

10/85

Bad char in byte addr.
A character was encountered which is not valid within a byte address.

Bad decimal digit.
Only "0123456789" are allowed.

Bad hex digit.
Only "0123456789abcdef ABCDEF" are allowed.

Bad move spec.
A string cannot be �m�o�~�e�d� in the current buffer to a place within that string.

Bad octal digit.
Only "01234567" are allowed.

Buffer empty.
No address may be given when the buffer is empty.

-or-
When a buffer is empty, the only requests allowed which use addresses are the "r" and
"a" requests.

Can't delete current buffer.
The current buffer may not be deleted.

Can't m/k to current buffer.
The m/k requests delete the contents of the target buffer. This does not work if the
source is the target, because the data to be used will be lost

Can't process multisegment file.
MSFs must be handled one component at a time.

Can't trust saved pathname.
Due to the sequence of events which have �o�c�c�u�r�r�e�d�~� ted cannot be sure that the pathname
saved truly reflects the status of the buffer. The user must be explicit in intent

Can't write to an archive.
This operation is not supported by ted.

Char search failed.
The <RE> specified in a byte address could not be found.

Entry not found.
The * I function requested was not found using the current system search rules.

External function error.
The last error was in an external function. The implementer of this function has made
no additional information available about the error.

External symbol not found.
The *, function requested was found, but did not contain the necessary entry point This
condition can result from adding a name to an object segment which is not defined
within the object

Incorrect buffer name.
A buffer cannot be named "," or ")".

-or-
You are running under a limited system which does not allow the buffer request to be
used. Therefore b(O) is the only buffer available. You must use the form M(O,address)
or K(O.addre.ss),

0-2 CPSO-OOB

10/85

Invalid addr char.

Invalid option.
Only the options shown when o<NL> is typed may be specified.

Invalid request.
A request was expected at this poin~ but what was present is not a valid request

Label > 16 chars.
A multicharacter label is limited to 16 characters including the parentheses. The closing
")" must be found within 16 characters of the opening "(". A buffer name specification
which begins with a n(" must have the matching ")" present

Label Y not defined in b(X).
The specified label is not present in the buffer mentioned. Labels must always begin
lines (otherwise they are not labels).

Level > 500.
Buffer nesting cannot go beyond a depth of 500.

Line search failed.
The <RE> specified in a line address could not be found.

Linkage section not found.
The * I function requested was found, but it is not an executable segment This condition
can result from inadvertent over-writing of the object segment

Misplaced.
A character (which appeared in the message) was in an improper place among g*
subrequests.

Missing quote.
A quoted string was begun but never terminated.

Missing right parenthesis.
There is no closing n)" to match an existing open "(".

Name> 16 char.
Buffer names are restricted to 16 characters.

No blank after Z
Global-if subrequests are always in blank mode. One or more blanks must separate
subrequests on the line.

-or~

Ted is running in blank or part-blank mode. One or more blanks must separate requests
when more than one request occurs on a line. However. since "r", "w", "e", and "0"
requests use up the rest of the line, then the required blank is between the request and the
rest of the line. The requests which are under the scope of part-blank are: a, c, i. d, r, e,
w .

.. I ... ,

... "" I •

A ">(" was given in a global-if but the closing ")" was left out Only absolute addresses
are available for global-if subrequests (i.e., n or $n).

No 1st addr.
Some address part must precede the "," or n;" character.

No 1st delimiter.
Neither blank nor NL may be a delimiter.

D-3 CPSO-OOB

10/85

No 2nd delimiter.
An <RE> was started t but no terminal delimiter was present The character which began
the expression serves as a delimiter and thus must appear a second tim~

No 3rd delimiter.
A substitute request must have a third delimiter which specifies the end of the replace
string.

No NL.
This condition comes about when the buffer request line is exceeded.

No \f.
A g* a/c/i request does not have the EOI mark (\f).

No buffer remembered.
The current-buffer stack is empty.

No char for \=.
The nequals convention" of the substitute request must have a character before it which
is the character to be replicated.

No pathname given.
An r or w request can be given without a pathname only when there is a pathname
remembered for the current buffer.

No }.
Either a "{n or "\g {n was specified but the matching n}" was not present

No routine name supplied.
The call external support routine request needs to have a name immediately after the
n I n. The name must be terminated with a "<sp>n if any arguments are to follow or if
other requests follow on the same line. Otherwise it must be followed by an NL.

Not allowed on this buffer.
The status of this buffer is such that the operation attempted is not allowed.

Not-defined-
Buffer related built-ins are not defined in \ { ... } context, or when no address is given for
t .. } or zif I. . .}. .

Null buffer name.
Buffer names may not be zero-length.

One address allowed.
The given global-if subrequest can only have a single address.

Only 2 addr allowed.
Only two addresses may be present However, there can be any number of address
prefixes.

Out_of_bounds occurred. Request aborted.
The operation being performed attempted to form a file which is larger than the
maximum segment size of the system.

Pathname ignored, buffer was forced to
The "Ar" request has been issued in this buffer. The name given at that time is the only
name which is allowed for this buffer. Any given by the user are ignored.

Remembered >10 buffers.
Only 10 buffers can be remembered in the current-buffer stack.

D-4 CP50-OOB

10/85

Search addr not al1owed-
Oniy absolute addressing is available in global-if subrequests.

Subfile name too long.
The length cannot exceed 32 characters.

Substitute failed.
The specified <RE> was not found in the area addressed.

System error code.
This error code is not normally expected. No further information is available.

Unknown X* request x.
The apparent subrequest encountered is not one of the valid ones for use with global-if.

Zero-length segment.
The segment read contains no data. This is a warning that the patbname has been '
associated with the buffer.

\r ~ead \f.
While trying to fill a "\rn function from request level, a "\f" wa:s reCeived.

curline undefined.
The value of "." (current line) for a buffer becomes undefined under the following
circumstances: 1) data is moved or copied into it, 2) a fileout is executed into it, 3) the
last lines of a buffer are deleted, or 4) a window is defined which does not contain the
current location.

q rejected.
Whenever a buffer with an associated filename is modified, a flag is set It is reset when
the whole buffer is written. Whenever data is moved to a buffer, a flag is set on the
target buffer. It is reset when a read is executed from that buffer, or the whole buffer is
invoked (\b(X». The q request checks these flags. If any are set, warnings are printed
and the user is asked if the quit is really intended. If the reply to this query is "no", then
the q is rejected. Also, if the q request has any address, or is not followed by an NL, it is
also considered an error.

substr from outside string
An fs(...) request tried to begin either at location 0 or at a location greater than the
length of the string extracted from.

EXAMPLE

The following example describes but two of many possibilities resulting in ted error
conditions. The standard error message is shown first (prefaced with a message identifier, in this
case"Abe") followed by a more detailed message resulting from the user invoked "help" request

D-5 CPSO-OOB

10/85

ted
d

Buffer empty
help
Abe) Buffer empty

When a buffer is empty, the only requests allowed which use addresses are
"rll and "a".
labcl
Buffer empty.
help
Abe) Buffer empty.

No address may be given when the buffer is empty.

D-6 CPSO-OOB

10/85

~A;LPPEND IX E

USING .AND WRITING EXTERNAL REQUESTS

Ted can be used to invoke external requests. These requests can be standard system routines
or user-suppiied. This facility allows a user to add specialized editing requests to ted.

Following is a summary of standard support functions:

[.] I ax
append LINES after addressed line (after Speed type expansion).

[.,.] lex <REST>
change addressed lines, replacing with LINES (after Speedtype expansion).

[.] I i x <R EST>
insert LINES before addressed line (after Speed type expansion).

Note: LINES are read from user_input, with Speedtype expansion being done as
each line is received. The end-of-input signal is "\f". <REST>, which
may follow the request, does not represent input data, but requests which
are executed when the input mode is terminated.

[. ,.J I comment
add comments to addressed lines. Each nonblank line is displayed without a NL. Then,
whatever is typed is added to the end of the line. However. the last two characters can be
one of the following control sequences:

\d delete the displayed line
\F \ f end of input
\ i insert next line typed, then examine for "\a"
\a append next line typed, then examine for another "\a"

[.,.] Itabin
convert spaces to HTs where possible and remove trailing white space from all lines.

[. , .] I tabout IC, n, n ••• I
convert pseudo-tab C to spaces using tabstops defined by n,n,... Tabstop specifications
are in the form:

n set text left
n L set text left
nC set text centered
nR set text right

where n represents the column where the character following the tab character is to be
placed. It must be in the range 1 through 200.

When the left or center options are selected, they apply to the text leading up to the
tabstop. The location of each tabstop in turn is remembered. Then when a left/center is
called for, the data since the last tabstop is involved. The number of spaces needed is
calculated. If centering, half of this number is placed before the data and the rest after;
otherwise, all the spaces are placed before the data.

E-1 CPSO-OOB

10/85

[.,.] Igtabout /RE/C,n,n ••• /
(global I tabout) convert pseudo-tab C to spaces on all lines which match the expression
RE.

[',.J Ivtabout /RE/C,n,n ••• /
(exclusive I tabout) convert pseudo-tab C to spaces on all lines which do not match the
expression RE.

[.,.J Ifiad /STR/L,R{,I}/
fill the addressed data and adjust to make an even right margin.

[. , • J If i na /STR/L, R {I} /
fill the addressed ~ata without adjusting.

In respect to the two fill functions above:

STR is a literal string for line exclusion.
L is the left (beginning) character position.
R is the right (ending) character position.
I is the indention character position. The indention position is assumed to be the same as

the left if not given. Indentation applies to each "first" line. The first line of data
addressed is a "first" as well as anyone which follows an empty line. All empty lines
within the addressed range remain as such. If STR is non-null, any line which begins
with this string is left intact and filling begins at the left again on the next line. The line
following is not a "first". one. .

[. , • J I dump 1
dump (Iong) addressed string in octal and ASCII 20 across (needs 110 print positions).

[.,.J Idumps
dump (short) addressed string in octal and ASCII 10 across (needs 65 print positions).

[.,.J Idumpvs
dump (very-short) addressed string in octal and ASCII 5 across (needs 39 print
positions).

[.,.J I dump
dump addressed string in octal and ASCII using long, short, or very-short, depending on
current linelength.

USER-WRlITEN REQUESTS

A ted external request is a PL/I program conforming to certain design criteria. The
procedure accepts three arguments: a pointer to the ted_support data structure, a char (168)
varying string which may be used to return information about an error condition, and a return
code.

A RESOLVE ted external request must have a segname and entryname of
ted_RESOL VE_$ted_RESOL VE_. It is invoked by entering:

[.,.] I RESOLVE <REST>

HOW AN EXTERNAL REQUESf AND TED WORK TOGETHER

It is assumed that most external requests work in the same general fashion. The ted
command, thereiore, tries to remove as much burden as possible from the writer by doing all the
work that is common to this model. Processing is done from an input string to an output segment

E-2 CPSO-OOB

10/85

The whole buffer content is available for reference and the input string is the addressed portion
of that data. A request may do whatever it is called upon to do to the output segment, but it can
not modify the input data in any way, and may not count on the string being in the same IQCa,tion
if called again in the same buffer. The actions performed are:

1. Copy all of the input string which precedes the addressed range into the output segment

2. Call the routine. <REST> (any remaining characters on the request line) is passed along
for whatever the routine wishes to use it for. The call is:

dcl ted_xyz_ entry (ptr, char (168)var, ·fixed bin (35»;
call ted_xyz_ (addr (ted_support), msg, code);

3. Replace the input data up to the end-of -address location with the contents of the output
segment The end-of-address location may be updated by the request to end-of-string
if it has modified all of the input data.

4. Set the current location, if specified.

The return code may specify that Step 3 is to be omitted, that Steps 3 and 4 are to be omitted
(no change), or that an error occurred. <REST> is passed to the request with the assumption that
everything which follows is information for the request The request may then:

1. Do nothing. A new line is read for execution.

2. Set the next location after any data utilized by the request In this case, execution
continues on the rest of the line.

3. Supply a new value and length for the data in the request line and set the next location
back to 1. In this case, execution begins with the line supplied by the request

GLOBAL EXTERNAL REQUESTS

or
I function /expression/additional-info/ <REST>

I function / expression/ <REST>

A global processing mechanism is available whereby the writer of a request may accomplish
global types of action (g or v) without having to know all the necessary details. The ted_support
structure contains a pair of entry variables for this purpose.

The first procedure below is invoked when a global expression needs to be processed. A
globally executing function could be (but is usually not) written to always use the remembered
expression; in that case this procedure would not be called.

call proc_expr (ted_support_p, msg, code);

The arguments to proc_expr are exactly the ones which the request receiVed. proc_expr takes the
first nonblank character as the delimiter, scans and compiles the expression, and leaves the second
delimiter as the current character. If ted responds with a zero return code, everything is ready to
process any additional information which the function may require. If there are no arguments
for the request and it allows other requests to follow in the request line, the current location must
be advanced over this second delimiter.

The second procedure accomplishes all the global overhead.

call d0--810bal (worker, mode, ted_support_p, msg, code);

E-3 CPSO-OOB

10/85

where:

worker
is an internal procedure, having no arguments. that actually performs the function. It is
called once for each line in the addressed range which matches the cri teria. When called,
"inp.sb" points to the first character of the line to be processed and "inp.se" points to the
NL of this line. These two values may not be modified.

mode
is either a "g" or "v" to indicate which kind of operation is needed.

The remaining three arguments are the same ones with which the function itself was called.

REGULAR EXPRESSION USE

Information is also available in the ted_support include file which allows a request writer to
make use of ted's regular expression searching facility. Using this facility is a 3 step process.

Step 1. Initialization of an Expression Area

This step is usually not needed. It exists so that a function can· make use of regular
expressions without impacting the remembered expression in ted.

call tedsrch_$init_exp (addr (someplace), size (someplace»;

The first argument identifies the hold area location, and the second argument describes
its length in words.

Step 2. Compilation of an Expression

This step may also be optional. If a null expression (i.e., "I I") is given to a request, it
means "use the remembered expression." In this case the step is skipped.

Here a regular expression is compiled into its internal form. Usually, an expression is
compiled once and then used for searching many times.

call tedsrch_$compile (ex_p, ex_I, re_p, linemode, REmode,
msg, code);

where:

ex_p
points to first -character of the expression to be compiled.

ex_l
is the number of characters in the expression.

re_p
points to the area where the compiled expression is held (the ted default area may be
utilized by referencing "ted_supportre8-exp_p").

linemode
is "l"b for line mode or n"b for string mode.

E-4 CPSO-OOB

10/85

REmode
is "l"b for regular expression mode or ""b for literal mode.

The remaining two arguments are the ones which were passed to the procedure=

Step 3. Searching For a Match

This step is not likely to be optional. It is the one which searches an area of a buffer looking
for a string which matches the expression.

Searching may be done in the input string, but not the output segment since it is not a buffer.

call tedsrch_$search (re_p. cb_p, strinLb, strinLe, match_b,
match_e, match_e2, msg, code);

where:

re_p
points to the area containing the compiled expression.

cb_p
points to the control block associated with the input data.

strin9_b
is the offset in the buffer string where the search is to begin.

strin9_e
is the offset where the search is to end.

match_b
is the offset where a match begins.

match_e
is the offset where a match ends.

match_e2
is the last character used to find the match -(sometimes higher than "match_en).

The remaining two arguments are the function parameters.

REQUEST INFO

An external request may also have info available for the ted help request

The info is in standard help file format The help file must be named ted_RESOLVE_.info.
The ted help request looks for ted_RESOLVE_.info in the directory where ted_RESOLVE_ is

- found (via system search rules). The info is requested in ted with one of these forms (see help):

help I RESOL VB
help I RESOLVE section
help I RESOLVE -about topic

The last two are usually not of any use because the info is usually not complicated enough to
have more than one section. .

E-5 CPSO-OOB

10/85

Following is an example of a request to convert vowels to uppercase, both regular and
globally.

ted_uppercase_: proc (ted_support_p, msg, code);
/* This routine converts all vowels to uppercase in the range addressed. */
/* It also can do this action globally (g I v). */
/* It does not allow any request to follow in the same line. */
/* Usage: {$,$} luppercase {ignored} */

mode = II ";

goto common;

ted_guppercase_: entry (ted_support_p, msg, code);
/* Usage: {.,.} Iguppercase /regexp/ {ignored} */

mode = "g";
go to common;

ted_vL!ppercase_: entry (ted_support_p, msg, code);
/* Usage: {".J Ivuppercase /regexp/ {ignored} */

mode = "v";

common:
if (ted_support_version_2 A= ted_support.version)
then do; /* check for proper version */

code = error table $unimplemented version;
return; - - 7* can't handle this one. */

end;
if (inp.de = 0)
then do; /* must be some data to work on */

msg = "Buffer Empty."; /* supply the message text */
code = tederror_table_$Error_Msg;/* say that a message is present */

end;
else do;

i f (mode = II ")

then call worker;
else do;

call proc_expr (ted_support_p, msg, code);
if (code A= 0)
then return;
call do_global (worker, mode, ted_support_p, msg, code);

end;
current = out.de; /* and say that 11.11 is there */
code = tederror_table_$Copy_Set; /* tell ted to finish up */

end;

worker: proc;
i = inp.se - inp.sb + 1;
substr (ostr, out.de+l, i)

= translate (substr (istr,
"AE I DU", lIae i ou") ;

out.de = out.de + i;
end worker;

E-6

/* calc how much to process

i np. sb, i),
/* translate that much
/* update the output length

*/

*/
*/

CPSO-OOB

10/85

dc 1 (msg char (168) var ,
code fixed bin (35» parm;

dcl mode char (1);
del i fixed bin (24);
%include ted_support;

end ted_uppercase_;

The next example is a request to renumber a range of a buffer.

ted~renumber_: proc (ted_support_p, msg, code);

/* This routine renumbers the addressed portion of the buffer. It takes 1 or */
/* 2 arguments within a delimited string. The 1st argument is the beginning */
/* number; the 2nd argument specifies the increment to use (assumes 10). */
/* Whatever follows the argument string will be left for further ted */
/* execution. */

/*
/)'C

/*

This is not robust code. It does not include exhaustive error
checking. It is intended only to show how to use the interface
stucture's various data.

*/
*/
*/

/* Usage: {1,$} Irenumber /from,incr/

dcl msg char (168)var, /* error message text
/1c er ror code

*/

(OUT) */
(OUT) */ code fixed bin (35);

if (ted_support_version_2 A= ted_support.version)
then do; /* make sure its correct version

code = error_table_$unimplemented_version;
return; /* can1t handle this

end;
if (j np. de = 0)
then do; /* must be some data to process

msg = "Buffer Emp'ty.";
code = tederror_table_$Error_Msg;
return;

end;
/**** 1) Parse the arg list

req.nc = req.cc;
del i m = r c h r (r eq • n c) ;
if (delim = II II) I (delim = NL)
then do;

code = tederror_table_$No_Deliml;
return;

end;

/* move back to current location
/* save the delimiter char

*/

*/

*/

req.nc = req.nc + 1; /* skip over it */
i = ver i fy (subs tr (rs tr, req. nc), "0 123456789") -1;
In = fixed (substr (rstr, req.nc, i»; /)'c get starting 1 ine number */
req.nc = req.nc + i; /* skip over part used up */
if (rchr (req. nc) = II, ")
then do; /* 2nd arg is present */

req.nc = req.nc + 1; /* skip over the comma */
i = ver i fy (subs tr (rs tr, req. nc), "0 123456789") -1;

E-7 CP50-OOB

10/85

incr = fixed (substr (rstr, req.nc, i»; /* get increment
req.nc = req.nc + i; /* skip over part used up

end;
else incr = 10; /* supply the default
if (rchr (req • nc) ;'>.= de 1 i m)
then do;

msg = "Only 2 args allowed";
code = tederror_table_$Error_Msg;
return;

end;
req.nc = req.nc + 1; /* leave "next" for continued

/* execution of request line data

*/
*1

*/

*/
*/

/**** 2) see if default address needed
if addr_ct = 0

*/

then do;
inp.sb = 1; /* the default is 1,$ */
inp.se = inp.de;
out.de = 0; /* forget anything already done here */

end;
/**** 3) do all lines in address range */

do while (inp.sb <= inp.se);
i = verify (substr (istr, inp.sb), "0123456789") -1;
inp.sb = inp.sb + i; /* strip any existing line number */
pic5 = In; /* get display form of line number */
substr (ostr, out.de+l, 5) = pic5;
out.de = out.de + 5; /* place new number in output */
i = index (substr (istr, inp.sb), NL); /* find line length */
substr (ostr, out.de+l, i) = substr (istr, inp.sb, i);
out.de = out.de + i; /* add in the line of data */
inp.sb = inp.sb + i; /* account for used-up input data */
In = In + incr; /* move on to next number value */

end;
/**** 4) tell ted its AOK */

dcl
dcl
dcl
dcl
dcl
dcl
") ;

code = tederror_table_$Copy_Set;

i fixed bin (24);
delim char (1);
In fixed bin;
incr fixed bin;
pic5 pic "99999";
NL char (1) i nt stat i copt ions

%inc1ude ted_support;

end ted_renumber_;

/* arg list delimiter
/* line number value
/* line number increment
/* display form of line number

(cons tant) in j t ("

The ted_supportinc1.pll segment contains the interface information needed to write an
external request as well as an example of a simple request

*/
*/
*/
*/

/* BEGIN INCLUDE FILE ••••• ted_support.inc1.p11 ••••• 03/16/81 */

/* more information may be found in ted_support.gi.info */

E-8 CPSO-OOB

10/85

del ted_support_p ptr;
dcl ted support version 2 fixed bin int static init(2);
del 1 ted_support based(ted_support_p) t

2 version fixed bin, /* 1 */
(I N) */
(J N) */

*/
*/

2 addr ct fixed bin, /* number of addresses given: 0,1,2
2 checkpoint entry (/* routine to update "safett status

fixed bin(21), /* amount of input used up
fixed bin(21», /* amount of output used up

2 i np,

3 pt ptr,
3 sb fixed bin (21) ,
3 1 no fixed bin (21) ,
3 se fixed bin(2l),
3 de fixed bin (21) ,

2 out,
3 pt ptr,
3 de fixed bin (21) ,
3 m 1 fixed bin (21) ,

2 req,
3 pt ptr,
3 cc fixed bin (21) ,
3 nc fixed bin (21) ,
3 de fixed bin (21) ,
3 m 1 fixed bin (21) ,

/***)'c*. input str i ng parameters
/* The input data may NOT be modified.
/* pointer to base of data string
/* index of addressed string begin
/* linenumber in data string of sb
/* index of addressed string end
/* index of data end

*/
*/

(I N) */
(I N) */
(I N) */

(I N/OUT) */
(I N) */

/***** output string parameters */
/* pointer to base of output string (IN) */
/* index of data end (already copied) (IN/OUT) */
/* max length of output string (IN) */

/***** request string parameters
/* pointer to base of request string
/* index of current character
/* index of next character
/* index of data end
/* max length of requsest buffer

*/
(I N) */
(I N) */

(I N/OUT) */
(I N/OUT))'c/

(IN) 1e/

/* req.nc is initialized to req.de, i.e. request line used-up. A routine */
/* can set req.nc to 1, put some data into req and set req.de */
/* appropriately. The data will be the .next ted requests executed after */
/* the routine returns. */

/* Or if req.nc is set equal to req.cc then the rest of the request line */
/* will be executed after return. */

2 string_mode bit(l),
2 current fixed bin(21),

2 get_req entry 0,

2 proc_expr entry
(ptr,
char (168) var,
fixed bin (35»,

2 do_global entry
(entry (),
char (1),
ptr,
char (168) var,

/* 0- line mode, 1- string mode (IN) */
/* current location (IN/OUT) */
/* current is initialized to "undefined" */
/* fill the request string with the next line */
/* from ted's input stream" req.de will be */
/* updated to reflect the new length. */
i* req.cc and req.nc are not changed. */
/* process the expression for global execution */
/* -> ted_support structure [IN] */
/* message text [OUT] */
/* completion code [OUT] */
/* globally execute some action */
/* worker procedure [IN] */
/·lc wh i ch ac t i on, "g" or "V'I [I N] */
/* -> ted support structure [IN] */
/* message text [OUT] */

E-9 CPSO-OOB

10/85

fixed bin (35»,
2 reg_exp_p ptr,
2 bcb_p ptr;

/* completion code [OUT] */
/* -> the remembered regular expression area */
/* -> buffer control block */

/* */
/* ENTRY CONDITIONS */

/* --------~--------------------~--~------~------~--~--~-- */ /* Upon entering, three substructures describe the environment in which the */
/* request iS,to operate. (Refer to the INPUT diagram) Note that the */
/* "normal" operational steps are: */
/* 1) ted copies the string from l:inp.sb-l to the output string */
/* 2) ted_xyz_ takes care of the data from inp.sb:inp.se */
/* 3) ted copies the string from inp.se+l:inp.de to the output string */
/* 4) ted sets ".11 as (possibly) specified by xyz */

/* The following 3 diagrams "represent conditions upon entering ted_xyz_: */
/* */
/* req.pt (\ represents NL) */
/* I */
/* [REQUEST] x 2,3lreq /farfle/ 1,$P\....................... */
/* I I I */
/* req.cc req.de req.ml */
/* req.nc */
/* */
/* inp.pt (\ represents NL) */
/* I */
/* [INPUT] now is\the time\for all\good men\to come.\..... */
/* I I I */
/* inp.sb inp.se inp.de */
/* The request may make no modifications to the input string. It may make no */
/* assumptions about its location, i.e. that it occupies a segment all by */
/* itself. */
/* */
/* out.pt (\ represents NL) */
/* I */
/* [OUTPUT]? now is\.. */
/* I I */
/* current out.de out.ml */
/* */

/* */
/* EXIT CONDITIONS */
/* */
/* Assume a request replaces each addressed line with the string following */
/* it, '(in this case "farfle") and leaves ".11 at the beginning of the range. */
/* out.pt (\ represents NL) */
/* I */
/* [OUTPUT] now is\farfle\farfle\.......................... */
/* I I I */
/* current out.de out.rnl */

/* */
i* 1) if the data after the string are to be treated as more ted requests, *i
/* the request data would be left like this. */

E-10 CP50-OOB

10/85

1*
/*

req.pt (\ represents NL)

/)'c [REQUEST]
I
x 2,31req /farfle/ 1 , $ P\ of e '0 ••••• ::I C

*1
*/
*/
*/
*/
*/

/*
/* reqonc

i
req.de

I
req.ml

/* ~---lie 2) If the request is going to return a string to be executed, the request */
/*
/*
/*
/*
/*
/*

data (and buffer) would be left like this: */
req.pt (\ represents NL) */

[REQUEST]
I */
-1,. lp w\ /farfle/ 1 ,$P\ ••••• 0 0 0 0.00000 •• 000 •• 0 */
I I I */

req.nc reqode req.ml */

/* These are special return codes relating to ted: */
dcl (tederror _table_$Copy_Set,/i, copy rest of input to output, and set 11.11 */

/)'c from current 0 "rest of i nput" is the */
/* string which begins at char inp.se+l and */
/* extends to inp.de. If the input has all */
/* been processed, then inp.se should be set */
/* to inp.de+1. */

tederror_table_$NoChange,/* dont copy, dont set current */
tederror table $Set, /* dont copy, set current (in input buffer) */
tederror:table:SError_Msg,l* msg is being returned. */

/* no copy or set is done */
tederror table $No Oeliml,/* missing 1st delimiter */
tederror-table-$No-Oelim2,/* missing 2nd delimiter */
tederror:table:$No:Oe1im3)/* missing 3nd delimiter */

fixed bin(35)ext static;
/* Any other codes returned must be standard system codes. */
dcl error_table_$unimplemented_version fixed bin(35) ext static;

dcl istr char (inpode) based (inpopt) ; /* the input string
dcl ichr (inp.de) char (1) based (inp.pt);
dcl ostr char (out.m1) based (out.pt) ; /* the output string
dc1 ochr(out.m1) char(l) based (out.pt) ;
dc1 rstr char(req.m1) based (req.pt) ; /* the request string
dc 1 rchr (req om 1) char (1) based (req 0 pt) ;

*/

/* These declarations are used if the expression search is needed by the */
/* request. There are 2 parts to getting an expression search done: */
/* 1) compiling 2) searching */
/* If a function uses the remembered expression, it does this: */
/* call tedsrch_$search (ted_supportoreg_exp_p, */
/* ted_support.bcbp, string_begin, string_end, match_begin, */
/* match_end, search_end, msg, code); */

/* If a function utilizes an expression the user supplies, it must first be */
/* compiled:
/* if (express i on_1 ength > 0) ,'c/
/* then call tedsrch_$compile (addr (ichr (expression_begin», */
/* expression_length, ted_support 0 reg_exp_p, */
/,'c ted_suppor t. s tr i ng_mode, II lib , msg, code);)'c/

E-11 CP50-OOB

10/85

/* This results in the remembered expression being changed to the one just */
/* compiled. */

/* If a function wishes to util ize a function without it being remembered */
/* by ted, it may declare an area of its own and compile into it. It first */
/* must be initialized: */
/* dcl expr_area (200) bit (36); */
/* call tedsrch_$init_exp (addr (expr_area), size (expr_area»; */
%include tedsrch_;

/* END INCLUDE FILE ••••• ted_support.incl.pll ••••• */

E-12 CPSO-OOB

10/85

The tedsrchjnclpl1 segment invoked in t.l}e previous example "% inc 1 ude tedsrch_;"
contains:

/* BEGIN INCLUDE FilE

dcl tedsrch_$init_exp entry
ptr,
fixed bin (21);

del tedsrch_$compile entry
ptr,
fixed bin (21),
ptr,
bit (1) ali gned,
bi t (1) al igned,
char (168) var,
fixed bin (35)

) ;

dcl tedsrch_$search entry
ptr,
ptr,
fixed bin (21),
fixed bin (21),
fixed bin (21),
fixed bin (21),
fixed bin (21),
char (168) var ,
fixed bin (35)

) ;

tedsrch_o incl.pl1 ••••• 10/21/82 J Falksen *1

/* initialize an expression area
/* -> compiled expression area
1* length of area in words

1* compile a regular expression

*/
[IN] */
[I N] */

/* -> regular expression to compile
/* length thereof

*1
[I N] */
[I N] */
[I N] */
[IN] */
[I N] */

/* -> compiled expression area
/* 0- line mode 1- string mode
/* 0- reg expr 1- literal expr
/* error message
1* error status code

/* search for expression
/* -> compiled expression' area
/* -> buffer ctl block for file
/* beginning of string to search
/* end of string to search
/* beginning of match
/* end of match
/* end of string used for match
/* error message return
/* error status code

[OUT] '/e/
[OUT] */

*/
[I N] */
[I N] */

in f i 1 e [I N] */
[I N] *1

[OUT] */
[OUT] */
[OUT] */
[OUT] */
[OUT] */

/* END INCLUDE FILE ••••• tedsrch_.incl.pll ••••• */

E-13 CP50-OOB

MULTICS TEXT EDITOR(TED)
REFERENCE~UAL

ADDENDUMB

SUBJECT

Changes to the Manual

SPECIAL INSTRUCTIONS

This is the second addendum to CP50-00, dated December 1981. Refer to the
Preface for "Significant Changes:'

This manual is being reissued complete due to a production style change. The
reader need only be concerned with those pages containing change bars or
asterisks.

Insert the attached pages into the manual according to the collating instructions
on the back of this cover. Throughout the manual, change bars in the margin indi
cate technical additions and asterisks denote deletions.

Note: Insert this cover after the manual cover to indicate the updating of the
document with Addendum B.

SOFrWARESUPPORTED

Multics Software Release 11.0

ORDER NUMBER

CP50-00B

46524
1086
Printed in U.S.A.

October 1985 ,

Hone)"'ell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

With the exception of the
Front Cover, remove the
manual in its entirety.

Insert

Insert the Addendum Self Cover
behind the existing Front Cover,
then insert the entire manual.

The information and specifications in this document are subject to change without notice. Consult
your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: ILI3 CP50-00B

10/85

see exclamation

&
see requests (s)

"***"
see evaluations

see bulk mode
<eval> 4-1
<request> 1-9
\037

see debug
\b

\c

\f

\1

\r

\s

see input functions

see escape sequence

see terminate input

see line mode

see input functions
see read mode

see string mode
\{}

see input functions
abbreviations C-l
abort (QUIT signal) 1-17, 1-18
active function

see ted
address 1-9

comP9und 1-8
default 1-10
prefix 1-7

syntax 1-7
use of

? B-4 B-20
special print' request B-46

addressing 1-.2 .. 1. 1-9
!:I'hsc1ntt:> 1_·..(

absoiute buffer 1-21
backup search 1-5
con textual 1-4

examples 1-6
errors 1-8
~xample 1-15
bterals 1-6
relative 1-4

ADR 1-9

10/85 i-I

ADRI 1-9
ADIU 1-9
annotate (") B-2

INDEX

auxiliary buffer 1-20. B-l1
basic operation 1-1
braces n 4-1
break mode 1-14
breakpoin ts

see debug
buffer 1-1. 1-20

"rigqt" to exist 2-2
abSQl.ute referencing 1-21
auxlbary 1-20

~~
ast remembered B-14

b 0 1-21
b) 1-20 .
curren t 1-20
modified (flag) 1-21
name 1-20

restriction 1-20
not-pasted 1-21. B-41
range 1-20
recursion 1-23
use of

Os 1-20
window 1-23 B-14
working buffer 1-20

bulk mode 1 ~ 12
termination (.) 1-12

centered data
see requests (h)

command
Multics B-7, B-IS B-19
ted A-2 '

concealing (\c)
see escape sequence

conditional execution
see ted_com

copy (or kopy)
see requests (k, !k)

current
buffer 1-20
line 1=10

see value of "."
cut and paste B-41

see requests (!m)

data format
centered

see r~uests (h)
left-justified

see requests (h)

CP50-OOB

data format (cont)
right-justified

see requests (h)

debug
breakpgint

\037 3-4, 3-5
use of 0 3-5

features 3-1
interactive example 3-1, 3-2, 3-6, 3-7, 3-9

edit mode 1-14
editing sequence 1-22
edi tor request format 1-9
error messaK.es D-l

example D-5
errors

addressing 1-8
escape sequence (\c) 1-9, 1-12, 1-22
evaluations 4-1

"***". (commentary) 4-14
arithmetic expresslon 4-5
arithmetic factor 4-5
arithmetic term 4-5
assignment 4-4
concatenate o~ration 4-4
data elements 4-6
description 4-2
edi ting function 4-2
examples 4-13
fak conversion options 4-12
input function 4-2
last ~rt 4-3
logical expression 4-4
metasymbOls 4-1
part 4-3
request 4-2
unary-operator expression 4-5

exclamation point iii
external functions

see ted
external request

writing E-l
falling out

see requests (%)

format
edi tor request 1-9

goto
see requests (»

help Jacility 1-28
Multics sxstem 1-28
ted "help 1-29, B-26
ted (\7) 1-29

I/O switches 1-2
info

file B-26
segmen ts 1-28

.......... nt .r" ... ~t'~"'''' 1_1" 1_""
UJ.p~'" J. YU..,"lVU,;) ~ ~~, ~ ~~

\b 1-23
use of 1-12, 1-21, 1-22, 1-23. 1-25, 3-1,

10/85 i-2

input functions (cont)
B-62

\r 1-24
use of 1-13, 1-24. 3-1, 3-2

\ {} 1-24
concealing 1-12

input mode 1-11
termination (\f) 1-12

interactive example 1-13, 1-17, 1-18. 1-25,
B-29, B-62

in terrupt request 1-17
kopy (or copy)

see requests (k. !k)
labels

see requests (:)
left-justified data

see requests (h)
line and string mode differences 1-15
line mode (\1) 1-14

example 1-15.
literals C-l, C-2
macro

see ted_com
metasymbols C-l

see evaluations
mode change 1-9
modes of o~ration 1-11

break 1-1.4
bulk 1-12

termination (.) 1-12
edit 1-14

line mode 1-14
string mode 1-15

input 1-11
termination (\f)

see terminate
read 1-13

Multics command B-7, B-18. B-19
multiple requests on a line 1-11
not-pasted 1-21, B-41
online documentation 1-29
pause

see debug
program_interrupt (pi) 1-16, 1-18
qedx mode A-7

diff erences A-7
QUIT signal 1-16, 1-18
read mode 1-13. 1-24

\r 1-13
requests

,... B-12
use of 1-21, B-3, B-4

!a B-13
use of 1-13. 1-25. 3-1

!b B-15

CP50-OOB

requests (cont)
!c B-17
!e B-19
!f B-20
!i B-31
!j B-36
!k B-38
!l B-40
!m B-41
!p B-47
!q B-48
!r B-51
!s B-54
!t B-54
!u B-55
!w B-58
!x B-59

use of B-20
B-2
% B-3

use of 1-21. B-62
" B-2
* B-6

use of B-4
. (see bulk mode)
.. B-7
: B-7

use of B-4
: (IabeI)

use of 3-1. 3-2
= B-9
> B-7

use of 1-23 3-6 B-4
? (see address prefix)
\1 B-I0

use of 3-5
\b (see input function)
\c (see escape sequence)
\f (see innut mode)
\1 isee line mode) \r see input function)
\r see read mode)
\s see string mode) \ n (see input function)
AU B-3
A* B-7
A> B-8
Ab B-16
Ar B-51
a B-12

use of 1-13
b B-14

use of 2-4, B-20, B-ll
c B-16
d B-17
e B-18

use of 1-18, 2-4
f B-19
g B-20
g* B-22
h B-24
help B-26

use of D-5
i B-29

use of 1-21
j B-31

use of B-36
k B-37
1 B-39

use of 2-4, 3-1, 3-2

10/85 i-3

m B-40
use of 1-20, B-42

n B-42
use of 1-10

o B-43
use of B-62

P B-46
use of 1-10, 1-13

q B-48
use of 3-6

qhold B-48
r B-48

use of 1-21, 1-25, B-9, B-19, B-20
s B-51

use of 1-13, 1-16
t B-54

U$e of 2-4, 3-1, 3-2, B-62
u B-54

use of 2-4
v B-20 B-56
w B-57
x B-58

use of 2-4
y B-59
z.fi.ad B-60
z.fi.na B-61
zdump B-61
zif B4>2

use of 1-25 3-1 3-2 3-5, B-11
{} B-10 ' , ·

use of 1-25
'" B-7

requests discarded 1-17. 2-3
return statement 1-23
right-justified data

see requests (h)

search-fail 1-14. 2-3
spacing 1-11
special characters C-1, C-2
string and line mode differences 1-15
string mode (\s) 1-15
ted

active function 1-25. 2-4
command A-2

list of requests A-8
execution 1-16
external functions 2-4
pung (t;lothing happening) 2-3
lDvocatlon 1-18

examl?le 1-18
options B-43
1"PIl11 pc:t OT{'\l1n;no- 1_""7 ... -"1---"" c£.,. ... r c ..I.. M'

requests
see requests

ted$qedx A-7
ted_act 2-4
ted com 2-1

conditional execution 2-3
generating 3-1
Initializatlon 2-2
interactive example 2-4

CP50-OOB

terminate
bulk mode (.) 1-12
input

\f 1-12, 1-13, 1-21, 1-22. 1-23. 1-24
trace

see debug
transfer control

see requests (:. >)

trust flag B-49

10/85 j-4

user-input
see read mode

user output see requests (f. !f)

value of "." 1-10
writing external request E-1

X\=
see requests (5)

xxx B-11
{}

see braces

CP50-00B

w
Z
..J

t:l
Z
o
..J
<t:
r
::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULT!CS TEXT EDITOR (TED)
REFERENCE MANUAL

ERRORS IN PUBUCATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel

and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

PLEASE FILL IN COMPLETE ADDRESS BELOW.

FROM: NAME __ __

TITLE _____________________________________ __

COMPANY _________________________________ ___

ADDRESS ________________________________ _

ORDER NO. CP50-00B

DATED OCTOBER 1985

DATE ______ _

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

I
I
I
I
I

• :::i
C)
z
o
..J
«
t
:::>
(J

w
Z
..J

C!)
Z ,. 9
«
Cl
..J
o
U.

w
Z
..J

C!)
z

iC 9 « I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~

Cl
....J
o
U.

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smitli Street, MS486, Waltham, Massachusetts 02154
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7

In the U.K.: Great West Road, Brentford, Middlesex TW8 90H
111 Australia: 124 Walker Street, North Sydney, N.S.w. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, O.F.

34577, 7.5C582, Printed in U.S.A. CP50-00

