) the
two memory fetches always occur. The different operations for the
various types of I/O orders are accomplished in the execute se-
quence. = The fetch sequence begins with the Selector Channel
reading out the contents of the 1I/0 Program Counter and request-
ing a memory read. When the Port Controller has obtained trans-
mit priority, it returns LSEL, transmitting the 1I/0O Program
Counter contents to memory as an address. (The Counter is incre-
mented immediately.)

When memory returns the IOCW from the addressed location, the
Port Controller issues STRB to the Selector Channel. The Selec-
tor Channel contorl logic, which is expecting the IOCW, loads the
word into the IOCW Active Register. Then the I/0 Program Counter
is again read out with another memory transfer request. The Port
Controller transmits this address to memory and the I/0 Program
Counter is again incremented. Then, when memory returns the IOAW
from the addressed location, the Selector Channel loads the word
into the IOAW Active Register. At this point the fetch sequence
is complete.

7-40

I/0 System

SCBUS

T0

DEVICE
CONTROLLER

)

~

\

|

PC BUS
AN

—

REQ

seed oess oo

() oo ()

SELECT

T0 /2] STROBl WRITE

HSEL

LSELl

XFER ERROR
TO DEVICE

10CW
Q FETCH «
PREFETCH

10CW BUFFER

PCMD)
Q

10CW
FETCH
o

8HA
TRAN
Q

]

BANK REG

IOAW ACTIVE

SR(DATA)

RD + WR

RD + WR

~

I INPUT BUFFER A ;

JumP

1/0 PROGRAM

K

COUNTER
S10
10Cw +
DRTE IOAW
FETCH +
PREFETCH
REQ

ITN?UT BUFFER GLI

[;vuo o8

®)

DRYE
FETCH +
STOR

CHAN SO

DEV END
TACKSR

CHAN ACK

DEVNO DB

S10 ENABLE

JOMP MET

TOGGLE INXFER

CHAN SR

TOGGLE OUTXFER

TOGGLE S10 OK

REQ

PCMD1

SET JUMP

P STAT STB

P CONTSTB

P WRITE STB

RD NEXT WD

P READ ST8

SET INT

EOT

SR CLOCK

l

|

I

1

CHANNEL
CONTROL
AND
SEQUENCER
LOGIC

-

b

J

LLEELEEES

10CW0,1.2.3

SELECTOR
CHANNEL

REGISTER
LOAD/READ
SIGNALS

Figure 7-19.

7-41

Selector Channel Simplified Logic

Diagram

I/0 System

The Selector Channel control logic can now examine the order. If
the order specified in the IOCW is Read or Write and, 1if data
chaining is also specified, a pre-fetch sequence is enabled.
This operation is the same as the fetch sequence described in the
preceding two paragraphs except that the returned data is loaded
into the IOCW Buffer and IOAW Buffer instead of the IOCW and IOAW
Active Registers. An additional condition for the pre-fetch se-
quence is that data transfer take precedence; 1i.e., pre-fetch
will occur only when both 1Input Buffers A and B are empty (for
Read) or both Output Buffers A and B are full (for Write). Then,
when the Read or Write order finishes, due either to word count
rollover or to a device end condition (see Read and Write execute
sequences), the IOCW/IOAW Buffers are read into the IOCW/IOAW
Active Registers. The data transfer can thus continue uninter-
rupted. If the new IOCW specifies further data chaining, another
pre-fetch is initiated to refill the buffers.

7-51. EXECUTE SEQUENCES. The following paragraphs contain
separate descriptions of the execute sequence for each of the
nine I/0 orders. In each case except End, which terminates the
I/0 program, operation returns to the fetch sequence following
completion in order to fetch the next I/0 program word.

7-52. Sense. The Selector Channel issues a P STATUS STB signal
to the Device Controller, with CHANSO, via the Selector Channel
Bus. The Device Controller accordingly reads the contents of its
Status Register onto the channel DATA lines and returns CHAN ACK
(Channel Acknowledge). On receipt of CHAN ACK, the Selector
Channel loads the status information into one of the two input
buffers and prepares for a memory transfer. First the contents
of the I/O Program Counter are decremented by one. This is
necessary because the status word must be stored in the IOAW
location for the current order, whereas the fetch sequence has
incremented the 1I/0 Program Counter to point at the next word.
Once this is done, the contents of the I/0 Program Counter ‘and
the input buffer containing the status word are read out to the
channel PCD gates (but not gated out yet). The bank number be-
comes the TO address. A number is either loaded into the Bank
Register or Bank 0 is picked up at the Bank Gate (figure 7-19),
gated through the MOD select swiches, and sent as the TO address
to the Port Controller via the TO lines of the Port Controller
Bus. A Write request to the Port Controller requests a transmis-
sion to memory and, when the Port Controller returns . LSEL, the
address from the 1I/0 Program Counter is sent to memory and the
Counter is incremented. An HSEL from the Port Controller (which
follows immediately unless ENB has been preempted by a higher-
priority module) then reads out the status word to the PCD 1lines
and sends it tc memory. This stores Status in the IOAW location.

7-53. Interrupt. The Selector Channel control logic issues a P
SET INT signal to the Device Controller, with CHANSO, via the
Selector Channel Bus. The Device Controller returns CHAN ACK and
sets its Interrupt Request flip-flop. Provided the Mask flip-
flop is set, the Device Controller issues INT REQ to the IOP via
the IOP Bus. When the IOP returns INT POLL, the device number is

7-42

I1/0 System

sent tc the IOP along with INT ACK. On receipt of INT ACK, the
IOP generates an Interrupt signal to the CPU.

7-54, Jump. The Jump order may be specified to be either
conditional or unconditional. It is the function of an uncondi-
tioned jump or a successful conditional jump to transfer the con-
tents of the IOAW Buffer (the jump address) to the 1I/0 Program
Counter. (The IOAW Buffer and IOAW Active Register contain iden-
tical contents at this time.) In the case of a conditional jump
order, the Selector Channel issues a Set Jump command to the De-
vice Controller, with CHANSO, via the Selector Channel Bus. The
Device Controller returns a true or false Jump Met signal. If
the jump is not met, operation returns to the fetch sequence. 1If
the jump is met for an Unconditional Jump order, the channel con-
trol logic gates the contents of the IOAW Active Register into
the I/0 Program Counter. Thus, subsequent orders will be fetched
and executed from a new I/0 program area.

7-55. Control. The Control order routes both the IOCW and the
IOAW to the Device Controller. The Selector Channel first reads
out the contents of the IOCW Active Register to the channel DATA
lines and issues a PCMD1 (Programmed Command One) signal, with
CHANSO, for the Device Controller to load the data word. The
Device Controller accordingly loads the word into its Control
Register and then issues a request (CHAN SR) back to the Selector
Channel to send the second word. The Selector Channel reads out
the contents of the IOAW Active Register to the DATA lines and
_ issues a second command (P CONT STB), with CHANSO, for the Device
Controller to load this new word. When the Device Controller has
loaded the new word and is ready for the next order, it returns
the appropriate response (another CHAN SR) signal to the Selector
Channel.

7-56. Set Bank. When requesting a memory Read or Write (for
data words only), an IOAW word goes into the Selector Channel
(figure 7-19) on the PCD lines and the four least significant
bits are loaded into the Bank Register by the Set Bank order.
Two bits from the Bank Register (TOl-1 and TOl-2) are gated
through the MOD select switches and Port Controller to become the
memory module TO signal on the CTL Bus. The remaining two bits
from the Bank Register (PB1l4 and PB15) are applied back through
the Port Controller via the PC Bus to become part of the memory
module 18-bit address (see figures 6-2 and 7-17 through 7-19) on
the CTL Bus.

7-57. Read. The Read order causes a block of data to be trans-
ferred from the device to memory. The block size in words is
specified in two’s complement form by the word count (IOCW bits 4
through 15) and the absolute starting address in memory is speci-
fied by the IOAW. While the block transfer is in progress, there
are two separate, simultaneous operations taking place; the
device-to-channel transfer and the channel-to-memory transfer.
To begin the Read execute sequence, the Selector Channel issues
CHANSO to the Device Controller. (See figure 7-18 and 7-19.) When
the controller returns CHAN ACK, the Selector Channel issues the

7-43

I/0 System

initial Read Next Word (RD NXT WD) with CHANSO still asserted.
When CHANSO is removed, both the Selector Channel and the con-
troller are set to the in-transfer condition to enable data
transfers.

After the device has read a word and the controller is ready to
transfer it to the channel, it sends Channel Service Request
(CHAN SR) to the channel. The channel issues P READ STB and
CHANSO, causing the Device Controller to read its Data In Buffer
onto the channel Data lines and to return CHAN ACK. On receiving
CHAN ACK, the Selector Channel 1loads the data into either Input
Buffer A or Input Buffer B (depending on which is empty), incre-
ments the word count in the IOCW Active Register, and re-issues
RD NEXT WD. The above transfer sequence repeats for each data
word until the Device Controller asserts DEV END to terminate the
block, or until the word count rolls over. In either case, the
channel sends End of Transfer (EOT) to the controller and, if not
data chaining, clears the in-transfer condition. A CHAN SR from
the controller is required to resume program execution.

Meanwhile, the Selector Channel attempts to keep both Input Buf-
fers empty by transmitting their contents to memory. The control
logic for the A and B Buffers ensures tha data is transmitted to
memory in the same sequence as received from the device. To ac-
complish a memory transfer, the Selector Channel enables the IOAW
Active Register for use as a memory address, enables Input Buffer
A or B for use as a data word, and sends a Write Request and a
mapped TO code to the Port Controller. When the Port Controller
(figure 7-17) returns LSEL, the IOAW is gated onto the bus as an
address to memory and the IOAW is incremented to point to the
next data location. When the Port Controller returns HSEL, the
Input Buffer is gated onto the bus to be stored in the addressed
memory location. The preceding operation in this paragraph re-
peats until the Read order completes, via a DEV END or word count
rollover, and all input data has been sent to memory.

If the data chaining bit in the IOCW Active Register is true, the
next order pair will have been prefetched when possible during
the block data transfer. When the Read order completes, the pre-
fetched order pair will be transferred from the IOCW/IOAW buffers
to the Active Registers without the need for a normal fetch se-
quence. Data input can thus continue for the next block with
minimum interruption. If the data chaining bit is not set, the
read termination will be followed by a normal fetch sequence.

7-58. Return Residue. The function of the Return Residue order
is to send the current contents of the Residue Register (which
reflects the results of the most recent Read or Write order) to
the IOAW 1location of the current I/0 program word. The Device
Controller is not involved. To begin the procedure, the channel
control 1logic decrements the I/0 Program Counter (for the same
reason described in the preceding paragraph). The contents of
the I/0 Program Counter and the Residue Register are then read
out to the PCD gates, while a Write Request and a mapped TO code
are issued to the Port Controller. When the Port Controller re-

7-44

I1/0 System

turns LSEL, the address from the I/0 Program Counter is sent to
memory. When HREQ sets the HSEL flip-flop, the word count from
the Residue Register is sent to memory. This stores the residue
in the IOAW location.

7-59. Write. The Write order causes a block of data to be
transferred form memory to the device. The block size in words
is specified in two’s complement form by the word count (IOCW
bits 4 through 15) and the absolute starting address of the block
in memory is specified by the IOAW. While the block transfer in
progress, there are two separate, simultaneous operations taking
place; the memory-to-channel transfer and the channel-to-device
transfer. To begin the Write execute sequence, the Selector
Channel issues CHANSO to the controller and, when the controller
returns CHAN ACK, both the Selector Channel and the controller
are set to the out-transfer condition to enable data transfers.

Meanwhile, the Selector Channel proceeds with a memory fetch and
will attempt to keep both Output Buffers full. The control logic
for the A and B Output Buffers ensures that data 1is transmitted
to the device in the same sequence as it was fetched from memory.
To accomplish a memory fetch, the Selector Channel enables the
IOAW Active Register for use as a memory address and sends a Read
Request and the Bank Register as a TO address to the Port Con-
troller. When the port returns LSEL, the IOAW is gated onto the
bus as an address to memory and the IOAW is incremented to point
to the next data location. When the port returns STRB, the data
on the bus from memory is 1loaded into an empty Output Buffer.
The preceding operation in this paragraph repeats until the Write
order completes by either a DEV END or word count rollover.

When the controller is ready to accept a data word from the chan-
nel, it sends CHAN SR. The channel issues CHANSO and P WRITE STB
and gates Output Buffer A or B onto the channel Data lines. The
controller returns CHAN ACK causing the channel to remove P WRITE
STB, increment the word count, and remove CHANSO in that order.
The Device Controller uses the removal of P WRITE STB to latch
the data word from the channel Data lines. The previous transfer
sequence in this paragraph repeats for each data word sent to the
Device Controller until the Device Controller asserts DEV END to
prematurely terminate the block or until the word count rolls
over. In either case, the Selector Channel sends EOT (End of
Transfer) to the controller and, if not data chaining, clears the
out-transfer condition. To resume program execution, a new CHAN
SR from the controller is required by the Selector Channel.

If the data chaining bit is true, (IOCW bit 0) the next order
pair will have been prefetched when possible during the block
transfer. When the Write order completes, the pre-fetched order
pair will be transferred from the IOCW/IOAW buffers to the Active

Registers without the need for a normal fetch sequence. Data
output to the <controller can thus continue for the next block
with minimum interruption. I1f the data chaining bit is not set,

termination of the Write order will be followed by a normal fetch
sequence.

1/0 System

7-60. End. The execute sequence for the End order begins by
duplicating the operations of a Sense order, obtaining the con-
troller’s status word and storing it in the IOAW location in the
I/0 program. Additionally, if IOCW bit 4 is true, a P SET INT
signal is also issued to the controller.(Refer to Interrupt order
description.) Then the channel proceeds to store the contents of
its I/0 Program (ounter into the device’s DRT location. As pre-
viously discussed, this is to maintain compatibility with 1I/0
programs run via a Multiplexer Channel. The Selector Channel
enables its DEVNO DB Register, enables the 1I/0 Program Counter
for use as data, and sends a Write Request and a TO=0 to the Port
Controller. When the port returns LSEL, the shifted device num-
ber is gated out as the DRT address and, when the port returns
HSEL, the I/O Program Counter content is gated out to the bus as
data. This completes all operations for the 1I/0 program. The
channel control logic resets to the inactive condition, thus al-
lowing another program for the same or another device to be in-
itiated via that channel.

7-61 1/0 SYSTEM SERVICING INFORMATION

The following paragraphs contain servicing information for the
IOP, Multiplexer Channel, Port Controller, and Selector Channel
PCA’s.

7-62. 10P PCA Servicing

The IOP PCA is a nonrepairable PCA and must be replaced if found
defective. No repair procedures are required. However, the IOP
PCA does contain a jumper and three switches (figure 7-20) that
must be properly configured as discussed in paragraphs 7-63
through 7-65.

7-63. ENABLE/DISABLE. Jumper W1l (figure 7-20) is used to enable
or disable the IOP PCA. Installation of this jumper disables the
I0P PCA.

7-64. MEMORY SIZE. Switch S3 (figure 7-20) 1is a 6-position
switch used to select memory word size. The switch positions and
corresponding memory word sizes are shown in figure 7-20.

7-65. MEMORY INTERLEAVING. Two switches, S1 and S2 (figure 7-
20), are used for memory interleaving. At present, §S1 and S2
must be configured for non-interleaving in accordance with table
2‘.8.

7-66. Selector Channel Maintenance Board PCA

The Selector Channel Maintenance Board PCA was designed to aid in
servicing the Selector Channel and Multiplexer Channel. Under
software control, this PCA can exercise all Selector Channel data
paths and control circuitry. All I/0 program orders can be exe-
cuted and device dependent sequences such as conditional jump,

7-46

I/0 System

TOP 1, 3, = -——79 79
BOTTOM 2,4, ~— ————————— — —=80 80

"o [TTTTIVITIOIVINONTOVTOIT_ (THTEAevronemvsroaTvvramvvssoon

N
Ralad

IOP PCA

O,
iy —— Ty

TOP 2,4, 50 2,4 —"50 2,4~— =50
BOTTOM 1,3,~ — ~ ~— =49 1,3~— —=49 1,3 = — ~——=49

MEMORY SIZE

(WORDS)
S3

-128K
- 266K
- 384K
-512K
- 768K
-1024K

OO WN =

202 Figure 7-20. IOP PCA Jumper and Switch Locations

device end, and clear interface can be exercised selectively.
Also, device timeout conditions can be simulated causing a time-
out error in the Selector Channel. Complete information on how
to install and use the Selector Channel Maintenance Board is con-
tained in the HP 3000 Series III CE Handbook, part no. 30000-
90172.

7-67. Multiplexer Channel PCA Servicing

The Multiplexer Channel PCA is a nonrepairable PCA and must be
replaced if found defective. No repair procedures are required.
However, the Multiplexer Channel PCA does contain jumpers that
must be properly configured. The configuration of jumpers Wl

7-47

I1/0 System

through W7 (figure 7-21) determine the device number and, there-
fore, the DRT address associated with the Multiplexer Channel
PCA. A logic "1" is represented by the absence of a jumper and,
conversely, a logic "O" is represented when a jumper is install-
ed. The PCA’s device number is normally $77 (no jumpers).

7-68. Port Controller PCA Servicing

The Port Controller PCA is a nonrepairable PCA and must be re-
placed if found defective. No repair or servicing procedures are
required.

7-69. Selector Channel Servicing

The Selector Channel consists of three PCA's; a Selector Channel
Register PCA, a Selector Channel Control PCA, and a Selector
Channel Sequencer PCA. Servicing information for the three PCA’s
are contained in paragraphs 7-70 through 7-75.

7-70. SELECTOR CHANNEL REGISTER PCA. The Selector Channel
Register PCA is a nonrepairable PCA and must be replaced if found
defective. However, the PCA does contain jumpers and switches
(figure 7-22) that must be properly configured as discussed in
paragraphs 7-71 through 7-73.

7-71. Port Controller Channel Number. Jumper connectors Xwl
through XW4 (figure 7-22) are used for the selection of one of
the three available channel ports from the Port Controller. Chan-
nel selection is made by installing a jumper in the jumper con-
nector corresponding to the desired channel.

7-72. Memory Size. Switch S3 (figure 7-22) is a 6-position
switch used to select memory word size. The switch positions and
corresponding memory word sizes are shown in fiqure 7-22.

7-73. Memory Interleaving. Two switches, S2 and S3 (figure 7-
22), are used for memory interleaving and, at present, must be
configured for non-interleaving. (Refer to table 2-8.)

7-74. SELECTOR CHANNEL CONTROL PCA. The Selector Channel Control
PCA is a nonrepairable PCA that must be replaced if found defec-
tive. No repair procedures are required. However, the PCA does
contain the Error Logging Register, a test switch and indicators
used for troubleshooting. Refer to the HP 3000 Series 1III CE
Handbook, part no. 30000-90172 for complete information on how to
use this PCA as a troubleshooting aid.

7-75. SELECTOR CHANNEL SEQUENCER PCA. The Selector Channel
Sequencer PCA 1is a nonrepairable PCA and must be replaced if
found defective. No repair or servicing procedures are required.

7-48

1/0 System

CIRCUIT SIDE 13 %

COMPONENT SIDE 2 & 6 s - oo o ot 84

COMPONENTSIDE 2 § 6 ~a———— ——————f 50

CIRCUITSIDE 13 5 ~a———— ——————#~ 49

W7 e
W6 e
W5 e
W4 e

- Jan - - e w0
135 - 4

Saw
i

MULTIPLEXER CHANNEL
PCA 30036-60002

[N
v

LI

* MSB

'Y W2e []

. Wie e LSB

b XW1 DEVICE NUMBER

Figure 7-21.

Multiplexer Channel PCA Jumper Locations

I1/0 System

CIRCUIT SIDE 13 & =l s = w ras w
COMPONENT SIDE 2 4 6 = e - 13 e e e 43 136 —————— = 49

XW1

SELECTOR CHANNEL
REGISTER PCA
30030-60021

CIHCUITSIDE 1 36 o~ 49 I 135 - - a9

CHANNEL NUMBER MEMORY SIZE
(WORDS)
XW1 - CHANNEL1 s3

XW3 - CHANNEL3

XW4 - CHANNEL 4 1-128K

2 - 256K
3-384K
4-512K
5-768K
6 - 1024K

Figure 7-22., Selector Channel Register PCA Jumper and Switch
Locations

7-50

I/0 System

NOTES

7-51

I/0 System

NOTES

INTERRUPT SYSTEM

This section contains principles of operation and servicing in-
formation for the computer s interrupt system.

8-1. INTRODUCTION

The computer’s interrupt system provides up to 125 external lev-
els. When interrupts occur, the microprogrammed interrupt hand-
ler identifies each interrupt and grants control to the highest
priority interrupt. Current operational status is retained by
the microprogram which then sets up the interrupt processing en-
vironment and transfers control to the interrupt routine.

Interrupt routines operate on a common stack called the Interrupt
Control Stack (ICS) which is known to both software and hardware.
This feature permits nesting of interrupt routines in the case of
multiple interrupts, thus allowing higher priority devices to
interrupt lower priority devices.

The interrupt system also provides for 17 internal interrupts
(user errors, system violations, hardware faults, and power fail/
restart) plus seven traps for arithmetic errors and illegal use
of instructions.

8-2. INTERRUPT SYSTEM OVERVIEW

The interrupt system’s interrupt routines are called and exited
in a manner resembling the way that procedures are called and
exited. An interrupt is therefore an implicit PCAL instruction
(vs. an explicit PCAL instruction). (Refer to Section IV.) Also,
code and data domains are kept separate. The primary differences
are that the calling operations are performed by a micropro-
grammed Interrupt Handler rather than the PCAL instruction and,
in some cases, the IXIT (Interrupt Exit) instruction is used for
exiting the interrupt code instead of EXIT. Internal interrupt
procedures are contained in code segment number 1. Interrupt
procedures for I/0 devices may be in any code segment other than
segment number 1. Table 8-1 lists the internal interrupts and
traps with their corresponding entry numbers in the Segment
Transfer Table (STT) of the internal interrupt code segment. The
"parameter is a value that is derived by the Interrupt Handler and
which passes relevant information about the interrupt to the
interrupt routine. The Device Reference Table (DRT) contains a
label for each entry, pointing to the interrupt proccedure for
each device. Bit 8 of the CPX1l Register indicates an external
interrupt. The parameter value for an external interrupt is the
device number.

8-1

Interrupt System

Table 8-1. Interrupt Types
| 1 1 T)
|[Ext Prog.| STT | I |Executing
| Label | No. | Interrupt Type |Parame ter* | Stack**
I (%) I (%) | I |
R	i		
100401	1	Bounds Violation	
101001	2	Illegal Memory Address I	
101401	3	Non-Responding Module I I	
102001	4	System Parity Error	
102401	5	Address Parity Error I I ICS	
103001	6	Data Parity Error I	ICS
103401	7	Module Interrupt	Module No.
104001	10	(Unused) [I	
104401	11	Power Fail	I ICS
105001	12	(Unused) I I	
105401	13	(Unused)	
106001	14	(Unused)	
106401	15	(Unused)	
107001	16	(Unused)	I
107401	17	(Unused)	I
110001	20	Unimplemented Instruction	
110401	21	STT Violation I	
111001	22	CST Violation	
111401	23	DST Violation I I	
112001	24	Stack Underflow	
112401	25	Privileged Mode Violation	
113001	26	(Unused)	
113401	27	(Unused)	
114001	30	Stack Overflow	I 1Cs
114401	31	User Traps [I	
		a. Integer Over flow	$000001
I	b. Floating-Point Over	2000002	
		¢. Floating-Point Under	%000003
		d. Integer Divide by 0	2000004
I I	e. Floating-Point Divide	%000005	
I	I by 0 I		
I	£f. Ext. Prec. Floating-	%000010	
I	Point Overflow	[
I I	g. Ext. Prec. Floating-	%000011	
		Point Under flow	
		h. Ext. Prec. Floating-	%000012
I I I Point Divide by 0 I I			
I I	i. Decimal Over flow	000013	
I I	j. Invalid ASCII Digit	2000014	
I	k. Invalid Dec. Digit	%000015	
I I	1. Invalid Source Word	2000016	
I	I Count I I		
I I	m. Result Word Count	2000017	
I		n. Decimal Divide by 0	2000020
I			

Interrupt System

Table 8-1. Interrupt Types (Continued)

*Unless noted, the parameter is the External Program Label.
**Unless noted, Interrupts are serviced on the User Stack.

All User Traps (STT No. %31) are enabled by the User Traps |
bit in the Status Register. , |

I T T T T |
|Ext Prog.| STT | I | Executing]|
| Label | No. | Interrupt Type |Parame ter* | Stack** |
| (%) I (%) | I I I
| _ _ | _ . _ | | [
I I I [I |
115001	32	(Unused)		
115401	33	(Unused)	I	
116001	34	(Unused)		
116401	35	(Unused)	[
117001	36	(Unused)		
117401	37	Absent Code Segment I		
I	a. On PCAL	P-Label	l	
I I	b. On EXIT [N I I			
I		¢c. On IXIT I 0 [
120001	40	Trace		
I I	a. On PCAL	P-Label	I	
I I	b. On EXIT I N I			
I I	c. On IXIT	0 I		
120401	41	STT Entry Uncallable	P-Label	
121001	42	Absent Data Segment	DST No.	I
121401	43	Power On		ICs
122001	44	Cold Ioad		ICS
I I	a. System I/0 (SIO)]	I	
[b. Direct I/O (DIO)	Label		
I		I		
[I				
I				
I				
I				
l				

|

|

8-3. INTERRUPT CONTROL STACK

The Interrupt Control Stack (ICS) 1is a single stack, unique to
the CPU, which is used in common by all external interrupts and
some of the internal interrupts (ICS type). When only minimal
data is to be handled by an interrupt routine, the data is pro-
cessed on the ICS. Otherwise, the separate data area defined in
the DRT must be used for data. The use of a common stack also
permits efficient nesting of interrupt routines by using stack
markers. The ICS has a permanent stack marker, set up by the
operating system which is used to enter the Dispatcher. Figure
8-1 illustrates the format of the Dispatcher marker on the ICS.

Interrupt System

INTERRUPT
CONTROL
STACK

Disp X

Disp P - PB
Disp Status Permanent

. Q- 0 Marker
Absolute [Disp DB-Bank
Loc5 Ql Disp DB
Loc 6 2\

Z—»

Figure 8-1. 1ICS Dispatcher Marker

It should be noted that unlike the standard four-word stack
marker, the Dispatcher marker contains six words. As will be
explained later, all markers created because of an ICS-type
interrupt include two words to save the current value of DB and
DB-Bank. This information must be saved since all external inter-
rupts automatically alter DB (to the DBI value from word 2 of the
DRT) and DB-Bank. Additionally, DB may be changed when process-
ing an ICStype internal interrupt. The Delta Q location of the
Dispatcher marker always contains a "0" word in bits 1-15 (Bit 0
can be set as described later). The value is zero because there
is no previous marker on the ICS. The Dispatcher Flag is set
whenever the Dispatcher is entered and remains set while the Dis-
patcher is executing. It is cleared when the Dispatcher com-
pletes its execution, or is interrupted.

The segment-number field of the status word (Disp Status) in the
Dispatcher marker permanently points to the CST entry for the
Dispatcher, and the P-PB (Disp P-PB) word permanently points to
the starting point in the Dispatcher code segment. The DISP (Dis-
patch) instruction uses these values for transferring control to
the Dispatcher. The locations preceding the Dispatcher marker
comprise the ICS global area which contains operating system in-
formation. It should be noted that since ICS-type interrupts use
a six-word marker, the parameter is found in location Q+3, rather
than the usual Q+1 location. A hardware ICS Flag is set in the
CPXl Register whenever a switch is made to the ICS from any other
stack. The ICS Flag remains set until the ICS is no 1longer the
current stack.

Figure 8-1 also shows the delimiting of the ICS by QI and XI
("interrupt" Q and 2). These values are given fixed memory loca-
tions 5 and 6. The QI value points to the Delta-Q location of
the Dispatcher marker on the ICS. The 2I value points to the ICS
stack limit.

Interrupt System

8-4. INTERRUPT TYPES

Interrupts may be divided into three basic types; external inter-
rupts which are signals from the I/O system, and two types of
internal interrupts which typically are unexpected conditions
resulting from program execution. The three interrupt types are
external interrupts (from I/O devices), ICS-type internal inter- .
rupts (using the Interrupt Control Stack), and non-ICS internal
interrupts. A comparison of the overall operations of all three
interrupt types is illustrated in figure 8-2. Note that opera-
tions proceed mostly left-to-right. For example, external
interrupts begin by triggering some actions in hadware, then the
interrupt processing environment is set wup in software. The
Dispatcher is the part of the operating system which schedules
the execution of processes.

HARDWARE
EXTERNAL Interrunt
nterrup
INTERRUPT Device Control
Controller Dets | Stack
Q @ 3 0
SET| INT INT INT DRT Interrupt
INT | REQ POLL ACK Entry Recesiver
\ Code @
IXIT
0P)
CcPU ® ~ @ Data SET
Area ’"/20 INT
\ -
ICS-TYPE DISPATCHER
INTERNAL
INTERRUPT Interrupt
Control
Data | Stack
CSsT 'c':;:mm L’ Return to:
@ Entry Segment Intelfupted Process
CPU <77 o | (Possibly
@ ¥ [Dispatcher or
2 another interrupt)
Start Dispatcher
(’
NON-ICS
INTERNAL
INTERRUPT Current
Stack
Data
csT TPt
@ Entry Segment
cPU > TXIT
2 ®

Figure 8-2. Interrupt System Overview

8-5

Interrupt System

Note

It is assumed in this discussion that
only one interrupt is being processed.
As will be shown later, interrupt rou-
tines can be interrupted by other
interrupts.

All external interrupt routines are entered with the external
interrupt system enabled. All internal interrupt routines are
entered with the external interrupt system disabled. The follow-
ing paragraphs individually descr ibe each of the three interrupt
types. Only a brief introductory description is given at this
point. Detailed operating sequences are discussed later in this
section.

8-5. External Interrupts

External interrupts interface external events to software proces-

ses. Referring to figure 8-2 (top example), the overall opera-
tion is as follows: .

a. The device controller sets the Interrupt flip-flop (1) by one
of the following:

(1) Set Interrupt (SIN) software instruction executed by the
CPU telling the device controller to interrupt.

(2) Set Interrupt (SET INT) command decoded by the device
controller.

(3) End with Interrupt (END,I) command decoded by the device
controller.

(4) The device controller detects an interruptable condi-
tion.

b. The setting of the Interrupt Request flip-flop causes the de-
vice controller to issue an Interrupt Request (INT REQ) sig-
nal to the IOP (2).

€. The IOP issues a poll (INT POLL) to activate the highest~-
priority request (there may be more than one request).

d. The device controller sets the Interrupt Active flip-flop,

resets the Interrupt Request flip-flop, and sends the device
number to the IOP.

e. The IOP examines the device number and, 1if the device number
does not equal zero;

(1) Puts the device number into an IOP register.

Interrupt System

(2) Passes an interrupt signal to the CPU.

(3) Turns on the external interrupt flag (Bit 8 in the CPXl1l
Register).

(4) Drops the INT POLL signal.

If the device number equals zero, the IOP disregards the in—
terrupt signal and drcps the INT POLL signal.

The IOP requests the CPU to set up the interrupt environment
(5). The initial steps are to set up the data segment
registers to point at the Interrupt Control Stack (after sav-
ing the user’s environment on his own stack) and to fetch the
device’s DRT entry.

The external program label in the second word of the DRT en-
try (6) is used to get the CST entry for the interrupt re-
ceiver code which, in turn, is used to set the PB-Bank, PB,
and PL Registers. The starting address for the interrupt
receiver code is obtained from the STT entry pointed to by
the external program label and is loaded into the P Register,
thus transferring control to the interrupt receiver code.

The information in the data area for this device (pointed to
by the third word of the DRT) (7) is updated by the interrupt
receiver. This information will tell the I/O monitor process
that the initiator section of the device driver has done its
word and that the completion section should be called.

The interrupt receiver code IXITS (8) normally returns con-
trol back to the interrupted process (which may be another
interrupt or the Dispatcher). The interrupt receiver may al-
so request a new dispatch by executing a DISP instruction.
When an IXIT is executed by external interrupt code, a reset
command is sent to the appropriate device.

8-6. ICS Internal Interrupts

ICS-type internal interrupts operate on the ICS and the interrupt
code for each separate interrupt is permanently allocated in code
segment 1. (Refer to table 8-1.) Referring to the second example
in figure 8-2, the overall operation is as follows:

a.

A condition such as power failure, stack overflow, or module
interrupt causes the CPU to switch to the ICS (1) after sav-
ing the user’s environment on his own stack by creating an
External Program Label which points to a Segment Transfer
Table entry in the internal interrupt segment (CST entry 1).

The PB and PL Registers are set up based on CST entry 1.

The Status Register is set to Privileged Mode, Segment 1 with
all other bits cleared (%1000001).

8-7

Interrupt System

d. The P Register is set from the local label, reached via the
STT entry in the External Program Label, thus transferring
control to the internal interrupt code segment (2).

8-7. Non-ICS Internal Interrupts

The non-ICS type interrupts operate on the current user’s stack.
Referring to figure 8-2, the overall operation is as follows:

a. A special condition is detected and causes the CPU to save
the user’s environment on his own stack and to fetch the CST
entry 1 (1) by creating an External Program Iabel to the code
for processing the interrupt.

b. The PB and PL Registers are set up based on CST entry 1.

C. The Status Register is set to Privileged Mode, Segment 1 with
all other bits cleared (%100001).

d. The P Register is set from the local label, reached via the
STT entry in the External Program Label, thus transferring
control to the internal interrupt code segment (2).

8-8. EXTERNAL INTERRUPT PROCESSING

Prior to discussing the sequence of operations for external
interrupts, there are two important factors that must be con-
sidered; interrupt priorities and interrupt program pointers.
Servicing of external interrupts is accomplished in descending
order of priority (i.e., the highest priority is serviced first).
A higher priority interrupt can always interrupt the processing
of a lower priority.

8-9. Interrupt Priorities

The interrupt priority of a device is completely independent of
the device number. It is determined by the device ‘s logical prox-
imity to the IOP on the interrupt poll line. The interrupt poll
is wired at system configuration time from one device controller
to another using twisted-pair, clip-on wires. The routing of the
interrupt poll is determined by the desired interrupt priorities
of the device controllers and is completely independent of other
parameters. Each device controller therefore, has a distinct
priority level in relation to all other controllers. The maximum
number of controllers and, hence interrupt levels, is 125.

8-10. Interrupt Program Pointer

The Device Reference Table (DRT) was defined in Section VII. As
previously discussed, the second word of each DRT entry contains
the interrupt program pointer. This is an external program label
pointing to the start of the interrupt routine associated with a
particular device controller. It should be noted that several
controllers could point to the same routine.

Interrupt System

8-1. Sequence of Operations

Figures 8-3 and 8-4 illustrate the sequence of operations for
processing external interrupts. Basically, this discussion cov-
‘ers that portion of the overall I/O operation that establishes
the interrupt processing environment on receipt of an external
interrupt. In previous figures, this corresponds to steps (11)
and (12) in figure 7-5, and to steps (5), (6), and (7) in fiqure
8-2.

Figure 8-3 illustrates how control is transferred from the point
of interrupt in a user’s code segment to the start of the inter-
rupt receiver code. Also shown is the transfer of the data do-
main from the current user’s stack to the interrupt control
stack. Figure 8-4 illustrates how a second interrupt is handled
and how exit is made from the interrupt routines. The following
paragraphs describe the sequence of operations, step by step. It
should be noted that all operations are under control of the
hardware-implemented Interrupt Handler until control is transfer-
red to the interrupt receiver code in software. Initially, it is
assumed that the current process is operating at point P in some
user’s code when the CPU recognizes an external interrupt. The
CPU thereupon passes control to the Interrupt Handler.

a. The first action of the Interrupt Handler is to push into
memory any TOS elements of the current user ‘s data that are
in CPU registers (1, figure 8-3). This takes a maximum of
four memory cycles if all four registers are full. Next, a
normal four-word stack marker is pushed onto the user’s stack
followed by the value of the user’'s DB-Bank and the absolute
value of DB that is currently in use. (DB may not necessarily
point to a 1location within the user s stack, such as if a
system intrinsic using a split stack had been called at the
time of the interrupt.) This action preserves most of the
usér’s environment; the current value of S will be preserved
later in step f.

b. The S-Bank Register (2) is set to 0. (The ICS is always in
Bank 0.)

c. The Interrupt Handler now goes to location 5 and loads the QI
value into the Q Register (3). This points at the Delta Q
location of the permanent Dispatcher marker. (As explained
previously, this lccation contains a value of 0.)

d. The contents of location 6 are fetched and the value of ZI is
loaded into the Z Register (4). This establishes the stack
limit for the ICS. (The ICS Flag in the CPX1l Register is also
set.)

e. The DL Register (5) is set to the limit value of $177777.

f. The user’s value of S relative to Stack DB (at QI-4) is cal-
culated and stored in QI-6 (6).

Interrupt System

P
n B-Bank
CST

USER @ ~P8
CODE > = INT
SEG. A M[RlTlL/4 HANDLER
CODE
SEG
[s14]B15
Address [P
“F 3

[PB+(L"4)]-1.

olul ar

STT

L ~%pL

DB-Bank

m ICS

MEMORY @»oa ILT for
0 cSTB this Cont,
,|_xcsTs $io
rogram
2 DSTB Aregr
DB-Bank 5}_PcB8 ‘
| | 4| CFcB1 D Disable Flag| QI-18
5 an
———DB
) USER 6 n
Qfi) DATA MASK1 U z Qi-8
si| _ SES "I crce2 (D [v ot Ja
D 10 a2 u s a6 (8)
c 11 . U SBank |aIs
B 12 VASK2 U DB Qi-4
A BF 1 D X Qi3
X-REG T T D AP |a2{P'S-
siop PATCHER
AP " D STATUS | Qi1 [maRKER
STATUS gmry PLBL saan Y [a0 Ja
-Bank
L (1) AQ RESE:\I/ED é D DB-Bank |QI+1
»| DB-Bank L 1 ABS-Bank |0 DB Ql+2
——ss(f) DB w0oa T ¥ s [INT DEVNO | Qi+3
SYSTEM ' 2l
GLOBAL C:S
Z 1377 @ DL 177777

sTATUS

Figure 8-3. First Ievel External Interrupt

Interrupt System

Set during execution of DISP instruction, ce
Reset during execution of IXIT or PSEB
instructions.
—al|l] Adcw
D DB-Bank
D DB

First INT DEVNO

).

ALY
3)
149

D
[of
B
A
X
AP
STATUS
—a|f§ aAQ
Set by microcode if Dispatcher / DB-Bank

in .
was interrupted. DB

Second INT DEVNO

Figure 8-4. Second Level Interrupt or Dispatcher Interrupted

The CPU obtains the device number from the Interrupt 2Address
Register in the 1IOP and calculates the address of the DRT
entry. DB is set to the DBI value in the third word of the
DRT entry (7).

The Status Register (8) is set to privileged mode, external
interrupts enabled (%140000) .

The DB-Bank Register (9) is set to 0.

The S Register is set to point at location Q+3 (10) and the
device number of the interrupting device is stored into this
location. At this point, the ICS is fully delimited by reg-
ister values and is ready for handling interrupt data.

The external program label for the interrupt receiver code is
fetched from the second word of the DRT entry. The CST entry
is obtained from the segment number in the external program
label. Then, the PB-Bank Register (11) is set based on the
CST entry.

The PB Register (12) is set based on the CST entry.

The PL Register (13) is set based on the CST entry.

Interrupt System

n. The starting address of the interrupt receiver code 1is ob-
tained from the STT entry pointed to by the external progr am
label in the DRT entry. The interrupt receiver code segment
number is placed in the Status Register. The P Register (14)
is set to this value and the CPU fetches the instruction at P
and begins executing the interrupt receiver code.

The following steps relate to figure 8-4 and list the actions oc-
curring if a second interrupt of higher priority is received
while processing the first interrupt. Assuming a still hlgher
priority, another interrupt could interrupt the second routine in
the same manner as descr ibed below. This example shows how sev-
eral levels of interrupts can be nested on the ICS. Since the
ICS is common to all external interrupts, no further switching of
environments is necessary for additional interrupts. This reduc-
es the interrupt response time. If, however, the second inter-
rupt did not occur before completlng the processing of the first
interrupt, the sequence of operatlons would skip from this point
(step a) to step g. The CPU recognlzes a second interrupt while
executing the interrupt receiver code for the first interrupt.

The CPU, therefore, again passes control to the Interrupt Hand-
ler. The sequence continues as follows:

a. The Interrupt Handler pushes into memory any TOS elements
that are in CPU registers, and pushes the usual six-word mar-
ker onto the ICS. The fifth and sixth words are the values
that are currently in the DB-Bank and DB Registers respec-
tively at the time of the interrupt.

b. The Q Register is updated to point at the Delta-Q word of the
new marker. The Delta-Q value is the number of locations
back to the Delta-Q word of the previous marker.

Note

Unlike the first interrupt, subsequent in-
terrupts do not store S into Q-6 at this
point since such action would overlay one
of the variables associated with the user
who was first interrupted.

c. The CPU obtains the device number from the Interrupt Address
Register in the 1IOP and calculates the address of the DRT
entry. DB is set to the DBI value in the third word of the
DRT entry.

d. The S Register is set to point at location Q+3 and the device
number is stored into this location. At this point, the ICS
is fully delimited by register values and is ready for hand-
ling interrupt data.

Interrupt System

e. The external program label for the interrupt receiver code is
fetched from the second word of the DRT entry. The starting
address of the interrupt receiver code is obtained from the
STT entry pointed to by the external program label. The P
Register is set to this value and the CPU fetches the in-
struction at P and begins executing the interrupt receiver
code.

f. Assuming there are no other higher priority interrupts, the
interrupt routine for the second device runs to completion
and then exits using the IXIT instruction. The exit, as us-—
ual, 1is made via the stack marker. The return address is
obtained from the stack marker, the Q Register 1is restored
back to the previous setting (using the Delta-Q value from
the stack marker), pointing to the Delta-Q word of the Dis-
patcher marker. The S Register is moved back to the location
just preceding the second stack marker. One of the actions
of the IXIT instruction is to issue a Reset Interrupt command
to the interrupting device controller which clears the inter-
rupt active condition and unblocks the interrupt poll line to
lower priority devices.

g. The interrupt receiver code for the first interrupt now runs
tc completion and an exit is made, wusually back to the user
process. Again, the IXIT instruction issues a Reset Inter-
rupt command to the device controller. This completes the
sequence of operations.

If an external interrupt should occur while the Dispatcher is ex-
ecuting, the interrupt is treated in a slightly different way.
If the CPU recognizes an interrupt while the Dispatcher Flag is
set, the sequence effectively repeats steps b through g above
with the added actions that, in step d, bit 0 of Delta Q is set
to 1 (indicating a Dispatcher interrupt) and the Dispatcher Flag
is cleared.

8-12. INTERNAL INTERRUPT PROCESSING

As listed in table 8-1, there are 35 internal interrupts includ-
ing 14 user traps. These 35 interrupts are processed by the seg-
ment whose CST entry number is 1. Each interrupt has an entry in
the Segment Transfer Table (STT) which points to the start of the
code to process the interrupt. The user-related traps all share
the same STT entry and the parameter value determines the proces-
sing to be performed. When internal interrupts are being proces-
sed, all external interrupts are disabled. Internal interrupts
therefore have higher priority. Among internal interrupts, how-
ever, there is no priority structure (except in the case of sim-
ultaneous interrupts); any internal interrupt may interrupt the
processing of any other. If multiple interrupts occur simultan-
eously, they stack their markers in the following order and are
therefore, serviced in the reverse order; integer overflow, sys-
tem parity error, memory address parity error, data parity error,
non-responding module, bounds violation, illegal address, module
interrupt, external interrupt, and power fail. 1In all cases, the

8-13

Interrupt System

Interrupt Handler loads a parameter onto the stack. The parame-
ter (listed in table 8-1) passes information regarding the inter-
rupt from the hardware to the interrupt processing software. In
some cases, the parameter is simply an interrupt identification
number; in other cases, the parameter gives specific information,
such as a program label, to the interrupt routine.

8-13. General Descriptions

8-14. BOUNDS VIOLATION. A bounds violation trap is caused by
attempting to address locations outside of a specified program
domain or data domain. (Refer to paragraph 2-65.)

8-15. ILLEGAL MEMORY ADDRESS. A memory address interrupt is
caused by attempting to access a word of memory that does not
physically exist on the system.

8-16. NON-RESPONDING MODULE. A non-responding module interrupt
occurs when the CPU requests information from some other module
and that information is not received in a reasonable length of
time (a preset time on the order of 4.6 milliseconds).

8-17. SYSTEM PARITY ERROR. A parity error is detected on the
8-bit system information (TO, FROM, COMMAND) transmitted by the
CPU to memory, or by memory to the CPU. This error will also be
generated in the case where the CPU is waiting for data and a
Memory-to-IOP transmission takes place with bad parity. In this
case a transfer error is also sent to the requesting device.
Note that the converse is also true (i.e., if the IOP is waiting
for data and the CPU receives a transmission with bad system par-
ity, a transfer error is sent to the requesting device). The
above is the result of the CPU and 1IOP sharing the same module
number. A system parity error also results if any module sends
data with bad parity (not addresses) to memory.

8-18. ADDRESS PARITY ERROR. A parity error is detected by the
memory on the 1l6-bit address word sent to it from any module.
Upon detection of the error, the memory sends an appropriate er-
ror signal back to the CPU and prevents the word addressed from
being altered.

8-19. DATA PARITY ERROR. A parity error is detected by the CPU
on the 16-bit data word sent to it from the memory. When a pari-
ty error is detected on a memory transmission, the appropriate
bit is set in CPX1 (the CPU status word for RJN-mode interrupts)
and the instruction runs to completion (with the exception of
certain interruptable instructions such as the group of move in-
structions). The result of the instruction is normally meaning-
less. If the parity error is due to a CPU read cycle (outgoing
system or address information or incoming data), it is possible
that the received data will be used by the CPU as an address for
a following write cycle. In this case it would be possible to
store erroneous data at some location. However, since bounds
checking is done on the address, the worst that can happen is the
destruction of a memory location in the current user’s stack (as-

8-14

Interrupt System

suming user mode; if in privileged mode, a system crash could
occur). With single-bit error correcting memory, the probability
of having a data parity error is very small.

8-20. MODULE INTERRUPT. A module interrupt occurs when a CPU
receives a transmission from a system module (hardware) from
which it is not expecting a transmission. The offending module
number (FROM code) is passed to the interrupt routine as a para-
meter. The interrupt routine may then attempt to identify the
source of the error and take appropriate action. The interrupt
is disabled (when bit 1 of the Status Register is 0). This in-
terrupt can also be used as a flag between the CPU and another
mcdule for information swapping.

8-21. POWER FAIL. This routine saves the software status 1in a
format suitable for automatic restart, making use of the finite
time between the detection of a power failure and the 1loss of
usable power (approximately 10 milliseconds).

8-22. UNIMPLEMENTED INSTRUCTION. This system trap occurs when
the CPU detects a bit pattern in the Current Instruction Register
which is not a valid instruction. This trap cannot be disabled
by the User Traps Enable/Disable bit in the Status Register.

8-23. STT VIOLATION. The STT Violation trap cannot be disabled.
The conditions that can cause this trap are as follows:

a. The STT in an external program label is greater that the STT
length (pointed to by PL) in the referenced segment. This
error can occur while attempting to set up a new segment.

b. In the LLBL instruction, if the label which is fetched from
PL-N is an internal label and N is greater than 127 (%177),
the trap is invoked. (This would require too large an STT
number when creating the external label.)

c. In PCAL, when setting up a new segment, if the STT number in
the external program label points to an external program la-
bel in the new segment, the trap is invoked.

d. If (PL-N) in an SCAL instruction is an external label, the
trap is invoked.

8-24. CST VIOLATION. This trap 1is caused by an attempt to
transfer to segment 0 or a segment number referenced through an
external program label that is greater than the CST length.

8-25. DST VIOLATION. The DST segment number referenced by the

MFDS, instruction is greater than the number of entries contained
in DSTL (the first word of the DST).

8-26. STACK UNDERFLOW,. The process being exited is non-privil-
eged and SM is less than DB. This might result from deleting too
much information from the stack or from using the SETR or SUBS
instructions incorrectly.

Interrupt System

8-27. PRIVILEGED MODE VIOLATION. This trap is caused by an
attempt to execute a privileged instruction in user mode (that
is, when bit 0 of the Status Register is 0). This violation also
occurs in EXIT if an attempt is made to exit from user to priv-
ileged mode or if exiting from user mode and the external inter-
rupts bit in the status word has been altered.

8-28. STACK OVERFLOW. A stack overflow results from attempting
to stack more data than can be contained on the current stack (SM
greater than Z). The system makes the decision whether to abort
the process or to expand the stack.

8-29. INTEGER OVERFLOW. An integer overflow occurs when the
result of an integer operation (ADD, SUB, etc.) 1is outside the
allowable range of integers which is -32768 to +32767.

8-30. FLOATING-POINT OVERFLOW. This trap occurs when the magni-
tude of the result of a two-word floating-point operation is lar-
ger than the largest representable floating-point number which is
1.157921 x 10 . :

17

8-31. FLOATING-POINT UNDERFLOW. This trap occurs when the mag-
nitude of the result of a two-word floating-point operation is
less than the smallest representable positive number which is
8.63617 x 10_ , and is not equal to zero.

78 ‘

Note

Floating-point overflow and underflow can
best be understood by referring to the
chart below showing the range of valid

numbers.
| | | I | -
| | I |
A B 0 C D
where
A =-1.157921 x 10
77
B =-8.63617 x 10_
78
C= 8.63617 x 10_
78
D= 1.157921 x 10

77
A number is valid if it is between A and B,C and D,or equal to 0.

8-16 .

Interrupt System

8-32. INTEGER DIVIDE BY ZERO. This trap occurs when the divisor
in a DIV, DIVI, DIVL, or LDIV instruction is equal to zero.

8-33. FLOATING-POINT DIVIDE BY ZERO. This trap occurs when the
divisor in an FDIV instruction is equal to 0.

8-34. EXTENDED PRECISION FLOATING-POINT OVERFLOW. This trap
occurs when the magnitude of the result of an extended precision
floating-point operation exceeds the largest representable ex-
tended precision value which is 1.157920892373162 x 10_ .

77
8-35. EXTENDED PRECISION FLOATING-POINT UNDERFLOW. This trap
occurs when the magnitude of an extended precision floating-point
operation is 1less than the smallest representable positive ex-
tended precision value which is 8.636168555094445 x 10 and is
not zero. 78

8-36. EXTENDED PRECISION FLOATING-POINT DIVIDE BY ZERO. This
trap occurs when the divisor in an extended precision divide op-
eration is zero.

8-37. DECIMAL OVERFLOW. This trap occurs when a packed decimal
result has too many significant digits for the specified storage
size. Except for the NSLD instruction and MPYD with actual
result greater than 28 digits, when this occurs the low order
digits of the result are stored; surplus high order digits are
discarded.

8-38. INVALID ASCII DIGIT. This trap occurs when a decimal
arithmetic instruction encounters an invalid ASCII digit.

8-39. INVALID DECIMAL DIGIT. This trap occurs when a decimal
arithmetic instruction encounters an invalid packed decimal
digit.

8-40. INVALID WORD COUNT. This trap occurs when a word count for
a decimal instruction is less than zero or greater than six.

8-41. RESULT WORD COUNT OVERFLOW. This trap occurs when a digit
count for a decimal instruction < 0 or > 28.

8-42. DECIMAL DIVIDE BY ZERO. This trap occurs when an attempt
is made to divide a decimal number by zero.

8-43. ABSENT CODE SEGMENT. The absence bit in the CST entry for
the referenced segment is set to 1. This check is performed in
PCAL, EXIT, IXIT, DISP, and the firmware Interrupt Handler. If
during PCAL, the program label is passed as the parameter to the
Interrupt Handler; if in EXIT, the number of words to be deleted
from the stack is passed; and if in IXIT, a zero is passed.

8-44. TRACE. Non-local PCAL and external interrupts check the
trace bit in the CST entry for the referenced segment. EXIT and
"IXIT check bit two of the return address in the marker stacked by
PCAL or the external interrupt (this bit is set by the trace rou-

8-17

Interrupt System

tine software if it is desired to trace exits). In either case,
if the bit tested is 1, the trace routine in entered. For PCAL’s
and external interrupts, another marker is stacked first which is
used by the EXIT from the trace routine. For EXIT and IXIT, no
marker is stacked; hence, bit 0 of the return address of the last
marker stacked (prior to EXITing from trace) must be cleared by
software in the trace routine. Otherwise, an infinite trace loop
could occur. Tracing segment 1 results in a system halt. Trac-
ing external interrupts or the Dispatcher requires special soft-
ware in the trace routine due to the differences in EXIT and
IXIT.

8-45. STT ENTRY UNCALLABLE. The uncallable bit in a local label
(or in PL if the STT number is 0) is set to 1. This label 1is
referenced by a PCAL from another segment. This trap does not
stack a new marker.

8-46. ABSENT DATA SEGMENT. The absence bit in the DST entry
for the referenced segment is set to 1.

8-47. POWER ON. The Power On routine is entered either by an
internal power turn-on or by an automatic restart following a
power failure when automatic restart is enabled by a panel-
switch. (The computer will halt on restoration of power if auto-
matic restart is disabled.) Assuming that automatic restart is
enabled, the Power On routine will set up the software environ-
ment and pass control to the operating system.

8-48. COLD LOAD. Pressing the LOAD switch while simultaneously
pressing the ENABLE switch causes the CPU to start its cold-load
microprogram which begins by reading the operator-set switches on
the panel. The switches will have been set to indicate the cold
load device number and an 8-bit control byte. The microprogram
generates an eight-word I/0 program beginning at the DRT entry
locations for the specified device and then issues an SIO in-
struction to that device and goes into a waiting loop to wait for
an external interrupt from that device. Meanwhile the IOP causes
the device controller to begin executing the eight-word I/0 pro-
gram. This program reads in a 32-word bootstrap loader (a larger
program) which in turn reads in still larger blocks (e.g., 128
words) which eventually accomplish the loading of all required
fixed memory locations. This includes overlaying the previously
used DRT locations with normal DRT entr ies. Finally, the I/0
program causes the device controller to generate the external
interrupt that the CPU has been waiting for, and ends. The CPU
then proceeds to initialize the registers for execution of code
segment 1, with the ICS as the data domain. The Status Register
is set to 100001 (octal) to indicate privileged mode, and code
segment 1. Then the CPU halts. When RUN is pressed, the cold-
load routine in segment 1 will execute, setting up the operating
conditions for the operating system (software tables, linkages,
etc.). Once this is complete, the system is in full operation.

Interrupt System

8-49. Sequence For ICS-Type Interrupts

Figure 8-5 illustrates the seqguence of operations for processing
ICS-type internal interrupts. The figure shows how control is
transferred from the point of interrupt in the user ‘s code to the
start of the interrupt code segment and how the data domain 1is
switched from the user’s stack to the Interrupt Control Stack.

The initial assumption is that the current process is executing
at the point P in the user’s code when an interrupt condition
occur s. The CPU then passes control to the Interrupt Handler.
The sequence of operations is as follows:

a. The first action of the Interrupt Handler is to push into
memory any TOS elements of the current user ‘s data that are
in CPU registers (1, figure 8-5). This takes a maximum of
four memory cycles if all four registers are full. Next, a
normal four-word stack marker is pushed onto the user ‘s stack
followed by the value of the user’'s DB-Bank and the absolute
value of DB that is currently in use. (DB may not necessarily
point to a location within the user ‘s stack, such as 1if a
system intrinsic using a split stack had been called at the
time of the interrupt.) This action preserves most of the
user’s environment; the current value of S will be preserved

later in step f.

b. The S-Bank Register (2) is set to 0. (The ICS is always in
Bank 0.)

c. The Interrupt Handler now goes to location 5 and loads the QI
value (3) into the Q Register. This points at the Delta-Q
location of the permanent Dispatcher marker. (As explained
previously, this location contains a value of 0.)

d. The contents of location 6 is fetched and the value of ZI (4)
is loaded into the Z Register. This establishes the stack
1imit for the ICS. (The ICS Flag in the CPX1l Register is also
set.)

e. The DL Register (5) is set to the limit value of %177777.

f£. The user’s value of S relative to stack DB (at QI-4) is cal-
culated and stored in QI-6 (6). (Up to this point the opera-
tion has been identical to the sequence of operations for
external interrupts, described earlier.)

g. An external program label (7) is created which points to seg-
ment 1, and whose STT number is a function of the type of
interrupt. (Refer to table 8-1.)

h. S is now set to Q+3 and a parameter is pushed onto the ICS at
that location (8). Most ICS-type internal interrupts pass

the external program label however. For example, a Module
Interrupt passes the module number.

Interrupt System

PROG LABEL
C) [1] st | seen |
pu
CST PB-BANK PB
USER _L—] INTERRUPT
CODE RECEIVER
SEGMENT CODE
p
P —b ¥
\-. — !
)
. * @
P STT
MEMORY
Pl
~ P>
USER
DATA
SEGMENT sl o users |ars ()
I
6 Z| =
D)
° oo |
8 DIS-
A PPATCHER
- al MARKER
X'REG @ A\
AF (
STATUS)
s —»| PARAMETER .
X (®)
DB-BANK
0B J S-BANK
z
\ +
INDEX REGISTER DL
(:) CURRENT INSTR, (:) 177777
CPX1 STATUS
I B O 8 N

Figure 8-5.

ICS-Type Internal Interrupt

8-20

Interrupt System

i. The current instruction (9) is placed in the Index Register.
j. The interrupt condition is cleared (10).

k. The PB-Bank, PB, and PL Registers are set up based on CST en-
try number 1 (11). '

1. The Status Register (12) is set to privileged mode, segment 1
with all other bits cleared (%100001).

m. The starting address of the interrupt receiver code is ob-
tained from the STT entry (13) pointed to by the external
program label. The P Register is set to this value and the
CPU fetches the instruction at P and begins executing the
interrupt receiver code.

Additional ICS-type internal interrupts could occur before exit-
ing from the interrupt code segment and they would be stacked on
the ICS in a manner similar to that shown in figure 8-4. If
there are any external interrupts, either suspended on the ICS or
waiting for priority, they will be processed after all internal
interrupts have been processed. (However, external interrupts can
interrupt internal interrupt routines if the software re-enables
the external interrupt system.) After all internal and external
interrupts using the ICS have been processed, an exit back to the
interrupted user will occur or the Dispatcher may be entered.

8-50. Sequence For Non-ICS Type Interrupts

Figure 8-6 illustrates the processing of non-ICS type internal
interrupts. As shown in the figure, the ICS 1s not used and the
interrupt code segment will operate on the user’s stack. Assume
that the user is executing at point P when an interrupt condition
occurs. The CPU passes control to the Interrupt Handler and the
sequence is as follows:

a. Any TOS elements that are in CPU registers (1, figure 8-6)
are pushed into memory.

b. A normal four-word stack marker is pushed onto the wuser’s
stack (2).

c. The parameter (3) 1is pushed onto the stack. (Refer to table
8-1.)

d. The current instruction (4) is placed in the Index Register.

e. The Interrupt Handler generates an external program label (5)
to the interrupt receiver code in segment number 1.

f. The PB-Bank, PB, and PL Registers are set based on’ the CST
entry (6).

W

Interrupt System

PROGRAM LABEL
C) [1] s [sec1]
p
cST PB-BANK P8
1 [
USER INTERRUPT
CODE RECEIVER
SEGMENT CODE
P
P ¥
e \
O
J
N
L
STT
PL
- ¥
USER
DATA
SEGMENT
> 1)
- LCD
B
— 1
X REGISTER
p
@
STATUS
Q o})
s PARAMETER (:)
INDEX REGISTER STATUS REGISTER
® ®

Figure 8-6. Non-ICS Type Internal Interrupts

g. The Status Register (7) is set to privileged mode, segment 1
with all other bits cleared (%100001).

h. P is set from the local label, reached via the STT entry in

8-22

Interrupt System

the external program label (8), thus transferring control to
the interrupt receiver code.

8-51. INTERRUPT HANDLER

The Interrupt Handler is a microprogram (actually a set of micro-
programs) permanently stored within a read-only memory in the
CPU. The CPU periodically checks for the existence of a waiting
interrupt condition which is stored in one of several bit posi-
tions in a dedicated CPU register (CPX1l or CPX2), and then trans-
fers control to the Interrupt Handler. The purpose of the
Interrupt Handler is to save the interrupted environment and
_ transfer control to the interrupt routine in software. The sus-

pended environment 1is saved in a format that is ready to resume
execution. The descriptions that follow are essentially a sum-
mary of the preceding portion of this section. Figure 8-7
illustrates the operations performed by the Interrupt Handler.
Generally, the sequence begins with the START block at the top
left corner and ends with the NEXT CPU INSTRUCTION block at the
bottom right corner.

8-52. DISP Instruction

The DISP instruction calls the Dispatcher which is a system pro-
cess whose primary function is determining which active process
will use the CPU and then transfer control to that process. The
Dispatcher can be called from a user program if in privileged
mode . For example, the last instruction of a user process 1is a
PCAL to a system process called TERMINATE~ which, among other
things, cleans up the CST, DST, and PCB entries for the user pro-
cess. TERMINATE then issues a DISP instruction. Some system
error handling routines such as trap handlers may use it to call
the Dispatcher after aborting the user program. The DISP in-
struction can be executed by an Interrupt Handler after servicing
all pending interrupts from a multiple device controller. In
this case, the Dispatcher is not actually called, but instead a
condition code of CCG is set and bit 0 of QI is set to instruct
the IXIT instruction what to do. The next CPU instruction after
the DISP instruction would then be executed and the Interrupt
Handler would execute the IXIT instruction. The IXIT instruction
then uses bit 0 of QI to determine which path to take. All pro-
grams which use the DISP instruction must be prepared to handle
the condition of the Dispatcher being pseudo disabled. (Refer to
paragraph 4-16, 7.)

8-53. Pseudo Enabling/Disabling The Dispatcher

The PSDB (Pseudo Disable) and PSEB (Pseudc Enable) instructions
are used to pseudo disable and enable the Dispatcher. (Refer to
paragraph 4-16,; 7.) The two instructions must be executed in
pairs; for each disable, there must be a corresponding enable
within the same process. The Dispatcher can be locked several
levels deep with PSDB instructions, but must have one PSEB to
unlock each level. A count is maintained in QI-18 for the number
of disables which have not been unlocked. These instructions are

8-23

Interrupt System

used to prevent a dispatch during critical secticns of code and
to avoid wunnecessarily restarting the Dispatcher. If the DISP
instruction is executed and the Dispatcher is disabled (QI-18 is
non-zero), then bit 0 of QI is set to 1 and the next CPU instruc-
tion is fetched. This bit is reset either by IXIT or PSEB when
QI-18 becomes zero, If QI-18 is already zero at the start of a
PSEB instruction, a system halt will occur.

8-54. IXIT Instruction

Figure 4-13 is a simplified flowchart of the IXIT instruction.
IXIT operates in either of two ways. The first is by the Dis-
patcher to transfer to a process being launched (1, figure 4-13).
The second (2) through (6), 1is to exit from ICS type interrupt
routines. If the interrupt service routine 1is not in segment
number 1, it is assumed to be an external interrupt routine and a
Reset Interrupt 1is sent to the device whose device number 1is in
Q+3. If bit 0 of Q is zero and if Q=QI, the return is to the
interrupted process (2). Otherwise the return is to a lower pri-
ority interrupt which was interrupted (3). If bit 0 of Q is 1
and bit 0 of QI is zero, the return is to the Dispatcher which
was interrupted (4). If both bit 0 of Q and bit 0 of QI are 1, a
DISP instruction has been executed and the request to start the
Dispatcher is still pending. If QI-18 is zero, the Dispatcher is
not disabled, QI is cleared, and a transfer is made to the Dis-
patcher’s entry point (5) or (6). It does not matter whether a
process (Q=QI) or the Dispatcher (Q not equal to QI) was inter-
rupted. If QI-18 is non-zero, the Dispatcher is disabled and the
DISP request cannot be <carried out at this time. Instead, IXIT
returns to the interrupted Dispatcher (Q not equal to QI (4a)),
or to the interrupted process (Q = QI (2a)). The Start Dispatch-
er request is still pending, (bit 0 of QI is 1).

8-55. INTERRUPT SYSTEM SERVICING INFORMATION

Except for checking the interrupt poll line for proper installa-
tion, no repair procedures are required for the interrupt system.
As previously discussed, the interrupt priority of a divice is
determined by the device’s 1logical proximity to the IOP on a
jumpered interrupt poll line. The interrupt poll line 1is wired
during system configuration from the IOP to whatever device is
assigned first priority and then from device to device according
to assigned priority. The interrupt poll line terminates at the
device of lowest priority.

The interrupt poll 1line for any system starts at connector pins
79 (INTPOLL) and 80 (GND) of connector 10P1 of the CPU/IOP back-
plane. The interrupt poll 1line consists of a twisted pair of
wires; one blue wire and one white wire. This twisted pair is
terminated at each end with a two-pin spring-clip connector that
clips onto pairs of vertically-aligned connector pins. At the
CPU/IOP backplane, the twisted pair must be installed with the
white wire connected to the top pin of the two vertically-aligned
pins. At the device controller interface PCA’s, the twisted pair
must be installed with the white wire connected to the bottom pin

8-24

Interrupt System

of the two vertically-aligned pins.

" The interrupt poll line carries the INTPOLL signal from the IOP
to connector Pl of the device interface PCA with the next highest
priority. It enters this PCA on the fifth vertically-aligned pair
of connector pins from the left; pins 48 (INTPOLL IN) and 47
(GND) . The signal is exited from each PCA on the seventh ver-
tically-aligned pair of connector pins from the left; pins 44

(INTPOLL OUT) and 43 (GND).

ROM EXTERNAL DEVICE INTERRUPT PROCESSING

HARDWARE EXTERNAL INTERRUPTS
MAP TO ROM ADDRESS 3 WHICH
JUMPS TO THE INTERRUPT MICROCODE

% START

DISPATCHER BEING
INTERRUPTED OR SECOND

OR GREATER LEVEL EXTERNAL
INTERRUPT

T SECOND OR

FETCH CPX 2 DISPATCHER? GREATER LEVEL
REGISTER (DISP RUNS EXTERNAL
INTERRUPT

YES DISPATCHER
BEING INTERRUPTED

CLEAR H/W
DISPATCHER FLAG.

SET Q.(0:1)
{ Q.o1):=1)
FOR IXIT USE.

IXIT = INTERRUPT EXIT INST.
———INT4

EXTERNAL
INTERRUPT?

EXTERNAL
INTERRUPT?
(cPxt)

|~ ——INTS

FETCH INT DEVICE STATUS REG:=
QUEUE DOWN H/W ' NUMBER, %100000.
TOS REGISTERS. CALCULATE DRT ADDR.
LAY STACK MARKER DB:=DBI FROM DRT.
ON CURRENT STACK. STATUS REG:=
PUSH DB-BANK & DB %140000.
ON STACK. FETCH PLBL.
ZERO STACK BANK DB-BANK: =00 vES
REGISTER. RESET EXT INT BIT
~=— = INT2 CPX1.(8:1}. INSTRUCTION?,

EXECUTING ON
USER STACK
——=~INT3
SET ICS QI INTO
THE Q REGISTER. -~ 1XI6
ALREADY
EXECUTING SET ICS FLAG.
ON ICS? SET ICS 21 INTO [-—— INT6
THE Z REGISTER. HANDLE
_ INSTRUC -
SETOLTO-1. Q+3: = DEVICE TIoN
CALCULATE USER NUMBER.
RELATIVE S FROM SAVE CONTENTS
USER DB. SAVE AT OF CIR IN X.
ars. ZERO ABS-Bank
(Q1-6)= 5-(Q1-4) REG.
NOW ON ICS

O <

Figure 8-7. Interrupt Handler Flowchart (Sheet 1 of 2)

Interrupt System

DETERMIN CST
TABLE USAGE.
(DETERMINE IF

CST OR XCST IS

TO BE USED.)

FETCH CST BASE
MASK OFF STT

OF PLABEL
VALIDATE CST
TABLE ENTRY.
SAVE AM.R.T.

BITS OF CST FOR
LATER TEST

SET PB-BANK

SET PB & PL REG.

IF CODE SEG IS
ABSENT, REGISTERS
CONTALIN DISC ADRS.
FOR THE MOMENT

TRACE FOR
JHIS SEG?,

INTERRUPT
CODE
VALID?

ENTERING PCAL

INSTRUCTION PORTION

OF MICROCODE

A= ABSENCE
M= MODE
R= REFERENCE

T= TRACE

HANDLE

TRACE &
ABSENCE
FOR SEG.

HANDLE
BOUNDS
VIOLATION

HANDLE
BOUNDS
VIOLATION

SAVE “P" CALCULATED
IN THE P REGISTER

TESTING INTERRUPT
RECEIVER CODE FOR
VALIDITY FOR:

1. STT=0
2. NOT UNCALLABLE
3. ISLOCAL STT

POWER
ON
INTERRUPT?

NEXT CPU
INSTRUCTION

THIS WILL FETCH AND
EXECUTE THE FIRST INST.

OF THE SOFTWARE INTERRUPT
RECEIVER’

Figure 8-7.

Interrupt Handler Flowchart (Sheet 2 of 2)

Interrupt System

NOTES

Interrupt System

NOTES

HP 32421A SERIES 11l POWER SUPPLIES

This section contains principles of operation and servicing in-
formation for the HP 32421A Series III Computer System power sup-
plies. The HP 32435A Series III power supplies are discussed in
Section X of this manual.

9-1. INTRODUCTION

The HP 32421A Series III Computer System has four power supplies;
two HP 30310A Power Supplies, one HP 30311A Power Supply, and one
HP 30312A Power Supply.

9-2. HP 30310A OPERATION

The HP 30310A Power Supply provides +20V, +15v, +5v, -20v, ~-15V,
and -5V regulated dc supply voltages by converting a 208/240volt,
single-phase, 50—~ or 60-Hz power source. The ac input to the
power supply is controlled by the front panel POWER switch shown
in figure 9-1. The dc output voltges are controlled by the Dc
Control Panel SYSTEM switch also shown in figure 9-1. The output
voltages provide status signals for protection of the software
stored in CPU memory. The computer system hardware is protected
by circuits that sense overvoltage, overcurrent, or overtempera-
ture conditions. Circuits within the power supply are protected
by various overvoltage and overtemperature circuits, current lim-
it circuits, and fuses. The power supply is designed to immedi-
ately turn the power off when an overvoltage condition occurs.
For undervoltage or overtemperature conditions, a short delay is
generated before the power is turned off. This delay permits the
CPU to store data which, in turn, makes power on and restart much
easier.

A block diagram of the power supply is shown in figure 9-2 and
discussed in paragraphs 9-3 through 9-11. (Complete specifica-
tions and detailed theory of operation for the power supply are
contained in the HP 3000 Series II/III Computer Systems Service
Manual, part no. 30000-90018.)

9-3. Primary Power Circuit

The ac line voltage enters the power supply through a connector
and passes through a 5-ampere fuse and radio frequency interfer-
ence (RFI) filter to the POWER switch. The POWER switch 1is lo-
cated on the front panel of the power supply. With the POWER
switch in the ON position, 1line voltage is applied to the pre-
regulator, cooling fan, and a step-down transformer. The fan and
transformer circuit are protected by a l-ampere fuse.

9-1

HP

32421A

Series III Power Supplies

° LOWER 128K MEMORY UPPER 128K MEMORY SYSTEM
oc BATTERY oc BATTERY DC
POWER ON STATUS POWER ON STATUS POWER ON
5 o o o o o
STANDBY STANDBY STANDBY
A. DC CONTROL PANEL
5 3 P12 1127 +5
63965y
ON
. - BATTERY
@ 8A STATUS
250V
O|0O
POWER 54
@ @ ON ADJ . 250V CROWBAR
O @ BATT/TEST RESET
oo |B T = & O 9@
OFF §2
©|0
B. HP 30312A POWER SUPPLY C. HP 30311A POWER SUPPLY
PON +20 +15 45
F21A 39 ©00006Q9e
2 250 VAC 20 15 5
F15A COM J2 J3 J4 J5
250 VAC
S ©
ON
HEAT SINK

~+12a00Q)

©)

o BATTERY
est @

TOGGLE

SWITCH

D. HP 30310A POWER SUPPLY

(®) = TesT POINT
@ - noicaToR

E. HP 30311A POWER SUPPLY
(REAR VIEW)

Figure 9-1.

Power Controls and Indicators

9-2

€-6

*7-6 21Inbra

weaberqg yooTd Arddng 19MOd VOTEQE dH

L
'n

200/240
SINGLE PHASE

| TEMPERATURE
COMPENSATION |~
i IR
NOTE: CIRCUITS SHOWN OUTSIDE OF THIS AREA ARE ISOLATED e
OM THE AC LINE BY TRANSFORMER COUPLIN _ R o
4 - o | Eie |
+
> o Te » e o
+130V RAIL 1l [
O D B e e e s | e et
l o0 20voLT
SnaLE A INVERTERS A7 " o nns outrut
L+—__i —’\r—%'E—’ PART OF A7 % COMMON
(onor 2 -20 VvOLT
1A x | il SERIES N -
! REGULATOR ——% -2ovoc
- (PART OF AY
Enowean
Al
, (PART OF A7) * COMMON
L RN R N L | -
Y + PHASE 1 PHASE 2
INVERTER INVERTER » -15VDC
DRIVER ORIVE
(PART OF A2) (PART OF A2)
+22 AND +9V
RECTIFIERS " o2 v > voc
(PART 0F AR Two-PHasE gz‘?"-‘}r TMGGER PULSE
L ——————4
v22v | -22v | v ROWSAR
(PART OF A2) v CROWS, -
,.__# INU < INU PON
ey sV < > R o
[svie PREREGULATOR
VOLTAGE -1V, 1 . SV o
REGULATORS [Tgvim) CONTROL A FEEDBACK (-30V) - 30v e
(PART OF A1) ’ Wy
oV VOLTAGE V..
Mo PROTECT As oo
e —
- LINE VOLTAGE MONITOR —
" roweR
Al V__’ SURPLIES
MOUNTED ON
BIAS VOLTAGES sy 5 (MOUNTEDON AR ¥ nmon
A2THRU AS oce
SISV
QVERCURRENT - b oo
d LIMITER A4 +5V
=1 THERMAL
u10y
SENSING »
TRIGGER PULSE o -

sa11ddns 19Mod III SOTIdS VIZVZE dH

HP 32421A Series III Power Supplies

9-4. Preregulator A9

The preregulator contains a silicon controlled rectifier (SCR)
bridge that converts the ac line voltage to a unidirectional,
pulsed voltage. The pulsating voltage is filtered to become the
requlated +130-volt rail voltage. The rail voltage is applied to
the inverters and is used as a basis for all dc output voltages.
The SCR bridge is controlled by the preregulator control circuit
through an isolating transformer.

9-5. Preregulator Control A1

The stepped-down line voltage is applied toc full-wave rectifiers
which supply unregulated +22, -22, and +9 volts dc for the bias
voltage regulators. The regulators provide internal power supply
bias voltages. The preregulator control circuit uses the ac line
frequency, -30 volt dc feedback, and status of the current lim-
iter and voltage protect circuits. The preregulator control cir-
cuit supplies trigger pulses to the preregulator that determine
the "on" time of the SCR bridge circuit to maintain proper con-
trol of the +130-volt dc rail.

9-6. Inverter A7

The inverter circuits convert the 130-volt dc output of the pre-
regulator to a square-wave ac voltage that is transformer-coupled
to the rectifiers. The transformer coupling provides isolation
for stages following the inverter. The 800-Hz operating fre-
quency of the inverter is determined by the inverter driver.
There are two inverter circuits within the inverter that operate
90 degrees out of phase with each other. Each circuit is fused
for 3.0 amperes. -

9-7. Inverter Driver A2

The inverter driver generates an 800-Hz, two-phase clock which is
timed to develop Phase 1 and Phase 2 drive signals. The two in-

verter driver «circuits are transformer-coupled to the two in-
verter circuits.

9-8. Full-Wave Rectifiers and Filters

The transformer-coupled inverter output is rectified and filtered
to provide dc outputs of +15, +5, -5 , and -15 volts dc. Addi-
tionally, +30 and -30 volts dc are supplied to the +20 and -20
volt regulators. An independent -30 volt output is fed back to
the preregulator control circuit to maintain output voltage
regulation.

9-9. 20-Volt Regulators

The 20-volt regulators consist of a +20 and a -20 volt regulator.
The +20-volt regulator is a switching requlator which converts
the +30 volt rectifier output to a regulated +20 volt dc output.
The -20-volt regulator is a series regulator which converts the

9-4

HP 32421A Series III Power Supplies

-30 volt rectifier output to a regulated -20 volt dc output. The
+20 and -20 volts dc are used by a power supply for the semicon-
ductor memory. An analog signal from the memory power supply is
used by the +20-volt regulator to control the output voltage.
The -20V-regulator is designed to track the +20-volt regulator so
that the two outputs are equal and opposite in polarity.

9-10. Current Limiter A4

The current limiter circuits monitor the individual dc voltage
drops across the output filter chokes for the +15, +5, -5 and -15
volt outputs. Any excessive current drawn from these outputs
results in the immediate generation of an Overcurrent signal.
The Overcurrent signal is used by the preregulator control cir-
cuit to limit the prerequlator output voltage to protect the pow-
er supply.

9-1. Voltage Protection and Control Ab

The voltage protection and control circuits contain overvoltage
sensing circuits to protect the computer system hardware and
overvoltage sensing circuits to protect system software. The
overvol tage comparator circuits monitor all dc output voltages,
with the exception of the +20 volt output. When an overvoltage
condition 1is sensed, an overvoltage latch is set. Transformer-
coupled crowbar trigger pulses are generated which crowbar the
+130V RAIL, +20, -20, +5, and -5 volt dc outputs. Also, when the
latch is set, the Inverter Up (INU) goes low and disables the
inverters and preregulator. Circuits also monitor the internal
thermal cutout switch (overtemperature sense) and the external Dc
Enable (DCE) signal. If the internal power supply temperature
exceeds its fixed limit or an external DCE signal is removed, the
Power Fail Warning (PFW) signal goes low after a 70-ms delay.
After another delay of 12 ms, the INU signal goes low, turning
the preregulator and inverter off. Since the output voltages go
down, the Power Supply On (PON) signal goes low. The SYSTEM
switch controls the power supply outputs with the DCE signal.
This signal appears as an overtemperature condition to the power
supply and initiates the overtemperature sequence.

The undervoltage comparator circuits monitor all output voltages
with the exception of the +20-volt output. If any of these dc
output voltages drop below specified limits, the PON signal goes
low. An excessive current overload causes the output dc voltages
to drop. The undervoltage sequence is* initiated due to this
condition. Circuits also monitor the input ac line voltage. If
it drops below a preset limit, the PFW signal goes low and, after
a minimum delay of 5 ms, the PON signal also goes low. When the
dc output voltages and ac line voltage are above the specified
low limits and the thermal switch is closed, a high PON signal is
provided for the system within 0.6 second.

HP 32421A Series II1 Power Supplies

The undervoltage sensing circuits also provide power supply con-
trol signals for use when multiple supplies are "control paral-
leled" 1in a computer system. These signals are Power Supply Up
(PSU), Line Power Up (LPU), and control common . PSU indicates
that the dc output voltages are above specified'limits. LPU in-
dicates that the AC line voltage is above a specified limit, the
thermal switch 1is closed and DCE enabled. When the PSU, LPU,
DCE, and control common‘@7signals of multiple supplies are wired
in parallel, any supply can provide the PON and PFW signals to
the system, and all multiple supply outputs can be controlled by
a single DCE signal.

9-12. HP 30310A SERVICING INFORMATION

The HP 30310A Power Supply is a nonrepairable unit hinge-mounted
in the cabinets as shown in figures 1-2 and 1-3. The power sup-
ply swings out on hinges for servicing and is removable from the
hinges for replacement.

The HP 30310A Power Supply weighs 50 pounds
(22.7 kilograms). Two persons are required
to remove the unit from its mounting hinges.

If the power supply is found defective, it must be replaced. Ex-
cept for replacing open fuses, no repair procedures are required.
However, preventive maintenance procedures must be performed on
the power supply at scheduled intervals to prevent or minimize
equipment deterioration. Preventive maintenance, adjustment, and
troubleshooting procedures for the power supply are contained in
paragraphs 9-13 through 9-18.

Death or serious injury may occur if the
following precautions are not observed.

While the input power 1is connected, use
caution when working inside the power sup-
ply. Many exposed conductors carry low dc
voltages which are capable of supplying
heavy currents if short-circuited, result-
ing in high heat and the possibility of
painful burns. Use caution when manipul-
ating metal tools or probes. Wrist watch-
es, metal necklaces, bracelets, or rings
must not be worn. Avoid dropping tools,

9-6

HP 32421A Series III Power Supplies

screws, or other metal objects onto con-
ductors. Remove power and recover dropped
objects at once; if forgotten, damage
could result later.

Ac powerline voltage and 130 volts dc are
exposed when covers are removed. Exercise
extreme caution when working in the power
supply with covers removed, and never work
under this condition unless another person
is nearby and within sight. Also, remem-
ber that the test equipment is floating
with respect to earth ground, so the cases
can be at the same 1line voltage as the
point being measured in the power supply.
Thus, test equipment must be temporarily
enclosed and marked dangerous to alert all
personnel of unsafe conditions.

If feasible, before performing any work
inside the power supply, unplug the ac
power cable and wait three minutes for
filter capacitors to discharge. To pre-
vent explosion resulting from internal
heating, always be sure to replace filter
capacitors properly with respect to
polarity.

The highest ac voltage in the power supply is the ac line voltage
(250 volts rms, 350 volts peak). The highest dc voltage 1in the
power supply is 130 volts. The ac line voltage is exposed at the
input circuits of the power supply and at filter choke Ll. The
130 volts dc is exposed at the preregulator filter circuit and
the inverter assembly A7. Additionally, ac voltages of 240 volts
peak are exposed at transformers Tl and T2.

If the test equipment has a metal case, the negative test lead
should not be connected to the case. Also, the negative lead
should not be connected to digital voltmeters that have floating
(guarded) inputs, to multimeters, nor to power supply chassis.
Instead, the test equipment chassis should be connected to the
computer system cabinet earth ground through the test equipment
power cable. Consequently, the oscilloscope case will "float"
with respect to earth ground. All test equipment should be plug-
ged into the ac power convenience outlets provided in the comput-
er system bay cabinets.

All measurements and connections to the power supply must be ref-
erenced to the appropriate common circuit. There are four such
circuits within the HP_30310A Power Supply: common , common ’
common<;7, and common<;7. In subsequent paragraphs, all test and

adjustment procedures Specify the particular common circuit to be
used.

HP 32421A Series III Power Supplies

CAUTION

Do not connect test equipment to power supply
chassis ground. All common circuits within
the power supply "float" with respect to
chassis ground. Damage to test equipment or
power supply components, and erroneous mea-
surements may result if this caution is
ignored.

9-13. Preventive Maintenance

The following preventive maintenance procedures are performed at
monthly or semi-monthly intervals. The frequency depends upon
the physical conditions prevailing at a particular site. Routine
maintenance once per month is adequate for most power supplies
that operate 24 hours per day, seven days per week. The interval
can be reduced in accordance with the amount of time the power
supply is turned off. The power supply is not removed from the
computer to perform preventive maintenance. Perform the preven-
tive maintenance procedures as follows:

a. Remove dust.
b. Check PCA’s for proper seating.
c. Check cooling fan operation.

d. Check the dc operating voltages at the power supply front
panel.

e. Check the ac voltages for ripple at the PCA cage backplane.

To gain access to the power supplies, open the rear door of the
CPU cabinet bay. The power supplies are hinge-mounted and may be
swung-out by removing the screws that attach the left side of the
front panel to the CPU cabinet bay. In this position, the power

supply top and bottom covers can be removed for maintenance and
test.

If required, wuse a vacuum cleaner to remove dust and other light
debris from the power supply. Loosen encrusted dust with a soft-
bristled brush, paying particular attention to heat dissipating
areas. With the top cover of the power supply removed, check all
PCA’s for proper seating. Adjust where necessary. Set the power
switch to ON and check the cooling fan for proper operation.
Ensure that no objects interfere with fan blade rotation.

Before making voltage checks, the voltmeter must be allowed time

to warm up as prescribed by the manufacturer of the instrument.
Also, the computer must run, with any type of program, for at
least 15 minutes before making the voltage measurement. Perform

9-8

HP 32421A Series III Power Supplies

the voltage checks as follows:
a. Stop the computer program.

b. Measure the six dc voltages listed in table 9-1., These volt-
ages are available for cursory measurement only at test jacks
mounted on the power supply front panel. (See figure 9-1.)

c. Set the oscilloscope for checking ac voltage. On the PCA
cage backplane, check each of the six voltages listed in ta-
ble 9-1 for ripple. For each voltage, the indicated ripple
should be less than that listed. If any voltage is not with-
in specified limits, make the necessary adjustments as de-
scribed in paragraphs 9-14 through 9-17.

Table 9-1. HP 30310A Dc Output Voltages

1 i - I
Ripple Voltage I
|

I T

| Voltage | Minimum | Maximum |

| Test Point | Reading | Reading | Tolerance

I I | | N
I |] |
| +20 | Refer to para 9-16. | I
I I ‘ I |
I | [I |
| +15 | +14.7 | +16.5 | 0.4 volt peak-to-peak |
I | I I . |
I I I |
| +5 I Set at +5.17 | 0.3 volt peak-to-peak |
I I I I
I I [I I
| -5 | -4.5 | =-5.3 | 0.3 volt peak-to-peak |
I I | N I
| I | I |
I -15 | -14.7 | -16.5 | 0.4 volt peak-to-peak |
| I R |)
I I | I
I -20 |Refer to para 9-16. | |
I I

9-14. HP 30310A Adjustments

Three adjustments should be made to the power supply after it is
installed in the computer. These adjustments are accessible
through the top cover of the power supply.

9-15. PREREGULATOR ADJUSTMENT. The +15, +5, -15 volt supply
outputs are controlled by preregulator adjustment resistor AlR1
(+5, +15V ADJ) on the preregulator control PCA. If one oOr more
of these voltages are not within tolerance when the voltage check
is made, the preregulator should be adjusted as follows:

¢

HP 32421A Series III Power Supplies

a. Set the power supply POWER switch to the ON position.

b. Connect the voltmeter be tween the center conductor of the +5
VDC connector and COM on the PCA cage backplane. While ob-
serving the voltmeter, adjust the +5, +15 ADJ resistor
(AlR1) until the +5 volt output is 5.17 volts as specified in
table 9-1.

C. Using the same COM as a return, connect the voltmeter, in
turn, to the +15V, -5V, and -15V test jacks and verify that

each output voltge is within the limits specified in table
9-1.)

d. Set the power supply POWER switch to OFF and disconnect volt—
meter.

9-16. 20-VOLT ADJUSTMENT. The +20 and -20 volt supply outputs
are adjusted by setting resistor A3R2 (+20V ADJ) fully clockwise.
These voltages are used by the HP 30311A Power Supply which requ-
lates the voltages by applying an analog signal to the HP 30310A
Power Supply’s TEMP SENSE input terminal. The value is approxi-
mately 17.3 volts when the battery is fully charged and stabi-
lized at room temperature.

9-17. VOLTAGE PROTECT PCA ADJUSTMENT. The purpose of this pro-
cedure is to check and, if necessary, adjust the +4.22 volt ref-
eérence supply and line voltage monitor circuits on the A5 voltage
protect PCA. Check and adjust the reference voltage and 1line
voltage monitor circuits as follows:

a. Plug power supply ac line cord into autotransformer.

b. Set POWER switch to ON position. Increase input voltage to
208 volts ac.

C. Connect a voltmeter to terminal E1(+) and E2(-,COMMON 1) on

A5, Adjust A5R2 until voltmeter indicates +4,22 (+/-0.01)
volts dc. '

d. Connect multimeter between TB3, pin 5(+) and TB3, pin 6(-,

COMMON). Set multimeter controls to +10 VOLTS DC. This
monitors“the PON signal.

€. Connect digital voltmeter between TB3, pin 7(+) and TB3, pin
6(-, COMMONW). This monitors the PFW signal.

f. Both PON and PFW should be at a high 1level (+4 volts dc,
minimum).

9. Slowly reduce the ac input voltage to 160 volts while watch-
ing the PFWwW voltage. The PFW vol tage should drop to approxi-
mately zero volts when the ac input voltage 1is between 170

and 160 volts, If the PFW voltage fails to drop to zero as
the ac voltage is reduced below 170 volts, adjust A4R1.

9-10

HP 32421A Series III Power Supplies

Note

Each time PFW goes low, the circuit must be

reset by increasing the ac input voltage to
208 volts.

h. Set the ac input voltage to 160 volts. PFW and PON voltages
should be low. Increase ac input voltage to 180 volts. PFW

should go high, followed by PON after a l-second maximum
delay.

i. Reduce ac input voltage to zero. Set POWER switch to OFF
position.

j. Unplug ac line cord from autotransformer. Plug into ac power
receptacle.

9-18. HP 30310A Troubleshooting

Troubleshooting in the field is limited to visual checkout, volt-

age checks, alignment, and power supply replacement if necessary.
Proceed as follows:

a. Open rear door of cabinet and observe that the POWER switch
is set to ON and that the indicator light is lighted. If the
switch is ON but the indicator is not lighted, the indicator
is defective or ac input power is not available to the power
supply. Check the fuse.

b. With the power on, observe that the +5-volt red indicator is
lighted. If it is not lighted, check that the DCE signal at
terminal of TB3 is low and that the indicator is good.

c. Use the procedure in paragraph 9-13 to check the output volt-
ages of the power supply at the test points furnished on the

front panel. I1f the voltages are not correct, follow the
appropriate adjustment procedure in paragraphs 9-14 through
9-17. '

d. Replace the power supply if it remains inoperative or does
not respond to alignment.

9-19. HP 3031A OPERATION

The HP 30311A Power Supply (figure 9-1) provides the semiconduc-
tor memory with backup battery power during the absence of ac
input power. The volatile nature of dynamic MOS semiconductor
memory requires this backup power to prevent data loss. The pow-
er supply receives its input power from the HP 30310A Power Sup-
ply and, in turn, provides backup battery power for main memory.
The HP 30311A is a self-contained modular unit. It occupies one-
half of a standard 19-inch rack mounting as shown in figures 1-2
and 1-3. If only one power supply is mounted in the system, a
filler panel is supplied. The filler panel extends the full

9-11

HP 3242]1A Series III Power Supplies

width of the cabinet and has a 4 by 2-5/8 inch opening used for
accessing power supply controls. When an HP 30312A Power Supply
is mounted next to this power supply, a half panel covers only
the HP 30311A Power Supply. The power supply provides +12.7V,
+12.0v, +5.0v, -3.0V, and =-5.0V for the semiconductor memory.
The Semiconductor Memory Array PCA uses all the dc voltages ex-

cept -3.0V. The Semiconductor Memory Control PCA uses only the
+5.0V output.

The power supply normally operates from the +20V, -20V, and +15V
outputs of the HP 30310A Power Supply as shown in figure 9-3.
When ac input power to the HP 30310A Power Supply is interrupted,
a 7-cell, 1lead-acid battery pack in the HP 30311A Power Supply
furnishes the input power and maintains the voltages to the mem-
ory. The amount of time the battery continues to furnish power
depends on the condition of the battery and the size of memory
requiring power. Normally, the battery will furnish power for 40
to 90 minutes before it discharges to a level that activates the
undervol tage <circuits and removes all power from memory. The
power supply can be operated without the battery. However, no
power will be available to the memory system if ac power is re-
moved from the HP 30310A Power Supply. When operating in this
mode, the battery status lights are disabled. A battery mode
switch on the 30311-60003 Control PCA must be set to operate
without a battery.

The +20-volt output of the HP 30310A Power Supply provides the
charging power for the battery pack and the input power for the
+12.7v, +12.0V, and +5.0V regulators. (See figure 9-3.) The TEMP
SENSE input to the HP 30310A controls the output of the +20V

line. The +20V output also supplies input ‘power to the +5V regu-
lator and the control circuits.

Outputs of -3V and -5V are derived from a source voltage obtained
from the +5V switching regulator. Load current from the -3V line
adds to the -5V load current so that a single current 1limit on
the -5V line protects both outputs. The maximum comb ined current

for the -3V and -5V loads may be divided between the loads in any
combination.

Over /under voltage detectors can disable the PSU (Power Supply
UJp) system dc power line, and shut down the power supply by sens-
ing the +12.0vV, +5V, and -5V outputs for undervoltage. The -3V
output is sensed for wundervoltage to disable the +12.0V and
+12.7V outputs, thus protecting the memory array chips from lack
of either -3V or -5V substrate bias. Overvoltage conditions
sensed on the +5V and +12.0V outputs cause the power supply to
crowbar to protect the TTL elements and memory array chips.

Controls and indicators mounted on the front panel of the HP
30311A Power Supply and on the DC Control Panel are provided to
monitor and control power supply status and operation. In addi-

tion, test points on the power supply front panel are provided as
an aid in troubleshooting. An internal three-position slide-

switch permits power supply operation with a battery or without a

9-12

HP 32421A Series III Power Supplies

______ H |
|
' I HP 30311A SEMICONDUCTOR MEMORY POWER SUPPLY |
1 - |
(I
[| (4}'] ‘——————%—b +12.7VB
| 20V, b . SERIES
[L REGULATOR [
! I |5 +120v8
| Hp303t0A | !
] POWER it }
| SUPPLY b |
I
| |
I BATTERY
| VOLTAGE b—p{ SWITCHING L +5v8
| : : REGULATOR REGULATOR |
|
: I |
| reme, | | [
| SENSE [T [
| bt |
] "
} -3avB
' I -3V AND -6V l"
[- SERIES
| Lo REGULATORS I
| N | —> -5v8
| I |
I LPU e BATTERY I
I I STATUS |
PSU e AND
[s CﬁgTRgL I
| “20Vi— CIRCUITS OVER/UNDER [* :
: - VOLTAGE |
DETECTORS
| 16V bt —> |
| b |
| I !
| . |
[
| |
o — =—DCE— — J L ———————— o G TEr SER N SWe IS SIS Sy B GEe EEP SR SEw emm S e — o aul
r—-l _________________ | S
J, SYSTEM D.C. CONTROL PANEL |
|

Figure 9-3. HP 30311A Power Supply Block Diagram

battery, and in the calibrate position allows setting of the bat-
tery float voltage level. Figure 9-1 illustrates the locations
of the controls and indicators on the power supply panels and on
the Dc Control Panel. Table 9-2 lists the function of each con-
trol and indicator. The BATTERY STATUS indicator is duplicated
on the power supply, on the Dc Control Panel, and on the top of
the cabinet door of the main bay. The power supply +5 indicator
is also duplicated on the Dc Control Panel as the SYSTEM DC POWER
indicator. (Complete specifications and detailed theory of opera-
tion for the power supply are contained in the HP 3000 Series
II/III Computer Systems Service Manual, part no. 30000-90018.)

9-13

HP 32421A Series III1 Power Supplies

Table 9-2. Hp 30311A Power Supply Controls and Indicators

- _l - —— -

Control or Indicatcr Function |

I

———

Power ON/OFF Toggle
Switch

-———— . —— - ———

|
|
In the ON position, connects +20V from|
the HP 30310A Power Supply to the HP |
30311A to maintain the charge on the |
battery and to develop required memory |
voltages. In the OFF position, dis-
ables the HP 30311A.

BATTERY TEST Momentary
Toggle Switch (mount-
ed on rear of unit)

Places power supply in a battery dis-
charge mode for test purposes. (Simu-
lates a power failure condition.,)

RESET Pushbutton
Switch

I
|
|
I
I
I
I
I
I
I
I
|
|
| Resets the battery discharge mode, re-
| turning the power supply to normal op-
| eration.
|
+5 LED Indicator | When 1lit, indicates that +5V is being
| produced by the HP 30311A Power Supply
| .
CROWBAR/BATT TEST LED |
I
|
I
I
|
I
I
|
I
I
I
|
I
I
I
|

Used in conjunction with the BATTERY
Indicator

I
|
|
I
|

|
|
|
I
|
|

I

I

|

|
STATUS indicator to determine if the |
crowbar circuit has fired. and shut |
" down the power supply. l
|

|

|

|

|

I

|

|

|

|

|

|

BATTERY STATUS LED
Indicator

Indicates the battery conditions as
follows:

a. Remains continually lit for a
fully-charged battery.

b. Flashes at a 2-Hz rate when the
battery is discharging.

c. Flashes at a 0.5-Hz rate when the
battery is charging.

d. Remains off if battery is low or
not present.

—— e e — g ——— — e — — —— — — —— = ——

— -

9-20. HP 30311A SERVICING INFORMATION

Preventive maintenance, adjustment, and replacement procedures
for the power supply are contained in paragraphs 9-21 through
9-32, No high voltage points exist within the power supply.
However, the supply is capable of supplying low voltage at moder-
ate current levels., Use caution when manipulating metal tools or
probes near exposed conductcrs and terminals. Extra care should
be exercised to prevent the possibility of shorting the output
lines of the battery pack.

HP 32421A Series 111 Power Supplies

CAUTION

When cables are connected to or disconnected
from the power supply, the corresponding
UPPER or LOWER MEMORY DC POWER switch on the
System Dc Control Panel must be placed in
STANDBY and the corresponding HP 30311A pow-
er switch must be in the off (down) position
to prevent equipment damage.

9-21. Preventive Maintenance

Preventive maintenance is performed at monthly or bi-monthly in-
tervals depending on the physical environment prevailing at the
site. Preventive maintenance consists of measuring the dc volt-
ages at the test jacks on the power supply front panel and per-
forming the battery test procedure.

9-22., VOLTAGE CHECKS. Measure the five voltages listed in table
9-3 using a digital voltmeter. =~ Allow the recommended warm-up
period for the voltmeter before taking any measurements. If any
voltage is out of tolerance, make the necessary adjustments as
described in paragraphs 9-24 through 9-27.

Table 9-3. Dc Output Voltages

[|

Voltage I |

Test Jack | Indication |

| |

| |

+5B | +45.1 +/- 0.1V |

| |

+12.7B | +12B + 0.7(+/-0.2)V|

| |

+12B | +12.0 +/- 0.1V I

| |

-3B | =-3.0 +/- 0.25v |

| |

-5B | -5.0 +/- 0.2V |
|

Note

If all voltages are out of tolerance, |
perform the +5.00-volt internal ref- |
erence adjustment first. (Refer to |
paragraph 9-27.) Also, the +12.7 test]|
jack voltage is equal to whatever |
voltge is measured at the +12 test I
jack plus 0.7 +/- 0.2 volts. |

I

9-15

HP 32421A Series III Power Supplies

9-23. BATTERY TEST. The battery test certifies that the backup
capability of the power supply is functioning normally. The sys-

tem must be halted before performing this test. Proceed as fol-
lows:

a. On rear panel of the power supply, momentarily press the BAT-
TERY TEST toggle switch. The CROWBAR/BATT TEST indicator
should light and the BATTERY STATUS indicator should flash at
a 2-Hz rate. Allow the battery to discharge for three to
five minutes.

b. Return the power supply to normal operation by pressing the
RESET pushbuton on power supply front panel.

c. The BATTERY STATUS indicator flashes at a 0.5-Hz rate until

the battery is fully charged. Then,the indicator remains con-
tinually lighted.

9-24. HP 30311A Adjustments

The following adjustments should be performed after replacing a

power supply or after replacing a circuit board or battery pack
within the power supply.

9-25. BATTERY (FLOAT) VOLTAGE ADJUSTMENT. Float voltage must be
adjusted whenever a battery pack is replaced.

CAUTION

The replacement battery pack must be at a
stable known ambient temperature before the
adjustment is performed. For a change in
ambient temperature, the settling time for
the pack is four to six hours. Failure to
Observe this precaution may considerably de-
grade the backup time and/or shorten the life
of the battery pack.

Adjust the float voltage as follows:
a. Power down the system by placing the corresponding UPPER or

LOWER MEMORY DC POWER switch on the System Dc Control Panel

to STANDBY and place the corresponding HP 30311A Power Supply
power switch off (down).

b. Remove the power supply from the cabinet and place on a suit-
able support.

C. Remove the top cover from the power supply.

9-16

HP 32421A Series III Power Supplies

Connect a digital voltmeter between the +16.45V test point on
the control board (figure 9-4) and a common ground point on
the edge of the control board.

Note

Allow the digital voltmeter to warm-up before
taking any measurements.

Place control board switch S1 in position 1 (calibrate).

Power up the system and allow five minutes for power supply
circuits to stabilize.

Refer to table 9-4 and determine the float voltage setting.

Adjust potentiometer R35 on the control board (figure 9-4)
for the voltmeter indication determined in the previous
step. This assumes that the battery is almost fully charged.
If it is not, the voltmeter indication will be low and grad-
ually increase as the battery charges. A stable indication
must exist before R35 can be satisfactorily adjusted.

Set switch S1 to position 2 (normal).

.Power down the system and disconnect the digital voltmeter.

Replace power supply top cover.

Install the power supply into the cabinet.

+16.45V Oano O *5:00V O GnD

] o) REF.

Q-av

123 5V

R35
a Q12v
R139 o+5v
—I OGND O GND
COMPONENT SIDE

Figure 9-4. Control Board Adjustment Locations

9-17

HP 32421A Series III Power Supplies

Table 9-4. Float Voltage Versus Temperature*

—_ —— ot .- B o P - v — — — ——

*For seven-cell lead-acid battery

| T 1 T T T I
| Temperature | Float | Temperature | Float |
: (0 degree C) | Voltage 1 (0 degree C) = Voltage :
|
I | I Tl T
I 0 | 17.10 | 28 | 16.26 |
1	17.07	29	16.23
2	17.04	30	16.20
3	17.01	31	16.17
4	16.98	32	16.14
I 5	16.95	33 I 16.11	
6	16.92	34	16.08
7	16.89	35	16.05
I 8	16.86	36	16.02
9	16.83	37	16.09
10	16.80	38	15.96
11	16.77	39	15.93
12	16.74	40	15.90
13	16.71	41	15.87
14	16.68	42	15.84
15	16.65	43	15.81
16	16.62	44	15.78
17	16.59	45	15.75
18	16.56	46	15.72
I 19	16.53	47	15.69
20	16.50	48	15.66
21	16.47	49	15.63
22	16.44	50	15.60
23	16.41	51	15.57
24	16.38	52	15.54
25	16.35	53 I 15.51	
26	16.29	54	15.48 [
27	16.29	55	15.45
l I	l		
I			
[

—— ———— —

9-26. +12 VOLT ADJUSTMENT. The +12-volt output of the power sup-
ply is adjusted as follows:

a. Connect a digital voltmeter between the +12 and (common) test
jacks on the power supply front panel.
Note

Allow the digital voltmeter to warm-up before
taking any measurements.

HP 32421A Series III Power Supplies

b. Adjust the +12ADJ control located on the rear panel of the
power supply for a +12.0 (+/-0.1l) V indication on the digital
voltmeter.

9-27. +5.00 VOLT INTERNAL REFERENCE ADJUSTMENT. The +5.00-volt
internal reference is adjusted as follows:

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER switch on the Dc Control Panel to
STANDBY and place the corresponding HP 30311A Power Supply
power switch off (down).

b. Remove the power supply from the cabinet and place on a suit-
able support.

c. Remove the top cover from the power supply.

d. Connect a digital voltmeter between the +5.00 volt internal
reference test point on the control board (figure 9-4) and a
common ground point on the control board.

Note

Allow the digital voltmenter to warm-up for
the recommended warm-up period before tak-
ing any measurements.

e. Power up the system and allow five minutes for power supply
circuits to stabilize. Measure the +5.00-volt internal ref-
erence voltage (+5.00 +/-0.005V).

f. If necessary, adjust R139 on the control board for a +5.00
+/-0.005V indication on the digital voltmeter.

Note

If an adjustment was necessary, the BATTERY

(FLOAT) VOLTAGE adjustment procedure must

also be performed.
g. Power down the system and disconnect the digital voltmeter.
h. Replace power supply top cover.
i. Install the power supply into the cabinet.
9-28. Replacement Procedures

9-29. POWER SUPPLY REPLACEMENT. The power supply is replaced by
per forming the following steps:

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER switch on the System DC Control Panel
to STANDBY and place the corresponding HP 30311A Power Supply
power switch off (down).

9-19

HP

d.

32421A Series III Power Supplies

Disconnect plugs P2, P3, and P4 on the rear panel of the pow-
er supply.

Remove four screws on the front of the cabinet securing the
power supply to the cabinet frame and the two screws on the

right rear of the power supply. Remove the power supply by
sliding it forward.

The power supply is installed using the reverse order of the
above procedure.

9-30. BATTERY PACK REPLACEMENT. To replace a battery pack in
the power supply, perform the following steps:

Remove the power supply from the cabinet by performing steps
a through ¢ of paragraph 9-29.

Remove the top cover from the power supply.
Disconnect jack J7 coming from the battery pack.
Remove the battery pack cover plate.

Remove the battery pack by lifting it out.

Install a new battery pack by using the reverse order of the
above procedure. The battery float voltage adjustment which is
described in paragraph 9-25 must be performed anytime a battery
pack is replaced.

9-31. CONTROL PCA REPLACEMENT. The control board is replaced by
per forming the following steps:

a.

b.

Remove the power supply from the cabinet by performing steps
a through c¢ of paragraph 9-29.

Remove two screws holding the control board to the metal
spacers on the top right side of the frame.

Disconnect plug P2 on the control board and disconnect the
control board from the motherboard. Lift out the control
board.

Note

The +5.00V internal reference voltage must
be checked and the battery float voltage
must be adjusted after replacing a control
board.

The control board is reassembled by using the reverse order of
the above procedure.

9-32., MOTHERBOARD PCA REPLACEMENT. To replace the motherboard
with its associated heat sink, perform the following steps:

9-20

HP 32421A Series II1 Power Supplies

a. Power down the system by placing the corresponding UPPER or
LOWER MEMORY DC POWER switch on the Dc Control Panel to
STANDBY and place the corresponding HP 30311A Power Supply
switch off (down).

b. Disconnect plugs P2, P3, P4, and P5 on the rear panel of the
power supply.

c. Remove the power supply from the cabinet.
d. Remove top and bottom covers from the power supply.

e. Free the motherboard by removing four 3crews, two from the
top and two from the bottom edges of the rear panel frame.

f. Disconnect plug P6 on the motherboard.

g. Slide the two boards out of the rear of the power supply
frame.

h. Remove the control board from J1 and the motherboard.

Note

Steps i and j should be performed when the
motherboard and heat sink are to be re-
placed.

i. Remove four screws holding the motherboard to the rear panel.
j. Remove four screws securing the heat sink to the rear panel.

The motherboard and heat sink are replaced by using the reverse
order of the above procedure. Power supply output voltages
should be checked after replacing the motherboard.

9-33. HP 30312A OPERATION

The HP 30312A Power Supply (figure 9-1) provides up to 100 am-
peres of 5-volt power for operation of the interface PCA’s in the
I/0 area of the computer. The power supply is an HP 62605M Power
Supply modified by adding a power switch, fuse, ac receptacle,
and a threshold adjustment circuit. The threshold adjustment
circuit is adjusted when the system is configured to provide
overcurrent shutdown of the HP 62605M Power Supply when the drain
on the power supply exceeds a predetermined amount by ten
amperes.

The following discussion covers only the items and circuits added
to the HP 62605 Power Supply. The HP 62605M Power Supply is
described in Modular Power Supplies, L and M Series, Models
62605L, 62605M, and 62615M Manual, part no. 5950-1756. The Model
62605M is equipped with Option 106 which enables the power supply
to operate on 187 to 250 volts ac input power. The HP 30312A
Power Supply provides 5-volt power over a current range nominally

9-21

HP 32421A Series III Power Supplies

15 to 100 amperes. It augments the approximate 55-ampere, 5-volt
output of the HP ‘30310A Power Supply which powers the CPU/IOP,the
HP 30311A Power Supply, and portions of the computer I/O area.

Figure 9-5 illustrates the major functional areas of the HP
30312A Power Supply, Interface Board, part no. 30312-60002. The
model 62605M Power Supply is also shown to illustrate the rela-
tionship between the power supply and the interface board. The
interface 1logic is required to properly sense and control the
62605M Power Supply with the existing HP 30310A Power Supply sys-
tem dc control lines (DCE and PSU). Input power of 208/230 VAC
is applied to the power supply and interface board by POWER
switch S3 through the eight-ampere fuse. An internal power sup-
ply provides the operating potentials for the circuits including
the reference voltage (adjusted to 4.75 volts by potentiometer
R52) used by several functional circuits on the interface board.

9-34. Overcurrent Protection

The operating current configurator monitors the +5V load on the
62605M Power Supply and is activated whenever the load increases
10 amperes above the normal load. When switch S2 is pressed, ADJ
potentiometer R32 is adjusted at the normal steady state current
level. When S2 is released, the threshold is automatically in-
cremented to sense a current 10 amperes above the nominal value
set with R32. Transient overcurrents exceeding the 10-ampere
margin cause the over current indicator (located above switch S2)
to light for the transient time interval. The two-second timer
prevents the power supply from shutting down when overloads are
less than two seconds long. When such overloads last longer than
two seconds, the two-second timer sets the 1latch (causing the
overcurrent indicator to light continually) and shuts down the
62605M Power Supply output by pulling the Al terminal control
vol tage below its turn on value. The Cal/Test switch 81 and Cal
Adj potentiometer R26 are used at the factory to calibrate the
operating current configurator to the resistance of the high cur-
rent wires connected to the power supply. These controls are
normally not used in the field and should be left as they are.

9-35. Undervoltage Protection

The undervoltage detector, connected to the +S (+sense) terminal
of the power supply, sets the Power Supply Up (PSU) signal low
(V) to the system whenever the output voltage at the load drops
below 4.61V. The PSU signal is restored to the open circuit con-
dition whenever the output voltage at the load rises above 4.81V.

9-36. Power Failures

An ac power failure sensed by the HP 30310A Power Supply causes a
Power Fail Warning (PFW) signal to be sent to the CPU. There-
fore, the HP 30312A does not require a power failure detector.
Maximum utilization of this detection capability can only be ob-
tained when the HP 30310A and HP 30312A are supplied from the
same ac power source. :

9-22

€CT-6

*G-6 9INHTJ

weiberag jyoo1g ATddng 19MOod VZIE0€ dH

VOLTAGE SENSE LEAUS

—
| |
| 62605M o !
[o —1 |, 4-NO 12 CONDUCTORS NOTE 1
| 7 Iuaw
| sve100a - | L\ I Loao
| . 1
i o I
|, 4-NO.12 CONDUCTORS NOTE 1
| o +— o
| |
| = |
| o le
[. |
| [i
| AC_ACC GRD Al I
I I 2 ¢
[on] 1 |
o7 — e o +18V -19V
8A
AC +5V
o—-d _¢o INTERNAL INDICATOR
) AcC o POWER
GRD SUPPLY
208/230
VAC l
+10%
+4.75V OPERATING
PRECISION CURRENT o 2SEC Lol \ATcH
REFERENCE CONFIGURATOR TIMER
TURN-OFF T T T
SYSTEM DCE yRN-Of | ! ' T
{0.15 SEC} b "
R! o 03 ot
REF
NOTE 2 ADJ R 10 AMP
ADJ o 32 INC/DEC Y
TTL DCE TTL INPUT b o
— — 2= — LEVEL ON/OFF ¢ St OVER CURRENT
CONTROL CAL/TEST INDICATOR
y
UNDER
NOTES: VOLTAGE PSU_,
1. THIS CONNECTION PHYS!CALLY LOCATED DETECTOR

AT THE END OF THE NO. 12 AWG CONDUCTORS

2. THIS CIRCUIT NOT USED IN THE
HP 3000 COMPUTER SYSTEM.

so1T7ddng 19mod III SOTISS VIZvCE dH

HP 32421A Series III Power Supplies

9-37. Dc Enable

The DCE signal is the same «control 1line connected to the HP
30310A DCE terminal. It turns on (DCE at gnd) and turns off (DCE
approximately +10V) the +5V output of the HP 30312A. The inter-
face board receives the DCE signal and generates the appropriate
signal to the Al control terminal on the 62605M Power Supply.
The interface board circuits delay the turnoff of the +5V line
after release of the DCE signal by about 0.15 second to allow
ample time for the HP 30310A Power Supply to generate its PFW
signal for the CPU. This delay guarantees the +5V output will be

present for at least 1.0 msec after the CPU receives the PFW sig-
nal.

9-38. HP 30312A SERVICING INFORMATION

While the input power is connected, use
caution when working inside the power sup-
ply. Many exposed conductors carry low dc
voltages which are capable of supplying
heavy currents if shortcircuited, resulting
in high heat and the possibility of painful
burns. Use caution when manipulating metal
tools or probes. A wrist watch, or a metal
necklace, bracelet, or ring must not be
worn. Avoid dropping tools, screws, or
other metal objects onto conductors. Re-
move power and recover dropped objects at
once; if forgotten, damage could result
later. Ac power line voltage is exposed
when covers are removed. Exercise extreme
caution when working in the power supply
with covers removed, and never work under
this condition unless another person is
nearby and within sight.

The HP 30312A Power Supply is a nonrepairable unit and, if found
defective, it must be replaced. Except for replacing an open
fuse or the interface board. (30312-60002), no repair procedures
are required. If the computer system is down because the 5-volt
output of this power supply is absent, disconnect the wire at
terminal Al of the HP 62605M Power Supply. If power is restored,

the interface board is defective. If power is not restored, the
HP 62605M unit is defective.

HP 32421A Series III Power Supplies

NOTES

HP 32421A Series III Power Supplies

NOTES

9-26

HP 32435A SERIES Il POWER SUPPLIES

This section contains servicing information for the HP 32435A
Series III power supplies.

10-1. INTRODUCTION

The HP 32435A Series III Computer System has a maximum of five
power supplies; four power supplies in the CPU Bay and, if the
optional I/0 Bay is installed, one power supply in the I/0 Bay.
The HP 62605M-P31/P41, HP 63312F-P02, HP 63312F-P09, and HP
61315D-P07 Power Supplies are located in the CPU Bay as shown in
figures 1-4 and 1-5. A second HP 62605M-P31/P41 is located in
the I/0O Bay of 2-Bay models as shown in figure 1-5,

10-2. POWER SUPPLY TROUBLESHOOTING

The HP 32435A Series III Computer System power supplies are all
controlled and monitored by the Power Supply Control and Display
Assembly located at the 1lower front of the CPU Bay as shown 1in
figures 1-4 and 1-5. The Power Supply Control and Display Assem-
bly (figure 10-1) contains twelve test points (including a common
ground) and associated LED indicators that monitor all the system
DC voltages provided by the power supplies. The test points are
connected directly to the backplane voltages through a 1K resis-
tor and can be used to measure any system DC voltage without en-
tering the rear of the equipment bay. The test point DC voltag-
es, associated power supplies, and purposes are 1listed in table
10-1. It should be noted that the LED indicators located below
each test point do not "follow" their respective power supplies
and that their status (lighted or not lighted) has no meaning ex-
cept during a power supply failure. (Refer to the following text
and table 10-1 for additional information.)

In addition to the DC VOLTAGES test points and indicators, the
Power Supply Control and Display Assembly also contains three DC
STATUS indicators and two DC POWER switches located as shown in

figure 10-1, The functions of these indicators and switches are
listed in table 10-2.

If the DC POWER LOGIC switch is set to DISABLE, a power failure
is simulated so that the contents of memory will not be destroyed
and first the PFW indicator and then the PON indicator will no

longer be lighted. 1In addition, the DC VOLTAGES indicators will
be reset to their lighted status.

When the DC POWER switches are set to ENABLE, the PFW indicator
will light immediately if the system’s input AC power is within
specifications., After approximately one or two seconds, the PON
indicator will light if all the system’s DC voltages are present.

10-1

HP 32435A Series III Power Supplies

If the PON indicator does not light, one or more of the DC vol t-
ages has failed and the DC VOLTAGES indicator (s) that is lighted
indicates the DC voltage that has failed. (Use table 10-1 to de-
termine the power supply source.) 1If this occurs, all power sup-
plies except memory backup are shut down and their supply vol t-
ages are not available at the DC VOLTAGES test points.

If one or more of the DC voltages fail during normal system oper-
ation, the PON indicator will no longer be lighted and the faulty
DC voltage(s) will be indicated by the lighted DC VOLTAGES indi-
cator(s). The PFW indicator will remain lighted.

JUOUCUCU0000] [(4na

e @ 6 6 o o o o o BCHG PFW PON

+15 +12B 45CPU +58 +5.V1 +5V2 +6v3 TEMP -58 -5 —15 GND DC STATUS

—] DCVOLTAGES [7 O

)
LOGIC
ENABLE
DISABLE
MEMORY
ENABLE
DISABLE

DC POWER .

Figure 10-1. Power Supply Control and Display Assembly

10-2

HP 32435A Series III Power Supplies

Table 10-1. DC Power Supply Specifications

———— o — " - ——— —— " - G WG e W W SN T SR S G T e W - -

Note: The sense line for TEMP goes through a thermal switch in
the equipment cabinet fan panel to +5-V2 in Card Cage
No. 4. High temperatures open the thermal switch which

TTTTTTTTITTTTTTTTTTTTTTT 7T			
LED I Vol tage Range I	Supplies DC		
and		Power Supply	Voltage
Test Point	T	Source I To	
	Minimum	Maximum	I
I_~-__,-_”_“_I_’~-_"__I__-_,_,__I*__,______G‘__I___‘_____,,__,_I			
		I	
+15	+14.5V	+16.5V	HP 63312F-P02
+12B	+11.9V	+12,1V	HP 61315D-P07
+5 CPU	+5.17V	+5.17Vv	HP 62605M-P31l
+5B	+5.0v	+5.25V	HP 61315D-P07
+5-V1	+5.0V	+5.25V	HP 63312F-P02
I +5-V 2%	+5.0v	+5.25V	HP 63312F-P09
I +5-V 3%	+5.0V	+5.25V	HP 62605M-P31l
TEMP	N/A	N/A I See Note	See Note I
-5B	-5,0v	-5.25V	HP 61315D-P07
-5	-4.5v	-5,5V	HP 63312F-P09] Card Cage 3-6 I
-15	-14.5V	-15.5V	HP 63312F-P02
		I	

|

I

|

|

|

I

|

|

I

| simulates a power failure. If +5-V2 fails, the +5-V2

I and TEMP LED s may both be lighted. However, the TEMP |
I LED may remain lighted with the +5-V2 LED not lighted. |
I |
I I
I
|

*On 1-Bay Models +5-V3 is internally connected to +5-V2
and, if +5-V2 fails, one or both +5-V2 and +5-V3 LED s |
will be lighted. . |

—— o ——— -~ —— T — o . S . - S — O T Y G T T - W e G S S T W S Y WS S P S W T S o

10-3. POWER SUPPLY ADJUSTMENTS

All HP 32435A Series III Computer System power supplies have vol-
tage and current limit adjustments located at the rear of each
power supply. The HP 63312F-P02 and HP 62605M-P31 power supplies
are accessed by opening the rear door of the equipment bay(s) .
The HP 63312F-P09 and HP 61315D-P07 power supplies are accessed
by opening the rear door of the equipment bay and then removing
the fan panel located at the bottam of the bay. The current lim-
it adjustments should never be attempted and voltage adjustments

should only be performed when a particular voltage is out of tol-
erance.,

1N

HP 32435A Series III Power Supplies

Table 10-2, DC STATUS/POWER Indicators and Switches

set to ENABLE.

|7 T et |
| Indicator | |
I or | Function I
| Switch I I
e l |
I - |~ Tt T I
DC STATUS	When fully lighted, indicates that the system’s
BCHG	battery is fully charged. When slowly blinking,
Indicator	indicates that the battery is charging. When rap-
	idly blinking, indicates that the battery is dis-
	charging. When not lighted, indicates that the
	battery is completely discharged or that the bat-
:	tery is not installed in the system. l
DC STATUS	When lighted, indicates that the system’s input AC
PFW	power is within specifications. When not lighted,
Indicator	indicates that the AC power has dropped below
I	specifications and that DC power frcm the power
	supplies may begin to decay. =
! .	
DC STATUS	When lighted, indicates that AC power is applied
PON	to the power supplies and that the power supplies
Indicator	are operating properly. When not lighted, indi-
	cates that one or more power supplies are not op-
	erating properly or that the DC voltages from the
	power supplies has begun to decay due to loss of
[input AC power. 1
l	
DC POWER	When set to DISABLE, removes DC power from all
LOGIC	PCA’s except memory to permit removal and replace-
Switch	ment of the I1/0 and CPU PCA’s without destroying
	the contents of memory. When set to ENABLE, ap-
	plies DC power to all PCA’s except memory PCA ’s. 1
DC POWER	When set to DISABLE, removes all DC power from all]
MEMORY	PCA’s. When set to ENABLE, applies DC power to
Switch	all PCA’s provided that the LOGIC switch is also
I | |
I I I

S T o T T | T v T T~ - Y~ —— ———— - — - " . " —— - . - T W o T . o v - -

10-4

HP 32435A Series III Power Supplies

CAUTION

Never attempt any current limit adjustments in the
field. These limits are correctly set at the fac-
tory prior to the system’s shipment and must never
be changed. Failure to observe this caution may
result in serious damage to the computer system.

The power supply output vol tages should be checked from the Power
Supply Control and Display Assembly DC VOLTAGES test points after
the system is installed and during each scheduled preventive
maintenance interval. If any measured voltage is not within the
limits specified in table 10-1, adjust the associated power sup-
ply to bring its output voltage within the specified limits. It
should be noted that the +15- and -15-volt outputs of the HP
63312F-P02 power supply are controlled by the same adjustment.
If either voltage is adjusted, then the other voltage must be
checked and possibly readjusted.

During any power supply adjustment, perform the adjustment slowly
to avoid an overvoltage condition that will shutdown the system.
If an overvoltage condition does occur, rotate the voltage ad-
justment counterclockwise a small amount, reset the system, and
slowly rotate the adjustment clockwise until the output voltage
is within its specified limits.

10-4. REPAIR AND REPLACEMENT

The HP 32435A Series III Computer System power supplies are non-
repairable wunits and, if found defective, must be replaced. Ex-
cept for replacing open fuses, no repair procedures are required.
All the power supplies are removed from the front of the equip-
ment bay (s) after first removing and 1labeling all wires attached
to the rear of the supplies.

CAUTION

Replacement power supplies may be shipped with a
strap on the terminal board for 120V operation.
This strap must be removed for 220V operation or
the power supply will be damaged when power is
first applied to the computer system.

Early models of the HP 32435A Series III Computer System contain
one or two HP 62605M-P31 power supplies; later models contain the
HP 62605M-P41 power supply. In countries where VDE Certification
is required, the HP 62605M-P31 can only be replaced by another HP

1N-R”

HP 32435A Series III Power Supplies

62605M-P31 cor an HP 62605M—-P41., Elsewhere, the HP 62605M-P31 can
be replaced by another HP 62605M-P31, an HP 62605M-P41, or by an
HP 30312A (Section IX). In order to replace an HP 62605M-P31 with
an HP 303127A, the Overcurrent Adjust PCA Module and associated
sheet metal atttached to the rear of the HP 30312A must first be
removed.,

NOTES

10-6

SYSTEM INSTALLATION

This section contains information for installing the HP 3000 Ser-
ies III Computer Systems and ensuring that the systems are oper-
ating in accordance with factory specifications, It should be
noted that before a system can be installed, a site must be pre-
pared in accordance with the information contained in the applic-
able Computer System Site Preparation Manual and Computer Sy stem
Site Planning Workbook. (For HP 32421A Series III Computer Sys-
tems, refer to the HP 3000 Computer System Site Preparation Man-
ual, part no. 30000-90082 and the HP 3000 Computer System Site
Planning Workbook, part no. 30000-90086. For HP 32435A Series
III Computer Systems, refer to the HP 3000 Computer System Site
Preparation Manual, part no. 30000-90145 and the HP 3000 Computer
System Site Planning Workbook, part no. 30000-90146.) It should
also be noted that site preparation is the responsibility of the
customer and not Hewlett-Packard ‘s unless it has been negotiated
as a separate contract. For additional installation information,
refer to the applicable HP 3000 Computer System Installation Man-
ual (part no. 30000-90081 for the HP 32421A Series III Computer

Systems and part no. 30000-90147 for the HP 32435A Series III
Computer Systems).

This section is divided into two parts. Part One (paragraphs
(11-1 through 11-10) contains information strictly for the HP
32421A Series III Computer System. Part Two (paragraphs 11-11

through 11-17) contains information strictly for the HP 32435A
Series III Computer System.

PART ONE
HP 32421A SERIES Ill COMPUTER SYSTEM INSTALLATION

1. EQUIPMENT BAY INSTALLATION

Do not attempt to slide or swing out any
equipment from the bays or cabinets until
they are completely installed, the Anti-Tip
Base Extensions extended, and cabinet feet
lowered. Failure to comply may result in
serious injury or death and severe damage
to equipment.

System Installation

Before performing the installation instructions contained in
paragraphs 11-2 through 11-4, mechanically join the equipment
bays in accordance with the instructions contained in the HP 3000
Computer System Installation Manual, part no. 30000-90081. Then,
looking at the equipment bays from the rear, note that the Power
Control Module (PCM) 1is at the bottom of Bay No. 1, the Power
Control Unit (PCU) is at the bottom of Bay No. 2, and that a Pow-
er Distribution Unit (PDU) is in each equipment bay except for
Bay No. 1. (Refer to figures 1-2 and 1-3.) It should be noted
that special order systems may consist of more than three equip-
ment bays.

11+2. Power Distribution Unit

Perform the following instructions for each PDU in the system.

a. Ensure that no system ac power cables are connected to any ac
power source and that the MAIN SYSTEM POWER circuit breaker
on the PCM, the EXTENDED SYSTEM POWER circuit breaker on the
PCU, and all ac power switches on power supplies are OFF.

b. Remove the access plate from each PDU.

c. Connect or check straps (0360-1571) between TB1l terminals in
each PCU according to the cabinet in which the PCU is located
as listed in table 11-1 and shown in figure 11-1. The PDU
must be connected to the proper phase according to where the
cabinet is located in the system.

d. Connect the five-wire harnessed cable between the PCM in the

CPU Bay (Bay No. 1) and the PDU in the I/O0 Bay, according to
table 11-2,

e. Connect PDU’s in adjacent bays (if any) through the five-wire
harnessed cable(s) furnished, to join TBl terminals 1 to 1, 3
to 3, 5 to5, 12 to 12, and Earth Bus Bar to Earth Bus Bar.
(See figure 11-1.)

f. Check the ac power service strip connections and phase
strapping to TB1l of the PDU in the I/0 bay as shown in figure
11-1 and tables 11-1 and 11-3. Check the ac power service
strips in the other bays (if applicable) in the same manner.

g. Leave the access plates for each PDU off and proceed to para-
graph 11-3.

11-2

System Installation

Table 1ll-1., PDU Strap Connections at TB1l

————————— — - _— ——— Y —— - ——————— — " —— . — - — — ——] —— ——= —— q o~ —

| 120/208, 60 Hz
| e
I T T

-——W-"--”---T-——’-”—~”~

| |

| |

I |

I I |

Bay Number | PDU TB1 | Phase | Bay Number | PDU TB1 |
(Counted From| Strap | Connected | (Counted From| Strap |
I I

I I

I

|

I

|

w’O'T‘-—-‘

| 115V

|

|

| Rear ILeft) |Connections]|_ Rear Ieft) |Connections
I

I 208V |
|

I

- ——-— —_r o ——" ~-~----~——-|’-—-w ——— - -’—-—-—*"’-"

|

I I
I I
2 2-3 [* | * | 2,3,4
4“‘5 l B I BIC |
6-7 | I

I

I

I

I

—— o — — o T~ —— " "

3,6,9

——— v

C | Not NA

“--wov’vw-ul_w—-’

8-9 I

I

I

|

|

I

I

I

I

I 9-10

I

|

I

I I

I I

| I

| 10-11 I {
I
I
I

—— " —— —— - — - ——— - - - - " =

4,7,10

——— - ——— - -

NA

I
|
|
I
I
[
I
I
|
I
I
I
I I

| I

I 1-2 | A
I I

|

|

|

I

———— - —— o - —, " "

I
I
I
I
I
I
I
I
|
I
I
I
I
NA |
I
I
I
I
I
I
I
I
I
I
I
|

————— ———— — - —_——— ——. . " ————— —_, o— " " - _———— - —— Vo — " - " o - " -~

*In 2-Bay Model Systems, the 220V service strip is not used |

|

|

| in cabinet 2., In 3-Bay Model Systems, the 115V service stripl|
| is not used in cabinet 2. |
I
|
I

I
NOTE: The 208V service strip in Bay No. 1 is connected to |
phases A and B in the PCM, I

—— " ——— " — - — -~ ————~ T " -~ —" " — " . " . - = — " " ——— - _— " -~ — " oy~ -

System Installation

POWER DISTRISUTION UNIT
fosad-iod —_— - —
(. NO. 1 BUS, BLK ’-%-'-
f——— 1 Nseenoren o
WHT-SAN 204
! NO. 2 US, RED | =n
1 PP2e e
. f—4 wurRED.YEL 20
| o
NO. 38US, ORN | { =
L] t++ o
| | =" (SEE NOTE 2)
SLU = SLY NEUTRAL ——
E——— . —————— — — . — N
' M. e oy |
| | L = wirneogmn EARTH_) STAW (REF) |
e) Pl P ——
ANOTHER POU l —_ l
' : : oy LT l
l || [~ Y seenoTE) |
| :] o WHTSLKBAN : |
' o
P hd =
| [[17] l
| |1 — 4 —L LiNe -
NO. & 8US_ WHT v 118VOLT
— +t /'—_’1——“1————-—— DEVTRAL Y sevice
| I l ¢ | EARTH STRIP (REF)
(SEE NOTE 3)
RN |
U
| ARREE Lo
} NO.ssusGANYEL o |] | [|
B OMNYEL ¢ '
VT e 1
I{Iw o ey 1,
(I
SR I e g B
:)] e — vossusomven o~y
| | | - (NO. 4 BUS, WHT} "
I : | L _ _wosssom _ _ Fngierou
| L ——tozsmmo (WHEN USED)
- e — N0 18U BLK)
-_— P -

NOTES:

1. ALL BUS WIRES ARE AWG 10: ALL OTHERS ARE AWG 12,

2. THESE THREE LINES REPRESENT SYSTEM OPTION 015
STRAPPING CONNECTIONS. SEE “PDU STRAPPING
TABLE 2-1 FOR OTHER OPTIONS

3. USEDONLY IN PERIPHERAL BAYS

Figure 11-1.

PDU Schematic Diagram

11-4

System Installation

Table 11-2. PDU to PCM Connections

|TTT Tt Tt Tt Tt T TTTTTTTTTTTTTTTTT |
Wire Color PDU at TB1 | PCM at TB3

—_—— e —— —

|
I
|
|
| Red
I
I
I
I

Black 1 | 6
3 | 7 |
Orange 5 I 8 I
White 12 I 9 I
Green-Yellow Earth Bus | Earth Bus |
|

Table 11-3, PDU Ac Service Strip Wiring

|
| Black
|
|

A e
| Service Strip | | |
| Identity | Wire Color PCU Terminal
I A
|

I

|

|

l

|
|
|
TBl Terminal 8 |
|
|
|

115v White TBl Terminal 12
Green-Yellow Earth Bus-Bar
I~ [T - |
| | Brown TBl Terminal 9 |
I 230V l Blue TBl Terminal 6 |
| (CCE-22) |Green-Yellow Earth Bus-Bar |
I I

. S o e W T Y — - —-——— S - - o Y o v | ——— - — " — . " —— ——— " - - —

11-3. Power Control Unit

If the system does not contain a PCU, proceed to paragraph 11-4.
Otherwise, perform the following instructions.

Qe

b.

Remove the large and small panels (seen from the rear of the
cabinets) from the PCU, Save all hardware.

Verify that Jjumpers have been installed correctly on TBl as
listed within figqure 11-2.

Have an electrician perform this step. Connect primary ac
power cable wires to the PCU line filter terminals as shown
in figure 11-3. Then, replace the panels removed in step a.

Remove all ac power plugs from all ac power service strips in
the equipment bays.

Use the PCU-to-PCU/PCM Interconnecting Cable furnished with
each PCU to connect J1 of the PCU to J2 of the PCM in the CPU
Bay (para 11-4). Figure 11-4 shows the wiring of the cable.

Leave the access plates off and proceed to paragraph 11-4.

11-5

9-11

*Z-TT 21nb14

weirbe I OI3RWAYDS NDd

HP 30330A POWER CONTROL UNIT (PCU}
-——

[} T81 (SEE NOTE 21 o 0wz
. .
co1 — F1 43 | IPH 60
] 40A 1 ey .’\,2 w7 - PHASE A
(SEENOTET) — 2 —\ 8] losc PHASE B
R N —] 73 DRIve
bl —IV-.IL
1 " . “\,2 c POWER PHASE C
2w 8 _°_+ X —0— 4 o orEN
Y A L ° |
seenoven o FRLTER o s €| Yisvor PHASE C 18A)
A CONVENI
0 £ L = — ¢ | f necerracee NEUTRAL
i EARTH pomamy T SEE NOTE) ? G EARTH BUS EARTH
1 L
s L
AR — ¢
an o b 4 e
L N\ —— A PHASE A
2 g 17 g
et -\ o] | oisc PHASE 8
3 12 (] 3 oRIvE
s ‘J\,z c| {romen PHASE C
o | [
| 2] e ° oren
s € |\ nsvour PHASE C (64)
.) COMVENIENCE
\‘ ad ¢ | J necerracee NEUTRAL
chL EARTH BUS EaRTH
r2]s2
an
2 L
(SEE NOTE 3 3= '
‘. | 2 |
s .
4
.
\— }_ 5
6
" nOTES
' \ 1 INPUT TEAMINALS ON FLI ARE NUMBERED. AND TABLE
2 A 1S GIVEN FOR REFERENCE ONLY POWER
e wApe 1 ACCORDANCE WiTH
caomuzof |3 N I INSTAUCTHONS IN THE CABINET MANUAL TABLE A POWER INPUT CONNECTIONS
PCM OR [° o o] EARTH
BAR 2 TERMINAL BLOCK STRAPPING IS NOT SHOWN. STRAPPING v 2 3
enores |* | ! I— t hid IONS ARE PER TASLE 8 reamna | S8V | e
s 70 G-LINE OF SERVICE STRWS
: l | e L O e EeneaTaAY 3 LETMINATING PLUG PZ OBTAINED £ AOM J2OF PCM O 7 e A ToASE A
¥ NO CONN
4. P2OF INTEACONNECTING CABLE MATES WITH J2 OF PCM, 2 PHASE 8 e
1o cquIAENT OR NEIGHBORING PCU 3 PHASE C NEUTRAL
5 WINCSAC.S.ANO T ANE PART OF C81 WIRES A AND T . NEUTRAL | NOCONN
ARE SPLICE! 5 EARTH EARTH
- - - 6 FUSESF1THAU F6 ARE RATED 204

CB1 1S RATED 40A 8Y HANUFMVUR(I 1T 1S DE RATED
TO 30A FOR THIS APPLICATION

TABLE 8 STRAPPING CONNECTIONS

TERMINAL { 120:208V, 230V
sLoCK IPH.6OHZ | 1PH.5OMZ
LA 12 23
T .5 34
o1 67 7-8
\(1} 9.10 89

PHASE A
NEUTRAL

OPEN
orEN
EARTH

PHASE A
PHASE A
PHASE A
NEUTRAL

uoTjeTIe3ISuUl Wajysisg

System Installation

EARTH NEUT
TERMINAL 5 . £ TERMINAL 4
PHASE 8 PHASE A
PHASE C PHASE A
TERMINAL 3 TERMINAL 1
TERMINAL 2
A. 120/208V, 3ph, 60-Hz B. 230V, 1-ph, 50-Hz
(System Option 0185)
CONDUIT peM
ACCESS H?LE ,/
STRAPPING PCM
CONFIGURATION TERMINAL VOLTAGE
208 V between each phase
120/208-volt 120V between each phase
and neutrat
230V between phase A
230-volt and neuetr:l I[%%gw&ks
Figure 11-3. PCU/PCM Line Filter Connections
4 1 4 1
O WHT , , (LAMP RETURN) ' O
5 2 /77 5 2
o O WHT-BRN , , (COMMON) e O
6 3 7 7 b 3
d Q WHT-BLK , , (24 vDCSWITCHED)| | [¢® @
A 77 ‘ A
P2 P

Figure 11-4. PCU To PCU/PCM Interconnecting Cable

11-7

System Installation

11-4. Power Control Module

Perform the following instructions for the PCM.

a.

b.

Remove the large and small panels (seen from the rear of the
CPU Bay) from the PCM. Save all hardware.

Verify that jumpers have been correctly installed on TBl1 and
TB2 as listed within fiqure 11-5.

Have an electrician perform this step. Connect primary ac
power cable wires to the PCM line filter terminals as shown
within figure 11-3.

Remove all ac power plugs from all ac power service str ips in
the equipment bays.

Have an electrician perform this step. Be sure the ac power
at the Computer Mainframe Power Panel and PCM MAIN SYSTEM
POWER and PCU EXTENDED SYSTEM POWER circuit breakers are
turned OFF. Then, connect the other end of the primary ac
pover cable wired in step ¢ to the isolation transformer.
Then, turn ON the Computer Mainframe Power Panel main line.

Use a suitable voltmeter to check voltages at each of the PCM

line filter terminals for correct value as listed within fig-
ure 11-3,

Use a voltmeter to check the voltage between ground and neu-
tral. Voltage should not exceed 1 VAC (rms) . Use an oscil-
loscope to check the ripple content of the waveform between
ground and neutral (must not exceed 25 mv p-p).

Check that the EMERGENCY OFF pushbutton at the top front of
the CPU Bay is lighted. 1If it is not, press it once. If it
fails to light, an error exists in that circuit, Do not
proceed further until the error has been corrected and the
pushbutton will light,

After confirming that the EMERGENCY OFF lamp lights, set the
PCM MAIN SYSTEM POWER circuit breaker ON. Then, check the ac
power voltages at the ac power service strips throughout the
cabinets as shown in figure 11-1. If the voltages are in-

correct, set the PCM MAIN SYSTEM POWER and Computer Mainframe
Power Panel circuit breakers OFF and check the ac power ser-—

vice strip within the PDU against table 11-3. If any errors
are found, correct them.

Set the PCM MAIN SYSTEM POWER circuit breaker to OFF and re-
place the access covers on all PDU’s.

Connect all fans, card cages, and other devices in the cab-

inets into the appropriate ac power service strips and set
the PCM MAIN SYSTEM POWER circuit breaker to ON. Check that
all fans in the system operate.

11-8

SyStem Installation

l. Press and release the EMERGENCY OFF pushbutton and check for
three results:

(1) The pushbutton lamp goes out.,

(2) All fans in the card cages, cabinets, and other devices
stop.

(3) All circuit breaker handles on the PCM and, if present,
all PCU’s, move to the OFF (down) position.

m. Set the circuit breaker in the Computer Mainframe Power Panel
to OFF. Set the circuit breaker in the Computer Peripheral
Equipment Power Panel to OFF,

n. If step 1 is completed successfully, continue this procedure.
Otherwise, go no further until the fault is corrected.

0. Continue installation by connecting the interrupt poll, data
poll, MCU clock signal distribution, and flat cables as des-

cribed in paragraphs 11-5 through 11-6. Then, continue by
returning to step p.

P. Do not turn ON the Computer Mainframe Power Panel or the Com-
puter Peripheral Equipment Power Panel ac power until in-
structed to do so in paragraph 11-8.

d. Leave all equipment bay rear doors off.

11-5. Bus Cable Connections

If the system was shipped with the equipment bays separated,
three flat cables for the IOP bus, Multiplexer Channel bus, and
Power Bus must be connected between the equipment bays. Step-by-

step instructions for installing the bus cables are contained in
the HP 3000 Computer System Installation Manual, part no. 30000-
90081.

11-6. Interrupt Poll, Data Poll, and MCU Clock Connections

If the system was shipped with the equiment bays separated, the
interrupt poll cable (one white and one blue twisted-pair cable),
Multiplexer Channel data poll cable (one white and one orange
twisted-pair cable), and MCU clock cable (gray coaxial cable)
must be connected between the equipment bays. Step-by-step in-
structions including cabling diagrams for installing these cables

are contained in the HP 3000 Computer System Installation Manual,
part no. 30000-90081,

11-9

3G A

NUN L34 00 AG+

30 AGe

B N Y s |

..awa..ﬁpl_

NUN138 50 AS+

g ————— e — N8N13Y 20
al

e
|
1

1T

NO11VDI1¢d¥ SIHL WO 4 VOE OL Hidv3Y HiuvI S
031vN 305111 WIMNLOVAANYIN A8 VOB Lv O3LVE 5118 9 o s N wwooon | Ivainan N
QISN LONSNVIN (S S ’ IVRAININ 2 I5VHY €
Q391148 3uv e € NNOD ON 9 35vmg 13
10NV VSIVIM 183 40 Ltva I8V 1 ONY S ¥ SIuim ¥ EY ' visvHe | v 3svee N
0 1031
01 W¢ 40 ZF WON S 03V TWISNI SI (DLEVINIHIS U‘uwww— ZHOS Hd L ZHOS Ha L ZH08 NI
318¥0 ONI1IINNODU JAN! ONY N1Dd 40 2T OL GIADH Si 24 Avez Aoz “Avoz:0zt
D14 ONILYNIMNIL N4 ¥ SNIVINO OSTY WILSAS N3HM €
SAIILDINND . D LOGNI WIMOd ¥ 378V,
€310V 534 3 SNOILIINNDD SNOIIINNOD L4 ~
ONIIVHIS NMOHS LON SI ONIdIVEIS ¥D0I8 TYNinNY3L 2
*SNO!
H11M IINVANOIIV N1 30!
iNeNI WIMOs A
¥ 390V ONV Q36 IBWON 3UV 119 NO STVNINU 3 106N
SILON
—— - -
T
1
m :
v
€
z
'
—{J
{E 310N 335) 24| 2r
_ 1>
s
1 A A v
1 NUNLIY oWV
€
OIND11M5 20 AVES
z
.
= U
M G

'SO00%-D8COE N'a A YAWISSY 378%5 $40 AONIDUING

System Installation

N1 IVHAININ

Tveinin 121 ISVHe

N0 1218 1SVHg

13} ¥.1SWHd 11V KVHd

i | v

vivie | s
IS

AVE IXIN
NINQY 0L

awis JINN
30635 § 3401 5

NOIL¥DIONI
440 ADNI0WINI

HERERRERE

=[]

S S R .

Diagr am

PCM Schematic
11-10

19 310N 338

or
@

20009 08E0€ Ncd (W24 31NAON 10U INOD H 3MO4

Figure 11-5.

System Installation

17. PERIPHERAL DEVICE INSTALLATION

Installation instructions for peripheral devices that are part of
a standard computer system are contained in the HP 3000 Computer
System Installation Manual, part no. 30000-90081. Installation
instructions for non-standard peripheral devices are contained in
separate instruction manuals specifically for each device.

1+8. NEW INSTALLATION TURN-ON

To turn-on a newly installed system for the first time, perform
the following steps.

a. Set all power switches OFF on each HP 30310A, HP 30311A, and
HP 30312A Power Supply in the system. All HP 30310A Power
Supplies are at the rear of an equipment bay; all others are
behind a front door of an equipment bay.

b. Set the Computer Main Frame Power Panel circuit 'breaker to
ON.

c. At the rear of an equipment bay, set the PCM MAIN SYSTEM
POWER and CPU EXTENDED SYSTEM POWER circuit breakers to ON,
Then, check for the following conditions:

(1) All fans 1in card cages and equipment bays or cabinets
are blowing.

(2) At the upper-right corner of the CPU Bay, the EMERGENCY
OFF pushbutton is lighted.

Note

If the EMERGENCY OFF pushbutton is not
lighted or any fan is not blowing, cor-
rect the error before going any further

in this procedure. Refer to paragraphs
11-2 through 11-4.

d. Behind the front door of the CPU Bay, set Dc Control Panel
toggle switches to ON in the following order. (See figure

?1}.)LOWER MEMORY DC POWER
(2) UPPER MEMORY DC POWER
(3) SYSTEM DC POWER.
e. On the inside of the front door at the top, set two toggle

switches; PANEL to ENBL (enable) and PF/ARS (Power Fail/
Automatic Restart) to ENBL (enable).

11-11

System Installation

f.

ge.

h,

1.

At the rear of equipment bays, set the power switch to ON on
each HP 30310A Power Supply.

Behind the front door of equipment bays, set the power switch

to ON on each HP 30312A Power Supply; then, do so on each HP
30311A Power Supply.

Check the BATTERY STATUS lamps for the following indications:

(1) The battery 1is charging; the lamp bLlinks at about a
0.5-Hz rate.

(2) The battery indicated is not needed, is absent, or an
error condition exists; the lamp is not lighted.

(3) After the system has been ON for a while, the battery
should become fully charged; the lamp remains lighted.

Close the front door of equipment Bay No.l and check the pan-
el at the top front. Twc BATTERY STATUS lamps indicate the

same conditions as those behind the door, and the EMERGENCY
OFF pushbutton is lighted.

SYSTEM VOLTAGE ADJUSTMENTS

Note

The voltage measurements made in the fol-
lowing instructions must be made in refer-
ence to the appropriate common circuit.
The common circuits specified in the fol-
lowing instructions are 1labeled COM and
the common symbol. For all measurements,
use an HP 3439A Digital Voltmeter with an
HP 3441A Range Selector (or their equiva-
lents).

Perform the system voltage checks and adjustments as follows:

Qe

b,

Allow at least 15 minutes warm—up time, prefetably with the
CPU in the RUN state, (The RUN lamp is lighted.)

Check the control panel at the top front of the full length
door on the CPU Bay. If the RUN lamp is lighted, press the
top of the RUN/HALT switch to turn-off the RUN lamp.

Behind the front door of equipment bays, 1look for the small
panel of an HP 30312A Power Supply (figure 9-1). For each HP
30312A Power Supply in the system, perform these steps:

{
(1) Set the ADJ R32 potentiometer fully clockwise.

(2) Press and hold toggle switch -S2 and turn ADJ R32 count-
erclockwise wuntil the LED in the upper-right corner of"

11-12

System Installation

the HP 30312A panel lights to indicate "overcurrent",.

(3) Release toggle switch S2 and check that the overcurrent
LED goes out and a 5V LED lights,

Open the rear door of equiment Bay No. 1, remove the screw(s)
at the left edge of the HP 30310A Power Supply (figure 9-1)
and swing that Power Supply out of the bay.

At the tcp of the HP 30310A Power Supply, turn R12 fully
clockwise.

Connect the digital voltmeter between the +5VDC connector
(BNC type) center conductor and a CCM terminal lug on the
back plane cf the CPU card cage.

Note

Do not connect the digital voltmeter com-
mon lead to chassis ground. Failure to
comply will produce erroneous and possible
destructive results.

Use a small tip screwdriver to reach through the top of the
HP 30310A Power Supply to adjust AIR1l until the digital volt-

meter displays +5.17 volts.

Leave the digital voltmeter common lead where it is, but move
input lead to the +15, -5, and -15 test jacks on the HP

30310A rear panel. The voltmeter should display a value be-
tween 14,2 and 16.7 for either the +15 or -15 test jacks, and

" between 4.4 and 5.7 for the -5 test jack.

Move the voltmeter input lead to the +20 test jack on the HP
30310A panel, Then, wuse a small tip screwdriver to reach

through the top of the HP 30310A Power Supply to set A3R2
fully clockwise and leave at this setting. The voltmeter

should display a value between 16.8 and 18.0 volts.

Move the voltmeter input lead to the -20 test jack. The same
value (but opposite polarity) noted in step i should be dis-
played.

Repeat steps d through j for each HP 30310A Power Supply in
the system.

Move the voltmeter to the front of the equipment bays.
Connect the voltmeter common or return lead to the canmon

symbol jack on the front panel of the HP 30311A Power Supply
in the CPU Bay (figure 9-1).

11-13

System Installation

n. Connect the input lead of the voltmeter to each of the test

jacks on the HP 30311A Power Supply front panel and compare
the value displayed against table 11-4.

o. If all the values displayed are out of tolerance, proceed no
further until the +5,00V Internal Reference Adjustment pro-
cedure described in the HP 3000 Series II/III Computer System

Service Manual part no. 30000-90018 has been performed on
your HP 30311A Power Supply.

pP. Repeat steps m through o for each HP 30311A Power Supply in
the system.

Table 11-4. HP 30311A Test Jack Voltages
| T T CooTTTTTTTTTTTTTT |

| Test Jack | Value Required |

| I

b |

I |

+12B | +12,0; +/- 0.1 |
|
I
I
|
I

+12.7B value of + 12 test jack|
+0.7(+/- 0.2)

-3B -3.0; +/- 0.25 I

-5B -5.0; +/- 0.2 |

————— ——— — — - —— — - ——— " - . e - ———a -

1-10. SYSTEM VERIFICATION

To verify that the system operates correctly, turn on all periph-
eral devices and connect them on-line. Then, use the QA Verifi-
cation Tape to exercise the system’s System Verification Process.
Also run the appropriate diagnostics in accordance with the in-
structions contained in the HP 3000 Series II/III Computer System
Service Manual, part no. 30000-90018. Next, perform the MPE/3000
Cold-start Procedure in accordance with the instructions con-
tained in the HP 3000 Computer System Operator s Guide, part no.
32000-90013.

11-14

System Installation

PART TWO
HP 32435A SERIES 11l COMPUTER SYSTEM INSTALLATION

Prior to performing any installation procedures,
ensure that the three Power Control Module cir-
cuit breakers (located at bottom rear of the CPU
Bay) are set to their OFF positions and that the

main power cable is not connected to the power
source., Failure to comply may result in serious
injury or death and severe damage to equipment.

11-11. EQUIPMENT BAY INSTALLATION

The system equipment bay(s) are completely assembled and tested
at the factory prior to shipment. If the system to be installed
is a 2-bay model (Option 200), the two equipment bays must first
be mechanically and electrically connected in accordance with the
instructions contained in the HP 3000 Computer System Installa-
tion Manual, part no. 30000-90147. Once this is accomplished or
if the system to be installed is a l-bay model, simply position
the bay(s) as desired, extend and lock the anti-tip base exten-
sion legs in place, and lower the equipment bay feet 1located at
the end of the extension legs and at the rear of the bay(s).

1+12. Isolation Transformer Strapping

The computer system is shipped from the factory with its isola-
tion transformer pre-strapped for 208 VAC to 60-Hz sites and for
230 VAC to 50-Hz sites. However , to ensure proper system oOpera-
tion, check and, if necessary, restrap the isolation transformer
as follows:

a. Using a voltmeter, measure the actual steady-state voltage at
the AC receptacle that has been installed to provide power to
the computer system.

b. Refer to table 11-5 and check that the measured steady-state
voltage is within the limits specified for the rated voltage
the customer contracted for during his computer site prepara-
tion. If the voltage is within the limits specified in table
11-5, proceed to step c. If the voltage is not within the
limits specified for the contracted rated voltage, the com-
puter site has not been properly prepared. Do not proceed
with the system installation until the site has been properly
wired in accordance with the instructions contained in the HP
3000 Computer System Site Preparation Manual, part no. 30000-
90145.

c. As viewed from the front, remove the CPU equipment bay right-
side panel.

11-15

System Installation

Table 11-5. Primary Power Vol tage Tolerances

| 7Tt T 1 |
I | Acceptable Steady-State Voltage |
| Rated | |
| Voltage |mT T T | |
| | From I To [
| b e N |
I T |7 T | =TT |
| 200 I 180.0 | 208.0 l
| 208 N 187.2 | 216.32 I
| 220 I 198.0 I 228.8 |
I 230 [207.0 I 239.2 I
l 240 | 216.0 I 249,6 |

|

T S o T T T TR T W e " ——_ ———— - > w——— o —— o~ - oo v "

| Note: 1In general, peripherals not receiving |
| power via the CPU bay Power Control Mod- |
| ule require a steady-state line vol tage |
[from 103.5V to 119.6V for 60-Hz sites and|
| from 207.0V to 239.2V for 50-Hz sites. |
| However, various power options are avail-|
| able for most HP peripherals. Regardless]|
| of the peripheral power option ordered, |
I the available steady-state voltage must |
[be within the limits of +4/-10 percent of|
| the rated voltage. |
I

TR D T T L S e T e W . . o e o S S~ " _———— " —_— " . Yo o — — . — " "

Remove the isolation transformer primary side cover plate

shown in figure 11-6.

Ensure that all Power Control Module circuit
breakers are set their OFF positions and that

the main power cable is not connected to the
power source. Failure to comply may result

in serious injury or death.

Using figure 11-6 as a guide, check that the isolation trans-
former is correctly strapped for the primary power rated vol -
tage available at the site. If necessary, restrap the isola-
tion transformer for the available RATED voltage (not the
actual STEADY-STATE vol tage measured in step a).

The isolation transformer must always be strapped for the

available RATED voltage and not for the actual STEADY-STATE

vol tage measured in steg a. For example, if the site RATED
voltage 1is 208 VAC and the measured STEADY-STATE voltage is

216 VAC, strap the isolation transformer for the RATED volt-

age of 208 VAC even though the STEADY-STATE voltage of 216
VAC seems to indicate strapping for 220 VAC. The computer

site must be wired to provide a RATED primary power source

11-16

System Installation

GROUND

LUG

ADDITIONAL STRAPPING OPTIONS

JUMPER

PRIMARY /
SIDE COVER

PLATE

\

\ \\NANNNAYY
\
\

2

WIRE WIRE
VOLTAGE BLACK JUMPER RED
ISOLATION TRANSFORMER

(VIEWED FROM RIGHT SIDE OF 200V PIN 1 PIN 2 PIN & PIN 6
ELECTRONIC MAINFRAME. ACCESS 208V PIN 1 PIN 3 PIN 5 PIN 6

PANEL REMOVED FOR CLARITY:
TYPICAL 208 VOLT STRAPPING EXAMPLE} 220V PIN 1 PIN 3 PINS PIN 7
230V PIN 1 PIN 4 PIN 6 PIN 7
240V PIN 1 PIN 4 PINS PIN 8

Figure 11-6. Isolation Transformer Strapping Otions

that meets the voltage requirements of table
isolation transformer must always be strapped

vol tage.

Ensure that all terminal block connections are
no loose strands of wire are protruding

block.

11-17

from

11-5

and the

for the RATED

tight and that

the

terminal

System Installation

9. Ensure that infinite resistance (open circuit) exists between

all terminal block connections and the ground lug shown in
figure 11-6.

h. 1If necessary, reconfigure the Power Control Module input VAC
rating plates located under the main circuit breaker to re-
flect the current isolation transformer strapping.

i. Replace the isolation transformer primary side cover plate
and the equipment bay right-side panel,

1+13. Cable Connections

Step-by-step equipment bay(s) cable connection instructions are
contained in the HP 3000 Computer System Installation Manual,
part no, 30000-90147,

4. PERIPHERAL DEVICE INSTALLATION

Installation instructions for peripheral devices that are part of
a standard computer system are contained in the HP 3000 Computer
System Installation Manual, part no. 30000-90147. Installation
instructions for all other peripheral devices must be obtained

from the individual instruction manuals supplied with the de-
vices.

TH15. NEW INSTALLATION TURN-ON

Do not attempt to turn-on a newly installed system until the iso-
lation transformer has been properly strapped, all cable connec-
tions completed, all peripheral "devices installed, and the 1/0
system properly configured in accordance with the instructions
contained in the HP 3000 Computer System Installation Manual,
part no. 30000-90147. After this has been accomplished, perform
the following steps to turn-on the system for the first time.

a. Set the Power Control and Display Panel DC POWER LOGIC and

MEMORY switches to DISABLE. (The Power Control and Display
Panel is located at the bottom front of the CPU equipment
bay.)

b. Ensure that the Power Control Mdule MIN POWER, INTERNAL
POWER, and SWITCHED 120V OUTLETS circuit breakers are still

set to their OFF positions and connect the main power cable
to the customer-furnished AC power source.

Cc. Set the MAIN POWER circuit breaker to its ON position and
then set the INTERNAL POWER circuit breaker to its ON posi-
tion. (The SWITCHED 120V OUTLETS circuit breaker can be set

to its ON position at this time if desired although it is not
necessary until power is required for the two associated AC
power receptacles located on the Power Control Module., (The

two standard AC receptacles are for the system mag tape unit
and disc drive.) ‘

11-18

System Installation

d. Set the Power Control and Display Panel DC POWER LOGIC and
MEMORY switches to ENABLE.

e. Check that all Power Control and Display Panel DC VOLTAGES
and DC STATUS indicators are lighted. (The BCHG indicator may
be slowly flashing to indicate that the battery pack is being
charged. When the batteries are fully charged, the BCHG in-
dicator will stop flashing and remain lighted.) If all the
indicators are not lighted, refer to Section X to determine
the problem.

f. Open the front door of the CPU equipment bay and, at the top,
set the PANEL and PF/ARS (Power Fail/Automatic Restart) tog-
gle switches to ENBL. '

116. SYSTEM VOLTAGE CHECKS

Prior to performing any system verification procedures, allow the
system to warm-up for approximately 15 minutes and then check
that all the Power Control and Display Panel DC VOLTAGES are
within the tolerances specified in table 11-6. Use the Power Con-
trol and Display Panel voltage and common ground test points to
measure the system voltages. If any measured voltage is not
within the limits specified in table 11-6, adjust the appropriate
power supply in accordance with the instructions contained in
Section X.

Table 11-6. - System DC Voltage Tolerances

| Voltage Tolerance |

I

| Test Point | |
| DC Voltage |~~~ ~~~~7° T T |
[| Min | Max |
| | I I
I TFIST T T T | TTRIACS T T IR S
+12B	+11.9	+12.1
+5 CPU	+5.17	+5.17
+5B	+5.0	+5.25
I +5 V1	+5.0	+5.25
+5 V2	+5.0	+5.25

| +5 V3 . | +5.0 | +5.25 |
I -5B | -5.0 | =5.25 |
I -5 | ~4.5 | -5.5 |
| -15 | -14.5 | -15.5 |
|

11-17. SYSTEM VERIFICATION

To verify that the system operates correctly, proceed as follows:
a. Run the system microdiagnostics in accordance with the

instructions contained in the HP 3000 Computer System
Installation Manual, part no. 30000-90147.

1110

System Installation

b.

Cold load SLEUTH from the magnetic tape unit and run the I/0
Configuration Test using the SLEUTH CONF (configure) command
in accordance with the instructions contained in Stand-Alone
SLEUTH Diagnostic Manual, part no. 03000-90123.

Run all applicable stand-alone diagnostics in accordance with
the instructions contained in the individual diagnostic
manuals supplied with the system.

NOTES

11-20

Manual Part No. 30000-90143
Printed in U.S.A. 6/79

	Preface
	Contents
	Section I - Introduction
	Section II - System/CPU Overview
	Section III - System Verification and Troubleshooting
	Section IV - Machine Instructions and Stack Operations
	Section V - System Microcode
	Section VI - Module Control Unit/Main Memory Overview
	Section VII - I/O System
	Section IX - HP 32421A Series III Power Supplies
	Section X - HP 32435A Series III Power Supplies
	Section XI - System Installation

