

HP 243078

DOS-Ill
Disc Operating System

reference manual

HEWLETT tf PACKARD

list of Effective Pages

Pages Effective Date

Title. Feb 1975
iii to xiii Feb 1975
1-1 to 1-17 Feb 1975
2-1 to 2-60 Feb 1975
3-1 to 3-46 Feb 1975
4-1 to 4-4. Feb 1975
5-1 to 5-35 Feb 1975
6-1 to 6-3. Feb 1975
7-1 to 7-4. Feb 1975
8-1 to 8-25 Feb 1975
9-1 to 9-22 Feb 1975
10-1 to 10-46 Feb 1975
11-1 to 11-8 . Feb 1975
12-1 to 12-10 Feb 1975
13-1 to 13-34 Feb 1975
14-1 to 14-3 . Feb 1975
15-1 to 15-16 Feb 1975
A-1 to A-15 . Feb 1975
Index 1, 1 to 3 . Feb 1975
Index 2, 1 to 2 . Feb 1975
Index 3, 1 to 3 . Feb 1975

ii

Preface

This manual is a programming guide to DOS-III, a Hewlett-Packard Disc Operating System for 2000-
series computer systems. Programmers using this manual should be familiar with the functions of
batch-processing operating systems and one of the programming languages supported by the DOS-III
Operating System.

The Hewlett-Packard programming languages and program libraries that can operate under control
of DOS-III are described in the following reference manuals:

• HP ALGOL (02116-9072)

• HP ASSEMBLER (24307-90014)

• HP FORTRAN (02116-9015)

• HP FORTRAN IV (5951-1321)

• RELOCATABLE SUBROUTINES (02116-91780)

Other information, which may be useful to the programmer, is included in the SMALL PROGRAMS
MANUAL, the MANUAL OF DIAGNOSTICS and the SOFTWARE OPERATING PROCEDURES.
These manuals contain custom-assembled modules pertaining to each customer's software and hard­
ware configurations, and are supplied with each Hewlett-Packard computer system.

This manual is divided into six functional parts:

• Part 1. DOS-III OPERATING SYSTEM

Part 1 defines the standard capabilities of DOS-III. It includes a summary of DOS-III organi­
zation, hardware and software; definitions of DOS-III directives, EXEC calls and I/0 routines;
a description of the interaction of DOS-III and its subsystems; and a set of sample job decks.

• Part 2. DOS-III EXTENDED FILE MANAGEMENT PACKAGE (EFMP)

Part 2 describes the capabilities of the DOS-III Extended File Management Package (EFMP),
which allows the programmer to extend the file-handling capabilities of the DOS-III Operating
System. Part 2 contains sections on EFMP organization, EXEC calls and use of UTIL, the EFMP
Utility Program.

iii

• Part 3. GENERATING AND LOADING DOS-III

Part 3 gives complete instructions for generating and loading a DOS-III System.

• Part 4. DOS-III SYSTEMS PROGRAMMING

Part 4 contains information which will help the advanced programmer to write his own EXEC
modules, plan I/0 drivers and use the DOS-III privileged mode capabilities.

• Part 5. ERROR CODES AND MESSAGES

Part 5 is a complete set of all DOS-III Operating System error codes and messages.

• Part 6. APPENDIX AND INDEXES

Part 6 contains an appendix of DOS-III ·system tables and three indexes: the first two are con­
venient summaries of DOS-III directives and EXEC calls; the third refers to terms discussed in
the manual.

iv

Preface

PART 1 DOS-III Operating System

SECTION I DOS-III Organization

MAIN MEMORY LAYOUT

DOS-III OPERATION

Deleting Keyboard Errors
Batch Abort

DOS-III DIRECTIVES
DOS-III EXEC CALLS
DOS-III INPUT/OUTPUT
PRIVILEGED INTERRUPT
TIMING CAP ABILITIES

Timer Buffer

Time-out Processor Routine
Calling Sequence

DOS-III FILES

Standard Files
DOS-III Extended File Management Package

DOS-III MEMORY MANAGEMENT

GENERATING A DOS-III SYSTEM
DISC STORAGE

HP 2883/2884

4 - Subchannel Mode

2 - Subchannel Mode
HP 7900/7901

DISC USAGE
DOS-III HARDWARE

Required Hardware
Hardware Options

v

Contents

iii

1-1

1-1

1-3

1-3
1-3
1-3
1-4

1-5

1-5

1-6
1-6
1-6
1-7
1-8

1-8

1-9
1-9

1-9
1-10

1-10

1-11

1-12

1-13
1-13

1-15
1-15
1-15

DOS-III SOFTWARE

Required Software

Software Options

SECTION II DOS-III Directives

FORMAT FOR DIRECTIVES

ENTERING DIRECTIVES

OR.DER OF DIRECTIVES

ABORT.

BATCH

CLEAR

COMMENT

DATE

DOWN

DUMP (DISC-TO-DISC)

DUMP (FILE)

DUMP (PROGRAM)

DUMP (SECTOR)

EDIT

END-OF-FILE

END-OF-JOB

EQUIPMENT TABLE

GO

INITIALIZE

JOB

LIST

LOGICAL UNIT

MMGT

OFF

PAUSE

PROGRAM

PURGE

RENAME

REWIND

RP ACK

RUN

vi

1-16

1-16

1-16

2-1

2-1

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-11

2-13

2-15

2-17

2-21

2-22

2-23

2-25

2-26

2-28

2-29

2-33

2-35

2-37

2-38

2-39

2-40

2-42

2-43

2-44

2-45

SPECIFY SOURCE FILE

STORE

SYSTEM SEARCH

TOP-OF-FORM

TRACKS

TYPE

UP

USER DISC CHANGE

SECTION III DOS-III EXEC Calls

ASSEMBLY LANGUAGE EXEC CALLS

ALGOL EXEC CALLS

FORTRAN EXEC CALLS

BASE PAGE STORE

FILE CREATE

FILE NAME SEARCH

FILE PURGE

FILE READ/WRITE

FILE RENAME

I/0 CONTROL

I/0 READ/WRITE

I/O STATUS

MEMORY MANAGEMENT (BUFFER ALLOCATION)

MEMORY MANAGEMENT (BUFFER RELEASE)

MEMORY MANAGEMENT (INITIALIZE)

MEMORY MANAGEMENT (STATUS REQUEST)

MEMORY PROTECT CONTROL

PROGRAM COMPLETION

PROGRAM LOAD

PROGRAM SUSPENSION

SEGMENT LOAD

SEGMENT RETURN

TIME REQUEST

WORK AREA LIMITS

WORK AREA STATUS

USER DISC CHANGE

PARAMETER PROCESSING

vii

2-46

2-47

2-52

2-54

2-55

2-57

2-58

2-59

3-1

3-2

3-3

3-5

3-6

3-7

3-9

3-11

3-13

3-15

3-17

3-20

3-23

3-24

3-25

3-26

3-28

3-29

3-30

3-31

3-33

3-35

3-37

3-38

3-39

3-41

3-43

3-46

SECTION IV Input/Output

USER PROGRAM 1/0

SYSTEM 1/0 PROCESSING

INPUT/OUTPUT DRIVERS

SPECIAL DRIVER CONSIDERATIONS

SECTION V DOS-III Subsystems

SOURCE PROGRAM FILES

LOAD-AND-GO FACILITY

ALGOL COMPILER

ALGOL 1/0

Compiler Operation

PROG,ALGOL

Messages During Compilation

Language Considerations

ASSEMBLER

Assembler 1/0

Assembler Operation

PROG,ASMB

Messages During Assembly

Language Considerations

FORTRAN COMPILERS

FORTRAN 1/0

Compiler Operation

PROG ,FTN (4)

Messages During Compilation

Language Considerations

Extended and Auxiliary Statements

PROGRAM Statement

DATA Statement

EXTERNAL Statement

PAUSE and STOP

ERRO LIBRARY ROUTINE

viii

4-1

4-1

4-2

4-3

4-4

5-1

5-1

5-1

5-2

5-2

5-2

5-3

5-3

5-5

5-6

5-6

5-6

5-7

5-7

5-9

5-11

5-11

5-11

5-12

5-12

5-13

5-14

5-15

5-16

5-17

5-18

5-19

DOS-III RELOCATING LOADER
PROG,LOADR

I/0 Drivers
Loader Operation

Matching Entries with Externals

THE RELOCATABLE LIBRARIES
DEBUG LIBRARY SUBROUTINE

DEBUG OPERATIONS

SPECIAL CONSIDERATIONS

SEGMENTED PROGRAMS

FORTRAN Segments

ALGOL Segments

SECTION VI Typical DOS-III Job Decks

PART 2 DOS-III Extended File Management Package (EFMP)

SECTION VII EFMP Organization

ENVIRONMENT

FUNCTIONS AND STRUCTURE

DOS-III Files vs. EFMP Files

Duplicate Pack Numbers

EFMP Buffers and Tables

Logical Read vs. Physical Read

Logical Write vs. Physical Write

Update-Writes vs. Append-Writes

SETUP

SECTION VIII EFMP EXEC Calls

FORMAT FOR EFMP EXEC CALLS

DEFINE

CREATE

DESTROY

OPEN

CLOSE

READ

INITIALIZE

WRITE

RESET

STATUS

STATUS (FSTAT = 1)

STATUS (FSTAT = 2)

STATUS (FSTAT = 3)

ix

5-20

5-21

5-23

5-23

5-24

5-28

5-29

5-29

5-30

5-31

5-35

5-35

6-1

7-1
7-1
7-1
7-1
7-2

7-2

7-3
7-3
7-3
7-3

8-1

8-1

8-2

8-4

8-6

8-7

8-8

8-9

8-10

8-11

8-12

8-13

8-14

8-15

8-16

STATUS (FSTAT = 4)

STATUS (FSTAT = 5)
STATUS (FSTAT = 6)

STATUS (FSTAT = 7)
REPACK (PURGE)

COPY
CHANGE FILE NAME
POST

SECTION IX EFMP Utility Program

:PROG,UTIL

BRIEF

CHANGE

CLOSE

COPY

CREATE

DESTROY

END

INITIALIZE

OPEN

POST

RESET

REPACK

STATUS-1

STATUS-2

STATUS-3

STATUS-4

STATUS-5

STATUS-6

STATUS-7

PART 3 Generating and Loading DOS-III

SECTION X Generating DOS-III
DSG EN

DSGEN Configuration from Paper Tape

HP 2100A/S
HP 21MX

DSGEN Start-up

USING DSGEN TO FORMAT DISCS

x

8-17

8-18

8-19

8-20
8-21
8-22
8-24
8-25

9-1

9-2

9-4

9-5

9-6

9-7

9-8

9-9

9-10

9-11

9-12

9-13

9-14

9-15

9-16

9-17

9-18

9-19

9-20

9-21

9-22

10-1

10-1

10-2
10-2
10-2
10-4

10-5

USING DSGEN TO GENERATE DOS-III 10-7
Restart 10-7
Initialization Phase 10-8
Program Input Phase 10-11
Parameter Input Phase 10-12
Disc Loading Phase 10-15
Sample System Generation 10-18

DSGEN DISC CARTRIDGE SYSTEM GENERATION 10-28
Sample DSGEN Cartridge Preparation and System Generation 10-35

SECTION XI Loading DOS-III 11-1

USING THE BMDL TO LOAD ABSOLUTE BINARY PROGRAMS 11-3

INITIATING DOS-III WITH THE BMDL 11-4

CONFIGURING THE DOS-III STAND-ALONE BOOTSTRAP LOADER 11-5

INITIATING DOS-III WITH THE STAND-ALONE BOOTSTRAP 11-6
LOADER\

BMDL 11-7

PART 4 DOS-III Systems Programming

SECTION XII User-written EXEC Modules

USER EXEC MODULES: DIRECTIVES

USER EXEC MODULES: EXEC CALLS

USER EXEC MODULES: INTERNAL DESIGN

SAMPLE EXEC MODULE

SECTION XIII Planning 1/0 Drivers

STANDARD I/0 DRIVERS

Initiation Section

Completion Section

SAMPLE I/0 DRIVER

PRIVILEGED INTERRUPT I/0 DRIVERS

Privileged Interrupt Section

Privileged Interrupt Completion Section

SAMPLE PRIVILEGED INTERRUPT I/0 DRIVER

SECTION XIV Privileged Mode

xi

12-1

12-1

12-3

12-4

12-6

13-1

13-1

13-1

13-4

13-7

13-20

13-22

13-24

13-26

14-1

PART 5 Error Codes and Messages

SECTION XV Halt Codes and Error Messages

DSGEN ERROR HALTS

DSGEN ERROR MESSAGES

Messages During Initialization and Input Phases

Messages During the Parameter Phase

General Messages

Messages During I/O Table Entry

DOS-III BOOTSTRAP ERROR HALTS

DOS-III ERROR HALTS

DOS-III ERROR MESSAGES

DOS-III EFMP ERROR CODES

PART 6 Appendix and Indexes

APPENDIX A System Tables

INDEX 1 Summary of Directives

INDEX 2 Summary of EXEC Calls

INDEX 3 Terms

xii

15-1

15-2

15-2

15-2

15-3

15-3

15-4

15-5

15-6

15-6

15-15

A-1

Table 2-1.

Table 11-1.

Table 11-2.

Table 15-1.

Table 15-2.

Table 15-3.

Table A-1.

Table A-2.

Figure 1-1.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 7-1.

Figure 13-1.

Figure 13-2.

Figure 13-3.

Figure 13-4.

Figure 13-5.

Figure A-1.

Figure A-2.

Figure A-3.

Figure A-4.

TABLES

:DUMP Formats

HP 7900/7901 BMDL

HP 2883 BMDL

DSGEN Error Conditions

DOS-III Bootstrap Error Halts

DOS-III Error Conditions

DOS-III Base Page Constants

DOS-III Base Page Communication Area

FIGURES

Functional Diagram of DOS-III

Segmented Programs

Main Calling Segment

Segment Calling Segment

Main-to-Segment Jumps

EFMP File Directory Format

1/0 Driver Initiation Section

1/0 Driver Completion Section

Privileged Interrupt 1/0 Driver Initiation Section

Privileged Interrupt 1/0 Driver Privileged Interrupt Section

Privileged Interrupt 1/0 Driver Completion Section

Main Memory Allocations in DOS-III

Disc Structure in DOS-III

Disc Directory Entry Format

The Equipment Table

xiii

2-11

11-7

11-8

15-2

15-5

15-6

A-3

A-4

1-2

5-31

5-32

5-33

5-34

7-4

13-3

13-6

13-21

13-23

13-25

A-2

A-9

A-10

A-14

PART 1
DOS-/// Operating System

SECTION I
DOS-/// Organization

The DOS-III supervisory software consists of a Disc Monitor (DISCM) that resides in main memory;
EXEC modules which may reside either in main memory or on disc; and a Job Processor (JOBPR)
that is disc-resident. Together these modules manage I/0 processing, interrupt processing, executive
processing, job processing, and file handling.

Other DOS-III software consists of a series of relocatable binary software modules. Since each
module is an ind~pendent, general-purpose program, the hardware and software configuration of
the system is flexible. Modules can either reside in main memory or on the disc, at the user's option
(specified during system generation). In a system with a small main memory, the modules can reside
on the disc to save main memory space; in a large main memory system, modules can reside in main
memory for greater efficiency.

MAIN MEMORY LAYOUT

When DOS-III is active, the main memory is divided into a User Area and a System Area (as shown
in Figure 1-1). The Disc Monitor program handles all EXEC calls and, if they are legal, transfers
them to the proper module for processing. The I/0 drivers handle all actual I/0 transfers of infor­
mation. If some I/0 drivers are disc-resident, they are read into main memory by the supervisor
when needed. The User Area provides space for execution of user programs.

In addition, large DOS-III software modules, such as the FORTRAN Compilers, Assembler, Relocat­
ing Loader, and Job Processor, reside on the disc and execute in the User Area. (See Appendix A
for figures on disc and main memory layout.)

If the memory protect option is present, a memory protect boundary is set between the System
Area and the User Area. This boundary interrupts whenever a user program attempts to execute an
I/0 instruction (including a HALT) or to modify the System Area. (Instructions can reference the
switch register and overflow register.) Programs to be run in the User Area must use EXEC calls for
input/output, termination, suspension, and other external processes.

1-1

System Area

User Area DISC MEMORY

Work Area

Job Binary Area

Listings, punched tapes,
t low memory

etc. to output device(s) ..
~

System Area

Directives, source _....
statements and data

~ from system console r and batch input device + MAIN MEMORY

User Area

- high memory

Figure 1-1. Functional Diagram of DOS-Ill

1-2

DOS-III OPERATION

DOS-III operates in either keyboard or batch mode. In keyboard mode, the user enters statements
and commands to the system (called directives) to control his programming job through a keyboard
device (system console). Each line entered must terminate with a return and a linefeed. In batch
mode, the user enters directives through a batch input device, sometimes integrated with a source
program on punched cards, paper tape or magnetic tape, thus forming a job deck. Jobs can be
stacked one upon another in a' queue.

Deleting Keyboard Errors

To delete an entire line of input, strike rubout then linefeed. To delete the character just entered,
strike Control-A (simultaneous "A" and control key striking). Each Control-A deletes one addi­
tional preceding character.

Batch Abort

Some errors when encountered in batch mode cause a batch abort. When such an error occurs
(mostly in response to a directive) DOS-III takes the following action:

1. The offending directive and an error message is printed on the list device.

2. JOB ABORTED is printed on both the system console and the list device.

3. The offending statement and subsequent statements are ignored until a JOB, EJOB, or TYPE
directive is encountered. The current operation is aborted and the next input is processed.

DOS-III DIRECTIVES

The DOS-III Supervisor operates in response to directives input by the programmer or operator.
Directives are strings of up to 72 characters that specify tasks to DOS-III. They are entered in one
of the two modes of DOS-III operation: keyboard or batch.

The DOS-III directives are used for the following functions:

• Create, rename, edit, list, and dump user files (relocatable, absolute, loader-generated,
source statements, and ASCII or binary data)

• Search the various disc subchannels for specified file names

• Check status of user disc tracks

• Turn on user programs or system programs such as FORTRAN and Assembler

• Examine and modify the logical organization of the I/0; rewind magnetic tapes and output
end-of-file commands to magnetic tapes; output top-of-form commands to list devices

• Start and stop a job; type comments; suspend operations; resume execution of suspended
programs

1-3

• Assemble or compile, load and execute a user program

• Dump main or disc memory

• Set the date; abort programs; transfer to batch mode (from keyboard mode or batch mode);
return to keyboard mode (from batch mode)

• Change the subchannel of the user disc

• Initialize (label) a disc subchannel

• Dump all (or part of) a disc to another disc

• Purge file name entries from the user file directory

• Repack discs to eliminate purged user files

• Reserve logical memory space for specific subsystems (Memory Management)

DOS-III directives are described in Section IL

DOS-III EXEC CALLS

After being translated and loaded, an executing user program communicates with DOS-III by means
of EXEC calls. An EXEC call is a JSB instruction which transfers control to the DOS-III Supervisor.

The EXEC calls perform the following functions:

• I/0 read and write operations

• User file and work area read and write operations

• I/0 control operations (backspace, EOF, etc.)

• Request I/O status

• Change the subchannel of the user disc

• Request limits and status of WORK area (temporary disc storage)

• Program completion

• Program suspension

• Loading of program segments or main programs

• Request the time

• Control of memory protect

• Store values into base page memory locations

• Memory Management

• Programmatic file control

DOS-III EXEC calls are described in Section III.

1-4

DOS-III INPUT/OUTPUT

All I/0 operations and interrupts are channeled through the DISCM section of the DOS-III Super­
visor. DISCM is always main-memory resident and maintains ultimate control of the computer
resources.

I/O programming is device-independent. Programs written in FORTRAN, ALGOL, and Assembler
specify a logical unit number (with a predefined function, such as data input) in I/0 statements
instead of a particular device. Logical unit numbers initially are assigned to appropriate devices by
the operator during system generation, depending upon what is available and can be assigned during
a job. Thus, the programmer need not worry about the type of input or output device performing
the actual operation.

PRIVILEGED INTERRUPT

For DOS-III system interrupt processing, the I/0 channel select codes are assigned decreasing priority.
Channel 108 has the highest priority and channel 37 8 has the lowest. When an interrupt occurs on an
I/0 channel, system interrupt processing is disabled on all channels having a lower priority (higher
number) until the higher priority interrupt processing is completed.

DOS-III provides an optional capability which permits privileged interrupts on specific I/0 devices
(channels). These devices have their own user-supplied interrupt routines and have their interrupts
processed without going through the system's central interrupt processor ($CIC). The system guaran­
tees a response time of lOO microseconds for privileged device interrupts. (For a description of
privileged interrupt driver routines, see Section 13.)

The privileged interrupt capability is obtained by including a "fence" board in the system hardware
configuration and notifying the system software of the existence of the fence during system gener­
ation (see Section 10). The privileged interrupt fence physically separates privileged devices from
system devices. Privileged devices are those with interface boards in I/0 channels of a lower number
(higher priority) than the fence. System devices are those with interface boards in I/0 channels with
a higher number than the fence.

The DMA channels are always considered system devices although they reside on the privileged side
of the fence. When the privileged interrupt option is included in the system, any DOS-III drivers
which require DMA interrupts must explicitly inform the system of this fact. This is accomplished
by issuing the following subroutine call from the driver before returning control to the system:

EXT $SDMA
JSB $SDMA

When the last DMA interrupt has been received, the driver should inform the system that no further
DMA interrupts are expected by issuing the following subroutine call:

EXT $CDMA
JSB $CDMA

When the privileged interrupt fence is installed in the system and necessary privileged interrupt
drivers are included, the user can access his privileged devices with standard I/0 calls (JSB EXEC).

1-5

TIMING CAP ABILITIES

A library subroutine called $TIME is available to both system programs and user programs. The
Time Base Generator is required to use this subroutine (see "Hardware Options"). $TIME provides
the capability to set, reset, or release a timer (100 millisecond resolution).

Note: Upon return from the $TIME subroutine, Memory Protect is
disabled until a system request (JSB EXEC) is issued.

When setting (activating) a timer, an initial time value is placed into a user-supplied buffer and this
timer buffer is added to a linked list of currently active timers. When the timer expires, the sub­
system, driver, or user receives temporary control from the system. A timer is reset by placing a
new time value into an active timer buffer. A timer is released (deactivated) by removing the timer
buffer from the linked list of active timers. It is possible to remove all timer buffers from the list
with one calling sequence. ,

To use $TIME, the program must include a timer buffer, a time-out processor routine, and a calling
sequence.

Timer Buff er

A 4-word timer buffer must be available to $TIME. The address of this buffer is passed to $TIME
to identify the desired timer. Timer buffer format is:

Word 1: 16-bit buffer identifier

Word 2: Address of time-out processor routine

Word 3: Current time value
System use only

Word 4: Address of next timer buff er in linked list

Program must not modify word 3 or 4.

Time-out Processor Routine

Control is passed to the time-out processor routine when a specified timer expires. Unless the
system was generated with the privileged interrupt option, the interrupt system will be OFF and
should remain OFF during execution of the time-out processor routine. If the privileged interrupt
option is included in the system, the interrupt system will be ON upon entry into the time-out
processor. To prevent further privileged interrupts from occurring during execution of the time-out
processor, the time-out processor must disable the interrupt system.

Caution: Interrupts should not be disabled for more than 100 microseconds.

1-6

On entry into the time-out processor routine, the timer buffer is released from the timer list and
the A- and B-registers set as follows:

A = 16-bit identifier of the timer just expired (this allows one time-out
processor to service many timers).

B = 15-bit address of the timer buffer associated with the expired timer.

Calling Sequence

To set or reset a timer:

EXT

LDA
LDB
JSB
SZA
JMP

VALUE DEC

$TIME

VALUE
ATMBF
$TIME

ERROR

-2

(Time specified in -100 milliseconds)
(Address of timer buff er)
(Set/reset timer)
(If A= 0, no error; A= 1, illegal address)

(Set timer for 200 milliseconds)

When this request is received, the list of timers is scanned for a matching timer buffer. If no match
is found, a set request is assumed and the new entry is placed in the timer list. If a match is found, a
reset request is assumed and the new value is stored into the existing timer buffer.

On return from $TIME, the contents of the A-register indicate the termination condition:

A = 0; normal termination

A = 1; illegal timer buffer address

1-7

To release a timer:

EXT $TIME

CLA
LDB ATMBF

or
CLB
JSB $TIME
<return point>

ATMBF DEF TMBUF[,I]
TMBUF OCT n

DEF TOP[,I]
BSS 2

TOP NOP

JMP TOP,I

(Indicates release request)
(Release a specific timer)

or
(Release all timers)
(Release timer)

(Address of timer buff er)

} Choose one

(16-bit identifier) }
(Address of time-out processor) Time Buffer
(Reserved for system)

l Time-out Processor

Note: Routines using $TIME must remain main-memory resident during
program execution because the system uses a linked list mechanism
to keep track of the timers.

DOS-III FILES

Two types of files can be included in the DOS-III system: standard files (created by the STORE or
EDIT directives) and files created under the Extended File Management Package (if EFMP is in­
cluded in the system).

Standard Files

The disc provides quick access and mass storage for user files consisting of source statements, re­
locatable, absolute and loader-generated object programs, or ASCII or binary data. Each file has
a name that is used to reference it.

Programs use the Work Area of the disc for temporary storage. The System Area contains files of
systems programs, EXEC modules, a system directory, and system library subroutines.

1-8

DOS-III Extended File Management Package

DOS-III installations can use the DOS-III Extended File Management Package (EFMP). This set of
optional EXEC modules allows the user to exploit a more powerful file structure than that provided
by DOS-III. EFMP files allow logical record sizes of varying lengths for different files, security codes,
flexible buffering, sequential reads and writes with a pointer, and detailed status information. In
addition, a utility program (UTIL) is available that operates in the User Area. UTIL makes those
EFMP functions (except reads and writes), normally only usable through EXEC calls, usable from
the keyboard. For more information on EFMP, see Part 2.

DOS-III MEMORY MANAGEMENT

A memory management EXEC module allows user and system programs to allocate and release
buffer space within memory. The following memory management capabilities are provided;

• A directive (:MMGT) to specify and list subsystem names and block sizes.

• An initialization call (RCODE=35) to reserve a block of memory under a unique block name.

• A status call (RCODE=36) to interrogate the state of various blocks of memory.

• A buffer allocation call (RCODE=38) to subdivide blocks of memory into individual buffers.
A unique buffer identification is assigned each buffer allocated.

• A buffer release call (RCODE=41) to release previously allocated buffer space.

GENERATING A DOS-III SYSTEM

DOS-III is generated and loaded using two programs:

• Configured DSG EN (the system generator)

• BMDL (a bootstrap loader which loads the configured DOS-III from the disc into
main memory); or an equivalent program contained on a ROM.

First, DSGEN outputs instructions to the operator asking for information about the system. At the
appropriate point in the dialogue, the operator loads in the relocatable binary modules which make
up DOS-III and specifies whether the modules are to be disc- or main-memory resident. Finally,
DSGEN stores the configured DOS-III system on the disc in absolute form. (The disc is protected
from alteration by a hardware override switch.)

DOS-III then resides as a System Area and User Area on the disc. Each area is labeled and contains
a directory of all the files contained within the area. The System Area contains system main-memory
resident and disc-resident modules, while the User Area contains user files.

To load DOS-III into main memory and begin system execution, the user executes a disc loader.
The Loader loads all the modules designated main memory resident into main memory. (The disc­
resident modules are brought into main m~mory when needed by the main-memory resident
modules.)

1-9

DISC STORAGE

Disc storage is divided into subchannels. Each subchannel is a logical disc, i.e., the dimensions do
not necessarily correspond to the physical characteristics of the disc. Each subchannel contains
203 tracks - typically three of which are reserved as spares. The smallest addressable unit on a
disc is a sector. One sector contains 128 sixteen-bit words of storage.

HP 2883/2884

During system generation, the HP 2883 disc drives can be configured for one of two modes - four
subchannels per drive or two subchannels per drive. In either case, the controller supports one or
two drives (one drive is required).

For the four subchannel per drive mode, each drive contains a removable pack of twenty disc sur­
faces divided into four subchannels. Thus, the controller can support up to eight subchannels.

For the two subchannel per drive mode, each drive contains a removable pack of twenty disc sur­
faces divided into two subchannels. One controller supports up to four subchannels. A second
controller (optional) can be added to provide support for up to eight subchannels. Subchannel
assignments follow:

2883/2884
with four
Subchannels
per drive

0 1

0 4

1 5

2 6

3 7

Disc Drive Numbers

Subchannel
Assignments

0

0

1

2883/2884
with two

Subchannels
per drive

1 2 3

2 4 6

3 5 7

When two controllers are used (two subchannels per drive mode only) they must reside in contigu­
ous I/0 channel slots. In addition, the subchannels associated with the second controller (sub­
channels 4 through 7) can contain only user discs - no generation or bootstrap operations are
permitted on these subchannels.

When an HP 2883/2884 is configured to the four-subchannel mode, each track contains 115 sectors.
If it is configured to the two-subchannel mode, each track contains 230 sectors. Perhaps the con­
cept of logical disc organization can be more clearly understood by studying the accompanying
illustrations.

1-10

HP 288312884

4-SUBCHANNEL MODE
LOGICAL ORGANIZATION

5 SURFACES=
1 SUBCHANNEL

SUBCHANNEL 0

SUBCHANNEL 1

SUBCHANNEL 2

SUBCHANNEL 3

IN 4-SUBCHANNEL MODE,
4 LOGICAL TRACKS=
1 CYLINDER

1-11

5 PHYSICAL TRACKS=
1 LOGICAL TRACK

115 SECTORS PER LOGICAL
TRACK(23SECTORSPER
SURFACE TIMES 5 PHYSICAL
TRACKS)

•'---BOTTOM SURFACE IS
IS NOT USED

HP 288312884
2-SUBCHANNEL MODE

LOGICAL ORGANIZATION

10 SURFACES=
1 SUBCHANNEL

SUBCHANNEL <I

SUBCHANNEL 1

IN 2-SUBCHANNEL
MODE, 2 LOGICAL
TAACKS•1CYLINDER

1-12

10 PHYSICAL TRACKS=
1 LOGICAL TRACK

230 SECTORS PER TRACK
(23 SECTORS PER SURFACE
TIMES 10 PHYSICAL TRACKS)

HP 790017901

The controller for the moving-head disc supports up to four disc drives (one is required). Each 7900
drive contains two discs: a fixed disc and a removable cartridge. Each 7901 drive contains one disc:
a removable cartridge. Each disc is referenced through a subchannel of the controller. Therefore,
the controller has a maximum of eight subchannels (numbered 0 to 7). The subchannels are
assigned as follows:

7900 7901

0 1 2 3 Disc Drive Numbers 0 1 2 3

1 3 5 7 Removable Subchannels 1 3 5 7

0 2 4 6 Permanent Subchannels None

On the HP 7900/7901 disc driv_~_L_eaeh---track on the disc contains 48 sectors as shown in the
following illustration.

2 SURFACES=

DISC USAGE

HP 790017901

DISC ORGANIZATION

DISC; THUS NO CORRESPONDING
SUBCHANNE L.

DOS-III normally allows two subchannels to be available to the user: one subchannel contains the
system disc and the other contains the user disc (which may be the same subchannel as the system
disc). The user subchannel assignment can be changed during job or program execution. In addi­
tion, an optional system search mode is available to allow searching for user files on any specified
subchannels.

1-13

The disc storage has four parts:

1. The System Area

Executable code created by the system generator and hardware protected; includes
DOS-III Supervisor and other system programs.

2. The User Area (optional)

User file directory and user files (data, object programs, source statements, etc.).

3. The Work Area

Temporary storage for the current job.

4. Job Binary Area

Temporary storage for relocatable object code generated by the Assembler and compilers; this
is an area of variable size and starts from the end of the disc.

All four of these areas can reside on the system subchannel, or the User Area can be on a separate
subchannel. Only one User Area is available to the system at a time. The standard user subchannel
is assigned at system generation time; this can be the system disc or another subchannel (removable
or permanent disc). The UD directive and an analogous EXEC call allow the user to temporarily
change the User Area to another subchannel.

Automatic track switching is provided within each subchannel.

1-14

DOS-III HARDWARE REQUIREMENTS

DOS-III controls the operation of HP 2100A and HP 2100S Computer systems, and HP 21MX Com­
puter Series systems. Minimum hardware requirements depend on the type of computer system
selected.

The minimum hardware required for DOS-III operation is:

1. a) An HP 2100A or HP 2100S Computer, with 16,384 words of main memory, and DMA; or,

b) An HP 21MX-series Computer with 16,384 words of main memory, and a Dual-Channel
Port Controller.

2. Moving-head Disc device (HP 7900 Moving-head Disc Drive with fixed disc and removable
cartridge; or HP 7901 Moving-head Disc Drive with removable cartridge; or HP 2883 Disc
File with one removable pack).

3. System Console device.

4. Paper Tape Reader.

Hardware Options

The following hardware options are available:

1. Time-base Generator (provides accounting times and time-of-day).

2. Privileged Interrupt Fence.

3. Floating-point hardware (standard for 21MX Computer Series).

4. Additional main memory to a total of 24,576 or 32, 768 words.

5. Using extenders, additional I/0 channels (up to channel 37 8).

6. Memory Protect (not available for the HP 2105 Processor).

7. Paper Tape Punch.

8. Line Printer.

9. Card Reader.

10. Magnetic Tape Unit.

11. Additional Disc Drives. (Maximum is four on HP 7900 /7901; two on HP 2883 with four sub­
channels per drive; and four on HP 2883 with two subchannels per drive.)

12. CRT Display Console.

13. Writable Control Store.

14. Fast FORTRAN Processor.

1-15

DOS-III SOFTWARE

Required Software

The minimum software requirements for DOS-III are

1. Absolute Programs

a. DOS-III System Generator (DSGEN)

b. DOS-III Bootstrap Loader

c. SIO Drivers

2. Relocatable Programs

a. DOS-III Disc Monitor (DISCM)

b. DOS-III Exec Modules

c. DOS-III Job Processor (JOBPR)

d. DOS-III Disc Driver (DVR31)

e. DOS-III System Console Driver (DVROO, DVR05 or DVR26)

f. DOS-III Paper Tape Reader Driver (DVROl)

Software Options

In addition, the following programs can be included when DOS-III is generated:

1. DOS-III Relocating Loader

2. DOS-III Assembler

3. DOS-III FORTRAN Compiler

4. RTE/DOS FORTRAN IV Compiler

5. RTE/DOS FORTRAN IV Compiler - lOK Compiler Area

6. RTE/DOS ALGOL Compiler

7. RTE/DOS Relocatable Library (EAU, or floating point)

8. RTE/DOS FORTRAN IV Library (extended-precision arithmetic)

1-16

9. RTE/DOS FORTRAN Formatter

10. DOS-III Standard Drivers (either main-memory or disc resident):

Paper Tape Punch Driver (DVR02)

Digital Plotter Driver (DVRlO)

Card Reader Driver (DVRll) - uses DMA or Dual Channel Port Controller

Line Printer Driver (DVR12)

Optical Mark Reader Driver (DVR15)

Magnetic Tape Driver (DVR23) - uses DMA or Dual Channel Port Controller

Terminal Printer Driver (DVR26)

Writable Control Store Driver (DVR33) - uses DMA

Card Reader. Punch Driver (DVR34)

Hardwired Serial Interface Driver (DVR67)

11. DOS-III Physical Drivers

Synchronous Data Set Interface Driver (DVR 70)

Synchronous Modem Interface Driver (DVR 71)

Asynchronous Data Set Interface Driver (DVR 72)

Asynchronous Multiplexer Interface Driver (DVR 73)

Buffered Asynchronous Data Set Interface Driver (DVR74)

12. DOS-III Logical Drivers

Asynchronous Terminal Driver Number One (ATDOl)

Asynchronous Terminal Driver Number Two (ATD02)

Asynchronous Card Reader Driver Number One (ACROl)

Page Mode Terminal Driver Number One (PMTOl)

Page Mode Terminal Driver Number Two (PMT02)

Synchronous Line Control (SLC)

13. DOS-III Extended File Management Package

14. RTE/DOS Fast FORTRAN Processor Subroutine Library

1-17

SECTION II
DOS-/// Directives

Directives are the direct line of communication between the keyboard or batch input device and
DOS-III. Directives may enter DOS-III in two modes: keyboard and batch. In either mode, all
directives are listed on the system console. Certain directives can be used in one mode only; others
can be used in both modes. In keyboard mode, the operator manually inputs the directives through
the system console keyboard. In batch mode, the programmer prepares the directives (commonly
on punched cards, paper tapes, or magnetic tape) and inputs them along with programs, data, etc.,
in a complete job.

FORMAT FOR DIRECTIVES

Directives have the same format, regardless of the mode in which they occur: a colon (:) followed
by a directive word (first two characters are significant) and, if necessary, a list of parameters
(maximum is 15) separated by commas. For example,

:PURGE,FILEl ,FILE2,FILE3

When the sequence and position of parameters is significant, missing parameters must be represented
by commas if the following parameters are to be recognized. The first blank character not preceded
by a comma is the end of the directive. Comments may appear after this blank; they are ignored by
DOS-III.

Note: The total length of an input string cannot exceed 72 characters.

ENTERING DIRECTIVES

DOS-III has two conventions for notifying the operator that directives may be entered:

1. DOS-III outputs a "commercial at" sign (@)and rings a bell (at the system console). At this
time, the operator may enter any directive.

2-1

2. DOS-III outputs an asterisk (at the system console). At this time the operator may enter an
"operator attention" directive only. The "operator attention" directives are

:ABORT

:DN

:EQ

:LU

:OFF

:PAUSE

:TRACKS

:TYPE

:UP

Should the operator type any other directive, DOS-III outputs the following message:

IGNORED

and returns to the executing program.

To attain control of DOS-III (to enter an "operator attention" directive) the operator can
strike any system console keyboard key. If the system console is available, DOS-III immediately
outputs an asterisk(*); if the system console is busy, DOS-III will output the asterisk as soon
as it releases the system console.

Notes: 1. Operator attention is disabled during the completion phase of :EDIT and
during :PURGE.

2. Some system conditions restrict allowable directives; e.g., after an I/0
ERR NR EQT# nn, the system is waiting for an :UP,nn, followed by :GO.
Under such conditions, otherwise legitimate directives will be ignored.

3. Some operations, such as editing, require perceptible waits while DOS-III
processes the directive.

ORDER OF DIRECTIVES

The DOS-III directives described in this section are presented in alphabetic order (by function name).
If a directive must be used in keyboard mode only, a note to that effect is placed at the top of each
page describing the directive. A quick cross-reference index of DOS-III directives, "Summary of
Directives," is included at the back of this manual.

2-2

Keyboard Mode Only

ABORT

Purpose

To terminate the current job before the next JOB or EJOB directive.

Format

:ABORT

Comments

Abort carries out all the operations of a batch mode EJOB directive. All 1/0 devices are cleared.

2-3

BATCH

Purpose

To switch from keyboard mode to batch mode, or to reassign the batch device.

Format

:BATCH,logical unit

where logical unit is the logical unit number of the desired batch input device.

Comments

A BATCH, JOB, TYPE, OR TRACKS directive must be the first directive entered following
system start.

See "TYPE" in this section for the opposite procedure of returning batch mode to keyboard
mode. Assigning a null device or logical unit numbers 2 or 3 as the batch device results in an
ILLEGAL LUN error (see LOGICAL UNIT directive).

2-4

CLEAR

Purpose

To clear the Job Binary Area on the disc, or to issue a clear command to an 1/0 device.

Format

:CLEAR[,logical unit]

where logical unit is the logical unit number of the device to be cleared. If logical unit is omitted,
the disc Job Binary Area is cleared.

Comments

Using logical units 1, 2, or 3 results in an LU error.

The effect of clearing an 1/0 device is the transmittal of a clear function to the appropriate driver.

2-5

COMMENT

Purpose

To print a message on the system console.

Format

:COMMENT character string

where character string is a message to be printed on the system console.

Comments

A space (but not a comma) is required between the directive word and the comment string.

The programmer can use :COMMENT or :PAUSE to send a message to the operator at the system
console; using :COMMENT causes no suspension of processing. Use :PAUSE when a processing
delay is desired, for example to request that the operator mount a magnetic tape.

EXAMPLES:

:COMMENT BEGINNING OF PAYROLL JOB

2-6

Keyboard Mode Only

DATE

Purpose

To set the date and time for accounting purposes whenever DOS-III is activated.

Format

:DATE,day [,hour,min]

where day is any string of ten or fewer characters (commas not permitted) chosen by the operator
(such as 7 /10/69, 10.JULY.69, etc.);

hour and min are the current time in hours and minutes on a 24-hour clock. If not given or
a Time-base Generator is not present, they are set to zero.

Comments

The DA TE directive is legal only as the first directive in a start-up procedure. The directive is not
accepted any other time.

EXAMPLES:

:DATE, 7/10/69,12,23

:DA TE, WEDNESDAY, 7,45

:DATE,1OJULY1969

:DA,,

2-7

DOWN

Purpose

To declare an 1/0 device unavailable for use during the remainder of a job.

Format

:DN,n

where n is the equipment table entry number for the device to be set down.

Comments

The system console and the disc (logical units 1, 2, and 3) cannot be set down.

2-8

DUMP (DISC-TO-DISC)

Purpose

1. To dump an entire disc onto another subchannel (:DD)

2. To dump the System Area (including system buffer) onto another subchannel (:DD,X)

· 3. To dump all or specified files of the User Area (optionally assigning some new file names) onto
another subchannel (:DD,U ...)or, onto the current subchannel (assigning new file names).

Formats

1. :DD

2. :DD,X

3. :DD, U[,file 1 [,(file A)} ,file 2[,(file B)] ...]

where X specifies the System Area,

U specifies the User Area,

file 1, file 2, ... specify the files to be dumped (the entire User Area if no files are specified),

file A, file B, . . . specify the optional new names for file 1, file 2, etc. (renamed files can be
intermixed with unchanged files).

Note: No more than 14 parameters can be specified after :DD, U.

The destination disc must be specified by a :UD immediately following the :DD. Any other direc­
tive will negate the :DD. (For :DD and :DD,X, the directive must be :UD,*,n where n is not the
system disc.)

2-9

Comments

When the destination for a :DD,U is a system disc, other than the current system, the user files are
dumped in the User Area following the system files. This allows the user to dump a system and
selected user files to a single disc. (See also "INITIALIZE")

The SS directive does not apply to :DD.

If the files of the source disc cannot completely fit on the destination disc, DOS-III transfers as
many whole files as possible and outputs

TRAC# TOO BIG

If DOS-III cannot find some of the files specified to be dumped, the message

file

UNDEFINED

is output. This does not effect dumping of the files which are defined.

If a file specified to be dumped has the same name (after the optional renaming) as an existing file
on the destination disc, the message

file

DUPLICATE FILE-NAME

is output and the file is not dumped. This does not effect dumping of other files.

Caution: A DOS-III system created through the :DD directive
(disc-to-disc dump) cannot be protected with the
Protect/Override switch on the disc drive because the
protect bits on the system portion of the original disc
are not copied during the dump operation.

2-10

DUMP (FILE)

Purpose

To dump a user file to a specified peripheral 1/0 device in a format appropriate to the file content.

Format

:DUMP,logical unit,file[,Sl {,S2]]

where logical unit is the logical unit number of output device to be used for the dump

file is the user file to be dumped

Sl and S2 are the first and last relative sectors to be dumped

If Sl and S2 are not given, the entire file is dumped. If only Sl is given, then the file, starting with
Sl, is dumped.

Comments

Files may be dumped on list devices or punch devices (including magnetic tape). The dump format
varies with the type of file and the type of device. See Table 2-1.

Table 2-1. : DUMP Formats

File Type Punch Device List Device

ASCII data 64 characters/record 64 characters/record

Binary data 64 words/record 8 octal words/line

Absolute binary Absolute binary records 8 octal words/line

Relocatable binary Relocatable binary 8 octal words/line
records (loadable)

Source statements 1 statement/record 1 statement/I ine

Note: Sector numbers on listings are not related to the Sl and S2 parameters.

2-11

Source statements are packed and do not necessarily start on sector boundaries. Thus, if the 81 and
82 parameters are used, dumping begins with the start of the first statement beginning in sector Sl,
and ends with the last statement beginning in sector 82 (this will probably end in the following sector).

Files in the System Area cannot be dumped.

An error message occurs when 81 > 82, or when either 81 or 82 is greater than the length of the file.

Source statements, relocatable binary and absolute binary files can be dumped to a punch device and
later restored by using the appropriate STORE directive. In general, however, this cannot be done
with ASCII data and binary data files.

EXAMPLES:

Where L is a source file:

:DUMP,1,L

A

BB

CCC

DDDD

Ji.,·.iL"li:EE

FFFFFF
GGGGGGG
@

Where 88ERH is a binary file:

(On the system console:)

:DU,6,88ERH,1,1

@

(On the list device:)

001 000000 062125 072121 114535 010010 010075 010156 010100
002400 052100 026014 026036 062006 042154 072023 114535
010025 010076 010077 010006 010153 114535 010033 010076
010077 010101 010117 102501 002002 026056 062006 072046
114535 010050 010123 010076 010127 010124 010006 010122
114535 010056 010076 010077 010126 010153 036006 036006
036006 036121 026003 114535 010071 010076 010077 010106
010120 114535 010074 010074 000006 000022 000002 000001
000000 020116 047524 020106 047525 047104 020120 051117
043522 040515 020103 047515 050114 042524 042504 000005
000011 000000 000000 000016 000002 177746 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 000003 177777 020040 020501 040440
020040 041102 041040 020040 041503 041440 020040 042104
042040 020040 042505 042440 020040 043106 043040 020040

2-12

DUMP (PROGRAM)

Purpose

To request that a user program be dumped to the standard list device (logical unit 6) when it com­
pletes execution. Two directives are provided: PDUMP for dumping on a normal completion, and
ADUMP for dumping when the program aborts.

Format

:PDUMP[,FWA[,LWAJ J {,BJ [,SJ

:ADUMP[,FWA[,LWAJ J {,BJ [,SJ

where FWA is the octal address, relative to the program origin, of the first word to be dumped

L WA is the octal address, relative to the program origin, of the last word to be dumped

B means dump the base page linkage area of the program

S means dump the entire system area.

If LWA is missiQ,g, the entire program, starting with FWA, is dumped. B alone dumps all the main
program, plus base page linkages, but not the system routines. S alone dumps only the system.

If no parameters are given, everything except the system area is dumped.

Comments

The dump directives, PDUMP and ADUMP, must precede the RUN or PROG request in a job. They
implicitly refer to the next program to be executed. DOS-III sets a flag when it encounters either
PDUMP or ADUMP, then checks the flag the next time a program is executed. Only one of the
requests will be honored, depending upon whether the program runs normally or is aborted. The
dump is labeled accordingly. These flags are cleared when a program terminates.

Any parameter following S in the directive is ignored. If FWA is greater than L WA, this message is
output:

LIMIT ERROR

2-13

The main program and library subroutines are dumped eight octal words per line, along with the
octal starting address for that line. For example,

wd-1

wd-1

wd-2

wd-2

wd-3

wd-3

wd-4

wd-4

wd-5

wd-5

wd-6

wd-6

wd-7

wd-7

wd-8

wd-8

If present, the base page dump follows the main program and library. Base page linkages exist for
page boundary crossings and subroutines. For each line, the starting octal address appears first,
followed by four pairs of octal numbers. The first number of each pair records the content of the
base page word (an address elsewhere in main memory). The second number of each pair records the
contents of the address specified by the first item. If the first item is the address of a subroutine, then
the second item contains the last address from which the subroutine was called. For example,

pair-1 pair-2 pair-3 pair-4

adr item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2

adr+4 item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2

Note: :OFF before a program executes clears the dump flags.
:OFF during a program execution causes an abort dump.
:OFF during a dump terminates the dump.

EXAMPLE:

:ADUMP,0,15,B (Set up dump flag)

:R UN,PRG9,6 (Run program)

LU 012140

(Main program dump)

AD UMP

12000 160001 002002 130573 170574 006004 160001 002003 026012
12010 130575 170576 006004 160001 170577 006004 160001 170600

(Page Eject)

(Base page dump)

00570 010137 002045 010711 003237 010763 002045 017014 000300
00574 017641 000000 017015 000400 017641 000406 017601 000000
00600 017650 000000 017615 000000 017664 000000 017662 000573
00604 017637 000573 017571 177205 017563 001204 017714 017715
00610 017562 021121 017534 021122 017536 021122 017633 160656
00614 017544 037626 017546 037626 017673 000000 017605 000040

2-14

DUMP (SECTOR)

Purpose

To dump any specified sector or sectors of the current user disc on the standard list device (logical
unit 6) in either ASCII or octal format.

Format

:SA,track,sector[,number]

:SO, track,sector[,number]

(ASCII)

(OCTAL)

where track and sector give the starting disc address for the dump

number gives the number of sectors to be dumped. If number is absent, only one sector is
dumped.

All three parameters are decimal numbers.

Comments

The ASCII dump format (:SA) is 64 characters per record. The octal dump format (:SO) is eight
octal numbers per line. Two ASCII characters equal one computer word (also represented by one
octal number). Although :SA dumps 64 characters per record, these do not necessarily appear on
one line since the binary numbers are converted to ASCII characters, some of which might be
linefeeds or returns.

2-15

EXAMPLE:

(On the system console:)

:S0,0,1

@

(On the list device:)

001 000000 067767 017570 067744 077743 017613 017613 017613
017613 064120 007004 077310 064117 044055 160001 044051
010072 073773 053774 077761 053775 077762 077304 044056
160001 001727 013733 073305 050060 027460 053763 027445
067304 044066 037310 027415 027505 044052 160001 023773
033774 170001 063773 073302 002004 073303 063774 073773
067304 160001 073766 164000 017570 063305 050060 027440
006004 160001 033773 170001 006004 063730 170001 006004
003004 170001 067304 077311 027440 060154 001722 013765
033774 001727 001723 070154 063761 067302 017606 063762
067303 017606 002400 067774 017606 063311 067775 017606
067761 006003 027540 044055 160001 023774 033302 170001
067762 006003 027546 023775 033303 170001 063776 001200
067777 006003 002004 064155 070155 054175 070175 006400
050175 064115 074200 047740 074157 064175 074161 124003
000000 057766 127570 037766 163766 002021 027571 013764

2-16

EDIT

Purpose

To perform listed edit operations on a user source file (follows the :SS condition).

Format

:EDIT,file,logical unit[,new file]

where file is the name of a source file (the primary file) to be edited according to an edit list (edit
operations plus associated source statements) input on the specified logical unit. If new file
appears, the edited source file is stored in a new file (with the name new file) on the same
subchannel and the old file is not purged. Otherwise, the edited source file destructively
replaces the old file. (Follows :SS in searching for duplicate file names.)

Comments

An edit list consists of one or more edit commands and, optionally, a series of associated source
statement (i.e., following REPLACE, INSERT). Edit operations are executed when they are
entered. When using the system console, the operator must not enter the next operation until the
"@" prompt is output on the console.

All edit operations begin with a slash{/), and only the first character following the slash is required.
The rest are ignored (until a comma is reached).

In the edit operation formats, the letters m and n are the sequence numbers of the source statements
to be edited, starting with one. Letter m signifies the starting statement, and n is the ending
statement of the operation, inclusively. In all cases, n must be greater than or equal to m;
neither can be less than one, nor greater than the last source statement of the file. Them must be
greater than then of the previous operation. Sequence numbers refer to the original sequence of
the unedited file; inserted statements cannot be referenced until the current editing process is com­
pleted a_nd the file automatically resequenced prior to another EDIT directive.

Source statements following /REPLACE or /INSERT on the current batch device cannot contain a
colon (:) in column 1, although those entered from the system console can, with the exception of
:OFF and :ABORT (which are interpreted as directives instead of data). Source statements can
never contain a slash(/) in the first column. Source statements on any device other than the system
console and the current batch device can contain anything else in column 1 (including :OFF or
:ABORT).

Input is terminated only by an /END.

2-17

If the edit file is entered- on the system console and either a

PARAMETER ILLEGAL

or

NO SOURCE

error occurs, the user merely re-enters the statement in error. If the edit list is entered on any other
device, the EDIT directive is aborted (if the EDIT directive was entered in keyboard mode) or the
entire job is aborted (in batch mode).

EDIT OPERATIONS

/DELETE,m[,n]

Deletes source statements m through n, inclusively, from the source file. If only m is specified,
that one statement is deleted.

IINSERT,m

Inserts the source statements in the edit list immediately following this command into the primary
file following statement m.

/MERGE[,k] ,secondary file[,m[,n]]

Merges source statements from the secondary file into the primary file named in the EDIT directive.

k is the sequence number of the primary file (named in the EDIT directive) after which
source statements of the secondary file are merged. If k=O, the secondary file source state­
ments are merged at the beginning of the primary file; if k is omitted, the secondary file
source statements are merged at the end of the primary file.

Secondary file is the name of the source file to be merged with the primary file. If
m and n are specified, then only lines m through n of the secondary file are merged.
If only mis specified, then only that one line is merged.

IREPLACE,m[,n]

Replaces source statements m through n (inclusively) in the primary file with source statements
following the /R in the edit list. If n is omitted, then only statement mis replaced.

Note: Directives cannot be inserted or replaced but can be merged from
another file.

2-18

/SUPPRESS

Suppresses echoing of the edit operations on the system console, providing that the logical unit
specified in the EDIT directive was not the system console. Normally, echoing occurs after each
EDIT directive unless/Sis entered.

/UNSUPPRESS

Resumes echoing of the edit operations on the system console.

/FND

Terminates the edit file and returns DOS-III to its previous mode for further directives. (The last
edit command must be /END.)

EXAMPLES:

If a file named SOURC contains:

Statement 1 ASMB,R,B,L

Statement 2 NAM START

Statement 3 A EQU30

Statement 4 B EQU20

Statement 5 START NOP

Statement 6 LDAA

Statement 7 END

and the EDIT directive is

:EDIT,SOURC,5

and the e<J,it list, which follows :EDIT on the batch device, is

/R,3

A EQU 100

B NOP

/D,4

/I,6
STAB

IE

2-19

then the new file SOURC equals:

Statement 1

Statement 2

Statement 3

Statement 4

Statement 5

Statement 6

Statement 7

Statement 8

ASMB,R,B,L

NAM START

A EQU 100

B NOP

START NOP

LDAA

STAB

END

Assume now that there exists a source file named FILE2:

Statement 1

Statement 2

ALF,ALF

JMPSTART

To merge FILE2 into the new SOURC, the following EDIT directive, along with its edit
list, is required:

:ED,SOURC,5

/M,7,FILE2

IE

The new file SOURC looks like this:

Statement 1 ASMB,R,B,L

Statement 2 NAM START

Statement 3 A EQU 100

Statement 4 B NOP

Statement 5 START NOP

Statement 6 LDAA

Statement 7 STAB

Statement 8 ALF, ALF

Statement 9 JMPSTART

Statement 10 END

2-20

END-OF-FILE

Purpose

To write an end-of-file mark on a magnetic tape.

Format

:EF[,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-21

END-OF-JOB

Purpose

To terminate the current job normally and return to keyboard mode.

Format

:EJOB

Comments

The EJOB directive outputs a message recording the total run time of the job and execution time,
then returns to keyboard mode.

If :SS condition is active, :EJOB purges temporary files on all specified user subchannels. If :SS
condition is not active, :EJOB purges temporary files on the current user subchannel. (See STORE
directive and "DOS-III Relocating Loader," Section V.) All directives except :TRACKS, :OFF,
:TYPE or :BATCH are ignored until the next JOB directive.

:EJOB resets logical units 1 through 9 and resets the :SS condition. :EJOB resets the user disc
assignment to the standard subchannel unless that subchannel is not ready or a new cartridge has
been inserted (with a different label and without a UD directive).

When the EJOB directive occurs, a message is printed, similar to that of :JOB, giving the total run
time of the job and total execution time (if a Time-base Generator is present). For example,

END JOB START RUN= 0007 MIN. 52.6 SEC. EXEC= 0001 MIN. 21.0 SEC.

or

END JOB START

This message is printed on the system console and on the standard list device (logical unit 6). A
top-of-form is issued on the list device prior to the message.

2-22

EQUIPMENT TABLE

Purpose

To list one or all entries in the equipment table on the system console (see Appendix A for equip­
ment table format).

Format

:EQ[,n]

where n, if present, indicates the one entry to be listed.

If n is absent, the entire equipment table is listed.

Comments

Each entry is output in the following format:

EQT nn CH vu DVRmm d r Uu Ss

where nn is the decimal number of the entry

vu is the octal channel number of the device

mm is the I/O driver number for the device

d specifies DMA if equal to D, no DMA if zero

r specifies main-memory resident if equal to R, disc-resident if zero

u is a single decimal digit used for subchannel addressing

s is the availability status of the device:

0 for not busy, and available,

1 for disabled (down),

2 for busy

2-23

EXAMPLE:

Following is a listing of a DOS-III Equipment Table.

. EC1 .
EOT 0 1 CH 1 1 DV.::18 5 (} R UC1 Si?J
H.JT p.•'.)

...... it., .. f CH 1 3 DVHC3 1 0 1;:'.j UC-'.\ S0
EQT C13 CH 1 I! DvH3 1 D p

~ ~. UC' so
E~)T 011 CH 1 6 D\7H02 1/l R lFJ s0
EOT 05 CH ?.0 DVR12 0 H TJ0 S0
EQT 06 CH 2 1 D\JH 1 1 D ;?.) U'.'l sr.:1

lo. • • .J

EQT 07 CH 0•:::>
t ... (~, DVH23 D 0 uo S0

f)

2-24

Keyboard Mode Only

GO

Purpose

To resume a program that has been suspended, and optionally, to transfer up to five parameters to
that program.

Format

where P
1

through P
5

are optional parameters and must be decimal values between 0 and 32767.

Comments

When a program suspends itself (see "Program Suspension" in Section III), it is restarted by a GO
directive. Upon return to a suspended program, the initial address of the five parameters is located
in the B register. A FORTRAN program calls the library subroutine RMPAR to transfer the
parameters to a specified 5-word array. The first statement after the suspend call, in a FORTRAN
program, must be the call to RMPAR. For example,

DIMENSION I (5)

CALL EXEC (7)

CALL RMPAR (I)

An assembly language program should use the B register upon return from the suspend to obtain
and save the parameters prior to making any EXEC request or 1/0 request.

2-25

Key board Mode Only

INITIALIZE

Purpose

To label or unlabel the current user disc, and to destroy an existing System Area (and, optionally, a
User Area).

Format

:IN, label

where label is a six-character name to be written on the disc, or"*" which means unlabel the
disc.

Comments

Four basic cases are possible:

1. :IN,* An unlabeled disc (a disc containing only a User Area). The user directory and all
user files are destroyed.

2. :IN,* A labeled disc. The message

DOS (or TSB) LABEL xxxxxx

OK TO PURGE?

is output. To purge both the System and User Areas, the operator must respond with

YES

If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect
switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored.

2-26

3. :IN,label An unlabeled disc. Only the label is changed; no files are destroyed.

4. :IN,label A labeled disc. The message

? ? ? LABEL xxxxxx

OK TO PURGE?

is output. To purge an existing DOS or TSB system, move the user files to the beginning of
the disc, and assign the new label to the User Area, respond with

YES

If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect
switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HL T 31 will occur. If the operator responds with

NO

the directive is ignored.

Initialization does not affect the protect bits. They remain set.

Refer to Section VI for an example of how to copy the System from one subchannel to
another.

2-27

JOB

Purpose

To initiate a user job and assign it a name for accounting purposes.

Format

:JOB[,name]

where name is a string of up to five characters (starting with a non-numeric character) which
identifies the job.

Comments

A JOB, BATCH, TYPE, or TRACKS directive must be the first directive entered following system
start.

When DOS-III processes the JOB directive, it issues a top-of-form to the list device (logical unit 6),
prints an accounting message on the system console and the list device recording the job's name
(as specified in the JOB directive), the date (as specified in the DATE directive), and the current
time (if a Time-base Generator is present).

For example,

:JOB,START

JOB START MON 6.16.9 TIME= 0013 MIN. 41.6 SEC.

or

JOB START MON 6.16.9

If an Ec.10B directive has not been encountered, :,JOB also acts as the : EJOB for the previous job.
In this case, all actions of the :EJOB are carried out (except for returning to keyboard mode from
batch mode) before starting the new job.

2-28

LIST

Purpose

To list file information recorded in the user or system directories; or to list and sequentially number
the contents of all or part of a source file.

Format

(System) :LIST,X,logical unit[,file
1

, •••]

(Unaffected by :SS)

(User) :LIST, U,logical unit[,file 1 , .•.]

(Lists the specified directory entries from all the subchannels defined by :SS.)

(Source) :LIST,S,logical unit, file[,m[,n]]
(follows :SS)

where X specifies the System Area directory

U specifies a User Area directory

S spe.cifies a user source file

logical unit specifies the list device

file
1

, ••• names up to 13 entries to be listed (if none is specified, the entire directory is
listed)

m and n, if present, specify the first and last statements to be listed. If n is absent, then
all statements beginning with m are listed. If neither appear, then the entire file
is listed. The restrictions form and n are the same as those for the EDIT directive.

Comments

A top-of-form is issued to the list device prior to listing.

2-29

DIRECTORY LISTING OUTPUT

The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB

SUBCHAN = n

The following lines are then printed:

name type sctrs trk sec lower P upper P lowerb upperb entry fwam p-b ,

where name identifies the file,

type tells what kind of file name is

AB absolute binary program

AD ASCII data

BD binary data User File Only

RB relocatable binary program

SS source statements

LB library } XS supervisor module
System File Only

DR disc resident 1/0 driver l UM user main program

us user program segment

Either File

sctrs is the number of sectors in the file,

trk is the track origin of the file,

sec is the starting sector of the file within the track specified.

The information below does not appear for types AB, AD, BD, LB, RB, and SS.

lowerp is the lower limit (octal) of the program,

upper P is the upper limit (octal) of the program,

lowerb is the upf'ler limit (octal) of the program base page links,

upperb is the upper limit (octal) of the program base page links,

entry is the absolute octal address where execution begins,

fwam is the octal address of the first word of available memory following the
program, and

p-b is equal to T if the file is temporary and will be purged by :EJOB unless stored by
:STORE,P.

2-30

If the requested file does not exist, a message appears:

file UNDEFINED

SOURCE LISTING OUTPUT

Each source statement is preceded by a four-digit decimal sequence number.

If the requested file is not a source file, the following message appears,

file

ILLEGAL

The list is terminated by the message

****LIST END ****

EXAMPLES:

(on the system console:)

:LI,U,6

@

(On the list device:)

NAME TYPE SCTRS DISC ORG
SUBCHAN=4
EX9 SS 00080 T001 000
EXM RB 00063 TQ04 008
BBB SS 00001 T006 023
SRCH RB 00003 T007 000
SSE RH UM 00002 T007 003
ASCII .(!D 00200 T007 005
BINRY BD 00300 T015 013

PROG LIMITS B.P. LIMITS ENTRY FWAM PB

10000 10271 00713 00713 10000 10271 T

Note: Tin the "PB" column means that the entry is temporary.

2-31

(On the system console:)

:ST,P (To make all temporary files permanent.)

@

:LI,U,6

@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB
SUBCHAN=4
EX9 SS 00080 TOOl 000
EXM RB 00063 T004 008
BBB SS 00001 T006 023
SRCH RB 00003 T007 000
SSE RH UM 00002 T007 003
ASCII AD 00200 T007 005
BINRY BD 00300 T015 013

Note: "PB" no longer equals T.

(On the system console:)

:LI,S,6,EXl 9,926,936

@

(On the list device:)

0926 ASMB,L,R,X,C,N,B

10000 10271 00713 00713 10000 10271

0927 HED DUMMY $LIBR AND $LIBX FOR RTS SIMULATION ON DOS
0928 NAM DUMRX,6
0929 ENT $LIBR,$LIBX
0930 SPC 2
0931 * CALLINGSEQUENCES: ENTRY TERMINATION
0932 *
0933 *
0934 *
0935 *
0936 *

PRIVILEGED

**** LIST END ****

JSB $LIBR JSB $LIBX
NOP DEF (PROGRAM ENTRY POINT)

2-32

LOGICAL UNIT

Purpose

To assign logical unit numbers (4 through 63) for a job or to list the device reference table (logical
unit assignments) on the system console.

Format

where n1 and n2 (if present) are decimal numbers.

If neither n1 nor n2 is present: the entire device reference table is printed.

If only n 1 is present: the equipment table entry number assigned to logical unit number
n1 is printed. (See EQUIPMENT TABLE directive.)

If both n 1 and n 2 are present (and n 2 does not equal zero): the device recorded in equipment
table entry n2 is assigned to logical unit n 1 •

If both n 1 and n 2 are present (and n 2 does equal zero): the logical unit specified by n 1

becomes a null device, and any I/0 request on that device is ignored.

Comments

Assignments made by :LU for logical units 4 through 9 are only valid during the current job.
Assignments for 10 and above remain after EJOB. ·At the beginning of each new job, the device
reference table for the first nine logical units is reset to the assignments given when the system was
generated. This insures a standard I/O organization for all users.

If n2 = 0 (that device is to be made null), the logical unit specified by n 1 may not be equal to 1, 2,
3, or the logical unit number of the current batch device.

2-33

EXAMPLE:

:LU
LUOl EQT03
LU02 EQTOl
LU03 EQTOl
LU04 EQT05
LU05 EQT04
LU06 EQT06
LU07 EQT07
LUOB EQT02
LU09 EQTOO
@

:LU,9,5
:DU,9,FILEl

:LU,9
LU09 EQT05
@

:LU,6,0
:PR,FTN4,99

(null device)

(Logical unit 9 becomes punch)
(Dumps FILEl to punch)

(Checks EQT for LU9)

(Assigns line printer to null device)
(Reads from paper tape reader, no list, object to JBIN)

2-34

MMGT

Purpose

To reserve logical memory address space for specific subsystems.

Note: This directive applies to memory associated with system programs only.
Memory associated with user programs is strictly under program control.

In addition, this directive may be used to obtain a report of memory space previously reserved for
subsystems.

Format

:MMGT[,subsystem-name1, wwwww 1, subsystem-name2, wwww2, . .. , subsystem-namen,
wwwwwnl

subsystem-name is a 4-character ASCII name defined for a subsystem at system generation.

wwwww is the number (decimal) of logical words to be reserved for the associated subsystem.

If no parameters are entered, the directive is interpreted as an inquiry request and a list of subsystem
names and the number of reserved words previously set is printed on the console. The list appears in
the following form:

SUBSYSTEM

subsystem-name 1

subsystem-name 2

subsystem-namen

WORDS

WWWWW1

wwwww2

wwwwwn

2-35

Comments

The :MMGT directive is entered just prior to the :PROG or :RUN directive and reserved memory
space is released at program termination. If the subsystem name specified was not defined at system
generation, the system prints:

subsystem-name - UNDEFINED

where subsystem-name is the 4-character subsystem name. Any defined subsystem names is included
in the parameter string are accepted.

If an attempt is made to update or display the subsystem table and no subsystems were defined
when the system was generated, the system prints:

NO SUBSYSTEMS DEFINED

If the cumulative sum of words requested for subsystems exceeds the amount available, the system
prints:

LIMIT ERROR

Any requests up to the available space limit are accepted. If more than one subsystem name is in­
cluded in the parameter string, the user may determine which requests have been accepted by enter­
ing the :MMGT directive with no parameters. This causes a list of subsystem names together wit!l
the number of words reserved for each name to be printed on the console.

Note: The subsystem names discussed here must be included as entry points
(ENT) within the associated subsystem routines which are included as
part of the system at generation time.

2-36

Keyboard Mode Only

OFF

Purpose

To abort the currently executing user program or system operation without terminating the job.

Format

:OFF

Comments

:OFF returns the system to keyboard mode.

:OFF can be used to terminate undesired lists, edits, disc-to-disc dumps, program loops, Loader
operations, assemblies, and compilatioi;is.

:OFF cancels any pending DD, ADUMP, or PDUMP directives, unless a program is running, in
which case, a pending :ADUMP is executed.

2-37

PAUSE

Purpose

To interrupt the current job, optionally print a comment on the system console, and return to the
system console for operator action.

Format

:PA USE {character string]

Comments

PAUSE may be entered through the keyboard even when DOS-III is in batch mode. PAUSE suspends
the current job until the operator inputs a GO directive. During this time the operator may mount
magnetic tapes or prepare I/0 devices. (A series of COMMENT directives or a remark in the
PAUSE directive itself can be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS-III to the job in the previous mode.

EXAMPLE:

:PAUSE MOUNT MAG TAPE (Operator mounts magnetic tape)
:GO

2-38

PROGRAM

Purpose

To turn on (i.e., load from the disc and begin executing) a program from the System Area or a
program from the User Area which was generated with the DOS-III Relocating Loader. (Follows
the :SS condition in searching for the program.)

Format

where name denotes a system program, such as FTN for the DOS-M FORTRAN Compiler,
FTN4 for the RTE/DOS FORTRAN IV Compiler, ASMB for the DOS-M Assembler,
LOADR for the DOS-III Relocating Loader, or ALGOL for the RTE/DOS ALGOL
Compiler.

A user program is specified via the file name assigned by the DOS-III Relocating
Loader (the name specified in the program's PROGRAM, HPAL, or NAM statement).

P 1 through P 5 are optional parameters which DOS-III transfers to the program named.
P1 through P5 must be positive integers less than 32767. The program must retrieve
the parameters immediately. This procedure is described under :GO.

Comment

Consult Section V for the parameters required by FTN, FTN4, ASMB, ALGOL, and LOADR.
Additional programs may be added during system generation, if desired.

Note: User programs can be run using :PROG or :RUN. :PROG is useful when
the program needs parameters. DOS-III first searches the user files for
the program, then the system files. :RUN is useful when an execution
time limit is desired (and a Time-base Generator is present).

EXAMPLES:

:PROG,FTN,2,99

:PROG,MYFIL,0,3,84

2-39

PURGE

Purpose

To remove the directory entry associated with a user file. (Follows the :SS condition.)

Format

where file 1,tile 2, . . . (up to 15 file names or 7 2 characters per directive) designate files in the
User Area. The directory entry for the specified file name is purged (marked for removal)

If no file names are given, all directory entries for temporary files are purged.

Comments

After the directory entries are purged, the remaining User Area files may be repacked for efficiency
by entering the :RPACK directive. However it should be noted that the repacking function is per­
formed automatically each time an :EJOB directive is executed.

If the end of the User Area moves below a track boundary during the purge, the Work Area becomes
a track larger. As each file's directory entry is purged, DOS-III prints its name on the system
console.

The presence of undefined files in the list has no effect on the purging of named (and existing)
entries. However, if an entry cannot be found, this message is output to the system console:

file UNDEFINED

The fastest way to purge all files on a single disc is to use :IN,* (see "Initialize" in Section 2).

CAUTION: OPERATOR ATTENTION IS DISABLED DURING :PURGE.

2-40

EXAMPLE:

Original contents of user directory: Fl, F2, F3, F4, FLONG, and F5 (at least)

Directive: :PURGE,FLONG,Fl ,F2,D3,D7,F3,F4,F5

Output: FLONG

Fl

F2

D3 - - UNDEFINED

D7 - - UNDEFINED

F3

F4

F5

2-41

RENAME

Purpose

To rename a specified user file and, optionally, change its program type. (Follows the :SS
condition.)

Format

:RNAME,oldname,newname[,type]

where oldname is the name of the user file to be renamed

newname specifies the new name for the file

type specifies the new type for the file.

Comments

If a file name on one of the active subchannels is the same as newname, the message

DUPLICATE FILE NAME

is output and the file name is not changed. If the file named oldname cannot be found on any of
the active subchannels, the message

oldname UNDEFINED

is output.

The type parameter must be a decimal number from 3 to 12. File types 3-5 require 11-word
directory entries and types 6-12 require 5-word directory entires. If the file type is incompatible
in this respect, a

PARAMETER ILLEGAL

message results. (File type numbers are described in Appendix A.)

Note: It is the users responsibility to insure that the format and structure of
the file contents are compatible with its new file type.

2-42

REWIND

Purpose

To rewind a magnetic tape.

Format

:R WND[,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-43

RPACK

Purpose

To repack the disc, eliminating purged files.

Format

:RP ACK

Comments

When a :PURGE directive is issued, the directory entry for specific or implied files is purged. The
: RP ACK directive is used to search the directory for purged entries. If any are detected, the user
file area is repacked, eliminating those files.

Note: This repacking function is automatically performed at the end of
each job.-

EXAMPLE:

:RP ACK

scans the user directory for purged entries and repacks the disc to eliminate files
associated with those entries.

2-44

RUN

Purpose

To run a user or system program. (Follows the :SS condition.)

Format

:R UN,name[,time] [,NJ

where name is a user file containing the desired program

time is an integer specifying the maximum number of minutes the program may run
(default is five minutes). DOS-III ignores time if a Time-base Generator is not present.

N, if present, tells DOS-III to allow the program to continue running even if it makes
EXEC calls with illegal request codes.

Comments

Programs which have been relocated during the current job but not stored (see STORE directive)
permanently in a user file, may be run using this directive.

If a program executes longer than the time limit, the current job is aborted and DOS-III scans to
the next JOB directive.

If N is not present in the RUN directive, the current job will be aborted by any illegal request codes.
The N option is provided so that programs can be written and tested on DOS-III ultimately to exe­
cute with other HP software not having the same request codes.

EXAMPLE:

:RUN,ROUT,15

executes program ROUT up to fifteen minutes, not allowing illegal request codes.

TM 13421
@

System responds, indicating a time-out condition.

2-45

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the Assembler and compilers. (Follows the
: SS condition.)

Format

:JFILE,file

where file is the name of a source file on any active subchannel.

Comments

If logical unit 2 is specified as the input device when the compiler or Assembler is turned on (using
:PROG) and a :JFILE has been defined, then the compiler or Assembler reads the source statements
from the :JFILE.

Only one program can be translated from a file; any statements beyond the end of the source pro­
gram will be ignored. The JFILE assignment is only valid for the current job, and can be reassigned
by another JFILE directive.

When using a 21MX Assembler, up to fifteen files may be specified in the :JFILE directive so long
as these files constitute one program having one END statement.

It is highly recommended that the JFILE directive immediately precede the corresponding PROG
directive.

Example 3 in Section VI illustrates using the JFILE directive.

2-46

STORE

Purpose

To create a user file on the current user disc and assign it a name. The STORE directive can create
relocatable object program files (type-R), loader-generated object program files (type-P), source
statement files (type-S), ASCII data files (type-A), binary data files (type-B), and absolute binary
program files (type-X). (Follows :SS in checking for duplicate file names.)

Format

The format varies according to what type file is being created. See Comments below for details:

TYPE-R

TYPE-P

TYPE-S

TYPE-A

TYPE-B

TYPE-X

:STORE,R,file[,logical unit]

:STORE,P[,file1 ,file2 •••]

:STORE,S,file,logical unit [,CJ

:STORE,A,file,sectors

:STORE,B,file,sectors

:STORE,X,file,logical unit

Note: Control @should not be used in file names.

Comments

TYPE-R FILES. The directive format is

:STORE,R,file[,logical unit]

where file is a name consisting.of five (or fewer) characters and must not duplicate another
name already present in the user files.

2-47

A user file is created under this name, and relocatable binary programs are read into it from the
logical unit specified or from the Job Binary Area of the disc if none is specified. The Job Binary
Area remains as it was before the STORE,R directive.

If DOS-III comes to an end-of-tape, it asks:

DONE?

If there are more tapes, the operator places the next tape in the reader and replies NO; otherwise,
he answers YES.

EXAMPLES:

:STORE,R,RINE

(Stores all of the relocatable programs from the Job Binary Area into the file RINE
created for that purpose.)

:STORE,R,JUGG,5

(Stores relocatable programs from logical unit 5, the standard input device, into the
file JUGG.)

TYPE-P FILES. The directive format is

:STORE,Pf,name1 ,name2 ,]

where name1 ,name2 ••• are programs that the DOS-III Relocating Loader had relocated into
executable format during the current job. A program is stored in a file of the same
name. Up to 14 programs per directive are allowed. If none are specified, all programs
loaded during the current job are stored. DOS-III finds these temporary programs in
the user file and converts them to permanent user files by removing their "temporary"
flags (see the description of the LIST,U directive).

Programs loaded during the current job but not stored as permanent files (as shown above) may be
executed normally (RUN or PROG directive) and appear in the user file directory. At the end of a
job, however, they are purged from the directory unless t4ey have been converted to user files by
a STORE,P directive.

2-48

EXAMPLES:

:STORE,P

(Changes all programs loaded during the current job using the Relocating Loader into
permanent user files.)

:STORE,P,ARITH,MATH, TRIG,ALGEB

(Searches for the programs listed and makes them permanent user files.)

TYPE-S FILES. The directive format is

:STORE,S,file,logical unit [,CJ

where file is the name of the user file to be filled with source statements from the logical unit
specified. File is a name of five or fewer characters, and must not duplicate a name
already present in the user files. The source statement input must be terminated by a
record containing a double colon (::) if the C option is omitted; or a triple colon (:::) if
the C option is included~ If the termination record is omitted, DOS-III stores the succeeding
data on the disc as if it were source statements.

If DOS-III comes to an end-of-tape before finding the termination record (:: or : : :), it outputs

DONE?

on the system console.

If there are more tapes, the operator replies NO; otherwise, he answers YES.

When DOS-III completes the STORE,S it outputs

nnnn LINES

where nnnn is the number of statements stored.

If the C parameter is included in the STORE directive, statements with a colon in column 1 are
interpreted as data and transferred to the designated source file. In this case, input is terminated
with a triple colon (:::). When the C parameter is omitted in the STORE directive, those statements
with a colon in column 1 will attempt execution. The logical unit specified in the STORE, S direc­
tive (when the C parameter is used) must not be the current batch device logical unit. If it is,
DOS-III outputs the message

ILLEGAL LUN

2-49

If the user is in keyboard mode, DOS-III outputs an @and waits for a new directive. If the user is
in batch mode, a batch abort occurs.

If the C parameter is used and the logical unit specified is the system console, then all input received
prior to : : : is transferred to the designated source file, except OFF and ABORT directives. If
either of the two are encountered during keyboard entry, they are interpreted as directives and
executed. (:OFF returns control to keyboard mode without terminating the job. :ABORT aborts
the current job if the directive was entered from the keyboard, or DOS-III performs a batch abort
if the STORE, S directive was entered from the batch device.) Files containing :OFF and :ABORT
can be created by storing from a device other than the system console or the current batch device.

EXAMPLE:

:STORE,S,SfJURC,5

(Reads source statements from the standard input device and stores them in a new file
SOURC.)

TYPE-A AND TYPE-B FILES. The directive format is

:STORE,type,file,sectors

where type is either A (for ASCII character data) or B (for binary data), and file is the name
assigned to a file containing the number of sectors requested. These requests are made
prior to executing a program to reserve a file area; no data is involved.

The program must store and retrieve data from the file through a call to EXEC. It is the programmer's
responsibility to store the right kind of data in the file. The EXEC call must specify the file name
and the relative sector within the file. DOS-III checks only that the file name exists and that it
contains the sector specified.

EXAMPLE:

:STORE,A,ASCII,20

(Creates a file name ASCII, 20 sectors in length. A sector equals 128 sixteen-bit
words.)

2-50

TYPE-X FILES. The directive format is

:STORE,X,file,logical unit

where file is the name of the user file to be filled with absolute binary programs from the device
specified by logical unit.

When an end-of-tape is encountered, DOS-III outputs

DONE?

To continue loading tapes, place the next tape in the reader and type NO; otherwise, type YES.

2-51

Optional Directive

SYSTEM SEARCH.

Purpose

To specify a list of disc subchannels which may be searched for file names. This is the :SS condition
which applies to all EXEC calls and directives that require a file search. (No check is made for
existing duplicate file names during searches; the first file found is used.)

Format

:SS

:SS,99

Comments

All active subchannels are searched, starting with the current user subchannel,
then continuing from the highest to the lowest number.

Where n1 ,n2 ... are subchannel numbers. The current user subchannel is
searched first, then the subchannels specified, starting with the lowest
number.

Only the current user subchannel is searched. This is the default condition.
Every job starts out in this condition.

The SS directive can only be used if it was specifically allowed during system generation. (See
"Generating and Loading DOS-III," Part 3.) Otherwise, any SS directive will cause the following
message:

BAD CONTROL STATE

If a file search results in the file being found, the current user subchannel is changed to the sub­
channel containing the file. If the file was not found, the current user subchannel is restored to
its previous assignment

The LIST,U, file directive is an exception: this directive does not stop after it finds the file; it con­
tinues to look for duplicate entries. When the LIST search is complete, the original user subchannel
is always restored.

2-52

However, if a search is interrupted before completion, the current user disc may be on any sub­
channel. (This should be checked with a : UD directive.)

More than one : SS can occur during a job. The job starts in : SS,99 condition until a different SS
directive is issued. Each SS directive remains in effect until another is issued. SS directives do not
apply to file searches initiated by the Relocating Loader or to disc dumps initiated by the DD
directive.

Whenever the user subchannel assignment i.s changed (except by a running program through the
appropriate EXEC call), the system outputs a message:

SUBCHAN=n

EXAMPLE:

:UD

SUBCHANNEL = 1

LABEL = UNLBL

:RUN MYPRG

FILE NAME UNDEFINED

:SS

:RUN

SUBCHANNEL = 0

(MYPRG now begins execution)

(file not on subchannel 1)

(search all subchannels for file MYPRG)

2-53

TOP-OF-FORM

Purpose

To issue a top-of-form command to a list device.

Format

:TOF[,logical unit]

where logical unit is the logical unit number of the desired list device. If logical unit is omitted,
then logical unit 6 receives the command.

2-54

TRACKS

Purpose

To output information about the next available track on the current user disc.

Format

:TRACKS

Comments

A TRACKS, JOB, BATCH, or TYPE directive must be the first directive entered following system
start.

The decimal number corresponding to the first track beyond the end of the current user area (and
the number of faulty tracks encountered, if any) is output to the system console.

Faulty tracks are replaced by spares when parity errors occur on read or write.

EXAMPLES:

The following is an example in which no faulty tracks are reported.

(INPUT) :TRACKS

(OUTPUT) NEXT A VAIL TRACK= 0010

@ (End of directive processing)

In this example, the system reports that 2 tracks have been replaced by spares.

(INPUT) :TRACKS

(OUTPUT) NEXT AVAIL TRACK= 0012

BAD=2

@

2-55

(End of directive processing)

In this example, the system reports that there are no more tracks available in the user area.

(INPUT) :TRACKS

(OUTPUT) NEXT A VAIL TRACK= NONE

@ (End of directive processing)

2-56

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

:TYPE

Comments

A TYPE, JOB, BATCH or TRACKS directive must be the first directive entered following system
start.

Control is returned to the system console. :TYPE may be entered through the batch device or the
keyboard device; when it is entered from the keyboard, DOS-III waits until the currently executing
program is completed or is aborted before returning to keyboard mode. If :TYPE is entered while
already in keyboard mode, the directive is ignored.

2-57

UP

Purpose

To declare an I/0 device ready for use.

Format

:UP,n

where n is the equipment table entry number corresponding to the device.

Comments

The UP directive (followed by a :GO) is usually used in response to one of the following messages
from DOS-III:

l/0 ERR ET EQT #n

l/O ERR NR EQT #n

l/0 ERR PE EQT #n

where ET indicates end of tape,

NR indicates device not ready,

PE indicates parity error, and

n is the equipm~nt table entry number.

If the incorrect n is entered, DOS-III outputs a list of all the down devices.

2-58

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Format

:UD[,[label] [,n]]

where label is a six-character disc label(* for an unlabeled disc)

n is the new subchannel.

Comments

Discs are labeled by the INITIALIZE directive.

Each form of the UD directive has a different purpose.

EXAMPLES:

:UD
(without label
or su bchannel)

:UD,,n
(no label)

: UD, label, n

Interrogates the current user disc subchannel and outputs its
label on the system console:

SUBCHAN=n

LBL =label (or UNLBL)

If n is labeled, DOS-III outputs

LBL =label (or UNLBL)

No assignment is made.

If n is labeled with the specified label, DOS-III assigns n as the
user disc. If n is unlabeled or has a different label, DOS-III
outputs

LBL =label (or UNLBL)

Operator can then reissue : UD,label,n with the correct label.

2-59

: UD,label
(no subchannel)

:UD,*,n

:UD,*

DOS-III searches for the label, starting with the highest number
subchannel (determined at system generation). If label is found,
DOS-III makes it the user disc and outputs

SUBCHAN=n

If label is not found, DOS-III outputs

DISC NOT ON SYS

If n is unlabeled, DOS-III assigns n as the user disc.

If n is labeled, DOS-III makes no assignment and outputs

LBL =label

Assigns the highest number unlabeled disc as the user disc
and outputs

SUBCHAN=n

If there are no unlabeled discs, DOS-III outputs

DISC NOT ON SYS

If the UD directive specifies a subchannel with an incorrect system proprietary code (see "Disc
Labels" in Appendix A), DOS-III still makes the assignment, and outputs

TSB DISC or ??? DISC

If the UD directive specifies a subchannel whose system generation code does not match that of the
current system disc, DOS-III still makes the assignment but outputs

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS

The changes made by :UD are only temporary; the user disc is reset at the end of each job.

Notes: 1. Before executing a :DD or :DD,X to a TSB or??? DISC, the disc should
be initialized with :IN,*; otherwise, bad tracks may be reported erroneously.

2. If a disc pack is changed on a DOS-III system, the subchannel assigned to
that pack must be explicitly reassigned using a : UD directive or EXEC call.

Refer to item 5 in Section VI for an example of copying a System from one subchannel to another.

2-60

SECTION Ill
DOS-I/I EXEC Calls

DOS-III EXEC calls are the line of communication between an executing program and DOS-III.
An EXEC call is a block of words, consisting of an executable instruction and a list of parameters
defining the request. The execution of the instruction transfers control to DOS-III. DOS-III then
determines the type of request (from the parameter list) and, if it is legally specified, initiates
processing of the request.

In FORTRAN, EXEC calls are coded as CALL'statements. In ALGOL, procedure calls are used.
In Assembly Language, EXEC calls are coded as a JSB EXEC, followed by a series of parameter
definitions. For any particular call, the object code generated for the FOR TRAN CALL Statement
and the ALGOL procedure call is equivalent to the corresponding Assembly Language object code.

This section describes the basic formats of FORTRAN, ALGOL and Assembly Language EXEC
calls; presents each EXEC call in detail; and concludes with a discussion of how parameters are
passed to and from a program.

The EXEC calls detailed in this section are presented alphabetically, according to their function.
The Request Code (RCODE) value they have in the Assembly-language calling sequence appears
at the top of each page.

Note: DOS-Ill may include two user-created EXEC modules, loaded along with
the DOS-III system EXEC modules during system generation. The pur­
pose of the EXEC modules (called $EX36 and $EX37) and the number
of parameters needed in the EXEC call are defined by the user. User EXEC
module calling sequences are defined in Section XII, "User-written EXEC
Modules."

3-1

ASSEMBLY LANGUAGE EXEC CALLS

The following is a general model of an EXEC call in Assembly Language:

EXT EXEC

JSBEXEC

DEF *+n+l

return point

(Used to link program to DOS-III)

(Transfer control to DOS-III)

(Defines point of return from DOS-III, n is number of
parameters; may not be an indirect address; must be the
location immediately following the last parameter
address)

(Define addresses of parameters which may occur any­
where in program; may be multi-level indirect. Seven is
the maximum number of allowable parameters for any
EXEC call.)

(Continue execution of program)

(Actual parameter values)

3-2

ALGOL EXEC CALLS

In ALGOL, certain conventions must be followed in making EXEC calls. First, since EXEC is
external to the program it must be declared a CODE procedure. Second, parameters that are
going to be changed must not be declared VALUE. Third, when arrays are passed as parameters,
the first element of the array (not just the array name) must be passed as a type INTEGER and
not by VALUE. Fourth, since ALGOL requires that the format of each procedure call be defined,
a program must declare a dummy external procedure for each EXEC call requiring a different
number of parameters. (These dummy procedures must be compiled as separate procedures to
provide proper linkage in the Loader.)

EXAMPLE:

The program below (DXFER) reads one sector from the work area and writes the
information into a different location in the work area. DXFER calls EXEC through
the CODE procedure EXECX (compiled externally). EXECX is compiled in the program
DSKIO, although that program name is irrelevant to the linkage between DXFER and
EXECX.

MAIN PROGRAM

HPAL,B,L, "DXFER"
BEGIN

INTEGER ARRAY BUFFER[1:128];
BOOLEAN READX;
INTEGER TRACK,SECTOR;
FORMAT Fl("SOURCE TRACK,SECTOR?"),

F2("DESTINATION TRACK,SECTOR ?");
PROCEDURE EXECX(RD,TRK,SCTR,BFR);

VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;
CODE;

WRITE(l ,Fl);
READ(l,*,TRACK,SECTOR);
READX+-TRUE;
EXECX(READX, TRACK,SECTOR,BUFFR[l]);
WRITE(1,F2);
READ(l, *,TRACK,SECTOR);
READX+-FALSE:
EXECX(READX, TRACK,SECTOR,BUFFR [1]);

END$

3-3

PROCEDURE

HPAL,P,B,L, "DSKIO"
PROCEDURE EXECX(RD, TRK,SCTR,BFR);

VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;

BEGIN
PROCEDURE EXEC(IO,LU,BFR,BFSZ,TRK,SCTR);

INTEGER IO,LU,BFR,BFSZ,TRK,SCTR;
CODE;

INTEGER REQCD;
IF_ RD THEN REQCD+-1 ELSE REQCD+-2;
EXEC(REQCD,2,BFR,128, TRK,SCTR);

END;

3-4

FORTRAN EXEC CALLS

In FORTRAN, the EXEC call consists of a CALL Statement and a series of assignment statements
defining the variable parameters of the call:

where P1 through Pn are either integer values or integer variables defined elsewhere in the program.

EXAMPLE

CALL EXEC (7)
or

IRCDE = 7
CALL EXEC (IRCDE) l Equivalent calling sequences

Some EXEC call functions are generated automatically by the FORTRAN compiler or special sub­
routines. (Refer to "FORTRAN," in Section V and the specific EXEC calls in this section.)

3-5

RCODE = -19

BASE PAGE STORE

Purpose

To store values into base page memory locations.

Assembly Language

EXT EXEC

LDA NUMB
LDB ADDR
JSB EXEC
DEF *+2
DEF RC ODE
return point

RCODE DEC -19
NUMB DEC n
ADDR DEF LOC

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-Ill)
(Request code)
(Continue execution)

(Request code = -19)
(n is value to be stored)
(LOC is a base page location)

This feature must not be invoked by a FORTRAN program.

Comments

Base Page Store stores values into base page locations normally protected by memory protect.
Prior to using the calling sequence specified above, the user loads the value to be stored into the
A register and the absolute address of the base page location in the B register. Base Page Store then
performs a store indirect through the B register.

CAUTION: CARE MUST BE TAKEN NOT TO MODIFY SYSTEM-ESSENTIAL
BASE PAGE LOCATIONS.

3-6

RCODE=32

FILE CREATE

Purpose

To allow the user to create a user disc file under program control.

CAUTION: Because of the relationship between disc space used for the work area
and disc space used for creating new files, care must be taken to create
all files before issuing requests that access the disc work area (work
area limits requests, disc allocation requests, work area I/O requests).

Assembly Language

EXT EXEC

JSB EXEC
DEF *+6
DEF RC ODE
DEF RSTAT
DEF FNAME
DEF TYPE
DEF DSKLN
return point

RCODE DEC 32
RSTAT BSS 1

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(File name)
(Program type)
(File length)
(Continue execution)

(Request code = 32)
(Return status from system:

3-7

-4 illegal parameter
-3 invalid file name
-2 invalid file type
-1 insufficient file space

0 normal termination
>O duplicate file name - content is

address of old directory en try)

FNAME ASC
TYPE OCT

DSKLN DEC

FORTRAN

3,xxxxx
nnnnnn

s

DIMENSION INAM(3)
INAM(l) = xxxxxB
INAM(2) = xxxxxB
INAM(3) = xxxxxB
!TYPE = n
IDSK = s
IRCDE = 32

RCODE=32

(5-character file name)
(Program type:

bit 7 = O; permanent
= 1; temporary

bits 5-0 = 6-14 8 ; program type as defined
in Disc Directory "Entry Type,"
Appendix A)

(Length in sectors)

(File name)
(First two characters)
(Next two characters)
(Last character and blank)
(n is numeric program type)
(s is disc length in sectors)
(Request code)

CALL EXEC(IRCDE,IRST,INAM,ITYPE,IDSK)

EXAMPLE:

DATA NAME/2HDA,2HIL,2HY/

C CREATE TEMPORARY ASCII FILE OF 72 SECTORS

CALL EXEC(32,LSTAT,NAME,213B, 72)

IF (LSTAT .NE. 0) GO TO error routine

continue normal program path

3-8

RCODE = 18

FILE NAME SEARCH

Purpose

To check whether a specific file name exists in the directory of user or system files. (Follows the
: SS condition.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4 (or 5)
DEF RCODE
DEF FNAME
DEF NSECT
DEF !PRAM
return point

RCODE DEC 18
FNAME ASC 3,xxxxx
NSECT NOP

!PRAM DEC n

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(File name)
(Number of sectors)
(Optional parameter)
(Continue execution)

(Request code = 18)
(xxxxx is the file name)
(Number of sectors returned here; 0 if not
found)
n = 0 user area with wait
n = 1 user area without wait
n = 2 system area with wait
n = 3 system area without wait

3-9

FORTRAN

DIMENSION NAME (3)
!PRAM = 2
IRCDE = 18
NAME (1) = xxxxxB
NAME (2) = xxxxxB
NAME (3) = xxxxxB

RCODE = 18

(File name)
(System search, with wait)
(Request code)
(First two characters)
(Ne~t two characters)
(Last character and blank)

CALL EXEC (IRCDE, NAME, !SECT, !PRAM)

Comments

File searches can be performed on either the system or user area, with or without wait, according
to the value of IPRAM. If IPRAM is omitted, the search is performed on the user area with wait.
If the search is requested with wait, the A register contains the track/sector address of the file, and
the B register contains the memory address of the track/sector address, upon return to the user
program.

Before executing a File Name Search without wait, NSECT should be initialized to some value
other than zero (for example, -1) to distinguish between "file not found" and "operation still in
process" conditions on completion of the search. EXEC calls issued while the File Name Search is
still in progress are queued by DOS-III and the system goes into the wait loop until the search is
completed.

EXAMPLE:

EQUIVALENCE (AREG,IREG(l))

DATA NAME/2HFI,2H1/

AREG = EXEC(lB,NAME,ISECT,0)

IF (!SECT .NE. 0) GO TO error routine

!REG(1) = track/sector address of the file

!SECT= number of sectors in FILEl

Note: The FORTRAN function variable (AREG) is a copy of the
A-register or the A- and B-registers.

3-10

RCODE=33

FILE PURGE

Purpose

To allow the user to purge a user disc file directory entry or to purge all temporary file entries.

Assemb~y Language

EXT EXEC

JSB EXEC
DEF *+3 (or 4)
DEF RCODE
DEF RSTAT
DEF FNAME
return point

RCODE DEC 33
RSTAT BSS 1

FNAME ASC 3,xxxxx

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Optional file name)
(Continue execution)

(Request code= 33)
(Return status from system:

-4 illegal parameter
-3 invalid file name
-1 undefi"r:ied file name

0 normal termination

(5-character file name)

3-11

FORTRAN

DIMENSION INAME(3)
INAME(l) xxxxxB
INAME(2) = xxxxxB
INAME(3) = xxxxxB
IRCDE = 33

RCODE=33

(File name)
(First two characters)
(Next two characters)
(Last character and blank)
(Request code= 33)

CALL EXEC(IRCDE,IRST,INAME)

Comments

If the file name parameter is omitted, all temporary file entries are deleted from the directory.

3-12

RCODE = 14, RCODE = 15

FILE READ/WRITE

Purpose

To transfer information to or from a file on the user disc; the file must be referenced by name.
(The : SS condition is followed.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+7 (or 8)
DEF RCODE
DEF CONWD
DEF BUFFR
DEF BUFFL
DEF,,FNAME
DEF RSECT
DEF !PRAM

return point

RCODE DEC 14or15
CONWD OCT conwd
BUFFR BSS n
BUFFL DEC nor -2n
FNAME ASC 3,xxxxx
RSECT DEC m
!PRAM NOP

(Transfer control to DOS-Ill)
(Point of return from DOS-Ill)
(Request code)
(Control information)
(Buffer location)
(Buffer length)
(File name)
(Relative sector within file)
(Area which could have been legally transferred
if an overflow occurred-optional parameter)
(Continue execution)

(Request code: 14 =read, 15 =write)
(See Comments, 110 READ/WRITE EXEC call)
(Buffer of n words)
(Same n; words(+) or characters(-))
(User file name = xxxxx)
(Relative sector number)
(Optional parameter; see Comments)

3-13

RCODE = 14; RCODE = 15

FORTRAN

DIMENSION NAME (3), IBUF(10)
NAME(1) = xxxxxB
NAME(2) = xxxxxB
NAME(3) = xxxxxB
ICRDE = 14(or15)
ICON =conwd
IRSCT = 0

(First two characters of file name)
(Second two characters)
(Last character and blank)
(Request code)
(See comments)
(Relative sector number)

CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT, !PRAM)

or

CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT)

Comments

See the Comments under I/0 READ/WRITE EXEC call (RCODE = 1 or 2) for a description of the
conwd fields needed in the above calling sequences.

To read or write on the mth sector of a file, set RSECT = m-l. To determine the size of a file, use
the FILE NAME SEARCH EXEC call (RCODE = 18).

Data files to be written (or read) should be created with a STORE directive before executing the
EXEC call.

Any type of file may be read, but only ASCII or binary data files may be written.

If the DOS-III installation is likely to have more than one user disc, the program should use the
USER DISC CHANGE EXEC call (RCODE = 23) without a subchannel specified to check
whether the correct user disc is currently assigned. Alternatively, the user can use an SS directive
to set up a system search condition for referencing files on many subchannels.

This call provides an optional parameter, IPRAM, to provide the user with information concern­
ing a file read/write overflow (where the buffer length exceeds the sector contents). If IPRAM is
omitted, an overflow causes an IT error. If IP RAM is included and an overflow occurs, control
is returned to the user program with IPRAM set equal to the number of words (+) or characters
(-) (as defined by BUFFL) that could legally have been transferred. If an overflow occurs, no
disc transfer takes place, whether IPRAM is included or not. If IPRAM is included and no over­
flow occurs, the value of the parameter is set to zero.

EXAMPLE:

DATA NAME !2HFI,2HLE,2H1/

DIMENSION IBUF(128)

CALL EXEC(14,3,IBUF,128,NAME,O)

3-14

Read the first sector of FILE1.

RCODE=34

FILE RENAME

Purpose

To allow the user to change a file name (and optionally, its type) under program control.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+5 (or 6)
DEF RC ODE
DEF RSTAT
DEF ON AME
DEF NNAME
DEF NTYPE
return point

RCODE DEC
RSTAT BSS

ONAME ASC
NNAME ASC
NTYPE OCT

34
1

3,xxxxx
3,xxxxx
nnnnnn

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
_(Old file name)
(New file name)
(Optional new file type)
(Continue execution)

(Request code= 34)
(Return status from system:

-4 illegal parameter
-3 invalid old or new file name
-2 invalid old or new file type
-1 undefined old or new file name

0 normal termination
>O duplicate new file name; content

is address of duplicate directory
entry)

(5-character file name to be changed)
(5-character new file name)
(New program type:

3-15

bit 7 O; permanent
1; temporary

bits 5-0 6-14 8 ; program type as defined
in Disc Directory "Entry Type,"
Appendix A)

RCODE=34

FORTRAN

DIMENSION INAM0(3), INAMN(3)
INAM0(1) xxxxxB
INAM0(2) xxxxxB
INAM0(3) xxxxxB
INAMN(1) xxxxxB
INAMN(2) xxxxxB
INAMN(3) xxxxxB
IRCDE=34
!TYPE= n

(Old file name, new file name)
(First two characters)
(Next two characters)
(Last character and blank)
(First two characters)
(Next two characters)
(Last character and blank)
(Request code= 34)
(File type)

CALL EXEC(IRCDE,IRST,INAMO,INAMN,ITYPE)

Comments

The specified old name may match the new name - no error message is returned, the new program
type (if specified) will be changed.

3-16

RCODE=3

110 CONTROL

Purpose

To carry out various 1/0 control operations, such as backspace, write end-of-file, and rewind.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (or 4, or 5)
DEF RCODE
DEF CONWD
DEF PRAMl
DEF PRAM2
return point

RCODE DEC 3
CONWD OCT conwd
PRAMl DEC n
PRAM2 BSS m

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Control information)
(First optional parameter)
(Second optional parameter)
(continue execution)

(Request code = 3)
(See Comments)
(Optional value parameter; see "Comments")
(Optional buffer address)

Use the specific FORTRAN auxiliary 1/0 statements (see Comments) or an EXEC calling sequence.

DIMENSION IPRM2(m) (Define buffer of m words)

IRCDE = 3 (Request code)

ICNWD = conwd (See Comments)

!PRAM = n (Optional; see Comments)

CALL EXEC (IRCDE,ICNWD,IPRAM)

or

CALL EXEC (IRCDE,ICNWD)

or

CALL EXEC (IRCDE,ICNWD,IPRAM,IPRM2)

3-17

RCODE=3

Comments

CONWD

The control word value (conwd) has three fields:

0 0 w FUNCTION CODE (see below) LOGICAL UNIT NUMBER

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
~ ;

WAIT FIELD (W)

If W = 1, DOS-III returns to the calling program after starting the control request.

If W = 0, DOS-III waits until the control request is complete before returning.

FUNCTION CODE FIELD

Function codes are defined programatically within the various I/O drivers. Thus the following list
of standard function codes is general in nature. Detailed information on specific peripheral­
associated function codes is available in the DOS-III Standard Drivers Reference Manual
(24307-90073).

Function Code
(Octal)

000
001
002
003
004
005
006
007
010
011
012
013
014
017

Action

Clear the device (all drivers)
Write end-of-file (magnetic tape), select hopper (optical mark reader)
Backspace one record (magnetic tape)
Space forward one record (magnetic tape)
Rewind (magnetic tape), bell request (optical mark reader)
Rewind standby (magnetic tape)
Dynamic status (all drivers)
Set end-of-paper tape (paper tape punch)
Generate paper tape leader (paper tape punch)
List output line spacing (line printers) (PARMl or IPRAM required)
Write file gap (magnetic tape)
Space forward one file (:i;nagnetic tape)
Backspace one file (magnetic tape)
Extended function code present (card reader punch)

For function code values 000 through 077 8 , no DMA is assigned. For function code values 100
through 177 8 , DMA is assigned if required by the I/O driver.

LOGICAL UNIT FIELD

This field specifies the logical unit number of the device which is to receive the control request.

3-18

RCODE = 3

OPTIONAL PARAMETERS

Specification of Parameter1 (PRAMl or IPRAM) or Parameter2 (PRAM2 or IPRM2) depends on
the contents of the function code field in the control word. Function code 118 requires Parameter1 •

This parameter designates the number of lines to be spaced on the specified logical unit. A negative
value specifies a page eject on a line printer or the number of lines to be spaced on the System Con­
sole. For details on line printer formatting, refer to Section IV in the DOS-Ill Standard Drivers
Reference Manual (24307-90073). When Parameter1 is specified, its value is passed to EQTlO
prior to entering the driver. If Parameter2 is specified, Parameter1 must be specified. The value of
Parameter2 is passed to the driver via EQTll.

Compiler Considerations

Within FORTRAN and ALGOL programs, various control operations for magnetic tape may be
performed by the following auxiliary 1/0 statements:

BACKSPACE

ENDFILE

REWIND

Refer to the appropriate compiler manual for a detailed description of these statements.

EXAMPLES:

C CLEAR I/0 DEVICES 1 TON

DO 10 LU=l,N

10 CALL EXEC (3,LU)

C SPACE 5 LINES ON THE LINE PRINTER

CALL EXEC (3,1106B,-5)

C SPACE FORWARD ONE FILE MARK·

CALL EXEC (3,1310B)

C FOR DATA COMMUNICATION-SET TERMINAL OPTION ENABLE AUTO L.F.

CALL EXEC (3,4000B+LU,1)

3-19

RCODE = 1; RCODE = 2

110 READ/WRITE

Purpose

To transfer information to or from an external 1/0 device or the work area of the disc. (DOS-III
handles track switching automatically.)

Assembly Language

RCODE
CONWD
BUFFR
BUFFL
DTRAK
DSECT

EXT EXEC

JSB EXEC
DEF *+5 (or 7)
DEF RCODE
DEF CONWD
DEF BUFFR
DEF BUFFL
DEF DTRAK
DEF DSECT
re turn point

DEC 1 (or 2)
OCT conwd
BSS n
DEC n (or -2n)
DEC f
DEC g

(Transfer control to DOS-III)
(Point of return from DOS-III; 7 is for disc request)
(Request code)
(Control information)
(Buffer location)
(Buffer length)
(Track number - disc transfer only)
(Sector number - disc transfer only)
(Continue execution)

(Request code: 1 =read, 2 =write)
(conwd is described in comments)
(Buffer of n words)
(<.n; words(+) or characters(-))
(Work area track number, decimal)
(Work area sector number, decimal)

Note: Single I!O transfers within the DOS-III environment
cannot exceed 16K words.

3-20

RCODE = l; RCODE = 2

FORTRAN

DIMENSION IBUF (n)
IRCDE = 1 (or 2)
ICON:;::: conwd

(Define buffer of n words)
(Request code)
(See Comments)

IBUFL = n (or -2n)
ITRAK = 150
!SECT= 0

(Buffer length in words(+) or characters (-1))
(Disc track number)
(Disc sector number)

CALL EXEC (IRCDE, ICON, IBUF, IBUFL, ITRAK, !SECT)
CALL EXEC (IRCDE, ICON, IBUF, IBUFL)

for disc trans{ ers
for non-disc transfers.

Comments

CONWD

The conwd, required in the calling sequence, contains the following fields:

BITS

FIELD

w

J

A

K

0

15

0 w J A K v M LOGICAL UNIT #

14 13 12 11 10 9 8 7 6 5 l 4 I 3 I 2 I 1 I 0

FUNCTION

If 1, tells DOS-III to return to the calling program after starting the 1/0 transfer.
If W = 0, DOS-III waits until the transfer is complete before returning.

If 1, and logical unit number is 2 or 3 (disc), a backward track increment will be
performed (for example, JBIN read/write). (This field is applicable only to
RCODE = 1 or RCODE = 2.)

When transferring variable length binary records (M = V = 1), A = 1 indicates
absolute binary format.

1) When used with console keyboard input, if K=O "no printing" is specified.
If K=l printing the input as received is specified.

2) When used with disc write requests, if K=O execute cyclic check after disc
write. If K=l eliminate cyclic check after disc write.

V 1) When reading variable length records from punched tape devices in binary
format (M = 1), if V = 0 the record length is determined by buffer length.
If V = 1, the record length is determined by the word count in the first
non-zero character read in.

2) When outputting ASCII records to a list device (M = 0), if V = 0 the first
character in the buffer is interpreted as a carriage control character (see
Section IV). If V = 1, single spacing occurs, and the entire buffer (including
the first character is output to the list device.

M Determines the mode of data transfer. If M = 0, transfer is in ASCII character
format, and if M = 1, binary format.

3-21

RCODE = l; RCODE = 2

"Waiting and No Waiting"

If the program requests the "waiting" option in the conwd (W = 0), DOS-III will return the trans­
mission log in the B register upon completion. (The transmission log is a positive number, repre­
senting the number of words or characters transmitted, depending upon which was originally
requested.)

If the program requests the "no waiting" option in the conwd (W = 1), it can check for the com­
pletion of the I/O operation with the I/0 STATUS EXEC call (RCODE = 13). When the operation
is complete {STATS ~ 0), the transqJ.ission log can be retrieved from the TLOG parameter.

Notes: When using "no waiting" 1/0 and loading program segments:

1. Under :RUN, DOS-III waits for all 1/0 to complete before loading the
segment.

2. Under :PROG, DOS-III does not wait.

If a read or write is issued to a disc address that does not lie in the Work Area, the message IT nnnnn
is output and the program is terminated.

Compiler Considerations

Within FORTRAN and ALGOL programs, I/0 transfers to standard devices are programmed by
the READ and WRITE statements.

I/0 transfers to the Work Area and the disc may be done through the BINR Y library routine. The
user must specify: an array to be used as a buffer, the length of the buffer in words (equal to the
number of elements in an integer array, double that for a real array), the disc logical unit number,
track number, sector number, and offset in words within the sector. (If the offset equals 0, the
transfer begins on the sector boundary. If the offset equals N, then N words of the sector are
skipped before starting the transfer.) BINRY has two entry points, BREAD and BWRIT, for read
and write operations respectively. An example below gives the calling procedure.

DIMENSION IBUF(lO), BUF(20)
LUN=2
ITRK = 120
!SECT= 36
!OFF= 0
CALL BREAD (BUF, 40, LUN, ITRK, !SECT, !OFF)

or
CALL BWRIT (IBUF, 10, LUN, ITRK, !SECT, !OFF)

3-22

RCODE = 13

110 STATUS

Purpose

To request the status of a particular 1/0 device, and the amount transmitted in the last operation.

Assembly Language

EXT EXEC_

JSB EXEC
DEF *+4 (or 5)
DEF RCODE
DEF LUN
DEF STATS
DEF TLOG
return point .

RCODE DEC 13
LUN DEC n
STATS NOP
TLOG NOP

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Logical unit)
(Status returned)
(Transmission log returned, optional)
(Continue execution)

(Request code= 13)
(Logical unit number)
(Status returned here)
(Transmission log returned here)

IRCDE = 13 (Request code)
LUN = n (n is decimal logical unit number)
CALL EXEC (IRCDE, LUN, !STAT, ITLOG)

Comments

The status returned in the A register and in ST ATS is the hardware status of the device specified by
the logical unit number. The transmission log in the B register and in TLOG contains the amount of
information which was last transferred (a positive number of words or characters, depending on
which was requested by the call initiating that transfer).

3-23

Purpose

RCODE=38

MEMORY MANAGEMENT
(BUFFER ALLOCATION)

To allocate buffer space within an area reserved under a block name identifier (see "Memory
Management (Initialize)") or from unassigned available memory.

Assembly Language

RCODE
RSTAT

LENG
SADR
ID
BID

Comments

EXT EXEC

JSB EXEC
DEF *+6 (or 7)
DEF RCODE
DEF RSTAT
DEF LENG
DEF SADR
DEF ID
DEF BID
return point

DEC 38
BSS 1

DEC n
BSS 1
BSS 1
ASC 2,xxxx

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Desired buffer length)
(Buffer starting address is returned here)
(Buffer identifier is returned here)
(Optional block name identifier)
(Continue execution)

(Request code= 38)
(Return status from system:

-4 illegal parameter
-3 BID not present
-1 no memory available

0 normal return
>O requested amount not available;

contents is actual number of
words available)

(Buffer length in words)
(Actual starting address from system)
(Buffer identifier from system 1 ~ID ~ 1023)
(4-character unique memory management block
name identifier)

If a block name identifier is specified, the buffer will be allocated space within the area reserved
for that identifier. If the block name identifier is omitted, space is allocated from unassigned
available memory.

3-24

RCODE = 41

MEMORY MANAGEMENT
(BUFFER RELEASE)

Purpose

To release reserved buffer space.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4
DEF RC ODE
DEF RSTAT
DEF ID
return point

RC ODE DEC 41
RSTAT BSS 1

ID DEC n

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(buffer identifier)
(Continue execution)

(Request code = 41)
(Return status from system:

-4 illegal parameter
-1 illegal ID

0 normal return
(Buffer identifier 1 ~ID ~ 1023)

This request releases space allocated to buffers. If the specified buffer resides within the area
reserved under a block name identifier, the logical address space remains reserved. Otherwise,
the released space is returned to the system.

3-25

RCODE = 35

MEMORY MANAGEMENT
(INITIALIZE)

Purpose

To reserve a block of memory under a block name identifier specified by the user.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+6 (or 7)
DEF RCODE
DEF RSTAT
DEF LENG
DEF SADR
DEF BID
DEF LADR
return point

RC ODE DEC 35
RSTAT BSS 1

LENG DEC n
SADR BSS 1
BID ASC 2,xxxx

LADR OCT n

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Return status)
(Desired block length)
(Block starting address is returned here)
(Block name identifier)
(Optional starting address parameter)
(Continue execution)

(Request code= 35)
(Return status from system:

-4 illegal parameter
-2 another block name identifier

assigned to area specified by LADR
-1 no memory available

0 normal termination
>o space requested not available;

content is number of words
available)

(Block length in words)
(Actual starting address of block-from system)
(4-character memory management block name
identifier)
(Requested starting address-0 = don't care)

Note: A non-zero LADR value must be an
address between ending program address
and last word of available memory.

3-26

RCODE = 35

Comments

This request reserves a block of memory under the block name identifier (BID) specified by the
user. Subsequent user requests for allocation of buffer space within this area may be made. If the
memory management initialize request (RCODE=35) is not included in a user program prior to
buffer allocation requests (RCODE=38) for buffers within the specified BID, an error return con­
dition results. If LADR is specified and is non-zero, the value must be an address between the end
of program address and the last word of available memory.

3-27

Purpose

RCODE = 36

MEMORY MANAGEMENT
(STATUS REQUEST)

To determine the number of words reserved under a block name identifier or the number of
unallocated words remaining.

Assembly Language

EXT EXEC

JSB EXEC
DEF (+3(or4)
DEF RCODE
DEF LENG
DEF BID
return point

RCODE DEC 36
LENG BSS 1

BID ASC 2,xxxx

Comments

(Transfer control to DOS-Ill)
(Point of return from DOS-Ill)
(Request code)
(Word count from system)
(Optional block name identifier)
(Continue execution)

(Request code= 36)
(Number of words allocated to BID or number of
available words if BID is not present. If BID
parameter is specified but not found, a -3 value
is returned)
(Unique memory management block name identi­
fier)

When the BID parameter is specified, this request returns the number of words reserved under a
user-specified block name identifier (BID). If the BID parameter is specified but not found, a -3
value is returned. If the BID parameter is not specified, the request returns the number of unalloc­
ated words remaining in the system.

3-28

RCODE = 30

MEMORY PROTECT CONTROL

Purpose

To enable or disable the memory protect option from a user program.

CAUTION: THE SYSTEM IS NOT PROTECTED WHEN MEMORY PROTECT IS
IS DISABLED.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RC ODE
DEF MPTK
return point

RCODE DEC30
MPTK DECn

FORTRAN

IRCDE =30
MPTK = 0(or1)
CALL EXEC (IRCDE,MPTK)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-Ill)
(Request code)
(Define the memory protect parameter flag)
(Continue execution)

(Request code= 30)
(If n = 0, memory protect is activated, and
is activated following any interrupt
completion. If n =I 0, then memory protect
is deactivated and remains off after
interrupt completion)

Any program termination, either normal or aborted, enables memory protect. Program segments
can make memory protect EXEC calls to turn memory protect on or off, but calling and exiting
from segments has no effect on memory protect settings.

3-29

RCODE = 6

PROGRAM COMPLETION

Purpose

To notify DOS-III that the calling program is finished and wishes to terminate.

Note: Every program must terminate and return to DOS-Ill using this
EXEC call, whether the EXEC call is explicitly coded or indirectly
generated by a compiler.

Asse:;. .. 1bly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE

RCODE DEC 6

FORTRAN

lRCDE =6

CALL EXEC (lRCDE)

Compiler Considerations

(Transfer control to DOS-Ill)
(Define end of parameter list)
(Request code)

(Request code= 6)

The FORTRAN and ALGOL compilers automatically generate a PROGRAM COMPLETION EXEC
call when they compile an END or STOP statement.

3-30

RCODE = 10

PROGRAM LOAD

Purpose

To load a main program from the disc into main memory and transfer control to its entry point.
Follows the :SS condition.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (to 8)
DEF RCODE
DEF PNAME
DEF PRAMl

DEF PRAMS

RCODE DEC 10
PNAME ASC 3,xxxxx
PRAMl

PRAMS

FORTRAN

DIMENSION NAME(3)
IRCDE = 10
NAME(l) = xxxxxB
NAME(2) = xxxxxB
NAME(3) = xxxxxB
CALL EXEC (IRCDE,NAME[,p 1 ...])

(Transfer control to DOS-III)
(Determine number of parameters)
(Request code)
(Program name)
(First optional parameter)

(Fifth optional parameter)

(Program name)
(Up to S words of parameter information
passed to the program. See "Parameter
Processing" at the end of this section.)

(Program name)

(First two characters)
(Next two characters)
(Last character and blank)

3-31

RCODE = 10

Comments

During main program loading, the system interrogates a system flag called AEPF (location 135
8

).

This flag is normally zero unless specifically set by a user program. If AEPF is not zero, the contents
of AEPF are treated as an alternate entry point address. The system transfers control to the alter­
nate entry point by performing a JMP AEPF ,I (jump indirect). AEPF is then cleared. If AEPF = 0,
control transfers to the program main entry point.

The Assembly language user can alter the contents of AEPF (and any other base page location) by
using the BASE PAGE STORE EXEC call (RCODE = -19).

3-32

RCODE = 7

PROGRAM SUSPENSION

Purpose

To suspend the calling program from execution until restarted by the GO directive.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2
DEF RCODE
return point

RCODE DEC 7

FORTRAN

IRCDE = 7

CALL EXEC (IRCDE)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Continue execution)

(Request Code= 7)

DOS-III prints a message on the system console when it processes the PROGRAM SUSPENSION
EXEC call:

name SUSP

When the operator restarts the program with a :GO, up to five parameters may be passed to the sus­
pended program. (See "Parameter Processing" at the end of this section.)

3-33

RCODE = 7

Compiler Considerations

The FORTRAN and ALGOL compilers automatically generate a PROGRAM SUSPENSION EXEC
call when they compile a PAUSE statement.

3-34

RCODE = 8

SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into the segment overlay area and transfer
execution control to the segment's entry point. (See Section V, "DOS-III Subsystems," for infor­
mation on segmented programs.) Follows the : SS condition.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3 (to 8)
DEF RCODE
DEF SNAME
DEF PRAMl

DEF PRAMS

RCODE DEC 8
SNAME ASC 3,xxxxx
PRAMl
PRAMS

FORTRAN

DIMENSION NAME (3)
IRCDE =8
NAME (1) = xxxxxB
NAME (2) = xxxxxB
NAME (3) = xxxxxB
CALL EXEC (IRCDE, NAME [,p 1 •..])

(Transfer control to DOS-III)
(Determine number of parameters)
(Request code)
(Segment name)
(First optional parameter)

(Fifth optional parameter)

(Request code= 8)
(xxxxx is the segment name)
(Up to Swords of parameter information
passed to the segment. See "Parameter
Processing" at the end of this section.)

(Segment name)

(First two characters)
(Next two characters)
(Last character and blank)

3-35

RCODE = 8

Comments

In the FORTRAN or ALGOL calling sequence, the user must convert the name of the segment from
ASCII to octal and store it in the NAME array, two characters per word. The RTE/DOS FORTRAN
IV Compiler, however, can convert this automatically through Hollerith constants.

During program segment loading, the system interrogates a system flag called AEPF (location 135
8

) •

This flag is normally zero unless specifically set by a user program. If AEPF = 0, control transfers
to the program segment main entry point. If AEPF is not zero, the contents of AEPF are treated
as an alternate entry point address. The system transfers control to the alternate entry point by
performing a JMP AEPF,I (jump indirect). AEPF is then cleared. (The Assembly language user can
alter the contents of AEPF (and any other base page location) by using the BASE PAGE STORE
EXEC call (RCODE = -19).)

See "Segmented Programs," in Section V, for a description of segmented programs.

3-36

RCODE = 29

SEGMENT RETURN

Purpose

To return control from a segment to the main program at the instruction immediately following the
program segment load call. (This provides a subroutine-like return from a segment to a main
program.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+2 (to 7)
DEF RCODE
DEF PRAM1

DEF PRAM5

RCODE DEC29
PRAM1

PRAM5

FORTRAN

IRCDE =29
CALL EXEC (IRCDE [,Pl, ... ,P5])

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Define the request code)
(Define the first parameter)

(Define the fifth optional parameter)

(Request code= 29)
(Up to five words of parameter information
are passed from the segment to the main
program. See "Parameter Processing" at
the end of this section)

3-37

RCODE = 11

TIME REQUEST

Purpose

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RCODE
DEF ARRAY
return point

RCODE DEC 11
ARRAY BSS 5

FORTRAN

DIMENSION !TIME (5)
IRCDE = 11
CALL EXEC (IRCDE, !TIME)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Time value array)
(Continue execution)

(Request code = 11)
(Time value array)

When DOS-III returns, the time value array contains the time on a 24-hour clock:

ARRAY or ITIME (1) Tenth of seconds
ARRAY+ 1 or ITIME (2) Seconds
ARRAY+ 2 or ITIME (3) Minutes
ARRAY+ 3 or ITIME (4) Hours
ARRAY+ 4 or ITIME (5) Not used, but must be present (always = 0)

If DOS-III does not contain Time-base Generator, all values in the time array are set to zero.

3-38

RCODE = 17

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the Work Area on the system or current user disc and the
number of sectors per track.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF *+5(or6) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF FTRAK (First track)
DEF LTRAK (Last track)
DEF SIZE (Number of sectors/track)
DEF DISC (Optional parameter - see Comments)
return point (Continue execution)

RCODE DEC 17 (Request code = 17)
FTRAK NOP (Returns first work track number here)
LTRAK NOP (Returns last work track number here)
SIZE NOP (Returns number of sectors per track here)
DISC DEC n (n = 0 for system disc; n I= 0 for current user disc)

FORTRAN

IRCDE = 17 (Request code)
CALL EXEC (IRCDE, IFTRK, ILTRK, !SIZE, !DISC)

or
CALL EXEC (IRCDE, IFTRK, ILTRK, !SIZE)

3-39

RCODE = 17

Comments

This call returns the limits of the Work Area, which is that area of the system or user disc which pro­
grams use for temporary storage with the I/0 READ/WRITE EXEC call (RCODE = 1or2). If the
DISC parameter is omitted from the calling sequence, or if DISC = 0, the system disc information is
returned. If DISC =f 0, user disc information is returned.

3-40

RCODE = 16

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable tracks exist in the Work Area of
the system disc.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF *+5 (Point of return from DOS-III)
DEF RCODE (Request code)
DEF NTRAK (Number of tracks desired)
DEF TRACK (Starting track desired)
DEF ST RAK (Actual starting track)
return point (Continue execution)

RCODE DEC 16 (Request code= 16)
NTRAK DEC n (Consecutive tracks desired)
TRACK NOP (Desired track; from LIMITS call)
STRAK NOP (Actual starting track available, 0 if n tracks

not available)

FORTRAN

IRCDE 16 (Request code)
NTRAK= n (Consecutive tracks desired)
ITRAK = m (Desired starting track)
CALL EXEC (IRCDE, NTRAK, ITRAK, ISTRK)

3-41

RCODE = 16

Comments

This call is used with the WORK AREA LIMITS EXEC call (RCODE = 17) to establish the nature
of the Work Area. The READ/WRITE EXEC call (RCODE = 1 or 2) then transmits information to
and from this area, using the track numbers determined by this call. DOS-III handles track switching
automatically.

DOS-III checks whether there are n consecutive tracks starting at the track specified. If n tracks are
available, DOS-III returns the starting track number to the program. If DOS-III does not locate n
consecutive tracks, it returns 0 in STRAK or ISTRK.

3-42

RCODE = 23

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Assembly Language

EXT EXEC

JSB
DEF
DEF
DEF
DEF
return

RCODE DEC
LABEL ASC
SUBCH DEC

FORTRAN

EXEC
*+3 (or 4)
RCODE
LABEL
SUBCH
point

23
3,xxxxxx
(0 to 7)

DIMENSION LABEL (3)
IRCDE = 23
LABEL (1) = xxxxxB
LABEL (2) = xxxxxB
LABEL (3) = xxxxxB
ICHNL = M

CALL EXEC (IRCDE, LABEL, ICHNL)
or

CALL EXEC (IRCDE, LABEL)

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)
(Disc label)
(Disc subchannel; optional)
(Continue execution)

(Request code= 23)
(Label= xxxxxx)

(New label)

(First two characters)
(Next two characters)
(Last two characters)
(0 through 7)

3-43

RCODE = 23

Comments

If both the label and subchannel are specified, DOS-III checks whether the subchannel has that
label. If it does, the assignment is made and DOS-III returns. If not, DOS-III outputs

LBL =name
or
UNLBL
UD nnnnn
xxxxx SUSP

(name is label on the subchannel)

(nnnnn =address of EXEC call)
(xxxxx =name of program)

The operator can load a correctly labeled disc on the subchannel and input

:GO

to return to the beginning of the EXEC call (not the normal return point) so that the program can
reissue the EXEC call. If the operator does not have a properly labeled disc (or the subchannel is
a permanent disc), he should use :OFF or :ABORT.

If only a label is specified, DOS-III searches for the label, starting with the highest subchannel. If

DOS-III finds the label, it makes the assignment. If DOS-III cannot find the label, it suspends the
program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load a properly labeled disc then input

:GO

to return to the beginning of the EXEC call.

If the label equals"*" and a subchannel is specified, DOS-III checks whether the subchannel is
unlabeled. If it is, DOS-III makes the assignment. If the subchannel is labeled, DOS-III suspends
the program and outputs

LBL =name
UD nnnnn
xxxxx SUSP (xxxxx is the program)

The operator can then abort the program or load an unlabeled disc on the proper channel then
input

:GO

to return to the beginning of the EXEC call.

3-44

RCODE = 23

If the label equals"*" and a subchannel is not given, DOS-III searches for an unlabeled disc, starting
with the highest subchannel. DOS-III assigns the first unlabeled disc as the user disc, or if noun­
labeled discs are found, it suspends the program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load an unlabeled disc then input

:GO

to return to the beginning of the EXEC call.

Notes: 1. If the EXEC call specifies a subchannel with an incorrect system
proprietary code (see Appendix A), DOS-III still makes the assign­
ment but outputs

TSB DISC or ? ? ? DISC

2. If the EXEC call specifies a subchannel whose system generation
code (see Section VII) does not match that of the system disc,
DOS-III still makes the assignment, but outputs

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POS

3. The changes made by this EXEC call are only temporary, and will be
reset at the end of each job to the user subchannel specified during
system generation.

4. If the specified subchannel is not active (physically present), DOS-III
suspends the programaand outputs

I/0 ERR NR USER DISC
or
I/O ERR PE USER DISC
UD nnnnn
xxxxx SUSP

(nnnnn =address of EXEC call)

3-45

PARAMETER PROCESSING

Certain user programs require parameters for their execution. DOS-III allows passing of parameters
in the following environments:

(1) from a main program to a main program

(2) from a main program to a segment

(3) from a segment to a main program

(4) from a user to a suspended program

Parameter transferral from program to program (1-3) is handled programmatically by specifying
parameters in an EXEC calling sequence. Parameter transferral from a user directly to a program (4)
is handled by passing parameters back to the suspended program through the GO directive.

All the programs receiving parameters retrieve them in the same way. The parameters to be passed
(if any) are located in the base page parameter buffer RONBF (see Appendix A). In the Assembly
language environment, the B register contains the address of the parameter buffer. In the FORTRAN/
ALGOL environment, a library routine (RMP AR) is provided to transfer parameters to a user-defined
buffer. (This call must be the first statement executed upon entry.)

ASSEMBLY LANGUAGE EXAMPLE

EXT EXEC

JSB
DEF
DEF

EXEC
*+2
RC ODE

LDA B,I
SZA,RSS
JMP NOPAR

RCODE DEC 7
B EQU 1

FORTRAN EXAMPLE

DIMENSION I(5)
CALL EXEC (7)
CALL RMPAR (I)

(Call EXEC to suspend program)

(Get parameter from GO directive)

(Define user parameter buffer)
(Suspend program)
(Get parameters from : GO)

3-46

SECTION IV
lnputf Output

In DOS-III, centralized control and logical referencing of I/0 operations effect simple, device­
independent programming. Each I/O device is interfaced to the computer through one or more I/O
channels which are linked by hardware to corresponding main memory locations for interrupt
processing. By means of several user-defined I/0 tables, multiple-device drivers, and program
EXEC calls, DOS-III relieves the programmer of most I/O problems.

Note: Refer to Section XIV, "Privileged Mode," for a discussion of privileged
mode processing.

USER PROGRAM 1/0

The user program requests I/Oby means of an EXEC call (see Section III) which specifies the
logical unit, control information, type of operation, buffer location and buffer length.

Note: Within the DOS-III environment, it is possible to transfer up to 16K
words in a single operation.

All references to I/0 devices are made through logical unit numbers. This relieves the program­
mer of the burden of knowing which physical device or which I/0 channel is actually going to
perform the I/O transfer.

4-1

DOS-III has the following standard function assignments for logical unit numbers:

Logical Unit Number

1

2

3
Restored

4
after

5
each

6
:JOB.

7

8

9

10

6310

Function

System console

System mass storage

User mass storage

Standard punch device

Standard input device

Standard list device

Unassigned

Recommended for magnetic tape

Can be assigned to any device

by user

The user determines the number of logical units when the system is generated. At the beginning of
each JOB, logical units 1 through 9 are restored to the values established at system generation
(see Section X), whereas 10 through 63 are restored only on a start-up from the disc.

SYSTEM 1/0 PROCESSING

System I/O processing is controlled by three I/0 tables:

1) Equipment Table (EQT) - which records all devices, I/O channels, driver entry
points, DMA requirements, and disc location (if disc-resident).

2) Logical Unit Table (LUT) -which assigns an equipment table number to each
of its entries, thus allowing the programmer to reference changeable logical units
instead of fixed physical units.

3) Interrupt Table (INT) -which relates each I/0 channel to its corresponding
equipment table entry.

For a detailed description of these tables see Appendix A.

4-2

When the system recognizes an EXEC call that performs 1/0, the request is sent to the 1/0 supervisor
EXEC module ($EX18). $EX18 determines if the driver for the requested device is main-memory
resident; if not, the driver is loaded into main memory from the disc. Once the driver is in main­
memory, the addresses of its EQT entries are placed in the base page communication area and control
is transferred to the driver's initiation section. After the driver initiates the 1/0 operation, it returns
to $EX18. If the 1/0 was requested "without wait", DOS-III immediately returns control to the
user program; if the 1/0 was requested "with wait", DOS-III waits until the 1/0 transfer is complete
before returning to the user program.

Once a driver has been initiated, interrupts from the device are channeled through a central inter­
rupt processing routine ($CIC). (All interrupt locations in main memory contain a JSB $CIC.)
$CIC determines which device interrupted, resets the addresses of the EQT entries into the base
page communication area (if necessary), and transfers control to the driver's continuation section.
The driver either continues or completes the 1/0 operation, and control is then returned to the
executing user program.

INPUT/OUTPUT DRIVERS

The 1/0 driver routines, either main-memory or disc-resident, handle the actual transfers of infor­
mation between the computer and external devices. They are responsible for initiating and continu­
ing operations on all devices of equivalent type. When a transfer is initiated, DOS-III places the
EQT entry addressed into the base page communication area and executes a subroutine jump to the
driver entry point. The driver configures itself for the particular channel (in this way the same
driver can handle several devices of the same type on many channels), initiates the transfer, and re­
turns to DOS-III. When an interrupt occurs on the channel, indicating continuation or completion
of the transfer, DOS-III again transfers control to the driver. DOS-III requires only three drivers: the
Moving-Head Disc Driver (DVR31), the System Console Driver (DVROO, DVR05, or DVR26), and
the Paper Tape Reader Driver (DVROl).

The following standard drivers are fully compatible with DOS-III:

Driver Number Description Part Number DMA?

DVROO System Console Driver (TTY) 20985-60001 No
DVROl Paper Tape Reader Driver 20987-60001 No
DVR02 Paper Tape Punch Driver 20989-60001 No
DVR05 System Console Driver (TTY) 24157-60001 No
DVRlO Digital Plotter Complete Driver 07210-16001 No
DVRlO Digital Plotter Minimum Driver 07210-16002 No

DVRll Card Reader Driver 24272-60001 Yes
DVR12 Line Printer Driver 24307 -16011 No
DVR15 Optical Mark Reader Driver 24307-16017 No
DVR23 Magnetic Tape Unit Driver 13024-60001 Yes
DVR26 Terminal Printer Driver 24307-16018 No
DVR31 Disc Driver 24156-60001 Yes
DVR33 Writable Control Store Driver 24278-60001 Yes
DVR34 Card Reader Punch Driver 12989-16002 No
DVR67 Hardwired Serial Interface Driver 24341-16001 No

4-3

The driver name consists of the letters "DVR" prefixed to the equipment type code. In addition,
the programmer can write drivers for special devices, following the guidelines in Section XIII,
"Planning I/0 Drivers." The driver is only responsible for updating the status field in the EQT
entry; DOS-III handles the availability field.

SPECIAL DRIVER CONSIDERATIONS

Since the various peripheral devices are unique, the drivers designed for use with these devices are
also unique. This diversification creates the need for special considerations when planning input/
output operations. The DOS-III Standard Drivers Reference Manual (24307-90073) deals at length
with such subjects as creating plotter drawings (Section II), line printer formatting (Section IV),
magnetic tape error recovery (Section VI), and using the writable control store driver (Section VIII).

4-4

SECTION V
DOS-/// Subsystems

This section describes conventions for using the following DOS-III subsystems:

• ALGOL Compiler

• Assembler

• FORTRAN and FORTRAN IV Compilers

• Relocating Loader

• Relocatable libraries, including the DEBUG subroutine

and concludes with a discussion of program segmentation.

SOURCE PROGRAM FILES

Using the DOS-III STORE,S and EDIT directives, the operator creates and edits files of source pro­
grams written in FORTRAN, ALGOL, or Assembly language. In load-and-go operations the
FORTRAN Compiler, FORTRAN IV Compiler, ALGOL Compiler, and Assembler generate
relocatable binary code onto temporary disc storage. The Relocating Loader can then relocate
and merge the code with referenced subroutines of the Relocatable Library. Once loaded, a pro­
gram is executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

DOS-III provides the facility for "load-and-go," which is defined as compilation or assembly,
loading, and execution of a user program without using intervening object paper tapes. To
accomplish this, the compiler or assembler generates relocatable object code from source statements
and stores it on the disc in the Job Binary Area. Then separate directives initiate loading (PROG,
LOADR) and execution (RUN,program).

DOS-III can store the object code of several programs and associated segments and subroutines on
the disc. The Relocating Loader retrieves them from the disc, and relocates them into executable
absolute program units.

5-1

ALGOL COMPILER

The ALGOL Compiler consists of a main program and a data segment which operate under the
control of DOS-III. The compiler resides on the disc and is read into main memory when called
for by a PROG directive.

Source programs written in ALGOL are accepted either from an input device or from a user disc
file and are translated by the ALGOL Compiler into relocatable object programs optionally
punched on paper tape (and optionally stored in the Job Binary Area of the disc). The object pro­
gram can be loaded using the DOS-III Relocating Loader and executed using the RUN or PROG
directive.

ALGOL 1/0

The HP ALGOL I/0 statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

Compiler Operation

The ALGOL Compiler is initiated with a PROG directive, and inputs the source program from an
input device, or, if from a source file, from a file specified by a JFILE directive. The PROG direc­
tive for the ALGOL Compiler should take the following form:

5-2

where P
1

99

PROG,ALGOL

logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

logical unit number of list device (default is 6)

logical unit number of punch device (default is 4)

lines/page on the source listing (default is 56)

the job binary parameter.- If present, the object program is stored in the Job Binary
Area for later loading. Any requested punch output still occurs. (The 99 may occur
anywhere in the parameter list, but terminates the list.)

All parameters are optional. If Pt through p4 are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

l/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the : GO. More than one source tape can be compiled into one program
by loading the next tape before giving the : GO.

5-3

At the end of the compilation, the following message is output to the system console:

$END, ALGOL

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG
directive) overflows, the following message is output and compilation continues:

JBINOVF

The compilation will be completed, but there will be no further loading of binary code into the job
binary area.

The compiler terminates if

• Logical unit 2 has been given for input and no :JFILE has been declared. The
following message is output:

NO SOURCE

• The first statement of the source file specified by the PROG directive p 1 parameter
does not begin with the word HPAL. (Or the control statement contains an error.)
The following message is output:

HPAL??

• A colon occurs in the first position of a source statement line. The following message
is output:

IE nnnnn

where nnnnn is the memory location of the input request.

5-4

Language Considerations

The HP ALGOL control statement has this format:

HPA.L {,L,A,B,P], "name" [,P
1

] {,P
2

]

where HPAL is mandatory

L,A,B,P are symbols (any combination is allowed) representing:

L produce source program listing

A produce object code listing

B produce object tape

P a procedure only is to be compiled

"name" is the program name (the quotes and a program name are mandatory)

P
1

is a decimal digit between 0 and 9 specifying the name of the error routine to be
called if an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI,
TAN. The name of the error routine is ERRn, where n = P

1
, or n = 0 if P

1
is not

specified. ERRO is supplied in the Relocatable Library; all other error routines
must be supplied by the user.

P
2

is a decimal digit specifying the type of the program: 3 for a main program, 5 for
a segment, and 6 or 7 for a utility subroutine or procedure. If P

2
is not specified,

the type is set to 3 for main programs and to 7 for procedures (P option in the
control statement).

If no symbols are specified, the program will run but will not produce any output other
than diagnostic messages and job binary (if requested). A program name in quotes (the NAM-record
name which must be a legitimate identifier without blanks) must follow the symbols.

Sense switch control is not used with DOS-III.

EXAMPLE

HPAL,L,B, "TEST",1,3

5-5

ASSEMBLER

The Assembler, a segmented program that executes in the main-memory User Program Area,
operates under control of DOS-III. The Assembler consists of a main program (ASMB) and six
segments (ASMBD, ASMBl, ASMB2, ASMB3, ASMB4, ASMB5), and resides on the disc. The
main program is read into main memory when called by a PROG directive.

Source programs, accepted from either an input device or a user source file on the disc, are trans­
lated into absolute or relocatable object programs; absolute code is punched in binary records,
suitable for execution only outside of DOS-III. ASMB can store relocatable code in the Job Binary
Area of the disc for on-line execution, as well as punch it on paper tape.

A source program passes through the input device only once, unless there is insufficient disc storage
space. In the latter case, DOS-III informs the user that two passes are required.

Assembler 1/0

The Assembly Language I/O EXEC calls should specify the proper logical unit numbers for the
DOS-III configuration. (See Section IV.)

When preparing input for the batch device, the programmer must remember to never put a colon (:)
in column one of the source statement. DOS-ill aborts the current program if a directive (signified
by : in column one) occurs during data input.

If the memory protect hardware option is present (and enabled), it protects the resident supervisor
from alteration. It interrupts the execution of a user program under these conditions:

• Any operation that would modify the protected area or jump into it.

• Any I/O instruction, except those referencing the switch register or overflow register.

• The halt instruction.

Memory protect gives control to DOS-III when an interrupt occurs, and DOS-III checks whether it
was an EXEC call. If not, the user program is aborted.

Assembler Operation

The DOS-III Assembler is initiated with a PROG directive. However, before entering the PROG
directive, the operator must place the source program in the input device. If the source program is
on the disc, the operator must first specify the file with a JFILE directive, and set parameter
P1 = 2 in the PROG directive. The PROG directive for Assembler should take the following form:

5-6

PROG,ASMB

:PROG,ASMB[,P
1

,P
2

,P
3

,P
4

,99]

where P1

99

logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

logical unit number of list device (default is 6)

logical unit number of punch device (default is 4)

lines/page on the source listing (default is 56)

the job binary parameter. If present, the object program is stored in the Job
Binary Area for later loading. Any requested punch output still occurs. (The 99
may occur anywhere in the parameter list, but terminates the list.)

All parameters are optional. If p1 through p4 are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Assembly

When the end of a source tape is encountered, the following is output on the system console:

1/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-7

The following message on the system console signifies the end of assembly:

$ENDASMB

If another pass of the source program is required, this message is output at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and enter:

:GO

If an error is found in the Assembler control statement, the following message is output on the
system console:

$ENDASMBCS

and the current assembly stops.

If an end-of-file condition on source input occurs before an END statement is found, the console
signals:

$END ASMB XEND

and the current assembly stops.

If source input from logical unit 2 (disc) is requested, but no file has been declared (see :JFILE,
Section II), the system console signals:

$END ASMB NPRG

and the current assembly stops.

If the Job Binary Area, where binary code is stored by a 99 parameter, overflows, assembly continues
but the following message is output on the system console:

JBINOVF

However, no further binary code is stored in the Job Binary Area.

5-8

The next message is printed on a separate line just above each error diagnostic printed in the pro­
gram listing during pass 1.

nnn

nnn is the "tape" number on which the error (reported on the next line of the listing) occurred.
A program may consist of more than one tape. The tape counter starts with one and increments by
one whenever an end-of-tape condition occurs (paper tape) or a blank card is encountered. When
the counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the assembly is associated with
a different message (printed on a separate line just above each diagnostic):

PG PPP

ppp is the page number (in the listing) of the previous error diagnostic. PG 000 is associated with
the first error found in the program.

Language Considerations

ASSEMBLER CONTROL STATEMENT. Although only relocatable code can be run under DOS-III,
the DOS-III Assembler is able to assemble absolute code if it is specified. Absolute code is never
stored in the Job Binary Area. To get absolute code, the control statement must include an "A"
parameter. The "R" parameter, however, is not required for relocatable code. An "X" causes the
assembler to generate non-Extended Arithmetic Unit code.

EXAMPLES

ASMB,L,B

ASMB,R,L,B,X

ASMB,T,L

ASMB,A,B,L

List and Punch Relocatable Binary.

List and Punch Relocatable, non-EAU Binary.

List and Print Symbol Table.

List and Punch Absolute Binary.

5-9

NAM STATEMENT. The NAM statement allows up to eight optional parameters. Only the first
two parameters are significant in DOS-III.

NAM name [,type] [,link mode]

where name is the program name (it should not equal any file name).

type is the program entry type code (octal):

0 - System main memory resident (default)
1 - Disc resident executive supervisor module
2 - Reserved for system
3 - User program, main
4 - Disc resident device driver
5 - User program segment
6 - Library routine
7 - Subroutine

10 - Relocatable binary
11- ASCII source statements
12 - Binary data
13 - ASCII data
14- Absolute binary

link mode is the mode of linkage to be performed:

0 - current page linking
non-zero - base page linking (default)

If type is 0, 1, 2, or greater than 7, the assembler and DSG EN will accept it, but the Relocating
Loader will not.

The link mode parameter specifies the mode of linking that will occur at system generation time. If
zero, current page linking occurs. If non-zero, base page linking occurs. If omitted, the default con­
dition (non-zero) is assumed and base page linking occurs.

In addition to the name defined by NAM, each program, with the exception of the main program,
has one or more entry points defined by an ENT statement. For the main program (type = 3), the
transfer address of the END statement is sufficient. The program name is used for programmer-to­
DOS-III communication, while the entry point is used for program-to-program communication.

Note: DOS-III Assembly language does not contain the ORB statement because
information cannot be directly loaded into the protected base page area
by user programs. However, programs can read information from base
page using absolute address operands up to 1777 8 •

5-10

FORTRAN COMPILERS

The FORTRAN Compilers operate under control of the DOS-III Supervisor. The compilers reside
on the disc and are read into main memory only when needed.

FORTRAN and FORTRAN IV are problem-oriented programming languages. Source programs,
accepted from either an input device or a user disc file, are translated into relocatable object
programs, optionally punched on paper tape, and optionally stored in the Job Binary Area of the
disc. The object program can be loaded using the DOS-III Relocating Loader and executed using
the RUN or PROG directive.

FORTRANI/O

FORTRAN 1/0 statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

When preparing input data for the batch device, the user should never put a colon (:) in column one
of the record because the colon in the first position signifies a directive. DOS-III aborts the job if a
directive occurs during data input.

Compiler Operation

The FORTRAN compilers are initiated with a PROG directive, and input the source program from
an input device, or, if from a source file, from a file specified by a JFILE directive. The PROG
directive for FORTRAN compilers should take the following form:

5-11

:PROG,FTN[,P
1

,P
2

,P
3

,P
4
,99]

:PROG,FTN4{,P
1

,P
2

,P
3

,P
4

,99]

PROG,FTN[4]

P
1

logical unit number of input device (default is 5; set to 2 for source file input indicated
by a JFILE directive)

P
2

logical unit number of list device (default is 6)

P
3

logical unit number of punch device (default is 4)

P
4

lines/page on the source listing (default is 56)

99 the job binary parameter. If present, the object program is stored in the Job Binary Area
for later loading. Any requested punch output still occurs. (The 99 may occur anywhere
in the parameter list, but terminates the list.)

All parameters are optional. If Pl through p4 are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the : GO. More than one source tape can be compiled into one program
by loading the next tape before giving the : GO.

At the end of compilation, the following message is output on the system console:

$END, FTN[4]

5-12

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG direc­
tive) overflows, the following message is output and compilation continues:

JBINOVF

There is no further loading into the Job Binary Area.

The compiler terminates if

• logical unit 2 has been given for input and no JFILE has been declared.
($END ,FTN [4] is not output.)

• There are not enough work tracks for the compiler. The following message is output:

#TRACKS UNAVAILABLE

• A colon occurs in the first column of a source program entered through the batch
device. (Blank cards in the source program are ignored.) The following message is
output.

IE nnnnn

where nnnnn is the memory location of the input request.

Language Considerations

FORTRAN CONTROL STATEMENT. Besides the standard options described in the FORTRAN
manual, two compiler options, T and n, are available. A "T" lists the symbol table for each program
in the compilation. If a "u" follows the address of a variable, that variable is undefined (the program
does not assign a value to it). The A option includes this T option. If n appears, n is a decimal digit
(1 through 9) which specifies an error routine. The user must then supply an error routine, ERRn.
If this option does not appear, the standard library error routine, ERRO, is used. The error routine
is called when an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .TROI, EXP, .ITOI, or TAN.

5-13

Extended and Auxiliary Statements

In addition to the standard FORTRAN statement, the FORTRAN compiler running under DOS-III
supports the following extensions and additions:

1. extended PROGRAM statement

2. additional DAT A statement

3. additional EXTERNAL statement

Execution of the following two FORTRAN statements results in special processing in the DOS-III
environment:

1. PAUSE

2. STOP

5-14

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [,type] [,link mode]

name

type

link mode

is the five-character name of the program (and its main entry point.
When the program is executed using a RUN or PROG directive, this
name is used.

is a decimal digit specifying the program type. Only typ~s 3 (main),
5 (segment), and 6 or 7 (library) are significant in DOS-III. The type
is set to 3 if not given.

is the mode of linkage to be performed: 0 indicates current page
linking and any non-zero digit indicates base page linking (default).

5-15

DATA STATEMENT

The DATA statement sets initial values for variables and array elements. The format of the DATA
statement is

where k is a list of variables and array elements separated by commas, d is a list of (optionally
signed) constants, separated by commas and optionally preceded by j* U is an integer
constant).

The elements of d 1 are serially assigned to the elements of k 1 . The form j* means that the constant
is assigned j times. The k 1 and d 1 must correspond one-to-one.

Elements of k 1 must not be from COMMON.

Arrays must be defined (i.e., DIMENSION) before the DAT A statements in which they appear.
DATA statements may occur anywhere in a program following the specification statements.

EXAMPLE

DIMENSION A(3), I(2)

DA TA A(1),A(2),A(3)11. 0,2.0,3.0/,l(1),1(2)12 *1 I

5-16

EXTERNAL STATEMENT

With the EXTERNAL statement, subroutines and functions can be passed as parameters in a sub­
routine or function call. For example, the routine XYZ can be passed to a subroutine if XYZ is
previously declared EXTERNAL. Each program may declare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

EXTERNAL v
1

,v
2

, ••• ,v
5

where vis the entry point of a function, subroutine, or library program.

EXAMPLE

EXTERNAL XYZ,FLl
Z = Q-RMX(XYZ,FLl,3.56,4.75)

END

FUNCTION RMX(X, Y,A,B)
RMX = X(A)*Y(B)
END

ERROR E-0018 means too many externals.

Note: If a library routine, such as SIN, is used as an EXTERNAL, the compiler
changes the first letter of the entry point to "%".Special versions of the
library routines already exist with the first character changed to "% ".

5-17

PAUSE AND STOP

PAUSE causes the following message to be output to the system console:

PAUSE xxxx

where xxxx is an optional octal number.

To restart the program, the operator uses a GO directive.

STOP causes the program to terminate after the following message:

STOP program name xxxx

where xxxx is an octal number.

5-18

ERRO LIBRARY ROUTINE

ERRO, the error print routine referred to under the FORTRAN or ALGOL control statement, out­
puts the following message to the system console whenever an error occurs in a library routine:

name: nn xx

where name is the name of the user's program,
nn is the routine identifier, and
xx is the error type.

The compiler generates calls to ERRO automatically. If the FORTRAN (or ALGOL) control
statement includes an n option, the call will be to ERRn, a routine which the user must supply.

5-19

DOS-III RELOCATING LOADER

The DOS-III Relocating Loader accepts relocatable object programs which have been translated by
the Assembler, ALGOL Compiler, or FORTRAN Compilers. It generates an executable main­
memory image of each such program. The relocatable programs may enter the loader as

• Job Binary Area programs translated during the current job

• User files

• Punched tapes, magnetic tapes

• Subroutines from the disc-resident Relocatable Library

Each main program is relocated to the start of the User Area and linked to its external references,
such as library routines. Segments will overlay the area following the main program and its sub­
routines. Programs may run under control of the DEBUG library routine. The main program, plus
its subroutines and its longest segment, can be as large as the User Area. With a RUN or PROG
directive, the program is called by name from the disc and executed. With the STORE,P directive,
the program may be stored as a permanent user file to be run during a later job. If the Loader is
to be re-executed during a single job, the Job Binary Area must be cleared (using the CLEAR
directive) to prevent duplicate program names.

5-20

PROG,LOADR

The DOS-III Relocating Loader is initiated by a PROG directive from the batch or keyboard device.

Format

:PROG,LOADR{,P
1

,P
2

,P3 ,P4 ,P5]

P1 0 for loading from JBIN and relocatable library (default)

2 for loading from JBIN, user files, and relocatable library

n for loading from JBIN, user files, relocatable library, and paper tape or
magnetic tape (logical unit n)

list device logical unit number (default is 6)

0 for no DEBUG, =f. 0 for DEBUG (default is 0)

0 for base page linking, =f. 0 for current page linking (default is 0)

0 for system default program bounds (e.g., UBFWA-UBLWA and
UMFWA-UMLWA); = 1 for user-specified program bounds (default is 0)

Comments

INPUT PARAMETER [P1]. Note the hierachy here. If n is specified, the JBIN area is still scanned
first, then user files are requested and, finally, the peripheral relocatable input is accepted.

If P 1 "f zero, the Loader first expects a list of relocatable file names. In keyboard mode, the
Loader requests:

ENTER FILE NAME(S) OR IE

then waits for input. After each list of files is entered, the message repeats until a /E is entered.

In batch mode the list of files is entered as

file-name 1, file-name 2, ... ,IE

following the PROG directive (or following the bounds parameters if P 5 = 1). If there are no
user files, a /E record must be entered.

5-21

The file list is a series of records containing file names separated by commas, ending with a /E.
All programs in each file are loaded unless a particular subset of the file is specified:

file-name (prog 1, prog 2 ...)

Only the programs specified within the parentheses are loaded from the file-name. The file list is
simply a "/E" if no files are to be loaded. (The search for these files is made only on the current
user disc; the Loader is unaffected by :SS.)

DEBUG PARAMETER [P3]. Selecting the DEBUG option causes DEBUG to be appended to each
main program and segment. The Loader sets the primary entry point of each to DEBUG, rather
than the user routine. When the program is run, DEBUG takes control of the program's execution
and seeks instructions from the system console.

CURRENT PAGE LINKING PARAMETER [P4]. If requested to do so (P 4 =f zero), the Loader
attempts to place necessary program links on the current page of memory as opposed to the base
page, to provide more area on the base page for large programs.

Note: While using the Loader with the current page linking option, remember that:

a. Current page linking cannot be used on programs which use main
memory following the program area for writing data (at execution
time). For instance, the Assembler builds its symbol table imme­
diately following the last word of the largest segment.

b. Programs should be broken into subroutines of less than 2K
because links are generated only at the beginning and end of
the program. Links cannot be inserted into the middle of a
program since the boundary between program and links may
fall in the middle of a skip or jump sequence. If the program
spans more than two pages, the middle page(s) will have no
area available for current links and will use base page links; thus,
the potential for greater efficiency will be lost.

PROGRAM BOUNDS SPECIFICATION PARAMETER [P5]. The user has the option of specifying
the base page bounds and the main memory bounds for the relocatable modules being loaded. If
parameter P5 in the PROG,LOADR directive is zero, the program bounds are determined by the
system pointers:

UBFWA

UBLWA

UMFWA

UMLWA

lower base page bound

upper base page bound

lower main memory bound

upper main memory bound

If P5 is equal to one, the user can specify his own memory bounds. In batch mode, the Loader
reads the bounds from the input device immediately following the :PROG, LOADR directive. The
bounds are in the form of two records: the first record is interpreted as the lower and upper base
page bounds, specified by two octal constants separated by a comma. If an error occurs in the first

5-22

record, the Loader outputs an L18 error message. The second record is interpreted as the lower
and upper main memory bounds, specified by two octal constants separated by a comma. If an
error occurs in tp.e second record, the Loader outputs an Ll9 error message. If any of the bounds
are omitted, the appropriate system default value is used. In keyboard mode, the two records are
entered in response to the messages

BP

PROG

BND

BND

[L,U]?

[L,U]?

If an error occurs while entering the bounds in keyboard mode, the user can re-enter the bounds
(after an L18 or L19 error message). If an Ll8 or Ll9 error message occurs in batch mode, the
Loader aborts the job.

1/0 Drivers

The Loader will accept Type 4 programs (Disc Resident Device Drivers) and store them as such in
the user directory. Type 4 programs cannot be combined with any other program type during any
given load operation.

Loader Operation

The DOS-III Relocating Loader is a two-pass Loader. The first pass consists of setting the bounds,
inputting and scanning relocatable programs to build the necessary tables (program name table
and a table of entry points and externals), and matching entry points with externals. The second
pass involves the relocation of the programs into an absolute core image format on the disc.

INPUTTING AND SCANNING THE PROGRAMS. Programs are scanned (and input, if necessary)
according to P1 in the PROG,LOADR directive. (Only non-disc relocatable programs must be input;
there are stored temporarily on the Work Area of the disc for processing during the second pass.)
Since main programs are matched with segments during the scan, each main program must be loaded
before any of its segments.

If paper tape input is requested, the following messages are output to the system console:

LOAD TAPE

LOADR SUSP

@

The loader suspends. The operator places a tape in the input device and types

:GO

5-23

When an end-of-tape condition occurs, three messages are output to the system console:

l/O ERR ET EQT# nn
LOAD TAPE
LOADR SUSP
@

(paper tape only-not magnetic tape)

The operator places the next tape in the input device, enters :UP,nn and :GO to read the next tape.
Enter :UP,nn and :G0,1 to indicate that all tapes have been read in.

If a checksum error occurs when loading relocatable programs from paper tape, the Loader prints
an LOl error message and returns to the paper tape load point with the messages

LOAD TAPE
LOADR SUSP
@

The operator can attempt to reload the program by placing the tape in the reader at the beginning
of the program and typing : GO.

Matching Entries with Externals

After matching all possible entry points and external references in the user programs, the loader
scans the Relocatable Library (disc-resident) looking for entry points to match the undefined
external references. If undefined external references still exist,

UNDEFINED EXTS

is output and the external references are listed, one per line.

To load additional programs from a peripheral device, the operator types

:GO,O{,n]

where n is the logical unit number of the input device, if different from P 1 of the PROG ,LOADR
directive.

To continue without fulfilling external references, the operator types

:G0,1

To specify a file name from the keyboard, enter

:G0,2

and the appropriate prompt is output:

ENTER FILE NAME(S) OR IE

5-24

RELOCATING PROGRAMS. The main and segment names (from the PROGRAM, HPAL, or NAM
records) become user file names once the programs are loaded. To ensure unique file names, the
Loader compares all program and segment names against the names of existing user files (current
user disc only). If duplicate names occur, an error message is printed and loading stops.

The Loader converts each main program into an absolute main memory image, stores it on the disc,
places the name in the user directory where it remains during the current job, and lists (on the
logical unit specified by the P2 parameter) the program address map and entry points. After each
main program, any associated segments are loaded in the same way. When the Loader is completely
finished, the following message is output:

LOADR COMPLETE

During the current job, the absolute main memory images appear in the user file area (see LIST
directive, Section II) and can be executed by name (see RUN and PROG directives). At the end of
the job, however, they disappear from the file area, unless they are made permanent files by means
of the STORE, P directive.

If no programs are entered, the Loader outputs the following messages and terminates:

NO PROGRAMS LOADED

LOADR COMPLETE

Loader error messages are given in Section XV.

5-25

EXAMPLE

In the following example, DOS-III is in keyboard mode.

: CLEAR
@

:PROG,, LOADR.r 5
ENTER FILE NAMECS) OR /E
ALGLM, /E
LOAD TAPE
LOADR SUSP

@:GO
I/O ERR ET EQT# 02
LOAD TAPE
LOADR SUSP

@:UP, 2

@:GO, 1

Eliminate any programs from the job binary area

Paper tape input is specified

One disc file is specified

Place paper tape in input device

Return to Loader
End of paper tape

Declare input device ready

Specify no more paper tapes

5-26

The following is then output on the standard list device (logical unit 6):

RELOCATING LOADER

NAM:E PROG BOUNDS BP BOUNDS

ALGOL
*HPAL 26601 Main program
*%HPST 27005 Main 's en try po in ts

•EAU. 30370 01402 Subroutine
*•MPY 30370 Subroutine's entry points
*•DIV 30375
*• DLD 30402
*•DST 30407

%~rnI T 30440 01407
*%~,TRIT 30626
*3WRIF 30522
*%WBUF 30725

SREAD 31141 01411
*%READ 3 1141
*%JFIL 31612
*%RDSC 31563

DUMRX 31677 01412
*$LIBR 31677
*$LI BX 31724

.OPSY 317 57 01412
*•OPSY 31757

(BOUNDS> 16000 32017 00716 01415 Main programs bounds

.ALGL 1 Segment
*ALGL 1 321.£6 1 Segment's entry points
*%LN.AL 32020
*%ABAL 32017

(BOUNDS) 32017 32463 01415 01416 Segment's bounds

LOA DR COMPLETE Console message to indicate normal Loader completion

@:ST,P Make newly created programs permanent disc files

5-27

THE RELOCATABLE LIBRARIES

There are two System libraries, or collections of relocatable subroutines that can be used by DOS­
III: the RTE/DOS Relocatable Library (EAU or Non-EAU versions) and the RTE/DOS FORTRAN
IV Library. These libraries contain mathematical routines such as SIN and COS, and utility routines
such as BINR Y. A program signifies its need for a subroutine by means of an "external reference."
External references are generated by EXT statements in Assembly language, by CALL statements and
external function references in FORTRAN, and by CODE procedures in ALGOL.

When the system is generated, several combinations of libraries are possible. Every system should
contain an RTE/DOS Relocatable Library: either an EAU version or a non-EAU version, depending
on the computer hardware. This library does not contain a formatter, but the FORTRAN IV Library
contains a formatter that handles extended precision numbers. If extended precision arithmetic is
not needed, a separate RTE/DOS Basic FORTRAN Formatter is available to take the place of the
FORTRAN IV Library.

All of these libraries and the subroutines they contain are documented in the manual Relocatable
Subroutines (02116-91780).

5-28

DEBUG LIBRARY SUBROUTINE

RTE/DOS DEBUG, a subroutine of the Relocatable Library, allows the programmer to check for
logical errors during program execution. If the third parameter specified in the PROG, LOADR
directive is non-zero, the DEBUG subroutine is appended to the user program being loaded. The
primary entry point (where execution begins) is set to DEBUG. When the program is executed
with a RUN directive, the DEBUG subroutine has control and displays the message:

BEGIN 'DEBUG' OPERATION

The programmer may enter any DEBUG operation directive. Illegal entries are ignored but result
in the message:

ENTRY ERROR

Re-enter the DEBUG operation directive correctly.

DEBUG OPERATIONS

B,n

D,A,n1 [,n2J

D,B,n1f,n2l

M,n

R[,n]

S,n,d

W,A,d

W,B,d

W,E,d

W,O,d

X,n

A

Instruction breakpoint at octal address n (Note: if n = JSB EXEC, a
memory protect violation occurs)

ASCII dump of octal main memory address n 1 or from n 1 through n 2

Binary dump of octal main memory address n 1 or from n 1 through n 2

Sets absolute base of relocatable program unit at octal address n

Execute user program starting at octal address nor execute starting at
next location in user program (used after a breakpoint or to initiate the
program at the transfer point in the user program)

Set octal valued in octal address n

Set octal values d 1 through dn in successive memory locations beginning
at octal address n

Set A-register to octal valued

Set B-register to octal valued

Set E-register to octal valued (O=off; non-zero = on)

Set Ov_erflow to octal valued (0 =off; non-zero= on)

Clear breakpoint at octal address n

Abort DEBUG operation.

5-29

SPECIAL CONSIDERATIONS

Because of the extended instruction group coding available to the programmer using an HP 21MX
Computer Series system, the current RTE/DOS DEBUG subroutine should not be used within these
systems.

For systems based on an HP 21MX series processor, a modified version of the subroutine called HP
21MX RTE/DOS DEBUG is available and should be used in place of the current subroutine. HP
21MX RTE/DOS DEBUG can be used only on HP 21MX Computer Series systems, it cannot be
executed successfully on systems based on an HP 2100A or HP 2100S processor.

During the Program Input Phase of RTE or DOS-III system generation, load the HP 21MX RTE/
DOS DEBUG subroutine from paper tape (relocatable binary code) immediately after loading the
RTE/DOS Relocatable Library. An error message indicating the existence of a duplicate program
name will be displayed but the system generator will proceed to replace the current RTE/DOS
DEBUG subroutine with the HP 21MX version.

Externally, with a few differences, the HP 21MX RTE/DOS DEBUG subroutine appears the same
as the current version in the RTE/DOS Relocatable Library. The differences are as follows:

1. HP 21MX RTE/DOS DEBUG allows the programmer to set breakpoints on instructions which
are extensions to the base set microcode. Breakpoints set on standard HP 21MX instructions­
specifically, base set, base set extension (extended instruction group), single precision floating
point arithmetic, or extended arithmetic unit (EAU) instructions - are processed normally;
that is, the break occurs before execution of the instruction and is not cleared if the program­
mer resumes execution of his program. Breakpoints set on instructions which are extensions
to the standard instruction set - FFP, user written instructions, and so forth - result in the
breakpoint being cleared after execution of the break.

Note: In the current RTE/DOS DEBUG subroutine, setting a breakpoint on
a non-EAU multiple-word instruction results in the incorrect execution
of the instruction at the breakpoint.

2. HP 21MX RTE/DOS DEBUG displays the contents of the X-register and Y-register as part
of the standard breakpoint message.

3. HP 21MX RTE/DOS DEBUG provides two additional operation directives which allow the
programmer to set the X-register or Y-register to specific values. These directives are:

W,X,d Set X-register to octal valued

W,Y,d Set Y-register to octal value d

5-30

SEGMENTED PROGRAMS

User programs may be structured into a main program and several segments, as shown in Figure 5-1.
The main program begins at the start of the user program area. The area for the segments starts
immediately following the last location of the main program. The segments reside on the disc and
are read into main memory by EXEC calls, when needed. Only one segment may be in main memory
at a time. When a segment is read into main memory, it overlays the segment previously in main
memory.

The main program must be type 3, and the segments must be type 5. When using DSGEN to con­
figure the system or loading programs with the Loader, the main program must be entered prior
to its segments. One external reference from each segment to the main routine is required for
DSGEN or the Loader to link the segments and main programs. Also, each segmented program
should use unique external reference symbols. Otherwise, DSG EN or the Loader may link segments
and main programs incorrectly.

low memory

high memory

Main Program

Segment 1

Segment 2

Segment 3

Main Program

Segment Overlay
Area

DISC MEMORY

MAIN MEMORY
(User program area)

Figure 5-1. Segmented Programs

5-31

Figure 5-2 shows how an executing program may call in any of its segments from the disc using the
SEGMENT LOAD EXEC call (1-2). DOS-III locates the segment on the disc (3-4), loads it into
main memory (5) and begins executing it. The segment may call in another of the main program's
segments using a similar EXEC call (6).

DISC MEMORY

Main
Program

Segment 1 ©

Segment 2

Segment 3

MAIN MEMORY

@
DOS-Ill

Supervisor

....---. @

v
NAM MAIN

~
EXT EXEC
ENTM

..___ <D JSB EXEC

NAM SEG1
EXT EXEC, M

...... ® --..-

! ® JSB EXEC

(CALL for
Segment 2)

Figure 5-2. Main Calling Segment

5-32

low memory

Main
Program

Segment
Overlay
Area

high memory

User
Program
Area

Figure 5-3 shows how DOS-III processes the call from the segment (7) by locating the segment on
the disc (8-9), loading it into main memory (10), and beginning execution of it.

DISC MEMORY

Main
Program

Segment 1

Segment 2 ®

Segment 3

MAIN MEMORY

®
DOS-Ill

Supervisor

n (j)
(CALL from
Segment 1)

NAM MAIN
EXT EXEC
ENTM

I~

"'
NAM SEG2
EXT EXEC, M

... @) -.

Figure 5-3. Segment Calling Segment

5-33

low memory

Main
Program

Segment
Overlay
Area

high memory

User
Program
Area

When a main program and segment are currently residing in main memory, they operate as a single
program. Jumps from a segment to a main program (or vice versa) can be programmed by declaring
an external symbol and referencing it via a JMP or JSB instruction. (See Figure 5-4.) A matching
entry symbol must be defined as the destination in the other program. DSGEN or the Loader
associates the main programs and segments, replacing the symbolic linkage with actual absolute a
addresses (i.e., a jump into a segment is executed as a jump to a specific address). The programmer
should be sure that the correct segment is in main memory before any JMP instructions are
executed.

MAIN MEMORY

EXT S1

ENT M1
r-+- M1 JMP S1 -----,

EXT M1
ENT S1

~ JMPM1
S1 ... • -----

low memory

Main
Program

Segment
Overlay
Area

high memory

Figure 5-4. Main-to-Segment Jumps

5-34

User
Program
Area

FORTRAN Segments

Segmented user programs may be written in FOR TRAN, but certain conventions are required. A
segment must be defined as type 5 in the PROGRAM statement. The segment must be initiated by
using the SEGMENT LOAD EXEC call (RC DE = 8) from the main or another segment. A dummy
CALL to the main must appear in each segment to ensure that proper linkage will be established be­
tween the main and its segments.

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 1358). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and seg­
ments may be through COMMON or via parameters passed in the SEGMENT LOAD or SEGMENT
RETURN EXEC calls.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call (RCODE = 8) by executing a SEGMENT RETURN EXEC call
(RCODE = 29). (See Section III for a description of these EXEC calls.) However, segments may
not return directly to other segments.

ALGOL Segments

ALGOL programs can be segmented if certain conventions are followed. A segment must be defined
as type 5 in the HP AL control statement. The segment must be initiated by using the SEGMENT
LOAD EXEC call (RCODE = 8) from the main or another segment. In order to establish the proper
linkage between a main program and its segments, each segment must declare the main a CODE
procedure. For example, if MAIN is the main program, each segment must declare the following:

PROCEDURE MAIN;CODE;

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 1358). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and its seg­
ments may be through parameters passed in the EXEC call.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call by executing a SEGMENT RETURN EXEC call (RCODE = 29). (See
Section III for a description of these EXEC calls.) However, segments may not return directly to
other segments.

5-35

SECTION VI
Typical DOS-I/I Job Decks

1. ASSEMBLE A PROGRAM AND STORE IN FILE

:JOB,ASMBS
:PROG,ASMB,5,6,4,56,99
ASMB,B,L

NAMTEST,3

END ENTER
:STORE,R,AFILE
:JOB,NEXTJ

Source Program

2. LOAD AND EXECUTE A RELOCATABLE FILE

:JOB,LOADE
:PROG,LOADR,2
AFILE,/E
:STORE,P, TEST
:RUN, TEST
10
23

51
:JOB,NEXTJ

Data

6-1

3. STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM

:JOB, EVERY
:STORE,S,SOURC,5
FTN,B,L

PROGRAM ZOOM
DIM 1(10)

END$

:LIST,S,6,SOURC
:EDIT,SOURC,5
/1,2

IE
:JFILE,SOURC
:PROG,FTN,2,6,4,56,99
:PROG,LOADR
:RUN,ZOOM
123.62

00001
:RUN,ZOOM
321.5

0.56
:JOB,NEXTJ

)

)

)

Source Program

Edit List

Data for first run

Data for second run

4. LIST ONLY ERROR STATEMENTS ON SYSTEM CONSOLE IN A COMPILE

:PR,FTN4,,1

FTN4

PROGRAM EXl

END

$

6-2

5. COPY A SYSTEM FROM SUBCHANNEL 1 TO SUBCHANNEL 0

:JO

JOB

@

TODAY

:UD,,O

LBL=SYSTEM
@

:UD,SYSTEM,O
@

:UD

SUBCHAN=O

LBL=SYSTEM
@

:IN,*

DOS LABEL SYSTEM

OK TO PURGE?

YES
@

:UD

SUBCHAN=O

UNLBL
@

:UD,*,1
@

:UD

SUBCHAN=l

UNLBL
@

:DD,X
@

:UD,*,O
@

:UD

SUBCHAN=O

LBL=SYSTEM
@

:EJ

l

TIME=0831 MIN. 43.3 SECS.

Interrogates the system as to what label

is on subchannel 0.

Change current user disc to subchannel 0

Verify

Purge system and user files on subchannel 0

Verify purge

Change current user disc to subchannel 1

Verify

Copy system to subchannel 0

END JOB
@

RUN=OOOB MIN. 01. 7 SEC. EXEC=OOOO MIN. 00.0 SEC.

6-3

PART 2

DOS-I/I Extended File
Management Package (EFMP)

SECTION VII

EFMP Organization

The DOS-III Extended File Management Package (EFMP) extends the file handling capabilities of
DOS-III by allowing the user to create and use files with different record lengths, security codes,
and other conveniences. EFMP consists of a series of additional EXEC modules and a utility pro­
gram; it maintains a file structure that operates within, and in addition to, the standard DOS-III
file structure.

ENVIRONMENT

EFMP functions in the DOS-III environment. It is implemented through a set of EXEC modules
which are incorporated into DOS-III at system generation time: the EXEC modules are invoked
using the standard EXEC call mechanism.

FUNCTIONS AND STRUCTURE

The EFMP modules themselves allow any program executing in the user area to Initialize EFMP
areas, Create/Destroy, Open/Close, Read/Write, Reset, Repack, Copy, Change Name, and Post files
on the moving-head disc. Also, EFMP makes available detailed status information on all files and
packs known to it. EFMP may be accessed conversationally from the keyboard by using UTIL, a
utility program that executes in the User Area.

DOS-III Files vs. EFMP Files

DOS-III maintains files that are referenced by five-character names and relative sector numbers. The
user can access these files in either a keyboard mode (via directives) or in a programming mode
(via EXEC calls). In keyboard mode, the user creates a file with the STORE directive and operates
on that file with directives such as :EDIT and :DUMP. In programming mode, the DOS-III files are
accessed by EXEC calls such as FILE READ/WRITE and FILE NAME SEARCH.

In addition to the file structure, DOS-III maintains a subchannel (or user disc) identification scheme.
User discs are first formatted either during system generation or by a special function of the system
generator. These functions format the hardware tracks and set up information such as the Label
Presence Code and System Proprietary Code. After a disc pack is formatted, the INITIALIZE directive
is used to set up labels (six-character codes), change labels, and purge old discs.

7-1

EFMP operates within this file structure of DOS-III to set up and maintain additional-but distinctly
different- files. Areas of discs within DOS-III (hereafter referred to as EFMP areas) are turned over
to EFMP exclusively. The user must identify them with a pack number of the form PNxxx, where
xxx is a decimal integer. The procedure for doing this is described under "Set Up."

Within an EFMP area, EFMP creates files of its own that are not known to DOS-III. They are identi­
fied by a fixed-length name, contain a grouping of specified length records, and have a security code.
Since only the DOS-III files can be created and accessed by directives, all EFMP files must be used
through the EFMP EXEC calls or the UTIL program. EFMP files are limited in size only by the re­
quirement that they fit within one subchannel or pack.

Note: All references to files within this Part will mean EFMP files, not
DOS-III files, unless specifically stated otherwise.

Duplicate Pack Numbers

EFMP pack numbers are always unique on any given platter, but not necessarily unique across
platters. To minimize the possibility of accessing a duplicate pack number, the user should (if
possible):

1. Create unique pack numbers.

2. Have platters containing EFMP areas mounted on the subchannel designated as the current
user su bchannel.

EFMP Buffers and Tables

To provide maximum flexibility in main memory size and speed of file accessing, EFMP allows the
user to define (at execution time) the size and location of the tables and buffers required in main
memory by EFMP. Two areas are defined by the user and provided in his program space:

1. Opened File Table

2. Temporary Record Buffers

The Opened File Table contains all information necessary for EFMP to identify and access files
belonging to the user. The minimum size of the Opened File Table is one sector (128 words) and
allows up to seven files to be opened concurrently.

EFMP uses the Temporary Record Buffers as an intermediate storage area between the disc and
the user's record buffer. The user defines the number of Temporary Record Buffers and the size of
each. There must be at least one buffer and it must be at least two sectors (256 words) long. Par­
ticular files and buffers can be linked to increase the access speed of files. The effect of varying the
number and size of these buffers cannot be predicted exactly and must be determined empirically
by trial and error.

CAUTION: SINCE THESE TABLES AND BUFFERS EXIST IN THE USER
AREA AND ARE NOT PROTECTED, EXTREME CAUTION
MUST BE TAKEN NOT TO MODIFY THEM IN ANYWAY.

7-2

Logical Read vs. Physical Read

A logical read occurs each time the user requests a record from a file. At that time EFMP checks
the appropriate Temporary Record Buffer to determine if the requested record is already in main
memory. If in main memory, the record is transferred to the user's record buffer without actually
physically reading the disc. If the record is not present in main memory, the necessary disc transfers
are performed (physical reads-and writes, if necessary) to bring the record into main memory. If
the Temporary Record Buffer is larger than the record size, several records are brought into main
memory at once.

Logical Write vs. Physical Write

A logical write occurs each time a user requests that a record be written to a file. At that time,
EFMP determines if that record is present in the Temporary Record Buffer; if it is, EFMP simply
transfers the data in the user's record buffer to the Temporary Record Buffer and flags it as "must
be written." Each succeeding read or write is treated in the same manner until a logical record trans­
fer occurs for which the record is not in main memory, or until the last record in the Temporary
Record Buffer is logically written. In these cases, the EFMP must physically write the records in the
Temporary Record Buffer (i.e., post them) on the disc.

If the record is not present in main memory on a write request, EFMP locates the record on the
disc and transfers it physically into the Temporary Record Buffer. The data to be written is then
transferred from the user buffer to the Temporary Record buffer and flagged as "must be written."
The read before write is necessary because records do not necessarily fall on sector boundaries in
the disc. If a CLOSE or POST request occurs, all buffers flagged are written to the disc.

Update-Writes vs. Append-Writes

The purpose of an update-write is to change the contents of an existing record; the purpose of
append-write is to add new records onto the end of a file. EFMP writes a record as an update-write
whenever the record specified exists in a previously accessed section of a file.

EFMP writes a record as an append-write whenever the record specified is beyond the previously
accessed section of a file. In this case, EFMP automatically inserts zeros into all records (if any)
between the highest record previously written and the new record.

SETUP

There are two prerequisites for EFMP. First, the EFMP EXEC modules must be included in
DOS-III when the system is generated. Second, when DOS-III is running, the user must create
EFMP areas on formatted DOS-III packs or cartridges.

7-3

An EFMP area is created by issuing a STORE, B directive in this format:

:STORE,B,PNxxx,sectors

where xxx is a unique decimal number,

PNxxx is the unique pack number, and

sectors is the number of sectors of the EFMP area.

Note: EFMP changes the file from Type-B to Type-A during initialization
(see "Initialize").

WORD CONTENTS

0 first character second character

third character fourth character

2 fifth character (not used)

3 starting relative sector

4 file length (in records)

5 record length (in words)

6 security code

7 user-supplied status

8 highest record number accessed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Figure 7-1. EFMP File Disc Directory Format

7-4

BITS

SECTION VIII

EFMP EXEC Calls

The method of communication between a user program and EFMP is through the standard DOS-III
EXEC call format (discussed in Section III of this manual).

One standard DOS-III request code (RCODE = 24) is reserved for EFMP requests. The DOS-III
operating system combines this request code with an EFMP function number to determine which
action the user EXEC call is requesting. The EFMP function numbers are one element in each of the
EFMP EXEC calling sequences.

FORMAT FOR EFMP EXEC CALLS

In this section, only the Assembly language calling sequences are given for the EFMP EXEC calls.
The methods for convE:trting these calling sequences to FORTRAN or ALGOL are described in
Section III.

The EFMP EXEC calls described in this section are presented in ascending order, by EFMP function
number. The STATUS EXEC call (EFMPF = 10) has several status function numbers: these are
presented in ascending order, by status function number.

Note: A complete list of EFMP error codes can be found in PART 5 of this manual,
"Error Codes and Messages."

8-1

EFMPF = 1

DEFINE

Purpose

To define, before any other EFMP calls are made, the number of 16-bit words within the user
program to be used by EFMP for its internal buffers and tables.

Assembly Language

JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF OPNTB Opened-file table address
DEF OPNSZ Opened-file table size
DEF TRBUF Temp. record buffer address
DEF NOTRE Number of temp. record buffers and number of

active pack numbers
DEF TRBSZ Temp. record buffer size
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 1
OPNTB BSS n Opened-file table (n is the size)
OPNSZ DEC n Size of opened-file table (in 16-bit words,

see Comment 1)
TRBUF BSS m Beginning of temp. record buffers, see Comment 2
NOT RB DEC p No. of temp. record buffers, see Comment 2
(NOTRB+l) DEC n n = the maximum number of unique EFMP pack

numbers active (MAXPK), see Comment 4
TRBSZ DEC q Size of each temp. record buffer (in sectors)
ERRNO BSS 1 Return point for error codes

Comments

1. The size of the Opened-file table (n) can be calculated by this formula:

n = 4*(MAXPK)+ 3*(NOTRB)+16*(Max. no. of files to be opened)

The minimum size of this table is 128 words. This allows approximately seven files to be
opened concurrently.

8-2

EFMPF = 1

2. There must be at least one temporary record buffer and it must be at least two sectors long
(256 words). There may, however, be more buffers and they may be more than two sectors
in size. All of the space for these buffers must be allocated starting at the location TRBUF.
Increasing the number of buffers allows disc efficiency to be increased by assigning a buffer
exclusively to one file. Increasing the size of each buffer increases the speed of disc accessing
by allowing more than one sector to be transferred per disc access.

The total size of the Temp. Record Buffers (m) can be calculated by the following formula:

m = NOTRE * TRBSZ * 128

(The minimum value for TRBSZ is 2.)

3. All the tables and buffers are fixed by DEFINE until the end of a program, or until another
DEFINE. Each time a DEFINE occurs, all information contained in tables and buffers is lost,
all pointers are reset, and EFMP assumes a fresh start. At the end of each program, DOS-III
calls EFMP to perform a POST on any records flagged as "must be written."

4. MAXPK indicates the maximum number of unique EFMP pack numbers a user will have
active at any one time. A pack number is active when one or more of its files are opened by
a user through an OPEN call (or for PNOOO through a CREATE call).

8-3

EFMPF = 2

CREATE

Purpose

To set up a directory on disc with all of the information necessary to create a file that can be
accessed at a later time.

Assembly Language

JSB EXEC
DEF *+9 Re turn address
DEF RC ODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF PAKNO Pack number
DEF FLGTH File length (in records)
DEF RLGTH Record length (in words)
DEF SCODE Security code and user status
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 2
FNAME ASC 3,xxxxx xxxxx is the name to be applied to the file

(first two characters cannot be zero or 1774008)

PAKNO DEC p p is the pack number, see Comments
FLGTH DEC q q is the number of records in the file;

(1 :::;; q :::;; 3 2, 7 6 7)
RLGTH DEC r r is the number of words in a record;

r must be less than or equal to 112 the size
of the temp. record buff er

SCODE OCT s s is any 16-bit combination to be checked by EFMP
during OPEN and DESTROY

(SCODE+l) OCT t tis any 16-bit combination of status information
desired by the user (referred to as USTAT elsewhere)

ERRNO BSS 1 Return point for error codes

8-4

EFMPF = 2

Comments

1. If P AKNO is a number between 1 and 999 it indicates the EFMP area in which the file is to
be created. When EFMP creates a file, it reserves the necessary area on the disc after the last
previous file generated. No attempt is made to search for an area between files. If P AKNO is
equal to -1, the file is to be created in any EFMP area that is available.

2. If PAKNO equals zero, the file is placed on the Work Area of the disc and no area will be
reserved in the EFMP areas. When such a temporary file is created, the only directory in­
formation that is maintained is in the Opened-File Table. A disc-based directory is not main­
tained. Also, since the directory information is established in main memory during the
CREA TE function, the OPEN function is not required. The only reason for using an OPEN
call for a temporary file is to assign it to a specific Temporary Record Buffer or to change
the starting record number to a value other than 1. If no OPEN call is given, the first
Temporary Record Buffer is used.

3. When the Work Area is used for temporary files, EFMP reserves this whole area and identifies
it as PNOOO. In order to keep PNOOO from using the entire Work Area, the user must enter a
STORE,B,PNOOO directive for the system disc with the desired number of sectors. When
EFMP has terminated, the user should PURGE the file PNOOO from the Work Area.

8-5

EFMPF = 3

DESTROY

Purpose

To eliminate the directory information for a particular file from main memory and the disc. The
user must specify the correct security code for the file. The disc area is repacked only for temporary
files. To repack the EFMP areas use the REPACK EFMP call.

Assembly Language

JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF SCODE Security code
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 3
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, then FNAME refers to a temporary file

(if n ;:i: 1 and n ~ 999, FNAME is to be located in
this EFMP area; if n = -1, EFMP searches all of its
areas until it finds a file that matches FNAME)

SCODE OCT s sis the security code for the file established by the
CREA TE EFMP call; security code ignored on
temporary files

ERRNO BSS 1 Return point for error codes

8-6

EFMPF = 4

OPEN

Purpose

To make a previously created file accessible by extracting the necessary file information from the
disc directories and placing it in main memory. The number of files that can be opened at any one
time is limited by the size of the Opened File Table (see DEFINE).

Assembly Language

JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF RCDNO Record number
DEF SCODE Security code
DEF BUFNO Buffer number
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 4
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, the file is a temporary file on the work area;

if n is between 1 and 999, EFMP looks for FNAME in
the appropriate area; if n = -1, EFMP searches all
available areas for the requested file

RCDNO DEC r If r = 0, EFMP sets the next record to be accessed
(for sequential READS or WRITES) to the highest
record previously accessed + 1. Otherwise, r can be
any number between 1 and the maximum record
number contained in the file. This allows sequential
access to be initialized at any record.

SCODE OCT s s is the security code established by the CREA TE
call. It must match.

BUFNO DEC b b must be a number between 1 and the maximum
number of Temp. Record Buffers available. For
any other number, EFMP uses 1

ERRNO BSS 1 Return point for error codes

8-7

EFMPF = 5

CLOSE

Purpose

To remove information about a particular file from the Opened-File Table. This allows an additional
file to be opened. Also, CLOSE updates the user status information (USTAT) and the highest record
accessed on the disc.

Assembly Language

JSB EXEC
DEF *+6 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF USTAT User status
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 5
FNAME ASC 3,xxxxx See Comment 2
USTAT OCT u User status information (any 16-bit combination) to

be written into the disc directory for the file
ERRNO BSS 1 Return point for error codes

Comments

1. If a CLOSE is requested for a temporary file, the directory information in the Opened-File
Table is deleted and the Work Area is automatically repacked. If a file has been copied to the
Work Area, the user status (USTAT) and highest record assessed are not updated on the
original copy of the file.

2. To CLOSE all files in the Opened-File Table set the first word of FNAME equal to a binary
zero.

8-8

EFMPF = 6

READ

Purpose

To retrieve a specified record (random access) or the next record (sequential access) from a file
that has previously been opened and written.

Assembly Language

JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF RCDNO Record number
DEF BUFFR Buffer for data
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 6
FNAME ASC 3,xxxx
RCDNO DEC n n is a record number between 1 and 32, 767. For

sequential access and backspacing, see Comments.
BUFFR BSS m m is the length of the buffer in words. It must be

at least the record length.
ERRNO BSS 1 Return point for error codes

Comments

If RCDNO = 0, a sequential read or write is implied. This feature provides the program with the
next record available relative to the last read or write performed (or OPEN operation). If RCDNO
is a negative number, it specifies a backspace, relative to the current record (last record accessed
plus 1), before the read or write. If an attempt is made to backspace the record number indicator
to a value less than one, the EFMP issues an error and terminates the read or write. Unless needed,
care should be taken so as not to backspace the record number indicator beyond the range of
records held in the Temporary Record Buffer at that time, since this will initiate a posting oper­
ation and a physical disc access.

8-9

EFMPF = 7

INITIALIZE

Purpose

To initialize an EFMP area previously created by means of a DOS-III STORE directive.

Assembly Language

JSB EXEC
DEF *+6 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF PAKNO Pack number
DEF DIRSZ Directory size
DEF ERRNO Error number
return Continue execution

RCODE DEF 24
EFMPF DEC 7
PAKNO DEC p (1~p~999)

DIRSZ DEC n (n =number of entries, one entry !file; see Comment 2)
ERRNO BSS 1 Return point for error codes

Comments

L Pack number PNOOO cannot be initialized.

2. The directory occupies the first sector(s) of the EFMP area.

The number of sectors allocated to a directory is determined as follows:

The variable n is used to calculate the number of sectors to be reserved for the directory. It does
not indicate the maximum number of file entries allowed in the directory. If the nth file entry
does not completely fill the last sector of the directory, the space remaining may be used to con­
tain additional file entries.

(l+n)*9
#Sectors =

128

(add 1 to #Sectors if remainder is > zero)

8-10

EFMPF = 8

WRITE

Purpose

To write into a specified record (random access) or into the next record (sequential access) of a
file that has previously been opened.

Assembly Language

JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function number
DEF FNAME File name
DEF RCDNO Record number
DEF BUFFR Buffer for data
DEF ERR NO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 8
FNAME ASC 3,xxxxx
RCDNO DEC n Same as for the READ EXEC CALL
BUFFR BSS m Same as for READ
ERRNO BSS 1 Return point for error codes

8-11

EFMPF = 9

RESET

Purpose

To reset the highest record accessed pointer for a file to a lower value. The information beyond the
pointer is lost. The file must be open before it can be reset. (P AKNO below provides an additional
check.)

Assembly Language

JSB EXEC
DEF *+7
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF RCDNO Record number
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 9
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, EFMP searches the work area to find the

desired file name; if n is a number between 1 and 999,
EFMP searches EFMP area PNn to find the desired
file name; if n = -1, EFMP searches all EFMP areas

RCDNO DEC m m is a number between 0 and 32, 767 to which the
highest record accessed pointer will be set (m must
be lower than the current value)

ERRNO BSS 1 Return point for error codes

8-12

EFMPF = 10

STATUS

Purpose

To allow the user program access to various types of status information relative to EFMP. Several
separate status functions (identified by unique Status Function Numbers) are provided; all have
basically the same form of calling sequence, but they vary in the parameters used.

Assembly Language

RCODE
EFMPF
DUMMY

JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FSTAT Status function number
DEF FNAME File name
DEF PAKNO Pack number
DEF DUMMY Not used
DEF STATB Status buff er
DEF ERRNO Error number
return Continue execution

Note: Above is the general format for Status EFMP calls. The use
and meaning of each parameter in the calling sequence varies
from status call to status call. The parameters for each call
are given separately. below. Common to all status functions
are

DEC 24
DEC 10
BSS 1

8-13

FSTAT = 1

STATUS

Purpose

To provide the user with all information, except the security code, contained in the directory for
a file.

Parameters

FSTAT DEC 1
FNAME ASC 3,xxxxx
PAKNO DEC m If m = 0, EFMP searches the Work Area for the

requested file. If m is between 1 and 999, EFMP
searches the EFMP area of that pack number. For
m = -1, EFMP searches all available EFMP areas
for the requested file.

STATB BSS 10 The pack number is returned in the first word if
P AKNO = -1. The remaining nine words will
receive the directory status information in the
same format as the directory itself (see Figure 7-1).

ERRNO BSS 1 Return point for error code.

8-14

FSTAT = 2

STATUS

Purpose

To determine if a file is open.

Parameters

FSTAT DEC 2
FNAME ASC 3,xxxxx
PAKNO OCT 0 Not used
STATB BSS 2 The first word returns the pack number if the

file is open. The second word returns a value
of 0 if the file is open or 1 if the file is not
open.

ERRNO BSS 1 Return point for error codes.

8-15

FSTAT=3

STATUS

Purpose

To check the security code of a file.

Parameters

FSTAT DEC 3
FNAME ASC 3,xxxxx
PAKNO DEC m Same as function number 1
STATB BSS 3 The first word returns the pack number if

appropriate. The second word is used by the
user program to give the security code to be
checked. The third word returns 0 if the code
checks or 1 if it does not check.

ERRNO BSS 1 Return point for error codes.

8-16

FSTAT = 4

STATUS

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file.

Parameters

FSTAT DEC 4
FNAME ASC 3,xxxxx
PAKNO DEC m Same as function number 1
STATB BSS 2 The first word returns the pack number if

appropriate. The second word returns the
number of sectors available.

ERRNO BSS 1 Return point for error codes.

8-17

FSTAT = 5

STATUS

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area.

Parameters

FSTAT DEC 5
FNAME OCT 0 Not used
PAKNO DEC m Same as function number 1, but cannot equal -1
STATB BSS 2 The first word must be present, but is not used.

The second word returns the number of sectors
available.

ERRNO BSS 1 Return point for error codes.

8-18

FSTAT = 6

STATUS

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 and the
maximum number of files in an EFMP area.

Parameters

FSTAT DEC 6
FNAME BSS 3 Return point for file name or all zeroes if no

file is present
PAKNO DEC m mis a number between 1 and 999
STATB DEC n n indicates the nth file
ERR NO BSS 1 Return point for error codes

8-19

FSTAT = 7

STATUS

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer (sped­
fying the ordinal position of the pack number) between 1 and the maximum number of pack
numbers on a subchannel.

Parameters

FSTAT DEC 7
FNAME DEC m m = the desired subchannel

On return, FNAME is zero if the EFMP area of
the pack number is initialized and 1 if the EFMP
area of the pack number is not initialized.

PAKNO BSS 1 Return point for the pack number
STATE DEC n n indicates the nth pack number.
ERRNO BSS 1 Return point for error codes.

8-20

EFMPF = 11

REPACK (PURGE)

Purpose

To repack the existing files on an EFMP area(s), removing empty spaces left when files have been
destroyed.

Assembly Language

JSB EXEC
DEF *+5
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF PAKNO Pack number
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 11
PAKNO DEC n For n between 1 and 999, only the specified EFMP

area is repacked; for n = -1, all the EFMP areas
available to EFMP are repacked

ERRNO BSS 1 Return point for error codes

CAUTION: IF THE EFMP DISC DIRECTORY CONTAINS A LARGE NUMBER
OF FILES AND THE SIZES OF THE TEMPORARY RECORD
BUFFERS ARE SMALL, REPACKING MAY REQUIRE CONSIDER­
ABLE TIME. THEREFORE, REPACK SHOULD BE PERFORMED
WHEN SUFFICIENT TIME IS AVAILABLE. UNDER NO CIRCUM­
STANCES SHOULD AN ABORT BE PERFORMED DURING A
REPACK.

8-21

EFMPF = 12

COPY

Purpose

To transfer a copy of an opened file and its directory from an EFMP area to the Work Area of
DOS-III, from one EFMP area to another EFMP area or from the Work Area to an EFMP area.

Assembly Language

JSB EXEC
DEF *+6
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF ERRNO Error number
return Continue execution

RCODE DEF 24
EFMPF DEC 12
FNAME ASC 3,xxxxx See Comment 1
PAKNO DEC n If n = 0, EFMP copies the file onto the Work Area;

if n is between 1 and 999, EFMP copies the file
into the specified EFMP area; if n is between -1
and -999, EFMP copies the file from the Work
Area to an EFMP area specified by the 10 's
complement of n (see Comment 2)

ERRNO BSS 1 Return point for error codes

Comments

1. Remember that a file must be opened before it can be copied. This is necessary to determine
from which pack to copy the file. When a file has been copied to the Work Area, all reads and
writes referencing that file use the Work Area version until the file is closed. (Files copied
from the Work Area to an EFMP area continue to use the Work Area version for reads and
writes.) Temporary copies of files do not have security codes. Therefore, files copied from the
Work Area to a pack have a security code of 0. When a file is copied from pack to pack, the
original security code is retained. See "CLOSE" for further notes on Work Area files.

8-22

EFMPF = 12

2. If there is already a file with the same name in the destination EFMP area directory, an error
code is returned and the copy is aborted. In this case, the user can first destroy the name in
the destination EFMP area, and then perform the copy again.

3. When copying from one EFMP area to another EFMP area not on the drive (and only a single
removable pack is available), EFMP automatically requests that the user continually swap
packs until the entire file has been copied. EFMP outputs:

INSERT DESTINATION [SOURCE] PACK AND PRESS RUN.

and halts the computer with 102076 in the DISPLAY register.

After the user inserts the appropriate pack and presses RUN, a check is made to determine if
the proper pack has been entered. If EFMP cannot find the correct pack, the message is re­
peated. To allow the user an orderly exit in case the correct pack is not available, the following
question is asked after each question:

ENTER CORT

where C means to continue copying, and

T means to terminate the copy and return to the program.

4. Care must be taken to insert the original pack (if it has been removed during the copy function)
into its original subchannel.

8-23

EFMPF = 13

CHANGE FILE NAME

Purpose

To change a file name (file need not be opened).

Assembly Language

JSB EXEC
DEF *+7
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF SCODE Security code
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 13
FNAME ASC 3,xxxxx Current file name

ASC 3,zzzzz New file name
PAKNO DEC n n = 0, indicates that the file is on the Work Area_;

if n is between 1 and 999, n indicates the EFMP
area containing the file; if n = -1, EFMP searches
all available EFMP areas for the current file name

SCODE OCT m Security code, see CREA TE
ERRNO BSS 1 Return point for error codes

8-24

EFMPF = 14

POST

Purpose

To physically write on the disc all buffers that have been flagged as "must be written" in the
Temporary Record Buffer. (That is, convert all outstanding logical writes into physical writes.)

Assembly Language

JSB EXEC
DEF *+4
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF ERRNO Error number
return Continue execution

RCODE DEC 24
EFMPF DEC 14
ERRNO BSS 1 Return point for error codes

Comments

The POST operation updates the highest record accessed pointer in the disc directories, but not
the user status word (USTAT).

8-25

SECTION IX
EFMP Utility Program

The EFMP Utility Program (UTIL) allows the user to access most of the EFMP functions through
the keyboard. UTIL accepts commands or directives from the operator and converts these into
EFMP calling sequences. After EFMP has processed the cali, UTIL reports back (to the operator) a
successful operation or an EFMP error.

This section describes how to initiate the UTIL program using the DOS-III PROG directive and
then describes the following UTIL commands (presented in alphabetic order):

BRIEF
CHANGE
CLOSE
COPY
CREATE
DESTROY
END
INITIALIZE
OPEN
POST
REPACK
RESET
STATUS-I
STATUS-2
STATUS-3
STATUS-4
STATUS-5
STATUS-6
STATUS-7

All are EFMP functions, except BRIEF and END,
which are UTIL program functions.

Note: UTIL requires the FORTRAN IV version of the Formatter program to
operate properly.

9-1

:PROG,UTIL

Purpose

To initiate execution of the UTIL program.

Format

:PROG, UTIL,n

where n = 0 to print a list of commands or

n r 0 to skip printing the list.

List of commands message (all parameters are decimal):

/INI,PAKNO,DIRSZ
/CRE,FNAME,PAKNO,FLGTH,RLGTH,SCODE, UST AT
/DES,FNAME,PAKNO,SCODE .
/OPE,FNAME,PAKNO,RCDNO,SCODE
/CLO,FNAME, USTA X
/RES,FNAME,PAKNO,RCDNO
/STA,DF,FNAME,PAKNO
/STA,FO,FNAME
/STA,SC,FNAME,PAKNO,SCODE
/STA,LR,FNAME,PAKNO
/STA,LF,PAKNO
/STA,NF,PAKNO,STATB
/STA,AP
/REP,PAKNO
/COP,FNAME,PAKNO
/CHA,FNAM1,FNAM2,PAKNO,SCODE
/POS
/BRI,FNAME,SCODE
/END

9-2

UTIL begins by outputting a message to indicate that it is ready for a directive:

UTILREADY

After it processes the directive, UTIL outputs the results of the operation (where appropriate) or
any error codes that may have been returned by EFMP. When it is ready for another directive,
UTIL outputs

UTILREADY

If an incorrect directive is entered, UTIL outputs

ILLEGAL OPERATION
UTILREADY

UTIL is terminated when the operator inputs the command /END.

UTIL outputs any error messages on the system console; normal output is output on the list device.

9-3

BRIEF

Purpose

To increase or decrease the amount of disc storage reserved for a file. BRIEF is a UTIL program
function, not an EFMP function.

Format

/BR/, fname,scode

{name is the name of the file, and

scode is the security code of the file.

BRIEF first outputs the status of the file:

AVAILABLE RECS. = m

NEW RECORD COUNT?

The operator inputs either:

RECORDS USED = r

IE to terminate the command and prepare UTIL for more commands,
or

n to change the available record count ton

BRIEF stores the contents of {name on the Work ~rea, destroys the current file, repacks the EFMP
area, and creates and opens a new file. The contents of {name are transferred from the Work Area
to the new file and BRIEF prints out a message:

AVAILABLE RECS. = n RECORDS USED = r

BRIEF then terminates.

Comment

BRIEF creates and uses a temporary file named"!:::.!:::.!:::.!:::.!:::.!:::." (all blanks).

9-4

CHANGE

Purpose

To change the name of a file (i.e., to invoke the CHANGE FILE NAME function of EFMP).

Format

/CHA,fnaml ,fnam2,pakno,scode

fnaml is the current file name

fnam2 is the new file name.

See CHANGE FILE NAME EFMP CALL for explanation of other parameters.

EXAMPLE

/CHA,LOB70,XXXXX,120,0

Example print-out:

FILE LOB70 OLD FILE
FILE XXXXX NEW FILE
THE FILE IS ON PACK# 120
THE SECURITY CODE IS 0

9-5

CLOSE

Purpose

To close a previously opened file (i.e., to invoke the CLOSE function of EFMP).

Format

/CLO,fname, us tat

See CLOSE EFMP CALL for explanation of parameters. Note, however, that all the files in the
Opened-File Table cannot be closed by setting the first word of FNAME (in the CLOSE calling
sequence) to a binary zero.

EXAMPLE

/CLO,LOB70,0

Example print-out:

FILE LOB70 CLOSED

THE USER STATUS WORD IS 0

9-6

COPY

Purpose

To copy a file (i.e., to invoke the COPY function of EFMP).

Format

/COP,fname,pakno

See COPY EFMP CALL for explanation of parameters and messages.

EXAMPLE

/COP,LOB70,120

Example print-out:

FILE LOB70 COPIED
THE FILE IS TEMPORARY IN WORK AREA
FILE LOB70 COPIED
THE FILE IS ON PACK# 120

9-7

CREATE

Purpose

To create a new file (i.e., to invoke the CREATE function of EFMP).

Format

/CRE,fname,pakno,flgth,rlgth,scode,ustat

See CREATE EFMP CALL for explanation of parameters.

EXAMPLE

/CRE,C0,120,8,8,0,0

Example print-out:

FILE CO CREATED
THE FILE IS ON PACK# 120
THE FILE LENGTH IS 8 RECORDS
THE RECORD LENGTH IS 8 WORDS
THE SECURITY CODE IS 0
THE USER STATUS WORD IS 0

9-8

DESTROY

Purpose

To destroy a file by eliminating its directory entry (i.e., to invoke the DESTROY EFMP function).

Format

/DES,fname,pakno,scode

See DESTROY EFMP CALL for explanation of parameters.

EXAMPLE

/iJES,C0,120,0

Example print-out:

FILE co DESTROYED

9-9

END

Purpose

To terminate the operation of the UTIL program. END is an UTIL program function, not an EFMP
function.

Format

/END

9-10

INITIALIZE

Purpose

To initialize an EFMP area previously allocated space by means of a DOS-III STORE directive.

Format

/INI,pakno,dirsz

See INITIALIZE EFMP CALL for explanation of parameters.

EXAMPLE

/INI,100,20

Example print-out:

PACK #100 INITIALIZED

9-11

OPEN

Purpose

To OPEN a previously CREATED file (i.e., to invoke the OPEN function of EFMP).

Format

/OPE,fname,pakno,rcdno,scode

See OPEN EFMP CALL for explanation of parameters.

EXAMPLE

/OPE,LOB70,120,1,0

Example print-out:

FILE LOB70 OPENED
THE FILE IS ON PACK# 120
THE RECORD # IS 1
THE SECURITY CODE IS 0

9-12

POST

Purpose

To post files (i.e., to invoke the POST function of EFMP).

Format

/POS

Example print-out:

ALL FILES POSTED

9-13

RESET

Purpose

To reset the highest record number accessed for a file (i.e., to invoke the RESET function of EFMP).

Format

/RES,fname,pakno,rcdno

See RESET EFMP CALL for explanation of the parameters.

EXAMPLE

/RES,LOB70, 120, 0

Example print-out:

FILE LOB70 RESET
THE FILE IS ON PACK# 120
THE RECORD #IS 0

9-14

REPACK

Purpose

To repack existing EFMP areas (i.e., to invoke the REPACK EXEC CALL function of EFMP).

Format

/REP,pakno

See REP ACK EFMP CALL for explanation of parameters.

EXAMPLES

/REP,42 (repacks EFMP area in pack 42)
/REP, -1 (repacks all EFMP areas)

Example print-out:

PACK# 42 REPACKED

or

ALL PACKS AVAILABLE REPACKED

9-15

STATUS-1

Purpose

To print out directory information about a file (i.e., to invoke STATUS function number 1 of
EFMP).

Format

/STA,DF,fname,pakno.

See STATUS EFMP CALL (FSTA T = 1) for explanation of the parameters and results.

EXAMPLE

/STA,DF,LOB70,120

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
STARTING TRACK# IS 6
STARTING SECTOR #IS 9
THE FILE LENGTH IS 12 RECORDS
THE RECORD LENGTH IS 128 WORDS
THE USER STATUS WORD IS 0
HIGHEST RECORD #ACCESSED IS 0

9-16

STATUS-2

Purpose

To determine if a file is OPEN (i.e., to invoke STATUS function number 2 of EFMP).

Format

/STA,FO,fname

See FSTAT = 2 for explanation of the parameters and results.

EXAMPLE

/STA,FO,LOB70

Example print-out:

FILE LOB70 STATUS
FILE IS OPEN

9-17

STATUS-3

Purpose

To check the security code of a file (i.e., to invoke STATUS function number 3 of EFMP).

Format

/STA,SC,fname,pakno,scode

See FST AT=3 for explanation of parameters and results.

EXAMPLE

/STA,SC,LOB70,120,0

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
THE SECURITY CODE IS 0
CODE CHECKS

Note: The security code returned is a restatement of the security code
entered; it is not necessarily the correct security code.

9-18

STATUS-4

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file (i.e., to invoke STATUS function number 4 of EFMP).

Format

/ST A,LR,fname,pakno

See FST AT=4 for explanation of parameters and results

EXAMPLE

/STA,LR,LOB70,120

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
OF AVAILABLE SECTORS IS 12

9-19

STATUS-5

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area (i.e., to invoke STATUS function number 5 of EFMP).

Format

/STA,LF,pakno

See FSTAT=5 for explanation of parameters and results.

EXAMPLE

/STA,LF,120

Example print-out:

FOR PACK# 120
#OF AVAILABLE SECTORS IS 4610

9-20

STATUS-6

Purpose

To obtain the name of the nth file in an EFMP area ~here n is an integer between 1 and the
maximum number of files in an EFMP area (i.e., to invoke STATUS function number 6 of EFMP).

Format

/ST A,NF,pakno,sta tb

See FST AT=6 for explanation of parameters and results.

EXAMPLE

/STA,NF,120,1

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
FILE # 1 IN THE DIRECTORY

9-21

STATUS-7

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer
(specifying the ordinal position of the pack number) between 1 and the maximum number of
pack numbers on a subchannel.

Format

/ST A,AP,su bch,statb

See FSTAT = 7 for explanation of parameters and results.

EXAMPLE

/STA,AP,1,1

Example print-out:

PACK #120 IS AVAILABLE AND INITIALIZED

9-22

PART 3
Generating and loading DOS-Ill

SECTION X
Generating DOS-Ill

HP 24307B DOS-III Disc Operating System software must be generated and then loaded into the
computer's memory before DOS-III system operation is possible. Generating a DOS-III system con­
sists of two operations:

1. Configuring the system to the available hardware.

2. Storing the configured system on disc memory.

In addition, the discs included in the system must be formatted before they can be used by DOS-III.

This sectio~ describes the procedures required to format a disc and to generate DOS-III system soft­
ware. Both disc formatting and system generation are performed using a stand-alone program, DSGEN.

Depending on the type of moving-head disc device selected for the DOS-III system, generation can be
performed either from relocatable modules and drivers punched on paper tape or contained on a master
disc cartridge. Systems including an HP 7901, HP 2883, or HP 2884 disc device initially must be
generated from paper tape. Systems including an HP 7900 disc device are delivered with a master
disc cartridge (HP part number 24307-13001) labeled DSGEN. The DSGEN disc cartridge con-
tains a DOS-III software system together with a set of relocatable modules and drivers. The cartridge
may be used to generate DOS-III software. A procedure for preparing to generate DOS-III software
from the DSGEN disc cartridge is described later in this section (see "DSGEN Disc Cartridge Sys-
tem Generation").

DSG EN

DSGEN (the DOS-III System Generator) is an absolute program which is loaded into main memory:
1) by the paper tape portion of the main-memory loader, BMDL, when using an HP 2100A/S com­
puter or, 2) by the Bootstrap loaders contained in either the paper tape loader ROM or in the disc
loader ROM when using an HP 21MX computer. Since DSGEN input/output is independent of the
DOS-III system it generates, the I/0 operation of DSGEN requires SIO drivers which are distributed
with the DOS-III software. The SIO drivers must be configured to the user's hardware configuration.
A copy of the configured DSGEN program can be punched on paper tape using SIO System Dump,
if desired. SIO drivers and SIO System Dump are absolute programs - not part of DOS-III - needed
only for DSGEN operation. An optional utility program which uses SIO drivers is the Prepare Tape
System (PTS). PTS can be used to transfer relocatable modules from paper tape to magnetic tape to
expedite the DSGEN program input phase. DSGEN has two independent functions:

10-1

1. To format new disc cartridges (or packs).

2. To generate a DOS-III software system that fits the user's main-memory size, 1/0 equipment,
and programming needs.

DSGEN CONFIGURATION FROM PAPER TAPE

DSGEN is executed in a Software Input/Output environment to generate DOS-III. First, ensure
that equipment power is on and disc storage is unprotected (Disc Protect Override or Format
enabled). At this point in DSGEN configuration, the procedure for loading paper tape depends on
the computer being used.

HP 2100A/S

The main-memory loader, BMDL, is used to load programs from paper tape into memory. BMDL
is described in detail in Section XI. A simplified procedure follows:

A. Place the paper tape into the paper tape reader and press READ to ready the reader.

B. On the computer front panel, set the P-register to the BMDL starting address 377008 for 16K
words of memory; 577008 for 24K words; or 777008 for 32K words.

C. Press PRESET (INTERNAL and EXTERNAL); then press RUN. After a successful load, the
computer will halt with 102077 8 in the display register.

HP 21MX

The HP 21MX processor is equipped with a paper tape loader ROM, the contents of which are
equivalent to the Basic Binary Loader portion of the BMDL used on HP 2100A/S computers. The
contents of the ROM must be loaded into memory before the drivers or DSGEN (or any program
on paper tape) can be placed into main memory. Use the following procedure to accomplish paper
tape ROM loading.

A. Press PRESET.

B. Select the S-register for display.

C. Press the CLEAR DISPLAY.

D. Bits 15 and 14 of the Display Register must be 00 to select the paper tape loader ROM.

E. Change bits 11 through 6 of the Display Register to the octal select code of the tape reader.

Since bits 13, 12, and 5 through 0 are not used in conjunction with the paper tape loader,
they are ignored.

F. Press STORE to store the contents of the Display Register in the S-register.

10-2

G. Press IBL to load the contents of the paper tape loader ROM into the uppermost 64 locations
in memory. The computer halts with 1020778 in the T-register.

H. Place the DSGEN paper tape in the paper tape reader, press READ to ready the reader, and
press RUN at the main processor. After a successful load, the computer halts with 102077 8

in the T-register.

To configure DSGEN (using either an HP 2100A/S or HP 21MX computer), proceed as follows:

1. Specific SIO drivers must be configured before DSGEN can be executed. To configure a
driver:

a. Load the driver program into memory via the paper tape reader using the proper set of
procedures from those described above (HP 21 OOA/S Steps A through C or HP 21MX
Steps A through H).

b. Set the 1/0 channel select code of the device (lower numbered select code if there are
two 1/0 channels) in bits 5-0 of the switch register.

c. Start the driver program by setting the P-register to address 28 ; then press RUN. Upon
successful completion of the driver configuration, the computer will halt with 102077 8

in the display register.

2. Configure the SIO console driver (HP part no. 24127-60001) using Steps 1-a through 1-c. (If
the console device is an HP 2754B teleprinter, switch register bit 15 must be set to one at
Step 1-b.)

3. If program input is to be from the paper tape reader, configure the SIO paper tape reader
driver (HP part no. 20319-60001) using Steps 1-a through 1-c.

4. If a high-speed paper tape punch is included in the system, configure the SIO punch driver
(HP part no. 20320-60001) using Steps 1-a through 1-c.

5. Load DSGEN via the paper tape reader using the appropriate procedure described above (HP
2100A/S Steps A through C or HP 21MX Steps A through H).

6. If program input is to be from magnetic tape, configure the SIO magnetic tape driver (HP part
no. 13022-60001) using Steps 1-a through 1-c.

7. If the system includes a high-speed or console punch, a configured DSG EN can be punched on
paper tape using the following procedure:

a. Load the SIO System Dump program (HP part no. 20335-60001) via the paper tape
reader using the procedure described in HP 21 OOA/S Steps A through C or the procedure
described in HP 21MX Steps A through H.

b. Set switch register bit 15 to one.

c. Start the SIO System Dump program by setting the P-register to address 28 ; then press
RUN. After tape punching is successfully completed, the computer will halt with 102077 8

in the display register. For an additional copy of the configured DSGEN, press RUN.

10-3

8. If the disc or discs to be used by DOS-III have been formatted, DOS-III system generation can
begin immediately. Proceed as follows:

a. Set switch register bit 15 to zero.

b. Set the P-register to DSGEN starting address 1008 .

c. Press RUN. DOS-III system generation dialog begins (see "Using DSGEN to generate
DOS-III").

9. To format discs before executing system generation:

a. Set switch register bit 15 to one.

b. Set the P-register to DSGEN starting address 1008 •

c. Press RUN. The disc formatting dialog begins (see "Using DSGEN to Format Discs").

DSGEN Start-up

To start either disc formatting or DOS-III system generation from a configured DSGEN program
(on paper tape) perform a standard paper-tape load. These procedures are described in HP 21 OOA/S
Steps A through Corin HP 21MX Steps A through H. Then proceed as follows:

• For disc formatting:

a. Set switch register bit 15 to one.

b. · Set the P-register to the DSGEN starting address 1008 •

c. Press RUN. The disc formatting dialog begins (see "Using DSGEN to Format Discs").

• For DOS-III system generation:

a. Set switch register bit 15 to zero.

b. Set the P-register to the DSGEN starting address 1008 •

c. Press RUN. DOS-III system generation begins at the initialization phase (see "Using
DSGEN to generate DOS-III").

10-4

USING DSGEN TO FORMAT DISCS

Before a fresh disc can be used in DOS-III, it must be formatted by DSGEN. System discs (including
a possible User Area) are formatted during system generation, but dedicated user discs must be for­
matted by running DSGEN again in a special mode. Formatting a disc involves assigning it a system
generation code, reading every sector, clearing any existing user or system directory, and so forth.
The result is an unlabeled user disc ready for use in DOS-III. The following operator responses are
only examples, actual responses should be appropriate to the particular system being generated.

Operating Instructions

1. Tum on all equipment.

2. Unprotect the disc (enable Disc Protect Override).

3. Load a configured DSGEN using the main-memory resident BMDL or the paper tape loader
ROM. (See "DSGEN Configuration and Start-up" in this section.)

4. Set up a starting address at location 1008 •

5. Set switch register bit 15 equal to 1.

6. Start the computer executing (press RUN).

7. DSG EN asks for a decimal number to be written on the disc
label. This number is used for identification

Operator responds with a 1- to 4-digit decimal number

8. DSG EN requests the octal channel number (select code) of
the disc controller

Operator responds with the appropriate octal number .

9. DSGEN requests the type of disc storage.

SYS GEN CODE?

...... ~

. . SYS DISC CHANNEL?

. 10
' f,.., 1) \ s c. Q Mil~<4

DISC TYPE?

fn.' ,.,..

Operator responds with 7900, 7901, 2883, or 2883B i 41 c:> Q
(A response of 2883 implies four subchannels per disc
drive; 2883B implies two subchannels per disc drive.) 7900

10. DSGEN requests the subchannel number (0 to 7) of the
user disc to be formatted

Operator responds with a number between 0 and
7 inclusive

10-5

USER DISC SUBCHANNEL?

11. DSGEN requests that the disc be unprotected (if it is
still protected) TURN ON DISC PROTECT OVERRIDE -PRESS RUN

Operator unprotects the disc and starts the
computer executing.

12. DSGEN carries out formatting on the specified subchannel
and halts with a code of 1020?7 ~ .

13. This procedure should be repeated for each proposed user disc.

Operator can start the computer (press RUN) to format
a new disc of the same type (switch bit 15 must still be
equal to 1).
DSGEN repeats from USER DISC SUBCHANNEL?

Operator can set switch bit 15 equal to 0 and start the
computer (press RUN) to proceed to system generation.

10-6

USING DSGEN 0 GENERATE DOS-///
e:2'{3o7-

t (:,C ? 'J."
The operation of DSGEN involves fou/p\itsls:

1. INITIALIZATION PHASE. DSGEN requests specifications for DOS-III, including description
of available disc space, memory, Time-base Generator channel, system generation code, system
and user disc subchannels, and program input devices.

2. PROGRAM INPUT PHASE. DSGEN reads the relocatable programs to be included in the sys­
tem. The relocatable program modules can be input via paper tape, disc, or magnetic tape (the
magnetic tape must be prepared off-line using the Prepare Tape System).

3. PARAMETER INPUT PHASE. Parameters to change EXEC modules or drivers from disc- to
main-memory resident may be entered. The programs' NAM records are already set for a
minimum main-memory system except that two console drivers have been included. DISCM,
$EX30 (if EFMP is used), moving-head driver DVR31, and one console driver must be main­
memory resident.

4. DISC LOADING PHASE. DSGEN requests a specification of the base page linkage, and begins
loading programs onto the disc in absolute format. Systems programs (i.e., the modules of
DOS-III) are loaded first, after which DSGEN requests information for the equipment table,
device reference table (logical unit table), and interrupt table and proceeds to load the rest of
the programs onto the disc.

Restart

If an error occurs during execution of any phase, the operator can restart that phase by restarting
DSGEN at location 1008 •

10-7

Initialization Phase

During the initialization phase, DSGEN requests information necessary to begin generating the
DOS-III. After each output on the system console, the operator responds by entering the required
information terminated by a return linefeed. The following responses are typical. (The operator
responses are only examples, actual responses should be appropriate to the particular system being
generated.)

1. DSGEN requests a decimal system generation code. This
code is written in the label field of the system disc for
identification SYS GEN CODE?

Operator responds with a 1- to 4-digit decimal integer.•. ~ <,f.01~1..-

2. DSG EN requests the octal channel number (select code) of
the disc controller

Operator responds with the high priority (low number)
channel

SYS DISC CHNL?

..)II

Note: BMDL requires that the SYS DISC CHNL? response must be the same

JS

value as the EQT entry for the system. C f l'tJ {)•re,. ll'

3. DSGEN requests the type of disc storage.

Operator responds with 7900, 7901, 2883, or 2883B. A response
of 2883 implies four subchannels per disc drive; 2883B implies

.. DISC TYPE?

two subchannels per disc drive. 7900 "1-

4. DSGEN requests the number of tracks (decimal) on the
system disc

Operator responds with a decimal number less than
or equal to 200. (A response of 200 leaves three
tracks as spares. A response less than 200 leaves
extra tracks as spares.)

5. DSGEN requests the number of drives on the system .

If response to Step 3 was 2883, the operator responds with 1 or 2;
if response to Step 3 was 2883B, 7900, or 7901, the operator
responds with a number between 1 and 4 inclusive.

SYS DISC SIZE?

200

#DRIVES?

6. DSGEN requests the decimal number of the first track
on the system disc which is available to DOS-III . FIRST SYSTEM TRACK?

Operator responds

7. DSGEN requests the decimal number of the first sector
available to DOS-III

Operator responds. (The system area cannot begin
before track 0, sector 3)

10-8

0

FIRST SYSTEM SECTOR?

3

3

8. DSGEN requests the subchannel number of the system disc

Operator responds with a· number between 0 and 7

SYS DISC SUBCHNL?

0

Note: On a 7901 disc, only odd numbered subchannels are available.

9. DSGEN requests the subchannel number of the user disc.
(This may be the same as the system disc.) USER DISC SUBCHNL?

Operator responds with a number between 0 and 7.
(System efficiency increases if the user disc is on a
different drive from the system disc.)

10. DSGEN requests the octal channel number (select code) of
the Time-base Generator

Operator responds with the proper select code or 0
if the Time-base Generator is not present

DSGEN now requests the select code of the privileged­
in terru pt card

Operator responds with the channel (octal) of the privileged
interrupt fence if privileged interrupt is desired; otherwise,
type 0.

11. DSGEN requests the number of DMA channels in the
system

Operator responds with the number of DMA
channels available

12. DSGEN requests the last word of available main memory
in octal

Operator responds

13. DSGEN asks whether SS directives are to be allowed in the
system

Operator responds either YES or NO

14. DSGEN requests the type of primary input unit for relocatable
program modules

Operator responds with PT (for paper tape), TY (for
teleprinter), D F (for disc file), or MT (for magnetic
tape; see PREPARE TAPE SYSTEM (02116-91751)).

10-9

......... /~

TIME BASE GEN CHNL?

0

PRIV INT CARD CHNL?

0

DMA CHANNELS?

. . 2 2,
(Al~~\,,)

LWAMEM?

~ .,,(,,

ALLOW :SS?

YES

PRGM INPT?

DF

15. If the previous answer is DF, DSGEN requests the subchannel
number of the disc containing the relocatable program
modules

Operator responds with the appropriate subchannel
number. The subchannel must contain a disc (prepared
by a pre-existing DOS-III) whose user area contains only
relocatable modules of DOS-III. By specifying PT to the
next question (LIBR INPT?) the operator can include
programs from the paper tape reader in addition to those
on the disc file

16. DSGEN requests the type of optional input unit for relocatable
program modules

Operator responds with PT, TY, DF, or MT

INPUT DISC SUBCHNL?

-1- -(1~., 0

. LIBR INPT?

~/ZO,,.,..

(11$ c

... <EJ
Note: Any type of relocatable program can be entered through the Program

Input Unit or the Library Input Unit.

17. DSGEN requests the type of input unit for the parameter
input phase

Operator responds with PT or TY

When DSGEN finishes the initialization phase, the computer halts.

/\) 0 v.J k.•A01tJC.

10-10

,) • r e.

-.i.)

s ~~ 4-o 'O 0

l:-t i' e ":::>

Program Input Phase \, \ ~ie l{'\i•"' '\'t ;i laJ P·'-'T ~ (2....... -1.-o ¢ 0
---·- -- - l-' .;n~O,e" ,.....,

During the program input phase, DSGEN accepts relocatable programs froiµ the Program Input
Unit and Dibrary Input·Bftit specified during the initialization phase. The operator selects the input
device by setting switch register bits 0-1 (002 for the Program Input Unit, or 102 for the Library
Input Unit), and places the programs in the input device_. Main programs must be entered prior to
their segments. DISCM should be the first module loaded.

\:) l 'i (.' t'k.O....,-:-;;;;; 4, -:;;ii. ~ S' ,.. 0 t) • s Cit s 0 '..t p., " •. , • l'f ... T' I I!.. ~ -r- - -, ,... ' il .~
The suggested order of module input is i)-1t • u ~ l

,_;'DOS-III MAIN-MEMORY RESIDENT SYSTEM (DISCM)
DOS-III 1/0 DRIVERS (DVR05, DVROl, DVR71, ... ETC)
DOS-III EXEC MODULES ($EX01 ...)
EFMP EXEC MODULES (IF DESIREn-$EX30 ...)
DOS-III JOB PROCESSOR/FILE MANAGER (JOBPR)
DOS-III RELOCATING LOADER (LOADR)
DOS-III ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENT!, ...)
DOS-III FORTRAN (MAIN CONTROL, PASSl, ...)
DOS-III EFMP UTIL (IF $EX30 ... AND FORTRAN IV LIBRARY ARE INCLUDED)
RTE/DOS ALGOL
RTE/DOS FORTRAN IV LIBRARY OR RTE/DOS BASIC FORMATTER
RTE/DOS RELOCATABLE PROGRAM LIBRARY (EAU OR FLOATING POINT) - See Note 1
RTE/DOS FAST FORTRAN PROCESSOR (FFP) SUBROUTINE LIBRARY AND $SETP

SYSTEM SUBROUTINE - See Note 2

Any relocatable user programs to be made a permanent part of DOS-III

Notes: 1) For systems based on an HP 21MX series processor only, the HP
21MX RTE/DOS DEBUG subroutine should be loaded immedi­
ately following the Relocatable Program Library (see "Special
Considerations" under "DEBUG Library Subroutine" in Section
V).

2) When the FFP and $SETP tapes are loaded, ERR OB and ERR05
will occur and messages will be printed on the console because
the entry point names used by these subroutines replace the
FORTRAN and library subroutine entry point names.

Load the first input module and start the computer executing. When entering paper tape, the
message "*EOT" is output whenever an end-of-tape occurs.' The computer halts. Program, input can

\ be switched back and forth between the input units by varying the switch register bits between 002

~102 before starting the computer. ,

To terminate the program input phase, the operator must set switch register bits to 01 2 , and start
' -the computer. If there are no undefined exter:qals, this message is printed on the system console:

NO UNDEF EXTS

If there are undefined externals, the following message is output:

UNDEF EXTS

10-11

The externals are listed one per line and the computer halts. External references are satisfied by
loading more programs. The operator must set switch register bits to 002 (for Program Input Unit)
or 102 (for the Library Input Unit) and start the computer executing. If the externals are to be left
unsatisfied, set the switch register bits to 01 2 and start the computer executing.

Note: $EX30 through $EX33 (the EFMP EXEC modules) and $EX36 and
$EX37 (user EXEC modules) are not listed when missing.

Parameter Input Phase

During the parameter input phase, the operator can change selected I/0 drivers and EXEC modules
from disc-memory to main-memory resident or vice versa. In addition, an optional parameter
allows the operator to change the linking mode for each module. Either current page or base
page linking can be selected.

The console driver must always be main-memory resident. Console drivers DVROO and DVR05
are distributed as main-memory resident while terminal printer driver DVR26 is distributed as
disc-resident. The console model to be used in the configured system determines which driver
must be main-memory resident. Any unnecessary I/0 drivers must be eliminated at this time.
If the memory management capability is not desired, delete modules $EX22 and $$MGT from
the system by specifying them as type 8 (see below).

DVR31, DISCM, and $EX30 are distributed as main-memory resident modules; they must not
be changed to disc-resident.

Each parameter record has the form:

name,type{,link mode]

where name is the name of the program to be changed.

type is the program type code:
0 - System main-memory resident
1 - System disc-resident EXEC modules
3 - User disc resident main
4 - Disc resident I/0 driver
5 - User segment

6, 7 - Library
>7 - Program is deleted from the system

link mode is the mode of linking to be performed:
0 - current page linking (default)
non-zero - base page linking

When changing the linking mode, the program type must be specified. An error in either the type
or link mode parameter results in an error message (ERRlO).

10-12

The following modules are designed to execute with base page linking and must not be changed to
current page linking mode:

Program

HP ALGOL
HP Assembler
HP FORTRAN
HP FORTRAN IV

HP DOS-III Job Processor

Module Name

ALGOL
ASMB
FTN
.FTN4 (4K area)
FTN4 (lOK area)
JOBPR

For programs changed to current page linking mode, the programs should be structured into sub­
routines of less than 2048 words (two pages of memory) in length. Current page links are generated
only at the beginning and end of a program. They cannot be inserted into the program area because
the boundary between program code and current page links might occur within a skip or jump
sequence. If a program spans more than two pages, there is no area available for current page links
in the middle pages, so base page links will be used; thus, the potential for greater efficiency is lost.

Parameter input is terminated by entering the slash character followed by the letter E (/E). This
ends the parameter input phase.

EXEC modules and drivers that are often used may be changed from disc- to main-memory resident.
The functions of the EXEC modules are

Module Name Request Codes Function

$EX01 16 Disc work tracks status

$EX02 17 Disc work tracks limits

$EX03 6 Program completion

$EX04 7 Program suspension and associated messages

$EX05 8,10 Program main or segment search

(Note: $EX05 calls $EX10)

$EX06 18 User file name search

$EX07 11 Current time processor

$EX08 4 (RT) Real-time disc allocation

$EX09 :EQ processor

$EX10 8,10 Load and execute main program or segment

(Note: see also $EX05)

$EX11 14,15 System file name search

(Note: used for file read/write)

$EX12 System startup

10-13

Module Name Request Codes Function

$EX13 Error message processor

$EX14 :UP, :DN, :LU processor

$EX15 Abort and post-mortem dump

$EX16 : GO parameter processor

$EX17 23 : UD processor

$EX18 1,2,3, I/O initiation processor
14,15 (Note: See also $EX11)

$EX19 : IN processor

$EX20 Disc parity processor

$EX21 32,33,34 Programmatic file control

$EX22 35,36,38,41 Memory management

$EX36 27 User written module

$EX37 28 User written module

Functions of EFMP EXEC Modules

$EX30

$EX31

$EX32

$EX33

Always main-memory resident (common routines and values).

DEFINE,CREATE,DESTROY,OPEN,CLOSE

READ, WRITE, RESET, STATUS, CHANGE

COPY, REPACK

When changing program types, it is not necessary to explicitly specify all subroutines called by an
EXEC module which is made main-memory resident. The generator automatically makes the
proper linkages. In addition to making the subroutine main memory resident, the generator places
it in the system library, thus making it available to user programs.

10-14

Disc Loading Phase

1. DSGEN asks for the number of base page links #LINKS?

The operator responds with the decimal number of
links. If the operator responds with a blank character,
DSGEN allocates the maximum number of links (800)

Loading of the absolute, resident supervisor begins after the establishment of the user and
system linkage areas. As each program is loaded, DSGEN prints a memory map giving the
starting and ending locations of both main memory and base page portions of the program.
In addition, if bit 15 is set (ON), the entry points for main programs and subroutines are
printed. (Subroutines are indented two spaces, and entry point addresses are preceded by
an asterisk.)

540

2. DSGEN requests memory management subsystem names .. ENTER SUBSYSTEM NAMES

The operator responds with a series of one line entries which specify the
subsystem name (1-4 characters) of each subsystem that utilizes memory
management (see :MMGT directive). Terminate the input list with the
characters "/E"

Note: Next, DSGEN generates the three l/O tables; equipment table,
device reference table (logical unit table) and the interrupt table.

SUB3
SUB7
IE

3. DSGEN requests the equipment table entries *EQUIPMENT TABLE ENTRY

Operator responds with a series of one-line EQT entries, which
are assigned EQT numbers sequentially from one as they are
entered. The EQT entry relates the EQT number to an 1/0
channel and driver, in this format nn,DVRnn[,D] {,u]

where nn is the octal channel number (lower number if multi-board, maximum is 37 8)

DVRnn is the driver name (nn is the equipment type code)

D, if present, means DMA channel required

u is the physical subchannel (unit) number (valid responses; 0-31)

Operator terminates the equipment table entries by typing.

Here is a sample Equipment Table:

*EQUIPMENT TABLE ENTRY
10,DVR31,D (EQT entry #1 =disc)
12,DVR23,D (EQT entry #2 =magnetic tape)
14,DVR05 (EQT entry #3 =system console)
15,DVROl (EQT entry #4 = photoreader)
16,DVR02 (EQT entry #5 = tape punch)
17,DVR12 (EQT entry #6 =line printer)
IE (End of table)

10-15

...... IE

4. DSGEN requests the logical unit assignments for the device
reference table * DEVICE REFERENCE TABLE

For each logical unit number, DSGEN prints n =EQT#?

Operator responds with an EQT entry number (m)
appropriate to the standard definition of n. Numbers
above 6 may be assigned any EQT entry desired .

Operator terminates entry by typing

Here is a sample Device Reference Table:

*DEVICE REFERENCE TABLE
1 EQT#? (System console on channel 14, EQT #3)
3

2 EQT#? (Disc on channel 10, EQT #1)
1

3 EQT#? (Disc on channel 10, EQT #1-reserved for system use)
1

4 EQT#? (Standard punch unit on channel 16, EQT #5)
5

5 =EQT#? (Standard input unit on channel 15, EQT #4)
4

6 =EQT#? (Standard list unit on channel 17, EQT #6)
6

7 = EQT#? (Standard unit definable by user)
2

8 =EQT#? (End of table)
IE

Note: The number of responses given here determines the number of logical
units allowed in the system. To allow unassigned logical units for the
user, respond with a 0 to as many questions as units are desired.

m

IE

5. DSGEN requests the interrupt table entries *INTERRUPT TABLE

where

Operator responds with an entry for each 1/0 channel which
may interrupt, in ascending order and in the format . . . n1,option

n 1 is the octal channel number (high number if multi-board) between 108 and 37 8

inclusive (must be entered in ascending order)

option directs the system in handling the interrupt:

EQT ,n 2 relates the channel to EQT entry number n 2 ,

ABS, value places an absolute octal value in the interrupt location. value is an
octal integer.

ENT,entry transfers control to the entry point of a user-written system program
upon interrupt (typically the P.xx entry of a privileged 1/0 driver).

If 2883B was specified as the disc type (see "Initialization Phase," step 3) and a second con­
troller is added, the octal channel number of both controllers must be specified.

The operator terminates entry by typing IE

10-16

Here is a sample Interrupt Table:

6.

7.

*INTERRUPT TABLE
10,ENT,P. 73
12,EQT,1
13,ABS,102077
14,EQT,4

(Channel 10 linked to privileged interrupt routine P. 73)
(Channel 12 linked to EQT #1)
(Channel 13 interrupt location filled with an octal halt instruction)
(Channel 14 linked to EQT #4)

15,EQT,5 (Channel 15 linked to EQT #5)
16,ABS,O
IE

(Channel 16 interrupt location filled with a NOP; all zeros)
(End of table)

Note: The EQT numbers need not appear in numerical order. This order is
determined by referring back to the Equipment Table. The octal
channel numbers, however, must be in ascending sequence.

Following the completion of the I/O tables, DSGEN loads the disc-resident executive modules
(if any), and the disc-resident I/O drivers (if any).

DSGEN reports the last octal address plus 1 of the system
base page link area

DSGEN requests the first word base page octal address
of the user link area

Operator responds with an octal address greater than
or equal to yyyyy and less than 20008 • • • • • •

L WA LINKS yyyyy

FWA USER LINKS?

mmmmm

8. DSGEN reports the last octal address plus 1 of the main-memory
resident system LWA PROG xxxxx 2,..J ?oi

9. DSGEN requests the octal address of the first word of the
user program area ... FWA USER? ~ t..t o o c;

Operator responds with an octal address greater than
or equal to xxxxx. (This option is provided so that user .
programs can start on a page boundary, if desired) . . .

Note: Some system programs must be base page linked, i.e., the
FORTRAN compiler. For this reason it is recommended
that the User Area always be started on a page boundary.
Since pages contain 2000 8 words, the octal number speci­
fied should be some multiple of 20008 •

nnnnn

DSGEN proceeds to load all user main programs and segments onto the disc with memory
map listings as described for system programs.

10. When system generation is complete, DSGEN reports ... *SYSTEM STORED ON DISC

11. Protect the disc (enable Disc Protect) to prevent access to the system portion of the disc.

12. The DOS-III system which has just been generated (in this case, on Subchannel 0) must be
loaded into main memory. This is accomplished by using BMDL or the disc loader ROM. (See
Section XI).

Note: If a configured DOS-III system resides on a disc starting at head 0, track 0,
simply press RUN. The system will execute and halt with 1020778 in the
Memory Data register. Then, set the switch register to the subchannel of the
newly generated system (in this case, Subchannel 0), press PRESET (INTERNAL
and EXTERNAL) and press RUN. The newly generated DOS-III system will be
automatically loaded into memory.

10-17

Sample System Generation

SYS GEN CODE?
0103

SYS DISC CHNL?
15

DI SC TYPE?
7900

SYS DI SC SIZE?
200

DRIVES?
2

FIRST SYSTEM TRACK?
0
FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
3

USER DISC SUBCHNL?
3

TIME BASE GEN CHNL?
14

PRIV INT CARD CHNL?
I 1

OMA CHANNELS?
2

LWA MEM?
77677

ALLOW : SS?
YES

PRGM INPT?
DF
INPUT DISC SUBCHNL?
1

LIBR INPT?
PT

10-18

PRAM INPT?
TY

NO UNDEF EXTS

ENTER PROG PARA."1ETERS

$EX18.,0
IE

LINKS?
800

SYSTEM

NAME

DISCM
$TIME
$SETP
$PFAL

<BOUNDS>

DVR31

<BOUNDS>

F4D.C

<BOUNDS>

F2F.B

<BOUNDS>

PROG BOUNDS

05231
05362
05403

02000 05406

05406 06127

06127 06127

06127 06127

BP BOUNDS

00574
00574
00574

00337 00574

00574 00635

00635 00635

00635 00635

10-19

DVR00

CBOUNDS> 06127 06600

DVR70

CBOUNDS> 06600 07022

$EX 18

CBOUNDS> 07022 07712

$$MGT

CBOUNDS> 07712 10523

ENTER SUBSYSTEM NAMES

/E

* EQUIPMENT TABLE ENTRY

10, DVR70
12, DVR00

13, DVR0 l
15, DVR31, D
17, DUR 12
20, mm 11, o
21, DVR23 .. D
23, DVR02
/E

00635 00637

00637 00642

00642 00642

00642 00667

10-20

* / DEVI CE REFERENCE TABLE

1 = EQT #?
2

2 = EQT II?
4

3 = EQT II?
4

4 = EQT IJ?
8

5 = EQT II?
3

6 = EQT I?
5

7 = EQT II?
6

8 = EQT #?
7

9 = EQT #?
/E

* INTERRUPT TABLE

10.1 ENT,, p. 70
12.1 EQT,, 2
13,, EQT,, 3
16,,EQT,4
17, EQ.T,, 5
201 EQT, 6
22.1 EQT, 7
23, EQT, 8
/E

EXEC SUPER'1I SOR MODULES

N.AME

$EX21
$SRCH

<BOUNDS>

PROG BOUNDS

117 34

11034 12375

BP BOUNDS

00670

00667 00713

10-21

$EX01
$ADDR 1 l 12 1 00670

C BOUNDS> 11034 11 136 00667 00670

$EX02
$ADDR 11124 00670

<BOUNDS> 11034 11141 00667 00670

$EX03

C BOUNDS) I 1034 I 1 10 5 00667 00667

$EX04
ASCII 11426 00671

CBOTJNDS> 11034 11550 00667 00671

$EX05
$SRCH 1 I 1 1 7 00670

CBOUNDS> l 1034 l 1560 00667 00670

$EX06
$SRCH 11136 00671
$ADDR l 1577 00671

CBOUNDS> 11034 11614 00667 00671

$EX07
$A.DOR 11221 00670

<BOUNDS> 11034 11236 00667 00670

$EX08
$ADDR 11207 00670

CBOUNDS> 11034 11224 00667 0067121

10-22

$EX09
ASCII 11433 00671

<BOUNDS> 11034 11555 00667 00671

$EX 10

<BOUNDS> 11034 11372 00667 00667

$EX 11
$SRCH 11057 00670

<BOUNDS) 11034 11520 00667 00670

$EX12

CBOUNDS> 11034 11320 00667 00667

$EX 13
ASCII 1 1 4 1 1 0067 1

(BOUNDS> 11034 11533 00667 00671

$EX 14
ASCII 11557 00670

<BOUNDS> 11034 1 17 01 00667 00671

$EX 15
ASCII 11403 00670

CBOUNDS> 11034 11525 00667 00671

$EX 16

<BOUNDS> 11034 1116 5 00667 00667

10-23

$EX 17
$LBL 11424 00672

CBOUNDS> l 1034 11532 00667 00674

$EX 19
$LBL 11427 00674

CBOUNDS> 11034 11535 00667 00674

$EX20

CBOUNDS> 11034 l 1520 00667 00667

$EX' 22

(BOUNDS> I 1034 13134 00667 00705

I/O DRIVER MODULES

NA~E PROG BOUNDS BP BOUNDS

DVR01

CBOUNDS> 13134 13525 00713 00715

DVR02

CBOUNDS> 13134 13361 00713 00715

DVR 11

CBOUNDS> 13134 14053 00713 00724

DVR12

CBOUNDS> 13134 13521 00713 00715

10-24

DVR23

CBOUNDS> 13134 13752

LWA LINKS 00724

FWA USER LINKS?
724

LWA PROG

FWA USER?
16000

14053

USER SYSTEM PROGRAMS

NAl'v!E

LOADR
• EAU.
DUMRX

CBOUNDS>

ASMB

<BOUNDS>

ASMBD

C BOUNDS)

A.SMB 1

C BOUNDS>

ASMB2

<BOUNDS>

PROG BOUNDS

27501
27551

16000 27631

16000 23131

23131 23741

23131 24553

23131 24570

00713 00715

BP BOUNDS

01422
01426

00724 01426

00724 01303

01303 01304

01303 01347

01303 01331

10-25

ASMB3

<BOUNDS> 23131 24002 01303 01307

ASMB4

CBOUNDS) 23131 24040 01303 01311

.ASMBS

<BOUNDS> 23131 24445 01303 01326

XREF'
.OPSY 21230 01013
DUMRX 21270 01015

C BOUNDS) 16000 21350 00724 01015

F'TN4

C BOUNDS) 16000 31170 00724 01272

F4.0

<BOUNDS> 31 17 0 37 041 01272 01354

F' 4. 1

CBOUNDS> 31170 34732 01272 01406

F4.2

CBOUNDS> 31170 36260 01272 01370

10-26

XDISC
• SWCH 20620 01041
FMTIO 20637 01041
INDEX 22070 01 101
.PRAM 22246 01101
EXECX 22356 01101
IN I TX 22402 01101
FLIB 22441 01101
.FLUN 22544 01107
.XFER 22565 01107
DBLE 22631 01110
SNGL 22666 01112
FRMTR 22734 01113
• OPSY 25474 01360
•EAU. 25534 01360
DUMRX 25604 01361
.zRLB 25664 01361
.XPAK 25725 01361
.ENTR 26122 01373
.PACK 26212 ei 137 4
.xcoM 26326 !211374

CBOUNDS> 16000 26377 00724 01374

JOBPR

<BOUNDS> 16000 30422 00724 01401

*SYSTEM STORED ON DISC

10-27

DSGEN DISC CARTRIDGE SYSTEM GENERATION

Each HP 24307B DOS-III Disc Operating System with an HP 7900 Disc device included in the sys­
tem hardware is delivered with a disc cartridge labeled DSGEN (HP part number 24307-13001). The
DSGEN cartridge contains a DOS-III software system together with a set of modules with which to
generate a DOS-III software system in the computer's memory.

Care must be taken to protect the contents of this disc from modification or destruction. The
DSGEN cartridge can be copied to another disc and set aside. Modification can now be made to
the copy without affecting the original disc.

If modules not included on the DSGEN cartridge are required, they must be loaded into the system
from another type of input unit during the system generation procedure.

The I/0 PCA boards must be arranged according to the select codes specified by the label on the
DSGEN cartridge. For example:

Select Codes

11 7900 DISC
10 SYSTEM CONSOLE

The example indicates that the HP 7900 disc device resides in select codes 11 and 12, and the system
console device resides in select code 10.

Initial generation steps differ for an HP 21MX computer (with an optional disc loader ROM in­
stalled) and an HP 2100A/S computer. For an HP 21MX not equipped with a disc loader ROM,
use HP 2100A/S procedures.

HP 21MX

1. Insert the DSG EN cartridge in the HP 7900 disc device. Press PRESET.

2. Select the S-register for display. Press CLEAR D ISP LAY.

3. Set the select code of the disc in bits 11 through 6. Set bit 14 to select the disc loader ROM
to be loaded.

4. Press STORE to store the contents of the Display Register in the S-register. Press IBL to load
the contents of the disc loader ROM into the uppermost 64 locations of memory.

The computer halts with octal 102077 in the T-register. Press RUN and dialogue with the system
begins. Go to step 5.

HP 2100A/S

1. Load and configure the Stand-alone Paper Tape Bootstrap Loader to the system hardware.

2. Insert the DSGEN cartridge in the HP 7900 Disc device.

3. Load DOS-III from Subchannel 1 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader. Go to step 5.

Once DOS-III is initiated, a dialogue between the system and the operator begins on the system con­
sole. In the following example, information typed by the operator is underlined, and the informa­
tion printed by the system is not underlined. These underlines will not appear on the terminal
under actual operating conditions.

10-28

5. The DOS-III system begins the dialog by requesting the DATE directive:

INPUT :DATE,XXXXXXXXXX

@:DATE,,
SUBCHAN=l
LBL=DSGEN
@

:JOB
JOB
@

:UD,*,O
@

:IN,*
@

:UD,DSGEN,l
@

:UD
SUBCHAN=l
LBL=DSGEN
@

:DD
@

:UD,*,O

DATE directive entered

JOB directive entered

Change user disc to Subchannel 0, no label

Initialize user disc, no label

Change user disc to Subchannel 1, label is DSGEN

Verify correct subchannel and label

Disc-to-disc dump of disc on Subchannel 1

Destination disc for dump operation.

6. Wait for the system to respond with @ to indicate that the entire contents of Subchannel 1
have been copied to Subchannel 0.

7. Press HALT.

8. Remove the DSGEN cartridge from the HP 7900 Disc device.

9. Insert a disc cartridge to be used for subsequent DOS-III system generation.

10. Load DOS-III from Subchannel 0 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader.

11. System dialog begins:

INPUT :DATE,XXXXXXXXXX

@:DATE,,
SUBCHAN=O
LBL=DSGEN
@

:JOB
JOB
@

:LIST,S,l,INDEX

DATE directive entered

JOB directive entered

List user source file, INDEX on the console (the ·
following list is an example)

10-29

0001 DOS III B (24307B) REV 1419
0002 THIS INDEX RELATES THE NAMES OF THE RELOCATABLE MODULES
0003 TO THE PART NUMBERS OF THE EQUIVALENT PAPER TAPES AND
0004 INDICATES THE PURPOSE OF THE MODULES IN THE SYSTEM.
0005 NAME PART NUMBER REV DESCRIPTION
0006 DISCM 24307-16002 1419 DISC MONITOR
0007 $EXMD 24307-16003 1419 EXEC MODULES
0008 DVR00 20985-60001 1419 TTY-LIKE CONSOLE/TERMINAL
0009 DVR01 20987-60001 1419 PAPER TAPE READER
0010 DVR02 20989-60001 1419 PAPER TAPE PUNCH
0011 DVR05 24157-60001 1419 TTY-LIKE CONSOLE
0012 D2892 24272-60001 1419 2892B CARD READER (DVRll)
0013 D2767 24168-60001 1419 2767A LINE PRINTER (DVR12)
0014 D2610 24271-60001 1419 2610A/2614A LINE PRINTER (DVR12)
0015 D2607 24349-60001 1419 2607A LINE PRINTER (DVR12)
0016 DVR23 13024-60001 1419 7970B/E MAG TAPE
0017 DVR26 24333-60001 1419 2762A CONSOLE PRINTER
0018 DVR31 24156-60001 1419 7900/7901/2870 DISC
0019 DVR67 24341-16001 1419 12889A HS SERIAL IF
0020 DVR72 24350-16001 1419 12587B ASYNC DATA SET IF
0021 DVR73 24377-16001 1419 12920A/B MUX
0022 EFMP 24309-60002 1419 EXT FILE MGR EXEC MODULES
0023 24309-60003 1419 EXT FILE MGR UTILITIES
0024 JOBPR 24307-16004 1419 JOB PROCESSOR
0025 RLODR 24308-60001 1419 RELOCATING-LINKING LOADER
0026 ASMB 24158-60001 B ASSEMBLER
0027 24158-60002 B
0028 24158-60003 B
0029 24158-60004 B
0030 24158-60005 B
0031 24158-60006 B
0032 24158-60007 B
0033 .FTN4 24170-60001 C
0034 24170-60002 c
0035 24170-60003 c
0036 FTN4 24177-60001 B
0037 24177-60002 B
0038 ALGOL 24129-60001 C
0039 24129-60002 c
0040 XREF 24223-60001 B
0041 F2E.N 24151-60001 D
0042 F2F.N 24248-60001 B
0043 F4D.N 24152-60001 C
0044 FFP.N 12907-16001 A
0045 ATD01 24381-16001 1419
0046 DVR33 24278-60001 1419
0047 MASMB 24332-60001 1419
0048 WCSUT 24333-60001 A
0049 MDBUG 24334-60001 1419
**** LIST END ****
@

FORTRAN IV COMPILER

FORTRAN IV COMPILER (10K AREA)

ALGOL COMPILER

CROSS REF TABLE GENERATOR
RELO SUBR (EAU) LIBR
RELO SUBR (FP) LIBR
RELO SUBR (FTN4) LIBR
RELO SUBR (FFP) LIBR
ASYNC TERMINAL DRIVER #1
12908 WCS DRIVER
12908JWCS MICRO ASSEMBLER
12908 WCS I/O UTILITIES
12908 WCS DEBUG EDITOR

10-30

At this point, use the list printed to select those modules which are to be included in the system to
be generated. The PURGE directive is used to flag modules and drivers for deletion. Some guide­
lines for building a DOS-III system follow.

a. These modules must be included in every system:

DISCM
$EXMD
DVROl

DVROO}
DVR05
DVR26
DVR31
JOBPR
EFMP

F2E.N}
F2F.N

Choose One,

Choose One,

Disc Monitor
EXEC Modules
Paper Tape Reader Driver

System Console Driver

Disc Device Driver
Job Processor
Include if EFMP or IMAGE is desired

{
EAU
Floating-point Arithmetic

b. These driver modules are required if the associated peripheral device is included in the system
to be generated: 1

•

D2767}
D2610
D2607
DVR23
DVR02
D2892
DVR67
DVR72
DVR73
DVR33

{

DVR12 - HP 2767 Line Printer Driver
Choose One, DVR12 - HP 2610/2614 Line Printer Driver

DVR12 - HP 2607 Line Printer Driver
HP 7970A/B/E Magnetic Tape Driver
HP 2895/2753 Paper Tape Punch Driver
DVRl 1 - HP 2892 Card Reader Driver
HP 12889A Interface Driver
HP 12587B Interface Driver
HP 12920A/B MUX Driver
HP l 2908A WCS Driver

c. These modules are normally included during system generation, but may be run from the user
area instead:

RLODR
ASMB
ALGOL
FTN4
F4D.N

FFP.N

XREF

Relocating/Linking Loader
Assembler
ALGOL Compiler
FORTRAN IV Compiler
FORTRAN IV Library- Required in addition to the

library selected under point a above if FOR TRAN IV
or EFMP is included in the system to be generated.

FFP Library - Required if the FFP option is present
(this module must appear in the directory after F4D.N).

Cross Reference Table Generator

d. These modules should be included if WCS is present:

MAS MB
WCSUT

HP 12908 WCS Micro-assembler
HP 12908 WCS I/O Utilities

10-31

e. These modules must be deleted from the cartridge on Subchannel 0 under specific conditions:

FFP.N
F2F.N
RD BUG

If FFP hardware is not present
If Floating Point hardware is not present
If HP 21MX is present

Any drivers not required by the system to be generated.

f. This module must be deleted from the cartridge on Subchannel 0:

INDEX
MD BUG

In the dialog following, assume that a DOS-III system is to be generated which includes these
modules:

DIS CM
$EXMD
DVROl
DVR02
DVR03
D2767
DVR23
DVR31
JOBPR
RLODR
ASMB
FTN4
XREF
F2F.N
F4D.N

The dialog continues from the @ symbol at the end of Step 11:

:PURGE,EFMP ,D VROO,DVR26,F2E .N ,D2892,D 261O,D2607
EFMP
DVROO
DVR26
F2E.N
D2892
D2610
D2607
@

10-32

:PURGE,DVR67 ,DVR 72,DVR 7 3,ALGOL,FFP .N ,ATD01,DVR33
DVR67
DVR72
DVR73
ALGOL
FFP.N
ATDOl
DVR33
@

:PURGE,.FTN4,MASMB,WCSUT,MDBUG
.FTN4
MAS MB
WCSUT
MD BUG
@

:PURGE,INDEX
INDEX
@

:LIST,U,1

NAME TYPE
SUBCHAN=.0
DISCM RB
$EXMD RB
DVRY'l RB
DVR02 RB
DVR05 RB
02767 RB
DVR23 RB
DVR31 RB
JOBPR RB
RLODR RB
ASMB RB
FTN4 RB
XREF RB
F2F.N RB
F4D.N RB
@

:EJOB
END JOB
@

SCTRS

~0.026
~~l.08
0.0.0Y'4
~0.003
000.03
00004
Y'0006
Y'00.05
Y'0081
00059
00088
00177
Y'0023
00ll3
Y'0148

List the user directory on the console

DISC ORG PROG LIMITS B. P. LIMITS

T007 000
T007 026
T009 043
T0.09 047
T.010 0.02
T010 011
T010 027
T.010 037
T015 000
T016 ,033
T,017 ,044
T024 028
T030 006
T033 004
T035 021

Terminate current job

ENTRY FWAM

The modules residing on Subchannel 0 are ready to be used for DOS-III system generation. Proceed
as follows:

1. Load the DSGEN program from paper tape using the Stand-alone Paper Tape Bootstrap
Loader or the paper tape loader ROM.

2. If the DSGEN program loaded is not configured, perform the procedure under "DSGEN
Configuration" presented earlier in this section.

10-33

PB

3. Use DSGEN to format the disc cartridge on Subchannel 1. When this step is completed, the
computer will halt with 1020778 in the Memory Data register.

4. Use DSGEN to generate a DOS-III system on Subchannel 1. Proceed as directed under "Using
DSGEN to Generate DOS-III" in this section.

After DOS-III system generation is completed, modules to be run from the user area of disc memory
can be retrieved from the master DSGEN cartridge. For example, if WCS is present in the system,
the modules WDBUG and ATDOl may be loaded into the user area as follows:

1. Insert the master DSGEN disc cartridge in the HP 7900 Disc device.

2. Load DOS-III from Subchannel 0 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader or the disc loader ROM.

3. System dialog begins:

INPUT :DATE,XXXXXXXXXX

@:DATE,,
SUBCHAN=O
LBL=DSGEN
@

:UD,DSGEN,1
@

:DD,U,MDBUG,ATDOl
@

:UD,*,O
@

:LIST,U,l

DATE directive entered

Change user disc to Subchannel 1, label is DSGEN

Disc-to-disc dump of specified files from user area

Destination disc for dump operation

List user directory to verify that modules were copied

4. The system will print a list of the user directory on the console.

10-34

Sample DSGEN Cartridge Preparation and System Generation

INPUT :DAT£.1XXXXXXXXXX

@:DA,,
SUBCHAN= 1
LBL=DSGEN
@

:JOB
JOa
@

:UD, *' 21
LBL=SYSTEM
DISC GEN CODE 6500 NOT SYS GEN COGE 0529 ERR POSS
RE-ENTER STATEMENT ON TTY·
@

:UD.1SYSTEM.10
DISC GEN CODE 6500 NOT SYS GEN CODE 0529 ~RR POSS
@

: IN,*
DOS LABEL SYSTEM
0 K TO PURGE?
YES
@

:UD.1DSGEN.1l
@

:UD
SUBCHAN= 1
LBL=DSGEN
@

:DD
@

:UD.1*.10
@

INPUT :DATE.1XXXXXXXXXX

@!DATE, .1

SUBCHAN=0
LBL=DSGEN
@

:JOB
JOB
@

10-35

:LIST,s,1,INDEX

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049

DOS Ill B C24307B> REV 1419
THIS IN DEX REL.ATES THE NAMES OF THE RELOCATABLE MODULES
TO THE PART NUMBERS OF THE EQUIVALENT PAPER TAPES AND
INDICATES THE PURPOSE OF THE MODULES IN THE SYSTEM·
NAME PART NUMBER REV DESCRIPTION
DISCM 24307-16002 1419 DISC MONITOR
$EXMD 24307-16003 1419 EXEC MODULES
DVR00 20985-60001 1419 TTY-LIKE CONSOLE/TEP~INAL
DVR01 20987-60001 1419 PAPER TAPE READER
DVR02 20989-60001 1419 PAPER TAPE PUNCH
DVR05 24157-60001 1419 TTY-LIKE CONSOLE
D2892 24272-60001 1419 28928 CARD READER CDVRll>
02767 24168-60001 1419 2767A LINE PRINTER COVR12>
02610 24271-60001 1419 2610A/2614A LINE PRINTER CDVR12>
02607 24349-60001 1419 2607A LINE PRINTER CDVR12>
DVR23 13024-60001 1419 79708/E MAG TAPE
DVR26 24333-60001 1419 2762A CONSOLE PRINTER
DVR31 24156-60001 1419 7900/7901/2870 DISC
DVR67 24341-16001 1419 12889A HS SERIAL IF
DVR72 24350-16001 1419 125878 ASYNC DATA SET IF
DVR73 24377-16001 1419 12920.A/B MUX
EFMP 24309-60002 1419 EXT FILE MGR EXEC MODULES

24309-60003 1419 EXT FILE MGR UTILITIES
JOBPR 24307-16004 1419 JOB PROCESSOR
RLODR 24308-60001 1419 RELOCATING-LINKING LOADER
ASMB 2415&-60001 B ASSEMBLER

24158-60002 B
24158-60003 B
24158-60004 B
24158-60005 B
24158-60006 B
24158-60007 B

eFTN4 24170-60001 C
24170-60002 c

FTN4
24170-60003 c
24177-60001 B
24177-60002 B

ALGOL 24129-60001 C
24129-60002 c

XREF 24223-60001 B
F2E•N 24151-60001 D
F2F•N 24248-60001 B
F4D.N 24152-60001 C
FFP•N 12907-16001 A
ATD01 24381-16001 1419
DVR33 24278-60001 1419
MASMB 24332-60001 1419
WCSUT 24333-60001 A
MDBUG 24334-60001 1419

LI ST END ****

10-36

FORTRAN IV COMPILER

FORTRAN IV COMPILER Cl0K AREA>

ALGOL COMPILER

CROSS REF TABLE GENERATOR
RELO SUBR <EAU> LIBR
RELO SUBR CFP > LIBR
RELO SUER CFTN4> LIBR
RELO SUER CFFP> LIER
ASYNC TERMINAL DRIVER 11
12908 WCS DRIVER
12908 WCS MICRO ASSEMBLER
12908 WCS 1/0 UTILITIES
12908 WCS DEBUG EDITOR

:PU,DVR00,DVR26,F2f.N,EFMP,D2767,D2610,D2892,DVR67,DVR73,~VR72

DVR00
DVR26
F2F .N
EFMP
D2767
D2610
D2892
DVR67
DVR73
DVR72
@

:PU,DVR3J,.FTN4,ALGOL,FFP.N,ATD01,MASMB,~CSUT,MDBUG

DVR33
·FTN4
ALGOL
FFP.N
ATD01
MAS MB
'WCSUT
MDBUG
@

:PU, INDEX
INDEX
@

:LIST,u, 1

NAME TYPE
SUBCHAN=0
DISCM RB
$EXMD RB
DVR01 RB
DVR02 RB
DVR05 RB
02607 RB
DVR23 RB
DVR31 RB
JOBPR RB
RLODR RB
ASMB RB
FTN4 RB
XREF RB
F2E·N RB
F4D·N RB
@

:EJOB
END JOB

'

SCTRS DISC ORG PROG LIMITS a.p. LIMITS

00026 T007 000
00108 T007 026
00004 T009 043
00003 T009 047
00003 T010 002
00006 T010 021
00006 T0l12J 027
00005 T010 037
00081 T015 000
00059 T016 033
00088 T017 044
00177 T024 028
00023 T030 006
00119 T030 029
00148 T035 021

10-37

:c.;NTRY FwAl•i Pu

Preparation of the DSGEN cartridge is completed. Proceed as directed under "Using DSGEN to
Generate DOS-III" in this section. Sample generation dialog follows:

SYS GEN CODE?
4000

S YS D IS C C HN L?
1 1

DISC TYPE?
7900

SYS DISC SIZE?
200

N DRIVES?
1

FIRST SYSTEM TRACK?
0
FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
1

USER DISC SUBCHNL?
1

TIME BASE GEN CHNL?
1 7

PRIV INT CARD CHNL?
0

II DMA CHANNELS?
2

10-38

LWA MEM'?
37677

ALLOW :SS?
YES

PRGM INPT'?
DF
INPUT DISC SUBCHNL'?
0

LIBR INPT?
PT

PRAM INPT'?
TY

NO UNDEF EXTS

ENTER PROG PARAMETERS

$EX18.1 0
IE

II LINKS?

800

SYSTEM

NAME

DISCM
$TIME
$SETP
$PFAL

<BOUNDS>

$EX18

<BOUNDS>

PROG BOUNDS

05274
05421
05442

02000 05445

05445 06341

BP BOUNDS

00603
00603
00603

00337 00603

00603 00631

10-39

$$MGT

<BOUNDS> 06341 07152

DVR05

<BOUNDS> 07152 07421

DVR31

<BOUNDS> 07421 10145

F2E.D

<BOUNDS> 10145 10145

F4D.C

<BOUNDS> 10145 10145

ENTER SUBSYSTEM NAMES

IE

* EQUIPMENT TABLE ENTRY

10.1DVR00
ERR 25
l0.1DVR05
1 l .1 DVR3 l .1 D
13.1DVR01
l4.1DVR02
15.1 DVR23.1 D,, 0
1 5,, DVR23.1 D,, 1
20.1DVR12
/E

00631 00647

00647 00651

00651 00713

00713 00713

00713 00713

10-40

* DEVICE REFERENCE TABLE

1 = EQT #?
1

2 = EQT #?
2

3 = EQT #?
2

4 = EQT II?
4

5 = EQT #?
3

6 = EQT II?
7

7 = EQT #?
0

8 = EQT II?
5

9 = EQT #?
6
1 0 = EQT #?
IE

* INTERRUPT TABLE

10,EQT,1
12,EQT,2
13, EQT ,.3
14,EQT,4
16,EQT,5
20,,EQT,7
IE

EXEC SUPERVISOR

NAME PROG

$EX01
$ADDR 10520

<BOUNDS> 10433

$EX02
$ADDR 10523

<BOUNDS> 10433

MODULES

BOUNDS

10535

10540

BP BOUNDS

00714

00713 00714

00714

00713 00714

10-41

$EX03

<BOUNDS> 10433 10504 00713 00713

$EX04
ASCII 11025 007 l 5

<BOUNDS> 10433 11147 00713 00715

$EX05
$SRCH 10516 00714

<BOUNDS> 10433 1 1 15 7 00713 00714

$EX06
$SRCH 10535 00715
$ADDR 11176 00715

<BOUNDS> 10433 11213 00713 00715

$EX07
$ADDR 10620 00714

<BOUNDS> 10433 10635 00713 00714

$EX08
$ADDR 10606 00714

<BOUNDS> 10433 10623 00713 00714

$EX09
ASCII 11032 00715

<BOUNDS> 10433 11154 00713 00715

$EX10

C BOUNDS> 10433 10771 00713 00713

10-42

$EX11
$SRCH 10456 00714

<BOUNDS> 10433 1111 7 00713 00714

$EX12

<BOUNDS> 10433 10717 00713 00713

$EX13
ASCII 1101121 00.715

<BOUNDS> 10433 11132 00713 00715

$EX14
ASCII 11156 00714

<BOUNDS> 10433 11300 00713 00715

$EX15
ASCII 11002 00714

<BOUNDS> 10433 11 124 00713 00715

$EX16

<BOUNDS> 10433 10564 00713 00713

$EX17
$LBL 11023 00716

<BOUNDS> 10433 1 1 13 1 00713 00720

$EX19
$LBL 11026 00720

<BOUNDS> 10433 11134 00713 00720

$EX20

<BOUNDS> 10433 11 11 7 00713 00713

10-43

$EX21
$SRCH

<BOUNDS)

$EX22

<BOUNDS)

I/O DRIVER

NAME

DVR01

<BOUNDS>

DVR02

<BOUNDS>

DVR12

<BOUNDS>

DVR23

<BOUNDS>

114 72

10433 12133

10433 12603

MODULES

PROG BOUNDS

12603 13174

12603 13030

12603 13374

12603 13422

LWA LINKS 00744

FWA USER LINKS?
744

LWA PROG

FWA USER?
14000

13422

00714

00713 00742

00713 00727

BP BOUNDS

00742 00744

00742 00744

00742 00744

00742 00744

10-44

USER SYSTEM PROGRAMS

NAME PROG BOUNDS BP BOUNDS

JOB PR

<BOUNDS> 1412Jl2J0 26613 00744 01412

LOADR
.EAU· 25511 01446
DUMRX 25561 01452

<BOUNDS> 14000 25641 00744 01452

ASMB

<BOUNDS> 14000 21131 00744 01323

ASMBD

<BOUNDS> 21 13 1 21741 01323 01324

ASMBl

<BOUNDS> 21 13 1 22553 01323 01367

ASMB2

<BOUNDS> 21 131 22570 01323 01351

ASMB3

<BOUNDS> 21131 22002 01323 1211327

ASMB4

C BOUNDS> 21 131 22040 01323 01331

ASMBS

<BOUNDS> 21131 22445 01323 01346

10-45

FTN4

CBOUNDS> 14000 27170 00744 01312

F4·0

<BOUNDS> 27170 35041 01312 01374

F.4.t

C BOUNDS> 2 71 70 32 732 01312 01426

F4·2

CBOUNDS> 27170 34260 01312 01410

XREF
.OPSY 17241 01033
DUMRX 17301 01035

CBOUNDS> 14000 17361 00744 01035

*SYSTEM STORED ON DISC

10-46

SECTION XI
loading DOS-///

This section describes the loaders used to load a generated DOS-III system into main memory.

Loaders for an HP 21MX computer and an HP 2100A/S computer are essentially the same - the
only apparent difference being how the loaders are supplied.

HP 21 MX LOADERS

The HP 21MX processor is equipped with a paper tape loader ROM. The contents of this ROM
are .equivalent to the Basic Binary Loader portion of the .BMDL used ~ith HP 2100A/S compu­
ters. The ROM contents must be placed in memory before programs can be loaded from paper
tape.

The HP 21MX processor can also be equipped with an optional disc loader ROM. This ROM
performs the same functions as the BMDL used with HP 2100A/S computers. (If your HP 21MX
does not have the disc loader ROM installed, follow steps for loading programs from disc using
HP 2100A/S loaders.) The ROM contents must be placed in memory before programs can be
loaded from a disc.

To load either of the ROM's into memory, perform the following at the operator panel:

a. Press PRESET.

b. Select the S-register for display in the Display Register.

c. Press CLEAR DISPLAY to clear the contents of the Display Register.
I

d. Bits 15 and 14 of the Display Register are used to select the loader ROM to be loaded. The
paper tape loader ROM is automatically selected by the clear display operation. Set bit 14
to select the disc loader ROM.

e. Change bits 11 through 6 of the Display Register to the octal select code of the disc or
paper tape reader.

f. Change bits 5 through 0 of the Display Register to contain the system disc subchannel
number.

11-1

g. Press STORE to store the contents of the Display Register in the S-register.

h. Press IBL to load the contents of the selected loader ROM into the uppermost 64 locations
in the first 32K of directly addressable memory.

The computer halts with octal 102077 in the T-register (indicating a successful load of the
ROM).

i. Place the tape or disc (containing the program to be loaded) into the input device and
ready that device.

HP 2100AIS LOADERS

To load a generated DOS-III system from the disc into main memory of an HP 2100A/S com­
puter, execute either the BMDL or the Stand-alone Bootstrap Loader. The former resides in the
uppermost 64 words of main memory and is hardware protected. The BMDL exists in two ver­
sions depending on the type of disc drive included in the system (HP 7900/7901, HP 2883/2884).
Operation of these loaders is essentially the same. They consist of two parts: a Basic Binary
Loader which loads absolute binary programs into main memory (from paper tape devices), and
a disc loader which loads the configured DOS-III system from the disc into main memory.

The BMDL loads the system from any active subchannel, with one major requirement: whether
that particular system is loaded or not, a configured DOS-III system must exist on the disc start­
ing at head 0, drive 0 of the disc device. Head 0, drive 0 corresponds to Subchannel 0 on the
HP 2883/2884 disc, or to Subchannel 1 on the HP 7900/7901 disc. The BMDL will read that
system or any other configured DOS-III system on the disc as long as a configured system resides
on head 0, drive 0.

To load a configured DOS-III system when no system exists on head 0, drive 0, the user must
load the Stand-alone Bootstrap Loader into main memory (using the paper tape portion of the
BMDL) and execute the Stand-alone Bootstrap Loader. This program loads the configured
DOS-III system from the specified disc subchannel without the existence of a configured system
on head 0, drive 0 of the disc.

11-2

USING THE BMDL TO LOAD
ABSOLUTE BINARY PROGRAMS

The BMDL loads absolute binary program tapes into main memory of an HP 2100A/S computer.
The Loader resides in the last 64 10 words of main memory.

Note: When using an HP 21MX computer, the paper tape loader ROM is used to
load absolute binary program tapes into memory. Replace steps 2 through
6 (below) with the procedure (described earlier) for loading a paper tape ROM.

Operating Instructions

1. Halt the computer.

2. Place the tape to be loaded into the paper tape input device and ready that device.

3. Set the Loader starting address according to the memory size of the computer:

4. Clear the switch register.

5. Enable the Loader

Memory Size

16K

24K

32K

6. Press both PRESET buttons.

7. Press RUN.

Starting Address (octal)

037700

057700

077700

8. After all or part of the tape is read, the computer halts with 1020xx8 displayed.

If xx= 11, a checksum error was detected. Check for torn tape or dust in the reader, check the
tape for ragged edges or torn holes, then return to step 2.

If xx= 55, an address error was detected. A program being loaded attempted to enter a location
reserved for the main-memory resident Loader, or a location not available in the com­
puter. Check that an absolute binary tape was used, and that it was placed properly
in the reader.

If xx = 77, the tape was loaded correctly.

11-3

INITIATING DOS-/// WITH THE BMDL

When DOS-III has been generated on the disc (by DSGEN), it can be loaded into main memory and
initiated by a main-memory resident program called the BMDL. This program resides permanently
in the last 64 10 words of main memory and is hardware protected. Once DOS-III has been loaded
and initiated, it is ready to process user tasks.

Note: When using an HP 21MX computer with a disc loader ROM installed, steps 1
through 6 (below) are replaced by the ROM loading procedures described earlier.

Operating Instructions

1. Verify that a configured DOS-III system resides on head 0, drive 0 of the disc. (Head 0, drive 0
corresponds to subchannel 1 for the HP 7900/7901, or to subchannel 0 for the HP 2883/2884
disc.) If a configured system does not reside there, then use the Stand-alone Bootstrap Loader
program (see Initiating DOS-III with the Stand-alone Bootstrap Loader, in this Section).

2. Set a starting address of Ox7750, where x = 3 for 16K; x = 5 for 24K; x = 7 for 32K.

3. Enable (unprotect) the main-memory resident Loader.

4. Press PRESET button(s) and start the computer executing.

5. The computer halts with 102077 8 displayed in the Display register. Protect the main­
memory resident Loader (if necessary).

6. Set the disc subchannel number of the system to be loaded into the switch register (bits 5
through 0).

7. Start computer execution. The system is loaded into main memory and prints the following
message:

INPUT :DATE, XXXXXXXXXX (No Time-base Generator)
or

INPUT :DATE, XXXXXXXXXX,H,M (Time-base Generator)

8. All other directives are ignored until a valid DATE directive is entered. Immediately following
the DATE directive, the only valid directives are :TRACKS, :BATCH, :TYPE, and :JOB.
All other directives are ignored until a JOB directive is entered.

11-4

CONFIGURING THE DOS-Ill STAND-ALONE
BOOTSTRAP LOADER

Once DOS-III has been generated onto a disc, it may be initiated into operating status using the
DOS-III Stand-alone Bootstrap. The Bootstrap, however, must be configured before being used.

Operating Instructions

1. Turn on all equipment.

2. Load (using the BMDL or the paper tape loader ROM) and configure the SIO Punch or Tele­
printer Driver.

3. Load the Bootstrap using the BMDL or the paper tape loader ROM.

4. Set up the Bootstrap configuration starting address at location 28 •

5. Set switch register bits 5 through 0 equal to the octal channel number (select code) of the
disc controller (low number, high priority channel).

6. Set switch register bit 15 on to punch a configured Bootstrap tape; off to configure the
Bootstrap in main memory only.

7. Start the computer executing.

8. If bit 15 of the switch register is set, the Bootstrap punches out a configured copy of itself
and halts. For another copy, simply start the computer executing again.

11-5

INITIATING DOS-Ill WITH THE STAND-ALONE
BOOTSTRAP LOADER

When DOS-III has been generated onto the disc, it can be loaded into main memory and initiated
by using a small stand-alone program called the Stand-alone Bootstrap Loader. Once DOS-III has
been loaded and initiated, it is ready to process user tasks.

Note: The Stand-alone Bootstrap Loader need be used only if a configured
DOS-III system does not reside on head 0, drive 0 of the disc. If a
system resides on the disc in the above mentioned area, the BMDL
can be used.

Operating Instructions

1. Turn on all equipment.

2. Configure a Stand-alone Bootstrap Loader (as previously described).

3. Load the configured Bootstrap into main memory using the BMDL or the paper tape loader
ROM.

4. Set up the starting address of the Bootstrap at location 1008 •

5. Set switch register bits 5 through 0 equal to the octal subchannel of the system disc. (If this
subchannel differs from that established at system genPration time, the new subchannel
overrides the old.)

6. Set switch register bit 14 equal to one if the disc type is 2883 with two subchannels per drive;
to zero if the disc type is 7900, 7901, or 2883 with four subchannels per drive.

7. Start the computer executing.

8. When DOS-III has been loaded into main memory, it prints the following message:

INPUT :DATE,XXXXXXXXXX (No Time-base Generator)
or

INPUT :DATE, XXXXXXXXXX,H,M (Time-base Generator present)

9. All other directives are ignored until a valid DATE directive is entered. Immediately following
the DATE directive, the only valid directives are :TRACK, :BATCH, :TYPE, and :JOB. All
others are ignored until one of these directives is entered.

11-6

BMDL

The BMDL resides in the last 64 10 words of main memory (hardware protected by a button/switch
on the computer front panel) and is responsible for loading main-memory resident modules from
configured DOS-III systems residing on the disc into main memory. The BMDL also loads absolute
binary programs into main memory through the paper tape input device. A separate version of the
BMDL exists for each of two classes of disc, depending upon which disc type is used with the system
(HP 7900/7901, or HP 2883/2884). Only one version can exist in main memory at any one time. The
following two tables show the last 64 10 word addresses and their octal contents for each version of
the BMDL.

Note: When using the HP 7900/7901 BMDL with a newly-inserted 7900 or 7901
disc cartridge, it is necessary to execute the bootstrap twice. After executing
the bootstrap the first time, the system loops; it must be halted and the
bootstrap executed a second time. This procedure does not apply to the
Stand-alone Bootstrap.

Address Contents

x7700 002701

x7701 063722

x7702 002307

x7703 102077

x7704 017735

x7705 007307

x7706 027702

x7707 077733

x7710 017735

x7711 017735

x7712 074000

x7713 077734

x7714 067734

x7715 047777

x7716 002040
x7717 102055

x7720 017735

x7721 040001

x7722 177734

x7723 037734

x7724 000040

x7725 037733

x7726 027714

x7727 017735

x7730 054000

x7731 027701

x7732 102011

x7733 000000

x7734 000000

x7735 000000

x7736 006600

x7737 1037kk

Table 11-1. HP 7900/7901 BMDL

Address

x7740

x7741

x7742

x7743

x7744

x7745

x7746

x7747

x7750

x7751

x7752
x7753

x7754
x7755

x7756

x7757

x7760

x7761

x7762

x7763

x7764

x7765

x7766

x7767
x7770

x7771

x7772

x7773

x7774

x7775
x7776
x7777

Contents

1023kk

027740

1064kk

002041

127735

005767
027737
030000*

002400
1026cc

1037cc

067747
1066dd

1037dd
1066cc

063776

102606

067732
106602

1037cc

102702

106602
013741

1026dd

1037cc

103706

1037dd

1023dd
027773

127717

1200cc
1n0100

11-7

Paper tape loader starting ad­
dress= x77008 ; Moving-head
disc loader starting address =
x77508 (PRESET must be
pressed).

x 3 for 16k, 4 for 20k,
5 for 24k, 6 for 28k,
7 for 32k

kk tape input device

select code

dd low priority (higher

numbered) disc

select code

cc high priority (lower

numbered) disc

select code

n 4 for 16k, 3 for 20k,
2 for 24k, 1 for 28k,
0 for 32k

*The HP 7900/7901 BMDL can
be altered to boot a DOS-111 sys­
tem from subchannel 0 instead
of subchannel 1 by changing the
contents of address x774 7 from
300008 to 31 0008 .

Table 11-2. HP 2883/2884 BMDL

Address Contents Address Contents

x7700 002701 x7740 1023kk Paper tape loader starting ad-

x7701 063722 x7741 027740 dress= x77008 ; Moving-head

x7702 002307 x7742 1064kk disc loader starting address =

x7703 102077 x7743 002041 x77508 (PRESET must be

x7704 017735 x7744 127735 pressed).

x7705 007307 x7745 005767

x7706 027702 x7746 027737

x7707 077733 x7747 177600 x 3 for 16k, 4 for 20k,

x7710 017735 x7750 063775 5 for 24k, 6 for 28k,

x7711 017735 x7751 1026dd 7 for 32k

x7712 074000 x7752 1037dd

x7713 077734 x7753 1023dd

x7714 067734 x7754 027753 kk tape input device

x7715 047777 x7755 067776 select code

x7716 002040 x7756 106606

x7717 102055 x7757 067732 dd low priority (higher

x7720 017735 x7760 106602 numbered) disc

x7721 040001 x7761 102702 select code

x7722 177734 x7762 067747

x7723 037734 x7763 106602 cc high priority (lower

x7724 000040 x7764 001000 numbered) disc

x7725 037733 x7765 1067dd select code

x7726 027714 x7766 1026dd

x7727 017735 x7767 1037cc n 4 for 16k, 3 for 20k,
x7730 054000 x7770 103706 2 for 24k, 1 for 28k,

x7731 027701 x7771 1037dd 0 for 32k

x7732 102011 x7772 1023dd

x7733 000000 x7773 027772

x7734 000000 x7774 127717

x7735 000000 x7775 020000

x7736 006600 x7776 1200cc

x7737 1037kk x7777 1n0100

11-8

PART 4
DOS-/// Systems Programming

SECTION XII
User-written EXEC Modules

DOS-III is capable of accepting user-written EXEC modules. Up to two EXEC modules may be
written; these must be loaded with all the DOS-III EXEC modules during DOS-III Generation.
(See Section X, "Generating DOS-III" for details.)

This section presents the user-written EXEC call directives and calling sequences, along with a brief
description of internal design and a sample EXEC module.

For example, DOS-III halts on power failure. The user may write a power fail recovery routine.
Because of system requirements, the routine must be called $PF AL.

12-1

USER EXEC MODULES: DIRECTIVES

Purpose

To execute user EXEC modules.

Format

:EA [,pl, . .. ,p5]

:EB[,pl, ... ,p5]

(Calls EXEC module $EX36)

(Calls EXEC module $EX37)

where all parameters are non-negative decimal integers.

Comments

Number and meaning of the parameters varies depending upon user definition of the EXEC module.

12-2

USER EXEC MODULES: EXEC CALLS

Purpose

To execute either user-created EXEC module $EX36 or $EX37. The number of parameters in the
EXEC call are defined by the user. The general format of the call is

Assembly Language

RCODE
PRAM1

PRAMS

FORTRAN

EXT

JSB
DEF
DEF
DEF

DEF

DEF

IRCDE = 27 (or 28)

EXEC

EXEC (Transfer control to DOS-III)
*+2 (to 7) (Determine number of parameters-from 1 to S)
RCODE (Define request code)
PRAM1 (Define the first optional parameter)

PRAMS (Define the fifth optional parameter)

27 (or 28) (RCODE for $EX36 = 27; RCODE for $EX37 = 28)
(Up to five words of parameter information)

CALL EXEC (IRCDE[,P1, PS])

12-3

USER EXEC MODULES: INTERNAL DESIGN

EXEC modules are typically type-1 Assembly-language routines which are incorporated at genera­
tion time as part of the operating system. As "system" modules, they execute with the interrupt
system and memory protect off. They may directly access entry points and subroutines within the
system, but must not issue any EXEC calls (EXEC processing is not re-entrant). Also, user-written
EXEC modules should be defined as disc-resident supervisory modules; the NAM pseudo-instruction
for these modules should indicate that the routine is a type-1 program.

Special programming considerations are required upon initiation and completion.

Initiation

Upon entry, information used in processing the EXEC function can be found in the following base
page locations.

Location Name Definition

2248 RQCNT # of parameters in the calling sequence

2258 RQRTN return address upon completion

2268 RQPl address of request code

227-2338 RQP2-RQP6 address(es) of specified parameters

Completion

Prior to returning to the system, the EXEC module must

1. release itself from the EXEC module overlay area if it is disc-resident. This code handles EXEC
module release:

EXMOD
NUMB

LDA EXMOD
CPA NUMB
CMA,INA
STA EXMOD

EQU
DEC

245B
-36 (or -37)

(Get current module in overlay area)
(ls it this one?)
(Yes-set value positive)
(No-leave value alone)

12-4

2. place the desired transfer address in XIR T (location 137 8) and jump to the label $IR T
(defined as an EXTernal), for example,

EXT $/RT

LDA RQRTN (Set the return address)
STA XIRT
JMP $/RT (Trans{ er to system)

RQRTN EQU 225B
XIRT EQU 137B

12-5

SAMPLE EXEC MODULE

PAGE 0001

0001 ASMe,L,C,x,N,R,A DISC WORK LIMITS MODULE (SfX02)
•• NO ERRORS•

12-6

PAGE 0002 #01

0001
0002
0003
0004
0005
000e•
0001•
0008•
0009•
001C'Jt
001u·
0012t
0013•
0014•
0015•
0016•
0017•
0018•
0019•
0020
0021
0022
0023
0024
002!
0026
0021
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0tltA2
0043
0044
004!
0046
0047
0048
0049
0050
0tZl5 t
0052

ASMa,L,c,x,N,P,B OISC WORK LIMITS MODULE ($EX02)
00000 NAM SEX02,1

ENT SEXet2
EXT SRQFR,S•OOR
E)(T S!RT

IEX02 ROUTINE PROVIDES THE US!R WITH OISC WORK AREA TRACK
•DDRESS L!MITS AND THE # OF S!CTORS PER DISC TRACK,

CALLING SEQUENCES

JS8 EXEC
DEF ••SCOR 6)
DEF RCODE RCODE • 17
DEF FTRAK FTRAK • ADDR Of WORD TO STORE tST WORK TRK
DEF LTR~K LTRA~ • ADOR OF WORD TO STORE LAST WOR~ TRK
DEF SIZE SIZE • # SECTO~/TRACK WORD ADDR.
DEF DtSC(OPTlONAL) DISC • 0 FOR SYSTEM D!SC, NON•0 FOR US

DEFAULT IS SYSTEM.

00000 060224
0001?.1 t 05,HH57
00002 026~H 0R
00003 QH50060
00004 002001
00005 02606!5R
00A06 06121232
00007 12116002)(
000!0 060227
IZl"tHt 0t6tZl02X
00012 060230
00013 016rzt212X
00014 06023!
00015 12116002)(
00016 064224
00At7 054057
00020 026024R
00021 169232
00022 002002
00023 026057R
00024 l?HHH 60
00025 040014
00Q.t~6 HJ 112'1
00027 01007.d
1210030 110227
00031 080102
00032 002003
00033 02604JR
00034 010074
210035 0102101
00036 020102
00037 0~1127
0012140 010074

SEX02 l.DA RQCNT
CPA ,.+4
JMP CHK
CPA ,,+5
RSS
JMP RciER
LDA RQPe
JSB SADOR

CHK LDA RQP2
JSB SADDR
L.DA RQP3
JSB SAODR
LDA RQP4
JSB SAODR
LOB RQCNT
CPB ,.•4
JMP SYS
LDA RQP!5,I
SZA
JMP USE~

SYS I.DA SYNTS
ADA ,'377
ALF,ALF"
ANO 1 377
STA RQP21I
LDA JBINC
SZA,R~S
JMP EX0t0
AND .377
STA B
XOR JBINC
lLF,ALf
ANO ,371

12-7

CHECK PAR•MET!R COUNT
4 P•RAMETERS7
ve:s. OK,

5 PAFUMETERST
YE!, OK

TOO FEW OR TOO MANY PARAMETERS.
CHECK ADOR OF 5TH PARA.M

PARAMETERS

DEFAULT AS SYSTEM O!SC?
YES.

NO, CHECK 5TH PARAM
0 MEANS SYSTEM DISC

GET START OF WORK AREA TRACK

PAGE 0PJA:3 #0!

0053 00~4t 040052 ADA N!
0054 000d2 026045R JMP EX0~0
0055 00()143 06015A EX0t0 t.n.A DISCO STORE END OF WORK AREA TRACK #
0056 00044 010014 ANO .377
0051 0C~'H?t4 S 11023121 EX020 STA RQP3,!
0058 00046 ee0tt6 LDA SEC TR STORE # OF SECTORS PER TRACK
0059 00041 1702Jt STA RQP4,!
0060 00~50 ee0245 LOA EX MOD
0061 0P.IA!51 050051 CPA ,.•2
0~62 0121052 003004 CMA,INA
0063 000!3 07024~ STA EXMOO
0064 00054 060225 LOA RQRTN SET UP TRANSFER ADDR FOR SIRT
0065 0005!5 070137 STA XlRT
0066 00056 02600JX JMP S!RT
0067 00051 060i!57 USER LOA UONTS GET USER DISC NEXT TR/SECTR
GU'J68 00060 12)40074 ADA 1 371
0069 0006! 0t!'t127 ALF,ALF
0010 00062 fU 007 4 ANO 1 37'1
0071 0121063 110227 STA RQP2,I
0012 00064 02604JR JMP EX0t0
0073 0006e 002400 RQER CLA FREE t-10DULE AREA
007'4 0121(~ 6 6 010245 STA EX MOD
0015 00A67 0~6001)(JMP SRQ!'R
0016•
02177 00000 A EQU 0
(UJ78 000'-' l B EQU 1
0079 00053 •• EQU 538
0080 00052 Nl EQU •• •t
0081 00074 ,317 EQU • • .. 1 '
008;? 00t00 • EQU 1008
0083 00102 JBINC EQU .•2
0L'J84 00116 SEC TR EQU • .. 1 4
0085 00t26 RONBF EQU ,•268
0L'J8'5 00137 X!RT EQU RON8F•9
0087 00t54 otseo EQU ,•44
0L'J88 00 U51 UDNTS EQU ,•47
0089 00t60 SYNTS EQU ,•48
009PJ 00'-2' RQCNT EQU 1•8A
0091 0022! RQRTN EQU .•85
fHJ92 0121227 RQP2 EQU ·•8'1
0093 01'.1230 RQP3 EQU ,+88
0094 HJ ~3 t RQP4 EQU ,•89
009~ 00232 RCIP! EQU ,•9~
0096 00249 EX MOD EQU ,•UH
0091 END ... NO ERRORS•

12-8

SEXeJ2 CROSS•REFERENCE SYMBOL TABLE PAGF. 0001

SADDR '30004 HJ027 00029 00031 00033

SEXeJ2 A0020 00003

S!RT ~0005 00066

SRQ!R 210004 00015

• "'0082 00083 00084 1210085 00081 00088 00089
00000 00091 00092 00093 00094 BHJ95 00096

I • 00079 00021 00023 00035 0006 t 00080 00081

,377 00081 00141 00043 00048 00052 00056 00068
00070

•A 00077

B 00078 00049

CHK 00028 00022

DISCO 00087 00055

EX0t0 00055 00041 00072

EX020 00057 00054

EXMOD 00096 00060 00063 012'074

JBINC 00083 00045 "'"'50
Nt L'.10080 00053

RON BF 00085 00086

RQCNT 09090 00020 0121034

RQEA "10073 00025

RQP2 00092 90028 00044 IHJ071

RQP3 0eJ093 00QJ30 00057

RQP4 08094 iUJ032 eJ0059

RQP5 eu109e IJ0026 00037

RQRTN 00091 10064

SEC TR 00084 IHHlJ!58

SVNTS 00089 B0040

SYS 00040 00036
12-9

SEX02

UDNTS 00088

USER 00067

XIRT 00086

CROSS•REFERENCE SYMBOL TABLf.

00087

00039

00065

12-10

PAGE 0002

STANDARD I/O DRIVERS

SECTION XIII
Planning 1/0 Drivers

Note: Before attempting to program an 1/0 driver, the programmer should be
thoroughly familiar with Hewlett-Packard computer hardware 1/0 organi­
zation, interface kits, computer l/O instructions, and Direct Memory Access
(DMA).

An 1/0 driver, operating under control of the Input/Output Control ($EX18) and Central Interrupt
Control ($CIC) modules of DOS-III, is responsible for all data transfer between an 1/0 device and
the computer. During its execution, the driver may refer to the base page communication area for
information from the system: the device equipment table (EQT) entry, which contains the param­
eters of the transfer, and the current DMA value (CHAN), which contains the number of the
allocated DMA channel (if required).

An 1/0 driver includes two relocatable, closed subroutines: the Initiation Section and the Completion
Section. If nn is the octal equipment type code of the device, I.nn and C.nn are the entry point
names of the two sections and DVRnn is the driver name.

Initiation Section

The 1/0 control module ($EX18) calls the initiation section directly when an 1/0 transfer is initiated.
Locations EQTl through EQTl 7 of the base page communication area contain the addresses of the
appropriate EQT entry. CHAN in the base page contains the number of the DMA channel assigned
to the device, if needed. This section is entered by a jump subroutine (JSB) to the entry point I.nn.
On entry, the A register contains the select code (channel number) of the device (bits 0 through 5 of
EQT entry word 3). The driver returns to $EX18 by an indirect jump through I.nn.

Before transferring to I.nn, DOS-III places the request parameters from the user program's EXEC call
into words 7 through 13 of the EQT entry. Word 9, CONWD, is modified to contain the request code
in bits 0 through 5 in place of the logical unit. (See Figure A-4 and Section III, 1/0 READ/WRITE
EXEC Call (RCODE = 1 or 2), for details of the parameters.)

Once initiated, the drive can use words 5, 6, and 11through14 of the EQT entry in any way, but
words 1, 2, 3, 7, 8, 9, 10, 15, 16, and 17 must not be altered. The driver updates the status field in
word 4, if appropriate, but the rest of word 4 must not be altered.

13-1

FUNCTIONS OF THE INITIATION SECTION: The initiation section is responsible for these
functions (as flow-charted in Figure 13-1):

1. Rejects the request and proceeds to step 5 if:

• the device is inoperable, or

• the request code, or other of the parameters, is illegal.

Note: All drivers must accept a clear request. (Request code= 3, function code= 0.)

2. Configures all 1/0 instructions in the driver to include the select code of the device (or DMA
channel). (Does not apply to DVR05 and 7900/7901 DVR31.)

3. Initializes DMA, if appropriate.

Note: The initiation section must save the DMA channel number (found in CHAN)
in the EQT entry, since it is not set on entry to the continuation section.

4. Initializes software flags and activates the device. All variable information pertinent to the
transmission must be saved in the EQT entry because the driver may be called for another
device before the first operation is complete.

5. Returns to $EX18 with the A register set to indicate initiation or rejection and the cause of
the reject:

If A = 0, then the operation was initiated.

If A 7= 0, then the operation was rejected with A set as:

1 =read or write illegal for device

2 = control request illegal or undefined

3 = equipment malfunction or not ready

4 = immediate completion (for control requests)

6 = driver cannot handle a control request; the system is instructed to wait

13-2

return
to

P+1

(A)= 1 or
2 reject
codes

(A)= 3,
reject
code

l.nn

configure
1/0 instructions

for device

initialize
operating,

conditions,
flags, etc.

set buffer
address, length,
mode, etc. for

transfer

A register
(A)"'" 4 or 0

return to
P+1

Figure 13-1. 1/0 Driver Initiation Section

13-3

Completion Section

DOS-III calls the completion section of the driver whenever an interrupt is recognized on a device
associated with the driver. Before calling the driver, $CIC sets the EQT entry addresses in base page,
sets the interrupt source code (select code) in the A register, and clears the I/0 interface or DMA
flag. The calling sequence for the completion section is

Location

p

P+l

P+2

Action

Set A register equal to interrupt source code

JSB C.nn

Completion return from C .nn

Continuation return from C .nn

The point of return from C.nn to $CIC indicates whether the transfer is continuing or has been
completed (in which case, end-of-operation status is returned also).

FUNCTIONS OF THE COMPLETION SECTION: The completion section of the driver is responsible
for the functions below (as flow-charted in Figure 13-2):

1. The driver configures all I/0 instructions in the completion section to reference the interrupting
device.

2. If both DMA and device completion interrupts are expected and the device interrupt is
significant, the DMA interrupt is ignored by returning to $CIC in a continuation return.

3. Performs the input or output of the next data item if the device is driven under program
control. If the transfer is not completed, the driver proceeds to step 6.

4. If the driver detects a transmission error, it can re-initiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the Equipment
Table. The return tb $CIC must be (P+2) as in step 6.

5. At the end of a successful transfer or after completing the retry procedure, the following
information must be set before returning to $CIC at (P+ 1):

a. Set the actual or simulated device status into bits 0 through 7 of EQT word 4.

b. Set the number of transmitted words or characters (depending on which the user
requested) in the B register.

c. Set the A register to indicate successful or unsuccessful completion.

0 = successful completion

1 = device malfunction or not ready

2 = end-of-tape (information)

3 = transmission parity error

13-4

6. Clear the device and DMA control on end-of-operation, or set the device and DMA for the
next transfer or retry. Return to $CIC at

(P+ 1) completion, with the A and B registers set as in step 5

(P+2) ~ontinuation; the registers are not significant.

13-5

return
to

P+2

re~initialize

conditions

return
to

P+2

configure
1/0 instructions

for device

status in
EOT(4)

(8) = #
words or

characters
transferred

(A)=
completion

code

clear
device
control

return
to

P+1

transfer next
data item;

update indexes,
flags, etc.

Figure 13-2. 1/0 Driver Completion Section

13-6

return
to

P+2

SAMPLE 1/0 DRIVER

The following pages provide an assembly listing and cross-reference symbol table for a sample 1/0
driver.

13-7

PAGE 0001

0001
•• NO ERRO~S•

13-8

PAGE 0002 #01 •• o.o_s, ORIVER <02> PAPER TAPE ?UNCH ••

0001 ASM8 1 R,A,L,C
0003 00000
0004•

NAM OVR02,4

0005•*********
0006•

VERSlON 8/24/72

0007•
0008
0009•
0010****** PROGRAM DESCRIPTION *******
0011•
0012•
001 Jt
0014•
0015•
0016•
0017•
0018•
0019•
0020•

DRIVER 02 orERATES UNDER THE CONTROL OF THE
I/O CONTROL MODULE OF THE D,O,S, EXECUTIVE
THIS OR!VER IS RESPONSIBLE FOR CONTROLLING
OUTPUT DATA TRANSMISSION WITH A 2753A TAPE PUNCH,
<02> IS THE EQUIPMENT TYPE CODE ASSIGNED TO THIS
TYPE OF DEVICE. 1.02 IS THE ENTRY POINT FOR THE
•INITIATION+ SECTION ANO c.02 FOR THE •COMPLETION•
SECTION.

0021• -
0022•
0023•
0024•
0025•
0026•
0027•
0028•
0029•
0030•
0031•
0032•
0033•
0034t
0035•
0036•
0037•
0038•
0039•
0040•
0041•
0042• ..
00A3t
0044•
0045•
0046•
0047•
0048•
0049•
0050•
0051•
0052•
0053•
0054•
0055•
0056•
0057•

THE INITIATION SECTION IS CALLEO FROM I/O
CONTROL TO INITIALIZE A DEVICE ANO INITIATE
AN OUTPUT OR CONTROL OPERAT!ON~

CALLING SEQUENCE1

• ADDRESSES OF DEVICE EQT ENTRY
SET IN "EOT1•EQT17" •

CA) • I/O ADDRESS Of DEVICE

CP) JSB I.02
C P+ t) - RETURN ..

(A) • 0, OPERATION INITIATED, OR
(A) • REJECT CODES

t, ILLEGAL READ REQUEST
2, ILLEGAL CONTROL FUNCTION

THE COMPLETION SECTION IS CALLEO BY CENTRAL
INTERRUPT CONTROL TO CONTINUE OR COMPLETE
AN OPFRATION.

CALLING SEQUENCES

• ADDRESSES OF OEVIeE EQT ENTRY
SET IN "EQlt•EQT17" •

(A) • I/0 AODRESS OF DEVICE

CP) JSB C,02 (P+tl •• COMPLETION RETURN
CP+2) •• CONTINUAT!ON RETURN ••

• COMPLETION RETURNS
13-9

PAGE 0003 #01 ** O,O.S, DRIVER <02> PAPER TAPE PUNCH ••

0058•
0059•
0060•
0061•
0062•
0063•
0064•
0065t
0066•
0067•
0068•
0069•
0070•
0071•
0072•
0073•
0121?4•
0075•
0076•
0077•
0078•
0079•
0080•
0081•
0082•
0083•
0084•
0085•
0086•
0081•
0088•
0089•
0090•
21091•
0092•
0093•
0094•
0095•
0096•
0097•
012198•
0099•

CA) • 0, SUCCESSrUL COMPLETION WITH
CB) • # WOROS OR CHARACTERS

TRANSFERRED.
(A) • 2 IF •TAPE"SUPPLY-LOW• CONDITION

DETECTEO AFTER RECORD IS
FINISHED,

CB), SAME A! FOR (A) • 0

• CONTINUATION RETURNS REGISTERS
MEAN?NGLESS

~ RECORD FORMATSr

ASCII: A STRING OF CHARACTERS, THE NUMBER
~~--- DESIGNATED AV THE BUFFER LENGTH IN

THE REQUEST, TERMINATED BY A RETURN
ANO ~!NE•FEED (SUPPLIED BY THE DRIVER).

SPECIAL CHARACTER PROCESSING:

LEFT•ARROWr If A LEFT•ARROW IS THE LAST
CHARACTER JN THE USER BUFFER,
THE RETURN/LINE•FEFO AND LEFT
ARROW CODES ARF NOT OUTPUT.

A ZERO BUFFER LENGTH CAUSES ONLY A RETURN/
LINE~FEEO TO BF OUTPUT.

BINARYI A STRING OF CHARACTER5 SPECIFIED
-~--·- BY THE "BUFFER LF.NGTH" IN THE REOUEST,

" CONTROL FUNCTIONS ACCEPTED&

t0 ~ TEN INCHES OF ZEROS CFEEO~FRAMES) ARE
OUTPUT FOR LEAnER/TRAILER.

11 - LINE SPACING: THE PARAMETER WORD OF THE
fONTROL REOUEST DETERMINES THE NUMBER
OF LJNE•FEEOS TO BE OUTPUT.

13-10

PAGE 0004 #01 < DRIVER 02 •INITIATION• SECTION >

0101•
0102•******** lNIT!AT!ON SECTION *****•****
0103•
0104•
0105 00000 000000 I.02 NOP
0t06•
0101 00001 01620tR
0108•
0109 000~2 160213
0110 00003 010056
0111 •
0112 00004 050054
0113 00005 12600~R
0114 000~6 050055
0115 00~07 026043R
0116•

JSB SET?O

LOA EGlT9 1 1
ANO I 3

CPA 1 1
JMP I.02,!
CPA 1 2
JMP 004

0117t CONTROL FUNCTION REQUEST
0t18•
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129•

00010
"0A 11
00012
ICHH'll J
00014
00015
00016
00017
00020
00021

160213
001727
001222
010073
002003
02602AR
0~0063
026026R
0e0064
026032R

I.DA EQT9,?
ALF,ALF
RAL,,RAL
ANO MASK1
SZA,R5S
JMP CLEAR
CPA 1 108
JM.P 001
CPA ,t1A
JM.P 002

SET !/0 JNSTRUCT!ONS FOR UNIT,

GET CONTROL WORO OF REQUEST,
I~OLATE.

ERROR IF REQUEST IS
FOR INPUT, REJECT CALL,

PROCESS FOR
WRITE REQUEST.

GET CONTROL WORD
FROM REQUEST, POSITION AND
ISOLATE FUNCTION FIELD,

IS IT A CLEAR?
Yf.S,

FifLO • <10> TO GENERATE
LEADER (10 INCHES OF BLANK TAPE)

FIELD • <lt> FOR L!NE
SPACING,

0130• REQUEST ERROR • CAUSE REJECT RETURN TO t/O CONTROL
0131•
0132 00022 060055 LOA ,2
0133 000~3 126000R JMP I.02,!
0134 00024 106700 CLEAR CLC 0
0135 00025 026066R JMP I.A.6
0\36•
0137• LEAOE~/TRAILER GENERATOR
013!•
0139 00026 062224R 001
0140 000?.7 170216
0141 00030 002400
0142 000Jt 02604tR
C'JS 43•
0144• L!NE SPAC!NG
0145•
0146
0147
0148
0149
0150
0151
IU52
0153•

00032
00033
00034
00035
00036
00031
00040

160214
002021
003004
002003
003400
1102te
060065

002

l.DA N100
STA EQT121l
CLA
JMP 003

I.DA EQTt0,I
SSA,RSS
C~A,INA
SZA,RSS
CCA
STA EQTt21I
LDA LINF

TURN DEVICE OFF

SET !NOEX COUNTER FOR FEED FRAMES
• •100.

(A) • 0 FOR
FEED FRAME,

GET L!NE COUNTER WORO,
!NSURE VALUE

18 NEt'iATIVE.
PROTECT AG•INST

A ZERO VALUE.

CA) • LINE FEED CODE,

0154 00041 170217 003 STA EQTtJ,I SET ACTION CODE.
0155 00042 026aSeR JMP D05
0t56• 13-11

PAGE 0005 #01 c DRIVER 02 •INIT!AT!ON• SECT?ON >

0t57•
r211 se•
0159
0160
0161
0162
0163
iJ164
0165
0166
0161
0168•
0169
0110
01''1•
0112•
017~h
0174
0175
0176
0111•
0178
0119
0180
0181•
0182
0183
0184
1818!

WR!TE REQUEST PROCESSING

a0043 160214 D04
000!'14 001200
00045 170216
00046 16021~
00047 002020
00ete0 02605JR
00051 001000
00052 00301U
00053 170217

LOA EQTt0,I
RAL
STA EQTt2,I
LDA EQTtt,I
SSA
JMP ••3
ALS
CMA 1 INA
STA E~Tt3,I

CLA

CONVERT BUFFER ADDRESS TO EVEN
CHARAeTER ADDRESS AND SET
AS CURRENT BUFFER ADDRESS,

GET BUFFER LENGTH,
IF CHARACTER SPECIFIED,

USE VALUE.
CONVERT WORDS TO NEGATIVE

CHARAeTERS,
SET CU~RENT BUFFER LENGTH,

00054 002400
00055 170220 STA EQT14,I FOR BINARY WRITE,

CALL •COMPLETION• SECTION TO WRITE FIRST CHAR,

00056 062223R 005
0A057 072070R
00060 026075R

LOA IEXTA
STA C,02
JMP 010

0006! 0260f5'1R
0L't062 002400
00~H53 126000R

00064 0064021
00065 174220
00066 ae0057
00067 1!6000R

JMP I.A.4
JEX!T CLA

JMP 1.02,I

I.A.4 CLB
STB EQT141I

I.A.6 LDA ,4
JMP I.02,I

13-12

ADJUST RETURN
TO •INITIATOR• SECTION,

B!NARY READ W!TH 0 BUFFER LEN.
RETURN TO !/O CONTROL WITH

OPERATION INITIATED.

CLEAR TL.OG 11

SET A•4 FOR IMMEO,COMPL RETURN
RETURN

PAGE 0006 #01 c DRIVE~ ~2 •COMPLETION SECTION• >

0187•
0t8B••••••••• COMPLET!ON SECTION ••••••****
0189•
0190•
0191 00070 000000 C.02 NOP
0t92•
0193 00011 0t6~01R
0194 00~12 160207
0195 00A73 002020
121196 1210074 0261~5R
0191•
0198
0199
0200
12121211
0202
121203•

00075 16021;5
00016 070001
00017 001727
00100 001200
00!01 072222R

0204 00102 002400
0205 00t03 150216
0206 00104 026t55R
0207•
0208 00t05 00401~
0209 00106 026t33R
02Ul•
0211 00t01 1502!1
0212 00110 026tJ1R
0213•

,0214
0215
121216
0211
0218
12121 g
0220
121221.

0011 t
00tt2
00113
00t14
00t us
00t16
00117

1e42te
134216
004065
160001
002041
001127
010074

0222 00120 066222R
121223 0121t~t 134217
0224 1210t22 026t27R
0225•
0226 00123 006020
0227 0~t24 026t27R
0228•
022~ 00t2! 0S2220R
0230 0~t26 026t55R
023tt

010

JSB SET!O
LOA EQT5,!
SSA
JMP IOJ

L.DA EQT9 1 I
STA B
ALF,ALF
RAL
STA TEMPl

CLA
CPA Et'JTt2,I
JMP I03

SLB
JMP 011

CF'A EQT13,I
JMP 012

L.DB EQTt2,I
I!Z Et'JTt2,I
CLE,ERB
LDA 811
SEZ,RSS
ALf'1ALF
ANO MASK3

I.DB TEMP1
ISZ EQT13,I
JMP 101

SSB
JMP 101

CPA ARROW
JMP IOJ

0232• OUTPUT CHARACTER TO PUNCH UNIT.
0233•
121234 0121127 11212600 !01 OTA 0
0235 00!30 10211210 J02 STC 121
02Je 00t3t 036010R xez c.02
0231 00t32 126070R JMP c.0~,1
02Je•
121239• CONTROL FUNCTION OUTPUT
0240•
02~1 00t33 160211 Dll
02•~ 00t34 13~216

LDA EC1Tt3,l
!SZ EtHt2,I

13-13

SET I/0 INSTRUCTIONS FOR UNIT,
G!T "CLEAR" FLAG,
CLEAR?
YES, TERMINATE,

GET CONTROL WORD
SAVE FOR CODE TEST­

ROTATE MODE BIT
TO FUT 15
AND SAVE.

!F CURRENT BUFFER ADDRESS OR
FUNCTION INDEX • 0 1 THEN
OPERATION COMPLETED.

• CONTROL FUNCTION •

IF CURRENT CHARACTER INDEX •
0, THEN OUTPUT END OF RECORD,

GET CURRENT CHAR. BUFFER ADDRESS.
ADO 1 FOR NEXT CHARACTER.
CONVERT TO WORD ADORES!•

GET WORD AND
POSITION PROPER
CHARACTfR IN A(07•00).

REMOVE UPPER POSITtON DATA.

PUT MODE lN B(t5),
INDEX CHARACTER COUNTER,
• NOT L.AST CHARACTER,

IF BINARY MODE,
WRITE LAST CHARACTER.

!F CHAR • ~ • >, THEN OMIT IT
AND R/LF ON •SCII RECORD.

OUTPUT CHARACTER TO INTERFACE
TURN OEV!CE ON.
ADJUST RETURN TO (P•2).
•fX!T•,

(A) • LlNE•FEED OR F!ED 'RAHE,
INDEX OUTPUT COUNT FOR LEADER/

PAGE 0001 #01 c DRIVER 02 •COMPLETION SECTION• >

0243 00135 000000 NOP TRAILER OR LINE SPACING,
0244 00136 02&127R JMP 101 GO TO OUTPUT CHARACTER.
0245•
21246• END OP' RECORD PROCESSING
0247•
0248 00131 062222~ D12 LOA T!MPt eH!CK MODE OF TRANSFER.
02'19 00140 IHJ22120 SSA
025~ 00t4t 026t!!5R JMP 103 • B!NARV •
0251•
0252 GUJt 42 164220 LOB EQTt4,I •ASCII• RECORD
0253 00143 0622t7R LOA Rf TN OUTPUT FIRST A
0254 00144 0562t7R CPB RETN RETURN ANO THEN A
025!5 00!45 060~65 LOA L!NF llNE•FfED.
0256 00146 170220 STA EGIT14,I SET EQT11 FOR LlNE•FEED CHECK.
121257 1210t41 0!62t1R CPB RETN IF LTNE•FEED IS BEING OUTPUT,
121258 00U50 026 t, 52R JMP 014 GO TO SET COMPLETION FLAG.
1212fH~ 00t.!5t 026t27R JMP ?01 .. OUTPUT RETURN ""
0260•
0261•
0262 00152 006400 014 CLB SET BUFFER ADDRESS • 0
0263 00!53 174216 STB EQTl21I TO INDICATE LAST CHARACTER.
0~64 00154 026t21R J~P IOl

13-14

PAGE 00me #01 < DRIVER 02 •COMPLETION SECTION• >

0266•
0267•
0268•
0269
0270
0211
0272
0273
027A
027'5
0278
0211
0278
0219
0280
0281•
0282
028J
0284
0285•
0286
0287•
0288
0289•
029~
0291
02g2
0293•
0294•
0299•
0~96•
0291•
0298•
0299•
0300•
0301•
030:h
0303•
030.d
030!5
030e
0307•
0:508
0309
0310*
0311
0312
0313•
0314
0315
0316
0317•
0318

STATUS AND TRANSMJSSION COMPLETION SECTION

00t55 10250~ IOJ
00t56 070001
00!57 1602015
00160 010075
0~t6t 030001
00t62 11020~
0Q'Jt6J eH'J2400
HJ t 64 006002
IHJ t es 0e0055
00166 1e4201
0mtt>7 00602"
00110 026t7t5R

0~t7t 164215
00t12 0eJ6020
00t13 007004

LIA 0
STA B
LDA EQT4,I
ANO MASK2
!OR B
STA EQT4 1 !
CLA
sze
Lr>A .2
L,DB EQT5 1 l
SSB
JMP 105

I.DB EQT tt, l
SSB
CMB,INB

00t74 106700 I04 CLC 0

flJ0t75 126070R

00176 006400 I05
0Bt17 174201
00200 126070R

S •AROUTJNEt <SET!O>

JMP C,02 1 !

CLB
STB EQT5,J
JMP C.02,!

GET DEVICE STATUS,

REMOVE PREVIOUS
STATUS,

SET NEW
STATUS WORD,

IF LOW TAP!
SUPPLY, SET
A • 2 FOR •EOT• 1

GET "CLEAR" FLAG 1

CLEAR?
YES.

SET CB) • TRANSMlSS!ON
LOG AS POSITIVE # OF WORDS
OR CHARACTERS,

TURN DEVICE OFF,

ANO E~IT 'OR COMPLETION.

RESfT "CLEAR" FLAG,
RE:TURN

'URPOS!C TO CONf?GURE THE 1/0 INSTRUCTIONS
IN THE DRIVER TO REFERENCE THE
SUBJECT PAPER TAPE PUNCH,

(A)05·0~ CONTAINS I/O ADDRESS
JSB SET!O

00201 000000
00~"2 03222!R
00203 012t55R

00204 040061
00205 012t27R

002"8 0422l5R
00207 012t30R

0~210 0322t6R
IHJ2 tt 012t14R
121~212 072024R

00213 l2620tR

•RETURN• (~EGISTERS MEANINGLESS)

SET!O NOP
IOR L!A
STA 103

ADA ,100
STA 101

ADA ,tU10
STA 102

lOR ,4'00121
STA 104
STA CLEAR

JMP SET!O,l

13-15

COMBINE ~~!A• WITH 1/0 ADDRESS
ANO SET.

CONSTRUCT cOTA> INSTRUCTION

CONSTRUCT <STC,e> INSTRUCTION

CONSTRUCT cCLC> INSTRUCTION

PAGE 000~ #01 c DRIVER "2 •COMPLETION SECTION• >

0320•
0321+ CONSTANT AND VARIABLE STORAGE AREA
0322•
0323 00~00 A EQU 0 OE FINE SYMBOLIC REFERENCE FOR
0324 0mt01 B EQU 1 A AND B REGISTERS.
032!5•
0326 QHW14 0000AC'J .. 40 oeT 40
0327 00215 00110'0 ,1100 OCT 110'-'
0328 0~216 004000 94000 OCT 4000
0329•
033~•
0331 00217 00001~ RETN OCT 15
0332 00220 000131 ARROW OCT 137
0333•
0334 00221 102500 LIA L!A 0
0335•
0336 00222 000000 TEMP1 NOP
0337•
0338 00223 000061R IEXTA DEF IEX!T..,1
0339 00224 177610 Nl00 DEC .. 120
0340•

13-16

PAGE 0010 *01 •• SYSTEM BASE PAGE COMMUNICATION AREA **

0342•
0343••• SYSTEM eA~E PAGE COMMUNICATION AREA •••
0344•
0345 00053 •• EQU 538
0346 00041 N4 E~U ,.•4
0347 00054 • 1 EQU •• •1
0348 00055 ,2 EQU •• •2
0349 00056 ,J f QU •• •3
0350 00057 14 EQU •• •4
0351 00061 ,6 EQU .. ·~
0352 000~3 .10e £QU •• •e
0353 00064 , 11B EQU •• •9
0354 00065 LINF EQU tQJ
0355 00067 ,100 EQU •• •t2
0356 0007J MASK1 EQU •• •16
0357 00074 MASt<J EQU ,.•17
0358 00075 MASK2 EQU t 8
0359 00100 • EQU 1008 ESTASLISH ORIGIN OF AREA
036CH
0361•
0362• I/O MODULE/DRIVER COMMUNICATION
0363•
0364 00203 EQTt EQU ,•67
0365 00~04 El'H2 EQU ,+&e
0366 00205 EQT3 EQU ;•69
0367 00206 EQT4 EQU ,•70
0368 00201 EQT5 EQU ,•71
0369 002UJ EQT6 f QU ,•72
0370 00211 EQT7 EQU ,•13
0371 00~12 EQTS EQU ,•7A
0372 00213 EQT9 EQU .•16
0373 00214 EQTt0 EQU ,•7e
0314 00215 EQTtt EQU ,•77
0315 0021e EQTt2 EQU ,•7e
0376 00211 ECHt3 ECIU ,•19
0377 002~0 EQTt4 EQU .•80
0318 00221 EQTt5 EQU I •81
0379 00222 EQTt6 ECIU ,•82
038L'J 00223 EQTt7 EQU .•83
0381 END ... NO ERRORS•

13-17

DVRA2 CROSS~RFFERfNCE SYMBOL TABLE PAGE 0001

• 00359 00364 00:365 00366 00367 00368 00369
00370 00371 00372 00373 0121374 00315 00376
00377 00378 00379 00380

•• 00345 00346 00347 00348 00349 00350 00351
00352 00353 00354 00355 00356 00357 00358

I 1 00341 00112

,100 00355 00308

,10e 00352 00125

,1100 00327 00311

t t1A 00353 00127

,2 00348 00114 00132 00211

,3 00349 00110

,4 00350 00184

•,40 00326

,4000 00328 00314

•,6 00351

•A 00323

ARROW 00332 00229

B 00324 00199 00217 00270 P.10273

C,02 00191 00008 00175 0~236 00237 00288 1210292

CL.EAR 00134 CUJt 24 00316

ocu 0CH39 00126

002 00146 00128

003 00154 CH142

004 00159 00115

DP.15 00174 00155

010 00198 00176

011 00241 OH'J209

012 0024A 00212

13-18

OVR02 CR05S•RfFERfNCE SYMBOL TABLE PAGE 0002

014 00262 00258

tEQTt 00364

ECIT10 00~73 00146 0~H59

EQT11 00374 00162 00282

EQT12 00375 00140 00t51 001tH 00205 0121214 00215
00242 00263

EQT13 00376 00154 00167 00211 00223 00241

EQT14 00371 00110 00183 00252 "10256

•EQT15 P.10378

•EQTt6 00379

•EQT17 00380

•EQT2 00365

•EQTJ 00366

EQT4 00361 00271 00274

EQT5 G'J0368 00194 0021e 00291

•EQTe 00369

•EQT7 ~0370

•EQT8 00371

E~T9 00372 00109 00119 00198

1.02 00105 00008 00113 00133 00180 00185

I.A,4 00182 eH.'1178

I.A,6 00184 00135

IEX!T 00179 00338

I EXT A 00338 00174

101 "'0234 00224 "0221 00244 00259 0A264 00309

!02 00235 0121312

%03 00269 00196 00206 0et230 00250 00306

104 HJ286 00315

105 l'.10290 00280

13-19

OVR0?. CROSS•REFF.R~NCE SVMAOL TAALE PAGE 00t'!3

I.. I A 00334 00305

L!NF 00354 00152 00255

MASK1 00356 00122

MASl<2 0035A 00212

MASKJ ~0357 00220

Nt00 00339 00139

•N4 00346

RETN r21033 t 00253 00254 00257

SET IO 0~304 00101 00193 00318

TEMP1 00J3e 00202 00~22 0C'12418

PRIVILEGED INTERRUPT I/O DRIVERS

Privileged interrupt I/0 drivers include a third relocatable, closed subroutine in addition to the
Initiation Section and the Completion Section. This subroutine is the Privileged Interrupt Section.
P.nn is the entry point name. The Initiation Section is identical to those written for the standard
I/O drivers except that the EQT entry should be saved for subsequent use by the Privileged Inter­
rupt Section. Figure 13-3 is a flowchart of the privileged interrupt driver Initiation Section.

13-20

return
to

P+1

(A)= 1 or
2 reject
codes

(A)= 3,
reject
code

configure
1/0 instructions

for device

initialize
operating,
conditions,
flags, etc.

save EQT
entry for

the Privileged
Interrupt Section

set buffer
address, length,
mode, etc. for

transfer

A register
(A)= 4 or 0

return to
P+1

Figure 13-3. Privileged Interrupt 1/0 Driver Initiation Section

13-21

Privileged Interrupt Section

Control passes directly to the Privileged Interrupt Section of the driver (P .nn) whenever an inter­
rupt occurs from a device associated with the driver. The address specifying where control is to be
passed (that is, the P.nn entry point) must be included at generation time while building the inter­
rupt table entries (the ENT option should be used; see Section 10). Since control does not pass
through the system's central interrupt routine before entering the Privileged Interrupt Section, the
following standard interrupt processing is not performed:

1. The 1/0 interface flag for the device is not cleared.

2. The A register does not contain the interrupt source code.

3. The EQT entry addresses are not set in the base page.

Note: To allow access to the EQT entry, the Initiation Section should
save the EQT address, then the Privileged Interrupt Section can
use the saved address to reference the EQT entry.

FUNCTIONS OF THE PRIVILEGED INTERRUPT SECTION: The Privileged Interrupt Section is
responsible for the following functions (flowcharted in Figure 13-4):

1. Upon entry to P.nn, the driver must save the contents of the A, B, E, and 0 registers.

2. The driver services the current data item and determines whether or not the transfer is
complete.

3. If the transfer is not complete, the Privileged Interrupt Section should set the device for the
next transfer and proceed to step 5.

4. If the transfer is complete, the Privileged Interrupt Section should make the following system
completion call:

EXT
LDA
JSB

$PCOM
EQTl
$PCOM

(saved EQT entry)

This call directs the system to pass control to the standard Completion Section (C.nn entry
point) as soon as it is possible for a "system" device to interrupt.

5. Prior to returning control to the point of suspension, the Privileged Interrupt Section must
restore the A, B, E, and 0 registers. In addition, since memory protect is automatically dis­
abled whenever an interrupt occurs, the Privileged Interrupt Section is responsible for restoring
memory protect to its original state. A memory protect flag exists on the base page (MPTFL =
271 8) to provide the driver with information concerning the state of memory protect. If
MPTFL is zero, memory protect was on and an STC 5 instruction should be executed immedi­
ately prior to returning to the point of suspension. If MPTFL is one, memory protect was off
and an STC 5 instruction should not be issued.

13-22

P.nn

save contents
of A, B, E,

and 0 registers

service
current

data item

call $PCOM
to pass

control to
C.nn

restore
A, B, E, and
0 registers

restore
memory
protect

return
to

P+1

set device
for next
data item

Figure 13-4. Privileged Interrupt 1/0 Driver Privileged Interrupt Section

13-23

Privileged Interrupt Completion Section

The completion section in a privileged interrupt driver is used to perform the following functions
(flowcharted in Figure 13-5):

1. Set the actual or simulated device status into bits 0 through 7 of EQT word 4.

2. Set the number of transmitted words or characters (depending on which the user requested)
in the B register.

3. Set the A register to indicate succesiSful or unsuccessful completion.

0 successful completion

1 device malfunction or not ready

2 end-of-tape (information)

3 transmission parity error

4. Clear the device control on end-of-operation, or set device for next transfer.
Return to $CIC at P+ 1.

13-24

C.nn

configure
1/0 instructions

for device

update
status in
EQT(4)

(B) = #
words or
characters
transferred

(A)=
completion

code

clear
device

control

return
to

P+1

Figure 13-5. Privileged Interrupt 1/0 Driver Completion Section

13-25

SAMPLE PRIVILEGED INTERRUPT 1/0 DRIVER

The following pages provide an assembly listing and cross-reference symbol table for a sample
privileged interrupt 1/0 driver.

PAGE ~001

0001 ASMB,R,B,L,C PRIVILEGED DRIVER FOR PUNCH
** NO ERRORS•

13-26

PAGE ~002 #01 PRIVILEGED INTERRUPT PUNCH TAPE DRIVER•OVR02

0001 ASMB,R,B,L,C PRIVILEGED DRIVER FOR PUNCH
001d3 00A00
0004•

NAM DVR02,0

0005
0006•
0007
0008•
0009•*****
0010•

EXT $PCOM,$MOVE

PROGRAM DESCRIPTION ******

DRIVER 02 IS A SIMPLIFIED VERSION OF THE GENERAL PURPOSE
PUNCH DRIVER TO ILLUSTRATE THE USE OF PRIVILEGED INTERRUPT
FENCE REGISTER.

0011•
0012•
0013•
0014•
0015•
0016•
0017•
0018•
0019•
0020.
0021•
0022• -
0023•
0'124•
0025•
0026•
0027•
0028•
0029•
0030•
0031•
0032•
0033•
0034•
0035•
0~36• ..
0037•
0038•
0039•
0040•
0041•
0042•
0043•
0044• ..

DRIVER 02 OPERATES UNDER THE I/O CONTROL MODULE OF THE Dos
EXEClJTIVE FOR INITIATION AND COMPLETION AND DIRECTLY FROM THE
TRAP CELL FOR PRIVILEGED INTERRUPTS.

0045•
0046•
0047•
0048•
0049•
0050•
0051•
0052•
0053•
0054•
0055•
0056.,tp
0057• ..

I.02 Is THf ENTRY POINT TO THE •INITIATION• SECTION
P,02 IS THE ENTRY POINT TO THE •PRIVILEGED• SECTION
c,02 IS THE ENTRY POINT TO THE •COMPLETION• SECTION
THE INITIATION SECTION IS CALLED FROM I/0 CONTROL TO
INITIALIZE A DEVICE AND INITIATE AN OUTPUT

CALLING SEQUENCE1

~ ADDRESSES OF DEVICE EQT ENTRY SET IN "EQT1•EQTt1"

(A) a l/O ADDRESS OF DEVICE

CP)
(P+1)

JSB I,02
-~ETURN•

CA) • 0, OPERATION INITIATED
• 4, OPERATION REJECTEO•IMMEDIATE COMPLfTIO

THE PRIVILEGED SECTION IS CALLED DIRECTLY FROM THE l/O TRAP
CELL WHOSE AODRESS HAS BEEN SET AT SYSTEM GENERATION,

CALLING SEQUENCE:

CP)
CP+1)

JSB P.02
.-RETURN•

THE COMPLETION SECTION IS CALLED BY CENTRAL INTERRUPT
CONTROL TO COMPLETE AN OPERATION,

CALLING SEQUENCE&

• ADDRESSES OF DEVICE EQT ENTRY SET IN "EQT1•EQT17"

CA) • I/O ADDRESS OF DEVICE

(P)
(P+1)

JSB c.02
•RETURN•

(A) • 0, SUCCESSFUL COMPLETION

RECORD FORMAT MUST BE A STRING OF ASCII CHARACTERS

13-27

PAGE 0003 #01 INITIATOR SECTION

0059•
0'160•
0061•
0062•
0063•
0064•
0065•
0066•
0067•
0068•
0069•
0070•
0071•
0072•
0073•
0074•
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0~85
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
1"108
0109
0110

THE FUNCTIONS OF THE INITIATION SECTION ARE:

1. CONFIGURE I/O INSTRUCTIONS
2. SAVE SYSTEM EQT ENTRY ADDRESSES USED lN PRIVILEGED

SECTION FROM EQTl•EQTt7,
3. CHECK FOR LEGITIMATE REQUEST CODE
4. FORM CHARACTER BUFFER ADDRESS
5. FORM NEGATIVE CHARACTER COUNT
6 1 OUTPUT FIRST CHARACTER
7. ENABLE DEVICE
a. RETURN

NOTES FUNCTION 2 IS THE MAIN DIFFERENCE FROM
STANDARD DRIVERS

00000 000000 1,02
0121001 0161A0R
00£'.102 0621 tHllR
"'0003 066161R
00004 0160P.J2X
00005 000166R
00P.106 t62175R
00007 002020
00010 003004
00011 0!50055
00012 002001
00013 026042R
Ol0014 162177R
@0015 "101200
001t!16 172201R
00017 t62200R
00020 002003
00~21 026042R
00022 002020
00023 026026R
00024 001000
00025 003004
00026 112202R
00027 166177R
00030 136201R
00t'J31 t 60r?l01
00032 001727
00033 010074
00034 102600 I.02A
00035 136202R
00036 000000
00037 ~02700 I,028
00040 002400
00041 126000R
00042 060057 ERTN
00043 12600IZIR

NOP
JSB CONFG
LOA DEQTt
LOB N17
JSB $MOVE
DEF TEQ1
LOA TEQ8,l
SSA
CMA, I N'A
CPA .2
RSS
JMP ERTN
LOA TEQ10,I
RAL
STA TEQ121I
LOA TEQ11,I
SZA,RSS
JMP ERTN
SSA
.JMP •+J
ALS
CMA,INA
STA TEQ13,l
LOB TEQ10,I
YSZ TEQ12,I
LOA B,I
ALF,ALF
AND ,377
OTA 0
ISZ TfQtJ,I
NOP
STC 0
CLA
JMP I,02,l
LOA .4
JMP I.0211

13-28

INITIATOR SECTION ENTRY
CONFIGURE I/0 INSTRUCITONS
MOVE SYSTEM EQTt•EQT17 INTO

PRIVILEGED DRIVER EQT AREA

GET REQUEST CODE

MAKE + IF NEGATIV£

IGNORE REQUEST CODE RETURN
FORM CHARACTER BUFFER ADDRESS

•BUF AODR USED BY DRIVER•
FORM NEGATIVE CHARACTERS COUNTER

ERROR IF ZERO CHARACTER

.CHAR COUNT USED BY DRIVER.

FORM FIRST CHAARACTER

OUTPUT FIRST CHARACTER
INCR FOR FIRST CHARACTER

ENABLE DEVICE
INDICATE NORMAL RETURN
RETURN TO SYSTEM
IMMEDIATE COMPL!TlON RETURN
RETURN TO SYSTEM

PAGE 0004 #01 PRIVILEGED SECTION

0112•
1.1113•
0114•
0115•
0116•
0117•
0118•
0119•
0120•
0121•
0122•
0123•
0124•
0125•
0126•
0127•
IU28•
0129•
0130•
0131•
0132•
0133
0134
0135
0136
0137
013tJ
lrH39
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
015J
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163

PRIVILEGED PROCESSOR SECTION

THE FUNCTIONS OF THE PRIVILEGED SECTION AREi

1. TURN OFF INTERRUPTS
2. SAVE COMPUTER REGISTERS AT INTERRUPT
J. IF ALL CHARACTERS OUTPUT, GO TO FUNCTION 10
4. OUTPUT NEXT CHARACTER
5. ENABLE DEVICE
6. RESTORE REGISTERS
7. SET MEMORY PROTECT TO ORIGINAL STATE AT TIME oF lNTERRU
a. TURN ON INTERRUPTS
9, RETURN TO POINT TO INTERRUPT

10. CALL sPCOM. TO ENTER DEVICE INTO PRIVILEGED INTERRUPT
COMPLETION QUEUE

11. DISABLE DEVICE
12, RETURN TO POINT Of INTERRUPT

00044 000000
00045 103100
00046 016120R
00047 162202R
00050 002A03
00051 026077R
00052 t66201R
00053 t36201R
00054 004065
00055 160001
00056 002041
00057 001727
00060 010074
00061 102600
00C'J62 103700
00063 1362°'2R
00064 000000
00065 064271
00066 c;rn6002
00067 026074R
00C'l70 016130R
00071 102100
00~72 102705
00073 126044R
00074 016130R
00075 102100
00076 126044R
00077 062166R
00100 016001X
00101 106700
00102 026065R

P.02 NOP
CLF 0 TURN OFF INTERRUPT SYSTEM
JSB SEOAB SAVE REGISTERS
LOA rEQ13,I CHECK IF LAST CHARACTER sfNT Out
SZA,RSS
JMp P.020 YES, SO INITIATE COMPLETION PROC
LOB TEQ12,I
JSZ TEQ12rl INCREMENT BUFFER ADDRESS
CLE,ERB
LOA e,l PUT DATA IN A REGISTER
SEZ,RSS CHECK IF UPPER OR LOWER CHARACTE
ALF,ALF UPPER SO MOVE INTO LOW
AND .377 MASK OFF OTHER CHARACTER

P1 02A OTA 0 OUTPUT A CHARACTER
P,02B STC ~,C ENABLE DEVICE

ISZ TEQ13,I INCREMENT CHARACTER COUNT
NOP

P,MPT LOB MPTFL CHECK IF MEM PROTECT TO BE ENABL
SZB YES
JMP MPOFF NO
.JSB REOAB RESTORE REGISTERS
STF 0 TURN ON INTERRUPTS
STC 5 ENABLE MEMORY PROTECT
JMP P.02,I RETURN TO POINT OF INTERRUPT

MPOFF JSB REOAB RESTORE REGISTERS
STF 0 TURN ON INTERRUPTS
JMP P1 021I RETURN TO POINT OF INTERRUPT

P,020 LOA TEQ1 CAUSE COMPLETION INTERRUPT
JSB SPCOM ENTER DEVICE INTO PRIV INT COMPLETIO

P,02E CLC 0 CLEAR DEVICE
JMP P,MPT GO TO RETURN PROCESSOR

13-29

PAGE 0005 #~1 COMPLETION SECTION

121165•
0166•
0167•
0168•
0169•
0170•
0171•
0172•
0173•
0174•
0175•
0176
0117
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188

COMPLETION PROCESSOR SECTION

THE FUNCTIONS oF THE COMPLETION SECTION ARES

1. UPDATE STATUS IN fQT4
2. SET TRANSMISSION LOG IN 8
3. CLEAR A TO INDICATE OKAY COMPLETION
4. RETURN TO CENTRAL INTERRUPT PROCESSOR

00103 000000 c.02
00104 102500 C,02A
00105 010071
00t06 070001
00107 t62171R
00110 010075
00111 0300Pt1
00112 172171R
00113 166200R
0011'1 006020
00 t15 007004
00116 002400
00117 t26103R

NOP
LIA 0
AND ,37
STA B
LOA TEQ4 1 l
AND MASK~
IOR 8
STA TEQ.,I
LOB TEQ11,I
SSB
CMB,INB
CLA
JMP c.02,I

13-30

UPDATE STATUS

STATUS IN EQTA
TRANSMJSSION LOG IN 8

CLEAR A TO INDICATE OKAY STATUS
RETURN TO SYSTEM

PAGE 0006 #01 SUBROUTINES

0190•
0191• SAVE A,B,E,O
0192•
0193 00120 000000 SEOA8 NOP
0194 00121 072207R STA XA A
0195 00122 076210R STB XB 8
0196 00123 001520 ERA,ALS
0197 00124 1. 02201 soc
0198 00125 002004 INA
0199 00126 072211R STA XEO E AND 0
0200 00127 126t20R .JMP SEOAB1I
0201•
0202• RESTORE A,13,E,o
0203•
0204 QHH30 000000 REOAB NOP
0205 vHH31 062211R LOA XEO E AND 0
0206 00132 103101 CLO
0207 00133 000036 SLA,ELA
0208 00134 102101 STF 1
0209 00135 0622A7R LOA XA A
0210 00136 066210R l,DB XB B
0211 00137 126130R .JMP REQAB,I
0212•
0213• CONFIGURE I/O INSTRUCTIONS
0214•
0215 00140 00000.0 CONFG NOP
0216 '21014 t. 070001 STA B SAVE SELECT CODE
0217 00142 032162R IOR OTAC
0218 001-43 072034R STA I,02A CONFIGURE OTA SC
0219 00144 072061R STA P.02A
0220 00145 062163R LDA STCC
0221 00146 03((1001 IOR 8
0222 00147 072037R ST A I.02B CONFIGURE STC sc,c
0223 00150 072062R STA P.028
0224 00151 062164R LOA CLCC
0225 00152 030001 tOR e
0226 00153 072101R STA P 41 02E CONFIGURE CLC SC
0227 00154 062165R LOA LIAC
0228 00155 030001 IOR B
0229 '00156 072104R STA c.02A CONFIGURE LIA SC
0230 00157 12Bl40R JMP CONFG,l RETURN

13-31

PAGE 0007 #01 BUFFERS, POINTERS, CONSTANTS, ANO MASKS

00053
0vH~55

til0057
r;,V.J07 t
00074
00075

(i10100
00203
00271

00161 177757
00162 tid2600
00163 103700
00164 106700
00165 102500

00166
00167
00170
00171
00172
!'101. 73
00174
0Vl175
VHH76
00177
0020"11
00201
00202
0020~i
00204
002015
00206

000000
000000
000000
0000Pl0
000000
Vlv.H?HH~0

~0vrn00

fHH:'lr?.1010
000000
000000
000000
000000
000000
00~000
000000
000000
000000

0232•
0233
0234•
023f;
0236
0237
0238
0239
0240
0241•
0242
0243
0244
0245•
0246
0247•
0248
0249
0250
0251
0252
0253•
0254
0255
0256
0257
0258
0259
0260
0261
0262
~263
0264
0265
0266
0267
~266
0269
0270
0271•
0272
0273

00207 000000
00210 000000

0274 ~0211 000000
0275
** NO ERRORS•

f3

• •
.2
.4
.37
,377
MASK2

EQU 1

EQU 53B
f:QU • • +2
EQU •• +4
EQU ,,+14
EQU ,.+17
EQU ,,+18

• EQU 1008
EfH 1 EQU , +67
MPTFL EQU ,+121

DECH l OEF EQT 1

N17
OTAC
STCC
CLCC
t.IAC

TEQI
TEQ2
Tf QJ
TEQ4
TEQ5
TEQ6
TEQ7
TEQ8
TEQ9
TEQ10
TEQ11
TEQ12
TEQ13
TECH4
TEQ15
TEQ16
TEQ17

XA
)(8

XEO

DEC •17
OTA 0
STC ~,C
CLC 0
LIA 0

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
E. ND

13-32

DEC 2
DEC 4
OCT 37
OCT 377
OCT 177400

EQUIPMENT TABLE ADDRESS
MEMORY PROTECT FLAG

INITIATION ADDRESS
COMPLETION ADDRESS
o,R,uNIT,CHANNEL
AV1TYPE1STATUS

REQUEST RETURN
REQUEST CODE
I/0 REQUEST CONTROL WORD
REQUEST BUFFER ADDRESS
REQUEST BUFFER LENGTH -..
-

A REGISTER TEMPORARY
B REGISTER TEMPORARY
E ANO 0 REGISTER TEMPORARY

D\IR02 CROSS•REFERENCE SYMBOL TABLt. PAGE 0001

SMOVE 00007 A0079

SP COM 00007 00161

• 00242 00243 00244

t • VJ0235 00236 00237 00238 00239 00240

.2 00236 00084

.. 37 00238 00178

,,377 00239 00102 001A15

.4 00237 00109

a 00233 00100 00142 00179 00182 00216 00221
00225 00228

c.02 00176 00005 00188

C.02A 00177 00229

CLCC 00251 00224

CONFG 00215 00076 00230

DEQTt 00246 00077

EQT1 00243 00246

ERTN 00109 00086 00092

1.02 00075 00005 00108 00U0

I.02A 00103 00218

I,028 00106 00222

LIAC 00252 00227

MASt<2 00240 00181

MPOFF 00157 00152

MPTFL 00244 00150

N17 00248 00078

OTAC 00249 00217

P,02 00133 00005 00156 00 i. 59

P,02A 00146 00219
13-33

DVR02 CROSS ... REFERENCE SYMBOL TABLE PAGE 0002

P.02B 00147 0t~223

P.020 00160 0vU 38

P,02E 0016t' 00226

P.,MPT 00150 00163

REOAB 00204 00153 001. 57 00211

SEO AB 00193 00135 00200

STCC 00250 00220

TEQ1 00254 01r:H'l8kj 00160

TEQ10 00263 00087 00Pl98

TEQ 11. 00264 00090 00184

TEQ12 00265 00089 00099 00139 00140

TEQ1J 00266 00097 00104 00136 00148

•TEQ14 00267

•TEQtS 00268

•TfQ16 00269

•TEQ17 0027~

•TEQ2 00255

•TEQJ 00256

TEQ4 00257 . 00180 00183

•TEQ5 00258

•TEQ6 00259

•TEQ7 00260

TEQ8 00261 00081

•TEQ9 00262

XA 00272 0et194 00209

XB 00273 00195 00210

XEO 00274 00199 00205

13-34

SECTION XIV
Privileged Mode

Certain situations may arise where a user wishes to process his own errors instead of having the
operating system handle them for him. In addition, there may be cases where he wishes to determine
when an I/0 operation (initiated without wait) is complete.

Both of these options are available with use of the system's privileged mode flag (MDFLG =location
1338). In order to operate in this privileged mode (i.e., user processing of I/O errors and/or deter­
mining I/0 completions) the user

• must be programming in Assembly language

• is responsible for setting MDFLG properly

Bit 0 set - user error processing

Bit 15 set - I/O completion processing

DOS-III uses MDFLG as follows:

1. After an I/0 initiation (performed by an EXEC call) MDFLG bit 0 is checked, and if it is
equal to one, control returns to the user program with the A register set as follows:

Contents (decimal)

0

1

2

3

4

5

6

7

8

9

10

11

12
13

Meaning

Operation initiated

Read or write illegal

Control request ignored

Device down

Immediate completion

DMA busy

Driver busy

Driver overlay area busy

EXEC over lay area busy

Operation rejected

Memory protect error

Request code error

Execution time exceeded

Spare

14-1

Contents (decimal)

14

15

16

17
18

19

Meaning

Illegal logical unit

Unassigned logical unit

Illegal buffer address

Memory wrap around

Illegal track address

File cannot be found

2. After an 1/0 completion, MDFLG bit 15 is checked, and if it is equal to one, control is passed
to a user subroutine which must immediately follow the EXEC call. Upon entry to the routine,
the B register contains the driver transmission log and the A register contains the device status
as follows:

A register Contents

0

-1

-2

-3

-4

Meaning

1/0 completed without errors

Device was not ready

End-of-tape

Parity error

Batch input detected a colon (:)

If the 1/0 completion resulted from an 1/0 error (not ready, parity, or end-of-tape) and the
device is not the system console or the disc, bit 14 of EQT4 (the fourth word of the current
Equipment Table entry) is set to indicate that the device is down.

MDFLG bit 0 is then checked, and if it is equal to one, control returns to user (thus bypassing
system processing of the error).

3. During a FILE NAME SEARCH EXEC call (RCODE = 18) where the search is requested with­
out wait, no subsequent EXEC calls are allowe~. If a second EXEC call is requested during
execution of a file search, the system will wait for the search to complete before processing the
second EXEC call. If the user does not want the system to wait, he should set Bit 1 of MDFLG.
If Bit 1 of MDFLG is set and the above condition is encountered, control will be returned to the
user following the second EXEC call with the A register= 8 (EXEC busy).

4. The system clears all bits of MDFLG following any program completion.

14-2

5. An 1/0 calling sequence operating in privileged mode might look something like this:

END
COMP

!NIT

JSB EXEC
DEF END
DEF RCODE
DEF CONWD

JMP
NOP

JMP

!NIT

COMP,!

(must be an 1/0 without wait)

}

If present, the completion routine must be located here.
Executed following 110 completion, and should include
a check for completion errors. This routine must not
use any routine that is not re-entrant.

}
Executed following an 1/0 initiation, and should
include a check for initiation errors.

14-3

PART 5
Error Codes and Messages

SECTION XV
Halt Codes and Error Messages

This section describes the error conditions which can occur while DOS-III is being generated, loaded
and operated. Error conditions are reported to the user by one of the following:

• a computer halt; the halt code is displayed in the DISPLAY register

• an error message; the message is displayed on the system console

• an error message (displayed on the system console) followed by a computer halt (halt code
displayed in the DISPLAY register)

• an error code returned to a user program (by EFMP); the error code is also returned in the
A register

This section contains halt code and error message tables, including corrective action (when applicable)
for the following:

• DSGEN ERROR CONDITIONS

DSG EN Error Halts
DSGEN Error Messages

• DOS-III BOOTSTRAP ERROR HALTS

• DOS-III ERROR CONDITIONS

DOS-III Error Halts
DOS-III Error Messages

• EFMP ERROR CODES

Note: The ALGOL, FORTRAN and Assembler subsystems also print error
messages. These subsystem error messages are documented in the
SOFTWARE OPERA TING PROCEDURE module "Assembler,
FORTRAN and ALGOL Error Messages" (5951-1377). FORTRAN IV
error messages are described in HP FORTRAN IV (5951-1321).

15-1

Table 15-1. DSGEN Error Conditions

DSG EN ERROR HAL TS

Halt Code

102000

102002

102003

102004

102007

102022

102032

102077

102000

Cause

Follows an irrecoverable error message.
Generator unable to find $STRT in DISCM.
DISCM is probably missing.

Follows ERR02.

Follows ERR03.

Follows ERR04.

Normal halt. Disc initialization of sub­
channel has completed.

Disc error after ten attempts. Disc address
in A, disc status in B.

Disc not ready or disc should be unprotected.
Disc address in A and disc status in B.

Normal halt.
Ready to receive another program tape.

If DSG EN is above 100008 an impossible
condition has occurred.

DSGEN ERROR MESSAGES

Messages During Initialization and Input Phases

Message Meaning

ERR01 Invalid response to initialization request.

ERR02 Checksum error on program input.

ERR03 Record out of sequence.

15-2

Irrecoverable
Irrecoverable

Recovery Action

See ERR 02 in error messages.

See ERR03 in error messages.

See ER R04 in error messages.

Start the computer executing to initialize
another subchannel or to generate a system.

Start execution to retry ten more times.
When preceded by ERR 12 continues to
next track.

Ready or unprotect the disc. Start the
computer executing.

Continue generation.
Enter next tape and start the computer
executing.

Either a hardware/software failure has
occurred or DSGEN has overflowed its
work area because the system was too
large.

Action

Request is repeated. Enter valid reply.

Computer halts; to try again, reposition
tape to beginning of program and start
the computer.

Same as ERR02.

Table 15-1. DSGEN Error Conditions (continued)

Message

ERR04

ERR05
name

ERR06

ERR07

ERR08
name

Meaning

Illegal record type.

Duplicate entry point.

Invalid base page length in BCS-produced
relocatable tape (must be zero).

Program name or entry point table over­
flow of available memory.

Duplicate program name.

Messages During the Parameter Phase

ERR09 Parameter name error (no such program).

ERR10 Parameter type error.

General Messages

ERR11

ERR12

ERR13

ERR14

ERR15

System directory track overflow.

Disc error during disc initialization.

User segment precedes user main program.

Absolute code overlays relocatable code
in the disc scratch area.

More than 63 subprograms cal led by a
main program.

15-3

Action

Same as ERR02. If input is from disc, error
is irrecoverable; remove non-relocatable files
from disc.

The current entry point replaces the previous
entry point.

Base page area is ignored, but memory pro­
tect error will occur if program is executed.

Irrecoverable error. Revise or delete
programs.

The current program replaces the previous
program.

Enter valid parameter statement.

Same as ERR09.

Irrecoverable.Regenerate system and reduce
the value of the response to the "FIRST
SYSTEM SECTOR?" message.

Start the computer executing to bypass the
faulty tracks.

Irrecoverable.

Irrecoverable. Regenerate the system and
select one of the following two options:
1. Reduce number of programs being loaded
2. Load the library after all other programs

are loaded. If this is not successful, in­
crease the size of the system disc and/or
lower the starting track/sector of the
system.

Revise main program (subsequent calls to
subprograms are ignored).

Table 15-1. DSG EN Error Conditions (continued)

Message

ERR16

ERR17

ERR18

ERR19

ERR20

ERR21

ERR22

ERR23

Meaning

Base page linkage overflow.

Current disc address exceeds number of
available tracks.

Memory overflow (absolute code exceeds
LWA memory).

Program overlay (current word of absolute
code has identical location to previous word).

Binary DBL record overflow of internal
table.

Module containing entry point $CIC not
loaded.

Read parity/decode disc error. A register
bits 8-14 show track number; bits 0-7
show sector number.

EQT not entered for disc-resident 1/0
module.

Messages During 1/0 Table Entry

ERR24 Invalid channel number.

ERR25 Invalid driver name or no driver entry points.

ERR26 Invalid or duplicate D,R,U operands.

ERR27 I nvaVid logical unit number.

ERR28 Invalid channel number.

ERR29 Channel number decreasing.

ERR30 Invalid INT mnemonic.

ERR31 Invalid EQT number.

ERR33 Invalid entry point.

ERR34 Invalid absolute value.

ERR35 Base page interrupt locations overflow into
linkage area.

ERR36 Invalid number of characters in final operand.

15-4

Action

Diagnostic printed once when overflow
occurs. Bounds fie.Id indicates the number
of words overflowed. Revise order and
composition of program loading to reduce
linkage requirements.

Irrecoverable error.

Diagnostic printed once when overflow
occurs. Bounds field indicates the number
of words overflowed. (Absolute code is
generated beyond LWA). Revise program.

Current word is ignored (the address is
printed).

Records overlay previous DBL records
(diagnostic printed for each overflow
record). Revise program.

Irrecoverable error. Regenerate the system;
include DISCM.

After ten attempts to read or write the disc
sector, the computer halts. To try ten more
times, start the computer executing.

Restart at 1008 .

Enter valid EQT statement.

Same as ER R24.

Same as ERR24.

Enter valid DRTstatement.

Enter valid I NT statement.

Same as ERR28.

Same as ER R28.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Restart Disc Loading Phase.

Same as ERR28.

Halt Code

102011

102031

Table 15-2. DOS-II I Bootstrap Error Halts

Cause

Disc error status is in the A register. If

A register contains 0, the subchannel did
not contain a system.

Same as above.

15-5

Recovery Action

Check that the device is ready and the
proper disc cartridge is being used; then

call maintenance.

Occurs during execution of disc-resident

part of Bootstrap. Check that the disc is
ready; then call maintenance.

DOS-111 ERROR HALTS

Halt Code

102002
102003

102004

102005

102011

102031

102077

Location

location 28 l
location 38 f

DISCM

DISCM

$EX20

DVR31

$EX20

Table 15-3. DOS-II I Error Conditions

Cause

Possible memory wrap-around when
memory protect is not present.

Power has gone up or down with
powerfail option present.

Memory parity error occurred.

Disc parity error. Halt occurs after
a message is printed giving location
of error.

Trying to write on disc cylinder that
is flagged "protected" without first
unprotecting the disc.

Follows message telling operator to
protect the disc after spare track
assignment.

Recovery Action

Program error. Bootstrap DOS-111 from
the disc and correct the program.

Bootstrap DOS-I I I from disc and restart.

A-register contains address of word con­
taining the parity error. Run the m.emory
diagnostic programs, then bootstrap
DOS-I I I from disc and restart.

Unprotect the disc and start the com­
puter executing. DOS-I I I assigns next
spare track.

Start the computer executing to exit
DVR31 with no action taken.

Protect the disc and start the computer
executing. DOS-I I I aborts the job that
was running.

DOS-Ill ERROR MESSAGES

During the operation of DOS-I I I certain messages may be output on the system console. These messages may be
error reports or simply informative; they are generated by various parts of DOS-II I. The messages are listed alpha­
betically including where they originated, what they mean, and what response if any, the operator must make.
Messages that begin with a variable name or a non-alphabetic character are listed by the first non-variable, alphabetic
character.

Message Source

BAD CONTROL STATE JOB PR

BEGIN 'DEBUG' OPERATION DEBUG

BP BND [L,U]? LOA DR

CHECKSUM ERROR JOB PR

Description

Directive just entered is not acceptable in DOS 111. Enter
correct directive on system console. 1

Any legal DEBUG operations may now be entered. Enter
any legal DEBUG operations.

Specify the base page bounds desired for the program being
loaded by the Loader. The bounds should be entered as two
octal constants separated by a comma.

Checksum error in input to ST,R,file or ST,X,file directive.
Correct tape. 1

1
This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-6

Table 15-3. DOS-111 Error Conditions (continued)

Message Source

CW nnnnn DISCM

DEVICE #nn DOWN JOB PR

DICTIONARY OVERFLOW JOB PR

??? DISC DISCM

Description

In an 1/0 READ/WRITE EXEC call at nnnnn, buffer extends
beyond memory bounds. Correct program.

EQT #nn is unavailable (down). Use the UP,nn directive to
make the device available. (Then use the GO directive if
needed.)

No room is left for entries in the user file dictionary. Put file
on another disc or remove some of the files.

Informs user that disc is not recognizable by DOS-I I I. Must
be labeled or unlabeled with : IN, or formatted with DSG EN,
before using in DOS-111.

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS

DISC NOT ON SYSTEM

DONE?

??? LABEL xxxxxx
DOS LABEL xxxxxx
TSB LABEL xxxxxx
OK TO PURGE?

DUPLICATE Fl LE NAME

$END ALGOL

$END ASMB

$END ASMB CS

$END ASMB NPRG

DISCM

DISCM

JOB PR

DISCM

JOB PR

ALGOL

ASMB

ASMB

ASMB

Informs the user that the disc being requested was initialized
(labeled) by a system with a different system generation
code. Generation code on disc may be updated by labeling or
unlabeling using : IN.

No disc pack with the currently requested label can be found
on the system. Mount disc pack with correct label or ready
drive containing disc.

Thirty feed frames (paper tape) or an end-of-file (magnetic
tape) have occurred during input. Enter YES for end of input;
NO for more input.

Attempting to label (or unlabel) an already labeled disc pack.
Enter YES to relabel the disc pack or NO to drop the request
to relabel the disc pack.

Doubly defined file name found in a STORE directive (other
than STOR E,P); an EDIT directive with a new file name;
on DD,U; or on a RENAME directive. Remove file or rename
file. 1

End of ALGOL compilation. No response required.

Assembly has completed. No response required.

Assembly has ended because of an error in the assembler
control statement. Correct the control statement.

Assembly has terminated because no JF I LE was found when
required. Define the file using a JFI LE directive.

1 This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-7

Table 15-3. DOS-I I I Error Conditions (continued)

Message Source

$END ASMB PASS ASMB

$END ASMB XEND ASMB

END FILE JOB PR

$END,FTN [4] FTN[4]

Description

Another pass of the source program through the input device
is required. Printed on the system console after Pass 1. Replace
the program in the input device and type :GO.

Assembly stops. An EOF occurred in the source program
before an END statement. Add an END statement to the
program.

During an EDIT, (1) the master file ended before completion
of editing or (2) a triple colon occurred in the first 3 columns
of a source statement. Check input to the EDIT program. 1

Compilation has completed. No response required.

END JOB xxxx [RUN= xxxx MIN. xx.x SEC EXEC= xxxx MIN. xx.x SEC]

ENTER FILE NAME(S) OR /E

ENTRY ERROR

EOF-NO DATA STORED

EQT xx CH xx DVRxx D R Ux Sx

EXTRA PARAMETERS

Flnnnnn

HPAL??

IB nnnnn

IE nnnnn

JOBPR End of current job. Total job time and execution time of the
job are printed on the system console and standard list device
if a Time-base Generator is present.

LOA DR

DEBUG

JOB PR

JOB PR

JOB PR

DISCM

ALGOL

DISCM

DISCM

Enter list of relocatable program files. To terminate list of
file names type "/E".

'DEBUG operation entered was illegal. Correct entry.

An attempt was made to read an EOF without first reading
data. A file is not created when this message is output.

Equipment table entry output by the EO directive. No action
required.

More than 15 parameters in a directive. Excess parameters are
not processed.

In a FILE READ/WRITE EXEC call (1) the file requested at
nnnnn cannot be found. If nnnnn is not present, enter the file.
(2) The ler:igth of the buffer requested at nnnnn extends be­
yond the end of the file. Correct the buffer length. Either
case causes calling program to abort.

Control statement error. Correct control statement.

Illegal buffer address in EXEC call at location nnnnn. Program
is aborted. Correct buffer program address.

If a colon occurs in the first column of input entered through
the batch device during a program execution, the program is
aborted, control is given to the JOBPR and the input is pro­
cessed as a directive. nnnnn is the memory location of the
input request.

1
This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-8

Table 15-3. DOS-111 Error Conditions (continued)

IGNORED

*IGNORED

file
ILLEGAL

Message

ILLEGAL DIGIT

ILLEGAL LUN

ILLEGAL PROGRAM RUN LIMITS

ILLEGAL PROGRAM TYPE

INPUT ERROR

Source

DISCM

JOB PR

JOB PR

JOB PR

JOB PR

DISCM

JOB PR

DISCM

INPUT :DATE, XXXXXXXXXX[,H,M]

DISCM

1/0 ERR ET EQT #mm DISCM

1/0 ERR NR EQT #mm DISCM

1/0 ERR PE EQT mm DISCM

Description

Input from system console during program execution cannot
be processed. Correct input.

All directives following EJOB and before next JOB except
BATCH, TYPE, TRACKS, and OFF are ignored. Enter
acceptable directive.

On a source file LIST directive, the requested file was not a
source file. Retype LIST directive using source file. 1

A file name begins with a non-alphabetic character. Rename the file. 1

In a decimal number, character is other than 0-9. Enter correct
decimal number. In an octal number, digit is other than 0-7.
Enter correct octal number. 1

Logical unit requested is equal to zero, greater than the number
of logical units in the system, not the correct type (i.e., input
type for output device), etc. Enter a correct logical unit. 1

Attempt to run a user main or segment whose user area
limits or base page limits will not fit within the limits of the
current system. Recreate user mains or segments on current
system using LOADR.

Program requested in a RUN or PROG is not legal. Enter
correct name. 1

Equipment table entry number or logical unit number in : EQ,
: LU, :UP or :DN is illegal. Enter correct equipment table or
logical unit entry number.

When system is initiated from the disc, DOS-I I I requires a
DATE directive. The [,H,M] is ignored in DOS-Ill if a Time­
base Generator is not in the system. Enter a DATE directive:

End-of-tape on device #mm. EQT #mm is unavailable. To
make the device available (up), use the UP,mm directive.

The device #mm is not ready. To make the device available
(up), use the UP,mm directive.

Parity error on device #mm returns to program return
address with A set to status, B set to 0. Call maintenance.

1 This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-9

Table 15-3. DOS-I I I Error Conditions (continued)

Message

1/0 ERR{~~} USER DISC

1/0 ERR { ~~} USER DISK

IT nnnnn

JBIN OVF

JOB ABORTED!

Source

DISCM

DISCM

DISCM

FTN [,4],
ASMB,
ALGOL

JOB PR

Description

A parity error or device not ready occurred when attempting
to assign a user disc. Disc may not be formatted; format it
with DSGEN.

Disc error in completion section of DVR31. Retry previous
operation.

Illegal disc track or sector address in EXEC call from location
nnnnn. Program is aborted. Correct the track or sector
address in EXEC call.

Overflow of Job Binary Area during assembly or compilation.
Reduce size of job or purge user files.

Correct problem and start new job.

JOB xxxxx dddddddddd [TIME= xxxx MIN. xx.x SECS EXEC= xxxx MIN. xx.x SEC.]

L01

L02

L03

L04

L05

L06

L07

LOB

L09

L10

L 11

L12

L13

JOBPR Message output at the beginning of each job. The time infor­
mation is deleted in DOS-I I I if a Time-base Generator is not
included in the system. Start job.

LOA DR Checksum error on tape.

LOADR Illegal record.

LOADR Memory overflow.

LOADR Base page overflow.

LOADR Symbol table overflow.

LOADR Duplicate main or segment name (may be caused by attempt-
ing to run the Loader twice in one job).

LOADR Duplicate entry point.

LOADR No main or segment transfer address.

LOADR Record out of sequence.

LOADR Insufficient directory work area or user area space.

LOADR Program table overflow.

LOADR User file specified cannot be found.

LOADR Program name duplication.

15-10

Message

L14

L15

L16

L17

L18

L19

LBL = 111111

. LIMIT ERROR

xxxx LINES

****LIST END****

LN nnnn

LOADR COMPLETE

LOADR SUSP

LOADR TERMINATED

LOAD TAPE

Table 15-3. DOS-111 Error Conditions (continued)

Source

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

DISCM

JOB PR

JOB PR

JOB PR

DISCM

LOA DR

LOA DR

LOA DR

LOA DR

Description

Non-zero base page.length.

Segment occurred before main.

Program overlay (illegal ORG).

Illegal library record.

Illegal octal digit in base page bounds specification; or the
lower base page bound is greater than the upper base page
bound; or the lower or upper base page bound is greater than
20008 . In keyboard mode, re-enter new base page bounds.
In batch mode, Loader aborts.

Illegal octal digit in main memory bounds specification; or
the lower program bound is greater than the upper program
bound. In keyboard mode, re-enter new program bounds. In
batch mode, Loader aborts.

Disc subchannel referenced is labeled 111111. If attempting
to change user disc subchannel, enter :UD with correct label.

In a directive, source statement numbers are out of order
(:EDIT), dump limits are incompatible (:PDUMP, :ADUMP),
sector numbers are illegal (:DUMP), number of words re­
quested exceeds number of words available (:MMGT), or
beginning source statement number is greater than final
statement number (:EDIT). Correct directive and re-enter. 1

Total number of statements stored by a STOR E,S directive.
No response required.

Terminates list of source statements generated by a LIST
directive. No response required.

Logical unit requested by an EXEC call at nnnnn is unassigned.
Program is aborted. Assign logical unit.

Loading has completed. No responses required.

Loader has suspended (usually at EQT). Type :GO,n to
restart the Loader with proper parameter value.

Loader has terminated because of an error. Correct input.

In conjunction with LOADR SUSP, this message requests that
next relocatable tape be loaded before :GO. Load the next
relocatable tape and enter :GO to read next tape or :GO, 1
to indicate that all tapes are read in.

1 This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-11

Table 15-3. DOS-I II Error Conditions (continued)

Message

LU nnnnn

LUxx EOTyy

LUN UNASSIGNED

xxxxx MISSING

MISSING PARAMETER

MP nnnnn

NAME *IGNORED

NEXT AVAIL TRACK=tt
BAD=n

NO BIN END

NO PROGRAMS LOADED

NO SOURCE

NO SOURCE

NO SUBSYSTEMS DEFINED

NUMBER OVERFLO

OR nnnnn

OVERFLOW JBIN

PARAMETER ILLEGAL

PARITY ERROR
SC=m,TR K=ttt,SCTR=sss

Source

DISCM

JOB PR

JOB PR

DISCM

JOB PR

DISCM

JOB PR

JOB PR

JOB PR

LOA DR

JOB PR

ALGOL

JOB PR

JOB PR

DISCM

JOB PR

JOB PR

JOB PR

Description

Illegal logical unit in EXEC call at nnnnn. Program is aborted.
Enter correct logical unit number.

Logical unit table entry; EQT #yy assigned to LU #xx. No
response required.

Logical unit requested in a directive is unassigned. Assign
logical unit number requested in the directive. 1

Segment xxxxx requested by an EXEC call is not in system
or user directory. Job is aborted. Correct job.

A parameter is missing in a directive. Retype the directive
correctly. 1

Memory protect violation at location nnnnn. Program is
aborted. Correct the program.

Illegal JOB name; numeric first character. Retype correct
job name.

In TRACK directive, tt =first track beyond end of current
user area; n = number of bad tracks. "BAD=n" returned only
if bad tracks do exist. tt ="NONE" if no tracks are available.

No END record detected when storing a relocatable binary
program. 1 .

No programs were loaded by the Loader. Loading terminates.

No source statements following a /R or /I in an EDIT
directive. Enter source statements after the /R or /1. 1

Source file from disc not pre-set.

Informs the user that a :MM directive was attempted but no
subsystems were defined during system generation.

An integer is too large. 1

1/0 operation requested by EXEC call at nnnnn is rejected.
Program is aborted. Check program.

There is not enough room in the J BIN for storing the re­
locatable binary output from the Assembler or compilers. 1

A parameter of a directive is illegal. Re-enter directive. 1

Parity error during disc read or write. Call maintenance.

1
This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-12

Table 15-3. DOS-111 Error Conditions (continued)

Message

PAUSE xxxx

PROG BND [L,U]?

RE-ENTER STATEMENT ON TTY

RO nnnnn

SPARE TRK OVERFLOW

STOP xxxxx: nnnnn

SUBCHAN = n

xxxxx SUSP

TAPE END

TM nnnnn

#TRACKS UNAVAILABLE

TRAC #TOO BIG

TSB DISC

Source

LIBR
(Formatter)

LOA DR

JOB PR

DISCM

JOB PR

LIBR

DISCM/
JOB PR

DISCM

JOB PR

DISCM

DISCM

JOB PR

DISCM

Description

Program has temporarily suspended itself. xxxx is an octal
number acting as an identifier. Restart program using the GO
directive.

Enter the program bounds for the program being loaded by
the Loader. The bounds consist of two octal numbers
separated by a comma.

Follows most error messages that do not cause abort. Type
in the correct statement.

Illegal parameter in EXEC call at nnnnn. Program is
aborted. Correct the program.

Defective cylinder detected and no spare tracks available for
reassignment.

Program xxxxx has terminated at location nnnnn.

Given in response to :UD information request or when :SS
makes new subchannel assignment. No response required.

Program xxxxx suspended by EXEC call or PAUSE directive.
Restart program using the GO directive.

EQT flag set on magnetic tape or paper tape device during
output via JOBPR directives DUMP and LIST or output
of a JOB or EJOB statement. If a magnetic tape, it is rewound
with standby; if paper tape, a trailer is punched. The JOB PR
will then pause to allow new tape to be set up. Mount a new
magnetic tape. Enter :GO to continue the output.

Maximum execution time exceeded. The program is currently
at nnnnn and is aborted. Increase execution time.

There are not enough word tracks for the compiler. Enter
:OFF then purge disc of unnecessary files.

Track requested is higher than last available disc track (track
may be in JBIN area). Redefine the track request or purge
files or use different disc. 1

Informs user that the user disc was labeled by a non-DOS-I I I
system. May be made DOS-I I I disc by labeling or unlabeling
with :IN.

1
This error causes a batch abort if the command is entered in batch mode. See "Batch Abort" in Section 1.

15-13

Table 15-3. DOS-111 Error Conditions (continued)

Message Source Description

TURN lo~~i OISC PROTECT OVERRIDE SWITCH

DISCM Unprotect [ON] or protect [OFF] the disc.

UD nnnnn

UNLBL

file name UNDEFINED

subsystem name UNDEFINED

UNDEFINED EXTS

WRONG INPUT

name: nn xx

@

*

DISCM

DISCM

JOB PR

JOB PR

LOA DR

JOB PR

ERRO

JOBPR/
DISCM

DISCM

Unable to find user disc requested by EXEC call at nnnnn.
Mount required disc and type :GO; or terminate program
with :ABORT or :OFF.

User disc specified in :UD is unlabeled. If trying to change
user disc assignment, enter : UD, * [,n] .

Undefined file name as a parameter of a directive. Retype
correct file name on the system console.~

Undefined subsystem name as a parameter of :MMGT direc­
tive. Subsystem names must be defined at system generation.

Undefined external references exist in programs loaded. The
external references are listed one per line. To load additional
programs from paper tape, type :GO ,0 [,n] .

Relocatable binary input furnished for a source file request
or vice-versa. Enter correct input. 1

Library routine error code, where name is the name of the
user's program, nn is the routine identifier and xx is the
error type.

Directives may be entered. Enter desired directive.

Operator attention directives may be entered. Enter desired
directive.

1
This error causes a batch abort if the command is entered in batch mode. See" Batch Abort" in Section 1.

15-14

DOS-Ill EFMP ERROR CODES

These error numbers are returned to the user program (in ERRNO) by the EFMP. The error
numbers are also returned in the A register.

Error No.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

No errors.

Invalid EFMP function number.

Duplicate file name.

File name not in directory.

File too long for this pack.

Invalid record length.

Description

Pack number not available (or name not in directory if a search was made on
all available pack directories).

Invalid security code.

A temporary file must be opened with a CREATE function. An OPEN function
can only change the Temporary Record Buffer number of the starting record
number for a temporary file.

Buffer area specified in Exec call is not valid.

Invalid Record Number.

File not open.

DEFINE not previously executed or Opened-File table used in previous DEFINE
has been altered. Issue a new DEFINE.

Backspaced beyond "start-of-file."

No pack space available.

Invalid pack number.

No pack number entry is available in Opened-File table.

Work Area space not sufficient.

No Opened-File table space available.

Invalid temporary record buffer number.

Invalid number of EXEC call parameters.

15-15

Error No.

21

22

23

24

25

26

27

28

29

30

End-of-File.

COPY terminated.

Invalid argument(s).

Description

Maximum number of files exceeded.

File already OPEN.

Record size larger than one-half of a temporary record buffer.

Pack number previously initialized.

Pack number not initialized.

Directory requested is too large.

Invalid number of active pack numbers.

15-16

PART 6

Appendix and Indexes

APPENDIX A
System Tables

This appendix contains figures and tables which represent the structure of the following

• Main-memory layout, including

main memory allocations in DOS-III

DOS-III base page constants

DOS-III base page communication area

• Disc layout, including

disc structure in DOS-III

disc directory entry format

disc labels

• System I/O tables, including

the equipment table

the logical unit .table

the interrupt table

A-1

low memory

high memory

interrupt locations

system base page area

user base page area

DISCM, the disc monitor

main-memory resident
drivers and EXEC modules

system tables

disc-resident EXEC
module overlay area

(optional)

disc-resident 1/0
drivers overlay area

(optional)

user common area
(optional)

disc-resident user program area
(main programs and segments)

main-memory resident
bootstrap disc loader

Figure A-1. Main Memory Allocations in DOS-Ill

A-2

+- location 408

memory protect
..,_ boundary

Table A-1. DOS-111 Base Page Constants

Location Type Value

40 DEC -64

41 DEC -10

42 DEC -9

43 DEC -8

44 DEC -7

45 DEC -6

46 DEC -5

47 DEC -4

50 DEC -3

51 DEC -2

52 DEC -1

53 DEC 0

54 DEC

55 DEC 2

56 DEC 3

57 DEC 4

60 DEC 5

61 DEC 6

62 DEC 7

63 DEC 8

64 DEC 9

65 DEC 10

66 DEC 17

67 DEC 64

70 OCT 17

71 OCT 37

72 OCT 77

73 OCT 177

74 OCT 377

75 OCT 177400

76 OCT 3777

77 OCT 177700

A-3

Table A-2. DOS-Ill Base Page Communication Area

Location Name Contents

100 UMLWA Last word address of user available memory

101 JBINS Start track/sector of Job Binary Area

102 JBINC Current track/sector of Job Binary Area

103 TBG Time-base Generator 1/0 channel address

104-5 CLOCK Current system clock time (2 words)

106-7 CLEX Execution clock time (2 words)

110 CXMX Maximum allowable execution time

111 BATCH Logical unit# of batch input device

112 SY STY Logical unit# of system console

113 DUMPS Abort/Post Mortem dump flag

114 SYSDR System directory track/sector

115 SYS BF System buffer track/sector

116 SE CTR Number of sectors/disc track

117 EQTAB First word address of equipment table

120 EQT# Number of equipment entries

121 LUTAB First word address of logical unit table

122 LUT# Number of logical unit entries

123 JBUF Job input buffer address

124 JFILS Source file starting track/sector

125 JFILC Source file current track/sector

126-32 RON BF Parameter buffer (5 words)

133 MDFLG Mode flag for privileged 1/0

134 DISP (Reserved for System use)

135 AEPF Alternate entry point flag

136 SGRTN Segment return address

137 XIRT System transfer address for interrupt-completion routine

140 SVEQT EQT address for 1/0 operations

141-53 EXPG Directory entry for current program (11 words)

154 DISCO Disc 1/0 channel/last track on disc

155 SY SSC System subchannel

A-4

Location

156

157

160

161

162

163

164

165

166-70

171-73

174

175

176

177

200

201

202

203

204

205

206

207

210

211

212

213

214

215

216

217

Table A-2. DOS-I I I Base Page Communication Area (continued)

Name

SCCNT

UDNTS

SYN TS

CU DSC

CRFLG

CUD LA

FSFLG

CUMID

DBUFR

UBUFR

TSONE

GU DSC

SYSCO

JFLSC

DISCL

INTAB

INT#

EQT1

EOT2

EOT3

EOT4

EOT5

EOT6

EQT7

EQT8

EOT9

EQT10

EOT11

EOT12

EOT13

Contents

Number of subchannels on system minus 1

Next user disc track/sector

Next system disc track/sector

Current user disc subchannel

Current disc request flag: 0 for system, non-0 for user

Current user disc last access

File search flag

Computer identification

System disc triplet parameter buffer (3 words)

User disc triplet parameter buffer (3 words)

Last track/sector referenced +1

Defau It user disc subchannel

System generation code

Source file subchannel

User label track/sector

First word address of interrupt table

Number of interrupt entries

EOT1-EOT17 are addresses of current equipment table
entry

A-5

Location

220

221

222

223

224

225

226

227

230

231

232

233

234

235

236

237

240

241

242

243

244

245

246-47

250-51

252

253

254

255

256

Table A-2. DOS-I I I Base Page Communication Area (continued)

Name

EOT14

EOT15

EOT16

EOT17

ROCNT

RORTN

ROP1

ROP2

ROP3

ROP4

ROP5

ROP6

ROP7

ROP8

NAB RT

XA

XB

XEO

XS USP

EXLOC

EX#

EXMOD

EXMAN

EX BAS

IODMN

IODBS

UMFWA

UBFWA

UBL WA

Contents

EOT1-EOT17 are addresses of current equipment table
entry

Number of request parameters

Current request return address

ROP1-ROP8 are addresses of current request
parameters

Illegal request code abort/no abort option

A register contents at time of interrupt

B register contents at time of interrupt

E and 0 register contents at time of interrupt

Point of suspension at time of interrupt

Address of Exec module doublet table

Number of Exec module doublet table entries

Exec module# currently in Exec module overlay area

Exec module low and high main memory addresses (2 words)

Exec module low and high base page memory addresses
(2 words)

First word address of 1/0 driver module main area

First word address of 1/0 driver module base page area

First word address of user main area

First word address of user base page area

Last word address of user base page area

A-6

Location

257

260

261

262

263-64

265

266

267

270

271

272

.273

274-75

276-304

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

Table A-2. DOS-I I I Base Page Communication Area (continued)

Name

CHAN

OPATN

OPFLG

SWAP

JOB PM

JOB PB

EJOBF

RTRK

DUMMY

MPTFL

$GOPT

$1DCD

$MDBF

TEMP

TEMPO

} TEMP1

TEMP2

UTMPO

} UTMP1

UTMP2

MSECT

VADR

IODMD

RCODE

SXA

SXB

SXEO

SXSUS

EFMP

Contents

Current OMA channel number

Operator/keyboard attention flag

Operator communication flag

Job processor resident flag

Job processor disc address/number of words in main
(2 words)

Job processor base page number of words

End-job flag

Real time simulation track number

Reserved for system use

Memory protect flag

Point of suspension continuation address

Input request code check

Exec module data buffer (2 words)

Re~erved for data communications (7 word buffer)

Reserved for System use

User-available Temporary

Negative number of sectors/track

Address of instruction causing memory protect violation

Current resident 1/0 driver module flag

Current request code value

Operator attention restore A register value

Operator attention restore B register value

Operator attention E and 0 register value

Operator attention return address

Extended File Management Package flag

A-7

Table A-2. DOS-I I I Base Page Communication Area (continued)

Location Name Contents

324 DSC LB Disc track/sector of Relocatable Library

325 DSCL# Number of Relocatable Library routines

326 LSTCH Last disc referenced

327 F LF LG/TRAC# User file table validity flag/#Bad tracks found

330 XFLG Entry address for disc not ready

331 SSFLG System search flag

332 CHA RC Batch input character count

333 TY EQT System console EQT 4 address

334 DMFLG Data Management Flag

335 SSTBL Address of Subsystem Table

336 TM BEG Address of Timer List

A-8

track 0

one directory entry
for each disc­
resident module

track boundary ___,..

track boundary ___..

system label sector

bootstrap -

system area directory (size varies)

main memory-resident system

equipment table (EQT)

device reference table (DRT)

interrupt table (INT)

EXEC modules

1/0 driver modules

system programs

EXEC module table

relocatable library

base page Ii n kages

system buffer/user label sector

user directory

user files

work area

job binary area

Figure A-2. Disc Structure in DOS-111

A-9

SYSTEM AREA
(hardware protected)

USER AREA

WORD

2

3

4

5

6

7

8

9

10

11

CONTENTS

first character second character

third character fourth character

fifth character p entry type

track sector

file length (in sectors)

FWA program

LWA program

FWA base page linkage area

LWA base page linkage area

program entry point

FWA of memory available for memory management (see Note)

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Note: For overlays, word 11 value is the last word (plus 1) of the
overlay. For a main program, word 11 value is the last word
(plus 1) of the largest segment.

Figure A-3. Disc Directory Entry Format

A-10

0

(five-character
file name)

for system or
loader-generated
binary programs
only

BITS

'P' Bit

0 = Permanent file-no action is taken at end-of-job.

1 = Temporary file-purge this entry at end-of-job.

This bit is set by the Relocating Loader and cleared by a STORE,P directive.

Entry Type

Type

0

1

2

3

4

5

6,7

10s

lls

128

138

148

File

System resident

Disc-resident executive supervisor module

Reserved for system

User program, main

Disc-resident device driver

User program segment

Library

Relocatable binary

ASCII source statements

Binary data

ASCII data

Absolute binary

Note: The last directory entry in each sector is followed by a word containing -1.
The last entry in the directory is followed by a word containing zero (0).

A-11

DISC LABELS

Sector 0 of track 0 of each disc is used for label information. In addition, if the user area is on the
system disc, a label also exists in Sector 0 of the first track after the system area. The first 64 words
(words 0-63) are reserved for label information. Word 64 contains the next available track and sector.
Words 65 and 66 contain the number of bad tracks and the next available spare track.

The contents of the label include:

Word 0:

Word 1:

Word 2:

Label presence code (ASCII "LB" for labeled, zero for unlabeled)

System proprietary code:

1. "DO" for DOS-III

2. "TS" for Time-shared BASIC

System generation code assigned at system generation time. The code can be any four
decimal digits.

Words 3-5: A six-character disc label. If the first character equals * the disc is unlabeled. This
label can only be set using :IN (for user areas) or by DSGEN (set to "SYSTEM"
for system discs).

Word 31: Checksum of words 0-30.

A-12

THE EQUIPMENT TABLE

The equipment table (EQT) has an entry for each device recognized by DOS-III (these entries are
established by the user when DOS-III is generated). The EQT entries reside in the permanent main­
memory resident part of the system and have this format:

D

R

Unit#

Channel#

Av

1 if DMA channel required.

1 if driver type is main-memory resident.

May be used for subchannel addressing.

I/O select code for device (lower number if multiboard interface).

0 Unit not busy and available

1 Unit disabled (down)

2 Unit busy

Status-Actual or simulated unit status at end of operation.

Equipment Type Code-Identifies type of device and associated software driver. Assigned equip­
ment type codes in octal are:

00-07

00

01

02

04

05

10-17

11

12

20-37

23

26

31

33

Paper Tape Devices

Teleprinter

Punched Tape Reader

High Speed Punch

Display Terminal

System Console

Unit Record Devices

Card Reader

Line Printer

Magnetic Tape/Mass Storage and other devices capable of both input
and output

7 97 0 Magnetic Tape

2762A Terminal Printer

Moving-Head Disc

Writable Control Store

For equipment type codes 01 through 1 7, odd numbers indicate input devices and even numbers
indicate output devices (except 05, which is both input and output).

A-13

WORD

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

CONTENTS

driver "initiation section" address

driver "continuation section" address

0 R (reserved) unit# channel#

Av equipment type code status

(saved for driver use)

(saved for driver use)

request return address

(reserved for system)

current 1/0 request control word request code

request buffer address

request buffer length

temporary or disc track#

temporary or starting sector#

temporary storage for driver

upper memory address; main driver area

upper memory address: driver linkage area

starting track # starting sector #

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Figure A-4. The Equipment Table

A-14

0

All zeros if

main-memory
resident

BITS

THE LOGICAL UNIT TABLE

The logical unit table (LUT) has an entry for each logical unit defined at system generation time
(maximum number is 63). These entries provide logical addressing of the physical devices defined
in the EQT. Logical unit numbers 4-63 may be modified within a job by using the LU directive.
At end-of-job, logical unit number 1-9 are restored to their original system generation values. The
LUT entries reside in the permanent main-memory resident part of the system and have the follow­
ing format:

Word Contents

1 Device EQT number

n Device EQT number

THE INTERRUPT TABLE

The interrupt table (INT) contains an entry, established at system generation time, for each I/0
channel which can cause an interrupt (beginning with I/0 channel 6). The INT entries reside in the
main-memory resident portion of the system and have the following format:

The entry is in the following form:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

D EQT address of device

D = 0 no DMA interrupts expected

D = 1 DMA interrupts expected

Bit 15 is set and cleared by calls to $SDMA and $CDMA, respectively.

A-15

Directive

:ABORT

:ADUMP[,FWA [,LWAJ] [,BJ [,SJ

:BATCH, logical unit

:CLEAR[,logical unit]

:COMMENT string

:DATE, day[,hour,min]

:DD

:DD,X

:DD,U[,file{,(name)] ,file[,(name)] . . .]

:DN,n

:DUMP, logical unit,file {,S 1[,S21]

: EA {,P 1,P 2,P 3,P 4,P 5]

:EB[,P1,P2,P3,P 4,P5]

:EDIT,file,logical unit {,new file]

:EF[,logical unit]

INDEX 1
Summary of Directives

Description

Terminate the current job

Dump a program if it aborts

Switch from keyboard to batch mode, or
reassign batch device

Clear the Job Binary Area or issue a
clear request to an 1/0 device

Print a message on the system console

Set the date (and the time, if Time-base
Generator is present)

Dump the entire current disc onto a disc
on another subchannel

Dump the system area only to another
disc

Dump all or specified files of the current
user disc to another disc, optionally as­
signing new file names

Declare an 1/0 device down

Dump all or part of a user file to a
peripheral 1/0 device

Execute user EXEC module $EX36

Execute user EXEC module $EX37

Edit a source statement file stored on
disc, optionally creating a new file

Write end-of-file on magnetic tape

1

Page

2-3

2-13

2-4

2-5

2-6

2-7

2-9

2-9

2-9

2-8

2-11

12-2

12-2

2-17

2-21

Directive

:EJOB

:EQ{,n]

:IN, label

:JFILE,file

:JOB[,name]

:LIST,S,logical unit,file{,m[,n]]

:LIST,U,logical unit{,file1, .. .]

: LIST,X, logical unit {,file 1, ...]

:LU{,n 1 {,n2J]

:MMGT{,subsystem name, wwwww, . .. ,
subsystem name,wwwww]

:OFF

:PAUSE [comment string]

:PDUMP[,FWA{,LWA]] {,BJ [,SJ

:PROG,name[,P1,P2, . .. ,P5]

:PURGE{,file1,tile2 . . .]

:RNAME,oldname,newname[,type]

:RP ACK

:RWND{,logical unit]

:RUN,name{,time] {,NJ

:SA, track,sector{,number]

:SO, track,sector[,number]

:SS

:SS,n1 ,n2 . ..

Description

Terminate the current batch and/ or job
normally

List the complete equipment table, or
just one line

Continue processing a suspended program

Label or unlabel ("*") the current user disc

Specify a source file on the disc for the
Assembler or a compiler

Initiate a user job

List all or part of a source statement file

List all or part of the user directory

List all or part of the system directory

Assign or list logical unit assignments

Reserve memory address space (in words)
for specific subsystems or obtain a list of
previously reserved memory space

Abort the currently executing program or
operation without terminating the job

Page

2-22

2-23

2-25

2-26

2-43

2-28

2-29

2-29

2-29

2-33

2-35

2-37

Suspend the current job or program (optionally, 2-38
output a comment on the system console)

Dump a program after normal completion 2-13

Turn on a system or user program 2-39

Delet~ all temporary file or specified user file 2-40
directory entries.

Rename a specified user file and option- 2-42
ally, change its program type

Repack disc user file area eliminating purged 2-44
files (see :PURGE directive)

Rewind a magnetic tape 2-43

Run a user program 2-45

Dump disc in ASCII to standard list device 2-15

Dump disc in octal to standard list device 2-15

Set up system search for file names over 2-52
all subchannels

Set up system search for file names over 2-52
specified subchannels

2

Directive Description Page

:SS,99 Restrict search for file names to current 2-52
user disc (plus system directory for RUN
and PROG)

:STORE,A,file,sectors Reserve space for an ASCII data file 2-47

:STORE,B,file,sectors Reserve space for a binary data file 2-47

:STORE,P[,name1,name2 ...] Store all or specified temporary Loader- 2-47
Generated programs as permanent files

:STORE,R,file [,logical unit] Store a relocatable file from the JBIN 2-47
area of disc after an assembly or compila-
tion or from a peripheral 1/0 device

:STORE,S,file,logical unit [,C] Store a source statement file from a 2-47
peripheral 1/0 device

:STORE,X,file,logical unit Store absolute binary programs 2-47

:TOF [,logical unit] Issue a top-of-form to a list device 2-54

:TRACKS Print the disc track status of the current 2-55
user disc

:TYPE Return to keyboard mode from batch 2-57
mode

:UD[,[label] [,n]] Change the subchannel assignment for the 2-59
user disc, or request label and subchannel
information for a user disc

:UP,n Declare an 1/0 device up 2-58

3

INDEX 2

Summary of EXEC Calls

Consult Section III for the complete details on each EXEC call.

RCODE Name Function Page

-19 BASE PAGE STORE Store values into base page memory loca- 3-6
tions (Value to be stored in the A register,
absolute location address in the B register)

1,2 1/0 READ /WRITE Transfer input or output (1 =read or 3-20
2 =write)

3 1/0 CONTROL Carry out control operations 3-17

6 PROGRAM COMPLETION Signal end of program 3-30

7 PROGRAM SUSPENSION Suspend calling program 3-33

8 SEGMENT LOAD Load segment of calling program 3-35

10 PROGRAM LOAD Transfer a main program into main 3-31
memory

11 TIME REQUEST Request the time-of-day 3-38

13 1/0 STATUS Request device status 3-23

14,15 FILE READ/WRITE Read or write a user data file (14 = 3-13
read or 15 = write)

16 WORK AREA STATUS Ascertain if n contiguous work tracks 3-41
are available

17 WORK AREA LIMITS Ascertain first and last tracks of work 3-39
area

18 FILE NAME SEARCH Ascertain if a file name exists in the 3-9
directory

1

RCODE

23

24

27,28

29

30

Name

USER DISC CHANGE

EFMP CALLS

USER EXEC CALLS

SEGMENT RETURN

MEMORY PROTECT
CONTROL

Function Page

Change the current user disc subchannel 3-43

Execute EFMP functions Section VII

Execute user EXEC modules $EX36 or Section XII
$EX37 (RCODE = 27 for $EX36;
RCODE = 28 for $EX37; up to five
words of parameter information)

Return from a segment to the main
program at the instruction immediately
following the segment load call

Control memory protect from a user
program

3-37

3-29

31 (Reserved for future assignment)

32

33

34

35

36

FILE CREATE

FILE PURGE

FILE RENAME

MEMORY MANAGE­
MENT (INITIALIZE)

Allows user to create a user disc file under
program control.

Allows user to purge a user disc file under
program control.

Allows user to rename a user disc file under
program control.

Reserves a block of memory under a unique
block name identifier specified by the user.

MEMORY MANAGE- Requests number of words allocated to speci-
MENT (STATUS REQUEST) fied block name identifier, or number of re­

maining unallocated words if block name
identifier is omitted.

37 (Reserved for future assignment)

38 MEMORY MANAGE­
MENT (BUFFER
ALLOCATION)

Allocates buffer area from memory space. If
the block name identifier is specified, the
buffer allocation is from the area reserved for
the block name. If not, the allocation is from
the available memory area.

39 (Reserved for future assignment)

40 (Reserved for future assignment)

3-7

3-11

3-15

3-26

3-28

3-24

41 MEMORY MANAGE­
MENT (BUFFER
RELEASE)

Permanently releases buffer space. If the buffer 3-25
resides within an area reserved under a block
name identifier, the logical address space remains
reserved.

2

A

ACROl: 1-17
ADUMP: 2-13, 2-37
ALGOL CODE procedure: 3-3
ALGOL control statement: 5-5
alternate entry-point flag (AEPF): 3-22, 3-36
ASCII dump format: 2-15
assembler control statement: 5-9
Assembler, FORTRAN and ALGOL Error

Messages (5951-1377): 15-1
assembler NAM statement: 5-10
assembler ORB statement: 5-10
ATDOl: 1-17
ATD02: 1-17

B

BACKSPACE: 3-19
backward motion request: 4-7
base page communication area: A-4
base page contents: A-3
base page linkage area: 2-13
base page linking mode: 5-10, 10-12
batch abort: 1-3, 2-50
BINRY library routine: 3-22, 5-28
BREAD entry point: 3-22
BRIEF temporary file: 9-4
BWRIT entry point: 3-22

c

central interrupt processing routine ($CIC): 1-5, 4-3
commercial "at" sign @: 2-1, 2-50
configured DSGEN: 1-9, 10-1
Control-A: 1-3
current page linking mode: 5-10, 10-12

D

device independence: 1-5
device reference table: 2-33, 4-2, 10-16, A-15
directory listing output: 2-30
disc labels: A-12
disc monitor (DISCM): 1-1

1

INDEX 3

Index of Terms

DSGEN: 10-1
DVROO: 1-16, 4-3
DVROl: 1-16, 4-3
DVR02: 1-17, 4-3
DVR05: 1-16, 4-3
DVRlO: 1-17, 4-3
DVRll: 1-17, 4-3
DVR12: 1-1.7, 4-3
DVR15: 1-17, 4-3
DVR23: 1-17, 4-3
DVR26: 1-17, 4-3
DVR31: 1-16, 4-3
DVR33: 1-17, 4-3
DVR34: 1-17, 4-3
DVR67: 1-17, 4-3

E

EFMP areas: 7-2
EFMP directory size: 8-10
EFMP function numbers: 8-1
EFMP pack numbers: 7-2
EFMP file security code: 7-2, 8-6, 9-18
ENDFILE: 3-19
equipment table: 2-33, 4-2, 10-15, A-13
equipment table format: A-13
equipment table generating: 10-15
EQT status field: 4-3
ERRO library routine: 5-19

F

file name search: 3-9
FORTRAN control statement: 5-13
FORTRAN DATA statement: 5-16
FORTRAN EXTERNAL statement: 5-17
FORTRAN PAUSE statement: 5-18
FORTRAN PROGRAM statement: 5-15
FORTRAN STOP statement: 5-18
function code field: 3-18
FWA: 2-13

G

Generate DOS-III: 10-7

H

hardware override switch: 1-9, 2-26, 10-5
head 0, drive 0: 11-12
HLT 31: 2-26
HP FORTRAN IV (5951-1321): 15-1

I

input string length: 2-1
interrupt table: 4-2, 10-16, A-15
interrupt table format: A-15
interrupt table generating: 10-16
I/O operation, without wait: 14-1
IPRAM: 3-14

J

job binary area: 1-14, 2-5

K

keyboard mode: 1-3

L

label presence code: 7-1, A-12
library input unit: 10-10
linefeed: 1-3
link mode: 5-10, 10-12
LOADR current page linking parameter: 5-22
LOADR debug parameter: 5-22
LOADR input parameter: 5-21
LOADR program bounds specification parameter: 5-22
logical unit table: 2-33, 4-2, 10-16, A-15
logical unit table format: A-15
logical unit table generating: 10-16
LWA: 2-13

M

memory management: 1-9, 2-35, 3-24

N

NAM statement: 5-10

0

octal dump format: 2-15
opened-file table: 7-2
opened-file table size: 8-2
operator attention directives: 2-2
optional directive (:SS): 2-29, 2-52
override/protect switch: 1-9, 2-26, 10-5

p

P bit: A-11
PDUMP: 2-13, 2-37
PMTOl: 1-17

PMT02: 1-17
PNOOO: 8-5
Prepare Tape System (02116-91751): 10-1
primary file: 2-17
privileged interrupt: 1-5, 13-20
privileged mode flag (MDFLG): 14-1
program entry type: A-11
program input unit: 5-10, 10-12, A-10

R

request codes: 3-1
relocatable libraries: 5-28
Relocatable Subroutines (02116-91780): 5-28
relocating loader: 5-20
restarting DSG EN: 10-7
return: 1-3,
REWIND: 3-19
RMPAR library subroutine: 2-25, 3-46
RONBF parameter buffer: 3-46
RTE/DOS FORTRAN IV library: 5-28
RTE/DOS relocatable library: 5-28
rubout: 1-3

s
secondary file: 2-18
sector boundaries: 2-12
sector numbers: 2-11
sense switch control: 5-5
source listing output: 2-31
SS condition: 2-10, 2-29, 2-52
SLC: 1-17
standard list device: 2-22
standard logical unit numbers: 4-2
subchannels: 1-10, 1-13
summary of directives: index 1
summary of EXEC calls: index 2
system area: 1-8
system area directory: 2-29
system area dump: 2-9
system area files: 2-12
system generation code: 10-5, A-12
system proprietary code: 7-1, A-12

T

temporary record buffers: 7-2
temporary record buffer size: 8-3
termination record: 2-49
timing capabilities: 1-6
track switching'(3-20
transmission log (TLOG): 3-23
type A files: 2-50
type B files: 2-50
type P files: 2-48
type R files: 2-4 7
type S files: 2-49
type X files: 2-51

2

u

unassigned logical units: 10-16
user area: 1-1, 1-9, 1-14
user area directory: 2-29
user area dump: 2-9
user file types: 2-4 7
user source file: 2-29
user status word (USTAT): 8-25

w

wait field: 3-18
waiting and no waiting: 3-22, 4-3
work area: 1-8
write end-of-file: 3-17

3

$

$EX01 ... $EX12: 10-13
$EX13 ... $EX22: 10-14
$EX30 ... $EX33: 10-12, 10-14
$EX36: 3-1, 10-12, 12-3
$EX37: 3-1, 10-12, 12-3 .

I

/DELETE: 2-18
/END: 2-19
/INSERT: 2-18
/MERGE: 2-18
/REPLACE: 2-18
/SUPPRESS: 2-19
/UNSUPPRESS: 2-19

WORLD WIDE
SALES & SERVICE OFFICES

UNITED STATES
ALABAMA COLORADO IN DIANA MINNESOTA NEW YORK OKLAHOMA 205 Billy Mitchell Road
8290 Whitesburg Dr., S. E. 5600 South Ulster Parkway 3839 Meadows Drive 2400 N. Prior Ave. 6 Automation Lane P. 0. Box 32008 San Antonio 78226
P.O. Box 4207 Englewood 80110 1nd1anar11s 46205 Rosevllle 55113 Computer Park Oklahoma City 73132 i~lm.m:mi Huntsvllle 35802 ~P8rrnt~m Tel: (317 546-4891 iWx\6JfUi3:gjg~ Albanfi 12205 Tel: (405) 721-0200

~Pgr6-~~t~~5l TWX: 81 -341-3263 Tel: (5 86 458-1550 TWX: 910-830-6862 UTAH
CONNECTICUT IOWA MISSISSIPPI

TWX: 71 -441-8270 OREGON 2890 South Main Street "Blrmlneiham 12 Lunar Drive ~:~~ ~~~~~~40 •Jackson New Yori< City 17890 SW Boones Ferry Road Salt Lake C~ 84115 Medical ervice onr New Haven 06525 ~e1~%~11e98i~:93~~
Manhattan, Bronx Tualatln 97062 Tel: (8016 487- 715 Tel: (205) 879-208

iWx\2?r6-~ii:~i~~ Tel: (319) 338-9466 Contact Paramus, NJ Office
iWx\58rm~:i~~~ TWX: 91 -925-5681

ARIZONA Night: (319) 338-9467
MISSOURI ~~~O~~~! a~~~~~~iichmond VIRGINIA

~~!!i~~Rg~~a St. FLORIDA "KANSAS 11131 Colorado Ave. Contact Woodbury, NY Office PENNSYLVANIA "Norfolk
P.O. Box 24210 ~~?!16) 267-3655

Kansas City 64137 Tel: (516) 921-0300 111 Zeta Drive ~e1~%~41e~if~1 g~~ i~\58frntm~ 2806 W. Oakland Park Blvd.
iWx\8Jfgmgg~ 201 South Avenue Pittsburgh 15238

Ft. Lauderdale 33307
LOUISIANA Poughkeepsie 12601 Tel: (412) 782-0400 P.O. Box 9854 2424 East Aragon Rd.

f Wx\3gr6-~~~:~g~i P.O. Box 840 148 Weldon Parkway iWx\9J{rnth~1g ~re~'.: 1,si1:.1124 2914 Hungary Springs Road Tucson 85 706
3239 Williams Boulevard Ma(:land Helf.his 63043 Richmond 23228 Tel: (602) 889-4661 • Jacksonvllle Kenner 70062 39 Saginaw Drive 1021 8th Avenue iWi8?{6-~ii:~m CALIFORNIA ~e~di(i~41ef2im~~ iwx\5g{6-~mm

~x?J{6.m:oi~& Rochester 14623 King of Prussia Industrial Park

~~~~~~~ w:;~fthorpe Ave. NEBRASKA i~lm.m:~~~~ 
Klny of Prussia 19406 WASHINGTON P.O. Box 13910 f~x:2Jf6-~~g:~gn iWlJ{rng: ~ ggg 

6177 Lake Ellenor Dr. MARYLAND \~~81c~l~n~/eet Bellefield Office Pk. 
Orlando 32809 6707 Whitestone Road ~~~~~~!~ ~~~o{1 Road 

1203-1141h SE 

iwPgn_~~g:~frn 
Baltimore 21207 Suite 4C SOUTH CAROLINA Bellevue 98004 

3939 Lankershim Boulevard 
iWP?n-~i~:~i~~ 

Omaha 68144 tWx\3ir6-~~t~!~~ 6941-0 N. Trenholm Road iM8f6j~rnu North Holl,wood 91604 Tel: (402) 333-6017 Columbia 29260 

iWPm-~9rn% 21 East Wright St. 
~g~~~1~h%i5~oad "NEVADA 1 Crossways Park West Tel: "(803) 782-6493 

"WEST VIRGINIA Suite 1 
Pensacola 32501 ~:i~ (r~a:82-5777 

Woodbu~ 11797 TENNESSEE Charleaton 6305 Arizona Place Tel: (904) 434-3081 iWx\3?16-~~~:~m 
Tel: (5166 21-0300 "Memphis Tel: (304) 345-1640 LOI Angelee 90045 TWX: 51 -221-2168 

~e1~i(i~11~~:7~g~ iWx\2Jrrnt~m GEORGIA 710-828-0487 NEW JERSEY 
NORTH CAROLINA 

WISCONSIN 
P.O. Box 28234 P.O. Box 1648 W. 120 Century Rd. "Nashvllle 

9431 W. Beloit Road 
"LOB Angelee 450 Interstate North Paramus 07652 P.O. Box 5188 Suite 117 
Tel: (213) 776-7500 Atlanta 30328 2 Choke Cherry Road 

f Wx\2?16.§~g:~g~~ 
1923 North Main Street ~e1~itJ1J s1e2'~~5~~~ Miiwaukee 53227 

tWx\4g{6.j~:!gg& 
Rockvllle 20850 High Point 27262 Tel: (414) 541-0550 3003 Scott Boulevard ~x\3?16-~~tii~~ iWx(9Jn-~~~:m~ Santa Clara 95050 NEW MEXICO TEXAS 

i wlgn-~~thi~g HAWAII P.O. BOx 8366 P.O. Box 1270 
2875 So. King Street MASSACHUSETTS Station C OHIO 201 E. Arapaho Rd. 

~:~~~)~:t6165 Honolulu 96814 32 Hartwell Ave. 6501 Lomas Boulevard N.E. 16500 Sprague Road Richardson 75080 
Tel: (808) 955-4455 LexlnVton 02173 Albuquerque 87108 Cleveland 44130 t~x\2JtH~rn~~ Tel: (6 76 861-8960 

iWx\58r6~~~~:1~~~ 
Tel: (216) 243-7300 

2220 Watt Ave. ILLINOIS TWX: 71 -326-6904 ~~~~: l145-1l~-~31 P.O. Box 27409 Sacramento 95825 
\i~c~la~~~k~~lb)rive MICHIGAN 6300 Westpark Drive 

iWx\
9
Jf uirni~ 

156 Wyatt Drive 
23855 Research Drive Las Cruces 88001 330 Progress Rd. Suite 10.0 FOR U.S. AREAS NOT LISTED: 

Suite 1100 
Farml~~ton 48024 tWx\58r6.i~3:ai~i 

Dayton 45449 Houston 77027 Contact the regional office 
9606 Aera Drive Chicago 60606 Tel: (31 476-6400 t~\5Jrb_~~~:~~g~ fWlJr6-~i1:~g~g nearest you: Atlanta, Georgia ... 
P.O. Box 23333 Tel: (312) 346-9701 TWX: 81 -242-2900 North Hollywood, California ... 
San Diego 92123 5500 Howard Street 1041 Kingsmill Parkway Rockville, (4 Choke Cherry Rd.) 

~x\7J{rnrng~ Skokie 60076 Columbus 43229 Maryland ... Skokie, Illinois. 

iWx!3Jn_m:g~~g Tel: (614) 436-1041 Their complete 1ddresses 
are listed above. 

··st. Joseph 
Tel: (217) 469-2133 ·service Only 

CANADA 
ALBERTA BRITISH COLUMBIA MANITOBA NOVA SCOTIA ONTARIO QUEBEC Hewlett-Packard (Canada) Ltd. 
Hewlett-Packard (Canada) Ltd. ~jfl~ttt;r~o~~ ~fr~~~da) Ltd. 

Hewlett-Packard {Canada) Ltd. Hewlett-Packard (Canada) Ltd. Hewlett-Packard (Canada) Ltd. Hewlett-Packard (Canada) Ltd. 2376 Galvani Street 
11748 Kingsway Ave. 513 Century St. 800 Windmill Road 1785 Woodward Dr. 275 Hymus Blvd. ~:~~~K) G61~-mo Edmonton TSG OX5 Vancouver V6A 3R2 St. James Dartmouth B3C 1 L 1 Ottawa K2C OP9 Pointe Claire H9R 1G7 

iWx\4m-i~rn~~ i~lg{6-~~tim Wlnnlc.eg R3H OL8 Tel: (902) 469-7820 t~x\6Jr6-~~U~~i f~!5Jf6-~~rn~~ Tel: (2 46 786-7581 
Hewlett-Packard (Canada) Ltd. TWX: 61 -671-3531 Hewlett-Packard (Canada) Ltd. TLX: 05-821521 HPCL 
915-42 Avenue S.E. Suite 102 6877 Goreway Drive 

fe~:1~:~!) Tfa~W72 MIBBlssau~a L4V 1 L9 FOR CANADIAN AREAS NOT LISTED: 

i~x(4Jf6-~9tmg Contact Hewlett-Packard (Canada) 
Ltd. in Mississauga. 

CENTRAL AND SOUTH AMERICA 
ARGENTINA Hewlett-Packard Do Brasil COLOMBIA MEXICO PANAMA PERU Montevideo 
Hewlett-Packard Argentina l.E.C. Ltda. lnstrumentaci6n Hewlett-Packard Mexicana, Electr6nico Balboa, S.A. Compania Electro MMica S.A. Tel: 40-3102 
S.A.C.e.I Praca Dom Feliciano, 78-8° Henrik A. Langebaek & Kier S.A. S.A. de C.V. P.O. Box 4929 Ave. Enrique Canaual 312 Cable: RADIUM Montevideo 
Lavalle 1171-3° Piso ~g~'.~~~~ sx~/8) re-RS 

Carrera 7 No. 48-59 Torres Adalid No. 21, 11° Piso Calle Samuel Lewis San Isidro VENEZUELA Buenos Aires 
Tel: 25-84-70-D~ ~05121 Apartado Mreo 6287 Col. del Valle Culdad de Panama Casilla 1030 Hewlett-Packard de Venezuela Tel: 35-0436, 35-0627, 35-0341 Bogota, 1 D.E. Mexico 12, D.F. Tel: 64-2700 Lima 

Telex: 012-1009 Cable: HEWPACK P rto A egre Tel: 45-78-06, 45-55-46 Tel: (905) 543-42-32 Telex: 3431103 Curunda, Tel: 22-3900 C.A. 
Cable: HEWPACK ARG Hewlett-Packard Do Brasil ~~~:i ::4~M~~8~ Telex: 017-74-507 Canal Zone Cable: ELMED Lima Apartado 50933 

1.E.C. Ltda. Hewlett-Packard Mexicana, Cable: ELECTRON Panama Edificio Segre 
BOLIVIA PUERTO RICO Tercera Transversal 
Stam bu k & Mark (Bolivia) Lida. Rua Siqueira Campos, 53, 4° COSTA RICA S.A. de C.V. PARAGUAY San Juan Electronics, Inc. Los Ruices Norte 
Av. Mariscal, Santa Cruz 1342 andar Copacabana Lie. Alfredo Gallegos GurdiAn Ave. Constituci6n No. 2184 Z.J. Melamed S.R.L. P.O. Box 5167 Caracas 107 
La Paz 2000-Rlo de Janeiro-GB Apartado 10159 Monterrey, N. L. Division: Aparatos y Equipos Ponce de Le6n 154 Tel: 35-00-11 
Tel: 40626, 53163, 52421 l:i~i:5I;ig-}i-~~~~~~U San Jose Tel: 48-71-32, 48-71-84 Medicos Pda. 3-PTA de Tierra Telex: 21146 HEWPACK 
Telex: 3560014 Tel: 21-86-13 NICARAGUA Division: Aparatos y Equipos San Juan 00906 Cable: HEWPACK Caracas 
Cable: BUKMAR Cable: HEWPACK Cable: GALGUR San Jos6 Roberto TerAn G. Scientificos y de Tel: (809) 725-3342, 722-3342 Rio de Janeiro lnvestigacion Cable: SATRONICS San Juan BRAZIL CHILE GUATEMALA Apartado Postal 689 P.O. Box 676 Telex: SATRON 3450 332 FOR AREAS NOT LISTED, CONTACT: 
Hewlett-Packard Do Brasil IPESA Edificio TerAn Hewlett-Packard 

g:\fea~r:/8~.e~n~~}tga. Managua Chile, 482, Edificio Victoria 
l.E.C. Ltda. Avenida La Reforma 3-48, Asuncion URUGUAY Inter-Americas 
Rua Frei Canec;a, 1.152-Bela Vista Zona 9 Tel: 3451, 3452 Tel: 4-5069, 4-6272 Pablo Ferrando S.A. 3200 Hillview Ave. 
01307-Slo Paulo-SP Casilla 2118 Guatemala Cable: ROTERAN Managua Cable: RAMEL Comercial e Industrial Palo Alto, California 94304 
Tel: 288-71-11, 287-81-20, Santiago Tel: 63627, 64 736 Avenida Italia 2877 fWx(4Jr6-m:1~ii Tel: 398613 287-61-93 

Cable: CALMET Telex: 4192 TELTRO GU Casilla de Correo 370 
Telex: 309151/2/3 Cable: HEWPACK Palo Alto 
Cable: HEWPACK S~o Paulo Telex: 034-8300, 034-8493 

EUROPE 
AUSTRIA BELGIUM DENMARK Hewlett-Packard A/S FINLAND FRANCE Hewlett-Packard France 
Hewlett-Packard Ges.m.b.H. Hewlett-Packard Benelux Hewlett-Packard A/S ~~~g~~~ k11keborg 

Hewlett-Packard Oy Hewlett-Packard France Agence R6gional 
Handelska 52/3 S.A./N.V. 8~~~%~Ji~lrkerl'd Nahkahousuntie 5 Quartier de Courtaboeuf Chemin des Mouilles 
P.O. Box 7 Avenue de Col-Vert, 1, Tel: (06) 82 71 66 P.O. Box 6 Boite Postale No. 6 8oite Postale No. 12 
A-1205 Vienna ~Groenkraaglaan) Tel: (01) 81 66 40 t:~I~:: ~6E~4i?A~~ ~S SF-00211 Helsinki 21 F-91401 OrlBy F-69130 Ecully 

t:~1~~~2f~~~:ti~n~ 09 -1170 Brussels Cable: HEWPACK AS Tel: 6923031 Tel: (1) 907 78 25 Tel: (78) 33 81 25, 

t:1~1~02JAn12B~~ i~ussels Telex: 166 40 hp as Cable: HEWPACKOY Helsinki Cable: HEWPACK Orsay 83 65 25 
Telex: 75923 hewpak a Telex: 12-15363 Telex: 60048 Telex: 31 617 

Telex: 23 494 paloben bru 



Hewlett-Packard France Hewlett-Packard GmbH GREECE Hewlett-Packard ltaliana S.p.A. PORTUGAL SWITZERLAND Hewlett-Packard Ltd. 
Agence Regionale Vertriebsbliro Dlisseldorl ~g~t~~m~~asfr~~~s ~~6~o8~l::/Dro, 2 Telectra-Empresa Hcnica de ~~~~:r;~;::;d26Schweiz) AG 4th Floor 
Zone A6ronautique ~~io~a~g~:~:~ Equipamentos Electricos S.a.r.I. Wedge House 
Avenue Cl6ment Ader GR-Athene 126 Tel: (050) 500022 ~u&_ RB~~i~g3~a Fonseca 103 P.O. Box 64 799, London Road 
F-31770 Colomlers Tel: (0211) 63 80 31/5 Tel: 3230-303 Sales/SVC Telex: 32046 via Milan CH-8952 Schlieren Zurich GB-Thornton Heath CR4 6XL, 
Tel: (61) 78 11 55 Telex: 85/86 533 hpdd d 3230-305 Adm. Order Proc. Hewlett-Packard S.p.A. P-Llsbon 1 Tel: (01) 98 18 21 ¥~t(o1) 684 0105 Telex: 51957 Hewlett-Packard GmbH Cable: RAKAR Athens Via G. Armelllni 10 ti'~,~~ %~~C~Rl2usbon Cable: HPAG CH 
Hewlett-Packard France VertriebsbUro Hamburg Telex: 21 59 62 rkar gr 1-00143 Rome-Eur Telex: 53933 hpag Telex: 946825 
Agence Regionale Wendenstrasse 23 Hewlett-Packard S.A. Tel: (6) 5912544/5 Telex: 12598 

~~~~~~j;t~~i~-~~re~eiz) AG 
Hewlett-Packard Ltd.

Centre d"avialion generale ~;~0(~~~~~3rf3 1
Mediterranean & Middle East Telex: 61514 SPAIN C/O Makro

F-13721 Aeroport de ~ge~~l~~~roni Street
Cable: HEWPACKIT Rome Hewlett-Packard Espanola, S.A. CH-1214 Vernier-Geneva South Service Wholesale Centre

Marlgnane Cable: H WPACKSA Hamburg Hewlett-Packard ltaliana S.p.A. Jerez No. 3 ti~1~0~2J~~A'\;9K§~ Ge~eva Wear Industrial Estate
Tel: (91) 89 12 36 Telex: 21 63 032 hphh d Platia Kefallariou Via San Quintina, 46 E-Madrkl 16 Washington
TWX: 41770 F Hewlett-Packard GmbH Gr-Kifissla-Athen• 1-10121 Turin Tel: 458 26 00 Telex: 27 333 hpsa ch ¥:i~~;:h~~~~·4~~ii~ ~~r~f?5a Hewlett-Packard France VertriebsbOro Hannover Tel: 8080337, 8080359, Tel: (11) 53 82 64 Telex: 23515 hpe TURKEY

~8~~v"e~~~i~~a~~chester Mellendorter Strasse 3 8080429, 8018693 Telex: 32046 via Milan Hewlett-Packard Espanola, S.A. Telekom Engineering Bureau Hewlett-Packard Ltd. 's registered
D-3000 Hannovar-Kleefeld Telex: 21 6588 address for V.A. T. purposes

Cable: HEWPACKSA Athens LUXEMBURG Milanesado 21-23 Saglik Sok No. 15/1 F-35000 Rennes Tel: (0511) 55 60 46
Hewlett-Packard Benelux E-Barcelona 17 ~y5sp3g:-~N¥08!~oglu

only:
Tel: 74912 F Telex: 092 3259 IRELAND Tel: (3) 2036200-08, [~:~~s~.u~c~m~ent Telex: 74 912 F Hewlett-Packard GmbH Hewlett-Packard Lid.

S.A./N.V.
2044098/9 TR-Istanbul

Hewlett-Packard France Vertriebsbiiro Nuremberg King Street Lane
Avenue de Col-Vert, 1,

Telex: 52603 hpbe e Tel: 49 40 40 Registered No. 690597
Agence Regionale Hersbrlickerstrasse 42

~~~~~~.rr:k~°8f f~AR ~~mik~~z~:~ls Hewlett-Packard Espanola, S.A. Cable: TELEMATION Istanbul USSR 
74, Allee de la Robertsau ~~~5(~1~)';,~~~~ Tel: (02) 672 22 40 Av Ramon y Cajal, 1 UNITED KINGDOM Hewlett-Packard 

~~r~~~) ~~~~b2~~;f Tel: Wokingham 784774 Cable: PALOBEN Brussels Edificio Sevilla I, planla 9" Representative Office USSR 
Telex: 623 860 Telex: 847178/848179 Telex: 23 494 E-Sevllle Hewlett-Packard ltd. Hotel BudapesVRoom 201 

Telex: 89141 Hewlett-Packard GmbH Hewlett-Packard Ltd. Tel: 64 44 54/58 
King Street Lane Petrovskie Linii 2/18 

Cable: HEWPACK STRBG Vertriebsburo MOnchen ""The Graftons" NETHERLANDS ~J~~~~~.~~:i~&~;m5AR Moscow 
Unterhachinger Strasse 28 Hewlett-Packard Benelux N.V. ~~i~~~~-r~~~a,1d pcano1a s.A. Tel: 221-79-71 GERMAN FEDERAL REPUBLIC Stamford New Road Weerdestein 117 i::~x~~4~~~~~~l1W14 ISAR Center GB-Altrlncham, Cheshire Hewlett-Packard GmbH D-8012 Ottobrunn P.O. Box 7825 E-Bllbao YUGOSLAVIA 

Vertriebszentrale Frankfurt Tel: (089) 601 30 61/7 
Tel: (061) 928-9021 NL-Amsterdam, 1011 Tel: 23 83 06/23 82 06 Hewlett-Packard Ltd. lskra-Standard/Hewlett-Packara 

Bernerstrasse 117 Telex: 52 49 85 
Telex: 668068 

t~~l~O~~L1iW~~msterdam "The Graftons" Topniska 58/3 
Postfach 560 140 Cable: HEWPACKSA Mlinchen ITALY SWEDEN Stamford New Road ~~~0~1~l~~~~~~4927 D-6000 Frankfurt 56 

(Weat Berlln) Hewlett-Packard ltaliana S.p.A. Telex: 13 216 hepa nl Hewlett-Packard Sverige AB • GB-Allrlncham, Cheshire 
Tel: (0611) 50 04-1 

¥!M~t~8a":.6spucci 2 
~~~~hetsvagen 1-3 Tel: (061) 928-9021 Telex: 31300 

Cable: HEWPACKSA Frankfurt Hewlett-Packard GmbH NORWAY Telex: 668068
Telex: 41 32 49 Ira Vertriebsburo Berlin Hewlett-Packard Norge A/S S-161 20 Bromma 20 SOCIALIST COUNTRIES

Hewlett-Packard GmbH Keilh Strasse 2-4 6:~,~~)Hi~~A(~~l~n~~/an Nesveien 13 Tel: (08) 730 05 50 Hewlett-Packard Ltd. PLEASE CONTACT:
D-1000 Berlin 30 Box 149 Cable: MEASUREMENTS c/o Makro Hewlett-Packard S.A.

Vertriebsburo BOblingen Tel: (030) 24 90 86 Telex: 32046 N-1344 Haalum Stockholm South Service Wholesale Centre 7, rue du Bois-du-Lan
Herrenbergerstrasse 110 Telex: 18 34 05 hpbln d Hewlett-Packard ltaliana S.p.A. Tel: (02) 53 83 60 Telex: 10721 Amber Way P.O. Box 349
~~r%~~~b~~~2n8,wumemberg Via Pietro Maroncelli 40 Telex: 16621 hpnas n Hewlett-Packard Sverige AB

Halesowen Industrial Estate CH-1217 Meyrln 1 Geneva

Cable: HEPlK BOblingen
(ang. Via Visentin)

~~i~~eJ~g~~n9dCal
GB-Halesowen, Worcs Switzerland

1-35100 Padov1 Tel: Birmingham 7860
~i1bi~~~J~iA5C4K~ Geneva Telex: 72 65 739 bbn Tel: 66 40 62/66 31 88 Tel: (031) 27 68 00/01 Telex: 32046 via Milan Telex: Via Bromma Telex: 2 24 86

AFRICA, ASIA, AUSTRALI~
ANGOLA CYPRUS Blue Star Ltd. JAPAN LEBANON Mushko & Company, Ltd. TAIWAN
Telectra ~~PG~~~c;rios & Xenopoulos Rd.

Blue Star House. Yokogawa-Hewlett-Packard Ltd. Conslantin E. Macridis 38B, Satellite Town Hewlett-Packard Taiwan
Em~~~fpaa~ee~~ici; de r:i~r~aR~~d Ohashi Building Clemenceau Street 34 fe~:~~l~J~dl 39 Chung Shiao West Road

P.O. Box 1152 ~h~g~ 1 a~~~~~ok o
P.O. Box 7213 Sec. 1 Overseas Insurance

Electricos, S .A. A. L CY-Nicosia New Del~l 110 024 AL-Beirut Cable: FEMUS Rawalpindi Corp. Bldg. 7th Floor

~ai~;rpg;,~,~~~~~(~a~!'DT.' Tel: 45628/29 Tel: 62 32 76 Tel: 0~-370-2281Y92 Tel: 220846 PHILIPPINES Taipei
Cable: KYPRONICS PANDEHIS Telex: 2463 Telex: 232-2024YHP Telex: 21114 Leb Tel: 389160, 1,2, 375121,

Tel: 35515/6 Cable: BLUESTAR Cable: YHPMARKET TOK 23-724 Cable: ELECTRONUCLEAR Beirut Electromex, Inc. Ext. 240-249
Cable: TELECTRA Luanda ETHIOPIA

Blue Star ltd. Yokogawa-Hewlett-Packard ltd.
6th Floor, Amalgamated Telex: TP824 HEWPACK

Afr~~f:a~a~t~~~~r & Agency MALAYSIA Development Corp. Bldg. Cable: HEWPACK Taipei AUSTRALIA Blue Star House Nisei lbaragi Bldg.
m~~~ 1~'~,.{'sia ltd.

Ayala Avenue, Makati, Rizal
Hewlett-Packard Australia P.O. Box 718 11/11A Magarath Road 2-2-8 Kasuga C.C.P.O. Box 1028 Hewletl-Packard Taiwan
Ply. ltd. 58/59 Cunningham St. ~e~:'?;J~:e 560 025 ~:~~Shi Section 13 Makatl, Rizal 38, Po-Ai Lane, San Min Chu,
31-41 Joseph Street Addis Ababa m~~~~t~8M~:~~~~mpur Tel: 86-18-87, 87-76-77, Kaohsiung
Blackburn, Victoria 3130 Tel: 12285 Telex: 430 Tel: (0726) 23-1641 Cable: ELEMEX Manila Tel: 297319
Tel: 89-6351, 89-6306 Cable: ASACO Addisababa Cable: BLUESTAR Telex: 5332-385 YHP OSAKA
Telex: 31-024 Blue Star ltd. Yokogawa-Hewlett-Packard ltd. MOZAMBIQUE SINGAPORE THAILAND
Cable: HEWPARD Melbourne HONG KONG Meeakshi Mandiran Nakama Building A.N. Goncalves, Lia. Mechanical & Combustion UNIMESA Co., ltd.

Schmidt & Co.(Hong Kong) Ltd. 162, 1' Apl. 14 Av. D. Luis ~rtneering Company Pie., Elsom Research Building
Hewlett-Packard Australia xxx/1678 Mahatma Gandhi Rd. No. 24 Kamisasazima-cho Bangjak Sukumvit Ave.
Ply. ltd. P.O. Box 297 Cochin 682 016 Kerala ~;,~a(~m-~~i-~~1oya City

Caixa Postal 107
Connalight Centre Lourenco Marques 10/12, Jal an Kilang ~e~:nf3~~~ 7, 930338 31 Bridge Street 39th Floor Blue Star ltd. Tel: 27091, 27114 Red Hill Industrial Estate Pymble,
~~au~~~oad, Central

1-1-117/1 ~~~g'!l1~~~Hewlett-Packard ltd. Telex: 6-203 Negon Mo ~~ri~~fmf lines)
Cable: UNIMESA Bangkok

New South Wales, 2073 Sarojinl Devi Road Cable: NEGON UGANDA Tel: 449-6566 Tel: 140168, 232735 Secundlrabad 500 003 2-4-2 Shinohara-Kita Cable: MECOMB Singapore Telex: 21561 Telex: HX4766 Tel: 7 63 91, 7 73 93 Kohoku-ku NEW ZEALAND Hewlett-Packard Singapore
Uganda Tele-Electric Co., ltd.

Cable: HEWPARD Sydney Cable: SCHMIDTCO Hong Kong Cable: BLUEFROST Yokohama 222 Hewlett-Packard (N.Z.) Ltd. P.O. Box 4449
Hewlett-Packard Auslralia Telex: 459 Tel: 045-432-1504 94-96 Dixon Slreet (Pie.) ltd.

~~:~~~}i
~h~~~chill Road

INDIA Blue Star Ltd. Telex: 382-3204 YHP YOK P.O. Box 9443 Blk. 2, 6th FLOOR, Jalan
Blue Star ltd. Courtenay Place, Bukit Merah Cable: COMCO Kampala 23/24 Second Line Beach Yokogawa-Hewlett-Packard ltd. Redhill Industrial Estate Prospect 5082 Kasturi Buildings MadrH 600 001 Chuo Bldg. Welllngton Alexandra P.O. Box 87, VIETNAM

South Australia Jamshedji Tata Rd. Tel: 23954 Rm. 603 3. Tel: 59-559 Singapore 3 Peninsular Trading Inc.
Tel: 44 8151 Bombay 400 020 Telex: 379 2-Chome Telex: 3898 Tel: 633022 P.O. Box H-3
Cable: HEWPARD Adelaide Tel: 29 50 21 Cable: BLUESTAR IZUMl-CHO Cable: HEW!'ACK Wellington Telex: HPSG RS 21486 216 Hien-Vuong Telex: 3751 Hewlett-Packard Australia Cable: BLUEFROST Blue Star Ltd. Miio, 310 Hewlett-Packard (N.Z.) Ltd. Cable: HEWPACK, Singapore Saigon
Ply. ltd. Nathraj Mansions Tel: 0292-25-7470 Pakuranga Professional Centre Tel: 20-805, 93398

~~~!~":. 1~l~~aloo9 
Blue Star ltd. 2nd Floor Bistupur KENYA 267 Pakuranga Highway SOUTH AFRICA Cable: PENTRA, SAIGON 242 
Sa has Box 51092 Hewlett-Packard South Africa 
414/2 Vir Savarkar Marg Jamahedpur 831 001 ~eghnJ~~ ~~~\~eering Services f:k~~~~~~ (Pty.), Ltd. ZAMBIA Tel: 86 5455 Tel: 38 04 R.J. Tilbury (Zambia) ltd. Prabhadevi Cable: BLUESTAR Hewlett-Packard House 

Hewlett-Packard Australia 
~e?:".:~a!a i~o 025 Telex: 240 Nairobi, Kenya Cable: HEWPACK, Auckland Daphne Street, Wendywood P.O. Box 2792 

Ply. ltd. Tel: 57726 Sandton, Transvaal 2001 Lusaka 

~~~~l~~.g~ng_ ~~'.e~~09 Telex: 4093 INDONESIA Cable: PROTON NIGERIA Tel: 802-1040 Zambia, Central Africa 
Cable: FROSTBLUE BERCA Indonesia P.T. KOREA

The Electronics Telex: SA43-4782JH Tel: 73793
Tel: 95 3733

Blue Star ltd. P.O. Box 496 American Trading Company
lnstrumentaliofns Ltd. Cable: HEWPACK Cable: ARJAYTEE, Lusaka

Hewlett-Packard Australia Band Box House 1st Floor Jl, Cikini Raya 61 Korea N6B/770 Oyo Road Hewlett-Packard South Africa MEDITERRANEAN AND
~U~~r Prabhadevi Jakarta 1.P.O. Box 1103 Oluseun House (Pty.), Ltd.

Tel: 56038, 40369, 49886 P.M.B. 5402 MIDDLE EAST COUNTRIES
Teachers Union Building Bombay 400 025 Telex: 2895 Jakarta Dae Kyung Bldg., 8th Floor Ibadan Breecastle House NOT SHOWN PLEASE CONTACT:

~~;1~~ ~?ir~5a'o SJ~e:insland
Tel: 45 73 01 107 Sejong-Ro, Tel: 22325 Bree Street Hewlett-Packard S.A. Telex: 3751 IRAN Chon~ro-Ku, Seoul Cable: THETEIL Ibadan Cape Town Mediterranean and Middle

Tel: 29-1544 Cable: BLUESTAR Multi Corp International Ltd. Tel: (lines~ 73-8924-7
The Electronics lnstrumenta-

Tel: 2-6941/2/3 East Operations
Telex: AA-42133 Blue Star Ltd. ~v6~~e0~~rm 130

Cable: AMT AGO Seoul
lions Ltd. (TEil)

Cable: HEWPACK Cape Town 35. Kolokotroni Street
14/40 Civil Lines KUWAIT 16th Floor Cocoa House

Telex: 0006 CT Platia Kefallariou
CEYLON Kampur 208 001 IR-Teher1n Al-Khaldiya Trading & P.M.B. 5402 Hewlett-Packard South Africa GR-Kifissia-Athens
United Electricals Ltd. Tel: 6 88 82 Tel: 83 10 35-39 Contracting Co. Ibadan 6l~diieLWoad, Durban

Telex: 21-6588
P.O. Box 681 Cable: BLUESTAR Cable: MUL TICORP Tehran Al Soor Street Tel: 22325 Cable: HEWPACKSA Athens
60, Park SI. Blue Star Ltd. Telex: 2893 mci tn Michaan Bldg. No. 4 Cable: THETEIL Ibadan P.O. Box 99

OTHER AREAS NOT LISTED, CONTACT: Colombo 2 7 Hare Street ISRAEL Kuwait Overport, Natal
Tel: 26696 P.O. Box 506 Tel: 42 99 10 PAKISTAN Tel: 88-6102 Hewlett-Packard
Cable: HOTPOINT Colombo Calcutta 700 001 Elegl~on~Mt~~~I~~;~~~~ ltd. Cable: VISCOUNT Mushko & Company, Ltd. Telex: 567954 Export Trade Company

Cable: HEWPACK 3200 Hillview Ave.
Tel: 23-0131 17 Aminadav Street Oosman Chambers Palo Alto, California 94304
Telex: 655 Tel-Aviv Abdullah Haroon Road

+~lm-~~rni~ Cable: BLUESTAR
6~~1::6m+~~i~:r!Aviv

Karachi 3
Tel: 511027, 512927
Cable: COOPERATOR Karachi Cable: HEWPACK Palo Alto

Telex: 33569 Telex: 034-8300, 034-8493

E 11/74

READER COMMENT SHEET

24307-90006 Feb 1975

DOS-I I I Disc Operating System
Reference Manual

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FOLD

FOLD

BUSINESS REPLY MAIL

No Postage Necessary if Malled in the United States Postage will be paid by

Manager, Systems Engineering
Hewlett-Packard Company
Data Systems Division
11000 Wolfe Road
Cupertino, California 95014

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

FOLD

FOLD

MANUAL PART NO. 24307-90006
IYllCROFICHE,,PA.RT NO. 24307~90007

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	06-01
	06-02
	06-03
	07-00
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	14-01
	14-02
	14-03
	15-00
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	I1-01
	I1-02
	I1-03
	I2-01
	I2-02
	I3-01
	I3-02
	I3-03
	X-01
	X-02
	replyA
	replyB
	xBack

