

6. word_offset

is the word portion of the offsel of the beginning of the key field,
relative to the beginning of the record. Consider the record as
being aligned on a word boundary, as will be the case for a Multics

PL/I structure. Words are numbered from 0 for the first word of the
record.

7. bit_offset

8. desc

is the bit portion of the offset of the key field; that is, the bit
offset within the word in which the key field begins. BRits are
numbered from 0 to 35. (If the field is aligned on a word boundary,
then bit_offset is 0.)

indicates whether ranking for this key field is to be ascending or
descending. Possible values are:

" = use ascending ranking.

"dse" = use descending ranking.

Table 4-2. Datatype Encoding and Semantics of Size (Internal Form)

{ Encoding | Semantics of size
Data Type } of | (where size = n)
| datatype | Unit Range Space Occupied
Charzcter string char 9 bit 1 - 4095 n characters
(Multics ASCII) character
Bit string bit 1 bit 1 - 4095 n bits
Fixed binary bin 1 bit 1T - T1 n+ 1 bits
Floating binary flbin 1 bit 1 - 63 n + 9 bits
Fixed decimal dec 9 bit 1 - 59 n + 1 digits
(leading sign) digit
Floating decimal fldec 9 bit 1 - 59 n + 2 digits

digit

¥ g
i
(0]
e
=
)
)

exits Structure

The exits structure is:

del 1 exits,

2 version fixed bin init(1),
2 compare entry,
2 input_record entry,
2 output_record entry;
where:

1. version
is the version number of the structure (must be 1).

2. compare
specifies the entry point of a user supplied compare exit procedure.
If the caller describes key fields (supplies a keys structure), then
this exit must not be specified.

3. input_record .
for the sort_ subroutine, specifies the entry point of a user
supplied input_record exit procedure. This exit can be specified
whether or not the input_file exit is specified. For the merge_
subroutine, an input_record exit cannot be specified.

4, output_record
specifies the entry point of a user supplied output_record exit
procedure. This exit can be specified whether or not the

output_file exit is specified.

io exits Structure
The io_exits structure is:

del 1 io_exits,

2 version fixed bin init(1),
2 input_file entry,
2 output_file entry;

where:

1. version

is the version number of the structure (must be 1).

2. input_file
specifies the entry
procedure. If the call
be specified.

e
.

of a wuser supplied input_file exit

cint
r names input files, then this exit must not

® T

3. output_file
specifies the entry point of a user supplied output_file exit
procedure. If the caller names the output file, then this exit must
not be specified.

For the merge_ subroutine, the io_exits structure cannot be specified since
neither an input_file nor an output_file exit is provided.

4-9 AW32

ntry Variables

In the exits and io_exits structures, each exit pcint is specified via an
entry variable. The entry variable must be set (either initialized or assigned)
by a user procedure, normally the procedure which calls sort_ or merge_. The
entry varlable can identify either an internal entry pcint (that is, an internal
procedure) or an external entry point of the procedure which sets the entry
variable; or it can identify an external entry point of another user procedure.

If none of the exits declared in either the exits or io_exits structure is
to be used, then that structure can be omitted and the corresponding pointer in
the array sm_desc must be null. (For the merge_ subroutine, there must not be a
pointer in sm_desc for the io_exits structure.) If the structure is included
but an exit specified in it is not to be used, then the corresponding entry
variable must be set either to sort_$noexit, which is declared:

del sort_$noexit entry external;
or to merge_$noexit, which is declared:
dcl merge_$noexit entry external;
An exit point may not be altered after the call to sort_ or merge_. - Any
change to the entry variable thereafter will have no effect. However, certain

entry points can be disabled, as specified in the descriptions of the individual
exit procedures.

=

RITING EXIT PROCEDURES

The exit points to be used during an execution of the Sort/Merge and the
names of the corresponding user supplied exit procedures are specified in the
Exits statement or in the exits and io_exits structures as described above. The
specifications for writing exit procedures (PL/I declare and call statements)
and the functional requirements imposed upon exit procedures are given in
Section V, "Exit Procedures.”

410 AW32

SECTION V

EXIT PROCEDURES

A user supplied exit procedure is called by the Sort/Merge to perform a
specified function. The wuser exit procedure must perform that function, and
then must return to the Sort/Merge. The wuser exit procedure may perform
additional functions desired by the user.

Certain exit procedures replace the corresponding standard routine of the
Sort/Merge. Other exit procedures supplement the normal functions of the
Sort/Merge. This is specified for each individual exit procedure below.

The following exit points are provided:

input_file - for the Sort only
output_file - for the Sort only
compare

input_record
output_record

for the Sort only

All exit points may be active during the same invocation of the Sort/Merge.

1

ures are defined by
e in discussion.

rnood
uuuuuuu LN .
¢! ne

xit ¢
r convenie

5-1 AW32

INPUT FILE EXIT PROCEDURE

Function

An input_file exit procedure replaces the standard input reading function
of the Sort. The Sort calls the input_file exit procedure only once during an
execution of the Sort.

For the Merge, an input_file exit procedure cannot be specified.

An input_file exit procedure must perform the following function: For each
record which is input by the user to the sorting process, the input_file exit
procedure must make one call to the entry sort_$release (described later in this
section). After the 1input_file -exit procedure has released the last input
record to the Sort, it must return to the Sort.

Uszge

input_file: proc(code);

del code fixed bin{(35) parameter;

where code is a standard Multics status code (in error_table_) wbich must he
returnad by the input_file exit procedure. If the value is not 0, then the Sort
normally prints the corresponding message and returns to its caller with the
status code fatal_error. {(Cutput)

QUTPUT FILE EXIT PROCEDURE

Function

An output_file exit procedure replaces the standard output writing function
of the Sort. The Sort calls the output_file exit procedure only once during an
execution of the Scort.

Fer the Merge, an output_file exit procedure cannot be specified.

An output_file exit procedure must perform the following functions: For
each record which is to be retrieved in ranked order from the Sort, the
output_file exit procedure must make one call to the entry point sort_$return
(described later in this section). If sort_$return is called but there are no
more records to be retrieved from the sorting process, then sort_$return returns
with the status code end_of_info. The output_file exit procedure then must
return to the Sort. If the user desires, the output_file exit procedure may
terminate retrieval at any time prior to receiving the end_of_info status, but
it must still return to the Sort. (The entry sort_$return may return status
codes other than end_of_info in case of error.)

Usage

output_file: proc(code);

decl code fixed bin(35) parameter;

where code 1is a standard Multics status code (in error_table_) which must be
returned by the output_file procedure. If the value is not 0, then the Sort
normally prints the corresponding message and returns to its caller with the

- - AY
status code fatal_error. {(Output)

5-3 AW32

COMPARE EXIT PROCEDURE

Fupetion

A compare exit procedure replaces the standard key comparison procedure of
the Sort/Merge. The Sort/Merge calls the compare exit procedure each time the
sorting or merging process is ready to rank two records; that is, to determine
which of the two is first in the sorted order.

A compare exit procedure must perform the following function: The compare
exit procedure receives as arguments a pointer to each of the two records. The
compare exit procedure must determine which of the two records is first - or
that they are equal in rank - and must return the corresponding return value to
the Sort. The compare exit procedure is invoked as a function.

Usage

compare: proc(rec_ptr_1, rec_ptr_2) returns{(fixed bin(1));

decl (rec_ptr_1, rec_ptr_2) ptr parameter;
del result fixed bin(1);

return(result);
end compare;

where:

1. rec_ptr_1
is a pointer to a double word aligned buffer containing the first
record of the pair to be compared. This record is always the first
of the two according to the original input order. (Input)

2. rec_ptr_2
is a pointer to a double word aligned buffer containing the second
record of the pair to be compared. (Input)

3. result
is the result of the compariscn. (Output) Possible values are:
0 = the two records rank equal.
-1 = the record pointed to by rec_ptr_1 ranks first.
+1 = the record pointed to by rec_ptr_2 ranks first.
Notes

If a compare exit procedure requires the length of either record, it 1is
available in the word preceding that record in the form:

del rec_len fixed bin(21) aligned;

A compare exit procedure cannot alter either the content or the length of
either record,

5.4 AW32

INPUT RECORD EXIT PROCEDURE

Function

An input_record exit procedure may be specified whether the Sort's standard
input_file procedure or a user supplied input_file exit procedure is wused, and
supplements that input_file process.

For the Merge, an input_record exit procedure cannot be specified.

The Sort calls the input_record exit procedure:

1. Each time the input_file process releases a rescord to the Sort, and before
that record is entered into the sorting process (if there were no records
released to the Sort, this call is omitted);

2. Once more after the last input record has been released to the Sort (end of
input);
3. Additionally, each time the input_record exit procedure returns with an

action of insert.

The Sort gives the input_recerd exit procedure access to the current
record, the record about to be entered into the sorting process.

An input_record exit procedure need not perform any processing. If it does
not, then the Sort will accept the current record into the sorting process.

An input_record exit procedure may perform the following functions, which
are accomplished via the values of arguments returned when the input_record exit
procedure returns to the Sort:

0.

Accept the current record. This is accomplished by setting action

Delete the current record. This is accomplished by setting action 1,

Insert one or more records befecre the current record. (At the last call to
the 1input_reccord exit procedure, records may be inserted at the end of
input.) This is accomplished by setting rec_ptr to point to the record to
be inserted, setting rec_len appropriately, and setting.action = 3.

Alter the current record, before it is entered into the sorting process.
This is accomplished by altering the record pointed to by rec_ptr cor
setting rec_ptr to point to another record, setting rec_len appropriately,
and setting action = 0.

Close the exit point so that the input_record exit procedure will not be
called again during this execution of the Sort. This is accomplished by
setting close_exit_sw = "i",

The input_record exit procedure must return to the Sort each time it s
called.

(4
i
Ji

AW32

Usage

input_record: proc(rec_ptr, rec_len, action, close_exit_sw);

dcl (rec_ptr ptr,
rec_len fixed bin(21),
action fixed bin,

close_exit_sw bit(1)) parameter;

where:

1. rec_ptr
points to a double word aligned buffer containing the current
record. The input_record exit procedure may alter the contents of
the record or may change the pointer to point to another record.
For the actions of accept and insert, the Sort will use the value of
rec_ptr returned to it by the 1input_record exit procedure.
{(Input/Output)

At the last call to the input_record exit procedure (either at end
of input or if there were no records released to the Sort), then
there is no current recerd and rec_ptr = null().

2. rec_len
is the length of the current record in bytes. The input_record exit
procedure may change the length of the record. For the actions of
accept and insert, the Sort will use the value of rec_len returned
to it by the input_record exit procedure, (Input/Output)

3. ction
indicates the acticon to be taken u
{Input/Output)

Arguments referred to below are the values returned to the Sort by
the input_record exit procedure.

Possible values of action are:

0 = accept the current record. The record pointed to Dby rec_ptr,

whose 1length 1is given by rec_len, is entered into the sorting
process,

Each time the input_record exit procedure is called, the Sort
sets action to this value.

1 = delete the current record. The current record 1is not entered
into the sorting process.

3 = insert a record. The record pointed to by rec_ptr, whose length
is given by rec_len, is entered into the sorting process. The
Sort calls the input_record exit procedure again, so that the
current record may be accepted or deleted or an additional
record may be inserted., At this next call to the input_record
exit procedure, the current record remains the same.

At the last call to the input_record exit procedure (end of input),
if the input_record exit procedure inserts records then they are
appended at the end of input. Any other value for action means do
not append any records, and the input_record exit will not be taken
again.

(%)
§
[
>
o
(wS]
n

}.

close_exit_sw

indicates whether the exit is to be closed hereafter.
(Input/Output)

Possible values are:

"or = kéep this exit open,. Each time the input_record exit
procedure 1is called, the Sort sets <close_exit_sw to this
value.

"1" = close this exit. The Sort will not call the input_record exit

procedure again during this execution of the Sort {even if the
action is insert).

5.7 AW32

QUTPUT RECQRD EXIT PRQOCEDURE

Function

An output_record exit procedure may be specified whether the standard
output_file procedure of the Sort/Merge or a user supplied output_file exit
procedure is used, and supplements that output_file process. The Sort/Merge
calls the output_record exit procedure:

1. Each time it has determined the next record in ranked order from the

merging process (if there were no records leaving the merging process, this
call is omitted);

2. Once more after the last record has been obtained from the merging process
(end of output);

3. Additionally, each time the output_record exit procedure returns with an
action of insert.

(The term "merging process" is used here to refer either to the merge phase
of the Sort or to the Merge function,)

The Sort/Merge gives the output_record exit procedure access to two
records:

1. The output record, about to be written to the output file. (If an
cutput_file exit procedure has been specified by the user, this is the
record about to be returned to that exit procedure.)

2. The next record, the record leaving the merging process.

An output_record exit procedure need not perform any processing. If it
dces not, then the output record is accepted for the output file.

An output_record exit procedure may perform the following functions, which
are accomplished via the values of arguments returned when the output_record
exlf. procedure returns to the Sort/Merge:

Accept the output record. This is accomplished by setting action 0.

Delete the output record. This is accomplished by setting action = 1.

Delete the record 1leaving the merging process. This is accomplished by
setting action = 2.

Insert one or more records after the output record. (At the first call to
the output_record exit procedure, records may be inserted at the beginning
of output. At the last call to the output_record exit procedure, records
may be inserted at the end of output.) This is accomplished by setting
rec_ptr_2 to point to the record to be inserted, setting rec_len_2
appropriately, and setting action = 3.

Alter the output record, before it is written to the output file. This is
accomplished by altering the record pointed to by rec_ptr_1 or setting
rec_ptr_1 to point to another record, setting rec_len_1 appropriately, and
setting action = 0 to accept (or action = 3 to insert).

Summarize data into the first record of a sequence of records with equal
keys, and delete the succeeding records of the sequence. This may be
accomplished as follows: At the first call to the output_record exit

5-8 AW32

procedure, set equal key checking on (equal_key_sw = "1"), At subsequent
calls to the output_record exit rrocedure, if the output record and the
record leaving the merging process have equal keys (equal_key = 0), then
accumulate data into the output record and delete the record leaving the
merging process (action = 2). If the two records have unequal kevas
(equal_key # 0), then accept the output record (action = 0).

Summarize data into the last record of a sequence with eqgual keys, and
delete the preceding records of the sequence., This may be accomplished as
follows: At the first call to the output_record exit procedure, set egual
key checking on. At subsequent calls, if the two records have equal keys
then accumulate data intoc a work area and delete the output record (action
= 1). If the two records have unequal keys, then alter the output record
using the accumulated data and accept that reccrd (action = 0).

Sequence check the output file. This is accomplished by setting
seq_check_sw = "1n", It the output reccrd will not collate properly with
the output file, or does not have its xeys in the position specified to the
Sort/Merge, then set seg_check_sw = "0O",

Close the exit point so that the output_record exit proc=edure will not be

called again during this executior. of the Sort/Merge. This is accomplished
by setting close_exit_sw = "1".

The output_record exit procedure must return toc the Sort/Merge each time it

is called.

T

vSage

output_record: proc(rec_ptr_1, rec_len_1, rec_ptr_2, rec_len_z,
' action, equal_key, equal_key_sw,
seq_check_sw, close_exit_sw);

del (rec_ptr_1 ptr,
rec-lten_1 fixed bin(21),
rec_ptr_2 ptr,
rec_len_2 P‘Aeu bin{21),
action fixed bin,
equal_key fixed bin(1),

equal_key_sw bit(1),
seq_check_sw bit(?),
close_exit_sw bit(1)) parameter;

where:

1. rec_ptr_1
points to a double word aligned buffer containing the output record.
The output_record exit procedure may alter the contents of this
record or may change the pointer to point to another reccrd. The
Sort/Merge uses the value of rec_ptr_1 returned to it by the
output_record exit procedure as specified below in the description
of the action argument. (lnput/Output)
At the first call to the output_record exit procedure (beginaing of
output) or if there were no records merged, then there is no output
record and rec_ptr_1 = null(),

2. rec_len_1

is the length of the output record in bytes. The output_record exit
procedure may change the length of this record. The Sort/Merge uses
the value of vrec_len_1 returned to it by the output_record exit
procedure as specified below in the description of the action
argument. (Input/Output)

5-G AW32

3.

.

5.

rec_ptr_2

points to a double word aligned buffer containing the record leaving
the merging process. The ocutput_record exit procedure may not alter
the contents of this vrecord. For all actions except insert, the
Sort/Merge will ignore the value of rec_ptr_2 returned to it by the
output_record exit procedure. If the action is insert, then the
output_record exit procedure must change rec_ptr_2 to point tc the
record to be inserted. (Input/Output)

At the last call to the output_record exit procedure (end of output)
or .if there were no records merged, then there is no record leaving
the merging process and rec_ptr_2 = null().

rec_len_2

action

is the length of the record leaving the merging process. The
output_record exit procedure may not change the length of this
record. For all actions except insert, the Sort/Merge will ignore
the value of rec_len_2 returned to it by the output_record exit
procedure, If the action is insert, then the outpub_record exit
procedure must set rec_len_2 to the 1length of the record to be
inserted. (Input/Output)

indicates the action to be taken upon return to the 3Sort/Merge.
(Input/Output)

Possible values of action are:

C = accept the output record. The output record is written to the
output file. The Sorit/Merge uses the returned values of
rec_ptr_1 and rec_len_1 to identify the record to be written.
At the next call to the output_record exit procedure, the record
leaving the merging process becomes the new output record, and a
new record leaving the merging process has been oblained.

Each time the output_record exit procedure 1is <called, the
Sort/Merge sets action to this value.

1 = delete the output record. No record is written to the output
file. The Sort/Merge ignores the returned values of rec_ptr_|
and rec_len_1., At the next c¢all to the output_record exit
procedure, the record leaving the merging process becomes the
new output record, and a new record leaving the merging process
has been obtained.

2 = delete the record leaving the merging process, (This action
should be wused for summarization into the output record.) No
record is written to the cutput file. At the next call to the
output_record exit procedure, the output record remains the
same, and a new record leaving the merging process has been
obtained. The Sort/Merge uses the returned values of rec_ptr_1
and rec_len_1 to identify the output record for that next call
to the output_record exit procedure.

3 = insert a record after the output record. The output record 1is
written to the output file. The Scort/Merge uses the returned
values of rec_ptr_1 and rec_len_1 to identify the record to be
written. The Sort/Merge calls the output_record exit procedure
again, so that the inserted record may be accepted or an
additional record may be inserted. At this next call to the
ocutput_record exit procedure, the inserted record becomes the
new output record, and the record leaving the merging process
remains the same. The Sort/Merge uses the returned values of
rec_ptr_2 and rec_len_2 to identify the inserted record.

5-10 AW32

At the 1last call to the output_record exit procedure (end of
output), if the output_record exit procedure’ inserts records then
they are appended at the end of output. Any other value for action
means do not append any records, and the output_record exit will not

be taken again.
6. equal_key
indicates whether the output record and the record leaving the
merging process have equal keys. (Input)
Possible values are:

0 = the two records rank equal.

+1

the two records do not rank equal. At the first and last calls
to the output_record exit procedure (beginning of input and end -
of input), only one record is present and the Sort/Merge sets
equal_key to this value.

If the user supplied key descriptions, then the value of equal_koy
is determined only by those key fields; the original input order cf
the two records is pot used to resclve key equality. If the user
supplied a compare exit procedure, then the Sort/Merge uses the
result of that compare exit procedure to set the value of equal_key.
(In either case, if the two records rank equal then rec_ptr_1 points
to the record which is first according to the original input order
of the two records.)

7. equal_key_sw
indicates whether or not equal key checking 1is to be performed.
(Input/Qutput)

Possible values are:

"0"™ = do not check for equal keys. At the first «call to the
output_record exit procedure (beginning of output), the
Sort/Merge sets equal_key_sw to this value.

"i" = check for equal keys before the next call to the output_record
exit procedure,

Since equal key checking takes time, the user should set
equal_key_sw = "i" only when required for actions such as
summarization.

8. seq_check_sw
indicates whether or not sequence checking 1s to be performed.
(Input/Output)

Possible values are:
"0" = do not sequence check.

"i" - sequence check. At the first call to the output_record exit
procedure (beginning of output), the Sort/Merge sets
seq_check_sw to this value.

Sequence checking means comparing the output record to the record
previously written to the output file. (If the user specified an
output_file exit procedure, the output record 1is compared to the
record previously returned to that exit procedure.) Sequence
checking is performed after the output_record exit procedure returns
to the Sort/Merge, and only if a record is to be written to the
output file (that is, only if the action is accept or insert). If
the user supplied key descriptions, then the standard key comparison
routine of the Sort/Merge is used. If the user supplied a compare
exit procedure, then that exit procedure is called.

5-11 AW32

If the output record is out of sequence with the previous record,
then the status code fatal_error is returned to the caller of sort_;
see the specifications of the sort_ and merge_ subroutines in
Section III, "Subroutines™ above. (If the wuser specified an
output_file exit procedure, then the status code data_seq_error is
returned to that exit procedure; see the sort_$return entry below.)

All records written to the output file, including inserted records,
can be sequence checked.

9. close_exit_sw
indicates whether the exit is to be closed hereafter.
(Input/Output)

Possible values are:

"0" = keep this exit open. Each time the output_record exit
procedure is called, the Sort/Merge sets close_exit_sw to this
value.

"i" = close this exit. The Sort/Merge will not call the

output_record exit procedure again during this €xecution of
the Sort/Merge (even if the action is insert).

NOTES ON EXIT PROCEDURES

R Ar P

Record areas used by an input_record or output_record exit procedure must
be declared as static, not automatic. Also, such areas cannot be shared with
input_file or output_file exit procedures.

Since the Sort/Merge aligns each record in a buffer on a double word
boundary, if an exit procedure applies a based declaration of the record to the
pointer(s) then correct alignment is ensured.

Orjiginal In QOrd IFOQ

For the compare and output_record exit procedures, rec_ptr_1 always points
to the record whose original input order was prior to the record pointed to by
rec_ptr_2. If a compare exit procedure returns with an equal ranking for the
two records, then this original input order is preserved. Original input order
has been defined above under "Key Fields" in Section I.

5-13 AW3Z2

ENTRY: sort_$release

Function

The sort_$release entry is called each time the user releases a record to
the sorting process. Calls to sort_$release are made from a user supplied
input_file exit procedure., The caller specifies the location and length of the
record. The Scort accepts the record and stores it in its own work area.

The sort_$release entry does not apply to the Merge, since for the Merge an
input_file exit procedure cannot be specified.

Usage

dz1 sort_$release entry(ptr, fixed bin(21), fixed bin(35));

call sort_$release (buff_ptr, rec_len, code);
where:

1. buff_ptr

is a pointer to a byte aligned buffer containing the record.
(Input)

2. rec_len
is the length of the record in bytes. (Input)

3. code
is a standard Multics status code returned by the Sort. Possible
values are listed below under "Status Codes." (Output)

Status Codes

The following status codes may be returned by the sort_$release entry point
(all codes are in error_table_):

0 Normal return (no error).

out_of_sequence The call to sort_$release is not in the sequence required by
the Sort; e.g., sort_$release has been called before sort_.

fatal_error The Sort has encountered a fatal error during the sorting
process. The Sort will have previously generated a specific
error message and signalled the sub_error_ condition via the
sub_err_ subroutine,

long_record This input record is longer than the maximum supported. The
record is ignored by the Sort, and the caller may continue
to release records to the Sort.

short_record This input record is shorter than the minimum required to

contain the key fields.. The record is ignored by the Sort,
and the caller may continue to release records to the Sort,

514 AW32

ENTRY: sort_$return

Function

The sort_$return entry is called each time the user retrieves an output
record, in ranked order, from the Sort. Calls to sort_$return are made from a
user supplied output_file exit procedure. Upon return from sort_$return, the
caller is given the location and length of the record.

If sort_$return is called but there are no more records to be retrieved,
then sort_$return returns to the caller with the status code end_of_info.

The sort_$return entry does not apply to the Merge, since for the merge an
output_file exit procedure cannot be specified.

Usage

dgl sort_$return entry(ptr, fixed bin(21), fixed bin(35));

call sort_$return (buff_ptr, rec_len, code);
where:

1. buff_ptr

is a pointer to a double word aligned buffer containing the record.
(Qutput)

2. rec_len
is the length of the record in bytes. (Output)

3. code
is a standard Multics status code returned by the Sort. Possible
values are listed below under "Status Codes.™ (Output)

Notes

The Sort aligns each record on a double word boundary in a work area. T
if the caller applies a based declaration of the record to the pointer ¢t
correct alignment is ensured.

Status Codes

The following status codes may be returned by the sort_$return entry point
(all codes are in error_table_):
0 Normal return (not end of information, no error).
end_of_info There are no more records to be retrieved from the Sort.

This 1is the normal end of data indication. No record is
returned to the caller.

5-15 AwW32

out_of_sequence

fatal_error

data_loss

data_gain

data_seq_error

The call to sort_$return is not in the sequence required by
the Sort; e.g., sort_$return has been called before
sort_$release.

The Sort has encountered a fatal error during the sorting
process. The Sort will have previously generated a specific
error message and signalled the sub_error_ condition via the
sub_err_ subroutine,

End of data has been reached, but the number of records
previously returned is less than the number of records
released to the Sort. No record is returned to the caller.

The number of records returned (including this reccrd) is
now larger than the number of records released to the Sort.
The current record is returned to the caller, and the caller
may continue to retrieve records from the Sort.

A ranking error has occurred in the records returned to the
caller; that is, the current record is out of order. The
current record is returned to the caller, and the caller may
continue to request records from the Sort.

5-16 AW32

SECTION VI

EXAMPLES

EXAMPLES OF COMMAND LEVEL

sort ~input_file sort.in -output_file =.out -console_input
Input.
key: <char(10), O;

.

In this example, the arguments of the command state that there is one input
file, whose pathname is sort.in; the output file pathname 1is sort.out; the
Sort Description is input via +the user's terminal; and by default the work
files are contained in the user's process directory.

The Sort Description states that there is one key, a character string or
length 10 characters, starting at word 0 bit O of the record. There are no
exits specified.

sort ~temp_dir >udd>pool =-sort_desc sd

In this example the arguments of the command state that the work files are
contained in the directory >udd>pool; and the Sort Description is contained in
the segment named sd.

Assume that the segment sd contains:

keys: fixed bin(35) 0, char(8) 1;
exits: input_file user$input,
output_file user$output;

The Sort Description states that there are two keys. The major key 1is an
aligned fixed binary field of precision 35, contained in word 0 of the record.
The minor key is a character string of length 8, contained in words 1 and 2 of
the record.

There are two exits, an input_file procedure exit and an output_file
procedure exit. The input_file exit procedure entry point is named user$input;
the output_file exit procedure entry point is named user$output. These exits
must be specified because the command did not specify either an input file or an
output file.

sort -if sort_in -of -replace -td [wd] =-sd sort_desc

In this example the arguments of the command state that the input file 1is
named sort_in; the output file is to replace the input file; work files are
contained in the user's current working directory; and the Sort Description 1is
contained in the segment sort_desc.

sort -input_description "tape_ansi_ vol_1 -name a" -if b \
-output_description "vfile_ c¢ -extend" -ci

In this example there are two input files. The first input file is
specified by an attach description for the I/0 module tape_ansi_ with the attach
argument "vol_1 -name a". The second input file is specified by the pathname b,
and thus must be a sequential or indexed file in the storage system. The output
file is specified by an attach description for the I/0 module vfile_ with the
attach argument "b -extend". For the I/0 module vfile_, this means that the
pathname is ¢ and the file is to be extended; that is, output records from the
Sort will be written at the end of the file ¢ (if it already exists).

(A \ followed by a line feed is used to continue the command arguments onto
the second line.)

Tae Sort Description (not shown) will be read via the user's terminal.

merge -input_file in_1 -if in_2 -of out_1 -merge_desc md

In this example, the arguments of the command state that the input files
are named in_1 and in_2; the output file 1is named out_7; and the Merge
Description is contained in the segment named md.

Assume that the segment md contains:

exits: compare user$compare,
output_record user$output;

There are two exits, a compare procedure exit and an output_record
procedure exit.

merge -ids "record_stream_ -target vfile_ a" \
~ids "syn_ user_switchname" ~of c¢ =-console_input

In this example, assume that the first input file is an unstructured file
in the storage system, with the pathname a. This input file has been specif@ed
by an attach description wusing the I/0 module record_stream_, which ylll
transform the record I/0 operations requested by the Merge into the appropriate
stream I/0 operations for the target file a. The second input file is attached
using the I/0 module syn_ to the I/0 switch user_switchname, which must be
attached and closed.

62 AW32

EXAMPLE OF SUBROUTINE LEVEL

call sort_(input_specs, "-of =.,out", sm_desc, "",
o 2.5, code);

del input_speces(2) char(16) init("-if a.in®, "-ids syn_ sw"),
sm_desc(3) ptr init(addr(keys, addr(exits, null()),
code fixed bin(35);

dcl 1 keys,
2 version fixed bin init(1),
2 number fixed bin init (1),

2 key_desc(1),
3 datatype char(8) init("char"),
3 size fixed bin(24) init(7),
3 word_offset fixed bin(18) init(1),
3 bit_offset fixed bin(6) init(0),
3 desc char(3) init("dse");

del 1 exits,

version fixed bin init(1),

compare entry init(sort_$noexit),
input_record entry init(sort_$noexit),
output_record entry init(summarize_into_first);

[ACAACE LGN \V)

In this example, there are two input files. The first has the pathname
a.in; the second is attached through the I/0 module syn_ to the I/0 switch sw,
which must be attached and closed. The output file will have the pathname
a.out,

The Sort Description is supplied in internal form. The keys and exits
structures are present; the io_exits structure is omitted.

The keys structure describes one key, a character string of 1length 7
characters starting at bit o in word 1 (the second word) of the record. Ranking
is descending.

The exits structure specifies only an output_record exit procedure, whose
entry point is summarize_into_first,

6-3 AW32

Assume the output_record exit procedure is:

summarize_into_first: proc(rec_ptr_1, rec_len_1, rec_ptr_2, rec_len_2,
action, equal_key, equal_key_sw, seq_check_sw, close_exit_sw);
del (rec_ptr_i1 ptr,

rec_len_1 fixed bin(21),
rec_ptr_2 ptr,
rec_len_2 fixed bin(21),
action fixed bin,
equal_key fixed bin(1),

equal_key_sw bit(1),
seq_check_sw bit(1),
close_exit_sw bit(1)) parameter;
dcl 1 record based,
2 data fixed bin(35),
2 key <char(7),
2 rest char(69);
if rec_ptr_1 = null() & rec_ptr_2 = null() then do;
/* no data in file ¥/
end;
else if rec_ptr_1 = null() then do;
/% beginning of file ¥/
equal_key_sw = "1"b; /* check for duplicates ¥/
end;
.1se if rec_ptr_2 = null() then do;
/* end of file ¥/
end;
else do;
if equal_key = 0 then do; /% duplicate key */
rec_ptr_1->data = rec_ptr_1->data + rec_ptr_2-~>data;
action = 2;
end;
end;
end summarize_into_first;

This output_record exit procedure retains only the first record from each
of consecutive records with equal keys, accumulating into the retained

record the value of the field data from the deleted records.

- CUT ALONG LINE

HONEYWELL iNFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE § MULTICS SORT/MERGE

ORDER NO. AW32

DATED 3

JULY 1976
ERRORS IN PUBLICATION
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION
Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms wifl be
LI/ acknowledged; however, if you require a detailed reply, check here. D
FROM: NAME DATE
TITLE —
COMPANY —

ADDRESS

PLEASE FOLD AND TAPE-—
NOTE: U. S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES |

Honeywell

i
|

e — — e e e e — — . CUT ALONG LINSNT -

A

-

EOLD AL

FOLD ALONG LINE

Honeywell

Honeywell information Systems
inthe US.A.: ZOOSH%MMSM wmmmomu
_mcm 2025 Sheppard Avenue East, Wilowdale, Ontario M2J 1W5
In Mexico: Avenida Nuevo Leon 250, Mexboﬁ D.F.

21484, 3C878, Printed in U.S.A.

AW32, Rev. 0

