

login

-terminal_type XX
-ttp XX

-modes XX

login

sets the user's terminal type to XX, where XX is
one of the types listed for the corresponding
control argument of the set_tty command.

sets the modes for terminal I/O according to XX.
For a description of this argument, see the
corresponding argument of set_tty.

Example

In the examples below, the user's password is shown even though in most
cases Multics either prints a string of cover-up characters to "hide" the
password or temporarily turns off the printing mechanism of the user's terminal.

'Probably the most common form of the login request is to specify just the.
Person_id and the password as:

login Jones
Password:
mypass

To set the tabs and crecho I/O modes so the terminal uses tabs rather than
spaces where appropriate on output and echoes a carriage return when a line feed
is typed, type:

login Jones -modes tabs,crecho
Passwol:"d:
mypass

To change the password from mypass to newpass, type:

login Jones -cpw
Password:
mypass
New Password:
newpass
Password changed.

4-29 AT59

nbrief nbrief

.Name: nbrief, nbr

The nbrief command restores DFAST-issued ready messages and list command
headers suppressed by a prior execution of the brief command.

Usage

nbrief

Example

brief
list alter
100 random text
110 to list
nbrief
ready 1401

list alter

alter 12/2115

100 random text
110 to list
ready 1401

1210.2 mst Mon

4-30 AT59

new new

Name: new

The new command starts input of a new current file. The previous current
file and the contents of the alter file when the new command is issued are
deleted.

new {file_name}

where file name is the name to be assigned to the current file. (See "File
Naming Conventions" in Section III for a description of valid file names.)

Example

new
enter name:
ready 1301

100 The current
110 file is
save
ready 1301

new another
ready 1302

100 This is
110 different
list current

newfile.basic

current 11/07/75 1302.3 mst Fri

100 This is
110 different
ready 1302

4-31 AT59

old old

Name: old

The old command retrieves a file that has previously been saved either in
the user's home directory or another directory to which the user has access. If
the retrieval is successful, the saved file replaces the current file and the
alter file is cleared. If the saved file'S name includes a language component,
the system is changed to that language. Otherwise. the message "enter system:"
is printed and the user can type basic, dbasic, or fortran.

old {file_name} {system_name}

where:

1 .

2.

is the name of a saved file; if it is not supplied, DFAST
requests that the user type it in.

sets the current system to basic, dbasic, or fortran.

Examole

system basic
ready 0102

old
enter name: ! test.basic
ready 0102

01<1 tst.fortran
system changed to fortran
ready 0103

tty
name =
ready

tst.fortran,
0103

system = fortran,

old >udd>Faculty>Jones>test.basic
system changed to basic
ready 0103

user = Smith.Des, line = tty112

tty
name ;
ready

tst.basic,
0103

system = basiC, user = Smith.Des, line = tty112

4-32 AT59

onecase

~: onecase, one

Sets the printing mode to uppercase only.
See "Case Conventions" in Section I. To reset
twocase command.

Usage

onecase

Example

onecase
new newfile
READY 1201

100 lowercase
110 text
l18n
100 LOWERCASE
110 TEXT
READY 1201

4-33

onecase

At login, the mode is twocase.
the printing mode, use the

AT59

rename rename

Name: rename, ren

The rename command assigns a new name to the current file.

Usage

rename file_name

where file_name is the name to be assigned. The name must adhere to the rules
given in "File Naming Conventions" in Section III.

Example

rename test>basic
rename: illegal character in name
ready 1202

rename
rename: name missing
ready 1202

rename test.basic
ready 1202

4-34 AT59

replace replace

~: replace, rep

The replace command saves the contents of the current file in place of the
contents of a previously saved file. If the file_name argument is supplied, the
current file is saved under that name regardless of the current name. If no
argument is supplied, the current name is assumed and the current file replaces
information previously saved. under that name. If no .saved file exists under
either name, an error message is issued.

Usage

replace {file_name}

where file_name is the name of a saved file. If file_name is not supplied, the
current name is assumed.

Example

replace
ready 1404

replace test.basic
ready 1404

4-35 AT59

run run

Name: run

The run command causes the current file to be executed. The file must
begin with a main program. It may be in source or object form. If the current
file is an object program, it will be directly executed. If the system_name
argument is supplied, the current system is changed accordingly. The contents
of the current file are unaffected.

If the current file (or any external subprogram file that it calls) is in
source form, it is compiled to produce a temporary object program, which is then
executed. An external file must have been specified in a BASIC or FORTRAN
library statement within the user's program.

Usage

run {system_name}

where system_name can be basic, dbasic, or fortran.

Example

old test.basic
ready 907

run
Your program types this
when it runs.
ready 907

4-36 AT59

save save

Name: save, sav

The save command saves the current file either in the user's home directory
or in a specified directory. If no argument is supplied, the file is saved
under the current name in the home directory. If a pathname is given, the file
is saved under the name given and in the directory given; the current name is_
unaffected.

Usage

save {file_name}

where file_name identifies the file that is to be saved; if it is to be in any
directory other than the home directory, a pathname must be supplied.

Example

tty
name =
ready

';no name", system = basic,
0620

save >udd>ProjA>Roy>prog.fortran
ready 0620

tty

user = Roy.Des, line = tty112

name = Uno name",
ready 0620

system = fortran, user = Roy.Des, line = tty112

old prog.fortran
ready 0620

tty
name =
ready

prog.fortran,
0621

rename oldprog.fortran
ready 062i

save
ready 0621

system = fortran, user = Roy.Des, line = tty112

4-37 AT59

scratch scratch

Name: scratch, scr

The scratch command empties either the current and alter files or a saved
file. The current name and system are not affected. If a saved file is
scratched, its name is retained in the specified directory but its contents are
deleted. In this case the current and alter files are not affected. To delete
the name plus the contents, the unsave command is used.

Usage

scratch {file_name}

where file_name is the name of a file saved in the home directory or some other
directory to which the user has deletion privileges.

Example

tty
name .. test.basic, system = basic, user = Smith, line = tty112
ready 0730

scratch
r .. eady 0730

list current
list: current file is empty
ready 0730

list alter
list: alter file is empty
ready 0730

tty
name = test.basic, system = basic, user = Smith, line = tty'12
ready 0731

4-38 AT59

set acl

The set_acl command manipulates the access control lists (ACLs) of files.
See "Access Control" in Section III.

Usage

where:

1 • is the file whose ACL is to be affected.
convention can be used.

The star

2. model is a valid access mode. This can be any or all of the
letters rew. Use null, "n" or all to specify null
access.

3 .

Notes

is an access control name that must be of the form
Person_id.Project_id.tag. All ACL entries with
matching names receive the mode model. (For a
description of the matching strategy, see "Notes"
below.) If no match is found and all three components
are present, an entry is added to the ACL. If the last
model has no User_id following it, the user's Person_id
and current Project_id are assumed.

The arguments are processed from left to right. Therefore, the effect of a
particular pair of arguments can be changed by a later pair of arguments.

The matching of access control name arguments is defined by three rules:

1 . A literal component, including
same name.

"*,, , matches only a component of the

2. A missing component not delimited by a period is treated the same as a
literal "*,, (e.g., "*.Multics" is treated as "*.Multics.*"). Missing
components on the left must be delimited by periods.

3. A missing component delimited by a period matches any component.

4-39 AT59

set acl

Some examples of User_ids and which ACL entries they match are:

* * * matches only the literal ACL entry "*.*.*".

Multics matches only the ACL entry "Multics.*.*". (The absence of a
leading period makes Multics the first component.)

JRSmith .. matches any ACL entry with a first component of JRSmith.

matches any ACL entry.

matches any ACL entry with a last component of *.

.11 (null string) matches any ACL entry ending in II * *"

Example

set acl *.basic rew *

adds to the ACL of every file in the home directory that has a two-component
name with a second component of basic an entry with mode rew to *.*.* (everyone)
if that entry does not exist; otherwise it changes the mode of the * * * .-entry
to rew.

sa alpha.basic rew .Faculty. r Jones.Faculty.

changes the mode of every entry on the ACL of alpha.basic with a middle
component of Faculty to rew, then changes the mode of every entry that starts
with Jones.Faculty to r.

4-40 AT59

The set_tty command specifies proper~les of the useris terminal. It is
needed only in those rare cases when Multics does not recognize the terminal
being used at login.

Usage

where control_args may be chosen from the following control arguments:

-terminal~type XX,
-ttp XX

-modes XX

-reset

causes the user's terminal type to be set to device
type XX, where XX can be anyone of the following:

TTY37, tty37 device similar to Teletype Model 37
TTY33, tty33 device similar to Teletype Model 33 or

35
TTY38 , tty38 device similar to Teletype Model 38
TN300, tn300 device similar to GE TermiNet 300 or

1200

The default modes for the new terminal type are turned
on.

sets the modes for terminal 1/0 according to XX, which
is a string of mode names separated by commas, each one
optionally preceded by n

A

" to turn the specified mode
off. A subset of modes the DFAST user may need to set
are given below. Other modes are, however, supported.
A full set of modes is printed with the -print control
argument. Valid mode names are:

lIn

crecho,
..... crecho

lfecho,
.... lfecho

tabecho
"'tabecho

where n is an integer (10 S n L 255)
specifying the length (in character
positions) of a terminal line.
crecho specifies that a carriage return
is to be echoed when the user types
line feed (Acrecho turns this mode off).
lfecho specifies that a linefeed is to
be echoed when a carriage return is
typed (Alferiho turns this mode off).
specifies that the appropriate number of
blanks are to be echoed when a tab is
typed.

Modes not specified in XX are left unchanged. See
"Notes" below.

turns off all modes that are not specifically set by
the default modes string for the current terminal type.

4-41 AT59

-tabs

-print

specifies that the device has software-settable tabs,
and that the tabs are to be set. This control argument
currently has effect only for GE TermiNet 300-like
devices.

causes the terminal type and a complete set of modes to
be printed on the terminal. If any other control
arguments are specified, the type and modes printed
reflect the result of the command.

The set_tty command performs the following steps in the specified order:

1. If the -terminal_type control argument is specified, set the specified
device type and turn on the default modes for that type.

2. If the -reset control argument is specified, turn off all modes that
are not set in the default modes string for the current terminal type.

3. If the -modes control argument is specified, turn on or off those
modes explicitly specified.

4. If the -tabs control argument is specified, and the terminal has
settable tabs, set the tabs.

5. If the -print control argument is specified, print the type and modes
on the terminal.

Example

In the following example, a user of a TermiNet 300 with tabs establishes
his termin~l type.

set_tt.y -terminal_type tn300 -tabs -reset

In the next example, the user wants to use the linefeed key on his terminal for
the newlinE~ character instead of the carriage return key. After the change, the
user will type line feed and the terminal will echo with carriage return so the
carriage will be positioned for the next line.

set_tty -modes crecho

In the next example the user changes the line length to 60 characters. Lines
that are longer than 60 characters will be continued on the following line.
Lines that are continued will begin with U\c il

•

set_tty -modes 1160

4-42 AT59

sort sort

Name: sort, sor

The sort command arranges the current file in ascending sequence by line
number. When more than one line has the same line number, the last one is
retained. Lines that are not numbered are deleted. Text in the alter file is
merged before the sort is executed. Since normal line-numbered input is
automatically sorted, the sort command is applicable only to files that have
been created in some other way (such as by a user program execution or with the
build command).

sort

Example

old results
ready 0915

lisn
100 new data
entered for
100 a user
program
120 a user's
130 program
10 This is
ready 0916

sort
ready 0916

lisn
10 This is
100 a user
120 a user's
130 program
ready 0916

4-43 AT59

system system

~ame: system, sys

The system command is usea to explicit~y change the current system. As
described under "Command Environment" 1n Section III, the current system at
login is basic but can be changed as a byproduct of executing various commands.

system system_name

where system_name can be basic, dbasic, or fortran.

Example

tty
name = test, system = fortran, user = Smith.Design, line = tty112
ready 1210

system basic
ready 1210

tty
name = test, system = fortran, user = Smith.Design, line = tty112
ready 1211

compile
ready 1211

4-44 AT59

tty tty

Name: tty

The tty command lists the current name, current system, user
identification, and terminal line numbers in the format shown below:

name - cur_name, system = sys_name, user = Person_id.Project_id, line = ttYfl

Usage

tty

4-45 AT59

twocase twocase

~: twocase, two

Resets the printing mode from all uppercase to mixed case. At login, this
is the printing mode; thus, this command is required only after a onecase
command has been previously executed. See "Case Conventions" in Section I for a
description of the effects of these commands.

twocase

Example

onecase
READY 1403

twocase
ready 1403

4-46 AT59

unsave unsave

Name: unsave, uns

The unsave command removes a saved file from the user's home directory or
from another directory, if specified in the file_name argument. An unsave can
only be successful if the user has appropriate access to the directory
specified. The save command is unlike scratch, which removes the contents but
leaves the file name in a directory.

Usage

unsave file_name

where file_name is the name of a saved file.

Example

unsave test.basic
ready 1620

old test.basic
old: segment is not saved
ready 1620

4-47 AT59

users users

Name: users, use

The users command requests the number of users currently logged ~u under
Multics. The message, as shown in the example, gives the current users and the
maximum possible ("18.0/110.0 11) for online users and absentee users ("0/30"
below).

users

Example

users

Multics HRX.X, load 18.0/110.0; 18 users
Absentee users 0/30

ready 0120

4-48 AT59

SECTION V

TEXT EDITING

The edit command, summarized in Section IV, is used to invoke a variety of
line and file editing functions. A particular function is invoked in the form
of a keyword request and arguments as required, as in:

edit delete 100,130,140

Here, the delete request takes line numbers as arguments and the specified lines
are removed from the current file.

When line-number arguments are required, they must be specified in
ascending numerical sequence. By convention, an unbroken series of line-number
arguments can be expressed using the range notation:

linel-linen

where:

1 . linel is the beginning of the range.

2. linen is the end of the range.

Both linel and linen, if present, are affected by the request. If linel does
not exist, the next higher number is taken to begin the range. Similarly, if
linen is not present, the range ends with the last line number that does not
exceed linen. For example, assume the current file contains the line numbers
10, 20, 30, 40, 50, and the range 15-45 is specified. Lines affected by the
request in this case are 20, 30, and 40. The maximum number of ranges that can
be specified in a single request is 16. (The maximum number of files that can
be specified in an edit request using file arguments is also 16.)

For BASIC programs, edit requests that change line numbers also change
internal references to affected linE~s. This feature does not apply to FORTRAN
programs.

Detailed descriptions of all edit requests are given, in alphabetical
order, in the following pages.

AT59

Request: append, app

The append request combines two or more files specified by the user. Files
are 'concatenated in the order specified without any regard for their current
line numbers. The resultant file becomes the current file and is resequenced
with line numbers beginning at 100 and incremented by 10 to derive subsequent
numbers. For BASIC programs (if the system name is basic or dbasic), internal
references to changed line numbers are also changed. This means that lines in
one file should not refer to line numbers in another file.

Usage

edit append filel file2{ file} ... filen}

where each filei is a file name; at least two files must be specified.

Example

new newfile.basic
ready 1101

10 read x
20 if x=O goto 10
30 print x
save
ready 1101

new subr.basic
ready 1101

10 read y
20 if y=O goto 10
30 print y
40 end
save
ready 1102

edit append newfile.basic subr.basic
ready 1102

lisn
100 read x
110 if x=O goto 100
120 print x
130 read y
140 if y=O goto 130
150 print y
160 end
ready 1102

5-2 AT59

Request: delete, del

The delete request removes specified lines from the user's current file.

edit delete linel{ lineZ ... linen}

where each linei is a line number Qr a range of lines.
specified in increasing order.

Example

new newfile
ready 1302

10 do 100 item = 1,10
11 call r_$u(a_num)
12 namt = 1000*a_num+50
13 i = i+l
14 call r_$u(w_ch)
15 i = w_ch*9

edit delete 11-13
ready 1302

lisn

10 do 100 item = 1;10
14 call r_$u(w_ch)
15 i = w_ch*9

5-3

Numbers must be

AT59

Request: desequence, des

The desequence request removes all line numbers and a single blank
immediately following each, if present, from the current file.

Usage

edit desequence

Example

new newfile
ready 1423

10 ten.
20 tWE!nty
30 thirty
edit desequence
ready 1424

lisn

ten
twenty
thirty

ready 1424

5-4 AT59

Request: explain, exp

The- explain request prints an online description of a specified edit
request. If no argument is supplied, general information about the edit command
is listed. See also the explain command in Section IV.

edit explain {-long} requestl{ ~equestZ ... request}}

.where:

1 • -long

2. request.!.

is a control argument that specifies a long form of explain
messages for given requests; if not supplied, a brief message
is printed.

can be selected from the current set of edit requests.

Examole

edit explain de sequence

02/14/76 edit desequence

~unction: removes all line numbers from current file

Syntax: edit desequence

ready 0900

5-5 AT59

Request: extract, ext

The extract request deletes from the current file all but the line numbers
specified as arguments.

edit extract linel { lineZ ... linen}

where each linei is either a single line number or a range of lines.

Example

new newfile
ready 1111

10 do 100 item = 1,10
11 call r_$u(a_num)
12 namt = 1000*a_num+50
13 i = i+1

17 call r_$u(w_ch)
18 i = w_ch*9

edit extract 10,14-15
ready 1111

lisn

10 do 100 item = 1,10
17 call r_$u(w_ch)
18 i = w_ch*9
ready 1112

5-6 AT59

Request: insert, ins

The insert request inserts files at given points in a specified file. The
final result becomes the current file and is resequenced beginning with line
number 100 and incremented by 10 to derive subsequent numbers. For BASIC
programs (if the system name is basic or dbasic), internal references to changed
line numbers are also changed.

Usage

edit insert filel fileZ linel{ file} lineZ filen linen}

where:

1. filel is the file into which information is inserted.

2. fileZ ... filen are files to be inserted.

3. linel ... 1inen are line numbers in filel after which the associated files
are to be inserted.

Example

new file1
ready 1300

10 This is
20 new text
30 and this
save
ready 1300

new file2
ready 1300

10 to be inserted
20 in filel
save
ready 1301

new file3
ready 1301

10 is also
20 inserted
save
ready 1301

edit insert file1 file2 20 file3 30
ready 1301

5-7 AT59

lisn
100 This is
110 new text
120 to be inserted
130 in file1
140 and this
150 is also
160 inserted
ready 1302

5-8 AT59

Request: join, joi

The JOln request concatenates
sorting or renumbering is performed.
file.

Usage

specified files in the order given. No
The resulting file becomes the current

edit join file1 fil~2{ file} ... filen}

where each filei is the name of a file to be concatenated; at least two files
must be specified:

Example

new newfile
ready 1014

10 goto 20
20 goto 30
save
ready 1015

new file2
ready 1015

10 goto 20
20 goto 30
save
ready 1015

edit join newfile file2
ready 1016

lisn
10 goto 20
20 goto 30
10 goto 20
20 goto 30
ready 1016

5-9 AT59

Request: list, lis

The list request prints one or more lines of the current file. If no line
numbers are specified, the entire file is printed. If a nonexistent line is
specified for listing, an error message is printed.

edit list {linel line~ ... linen}

where each linei is a single line or range of lines.

Example

new newfile
ready 1520

10 abc
20 def
30 ghi
40 k
edit list 10
10 abc
ready 1520

5-10 AT59

Request: locate, loc

The locate request causes the current file to be searched for all
occurrences of a specified text string. Each line containing a match for the
string is printed. If line number arguments are supplied, the search is
restricted to the lines given; otherwise the entire file is searched.

edit locate Itext_string/{linel .lineZ ... linen}

where:

1 • 1

2.

3· line.!

is the string delimiter. Any character except blank or tab
can be used as the string delimiter so long as it does not
appear in the string itself.

is the string of characters to be matched; any character
(including blank) except the delimiter may be used.

is a single line or range of lines.

Example

new sample
ready 0707

210 if m)n then 260
220 next i
230 if n<)m then 260
240 print "ok"
250 stop
260 go to 100
edit locate 1)/
210 if m)n then 260
230 if n<)m then 260
ready 0707

5-11 AT59

Request: merge, mer

The merge request combines two or more files according to line number
sequence. The first file specified serves as the primary file for merging; that
is, the file into which all other specified files will be merged. Lines from
subsequent files are inserted into the primary file in the proper numerical
sequence. If duplicate lines occur, the last one encountered during the merge
is retained. The resulting file becomes the current file.

edit merge filel fileZ{ file} ... filen}

where each filei specified is merged into filel.

Example

new filea
ready 1430

10 Primary file
40 to be merged
60 with others
save
ready 1430
new fileb
ready 1430

20 secondary file
30 to be merged
40 with filea
save
ready 1431

edit merge filea fileb
ready 1431

lisn
10 Primary file
20 secondary file
30 to be merged
40 with filea
60 with others
ready 1431

5-12 AT59

Request: move, mov

The move request relocates specified lines within the current file to a
given location. Relocated lines are placed after a specified line number and
assigned new line numbers by incrementing that value by one. For example, if
three lines are moved to line 100, they will be given the line numbers 101, 102:
and 103. If a sequence of lines is moved so that their numbers would not fit
between the line specified and the line originally specified, succeeding lines
are resequenced with an increment of one until there is no overlap.

Usage

edit move linel lineZ

where:

1 . linel is a line or range of lines to be moved.

2. line.2 is the line after which linel will be inserted.

Example

new newfile
ready 1300

10 ten
20 twenty
30 thirty
40 forty

edit move 40 20
ready 1300

lisn
10 ten
20 twenty
21 forty
30 thirty
ready 1301

3 three
1 seven
9 nine
10 ten
11 eleven
edit move 8-11 21
ready 1301

5-13 AT59

lisn
3 three
7 seven
20 twenty
21 forty
22 nine
23 ten
24 eleven
30 thirty
ready 1301

Request: prefix, pre

The prefix request inserts a given character string immediately before each
occurrence of an existing character string. Line numbers are not affected.

edit prefix lold_string/new_string/line1{ line2 ... linen}

where:

1 •

2.

3.

4.

1

linei

is any delimiter
character cannot
new_string.

except blank or tab; the delimiter
be a character in either old_string or

is the string to be located.

is the string to be inserted.

is a single line number or range of lines; each linei
specifies the bounds within which the substitution is to
occur.

Example

new new file
ready 1407

10 let a = 10
20 let b = 100
30 let c = 1000
edit prefix 11001010-40
ready 1407

lisn

10 let a = 10
20 let b = 0100
30 let c = 01000
ready 1407

5-15 AT59

Request: replace, rep

The replace request substitutes a given character string within a specified
line or range of lines. Line numbers are unaffected.

edit replace lold_string/new_string/linel{ line2 ... linen}

where:

1 . 1

2.

3.

4. linei

is any delimiter except blank or tab; the delimiter
character cannot be a character in either old_string or
new_string.

is a string of characters to be located.

is a string of characters to be substituted for each
occurrence of old_string within the range given.

is a single line number or range of lines; each linei
specifies the bounds within which the substitution is to
occur.

Example

new new_file
ready 1101

100 1 January 1975
110 1 February 1975
120 1 March 1975
edit replace /5/6/100-120
ready 1101

lisn
100 1 January 1976
110 1 February 1976
120 1 March 1976
ready 1101

5-16 AT59

Request: resequence, res

The resequence request renumbers specified lines in the current file,
beginning with a given line number and adding a given increment to derive
subsequent numbers. If only a beginning line is given, resequencing continues
to the end of the file. If a range of lines is given, resequencing terminates
at the upper bound of the range. If no argument is glven, the default
assumption is to begin renumbering at the beginning of the file (denoted by 0),
to assign 100 as the first line number, and to derive subsequent numbers in
increments of 10. For BASIC programs (if the system name is basic or dbasic),
internal references to changed line numbers are also changed.

edit resequence {new_num, start_line, inc}

edit resequence new_num, range, inc

where:

1 .

2.

3. inc

4. range

is the first new line number to be assigned (100 by
default).

is the line to which new_num is to be assigned (0 by
default).

is the increment used to derive subsequent line numbers (10
by default).

is a range of lines delimiting the resequencing operation.

Example

new newfile
ready 1301

210 if m>n then
220 next i
230 if n<>m then
240 print "ok"
250 stop
260 go to 400
edit resequence
ready 1301

lisn

260

260

100 if m>n then 150
110 next i
120 if n<>m then 150
130 print "ok"
140 stop
150 go to 400
ready 1301

5-17 AT59

edit resequence 210 110-130 5
ready 1302

lisn
100 if m)n then 150
210 next i
215 if n()m then 150
220 print "ok"
140 stop
150 go to 400
ready 1302

5-18 AT59

Request: sequence, seq

The sequence request adds a new set of line numbers to the current file,
beginning with a given line number and adding a given increment to derive
subsequent numbers. If the file already has line numbers, these are retained
but become part of the text on the line. If no increment is supplied, 10 is
assumed. If no arguments are supplied, the first line number in the file will
be 100.

Usage

edit sequence {first_num inc}

where:

1 .

2. inc

is the first line number (100 by default).

is the increment used to derive subsequent numbers (10 by
default).

Example

build
nonnumbered
file
input

ready 1503

edit sequence
ready 1503

lisn
100 nonnumbered
110 file
120 input
ready 1503

edit sequence 500 5
ready 1504

lisn
500 100 nonnumbered
505 110 file
510 120 input
ready 1504

5-19 AT 59

Request: string, str

The string request converts the current file into a random-access string
file. Each input line, including its line number, is converted into a separate
string.and the newline character(s) are removed.

edit string n

where n is a number giving the maximum length of any string to be used.

5-20 AT59

Request: suffix, suf

The suffix request inserts a given character string immediately following
each occurrence of an existing character string. Line numbers are not affected.

Usage

edit suffix /old_string/new_string/lineJ{ lineZ ... linen}

where:

1 .

2.

3.

4.

/

linei

is any delimiter
character cannot
new_string.

except blank or tab; the delimiter
be a character in either old_string or

is the string to be located.

is the string to be inserted.

is a single line number or range of lines; each linei
specifies the bounds within which the substitution ist~
occur.

Example

lisn

100 I am
110 go
120 to the
130 store
ready 1300

edit suffix /go/ing/110
ready 1300

lisn 110
110 going
ready 1300

5-21 AT59

APPENDIX A

COMMAND SUMMARY

The summary below is in alphabetical order by command name. For summary
descriptions organized by function ,. see /I Command Repertoire" in Section III.

append

bill

brief

build

bye

catalog

compile

dprint

appends unsorted contents of alter file to current file.

prints accounting information.

establishes brief output mode.

initiates mode of input for nonnumbered lines.

terminates a user session and disconnects the terminal.

prints information about
directories.

files

compiles source code in current file.

stored in

removes an entry from an access control list (ACL).

specified

queues a file for printing on the high-speed line printer.

edit requests specified DFAST text-editing operations.

enter, enterp logs in anonymous user~

explain prints online description of specified topic.

goodbye terminates a user session and disconnects the terminal.

hello

help

ignore

length

list, listnh

login

nbrief

new

old

terminates a user session but leaves the terminal connected
for subsequent user.

prints online description of login procedures.

discards contents of the alter file.

prints the number of words in the current file.

lists all portions of the current and/or alter files (listnh
suppresses header information).

prints an entry in an access control list (ACL).

connects registered user to Multics; used at dialup or after
a hello command.

terminates brief output mode.

initiates a new current file, deletes both the current and
alter files and changes the current name.

retrieves a previously saved file and makes it the current
file.

A-1 AT59

onecase

rename

replace

run

save

scratch

set acl

sort

system

tty

twocase

unsave

users

establishes a single-case input/output mode.

renames the current file.

replaces the contents of a previously saved file with the
contents of the current file.

compiles, if necessary, and executes the current file.

stores the current file.

empties both the current and alter files.

adds or changes an entry in an access control list (ACL).

modifies terminal type and modes associated with user's
terminal.

sorts the current file into ascending line-numbered
sequence.

resets the current system (compiler).

prints current command environment.

establishes two-case input/output mode.

deletes a stored file.

prints the number of users currently active on the entire
Multics system.

A-2 AT59

APPENDIX B

DFAST BASIC

DFAST BASIC is the same as standard Multics BASIC (as described in Multi~~
BASIC, Order No. AM82) with the exceptions stated below.

1. The library statement. External files containing subprograms called
by the programs in the user's current file must be listed in a library
statement in the calling program.

The library statement has the form:

library "filel"{, "fileZ", ... , "file!!}

The library statement lists the names of files containing the
subprograms to be used. The names are enclosed in quotation marks and
separated by commas. If only the filename is given in a library
.statement, it is located in the home directory at execution time.

2. The setdigits statement. The setdigits statement dynamically controls
the number of digits in a numeric value that may be printed as output.
It has the form:

setdigits formula

The value expressed by the formula in the statement is truncated to
its integer value and represents the number of print columns that will
be utilized by all subsequent print statements until another setdigits
statement is executed or until program execution terminates. From 1 to
19 printed columns may be specified.

In addition to the specified number of digits, the sign of the number
is printed. An exponent is also printed if all digits to the left of
the decimal point cannot be contained in the number of digits
expressed by the formula. The setdigits statement is valid only for
double precision programs.

3. The characters II II and" "are allowed in subprogram names.

4. A $ used in a format statement as a field delimiter need not be
followed by 1:+" or "_Ii; "_" is assumed.

B-1 AT59

5. The asc function recognizes the abbreviation 'iapo" to mean apostrophe.

6. The rules about the Multics environment and
(Section XIII and Appendix B of the Multics
No. AM82) are replaced by the rules for DFAST.

B-2

non-BASIC programs
BASIC manual, Order

AT59

*, see star convention

A

aCcess control
access modes 3-6
delete_acl command 4-10
deleting access 3-8
list acl command 4-26
listIng access 3-8
set_acl command 4-39
setting access 3-7

ACL (access control list)

alter file 3-4

append (app) command 4-2

append request 5-2

arguments 3-1, 3-2, 5-1

asterisk
see star convention

B

3-6

BASIC (DFAST version) 1-1, A-1

basic
as argument 1-1
as current system 3-5, 4-9, 4-36,

4-44

bill (bil) command 4-3

brief (bri) command 4-4

build (bui) command 4-5

bye command 4-6

c
case conventions 1-3

catalog (cat) command 4-7

character deletion 1-3

command environment 3-4, 3-5

command lines 3-2

INDEX

command repertoire 3-9

commands 4-1
see also individual command listings

compile (com) command 4-9

component
in file names 3-1
in ACL 3-6

current file 1-1, 3-1, 3-4, 3-5

current name 3-1, 3-4, 3-5

current system 3-1, 3-4, 3-5

D

delete_acl (da) command 4-10

delete request 5-4

deletion 1-3
see also edit requests

desequence request 5-4

directory 3-2
see also catalog command

dprint (dp) command 4-12

E

edit (edi) command 4-14, 5-1

edit requests
append (app) 5-2
delete (del) 5-3
desequence (des) 5-4
explain (exp) ·5-5
extract (ext) 5-6
insert (ins) 5-7
join (joi) 5-9
list (lis) 5-10
locate (loc) 5-11
merge (mer) 5-12
move (mov) 5-13
prefix (pre) 5-15
replace (rep) 5-16
resequence (res) 5-17
sequence (seq) 5-19
string (str) 5-20
suffix (suf) 5-21

enter (e) command 4-16

i-1 AT59

enterp (ep) command 4-16

error handling 1-4

explain (exp) command 4-17

explain request 5-5

extract request 5-6

F

file naming conventions 3-1

FORTRAN (DFAST version) 1=1

fortran
as current system 3-5, 4-9, 4-36,

4-44

G

goodbye (goo) command 4-18

H

hello (hel) command 4-19

help command 4-20

I

ignore (ign) command 4-21

input lines 3-4

insert request 5-1

instance tag 3-6

L
language conventions 3-1

language suffix 3-1

length (len) command 4-23

line deletion 1-3

line numbers
in commands 3-4
in edit requests 5-1
range notation 5-1

list (lis) command 4-24

list_acl (la) command 4-26

listnh (lisn) command 4-24

locate request 5-11

logging in 1-2, 4-16, 4-28

logging out 1-4, 4-6, 4-19

login (1) command 4-28

M
merge request 5-12

move request 5-13

N
names

file names 3-1
naming conventions 3-1

nbrief (nbr) command 4-30

new command 4-31

nonnumbered lines
see build command

J 0

join request 5-9 object program 1-1, 4-9, 4-36

i-2 AT59

old command 4-32

onecase (one) command 4-33

p

password 1-2, 4-16, 4-28

pathname 3-2

Person_id 1-2, 4-28

prefix request 5-15

Project_id 3-6

Q

quit signal 1-3

R

range notation 5-1

ready message 1-2, 1-3

rename (ren) command 4-34

replace (rep) command 4-35

replace request 5-16

resequence request 5-17

run command 4-36

s
save (sav) command 4-37

scratch (scr) command 4-38

segment 3-2

separator character 1-3, 3-2

sequence request 5-19

set_acl (sa) command 4-39

set_tty (stty) command 4-41

sort (sor) command 4-43

star convention 3-1

storage system 3-1 , 3-2

string request 5-20

suffix request 5-21

system (sys) command 4-44

system_name 3-4, 3-6, 4-44

T

text editing 1-1, 4-14, 5-1
see also individual edit requests

tty command 4-45

twocase (two) command 4-46

typing conventions 1-3
character deletion 1-3
line deletion 1-3
separator character 1-3, 3-2

typing errors 1-3

u
unsave (uns) command 4-47

user input 1-2

users (use) command 4-48

i-3 AT59

I
I
I
I
I

~'

uJ
z
::i
t:)
z
o
...J
<:(

t
:J
U

I
I
I

~ I

._j

I
I
I
I
I
I
I

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

SERIES 60 (LEVEL 68)
TITLE MULTICS DFAST SUBSYSTEM

USERS' GUIDE

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

ORDER NO·1 AT59, REV. 0

DATED I MARCH 1976

r\. Your comments will be promptly investigated by appropriate technical personnel and action will be taken D L,t' as required. If you require a written reply. check here and furnish complete mailing address below.

FROM: NAME __ _ DATE ________________ ___

TITLE __ __

COMPANV ______________________________________ ___

ADDRE~ ______________________________________ _____

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

I
I
I
I
I

(
--I

<.?
2
o
--I
«
I
:l
U

I
I
I
I
1,·1
I ~
I :::i
')j I,c"~

--'--------------------------------- i-~

ATTENTION: PUBLICATIONS, MS 486

Business Reply Mlil
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

FIRST CLASS
PERMIT NO. 39531
WALTHAM,MA
02154

o
--I
o
u..

-~

,
I

w

I --I

I ~
--~----------.--------------------------~g

Honeywell

I «
I g
It~
I
I
l.a.
1.1 ,
J
I ,
I
I
I
I
I
I

(
r
I
I
I
t
I

Honeywell
Honeywell Information Systems

In the U.S.A.: 200 Smith Street, MS 486, Waltham, Massachusetts 02154
In Canada: 2025 Sheppard Avenue East, Willowdale, Ontario M2J 1 W5

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F.

20992, 5C678, Printed in U.S.A. AT59, Rev. 0

