243078

DOS-IIl
erating System
reference manual

HP 243078

DOS-III
Disc Operating System

reference manual

List of Effective Pages

Pages

Title .

iii to xiii .
1-1 to 1-17
2-1 to 2-60 .
3-1to 3-46 .
4-1to 4-4.
5-1 to 5-35
6-1 to 6-3.
7-1to7-4.
8-1 to 8-25
9-1 to 9-22
10-1 to 10-46
11-1 to 11-8.
12-1 to 12-10

13-1t013-34 .

14-1 to 14-3.
15-1 to 15-16
A-1to A-15 .

Index 1,1 to 3.
Index 2,1 to 2.
Index 3,1 to 3.

Effective Date

Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975
Feb 1975

ii

Preface

This manual is a programming guide to DOS-III, a Hewlett-Packard Disc Operating System for 2000-
series computer systems. Programmers using this manual should be familiar with the functions of
batch-processing operating systems and one of the programming languages supported by the DOS-III
Operating System.

The Hewlett-Packard programming languages and program libraries that can operate under control
of DOS-III are described in the following reference manuals:

e HPALGOL (02116-9072)

® HP ASSEMBLER (24307-90014)

® HPFORTRAN (02116-9015)

® HPFORTRANIV (5951-1321)

® RELOCATABLE SUBROUTINES (02116-91780)

Other information, which may be useful to the programmer, is included in the SMALL PROGRAMS
MANUAL, the MANUAL OF DIAGNOSTICS and the SOFTWARE OPERATING PROCEDURES.
These manuals contain custom-assembled modules pertaining to each customer’s software and hard-
ware configurations, and are supplied with each Hewlett-Packard computer system.

This manual is divided into six functional parts:

® Part 1. DOS-III OPERATING SYSTEM

Part 1 defines the standard capabilities of DOS-III. It includes a summary of DOS-III organi-
zation, hardware and software; definitions of DOS-III directives, EXEC calls and I/O routines;
a description of the interaction of DOS-IIT and its subsystems; and a set of sample job decks.

e Part 2. DOS-III EXTENDED FILE MANAGEMENT PACKAGE (EFMP)

Part 2 describes the capabilities of the DOS-III Extended File Management Package (EFMP),
which allows the programmer to extend the file-handling capabilities of the DOS-III Operating
System. Part 2 contains sections on EFMP organization, EXEC calls and use of UTIL, the EFMP
Utility Program. i

ii

Part 3. GENERATING AND LOADING DOS-III

Part 3 gives complete instructions for generating and loading a DOS-III System.

Part 4. DOS-III SYSTEMS PROGRAMMING

Part 4 contains information which will help the advanced programmer to write his own EXEC
modules, plan I/O drivers and use the DOS-III privileged mode capabilities.

Part 5. ERROR CODES AND MESSAGES

Part 5 is a complete set of all DOS-III Operating System error codes and messages.

Part 6. APPENDIX AND INDEXES

Part 6 contains an appendix of DOS-III system tables and three indexes: the first two are con-
venient summaries of DOS-III directives and EXEC calls; the third refers to terms discussed in
the manual.

iv

Preface

PART 1 DOSIII Operating System

SECTION I DOS-III Organization
MAIN MEMORY LAYOUT
DOS-IITI OPERATION

Deleting Keyboard Errors

Batch Abort
DOS-III DIRECTIVES
DOS-III EXEC CALLS
DOS-III INPUT/OUTPUT
PRIVILEGED INTERRUPT
TIMING CAPABILITIES

Timer Buffer

Time-out Processor Routine

Calling Sequence
DOS-III FILES

Standard Files

DOS-III Extended File Management Package
DOS-IIIl MEMORY MANAGEMENT
GENERATING A DOS-III SYSTEM
DISC STORAGE

HP 2883/2884

4 - Subchannel Mode
2 - Subchannel Mode

HP 7900/7901
DISC USAGE
DOS-III HARDWARE

Required Hardware

Hardware Options

Contents

iii

1-1
1-1

1-3
1-3
1-3
14
1-5
1-5
1-6
1-6
1-6
1-7

1-8
1-9
19
19
1-10
1-10
1-11
1-12
1-13
1-13
1-15
1-15
1-15

DOS-III SOFTWARE 1-16

Required Software 1-16
Software Options 1-16
SECTION II DOS-III Directives 2-1
FORMAT FOR DIRECTIVES 2-1
ENTERING DIRECTIVES 2-1
ORDER OF DIRECTIVES 2-2
ABORT. 2-3
BATCH 2-4
CLEAR 2-5
COMMENT 2-6
DATE 2-7
DOWN 2-8
DUMP (DISC-TO-DISC) 2-9
DUMP (FILE) 2-11
DUMP (PROGRAM) 2-13
DUMP (SECTOR) 2-15
EDIT 2-17
END-OF-FILE 2-21
END-OF-JOB 2-22
EQUIPMENT TABLE 2-23
GO 2-25
INITIALIZE 2-26
JOB 2-28
LIST 2-29
LOGICAL UNIT 2-33
MMGT 2-35
OFF 2-37
PAUSE A 2-38
PROGRAM 2-39
PURGE 2-40
RENAME 2-42
REWIND 2-43
RPACK 2-44

RUN 2-45

vi

SPECIFY SOURCE FILE 2-46

STORE 2-47
SYSTEM SEARCH 2-52
TOP-OF-FORM 2-54
TRACKS 2-55
TYPE 2-57
UP 2-58
USER DISC CHANGE 2-59
SECTION Il DOS-III EXEC Calls 3-1
ASSEMBLY LANGUAGE EXEC CALLS 3-2
ALGOL EXEC CALLS 3-3
FORTRAN EXEC CALLS 3-6
BASE PAGE STORE 3-6
FILE CREATE 3-7
FILE NAME SEARCH 3-9
FILE PURGE 3-11
FILE READ/WRITE 3-13
FILE RENAME 3-15
I/O0 CONTROL 3-17
I/O READ/WRITE 3-20
I/O STATUS 3-23
MEMORY MANAGEMENT (BUFFER ALLOCATION) 3-24
MEMORY MANAGEMENT (BUFFER RELEASE) 3-25
MEMORY MANAGEMENT (INITIALIZE) 3-26
MEMORY MANAGEMENT (STATUS REQUEST) 3-28
MEMORY PROTECT CONTROL 3-29
PROGRAM COMPLETION 3-30
PROGRAM LOAD 3-31
PROGRAM SUSPENSION 3-33
SEGMENT LOAD 3-35
SEGMENT RETURN 3-37
TIME REQUEST 3-38
WORK AREA LIMITS 3-39
WORK AREA STATUS 3-41
USER DISC CHANGE 3-43

PARAMETER PROCESSING 3-46

vii

SECTION IV Input/Output 4-1

USER PROGRAM I/O 41
SYSTEM I/0O PROCESSING 4-2
INPUT/OUTPUT DRIVERS 4-3
SPECIAL DRIVER CONSIDERATIONS ' 4-4
SECTION V DOS-III Subsystems 5-1
SOURCE PROGRAM FILES ‘ 5-1
LOAD-AND-GO FACILITY 5-1
ALGOL COMPILER 5-2
ALGOL I/O 5-2
Compiler Operation 5-2
PROG, ALGOL 5-3
Messages During Compilation 5-3
Language Considerations 5-5
ASSEMBLER 5-6
Assembler I/O 5-6
Assembler Operation 5-6
PROG, ASMB 5-7
Messages During Assembly 5-7
Language Considerations 5-9
FORTRAN COMPILERS 5-11
FORTRAN 1/0 5-11
Compiler Operation 5-11
PROG,FTN(4) 5-12
Messages During Compilation 5-12
Language Considerations 5-13
Extended and Auxiliary Statements 5-14
PROGRAM Statement 5-15
DATA Statement 5-16
EXTERNAL Statement 5-17
PAUSE and STOP 5-18

ERRO LIBRARY ROUTINE 5-19

viil

DOS-III RELOCATING LOADER 5-20

PROG,LOADR 5-21
I/O Drivers . 5-23
Loader Operation 5-23
Matching Entries with Externals 5-24

THE RELOCATABLE LIBRARIES 5-28

DEBUG LIBRARY SUBROUTINE 5-29

DEBUG OPERATIONS 5-29

SPECIAL CONSIDERATIONS 5-30

SEGMENTED PROGRAMS _ 5-31
FORTRAN Segments 5-35
ALGOL Segments 5-35

SECTION VI Typical DOS-III Job Decks 6-1

PART 2 DOS-III Extended File Management Package (EFMP)

- SECTION VII EFMP Organization 7-1
ENVIRONMENT 7-1
FUNCTIONS AND STRUCTURE 7-1

DOS-III Files vs. EFMP Files 7-1
Duplicate Pack Numbers 7-2
EFMP Buffers and Tables 7-2
Logical Read vs. Physical Read 7-3
Logical Write vs. Physical Write 7-3
Update-Writes vs. Append-Writes 7-3

SET UP 7-3
SECTION VIII EFMP EXEC Calls 8-1
FORMAT FOR EFMP EXEC CALLS 8-1
DEFINE 8-2
CREATE 8-4
DESTROY 8-6
OPEN 8-7
CLOSE 8-8
READ 8-9
INITIALIZE 8-10
WRITE 8-11
RESET 8-12
STATUS 8-13
STATUS (FSTAT =1) 8-14
STATUS (FSTAT = 2) 8-15

STATUS (FSTAT = 3) 8-16

ix

STATUS (FSTAT = 4)
STATUS (FSTAT = 5)
STATUS (FSTAT = 6)
STATUS (FSTAT = 7)
REPACK (PURGE)

CcorPY
CHANGE FILE NAME
POST

SECTION IX EFMP Utility Program

:PROG,UTIL
BRIEF
CHANGE
CLOSE
COPY
CREATE
DESTROY
END
INITIALIZE
OPEN

POST
RESET
REPACK
STATUS-1
STATUS-2
STATUS-3
STATUS-4
STATUS-5
STATUS-6
STATUS-7

PART 3 Generating and Loading DOS-III

SECTION X Generating DOS-III
DSGEN

DSGEN Configuration from Paper Tape

HP 2100A/S
HP 21MX
DSGEN Start-up

USING DSGEN TO FORMAT DISCS

8-17
8-18
8-19
8-20
8-21
8-22
8-24
8-25

9-1
9-2
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22

101
10-1
10-2
10-2
10-2
10-4
10-5

USING DSGEN TO GENERATE DOS-III
Restart
Initialization Phase
Program Input Phase
Parameter Input Phase
Disc Loading Phase
Sample System Generation
DSGEN DISC CARTRIDGE SYSTEM GENERATION
Sample DSGEN Cartridge Preparation and System Generation

SECTION XI Loading DOS-III
USING THE BMDL TO LOAD ABSOLUTE BINARY PROGRAMS
INITIATING DOS-III WITH THE BMDL
CONFIGURING THE DOS-III STAND-ALONE BOOTSTRAP LOADER

INITIATING DOS-III WITH THE STAND-ALONE BOOTSTRAP
LOADER .

BMDL
PART 4 DOS-III Systems Programming

SECTION XII User-written EXEC Modules
USER EXEC MODULES: DIRECTIVES
USER EXEC MODULES: EXEC CALLS
USER EXEC MODULES: INTERNAL DESIGN
SAMPLE EXEC MODULE

SECTION XIII Planning I/O Drivers
STANDARD I/O DRIVERS
Initiation Section
Completion Section
SAMPLE I/O DRIVER
PRIVILEGED INTERRUPT I/O DRIVERS
Privileged Interrupt Section
Privileged Interrupt Completion Section
SAMPLE PRIVILEGED INTERRUPT I/O DRIVER

SECTION XIV Privileged Mode

xi

10-7
10-7
10-8
10-11
10-12
10-15
10-18
10-28
10-35

11-1
11-3
11-4
11-5

11-6

11-7

12-1
12-1
12-3
12-4
12-6

13-1
131
13-1
13-4
13-7
13-20
13-22
13-24
13-26

14-1

PART 5 Error Codes and Messages

SECTION XV Halt Codes and Error Messages 15-1
DSGEN ERROR HALTS 15-2
DSGEN ERROR MESSAGES 15-2

Messages During Initialization and Input Phases : 15-2
Messages During the Parameter Phase 15-3
General Messages 15-3
Messages During I/O Table Entry 15-4
DOS-III BOOTSTRAP ERROR HALTS 15-5
DOS-III ERROR HALTS 15-6
DOS-III ERROR MESSAGES 15-6
DOS-III EFMP ERROR CODES 15-15

PART 6 Appendix and Indexes

APPENDIX A System Tables A-1

INDEX 1 Summary of Directives

INDEX 2 Summary of EXEC Calls

INDEX 3 Terms

Table 2-1.
Table 11-1.
Table 11-2.
Table 15-1.
Table 15-2.
Table 15-3.
Table A-1.
Table A-2.

Figure 1-1.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 7-1.

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.

Figure A-1.
Figure A-2,
Figure A-3.
Figure A-4.

TABLES

:DUMP Formats

HP 7900/7901 BMDL

HP 2883 BMDL

DSGEN Error Conditions
DOS-III Bootstrap Error Halts
DOS-III Error Conditions
DOS-III Base Page Constants

DOS-III Base Page Communication Area

FIGURES

Functional Diagram of DOS-III
Segmented Programs

Main Calling Segment

Segment Calling Segment
Main-to-Segment Jumps

EFMP File Directory Format
1/0O Driver Initiation Section

I/O Driver Completion Section

Privileged Interrupt I/O Driver Initiation Section
Privileged Interrupt I/O Driver Privileged Interrupt Section

Privileged Interrupt I/O Driver Completion Section

Main Memory Allocations in DOS-III
Disc Structure in DOS-III

Disc Directory Entry Format

The Equipment Table

xiii

2-11
11-7
11-8
15-2
15-5
15-6

A-3

A4

1-2
5-31
5-32
5-33
5-34

7-4
13-3
13-6

13-21
13-23
13-25
A-2
A-9
A-10
A-14

PART 1
DOS-IIl Operating System

SECT/ION |
DOS-/Il Organization

The DOS-III supervisory software consists of a Disc Monitor (DISCM) that resides in main memory ;
EXEC modules which may reside either in main memory or on disc; and a Job Processor (JOBPR)
that is disc-resident. Together these modules manage I/O processing, interrupt processing, executive
processing, job processing, and file handling.

Other DOS-III software consists of a series of relocatable binary software modules. Since each
module is an independent, general-purpose program, the hardware and software configuration of

the system is flexible. Modules can either reside in main memory or on the disc, at the user’s option
(specified during system generation). In a system with a small main memory, the modules can reside
on the disc to save main memory space; in a large main memory system, modules can reside in main
memory for greater efficiency.

MAIN MEMORY LAYOUT

When DOS-III is active, the main memory is divided into a User Area and a System Area (as shown
in Figure 1-1). The Disc Monitor program handles all EXEC calls and, if they are legal, transfers
them to the proper module for processing. The I/O drivers handle all actual I/O transfers of infor-
mation. If some I/O drivers are disc-resident, they are read into main memory by the supervisor
when needed. The User Area provides space for execution of user programs.

In addition, large DOS-III software modules, such as the FORTRAN Compilers, Assembler, Relocat-
ing Loader, and Job Processor, reside on the disc and execute in the User Area. (See Appendix A
for figures on disc and main memory layout.) -

If the memory protect option is present, a memory protect boundary is set between the System
Area and the User Area. This boundary interrupts whenever a user program attempts to execute an
I/O instruction (including a HALT) or to modify the System Area. (Instructions can reference the
switch register and overflow register.) Programs to be run in the User Area must use EXEC calls for
input/output, termination, suspension, and other external processes.

1-1

Listings, punched tapes,
etc. to output device(s)

System Area

User Area

Work Area

Job Binary Area

I

4

Directives, source
statements and data
from system console
and batch input device

System Area

| 1

v o

User Area

low memory

high memory

Figure 1-1. Functional Diagram of DOS-11|

1-2

DISC MEMORY

MAIN MEMORY

DOS-III OPERATION

DOS-III operates in either keyboard or batch mode. In keyboard mode, the user enters statements
and commands to the system (called directives) to control his programming job through a keyboard
device (system console). Each line entered must terminate with a return and a linefeed. In batch
mode, the user enters directives through a batch input device, sometimes integrated with a source

program on punched cards, paper tape or magnetic tape, thus forming a job deck. Jobs can be
stacked one upon another in a'queue.

Deleting Keyboard Errors

To delete an entire line of input, strike rubout then linefeed. To delete the character just entered,
strike Control-A (simultaneous ‘““A’’ and control key striking). Each Control-A deletes one addi-
tional preceding character.

Batch Abort

Some errors when encountered in batch mode cause a batch abort. When such an error occurs
(mostly in response to a directive) DOS-III takes the following action:

1. The offending directive and an error message is printed on the list device.
2. JOB ABORTED is printed on both the system console and the list device.

3. The offending statement and subsequent statements are ignored until a JOB, EJOB, or TYPE
directive is encountered. The current operation is aborted and the next input is processed.

DOS-IIT DIRECTIVES

The DOS-III Supervisor operates in response to directives input by the programmer or operator.
Directives are strings of up to 72 characters that specify tasks to DOS-IIL. They are entered in one
of the two modes of DOS-III operation: keyboard or batch.

The DOS-III directives are used for the following functions:

® (Create, rename, edit, list, and dump user files (relocatable, absolute, loader-generated,
source statements, and ASCII or binary data)

® Search the various disc subchannels for specified file names
® Check status of user disc tracks
® Turn on user programs or system programs such as FORTRAN and Assembler

® Examine and modify the logical organization of the I/O; rewind magnetic tapes and output
end-of-file commands to magnetic tapes; output top-of-form commands to list devices

® Start and stop a job; type comments; suspend operations; resume execution of suspended
programs

1-3

L Assemble or compile, load and execute a user program
® Dump main or disc memory

® Set the date; abort programs; transfer to batch mode (from keyboard mode or batch mode);
return to keyboard mode (from batch mode)

o Change the subchannel of the user disc

L Initialize (label) a disc subchannel

® Dump all (or part of) a disc to another disc

® Purge file name entries from the user file directory
° Repack discs to eliminate purged user files

L Reserve logical memory space for specific subsystems (Memory Management)

DOS-III directives are described in Section II.

DOS-IIT EXEC CALLS

After being translated and loaded, an executing user program communicates with DOS-III by means
of EXEC calls. An EXEC call is a JSB instruction which transfers control to the DOS-III Supervisor.

The EXEC calls perform the following functions:

® /O read and write operations

L User file and work area read and write operations
® [/O control operations (backspace, EOF, etc.)

L Reque;t I/0 status

® Change the subchannel of the user disc

° Request limits and status of WORK area (temporary disc storage)
L Program completion

® Program suspension

L Loading of program segments or main programs
® Request the time

L4 Control of memory protect

L] Store values into base page memory locations

L] Memory Management

® Programmatic file control

DOS-III EXEC calls are described in Section III.

14

DOS-III INPUT/OUTPUT

All I/O operations and interrupts are channeled through the DISCM section of the DOS-III Super-
visor. DISCM is always main-memory resident and maintains ultimate control of the computer
resources.

I/O programming is device-independent. Programs written in FORTRAN, ALGOL, and Assembler
specify a logical unit number (with a predefined function, such as data input) in I/O statements
instead of a particular device. Logical unit numbers initially are assigned to appropriate devices by
the operator during system generation, depending upon what is available and can be assigned during
a job. Thus, the programmer need not worry about the type of input or output device performing
the actual operation. '

PRIVILEGED INTERRUPT

For DOS-III system interrupt processing, the I/O channel select codes are assigned decreasing priority.
Channel 105 has the highest priority and channel 375 has the lowest. When an interrupt occurs on an
I/O channel, system interrupt processing is disabled on all channels having a lower priority (higher
number) until the higher priority interrupt processing is completed.

DOS-III provides an optional capability which permits privileged interrupts on specific I/O devices
(channels). These devices have their own user-supplied interrupt routines and have their interrupts
processed without going through the system’s central interrupt processor ($CIC). The system guaran-
tees a response time of 100 microseconds for privileged device interrupts. (For a description of
privileged interrupt driver routines, see Section 13.)

The privileged interrupt capability is obtained by including a ‘““fence’ board in the system hardware
configuration and notifying the system software of the existence of the fence during system gener-
ation (see Section 10). The privileged interrupt fence physically separates privileged devices from
system devices. Privileged devices are those with interface boards in I/O channels of a lower number
(higher priority) than the fence. System devices are those with interface boards in I/O channels with
a higher number than the fence.

The DMA channels are always considered system devices although they reside on the privileged side
of the fence. When-the privileged interrupt option is included in the system, any DOS-III drivers
which require DMA interrupts must explicitly inform the system of this fact. This is accomplished
by issuing the following subroutine call from the driver before returning control to the system:

EXT $SDMA
JSB $SDMA

When the last DMA interrupt has been received, the driver should inform the system that no further
DMA interrupts are expected by issuing the following subroutine call:

EXT $CDMA
JSB $CDMA

When the privileged interrupt fence is installed in the system and necessary privileged interrupt
drivers are included, the user can access his privileged devices with standard I/O calls (JSB EXEC).

1-5

TIMING CAPABILITIES

A library subroutine called $TIME is available to both system programs and user programs. The
Time Base Generator is required to use this subroutine (see ‘Hardware Options”’). $TIME provides
the capability to set, reset, or release a timer (100 millisecond resolution).

Note: Upon return from the $TIME subroutine, Memory Protect is
disabled until a system request (JSB EXEC) is issued.

When setting (activating) a timer, an initial time value is placed into a user-supplied buffer and this
timer buffer is added to a linked list of currently active timers. When the timer expires, the sub-
system, driver, or user receives temporary control from the system. A timer is reset by placing a
new time value into an active timer buffer. A timer is released (deactivated) by removing the timer
buffer from the linked list of active timers. It is possible to remove all timer buffers from the list
with one calling sequence. '

To use $TIME, the program must include a timer buffer, a time-out processor routine, and a calling
sequence.

Timer Buffer

A 4-word timer buffer must be available to $TIME. The address of this buffer is passed to $TIME
to identify the desired timer. Timer buffer format is:

Word 1: 16-bit buffer identifier
Word 2: Address of time-out processor routine
Word 3: Current time value

System use only
Word 4: Address of next timer buffer in linked list

Program must not modify word 3 or 4.

Time-out Processor Routine

Control is passed to the time-out processor routine when a specified timer expires. Unless the
system was generated with the privileged interrupt option, the interrupt system will be OFF and
should remain OFF during execution of the time-out processor routine. If the privileged interrupt
option is included in the system, the interrupt system will be ON upon entry into the time-out
processor. To prevent further privileged interrupts from occurring during execution of the time-out
processor, the time-out processor must disable the interrupt system.

Caution: Interrupts should not be disabled for more than 100 microseconds.

1-6

On entry into the time-out processor routine, the timer buffer is released from the timer list and
the A- and B-registers set as follows:

A = 16-bit identifier of the timer just expired (this allows one time-out
processor to service many timers).

B = 15-bit address of the timer buffer associated with the expired timer.

Calling Sequence

To set or reset a timer:

EXT $TIME
LDA VALUE (Time specified in —100 milliseconds)
LDB ATMBF (Address of timer buffer)
JSB $TIME (Set/reset timer)
SZA (If A =0, no error; A =1, illegal address)
JMP ERROR

VALUE DEC -2 (Set timer for 200 milliseconds)

When this request is received, the list of timers is scanned for a matching timer buffer. If no match
is found, a set request is assumed and the new entry is placed in the timer list. If a match is found, a
reset request is assumed and the new value is stored into the existing timer buffer.

On return from $TIME, the contents of the A-register indicate the termination condition:

A = 0; normal termination

A = 1;illegal timer buffer address

1-7

To release a timer:

EXT $TIME
CLA (Indicates release request)
LDB ATMBF (Release a specific timer)
or or } Choose one
CLB (Release all timers)
JSB $TIME (Release timer)
<return point>
ATMBF DEF TMBUFI,I] (Address of timer buffer)
TMBUF OCT n (16-bit identifier)
DEF TOP[,I] (Address of time-out processor) } Time Buffer
BSS 2 (Reserved for system)
TOP NOP
. Time-out Processor
JMP TOP,I

Note: Routines using $TIME must remain main-memory resident during
program execution because the system uses a linked list mechanism
to keep track of the timers.

DOS-III FILES
Two types of files can be included in the DOS-III system: standard files (created by the STORE or

EDIT directives) and files created under the Extended File Management Package (if EFMP is in-
cluded in the system).

Standard Files
The disc provides quick access and mass storage for user files consisting of source statements, re-
locatable, absolute and loader-generated object programs, or ASCII or binary data. Each file has

a name that is used to reference it.

Programs use the Work Area of the disc for temporary storage. The System Area contains files of
systems programs, EXEC modules, a system directory, and system library subroutines.

1-8

DOS-III Extended File Management Package

DOS-III installations can use the DOS-III Extended File Management Package (EFMP). This set of
optional EXEC modules allows the user to exploit a more powerful file structure than that provided
by DOS-III. EFMP files allow logical record sizes of varying lengths for different files, security codes,
flexible buffering, sequential reads and writes with a pointer, and detailed status information. In
addition, a utility program (UTIL) is available that operates in the User Area. UTIL makes those
EFMP functions (except reads and writes), normally only usable through EXEC calls, usable from
the keyboard. For more information on EFMP, see Part 2.

DOS-IIIl MEMORY MANAGEMENT

A memory management EXEC module allows user and system programs to allocate and release
buffer space within memory. The following memory management capabilities are provided:

® A directive (:MMGT) to specify and list subsystem names and block sizes.

® An initialization call (RCODE=35) to reserve a block of memory under a unique block name.
® A status call (RCODE=36) to interrogate the state of various blocks of memory.

® A buffer allocation call (RCODE=38) to subdivide blocks of memory into individual buffers.
A unique buffer identification is assigned each buffer allocated.

L) A buffer release call (RCODE=41) to release previously allocated buffer space.

GENERATING A DOS-III SYSTEM
DOS-III is generated and loaded using two programs:

® Configured DSGEN (the system generator)

® BMDL (a bootstrap loader which loads the configured DOS-III from the disc into
main memory); or an equivalent program contained on a ROM.

First, DSGEN outputs instructions to the operator asking for information about the system. At the
appropriate point in the dialogue, the operator loads in the relocatable binary modules which make
up DOS-III and specifies whether the modules are to be disc- or main-memory resident. Finally,
DSGEN stores the configured DOS-III system on the disc in absolute form. (The disc is protected
from alteration by a hardware override switch.) '

DOS-III then resides as a System Area and User Area on the disc. Each area is labeled and contains
a directory of all the files contained within the area. The System Area contains system main-memory
resident and disc-resident modules, while the User Area contains user files.

To load DOS-III into main memory and begin system execution, the user executes a disc loader.
The Loader loads all the modules designated main memory resident into main memory. (The disc-
resident modules are brought into main memory when needed by the main-memory resident
modules.)

1-9

DISC STORAGE

Disc storage is divided into subchannels. Each subchannel is a logical disc, i.e., the dimensions do
not necessarily correspond to the physical characteristics of the disc. Each subchannel contains
203 tracks — typically three of which are reserved as spares. The smallest addressable unit on a
disc is a sector. One sector contains 128 sixteen-bit words of storage.

HP 2883/2884

During system generation, the HP 2883 disc drives can be configured for one of two modes — four
subchannels per drive or two subchannels per drive. In either case, the controller supports one or
two drives (one drive is required).

For the four subchannel per drive mode, each drive contains a removable pack of twenty disc sur-
faces divided into four subchannels. Thus, the controller can support up to eight subchannels.

For the two subchannel per drive mode, each drive contains a removable pack of twenty disc sur-
faces divided into two subchannels. One controller supports up to four subchannels. A second
controller (optional) can be added to provide support for up to eight subchannels. Subchannel
assignments follow:

2883/2884 2883/2884
with four with two
Subchannels Subchannels
per drive per-drive
0 1 Disc Drive Numbers 0 1 2 . 3
0 4
0 2 4 6
1 5 Subchannel
9 6 Assignments
1 3 5 7
3 7

When two controllers are used (two subchannels per drive mode only) they must reside in contigu-
ous I/O channel slots. In addition, the subchannels associated with the second controller (sub-
channels 4 through 7) can contain only user discs — no generation or bootstrap operations are
permitted on these subchannels.

When an HP 2883/2884 is configured to the four-subchannel mode, each track contains 115 sectors.
If it is configured to the two-subchannel mode, each track contains 230 sectors. Perhaps the con-
cept of logical disc organization can be more clearly understood by studying the accompanying
illustrations.

1-10

HP 2883/2884
4-SUBCHANNEL MODE
LOGICAL ORGANIZATION

TOP SURFACE
IS NOT USED

5 SURFACES =
1 SUBCHANNEL

5 PHYSICAL TRACKS =
SUBCHANNEL @ 1 LOGICAL TRACK

115 SECTORS PER LOGICAL
TRACK (23 SECTORS PER
SURFACE TIMES 5 PHYSICAL

SUBCHANNEL 1 TRACKS)

203 TRACKS

SUBCHANNEL 2

SUBCHANNEL 3

BOTTOM SURFACE IS

IN 4-SUBCHANNEL MODE,
IS NOT USED

4 LOGICAL TRACKS =
1CYLINDER

1-11

HP 2883/2884
2-SUBCHANNEL MODE
LOGICAL ORGANIZATION

TOP SURFACE
1S NOT USED.
10 SURFACES=
1 SUBCHANNEL

10 PHYSICAL TRACKS=
1 LOGICAL TRACK
SUBCHANNEL @

230 SECTORS PER TRACK
(23 SECTORS PER SURFACE
TIMES 10 PHYSICAL TRACKS)

SUBCHANNEL 1

IN 2-SUBCHANNEL
MODE, 2 LOGICAL
TRACKS=1CYLINDER

BOTTOM SURFACE
IS NOT USED.

1-12

HP 7900/7901

The controller for the moving-head disc supports up to four disc drives (one is required). Each 7900
drive contains two discs: a fixed disc and a removable cartridge. Each 7901 drive contains one disc:
a removable cartridge. Each disc is referenced through a subchannel of the controller. Therefore,
the controller has a maximum of eight subchannels (numbered 0 to 7). The subchannels are

assigned as follows:

7900 7901
o1 1/2]3 Disc Drive Numbers Ol 1¢12 |3
1138|517 Removable Subchannels 113 |5 |17
0] 21|4] 6 Permanent Subchannels None

On the HP 7900/7901 disc drive, eaeh-track on the disc contains 48 sectors as shown in the
following illustration.

HP 7900/7901
DISC ORGANIZATION

2 SURFACES=

1 SUBCHANNEL . 203 TRACKS :
\\\
SUBCHANNEL 1 N 48 SECTORS PER TRACK
(REMOVABLE) (24 SECTORS PER SURFACE)

TR ~—— THE HP 7901 HAS NO PERMANENT
Sl(JPBEcRHN‘I\::\TEEI\II_To; M/) DISC; THUS NO CORRESPONDING
SUBCHANNEL.

DISC USAGE

DOS-III normally allows two subchannels to be available to the user: one subchannel contains the
system disc and the other contains the user disc (which may be the same subchannel as the system
disc). The user subchannel assignment can be changed during job or program execution. In addi-
tion, an optional system search mode is available to allow searching for user files on any specified

subchannels.

1-13

The disc storage has four parts:

1. The System Area

Executable code created by the system generator and hardware protected; includes
DOS-III Supervisor and other system programs.

2. The User Area (optional)

User file directory and user files (data, object programs, source statements, etc.).

3. The Work Area

Temporary storage for the current job.

4. Job Binary Area

Temporary storage for relocatable object code generated by the Assembler and compilers; this
is an area of variable size and starts from the end of the disc.

All four of these areas can reside on the system subchannel, or the User Area can be on a separate
subchannel. Only one User Area is available to the system at a time. The standard user subchannel
is assigned at system generation time; this can be the system disc or another subchannel (removable
or permanent disc). The UD directive and an analogous EXEC call allow the user to temporarily
change the User Area to another subchannel.

Automatic track switching is provided within each subchannel.

1-14

DOS-III HARDWARE REQUIREMENTS

DOS-III controls the operation of HP 2100A and HP 2100S Computer systems, and HP 21MX Com-
puter Series systems. Minimum hardware requirements depend on the type of computer system
selected.

The minimum hardware required for DOS-III operation is:

1. a) An HP 2100A or HP 2100S Computer, with 16,384 words of main memory, and DMA; or,

b) An HP 21MX-series Computer with 16,384 words of main memory, and a Dual-Channel
Port Controller.

2. Moving-head Disc device (HP 7900 Moving-head Disc Drive with fixed disc and removable
cartridge; or HP 7901 Moving-head Disc Drive with removable cartridge; or HP 2883 Disc
File with one removable pack).

3. System Console device.

4. Paper Tape Reader.

Hardware Options

The following hardware options are available:
Time-base Generator (provides accounting times and time-of-day).
Privileged Interrupt Fence.
Floating-point hardware (standard for 21MX Computer Series).
Additional main memory to a total of 24,576 or 32,768 words.

1
2
3
4
5. Using extenders, additional I/O channels (up to channel 37g).
6. Memory Protect (not available for the HP 2105 Processor).

7 Paper Tape Punch.

8. Line Printer.

9. Card Reader.

10. Magnetic Tape Unit.

11. Additional Disc Drives. (Maximum is four on HP 7900/7901; two on HP 2883 with four sub-
channels per drive; and four on HP 2883 with two subchannels per drive.)

12. CRT Display Console.
13. Writable Control Store.
14. Fast FORTRAN Processor.

1-15

DOS-III SOFTWARE
Required Software
The minimum software requirements for DOS-1II are

1. Absolute Programs

a. DOS-III System Generator (DSGEN)
b. DOS-III Bootstrap Loader
c. SIO Drivers

2. Relocatable Programs
a. DOS-III Disc Monitor (DISCM)
b. DOS-III Exec Modules
c. DOS-III Job Processor (JOBPR)
d. DOS-III Disc Driver (DVR31)
e. DOS-III System Console Driver (DVR00, DVR05 or DVR26)

f. DOS-II PaI;er Tape Reader Driver (DVRO01)

Software Options

In addition, the following programs can be included when DOS-III is generated:
1. DOS-III Relocating Loader

2. DOS-III Assembler

3. DOS-III FORTRAN Compiler

4. RTE/DOS FORTRAN IV Compiler

5. RTE/DOS FORTRAN IV Compiler — 10K Compiler Area

6. RTE/DOS ALGOL Compiler

7. RTE/DOS Relocatable Library (EAU, or floating point)

8. RTE/DOS FORTRAN IV Library (extended-precision arithmetic)

1-16

9. RTE/DOS FORTRAN Formatter

10. DOS-III Standard Drivers (either main-memory or disc resident):
Paper Tape Punch Driver (DVR02)
Digital Plotter Driver (DVR10)
Card Reader Driver (DVR11) — uses DMA or Dual Channel Port Controller
Line Printer Driver (DVR12)
Optical Mark Reader Driver (DVR15)
Magnetic Tape Driver (DVR23) — uses DMA or Dual Channel Port Controller-
Terminal Printer Driver (DVR26)
Writable Control Store Driver (DVR33) — uses DMA
Card Reader Punch Driver (DVR34)
Hardwired Serial Interface Driver (DVR67)

11. DOS-II Physical Drivers
Synchronous Data Set Interface Driver (DVR70)
Synchronous Modem Interface Driver (DVR71)
Asynchronous Data Set Interface Driver (DVR72)
Asynchronous Multiplexer Interface Driver (DVR73)
Buffered Asynchronous Data Set Interface Driver (DVR74)

12. DOS-III Logical Drivers
Asynchronous Terminal Driver Number One (ATDO01)
Asynchronous Terminal Driver Number Two (ATD02)
Asynchronous Card Reader Driver Number One (ACRO1)
Page Mode Terminal Driver Number One (PMTO01)
Page Mode Terminal Driver Number Two (PMT02)
Synchronous Line Control (SLC)

13. DOS-III Extended File Management Package

14. RTE/DOS Fast FORTRAN Processor Subroutine Library

1-17

SECTION [/
DOS-Ill Directives

Directives are the direct line of communication between the keyboard or batch input device and
DOS-III. Directives may enter DOS-III in two modes: keyboard and batch. In either mode, all
directives are listed on the system console. Certain directives can be used in one mode only; others
can be used in both modes. In keyboard mode, the operator manually inputs the directives through
the system console keyboard. In batch mode, the programmer prepares the directives (commonly
on punched cards, paper tapes, or magnetic tape) and inputs them along with programs, data, etc.,
in a complete job.

FORMAT FOR DIRECTIVES
Directives have the same format, regardless of the mode in which they occur: a colon (:) followed
by a directive word (first two characters are significant) and, if necessary, a list of parameters
(maximum is 15) separated by commas. For example,

:PURGE,FILE1,FILE2,FILE3
When the sequence and position of parameters is significant, missing parameters must be represented
by commas if the following parameters are to be recognized. The first blank character not preceded
by a comma is the end of the directive. Comments may appear after this blank; they are ignored by

DOS-III.

Note: The total length of an input string cannot exceed 72 characters.

ENTERING DIRECTIVES
DOS-III has two conventions for notifying the operator that directives may be entered:

1. DOS-III outputs a ‘‘commercial at” sign (@) and rings a bell (at the system console). At this
time, the operator may enter any directive.

2-1

2. DOS-III outputs an asterisk (at the system console). At this time the operator may enter an
“operator attention” directive only. The “operator attention” directives are

:ABORT
:DN

:EQ

:LU

:OFF
:PAUSE
TRACKS
:TYPE

:UP

Should the operator type any other directive, DOS-III outputs the following message:
IGNORED
and returns to the executing program.

To attain control of DOS-III (to enter an “operator attention” directive) the operator can

strike any system console keyboard key. If the system console is available, DOS-III immediately
outputs an asterisk (*); if the system console is busy, DOS-III will output the asterisk as soon

as it releases the system console.

Notes: 1. Operator attention is disabled during the completion phase of :EDIT and
during :PURGE.

2. Some system conditions restrict allowable directives; e.g., after an I/O
ERR NR EQT# nn, the system is waiting for an :UP,nn, followed by :GO.
Under such conditions, otherwise legitimate directives will be ignored.

3. Some operations, such as editing, require perceptible waits while DOS-IIT
processes the directive.

ORDER OF DIRECTIVES

The DOS-III directives described in this section are presented in alphabetic order (by function name).
If a directive must be used in keyboard mode only, a note to that effect is placed at the top of each
page describing the directive. A quick cross-reference index of DOS-III directives, ‘“Summary of
Directives,” is included at the back of this manual.

2-2

Keyboard Mode Only

ABORT

Purpose

To terminate the current job before the next JOB or EJOB directive.

Format

!ABORT

Comments

Abort carries out all the operations of a batch mode EJOB directive. All I/O devices are cleared.

2-3

BATCH

Purpose

To switch from keyboard mode to batch mode, or to reassign the batch device.

Format
:BATCH,logical unit

where logical unit is the logical unit number of the desired batch input device.

Comments

A BATCH, JOB, TYPE, OR TRACKS directive must be the first directive entered following
system start.

See “TYPE” in this section for the opposite procedure of returning batch mode to keyboard
mode. Assigning a null device or logical unit numbers 2 or 3 as the batch device results in an
ILLEGAL LUN error (see LOGICAL UNIT directive).

2-4

CLEAR

Purpose

To clear the Job Binary Area on the disc, or to issue a clear command to an I/O device.

Format
:CLEAR/ logical unit]

where logical unit is the logical unit number of the device to be cleared. If logical unit is omitted,
the disc Job Binary Area is cleared.

Comments

- Using logical units 1, 2, or 3 results in an LU error.

The effect of clearing an I/O device is the transmittal of a clear function to the appropriate driver.

2-5

COMMENT

Purpose

To print a message on the system console.

Format
:COMMENT character string

where character string is a message to be printed on the systein console.

Comments
A space (but not a comma) is required between the directive word and the comment string.
The programmer can use :COMMENT or :PAUSE to send a message to the operator at the system

console; using :COMMENT causes no suspension of processing. Use :PAUSE when a processing
delay is desired, for example to request that the operator mount a magnetic tape.

EXAMPLES:

:COMMENT BEGINNING OF PAYROLL JOB

2-6

Keyboard Mode Only

DATE

Purpose

To set the date and time for accounting purposes whenever DOS-III is activated.

Format
:DATE,day[,hour,min]

where day is any string of ten or fewer characters (commas not permitted) chosen by the operator
(such as 7/10/69, 10.JULY.69, etc.);

hour and min are the current time in hours and minutes on a 24-hour clock. If not given or
a Time-base Generator is not present, they are set to zero.

Comments

The DATE directive is legal only as the first directive in a start-up procedure. The directive is not
accepted any other time.

EXAMPLES:

:DATE,7/10/69,12,23
:DATE,WEDNESDAY,7,45
:DATE,10JULY1969

:DA,,

2-7

DoOwWN

Purpose

To declare an I/O device unavailable for use during the remainder of a job.

Format
:DN,n

where n is the equipment table entry number for the device to be set down.

Comments

The system console and the disc (logical units 1, 2, and 3) cannot be set down.

DUMP (DISC-TO-DISC)

Purpose
1. To dump an entire disc onto another subchannel (:DD)
2. To dump the System Area (including system buffer) onto another subchannel (:DD,X)

- 3. To dump all or specified files of the User Area (optionally assigning some new file names) onto
another subchannel (:DD,U ...) or, onto the current subchannel (assigning new file names).

Formats
1. :DD
2. :DD)X

3. :DD,U[,file 1[,(file A)] ,file 2[,(file B)] ...]

where X specifies the System Area,
U specifies the User Area,
file 1, file 2, ... specify the files to be dumped (the entire User Area if no files are specified),

file A, file B,‘... specify the optional new names for file 1, file 2, etc. (renamed files can be
intermixed with unchanged files).

Note: No more than 14 parameters can be specified after :DD,U.

The destination disc must be specified by a :UD immediately following the :DD. Any other direc-
tive will negate the :DD. (For :DD and :DD,X, the directive must be :UD,*,n where n is not the
system disc.)

29

Comments

When the destination for a :DD,U is a system disc, other than the current system, the user files are
dumped in the User Area following the system files. This allows the user to dump a system and
selected user files to a single disc. (See also “INITIALIZE”)

The SS directive does not apply to :DD.

If the files of the source disc cannot completely fit on the destination disc, DOS-III transfers as
many whole files as possible and outputs

TRAC # TOO BIG

If DOS-III cannot find some of the files specified to be dumped, the message
file
UNDEFINED

is output. This does not effect dumping of the files which are defined.

If a file specified to be dumped has the same name (after the optional renaming) as an existing file
on the destination disc, the message '

file
DUPLICATE FILE-NAME

is output and the file is not dumped. This does not effect dumping of other files.

Caution: A DOS-III system created through the :DD directive
(disc-to-disc dump) cannot be protected with the
Protect/Override switch on the disc drive because the
protect bits on the system portion of the original disc
are not copied during the dump operation.

2-10

DUMP (FILE)

Purpose

To dump a user file to a specified peripheral I/O device in a format appropriate to the file content.

Format
:DUMP,logical unit,file[,S1[,S2]]

where logical unit is the logical unit number of output device to be used for the dump
file is the user file to be dumped

S1 and S2 are the first and last relative sectors to be dumped

If S1 and S2 are not given, the entire file is dumped. If only SI is given, then the file, starting with
S1, is dumped.

Comments

. Files may be dumped on list devices or punch devices (including magnetic tape). The dump format
varies with the type of file and the type of device. See Table 2-1.

Table 2-1. :DUMP Formats

File Type Punch Device List Device
ASCI| data 64 characters/record 64 characters/record
Binary data 64 words/record 8 octal words/line
Absolute binary Absolute binary records 8 octal words/line
Relocatable binary Relocatable binary 8 octal words/line

records (loadable)

Source statements 1 statement/record 1 statement/line

Note: Sector numbers on listings are not related to the S1 and S2 parameters.

2-11

Source statements are packed and do not necessarily start on sector boundaries. Thus, if the S1 and
S2 parameters are used, dumping begins with the start of the first statement beginning in sector S1,
and ends with the last statement beginning in sector S2 (this will probably end in the following sector).

Files in the System Area cannot be dumped.
An error message occurs when S1 > S2, or when either S1 or S2 is greater than the length of the file.

Source statements, relocatable binary and absolute binary files can be dumped to a punch device and
later restored by using the appropriate STORE directive. In general, however, this cannot be done
with ASCII data and binary data files.

EXAMPLES:

Where L is a source file:
:DUMP,1,L
A
BB
cce
DDDD
ELFEE
FFFFFF
GGGGGGaGE
@

Where SSERH is a binary file:
(On the system console:)
:DU,6,SSERH,1,1
@

(On the list device:)

001 000000 062125 072121 114535 010010 010075 010156 010100
002400 052100 026014 026036 062006 042154 072023 114535
010025 010076 010077 010006 010153 114535 010033 010076
010077 010101 010117 102501 002002 026056 062006 072046
114535 010050 010123 010076 010127 010124 010006 010122
114535 010056 010076 010077 010126 010153 036006 036006
036006 036121 026003 114535 010071 010076 010077 010106
010120 114535 010074 010074 000006 000022 000002 000001
000000 020116 047524 020106 047525 047104 020120 051117
043522 040515 020103 047515 050114 042524 042504 000005
000011 000000 000000 000016 000002 177746 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 020040 020040 020040 020040 020040
020040 020040 020040 000003 177777 020040 020501 040440
020040 041102 041040 020040 041503 041440 020040 042104
042040 020040 042505 042440 020040 043106 043040 020040

2-12

DUMP (PROGRAM)

Purpose

To request that a user program be dumped to the standard list device (logical unit 6) when it com-
pletes execution. Two directives are provided: PDUMP for dumping on a normal completion, and
ADUMP for dumping when the program aborts.

Format

:PDUMP[,FWA[,LWA]][,B][,S]
ADUMP[,FWA[,LWA]][,B] [,S]

where FWA is the octal address, relative to the program origin, of the first word to be dumped
LWA is the octal address, relative to the program origin, of the last word to be dumped
B means dump the base page linkage area of the program

S means dump the entire system area.

If LWA is missing, the entire program, starting with FWA, is dumped. B alone dumps all the main
program, plus base page linkages, but not the system routines. S alone dumps only the system.

If no parameters are given, everything except the system area is dumped.

Comments

The dump directives, PDUMP and ADUMP, must precede the RUN or PROG request in a job. They
implicitly refer to the next program to be executed. DOS-III sets a flag when it encounters either
PDUMP or ADUMP, then checks the flag the next time a program is executed. Only one of the
requests will be honored, depending upon whether the program runs normally or is aborted. The
dump is labeled accordingly. These flags are cleared when a program terminates.

Any parameter following S in the directive is ignored. If FWA is greater than LWA, this message is
output: .

LIMIT ERROR

2-13

The main program and library subroutines are dumped eight octal words per line, along with the
octal starting address for that line. For example,

adr8 wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

adr8 +1 08 wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

If present, the base page dump follows the main program and library. Base page linkages exist for
page boundary crossings and subroutines. For each line, the starting octal address appears first,
followed by four pairs of octal numbers. The first number of each pair records the content of the
base page word (an address elsewhere in main memory). The second number of each pair records the
contents of the address specified by the first item. If the first item is the address of a subroutine, then
the second item contains the last address from which the subroutine was called. For example,

pair-1 pair-2 pair-3 pair-4
adr item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2
adr+4 item-1 item-2 item-1 item-2 item-1 item-2 item-1 item-2

Note: :OFF before a program executes clears the dump flags.
:OFF during a program execution causes an abort dump.
:OFF during a dump terminates the dump.

EXAMPLE:

:ADUMP,0,15,B (Set up dump flag)
:RUN,PRG9,6 (Run program)
LU 012140

(Main program dump)
ADUMP

12000 160001 002002 130573 170574 006004 160001 002003 026012
12010 130575 170576 006004 160001 170577 006004 160001 170600

(Page Eject)
(Base page dump)

00570 010187 002045 010711 003237 010763 002045 017014 000300
00574 017641 000000 017015 000400 017641 000406 017601 000000
00600 017650 000000 017615 000000 017664 000000 017662 000573
00604 017637 000573 017571 177205 017563 001204 017714 017715
00610 017562 021121 017534 021122 017536 021122 017633 160656
00614 017544 037626 017546 037626 017673 000000 017605 000040

2-14

DUMP (SECTOR)

Purpose

To dump aﬁy specified sector or sectors of the current user disc on the standard list device (logical
unit 6) in either ASCII or octal format.

Format

:SA,track,sector[,number] (ASCII)
:SO,track,sector[,number] (OCTAL)

" where track and sector give the starting disc address for the dump

number gives the number of sectors to be dumped. If number is absent, only one sector is
dumped.

All three parameters are decimal numbers.

Comments

The ASCII dump format (:SA) is 64 characters per record. The octal dump format (:SO) is eight
octal numbers per line. Two ASCII characters equal one computer word (also represented by one
octal number). Although :SA dumps 64 characters per record, these do not necessarily appear on
one line since the binary numbers are converted to ASCII characters, some of which might be
linefeeds or returns.

2-15

EXAMPLE:

(On the system console:)

:80,0,1
@

(On the list device:)

001

000000
017613
010072
160001
067304
033774
067304
006004
003004
033774
067303
067761
067762
067777
050175
000000

067767
064120
073773
001727
044066
170001
160001
160001
170001
001727
017606
006003
006003
006003
064115
057766

017570
007004
053774
013733
037310
063773
073766
033773
067304
001723
002400
027540
027546
002004
074200
127570

067744
077310
077761
073305
027415
073302
164000
170001
077311
070154
067774
044055
023775
064155
047740
037766

2-16

077743
064117
053775
050060
027505
002004
017570
006004
027440
063761
017606
160001
033303
070155
074157
163766

017613
044055
077762
027460
044052
073303
063305
063730
060154
067302
063311
023774
170001
054175
064175
002021

017613
160001
077304
053763
160001
063774
050060
170001
001722
017606
067775
033302
063776
070175
074161
027571

017613
044051
044056
027445

023773

073773
027440
006004
013765
063762
017606
170001
001200
006400
124003
013764

EDIT

Purpose

To perform listed edit operations on a user source file (follows the :SS condition).

Format
:EDIT file,logical unit[,new file]

where file is the name of a source file (the primary file) to be edited according to an edit list (edit
operations plus associated source statements) input on the specified logical unit. If new file
appears, the edited source file is stored in a new file (with the name new file) on the same
subchannel and the old file is not purged. Otherwise, the edited source file destructively
replaces the old file. (Follows :SS in searching for duplicate file names.)

Comments

An edit list consists of one or more edit commands and, optionally, a series of associated source
statement (i.e., following REPLACE, INSERT). Edit operations are executed when they are
entered. When using the system console, the operator must not enter the next operation until the
“@” prompt is output on the console.

All edit operations begin with a slash(/), and only the first character following the slash is required.
The rest are ignored (until a comma is reached).

In the edit operation formats, the letters m and n are the sequence numbers of the source statements
to be edited, starting with one. Letter m signifies the starting statement, and n is the ending
statement of the operation, inclusively. In all cases, n must be greater than or equal to m;

neither can be less than one, nor greater than the last source statement of the file. The m must be
greater than the n of the previous operation. Sequence numbers refer to the criginal sequence of
the unedited file; inserted statements cannot be referenced until the current editing process is com-
pleted and the file automatically resequenced prior to another EDIT directive.

Source statements following /REPLACE or /INSERT on the current batch device cannot contain a
colon (:) in column 1, although those entered from the system console can, with the exception of
:OFF and :ABORT (which are interpreted as directives instead of data). Source statements can
never contain a slash (/) in the first column. Source statements on any device other than the system
console and the current batch device can contain anything else in column 1 (including :OFF or
:ABORT).

Input is terminated only by an /END.

2-17

If the edit file is entered on the system console and either a

PARAMETER ILLEGAL
or

NO SOURCE
error occurs, the user merely re-enters the statement in error. If the edit list is entered on any other

device, the EDIT directive is aborted (if the EDIT directive was entered in keyboard mode) or the
entire job is aborted (in batch mode).

EDIT OPERATIONS
/DELETE ,m/[,n]

Deletes source statements m through n, inclusively, from the source file. If only m is specified,
that one statement is deleted.

/INSERT,m

Inserts the source statements in the edit list immediately following this command into the primary
file following statement m.

/MERGE[k] ,secondary file[,m[,n]]
Merges source statements from the secondary file into the primary file named in the EDIT directive.

k is the sequence number of the primary file (named in the EDIT directive) after which
source statements of the secondary file are merged. If k=0, the secondary file source state-
ments are merged at the beginning of the primary file; if % is omitted, the secondary file
source statements are merged at the end of the primary file.

Secondary file is the name of the source file to be merged with the primary file. If
m and n are specified, then only lines m through n of the secondary file are merged.
If only m is specified, then only that one line is merged.

/REPLACE,m[,n]

Replaces source statements m through n (inclusively) in the primary file with source statements
following the /R in the edit list. If n is omitted, then only statement m is replaced.

Note: Directives cannot be inserted or replaced but can be merged frohz
another file.

2-18

/SUPPRESS
Suppresses echoing of the edit operations on the system console, providing that the logical unit
specified in the EDIT directive was not the system console. Normally, echoing occurs after each
EDIT directive unless /S is entered.

/UNSUPPRESS
Resumes echoing of the edit operations on the system console.

/END

Terminates the edit file and returns DOS-III to its previous mode for further directives. (The last
edit command must be /END.)

EXAMPLES:
If a file named SOURC contains:

Statement 1 ASMB,R,B,L

Statement 2 NAM START
Statement 3 A EQU 30
Statement 4 B EQU 20
Statement 5 START NOP
Statement 6 LDA A
Statement 7 END

and the EDIT directive is

:EDIT,SOURC,5

and the edit list, which follows :EDIT on the batch device, is

/R,3
A EQU 100
B NOP
/D,4
/1,6

STA B
/E

2-19

then the new file SOURC equals:

Statement 1 ASMB,R,B,L
Statement 2 NAM START
Statement 3 A EQU 100
Statement 4 B NOP
Statement 5 START NOP
Statement 6 LDA A
Statement 7 STA B
Statement 8 END

Assume now that there exists a source file named FILE2:

Statement 1
Statement 2

ALF,ALF
JMP START

To merge FILE2 into the new SOURC, the following EDIT directive, along with its edit
list, is required.:

:ED,SOURC,5
/M,7,FILE2
/E

The new file SOURC looks like this:

Statement 1 ASMB,R,B,L
Statement 2 NAM START
Statement 3 A EQU 100
Statement 4 B NOP
Statement 5 START NOP
Statement 6 LDA A
Statement 7 STA B
Statement 8 ALF,ALF
Statement 9 JMP START
Statement 10 END

2-20

END-OF-FILE

Purpose

To write an end-of-file mark on a magnetic tape.
Format

:EF[logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-21

END-OF-JOB

Purpose

To terminate the current job normally and return to keyboard mode.

Format

:EJOB

Comments

The EJOB directive outputs a message recording the total run time of the job and execution time,
then returns to keyboard mode.

If :SS condition is active, :EJOB purges temporary files on all specified user subchannels. If :SS
condition is not active, :EJOB purges temporary files on the current user subchannel. (See STORE
directive and “DOS-III Relocating Loader,”” Section V.) All directives except :TRACKS, :OFF,
:TYPE or :BATCH are ignored until the next JOB directive.

:EJOB resets logical units 1 through 9 and resets the :SS condition. :EJOB resets the user disc
assignment to the standard subchannel unless that subchannel is not ready or a new cartridge has
been inserted (with a different label and without a UD directive).

When the EJOB directive occurs, a message is printed, similar to that of :JOB, giving the total run
time of the job and total execution time (if a Time-base Generator is present). For example,

END JOB START RUN = 0007 MIN. 52.6 SEC. EXEC = 0001 MIN. 21.0 SEC.
or
END JOB START

This message is printed on the system console and on the standard list device (logical unit 6). A
top-of-form is issued on the list device prior to the message.

2-22

EQUIPMENT TABLE

Purpose

To list one or all entries in the equipment table on the system console (see Appendix A for equip-
ment table format).

Format
:EQ[,n]

where n, if present, indicates the one entry to be listed.

If n is absent, the entire equipment table is listed.

Comments
Each entry is output in the following format:
EQT nn CHvv DVRmm dr Uu Ss

where nn is the decimal number of the entry
vv is the octal channel number of the device
mm is the I/O driver number for the device
d specifies DMA if equal to D, no DMA if zero
r specifies main-memory resident if equal to R, disc-resident if zero
u is a single decimal digit used for subchannel addressing .
s is the availability status of the device:
0 for not busy, and available,
1 for disabled (down),
2 for busy

2-23

EXAMPLE:

Following is a listing of a DOS-III Equipment Table.

R
AT
EQT
EGT
EAT
waT
EQT
EQT

21
Z2
@3
G
75
A6

27

CH
CH
CH
CH
CH
CH
CH

11
13
14
1éa
21
2R

Duags a
nyrRal @
ovir3t D
DUREZ2 @

DUR12
DVR11 O
DUR23 D

oS

us
ua
84
A
(815
ue

5%
59
58
S3
S
s

59

2-24

Keyboard Mode Only

GO

Purpose

To resume a program that has been suspended, and optionally, to transfer up to five parameters to
that program.

Format
:GO[,P,P,,.P]

where P, through P5 are optional parameters and must be decimal values between 0 and 32767.

Comments

When a program suspends itself (see ‘“‘Program Suspension’ in Section III), it is restarted by a GO
directive. Upon return to a suspended program, the initial address of the five parameters is located
in the B register. A FORTRAN program calls the library subroutine RMPAR to transfer the
parameters to a specified 5-word array. The first statement after the suspend call, in a FORTRAN
program, must be the call to RMPAR. For example,

DIMENSION I (5)
CALL EXEC (7)
CALL RMPAR (I)

An assembly language program should use the B register upon return from the suspend to obtain
and save the parameters prior to making any EXEC request or I/O request.

2-25

Keyboard Mode Only

INITIALIZE

Purpose

To label or unlabel the current user disc, and to destroy an existing System Area (and, optionally, a
User Area).

Format
:IN,label

where label is a six-character name to be written on the disc, or ‘“*”’ which means unlabel the
disc.

Comments
Four basic cases are possible:

1. :IN,*¥ An unlabeled disc (a disc containing only a User Area). The user directory and all
user files are destroyed.

2. :IN,* A labeled disc. The message
DOS (or TSB) LABEL xxxxxx
OK TO PURGE?

is output. To purge both the System and User Areas, the operator must respond with

YES
If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect

switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored.

2-26

3. :IN,label An unlabeled disc. Only the label is changed; no files are destroyed.

4. :IN,label A labeled disc. The message
222 LABEL xxxxxx
OK TO PURGE?

is output. To purge an existing DOS or TSB system, move the user files to the beginning of
the disc, and assign the new label to the User Area, respond with

YES
If the existing label is SYSTEM (the disc contains a DOS or TSB system), the Override/Protect

switch must be in the override position (if the disc was created using DSGEN); otherwise, a
HLT 31 will occur. If the operator responds with

NO

the directive is ignored,
Initialization does not affect the protect bits. They remain set.

Refer to Section VI for an example of how to copy the System from one subchannel to
another.

2-27

JOB

Purpose

To initiate a user job and assign it a name for accounting purposes.

Format
:JOB[,name]

where name is a string of up to five characters (starting with a non-numeric character) which
identifies the job.

Comments

A JOB, BATCH, TYPE, or TRACKS directive must be the first directive entered following system
start.

When DOS-III processes the JOB directive, it issues a top-of-form to the list device (logical unit 6),
prints an accounting message on the system console and the list device recording the job’s name
(as specified in the JOB directive), the date (as specified in the DATE directive), and the current
time (if a Time-base Generator is present).

For example,

:JOB,START
JOB START MON 6.16.9 TIME = 0013 MIN. 41.6 SEC.

or
JOB START MON 6.16.9
If an EJOB directive has not been encountered, :JOB also acts as the :EJOB for the previous job.

In this case, all actions of the :EJOB are carried out (except for returning to keyboard mode from
batch mode) before starting the new job.

2-28

LIST

Purpose

To list file information recorded in the user or system directories; or to list and sequentially number
the contents of all or part of a source file.

Format

(System) :LIST,X,logical unit/,file, eud]
(Unaffected by :SS)

(User) :LIST,U,logical unit/,file ,...]
(Lists the specified directory entries from all the subchannels defined by :S8S.)

(Source) :LIST,S,logical unit, file[,m[,n]]
(follows :SS)

where X specifies the System Area directory
U specifies a User Area directory
S Spe,cifies a user source file
logical unit specifies the list device

file,, ... names up to 13 entries to be listed (if none is specified, the entire directory is
listed)

m and n, if present, specify the first and last statements to be listed. If n is absent, then

all statements beginning with m are listed. If neither appear, then the entire file
is listed. The restrictions for m and n are the same as those for the EDIT directive.

Comments

A top-of-form is issued to the list device prior to listing.

2-29

DIRECTORY LISTING OUTPUT
The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB
SUBCHAN =n

The following lines are then printed:

name type sctrs trk sec lowerp upper, lower, upper,, entry fwam p-b
where name identifies the file,
type tells what kind of file name is
AB = absolute binary program
AD = ASCII data
BD = binary data User File Only
RB = relocatable binary program
SS = source statements .
LB = library
) System File Only
XS = supervisor module

DR = disc resident I/O driver
UM = user main program Either File
Us

user program segment

sctrs is the number of sectors in the file,
trk is the track origin of the file,

sec is the starting sector of the file within the track specified.
The information below does not appear for types AB, AD, BD, LB, RB, and SS.

lowerp is the lower limit (octal) of the program,

upper,, is the upper limit (octal) of the program,

lower,, is the upper limit (octal) of the program base page links,
upper,, is the upper limit (octal) of the program base page links,
entry is the absolute octal address where execution begins,

fwam is the octal address of the first word of available memory following the
program, and

p-b is equal to T if the file is temporary and will be purged by :EJOB unless stored by
:STORE,P. '

2-30

If the requested file does not exist, a message appears:

file UNDEFINED

SOURCE LISTING OUTPUT
Each source statement is preceded by a four-digit decimal sequence number.
If the requested file is not a source file, the following message appears,

file
ILLEGAL

The list is terminated by the message

EXAMPLES:

(on the system console:)
:LI,U,6
@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY FWAM PB
SUBCHAN=4

EX9 SS 00080 T001 000

EXM RB 00063 T004 008

BBB S8 00001 T006 023

SRCH RB 00003 -~ T007 000 ‘
SSERH UM 00002 T007 003 10000 10271 00718 00713 10000 10271 T
ASCII AD 00200 TO007 005

BINRY BD 00300 To015 013

Note: T in the “PB” column means that the entry is temporary.

2-31

(On the system console:)

:ST,P (To make all temporary files permanent.)
@

:LLLU,6

@

(On the list device:)

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY FWAM PB
SUBCHAN=4

EX9 S8 00080 T001 000

EXM RB 00063 T004 008

BBB SS 00001 T006 023

SRCH RB 00003 TO007 000

SSERH UM 00002 T007 003 10000 10271 00713 00713 10000 10271
ASCII AD 00200 T007 005

BINRY BD 00300 TO015 013

Note: “PB’ no longer equals T.

(On the system console:)

:LI,S,6,EX19,926,936

@

(On the list device:)
0926 ASMB,L,R,X,C,N,B

0927 HED DUMMY $LIBR AND $LIBX FOR RTS SIMULATION ON DOS

0928 NAM DUMRX,6

0929 ENT $LIBR,$LIBX

0930 SPC 2

0931 * CALLING SEQUENCES: ENTRY TERMINATION

0932 *

0933 *

0934 * PRIVILEGED JSB $LIBR JSB $LIBX

0935 * NOP DEF (PROGRAM ENTRY POINT)
0936 *

sk [IQT END #%kx

2-32

LOGICAL UNIT

Purpose

To assign logical unit numbers (4 through 63) for a job or to list the device reference table (logical
unit assignments) on the system console.

Format

:LU[,n, [,n,]]

where n, and n, (if present) are decimal numbers.
If neither n, nor n, is present: the entire device reference table is printed.

If only n, is present: the equipment table entry number assigned to logical unit number
n, is printed. (See EQUIPMENT TABLE directive.)

If both n, and n, are present (and n, does not equal zero): the device recorded in equipment
table entry n, is assigned to logical unit n, .

If both n, and n, are present (and n, does equal zero): the logical unit specified by n,
becomes a null device, and any I/O request on that device is ignored.

Comments

Assignments made by :LU for logical units 4 through 9 are only valid during the current job.
Assignments for 10 and above remain after EJOB. " At the beginning of each new job, the device
reference table for the first nine logical units is reset to the assignments given when the system was
generated. This insures a standard 1/O organization for all users.

If n, = 0 (that device is to be made null), the logical unit specified by n, may not be equal to 1, 2,
3, or the logical unit number of the current batch device.

2-33

EXAMPLE:

LU
LU01
LUO2
LU0O3
LU04
LU05
LU06
LU07
LU08
LU09
@

:LU,9,5

EQTO03
EQTO01
EQTO01
EQTO05
EQT04
EQT06
EQTO07
EQTO02
EQTO00

:DU,9,FILE1

:LU,9

LU09 EQTO05

@

:LU,6,0

:PR,FTN4,99

(null device)

(Logical unit 9 becomes punch)
(Dumps FILE1 to punch)

(Checks EQT for LU9)

(Assigns line printer to null device)
(Reads from paper tape reader, no list, object to JBIN)

2-34

MMGT

Purpose

To reserve logical memory address space for specific subsystems.

Note: This directive applies to memory associated with system programs only.
Memory associated with user programs is strictly under program control.

In addition, this directive may be used to obtain a report of memory space previously reserved for
subsystems.

Format

:MMGT[,subsystem-name 1> WWWWw y, subsystem-name2, wwwwy, . . ., subsystem-namen,
wwwww,, |

subsystem-name is a 4-character ASCII name defined for a subsystem at system generation.

wwwww is the number (decimal) of logical words to be reserved for the associated subsystem.

If no parameters are entered, the directive is interpreted as an inquiry request and a list of subsystem
names and the number of reserved words previously set is printed on the console. The list appears in

the following form:

SUBSYSTEM WORDS

subsystem-name wwwww ¢
subsystem-name 2 WWWww 9
su bsystem-namen wwwww,

2-35

Comments

The :MMGT directive is entered just prior to the :PROG or :RUN directive and reserved memory
space is released at program termination. If the subsystem name specified was not defined at system
generation, the system prints:

subsystem-name — UNDEFINED

where subsystem-name is the 4-character subsystem name. Any defined subsystem names is included
in the parameter string are accepted.

If an attempt is made to update or display the subsystem table and no subsystems were defined
when the system was generated, the system prints:

NO SUBSYSTEMS DEFINED

If the cumulative sum of words requested for subsystems exceeds the amount available, the system
prints:

LIMIT ERROR

Any requests up to the available space limit are accepted. If more than one subsystem name is in-
cluded in the parameter string, the user may determine which requests have been accepted by enter-
-ing the :MMGT directive with no parameters. This causes a list of subsystem names together with
the number of words reserved for each name to be printed on the console.

Note: The subsystem names discussed here must be included as entry points
(ENT) within the associated subsystem routines which are included as
part of the system at generation time.

2-36

Keyboard Mode Only

OFF

Purpose

To abort the currently executing user program or system operation without terminating the job.

Format

:OFF

Comments
:OFF returns the system to keyboard mode.

:OFF can be used to terminate undesired lists, edits, disc-to-disc dumps, program loops, Loader
operations, assemblies, and compilations.

:OFF cancels any pending DD, ADUMP, or PDUMP directives, unless a program is running, in
which case, a pending : ADUMP is executed.

2-37

PAUSE

Purpose

To interrupt the current job, optionally print a comment on the system console, and return to the
system console for operator action.

Format

:PAUSE [character string]

Comments

PAUSE may be entered through the keyboard even when DOS-III is in batch mode. PAUSE suspends
the current job until the operator inputs a GO directive. During this time the operator may mount
magnetic tapes or prepare I/O devices. (A series of COMMENT directives or a remark in the

PAUSE directive itself can be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS-III to the job in the previous mode.
EXAMPLE:

:PAUSE MOUNT MAG TAPE (Operator mounts magnetic tape)
:GO

2-38

PROGRAM

Purpose

To turn on (i.e., load from the disc and begin executing) a program from the System Area or a
program from the User Area which was generated with the DOS-III Relocating Loader. (Follows
the :SS condition in searching for the program.)

Format
:PROG,namel[,P ,P,, . .. P5]

where name denotes a system program, such as FTN for the DOS-M FORTRAN Compiler,
FTN4 for the RTE/DOS FORTRAN IV Compiler, ASMB for the DOS-M Assembler,
LOADR for the DOS-III Relocating Loader, or ALGOL for the RTE/DOS ALGOL
Compiler. .
A user program is specified via the file name assigned by the DOS-III Relocating
Loader (the name specified in the program’s PROGRAM, HPAL, or NAM statement).

P, through P, are optional parameters which DOS-III transfers to the program named.
P, through P, must be positive integers less than 32767. The program must retrieve
the parameters immediately. This procedure is described under :GO.

Comment

Consult Section V for the parameters required by FTN, FTN4, ASMB, ALGOL, and LOADR.
Additional programs may be added during system generation, if desired.

Note: User programs can be run using :PROG or :RUN. :PROG is useful when
the program needs parameters. DOS-III first searches the user files for

the program, then the system files. :RUN is useful when an execution
time limit is desired (and a Time-base Generator is present).

EXAMPLES:

:PROG,FTN,2,99
:PROG,MYFIL,0,3,84

2-39

PURGE

Purpose

To remove the directory entry associated with a user file. (Follows the :SS condition.)

Format
:PURGE/ filey.fileg, . . . |

where filey,fileg, . . . (up to 15 file names or 72 characters per directive) designate files in the
User Area. The directory entry for the specified file name is purged (marked for removal)

If no file names are given, all directory entries for temporary files are purged.

Comments

After the directory entries are purged, the remaining User Area files nriay be repacked for efficiency
by entering the :RPACK directive. However it should be noted that the repacking function is per-
formed automatically each time an :EJOB directive is executed.

If the end of the User Area moves below a track boundary during the purge, the Work Area becomes
a track larger. As each file’s directory entry is purged, DOS-III prints its name on the system
console.

The presence of undefined files in the list has no effect on the purging of named (and existing)
entries. However, if an entry cannot be found, this message is output to the system console:

file UNDEFINED

The fastest way to purge all files on a single disc is to use :IN,* (see “‘Initialize’’ in Section 2).

CAUTION: OPERATOR ATTENTION IS DISABLED DURING :PURGE.

2-40

EXAMPLE:

Original contents of user directory: F1, F2, F3, F4, FLONG, and F5 (at least)
Directive: :PURGE,FLONG,F1,F2,D3,D7,F3,F4,F5
Output: FLONG
F1
F2

D8 - - UNDEFINED
D7 — - UNDEFINED
F3

F4

F5

241

RENAME

Purpose

To rename a specified user file and, optionally, change its program type. (Follows the :SS
condition.)

Format
:RNAME, oldname,newname/[,type]

where oldname is the name of the user file to be renamed
newname specifies the new name for the file

type specifies the new type for the file.

Comments
If a file name on one of the active subchannels is the same as newname, the message
DUPLICATE FILE NAME

is output and the file name is not changed. If the file named oldname cannot be found on any of
the active subchannels, the message

oldname UNDEFINED
is output.
The type parameter must be a decimal number from 3 to 12. File types 3-5 require 11-word
directory entries and types 6-12 require 5-word directory entires. If the file type is incompatible
in this respect, a

PARAMETER ILLEGAL

message results. (File type numbers are described in Appendix A.)

Note: It is the users responsibility to insure that the format and structure of
the file contents are compatible with its new file type.

2-42

REWIND

Purpose

To rewind a magnetic tape.
Format

:RWND/[,logical unit]

where logical unit is the logical unit number of the desired magnetic tape (default is 8).

2-43

RPACK

Purpose

To repack the disc, eliminating purged files.

Format

:RPACK

Comments
When a :PURGE directive is issued, the directory entry for specific or implied files is purged. The

:RPACK directive is used to search the directory for purged entries. If any are detected, the user
file area is repacked, eliminating those files.

Note: This repacking function is automatically performed at the end of
each job.

EXAMPLE:

:RPACK

scans the user directory for purged entries and repacks the disc to eliminate files
associated with those entries.

2-44

RUN

Purpose

To run a user or system program. (Follows the :SS condition.)

Format
:RUN,name/,time] [N]

where name is a user file containing the desired program

time is an integer specifying the maximum number of minutes the program may run
(default is five minutes). DOS-III ignores time if a Time-base Generator is not present.

N, if present, tells DOS-III to allow the program to continue running even if it makes
EXEC calls with illegal request codes.

Comments

Programs which have been relocated during the current job but not stored (see STORE directive)
permanently in a user file, may be run using this directive.

If a program executes longer than the time limit, the current job is aborted and DOS-III scans to
the next JOB directive.

If N is not present in the RUN directive, the current job will be aborted by any illegal request codes.
The N option is provided so that programs can be written and tested on DOS-III ultimately to exe-
cute with other HP software not having the same request codes.

EXAMPLE:
:RUN,ROUT,15

executes program ROUT up to fifteen minutes, not allowing illegal request codes.

T™M 13421
@
System responds, indicating a time-out condition.

2-45

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the Assembler and compilers. (Follows the
:SS condition.)

Format
:JFILE,file

where file is the name of a source file on any active subchannel.

Comments

If logical unit 2 is specified as the input device when the compiler or Assembler is turned on (using
:PROG) and a :JFILE has been defined, then the compiler or Assembler reads the source statements
from the :JFILE.

Only one program can be translated from a file; any statements beyond the end of the source pro-
gram will be ignored. The JFILE assignment is only valid for the current job, and can be reassigned
by another JFILE directive.

When using a 21MX Assembler, up to fifteen files may be specified in the :JFILE directive so long
as these files constitute one program having one END statement.

It is highly recommended that the JFILE directive immediately precede the corresponding PROG
directive.

Example 3 in Section VI illustrates using the JFILE directive.

2-46

STORE

Purpose
To create a user file on the current user disc and assign it a name. The STORE directive can create
relocatable object program files (type-R), loader-generated object program files (type-P), source

statement files (type-S), ASCII data files (type-A), binary data files (type-B), and absolute binary
program files (type-X). (Follows :SS in checking for duplicate file names.)

Format
The format varies according to what type file is being created. See Comments below for details:

TYPE-R :STORE,R,file[,logical unit]
TYPE-P :STORE,P[file, file, ...]
TYPE-S :STORE,S, file,logical unit [,C]
TYPE-A :STORE, A file,sectors
TYPE-B :STORE, B,file,sectors
TYPE-X :STORE, X, file,logical unit

Note: Control @ should not be used in file names.

Comments
TYPE-R FILES. The directive format is
:STORE,R,file[,logical unit]

where file is a name consisting.of five (or fewer) characters and must not duplicate another
name already present in the user files.

2-47

A user file is created under this name, and relocatable binary programs are read into it from the
logical unit specified or from the Job Binary Area of the disc if none is specified. The Job Binary
Area remains as it was before the STORE,R directive.

If DOS-III comes to an end-of-tape, it asks:
DONE?

If there are more tapes, the operator places the next tape in the reader and replies NO; otherwise,
he answers YES.

EXAMPLES:
:STORE,R,RINE

(Stores all of the relocatable programs from the Job Binary Area into the file RINE
created for that purpose.)

:STORE,R,JUGG,5

(Stores relocatable programs from logical unit 5, the standard input device, into the
file JUGG.)

TYPE-P FILES. The directive format is
:STORE,P[,name, ,name,,....J

where name,,name, ... are programs that the DOS-III Relocating Loader had relocated into
executable format during the current job. A program is stored in a file of the same
name. Up to 14 programs per directive are allowed. If none are specified, all programs
loaded during the current job are stored. DOS-III finds these temporary programs in
the user file and converts them to permanent user files by removing their “temporary”
flags (see the description of the LIST,U directive). :

Programs loaded during the current job but not stored as permanent files (as shown above) may be
executed normally (RUN or PROG directive) and appear in the user file directory. At the end of a
job, however, they are purged from the directory unless they have been converted to user files by
a STORE,P directive. '

2-48

EXAMPLES:
:STORE,P

(Changes all programs loaded during the current job using the Relocating Loader into
permanent user files.)

:STORE,P,ARITHMATH,TRIG,ALGEB

(Searches for the programs listed and makes them permanent user files.)

TYPE-S FILES. The directive format is
:STORE,S, file,logical unit [,C]

where file is the name of the user file to be filled with source statements from the logical unit
specified. File is a name of five or fewer characters, and must not duplicate a name
already present in the user files. The source statement input must be terminated by a
record containing a double colon (::) if the C option is omitted; or a triple colon (:::) if
the C option is included: If the termination record is omitted, DOS-III stores the succeeding
data on the disc as if it were source statements.

If DOS-III comes to an end-of-tape before finding the termination record (:: or :::), it outputs
DONE?
on the system console.
If there are more tapes, the operator replies NO, otherwise, he answers YES.
When DOS-III completes the STORE,S it outputs
nnnn LINES
where nnnn is the number of statements stored.
If the C parameter is included in the STORE directive, statements with a colon in column 1 are
interpreted as data and transferred to the designated source file. In this case, input is terminated
with a triple colon (:::). When the C parameter is omitted in the STORE directive, those statements
with a colon in column 1 will attempt execution. The logical unit specified in the STORE, S direc-
tive (when the C parameter is used) must not be the current batch device loglcal unit. If it is,

DOS-III outputs the message

ILLEGAL LUN

2-49

If the user is in keyboard mode, DOS-III outputs an @ and waits for a new directive. If the user is
in batch mode, a batch abort occurs.

If the C parameter is used and the logical unit specified is the system console, then all input received
prior to ::: is transferred to the designated source file, except OFF and ABORT directives. If

either of the two are encountered during keyboard entry, they are interpreted as directives and
executed. (:OFF returns control to keyboard mode without terminating the job. :ABORT aborts
the current job if the directive was entered from the keyboard, or DOS-III performs a batch abort

if the STORE, S directive was entered from the batch device.) Files containing :OFF and : ABORT
can be created by storing from a device other than the system console or the current batch device.

-

EXAMPLE:

:STORE,S,SOURC,5

(Reads source statements from the standard input device and stores them in a new file
SOURC.)

TYPE-A AND TYPE-B FILES. The directive format is
:STORE,type,file,sectors
where type is either A (for ASCII character data) or B (for binary data), and file is the name
assigned to a file containing the number of sectors requested. These requests are made
prior to executing a program to reserve a file area; no data is involved.
The program must store and retrieve data from the file through a call to EXEC. It is the programmer’s
responsibility to store the right kind of data in the file. The EXEC call must specify the file name

and the relative sector within the file. DOS-ITI checks only that the file name exists and that it
contains the sector specified.

EXAMPLE:
:STORE,A,ASCII,20

(Creates a file name ASCII, 20 sectors in length. A sector equals 128 sixteen-bit
words.)

2-50

TYPE-X FILES. The directive format is
:STORE, X, file,logical unit

where file is the name of the user file to be filled with absolute binary programs from the device
specified by logical unit.

When an end-of-tape is encountered, DOS-III outputs
DONE?

To continue loading tapes, place the next tape in the reader and type NO; otherwise, type YES.

2-51

Optional Directive

SYSTEM SEARCH

Purpose

To specify a list of disc subchannels which may be searched for file names. This is the :SS condition
which applies to all EXEC calls and directives that require a file search. (No check is made for
existing duplicate file names during searches; the first file found is used.)

Format

:SS All active subchannels are searched, starting with the current user subchannel,
then continuing from the highest to the lowest number.

:88,n,,n,,n5.... Where n,,n,... are subchannel numbers. The current user subchannel is
searched first, then the subchannels specified, starting with the lowest
number.

;88,99 ‘ Only the current user subchannel is searched. This is the default condition.
Every job starts out in this condition.

Comments

The SS directive can only be used if it was specifically allowed during system generation. (See
“Generating and Loading DOS-III,”” Part 3.) Otherwise, any SS directive will cause the following
message:

BAD CONTROL STATE
If a file search results in the file being found, the current user subchannel is changed to the sub-
channel containing the file. If the file was not found, the current user subchannel is restored to
its previous assignment
The LIST,U, file directive is an exception: this directive does not stop after it finds the file; it con-

tinues to look for duplicate entries. When the LIST search is complete, the original user subchannel
is always restored.

2-52

However, if a search is interrupted before completion, the current user disc may be on any sub-
channel. (This should be checked with a :UD directive.)

More than one :SS can occur during a job. The job starts in :SS,99 condition until a different SS
directive is issued. Each SS directive remains in effect until another is issued. S8 directives do not
apply to file searches initiated by the Relocating Loader or to disc dumps initiated by the DD
directive.

Whenever the user subchannel assignment is changed (except by a running program through the
appropriate EXEC call), the system outputs 4 message:

SUBCHAN =n

EXAMPLE:

:UD
SUBCHANNEL =1
LABEL = UNLBL

: RUN MYPRG

FILE NAME UNDEFINED (file not on subchannel 1)

:SS (search all subchannels for file MYPRG)
:RUN

SUBCHANNEL =0
(MYPRG now begins execution)

2-53

TOP-OF-FORM

Purpose

To issue a top-of-form command to a list device.

Format
TOF/,logical unit]

where logical unit is the logical unit number of the desired list device. If logical unit is omitted,
then logical unit 6 receives the command.

2-b4

TRACKS

Purpose

To output information about the next available track on the current user disc.

Format

:TRACKS

Comments

A TRACKS, JOB, BATCH, or TYPE directive must be the first directive entered following system
start.

The decimal number corresponding to the first track beyond the end of the current user area (and
the number of faulty tracks encountered, if any) is output to the system console.

Faulty tracks are replaced by spares when parity errors occur on read or write.

EXAMPLES:
The following is an example in which no faulty tracks are reported.

(INPUT) :TRACKS
(OUTPUT) NEXT AVAIL TRACK =0010
@ (End of directive processing)

In this example, the system reports that 2 tracks have been replaced by spares.

(INPUT) :TRACKS
(OUTPUT) NEXT AVAIL TRACK =0012
BAD =2
@ (End of directive processing)

2-65

In this example, the system reports that there are no more tracks available in the user area.

(INPUT) :TRACKS
(OUTPUT) NEXT AVAIL TRACK = NONE
@ (End of directive processing)

2-56

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

:TYPE

Comments

A TYPE, JOB, BATCH or TRACKS directive must be the first directive entered following system
start.

Control is returned to the system console. :TYPE may be entered through the batch device or the
keyboard device; when it is entered from the keyboard, DOS-III waits until the currently executing
program is completed or is aborted before returning to keyboard mode. If :TYPE is entered while
already in keyboard mode, the directive is ignored.

2-57

UpP

Purpose

To declare an I/O device ready for use.

Format
:UP,n

where n is the equipment table entry number corresponding to the device.

Comments

The UP directive (followed by a :GO) is usually used in response to one of the following messages
from DOS-III:

I/0 ERR ET EQT #n
I/0 ERR NR EQT #n
I/O ERR PE EQT #n

where ET indicates end of tape,
NR indicates device not ready,
PFE indicates parity error, and

n is the equipment table entry number.

If the incorrect n is entered, DOS-III outputs a list of all the down devices.

2-568

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Format
:UD/,[label] [,n]]

where label is a six-character disc label (* for an unlabeled disc)

n is the new subchannel.

Comments
Discs are labeled by the INITIALIZE directive.

Each form of the UD directive has a different purpose.

EXAMPLES:

:UD Interrogates the current user disc subchannel and outputs its

(without label label on the system console:

or subchannel) SUBCHAN = n

LBL = label (or UNLBL)

:UD,,n If n is labeled, DOS-III outputs

(no label) LBL = label (or UNLBL)
No assignment is made.

:UD, label, n If n is labeled with the specified label, DOS-III assigns n as the
user disc. If n is unlabeled or has a different label, DOS-III
outputs

LBL = label (or UNLBL)

Operator can then reissue :UD,label,n with the correct label.

2-69

:UD,label DOS-III searches for the label, starting with the highest number
(no subchannel) subchannel (determined at system generation). If label is found,
DOS-III makes it the user disc and outputs

SUBCHAN =n
If label is not found, DOS-III outputs
DISC NOT ON SYS

:UD,*n If n is unlabeled, DOS-IIT assigns n as the user disc.
If n is labeled, DOS-III makes no assignment and outputs
LBL = label

:UD,* Assigns the highest number unlabeled disc as the user disc
and outputs

SUBCHAN =n
If there are no unlabeled discs, DOS-III outputs
DISC NOT ON 8YS8

If the UD directive specifies a subchannel with an incorrect system proprietary code (see “Disc
Labels” in Appendix A), DOS-III still makes the assignment, and outputs
TSB DISC or 222 DISC

If the UD directive specifies a subchannel whose system generation code does not match that of the
current system disc, DOS-III still makes the assignment but outputs

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS
The changes made by :UD are only temporary; the user disc is reset at the end of each job.

Notes: 1. Before executinga :DD or :DD,X to a TSB or 222 DISC, the disc should
be initialized with :IN,*; otherwise, bad tracks may be reported erroneously.

2. If a disc pack is changed on a DOS-III system, the subchannel assigned to
that pack must be explicitly reassigned using a :UD directive or EXEC call.

Refer to item 5 in Section VI for an example of copying a System from one subchannel to another.

2-60

SECTION 11
| DOS-III EXEC Calls

DOS-III EXEC calls are the line of communication between an executing program and DOS-III.
An EXEC call is a block of words, consisting of an executable instruction and a list of parameters
defining the request. The execution of the instruction transfers control to DOS-III. DOS-III then
determines the type of request (from the parameter list) and, if it is legally specified, initiates
processing of the request.

In FORTRAN, EXEC calls are coded as CALL statements. In ALGOL, procedure calls are used.

In Assembly Language, EXEC calls are coded as a JSB EXEC, followed by a series of parameter
definitions. For any particular call, the object code generated for the FORTRAN CALL Statement
and the ALGOL procedure call is equivalent to the corresponding Assembly Language object code.

This section describes the basic formats of FORTRAN, ALGOL and Assembly Language EXEC
calls; presents each EXEC call in detail; and concludes with a discussion of how parameters are
passed to and from a program.

The EXEC calls detailed in this section are presented alphabetically, according to their function.
The Request Code (RCODE) value they have in the Assembly-language calling sequence appears
at the top of each page.

Note: DOS-III may include two user-created EXEC modules, loaded along with
the DOS-III system EXEC modules during system generation. The pur-
pose of the EXEC modules (called $EX36 and $EX37) and the number
of parameters needed in the EXEC call are defined by the user. User EXEC
module calling sequences are defined in Section XII, ‘“‘User-written EXEC
Modules.”

3-1

ASSEMBLY LANGUAGE EXEC CALLS

The following is a general model of an EXEC call in Assembly Language:

EXT EXEC

JSB EXEC

DEF *+n+1

DEF P,

DEF P,

return point

(Used to link program to DOS-III)

(Transfer control to DOS-III)

(Defines point of return from DOS-III, n is number of
parameters; may not be an indirect address; must be the
location immediately following the last parameter
address) :

(Define addresses of parameters which may occur any-
where in program; may be multi-level indirect. Seven is
the maximum number of allowable parameters for any
EXEC call.)

(Continue execution of program)

(Actual parametér values)

3-2

ALGOL EXEC CALLS

In ALGOL, certain conventions must be followed in making EXEC calls. First, since EXEC is
external to the program it must be declared a CODE procedure. Second, parameters that are
going to be changed must not be declared VALUE. Third, when arrays are passed as parameters,
the first element of the array (not just the array name) must be passed as a type INTEGER and
not by VALUE. Fourth, since ALGOL requires that the format of each procedure call be defined,
a program must declare a dummy external procedure for each EXEC call requiring a different
number of parameters. (These dummy procedures must be compiled as separate procedures to
provide proper linkage in the Loader.)

EXAMPLE:

The program below (DXFER) reads one sector from the work area and writes the
information into a different location in the work area. DXFER calls EXEC through

the CODE procedure EXECX (compiled externally). EXECX is compiled in the program
DSKIO, although that program name is irrelevant to the linkage between DXFER and
EXECX.

MAIN PROGRAM

HPAL,B,L,“DXFER”
BEGIN
" INTEGER ARRAY BUFFER[1:128];
BOOLEAN READX; :
INTEGER TRACK,SECTOR;
FORMAT F1(“SOURCE TRACK,SECTOR?”),
F2(“DESTINATION TRACK,SECTOR?”);
PROCEDURE EXECX(RD,TRK,SCTR,BFR);
VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;
CODE;
WRITE(1,F1);
READ(1,*, TRACK,SECTOR);
READX<TRUE;
EXECX(READX,TRACK,SECTOR,BUFFR[1]);
WRITE(1,F2);
READ(1,*, TRACK,SECTOR);
READX<FALSE:
EXECX(READX,TRACK,SECTOR,BUFFR[1]);
END$

3-3

PROCEDURE

HPAL,P,B,L,“DSKIO”
PROCEDURE EXECX(RD,TRK,SCTR,BFR);
VALUE RD,TRK,SCTR;
BOOLEAN RD;
INTEGER TRK,SCTR,BFR;
BEGIN
PROCEDURE EXEC(IO,LU,BFR,BFSZ,TRK,SCTR);
INTEGER IO,LU,BFR,BFSZ,TRK,SCTR;
CODE;
INTEGER REQCD;
IF RD THEN REQCD+1 ELSE REQCD<2;
EXEC(REQCD,2,BFR,128,TRK,SCTR),;
END;

3-4

FORTRAN EXEC CALLS

In FORTRAN, the EXEC call consists of a CALL Statement and a series of assignment statements
defining the variable parameters of the call: ‘

CALL EXEC (P,,P,,...,P,)

where P, through P, are either integer values or integer variables defined elsewhere in the program.

EXAMPLE

CALL EXEC (7)
or
IRCDE =7
CALL EXEC (IRCDE)

Equivalent calling sequences

Some EXEC call functions are generated automatically by the FORTRAN compiler or special sub-
routines. (Refer to “FORTRAN,” in Section V and the specific EXEC calls in this section.)

3-5

RCODE = -19

BASE PAGE STORE

Purpose

To store values into base page memory locations.

Assembly Language

EXT EXEC
LDA NUMB
LDB ADDR ,
JSB EXEC (Transfer control to DOS-III)
DEF *+2 (Point of return from DOS-III)
DEF RCODE (Request code)
return point (Continue execution)
RCODE DEC -19 (Request code = -19)
NUMB DEC n (n is value to be stored)
ADDR DEF LOC (LOC is a base page location)

FORTRAN

This feature must not be invoked by a FORTRAN program.

Comments

Base Page Store stores values into base page locations normally protected by memory protect.

Prior to using the calling sequence specified above, the user loads the value to be stored into the

A register and the absolute address of the base page location in the B register. Base Page Store then
performs a store indirect through the B register.

CAUTION: CARE MUST BE TAKEN NOT TO MODIFY SYSTEM-ESSENTIAL
BASE PAGE LOCATIONS.

3-6

Purpose

RCODE=32

FILE CREATE

To allow the user to create a user disc file under program control.

CAUTION: Because of the relationship between disc space used for the work area
and disc space used for creating new files, care must be taken to create
all files before issuing requests that access the disc work area (work
area limits requests, disc allocation requests, work area I/O requests).

Assembly Language

EXT

JSB

DEF
DEF
DEF
DEF
DEF
DEF

EXEC

EXEC
®+6
RCODE
RSTAT
FNAME
TYPE
DSKLN

return point

RCODE DEC
RSTAT BSS

32
1

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)

(Return status)

(File name)
(Program type)

(File length)

(Continue execution)

(Request code = 32)
(Return status from system:

—4
-3
-2
-1
0
>0

3-7

illegal parameter

invalid file name

invalid file type

insufficient file space

normal termination

duplicate file name — content is
address of old directory entry)

RCODE=32

FNAME ASC 3,xxxxx (5-character file name)
TYPE OCT nnnnnn (Program type:
bit 7 = (0, permanent
= 1, temporary

bits 5-0 = 6-144,; program type as defined
in Disc Directory “Entry Type,”

Appendix A)

DSKLN DEC s (Length in sectors)
FORTRAN

DIMENSION INAM(3) (File name)

INAM(1) = xxxxxB (First two characters)

INAM(2) = xxxxxB (Next two characters)

INAM(3) = xxxxxB (Last character and blank)

ITYPE =n (n is numeric program type)

IDSK =3 (s is disc length in sectors)

IRCDE =

32 (Request code)

CALL EXEC(IRCDE,IRST,INAM,ITYPE,IDSK)

EXAMPLE:

DATA NAME/2HDA,2HIL,2HY/

C CREATE TEMPORARY ASCII FILE OF 72 SECTORS
CALL EXEC(32,LSTAT,NAME,213B,72)
IF (LSTAT .NE. 0) GO TO error routine

continue normal program path

3-8

RCODE =18

FILE NAME SEARCH

Purpose

To check whether a specific file name exists in the directory of user or system files. (Follows the
:SS condition.) ‘

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+4 (or 5) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF FNAME (File name)
DEF NSECT (Number of sectors)
DEF IPRAM (Optional parameter)
return point (Continue execution)
RCODE DEC 18 (Request code = 18)
FNAME ASC 3,xxxxx " (xxxxx is the file name)
NSECT NOP (Number of sectors returned here; 0 if not
found)
IPRAM DEC n r =0 userarea with wait

n=1 userarea without wait
2 system area with wait
3 system area without wait

n
n

3-9

RCODE =18

FORTRAN
DIMENSION NAME (3) (File name)
IPRAM =2 (System search, with wait)
IRCDE =18 (Request code)
NAME (1) = xxxxxB (First two characters)
NAME (2) = xxxxxB (Next two characters)
NAME (3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE, NAME, ISECT, IPRAM)

Comments

File searches can be performed on either the system or user area, with or without wait, according
to the value of IPRAM. If IPRAM is omitted, the search is performed on the user area with wait.
If the search is requested with wait, the A register contains the track/sector address of the file, and
the B register contains the memory address of the track/sector address, upon return to the user
program.

Before executing a File Name Search without wait, NSECT should be initialized to some value
other than zero (for example, -1) to distinguish between ‘“file not found’ and “‘operation still in
process” conditions on completion of the search, EXEC calls issued while the File Name Search is
still in progress are queued by DOS-III and the system goes into the wait loop until the search is
completed.

EXAMPLE:

EQUIVALENCE (AREG,IREG(1))
DATA NAME/2HFI,2H1/

AREG =EXEC(18, NAME,ISECT,0)

IF (ISECT .NE. 0) GO TO error routine
IREG(1) = track/sector address of the file
ISECT = number of sectors in FILE1

Note: The FORTRAN function variable (AREG) is a copy of the
A-register or the A- and B-registers.

3-10

RCODE=33

FILE PURGE

Purpose

To allow the user to purge a user disc file directory entry or to purge all temporary file entries.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+8 (or4) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF RSTAT (Return status)
DEF FNAME (Optional file name)
return point , (Continue execution)
RCODE DEC 33 (Request code = 33)
RSTAT BSS 1 (Return status from system:
-4 = llegal parameter
-8 = invalid file name
-1 = undefined file name
0 = normal termination
FNAME ASC 3,xxxxx (5-character file name)

3-11

RCODE=33

FORTRAN
DIMENSION INAME(3) (File name)
INAME(1) = xxxxxB (First two characters)
INAME(2) = xxxxxB (Next two characters)
INAME(3) = xxxxxB (Last character and blank)
IRCDE = 33 (Request code = 33)

CALL EXEC(IRCDE,IRST,INAME)

Comments

If the file name parameter is omitted, all temporary file entries are deleted from the directory.

3-12

Purpose

RCODE =14, RCODE =15

FILE READ/WRITE

To transfer information to or from a file on the user disc; the file must be referenced by name.
(The :SS condition is followed.)

Assembly Language

EXT

JSB

DEF
DEF
DEF
DEF
DEF

DEF -

DEF
DEF

EXEC

EXEC
*+7 (or 8)
RCODE
CONWD
BUFFR
BUFFL
FNAME
RSECT
IPRAM

return point

RCODE DEC
CONWD OCT
BUFFR BSS

BUFFL DEC
FNAME ASC
RSECT DEC
IPRAM NOP

140r15
conwd

n
nor-2n
3, xxx5%
m

(Transfer control to DOS-III)

(Point of return from DOS-III)

(Request code)

(Control information)

(Buffer location)

(Buffer length)

(File name)

(Relative sector within file)

(Area which could have been legally transferred
if an overflow occurred-optional parameter)
(Continue execution)

(Request code: 14 =read, 15 = write)

(See Comments, I/O READ/WRITE EXEC call)
(Buffer of n words)

(Same n; words (+) or characters (-))

(User file name = xxxxx)

(Relative sector number)

(Optional parameter; see Comments)

3-13

RCODE = 14; RCODE =15

FORTRAN
DIMENSION NAME (3), IBUF(10)
NAME(1) = xxxxxB (First two characters of file name)
NAME(2) = xxxxxB (Second two characters)
NAME(3) = xxxxxB (Last character and blank)
ICRDE =14 (or15) (Request code)
ICON = conwd (See comments)
IRSCT =20 (Relative sector number)

CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT, IPRAM)
or
CALL EXEC (IRCDE, ICON, IBUF, 10, NAME, IRSCT)

Comments

See the Comments under I/O READ/WRITE EXEC call (RCODE =1 or 2) for a description of the
conwd fields needed in the above calling sequences. '

To read or write on the mth sector of a file, set RSECT = m—1. To determine the size of a file, use
the FILE NAME SEARCH EXEC call (RCODE = 18).

Data files to be written (or read) should be created with a STORE directive before executing the
EXEC call.

Any type of file may be read, but only ASCII or binary data files may be written.

If the DOS-III installation is likely to have more than one user disc, the program should use the
USER DISC CHANGE EXEC call (RCODE = 23) without a subchannel specified to check
whether the correct user disc is currently assigned. Alternatively, the user can use an SS directive
to set up a system search condition for referencing files on many subchannels.

This call provides an optional parameter, IPRAM, to provide the user with information concern-
ing a file read/write overflow (where the buffer length exceeds the sector contents). If IPRAM is
omitted, an overflow causes an IT error. If IPRAM is included and an overflow occurs, control
is returned to the user program with IPRAM set equal to the number of words (+) or characters
(=) (as defined by BUFFL) that could legally have been transferred. If an overflow occurs, no
disc transfer takes place, whether IPRAM is included or not. If IPRAM is included and no over-
flow occurs, the value of the parameter is set to zero.

EXAMPLE:

DATA NAME /2HFI,2HLE,2H1/)
DIMENSION IBUF(128)

> Read the first sector of FILEI.

CALL EXEC(14,3,IBUF,128,NAME,0))

3-14

RCODE=34

FILE RENAME

Purpose

To allow the user to change é file name (and optionally, its type) under program control.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+5 (or 6) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF RSTAT (Return status)
DEF ONAME (Old file name)
DEF NNAME (New file name)
DEF NTYPE (Optional new file type)
return point (Continue execution)
RCODE DEC 34 (Request code = 34)
RSTAT BSS 1 (Return status from system:
‘ -4 = llegal parameter
-3 = invalid old or new file name
-2 = invalid old or new file type
-1 = undefined old or new file name
0 = normal termination
>0 = duplicate new file name; content
is address of duplicate directory
entry)
ONAME ASC 3,xxxxx (5-character file name to be changed)
NNAME ASC 3,xxxxx (5-character new file name)
NTYPE OCT nnnnnn (New program type:
bit 7 = (0, permanent

= 1, temporary
6-144; program type as defined
in Disc Directory “Entry Type,’
Appendix A)

bits 5-0

’

3-15

RCODE=34

FORTRAN
DIMENSION INAMO(3), INAMN(3) (Old file name, new file name)
INAMO(1) = xxxxxB (First two characters)
INAMO(2) = xxxxxB (Next two characters)
INAMO(3) = xxxxxB (Last character and blank)
INAMN(1) = xxxxxB (First two characters)
INAMN(2) = xxxxxB (Next two characters)
INAMN(3) = xxxxxB (Last character and blank)
IRCDE = 34 (Request code = 34)
ITYPE =n (File type)

CALL EXEC(IRCDE,IRST,INAMO,INAMN,ITYPE)

Comments

The specified old name may match the new name — no error message is returned, the new program
type (if specified) will be changed.

3-16

RCODE=3

1/0 CONTROL

Purpose

To carry out various I/O control operations, such as backspace, write end-of-file, and rewind.

Assembly Language

EXT EXEC

JSB

DEF
DEF
DEF

EXEC

*+3 (or 4, or5)
RCODE
CONWD

DEF PRAMI1

DEF PRAM2

return point

DEC 3
OCT conwd
DEC n

BSS m

RCODE
CONWD
PRAM1
PRAM2

FORTRAN

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)

(Control information)

(First optional parameter)
(Second optional parameter)
(continue execution)

(Request code = 3)

(See Comments)

(Optional value parameter; see ‘“‘Comments’’)
(Optional buffer address)

Use the specific FORTRAN auxiliary I/O statements (see Comments) or an EXEC calling sequence.

DIMENSION IPRM2(m)

IRCDE =3

ICNWD = conwd

IPRAM =n

CALL EXEC (IRCDE,ICNWD,IPRAM)

or
CALL EXEC (IRCDE,ICNWD)

or

(Define buffer of m words)
(Request code)

(See Comments)
(Optional; see Comments)

CALL EXEC (IRCDE,ICNWD,IPRAM,IPRM2)

3-17

RCODE=3

Comments
CONWD

The control word value (conwd) has three fields:

0 | 0 | W | FUNCTION CODE (see below) LOGICAL UNIT NUMBER

BITS {15114 |13 |12 (11|10 9| 8 | 7 [6 | 5 [4 3|2]1¢(0

] 1

WAIT FIELD (W)
If W =1, DOS-III returns to the calling program after starting the control request.

If W = 0, DOS-III waits until the control request is complete before returning.

FUNCTION CODE FIELD

Function codes are defined programatically within the various I/O drivers. Thus the following list
of standard function codes is general in nature. Detailed information on specific peripheral-
associated function codes is available in the DOS-III Standard Drivers Reference Manual
(24307-90073).

Function Code

(Octal) Action
000 Clear the device (all drivers)
001 Write end-of-file (magnetic tape), select hopper (optical mark reader)
002 Backspace one record (magnetic tape)
003 Space forward one record (magnetic tape)
004 Rewind (magnetic tape), bell request (optical mark reader)
005 Rewind standby (magnetic tape)
006 Dynamic status (all drivers)
007 Set end-of-paper tape (paper tape punch)
010 Generate paper tape leader (paper tape punch) »
011 List output line spacing (line printers) (PARM1 or IPRAM required)
012 Write file gap (magnetic tape)
013 Space forward one file (mnagnetic tape)
014 Backspace one file (magnetic tape)
017 Extended function code present (card reader punch)

For function code values 000 through 0773, no DMA is assigned. For function code values 100
through 1775, DMA is assigned if required by the I/O driver.

LOGICAL UNIT FIELD

This field specifies the logical unit number of the device which is to receive the control request.

3-18

RCODE = 3

OPTIONAL PARAMETERS

Specification of Parameter; (PRAMI1 or IPRAM) or Parameter, (PRAM2 or IPRM2) depends on
the contents of the function code field in the control word. Function code 113 requires Parameter, .
This parameter designates the number of lines to be spaced on the specified logical unit. A negative
value specifies a page eject on a line printer or the number of lines to be spaced on the System Con-
sole. For details on line printer formatting, refer to Section IV in the DOS-III Standard Drivers
Reference Manual (24307-90073). When Parameter, is specified, its value is passed to EQT10
prior to entering the driver. If Parameter, is specified, Parameter; must be specified. The value of
Parameter, is passed to the driver via EQT11.

Compiler Considerations

Within FORTRAN and ALGOL programs, various control operations for magnetic tape may be
performed by the following auxiliary I/O statements:

BACKSPACE
ENDFILE
REWIND

Refer to the appropriate compiler manual for a detailed description of these statements.

EXAMPLES:

C CLEAR I/ODEVICES 1 TON
DO 10 LU=1,N
10 CALL EXEC (3,LU)

C SPACE 5 LINES ON THE LINE PRINTER
CALL EXEC (3,1106B,—5)

C SPACE FORWARD ONE FILE MARK"
CALL EXEC (3,1310B)

C FOR DATA COMMUNICATION — SET TERMINAL OPTION ENABLE AUTO L.F.
CALL EXEC (3,4000B+LU,1) ‘

3-19

RCODE =1; RCODE = 2

I/0 READ/WRITE

Purpose

To transfer information to or from an external I/O device or the work area of the disc. (DOS-III
handles track switching automatically.)

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III) ’
DEF *+5(or7) (Point of return from DOS-III; 7 is for disc request)
DEF RCODE (Request code)
DEF CONWD (Control information)
DEF BUFFR (Buffer location)
DEF BUFFL (Buffer length)
DEF DTRAK (Track number — disc transfer only)
DEF DSECT (Sector number — disc transfer only) -
return point (Continue execution)

RCODE DEC 1 (or2) (Request code: 1 =read, 2 = write)

CONWD OCT conwd (conwd is described in comments)

BUFFR BSS n (Buffer of n words)

BUFFL DEC n(or-2n) (<n; words (+) or characters (—))

DTRAK DEC f (Work area track number, decimal)

DSECT DEC g (Work area sector number, decimal)

Note: Single I/O transfers within the DOS-III environment
cannot exceed 16K words.

3-20

RCODE =1; RCODE = 2

FORTRAN
DIMENSION IBUF (n) (Define buffer of n words)
IRCDE =1 (or 2) (Request code)
ICON = conwd (See Comments)
IBUFL = n (or -2n) (Buffer length in words (+) or characters (-1))
ITRAK = 150 (Disc track number)
ISECT =0 (Disc sector number)

CALL EXEC (IRCDE, ICON, IBUF, IBUFL, ITRAK, ISECT) for disc transfers
CALL EXEC (IRCDE, ICON, IBUF, IBUFL) for non-disc transfers.

Comments

CONWD

The conwd, required in the calling sequence, contains the following fields:

0

0ol W|Jd A K|V M LOGICAL UNIT #

BITS | 15

14 13|12 |11)10| 9 | 8| 7 |1 6| 5|4]3]12|11]0

FIELD

FUNCTION

If 1, tells DOS-III to return to the calling program after starting the I/O transfer.

If W = 0, DOS-III waits until the transfer is complete before returning.

If 1, and logical unit number is 2 or 3 (disc), a backward track increment will be

performed (for example, JBIN read/write). (This field is applicable only to
RCODE =1 or RCODE = 2,)

When transferring variable length binary records (M = V = 1), A =1 indicates
absolute binary format.

1) When used with console keyboard input, if K=0 ‘“no printing”’ is specified.
If K=1 printing the input as received is specified.

2) When used with disc write requests, if K=0 execute cyclic check after disc
~write. If K=1 eliminate cyclic check after disc write. '

1) When reading variable length records from punched tape devices in binary
format (M = 1), if V = 0 the record length is determined by buffer length.
If V = 1, the record length is determined by the word count in the first
non-zero character read in.

2) When outputting ASCII records to a list device (M = 0), if V = 0 the first
character in the buffer is interpreted as a carriage control character (see
Section IV). If V = 1, single spacing occurs, and the entire buffer (including
the first character is output to the list device.

Determines the mode of data transfer. If M = 0, transfer is in ASCII character
format, and if M = 1, binary format.

3-21

RCODE =1; RCODE = 2

“Waiting and No Waiting”

If the program requests the ‘“waiting” option in the conwd (W = 0), DOS-III will return the trans-
mission log in the B register upon completion. (The transmission log is a positive number, repre-
senting the number of words or characters transmitted, depending upon which was originally
requested.)

If the program requests the ‘“no waiting” option in the conwd (W = 1), it can check for the com-
pletion of the I/O operation with the I/O STATUS EXEC call (RCODE = 13). When the operation
is complete (STATS = 0), the transmission log can be retrieved from the TLOG parameter.

Notes: When using ‘“‘no waiting” I/O and loading program segments:

1. Under :RUN, DOS-III waits for all I/O to complete before loading the
segment.

2. Under :PROG, DOS-III does not wait.

If a read or write is issued to a disc address that does not lie in the Work Area, the message IT nnnnn
is output and the program is terminated.

Compiler Considerations

Within FORTRAN and ALGOL programs, I/O transfers to standard devices are programmed by
the READ and WRITE statements.

1/O transfers to the Work Area and the disc may be done through the BINRY library routine. The
user must specify: an array to be used as a buffer, the length of the buffer in words (equal to the
number of elements in an integer array, double that for a real array), the disc logical unit number,
track number, sector number, and offset in words within the sector. (If the offset equals 0, the
transfer begins on the sector boundary. If the offset equals N, then N words of the sector are
skipped before starting the transfer.) BINRY has two entry points, BREAD and BWRIT, for read
and write operations respectively. An example below gives the calling procedure.

DIMENSION IBUF(10), BUF(20)

LUN =2

ITRK=120

ISECT = 36

IOFF =0

CALL BREAD (BUF, 40, LUN, ITRK, ISECT, IOFF)
or

CALL BWRIT (IBUF, 10, LUN, ITRK, ISECT, IOFF)

3-22

RCODE =13

/0 STATUS

Purpose

To request the status of a particular I/O device, and the amount transmitted in the last operation.

Assembly Language

EXT EXEC .
JSB EXEC (Transfer control to DOS-III)
DEF *+4 (orb) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF LUN (Logical unit)
DEF STATS (Status returned)
DEF TLOG (Transmission log returned, optional)
return point (Continue execution)

RCODE DEC 13 (Request code = 13)

LUN DEC n (Logical unit number)

STATS NOP (Status returned here)

TLOG NOP (Transmission log returned here)

FORTRAN
IRCDE =13 (Request code)
LUN=n (n is decimal logical unit number)

CALL EXEC (IRCDE, LUN, ISTAT, ITLOG)

Comments

The status returned in the A register and in STATS is the hardware status of the device specified by
the logical unit number. The transmission log in the B register and in TLOG contains the amount of
information which was last transferred (a positive number of words or characters, depending on
which was requested by the call initiating that transfer).

3-23

Purpose

RCODE=38

MEMORY MANAGEMENT
(BUFFER ALLOCATION)

To allocate buffer space within an area reserved under a block name identifier (see ‘“Memory
Management (Initialize)’’) or from unassigned available memory.

Assembly Language

RCODE
RSTAT

LENG
SADR
ID
BID

Comments

EXT EXEC
JSB EXEC
DEF *+6 (or7)
DEF RCODE
DEF RSTAT
DEF LENG
DEF SADR
DEF ID

DEF BID

return point

DEC 38

BSS 1
DEC n
BSS 1
BSS 1
ASC 2,xxxx

(Transfer control to DOS-III)

(Point of return from DOS-III)

(Request code)

(Return status)

(Desired buffer length)

(Buffer starting address is returned here)
(Buffer identifier is returned here)
(Optional block name identifier)
(Continue execution)

(Request code = 38)
(Return status from system:

-4 = illegal parameter
-3 = BID not present
-1 = no memory available

0 normal return
>0 = requested amount not available;

contents is actual number of
words available)

(Buffer length in words)

(Actual starting address from system)

(Buffer identifier from system 1 <<ID < 1023)

(4-character unique memory management block

name identifier)

If a block name identifier is specified, the buffer will be allocated space within the area reserved
for that identifier. If the block name identifier is omitted, space is allocated from unassigned
available memory.

3-24

RCODE = 41

MEMORY MANAGEMENT
(BUFFER RELEASE)

Purpose

To release reserved buffer space.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *#+4 (Point of return from DOS-III)
DEF RCODE - (Request code)
DEF RSTAT (Return status)
DEF ID (buffer identifier)
return point (Continue execution)
RCODE DEC 41 (Request code = 41)
RSTAT BSS 1 (Return status from system:
-4 = illegal parameter
-1 = llegal ID
0 = normal return
ID DEC n (Buffer identifier 1 <ID < 1023)

Comments
This request releases space allocated to buffers. If the specified buffer resides within the area

reserved under a block name identifier, the logical address space remains reserved. Otherwise,
the released space is returned to the system.

3-25

Purpose

RCODE = 35

MEMORY MANAGEMENT

(INITIALIZE)

To reserve a block of memory under a block name identifier specified by the user.

Assembly Language

RCODE
RSTAT

LENG
SADR
BID

LADR

EXT

JSB

DEF
DEF
DEF
DEF
DEF
DEF
DEF

EXEC

EXEC
*+6 (or 7)
RCODE
RSTAT
LENG
SADR
BID
LADR

return point

DEC
BSS

DEC
BSS
ASC

oCT

35
1

n
1
2,xxx%x

n

(Transfer control to DOS-III)

(Point of return from DOS-III)
(Request code)

(Return status)

(Desired block length)

(Block starting address is returned here)
(Block name identifier)

(Optional starting address parameter)
(Continue execution)

(Request code = 35)
(Return status from system:

-4 = illegal parameter

-2 = another block name identifier
assigned to area specified by LADR

-1 = no memory available

0 = normal termination

>0 = space requested not available;
content is number of words
available)

(Block length in words)

(Actual starting address of block—from system)
(4-character memory management block name
identifier)

(Requested starting address—0 = don’t care)
Note: A non-zero LADR value must be an

address between ending program address
and last word of available memory.

3-26

RCODE = 35

Comments

This request reserves a block of memory under the block name identifier (BID) specified by the
user. Subsequent user requests for allocation of buffer space within this area may be made. If the
memory management initialize request (RCODE=35) is not included in a user program prior to
buffer allocation requests (RCODE=38) for buffers within the specified BID, an error return con-
dition results. If LADR is specified and is non-zero, the value must be an address between the end
of program address and the last word of available memory.

3-27

RCODE = 36

MEMORY MANAGEMENT
(STATUS REQUEST)

Purpose

To determine the number of words reserved under a block name identifier or the number of
unallocated words remaining.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF (+3 (or 4) (Point of return from DOS-III)
DEF RCODE (Request code)

DEF LENG (Word count from system)

DEF BID (Optional block name identifier)
return point (Continue execution)

RCODE DEC 36 (Request code = 36)

LENG BSS 1 (Number of words allocated to BID or number of
available words if BID is not present. If BID
parameter is specified but not found, a -3 value
is returned)

BID ASC 2xxxx (Unique memory management block name identi-

fier)

Comments

When the BID parameter is specified, this request returns the number of words reserved under a
user-specified block name identifier (BID). If the BID parameter is specified but not found, a -3
value is returned. If the BID parameter is not specified, the request returns the number of unalloc-
ated words remaining in the system.

3-28

RCODE = 30

MEMORY PROTECT CONTROL

Purpose

To enable or disable the memory protect option from a user program.

CAUTION: THE SYSTEM IS NOT PROTECTED WHEN MEMORY PROTECT IS

IS DISABLED.
Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+38 (Point of return from DOS-III)
DEF RCODE (Request code) -
DEF MPTK (Define the memory protect parameter flag)
return point (Continue execution)

RCODE DEC 30 (Request code = 30)

MPTK DECn (If n = 0, memory protect is activated, and
is activated following any interrupt
completion. If n # 0, then memory protect
is deactivated and remains off after
interrupt completion)

FORTRAN
IRCDE =30

MPTK =0 (or 1)
CALL EXEC (IRCDE,MPTK)

Comments
Any program termination, either normal or aborted, enables memory protect. Program segments

can make memory protect EXEC calls to turn memory protect on or off, but calling and exiting
from segments has no effect on memory protect settings.

3-29

RCODE =6

PROGRAM COMPLETION

Purpose
To notify DOS-III that the calling program is finished and wishes to terminate.
Note: Every program must terminate and return to DOS-III using this

EXEC call, whether the EXEC call is explicitly coded or indirectly
generated by a compiler.

Asseiably Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2 (Define end of parameter list)
DEF RCODE (Request code)
RCODE DEC 6 (Request code = 6)
FORTRAN
IRCDE =6
CALL EXEC (IRCDE)

Compiler Considerations

The FORTRAN and ALGOL compilers automatically generate a PROGRAM COMPLETION EXEC
call when they compile an END or STOP statement.

3-30

RCODE =10

PROGRAM LOAD

Purpose

To load a main program from the disc into main memory and transfer control to its entry point.
Follows the :SS condition.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to DOS-III)
DEF *+3 (to 8) (Determine number of parameters)
DEF RCODE (Request code)

DEF PNAME (Program name)

DEF PRAMI1 (First optional parameter)

DEF PRAMS5 (Fifth optional parameter)

RCODE DEC 10
PNAME ASC 3,xxxxx (Program name)
PRAMI --- (Up to 5 words of parameter information
: passed to the program. See ‘‘Parameter
Processing” at the end of this section.)

PRAMS5

FORTRAN .
DIMENSION NAME(3) (Program name)
IRCDE = 10 '
NAME(1) = xxxxxB (First two characters)
NAME(2) = xxxxxB (Next two characters)
NAME(3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE,NAME/[,p,...])

3-31

RCODE =10

Comments

During main program loading, the system interrogates a system flag called AEPF (location 135,).
This flag is normally zero unless specifically set by a user program. If AEPF is not zero, the contents
of AEPF are treated as an alternate entry point address. The system transfers control to the alter-
nate entry point by performing a JMP AEPF I (jump indirect). AEPF is then cleared. If AEPF =0,
control transfers to the program main entry point.

The Assembly language user can alter the contents of AEPF (and any other base page location) by
using the BASE PAGE STORE EXEC call (RCODE = -19).

3-32

RCODE = 7

PROGRAM SUSPENSION

Purpose

To suspend the calling program from execution until restarted by the GO directive.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2 (Point of return from DOS-III)
DEF RCODE (Request code)
return point , (Continue execution)
RCODE DEC 7 (Request Code = 7)
FORTRAN
IRCDE =7
CALL EXEC (IRCDE)
Comments

DOS-III prints a message on the system console when it processes the PROGRAM SUSPENSION
EXEC call:

name SUSP

When the operator restarts the program with a :GO, up to five parameters may be passed to the sus-
pended program. (See ‘‘Parameter Processing’ at the end of this section.)

3-33

RCODE = 7

Compiler Considerations

The FORTRAN and ALGOL compilers automatically generate a PROGRAM SUSPENSION EXEC
call when they compile a PAUSE statement.

3-34

RCODE = 8

SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into the segment overlay area and transfer
execution control to the segment’s entry point. (See Section V, “DOS-III Subsystems,” for infor-
mation on segmented programs.) Follows the :SS condition.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+3 (to 8) (Determine number of parameters)
DEF RCODE (Request code)
DEF SNAME (Segment name)
DEF PRAMI (First optional parameter)
DEF PRAM5 (Fifth optional parameter)
RCODE DEC 8 (Request code = 8)
SNAME ASC 3,xxxxx (xxxxx is the segment name)
PRAMI1 --- (Up to 5 words of parameter information
PRAMS5 --- passed to the segment. See ‘“‘Parameter
Processing” at the end of this section.)
FORTRAN
DIMENSION NAME (3) (Segment name)
IRCDE =8
NAME (1) = xxxxxB (First two characters)
NAME (2) = xxxxxB (Next two characters)
NAME (3) = xxxxxB (Last character and blank)

CALL EXEC (IRCDE, NAME [,p,...])

3-35

RCODE = 8

Comments

In the FORTRAN or ALGOL calling sequence, the user must convert the name of the segment from
ASCII to octal and store it in the NAME array, two characters per word. The RTE/DOS FORTRAN
IV Compiler, however, can convert this automatically through Hollerith constants.

During program segment loading, the system interrogates a system flag called AEPF (location 135,).
This flag is normally zero unless specifically set by a user program. If AEPF = 0, control transfers
to the program segment main entry point. If AEPF is not zero, the contents of AEPF are treated

as an alternate entry point address. The system transfers control to the alternate entry point by
performing a JMP AEPF,I (jump indirect). AEPF is then cleared. (The Assembly language user can
alter the contents of AEPF (and any other base page location) by using the BASE PAGE STORE
EXEC call (RCODE = -19).)

See “Segmented Programs,” in Section V, for a description of segmented programs.

3-36

RCODE = 29

SEGMENT RETURN

Purpose
To return control from a segment to the main program at the instruction immediately following the

program segment load call. (This provides a subroutine-like return from a segment to a main
program.)

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2(to 7) (Point of return from DOS-III)
DEF RCODE (Define the request code)
DEF PRAMI1 (Define the first parameter)
DEF PRAMS5 (Define the fifth optional parameter)
RCODE DEC 29 (Request code = 29)
PRAM1 -+ - (Up to five words of parameter information
. are passed from the segment to the main
program. See ‘“Parameter Processing” at
the end of this section)
PRAMS5 » - -
FORTRAN
IRCDE =29

CALL EXEC (IRCDE [,P1, ... ,P5])

3-37

Purpose

RCODE =11

TIME REQUEST

To request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+38
DEF RCODE
DEF ARRAY
return point

RCODE DEC 11
ARRAY BSS b5

FORTRAN

DIMENSION ITIME (5)

IRCDE =11

CALL EXEC (IRCDE, ITIME)

Comments

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)

(Time value array)

(Continue execution)

(Request code = 11)
(Time value array)

When DOS-III returns, the time value array contains the time on a 24-hour clock:

ARRAY

ARRAY +1
ARRAY +2
ARRAY +3
ARRAY +4

or ITIME (1)
or ITIME (2)
or ITIME (3)
or ITIME (4)
or ITIME (5)

Tenth of seconds

= Seconds

Minutes

= Hours

Not used, but must be present (always = 0)

If DOS-III does not contain Time-base Generator, all values in the time array are set to zero.

3-38

RCODE =17

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the Work Area on the system or current user disc and the
number of sectors per track.

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+5(or6) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF FTRAK (First track)
DEF LTRAK (Last track)
DEF SIZE (Number of sectors/track)
DEF DISC (Optional parameter — see Comments)
return point (Continue execution)
RCODE DEC 17 (Request code =17)
FTRAK NOP (Returns first work track number here)
LTRAK NOP (Returns last work track number here)
SIZE NOP (Returns number of sectors per track here)
DISC DEC n (n = 0 for system disc; n # 0 for current user disc)
FORTRAN
IRCDE = 17 (Request code)

CALL EXEC (IRCDE, IFTRK, ILTRK, ISIZE, IDISC)
or
CALL EXEC (IRCDE, IFTRK, ILTRK, ISIZE)

3-39

RCODE =17

Comments

This call returns the limits of the Work Area, which is that area of the system or user disc which pro-
grams use for temporary storage with the I/O READ/WRITE EXEC call (RCODE =1 or 2). If the
DISC parameter is omitted from the calling sequence, or if DISC = 0, the system disc information is
returned. If DISC # 0, user disc information is returned.

3-40

Purpose

RCODE =16

WORK AREA STATUS

To ascertain whether a specified number of consecutive operable tracks exist in the Work Area of

the system disc.

Assembly Language

EXT

JSB
DEF
DEF
DEF
DEF
DEF
return

RCODE DEC
NTRAK DEC
TRACK NOP
STRAK NOP

FORTRAN

IRCDE = 16
NTRAK= n
ITRAK = m

EXEC

EXEC
*+5
RCODE
NTRAK
TRACK
STRAK
point

16

(Transfer control to DOS-III)
(Point of return from DOS-III)
(Request code)

(Number of tracks desired)
(Starting track desired)
(Actual starting track)
(Continue execution)

(Request code = 16)

(Consecutive tracks desired)

(Desired track,; from LIMITS call)

(Actual starting track available, 0 if n tracks
not available)

(Request code)
(Consecutive tracks desired)
(Desired starting track)

CALL EXEC (IRCDE, NTRAK, ITRAK, ISTRK)

3-41

RCODE =16

Comments

This call is used with the WORK AREA LIMITS EXEC call (RCODE = 17) to establish the nature

of the Work Area. The READ/WRITE EXEC call (RCODE = 1 or 2) then transmits information to
and from this area, using the track numbers determined by this call. DOS-IIT handles track switching
automatically.

DOS-III checks whether there are n consecutive tracks starting at the track specified. If n tracks are

available, DOS-III returns the starting track number to the program. If DOS-III does not locate n
consecutive tracks, it returns 0 in STRAK or ISTRK.

3-42

RCODE = 23

USER DISC CHANGE

Purpose

To change the subchannel assignment for the user disc.

Assembly Language

EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *#+3 (or 4) (Point of return from DOS-III)
DEF RCODE (Request code)
DEF LABEL (Disc label)
DEF SUBCH (Disc subchannel; optional)
return point (Continue execution)

RCODE DEC 23 (Request code = 23)

LABEL ASC 3,xxxxxx (Label = xxxxxx)

SUBCH DEC (0to7)

FORTRAN
DIMENSION LABEL (3) (New label)
IRCDE = 23
LABEL (1) = xxxxxB (First two characters)
LABEL (2) = xxxxxB ' (Next two characters)
LABEL (3) = xxxxxB (Last two characters)
ICHNL =M (0 through 7)

CALL EXEC (IRCDE, LABEL, ICHNL)
or
CALL EXEC (IRCDE, LABEL)

3-43

RCODE = 23

Comments

If both the label and subchannel are specified, DOS-III checks whether the subchannel has that
label. If it does, the assighment is made and DOS-III returns. If not, DOS-III outputs

LBL = name (name is label on the subchannel)
or

UNLBL

UD nnnnn (nnnnn = address of EXEC call)
xxxxx SUSP (xxxxx = name of program)

The operator can load a correctly labeled disc on the subchannel and input
:GO

to return to the beginning of the EXEC call (not the normal return point) so that the program can
reissue the EXEC call. If the operator does not have a properly labeled disc (or the subchannel is
a permanent disc), he should use :OFF or : ABORT.

If only a label is specified, DOS-III searches for the label, starting with the highest subchannel. If
DOS-III finds the label, it makes the assignment. If DOS-III cannot find the label, it suspends the
program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load a properly labeled disc then input

:GO
to return to the beginning of the EXEC call.
If the label equals ““*”” and a subchannel is specified, DOS-III checks whether the subchannel is
unlabeled. If it is, DOS-III makes the assignment. If the subchannel is labeled, DOS-III suspends
the program and outputs

LBL = name

UD nnnnn

xxxxx SUSP (xxxxx is the program)

The operator can then abort the program or load an unlabeled disc on the proper channel then
input

:GO

to return to the beginning of the EXEC call.

3-44

RCODE = 23

If the label equals “*” and a subchannel is not given, DOS-III searches for an unlabeled disc, starting
with the highest subchannel. DOS-III assigns the first unlabeled disc as the user disc, or if no un-
labeled discs are found, it suspends the program and outputs

DISC NOT ON SYS
UD nnnnn
xxxxx SUSP

The operator can then abort the program or load an unlabeled disc then input
:GO

to return to the beginning of the EXEC call.

Notes: 1. If the EXEC call specifies a subchannel with an incorrect system
proprietary code (see Appendix A), DOS-III still makes the assign-
ment but outputs

TSB DISC or 222 DISC

2. If the EXEC call specifies a subchannel whose system generation
code (see Section VII) does not match that of the system disc,
DOS-III still makes the assignment, but outputs
DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POS

3. The changes made by this EXEC call are only temporary, and will be
reset at the end of each job to the user subchannel specified during
system generation,

4. If the specified subchannel is not active (physically present), DOS-III

suspends the programaand outputs
I/0 ERR NR USER DISC

or
I/O ERR PE USER DISC

UD nnnnn (nnnnn = address of EXEC call)
xxxxx SUSP

3-45

PARAMETER PROCESSING

Certain user programs require parameters for their execution. DOS-III allows passing of parameters
in the following environments:

(1) from a main program to a main program

(2) {from a main program to a segment

(3) from asegment to a main program

(4) from a user to a suspended program
Parameter transferral from program to program (1-3) is handled programmatically by specifying

parameters in an EXEC calling sequence. Parameter transferral from a user directly to a program (4)
is handled by passing parameters back to the suspended program through the GO directive.

All the programs receiving parameters retrieve them in the same way. The parameters to be passed

(if any) are located in the base page parameter buffer RONBF (see Appendix A). In the Assembly
language environment, the B register contains the address of the parameter buffer. In the FORTRAN/
ALGOL environment, a library routine (RMPAR) is provided to transfer parameters to a user-defined
buffer. (This call must be the first statement executed upon entry.)

ASSEMBLY LANGUAGE EXAMPLE

EXT EXEC

JSB EXEC (Call EXEC to suspend program)
DEF *+2

DEF RCODE

LDA B, (Get parameter from GO directive)
SZA RSS

JMP NOPAR

RCODE DEC7

B EQU 1
FORTRAN EXAMPLE
DIMENSION I(5) (Define user parameter buffer)
CALL EXEC (7) (Suspend program)
CALL RMPAR (I) (Get parameters from :GO)

3-46

SECTION IV
Input/Qutput

In DOS-III, centralized control and logical referencing of I/O operations effect simple, device-
independent programming. Each I/O device is interfaced to the computer through one or more I/O
channels which are linked by hardware to corresponding main memory locations for interrupt
processing. By means of several user-defined I/O tables, multiple-device drivers, and program
EXEC calls, DOS-III relieves the programmer of most I/O problems.

Note: Refer to Section XIV, “Privileged Mode,’ for a discussion of privileged
mode processing.

USER PROGRAM /O

The user program requests I/O by means of an EXEC call (see Section III) which specifies the
logical unit, control information, type of operation, buffer location and buffer length.

Note: Within the DOS-III environment, it is possible to transfer up to 16K
words in a single operation.

All references to I/O devices are made through logical unit numbers. This relieves the program-
mer of the burden of knowing which physical device or which I/O channel is actually going to
perform the I/O transfer.

4-1

DOS-III has the following standard function assignments for logical unit numbers:

Logical Unit Number Function
1 System console
2 System mass storage
3 User mass storage
Restored
4 Standard punch device
after
5 Standard input device
each
6 Standard list device
:JOB. .
7 Unassigned
8 Recommended for magnetic tape
9 Can be assigned to any device
10 by user
6310

The user determines the number of logical units when the system is generated. At the beginning of
each JOB, logical units 1 through 9 are restored to the values established at system generation
(see Section X), whereas 10 through 63 are restored only on a start-up from the disc.

SYSTEM I/0 PROCESSING
System I/O processing is controlled by three I/O tables:

1) Equipment Table (EQT) — which records all devices, I/O channels, driver entry
points, DMA requirements, and disc location (if disc-resident).

2) Logical Unit Table (LUT) — which assigns an equipment table number to each
of its entries, thus allowing the programmer to reference changeable logical units

instead of fixed physical units,

3) Interrupt Table (INT) — which relates each I/O channel to its corresponding
equipment table entry.

For a detailed description of these tables see Appendix A.

4-2

When the system recognizes an EXEC call that performs I/O, the request is sent to the I/O supervisor
EXEC module ($EX18). $EX18 determines if the driver for the requested device is main-memory
resident; if not, the driver is loaded into main memory from the disc. Once the driver is in main-
memory, the addresses of its EQT entries are placed in the base page communication area and control
is transferred to the driver’s initiation section. After the driver initiates the I/O operation, it returns
to $EX18. If the I/O was requested ‘“‘without wait’, DOS-III immediately returns control to the

user program; if the I/O was requested “with wait”, DOS-III waits until the I/O transfer is complete
before returning to the user program.

Once a driver has been initiated, interrupts from the device are channeled through a central inter-
rupt processing routine ($CIC). (All interrupt locations in main memory contain a JSB $CIC.)
$CIC determines which device interrupted, resets the addresses of the EQT entries into the base
page communication area (if necessary), and transfers control to the driver’s continuation section.
The driver either continues or completes the I/O operation, and control is then returned to the
executing user program.

INPUT/OUTPUT DRIVERS

The I/O driver routines, either main-memory or disc-resident, handle the actual transfers of infor-
mation between the computer and external devices. They are responsible for initiating and continu-
ing operations on all devices of equivalent type. When a transfer is initiated, DOS-III places the

EQT entry addressed into the base page communication area and executes a subroutine jump to the
driver entry point. The driver configures itself for the particular channel (in this way the same
driver can handle several devices of the same type on many channels), initiates the transfer, and re-
turns to DOS-III. When an interrupt occurs on the channel, indicating continuation or completion
of the transfer, DOS-III again transfers control to the driver. DOS-III requires only three drivers: the
Moving-Head Disc Driver (DVR31), the System Console Driver (DVR00, DVR05, or DVR26), and
the Paper Tape Reader Driver (DVRO01).

The following standard drivers are fully compatible with DOS-III:

Driver Number Description Part Number DMA?
DVROO System Console Driver (TTY) 20985-60001 No
DVRO1 Paper Tape Reader Driver 20987-60001 No
DVRO2 Paper Tape Punch Driver 20989-60001 No
DVRO5 System Console Driver (TTY) 24157-60001 No
DVR10 Digital Plotter Complete Driver 07210-16001 No
DVR10 Digital Plotter Minimum Driver 07210-16002 No
DVR11 Card Reader Driver 24272-60001 Yes
DVR12 Line Printer Driver 24307-16011 No
DVR15 Optical Mark Reader Driver 24307-16017 No
DVR23 Magnetic Tape Unit Driver 13024-60001 Yes
DVR26 Terminal Printer Driver 24307-16018 No
DVR31 Disc Driver 24156-60001 Yes
DVR33 Writable Control Store Driver 24278-60001 Yes
DVR34 Card Reader Punch Driver 12989-16002 No
DVR67 Hardwired Serial Interface Driver 24341-16001 No

4-3

The driver name consists of the letters “DVR” prefixed to the equipment type code. In addition,
the programmer can write drivers for special devices, following the guidelines in Section XIII,
“Planning I/O Drivers.”” The driver is only responsible for updating the status field in the EQT
entry; DOS-III handles the availability field.

SPECIAL DRIVER CONSIDERATIONS

Since the various peripheral devices are unique, the drivers designed for use with these devices are
also unique. This diversification creates the need for special considerations when planning input/
output operations. The DOS-III Standard Drivers Reference Manual (24307-90073) deals at length
with such subjects as creating plotter drawings (Section II), line printer formatting (Section IV),
magnetic tape error recovery (Section VI), and using the writable control store driver (Section VIII).

4-4

SECTION V
DOS-IIl Subsystems

This section describes conventions for using the following DOS-III subsystems:
® ALGOL Compiler
® Assembler
® FORTRAN and FORTRAN IV Compilers
® Relocating Loader
® Relocatable libraries, including the DEBUG subroutine

and concludes with a discussion of program segmentation.

SOURCE PROGRAM FILES

Using the DOS-III STORE,S and EDIT directives, the operator creates and edits files of source pro-
grams written in FORTRAN, ALGOL, or Assembly language. In load-and-go operations the
FORTRAN Compiler, FORTRAN IV Compiler, ALGOL Compiler, and Assembler generate
relocatable binary code onto temporary disc storage. The Relocating Loader can then relocate

and merge the code with referenced subroutines of the Relocatable Library. Once loaded, a pro-
gram is executed by the PROG or RUN directive.

LOAD-AND-GO FACILITY

DOS-III provides the facility for ‘‘load-and-go,” which is defined as compilation or assembly,
loading, and execution of a user program without using intervening object paper tapes. To
accomplish this, the compiler or assembler generates relocatable object code from source statements
and stores it on the disc in the Job Binary Area. Then separate directives initiate loading (PROG,
LOADR) and execution (RUN,program).

DOS-III can store the object code of several programs and associated segments and subroutines on
the disc. The Relocating Loader retrieves them from the disc, and relocates them into executable
absolute program units.

5-1

ALGOL COMPILER

The ALGOL Compiler consists of a main program and a data segment which operate under the
control of DOS-III. The compiler resides on the disc and is read into main memory when called
for by a PROG directive.

Source programs written in ALGOL are accepted either from an input device or from a user disc
file and are translated by the ALGOL Compiler into relocatable object programs optionally
punched on paper tape (and optionally stored in the Job Binary Area of the disc). The object pro-
gram can be loaded using the DOS-III Relocating Loader and executed using the RUN or PROG
directive.

ALGOL I/0

The HP ALGOL I/O statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

Compiler Operation
The ALGOL Compiler is initiated with a PROG directive, and inputs the source program from an

input device, or, if from a source file, from a file specified by a JFILE directive. The PROG direc-
tive for the ALGOL Compiler should take the tollowing form:

5-2

PROG,ALGOL

:PROG,ALGOL[,P, P, PP, ,99]

where P f

logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

logical unit number of list device (default is 6)

logical unit number of punch device (default is 4)

lines/page on the source listing (default is 56)

the job binary parameter: If present, the object program is stored in the Job Binary

Area for later loading. Any requested punch output still occurs. (The 99 may occur
anywhere in the parameter list, but terminates the list.)

All parameters are optional. If p; through p, are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UPnn

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-3

At the end of the compilation, the following message is output to the system console:

$END, ALGOL

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG
directive) overflows, the following message is output and compilation continues:

JBIN OVF
The compilation will be completed, but there will be no further loading of binary code into the job
binary area.

The compiler terminates if

® Logical unit 2 has been given for input and no :JFILE has been declared. The
following message is output:

NO SOURCE

® The first statement of the source file specified by the PROG directive p 1 barameter
does not begin with the word HPAL. (Or the control statement contains an error.)
The following message is output:

HPAL??

® A colon occurs in the first position of a source statement line, The following message
is output:

IE nnnnn

where nnnnn is the memory location of the input request.

5-4

Language Considerations

The HP ALGOL control statement has this format:

HPAL [,L,A,B,P], “name” [,P,] [,P,]

where HPAL

L,AB,P
L

A
B
p

‘(name,’

is mandatory

are symbols (any combination is allowed) representing:
produce source program listing

produce object code listing

produce object tape

a procedure only is to be compiled
is the program name (the quotes and a program name are mandatory)

is a decimal digit between 0 and 9 specifying the name of the error routine to be
called if an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .RTOI, EXP, .ITOI,
TAN. The name of the error routine is ERRn, wheren =P ,orn=0if P, isnot
specified. ERRO is supplied in the Relocatable Library; all other error routines
must be supplied by the user.

is a decimal digit specifying the type of the program: 3 for a main program, 5 for
a segment, and 6 or 7 for a utility subroutine or procedure. If P, is not specified,
the type is set to 3 for main programs and to 7 for procedures (P option in the
control statement).

If no symbols are specified, the program will run but will not produce any output other
than diagnostic messages and job binary (if requested). A program name in quotes (the NAM-record
name which must be a legitimate identifier without blanks) must follow the symbols.

Sense switch control is not used with DOS-III.

EXAMPLE

HPAL,L.B,“TEST”,1,3

5-5

ASSEMBLER

The Assembler, a segmented program that executes in the main-memory User Program Area,
operates under control of DOS-III. The Assembler consists of a main program (ASMB) and six
segments (ASMBD, ASMB1, ASMB2, ASMB3, ASMB4, ASMB5), and resides on the disc. The
main program is read into main memory when called by a PROG directive.

Source programs, accepted from either an input device or a user source file on the disc, are trans-
lated into absolute or relocatable object programs; absolute code is punched in binary records,
suitable for execution only outside of DOS-III. ASMB can store relocatable code in the Job Binary
Area of the disc for on-line execution, as well as punch it on paper tape.

A source program passes through the input device only once, unless there is insufficient disc storage
space. In the latter case, DOS-III informs the user that two passes are required.

Assembler 1/0

The Assembly Language I/O EXEC calls should specify the proper logical unit numbers for the
DOS-III configuration. (See Section IV.)

When preparing input for the batch device, the programmer must remember to never put a colon (:)
in column one of the source statement. DOS-III aborts the current program if a directive (signified
by : in column one) occurs during data input.
If the memory protect hardware option is present (and enabled), it protects the resident supervisor
from alteration. It interrupts the execution of a user program under these conditions:

® Any operation that would modify the protected area or jump into it.

® Any I/O instruction, except those referencing the switch register or overflow register.

® The halt instruction.

Memory protect gives control to DOS-III when an interrupt occurs, and DOS-III checks whether it
was an EXEC call. If not, the user program is aborted.

Assembler Operation

The DOS-III Assembler is initiated with a PROG directive. However, before entering the PROG
directive, the operator must place the source program in the input device. If the source program is
on the disc, the operator must first specify the file with a JFILE directive, and set parameter

pj = 2 in the PROG directive. The PROG directive for Assembler should take the following form:

5-6

PROG,ASMB

:PROG,ASMB[,P, P, P, P,,99]

where Pz = logical unit number of input device (default is 5; set to 2 for source file
input indicated by a JFILE directive)

P, = logical unit number of list device (default is 6)

P, = logical unit number of punch device (default is 4)

P, = lines/page on the source listing (default is 56)

99 = the job binary parameter. If present, the object program is stored in the Job

Binary Area for later loading. Any requested punch output still occurs. (The 99
may occur anywhere in the parameter list, but terminates the list.)

All parameters are optional. If Py through p, are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Assembly

When the end of a source tape is encountered, the following is output on the system console:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n

:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

5-7

The following message on the system console signifies the end of assembly:

$END ASMB

If another pass of the source program is required, this message is output at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and enter:

:GO

If an error is found in the Assembler control statement, the following message is output on the
system console:

SEND ASMB CS

and the current assembly stops.
If an end-of-file condition on source input occurs before an END statement is found, the console
signals:

$END ASMB XEND

and the current assembly stops.
If source input from logical unit 2 (disc) is requested, but no file has been declared (see :JFILE,
Section II), the system console signals:

$END ASMB NPRG

and the current assembly stops.

If the Job Binary Area, where binary code is stored by a 99 parameter, overflows, assembly continues
but the following message is output on the system console:

JBIN OVF
However, no further binary code is stored in the Job Binary Area.

5-8

The next message is printed on a separate line just above each error diagnostic printed in the pro-
gram listing during pass 1.

nnn

nnn is the “tape” number on which the error (reported on the next line of the listing) occurred.

A program may consist of more than one tape. The tape counter starts with one and increments by
one whenever an end-of-tape condition occurs (paper tape) or a blank card is encountered. When
the counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the assembly is associated with
a different message (printed on a separate line just above each diagnostic):

PG ppp

ppp is the page number (in the listing) of the previous error diagnostic. PG 000 is associated with
the first error found in the program,

Language Considerations

ASSEMBLER CONTROL STATEMENT. Although only relocatable code can be run under DOS-III,
the DOS-IIT Assembler is able to assemble absolute code if it is specified. Absolute code is never
stored in the Job Binary Area. To get absolute code, the control statement must include an “A”
parameter. The “R’ parameter, however, is not required for relocatable code. An “X’’ causes the
assembler to generate non-Extended Arithmetic Unit code.

EXAMPLES
ASMB,L,B List and Punch Relocatable Binary.
ASMB,R,L B, X List and Punch Relocatable, non-EAU Binary.
ASMB,T,L List and Print Symbol Table.
ASMB,A,B,L List and Punch Absolute Binary,

5-9

NAM STATEMENT. The NAM statement allows up to eight optional parameters. Only the first
two parameters are significant in DOS-III.

NAM name [, type] [link mode]
where name is the program name (it should not equal any file name).

type is the program entry type code (octal):

0 — System main memory resident (default)
1 — Disc resident executive supervisor module
2 — Reserved for system
3 — User program, main
4 — Disc resident device driver
5 — User program segment
6 — Library routine
7 — Subroutine
10 — Relocatable binary
11 — ASCII source statements
12 — Binary data
13 — ASCII data
14 — Absolute binary

link mode is the mode of linkage to be performed:

0 — current page linking
non-zero — base page linking (default)

If type is 0, 1, 2, or greater than 7, the assembler and DSGEN will accept it, but the Relocating
Loader will not.

The link mode parameter specifies the mode of linking that will occur at system generation time. If
zero, current page linking occurs. If non-zero, base page linking occurs. If omitted, the default con-
dition (non-zero) is assumed and base page linking occurs.

In addition to the name defined by NAM, each program, with the exception of the main program,
has one or more entry points defined by an ENT statement. For the main program (type = 3), the
transfer address of the END statement is sufficient. The program name is used for programmer-to-
DOS-III communication, while the entry point is used for program-to-program communication.

Note: DOS-III Assembly language does not contain the ORB statement because
information cannot be directly loaded into the protected base page area
by user programs. However, programs can read information from base
page using absolute address operands up to 17775.

5-10

FORTRAN COMPILERS

The FORTRAN Compilers operate under control of the DOS-III Supervisor. The compilers reside
on the disc and are read into main memory only when needed.

FORTRAN and FORTRAN IV are problem-oriented programming languages. Source programs,
accepted from either an input device or a user disc file, are translated into relocatable object
programs, optionally punched on paper tape, and optionally stored in the Job Binary Area of the
disc. The object program can be loaded using the DOS-III Relocating Loader and executed using
the RUN or PROG directive.

FORTRAN I/O

FORTRAN I/O statements should specify the proper logical unit numbers for the DOS-III
configuration. (See Section IV.)

When preparing input data for the batch device, the user should never put a colon (:) in column one

of the record because the colon in the first position signifies a directive. DOS-III aborts the job if a
directive occurs during data input.

Compiler Operation
The FORTRAN compilers are initiated with a PROG directive, and input the source program from

an input device, or, if from a source file, from a file specified by a JFILE directive. The PROG
directive for FORTR AN compilers should take the following form:

5-11

PROG,.FTN[4]

:PROG,FTN[.P, P, .P, P, 99]
:PROG,FTN4[,P, P, P,,P,.99]

P, = logical unit number of input device (default is 5; set to 2 for source file input indicated
by a JFILE directive)

P, = logical unit number of list device (default is 6)

P, = logical unit number of punch device (default is 4)

P , = lines /page on the source listing (default is 56)

99 = the job binary parameter. If present, the object program is stored in the Job Binary Area

for later loading. Any requested punch output still occurs. (The 99 may occur anywhere
in the parameter list, but terminates the list.)

All parameters are optional. If p; through p, are not present, the default operations are assumed.
If 99 is not present, the binary output is not placed in the Job Binary Area.

Messages During Compilation

When the end of a source tape is encountered, the following is output on the system console:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up:

:UP,n
:GO

Compilation continues after the :GO. More than one source tape can be compiled into one program
by loading the next tape before giving the :GO.

At the end of compilation, the following message is output on the system console:

$END, FTN[4]

5-12

If the Job Binary Area (where binary code is stored because of a 99 parameter in the PROG direc-
tive) overflows, the following message is output and compilation continues:

JBIN OVF

There is no further loading into the Job Binary Area.
The compiler terminates if
® logical unit 2 has been given for input and no JFILE has been declared.
($END,FTN[4] is not output.)

® There are not enough work tracks for the compiler. The following message is output:

TRACKS UNAVAILABLE

® A colon occurs in the first column of a source program entered through the batch
device. (Blank cards in the source program are ignored.) The following message is
output.

IE nnnnn

where nnnnn is the memory location of the input request.

Language Considerations

FORTRAN CONTROL STATEMENT. Besides the standard options described in the FORTRAN
manual, two compiler options, T and n, are available. A “T” lists the symbol table for each program
in the compilation. If a “u” follows the address of a variable, that variable is undefined (the program
does not assign a value to it). The A option includes this T option. If n appears, n is a decimal digit
(1 through 9) which specifies an error routine. The user must then supply an exrror routine, ERRn.
If this option does not appear, the standard library error routine, ERRO, is used. The error routine
is called when an error occurs in ALOG, SQRT, .RTOR, SIN, COS, .TROI, EXP, .ITOI, or TAN.

5-13

Extended and Auxiliary Statements

In addition to the standard FORTRAN statement, the FORTRAN compiler running under DOS-III
supports the following extensions and additions:

1. extended PROGRAM statement
2. additional DATA statement

3. additional EXTERNAL statement

Execution of the following two FORTRAN statements results in special processing in the DOS-III
environment:

1. PAUSE

2. STOP

5-14

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [,type] [,link mode]

name is the five-character name of the program (and its main entry point.
When the program is executed using a RUN or PROG directive, this
name is used. '

type is a decimal digit specifying the program type. Only typés 3 (main),
5 (segment), and 6 or 7 (library) are significant in DOS-III. The type

is set to 3 if not given.

link mode is the mode of linkage to be performed: O indicates current page
linking and any non-zero digit indicates base page linking (default).

5-15

DATA STATEMENT

The DATA statement sets initial values for variables and array elements. The format of the DATA
statement is

DATAk, /d,/k,/d,/, ...k, /d /

where k is a list of variables and array elements separated by commas, d is a list of (optionally
signed) constants, separated by commas and optionally preceded by j* (j is an integer
constant).

The elements of d; are serially assigned to the elements of % ;. The form j* means that the constant
is assigned j times. The k; and d; must correspond one-to-one.

Elements of k 7 must not be from COMMON.
Arrays must be defined (i.e., DIMENSION) before the DATA statements in which they appear.
DATA statements may occur anywhere in a program following the specification statements.
EXAMPLE

DIMENSION A(3), 1(2)

DATA A(1),A(2),A(3)/1.0,2.0,3.0/,1(1),1(2)/2%1/

5-16

EXTERNAL STATEMENT

With the EXTERNAL statement, subroutines and functions can be passed as parameters in a sub-
routine or function call. For example, the routine XYZ can be passed to a subroutine if XYZ is
previously declared EXTERNAL. Each program may declare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

EXTERNAL v, v,, ... v,

where v is the entry point of a function, subroutine, or library program.

EXAMPLE

EXTERNAL XYZ,FL1
Z=Q-RMX(XYZ,FL1,3.56,4.75)

FUNCTION RMX(X,Y,A,B)
RMX = X(A)*Y(B)
END

ERROR E-0018 means too many externals.

Note: If alibrary routine, such as SIN, is used as an EXTERNAL, the compiler
changes the first letter of the entry point to “%’, Special versions of the
library routines already exist with the first character changed to “%”.

5-17

PAUSE AND STOP

PAUSE causes the following message to be output to the system console:
PAUSE xxxx
where xxxx is an optional octal number.

To restart the program, the operator uses a GO directive.

STOP causes the program to terminate after the following message:
STOP program name xxxx

where xxxx is an octal number.

5-18

ERRO LIBRARY ROUTINE

ERRO, the error print routine referred to under the FORTRAN or ALGOL control statement, out-
puts the following message to the system console whenever an error occurs in a library routine:

hame. nn xXx

where name is the name of the user’s program,
nn is the routine identifier, and
xx is the error type.

The compiler generates calls to ERRO automatically. If the FORTRAN (or ALGOL) control
statement includes an n option, the call will be to ERRn, a routine which the user must supply.

5-19

DOS-IIT RELOCATING LOADER

The DOS-III Relocating Loader accepts relocatable object programs which have been translated by
the Assembler, ALGOL Compiler, or FORTRAN Compilers. It generates an executable main-
memory image of each such program. The relocatable programs may enter the loader as

® Job Binary Area programs translated during the current job
® User files
® Punched tapes, magnetic tapes

® Subroutines from the disc-resident Relocatable Library

Each main program is relocated to the start of the User Area and linked to its external references,
such as library routines. Segments will overlay the area following the main program and its sub-
routines. Programs may run under control of the DEBUG library routine. The main program, plus
its subroutines and its longest segment, can be as large as the User Area. With a RUN or PROG
directive, the program is called by name from the disc and executed. With the STORE,P directive,
the program may be stored as a permanent user file to be run during a later job. If the Loader is
to be re-executed during a single job, the Job Binary Area must be cleared (using the CLEAR
directive) to prevent duplicate program names.

5-20

PROG,LOADR

The DOS-III Relocating Loader is initiated by a PROG directive from the batch or keyboard device.

Format

:PROG,LOADR[,P, P, P, P P,]

P,

Comments

0 for loading from JBIN and relocatable library (default)
2 for loading from JBIN, user files, and relocatable library

n for loading from JBIN, user files, relocatable library, and paper tape or
magnetic tape (logical unit n)

list device logical unit number (default is 6)
0 for no DEBUG, # 0 for DEBUG (default is 0)
0 for base page linking, # 0 for current page linking (default is 0)

0 for system default program bounds (e.g., UBFWA-UBLWA and
UMFWA-UMLWA); = 1 for user-specified program bounds (default is 0)

INPUT PARAMETER [P;]. Note the hierachy here. If n is specified, the JBIN area is still scanned
first, then user files are requested and, finally, the peripheral relocatable input is accepted.

If Pl # zero, the Loader first expects a list of relocatable file names. In keyboard mode, the
Loader requests:

ENTER FILE NAME(S) OR /E

then waits for input. After each list of files is entered, the message repeats until a /E is entered.

In batch mode the list of files is entered as

file-name 1, file-name 2, . . . ,/E

following the PROG directive (or following the bounds parameters if Pg = 1). If there are no
user files, a /E record must be entered.

5-21

The file list is a series of records containing file names separated by commas, ending with a /E.
All programs in each file are loaded unless a particular subset of the file is specified:

file-name (prog 1, prog 2. . .)

Only the programs specified within the parentheses are loaded from the file-name. The file list is
simply a “/E” if no files are to be loaded. (The search for these files is made only on the current
user disc; the Loader is unaffected by :SS.)

DEBUG PARAMETER [P3]. Selecting the DEBUG option causes DEBUG to be appended to each
main program and segment. The Loader sets the primary entry point of each to DEBUG, rather
than the user routine. When the program is run, DEBUG takes control of the program’s execution
and seeks instructions from the system console.

CURRENT PAGE LINKING PARAMETER [P4]. If requested to do so (P4 # zero), the Loader

attempts to place necessary program links on the current page of memory as opposed to the base
page, to provide more area on the base page for large programs.

Note: While using the Loader with the current page linking option, remember that:

a. Current page linking cannot be used on programs which use main
memory following the program area for writing data (at execution
time). For instance, the Assembler builds its symbol table imme-
diately following the last word of the largest segment.

b. Programs should be broken into subroutines of less than 2K
because links are generated only at the beginning and end of
the program. Links cannot be inserted into the middle of a
program since the boundary between program and links may
fall in the middle of a skip or jump sequence. If the program
spans more than two pages, the middle page(s) will have no
area available for current links and will use base page links; thus,
the potential for greater efficiency will be lost.

PROGRAM BOUNDS SPECIFICATION PARAMETER [Pz]. The user has the option of specifying
the base page bounds and the main memory bounds for the relocatable modules being loaded. If
parameter Py in the PROG,LOADR directive is zero, the program bounds are determined by the

system pointers:
UBFWA lower base page bound
UBLWA upper base page bound
UMFWA lower main memory bound

UMLWA upper main memory bound

If Py is equal to one, the user can specify his own memory bounds. In batch mode, the Loader
reads the bounds from the input device immediately following the :PROG, LOADR directive. The
bounds are in the form of two records: the first record is interpreted as the lower and upper base
page bounds, specified by two octal constants separated by a comma. If an error occurs in the first

5-22

record, the Loader outputs an L18 error message. The second record is interpreted as the lower
and upper main memory bounds, specified by two octal constants separated by a comma. If an
error occurs in the second record, the Loader outputs an L19 error message. If any of the bounds
are omitted, the appropriate system default value is used. In keyboard mode, the two records are
entered in response to the messages

BP BND [L,U]?
PROG BND [L,U]?

If an error occurs while entering the bounds in keyboard mode, the user can re-enter the bounds
(after an L18 or .19 error message). If an L18 or L19 error message occurs in batch mode, the
Loader aborts the job.

I/0 Drivers

The Loader will accept Type 4 programs (Disc Resident Device Drivers) and store them as such in
the user directory. Type 4 programs cannot be combined with any other program type during any
given load operation.

Loader Operation

The DOS-III Relocating Loader is a two-pass Loader. The first pass consists of setting the bounds,
inputting and scanning relocatable programs to build the necessary tables (program name table
and a table of entry points and externals), and matching entry points with externals. The second
pass involves the relocation of the programs into an absolute core image format on the disc.

INPUTTING AND SCANNING THE PROGRAMS. Programs are scanned (and input, if necessary)
according to P in the PROG,LOADR directive. (Only non-disc relocatable programs must be input;
there are stored temporarily on the Work Area of the disc for processing during the second pass.)
Since main programs are matched with segments during the scan, each main program must be loaded
before any of its segments.

If paper tape input is requested, the following messages are output to the system console:

LOAD TAPE
LOADR SUSP
@

The loader suspends. The operator places a tape in the input device and types

:GO

5-23

When an end-of-tape condition occurs, three messages are output to the system console:

I/O ERR ET EQT# nn (paper tape only—not magnetic tape)
LOAD TAPE

LOADR SUSP

@

The operator places the next tape in the input device, enters :UP,nn and :GO to read the next tape.
Enter :UP,nn and :GO,1 to indicate that all tapes have been read in.

If a checksum error occurs when loading relocatable programs from paper tape, the Loader prints
an LO1 error message and returns to the paper tape load point with the messages

LOAD TAPE
LOADR SUSP
@

The operator can attempt to reload the program by placing the tape in the reader at the beginning
of the program and typing :GO.

Matching Entries with Externals

After matching all possible entry points and external references in the user programs, the loader
scans the Relocatable Library (disc-resident) looking for entry points to match the undefined
external references. If undefined external references still exist,

UNDEFINED EXTS

is output and the external references are listed, one per line.

To load additional programs from a peripheral device, the operator types
:G0,0[,n]

where n is the logical unit number of the input device, if different from P, of the PROG,LOADR
directive.

To continue without fulfilling external references, the operator types

:GO,1

To specify a file name from the keyboard, enter

:GO,2

and the appropriate prompt is output:

ENTER FILE NAME(S) OR /E

5-24

RELOCATING PROGRAMS. The main and segment names (from the PROGRAM, HPAL, or NAM
records) become user file names once the programs are loaded. To ensure unique file names, the
Loader compares all program and segment names against the names of existing user files (current
user disc only). If duplicate names occur, an error message is printed and loading stops.

The Loader converts each main program into an absolute main memory image, stores it on the disc,
places the name in the user directory where it remains during the current job, and lists (on the
logical unit specified by the P9 parameter) the program address map and entry points. After each
main program, any associated segments are loaded in the same way. When the Loader is completely
finished, the following message is output:

LOADR COMPLETE

During the current job, the absolute main memory images appear in the user file area (see LIST
directive, Section II) and can be executed by name (see RUN and PROG directives). At the end of
the job, however, they disappear from the file area, unless they are made permanent files by means
of the STORE, P directive.

If no programs are entered, the Loader outputs the following messages and terminates:

NO PROGRAMS LOADED
LOADR COMPLETE

Loader error messages are given in Section XV.

5-25

EXAMPLE

In the following example, DOS-III is in keyboard mode.

:CLEAR Eliminate any programs from the job binary area
@ .

:PROG,LOADR, 5 Paper tape input is specified
ENTER FILE NAME(S) OR /E

ALGLM,/E One disc file is specified

LOAD TAPE

LOADR SUSP Place paper tape in input device
8:G0 Return to Loader

I/0 ERR ET EQT# @2 End of paper tape

LOAD TAPE

LOADR SUSP

g:UP, 2 Declare input device ready
@:G0., 1 Specify no more paper tapes

5-26

The following is then output on the standard list device (logical unit 6):

RELOCATING

NAME

ALGOL
*HPAL
*ZHPST

« EAU.

* MDY
*e DIV
*¢ DLD
*e DST
ZWRIT
*ITWRIT
*ZWRIF
* ZWBUF
SREAD
*ZREAD
*ZJFIL
*ZRDSC
DUMRX
*$LIBR
* 5L IBYX
«OPSY
*e OPSY

(BOUNDS)

ALGL 1
*ALGL 1
*ZL.N AL
*ZABAL

(BOUNDS)

LOADER

PROG BOUNDS

26601
27085
32379
38370
38375
39402
32407
30440
30626
38522
38725
3l141
3114l
31612
31563
31677
31677
31724
31757
31757

16000

32461
32020
32917

32017

LOADR COMPLETE

@:STLP

32017

32463

BP BOUNDS

#1462

B1am7

Bl411

21412

a1412

PO7T16 B1415

#pl4alsS @1416

Main program

Main’s entry points
Subroutine

Subroutine’s entry points

Main programs bounds

Segment
Segment’s entry points

Segment’s bounds

Console message to indicate normal Loader completion

Make newly created programs permanent disc files

5-27

THE RELOCATABLE LIBRARIES

There are two System libraries, or collections of relocatable subroutines that can be used by DOS-
III: the RTE/DOS Relocatable Library (EAU or Non-EAU versions) and the RTE/DOS FORTRAN
IV Library. These libraries contain mathematical routines such as SIN and COS, and utility routines
such as BINRY. A program signifies its need for a subroutine by means of an ‘‘external reference.”
External references are generated by EXT statements in Assembly language, by CALL statements and
external function references in FORTRAN, and by CODE procedures in ALGOL.

When the system is generated, several combinations of libraries are possible. Every system should
contain an RTE/DOS Relocatable Library: either an EAU version or a non-EAU version, depending
on the computer hardware. This library does not contain a formatter, but the FORTRAN IV Library
contains a formatter that handles extended precision numbers. If extended precision arithmetic is
not needed, a separate RTE/DOS Basic FORTRAN Formatter is available to take the place of the
FORTRAN IV Library.

All of these libraries and the subroutines they contain are documented in the manual Relocatable
Subroutines (02116-91780).

5-28

DEBUG LIBRARY SUBROUTINE

RTE/DOS DEBUG, a subroutine of the Relocatable Library, allows the programmer to check for
logical errors during program execution. If the third parameter specified in the PROG, LOADR
directive is non-zero, the DEBUG subroutine is appended to the user program being loaded. The
primary entry point (where execution begins) is set to DEBUG. When the program is executed
with a RUN directive, the DEBUG subroutine has control and displays the message:

BEGIN ‘DEBUG’ OPERATION

The programmer may enter any DEBUG operation directive. Illegal entries are ignored but result
in the message:

ENTRY ERROR

Re-enter the DEBUG operation directive correctly.

DEBUG OPERATIONS

B,n Instruction breakpoint at octal address n (Note: if n = JSB EXEC, a
memory protect violation occurs)

D,An;ln 2] ASCII dump of octal main memory address ny or from n; through ngy

D,B,ny [,n 2] Binary dump of octal main memory address n 1 or from n; through ngy

M,n Sets absolute base of relocatable program unit at octal address n

R[,n] Execute user program starting at octal address n or execute starting at

next location in user program (used after a breakpoint or to initiate the
program at the transfer point in the user program)

S,n,d Set octal value d in octal address n

S,n,dy.dg,d Set octal values d; through d,, in successive memory locations beginning

at octal address n

n

W,Ad Set A-register to octal value d

W.B,d Set B-register to octal value d

W.E.d Set E-register to octal value d (0=off; non-zero = on)
w,0,d Set Overflow to octal value d (0 = off; non-zero = on)
X,n Clear breakpoint at octal address n

A Abort DEBUG operation.

5-29

SPECIAL CONSIDERATIONS

Because of the extended instruction group coding available to the programmer using an HP 21MX
Computer Series system, the current RTE/DOS DEBUG subroutine should not be used within these
systems.

For systems based on an HP 21 MX series processor, a modified version of the subroutine called HP
21MX RTE/DOS DEBUG is available and should be used in place of the current subroutine. HP
21MX RTE/DOS DEBUG can be used only on HP 21MX Computer Series systems, it cannot be
executed successfully on systems based on an HP 2100A or HP 21008 processor.

During the Program Input Phase of RTE or DOS-III system generation, load the HP 21MX RTE/
DOS DEBUG subroutine from paper tape (relocatable binary code) immediately after loading the
RTE/DOS Relocatable Library. An error message indicating the existence of a duplicate program
name will be displayed but the system generator will proceed to replace the current RTE/DOS
DEBUG subroutine with the HP 21MX version.

Externally, with a few differences, the HP 21MX RTE/DOS DEBUG subroutine appears the same
as the current version in the RTE/DOS Relocatable Library. The differences are as follows:

1. HP 21MX RTE/DOS DEBUG allows the programmer to set breakpoints on instructions which
are extensions to the base set microcode. Breakpoints set on standard HP 21MX instructions—
specifically, base set, base set extension (extended instruction group), single precision floating
point arithmetic, or extended arithmetic unit (EAU) instructions — are processed normally;
that is, the break occurs before execution of the instruction and is not cleared if the program-
mer resumes execution of his program. Breakpoints set on instructions which are extensions
to the standard instruction set — FFP, user written instructions, and so forth — result in the
breakpoint being cleared after execution of the break.

Note: In the current RTE/DOS DEBUG subroutine, sctting a breakpoint on
a non-EAU multiple-word instruction results in the incorrect execution
of the instruction at the breakpoint.

2. HP 21MX RTE/DOS DEBUG displays the contents of the X-register and Y-register as part
of the standard breakpoint message.

3. HP 21MX RTE/DOS DEBUG provides two additional operation directives which allow the
programmer to set the X-register or Y-register to specific values. These directives are:

W, X,d Set X-register to octal value d

W, Y.d Set Y-register to octal value d

5-30

SEGMENTED PROGRAMS

User programs may be structured into a main program and several segments, as shown in Figure 5-1.
The main program begins at the start of the user program area. The area for the segments starts
immediately following the last location of the main program. The segments reside on the disc and

are read into main memory by EXEC calls, when needed. Only one segment may be in main memory
at a time. When a segment is read into main memory, it overlays the segment previously in main
memory.

The main program must be type 3, and the segments must be type 5. When using DSGEN to con-
figure the system or loading programs with the Loader, the main program must be entered prior

to its segments. One external reference from each segment to the main routine is required for
DSGEN or the Loader to link the segments and main programs. Also, each segmented program
should use unique external reference symbols. Otherwise, DSGEN or the Loader may link segments
and main programs incorrectly.

Main Program

Segment 1 DISC MEMORY

Segment 2

Segment 3

low memory

Main Program

MAIN MEMORY

{User program area)

Segment Overlay
Area

high memory

Figure 5-1. Segmented Programs

5-31

Figure 5-2 shows how an executing program may call in any of its segments from the disc using the
SEGMENT LOAD EXEC call (1-2). DOS-III locates the segment on the disc (3-4), loads it into
main memory (5) and begins executing it. The segment may call in another of the main program’s

segments using a similar EXEC call (6).

DISC MEMORY MAIN MEMORY
low memory
Main DOS-Hli
Program Supervisor
Segment 1 "/ NAM MAIN
9 @ \ EXT EXEC
ENTM Main
: Program
Segment 2 @ JSB EXEC User
Program
Area
NAM SEG1
Segment 3 EXT EXEC, M Segment
. Overlay
> @ . Area
I—- (®) IsB EXEC
(CALL for .
Segment 2) high memory

Figure 5-2. Main Calling Segment

5-32

Figure 5-3 shows how DOS-III processes the call from the segment (7) by locating the segment on
the disc (8-9), loading it into main memory (10), and beginning execution of it.

DISC MEMORY MAIN MEMORY
low memory
Main DOS-II
Program Supervisor
(CALL from
Segment 1)
Segment 1 NAM MAIN
EXT EXEC
ENTM Main
. Program
Vg
Segment 2 @ N User
Program
Area
NAM SEG2
Segment 3 EXT EXEC, M Segment
. Overlay
> . Area

high memory

Figure 5-3. Segment Calling Segment

5-33

When a main program and segment are currently residing in main memory, they operate as a single
program. Jumps from a segment to a main program (or vice versa) can be programmed by declaring
an external symbol and referencing it via a JMP or JSB instruction. (See Figure 5-4.) A matching
entry symbol must be defined as the destination in the other program. DSGEN or the Loader
associates the main programs and segments, replacing the symbolic linkage with actual absolute a
addresses (i.e., a jump into a segment is executed as a jump to a specific address). The programmer
should be sure that the correct segment is in main memory before any JMP instructions are
executed.

MAIN MEMORY

low memory
EXT S1
ENT M1
—» M1 JMP S1
Main
Program
User
Program
Area
EXT M1
ENT S1 Segment
e JMP M1 Overlay
S1... +——- Area

high memory

Figure 5-4. Main-to-Segment Jumps

5-34

FORTRAN Segments

Segmented user programs may be written in FORTRAN, but certain conventions are required. A
segment must be defined as type 5 in the PROGRAM statement. The segment must be initiated by
using the SEGMENT LOAD EXEC call (RC DE = 8) from the main or another segment. A dummy
CALL to the main must appear in each segment to ensure that proper linkage will be established be-
tween the main and its segments.

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 135g). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and seg-
ments may be through COMMON or via parameters passed in the SEGMENT LOAD or SEGMENT
RETURN EXEC calls.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call (RCODE = 8) by executing a SEGMENT RETURN EXEC call
(RCODE = 29). (See Section III for a description of these EXEC calls.) However, segments may
not return directly to other segments.

ALGOL Segments

ALGOL programs can be segmented if certain conventions are followed. A segment must be defined
as type 5 in the HPAL control statement. The segment must be initiated by using the SEGMENT
LOAD EXEC call (RCODE = 8) from the main or another segment. In order to establish the proper
linkage between a main program and its segments, each segment must declare the main a CODE
procedure. For example, if MAIN is the main program, each segment must declare the following:

PROCEDURE MAIN,CODE;

Once a segment is loaded, control is passed to it and execution begins at its primary entry point (or
at the address specified in base page location 135g). The segment, in turn, may call another segment
using another SEGMENT LOAD EXEC call. Communication between the main program and its seg-
ments may be through parameters passed in the EXEC call.

Any segment may return to the main program at the statement immediately following the initial
SEGMENT LOAD EXEC call by executing a SEGMENT RETURN EXEC call (RCODE = 29). (See
Section III for a description of these EXEC calls.) However, segments may not return directly to
other segments.

5-35

SECTION VI
Typical DOS-Ill Joh Decks

1. ASSEMBLE A PROGRAM AND STORE IN FILE

:JOB,ASMBS
:PROG,ASMB,5,6,4,56,99
ASMB,B,L

NAM TEST,3

Source Program

END ENTER
:STORE,R,AFILE
:JOB,NEXTJ

2. LOAD AND EXECUTE A RELOCATABLE FILE

:JOB,LOADE
:PROG,LOADR,?2
AFILE,/E
:STORE P,TEST
:RUN,TEST
10
23
. Data

51
:JOB,NEXTJ

6-1

3. STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM

:JOB, EVERY
:STORE,S,SOURC,5
FTN,B,L

PROGRAM ZOOM

DIM I(10)
. Source Program

END$

:LIST,S,6,SOURC
:EDIT,SOURC,5
/L2

Edit List
/E
JFILE,SOURC
:PROG,FTN,2,6,4,56,99
:PROG,LOADR
:RUN,ZOOM
123.62

Data for first run

00001
:RUN,ZOOM
321.5

Data for second run

0.56
:JOB,NEXTJ

4. LIST ONLY ERROR STATEMENTS ON SYSTEM CONSOLE IN A COMPILE

:PR,FTN4,,1
FTN4
PROGRAM EX1

END

6-2

5. COPY A SYSTEM FROM SUBCHANNEL 1 TO SUBCHANNEL 0

:JO

JOB TODAY TIME=0831 MIN. 43.3 SECS.

@

:UD,,0 Interrogates the system as to what label
LBL=SYSTEM is on subchannel 0.

@

:UD,SYSTEM,0 Change current user disc to subchannel 0
@

:UD Verify

SUBCHAN=0

LBL=SYSTEM

@

:IN* Purge system and user files on subchannel 0
DOS LABEL SYSTEM

OK TO PURGE?

YES

@

:UD Verify purge

SUBCHAN=0

UNLBL

@

:UD,*,1 Change current user disc to subchannel 1
@

:UD Verify

SUBCHAN=]

UNLBL

@

:DD, X

@ Copy system to subchannel 0

:UD,*,0

@

:UD

SUBCHAN=0

LBL=SYSTEM

@

:EJ

END JOB RUN=0008 MIN. 01.7 SEC. EXEC=0000 MIN. 00.0 SEC.
@

PART 2

DOS-1ll Extended File
Management Package (EFMP)

SECTION VIl
EFMP Organization

The DOS-III Extended File Management Package (EFMP) extends the file handling capabilities of
DOS-III by allowing the user to create and use files with different record lengths, security codes,
and other conveniences. EFMP consists of a series of additional EXEC modules and a utility pro-
gram; it maintains a file structure that operates within, and in addition to, the standard DOS-III
file structure.

ENVIRONMENT

EFMP functions in the DOS-III environment. It is implemented through a set of EXEC modules
which are incorporated into DOS-III at system generation time: the EXEC modules are invoked
using the standard EXEC call mechanism.

FUNCTIONS AND STRUCTURE

The EFMP modules themselves allow any program executing in the user area to Initialize EFMP
areas, Create/Destroy, Open/Close, Read/Write, Reset, Repack, Copy, Change Name, and Post files
on the moving-head disc. Also, EFMP makes available detailed status information on all files and
packs known to it. EFMP may be accessed conversationally from the keyboard by using UTIL, a
utility program that executes in the User Area.

DOS-III Files vs. EFMP Files

DOS-III maintains files that are referenced by five-character names and relative sector numbers. The
user can access these files in either a keyboard mode (via directives) or in a programming mode

(via EXEC calls). In keyboard mode, the user creates a file with the STORE directive and operates
on that file with directives such as :EDIT and :DUMP. In programming mode, the DOS-III files are
accessed by EXEC calls such as FILE READ/WRITE and FILE NAME SEARCH.

In addition to the file structure, DOS-III maintains a subchannel (or user disc) identification scheme.
User discs are first formatted either during system generation or by a special function of the system
generator. These functions format the hardware tracks and set up information such as the Label
Presence Code and System Proprietary Code. After a disc paek is formatted, the INITIALIZE directive
is used to set up labels (six-character codes), change labels, and purge old discs.

7-1

EFMP operates within this file structure of DOS-III to set up and maintain additional—but distinctly
different— files. Areas of discs within DOS-III (hereafter referred to as EFMP areas) are turned over
to EFMP exclusively. The user must identify them with a pack number of the form PNxxx, where
xxx is a decimal integer. The procedure for doing this is described under “Set Up.”

Within an EFMP area, EFMP creates files of its own that are not known to DOS-IIL. They are identi-
fied by a fixed-length name, contain a grouping of specified length records, and have a security code.
Since only the DOS-III files can be created and accessed by directives, all EFMP files must be used
through the EFMP EXEC calls or the UTIL program. EFMP files are limited in size only by the re-
quirement that they fit within one subchannel or pack.

Note: All references to files within this Part will mean EFMP files, not
DOS-III files, unless specifically stated otherwise.

Duplicate Pack Numbers

EFMP pack numbers are always unique on any given platter, but not necessarily unique across
platters. To minimize the possibility of accessing a duplicate pack number, the user should (if
possible):

1. Create unique pack numbers.

2. Have platters containing EFMP areas mounted on the subchannel designated as the current
user subchannel.

EFMP Buffers and Tables

To provide maximum flexibility in main memory size and speed of file accessing, EFMP allows the
user to define (at execution time) the size and location of the tables and buffers required in main
memory by EFMP. Two areas are defined by the user and provided in his program space:

1. Opened File Table

2. Temporary Record Buffers

The Opened File Table contains all information necessary for EFMP to identify and access files
belonging to the user. The minimum size of the Opened File Table is one sector (128 words) and
allows up to seven files to be opened concurrently.

EFMP uses the Temporary Record Buffers as an intermediate storage area between the disc and
the user’s record buffer. The user defines the number of Temporary Record Buffers and the size of
each. There must be at least one buffer and it must be at least two sectors (2566 words) long. Par-
ticular files and buffers can be linked to increase the access speed of files. The effect of varying the
number and size of these buffers cannot be predicted exactly and must be determined empirically
by trial and error.

CAUTION: SINCE THESE TABLES AND BUFFERS EXIST IN THE USER
AREA AND ARE NOT PROTECTED, EXTREME CAUTION
MUST BE TAKEN NOT TO MODIFY THEM IN ANY WAY.

7-2

Logical Read vs. Physical Read

A logical read occurs each time the user requests a record from a file. At that time EFMP checks
the appropriate Temporary Record Buffer to determine if the requested record is already in main
memory. If in main memory, the record is transferred to the user’s record buffer without actually
physically reading the disc. If the record is not present in main memory, the necessary disc transfers
are performed (physical reads—and writes, if necessary) to bring the record into main memory. If
the Temporary Record Buffer is larger than the record size, several records are brought into main
memory at once.

Logical Write vs. Physical Write

A logical write occurs each time a user requests that a record be written to a file. At that time,
EFMP determines if that record is present in the Temporary Record Buffer; if it is, EFMP simply
transfers the data in the user’s record buffer to the Temporary Record Buffer and flags it as ‘““must
be written.” Each succeeding read or write is treated in the same manner until a logical record trans-
fer occurs for which the record is not in main memory, or until the last record in the Temporary
Record Buffer is logically written. In these cases, the EFMP must physically write the records in the
Temporary Record Buffer (i.e., post them) on the disc.

If the record is not present in main memory on a write request, EFMP locates the record on the
disc and transfers it physically into the Temporary Record Buffer. The data to be written is then
transferred from the user buffer to the Temporary Record buffer and flagged as “must be written.”
The read before write is necessary because records do not necessarily fall on sector boundaries in
the disc. If a CLOSE or POST request occurs, all buffers flagged are written to the disc.

Update-Writes vs. Append-Writes

The purpose of an update-write is to change the contents of an existing record; the purpose of
append-write is to add new records onto the end of a file. EFMP writes a record as an update-write
whenever the record specified exists in a previously accessed section of a file.

EFMP writes a record as an append-write whenever the record specified is beyond the previously

accessed section of a file. In this case, EFMP automatically inserts zeros into all records (if any)
between the highest record previously written and the new record.

SET UP
There are two prerequisites for EFMP, First, the EFMP EXEC modules must be included in

DOS-III when the system is generated. Second, when DOS-III is running, the user must create
EFMP areas on formatted DOS-III packs or cartridges.

7-3

An EFMP area is created by issuing a STORE, B directive in this format:
:STORE, B,PNxxx,sectors

where xxx is a unique decimal number,
PNxxx is the unique pack number, and

sectors is the number of sectors of the EFMP area.

Note: EFMP changes the file from Type-B to Type-A during initialization
(see “Initialize”).

WORD CONTENTS
0 first character second character
1 third character fourth character
2 fifth character (not used)
3 starting relative sector
4 file length (in records)
5 record length {in words)
6 security code
7 user-supplied status
8 highest record number accessed
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BITS

Figure 7-1. EFMP File Disc Directory Format

7-4

SECTION ViII
EFMP EXEC Calls

The method of communication between a user program and EFMP is through the standard DOS-III
EXEC call format (discussed in Section III of this manual).

One standard DOS-III request code (RCODE = 24) is reserved for EFMP requests. The DOS-III
operating system combines this request code with an EFMP function number to determine which
action the user EXEC call is requesting. The EFMP function numbers are one element in each of the
EFMP EXEC calling sequences.

FORMAT FOR EFMP EXEC CALLS

In this section, only the Assembly language calling sequences are given for the EFMP EXEC calls.
The methods for converting these calling sequences to FORTRAN or ALGOL are described in
Section III.

The EFMP EXEC calls described in this section are presented in ascending order, by EFMP function

number. The STATUS EXEC call (EFMPF = 10) has several status function numbers: these are
presented in ascending order, by status function number.

Note: A complete list of EFMP error codes can be found in PART 5 of this manual,
“Error Codes and Messages.”’

8-1

Purpose

EFMPF =1

DEFINE

To define, before any other EFMP calls are made, the number of 16-bit words within the user
program to be used by EFMP for its internal buffers and tables.

Assembly Language

RCODE
EFMPF
OPNTB
OPNSZ

TRBUF
NOTRB
(NOTRB+1)

TRBSZ
ERRNO

Comments

JSB

DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
return

DEC
DEC
BSS

DEC

BSS
DEC
DEC

DEC
BSS

EXEC
*4+9
RCODE
EFMPF
OPNTB
OPNSZ
TRBUF
NOTRB

TRBSZ
ERRNO

24

~ QO

Return address

Request code

EFMP function number
Opened-file table address
Opened-file table size

Temp. record buffer address
Number of temp. record buffers and number of
active pack numbers

Temp. record buffer size
Error number

Continue execution

Opened-file table (n is the size)

Size of opened-file table (in 16-bit words,

see Comment 1)

Beginning of temp. record buffers, see Comment 2
No. of temp. record buffers, see Comment 2

n = the maximum number of unique EFMP pack
numbers active (MAXPK), see Comment 4

Size of each temp. record buffer (in sectors)
Return point for error codes

1. The size of the Opened-file table (n) can be calculated by this formula:

n =4*¥(MAXPK)+ 3%¥(NOTRB)+16*(Max. no. of files to be opened)

The minimum size of this table is 128 words. This allows approximately seven files to be
opened concurrently.

8-2

EFMPF =1

There must be at least one temporary record buffer and it must be at least two sectors long
(256 words). There may, however, be more buffers and they may be more than two sectors
in size. All of the space for these buffers must be allocated starting at the location TRBUF.
Increasing the number of buffers allows disc efficiency to be increased by assigning a buffer
exclusively to one file. Increasing the size of each buffer increases the speed of disc accessing
by allowing more than one sector to be transferred per disc access.

The total size of the Temp. Record Buffers (m) can be calculated by the following formula:

m = NOTRB * TRBSZ * 128
(The minimum value for TRBSZ is 2.)

All the tables and buffers are fixed by DEFINE until the end of a program, or until another
DEFINE. Each time a DEFINE occurs, all information contained in tables and buffers is lost,
all pointers are reset, and EFMP assumes a fresh start. At the end of each program, DOS-III
calls EFMP to perform a POST on any records flagged as “must be written.”

MAXPK indicates the maximum number of unique EFMP pack numbers a user will have

active at any one time. A pack number is active when one or more of its files are opened by
a user through an OPEN call (or for PNOOO through a CREATE call).

8-3

Purpose

EFMPF =2

CREATE

To set up a directory on disc with all of the information necessary to create a file that can be
accessed at a later time.

Assembly Language

RCODE
EFMPF
FNAME

PAKNO
FLGTH

RLGTH

SCODE
(SCODE+1)

ERRNO

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
ASC

DEC
DEC

DEC

ocr
OCT

BSS

EXEC
*+9
RCODE
EFMPF
FNAME
PAKNO
FLGTH
RLGTH
SCODE
ERENO

24
2
3,xxxx%

p
q

Return address

Request code

EFMP function number

File name

Pack number

File length (in records)
Record length (in words)
Security code and user status
Error number

Continue execution

xxxxx is the name to be applied to the file

(first two characters cannot be zero or 1774004)

D is the pack number, see Comments

q is the number of records in the file;
(1<q<32767)

r is the number of words in a record;

r must be less than or equal to 1/2 the size

of the temp. record buffer

s is any 16-bit combination to be checked by EFMP
during OPEN aond DESTROY

t is any 16-bit combination of status information
desired by the user (referred to as USTAT elsewhere)
Return point for error codes

8-4

EFMPF = 2

Comments

1. If PAKNO is a number between 1 and 999 it indicates the EFMP area in which the file is to
be created. When EFMP creates a file, it reserves the necessary area on the disc after the last
previous file generated. No attempt is made to search for an area between files. If PAKNO is
equal to -1, the file is to be created in any EFMP area that is available.

2. If PAKNO equals zero, the file is placed on the Work Area of the disc and no area will be
reserved in the EFMP areas. When such a temporary file is created, the only directory in-
formation that is maintained is in the Opened-File Table. A disc-based directory is not main-
tained. Also, since the directory information is established in main memory during the
CREATE function, the OPEN function is not required. The only reason for using an OPEN
call for a temporary file is to assign it to a specific Temporary Record Buffer or to change
the starting record number to a value other than 1. If no OPEN call is given, the first
Temporary Record Buffer is used.

3. When the Work Area is used for temporary files, EFMP reserves this whole area and identifies
it as PN0OO. In order to keep PN0OOO from using the entire Work Area, the user must enter a
STORE,B,PN0OOO directive for the system disc with the desired number of sectors. When
EFMP has terminated, the user should PURGE the file PNOOO from the Work Area.

8-5

EFMPF =3

DESTROY

Purpose

To eliminate the directory information for a particular file from main memory and the disc. The
user must specify the correct security code for the file. The disc area is repacked only for temporary
files. To repack the EFMP areas use the REPACK EFMP call.

Assembly Language

JSB EXEC

DEF *+7 Return address

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF SCODE Security code

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 3
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, then FNAME refers to a temporary file

(ifn>=1andn < 999, FNAME is to be located in
this EFMP areq; if n = -1, EFMP searches all of its
areas until it finds a file that matches FNAME)
SCODE OCT s s is the security code for the file established by the
CREATE EFMP call; security code ignored on
temporary files
ERRNO BSS 1 Return point for error codes

8-6

EFMPF =4

OPEN

Purpose

To make a previously created file accessible by extracting the necessary file information from the
disc directories and placing it in main memory. The number of files that can be opened at any one
time is limited by the size of the Opened File Table (see DEFINE).

Assembly Language
JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF PAKNO Pack number
DEF RCDNO Record number
DEF SCODE Security code
DEF BUFNO Buffer number
DEF ERRNO Error number
return Continue execution
RCODE DEC 24
EFMPF DEC 4
FNAME ASC 3,xxxxx
PAKNO DEC n If n =0, the file is a temporary file on the work area,

if n is between 1 and 999, EFMP looks for FNAME in
the appropriate area; if n = —1, EFMP searches all
available areas for the requested file

RCDNO DEC r If r =0, EFMP sets the next record to be accessed
(for sequential READS or WRITES) to the highest
record previously accessed + 1. Otherwise, r can be
any number between 1 and the maximum record
number contained in the file. This allows sequential
access to be initialized at any record.

SCODE OCT s s is the security code established by the CREATE
call. It must match.
BUFNO DEC b b must be a nhumber between 1 and the maximum

number of Temp. Record Buffers available. For
any other number, EFMP uses 1
ERRNO BSS 1 Return point for error codes

8-7

EFMPF =5

CLOSE

Purpose

To remove information about a particular file from the Opened-File Table. This allows an additional
file to be opened. Also, CLOSE updates the user status information (USTAT) and the highest record
accessed on the disc.

Assembly Language

JSB EXEC

DEF *+6 Return address

DEF RCODE Request code

DEF EFMPF EFMP function number
DEF FNAME File name

DEF USTAT User status

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 5
FNAME ASC 3,xxxxx See Comment 2
USTAT OCT u User status information (any 16-bit combination) to
be written into the disc directory for the file
ERRNO BSS 1 Return point for error codes

Comments

1. If a CLOSE is requested for a temporary file, the directory information in the Opened-File
Table is deleted and the Work Area is automatically repacked. If a file has been copied to the
Work Area, the user status (USTAT) and highest record assessed are not updated on the
original copy of the file.

2. To CLOSE all files in the Opened-File Table set the first word of FNAME equal to a binary
Zero.

8-8

EFMPF = 6

READ

Purpose

To retrieve a specified record (random access) or the next record (sequential access) from a file
that has previously been opened and written.

Assembly Language
JSB EXEC
DEF *+7 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FNAME File name
DEF RCDNO Record number
DEF BUFFR Buffer for data
DEF ERRNO Error number
return Continue execut’ion
RCODE DEC 24
EFMPF DEC 6
FNAME ASC 3,xxxx
RCDNO DEC n n is a record number between 1 and 32,767. For
sequential access and backspacing, see Comments.
BUFFR BSS m m is the length of the buffer in words. It must be
, at least the record length.
ERRNO BSS 1 Return point for error codes
Comments

If RCDNO = 0, a sequential read or write is implied. This feature provides the program with the
next record available relative to the last read or write performed (or OPEN operation). If RCDNO
is a negative number, it specifies a backspace, relative to the current record (last record accessed
plus 1), before the read or write. If an attempt is made to backspace the record number indicator
to a value less than one, the EFMP issues an error and terminates the read or write. Unless needed,
care should be taken so as not to backspace the record number indicator beyond the range of
records held in the Temporary Record Buffer at that time, since this will initiate a posting oper-
ation and a physical disc access.

8-9

Purpose

EFMPF =17

INITIALIZE

To initialize an EFMP area previously created by means of a DOS-III STORE directive.

Assembly Language

RCODE
EFMPF
PAKNO
DIRSZ

ERRNO

Comments

JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEF
DEC
DEC
DEC
BSS

EXEC
*+6
RCODE
EFMPF
PAKNO
DIRSZ
ERRNO

~ SN
R

Return address
Request code

EFMP function number
Pack number

Directory size

Error number

Continue execution

(1<p<999)
(n = number of entries, one entry /file; see Comment 2)
Return point for error codes

1. Pack number PNOOO cannot be initialized.

2. The directory occupies the first sector(s) of the EFMP area.

The number of sectors allocated to a directory is determined as follows:

The variable n is used to calculate the number of sectors to be reserved for the directory. It does
not indicate the maximum number of file entries allowed in the directory. If the nth file entry

does not completely fill the last sector of the directory, the space remaining may be used to con-
tain additional file entries.

#Sectors =

(1+n)*9
128

(add 1 to #Sectors if remainder is > zero)

8-10

EFMPF =8

WRITE

Purposé

To write into a specified record (random access) or into the next record (sequential access) of a
file that has previously been opened.

Assembly Language

JSB EXEC

DEF *+7 Return address

DEF RCODE Request code

DEF EFMPF EFMP function number
DEF FNAME File name

DEF RCDNO Record number

DEF BUFFR Buffer for data

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 8
FNAME ASC 3xxxxx
RCDNO DEC n Same as for the READ EXEC CALL
BUFFR BSS m Same as for READ
ERRNO BSS 1 Return point for error codes

8-11

EFMPF =9

RESET

Purpose

To reset the highest record accessed pointer for a file to a lower value, The information beyond the
pointer is lost. The file must be open before it can be reset. (PAKNO below provides an additional
check.)

Assembly Language

JSB EXEC

DEF *+7

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF FNAME File name

DEF PAKNO Pack number

DEF RCDNO Record number
DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 9
FNAME ASC 3,xxxxx
PAKNO DEC n If n = 0, EFMP searches the work area to find the

desired file name; if n is a number between 1 and 999,
EFMP searches EFMP area PNn to find the desired
file name; if n = —~1, EFMP searches all EFMP areas
RCDNO DEC m m is a number between 0 and 32,767 to which the
highest record accessed pointer will be set (m must
be lower than the current value)
ERRNO BSS 1 Return point for error codes

8-12

EFMPF =10

STATUS

Purpose

To allow the user program access to various types of status information relative to EFMP. Several
separate status functions (identified by unique Status Function Numbers) are provided; all have
basically the same form of calling sequence, but they vary in the parameters used.

Assembly Language
JSB EXEC
DEF *+9 Return address
DEF RCODE Request code
DEF EFMPF EFMP function code
DEF FSTAT Status function number
DEF FNAME File name
DEF PAKNO Pack number
DEF DUMMY Not used
DEF STATB Status buffer
DEF ERRNO Error number
return Continue execution
Note: Above is the general format for Status EFMP calls. The use
and meaning of each parameter in the calling sequence varies
from status call to status call. The parameters for each call
are given separately. below. Common to all status functions
are
RCODE DEC 24
EFMPF DEC 10

DUMMY BSS 1

8-13

FSTAT=1

STATUS

Purpose

To provide the user with all information, except the security code, contained in the directory for
a file,

Parameters
FSTAT DEC 1
FNAME ASC 3,xxxxx
PAKNO DEC m If m = 0, EFMP searches the Work Area for the

requested file. If m is between 1 and 999, EFMP
searches the EFMP area of that pack number. For
m = -1, EFMP searches all available EFMP areas
for the requested file.

STATB BSS 10 The pack number is returned in the first word if
PAKNO = —1. The remaining nine words will
receive the directory status information in the
same format as the directory itself (see Figure 7-1).

ERRNO BSS 1 Return point for error code.

8-14

Purpose

To determine if a file is open.

Parameters

FSTAT
FNAME
PAKNO
STATB

ERRNO

DEC 2
ASC 3, xxxxx
OCT o0
BSS 2
BSS 1

FSTAT =2

STATUS

Not used

The first word returns the pack number if the
file is open. The second word returns a value
of 0 if the file is open or 1 if the file is not
open.

Return point for error codes.

8-15

Purpose

To check the security code of a file.

Parameters

FSTAT
FNAME
PAKNO
STATB

ERRNO

DEC 3

ASC 3, xxxxx
DEC m

BSS 3

BSS 1

FSTAT=3

STATUS

Same as function number 1

The first word returns the pack number if
appropriate. The second word is used by the
user program to give the security code to be
checked. The third word returns 0 if the code
checks or 1 if it does not check.

Return point for error codes.

8-16

FSTAT =4

STATUS

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file.

Parameters

FSTAT DEC 4

FNAME ASC 3,xxxxx

PAKNO DEC m Same as function number 1

STATB BSS 2 The first word returns the pack number if
appropriate. The second word returns the
number of sectors available.

ERRNO BSS 1 Return point for error codes.

8-17

FSTAT =5

STATUS

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area.

Parameters

FSTAT DEC 5

FNAME OCT 0 Not used

PAKNO DEC m Same as function number 1, but cannot equal -1

STATB BSS 2 The first word must be present, but is not used.
The second word returns the number of sectors
available.

ERRNO BSS 1 Return point for error codes.

8-18

FSTAT =6

STATUS

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 and the
maximum number of files in an EFMP area.

Parameters
FSTAT DEC 6
FNAME BSS 3 Return point for file name or all zeroes if no
file is present
PAKNO DEC m m is a number between 1 and 999
STATB DEC n n indicates the nth file
ERRNO BSS 1 Return point for error codes

8-19

FSTAT =17

STATUS

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer (speci-
fying the ordinal position of the pack number) between 1 and the maximum number of pack
numbers on a subchannel.

Parameters

FSTAT DEC 7

FNAME DEC m m = the desired subchannel
. On return, FNAME is zero if the EFMP area of

the pack number is initialized and 1 if the EFMP

i area of the pack number is not initialized.

PAKNO BSS 1 Return point for the pack number

STATB DEC n n indicates the nth pack number.,

ERRNO BSS 1 Return point for error codes.

8-20

EFMPF =11

REPACK (PURGE)

Purpose

To repack the existing files on an EFMP area(s), removing empty spaces left when files have been
destroyed.

Assembly Language

JSB EXEC

DEF *+5

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF PAKNO Pack number

DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 11
PAKNO DEC n For n between 1 and 999, only the specified EFMP

area is repacked; for n = -1, all the EFMP areas
available to EFMP are repacked
ERRNO BSS 1 Return point for error codes

CAUTION: IF THE EFMP DISC DIRECTORY CONTAINS A LARGE NUMBER
OF FILES AND THE SIZES OF THE TEMPORARY RECORD
BUFFERS ARE SMALL, REPACKING MAY REQUIRE CONSIDER-
ABLE TIME. THEREFORE, REPACK SHOULD BE PERFORMED
WHEN SUFFICIENT TIME IS AVAILABLE. UNDER NO CIRCUM-
STANCES SHOULD AN ABORT BE PERFORMED DURING A
REPACK.

8-21

Purpose

EFMPF =12

COPY

To transfer a copy of an opened file and its directory from an EFMP area to the Work Area of
DOS-III, from one EFMP area to another EFMP area or from the Work Area to an EFMP area.

Assembly Language

RCODE
EFMPF

FNAME
PAKNO

ERRNO

Comments

JSB
DEF
DEF
DEF
DEF
DEF
DEF
return

DEF
DEC
ASC
DEC

BSS

EXEC
*+6
RCODE
EFMPF
FNAME
PAKNO
ERRNO

24

12
3,XxxXx%
n

Request code

EFMP function code
File name

Pack number

Error number
Continue execution

See Comment 1

If n =0, EFMP copies the file onto the Work Area;
if n is between 1 and 999, EFMP copies the file
into the specified EFMP area; if n is between —1
and -999, EFMP copies the file from the Work
Area to an EFMP area specified by the 10’s
complement of n (see Comment 2)

Return point for error codes

1. Remember that a file must be opened before it can be copied. This is necessary to determine
from which pack to copy the file. When a file has been copied to the Work Area, all reads and
writes referencing that file use the Work Area version until the file is closed. (Files copied
from the Work Area to an EFMP area continue to use the Work Area version for reads and
writes.) Temporary copies of files do not have security codes. Therefore, files copied from the
Work Area to a pack have a security code of 0. When a file is copied from pack to pack, the
original security code is retained. See “CLOSE” for further notes on Work Area files.

8-22

EFMPF =12

If there is already a file with the same name in the destination EFMP area directory, an error
code is returned and the copy is aborted. In this case, the user can first destroy the name in
the destination EFMP area, and then perform the copy again.

When copying from one EFMP area to another EFMP area not on the drive (and only a singie
removable pack is available), EFMP automatically requests that the user continually swap
packs until the entire file has been copied. EFMP outputs:

INSERT DESTINATION [SOURCE] PACK AND PRESS RUN.
and halts the computer with 102076 in the DISPLAY register.

After the user inserts the appropriate pack and presses RUN, a check is made to determine if
the proper pack has been entered. If EFMP cannot find the correct pack, the message is re-
peated. To allow the user an orderly exit in case the correct pack is not available, the following
question is asked after each question:

ENTERCORT

where C means to continue copying, and

T means to terminate the copy and return to the program.

Care must be taken to insert the original pack (if it has been removed during the copy function)
into its original subchannel.

8-23

Purpose

EFMPF =13

CHANGE FILE NAME

To change a file name (file need not be opened).

~

Assembly Language

RCODE
EFMPF
FNAME

PAKNO

SCODE
ERRNO

JSB
DEF
DEF
DEF
DEF
DEF
DEF
DEF
return

DEC
DEC
ASC
ASC
DEC

OoCT
BSS

EXEC
*+7
RCODE
EFMPF
FNAME
PAKNO
SCODE
ERRNO

24

13

3, xxxx%
3,22222
n

~ 3

Request code

EFMP function code
File name

Pack number
Security code

Error number
Continue execution

Current file name

Neuw file name

n = 0, indicates that the file is on the Work Area;
if n is between 1 and 999, n indicates the EFMP
area containing the file; if n = -1, EFMP searches
all available EFMP areas for the current file name
Security code, see CREATE

Return point for error codes

8-24

EFMPF = 14

POST

Purpose

To physically write on the disc all buffers that have been flagged as ‘“must be written’ in the
Temporary Record Buffer. (That is, convert all outstanding logical writes into physical writes.)

Assembly Language

JSB EXEC

DEF *+4

DEF RCODE Request code

DEF EFMPF EFMP function code
DEF ERRNO Error number

return Continue execution
RCODE DEC 24
EFMPF DEC 14
ERRNO BSS 1 Return point for error codes

Comments

The POST operation updates the highest record accessed pointer in the disc directories, but not
the user status word (USTAT).

8-25

SECTION IX
EFMP Utility Program

The EFMP Utility Program (UTIL) allows the user to access most of the EFMP functions through
the keyboard. UTIL accepts commands or directives from the operator and converts these into
EFMP calling sequences. After EFMP has processed the call, UTIL reports back (to the operator) a
successful operation or an EFMP error.

This section describes how to initiate the UTIL program using the DOS-III PROG directive and
then describes the following UTIL commands (presented in alphabetic order):

BRIEF
CHANGE
CLOSE
COPY
CREATE
DESTROY
END
INITIALIZE
OPEN
POST
REPACK
RESET
STATUS-1
STATUS-2
STATUS-3
STATUS-4
STATUS-5
STATUS-6
STATUS-7

All are EFMP functions, except BRIEF and END,
which are UTIL program functions.

Note: UTIL requires the FORTRAN IV version of the Formatter program to
operate properly.

:PROG,UTIL

Purpose

To initiate execution of the UTIL program.

Format
:PROG, UTIL,n

where n = 0 to print a list of commands or

n # 0 to skip printing the list.
List of commands message (all parameters are decimal):

/INILPAKNO,DIRSZ

/CRE,FNAME ,PAKNO,FLGTH,RLGTH,SCODE,USTAT
/DES,FNAME,PAKNO,SCODE ‘
/OPE,FNAME,PAKNO,RCDNO,SCODE
/CLO,FNAME,USTAT,
/RES,FNAME,PAKNO,RCDNO
/STA,DF,FNAME,PAKNO
/STA,FO,FNAME
/STA,SC,FNAME,PAKNO,SCODE
/STA,LR,FNAME,PAKNO
/STA,LF,PAKNO
/STA,NF,PAKNO,STATB

/STA,AP

/REP,PAKNO

/COP,FNAME,PAKNO
/CHA,FNAM1,FNAM2,PAKNO,SCODE
/POS

/BRI,FNAME,SCODE

/END

UTIL begins by outputting a message to indicate that it is ready for a directive:
UTIL READY

After it processes the directive, UTIL outputs the results of the operation (where appropriate) or

any error codes that may have been returned by EFMP. When it is ready for another directive,
UTIL outputs

UTIL READY

If an incorrect directive is entered, UTIL outputs

ILLEGAL OPERATION
UTIL READY

UTIL is terminated when the operator inputs the command /END.

UTIL outputs any error messages on the system console; normal output is output on the list device.

9-3

BRIEF

Purpose

To increase or decrease the amount of disc storage reserved for a file. BRIEF is a UTIL program
function, not an EFMP function.

Format
/BRI, fname,scode

fname is the name of the file, and

scode is the security code of the file.
BRIEF first outputs the status of the file:

AVAILABLE RECS. =m RECORDS USED =r
NEW RECORD COUNT?

The operator inputs either:
/E to terminate the command and prepare UTIL for more commands,
n :; change the available record count to n
BRIEF stores the contents of fname on the Work Area, destroys the current file, repacks the EFMP

area, and creates and opens a new file. The contents of frame are transferred from the Work Area
to the new file and BRIEF prints out a message:

AVAILABLE RECS. =n RECORDS USED =r

BRIEF then terminates.

Comment

BRIEF creates and uses a temporary file named “AAAAAA (all blanks).

9-4

CHANGE

Purpose

To change the name of a file (i.e., to invoke the CHANGE FILE NAME function of EFMP).

Format
/CHA,fnaml,fnam2,pakno,scode

fnaml is the current file name

fnam2 is the new file name.

See CHANGE FILE NAME EFMP CALL for explanation of other parameters.

EXAMPLE

/CHA,LOB70,XXXXX,120,0

Example print-out:

FILE LOB70 OLD FILE

FILE XXXXX NEW FILE

THE FILE IS ON PACK# 120
THE SECURITY CODEIS 0

9-5

CLOSE

Purpose

To close a previously opened file (i.e., to invoke the CLOSE function of EFMP).

Format
/CLO,fname,ustat

See CLOSE EFMP CALL for explanation of parameters. Note, however, that all the files in the
Opened-File Table cannot be closed by setting the first word of FNAME (in the CLOSE calling
sequence) to a binary zero.

EXAMPLE

/CLO,LOB70,0

Example print-out:

FILE LOB70 CLOSED
THE USER STATUS WORD IS 0

9-6

COPY

Purpose

To copy a file (i.e., to invoke the COPY function of EFMP).

Format
/COP,fname,pakno

See COPY EFMP CALL for explanation of parameters and messages.

EXAMPLE

/COP,LOB70,120

Example print-out:

FILE LOB70 COPIED

THE FILE IS TEMPORARY IN WORK ARFA
FILE LOB70 COPIED

THE FILE IS ON PACK# 120

9-7

CREATE

Purpose

To create a new file (i.e., to invoke the CREATE function of EFMP).

Format

/CRE,fname,pakno,flgth,rigth,scode,ustat

See CREATE EFMP CALL for explanation of parameters.

EXAMPLE

/CRE,C0,120,8,8,0,0

Example print-out:

FILE CO CREATED

THE FILE IS ON PACK# 120

THE FILE LENGTHIS 8 RECORDS
THE RECORD LENGTHIS 8 WORDS
THE SECURITY CODE IS 0

THE USER STATUS WORDIS 0

9-8

DESTROY

Purpose

To destroy a file by eliminating its directory entry (i.e., to invoke the DESTROY EFMP function).

Format
/DES, fname,pakno,scode

See DESTROY EFMP CALL for explanation of parameters.

EXAMPLE

/DES,C0,120,0

Example print-out:

FILE CO DESTROYED

99

END

Purpose

To terminate the operation of the UTIL program. END is an UTIL program function, not an EFMP
function.

Format

/END

9-10

INITIALIZE

Purpose

To initialize an EFMP area previously allocated space by means of a DOS-III STORE directive.

Format
/INI,pakno,dirsz

See INITIALIZE EFMP CALL for explanation of parameters.

EXAMPLE

/INI,100,20

Example print-out:

PACK #100 INITIALIZED

9-11

OPEN

Purpose

To OPEN a previously CREATED file (i.e., to invoke the OPEN function of EFMP).

Format
/OPE, fname,pakno,rcdno,scode

See OPEN EFMP CALL for explanation of parameters.

EXAMPLE

/OPE,LOB70,120,1,0

Example print-out:

FILE LOB70 OPENED
THE FILE IS ON PACK# 120
THE RECORD #1S 1

THE SECURITY CODE IS 0

9-12

POST

Purpose

To post files (i.e., to invoke the POST function of EFMP).

Format

/POS

Example print-out:

ALL FILES POSTED

9-13

RESET

Purpose

To reset the highest record number accessed for a file (i.e., to invoke the RESET function of EFMP).

Format
/RES, fname,pakno,rcdno

See RESET EFMP CALL for explanation of the parameters.

EXAMPLE

/RES,LOB70,120,0

Example print-out:
FILE LOB70 RESET

THE FILE IS ON PACK# 120
THE RECORD #1S 0

9-14

" REPACK

Purpose

To repack existing EFMP areas (i.e., to invoke the REPACK EXEC CALL function of EFMP).

Format
/REP,pakno

See REPACK EFMP CALL for explanation of parameters.

EXAMPLES
/REP,42 (repacks EFMP area in pack 42)
/REP, —1 (repacks all EFMP areas)
Example print-out:
PACK # 42 REPACKED
or

ALL PACKS AVAILABLE REPACKED

9-15

STATUS-1

Purpose

To print out directory information about a file (i.e., to invoke STATUS function number 1 of
EFMP).

Format
/STA,DF,fname,pakno.

See STATUS EFMP CALL (FSTAT = 1) for explanation of the parameters and results.

EXAMPLE

/STA,DF,LOB70,120

Example print-out:

FILE LOB70 STATUS

THE FILE IS ON PACK# 120
STARTING TRACK #IS 6

STARTING SECTOR #1S 9

THE FILE LENGTHIS 12 RECORDS
THE RECORD LENGTHIS 128 WORDS
THE USER STATUS WORDIS 0
HIGHEST RECORD # ACCESSED IS 0

9-16

STATUS-2

Purpose

To determine if a file is OPEN (i.e., to invoke STATUS function number 2 of EFMP).

Format
/STA,FO,fname

See FSTAT = 2 for explanation of the parameters and results.

EXAMPLE

/STA,FO,LOB70

Example print-out:

FILE LOB70 STATUS
FILE IS OPEN

9-17

STATUS-3

Purpose

To check the security code of a file (i.e., to invoke STATUS function number 3 of EFMP).

Format

/STA,SC,fname,pakno,scode

See FSTAT=3 for explanation of parameters and results.

EXAMPLE

/STA,SC,LOB70,120,0

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
THE SECURITY CODEIS 0
CODE CHECKS

Note: The security code returned is a restatement of the security code
entered; it is not necessarily the correct security code.

9-18

STATUS-4

Purpose

To determine the number of available full sectors left between the highest record accessed in a file
and the end of the file (i.e., to invoke STATUS function number 4 of EFMP).

Format
/STA,LR,fname,pakno

See FSTAT=4 for explanation of parameters and results

EXAMPLE

/STA,LR,LOB70,120

Example print-out:

FILE LOB70 STATUS
THE FILE IS ON PACK# 120
OF AVAILABLE SECTORS IS 12

9-19

STATUS-5

Purpose

To determine the number of available sectors left between the last file in an EFMP area and the
end of the EFMP area (i.e., to invoke STATUS function number 5 of EFMP).

Format
/STA,LF,pakno

See FSTAT=5 for explanation of parameters and results.

EXAMPLE

/STA,LF,120

Example print-out:

FOR PACK# 120
OF AVAILABLE SECTORS IS 4610

9-20

STATUS-6

Purpose

To obtain the name of the nth file in an EFMP area where n is an integer between 1 and the
maximum number of files in an EFMP area (i.e., to invoke STATUS function number 6 of EFMP).

Format
/STA,NF,pakno,statb

See FSTAT=6 for explanation of parameters and results.

EXAMPLE

/STA,NF,120,1

Example print-out:
FILE LOB70 STATUS

THE FILE IS ON PACK# 120
FILE # 1IN THE DIRECTORY

9-21

STATUS-7

Purpose

To obtain the name of the nth pack number on a specific subchannel where n is an integer

(specifying the ordinal position of the pack number) between 1 and the maximum number of
pack numbers on a subchannel.

Format
/STA,AP,subch,statb

See FSTAT = 7 for explanation of parameters and results.

EXAMPLE

/STA,AP,1,1

Example print-out:

PACK #120 IS AVAILABLE AND INITIALIZED

9-22

PART 3
Generating and Loading DOS-11]

SECTION X
Generating DOS-I1I

HP 24307B DOS-III Disc Operating System software must be generated and then loaded into the
computer’s memory before DOS-III system operation is possible. Generating a DOS-III system con-
sists of two operations:

1. Configuring the system to the available hardware.

2. Storing the configured system on disc memory.
In addition, the discs included in the system must be formatted before they can be used by DOS-III.

This section describes the procedures required to format a disc and to generate DOS-III system soft-
ware. Both disc formatting and system generation are performed using a stand-alone program, DSGEN.

Depending on the type of moving-head disc device selected for the DOS-III system, generation can be
performed either from relocatable modules and drivers punched on paper tape or contained on a master
disc cartridge. Systems including an HP 7901, HP 2883, or HP 2884 disc device initially must be
generated from paper tape. Systems including an HP 7900 disc device are delivered with a master

disc cartridge (HP part number 24307-13001) labeled DSGEN. The DSGEN disc cartridge con-
tains a DOS-III software system together with a set of relocatable modules and drivers. The cartridge
may be used to generate DOS-III software. A procedure for preparing to generate DOS-III software
from the DSGEN disc cartridge is described later in this section (see “DSGEN Disc Cartridge Sys-

tem Generation”’).

DSGEN

DSGEN (the DOS-IIT System Generator) is an absolute program which is loaded into main memory:
1) by the paper tape portion of the main-memory loader, BMDL, when using an HP 2100A/S com-
puter or, 2) by the Bootstrap loaders contained in either the paper tape loader ROM or in the disc
loader ROM when using an HP 21MX computer. Since DSGEN input/output is independent of the
DOS-III system it generates, the I/O operation of DSGEN requires SIO drivers which are distributed
with the DOS-III software. The SIO drivers must be configured to the user’s hardware configuration.
* A copy of the configured DSGEN program can be punched on paper tape using SIO System Dump,
if desired. SIO drivers and SIO System Dump are absolute programs — not part of DOS-III — needed
only for DSGEN operation. An optional utility program which uses SIO drivers is the Prepare Tape
System (PTS). PTS can be used to transfer relocatable modules from paper tape to magnetic tape to
expedite the DSGEN program input phase. DSGEN has two independent functions:

10-1

1. To format new disc cartridges (or packs).

2. To generate a DOS-III software system that fits the user’s main-memory size, I/O equipment,
and programming needs.

DSGEN CONFIGURATION FROM PAPER TAPE

DSGEN is executed in a Software Input/Output environment to generate DOS-III. First, ensure
that equipment power is on and disc storage is unprotected (Disc Protect Override or Format
enabled). At this point in DSGEN configuration, the procedure for loading paper tape depends on
the computer being used.

HP 2100A/S

The main-memory loader, BMDL, is used to load programs from paper tape into memory. BMDL
is described in detail in Section XI. A simplified procedure follows:

A. Place the paper tape into the paper tape reader and press READ to ready the reader.

B. On the computer front panel, set the P-register to the BMDL starting address 377003 for 16K
words of memory; 577005 for 24K words; or 777005 for 32K words.

C. Press PRESET (INTERNAL and EXTERNAL); then press RUN. After a successful load, the
computer will halt with 1020775 in the display register.

HP 21MX

The HP 21MX processor is equipped with a paper tape loader ROM, the contents of which are

equivalent to the Basic Binary Loader portion of the BMDL used on HP 2100A/S computers. The

contents of the ROM must be loaded into memory before the drivers or DSGEN (or any program

on paper tape) can be placed into main memory. Use the following procedure to accomplish paper

tape ROM loading.

A. Press PRESET.

B. Select the S-register for display.

C. Press the CLEAR DISPLAY.

D. Bits 15 and 14 of the Display Register must be 00 to select the paper tape loader ROM.

E. Change bits 11 through 6 of the Display Register to the octal select code of the tape reader.

Since bits 13, 12, and 5 through 0 are not used in conjunction with the paper tape loader,
they are ignored.

F. Press STORE to store the contents of the Display Register in the S'-register.

10-2

G. Press IBL to load the contents of the paper tape loader ROM into the uppermost 64 locations
in memory. The computer halts with 1020774 in the T-register.

H. Place the DSGEN paper tape in the paper tape reader, press READ to ready the reader, and
press RUN at the main processor. After a successful load, the computer halts with 102077,
in the T-register.

To configure DSGEN (using either an HP 2100A/S or HP 21MX computer), proceed as follows:

1. Specific SIO drivers must be configured before DSGEN can be executed. To configure a
driver:

a. Load the driver program into memory via the paper tape reader using the proper set of
procedures from those described above (HP 2100A/S Steps A through C or HP 21MX
Steps A through H).

b. Set the I/O channel select code of the device (lower numbered select code if there are
two I/O channels) in bits 5-0 of the switch register.

c. Start the driver program by setting the P-register to address 2 ; then press RUN. Upon
successful completion of the driver configuration, the computer will halt with 102077
in the display register.

2. Configure the SIO console driver (HP part no. 24127-60001) using Steps 1-a through 1-c. (If
the console device is an HP 2754B teleprinter, switch register bit 15 must be set to one at
Step 1-b.)

3. If program input is to be from the paper tape reader, configure the SIO paper tape reader
driver (HP part no. 20319-60001) using Steps 1-a through 1-c.

4. If a high-speed paper tape punch is included in the system, configure the SIO punch driver
(HP part no. 20320-60001) using Steps 1-a through 1-c.

5. Load DSGEN via the paper tape reader using the appropriate procedure described above (HP
2100A/8 Steps A through C or HP 21MX Steps A through H).

6. If program input is to be from magnetic tape, configure the SIO magnetic tape driver (HP part
no. 13022-60001) using Steps 1-a through 1-c.

7. If the system includes a high-speed or console punch, a configured DSGEN can be punched on
paper tape using the following procedure:

a. Load the SIO System Dump program (HP part no. 20335-60001) via the paper tape
reader using the procedure described in HP 2100A/S Steps A through C or the procedure
described in HP 21 MX Steps A through H.

b. Set switch register bit 15 to one.

c. Start the SIO System Dump program by setting the P-register to address 24 ; then press
RUN. After tape punching is successfully completed, the computer will halt with 102077
in the display register. For an additional copy of the configured DSGEN, press RUN.

10-3

8. If the disc or discs to be used by DOS-III have been formatted, DOS-III system generation can
begin immediately. Proceed as follows:

a. Set switch register bit 15 to zero.
b. Set the P-register to DSGEN starting address 100;.

c. Press RUN. DOS-III system generation dialog begins (see ‘“Using DSGEN to generate
DOS-III”).

9. To format discs before executing system generation:
a. Set éwitch register bit 15 to one.
b. Set the P-register to DSGEN starting address 1004 .
c. Press RUN. The disc formatting dialog begins (see ‘“Using DSGEN to Format Discs”).

DSGEN Start-up
To start either disc formatting or DOS-III system generation from a configured DSGEN program

(on paper tape) perform a standard paper-tape load. These procedures are described in HP 2100A/S
Steps A through C or in HP 21MX Steps A through H. Then proceed as follows:

° For disc formatting:

a. Set switch register bit 15 to one.

b. ° Set the P-register to the DSGEN starting address 1005 .

c. Press RUN. The disc formatting dialog begins (see “Using DSGEN to Format Discs”’).
L For DOS-III system generation:

a. Set switch register bit 15 to zero.

b. Set the P-register to the DSGEN starting address 1005 .

c. Press RUN. DOS-III system generation begins at the initialization phase (see “Using
DSGEN to generate DOS-III").

104

USING DSGEN TO FORMAT DISCS

Before a fresh disc can be used in DOS-III, it must be formatted by DSGEN. System discs (including
a possible User Area) are formatted during system generation, but dedicated user discs must be for-
matted by running DSGEN again in a special mode. Formatting a disc involves assigning it a system
generation code, reading every sector, clearing any existing user or system directory, and so forth.
The result is an unlabeled user disc ready for use in DOS-III. The following operator responses are
only examples, actual responses should be appropriate to the particular system being generated.

Operating Instructions

10.

Turn on all equipment.

Unprotect the disc (enable Disc Protect Override).

Load a configured DSGEN using the main-memory resident BMDL or the paper tape loader
ROM. (See “DSGEN Configuration and Start-up” in this section.)

Set up a starting address at location 100g.
Set switch register bit 15 equal to 1.

Start the computer executing (press RUN).

DSGEN asks for a decimal number to be written on the disc
label. This number is used for identification

Operator responds with a 1- to 4-digit decimal number

DSGEN requests the octal channel number (select code) of
the disc controller

Operator responds with the appropriate octal number .

DSGEN requests the type of disc storage .

Operator responds with 7900, 7901, 2883, or 2883B
(A response of 2883 implies four subchannels per disc
drive; 2883B implies two subchannels per disc drive.) .

DSGEN requests the subchannel number (0 to 7) of the
user disc to be formatted .

Operator responds with a number between 0 and
7 inclusive

10-5

SYS GEN CODE?
g D6 T

. SYSDISC CHANNEL?
A U2 Y
Cosw visSe (wawuce (S
DISC TYPE?
G0 @

7900

USER DISC SUBCHANNEL?

&

11.

12.

13.

DSGEN requests that the disc be unprotected (if it is ,
still protected). TURN ON DISC PROTECT OVERRIDE — PRESS RUN

Operator unprotects the disc and starts the
computer executing.

DSGEN carries out formatting on the specified subchannel
and halts with a code of 102007 .

This procedure should be repeated for each proposed user disc.

Operator can start the computer (press RUN) to format

a new disc of the same type (switch bit 15 must still be

equal to 1).

DSGEN repeatsfromUSER DISCSUBCHANNEL?

Operator can set switch bit 15 equal to 0 and start the
computer (press RUN) to proceed to system generation.

10-6

The operation of DSGEN involves four"p %gs:

1.

USING/ DSGEN YO GENERATE DOS-11]

R\YY307-
(6© 7Y

INITTALIZATION PHASE. DSGEN requests specifications for DOS-III, including description
of available disc space, memory, Time-base Generator channel, system generation code, system
and user disc subchannels, and program input devices.

PROGRAM INPUT PHASE. DSGEN reads the relocatable programs to be included in the sys-
tem. The relocatable program modules can be input via paper tape, disc, or magnetic tape (the
magnetic tape must be prepared off-line using the Prepare Tape System).

PARAMETER INPUT PHASE. Parameters to change EXEC modules or drivers from disc- to
main-memory resident may be entered. The programs’ NAM records are already set for a
minimum main-memory system except that two console drivers have been included. DISCM,
$EX30 (if EFMP is used), moving-head driver DVR31, and one console driver must be main-
memory resident,

DISC LOADING PHASE. DSGEN requests a specification of the base page linkage, and begins
loading programs onto the disc in absolute format. Systems programs (i.e., the modules of
DOS-III) are loaded first, after which DSGEN requests information for the equipment table,
device reference table (logical unit table), and interrupt table and proceeds to load the rest of
the programs onto the disc.

Restart

If an error occurs during execution of any phase, the operator can restart that phase by restarting
DSGEN at location 1005 .

10-7

Initialization Phase

During the initialization phase, DSGEN requests information necessary to begin generating the
DOS-III. After each output on the system console, the operator responds by entering the required
information terminated by a return linefeed. The following responses are typical. (The operator
responses are only examples, actual responses should be appropriate to the particular system being
generated.)

1.

DSGEN requests a decimal system generation code. This
code is written in the label field of the system disc for
identification SYSGENCODE?

Operator responds with a 1- to 4-digit decimal integer.—#9 4Y4%iei™

DSGEN requests the octal channel number (select code) of
the disccontroller . SYSDISCCHNL?

Operator responds with the high priority (low number)

channel..............................)4/g

Note: BMDL requires that the SYS DISC CHNL ? response must be the same
value as the EQT entry for the system.

Cswbite iD

DSGEN requests the type of disc storage. DISCTYPE?

Operator responds with 7900, 7901, 2883, or 2883B. A response

of 2883 implies four subchannels per disc drive; 2883B implies

two subchannels perdiscdrive. 7900 &
DSGEN requests the number of tracks (decimal) on the
systemdisc SYSDISCSIZE?

Operator responds with a decimal number less than

or equal to 200. (A response of 200 leaves three

tracks as spares. A response less than 200 leaves 2

extra tracksasspares.) 200 »
DSGEN requests the number of drives on thesystem #DRIVES?

If response to Step 3 was 2883, the operator responds with 1 or 2;

if response to Step 3 was 2883B, 7900, or 7901, the operator

responds with a number between 1 and 4 inclusive. f' j'
DSGEN requests the decimal number of the first track
on the system disc which is availabletoDOS-IITI FIRSTSYSTEM TRACK?

Operatorresponds 0 AN
DSGEN requests the decimal number of the first sector
availabletoDOS-III FIRSTSYSTEM SECTOR?

Operator responds. (The system area cannot begin

before track O,sector 3) 8

10-8

10.

11.

12.

13.

14.

DSGEN requests the subchannel number of the system disc

Operator responds with a number between 0 and 7

SYS DISC SUBCHNL?

AN

Note: On a 7901 disc, only odd numbered subchannels are available.

DSGEN requests the subchannel number of the user disc.
(This may be the same as the system disc.) .

Operator responds with a number between 0 and 7.
(System efficiency increases if the user disc is on a
different drive from the system disc.) .

DSGEN requests the octal channel number (select code) of
the Time-base Generator . e

Operator responds with the proper select code or 0
if the Time-base Generator is not present

DSGEN now requests the select code of the privileged-
interrupt card . . .

Operator responds with the channel (octal) of the privileged
interrupt fence if privileged interrupt is desired; otherwise,
type O.

DSGEN requests the number of DMA channels in the
system .

Operator responds with the number of DMA
channels available

DSGEN requests the last word of available main memory
in octal

Operator responds

DSGEN asks whether SS directives are to be allowed in the
system .

Operator responds either YES or NO

DSGEN requests the type of primary input unit for relocatable
program modules .

Operator responds with PT (for paper tape), TY (for

teleprinter), DF (for disc file), or MT (for magnetic
tape; see PREPARE TAPE SYSTEM (02116-91751)) .

10-9

.USER DISC SUBCHNL?

N

. TIME BASE GEN CHNL?

o 14

PRIV INT CARD CHNL?

DMA CHANNELS?

2 -~

Al L2 7
2tz

LWA MEM?
8657 I 6

. ALLOW :8S?
YES Y¥43

PRGM INPT?
DF p EF

XC)S* -y V!j“"y
7S,

\

15. If the previous answer is DF, DSGEN requests the subchannel
number of the disc containing the relocatable program

modules . INPUTDISC SUBCHNL?
A (iere

Fr2oh
e 8 e 1

Operator responds with the appropriate subchannel
number. The subchannel must contain a disc (prepared
by a pre-existing DOS-III) whose user area contains only
relocatable modules of DOS-III. By specifying PT to the
next question (LIBR INPT?) the operator can include
programs from the paper tape reader in addition to those
on the disc file .

16. DSGEN requests the type of optional input unit for relocatable
program modules e e e

Operator responds with PT, TY, DF, or MT

Note: Any type of relocatable program can be entered through the Program

Input Unit or the Library Input Unit.

17. DSGEN requests the type of input unit for the parameter
input phase .

Operator responds with PT or TY

When DSGEN finishes the initialization phase, the computer halts.

N ows heAp G 0T

LCrioemT i QLES Foom

10-10

4

LIBR INPT?

o~

pPT

PRAM I]&

el TY
Cavags G

Dise

i

TY

J

PROGAM ToPoT S ‘?a.% 4o © O
e £ u e

Program Input Phase LB A T s Pee Qﬂ% 4——0 AP
- I [T

During the program input phase, DSGEN accepts relocatable programs from the Program Input

Unit and Library Input-Brit specified during the initialization phase. The operator selects the input

device by setting switch register bits 0-1 (00, for the Program Input Unit, or 10, for the Library

Input Unit), and places the programs in the input device. Main programs must be entered prior to

their segments. DISCM should be the first module loaded.

DiSC mow'Ser T~ Ml s To DIt So A5 e Ay TIEST | Yritwe
The suggested order of module input is e ° ! v Weiv S §

¥ DOS-IIT MAIN-MEMORY RESIDENT SYSTEM (DISCM)
DOS-III I/O DRIVERS (DVR05, DVR0O1, DVR71, . . . ETC)
DOS-IIT EXEC MODULES ($EX01 .. .)
EFMP EXEC MODULES (IF DESIRED-$EX30 .. .)
DOS-IIT JOB PROCESSOR/FILE MANAGER (JOBPR)
DOS-III RELOCATING LOADER (LOADR)
DOS-IIT ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENT1], .. .)
DOS-1IT FORTRAN (MAIN CONTROL, PASS1, .. .)
DOS-IIT EFMP UTIL (IF $EX30...AND FORTRAN IV LIBRARY ARE INCLUDED)
RTE/DOS ALGOL
RTE/DOS FORTRAN IV LIBRARY OR RTE/DOS BASIC FORMATTER
RTE/DOS RELOCATABLE PROGRAM LIBRARY (EAU OR FLOATING POINT) — See Note 1
RTE/DOS FAST FORTRAN PROCESSOR (FFP) SUBROUTINE LIBRARY AND $SETP
SYSTEM SUBROUTINE — See Note 2

Any relocatable user programs to be made a permanent part of DOS-III

Notes: 1) For systems based on an HP 21 MX series processor only, the HP
21MX RTE/DOS DEBUG subroutine should be loaded immedi-
ately following the Relocatable Program Library (see ‘“‘Special
Considerations’ under “DEBUG Library Subroutine’ in Section
V).

2) When the FFP and $SETP tapes are loaded, ERR08 and ERR05
will occur and messages will be printed on the console because
the entry point names used by these subroutines replace the
FORTRAN and library subroutine entry point names.

Load the first input module and start the computer executing. When entering paper tape, the
message ‘“*EOT” is output whenever an end-of-tape occurs. The computer halts. Program input can
be switched back and forth between the input units by varying the switch register bits between 00,
and 10, before starting the computer.

To terminate the program input phase, the operator must set switch regisger bits to 012 , and start
the computer. If there are no undefined externals, this message- is printed on the system console:

NO UNDEF EXTS

If there are undefined externals, the following message is output:

UNDEF EXTS

10-11

The externals are listed one per line and the computer halts. External references are satisfied by
loading more programs. The operator must set switch register bits to 00, (for Program Input Unit)
or 10, (for the Library Input Unit) and start the computer executing. If the externals are to be left
unsatisfied, set the switch register bits to 01, and start the computer executing.

Note: $EX30 through $EX33 (the EFMP EXEC modules) and $EX36 and
$EX37 (user EXEC modules) are not listed when missing.

Parameter Input Phase

During the parameter input phase, the operator can change selected I/O drivers and EXEC modules
from disc-memory to main-memory resident or vice versa. In addition, an optional parameter
allows the operator to change the linking mode for each module. Either current page or base
page linking can be selected.

The console driver must always be main-memory resident. Console drivers DVR00 and DVRO05
are distributed as main-memory resident while terminal printer driver DVR26 is distributed as
discresident. The console model to be used in the configured system determines which driver
must be main-memory resident. Any unnecessary I/O drivers must be eliminated at this time.
If the memory management capability is not desired, delete modules $EX22 and $$MGT from
the system by specifying them as type 8 (see below).

DVR31, DISCM, and $EX30 are distributed as main-memory resident modules; they must not
be changed to disc-resident.

Each parameter record has the form:
name,type[,link mode]
where name is the name of the program to be changed.

type is the program type code:

0 — System main-memory resident
1 — System disc-resident EXEC modules
3 — User disc resident main
4 — Disc resident I/O driver
5 — User segment

6,7 — Library

>7 — Program is deleted from the system

link mode is the mode of linking to be performed:
0 — current page linking (default)

non-zero — base page linking

When changing the linking mode, the program type must be specified. An error in either the type
or link mode parameter results in an error message (ERR10).

10-12

The following modules are designed to execute with base page linking and must not be changed to
current page linking mode:

Program Module Name

HP ALGOL ALGOL

HP Assembler ASMB

HP FORTRAN FTN

HP FORTRAN IV FTN4 (4K area)
FTN4 (10K area)

HP DOS-III Job Processor JOBPR

For programs changed to cutrent page linking mode, the programs should be structured into sub-
routines of less than 2048 words (two pages of memory) in length. Current page links are generated
only at the beginning and end of a program. They cannot be inserted into the program area because
the boundary between program code and current page links might occur within a skip or jump
sequence. If a program spans more than two pages, there is no area available for current page links
in the middle pages, so base page links will be used; thus, the potential for greater efficiency is lost.

Parameter input is terminated by entering the slash character followed by the letter E (/E). This
ends the parameter input phase.

EXEC modules and drivers that are often used may be changed from disc- to main-memory resident.
The functions of the EXEC modules are

Module Name Request Codes Function

$EX01 16 Disc work tracks status

$EX02 17 Disc work tracks limits

$EX03 6 : Program completion

$EX04 7 Program suspension and associated messages

$EX05 8,10 Program main or segment search
(Note: $EX05 calls $EX10)

$EX06 18 User file name search

$EX07 11 Current time processor

$EX08 4 (RT) Real-time disc allocation

$EX09 :EQ processor

$EX10 8,10 Load and execute main program or segment
(Note: see also $EX05)

$EX11 14,15 System file name search
(Note: used for file read/write)

$EX12 System startup

10-13

Module Name Request Codes Function

$EX13 Error message processor
$EX14 :UP, :DN, :LU processor
$EX15 Abort and post-mortem dump
$EX16 :GO parameter processor
$EX17 23 :UD processor
$EX18 1,2,3, I/O initiation processor
14,15 (Note: See also $EX11)
$EX19 :IN processor
$EX20 Disc parity processor
$EX21 32,33,34 Programmatic file control
$EX22 35,36,38,41 Memory management
$EX36 27 User written module
$EX37 28 User written module

Functions of EFMP EXEC Modules

$EX30 — Always main-memory resident (common routines and values).
$EX31 - DEFINE, CREATE, DESTROY, OPEN, CLOSE

$EX32 - READ, WRITE, RESET, STATUS, CHANGE

$EX33 - COPY, REPACK

When changing program types, it is not necessary to explicitly specify all subroutines called by an
EXEC module which is made main-memory resident. The generator automatically makes the
proper linkages. In addition to making the subroutine main memory resident, the generator places
it in the system library, thus making it available to user programs.

10-14

Disc Loading Phase

1.

DSGEN asks for the number of base pagelinks # LINKS?

The operator responds with the decimal number of
links. If the operator responds with a blank character,
DSGEN allocates the maximum number of links (800) 540

Loading of the absolute, resident supervisor begins after the establishment of the user and
system linkage areas. As each program is loaded, DSGEN prints a memory map giving the
starting and ending locations of both main memory and base page portions of the program.
In addition, if bit 15 is set (ON), the entry points for main programs and subroutines are
printed. (Subroutines are indented two spaces, and entry point addresses are preceded by
an asterisk.)

DSGEN requests memory management subsystem names . . ENTER SUBSYSTEM NAMES

The operator responds with a series of one line entries which specify the

subsystem name (1-4 characters) of each subsystem that utilizes memory

management (see :MMGT directive). Terminate the input list with the

characters “/E”’ e e e e e e8UBS
SUB7
/E

Note: Next, DSGEN generates the three I/O tables; equipment table,
device reference table (logical unit table) and the interrupt table.

DSGEN requests the equipment table entries *EQUIPMENT TABLE ENTRY

Operator responds with a series of one-line EQT entries, which

are assigned EQT numbers sequentially from one as they are

entered. The EQT entry relates the EQT number to an I/O

channel and driver, in thisformat an,DVRnn[,D] [,u]

where nn is the octal channel number (lower number if multi-board, maximum is 373)

DVRnn is the driver name (nn is the equipment type code)

D, if present, means DMA channel required

u is the physical subchannel (unit) number (valid responses; 0-31)

Operator terminates the equipment table entries by typing. /E

Here is a sample Equipment Table:
* EQUIPMENT TABLE ENTRY

10,DVR31,D (EQT entry #1 = disc)
12,DVR23,D (EQT entry #2 = magnetic tape)
14,DVR05 (EQT entry #3 = system console)
15,DVRO01 (EQT entry #4 = photoreader)
16,DVR02 (EQT entry #5 = tape punch)
17,DVRI12 (EQT entry #6 = line printer)

/E (End of table)

10-15

4. DSGEN requests the logical unit assignments for the device .
referencetable. *¥DEVICE REFERENCE TABLE

For each logical unit number, DSGENprintsn=EQT#?

Operator responds with an EQT entry number (m)
appropriate to the standard definition of n. Numbers
above 6 may be assigned any EQT entry desired m

Operator terminates entry by typing /E
Here is a sample Device Reference Table:

* DEVICE REFERENCE TABLFE

1 = EQT #? (System console on channel 14, EQT #3)

32 = EQT #? (Disc on channel 10, EQT #1)

13 = EQT #? (Disc on channel 10, EQT #1—reserved for system use)
14 = EQT #? (Standard punch unit on channel 16, EQT #5)

55 = EQT #? (Standard input unit on channel 15, EQT #4)

46 = EQT #? (Standard list unit on channel 17, EQT #6)

67 = EQT #°? (Standard unit definable by user)

28 = EQT #? (End of table)

/E

Note: The number of responses given here determines the number of logical
units allowed in the system. To allow unassigned logical units for the
user, respond with a 0 to as many questions as units are desired.

5. DSGEN requests the interrupt tableentries. *INTERRUPT TABLE

Operator responds with an entry for each I/O channel which
may interrupt, in ascending order and in the format njoption

where ny is the octal channel number (high number if multi-board) between 105 and 37
inclusive (must be entered in ascending order)

option directs the system in handling the interrupt:
EQT,ng relates the channel to EQT entry number n 2

ABS, value places an absolute octal value in the interrupt location. value is an
octal integer.

ENT,entry transfers control to the entry point of a user-written system program
upon interrupt (typically the P.xx entry of a privileged I/O driver).

If 2883B was specified as the disc type (see “Initialization Phase,” step 3) and a second con-
troller is added, the octal channel number of both controllers must be specified.

The operator terminates entry by typing /E

10-16

Here is a sample Interrupt Table:

10.
11.
12.

*INTERRUPT TABLE

10,ENT,P.73 (Channel 10 linked to privileged interrupt routine P.73)

12,EQT,1 (Channel 12 linked to EQT #1)

13,ABS,102077 (Channel 13 interrupt location filled with an octal halt instruction)
14,EQT.4 (Channel 14 linked to EQT #4)

15,EQT,5 (Channel 15 linked to EQT #5)

16,ABS,0 (Channel 16 interrupt location filled with a NOP; all zeros)

/E (End of table)

Note: The EQT numbers need not appear in numerical order. This order is
determined by referring back to the Equipment Table. The octal
channel numbers, however, must be in ascending sequence.

Following the completion of the I/O tables, DSGEN loads the disc-resident executive modules
(if any), and the disc-resident I/O drivers (if any).

DSGEN reports the last octal address plus 1 of the system
base pagelinkarea LWALINKS yyyyy ©ubl

DSGEN requests the first word base page octal address
of the user linkarea.FWAUSER LINKS? e 06677

Operator responds with an octal address greater than
or equal to yyyyy andlessthan2000s. mmmmm

DSGEN reports the last octal address plus 1 of the main-memory
resident system LWAPROG xxxxx 23707

DSGEN requests the octal address of the first word of the
user program area« « + + + +« vFWAUSER? S'vocC

Operator responds with an octal address greater than
or equal to xxxxx. (This option is provided so that user
programs can start on a page boundary, if desired) nannn

Note: Some system programs must be base page linked, i.e., the
FORTRAN compiler. For this reason it is recommended
that the User Area always be started on a page boundary.
Since pages contain 20003 words, the octal number speci-
fied should be some multiple of 20005 .

DSGEN proceeds to load all user main programs and segments onto the disc with memory
map listings as described for system programs.

When system generation is complete, DSGEN reports . . .*SYSTEM STORED ON DISC
Protect the disc (enable Disc Protect) to prevent access to the system portion of the disc.

The DOS-III system which has just been generated (in this case, on Subchannel 0) must be
loaded into main memory. This is accomplished by using BMDL or the disc loader ROM. (See
Section XI).

Note: If a configured DOS-III system resides on a disc starting at head 0, track 0,
simply press RUN. The system will execute and halt with 1020773 in the
Memory Data register. Then, set the switch register to the subchannel of the
newly generated system (in this case, Subchannel 0), press PRESET (INTERNAL
and EXTERNAL) and press RUN. The newly generated DOS-III system will be
automatically loaded into memory.

10-17

Sample System Generation

SYS GEN CODE?

2123

SYS DISC CHNL?

15

- DISC TYPE?

7928

SYS DISC SI1ZE?

209

DRIVES?

2

FIRST SYSTEM TRACK?
2

FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?
3

USER DISC SUBCHNL?
3

TIME BASE GEN CHNL?
14

PRIV INT CARD CHNL?
11 ,

DMA CHANNELS?

2

LWA MEM?
77677

ALLOW 587
YES

PRGM INPT?

DF

INPUT DISC SUBCHNL?
!

LIBR INPT?
PT

10-18

PRAM INPT?
Y

*EOT
NO UNDEF EXTS
ENTER PROG PARAMETERS

SEX 18,0
/E

LINKXS?
800
SYSTEM
NAME PROG BOUNDS
DISCM
$TIME 25231
$SETP 25362
$PFAL 25403

(BOUNDS) B2000 05406

DUR31

(BOUNDS) B54@6 06127

F4D.C

(BOUNDS) a6127 26127

F2F.B

(BOUNDS) p6127 26127

BP BOUNDS

28574
22574
23574

#3337

@574

#2635

@9635

10-19

2@574

BP635

A@635

@635

DUROY

(BOUNDS) 26127 26600 p@635 00637

DUR7@

(BOUNDS) 26600 A7022 Pe637 @9642

3EX 18

(BOUNDS) @7a422 27712 PE642 00642

SSMGT

(BOUNDS) 27712 18523 20642 BB667

ENTER SUBSYSTEM NAMES
/E
* EQUIPMENT TABLE ENTRY

19, DUR70
12, DVR@A2

13, DVR@21
15, DVR31,D
17, DYRI12
20, DUR11,D
21,DURE23,D
23, DVRA2
/E

10-20

* DEVICE REFERENCE TABLE

1 = EQT #?
2

2 = EQT #?
4

3 = EQT #7
4

4 = EQT #?
8

S = EQT #7?
3 ‘

6 = EQT #?
S

7 = EQT #?
6

8 = EQT #7
7

9 = EQT #?
/E

* INTERRUPT TABLE

10, ENT, P70
12, EQT, 2
13, EQT, 3
16, EQT, 4
17,EQT, 5
20, EQT, 6
22,EQT,7
23, EQT,8

/E

EXEC SUPERVISOR MODULES

NAME PROG BOUNDS BP BOUNDS
$EX21
$SRCH 11734 pR670@

(BOUNDS) 11834 12375 0667 #3713

10-21

SEX@1
$ADDR

(BOUNDS)
$EX@2
$ADDR

(BOUNDS)

$EX@33
(BOUNDS)
$EX24
ASCII
(BOUNDS)
$EX25
$SRCH
(BOUNDS)
$EX26
$SRCH
$ADDR
(BOUNDS)
$EX@7
$ADDR
(BOUNDS)
$EX @8
$ADDR

(BOUNDS)

11121

11234

11124

112834

11834

11426

11834

11117

11334

11136
11577

11834

11221

11634

11207

11234

11136

11141

11188

11558

11560

11614

11236

11224

20670

20667

AR670

23667

20667

20671

20667

Bo6T0

20667

@267!
PB6T 1

20667

00670

00667

80670

20667

10-22

00670

PB6TE

BB667T

22671

o670

20671

P06709

2o679

$SEX@9
ASCI11I

(BOUNDS)

SEX19

(BOUNDS)

$EX11
$SRCH

(BOUNDS)

$EX 12

(BOUNDS)

$EX13
ASCII

(BOUNDS)
PEX 14
A5CI1I
(BOUNDS)
$EX15
ASCII

(BOUNDS)

$EX 16

(BOUNDS)

11433

11834

11934

11857

11034

11234

11411

11234

11557

11834

11423

11234

11834

11555

11372

11520

11329

11533

11701

11525

11165

20671

PO667

pA66T

20670

2a667

22667

Ba671

p266T

aA6T2

BO66T

Po6792

82667

P2667

10-23

20671

2667

22672

2a667

BA6T 1

20671

ge671

PB667

$EX 17
$LBL

(BOUNDS)
PEX 19
3L.BL

(BOUNDS)

SEX20

(BOUNDS)

$EX22

(BOUNDS)

I1/0 DRIVER

NAME

DVR@G1

(BOUNDS)

DUR@2

(BOUNDS)

DVR11

(BOUNDS)

DUR12

(BOUNDS)

11424

11934 11532

11427

11834 11535

11834 11522

11834 13134

MODULES

PROG BOUNDS

13134 13525

13134 13361

13134 14853

13134 13521

ageT2

PB66T

Pa674

23667

20667

22667

PO6T4

Ae674

22667

B3735

BP BOUNDS

98713

28713

28713

6713

10-24

08715

20715

paT24

28715

DVR23

(BOUNDS) 13134 13752 22713 PA7T15

LWA LINKS 06724
FWA USER LINXS?
724

LWA PROG 14053
FwA USER?

16220

USER SYSTEM PROGRAMS

NAME PROG BOUNDS BP BOUNDS
LOADR
« EAU. 27581 21422
DUMRX 27551 21426

(BOUNDS) 16008 27631 @724 @1426

ASMB

(BOUNDS) 160080 23131 ae724 01303

ASMBD

(BOUNDS) 23131 23741 21323 91304

ASMBI1

(BOUNDS) 23131 24553 21383 81347

AsSMB2

(BOUNDS) 23131 24579 21323 #1331

10-25

ASME3

(BOUNDS)

ASMB4

(BOUNDS)

ASMBS

(BOUNDS)

XREF
« OPSY
DUMRX

(BOUNDS)

FTN4

(BOUNDS)

F4a.0

(BOUNDS)

F4.1

(BOUNDS)

F4g.2

(BOUNDS)

23131 240822

23131 240489

23131 24445

21230
21279

16209 21350

31170

16000

31170

37241

3117@

34732

31179 36268

21303

21303

21323

210913
21915

BaT24

paT24

p1272

g1272

g1272

10-26

@1327

21311

21326

21215

g1272

21354

21426

21370

XDISC

« SWCH 206249 21241
FMTIO 28637 g1o4al
INDEX 22970 @G11a1
« PRAM 22246 21121
EXECX 22356 21101
INITX 22402 21181
FLIB 22441 1101
«FLUN 22544 @1107
+XFER 22565 21187
DELE 22631 21110
SNGL 22666 gir11e
FRMTR 22734 21113
+ OPSY 25474 21369
+» EAU. 25534 #1360
DUMRX 25604 21361
«ZRLB 25664 721361
«XPAK 25725 21361
«ENTR 26122 21373
«PACK 26212 21374
+« X COM 26326 21374

(BOUNDS) 1629 26377 agT24 1374

JOBPR

(BOUNDS) 160238 30422 23724 01401

*SYSTEM STORED ON DISC

10-27

DSGEN DISC CARTRIDGE SYSTEM GENERATION

Each HP 24307B DOS-III Disc Operating System with an HP 7900 Disc device included in the sys-
tem hardware is delivered with a disc cartridge labeled DSGEN (HP part number 24307-13001). The
DSGEN cartridge contains a DOS-III software system together with a set of modules with which to
generate a DOS-III software system in the computer’s memory.

Care must be taken to protect the contents of this disc from modification or destruction. The
DSGEN cartridge can be copied to another disc and set aside. Modification can now be made to
the copy without affecting the original disc.

If modules not included on the DSGEN cartridge are reqhired, they must be loaded into the system
from another type of input unit during the system generation procedure.

The I/O PCA boards must be arranged according to the select codes specified by the label on the
DSGEN cartridge. For example:

Select Codes

11 7900 DISC
10 SYSTEM CONSOLE

The example indicates that the HP 7900 disc device resides in select codes 11 and 12, and the system
console device resides in select code 10.

Initial generation steps differ for an HP 21MX computer (with an optional disc loader ROM in-
stalled) and an HP 2100A/S computer. For an HP 21MX not equipped with a disc loader ROM,
use HP 2100A/S procedures.

HP 21MX
1. Insert the DSGEN cartridge in the HP 7900 disc device. Press PRESET.

2. Select the S-register for display. Press CLEAR DISPLAY.

3. Set the select code of the disc in bits 11 through 6. Set bit 14 to select the disc loader ROM
to be loaded.

4. Press STORE to store the contents of the Display Register in the S-register. Press IBL to load
the contents of the disc loader ROM into the uppermost 64 locations of memory.

The computer halts with octal 102077 in the T-register. Press RUN and dialogue with the system
begins. Go to step 5.

HP 2100A/S
1. Load and configure the Stand-alone Paper Tape Bootstrap Loader to the system hardware.

2. Insert the DSGEN cartridge in the HP 7900 Disc device.

3. Load DOS-III from Subchannel 1 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader. Go to step 5.

Once DOS-III is initiated, a dialogue between the system and the operator begins on the system con-
sole. In the following example, information typed by the operator is underlined, and the informa-
tion printed by the system is not underlined. These underlines will not appear on the terminal
under actual operating conditions.

10-28

5. The DOS-III system begins the dialog by requesting the DATE directive:
INPUT :DATE,XXXXXXXXXX

@:DATE,, DATE directive entered

SUBCHAN=1

LBL=DSGEN

@

:JOB JOB directive entered

JOB

@

:UD,*,0 Change user disc to Subchannel 0, no label
@

:IN,* Initialize user disc, no label

@

:UD,DSGEN,1 Change user disc to Subchannel 1, label is DSGEN
@

:UD Verify correct subchannel and label
SUBCHAN=1

LBL=DSGEN

@

:DD Disc-to-disc dump of disc on Subchannel 1
@

:UD,*,0 Destination disc for dump operation.

6. Wait for the system to respond with @ to indicate that the entire contents of Subchannel 1
have been copied to Subchannel 0.

7. Press HALT.
8. Remove the DSGEN cartridge from the HP 7900 Disc device.
9. Insert a disc cartridge to be used for subsequent DOS-III system generation.

10. Load DOS-III from Subchannel 0 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader.

11. System dialog begins:
INPUT :DATE, XXXXXXXXXX

@:DATE,, DATE directive entered

SUBCHAN=0

LBL=DSGEN

@

:JOB JOB directive entered

JOB ,

@

:LIST,S,1,INDEX List user source file, INDEX on the console (the °
following list is an example)

10-29

pog1
op02
poe3
pog4
poes
ppa6
pop7
00p8
p9P9
po19
gp11
pp12
pg13
pp14
go15
gple
pp17
pp18
g@19
po2p
pp21
pp22
pp23
9924
pp25
gp26
9927
9928
9929
0030
gp31
9932
9933
gp34
9935
9936
pg37
pp38
P9 39
gpap
gpal
pp42
pp4s
pp44
p@4s
pg46
gp47
gpas
p@49

DOS III B

NAME

DISCM
$EXMD
DVR@@
DVR@1
DVR@2
DVR@5
D2892
D2767
D261
D2607
DVR23
DVR26
DVR31
DVR67
DVR72
DVR73
EFMP

JOBPR
RLODR
ASMB

.FIN4

FTN4
ALGOL

XREF

F2E.N
F2F.N
F4D.N
FFP.N
ATD@1
DVR33
MASMB
WCSUT
MDBUG

PART NUMBER
24307-16092
24307-16003
20985-69991
20987-6@pP1
20989-6ppP1
24157-60991
24272-6ppP1
24168-6p9P1
24271-6ppP1
24349-6pp@1
13924-6p991
24333-60pp1
24156-60001
24341-16pp1
24350-16pp1
24377-16991
24309-60002
24309-60003
24307-16904
24308-6pp91
24158-6p9@1
24158-60002
24158-60003
24158-60pP4
24158-609p5
24158-60906
24158-60007
2417¢-6ppP1
24179-60902
24179-60pP3
24177-6pp01
24177-60992
24129-609p1
24129-60992
24223-60091
24151-6pp@1
24248-6pg91
24152-60091
12997-16091
24381-169@1
24278-60@91
24332-60001
24333-60001
24334-60pp1

Kk kk LIST END *kkhk*%

@

(24307B)

REV 1419

THIS INDEX RELATES THE NAMES OF THE RELOCATABLE MODULES
TO THE PART NUMBERS OF THE EQUIVALENT PAPER TAPES AND
INDICATES THE PURPOSE OF THE MODULES IN THE SYSTEM.

REV

1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419

OO OOm OO T ETEmW

1419
1419
1419

1419

DESCRIPTION

DISC MONITOR

EXEC MODULES

TTY-LIKE CONSOLE/TERMINAL
PAPER TAPE READER

PAPER TAPE PUNCH

TTY-LIKE CONSOLE

2892B CARD READER (DVR11)

2767A LINE PRINTER (DVR12)

2619A/2614A LINE PRINTER (DVR12)

2607A LINE PRINTER (DVR12)
7979pB/E MAG TAPE

2762A CONSOLE PRINTER
7990/79901/2879 DISC
12889A HS SERIAL IF
12587B ASYNC DATA SET IF
1292pA/B MUX

EXT FILE MGR EXEC MODULES
EXT FILE MGR UTILITIES
JOB PROCESSOR
RELOCATING-LINKING LOADER
ASSEMBLER

FORTRAN IV COMPILER

FORTRAN IV COMPILER (1@K AREA)
ALGOL COMPILER

CROSS REF TABLE GENERATOR
RELO SUBR (EAU) LIBR

RELO SUBR (FP) LIBR

RELO SUBR (FIN4) LIBR
RELO SUBR (FFP) LIBR
ASYNC TERMINAL DRIVER #1
12908 WCS DRIVER

12908 WCS MICRO ASSEMBLER
12998 WCS I/0 UTILITIES
129¢8 WCS DEBUG EDITOR

10-30

At this point, use the list printed to select those modules which are to be included in the system to
be generated. The PURGE directive is used to flag modules and drivers for deletion. Some guide-
lines for building a DOS-III system follow.

a. These modules must be included in every system:

DISCM
$EXMD
DVRO1
DVRO00

DVR05} Choose One,
DVR26

DVR31
JOBPR
EFMP
F2E.N }

FOF.N Choose One, {

Disc Monitor
EXEC Modules
Paper Tape Reader Driver

System Console Driver

Disc Device Driver

Job Processor

Include if EFMP or IMAGE is desired
EAU

Floating-point Arithmetic

b. These driver modules are required if the associated peripheral device is included in the system

to be generated:

D2767
D2610} Choose One, {
D2607

DVR23

DVRO02

D2892

DVRG7

DVR72

DVR73

DVR33

DVR12 — HP 2767 Line Printer Driver
DVR12 — HP 2610/2614 Line Printer Driver
DVR12 — HP 2607 Line Printer Driver

HP 7970A/B/E Magnetic Tape Driver

HP 2895/2753 Paper Tape Punch Driver
DVR11 — HP 2892 Card Reader Driver

HP 12889A Interface Driver

HP 12587B Interface Driver

HP 12920A/B MUX Driver

HP 12908A WCS Driver

c. These modules are normally included during system generation, but may be run from the user

area instead:

RLODR
ASMB
ALGOL
FTN4
F4D.N

FFP.N

XREF

Relocating/Linking Loader
Assembler
ALGOL Compiler
FORTRAN IV Compiler
FORTRAN IV Library — Required in addition to the
library selected under point a above if FORTRAN IV
or EFMP is included in the system to be generated.
FFP Library — Required if the FFP option is present
(this module must appear in the directory after F4D.N).
Cross Reference Table Generator

d. These modules should be included if WCS is present:

MASMB
WCSUT

HP 12908 WCS Micro-assembler
HP 12908 WCS 1/0 Utilities

10-31

e. These modules must be deleted from the cartridge on Subchannel 0 under specific conditions:

FFP.N If FFP hardware is not present
F2F.N If Floating Point hardware is not present
RDBUG If HP 21MX is present

Any drivers not required by the system to be generated.
f. This module must be deleted from the cartridge on Subchannel 0:

INDEX
MDBUG

In the dialog following, assume that a DOS-III system is to be generated which includes these
modules:

DISCM
$EXMD
DVRO1
DVRO2
DVRO3
D2767
DVR23
DVR31
JOBPR
RLODR
ASMB
FTN4
XREF
F2F.N
F4D.N

The dialog continues from the @ symbol at the end of Step 11:

:PURGE,EFMP,DVR00,DVR26,F2E.N,D2892,D2610,D2607
EFMP

DVRO00O

DVR26

F2E.N

D2892

D2610

D2607

@

10-32

The modules residing on Subchannel 0 are ready to be used for DOS-III system generation. Proceed

:PURGE,DVR67,DVR72,DVR73,ALGOL,FFP.N,ATD01,DVR 33

:PURGE,.FTN4,MASMB,WCSUT ,MDBUG

DVR67

DVR72

DVR73

ALGOL

FFP.N

ATDO1

DVR33

@

FTN4

MASMB

WCSUT

MDBUG

@

:PURGE,INDEX
INDEX

@

:LIST,U,1

NAME TYPE SCTRS
SUBCHAN=0

DISCM RB p@p26
$EXMD RB @p1p8
DVRgL RB @ppg4
DVRg2 RB @pp@3
DVRgS RB ppPp3
D2767 RB 0004
DVR23 RB 0pPP6
DVR31 RB 0p@p5
JOBPR RB ¢p@8l
RLODR RB P@@59
ASMB RB (pp88
FIN4A RB @p177
XREF RB ¢pp23
F2F.N RB @@113
FAD.N RB §@148
@

:EJOB

END JOB

@

as follows:

1.

List the user directory on the console

DISC ORG

TPR7 P09
TPP7 926
TPPO P43
TPP9 P47
P19 pP2
TP1p P11
TPLY P27
TP1P P37
T@15 999
TP16 P33
TP17 P44
TP24 928
TP3p PP6
TP33 P4
TP35 P21

Terminate current job

PROG LIMITS

B.P. LIMITS

ENTRY FWAM

Load the DSGEN program from paper tape using the Stand-alone Paper Tape Bootstrap

Loader or the paper tape loader ROM.

If the DSGEN program loaded is not configured, perform the procedure under “DSGEN
Configuration” presented earlier in this section.

10-33

PB

3. Use DSGEN to format the disc cartridge on Subchannel 1. When this step is completed, the
computer will halt with 1020774 in the Memory Data register.

4. Use DSGEN to generate a DOS-III system on Subchannel 1. Proceed as directed under ‘“Using
DSGEN to Generate DOS-III” in this section.

After DOS-III system generation is completed, modules to be run from the user area of disc memory
can be retrieved from the master DSGEN cartridge. For example, if WCS is present in the system,
the modules WDBUG and ATDO1 may be loaded into the user area as follows:

1. Insert the master DSGEN disc cartridge in the HP 7900 Disc device.

2. Load DOS-III from Subchannel 0 and initiate it using the Stand-alone Paper Tape Bootstrap
Loader or the disc loader ROM.

3. System dialog begins:
INPUT :DATE, XXXXXXXXXX

@:DATE,, DATE directive entered

SUBCHAN=0

LBL=DSGEN

@

:UD,DSGEN,1 Change user disc to Subchannel 1, label is DSGEN
@

:DD,U,MDBUG,ATDO01 Disc-to-disc dump of specified files from user area
@

:UD, *,0 Destination disc for dump operation

@

:LIST,U,1 List user directory to verify that modules were copied

4. The system will print a list of the user directory on the console.

10-34

Sample DSGEN Cartridge Preparation and System Generation

INPUT :DATL,XXXXXXXXXX

@ :DA,»
SUBCHAN=1
LBL=DSGEN
@

:JO3

JO3 : r

@

tUD,*, 2

LBL=SYSTEM

D1SC GEN CODE 6532 NOT SYS GLEN COLE 3529 LRR PUSS
RE-ENTER STATEMENT ON TTY.
e

tUD,SYSTEM, 2

DISC GEN CODE 658@ NOT SYS GEN CODLE 8529 &=RR PUSS
e

s IN, %

DOS LABEL SYSTEM

OK TO PURGE?

YES

e

:UD,DSGEN, |

e

sUD

SUBCHAN=1

LBL=DSGEN

@

¢t DD

]

tUD,»*,0

e

INPUT :DATE,XXXXXXXXXX

@ :DATE. »
SUBCHAN=2
LBL=DSGEN
e

:JOB

JOB ’
@

10-35

:LIST,S, 1, INDEX
DOS III B

o801
vpo2
6ee3
2004
GBe5
453111)
8B
P28
20069
Pg10
@@ll
ggla
2213
aal4
@215
go16
gol17
ea18
@o19
229
paz1
2022
0223
ggz4
2925
2826
geat
2828
2829
2030
2831
gaae
8333
6a34
0235
8B36
2837
2338
Be39
Q040
g4l
B4l
8243
vo4a4
@345
0046
eoat
0048
Bo49

NAME
DI SCM
$EXMD
DVROG
DVR@1
DVR@g2
DVR@G5
D2892
D27617
D261@
Dz26@7
DVR2e3
DVR26
DVR31
DVR67
DVR72
DVR73
EFMP

JOBPR
RLODR
ASMB

«FTIN4

FTN4
ALGOL

XREF

F2EeN
F2F«N
F4DeN
FFPeN
ATDG1
DVR33
MASMB
WCSUT
MDBUG

PART NUMBER
243@7-16002
24307-160083
20985-60001
20987-60801
20989-68001
24157-600601
24272-600201
24168-6080081
24271-62081
24349-60301
13024-68601
24333-602001
24156-60801
24341-16001
24350-16001
24377~-16001
24309-60002
24309-60003
243087-16004
24308-60001
24158-60001
24158-60002
24158-60003
24158-68004
24158-6008065
24158-60006
24158-6000617
24170-60001
24170-68002
24170-60003
24177-600601
24177-60002
24129-60001
24129-60002
24223-600401
24151~60001
24248-60001
24152-60201
12907~16001
24381-16001
24278-560001
24332-60801
24333-60001
24334-60001

*%xkk LIST END skkokak

(24307B)

REV 1419

THIS INDEX RELATES THE NAMES OF THE RELOCATABLE MODULES
TO THE PART NUMBERS OF THE EQUIVALENT PAPER TAPES AND
INDICATES THE PURPOSE OF THE MODULES IN THE SYSTEM.

REV

1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419
1419

Paoatuunaoauwaocoontwro®©

1419
1419
1419

1419

10-36

DESCRIPTION

DISC MONITOR

EXEC MODULES

TTY-LIKE CONSOLE/TERMINAL
PAPER TAPE READER

PAPER TAPE PUNCH

TTY-LIKE CONSOLE

2892B CARD READER (DVRI!1)
27674 LINE PRINTER (DVRI2)
26108A/2614A LINE PRINTER (DVRI12)
2607A LINE PRINTER (DVRI2)
797@B/E MAG TAPE

2762A CONSOLE PRINTER
79008/79081/2878 DISC

12889A HS SERIAL 1IF

125878 ASYNC DATA SET IF
1292¢A/8B MUX

EXT FILE MGR EXEC MODULES
EXT FILE MGR UTILITIES
JOB PROCESSOR
RELOCATING-LINKING LOADER
ASSEMBLER

FORTRAN IV COMPILER

FORTRAN 1V COMPILER (18K AREA)
ALGOL COMPILER

CROSS REF TABLE GENERATOR
RELO SUBR (EAU) LIBR

RELO SUBR (FP) LIBR

RELO SUBR (FTN4) LIBR
RELO SUBR (FFP) LIBR
ASYNC TERMINAL DRIVER #1
12928 WCS DRIVER

12998 WCS MICRO ASSEMBLER
12968 WCS 1,0 UTILITIES
1298 WCS DEBUG EDITOR

:PU,DVROO,LDVR26,F2F « N, LFMP,D2767,0D2618,0L2892,UVR67,UVR73,0VR72

DVRG2
DVRZ26
F2F.N
EFMP
D2767
L2612
Dago2
DVR67
DVR73
DVR72
e

¢tPULDVR33, . FTN4,ALGOLLFFPN,ATLZ1,MASMB,WCSUT, MDBUG

DVR33

« FTN4
ALGOL
FFP.N
ATD@1
MASMB
wCsurT
MDBUG

@

¢t PU, INDEX
INDEX

e
tLIST,US 1

NAME TYPE
SUBCHAN=Q
DISCM RB
SEXMD RB
DVR@1 RB
DVR@2 RB
DVR@S5 RB
D2627 RB
DVR23 RB
DVR31 RB
JOBPR RB
RLODR RB
ASMB RB
FTN4 RB
XREF RB
F2E.N RB
F4D.N RB
e

tEJOB
END JOB
e

SCTRS

BoB26
22108
Qo004
Q203
22ea3
28906
02086
200085
ggesgl
BoB59
pgogs
as177
20023
ga119
20148

DISC

T@a7
T&a7
TOB9
TO29
TG10
TO1@
To19
Tal1lo
T@15
TB1lé
TB17
T224
T@30
T@32
T@35

ORG

028
226
243
247
ga2
pa21
217
237
0002
233
244
228
206
229
gal

PROG LIMITS

10-37

BePo

LIMITS

ENTRY FWAM

Pu

Preparation of the DSGEN cartridge is completed. Proceed as directed under ‘‘Using DSGEN to
Generate DOS-IIT” in this section. Sample generation dialog follows:

SYS GEN CODE?
4904

SYS DISC CHNL?
11

DISC TYPE?
7908

SYS DISC SIZE?
200

DRIVES?
1

FIRST SYSTEM TRACK?
i

FIRST SYSTEM SECTOR?
3

SYS DISC SUBCHNL?

USER DISC SUBCHNL?

TIME BASE GEN CHNL?

PRIV INT CARD CHNL?

DMA CHANNELS?
2

10-38

LwA MEM?
37677

ALLOW :S57?
YES

PRGM INPT?

DF

INPUT DISC SUBCHNL?
g

LIBR INPT?
PT

PRAM INPT?

TY

*EQT

NO UNDEF EXTS

ENTER PROG PARAMETERS

$EXI18,08

/7E

LINKS?

800

SYSTEM

NAME PROG BOUNDS BP BOUNDS

DISCM
$TIME 5274 2o6ad3
$SETP @s5421 206083
$PFAL g5442 0o6B3

(BOUNDS) 02000 B5445 P@337 0B603

$EX!18

(BOUNDS) @5445 06341 P6833 00631

10-39

$SMGT

(BOUNDS) @6341 27152

DVR@S5

(BOUNDS) 27152 187421

DVR31

(BOUNDS) P7421 18145

F2E.D

(BOUNDS) 18145 10145

F4D.C

(BOUNDS> 10145 10145

ENTER SUBSYSTEM NAMES
/E
* EQUIPMENT TABLE ENTRY

18,DVROO

ERR 25

1 @,DVRGS
11,DVR31.,D
13,DVRAI
14,DVRO2
15,DVR23,D, 82
15,DVR23,D, 1
20,DVRI2

/E

pR631

go64a7

20651

BB713

@B713

eoe4at

2a651

28713

28713

8a713

10-40

* DEVICE

1 = EQT
l

2 = EQT
2

3 = EQT
e

4 = EQT
4

5 = EQT
3

6 = EQT
7

7 = EQT
2

g = EQT
5

9 = EQT
6

19 = EQT
/E

REFERENCE TABLE

#7?

#?

#?

#7?

#?

#7?

#?2

#?

#72

* INTERRUPT TABLE

13,EQT»1
12,EQT>2
13,EQT.3
14,EQT-4
16,EQT»5
20,EQT. 7
/E

EXEC SUPERVISOR MODULES

NAME

$EXQA1
3$ADDR

(BOUNDS)

$EX@2

$ADDR

(BOUNDS)

PROG BOUNDS

18520
13433 10535
18523

18433 10540

BP BOUNDS

Ba714

BB713 @@T14

o714

PB713 80714

10-41

SEXB3
(BOUNDS)
$EX04
ASCI1I
(BOUNDS)>
$EX@S
$SRCH
(BOUNDS)»
$EX06
$SRCH
$ADDR
(BOUNDS)
SEXO7
$ADDR
(BOUNDS)
$EXOE8
$ADDR
(BOUNDS)
$EX09
ASCII

(BOUNDS)

$EX10

(BOUNDS)>

18433

11825

106433

18516

18433

18535
11176

18433

10620

10433

12606

10433

11832

12433

12433

18504

11147

11157

11213

18635

1623

11154

18771

BB713

BB715

28713

Pa714

o713

6O715
Bo715

@o713

0e714

o713

vg714

06713

PBT15

80713

22713

@8713

98715

o714

PB715

2714

pa714

Bo715

pa713

10-42

$EX1!
$3SRCH

(BOUNDS)

$EXI12
(BOUNDS)
$EX13
ASCII
(BOUNDS)
$EX14
ASCI1
(BOUNDS)
$EX15
ASC1I

(BOUNDS)

$EXI16
(BOUNDS)
$EX17
$LBL
(BOUNDS)
$EX19
$LBL

(BOUNDS)

$EX29

(BOUNDS)>

18456

12433

18433

11810

18433

11156

12433

11092

12433

12433

11823

12433

11826

18433

10433

11117

10717

11132

113068

11124

18564

11131

11134

11117

Ba7l4

@a713

BO713

PB715

RR713

a4

go713

28714

BB713

@713

o716

@713

20720

20713

@713

Bo714

88713

@a715

BO715

BO71S

B713

20720

00720

PB713

10-43

$EX21
$SRCH

(BOUNDS)

$EX22

(BOUNDS)

170 DRIVER
NAME
DVRO1

(BOUNDS)

DVR@2

(BOUNDS)>

DVR12

(BOUNDS)

DVR23

(BOUNDS)

LWA LINKS

11472

12433 12133

18433 12683

MODULES

PROG BOUNDS

12683 13174

12663 13023@

12603 13374

126083 13422

@744

FwA USER LINKS?

744

LWA PROG

FWA USER?
14000

13422

28714

PB713 Z@742

BB713 BB727

BP BOUNDS

20742 00744

28742 00744

Q2742 00744

2742 0B744

10-44

USER SYSTEM

NAME
JOBPR
(BOUNDS)
LOADR
«EAU.

DUMRX

(BOUNDS)

ASMB

(BOUNDS)

ASMBD

(BOUNDS)

ASMBI1

(BOUNDS)

ASMB2

(BOUNDS)

ASMB3

(BOUNDS)>

ASMB4

(BOUNDS)

ASMBS

(BOUNDS)

PROGRAMS

PROG BOUNDS

140020

25511
25561

14200

14200

21131

21131

21131

21131

21131

21131

26613

25641

21131

21741

22553

22570

22002

22040

22445

BP BOUNDS

BBT44

B1446
gl1452

@B3744

@a744

@1323

21323

Q1323

21323

@1323

21323

glaiz

21452

@1323

g1324

@1367

81351

B1327

21331

21346

10-45

FTN4

(BOUNDS)

F4a.0

(BOUNDS)>

Fag.l

(BOUNDS)

Fq.2

(BOUNDS)

XREF
«OPS5Y
DUMRX

(BOUNDS)>

14000

27170

27170

27170

17241
17301

140200

27170

350841

32732

34260

17361

*SYSTEM STORED ON DISC

ge744

g1312

g1312

g1312

210833
21835

Bo744

gl3iea

P1374

B1raze

1410

P1235

10-46

SECTION XI
Loading DOS-III

This section describes the loaders used to load a generated DOS-III system into main memory.

Loaders for an HP 21MX computer and an HP 2100A/S computer are essentially the same — the
only apparent difference being how the loaders are supplied.

HP 21MX LOADERS

The HP 21MX processor is equipped with a paper tape loader ROM. The contents of this ROM
are equivalent to the Basic Binary Loader portion of the.BMDL used with HP 2100A/S compu-
ters. The ROM contents must be placed in memory before programs can be loaded from paper
tape.

The HP 21MX processor can also be equipped with an optional disc loader ROM. This ROM
performs the same functions as the BMDL used with HP 2100A/S computers. (If your HP 21MX
does not have the disc loader ROM installed, follow steps for loading programs from disc using
HP 2100A/S loaders.) The ROM contents must be placed in memory before programs can be
loaded from a disc.

To load either of the ROM’s into memory, perform the following at the operator panel:
a. Press PRESET.
b. Select the S-register for display in the Display Register.

c. Press CLEAR DISPLAY to clear the contents of the Display Register.

i
d. Bits 15 and 14 of the Display Register are used to select the loader ROM to be loaded. The
paper tape loader ROM is automatically selected by the clear display operation. Set bit 14
to select the disc loader ROM.

e. Change bits 11 through 6 of the Display Register to the octal select code of the disc or
paper tape reader.

f. Change bits 5 through 0 of the Display Register to contain the system disc subchannel
number.

111

g. Press STORE to store the contents of the Display Register in the S-register.

h. Press IBL to load the contents of the selected loader ROM into the uppermost 64 locations
in the first 32K of directly addressable memory.

The computer halts with octal 102077 in the T-register (indicating a successful load of the
ROM).

i. Place the tape or disc (containing the program to be loaded) into the input device and
ready that device.

HP 2100A/S LOADERS

To load a generated DOS-III system from the disc into main memory of an HP 2100A/S com-
puter, execute either the BMDL or the Stand-alone Bootstrap Loader. The former resides in the
uppermost 64 words of main memory and is hardware protected. The BMDL exists in two ver-
sions depending on the type of disc drive included in the system (HP 7900/7901, HP 2883/2884).
Operation of these loaders is essentially the same. They consist of two parts: a Basic Binary
Loader which loads absolute binary programs into main memory (from paper tape devices), and

a disc loader which loads the configured DOS-III system from the disc into main memory.

The BMDL loads the system from any active subchannel, with one major requirement: whether
that particular system is loaded or not, a configured DOS-III system must exist on the disc start-
ing at head 0, drive 0 of the disc device. Head 0, drive O corresponds to Subchannel 0 on the
HP 2883/2884 disc, or to Subchannel 1 on the HP 7900/7901 disc. The BMDL will read that
system or any other configured DOS-III system on the disc as long as a configured system resides
on head 0, drive 0.

To load a configured DOS-III system when no system exists on head 0, drive 0, the user must
load the Stand-alone Bootstrap Loader into main memory (using the paper tape portion of the
BMDL) and execute the Stand-alone Bootstrap Loader. This program loads the configured
DOS-III system from the specified disc subchannel without the existence of a configured system
on head 0, drive 0 of the disc.

11-2

USING THE BMDL TO LOAD
ABSOLUTE BINARY PROGRAMS

The BMDL loads absolute binary program tapes into main memory of an HP 2100A/S computer.
The Loader resides in the last 64,, words of main memory.

Note: When using an HP 21MX computer, the paper tape loader ROM is used to
load absolute binary program tapes into memory. Replace steps 2 through
6 (below) with the procedure (described earlier) for loading a paper tape ROM.

Operating Instructions

1. Halt the computer.
2. Place the tape to be loaded into the paper tape input device and ready that device.

3. Set the Loader starting address according to the memory size of the computer:

Memory Size Starting Address (octal)
16K 037700
24K 057700
32K 077700

4. Clear the switch register.

5. Enable the Loader

6. Press both PRESET buttons.

7. Press RUN.,

8. After all or part of the tape is read, the computer halts with 1020xxg displayed.

If xx =11, a checksum error was detected. Check for torn tape or dust in the reader, check the
tape for ragged edges or torn holes, then return to step 2.

If xx = 55, an address error was detected. A program being loaded attempted to enter a location
reserved for the main-memory resident Loader, or a location not available in the com-
puter. Check that an absolute binary tape was used, and that it was placed properly

in the reader.

If xx =77, the tape was loaded correctly.

11-3

INITIATING DOS-IIl WITH THE BMDL

When DOS-III has been generated on the disc (by DSGEN), it can be loaded into main memory and
initiated by a main-memory resident program called the BMDL. This program resides permanently
in the last 64,, words of main memory and is hardware protected. Once DOS-III has been loaded
and initiated, it is ready to process user tasks.

Note: When using an HP 21MX computer with a disc loader ROM installed, steps 1

through 6 (below) are replaced by the ROM loading procedures described earlier.

Operating Instructions

1.

Verify that a configured DOS-III system resides on head 0, drive O of the disc. (Head 0, drive 0
corresponds to subchannel 1 for the HP 7900/7901, or to subchannel 0 for the HP 2883/2884
disc.) If a configured system does not reside there, then use the Stand-alone Bootstrap Loader
program (see Initiating DOS-IIT with the Stand-alone Bootstrap Loader, in this Section).

Set a starting address of 0x7750, where x = 3 for 16K; x = 5 for 24K; x = 7 for 32K.
Enable (unprotect) the main-memory resident Loader.
Press PRESET button(s) and start the computer executing.

The computer halts with 1020775 displayed in the Display register. Protect the main-
memory resident Loader (if necessary).

Set the disc subchannel number of the system to be loaded into the switch register (bits 5
through 0).

Start computer execution. The system is loaded into main memory and prints the following
message:

INPUT :DATE, XXXXXXXXXX (No Time-base Generator)
or
INPUT :DATE, XXXXXXXXXX,HM (Time-base Generator)

All other directives are ignored until a valid DATE directive is entered. Immediately following

the DATE directive, the only valid directives are :TRACKS, :BATCH, :TYPE, and :JOB.
All other directives are ignored until a JOB directive is entered.

11-4

CONFIGURING THE DOS-1Il STAND-ALONE
BOOTSTRAP LOADER

Once DOS-III has been generated onto a disc, it may be initiated into operating status using the
DOS-III Stand-alone Bootstrap. The Bootstrap, however, must be configured before being used.

Operating Instructions

1.

2.

Turn on all equipment.

Load (using the BMDL or the paper tape loader ROM) and configure the SIO Punch or Tele-
printer Driver.

Load the Bootstrap using the BMDL or the paper tape loader ROM.
Set up the Bootstrap configuration starting address at location 2.

Set switch register bits 5 through 0 equal to the octal channel number (select code) of the
disc controller (low number, high priority channel).

Set switch register bit 15 on to punch a configured Bootstrap tape; off to configure the
Bootstrap in main memory only.

Start the computer executing.

If bit 15 of the switch register is set, the Bootstrap punches out a configured copy of itself
and halts. For another copy, simply start the computer executing again.

11-5

INITIATING DOS-IIl WITH THE STAND-ALONE
BOOTSTRAP LOADER

When DOS-III has been generated onto the disc, it can be loaded into main memory and initiated
by using a small stand-alone program called the Stand-alone Bootstrap Loader. Once DOS-III has
been loaded and initiated, it is ready to process user tasks.

Note: The Stand-alone Bootstrap Loader need be used only if a configured
DOS-III system does not reside on head 0, drive 0 of the disc. If a
system resides on the disc in the above mentioned area, the BMDL
can be used.

Operating Instructions

1.

2.

Turn on all equipment.
Configure a Stand-alone Bootstrap Loader (as previously described).

Load the configured Bootstrap into main memory using the BMDL or the paper tape loader
ROM.

Set up the starting address of the Bootstrap at location 100;.

Set switch register bits 5 through 0 equal to the octal subchannel of the system disc. (If this
subchannel differs from that established at system generation time, the new subchannel
overrides the old.)

Set switch register bit 14 equal to one if the disc type is 2883 with two subchannels per drive;
to zero if the disc type is 7900, 7901, or 2883 with four subchannels per drive.

Start the computer executing.
When DOS-III has been loaded into main memory, it prints the following message:
INPUT :DATE, XXXXXXXXXX (No Time-base Generator)
or

INPUT :DATE, XXXXXXXXXX,HM (Time-base Generator present)

All other directives are ignored until a valid DATE directive is entered. Immediately following
the DATE directive, the only valid directives are :TRACK, :BATCH, :TYPE, and :JOB. All
others are ignored until one of these directives is entered.

11-6

BMDL

The BMDL resides in the last 64, words of main memory (hardware protected by a button/switch
on the computer front panel) and is responsible for loading main-memory resident modules from
configured DOS-IIT systems residing on the disc into main memory. The BMDL also loads absolute
binary programs into main memory through the paper tape input device. A separate version of the
BMDL exists for each of two classes of disc, depending upon which disc type is used with the system
(HP 7900/7901, or HP 2883/2884). Only one version can exist in main memory at any one time. The
following two tables show the last 64,, word addresses and their octal contents for each version of
the BMDL. '

Note: When using the HP 7900/7901 BMDL with a newly-inserted 7900 or 7901
disc cartridge, it is necessary to execute the bootstrap twice. After executing
the bootstrap the first time, the system loops, it must be halted and the
bootstrap executed a second time. This procedure does not apply to the
Stand-alone Bootstrap.

Table 11-1. HP 7900/7901 BMDL

Address Contents Address Contents

x7700 002701 x7740 1023kk Paper tape loader starting ad-
x7701 063722 x7741 027740 dress = x77003 ; Moving-head
x7702 002307 x7742 1064kk disc loader starting address =
x7703 102077 x7743 002041 X7750g (PRESET must be
x7704 017735 x7744 127735 pressed).

x7705 007307 x7745 005767

x7706 027702 x7746 027737

x7707 077733 x7747 030000" X = 3 for 16k, 4 for 20k,
x7710 017735 x7750 002400 5 for 24k, 6 for 28k,
x7711 017735 x7751 1026¢c 7 for 32k

x7712 074000 x7752 1037cc

x7713 077734 x7753 067747

x7714 067734 x7754 1066dd kk = tape input device
x7715 047777 x7755 1037dd select code

x7716 002040 x7756 1066¢cc

x7717 102055 x7757 063776 dd = low priority (higher
x7720 017735 x7760 102606 numbered) disc
x7721 040001 x7761 067732 select code

x7722 177734 x7762 106602

x7723 037734 x7763 1037cc cc = high priority {lower
x7724 000040 x7764 102702 numbered) disc
x7725 037733 x7765 106602 select code

x7726 027714 x7766 013741

x7727 017735 x7767 1026dd n = 4 for 16k, 3 for 20k,
x7730 054000 x7770 1037cc 2 for 24k, 1 for 28k,
x7731 027701 x7771 103706 0 for 32k

x7732 102011 x7772 1037dd

x7733 000000 x7773 1023dd +The HP 7900/7901 BMDL can
x7734 000000 x7774 027773 be altered to boot a DOS-111 sys-
x77356 000000 x7775 127717 tem from subchannel 0 i‘nstead
773 006600 76 a200c ofsechamel { by chanang e
x7737 1037kk x7777 1n0100 300004 to 31000g.

11-7

Table 11-2. HP 2883/2884 BMDL

Address Contents Address Contents

x7700 002701 x7740 1023kk Paper tape loader starting ad-
x7701 063722 x7741 027740 dress = x7700g ; Moving-head
x7702 002307 x7742 1064kk disc loader starting address =
x7703 102077 x7743 002041 x7750g (PRESET must be
x7704 017735 x7744 127735 pressed).

x7705 007307 x7745 005767

x7706 027702 x7746 027737

x7707 077733 x7747 177600 X = 3 for 16k, 4 for 20k,
x7710 017735 x7750 063775 5 for 24k, 6 for 28k,
x7711 017735 x7751 1026dd 7 for 32k

x7712 074000 x7752 1037dd

x7713 077734 x7753 1023dd

x7714 067734 x7754 027753 kk = tape input device
x7715 047777 x7755 067776 select code

x7716 002040 x7756 106606

x7717 102055 x7757 067732 dd = low priority (higher
x7720 0177356 x7760 106602 numbered) disc
x7721 040001 x7761 102702 select code

x7722 177734 x7762 067747

x7723 037734 x7763 106602 cc = high priority (lower
x7724 000040 x7764 001000 numbered) disc
x7725 037733 x7765 1067dd select code

x7726 027714 x7766 1026dd

x7727 017735 x7767 1037cc n = 4 for 16k, 3 for 20k,
x7730 054000 x7770 103706 2 for 24k, 1 for 28k,
x7731 027701 x7771 1037dd 0 for 32k

x7732 102011 x7772 1023dd

x7733 000000 x7773 027772

x7734 000000 x7774 127717

x7735 000000 x7775 020000

x7736 006600 x7776 1200cc

x7737 1037kk x7777 1n0100

11-8

PART 4
DOS-Ill Systems Programming

SECTION XII
User-written EXEC Modules

DOS-III is capable of accepting user-written EXEC modules. Up to two EXEC modules may be
written; these must be loaded with all the DOS-IIT EXEC modules during DOS-III Generation.
(See Section X, “Generating DOS-III” for details.)

This section presents the user-written EXEC call directives and calling sequences, along with a brief
description of internal design and a sample EXEC module.

For example, DOS-III halts on power failure. The user may write a power fail recovery routine.
Because of system requirements, the routine must be called $PFAL.

12-1

USER EXEC MODULES: DIRECTIVES

Purpose

To execute user EXEC modules.

Format

:EA[,pl,...,p5] (Calls EXEC module $E£X36)
:EB[pl,. .. ,p5] (Calls EXEC module $EX37)

where all parameters are non-negative decimal integers.

Comments

Number and meaning of the parameters varies depending upon user definition of the EXEC module.

12-2

USER EXEC MODULES: EXEC CALLS

Purpose

To execute either user-created EXEC module $EX36 or $EX37. The number of parameters in the
EXEC call are defined by the user. The general format of the call is

Assembly Language
EXT EXEC
JSB EXEC (Transfer control to DOS-III)
DEF *+2(to 7) (Determine number of parameters—from 1 to 5)
DEF RCODE (Define request code)
DEF PRAMI (Define the first optional parameter)
DEF PRAMS (Define the fifth optional parameter)
RCODE DEF 27 (or 28) (RCODE for $EX36 = 27; RCODE for $EX37 = 28)
PRAM1 --- (Up to five words of parameter information)
PRAMS5 ---
FORTRAN

IRCDE = 27 (or 28)
CALL EXEC (IRCDE[,P1, P5])

12-3

USER EXEC MODULES: INTERNAL DESIGN

EXEC modules are typically type-1 Assembly-language routines which are incorporated at genera-
tion time as part of the operating system. As “system’ modules, they execute with the interrupt
system and memory protect off. They may directly access entry points and subroutines within the
system, but must not issue any EXEC calls (EXEC processing is not re-entrant). Also, user-written
EXEC modules should be defined as disc-resident supervisory modules; the NAM pseudo-instruction
for these modules should indicate that the routine is a type-1 program.

Special programming considerations are required upon initiation and completion.

Initiation

Upon entry, information used in processing the EXEC function can be found in the following base
page locations.

Location Name Definition
2244 RQCNT # of parameters in the calling sequence
2254 RQRTN return address upon completion
2264 RQP1 address of request code
227-2334 RQP2-RQP6 address(es) of specified parameters
Completion

Prior to returning to the system, the EXEC module must

1. release itself from the EXEC module overlay area if it is disc-resident. This code handles EXEC
module release:

LDA EXMOD (Get current module in overlay area)
CPA NUMB (Is it this one?)

CMA,INA (Yes—set value positive)

STA EXMOD (No—leave value alone)

EXMOD EQU 245B
NUMB DEC -36 (or-37)

12-4

2. place the desired transfer address in XIRT (location 1373) and jump to the label $IRT
(defined as an EXTernal), for example,

EXT $IRT

LDA RQ@RTN (Set the return address)

STA XIRT

JMP $IRT (Transfer to system)
RQRTN EQU 225B
XIRT EQU 137B

12-5

SAMPLE EXEC MODULE

PAGE 2001

oont ASMB,L,C,X,N,R,B DISC WORK LIMITS MODULE (S$EX0@2)
** NO ERRORS+

12-6

PAGE 0on2 ¥01

000!
2202
2003
2004
oS
0008
ooB7
o008
o0a9e
2Bi0*
Q0L
P02
0013
Q014¥
0015+
Pa16w
0BL7 ¢
2018+
po10e
0029
0021
@n22
2023
2024
o028
0026
1. V44
poes
8029
203n
0034
2232
2233
go34
2035
0036
0037
2038
pa3o
o040
oo41
oo42
2043
o044
2045
o046
@047
o048
2049
Pes50
2051
o052

o2n0a

ASMBprC,X'N,R,B

NAM

DISC WORK LIMITS MODULE (SEXx@2)
SEX02,14

ENT SEX@2

EXT $RQER,$ADDR

EXT SIRY

$EXA2 ROUTINE PROVIDES YHE USER WITH DISC WORK AREA TRACK
ADDRESS LIMITS AND THE # OF SECTORS PER DISC TRACK,

CALLING SEQUENCES

JsB EXEC

DEF #+5(0R 6)

DEF RCODE RCODE = 7

DEF FTYRAK

DEF LTRAK

DEF SIZE

DEF DISCC(OPTIONAL)
P00p0 0608224 SEXP2 LDA ROCNY
a2a0t 050057 CPA , .44
Poe02 026010R JMP CHK
20003 050060 CPA 4,45
P0en4 Q020014 R8s
Q0005 Q2606%R JMP RQER
20006 D6R232 LDA ROPS
20007 B16002X JSB SADDR
02010 060227 CHK LDA RQP2
peat11 816002X JSB SADDR
00012 060239 LDA RGP3
P13 o16p@2X JSB $ADDR
P0A14 060234 LDA RQP4
20n13 Q16202X J8B $ADDR
00016 P64224 LDB ROCNT
02n17 @54057 CPB 44%4
P0n20 B26024R JMP SY$§
20021 1608232 LDA RGPS3,!
00n22 002002 SZA
00323 026@57R JMP USER
P0e24 06P16p SYS LDA SYNTS
20025 040074 ADA 377
v0e26 001727 ALF,ALF
p0a27 P10074 AND ,377
20930 170227 8TA RQGP2,!
0003{ 060102 LDA JBINC
00932 002003 S8ZA,RSS8
20233 P26043R JMP EX0Q10
00p34 210074 AND ,377
20035 070004 $TA B
20036 220102 XOR JBINC
00037 001727 ALF,ALF
0740 010074 AND (377

FTRAK = ADDR OF WORD TO STORE 18T WORK TRK
LTRAK = ADDR OF WORD TO STORE LAST WORK TRK
SIZE = # SECTOR/TRACK WORD ADDR,

DISC = @ FOR SYSTEM DISC,

NONe@ FOR US

DEFAULT 1S SYSTEM,

12-7

CHECK PARAMETER COUNT
4 PARAMETERS?
YES, 0K,
5 PARAMETERS?
YES, OK
TOO FEW OR TOQ MANY PARAMETERS,
CHECK ADDR OF 5TH PARAM

PARAMETERS

DEFAULT AS SYSTEM DISC?
YES,
NO, CHECK STH PARAM

@ MEANS SYSTEM DISC

GET STARY OF WORK AREA TRACK

PAGE 0An3 #0014

2253
2054
an55
@056
20567
pob58
2059
geép
2064
o062
0063
0064
2065
2066
0067
2068
069
en7@
2071
72
2073
0074
207%
0076
0077
0978
0079
2080
e8!
2082
2083
o084
0085
oo8s
o087
pes8s
o089
P90
o094
0092
0093
0004
2098
0096
2097

ean4y
2742
00043
29044
02Q4s
00046
oapd7
00059
2aa51
0ana52
202383
00054
P53
02056
02057
20060
2061
pra62
20063
90064
PAN6S
266
gons?

pon00
200018
20053
aop52
00n74
20100
eat92
20116
02126
22137
PR154
oR157
20160
00224
pa225
eR227
on230
po23t
20232
002458

040052
826045R
060154
210074
170230
060116
170234
060245
050051
203004
078245
060225
270137
026003
060157
240074
pm1727
210074
170227
026043R
on240p
870245
026201

*+ NO ERRORS+

EX210

EXQ20

USER

RQER

Zes >

377

.
JBINC
SECTR
RONBF
XIRT
DI1scO
UDNTS
SYNTS
RGCNT
RARTN
RAP2
RGP3
RAP4
ROPS
EXMOD

ADA
JMP
LDA
AND
STA
LDA
STA
LDA
CPA
CMA,
STA
LDA
STA
JMP
LDA
ADA
ALF,
AND
STA
JMP
CLA
STA
JMP

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

N
EX020
p1SCO
0377
RAP3, 1
SECTR
ROP4, 1
EXMOD
eem2
INA
EXMOD
RARTN
XIRT
$IRY
UDNTS
377
ALF
0377
ROP2,1
EX210

EXMOD
$RQAER

2

1

538
ee™!
ee*!?7
1008
2
ot14
.*268
RONBF+9
2 %44
447
W *4R
o84
o *85
«*87
88
e *89
b9
20101

12-8

STYORE END OF WORK AREA TRACK #

STORE # OF SECTORS PER TRACK

SET UP TRANSFER ADDR FOR SIRT

GEY USER DISC NEXT TR/SECTR

FREE MODULE AREA

SEXP2
$SADDR 00004
SEX0R? 00020
S$IRY 70005
SRQER 00004
. o082

00090

"e eea79
377 o081
o070

oA 20077
B Pa078
CHK np028
DISCO oeesy
EX010 00085
Ex028 opes57
EXMOD p0R96
JBINC @0083
Nt ppes8a
RONBF 020085
RACNT poQ9n
ROER 22073
RQP2 eee92
RQP3 2093
RQP4 POR94
RAGPS n009s
RGRTN 000914
SECTR o084
SYNTS 0p089
SYs 20040

CROSS~REFERENCE SYMBOL TABLE

pee27
20003
00066
20075

20283
200914

enp2y
00044

P0049
e2g22
22055
eno47
PP054
pA060
p0045
pe0%3
0086
00020
82023
0028
22030
eo032
20026
o064
eoass
20040
20036

oen29

e84
00092

20023
00043

een72

20063
epase

o034

00044
P0S5?7
20039
03?7

129

02034

00085
00a93

p203%8
00R48

20074

eao7y

20033

o087
70094

700614
Pe0952

PAGE @pai

000e88
22895

oop8p
poa56

20089
eoe9s

o081
eoe68

$EX02 CROSS~REFERENCE SYMBOL TYABLE PAGE @002

UDNTS 00088 e0e67
USER pe0é67 20039
XIRY Pe086 20065

12-10

SECTION Xl
Planning 1/0 Drivers

STANDARD I/0 DRIVERS

Note: Before attempting to program an I/O driver, the programmer should be
thoroughly familiar with Hewlett-Packard computer hardware 1/0 organi-
zation, interface kits, computer I/O instructions, and Direct Memory Access
(DMA).

An 1/O driver, operating under control of the Input/Output Control ($EX18) and Central Interrupt
Control ($CIC) modules of DOS-III, is responsible for all data transfer between an I/O device and
the computer. During its execution, the driver may refer to the base page communication area for
information from the system: the device equipment table (EQT) entry, which contains the param-
eters of the transfer, and the current DMA value (CHAN), which contains the number of the
allocated DMA channel (if required).

An I/O driver includes two relocatable, closed subroutines: the Initiation Section and the Completion
Section. If nn is the octal equipment type code of the device, I.nn and C.nn are the entry point
names of the two sections and DVRnn is the driver name.

Initiation Section

The I/O control module ($EX18) calls the initiation section directly when an I/O transfer is initiated.
Locations EQT1 through EQT17 of the base page communication area contain the addresses of the
appropriate EQT entry. CHAN in the base page contains the number of the DMA channel assigned
to the device, if needed. This section is entered by a jump subroutine (JSB) to the entry point I.nn.
On entry, the A register contains the select code (channel number) of the device (bits 0 through 5 of
EQT entry word 3). The driver returns to $EX18 by an indirect jump through I.nn.

Before transferring to I.nn, DOS-III places the request parameters from the user program’s EXEC call
into words 7 through 13 of the EQT entry. Word 9, CONWD, is modified to contain the request code
in bits 0 through 5 in place of the logical unit. (See Figure A-4 and Section III, I/O READ/WRITE
EXEC Call (RCODE =1 or 2), for details of the parameters.)

Once initiated, the drive can use words 5, 6, and 11 through 14 of the EQT entry in any way, but

words 1, 2, 3,7, 8,9, 10, 15, 16, and 17 must not be altered. The driver updates the status field in
word 4, if appropriate, but the rest of word 4 must not be altered.

13-1

FUNCTIONS OF THE INITIATION SECTION: The initiation section is responsible for these
functions (as flow-charted in Figure 13-1):

1. Rejects the request and proceeds to step 5 if:
® the device is inoperable, or

® the request code, or other of the parameters, is illegal.

Note: Alldrivers must accept a clear request. (Request code = 3, function code = 0.)

2. Configures all I/O instructions in the driver to include the select code of the device (or DMA
channel). (Does not apply to DVR05 and 7900/7901 DVR31.)

3. Initializes DMA, if appropriate.

Note: The initiation section must save the DMA channel number (found in CHAN)
in the EQT entry, since it is not set on entry to the continuation section.

4. Initializes software flags and activates the device. All variable information pertinent to the
transmission must be saved in the EQT entry because the driver may be called for another
device before the first operation is complete.

5. Returns to $EX18 with the A register set to indicate initiation or rejection and the cause of
the reject:

If A = 0, then the operation was initiated.
If A # 0, then the operation was rejected with A set as:
1 = read or write illegal for device
2 = control request illegal or undefined
3 = equipment malfunction or not ready
4 = immediate completion (for control requests)

6 = driver cannot handle a control request; the system is instructed to wait

13-2

return
to
P+1

configure
{/0 instructions
for device

(A)=1o0r

[

y 2 reject
codes

request
code legal
?

(A) =3,
reject
code

device
operable &

ready
?

initialize
operating,
conditions,
flags, etc.

A

set buffer
address, length,
mode, etc. for
transfer

y
activate
device

Y

A register
(A)=40r0

return to
P+1

Figure 13-1. 1/0 Driver Initiation Section

13-3

Completion Section

DOS-III calls the completion section of the driver whenever an interrupt is recognized on a device
associated with the driver. Before calling the driver, $CIC sets the EQT entry addresses in base page,
sets the interrupt source code (select code) in the A register, and clears the I/O interface or DMA
flag. The calling sequence for the completion section is

Location Action

Set A register equal to interrupt source code

P JSB C.nn
P+1 Completion return from C.nn
P+2 Continuation return from C.nn

The point of return from C.nn to $CIC indicates whether the transfer is continuing or has been
completed (in which case, end-of-operation status is returned also).

FUNCTIONS OF THE COMPLETION SECTION: The completion section of the driver is responsible
for the functions below (as flow-charted in Figure 13-2):

1. The driver configures all I/O instructions in the completion section to reference the interrupting
device.

2. If both DMA and device completion interrupts are expected and the device interrupt is
significant, the DMA interrupt is ignored by returning to $CIC in a continuation return.

3. Performs the input or output of the next data item if the device is driven under program
control. If the transfer is not completed, the driver proceeds to step 6.

4. If the driver detects a transmission error, it can re-initiate the transfer and attempt a
retransmission. A counter for the number of retry attempts can be kept in the Equipment
Table. The return to $CIC must be (P+2) as in step 6.

5. At the end of a successful transfer or after completing the retry procedure, the following
information must be set before returning to $CIC at (P+1):

a. Set the actual or simulated device status into bits O through 7 of EQT word 4.

b. Set the number of transmitted words or characters (depending on which the user
requested) in the B register.

c. Set the A register to indicate successful or unsuccessful completion.

0 = successful completion
1 = device malfunction or not ready
2 = end-of-tape (information)

3 = transmission parity error

13-4

Clear the device and DMA control on end-of-operation, or set the device and DMA for the
next transfer or retry. Return to $CIC at

(P+1) completion, with the A and B registers set as in step 5

(P+2) continuation; the registers are not significant.

13-56

return
to
P+2

®

YES

NO

C.nn

\ 4

configure
1/0 instructions
for device

device
interrupt
required
?

transfer
by DMA
?

transfer next

end

error

in of data item;
transfer operation update indexes,
) flags, etc.

retry
required
?

update
status in
EQT(4)

re-initialize
conditions Y
(B) =#

words or
characters
y transferred

return
to \ 4
P+2 (A) =

completion
code

v

clear
device
control

\ 4

return
to
P+1

Figure 13-2, 1/0 Driver Completion Section

13-6

2

return
to
P+2

SAMPLE I/0 DRIVER

The following pages provide an assembly listing and cross-reference symbol table for a sample I/O
driver.

13-7

PAGE Q0at

20Q14 ASMB,R,B,L,C
*« NO ERRORS»

13-8

PAGE

onat
one3
apQ4x

oap2 #0y s« D,0,S, DRIVER «<@2> PAPER TAPE PUNCH w+

ASMB,R,B,L,C
R2ap0a NAM DVR@2,4

DO N ek g dew bk VERSION 8/24/72

0206+
Q0Q7
_goas
Q009 %

ENT 1,.02,C,02

QA1p****ax PROGRAM DESCRIPTION *aakdkuw

onLL
poLay
2013#
2014+
gR15#
P016«
2017«
Po18«
PR19+
poen+
L PARY
pp22*
po23«
2024+
Q025+
0026%*
0027+
2n28+«
0029+
0030+
A3y
0032+
PR3I3*
034+
O35+
036+
2037 »
Pe38¥
a3
o040«
g4t
0042+
043 ¥
044
0045«
BR46
o047 »
o048+
2049w
ooSay»
oA51+
o522+
PR53«
oS54+
2055
P56+
Q57+

DRIVER @2 OPERATES UNDER THE CONTROL OF THE
1/0 CONTROL MODULE OF THE D,0,S, EXECUTIVE
THYS DRIVER 1S RESPONSIBLE FOR CONTROLLING
OUTPUT DATA TRANSMISSION WITH A 2753A TAPE PUNCH,
<@2> IS THE EQUIPMENT TYPE CODE ASSIGNED TO THIS
TYPE OF DEVICE., 1,82 I8 THE ENTRY POINT FOR THE
*INITIATION+ SECTION AND C,02 FOR THE *COMPLETION«
SECTION,

- THE INITIATION SECTION IS CALLED FROM 1/0
CONTROL TO INITYALIZE A DEVICE AND INITIATE
AN QUTPUT OR CONTROL OPERATION,
CALLING SEQUENCE:

- ADDRESSES OF DEVICE EQT ENTRY
SET IN "EQT{=EQTI7" =

(A) = 1,0 ADDRESS OF DEVICE

(P) JsB 1,02
(P+1) = RETURN =

(A) = @, OPERATION INITIATED, OR
(A) = REJECT CODE:

1, ILLEGAL READ REQUEST
2, ILLEGAL CONTROL FUNCTION

= THE COMPLETION SECTION IS CALLED BY CENTRAL
INTERRUPT CONTROL TO CONTINUE OR COMPLETE
AN OPFRATION,

CALLING SEQUENCEs

= ADDRESSES OF DEVICE EQGT ENTRY
SET IN "EQT1-EQT1I7?" =

(A) = 1,0 ADDRESS OF DEVICE
(P) Jse C,@02
(P+1) == COMPLETION RETURN -
(P+2) =~ CONTINUATION RETURN ==

- COMPLETION RETURN:
139

PAGE

gp58w
o599«
posO*
0061 +
P62+
2063+
0264 +*
0a65+
Qn66*
BO67 +
0068+
0069+
070
0071+
o722+
PO7 3+
P0R74+
2075+
ga769
Q77+«
gazas
2n70+
2pBo+
UL R R
aoger
po83+
0084
PO8S5*
n86+
op87 ¢
pessx
P89«
00902
P91+
2092+
093+
gn94»
2095+
2096+
Bo97«
eanog+
gooo+

00p3 %@t +» D,0,8, DRIVER <@2> PAPER TAPE PUNCH #«

(A)Y = @, SUCCESSFUL COMPLETION WITH
(B) = # WORDS OR CHARACTERS
TRANSFERRED.

(A) = 2 IF “TAPE=SUPPLY~LOW* CONDITION
DETECTED AFTER RECORD IS8
FINISHED,

(B), SAME AS FOR (A) = @

= CONTINUATION RETURNt REGISTERS
MEANINGLESS

= RECORD FORMATYS;:

ASCII: A STRING OF CHARACTERS, THE NUMBER
wme——- DESIGNATED RY THE BUFFER LENGYH IN

THE REQUEST, TERMINATED BY A RETURN

AND LINE-FEED (SUPPLIED BY THE DRIVER),

SPECIAL CHARACTER PROCESSING:
LEFT«ARROWS IF A LEFT=ARROW I8 THE LAST
CHARACTER IN THE USER BUFFER,
THE RETURN/LINE=FEED AND LEFY
ARROW CODES ARF NOT OUTPUT.

A ZERO BUFFER LENGYH CAUSES ONLY A RETURN/
LINE-FEED TO BE OUTPUT,

BINARY: A STRING OF CHARACTERS SPECIFIED
wm=ewe~ RY THE "BUFFER LENGTH" IN THE REQUEST,
CONTROL FUNCTIONS ACCEPTED:

1@ = TEN INCHES OF ZERQOS (FEED=FRAMES) ARE
OUTPUT FOR LEADER/TRAILER.

11 - LINE SPACING: THE PARAMETER WORD OF THE

CONTROL REQUEST DETERMINES THE NUMBER
OF LINE=FEEDS TO BE OUTPUT,

13-10

PAGE Q0p4 #0{ < DRIVER @2 «INITIATION* SECTION >
0104+
Q1020 xwwarurd INITIATION SECTION wawwwawhdd
2103+
A104+«
0195 00noD OQQER2P 1,02 NOP
6106+
9107 00pAt 016204R JSB SETIO SET I/0 INSTRUCTIONS FOR UNIT,
P108«
2102 Q0oppM2 160213 LDA EQT9,1 GEY CONTROL WORD OF REQUEST,
2119 Q0003 210456 AND ,3 ISOLATE,
AR B
0142 poond4 250054 CPA 1 ERROR IF REQUEST IS
2113 Q0005 12600¢R JMP 1,082,1 FOR INPUT, REJECT CALL,
2114 00@P6 Q50055 CPA ,2 PROCESS FOR
3115 Q0007 @26043R JMP DQ4 WRITE REQUEST,
116+
@117+ CONTROL FUNCTION REQUEST
0118+
2119 00010 160213 LDA EQT9,! GEY CONTROL WORD
0120 o@onil @Q1727 ALF,ALF FROM REQAUESY, POSITION AND
P12 00012 001222 RAL ,RAL ISOLATE FUNCTION FIFELD,
2122 00@a13 0210073 AND MASK1
2123 00Q14 002003 SZA,RSS I8 IT A CLEAR?
2124 Q0p15 026024R JMP CLEAR YES,
2125 00016 230063 CPA ,10B FIELD = «i@>» TO GENERATE
0126 0PQAP17 026026R JMP DO LEAPDER (1@ INCHES OF BLANK TAPE)
2127 00020 250064 CPA ,11iB FIELD = «i{1> FOR LINE
glgg Q021 026032R JMP D@2 SPACING,
] *
9130+ REQUEST ERROR = CAUSE REJECY RETURN TO 1/0 CONTROL
P13y
0132 00022 060055 LDA 2
2133 00@23 126000R JMP 1.02,1
2134 00@e24 106700 CLEAR CLC © YURN DEVICE OFF
2135 00p25 026066R JMP 1,A,6
0136+
Q437+ LEADER/TRAILER GENERATOR
B138«
2139 002026 B62224R DO} LDA Nigo SET INDEX COUNTER FOR FEED FRAMES
@140 00p27 170216 STA EQT12,1 ® =100,
P141 Q0030 ON2400 CLA (A = @ FOR
B142 02031 026044R JMP D@3 FEED FRAME,
P43+
D144y LLINE SPACING
Q14%«
Q146 0Q@e32 160214 DO2 LPA EQT10,I GET LINE COUNTER WORD,
0147 00@a33 00202 88A,R88 INSURE VALUE
2148 00A34 203004 CMA, INA 18 NEGATIVE,
P149 20035 002003 8ZA,R88 PROTECT AGAINST
2150 00@36 203409 CCA A ZERO VALUE,
@151 Q0037 170216 STA EQTi2,1
B152 00040 260065 LDA LINF (A) = LINE FEED CODE,
2153+
2154 Q20041 $702%7 DO3I STA EQT13,1 SET ACTION CODE,
2155 Q0p42 0260P86R JMP DB5
8156+ 13-11

PAGE

By57 v
0158+
2159
pLén
@16}
g162
2163
0164
0165
p166
p167
0168+
g169
21702
g171*
D172«
0173
0174
2175
0176
04177
2178
179
pi8o
D181+
@182
g183
o184
ER-1.)

o205 #01

WRYTE

02a43
2em44d
02045
2adn46
02n47
20050
02n54
00052
020953

eansS4
eeAS5

REQUEST PROCESSING

160214
ooi200
170216
160215
pe202¢9
P26053R
gaican
203004
{70217

002400
1702290

DR4

< DRIVER @2

LDA
RAL
STA
LDA
SSA
JMP
ALS

CMa,

STA

CLA
STA

*INITIATION® SECTION >

EQT10,I CONVERT BUFFER ADDRESS T0O EVEN
CHARACTER ADDRESS AND SET
EQT12,1 AS CURRENT BUFFER ADDRESS,

EQTtt,1 GET BUFFER LENGTH,

IF CHARACTER SPECIFIED,
3 USE VALUE.

CONVERT WORDS TO NEGATIVE
INA CHARACTERS,
EQT13,1 SEY CURRENT BUFFER LENGTH,

EQT14,1 FOR BINARY WRITE,

CALL *COMPLETION# SECTYION TO WRITE FIRST CHAR,

2Pa56
2nes7
0060

2061
ones2
02083

00064
00085
20066
oaas7

962223R DOS

e72079R
P26075R

026064R
202400
126000R

op640@
174229
060057
126000R

1IEX1TY

1.A.4
1.A.6

LDA
STA
JMP

JMP
CLA
JMP

CLB
ST8
LDA
JMP

IEXTA ADJUST RETURN

C.02 TO #INITIATOR» SECTION,

D1@

I1.A.4 BINARY READ WITH @ BUFFER LEN,
RETURN TO 1/0 CONTROL WITH

1.02,1 OPERATION INITIATED,

EQT14,1 CLEAR TLOG,

4 SET As4 FOR IMMED,COMPL RETURN
1.02,1 RETURN

13-12

PAGE ¢0p6 HO1{

p187+

188%rahanwvr COMPLFTION

@189
0190«
2191
2192
8193
9194
f19%
2196
2197+
2198
P199
0200
P20
g202
2223+
2204
2205
R206
g207+
p208
p2o9
ga210
g211
8212
0213y
. 0214
@215
2216
g23y7
p218
219
p220
B221«
g22
p223
p224
P25+
@226
g227
P228+
0229
P230
@234y

eearo

200714
ee@72
P2a73
oAz 4

00075
22a76
eaaz7
00100
02101

0R102
oa103
021074

00105
gat1A6

on107
ea11a

201114
02112
00113
20114
0118
o0116
@117

00120
00124
o122

20123
pAL124

00128
02126

0232+ OUTPUY CHARACTER TO

P233¢
0234
2235
0236
0237
2238y

20127
202130
02131
0132

gnonan

016201¢R
160207
02020
P26155R

160213
grenel
eair27
gni2oen
072222R

Po2400
150216
026155R

gpdotp
P26133R

150217
026137R

164216
134216
004065
160001
00204y
eay727
010074

B66222R
134217
026127R

poéo2n
026127R

2%222pR
@26155R

102600
102700
036070R
126070R

< DRIVER 02

+COMPLETION

SECTION» >

SECTION wwwwwahbda

C.02 NOP

pio

104
102

JSB SETIO
LDA EQTS,?

88A
JMP 103

LDA EGTO,!

STA B
ALF,ALF
RAL

STA TEMPY

CLA

CPA EQT12,1

JMP 103

sL8
JMP D11

CPA EGT13,1

JMP Di2

LDB EQGT$2,1
182 EQT12,1

CLE,ERB
LDA B,1
SEZ,RS8S
ALF,ALF

AND MASK3

LDB TEMPY
187 EQT13,1

JMP 104

S8B
JMP 101

CPA ARROW

JMP 103

PUNCH UNIT,

0TA 2
8TC @2
187 C.@2

JMP C.02,1

239+% CONTROL FUNCTION OUTPUTY

Q240+
P24t

0242 00134

134216

90133 160217 Dif

LDA ERT13,1
187 EQTI2,1

13-13

SET 1/0 INSTRUCTIONS FOR UNIT,
GET "CLEAR" FLAG,

CLEAR?

YES,TERMINATE,

GET CONTROL WORD
SAVE FOR CODE TEST,
ROTATE MODE BIT

TO BIY 15

AND SAVE,

IF CURRENT BUFFER ADDRESS OR
FUNCTION INDEX = 0, THEN
OPERATION COMPLETED,

= CONTROL FUNCTION =

IF CURRENT CHARACTER INDEX =
@, THEN OUTPUT END OF RECORD,

GET CURRENT CHAR, BUFFER ADDRESS,
ADD { FOR NEXT CHARACTER,
CONVERY TO WORD ADDRESS,

GET WORD AND

POSITION PROPER
CHARACTER IN A(@7-00),
REMOVE UPPER POSITION DATA,

PUT MODE IN B(1S5),
INDEX CHARACTER COUNTER,
= NOT LAST CHARACTER,

IF BINARY MODE,
WRITE LAST CHARACTER,

IF CHAR 3 < ¢ », THEN OMIT 17
AND R/LF ON ASCII RECORD,

OUTPUT CHARACTER TO INTYERFACE
TURN DEVICE ON,

ADJUST RETURN TO (Ps2),
'EXIT.|

(A) = LINE-FEED OR FEED FRAME,
INDEX OUTPUT COUNT FOR LEADER/

PAGE

p243
g244
B245¢«
2246w
D247+
@248
0249
pesa
g2s5y e
ges2
p253
2254
0255
@256
0287
p258
g259
P260+
026419
0262
9263
9264

p2p7 #01 < DRIVER @2
2a135 Q00nA0 NOP
P0136 A264127R JMP

END OF RECORD PROCESSING

00137
02140
0e14y

eB142
22143
0144
0a14%
20146
00147
ea150
02151

po182
00153
pa154

062222R D12

002020
026155R

164220
P62217R
@56217R
o60a65
§70220
856217R
@26152R
026127R

gaéann
1742186
26127R

D14

LDA
8SA
JMP

LDB
LDA
CPB
LDA
STA
CPB
JMP
JMP

cLB
STB
JMP

104

TEMPY
103

EQT14,1
RETN
RETN
LINF
EQT14,1
RETN
Di4

104

EQT12,1
101

13-14

#COMPLETION SECTION >

TRAILER OR LINE SPACING,
GO TO OUTPUT CHARACTER,

CHECK MODE OF TRANSFER,
= BINARY =

+*ASC1I+ RECORD
OUTPUT FIRST A
RETURN AND THEN A
LINE=FEED, -
SET EQT14 POR LINE=-FEED CHECK,
IF LINE<FEED IS BEING OUTPUT,
GO TO SET COMPLETION FLAG,
= OUTPUT RETURN =

SEY BUFFER ADDRESS = 0
TO INDICATE LAST CHARACTER,

PAGE

2266+
Q267 ¢
p268+
2269
@270
0271
@272
2273
h274
a278
p27e6
0277
@278
@279
g28a
p284 v
o282
P283
p284
P285+
p28e
0287+
@288
@289
g29np
0291
@292
0293+
D294y
P298e
0296¢
2297«
0298+
0299+
2300w
0304
o302«
2303
2304
2305
2306
2307
0308
2309
0310+
2311
2312
B33
0314
P315
0316
0337+
0318

0P@8 #01 < DRIVER 02 «COMPLETION SECTION+ >

STATUS AND TRANSMISSION COMPLETION SECTION

pA155 t0250m 103 LIA 2 GEY DEVICE STATUS,

P0156 070001 3TA B

Pa157 160206 LDA EQT4,} REMOVE PREVIOUS

90160 010075 AND MASK2 STATUS,

Pa164 230001 IOR B SEY NEW

PR162 170206 STA EQT4,1 STATUS WORD,

02163 0p24a0 CLA IF LOW TAPE

20164 006002 828 SUPPLY, SET

P0165 060A55 LPA ,2 A 3 2 FOR +EOTw,

20166 164207 .DB EQTS,! GET "CLEAR" FLAG,

02167 006020 838 CLEAR?

20170 026176R JMP 105 YES,

00171 164245 LDB EGTI4,I SEY (B) = TRANSMISSION
02172 op6n2p 888 LOG AS POSITIVE # OF WORDS
02173 207004 CMB, INB QR CHARACTERS,

20174 106700 104 cL.Cc @ TURN DEVICE OFF,

Q0175 126070R JMP C,02,1 AND EXIT FOR COMPLETION,
PB176 0nb4ep 105 cLB

08177 174207 STB EQT5,1 RESET "CLEAR" FLAG,
ee20p 12607¢R JMP C.02,1 RETURN

8 \BROUTINE: <«SETIO>»

VURPOSES Y0 CONFIGURE THE 1/0 INSTRUCTIONS
IN THE DRIVER TO REFERENCE THE
SUBJECT PAPER TAPE PUNCH,

CALL?S (A)25-.80 CONTAINS 1/0 ADDRESS
(P) JSB SETIO
(P*1) ~RETURNe~ (REGISTERS MEANINGLESS)

00201 000QP@ SETIO NOP

0e202 032221R JOR LIA COMBINE «L1A» WITH 1/0 ADDRESS
2P203 072155R 8SYA 103 AND SET,

po204 Q40067 ADA ,100 CONSTRUCT «0OTA> INSTRUCTION
Pn205 B72127R 8TA 10}

002068 B42215R ADA 1100 CONSTRUCT «<STC,C> INSTRUCTION
7207 972430R 8TA 102

00210 @32216R I0OR ,4000 CONSTRUCT «CLC> INSTRUCTION
oM211 072174R STA 104

00212 072024R 8TA CLEAR

20213 126201R JMP SET10,1

13-15

PAGE

g3z20¥
P324 ¢
B322+
@323
0324
P3I25+
@326
p327
328
329+
8330
233¢
P332
8333+
0334
0335+«
9336
D337 %
8338
2339
B340

pop% w0t

<« DRIVER @2

«COMPLETION SECYION+ >

CONSTANT AND VARIABLE STYORAGE AREA

00@na
ooant

poavi4

00215
0a216

00217
gn229
00221
0a222

nN223
0p224

20004An
e011an
epdp00

220015
200137
{o25a@0
ooonee

000Q61R
177610

A
B8

240

1100
4000

RETN
ARROW
LIA
TEMPY

IEXTA
NiBa

EQU
EQU

ocT

ocTY
ocy

0cT
ocy
LIA
NOP

DEF
DEC

2
)

40

1100
4000

IEXIT={
=120

13-16

DEFINE SYMBOLIC REFERENCE FQOR
A AND B REGISTERS,

PAGE 0010 *01

0342+

@343*++ SYSTEM BASE PAGE
0344+

2345 00n53 .o
0346 00A4Y N4
0347 002054 o
0348 0Q0Q55 o2
0349 00056 o3
9350 0057 4
0351 0061 .
0352 00963 .108
0353 00p64 W11B
0354 00065 LINF
0355 00067 100
2356 00@73 MASK1
0357 00na74 MASK3
0358 00p7S MASK?2
2359 00100 .
0360+

0361+

@362+ 1/0 MODULE/PDRIVER COMMUNICATION
0363+

9364 00203 EQTY
0365 00204 EOT2
0366 002085 EOTY
0367 00206 EQT4
0368 00207 EQTYS
9369 Q0210 EOTE
0370 00211 EQT?
0371 00212 EQTS8
0372 09213 EQTO
0373 00214 EQT10
0374 Q0215 EQTYLY
375 00216 EQTY2
0376 00217 EQTY3
9377 00220 EQT14
9378 Q0221 EQTYS
9379 00222 EQT16
9380 00223 EQTY7
0384

+ NO ERRORS

*+ SYSTEM

BASE PAGE COMMUNICATION AREA #«

COMMUNICATION

EQU
EQU
EQY
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EoV
EQU
END

538
vem4
re!
ve*2
LR
vetéd
et
1at*8
2et9
vat10
satl2
1e%16
vett7
ne?i8
100R

W67
L 68
%69
2 *70
o *7
W72
o*73
."7‘
o*78
' *76
' 477
2 %78
o*79
o+ 80
81
*82
a*83

13-17

AREA www

ESTABLISH ORIGIN OF AREA

DVR@A2

ARROW

c.02
CLEAR
Dol
paz2
Dol
po4
bes
D10
D11l
D12

20359
ee3ze
20377

20345
P0352

20347
20355
Pe352
Pa327
20353
po348
20349
0@350
ee326
pe32s
203514
Pe323
79332
po324
208191
20134
Pa139
20146
90154
peLse
PR174
20198
00241
ea248

CROSS=RFFERFNCE SYMBOL TABLE

P2364
003714
en378

20346
AR333

eQ112
ep3ne
2012%
P2314
nay27
20114
20119
07184

00314

00229
20199
pPpes
00124
pR126
0128
Q142
204115
20135
22176
an2a9
#2412

2365
ga372
Q0379

20347
28354

@132

0217
0175
00316

2A366
22373
2P380

20348
203585

o277

ge270
0236

13-18

20367
o374

70349
20356

PR273
Q0237

PAGE 2001

ep368
on375

00350
90357

00288

22369
P0376

283514
PR358

@292

DVRO2
D14
PEQTY
ERTLO
EQT1Y
EQTL2

EQTL3
EQT14
#EQTYS
OENTLE
SEQT1L7
eEQT2
eEQTS
EQTA4
EQTS
#EQTA
eEQT?7
eEOTR
EATO
1,02
1,A,4
1.A,6
JEXIT
IEXTA
104
102
103
104
105

pR262
20364
20373
08374

20375
ne242

2a376
pe3z7
nA378
@379
20380
nB365
PB366
70367
na368
PB369
Pa379
993714
Pa372
0105
pa182
7p184
20179
20338
PR234
PA235
20269
PP286
00290

CROSS~RFFERENCE SYMBOL TABLE

pa58

P0146
poL62

n0140
00263

nO154

#0470

00274

2n194

nB4109
apoas
00178
AP435
00338
20174
n0224
20312
A04196
on315
P0280

70159
np282
PP151

20167
20183

ne274

ep278

0119
2P113

0g227

0206

13-19

20161

20211
pn2s52

00291

2198
en133

00244

pR230

22225

20223
#B256

pat18p

20259

20250

PAGE @@@2

0214

pR241

20185

aN264

PR306

o245

20309

DVR@2 CROSS~REFFRENCE SYMBOL TARLE PAGE 0003

LIA 2334 PP3025

LINF PR354 en152 Pe255

MASKY @@356 8122

MASK2 08358 0272

MASK3 fpa357 an220

NiB® 20339 PRL39
N4 00346

RETN 20331 8253 ep254 an2s57
SETI0 00304 eeiaz 0193 @318
TEMPL 00336 0202 g@222 en248

PRIVILEGED INTERRUPT I/0O DRIVERS

Privileged interrupt I/O drivers include a third relocatable, closed subroutine in addition to the
Initiation Section and the Completion Section. This subroutine is the Privileged Interrupt Section.
P.nn is the entry point name. The Initiation Section is identical to those written for the standard
I/O drivers except that the EQT entry should be saved for subsequent use by the Privileged Inter-
rupt Section. Figure 13-3 is a flowchart of the privileged interrupt driver Initiation Section.

13-20

configure
1/0 instructions
for device

return (A)=1or request
to +—7 2 reject code legal
P+1 codes ?
(A) =3, device
reject operable &
code rea7dy

YES

initialize
operating,
conditions,
flags, etc.

y

save EQT
entry for
the Privileged
Interrupt Section

A4

set buffer
address, length,
mode, etc. for
transfer

A

activate
device

\J

A register
(A)=40r0

v

return to
P+1

Figure 13-3. Privileged Interrupt 1/O Driver Initiation Section

13-21

Privileged Interrupt Section

Control passes directly to the Privileged Interrupt Section of the driver (P.nn) whenever an inter-
rupt occurs from a device associated with the driver. The address specifying where control is to be
passed (that is, the P.nn entry point) must be included at generation time while building the inter-
rupt table entries (the ENT option should be used; see Section 10). Since control does not pass
through the system’s central interrupt routine before entering the Privileged Interrupt Section, the
following standard interrupt processing is not performed:

1.
2.
3.

The I/O interface flag for the device is not cleared.
The A register does not contain the interrupt source code.

The EQT entry addresses are not set in the base page.

Note: To allow access to the EQT entry, the Initiation Section should
save the EQT address, then the Privileged Interrupt Section can
use the saved address to reference the EQT entry.

FUNCTIONS OF THE PRIVILEGED INTERRUPT SECTION: The Privileged Interrupt Section is
responsible for the following functions (flowcharted in Figure 13-4):

1.

2.

Upon entry to P.nn, the driver must save the contents of the A, B, E, and O registers.

The driver services the current data item and determines whether or not the transfer is
complete.

If the transfer is not complete, the Privileged Interrupt Section should set the device for the
next transfer and proceed to step 5.

If the transfer is complete, the Privileged Interrupt Section should make the following system
completion call:

EXT $PCOM
LDA EQT1 (saved EQT entry)
JSB $PCOM

This call directs the system to pass control to the standard Completion Section (C.nn entry
point) as soon as it is possible for a “system” device to interrupt.

Prior to returning control to the point of suspension, the Privileged Interrupt Section must
restore the A, B, E, and O registers. In addition, since memory protect is automatically dis-
abled whenever an interrupt occurs, the Privileged Interrupt Section is responsible for restoring
memory protect to its original state. A memory protect flag exists on the base page (MPTFL =
271g) to provide the driver with information concerning the state of memory protect. If
MPTFL is zero, memory protect was on and an STC 5 instruction should be executed immedi-
ately prior to returning to the point of suspension. If MPTFL is one, memory protect was off
and an STC 5 instruction should not be issued.

13-22

P.nn

save contents
of A, B, E,
and O registers

service
current
data item

transfer set device
complete for next
? data item

call $PCOM
to pass

control to
C.nn

<
v

restore
A, B, E, and
O registers

restore
memory
protect

v

return
to
P+1

Figure 13-4. Privileged Interrupt 1/O Driver Privileged Interrupt Section

13-23

Privileged Interrupt Completion Section

The completion section in a privileged interrupt driver is used to perform the following functions
(flowcharted in Figure 13-5):

1.

2.

Set the actual or simulated device status into bits 0 through 7 of EQT word 4.

Set the number of transmitted words or characters (depending on which the user requested)
in the B register.

Set the A register to indicate successful or unsuccessful completion.

successful completion

device malfunction or not ready

end-of-tape (information)

W N = O
I

transmission parity error

Clear the device control on end-of-operation, or set device for next transfer.
Return to $CIC at P+1.

13-24

C.nn

v

configure
1/0 instructions
for device

4

update
status in
EQT(4)

v

(B) = #
words or
characters
transferred

v

(A) =
completion
code

\ 4

clear
device
control

return
to
P+1

Figure 13-5. Privileged Interrupt I/O Driver Completion Section

13-25

SAMPLE PRIVILEGED INTERRUPT I/0 DRIVER

The following pages provide an assembly listing and cross-reference symbol table for a sample
privileged interrupt I/O driver.

PAGE 29p1

nRa1 ASMB,R,B,L,C PRIVILEGED DRIVER FOR RPUNCH
** NO ERRORS=*

13-26

PAGE #2892 #741 PRIVILEGED INTERRUPT PUNCH TAPE DRIVERw~DVRQ2

oAl ASMB,R,B,L,C PRIVILEGED DRIVER FOR PUNCH
a0u3 neenn MAM DVR@A2,0

POA4w

2Bas ENT 1.02,P,02,C,02

DRD6»

nav7 EXT $PCOM, $MOVE

noA8w

BOA9akkwsw PROGRAM DESCRIPTION #ewknw

D10~

NA11w DRIVER P2 IS8 A SIMPLIFIED VERSION OF THE GENERAL PURPOSE

PO12#« PUNCH DRIVER T0o ILLUSTRATE THE USE OF PRIVILEGED INTERRUPT
A213~ FENCE REGISTER,

3014

Q015w DRIVER ©2 OPERATES UNDER THE I/0 CONTROL MODULE OF THE D08
2216~ EXECUTIVE FOR INITIATION AND COMPLETION AND DIRECTLY FROM THE
PO17« TRAP CELL FOR PRIVILEGED INTERRUPTS,

PO18B

A019» 1.22 18 THE ENTRY POINT TO THE +INITIATION® SECTION
020w P,A2 I8 THE ENTRY POINT TO THE *PRIVILEGEDw SECTION
0021w Ca@2 IS THE ENTRY POINY TQ THE *COMPLETION» SECTION
PP22% = THFE INITIATION SECTION 1S CALLED FROM 1,0 CONTROL TO
NR23+ INITIALIZE A DEVICE AND INITIATE AN OUTPUT

no24w

PE25w CALLING SEQUENCE:

BP26»

0027 » » ADDRESSES oF DEVICE EQT ENTRY SET IN YEQTi=EQTI7®
028«

RO29» (A) = 1/0 ADDRESS OF DEVICE

DE3ID»

A3 w (P JsB 1,02

A3 (P+1) ~RETURNw

BO33w (A) = @, OPERATION INITIATED

PR34» = 4, OPERATION REJECTED~IMMEDIATE COMPLETIO
B35«

BUd36w = THE PRIVILEGED SECTIpN IS CALLED DIRECTLY FRoOM THE I/0 TRAP
2037 » CELL WHOSE ADDRESS HAS BEEN SET AT SYSTEM GENERATION,
N384«

039w CALLING SEQUENCE?

Ad4w

041w (P) Jsg p,02

BRa2w (P+1) =RETURNm

D43 w

V944« « THE COMPLETION SECTION IS CALLED BY CENTRAL INTERRUPT
045w CONTROL TO COMPLETE AN OPERATION,

Q046w

paa7Zw CALLING SEQUENCE:

3048w

049w = ADDRESSES OF DEVICE EQGT ENTRY SET IN "EQTi«EQTi7"
NO58«

71733 B (A) = 1/0 ADDRESS OF DEVICE

D52

PO53w (P) Jss €,02

054« (P+1) »RETURN=

BOSSw (A) = B, SUCCESSFUL COMPLETION

NOS6»

¥O57w = RECORD FORMAT MUST BE A STRING OF ASCII CHARACTERS
13-27

PAGE @@a3 #P1 INITIATOR SECTION

nE59w
DO6DN
NA61Lw
AO62w
HR63w
064w
NOES»
NO66w
67w
NO68w
PO69w
2070w
Baziw
N072%
P73
NA74x
Be75
Pv76
wez7
pn78
o879
gosa
np8t
pes2
ara3
pa84
puses
np8e6
pnez7
3988
»Q89
@9
P91t
ne92
f093
0894
an9s
nYos6
we9?
w98
2099
giaon
piay
102
n1o3
B104
nivd
ni06
n107
n108
109
pi1o

THE FUNCTIONS OF THE INITIATION SECTION ARE?

ARQAA
novv1
anen2
a0ea3
#0pa4
¥0aas
AApa6
aoanz
nARie
n0Q11
aee12
a2013
nAaa14
nap1s
aPm16
aae17
P0n20
a0A21
0a22
a9023
nop24
n2p2s
20026
nen27
nRA30
a0n31
PR32
nan33
0034
20035
20036
P0R37
non4n
20041
2a042
7op43

1, CONFIGURE I/0 INSTRUCTIONS
2, SAVE SYSTEM EQT ENTRY ADDRESSES USED IN PRIVILEGED
SECTION FROM EQTi-EQT17,

3, CHECK FOR LEGITIMATE REQUEST CODE

4, FORM CHARACTER BUFFER ADDRESS

5, FORM NEGATIVE CHARACTER COUNT

6, OUTRPUT FIRST CHARACTER

7. ENABLE DEVICE

B, RETURN

NOTEs FUNCTION 2 IS THE MAIN DIFFERENCE FROM
STANDARD DRIVERS

Apooed 1,A2 NOP INITIATOR SECTION ENTRY
n16140R J8B CONFG CONFIGURE 1,0 INSTRUCITONS
P62160AR LDA DEQTHY MOVE SYSTEM EQT{«~EQT47 INTO
P66161R DB N17 PRIVILEGED DRIVER EQT AREA
a160n92X J8B $MOVE
ABB1I66R DEF TEQ\}
162175R LDA TEGS,I GET REQUEST CODE
AR2020 88A
003004 CMA, INA " MAKE + IF NEGATIVE
#50055 CPA ,2
gov20al RSS
M26RAa2R JMP ERTN IGNORE REGQUEST CODE RETURN
162177R LOA TEQLQ,I FORM CHARACTER BUFFER ADDRESS
np1209 RAL
1722p1R STA TEQ12,1 wBUF ADOR USED BY DRIVERw
162200R LDA TEQ11,I FORM NEGATIVE CHARACTERS COQOUNTER
PV2003 8ZA,R88
P26@42R JMP ERTN
pn2020 S8A ERROR IF ZERD CHARACTER
B26M26R JMP 43
nelaan ALS
203204 CMA, INA
172222R STA TEQ13,1 «CHAR COUNT USED BY DRIVERe
166177R LDB TEQ1@,I
1362a1R 18Z TERi12,1
162201 DA 8,1 FORM FIRST CHAARACTER
neL1z727z ALF,ALF
310074 AND ,377
102600 1.02A OTA 9 OUTPUT FIRST CHARACTER
136292R 182 TEQ13,1 INCR FOR FIRST CHARACTER
AR08 NOR
102700 1,028 STC @ ENABLE DEVICE
0024090 CLA INDICATE NORMAL RETURN
126000@R JMp 1,02,1 RETURN TO SYSTEM
p6an57 ERTN LDA L4 IMMEDIATE COMPLETION RETURN
126p00R JMP 1.02,1 RETURN TO SYSTEM

13-28

PAGE

A112»
G113w
Piilde
115«
D116
Bi17«
Vildw
G119w
B12a»
121w
R122#
123w
Bi244
V125«
0126»
D127
128«
D129+
130w
131«
132«
B133
p134
n135
n136
w137
#138
w139
0140
niat
Bilaq2
»i43
nia4
B14ab5
B1a6
B14a7
#1148
@149
w150
B151
w152
2153
p154
2155
B156
Bis7
n158
ni59
n164
pi161
B162
163

naad4 #at

PRIVILEGED SECTION

PRIVILEGED PROCESSOR SECTION

THE FUNCTIONS OF THE PRIVILEGED SECTION ARE:

PRn44
P0R45
a2a46
P47
poa52
Qoes51
anpS52
20053
0¥R54
A0055
A20a56
70057
2Ra69
nan61
pan62
22063
e0n64
a0065
wan66
2267
aea7a
naa7 1
pRaze
PRa73
P0n74
20075
Aa76
eea77
Qo100
0101
an102

DA N U

7

9,

TURN OFF INTERRUPTS

SAVE COMPUTER REGISTERS AT INTERRUPT

IF ALL CHARACTERS OUTPUT, GO TO FUNCTION 10

OUTPUT NEXT CHARACTER

ENABLE DEVICE

RESTORE REGISTERS :

SET MEMQORY PROTECT 10 ORIGINAL STATE AT TIME QF INTERRU
TURN ON INTERRUPTS

RETURN TO POINT TO INTERRUPT

1¢, CALL $PCOM TO ENTER DEVICE INTO PRIVILEGED INTERRUPT
COMPLETION QUEUE
11, DISABLE DEVICE
12, RETURN TO POINT OF INTERRUPT
g0@002 P,22 NOP
103100 CLF @ TURN OFF INTERRUPT SYSTEM
216120R JSB SEQAB SAVE REGISTERS
162202R LDA TEQ)3,I CHECK IF LAST CHARACTER gENT Oyt
002003 SZA,RSS
026877R IMp p,a2D YES, SO INITIATE COMPLETION pPROC
16620 1R LOB TEQ12,1
136201R 1SZ TEG12,1 INCREMENY BUFFER ADDRESS
204065 CLE,ERB
160891 LDA B,1 PUT DATA IN A REGISTER
002041 SEZ,RSS CHECK TIF UPPER OR LOWER CHARACTE
201727 ALF, ALF UPPER SO MOVE INTO LOW
210074 AND 377 MASK OFF OTHER CHARACTER
102690 P,B2A OTA 0 QUTPUT A CHARACTER
103708 P,02B STC @,C ENABLE DEVICE
136202R 1SZ TEG13,7 INCREMENT CHARACTER COUNT
poRaaR NOP
@64271 P MPT LDB MPTFL CHECK IF MEM PROTECT TO BE ENABL
P06092 $ZB YES
#2677 4R JMP MPOFF NO
216132R JSB REDAB RESTORE REGISTERS
102100 STF ¢ TURN ON INTERRUPTS
102725 sTC 6 ENABLE MEMORY PROTECT
126@44R JMP P,02,1 RETURN To POINT oF INTERRUPT
@16130R MPOFF JSB REOAB RESTORE REGISTERS
102100 STF 0 TURN ON INTERRUPTS
126944R JMP P,02,1 RETURN TO POINT OF INTERRUPT
@62166R P,@2D | DA TEQ1 CAUSE COMPLETION INTERRUPT
916001X JSB $PCOM ENTER DEVICE INTO PRIV INT COMPLETIO
106700 P,02E CLC B CLEAR DEVICE
B26065R JMP P MPT 60 TO RETURN PROCESSOR

13-29

PAGE panS #0i

165
N166w
D167 »
D168
D169
170w
Bi71»
N172
B173w
Di74»
Pi75n
9176
2177
BA-]
2179
A18p
71814
p182
p183
p184
p185
w186
ni87
p188

COMPLETION SECTION

COMPLETION PROCESSOR SECTION

THE FUNCTIONS oF THE COMPLETION SECTION ARE:

p0103
PR104
P0125
w4106
Q0107
an119
0111
pa112
20113
nR114
#2115
AB116
n0117

1. UPDATE STATUS IN EQTA4

2, SET TRANSMISSION LOG IN B
3, CLEAR A TO INDICATE
4, RETURN TO CENTRAL INTERRUPT PROCESSOR

0000
102500
2100714
A70001
162171R
A10875
a3nonl
172171R
166200R
206020
207004
002400
126103R

c.02
C.02A

NOP
LIA
AND
STA
LDA
AND
10R
STA
LDB
$3B

CMB,

CLA
JMP

a

B
TEQ4, 1
MASK2

B
TEQ4,1
TEQil, 1

INB
c.ﬂe,l

13-30

OKAY COMPLETION

UPDATE STATUS

STATUS IN EGTH4
TRANSMISSION LOG IN B

CLEAR A To INDICATE pKAY STATUS
RETURN TO SYSTEM

PAGE A206 #01 SUBROUTINES

B192w

D191 » SAVE A,B,E;O

192w«

193 o120 0008 SEOQAB NOP

#2194 00121 n72207R STA XA A

P195 na122 @B76210R STB XxB B

#196 @123 A01522 ERA,ALS

D197 0@124 192221 80C

198 Q@125 202004 INA

B199 Q@126 P72211R STA XEO E AND 0O

n20a8 @R127 126120R JMP SEOQAB,1

D20 1w

N202» RESTORE AIB;E,Q

N2A3»

n2u4 @a130 agerrd REOAB NOP

P205 P13t P62211R .DA XEOQ £ AND O

#9206 00132 103101 cLo

a207 Q0133 0LVA36 SLA,ELA

298 00134 12191 STF

2209 @135 @622a7R LDA XA A

P21 00136 266210R 1.DB XB 8

211 20137 126130R JMP REQAB,I

N212»

213 » CONFIGURE I/0 INSTRUCTIONS

0214w

B215 00140 oponp® CONFG NOP

216 Q@d141 A70001} STA B SAVE SELECTY CODE
@217 @Q0142 n32162R IOR OTAC

3218 Q143 @72034R STA 1,02A CONFIGURE OTA 8C
B219 Q20144 A72961R STA P.A2A

R22¢ @@145 P62163R .DA 8TCC

n221 @0146 p3nnatl IOR B

B2 np147 p72p37R STA 1,028 CONFIGURE 8TC SC,C
p223 Q0150 B72062R STA p,02B

B224 @15t P62164R LDA ClLCC

p22% Q0152 9300nl I0R B

0226 @153 @721921R STA P,@2E CONFIGURE CLC SC
p227 0154 p62165R LDA LIAC

p228 n@155 p30del TIOR B

P229 ‘@156 B72104R STA Cc,02A CONFIGURE LIA S8C
P23 0157 126140R JMP CONFG,1 RETURN

13-31

PAGE

B232w
233
N234w
a235
n236
0237
n23s
n239
n240
A24is
0242
N243
n244
N245»
n246
247
n248
n249
n25aq
padi
nas2
253w
pebd4
255
p256
nwas7
n2s8
nas9
N6y
nao6y
B262
n263
n264
n265
p266
pa267
B268
269
na2zo
N27 1w
naze
0273
274
n275

A0A7 A1 BUFFERS,
20001 /8
nRas3 .0
AARSS o2
peas7 o4
nan7 1 37
Qoa7 4 377
naazs MASK2
ag10a .
pR203 EQT
wn271 MPTFL
160 Aee203 DEQRTH
pN161 177787 Ni7
PR162 1¥26py OTAC
22163 103790 STCC
nR164 196790 CLCC
0165 1025mp0 LIAC
pR166 epaAone TEQ1
wA167 geenn TEQ2
e217p poarpd TEQ3
na171 AREANY TEQA4
na172 oenerw TEGS
na173 foaund TEGG6
20174 peaagd TEQ7
@175 appuep TEGRS
pU176 AOBOPB TEQS
0177 anednn TEQLO
g2 @aveepl TEGLL
PR291 apoapd TEQL2
naza2 Aveerd TEQ13
0203 2AAAPR TEQL4
pn204 ooeevd TEQLS
pa2as5 00eARe TEQ16
0206 0QG0N0 TEQL7
aA207 POARAO XA
nR210 0Q29Q0 XB
n0211 BRAOOA XEO

#* NO ERRORS»

POINTERS,

EQU

EQU
QU
EQuU
EQU
EQu
EQU

eEQu
EQU
EQU

DEF

DEC
OTA
STC
cLcC
LIA

NOP
NQP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

NOP
NOP
NOP
END

1

538
eet2
o td
aet+ld
eatl7
:0*18

10a8
o +67
o121
EQT!
w7
A.C

]
a

13-32

CONSTANTS, AND MASKS

pDEC 2

DEC 4

oCT 37

0cT 377
0CT 177400

EQUIPMENT TABLE ADDRESS
MEMORY PROTECT FLAG

INITIATION ADDRESS
COMPLETION ADDRESS
D/RHUNIT,CHANNEL
AV,TYPE,STATUS

REQUEST RETURN

REQUEST CODE

I/0 REQUEST CONTROL WORD
REQUEST BUFFER ADDRESS
REQUEST BUFFER LENGTH

REGISTER TEMPORARY
REGISTER TEMPORARY
AND O REGISTER TEMPORARY

m o >

DVR@2

$MOVE

$PCOM

C,02
C.02A
cLcc
CONFG
DEQT)
EQTY
ERTN
1.02
1,024
1,028
l.LIAC
MASK?2
MPOFF
MPTFL,
N17
OTAC
P.02
Pe,02A

20007
anaa7
ae242
An23s
20236
AV238
An239
A0237

20233
an225

20176
p0177
Ap251
a0215
20246
An243
00109
wea7s
2a1a3
2B106
20252
hp240
20157
20244
a0248
pR249
70133
An146

CROSS~REFERENCE SYMBOL TABLE

aRa79
01614
#0243
00¥236
ANB4
AR178
an102
A0189

20109
P0228

ARaus
an229
00224
aaaz76
00077
#0n246
euABe
neansd
a0218
aR222
an227
nA1814
02152
Au150
Q0478
pe217
NAABs
@n219

pa244
00237

20145

ap142

00188

20230

aee92
20108

20156

13-33

p@238

20179

a0110

a0159

20239

Pn182

PAGE @0}

8a249

ap216

pa221

DVRA2

P.a28
P.@2D
P, @2E
P MPT
REOAB
SE0AB
sTCC
TEQY
TEQ1®
TEQ1Y
TEQ12
TEQ13
#TEQ14
#TEQLS
*TEG16
#TEQL7
oTEQ2
#TEQ3
TEQA4
®TEQS
PTEQS
®TEQ7
TEQS
#TEQY
XA
X8

XEO

naL47
np16n
nA162
159
20204
NB193
an2sa
AN254
nG263
AN264
20265
20266
0a267
nV268
AB269
an27n
nAa25%
ne256
Bo257
a@258
29259
ne260
#0261
20262
na27ze2
20273
Pn274

CROSS~REFERENCE SYMBOL TABLE

an223
an138
20226
20163
Bo153
20135
n8220
2208y
paa87
naa9R
nAA89

20097

' P0180

¥o08y

20194
20195
#0199

20157

pw2ng

20160
20098
20184
20899

20104

20183

00209
pe219
20205

13-34

20211

98139

PR136

29140

00148

PAGE 0002

SECTION XIV
Privileged Mode

Certain situations may arise where a user wishes to process his own errors instead of having the
operating system handle them for him. In addition, there may be cases where he wishes to determine
when an I/O operation (initiated without wait) is complete.

Both of these options are available with use of the system’s privileged mode flag (MDFLG = location
133,). In order to operate in this privileged mode (i.e., user processing of I/O errors and/or deter-
mining I/O completions) the user

° must be programming in Assembly language
° is responsible for setting MDFLG properly
Bit O set - user error processing
Bit 15 set - I/O completion processing

DOS-III uses MDFLG as follows:

1. After an I/O initiation (performed by an EXEC call) MDFLG bit 0 is checked, and if it is
equal to one, control returns to the user program with the A register set as follows:

Contents (decimal) Meaning
0 Operation initiated
1 Read or write illegal
2 Control request ignored
3 Device down
4 Immediate completion
5 DMA busy
6 Driver busy
7 Driver overlay area busy
8 EXEC overlay area busy
9 Operation rejected
10 Memory protect error
11 Request code error
12 Execution time exceeded
13 Spare

14-1

Contents (decimal) Meaning

14 Illegal logical unit

15 Unassigned logical unit
16 Illegal buffer address
17 Memory wrap around
18 Illegal track address

19 File cannot be found

After an I/O completion, MDFLG bit 15 is checked, and if it is equal to one, control is passed
to a user subroutine which must immediately follow the EXEC call. Upon entry to the routine,
the B register contains the driver transmission log and the A register contains the device status
as follows:

A register Contents Meaning
0 I/O completed without errors
-1 Device was not ready
-9 End-of-tape
-3 Parity error

-4 Batch input detected a colon (:)

If the I/O completion resulted from an I/O error (not ready, parity, or end-of-tape) and the
device is not the system console or the disc, bit 14 of EQT4 (the fourth word of the current
Equipment Table entry) is set to indicate that the device is down.

MDFLG bit O is then checked, and if it is equal to one, control returns to user (thus bypassing
system processing of the error).

During a FILE NAME SEARCH EXEC call (RCODE = 18) where the search is requested with-
out wait, no subsequent EXEC calls are allowed. If a second EXEC call is requested during
execution of a file search, the system will wait for the search to complete before processing the
second EXEC call. If the user does not want the system to wait, he should set Bit 1 of MDFLG.
If Bit 1 of MDFLG is set and the above condition is encountered, control will be returned to the
user following the second EXEC call with the A register = 8 (EXEC busy).

The system clears all bits of MDFLG following any program completion.

14-2

5. An I/O calling sequence operating in privileged mode might look something like this:

END
COMP

INIT

JSB

DEF
DEF
DEF

JMP
NOP

JMP

EXEC
END
RCODE
CONWD

INIT

COMP,I

|

(must be an I/0 without wait)

If present,the completion routine must be located here.
Executed following I/O completion, and should include
a check for completion errors. This routine must not
use any routine that is not re-entrant,

Executed following an I/O initiation, and should
include a check for initiation errors.

14-3

PART 5
Error Codes and Messages

SECTION XV
Halt Codes and Error Messages

This section describes the error conditions which can occur while DOS-III is being generated, loaded
and operated. Exror conditions are reported to the user by one of the following:

a computer halt; the halt code is displayed in the DISPLAY register
an error message; the message is displayed on the system console

an error message (displayed on the system console) followed by a computer halt (halt code
displayed in the DISPLAY register)

an error code returned to a user program (by EFMP); the error code is also returned in the
A register

This section contains halt code and error message tables, including corrective action (when applicable)
for the following:

DSGEN ERROR CONDITIONS
DSGEN Error Halts
DSGEN Error Messages

DOS-III BOOTSTRAP ERROR HALTS

DOS-III ERROR CONDITIONS

DOS-III Error Halts
DOS-III Error Messages

EFMP ERROR CODES

Note: The ALGOL, FORTRAN and Assembler subsystems also print error
messages. These subsystem error messages are documented in the
SOFTWARE OPERATING PROCEDURE module “Assembler,
FORTRAN and ALGOL Error Messages” (5951-1377). FORTRAN IV
error messages are described in HP FORTRAN IV (5951-1321).

15-1

Table 15-1. DSGEN Error Conditions

DSGEN ERROR HALTS

Halt Code

102000

102002

102003

102004

102007

102022

102032

102077

102000

Cause
Follows an irrecoverable error message.
Generator unable to find $STRT in DISCM.
DISCM is probably missing.
Follows ERR02.
Follows ERRO3.

Follows ERR0OA4.

Normal halt. Disc initialization of sub-
channel has completed.

Disc error after ten attempts. Disc address

~in A, disc status in B,

Disc not ready or disc should be unprotected.

Disc address in A and disc status in B.
Normal halt.

Ready to receive another program tape.

If DSGEN is above 100005 an impossible
condition has occurred.

DSGEN ERROR MESSAGES

Messages During Initialization and Input Phases

Message
ERRO1

ERRO2

ERRO3

Meaning
Invalid response to initialization request.

Checksum error on program input.

Record out of sequence.

Recovery Action
Irrecoverable
Irrecoverable
See ERRO2 in error messages.
See ERROS3 in error messages.
See ERRO4 in error messages.

Start the computer executing to initialize
another subchannel or to generate a system.

Start execution to retry ten more times.
When preceded by ERR12 continues to
next track.

Ready or unprotect the disc. Start the
computer executing.

Continue generation.
Enter next tape and start the computer
executing.

Either a hardware/software failure has
occurred or DSGEN has overflowed its
work area because the system was too
large.

Action
Request is repeated. Enter valid reply.
Computer halts; to try again, reposition
tape to beginning of program and start

the computer.

Same as ERRO2.

15-2

Table 15-1. DSGEN Error Conditions (continued)

Message Meaning Action
ERRO4 lllegal record type. Same as ERR02. If input is from disc, error
is irrecoverable; remove non-relocatable files
from disc.
Eeﬁnﬁeos Duplicate entry point. The current entry point replaces the previous
' entry point.
ERRO6 Invalid base page length in BCS-produced Base page area is ignored, but memory pro-
relocatable tape (must be zero). tect error will occur if program is executed.
ERROQ7 Program name or entry point table over- Irrecoverable error, Revise or delete
flow of available memory. programs.
ERRO8 Duplicate program name. The current program replaces the previous
name program,

Messages During the Parameter Phase

ERRO9

ERR10

Parameter name error (no such program).

Parameter type error.

General Messages

ERR11

ERR12

ERR13

ERR14

ERR15

System directory track overflow.

Disc error during disc initialization.

User segment precedes user main program.

Absolute code overlays relocatable code
in the disc scratch area.

More than 63 subprograms called by a
main program,

Enter valid parameter statement.

Same as ERRO09.

Irrecoverable.Regenerate system and reduce
the value of the response to the “FIRST
SYSTEM SECTOR?’ message.

Start the computer executing to bypass the
faulty tracks.

Irrecoverable.

Irrecoverable. Regenerate the system and
select one of the following two options:

1. Reduce number of programs being loaded
2. Load the library after all other programs
are loaded. If this is not successful, in-
crease the size of the system disc and/or
lower the starting track/sector of the

system.

Revise main program (subsequent calls to
subprograms are ignored).

15-3

Table 15-1. DSGEN Error Conditions (continued)

Message Meaning Action

ERR16 Base page linkage overflow. Diagnostic printed once when overflow
occurs. Bounds field indicates the number
of words overflowed. Revise order and
composition of program loading to reduce
linkage requirements.

ERR17 Current disc address exceeds number of Irrecoverable error.
available tracks.

ERR18 Memory overflow (absolute code exceeds Diagnostic printed once when overflow
LWA memory). occurs. Bounds field indicates the number

of words overflowed. (Absolute code is
generated beyond LWA). Revise program.

ERR19 Program overlay (current word of absolute Current word is ignored (the address is
code has identical location to previous word). printed).

ERR20 Binary DBL record overflow of internal Records overlay previous DBL records
table. (diagnostic printed for each overflow

record). Revise program.

ERR21 Module containing entry point $CIC not Irrecoverable error. Regenerate the system;
loaded. include DISCM.

ERR22 Read parity/decode disc error. A register After ten attempts to read or write the disc
bits 8-14 show track number; bits 0-7 sector, the computer halts. To try ten more
show sector number. times, start the computer executing.

ERR23 EQT not entered for disc-resident 1/0 Restart at 100g.

module.

Messages During /0O Table Entry

ERR24
ERR25
ERR26
ERR27
ERR28
ERR29
ERR30
ERR31
ERR33
ERR34
ERR35

ERR36

Invalid channel number.

Invalid driver name or no driver entry points.
Invalid or duplicate D,R,U operands.

Invalid logical unit number.

Invalid channel number.

Channel number decreasing.

Invalid INT mnemonic.

Invalid EQT number.

Invalid entry point.

Invalid absolute value.

Base page interrupt locations overflow into
linkage area.

Invalid number of characters in final operand.

Enter valid EQT statement.
Same as ERR24.

Same as ERR24.

Enter valid DRT statement.
Enter valid INT statement.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Same as ERR28.

Restart Disc Loading Phase.

Same as ERR28.

15-4

Table 15-2. DOS-l11 Bootstrap Error Halts

Halt Code Cause Recovery Action
102011 Disc error status is in the A register. |f Check that the device is ready and the
A register contains 0, the subchannel did proper disc cartridge is being used; then
not contain a system. call maintenance.
102031 Same as above. Occurs during execution of disc-resident

part of Bootstrap. Check that the disc is
ready; then call maintenance.

15-5

Table 15-3. DOS-1lI Error Conditions

DOS-111 ERROR HALTS

Halt Code

102002
102003

102004

102005

102011

102031

102077

Location

location 24
location 3g

DISCM

DISCM

$EX20

DVR31

$EX20

f

Cause

Possible memory wrap-around when
memory protect is not present.

Power has gone up or down with
powerfail option present.

Memory parity error occurred.

Disc parity error. Halt occurs after
a message is printed giving location
of error.

Trying to write on disc cylinder that
is flagged ‘‘protected’’ without first
unprotecting the disc.

Follows message telling operator to
protect the disc after spare track
assignment.

DOS-11l ERROR MESSAGES

Recovery Action

Program error. Bootstrap DOS-11l from
the disc and correct the program.

Bootstrap DOS-III from disc and restart.

A-register contains address of word con-
taining the parity error. Run the memory
diagnostic programs, then bootstrap
DOS-III from disc and restart.

Unprotect the disc and start the com-
puter executing. DOS-III assigns next
spare track.

Start the computer executing to exit
DVR31 with no action taken.

Protect the disc and start the computer
executing. DOS-I11 aborts the job that
was running.

During the operation of DOS-111 certain messages may be output on the system console. These messages may be
error reports or simply informative; they are generated by various parts of DOS-111. The messages are listed alpha-
betically including where they originated, what they mean, and what response if any, the operator must make.
Messages that begin with a variable name or a non-alphabetic character are listed by the first non-variable, alphabetic

character.

BAD CONTROL STATE

BEGIN ‘DEBUG’ OPERATION

Message

BP BND [L,U]?

CHECKSUM ERROR

Source

JOBPR

Description

Directive just entered is not acceptable in DOS Ill. Enter

correct directive on system console.’

DEBUG

Any legal DEBUG operations may now be entered. Enter

any legal DEBUG operations.

LOADR

Specify the base page bounds desired for the program being

loaded by the Loader. The bounds should be entered as two
octal constants separated by a comma.

JOBPR

Checksum error in input to ST,R,file or ST, X, file directive.
Correct tape.1

1This error causes a batch abort if the command is entered in batch mode. See ‘’Batch Abort’’ in Section 1.

15-6

Table 15-3. DOS-111 Error Conditions (continued)

Message Source Description

CW nnnnn DISCM In an 1/O READ/WRITE EXEC call at nnnnn, buffer extends
beyond memory bounds. Correct program.

DEVICE #nn DOWN JOBPR EQT #nn is unavailable {down). Use the UP,nn directive to
make the device available. (Then use the GO directive if
needed.)

DICTIONARY OVERFLOW JOBPR No room is left for entries in the user file dictionary. Put file
on another disc or remove some of the files.

?2?? DISC DISCM Informs user that disc is not recognizable by DOS-111. Must

be labeled or unfabeled with :IN, or formatted with DSGEN,
before using in DOS-111,

DISC GEN CODE nnnn NOT SYS GEN CODE mmmm ERR POSS

DISC NOT ON SYSTEM

DONE?

??? LABEL xxxxxx
DOS LABEL xxxxxx
TSB LABEL xxxxxx
OK TO PURGE?

DUPLICATE FILE NAME

$END ALGOL
$END ASMB

$END ASMB CS

$END ASMB NPRG

DISCM

DISCM

JOBPR

DISCM

JOBPR

ALGOL

ASMB

ASMB

ASMB

Informs the user that the disc being requested was initialized
(labeled) by a system with a different system generation
code. Generation code on disc may be updated by labeling or
unlabeling using :I1N.

No disc pack with the currently requested label can be found
on the system. Mount disc pack with correct label or ready
drive containing disc.

Thirty feed frames (paper tape) or an end-of-file (magnetic
tape) have occurred during input. Enter YES for end of input;
NO for more input.

Attempting to label (or unlabel) an already labeled disc pack.
Enter YES to relabel the disc pack or NO to drop the request
to relabel the disc pack.

Doubly defined file name found in a STORE directive (other
than STORE,P); an EDIT directive with a new file name;

on DD,U; or on a RENAME directive. Remove file or rename
file.!

End of ALGOL compilation. No response required.
Assembly has completed. No response required.

Assembly has ended because of an error in the assembler
control statement. Correct the control statement.

Assembly has terminated because no JFILE was found when
required. Define the file using a JFILE directive.

1Thls error causes a batch abort if the command is entered in batch mode. See “’Batch Abort’’ in Section 1.

15-7

Table 15-3. DOS-III Error Conditions (continued)

Message Source Description

$END ASMB PASS ASMB Another pass of the source program through the input device
is required. Printed on the system console after Pass 1. Replace
the program in the input device and type :GO.

$END ASMB XEND ASMB Assembly stops. An EOF occurred in the source program
before an END statement. Add an END statement to the
program,

END FILE JOBPR During an EDIT, (1) the master file ended before completion
of editing or (2) a triple colon occurred in the first 3 columns
of a source statement. Check input to the EDIT program.1

$END,FTN[4] FTN[4] Compilation has completed. No response required.

END JOB xxxx [RUN = xxxx MIN. xx.x SEC EXEC = xxxx MIN. xx.x SEC]

ENTER FILE NAME(S) OR /E

ENTRY ERROR

EOF-NO DATA STORED

EQT xx CH xx DVRxx D R Ux Sx

EXTRA PARAMETERS

Fl nnnnn

HPAL??

IB nnnnn

|E nnnnn

JOBPR

LOADR

DEBUG

JOBPR

JOBPR

JOBPR

DISCM

ALGOL

DISCM

DISCM

End of current job. Total job time and execution time of the
job are printed on the system console and standard list device
if a Time-base Generator is present.

Enter list of relocatable program files. To terminate list of
file names type "//E".

‘DEBUG operation entered was illegal. Correct entry.

An attempt was made to read an EOF without first reading
data. A file is not created when this message is output.

Equipment table entry output by the EQ directive. No action
required.

More than 15 parameters in a directive. Excess parameters are
not processed.

Ina FILE READ/WRITE EXEC call (1) the file requested at
nnnnn cannot be found. If nnnnn is not present, enter the file.
(2) The length of the buffer requested at nnnnn extends be-
yond the end of the file. Correct the buffer length. Either
case causes calling program to abort.

Control statement error. Correct control statement.

llegal buffer address in EXEC call at location nnnnn. Program
is aborted. Correct buffer program address.

If a colon occurs in the first column of input entered through
the batch device during a program execution, the program is
aborted, control is given to the JOBPR and the input is pro-
cessed as a directive. nnnnn is the memory location of the
input request.

1.,
This error causes a batch abort if the command is entered in batch mode. See ‘'Batch Abort’’ in Section 1.

15-8

Table 15-3. DOS-IlI Error Conditions (continued)

Message Source Description

IGNORED DISCM Input from system console during program execution cannot
be processed. Correct input.

*IGNORED JOBPR All directives following EJOB and before next JOB except
BATCH, TYPE, TRACKS, and OFF are ignored. Enter
acceptable directive.

file JOBPR On a source file LIST directive, the requested file was not a

ILLEGAL source file. Retype LIST directive using source file."!

A file name begins with a non-alphabetic character. Rename the file.!

ILLEGAL DIGIT JOBPR In a decimal number, character is other than 0-9. Enter correct
decimal number. In an octal number, digit is other than 0-7.
Enter correct octal number.!

ILLEGAL LUN JOBPR Logical unit requested is equal to zero, greater than the number

ILLEGAL PROGRAM RUN LIMITS

DISCM
ILLEGAL PROGRAM TYPE JOBPR
INPUT ERROR DISCM

INPUT :DATE, XXXXXXXXXX[,H,M]

DISCM
1/0 ERR ET EQT #mm DISCM
I/0 ERR NR EQT #mm DISCM
1/0 ERR PE EQT mm DISCM

of logical units in the system, not the correct type (i.e., input
type for output device), etc. Enter a correct logical unit.’

Attempt to run a user main or segment whose user area
limits or base page limits will not fit within the limits of the
current system. Recreate user mains or segments on current
system using LOADR.

Program requested in a RUN or PROG is not legal. Enter
correct name.”

Equipment table entry number or logical unit number in :EQ,
:LU, :UP or :DN is illegal. Enter correct equipment table or
logical unit entry number.

When system is initiated from the disc, DOS-II1 requires a
DATE directive. The [,H,M] is ignored in DOS-I11 if a Time-
base Generator is not in the system. Enter a DATE directive:

End-of-tape on device #fmm. EQT #mm is unavailable. To
make the device available (up), use the UP,mm directive.

The device #mm is not ready. To make the device available
(up), use the UP,mm directive.

Parity error on device #mm returns to program return
address with A set to status, B set to 0. Call maintenance.

1This error causes a batch abort if the command is entered in batch mode. See ‘’Batch Abort’’ in Section 1.

15-9

Table 15-3. DOS-11l Error Conditions (continued)

Message Source Description
PE . . .

1/0 ERR NR USER DISC DISCM A parity error or device not ready occurred when attempting
to assign a user disc. Disc may not be formatted; format it
with DSGEN.

PE

1/0 ERR NR USER DISK DISCM Disc error in completion section of DVR31. Retry previous
operation,

IT nnnnn DISCM Illegal disc track or sector address in EXEC call from location
nnnnn. Program is aborted. Correct the track or sector
address in EXEC call.

JBIN OVF FTN (,4], Overflow of Job Binary Area during assembly or compilation.

ASMB, Reduce size of job or purge user files.
ALGOL
JOB ABORTED! JOBPR Correct problem and start new job.

JOB xxxxx dddddddddd [TIME = xxxx MIN. xx.x SECS EXEC = xxxx MIN. xx.x SEC.]

LO1

LO2

LO3

L04

LOS

LO6

LO7

LO8

LO9

L10

L11

L12

L13

JOBPR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

LOADR

Message output at the beginning of each job. The time infor-
mation is deleted in DOS-111 if a Time-base Generator is not
included in the system, Start job.

Checksum error on tape.

Illegal record.

Memory overflow,

Base page overflow.

Symbol table overflow.

Duplicate main or segment name (may be caused by attempt-
ing to run the Loader twice in one job).

Duplicate entry point.

No main or segment transfer address.

Record out of sequence.

Insufficient directory work area or user area space.
Program table overflow,

User file specified cannot be found.

Program name duplication,

15-10

Table 15-3. DOS-II1 Error Conditions (continued)

Message Source Description

L14 LOADR Non-zero base page length.

L15 LOADR Segment occurred before main.

L16 LOADR Program overlay (illegal ORG).

L17 LOADR Itlegal library record.

L18 LOADR lllegal octal digit in base page bounds specification; or the
lower base page bound is greater than the upper base page
bound; or the lower or upper base page bound is greater than
2000g. In keyboard mode, re-enter new base page bounds.
In batch mode, Loader aborts.

L19 LOADR Illegal octal digit in main memory bounds specification; or
the lower program bound is greater than the upper program
bound. In keyboard mode, re-enter new program bounds. In
batch mode, Loader aborts.

LBL=111111 DISCM Disc subchannel referenced is labeled 111111. If attempting
to change user disc subchannel, enter :UD with correct label.

. LIMIT ERROR JOBPR In a directive, source statement numbers are out of order
(:EDIT), dump limits are incompatible (:PDUMP, :ADUMP),
sector numbers are illegal (:DUMP), number of words re-
guested exceeds number of words available (:MMGT), or
beginning source statement number is greater than final
statement number (:EDIT). Correct directive and re-enter.!

xxxx LINES JOBPR Total number of statements stored by a STORE,S directive.
No response required.

¥EEXLIST END**** JOBPR Terminates list of source statements generated by a LIST
directive. No response required.

LN nnnn DISCM Logical unit requested by an EXEC call at nnnnn is unassigned.
Program is aborted. Assign logical unit.

LOADR COMPLETE LOADR Loading has completed. No responses required.

LOADR SUSP LOADR Loader has suspended (usually at EQT). Type :GO,n to
restart the Loader with proper parameter value.

LOADR TERMINATED LOADR Loader has terminated because of an error. Correct input.

LOAD TAPE LOADR In conjunction with LOADR SUSP, this message requests that

next relocatable tape be loaded before :GO. Load the next
relocatable tape and enter :GO to read next tape or :GO,1
to indicate that all tapes are read in.

1

This error causes a batch abort if the command is entered in batch mode. See ''Batch Abort’’' in Section 1.

15-11

Table 15-3. DOS-H11 Error Conditions (continued)

Message Source Description

LU nnnnn DISCM lllegal logical unit in EXEC call at nnnnn. Program is aborted.
Enter correct logical unit number,

LUxx EQTyy JOBPR Logical unit table entry; EQT #yy assigned to LU #xx. No
response required.

LUN UNASSIGNED JOBPR Logical unit requested in a directive is unassigned. Assign
logical unit number requested in the directive.’

xxxxx MISSING DISCM Segment xxxxx requested by an EXEC call is not in system
or user directory. Job is aborted. Correct job.

MISSING PARAMETER JOBPR A parameter is missing in a directive. Retype the directive
correctly.1

MP nnnnn DISCM Memory protect violation at location nnnnn. Program is
aborted. Correct the program.

NAME *IGNORED JOBPR lilegal JOB name; numeric first character. Retype correct
job name.

NEXT AVAIL TRACK=tt JOBPR In TRACK directive, tt = first track beyond end of current

BAD=n user area; n = number of bad tracks. ‘BAD=n"’ returned only
if bad tracks do exist. tt = “NONE"’ if no tracks are available.

NO BIN END JOBPR No END record detected when storing a relocatable binary
program,”

NO PROGRAMS LOADED LOADR No programs were loaded by the Loader. Loading terminates.

NO SOURCE JOBPR No source statements following a /R or /I in an EDIT
directive. Enter source statements after the /R or /1.1

NO SOURCE ALGOL Source file from disc not pre-set.

NO SUBSYSTEMS DEFINED JOBPR Informs the user that a :MM directive was attempted but no
subsystems were defined during system generation.

NUMBER OVERFLO JOBPR An integer is too large.!

OR nnnnn DISCM 1/0 operation requested by EXEC call at nnnnn is rejected.
Program is aborted. Check program.

OVERFLOW JBIN JOBPR There is not enough room in the JBIN for storing the re-
locatable binary output from the Assembler or compilers.

PARAMETER {LLEGAL JOBPR A parameter of a directive is illegal. Re-enter directive.'

PARITY ERROR

SC=m, TRK=ttt,SCTR=sss JOBPR Parity error during disc read or write. Call maintenance.

1Thi9 error causes a batch abort if the command is entered In batch mode. See ‘’Batch Abort’’ in Section 1.

15-12

Table 15-3. DOS-111 Error Conditions (continued)

Message Source Description
PAUSE xxxx LIBR Program has temporarily suspended itself. xxxx is an octal
(Formatter) number acting as an identifier. Restart program using the GO
directive.

PROG BND [L,U]? LOADR Enter the program bounds for the program being loaded by
the Loader. The bounds consist of two octal numbers
separated by a comma.

RE-ENTER STATEMENTONTTY

JOBPR Follows most error messages that do not cause abort. Type
in the correct statement.

RQ nnnnn DISCM 1llegal parameter in EXEC call at nnnnn. Program is
aborted. Correct the program.

SPARE TRK OVERFLOW JOBPR Defective cylinder detected and no spare tracks available for
reassignment,

STOP xxxxx: nnnnn LIBR Program xxxxx has terminated at location nnnnn.

SUBCHAN = n DISCM/ Given in response to :UD information request or when :SS

JOBPR makes new subchannel assignment. No response required.

xxxxx SUSP DISCM Program xxxxx suspended by EXEC call or PAUSE directive.
Restart program using the GO directive.

TAPE END JOBPR EOT flag set on magnetic tape or paper tape device during
output via JOBPR directives DUMP and LIST or output
of a JOB or EJOB statement. If a magnetic tape, it is rewound
with standby; if paper tape, a trailer is punched. The JOBPR
will then pause to allow new tape to be set up. Mount a new
magnetic tape. Enter :GO to continue the output.

TM nnnnn DISCM Maximum execution time exceeded. The program is currently
at nnnnn and is aborted. Increase execution time.

#TRACKS UNAVAILABLE DISCM There are not enough word tracks for the compiler. Enter
:OFF then purge disc of unnecessary files.

TRAC #TOO BIG JOBPR Track requested is higher than last available disc track (track
may be in JBIN area). Redefine the track request or purge
files or use different disc.’

TSB DISC DISCM Informs user that the user disc was labeled by a non-DOS-11I

system. May be made DOS-I!I disc by labeling or unlabeling
with :IN,

1This error causes a batch abort if the command is entered in batch mode. See ’Batch Abort’’ in Section 1.

15-13

Table 15-3. DOS-111 Error Conditions (continued)

Message Source Description
ON
TURN OFF DISC PROTECT OVERRIDE SWITCH
DISCM Unprotect [ON] or protect [OFF] the disc.

UD nnnnn DISCM Unable to find user disc requested by EXEC call at nnnnn.
Mount required disc and type :GO; or terminate program
with :ABORT or :OFF.

UNLBL DISCM User disc specified in :UD is unlabeled. If trying to change
user disc assignment, enter :UD,*[,n].

file name UNDEFINED JOBPR Undefined file name as a parameter of a directive. Retype
correct file name on the system console.!

subsystem name UNDEFINED JOBPR Undefined subsystem name as a parameter of :MMGT direc-
tive. Subsystem names must be defined at system generation.

UNDEFINED EXTS LOADR Undefined external references exist in programs loaded. The
external references are listed one per line. To load additional
programs from paper tape, type :GO,0[,n].

WRONG INPUT JOBPR Relocatable binary input furnished for a source file request
or vice-versa. Enter correct input.

name: nn xx ERRO Library routine error code, where name is the name of the
user’s program, nn is the routine identifier and xx is the
error type.

@ JOBPR/ Directives may be entered. Enter desired directive.

DISCM
* DISCM Operator attention directives may be entered. Enter desired

directive.

1This error causes a batch abort if the command is entered in batch mode. See ""Batch Abort’’ in Section 1,

15-14

DOS-11l EFMP ERROR CODES

These error numbers are returned to the user program (in ERRNO) by the EFMP. The error
numbers are also returned in the A register.

Error No.

0

1
2
3
4
5
6

-

10
11
12

13
14
15
16
17
18
19
20

Description
No errors.
Invalid EFMP function number.
Duplicate file name.
File name not in directory.
File too long for this pack.
Invalid record length.

Pack number not available (or name not in directory if a search was made on
all available pack directories).

Invalid security code.

A temporary file must be opened with a CREATE function. An OPEN function
can only change the Temporary Record Buffer number of the starting record
number for a temporary file.

Buffer area specified in Exec call is not valid.
Invalid Record Number.
File not open.

DEFINE not previously executed or Opened-File table used in previous DEFINE
has been altered. Issue a new DEFINE,

Backspaced beyond ‘“start-of-file.”

No pack space available.

Invalid pack number.

No pack number entry is available in Opened-File table.
Work Area space not sufficient.

No Opened-File table space available.

Invalid temporary record buffer number.

Invalid number of EXEC call parameters.

15-15

Error No.
21
22
23
24
25
26
27
28
29
30

Description
End-of-File.
COPY terminated.
Invalid argument(s).
Maximum number of files exceeded.
File already OPEN.
Record size larger than one-half of a temporary record buffer.
Pack number previously initialized.
Pack number not initialized.
Directory requested is too large.

Invalid number of active pack numbers.

15-16

PART 6
- Appendix and Indexes

APPENDIX A
System Tables

This appendix contains figures and tables which represent the structure of the following

. Main-memory layout, including

main memory allocations in DOS-III
DOS-III base page constants

DOS-III base page communication area

e Disc layout, including
disc structure in DOS-III
disc directory entry format

disc labels

° System I/O tables, including
the equipment table
the logical unit table
the interrupt table

A-l

low memory

high memory

interrupt locations

system base page area

user base page area

DISCM, the disc monitor

main-memory resident
drivers and EXEC modules

system tables

disc-resident EXEC
module overlay area
(optional)

disc-resident 1/0
drivers overlay area
(optional)

user common area
(optional)

disc-resident user program area
(main programs and segments)

main-memory resident
bootstrap disc loader

Figure A-1. Main Memory Allocations in DOS-111

A-2

«+— location 40g

memory protect
“4— poundary

Table A-1. DOS-111 Base Page Constants

Location Type Value
40 DEC -64
41 DEC -10
42 . DEC -9
43 DEC -8
44 DEC -7
45 DEC -6
46 DEC -5
47 DEC -4
50 DEC -3
51 DEC -2
52 DEC -1
53 DEC 0
54 DEC 1
55 DEC 2
56 DEC 3
57 DEC 4
60 DEC 5
61 DEC 6
62 DEC 7
63 DEC 8
64 DEC 9
65 DEC 10
66 DEC 17
67 DEC 64
70 OoCT 17
71 OoCT 37
72 OCT 77
73 OCT 177
74 OCT 377
75 OCT 177400
76 ocCT 3777
77 OCT 177700

A-3

Table A-2. DOS-1H Base Page Communication Area

L.ocation Name Contents
100 UMLWA Last word address of user available memory
101 JBINS Start track/sector of Job Binary Area
102 JBINC Current track/sector of Job Binary Area
103 TBG Time-base Generator 1/O channel address
104-5 CLOCK Current system clock time (2 words)
106-7 CLEX Execution clock time (2 words)
110 CXMX Maximum allowable execution time
111 BATCH Logical unit # of batch input device
112 SYSTY Logical unit # of system console
113 DUMPS Abort/Post Mortem dump flag
114 SYSDR System directory track/sector
1156 SYSBF System buffer track/sector
116 SECTR Number of sectors/disc track
117 EQTAB First word address of equipment table
120 EQT# Number of equipment entries
121 LUTAB First word address of logical unit table
122 LUT# Number of logical unit entries
123 JBUF Job input buffer address
124 JFILS Source file starting track/sector
125 JFILC Source file current track/sector
126-32 RONBF Parameter buffer (5 words)
133 MDFLG Mode flag for privileged 1/0
134 DISP (Reserved for System use)
135 AEPF Alternate entry point flag
136 SGRTN Segment return address
137 XIRT System transfer address for interrupt-completion routine
140 SVEQT EQT address for 1/0 operations
141-53 EXPG Directory entry for current program (11 words)
154 DISCO Disc 1/0 channel/last track on disc
155 SYSSC System subchannel

A-4

Table A-2. DOS-111 Base Page Communication Area (continued)

Location Name Contents
156 SCCNT Number of subchannels on system minus 1
157 UDNTS Next user disc track/sector
160 SYNTS Next system disc track/sector
161 CUDSC Current user disc subchannel
162 CRFLG Current disc request flag: 0 for system, non-0 for user
163 CUDLA Current user disc last access
164 FSFLG File search flag
165 CUMID Computer identification
166-70 DBUFR System disc triplet parameter buffer (3 words)
171-73 UBUFR User disc triplet parameter buffer (3 words)
174 TSONE Last track/sector referenced +1
175 GUDSC Default user disc subchannel
176 SYSCD System generation code
177 JFLSC Source file subchannel
200 DISCL User label track/sector
201 INTAB First word address of interrupt table
202 INT# Number of interrupt entries
203 EQT1
204 EQT2
205 EQT3
206 EQT4
207 ' EQT5
210 EQT6
211 EQT7 Erg-rry1 -EQT 17 are addresses of current equipment table
212 EQT8
213 EQT9
214 EQT10
215 EQT11
216 EQT12
217 EQT13

A-5

Table A-2. DOS-111 Base Page Communication Area (continued)

Location Name Contents

220 EQT14

221 EQT15 EQT1-EQT17 are addresses of current equipment table
entry

222 EQT16

223 EQT17

224 RQCNT Number of request parameters

225 RQRTN Current request return address

226 RQP1

227 RQP2

230 RQP3

231 RQP4 RQP1-RQP8 are addresses of current request
parameters

232 RQP5

233 RQP6

234 RQP7

235 RQP8

236 NABRT l{legal request code abort/no abort option

237 XA A register contents at time of interrupt

240 XB B register contents at time of interrupt

241 XEO E and O register contents at time of interrupt

242 XSUSP Point of suspension at time of interrupt

243 EXLOC Address of Exec module doublet table

244 EX# Number of Exec module doublet table entries

245 EXMOD Exec module # currently in Exec module overlay area

246-47 EXMAN Exec module low and high main memory'addresses (2 words)

250-51 EXBAS Exec module low and high base page memory addresses
(2 words)

252 IODMN First word address of 1/O driver module main area

253 10DBS First word address of 1/0 driver module base page area

254 UMFWA First word address of user main area

255 UBFWA First word address of user base page area

256 UBLWA

Last word address of user base page area

A-6

Table A-2. DOS-111 Base Page Communication Area (continued)

Location Name : Contents
257 CHAN Current DMA channel number
260 OPATN Operator/keyboard attention flag
261 OPFLG Operator communication flag
262 SWAP Job processor resident flag
263-64 JOBPM Job processor disc address/number of words in main
(2 words)
265 JOBPB Job processor base page number of words
266 EJOBF End-job flag
267 RTRK Real time simulation track number
270 DUMMY Reserved for system use
271 MPTFL Memory protect flag
272 $GOPT Point of suspension coﬁtinuation address
273 $IDCD Input request code check
274-75 $MDBF Exec module data buffer (2 words)
276-304 TEMP Reserved for data communications (7 word buffer)
305 TEMPO)
306 TEMP1 > Reserved for System use
307 TEMP2)
310 uTMPO)
311 UTMP1 (User-available Temporary
312 UTMP2 J
313 MSECT Negative number of sectors/track
314 VADR Address of instruction causing ﬁemory protect violation
3156 10DMD Current resident 1/0 driver module flag
316 RCODE Current request code value
317 SXA Operator attention restore A register value
320 SXB Operator attention restore B register value
321 SXEO Operator attention E and O register value
322 SXSUS Operator attention return address
323 EFMP Extended File Management Package flag

A-T7

Table A-2. DOS-I1 Base Page Communication Area (continued)

Location Name Contents
324 DSCLB Disc track/sector of Relocatable Library
325 DSCL# Number of Relocatable Library routines
326 LSTCH Last disc referenced
327 FLFLG/TRAC# User file table validity flag/#Bad tracks found
330 XFLG Entry address for disc not ready
331 SSFLG System search flag
332 CHARC Batch input character count
333 TYEQT System console EQT4 address
334 DMFLG Data Management Flag
335 SSTBL Address of Subsystem Table
336 TMBEG Address of Timer List

A-8

track O v

one directory entry
for each disc-
resident module

track boundary e—p

track boundary eep

system label sector

bootstrap -

system area directory (size varies)

main memory-resident system

equipment table (EQT)

device reference table (DRT)

interrupt table (INT)

EXEC modules

1/0 driver modules

system programs

EXEC module table

relocatable library

base page linkages

system buffer/user label sector

user directory

user files

work area

job binary area

Figure A-2. Disc Structure in DOS-111

A-9

SYSTEM AREA
(hardware protected)

USER AREA

WORD CONTENTS

1 first character second character
(five-character
file name)
2 third character fourth character
3 fifth character P entry type
4 track sector
5 file length (in sectors)
6 FWA program
7 LWA program
8 FWA base page linkage area for system or
loader-generated
binary programs
9 LWA base page linkage area only
10 program entry point
1 FWA of memory available for memory management (see Note)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BITS

Note: For overlays, word 11 value is the last word (plus 1) of the
overlay. For a main program, word 11 value is the last word
{plus 1) of the largest segment.

Figure A-3. Disc Directory Entry Format

A-10

‘P’ Bit
0 = Permanent file—no action is taken at end-of-job.
1 = Temporary file—purge this entry at end-of-job.

This bit is set by the Relocating Loader and cleared by a STORE,P directive.

Entry Type
Type File

0 System resident
1 Disc-resident executive supervisor module
2 Reserved for system
3 User program, main

4 Disc-resident device driver
5 User program segment
6,7 Library

104 Relocatable binary

114 ASCII source statements
124 Binary data

135 ASCII data

144 Absolute binary

Note: The last directory entry in each sector is followed by a word containing —1.
The last entry in the directory is followed by a word containing zero (0).

A-11

DISC LABELS
Sector 0 of track 0 of each disc is used for label information. In addition, if the user area is on the
system disc, a label also exists in Sector 0 of the first track after the system area. The first 64 words
(words 0-63) are reserved for label information. Word 64 contains the next available track and sector.
Words 65 and 66 contain the number of bad tracks and the next available spare track.
The contents of the label include:
Word O: Label presence code (ASCII “LB” for labeled, zero for unlabeled)
Word 1: System proprietary code:

1. “DO” for DOS-III

2. “TS” for Time-shared BASIC

Word 2: System generation code assigned at system generation time. The code can be any four
decimal digits.

Words 3-5: A six-character disc label. If the first character equals * the disc is unlabeled. This
label can only be set using :IN (for user areas) or by DSGEN (set to “SYSTEM”

for system discs).

Word 31: Checksum of words 0-30.

A-12

THE EQUIPMENT TABLE

The equipment table (EQT) has an entry for each device recognized by DOS-III (these entries are
established by the user when DOS-III is generated). The EQT entries reside in the permanent main-
memory resident part of the system and have this format:

D

R

Unit #
Channel #
Av

]

1 if DMA channel required.

1 if driver type is main-memory resident.

May be used for subchannel addressing.

1/0 select code for device (lower number if multiboard interface).
0 Unit not busy and available

1 Unit disabled (down)

2 Unit busy

Status—Actual or simulated unit status at end of operation.

Equipment Type Code—Identifies type of device and associated software driver. Assigned equip-
ment type codes in octal are:

00-07
00
01
02
04
05
10-17
11
12
20-37

23
26
31
33

Paper Tape Devices

Teleprinter

Punched Tape Reader
High Speed Punch
Display Terminal
System Console

Unit Record Devices
Card Reader

Line Printer

Magnetic Tape/Mass Storage and other devices capable of both input
and output

7970 Magnetic Tape
2762A Terminal Printer
Moving-Head Disc
Writable Control Store

For equipment type codes 01 through 17, odd numbers indicate input devices and even numbers
indicate output devices (except 05, which is both input and output).

A-13

WORD

10

11

12

13

14

15

16

17

CONTENTS

driver “initiation section’’ address

driver ““continuation section’’ address

D|R (reserved) unit #

channel #

Av equipment type code

status

(saved for driver use)

(saved for driver use)

request return address

(reserved for system)

current 1/0 request control word

request code

request buffer address

request buffer length

temporary or disc track #

temporary or starting sector #

temporary storage for driver

upper memory address: main driver area

upper memory address: driver linkage area

starting track # starting sector #

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure A-4. The Equipment Table

A-14

All zeros if
main-memory
resident

BITS

THE LOGICAL UNIT TABLE

The logical unit table (LUT) has an entry for each logical unit defined at system generation time
(maximum number is 63). These entries provide logical addressing of the physical devices defined
in the EQT. Logical unit numbers 4-63 may be modified within a job by using the LU directive.

At end-of-job, logical unit number 1-9 are restored to their original system generation values. The
LUT entries reside in the permanent main-memory resident part of the system and have the follow-
ing format:

Word Contents
1 Device EQT number
n Device EQT number
THE INTERRUPT TABLE

The interrupt table (INT) contains an entry, established at system generation time, for each I/O
channel which can cause an interrupt (beginning with I/O channel 6). The INT entries reside in the
main-memory resident portion of the system and have the following format:

The entry is in the following form:

% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D EQT address of device

D=0 no DMA interrupts expected
D=1 DMA interrupts expected

Bit 15 is set and cleared by calls to $SDMA and $CDMA, respectively.

A-15

Directive

:ABORT
!ADUMP[,FWA [[LWA]] [,B] [,S]

:BATCH, logical unit

:CLEAR/[logical unit]

:COMMENT string

:DATE, day[,hour,min]

:DD

:DD,X

:DD,U[,file[,(name)] ,file[,(name)] . .

:DN,n

:DUMP,logical unit,file[,S1[,S9]]

EA [,P1 ,P2,P3,P4,P5]
EB[,PI,P2,P3,P4,P5]

:EDIT.file,logical unit[,newfile]

:EF [logical unit]

v/

INDEX 1
Summary of Directives

Description

Terminate the current job
Dump a program if it aborts

Switch from keyboard to batch mode, or
reassign batch device

Clear the Job Binary Area or issue a
clear request to an I/O device

Print a message on the system console

Set the date (and the time, if Time-base
Generator is present)

Dump the entire current disc onto a disc
on another subchannel

Dump the system area only to another
disc

Dump all or specified files of the current
user disc to another disc, optionally as-
signing new file names

Declare an I/O device down

Dump all or part of a user file to a
peripheral I/O device

Execute user EXEC module $EX36
Execute user EXEC module $EX37

Edit a source statement file stored on
disc, optionally creating a new file

Write end-of-file on magnetic tape

Page
2-3
2-13

2-4

2-5

26

2-7

211

12-2
12-2

2-17

2-21

Directive

:EJOB

EQ[,n]

:GO[,P1,Py, . .. Psl
:IN,label

:JFILE, file

:JOB[,name]

:LIST,S,logical unit,file[,m[,n]]

:LIST,U,logical unit[,filey, . . J

:LIST,X,logical unit[,filey, . . .]

:LU[,;n;[,ngl]

:MMGT/[,subsystem name,wwwwuw,. . .

subsystem name,wwwww]
:OFF
:PAUSE [comment string]

:PDUMP[,FWA[,LWA]][,B] [,S]
:PROG,name[,PI,PQ,. .. ,P5]
‘PURGE/,filey.fileg . . J

RNAME, oldname,newname/,typel
:RPACK

:RWND/, logical unit]
:RUN,name/,time] [N]
:SA,track,sector[,number]

:SO,track,sector[,number]

:8S

:S8ny,ny . ..

Description

Terminate the current batch and/or job
normally

List the complete equipment table, or
just one line

Continue processing a suspended program
Label or unlabel (‘*“*”’) the current user disc

Specify a source file on the disc for the
Assembler or a compiler

Initiate a user job

List all or part of a source statement file
List all or part of the user directory

List all or part of the system directory

Assign or list logical unit assignments

Reserve memory address space (in words)
for specific subsystems or obtain a list of
previously reserved memory space

Abort the currently executing program or
operation without terminating the job

Suspend the current job or program (optionally,

output a comment on the system console)
Dump a program after normal completion

Turn on a system or user program

Delete all temporary file or specified user file

directory entries.

Rename a specified user file and option-
ally, change its program type

Repack disc user file area eliminating purged
files (see :PURGE directive)

Rewind a magnetic tape
Run a user program

Dump disc in ASCII to standard list device

Dump disc in octal to standard list device

Set up system search for file names over
all subchannels

Set up system search for file names over
specified subchannels

2

Page
2-22

2-23

2-25
2-26

243

2-28
2-29
2-29
2-29

2-33

2-35

2-37

2-38

2-13
2-39
2-40

2-42

2-44

2-43
2-45
2-15
2-15

2-52

2-52

Directive

:S8,99

:STORE,A,file,sectors
:STORE, B,file,sectors

:STORE,P[,namey,namey . . .]

:STORE,R file[,logical unit]

:STORE,S, file,logical unit[,C]

:STORE X file,logical unit
:TOF[,logical unit]

:TRACKS

:TYPE

:UD/,[label] [,n]]

:UP,n

Description
Restrict search for file names to current
user disc (plus system directory for RUN
and PROG)
Reserve space for an ASCII data file

Reserve space for a binary data file

Store all or specified temporary Loader-
Generated programs as permanent files

Store a relocatable file from the JBIN
area of disc after an assembly or compila-
tion or from a peripheral I/O device

Store a source statement file from a
peripheral I/O device

Store absolute binary programs
Issue a top-of-form to a list device

Print the disc track status of the current
user disc

Return to keyboard mode from batch
mode

Change the subchannel assignment for the
user disc, or request label and subchannel
information for a user disc

Declare an I/O device up

Page

2-52

2-47
2-47

2-47

2-47

2-47

2-47
2-54

2-55

2-57

2-59

2-58

INDEX 2

Summary of EXEC

Consult Section III for the complete details on each EXEC call.

RCODE
-19

1,2

10

11
13

14,156

16

17

18

Name

BASE PAGE STORE

I/O READ/WRITE

I/O CONTROL
PROGRAM COMPLETION
PROGRAM SUSPENSION
SEGMENT LOAD

PROGRAM LOAD

TIME REQUEST
I/O STATUS

FILE READ/WRITE

WORK AREA STATUS

WORK AREA LIMITS

FILE NAME SEARCH

Function

Store values into base page memory loca-
tions (Value to be stored in the A register,
absolute location address in the B register)

Transfer input or output (1 = read or
2 = write)

Carry out control operations
Signal end of program

Suspend calling program

Load segment of calling program

Transfer a main program into main
memory

Request the time-of-day
Request device status

Read or write a user data file (14 =
read or 15 = write)

Ascertain if n contiguous work tracks
are available

Ascertain first and last tracks of work
area

Ascertain if a file name exists in the
directory

Calls

Page
3-6

3-20

3-17
3-30
3-33
3-35

3-31

3-38
3-23

3-13
3-41
3-39

3-9

RCODE
23
24

27, 28

29

30

31

32

33

34

35

36

37

38

39
40
41

Name

USER DISC CHANGE

EFMP CALLS

USER EXEC CALLS

SEGMENT RETURN

MEMORY PROTECT
CONTROL

Function Page
Change the current user disc subchannel 3-43
Execute EFMP functions Section VII

Execute user EXEC modules $EX36 or Section XII

$EX37 (RCODE = 27 for $EX36;
RCODE = 28 for $EX37; up to five
words of parameter information)

Return from a segment to the main
program at the instruction immediately
following the segment load call

Control memory protect from a user
program

(Reserved for future assignment)

FILE CREATE

FILE PURGE

FILE RENAME

MEMORY MANAGE-

MENT (INITIALIZE)

MEMORY MANAGE-
MENT (STATUS REQUEST)

Allows user to create a user disc file under
program control.

Allows user to purge a user disc file under
program control.

Allows user to rename a user disc file under
program control.

Reserves a block of memory under a unique
block name identifier specified by the user.

Requests number of words allocated to speci-
fied block name identifier, or number of re-
maining unallocated words if block name
identifier is omitted.

(Reserved for future assignment)

MEMORY MANAGE-
MENT (BUFFER
ALLOCATION)

Allocates buffer area from memory space. If
the block name identifier is specified, the
buffer allocation is from the area reserved for
the block name. If not, the allocation is from
the available memory area.

(Reserved for future assignment)

(Reserved for future assignment)

MEMORY MANAGE-
MENT (BUFFER
RELEASE)

Permanently releases buffer space. If the buffer

resides within an area reserved under a block

name identifier, the logical address space remains

reserved.

2

3-37

3-29

3-7

3-11

3-15

3-26

3-28

3-24

3-25

A

ACRO1: 1-17

ADUMP: 2-13, 2-37

ALGOL CODE procedure: 3-3

ALGOL control statement: 5-5

alternate entry-point flag (AEPF): 3-22, 3-36

ASCII dump format: 2-15

assembler control statement: 5-9

Assembler, FORTRAN and ALGOL Error
Messages (6951-1377): 15-1

assembler NAM statement: 5-10

assembler ORB statement: 5-10

ATDO1: 1-17

ATDO02: 1-17

B

BACKSPACE: 3-19

backward motion request: 4-7

base page communication area: A-4
base page contents: A-3

base page linkage area: 2-13

base page linking mode: 5-10, 10-12
batch abort: 1-3, 2-50

BINRY library routine: 3-22, 5-28
BREAD entry point: 3-22

BRIEF temporary file: 9-4

BWRIT entry point: 3-22

C

central interrupt processing routine ($CIC): 1-5, 4-3
commercial “at” sign @: 2-1, 2-50

configured DSGEN: 1-9, 10-1

Control-A: 1-3

current page linking mode: 5-10, 10-12

D

device independence: 1-5

device reference table: 2-33, 4-2, 10-16, A-15
directory listing output: 2-30

disc labels: A-12

disc monitor (DISCM): 1-1

INDEX 3
Index of Terms

DSGEN:
DVRO00:
DVRO1:
DVRO2:
DVRO05:
DVR10:
DVRI11:
DVR12:
DVR15:
DVR23:
DVR26:
DVR31:
DVR33:
DVR34:
DVRET:

-
[}
Juy

A~ T T T T T3 -TD D

v e e w e e e

-

')
LWWwwww

. .

-

g g PG LN LGN
o

R R R R e
N N Y L W NN

do do do do do do do o o

E

EFMP areas: 7-2

EFMP directory size: 8-10

EFMP function numbers: 8-1

EFMP pack numbers: 7-2

EFMP file security code: 7-2, 8-6, 9-18
ENDFILE: 3-19

equipment table: 2-33, 4-2, 10-15, A-13
equipment table format: A-13
equipment table generating: 10-15
EQT status field: 4-3

ERRO library routine: 5-19

F

file name search: 3-9

FORTRAN control statement: 5-13
FORTRAN DATA statement: 5-16
FORTRAN EXTERNAL statement: 5-17
FORTRAN PAUSE statement: 5-18
FORTRAN PROGRAM statement: 5-15
FORTRAN STOP statement: 5-18
function code field: 3-18

FWA: 2-13

G
Generate DOS-III: 10-7

H PMTO02: 1-17

PN0OO0O: 8-5
hardware override switch: 1-9, 2-26, 10-5 Prepare Tape System (02116-91751): 10-1
head 0, drive 0: 11-12 primary file: 2-17
HLT 31: 2-26 privileged interrupt: 1-5, 13-20
HP FORTRAN IV (5951-1321): 15-1 privileged mode flag (MDFLG): 14-1

program entry type: A-11

I program input unit: 5-10, 10-12, A-10

input string length: 2-1 R
interrupt table: 4-2, 10-16, A-15
interrupt table format: A-15

interrupt table generating: 10-16 request codes: 3-1

I/0O operation, without wait: 14-1 relocatable libraries: .5'28
IPRAM: 3-14 Relocatable Subroutines (02116-91780): 5-28
relocating loader: 5-20
J restarting DSGEN: 10-7
return: 1-3,
job binary area: 1-14, 2-5 REWIND: 3-19

RMPAR library subroutine: 2-25, 3-46
RONBF parameter buffer: 3-46

K RTE/DOS FORTRAN IV library: 5-28
RTE/DOS relocatable library: 5-28
keyboard mode: 1-3 rubout: 1-3
L
S
label presence code: 7-1, A-12
library input unit: 10-10 secondary file: 2-18
linefeed: 1-3 sector boundaries: 2-12
link mode: 5-10, 10-12 sector numbers: 2-11
LOADR current page linking parameter: 5-22 : sense switch control: 5-5
LOADR debug parameter: 5-22 source listing output: 2-31
LOADR input parameter: 5-21 SS condition: 2-10, 2-29, 2-52
LOADR program bounds specification parameter: 5-22 SLC: 1-17
logical unit table: 2-33, 4-2, 10-16, A-15 standard list device: 2-22
logical unit table format: A-15 standard logical unit numbers: 4-2
logical unit table generating: 10-16 subchannels: 1-10, 1-13
LWA: 2-13 summary of directives: index 1
summary of EXEC calls: index 2
M system area: 1-8
system area directory: 2-29
memory management: 1-9, 2-35, 3-24 system area dump: 2-9

system area files: 2-12
system generation code: 10-5, A-12

N system proprietary code: 7-1, A-12

NAM statement: 5-10
T
0 .
temporary record buffers: 7-2

octal dump format: 2-15 temporary record buffer size: 8-3
opened-file table: 7-2 termination record: 2-49
opened-file table size: 8-2 timing capabilities: 1-6
operator attention directives: 2-2 track switching: 3-20

optional directive (:SS): 2-29, 2-52

override/protect switch: 1-9, 2-26, 10-5 transmission log (TLOG): 3-23

type A files: 2-50
type B files: 2-50

P type P files: 2-48
P bit: A-11 type R files: 2-47
PDUMP: 2-13, 2-37 type S files: 2-49
PMTO1: 1-17 type X files: 2-51

2

U

unassigned logical units: 10-16
user area: 1-1,1-9,1-14

user area directory: 2-29

user area dump: 2-9

user file types: 2-47

user source file: 2-29

user status word (USTAT): 8-25

w

wait field: 3-18

waiting and no waiting: 3-22, 4-3
work area: 1-8

write end-of-file: 3-17

$

$EXO01...$EX12: 10-13
$EX13 ... $EX22: 10-14
$EX30. .. $EX33: 10-12, 10-14
$EX36: 3-1, 10-12, 12-3
$EX37: 3-1,10-12,12-3 °

/

/DELETE: 2-18
JEND: 2-19
/INSERT: 2-18
/MERGE: 2-18
/REPLACE: 2-18
/SUPPRESS: 2-19
/UNSUPPRESS: 2-19

WORLD WIDE
SALES & SERVICE OFFICES

UNITED STATES

ALABAMA
3290 Whltesbura Dr., S.E.
P.0. Box 4207

Hum:vlllo 35802
Tel: (205& 881-4591
TWX: 810-726-2204
*Birmingham
Medical Service onl
Tel: (205) 879-; 2081y

ARIZONA
2336 E. Magnalia St

Tal (602 244-1361
TWX: 910-951-1331
2424 East Aragon Rd.
Tucson 85706

Tel: (602) 889-4661

CALIFORNIA

1430 East Oran jethorpe Ave.
Fullerton 9 g

Tel: (714 870 1000

TWX: 910-592-1288

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2170

6305 Arizona Place

Los Angeles 90045

Tel: (213) 649-2511

TWX: 910-328-6147

*Los Angeles

Tel: (213) 776-7500

3003 Scott Boulevard
Santa Clara 95050

Tel: (408) 249-7000

TWX: 91 338 0518

TelldgM) 446 6165
2220 Watt

Sacrament

Tel: (916 402 1463
TWX: 910-367-2092
9606 Aero Drive
PO Box 23333

0 921
Tel: (71‘:9279-3200
TWX: 910-335-2000

COLORADO

5600 South Ulsler Parkway
Englewood 8011

Tel: (303) 771- 3455

TWX: 910-935-0705

CONNECTICUT
12 Lunar Dvlve

n 06525

Tel (203 389 8551
TWX: 710-465-2029
FLORIDA
P.0. Box 24210
2806 W. Oakland Park Bivd.
Ft. Lauderdale 33307
Tel: (305) 731-2020
TWX: 510-955-4099
*Jacksonville
Medical Servico on?
Tel: (904) 725-633:
P.0. Box 13910
6177 Lake Ellenor Or.
Orlando 32809
Tel (305& 859-2900

850-0113
21 East Wright St.
Suite 1

Pensacola 32501
Tel: (904) 434-3081

GEORGIA

P.0. Box 28234
450 Interstate North
Atlanta 30328

Tel: (404) 434-4000
TWX: 810-766-4890

HAWAII
2875 So. King Street
Honolulu 96814
Tel: (808) 955-4455
iLLINOIS
(Ca|culators Only}
100 S. Wacker rive
Suite 1100
Chicago 60606
Tel: (312) 346-9701
5500 Howard Street
Skokie 60076
Tel (312) 677-0400
WX: 91 223 3613

S
Tel: (217) 469-2133

INDIANA

3839 Meadows Drive
Indianapolis 46205
Tel: (31{ 546-4891
TWX: 810-341-3263
IOWA

1902 Broadwa

fowa City 52240
Tel: (319) 338-9466
Night: (319) 338-9467
“KANSAS

De

Tl
Tel: (316) 267-3655

LOUISIANA

P.0. Box 840

3239 Willlams Boulevard
Kenner 70062

Tei: (504) 721-6201
TWX: 810-955-5524

MARYLAND

6707 Whitestone Road
Baltimore 21207
Tel: (301) 944-5400
TWX: 710-862-9157
4 Choke Char Road
Rockville 20850

" 710-828-0487
P.0. Box 1648
2 Choke Cheny Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tet: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

23855 Research Drive
Farmington 48024
Tel: (31% 476-6400
TWX: 810-242-2900

MINNESOTA
2400 N. Prior Ave.
Rosevlie 55113
Tel: (5123 636-0700
TWX: 910-563-3734
MISSISSIPPI
*Jackson

Medical Service onlg/
Tel: (601) 982-936

MISSOURI

11131 Colorado Ave.
Kansas Clty 64137
Tel: (816) 763-8000
TWX: 910-771-2087
148 Weldon Parkway

land Helghts 63043

Tel 314) 567-1455
TWX: 910-764-0830

NEBRASKA
sMedIcal Only)
1902 Elm Strest

Tel: (402) 33346017

*NEVADA

Las Vegas

Tel: (738 382-5777
NEW JERSEY

W. 120 Century Rd.
Paramus 07652

Tal: (201& 265-5000
TWX: 710-990-4951

NEW MEXICO

6501 Lomas Boulevard N.E.
Albuquerque 87108
Tel: (505) 265-3713
TWX: 910-989-1665
156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK
6 Automation Lane
Computer Park
Alblnr 12205
Tel: (518) 458-1550
TWX: 710-441-8270
New York City
Manhattan, Bronx
Contact Paramus, NJ Office
Tel: (201) 265-5001
Brooklyn, Queens, Rlcnmond
Contact Woodbury, NY Office
Tef: (516) 921-0300
201 South Avenue
Poughkeepsle 12601
TSI (914) 454-7330

WX: 510-248-0012
39 Saginaw Drive
Rochester 14623
Tel: {716) 473-9500
TWX: 510-253-5981
5858 East Molloy Road
Syracuse 13211
Tel: (315) 455-2486
TWX: 710-541-0482
1 Crossways Park West

Tel (5t &?’21 0300
TWX: 510-221-2168

E%R;H CAROLINA
1923 North Main Streat
igh Point 27262

Tel: (919) 885-8101

TWX: 510-926-1516

OHIO

16500 Sprague Road

Clev 4130

Tel: (216) 243 7300
& -7305

I 810 423 9431

330 Progress Rd.

Dayton 45449

Tel: (513) 859-8202

TWX: 810-459-1925

1041 Kingsmill Parkway
Columbus 43229
Tel: (614) 436-1041

OKLAHOMA

P.0. Box 32008
Oklahoma City 73132
Tel: (405) 721-0200
TWX: 910-830-6862

OREGON .
17890 SW Boanes Ferry Road
Tualatin 97062

Tel: (503) 620-3350

TWX: 910-467-8714

PENNSYLVANIA

111 Zeta Drive

Pittsburgh 15238

Tel: (412) 782-0400

Night: 782-0401

T X 710 795-3124

1021 8th Avenue

King of Prussia Industrial Park
King of Prussla 19406

Tel: {215) 265-7000

TWX: 510-660-2670

SOUTH CAROLINA
6941-0 N. Trenholm Road
Columbia 29260

Tel: (803) 782-6493

TENNESSEE
"Memphis

Medical Service on
Tel: (901) 274-747;
*Nashvllle

Medical Service onl
Tel: (615) 244-! 544;

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080

Tel: (214) 231-6101
TWX: 910-867-4723

P.0. Box 27409

6300 Westpark Drive

Suite 100

Houston 77027
Tel: (713) 781-6000
TWX: 910-881-2645

205 Billy Mitchell Road
San Antonlo 78226
Tel: (512) 434-8241
TWX: 910-871-1170

UTAH

2890 South Main Street
Selt Lake City 84115
Tel: (801) 487- 715
TWX: 910-925-5681

VIHGINIA
*Norfi

rfolk

Medical Service onl

Tel: (804) 497- wzév

;9?4 ?‘on oo S Road
ungary Springs Roa

Richmon o % o8

Tel: (804 285~ 3431

TWX: 710-956-0157

WASHINGTON
Bellefield Office Pk.
1203-114th SE
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443-2446
"WEST VIRGINIA
Charleston

Tel: (304) 345-1640

WISCONSIN

9431 W. Beloit Road
Sulte 117
Milwaukee 53227
Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED:
Contact the regional office

nearest you: Atianta, Georgia...

North Hollywood, California.
Rockville, (4 Choke Cherry Ad.)
Maryland....Skokie, lllinois.

Their complete addresses

are listed above.

*Service Only

CANADA

ALB

Hewlert Packafd (Canada) Ltd.
11748 Kingsway

Edmonton TSG OX

Tel: (403& 452-3670

TWX: 610-831-2431
Hewlett-Packard (Canada) Ltd.
915-42 Avenue S E. Suite 102
Calgal g

Tel: (40) 287—1672

BRITISH COLUMBIA
Hewlett-Packard éCanada) Ltd.
837 E. Cordova

Vancouver V6A 3R2

Tel: (604) 254-0531

TWX: 610-922-5059

iITOBA
Hewleﬂ Packard {Canada) Ltd.
gi 3 Cen u

Jam
Wlnnl R3H OL8
Tel: (2 4 786-7581
-671-3531

NOVA SCOTI
Hewlett-| Packalc (Canada) Ltd.
800 Windmill Road
Dartmouth B3C
Tel: (902) 469-7820

ONTAI

RIO
Hewlett-Packard {Canada) Ltd.

1785 Woodward Dr.
Ottawa K2C OP9

Tel: (613) 225-6530
TWX: 610-562-8968

Hewlett-Packard (Canada) Ltd.

6877 Goreway Drive
Mississauga L4V 1L9
Tel: (416) 678-9430
TWX: 610-492-4246

UEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Blvd
Pointe claln HoR 167
Tel: (514 697-4232
TWX -422-3022
TLX: 05 821521 HPCL

Hewlett-Packard (Canada) Ltd.
%376 Galvanl S:rée(

Tel: (403) 688-8710

FOR CANADIAN AREAS NOT LISTED:
Contact Hewlett-Packard (Canada)
Ltd. in Mississauga.

CENTRAL AND SOUTH AMERICA

ARGENTINA
Hewlett-Packard Argentina
S.ACel

Lavalis 1171-3" Piso
Buenos Alre!

Tel: 35- 0436 35 0627, 35-0341

Telox: 012-101
Cable: HEWPACK ARG

BOLIVIA

Stambuk & Mark (Bolivia) Ltda.

Av. Mariscal, Santa Cruz 1342
La Paz

Tel: 40626 53163 52421
Telex: 3!
Cable: BUKMAR

BRAZIL
Hewlett-Packard Do Brasil
I.E.C. Ltda.

Rua Frei Caneoa.l1 152-Befa Vista

01307-S#io Py

Tel: 288-71-11, 287-81-20,
287-61-93'

Telex: 309151/2/3

Cable: HEWPACK S3o Paulo

Hewlett-Packard Do Brasil
|.E.C. Ltda.
Praca Dom Feliciano, 78-8°
andar S 306/8)
9000-Po:

Tel: 25- 84 70 DD 8 {
Cable: HEWPACK Porto Alegre
Hewclett -Packard Do Brasil

Rua Smuelra Campos, 53, 4°
andar Copacabana
2000-Rlo de Janeiro-GB
Tel: 257-80-94-DDD (021
Telex: 2100 79 HEWPAC
Cable: HEWPACK

Riu de Janeiro

Calcatnl y Metcaife Ltda
Calls |ra 81 Oficina 5
Casilia 2

Santia o

Tel: 398613

Cable: CALMET

COLOMBIA
Instrumentacién

Henrik A. Lanusbaek & Kier S.A.
48-59

Carrera 7 No.
Apartado Aéreo 6287
Bogota, 1

og
Tel: 45-78- 06 45-55-46
Cable: AARIS Bogota
Telex: 44400INSTCO
COSTA RICA
Lic. Alfredo Galleaos Gurdidn
Apartado 1015
San Jo:
Tel: 21-86-13

. Cable: GALGUR San José

GUATEMALA

IPESA

Avenida La Reforma 3-48,
Zona 9

Guatemala
Tel: 63627, 64736
Telex: 4182 TELTRO GU

MEXICO

Hewlett-Packard Mexicana,
S.A. deC.V.

Torres Adalid No. 21, 11° Piso

Tel: (905) 543-43-32
Telex: 017-74-507

Hewlett Packard Mexicana,
S:A. de C.V.

Ave. Constotucwn No. 2184
Monterrey, N.L.
Tel: 48-71-32, 48-71-84

NICARAGUA
Roberto Terén G.
Apartado Postal 689
Edlflcm Terén

Tel: 34951. 3452
Cable: ROTERAN Managua

PANAMA
Elecubnlco Baglboa S.A.

Calle Samue! Lewls

Cuidad de Panama

Tel: 64-2700

Telox: 3431103 Cuvunda‘
Canal Zon

Cable: ELECTRON Panama

PARAGUAY
Z.J. Melamed S.R.L.
Division: Aparatos y Equipos

edicos
Division: Aparatos y Equipos
Scientificos y de
Inveshoaclo7n
Chlle, 482 Edificio Victoria
Asunc

Tel: 4- 5069 4-6272
Cable: RAMEL

PERU

Compafiia Electro Médica S.A.
Ave. Enrique Canaual 312
San Isidro

Casilla 1030

Lima

Tel: 22-3900

Cable: ELMED Lima
PUERTO RICO

San Juan sesclromcs Inc.

Ponce de Le6n 15

Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

URUGUAY

Pablo Ferrando S.A.
Comercial e Industrial
Avenida Italia 2877
Casilla de Correo 370

Montevideo
Tel: 40-3102
Cable: RADIUM Montevideo

VENEZUELA
Hewlen Packard de Venezuela

Ap_artado 50033

Edificio Segre

Tercera Transversal

Los Ruices Norte
Caracas 107

Tel: 35-00-11

Telex: 21146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT:
Hewlett-Packard
Inter-Americas
3200 Hillview Ave.
Palo Alto, California 94304
Tel (415& 493-1501
373-1260
03ble HEWPACK Palo Alto
Telex: 034-8300, 034-8493

EUROPE

AUSTRIA

Hewlett-Packard Ges.m.b.H.
Handelska 52/3

P.0. Box 7

A-1205 Vienna

Tel: (0222) 33 66 06 to 09

Cable: HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benetux
SAINV.

Avenue de Col-Vert, 1,

40
Cahle ALOBEN Brussels
Telox: 23 494 paloben bru

ENMARK
Hewletl Packard A/S

é52

DK 3460 B kode
Tel: (01) 81 66
Cable: HEWPACK AS
Telex: 166 40 hp as

Hewlett-Packard A/S
Navervej 1

FINLAND
Hewlett-Packard é)y

K- 9
Tel: (06) 82 71 66
Telex: 166 40 hp as
Cable: HEWPACK AS

P.0. Box 6

SF-00211 Helsinkl 21

Tel: 6923031

Cable: HEWPACKOY Helsinki
Telex: 12-1536.

FRANCE
Hewiett-Packard France
Quartier de Courtaboeuf
Boite Postale No 6
£-91401 Ors

Tel: (1) 907 78 25
Cable: HEWPACK Orsay
Telex: 60048

Hewlett-Packard France
Agence Régional
Chemin des Mouilles
Boite Postale No. 12
£-69130 Ecully

Tel: gﬂ) 33 8125,

83 6525

Telex: 31 617

Hewlett-Packard France
Agence Régionale
Zone Aéronautique
Avenue Clément Ader
F-31770 Colomlers
Tel: (61) 78 11 55
Telex: 51957
Hewlett-Packard France
Agence Régionale
Centre d'aviation générale
F- 13721 Aéroport de

Marignane
Tel: (91) 89 12 36
TWX: 41770 F
Hewleﬂ-Packard France
Agence Régionale

63, Avenua de Rochester
F-35000 Ry

Tel: 7491 2F
Telex: 74912 F
Hewlatt-Packard France

Agence Régionale
74, Alige de la Robertsau

. trasbour,
Tel: (88) 35 23 20/2
Telex: 89141
Cable: HEWPACK STRBG

GERMAN FEDERAL REPUBLIC

Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Bernerstrasse 117
Postfach 560 140
D 6000 Frankfurt 56
Tel: (0811) 50 04-1
Cable: HEWPACKSA Frankfurt
Telox: 41 32 49 fra
Hewlett-Packard GmbH
Vertriebsbiiro Boblingen
Hervenwverqerstrasse 110

0-703 Boblin gnn Wirttemberg

l: (07031) 6
Cable HEPAK Boblingen
Telex: 72 65 739 bbn

Hewlett-Packard GmbH
Vertriebsburo Dlsseldorf
Vogelsanger Weg 38
D-4000 Dusseidort
Tel: (0211) 63 80 31/5
Telex: 85/86 533 hpdd d
Hewlett-Packard GmbH
Vertriebsbiiro Hamburg
Wendenstrasse 23
D-2000 Hamburg 1

Tel: (040) 24 13 33
Cable: HEWPACKSA Hamburg
Telex: 21 63 032 hphh d
Hewilett-Packard GmbH
Vertriebsbliro Hannover
Meliendorfer Strasse 3
D-3000 Hlnnov-r-Klnhld
Tel: (0511) 55 60

Telex: 092 3259
Hewlett-Packard GmbH
Vertriebsbiiro Nuremberg
Hersbruckerslrasse 42

D-
Tel: (0911) 57 10 Gg
Telex: 623 860
Hewlett-Packard GmbH
Vertriebsblro Miinchen
Unterhachinger Strasse 28
ISAR Center

D-8012 Ottobrunn
Tel: (069) 601 30 61/7
Telex: 5i
Cable: HEWPACKSA Munchen
(West Berlin)
Hewlett-Packard GmbH
Vertriehsbiro Berlin
Keith Strasse 2-4
D1 Berlin 30
Tel: (030) 24 90 86
Telex: 18 34 05 hpbin d

GREECE

Kostas Karayannis

18, Ermou treat

GR-Athen:

Tel: 323&303 Sales/SVC
230-305 Adrn Order Proc.

Cahlu RAKAR Athe

Telex: 21 59 62 rkar or

Hewlett-Packard S.A.

Medilerranean & Middle East

Operatio

3! Kolokmfonl Street

Platia Kefallariou

Gr-Kifissla-Athens

Tel: 8080337. 8080359,
80804 29 8018693

Telex: 21

Cable HEWFACKSA Athens

IRELAND

Hewilett-Packard Ltd.

King Street Lane

Winnersh, Workingham

GB-Berkshire RG11 5AR

Tel: Wokingham 784774

Telex: 847178/848179

Hewlett-Packard Ltd.
“The Graftons™

Stamford New Ry

GB- Allrlnchnm Cnesmre

Tel: (061) 928»9

Telex:

ITALY
Hewlett-Packard Italiana S.p.A.
Vm Amer'ljo Vespucci 2

Tel (2) 6251 (10 lines
Cable: HEWPACKIT Milan
Telex: 32046
Hewlett-Packard Italiana S.p.A.
Via Pietro Maroncelli 40
(ang. Via Vlsenun)
1-35100 Pad
Tel: 66 40 62/66 3188

Hewlett-Packard Italiana S.p.A.
Vla Medaglie d'Oro, 2

56100 Pisa
Tel: (050) 500022
Telex: 32046 via Milan
Hewlett-Packard S.p.A.
Via G. Armellini 10

1-00143 Rome-Eur

Tel: (6) 5912544/5

Telex: 61514

Cable: HEWPACKIT Rome
Hewlett-Packard Italiana S.p.A.
Via San Oulntma 46

1-10121 Turin

Tel: (11) 53 82 64
Telex: 32046 via Milan

LUXEMBURG
Hewlett-Packard Benelux

ANV,
Avenue de Col-Vert, 1,
aGraenkraaytaan
Brussels
Tet: (02) 672 22 40
Cable: PALOBEN Brussels
Telex: 23

NETNERLANDS
Hewlett-Packard Benelux N.V.
Weerdestein 117

P.0. Box 7825

NL- Amtlotdlm 1011

Tel: (021

Cable: P LOBEN Amsterdam
Telex: 13 216 hepa ni

NORWAY
Hewlett-Packard Norge A/S
Nesveien 13

Telex: 16621 hpnas n

PORTUGAL

Telectra-Empresa Técnica de
Equipamentos Eléctricos S.a.r.l.
guoa Rodri o da Fonssca 103
P-| Lllbon 1

Tel: (1 1) 0 72

Cable: TELECTRA Lisbon

Telex: 12598

SPAIN

Hewlett-Packard Espafiola, S.A.

Jerez No. 3

E-Madrid 16

Tel: 458 26 00

Telex: 23515 hpe

Hewlett-Packard Espafiola, S.A.

Milanesado 21-23

E-Barcelona 17

Tet: (3) 2036200-08,
2044098/9

Telex: 52603 hpbe e

Hewlett-Packard Espanola S.A.

Av Ramon y Cajal

Edmcoo Sewlla I planta &*

E-Sev
Tel: 64 44 54/58

Hewlett-Packard Espafiola S.A.
Edificio Albia Il 7°
-Bllbao

Tel: 23 83 06/23 82 06

SWEDEN
Hewlett- Packam Sverige AB ,
Em hetsvagen 1-3

S 161 20 Bfomma 20
Tel: (08) 730 05 50

Cable: MEASUHEMENTS
Stockholm

Telex: 10721

Hewlett-| Packard Sverige AB

Ha akersg 90

1" Méindal
Tal‘. (031) 27 68 00/01

SWITZERLAND
Hewlett-Packard BSchwelz) AG
Zurcherstrasss 2

P.0. Box 64

CH- 8952 Schheren Zurich
Tel: (01) 98 18 21

Cable: HPAG CH

Telex: 53933 hpag
Hewlett-Packard Echwslz) AG
9, chemin Louls

CH-1214 Vernler»Gcneva
Tek (022) 4

Cable: HI WPACKSA Geneva
Telex: 27 333 hpsa ch

TURKEY

Telekom Enﬂinwin‘g Bureau

Saglik Sok

Ayaspasa«ﬁe 0
0. Box 43

TR~Im

Tel: 49 4 0 0

Cable: TELEMATION Istanbul

UNITED KINGDOM
Hewlett-Packard Ltd.

King Street Lana
Winnersh, Wokingham
GB-Berkshire RG11 5AR
Tel: Workingham 784774
Telex: 847178/848179
Hewlett- Pa kar Ltd.
*‘The Graf c G

Slamlovd New Road
GB-Altrincham, Cheshire
Tel: (081) 928-9021
Telex: 668068
Hewlett-Packard Ltd.

¢/0 Makro

eyoqlu

South Service Wholesale Centre
er Wi

Halesowen Industrial Estate
GB-Halesowen, Worcs
Tel: Birmingham 7860

Hewlett-Packard Lid.
4th Floor

Wedge House

799, London Road

ga Thornton Heath CR4 6XL,
Tel: (51) 684 0105

Telex: 946825

Hewlett-Packard Ltd.

/0 Makro

South Service Wholesale Centre
Wear Industrial Estate

Washington

GB-New Town, County Durham
Tel: Washlngton 464001 ext. 57/58
Hewlett-Packard Ltd.'s registered
address for V.A.T. purposes

only:

70, Finsbu
London,
Registered No. 630597
USSR

Hewlett-Packard
Representative Office USSR
Hotel Budapest/Room 201
Petrovskie Linii 2/18
Moscow

Tel: 221-79-71
YUGOSLAVIA
Iskra-Standard/Hewlett-Packard
Topniska 58/3

61000 Ljubljana

Tel: 314561 or 314927

Telex: 31300

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard S.A.

7, rue du Bois-du-Lan

.0. Box
CH-1217 Meyrin 1 Geneva

Switzerland
Tel: (022) 41 54 00
Cable: H WPACKSA Geneva

Pavement
C2A15X

Telex: 32046 via Milan Telex: Via Bromma Telex: 2 24 8

AFRICA, ASIA, AUSTRALIA

ANGOLA CYPRUS Blua Star Ltd. JAPAN LEBANON Mushko & Company, Ltd. TAIWAN

Telectra Kypronics Blue Star House. Yokogawa-Hewlett-Packard Ltd. Constantin E. Macridis 388, Satellite Town Hewlett-Packard Taiwan

Em resa Técnlca de 19 Gregorios & Xenopoulos Rd. ing Road Ohashi Bmld ing Clemenceau Street 34 Rawalpindl 39 Chung Shiao West Road
uipam Box 1152 Lamal agar 1-53-1 Yoyo, gr P.0. Box 7213 Tel: 41924 o Sec. 1 Overseas Insurance

Eléctncos s A RL CY- Nlco ia i 110 024 Shibuya-ku, Tokyo RL-Belrut Cable: FEMUS Rawalpindi Corp. Bidg. 7th Floor

R. Barbosa Rodri ues 42-1°DT.° Tei: 45628/29 Tel 62 3276 Tel: 03-370-2281, 92 Tel: 220846 PHILIPPINES Talpel

Caixa Postal, 6487-Luanda Cable: KYPRONICS PANDEHIS Telex: 2463 Telex: 232-2024YHP Telex: 21114 Leb Electt I Tel: 389160,1,2, 375121,

Tel: 35515/6 ETHIOPIA Cable: BLUESTAR Cable: YHPMARKET TOK 23-724 Cable ELECTRONUCLEAR Beirut mffr’lgg'f",\";‘;gama‘ d Ext. 240-249

Cable: TELECTRA Luanda Blue Star Ltd. Yokogawa-Hewlett-Packard Ltd. mALAYSIA Deveiopment Gorp. Bldg. Telex: TP824 HEWPACK

AUSTRALIA
Hewlett-Packard Australia

Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Tel: 89-6351, 89-6306
Telex: 31-024
Cable: HEWPARD Melbourne
Hewlttt -Packard Australia
31 Bridge Street
Pymble,

New Souih Wales, 2073
TeI 49-6566

Telex: 21561
Cable: HEWPARD Sydney
Hewlett-Packard Austratia
Py, L.
87 Churchill Road
Prospect 5082
South Australia
Tel: 44 8151
Cable: HEWPARD Adelaide
Hewltnd -Packard Australia

Lﬂ Stirling P‘l'?hwag

Tel: 86 5455
Hewltﬂ Packard Australia

121 wmlonuon Stveet
Fyshwi
Tel: 953 3

Hewltnd -Packard Australia

Sth Floor

Teachers Union Building
495-499 Boundary Street
Spring HINl, 4000 Queensland
Tel: 28-1544

Telex: AA-42133

CEYLO!

United Electricals Ltd.
P.0. Box 681

60, Park St

Cot

lom|
Tel: 26696
Cable: HOTPOINT Colombo

African Sales meer & Agency
Private t
P.0. Box 718
58/59 Cunningham St.
Addis Ababa

Tef. 12285
Cable: ASACO Addisababa
HONG KONG

Schmmt&Co Hong Kong) Ltd.
Sehmidt (Hong Kong)

Connahqm Cenlre
39th Floor
Connau.a(lx Road, Central

Tel: &016’8"232735
Telex: HX4766
Cable SCHMIDTCO Hong Kong

INDIA
Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bombay 400 020
Tel: 29 50 21
Telex: 3751
Cable: BLUEFROST

Blue Star Ltd.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

Bomba 400 025

Tel: 45 78 87

Telox: 4093

Cable: FROSTBLUE
Blue Star Ltd.

Band Box House

Cable BLUESTAR
Blue Star Ltd.
14/40 Civil Lines
Kampur 208 001
Tel: 6 88 82
Cable: BLUESTAR
Blue Star Ltd.

7 Hare Slreec

.0. Box 506
Cllcum 700 001

Cabls BLUESTAR

Blug Star Hou

11/11A Magara(h Road
Bangalore 560 025

Tel: 55668

Telex: 430

Cable: BLUESTAR

Biue Star Ltd.

Meeakshi Mandiran

xxx/1678 Mahatma Gandhi Rd.

Cochin 682 016 Kerala

Blue Star Ltd.

1-1-11711

Sarojini Devi Road

Cable BLUEFROST
Telex: 459

Blue Star Ltd

23/24 Second Line Beach
Madras 600 001

Tel: 23954

Telex: 379

Cable: BLUESTAR
Blue Star Ltd.
Nathraj Mansions

2nd Floor Bistupur
Jumlhodpur 831 001

Tel: 38 04
Cable: BLUESTAR
Telex: 240

INDONESIA

BERCA Indonesia P.T.
P.0. Box 496

1st Floor JL, Gikini Raya 61

Jakarta
Tel: 56038, 40369, 49886
Telex: 2895 Jakarta

IRAN
Multi Corp International Ltd.
'A’venue Sora¥a 130

|R-Teheran

Tel: 83 10 35-39

Cable: MULTICORP Tehran

Telex: 2893 mci tn

ISRAEL

Electronics & Engineerin
Div. of Motorofa Israel Ltd.

17 Aminadav Street

Tel-Avilv

Tel: 36941 (3 tines)

Cable: BASTEL Tel-Aviv

Telex: 33569

Nisei Ibaragi Bidg.

onapran
aragi-

Ouga

Tel: (0726) 23-1641
Tetex: 5332-385 YHP 0SAKA
Yokogawa-Hewlett-Packard Ltd.
Nakarno Building

o 24 Kav;usasazlma chg

akamura-ku oya Ci

Tal (052) 571- 5‘? ¥ Gty
Yokogawa-Hewlett-Packard Lid.
Nitto Bldg.
2-4- 2 Shmcnara-Knta
Kohoks
Vokohlm- 222
Tel: 045-432-1504
Telex: 382-3204 YHP YOK
Yokogawa-Hewlett-Packard Ltd.
Chuo Bidg.

Rm. 603 3
2-Chome
1ZUMI-CHO

Mito, 310

Tel: 0202-25-7470

KENYA

Techmcal Engmeenno Services

P.0. B
N-lrobl Kenya

Tel: 57726

Cable: PROTON

KOREA

Amsrlcan Trading Company

1P, 0 B 1103
Dae Kyung B’{dg 8th Floor

Tei: (¢ lines] 73- 8924 7
Cable: AMTRACO Seou!

KUWAIT

Al-Khaldiya Trading &
Contracting Co.

Al Soor Street

Mnchaa'r'l Bldg. No. 4

Tel: 4299 10
Cabte: VISCOUNT

Sl
MECOMB Malaysia Ltd.
2 Lorong 13/6
Section 13
Petaling Jaya, Selangor
Cable: MECOMB Kuala Lumpur

MOZAMBIQUE

AN. Goncalves, Lta.

162, 1° Apt. 14 Av. D. Luis
Caixa Postal 107
Lourenco Marques

Tel: 27091, 27114

Telex: 6-203 Negon Mo
Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.) Ltd.
94-96 Dixon Street

P.0. Box 9443

Courtenay Place,
Wellington

Tel: 59-559

Telex: 3898

Cable: HEWPACK Wellington
Hewlett-Packard (N.Z.) Ltd.
Pakuranga Professional Centre
267 Pakuranoa Highway
Box 51092

P.kurnn a
Tel: 569~6%1
Cable: HEWPACK, Auckland

NIGERIA

The Electronics
Instrumentauolns Ltd.

N6B/770 Oyo Roa

Oluseun House

P.M.B. 5402

Ibadan

Tel: 22325

Cable: THETEIL Ibadan

The Electronics Instrumenta-
tions Ltd. (TEIL)

16th Floor Cocoa House

P.M.B. 5402

Ibadan

Tel: 22325

Cable: THETEIL Ibadan

PAKISTAN

Mushko & Company, Ltd.
Qosman Chambers
Abdullah Haroon Road

hi 3
TeI 511027 512927
Cable: COOPERATOR Karachi

Ayala Avenue, Makatl, Rizal
C.C.P.0. Box 1028
Makati, Rizal

Tel: 86-18-87, 87-76-77,
Cable: ELEMEX Manila
SINGAPORE

Mechanical & Combustion
Endumesnng Company Pte.,

10/12, Jalan Kilang
Red Hill Indusmaz Estate

Teln%49151 (7 lines)
Cable: MECOMB Singapore

Hewlen Packard Singapore
Pte.
Blk, 2, 6th FLOOR Jalan
Bukit Mer:

Redhill lndustrlal Estate
Alexandra P.0. Box 87

Siny npore 3

Tel: 633022

Telex: HPSG RS 21486
Cable: HEWPACK, Singapore

SOUTH AFRICA
Hewlett-Packard South Africa

(Pty.), Ltd.

Hewlett-Packard House

Daphne Street, Wendywood

Sandton, Transvaal 2001

Tel: 802-1040

Telex: SA43-47820H

Cable: HEWPACK

Hewlett-Packard South Africa
(Pty.), Ltd.

Breecastle House

Bree Street

Cape Town

Tel: 2-6941/2/3

Cable: HEWPACK Cape Town

Telex: 0006 C

Hewlett- Packard South Africa

‘P}iiy. . Ltd.
641 Hidge Road, Durban
P.0. Box 99

Telex 567954
Cable: HEWPACK

Cable: HEWPACK Taipei
Hewlett-Packard Taiwan

, Po-Ai Lane, San Min Chu,
K-oholung
Tel: 297319

THAILAND

UNIMESA Co., Ltd.
Elsom Research Building
Banmak Sukumvit Ave.

Tel 332357 930338
Cable: UNIMESA Bangkok

UGANDA

Uganda Tele-Electric Co., Ltd.
P.0. Box 4449

Knm nls

Tel: §,

Cable: COMCO Kampala

VIETNAM
gegmsular Trading Inc.

0x
216 Hien-Vuong
Salj

Tet: g20 805, 93398
Cable: PENTRA, SAIGON 242

ZAMBIA

R.J. Tllhury (Zamb»a) Ltd.
P.0. Box

Lusaka

Zamma Central Africa

Tel: 73793
Cable: ARJAYTEE, Lusaka

MEDITERRANEAN AND

MIDDLE EAST COUNTRIE:!

NOT SHOWN PLEASE CONTACT
Hewilett-Packard S.A.

Mediterranean and Middle

East Operations

35, Kolokotronl Street

Platia Kefallariou

GR-Kifissia-Athens

Telex: 21-6588

Cable: HEWPACKSA Athens

OTHER AREAS NOT LISTED, CONTACT:
Hewlett-Packard

Export Trade Company

3200 Hillview Ave.
Palo Alto Cahforgga 94304

Tel: (41
TW. 91 -373-1267

X:
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

E 11/74

READER COMMENT SHEET

24307-90006 Feb 1975

DOS-III Disc Operating System
Reference Manual

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Systems Engineering
Hewlett-Packard Company
Data Systems Division

11000 Wolfe Road

Cupertino, California 95014

HEWLETT (hp, PACKARD

MANUAL PART NO. 24307-90006
MICROFICHE PART NO. 2430790007

Printed: FEB 1976
- Printedin US A

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-57
	02-58
	02-59
	02-60
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	06-01
	06-02
	06-03
	07-00
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	14-01
	14-02
	14-03
	15-00
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	I1-01
	I1-02
	I1-03
	I2-01
	I2-02
	I3-01
	I3-02
	I3-03
	X-01
	X-02
	replyA
	replyB
	xBack

