

INTERNAL LOGIC

A cleanup handler is established to call the internal
procedure cleaner, described above. The current file position
(vl.cfIX) of the volume to be demounted is invalidated and the
internal procedure unload is called to demount the volume. The
volume link's device identifier (vl.rcp_id) is invalidated and
control passes to call mount_request, continuing as described
above.

This entry point is called to demount all mounted volumes,
request that write permit rings be inser-ted, and mount the
volumes again. The write ring switch (cseg.write_ring) is set to
" 1" b , ind ica ting tha t all vol urnes are to be moun ted \-li th wri te
permit rings.

Usage

del tape_ansi_mount_cntl_$insert_rings entry (ptr,
fixed bin (35»;

This entry point is called to issue a hardware file protect
order to every assigned device. The write protect switch
(cseg.protect) is set to "l"b, indicating that writing is
inhibited.

usage

dcl tape_ansi_mount_cntl_$write_protect entry (ptr,
fixed bin (35»;

11-97 AN57

This entry point is called to issue a hardware file permit
order to every assigned device. ,The write protect switch is set
to "Oflb, indicating that writing is not inhibited.

Usage

dcl tape_ansi_mount_cntl_$write_per~it entry (ptr,
{'ixed bin (35»; ,

This entry point is called to demount a volu~e and unassign
its device.

Usage

dcl tape_ansi_mount_cntl_$free entry (ptr, fixed bin,
fixed bin (35»;

where:

1 . cP

2. vlX

3. code

is a pointer to the control segment. (Input)

is the index of the volume link associated
with the volume to be demounted, and whose
device is to be unassigned. (Input)

is a standard status code. (Output)

If code is nonzero, the volume may not have been demounted
and the device may not have been unassigned,

Internal Logic

A cleanup handler is established, as described above, and
the current file position (vl.cfIX) is invalidated. The volume
is then demounted and its device unassigned. The active drive
count (cseg.nactive) is decremented, the volume link's device
identifier (vl.rcp_id) is invalidated, and the procedure returns.

11-96 AN57

If an error occurs during any of the above steps, control passes
to the error exit routine.

Internal Procedures

The only internal procedure described is VOL1_check. The
others have been functionally described in the above text and are
highly dependent in their implementation upon the tdcm_
interface.

Entry: VUL1_check

This internal procedure validates the VOL1 label (if any) of
a newly mounted volume and sets the VOL1 status variable
(vl.write_VOL1) accordingly. This variable takes the following
values:

o

2

3

4

the VOL1 label is correct. For an A~SI file
set, this means that the first block is an
ANSI VOL1 label. for an IBM file set, this
means that the first block is an IBM SL VOLl
label. If a density has been specified or
inferred (cseg.density n= -1), the VOL1 label
density meets the specification. In
addition, the recorded volume identifier
matches the expected volume identifier.

the tape is blank; i.e., the first read
operation detected 25 feet of blank tape and
returned blank-tape-on-read status.

the first block is unreadable. Either the
volume is recorded at an unreadable density,
or with the wrong number of tracks, or the
tape is defective, or the hardware is
malfunctioning, etc.

the first block is not a VOL1 label.
VOL1 label is not treated as such
context of an A~SI file set.)

(An IBM
in the

the first block is a valid VOL1 label, but
the recorded volume identifier does not match
the expected volume identifier.

11-99 AN57

5 the VOLl label is correct in all respects but
density. The recorded density does not meet
the specified or inferred density
(cseg.density) .

Currently, this procedure operates independently of the
(eventual) rcp_ volume registration mechanism. It must
eventually be modified to work in accordance with that mechanism,
The majority of its checking functions will be performed by rcp_
itself.

This procedure performs the actual tape operations required
by the I/O module. Currently, the procedure is an interface to
tdcm_. when tape_ioi_ is implemented, the I/O module can be
recoded to call tape_ioi_ directly, or else this procedure should
be rewritten to interface to tape_ioi_. The following
documentation provides only a functional description of each
entry point, since the implementation is entirely tdcm_
dependent.

This entry point is called to initialize the tdcm_ tseg
contained in the control segment. Currently, it is called only
once at initial attach time, before a device has been attached.
Eventually, it should perform the tape_ioi_$initialize function
and be called (multiply) at device assignment time.

usage

call tape_ansi_tape_io_$attach (cP);

where cP is a pointer to the control segment. (Input) (Input)

11-100 AN57

This entry point is called at logical record I/O open time
(lrec_open internal procedure in tape_ansi_file_cntl_ and
tape_ansi_nl_file_cntl_) to initialize the tseg for asynchronous
I/O. Eventually, it should call tape_ioi_ to set buffer sizes,
I/O modes, etc.

usage

where cP is a po~nter to the control segment. (Input)

This entry point is called at logical record I/O close time
(by tape_ansi_lrec_io_$close or tape_ansi_ibm_lrec_io_$close) to
synchronize the tape, ,backspacing if necessary in the read case,
writing the remaining buffers in the write case.

Usage

where:

1 •

2.

cP .

code

is a pointer to the control segment. (Input)

is a standard status code. (Output)

The value of code can be either zero or
error_table_$fatal_error. (EaT detection during write
synchronization is ignored.)

This entry pOint is called to obtain a pointer to an I/O
buffer that will subsequently be written.

11-101 AN57

Usage

del tape_ansi_tape_io_$get_buffer entry (ptr, ptr,
fixed bin (35));

where:

1 • cP is a pointer to the control segment. (Input)

2. bF is a pointer to the 1/0 buffer. (Output)

3. code is a standard status code. (Output)

The value of code can be either zero or
error_table_$fatal~error. In the latter case, bP is nUll.

This entry point is called to release an I/U buffer once it
is no longer needed; i.e., subsequent to a read operation or
after a get_buffer call if no write is to be issued.

Usage

del tape_ansi_tape_io_$release_buffer entry (ptr, ptr,
fixed bin (35));

where:

1 • cP is a pointer to the control segment. (Input)

2. bP is a pointer to the liD buffer to be
released. (Input)

3 · code is a standard status code. (Output)

The '\I~ 111Q of code can be either zero or .. \06..,"-4"-'"

error_table_$fatal_error.

11-102 AN57

mode.

usage

This entry point is called to read one block in asynchronous

dcl tape_ansi_tape_io_$read entry (ptr, ptr, fixed bin,
fixed bin (35.).);

where:

1 •

2.

3 ·

4.

cP

bP

ccount

code

is a poin ter to the con trol" se gmen t . (Input)

is a pointer to the I/O buffer containing the
b.lock. ' (Output)

is the number of characters read. (Output)

is a standard status code. (Output)

If code is zero, the block was read correctly. The
following error_table_ codes can be returned:

an end-of~file mark was read; bP is null and
ccount is O.

25 feet of blank tape read; bP is null and
ccount is O.

parity error detected; a block was read.

unrecoverable program or I/O error;
null and ccount is O.

bP is

This entry point is called to read a block in synchronous
mode. The block is read into a special synchronous liD buffer
pointed to by cseg.syncP.

Usage
..

del tape_ansi_tape_io~$sync_read entry (ptr, fixed bin,
fixed bin (35»;

11-103 AN57

where:

1 •

2. ccount

3. code

is a pointer to the control segment. (Input)

is the number of characters read. (Output)

is a standard st&tus code. (Output)

If code is zero, the read was successful. The following
error_table_ codes can be returned: eof_record, blank_tape,
tape_error, and fatal_error. If code is nonzero, ccount is zero.

This entry point is called to write a block in synchronous
mode. The block is written from a special synchronous I/O buffer
pointed to by cseg.syncP.

Usage

dcl tape_ansi_tape_io_$sync_write entry (ptr, ccount,
fixed bin (35»;

where:

1 •

2.

3 ·

cP

ccount

code

is a pointer to the control segment. (Input)

is the number of characters to be written.
(Input)

is a standard status code. (Output)

If code is zero, the write was successful. The following
error_table_ codes can be returned:

end-or-tape was detected;
written correctly.

the block was

a parity error occurred; the block was not
written or was written incorrectly.

an unrecoverable program or 1/0
occurred; the block was not written.

11-1G4

error

AN57

mode.

Usage

This entry point is called to write a block in asynchronous

dcl tape_ansi_tape_io_$write entry (ptr, ptr, fixed bin,
fixed bin (35));

where:

1 • cf is a pointer to the control segment. (Input)

2. bf' is a pointer to the I/O buffer to be written.
(Input)

'j

.) . ccount is the number of characters to be written.
(Input)

4. code is a standard status code.

If code is zero, the block was written correctly. The
following error_table_ codes can be returned:

end~of~tape was detected;
written correctly.

the block was

a parity error occurred; the block was not
written.

an unrecoverable program or I/O error
occurred; the block was not written or was
written incorrectly.

This entry point is called to iSSUe an order operation. The
following orders can be issued:

bsf
bsr
ers
fsf
fsr
rqs
rss

backspace file
backspace record
erase
forward space file
forward space record
request status
reset status

11-105 A~57

rew
run
eof
pro
per
san

rewind
rewind and unload
write end-of-file mark
set file protect
set file permit
set density (qualified further)

del tape_ansi_tape_io_$order entry (ptr, char (3),
fixed bin, fixed bin (35»;

where:

1 •

2. order

3· q

4. code

is a pointer to the control segment. (Input)

is .the
above.

order to
(Input)

be performed, as listed

is the order qualifier. The value of q is
ignored unless the order is "sdn". In this
case, q can be:
o 200 bpi
1 556 bpi
2 800 bpi
3 1600 bpi (Input)

is a standard status code. (Output)

If code is zero, the order was performed correctly. The
following error_table_ codes can be returned:

possible for all orders; an
program or I/O error occurred.
or may not have been performed.

unrecoverable
The order may

possible for bsf and bsr on~y; the tape
is/was positioned at beginning-of-tape. The
order mayor may not have been· performed.

possible for ers and eof only; end-of-tape
detected. The order was performed correctly.

possible for fsr and bsr only;
spaced over an end-of-file mark.

the order

possible
occurred.
performed.

for all orders; an I/O error
The orQer mayor may not have been

11-106 AN57

This module is called by tape_ansi_tape_io_ to interpret the
10M status bits. It generates an array of error table status
codes. When tape_ioi_ becomes the device 1/0 interface, this
module will no longer be needed.

Usage

del (P+- ~) •
v 1 I ,

where:

1 • hP is a pointer to a hardware status structure.
(Input)

The hardware status structure is declared as follows:

dcl 1 hdw_status based (hP),
2 iom_bits bit (72) aligned,
2 no_minor fixed bin,
2 major fixed bin (35),
2 minor (10) fixed bin (35);

I~ 10M status bits *1
1* number of minor codes *1

1* major status code *1
1* minor status codes *1

Internal Logic

The procedure is passed the structure with
hdw_status.iom_bits set to the IO~ status to be interpreted. The
variable hdw_status.no_minor is set to the number of minor status
codes, the major status code is placed in hdw_status.major, and
the hdw_status.minor array is filled with the minor status
code(s).

This module is called by tape_ansi_attach_ to validate an
iox_ attach description.

Usage

dcl tape_ansi_parse_options_ entry (ptr, (*) char (*)
varying, char (32) varying, fixed bin (35»;

call tape_ansi_parse_options_ (taoP, options, error, code);

11-107 Al'J57

where:

1 ° taof

2. options

3 ° error

4. code

Internal Logic

is a pOinter to the attach options structure
(tao., as declared by
tape_attach_options.incl.p11. (Input)

is an array of attach description lexemes, as
parsed by iox_o (Input)

is a diagnostic message.
is zero; it can be
nonzero. (Output)

It is null if code
nonnull if code is

is a standard status code. If code is
nonzero, the attach description is invalid.
(Output)

The variables error and code are initialized to "" and zero,
respectively. If the number of elements in the options array
(tao.noptions) is zero, the procedure immediately returns the
error code error_table_$noarg because the attach description
cannot be null.

Processing begins with the volume list, which is the first
section of the attach description. The array index i is
initialized to 1. The variable hyphen_ok is set to "O"b to
indicate that the first options array element should be a volume
name and therefore should not begin with a hyphen. The element
is tested to determine if it is "-volume" or "-vol", either of
which indicates that the next element is a volume name that may
or may not begin with a hyphen. If the element is "-volume" or
If-vol", hyphen_ok is set to "l"b and no_next is invoked to
determine whether or not the next element exists. If the next
element does not exist, the procedure returns the error code set
by no_next because the -volume option requires a following volume
name. If the next elemen~ exists, no_next has incremented the
array index to access it.

The next element is tested to determine whether or not it
begins with a hyphen. If it does not, hyphen_ok is set to "oub
(whether or not it was previously "1"b) and control passes to
validate the element as a volume name. If the element begins
with a hyphen, the value of hyphen_ok is tested. If hyphen_ok =
"O"b, the element is assumed to be an attach option and control
passes to the attach option validation code. (The first array
element can not be an attach option, but ~ be either -volume,
-vol, or a volume name.) If hyphen_ok = "l"b, hyphen_ok is reset
to "O"b and control passes to validate the element as a volume
name.

1 1 -1 06 AN57

The function vname is invoked to validate and normalize the
volume name. If the element is not a valid volume name, the
procedure returns error_table_$bad_tapeid. If the volume limit
is not exceeded, the volume count is incremented and the volume
name is placed into the volume name array (tao.volname). If the
options array is not exhausted, the next element is tested to
determine whether or not it is "-comment" or "-com".

If it is either, no_next is invoked to determine whether or
not the next element (the comment text) exists. The length of
the comment text is validated and the text is saved in the mount
time comment array (tao.comment). Whether or not a comment was
processed, control passes to test for a -volume or -vol element,
as described above. This algorithm is repeated until either an
attach option is encountered or the options array is exhausted.

The attach options are processed by comparing them against a
list of valid options and transferring control to the appropriate
option processing routines. The actions performed by these
routines are best described by the PL/I code itself. Each
routine sets a tao structure mem~er to reflect either the
appearance of a particular option or its associated value.

Internal Procedures

Entry: no_next

This function is called to determine whether or not the
options array contains another element when one is required (For
example, -block requires a subsequent element, the block length.)
If the current array index plus 1 is greater than the index of
the last element, another element does not exist. In this case,
error.(the diagnostic message) is set equal to the current
element (the option requiring the missing element), code is set
to error_table_$nodescr, and the procedure returns "l"b. If the
next element exists, the array index is incremented and the
procedure returns "O"b.

11-109 AN57

This function is called to validate and normalize a volume
name. If the volume name is longer than six characters, it is
invalid. In this case, the function returns a null string and
the value "O"b. If the length is exactly six, the volume name is
valid and does not require normalization. In this case, the
func tion re turns the or ig inal vol ume name and the val ue "1 II b • If
the volume name is shorter than six ch~racters, it must be
normalized. If the name is entirely numeric, it is nOt'malized by
padding on' the left with zeros to length six. If it is not
entirely numeric, it is normalized by padding on the right with
blanks to length six. The function then returns the normalized
volume name and the value "1"b.

Usage

This module implements the iox_$control function.

del tape_ansi_control_ entry (ptr, char (*), ptr,
fixed bin (35»;

call tape~ansi_control_ (iocbP, order, infoP, code);

where:

1 • iocbP is a pointer to the IOCB. (Input)

2. order is the control order to be performed.
(Input)

3. infoP is a pointer to the information structure for
a particular .order, if required, (Input)

4. code is a standard status code. (Output)

The following is a nonexhaustive list of error~table_ codes
returned:

the requested order could not be performed
because the I/O switch ~s not open.

the requested order
information painter,
pointer points to. an
structure.

11-110

requires
or the
invalid

a nonnull
information
information

AN57

action_not_performed

Internal Logic

the requested order is not implemented.

the requested order could not be performed.
The state of the I/O module (i.e., opening
mode, lock value, etc.) did not meet an
order-specific criterion.

The requested order is compared against an array of
implemented orders (order_Iist.name). If no match is found, the
procedure returns the error code error_table_$no_operation.
Otherwise, order_list.must_be_open is checked to determine
whether or not the I/O switch must be open. If it must be open
and it is not, the pr6cedure returns error_table_$not_open. The
variable order_list.non_null_ptr is tested to determine whether
or not the order requires an information structure. If it does
and infoP is null the procedure returns error_table_$bad_arg.

'If both tests succeed, the cseg pointer is extracted from
the 10GB and cseg.invalid is tested to determine whether or not
the cseg is valid. If not, the procedure returns
error_table_$invalid_cseg. The file lock (cseg.file_lock) is
tested to determine whether the file is already in use for other
I/O activity. If it is in use, the procedure retur~s
error_table_$file_busy. If it is not in use, a cleanup handler
is established and cseg.file_lock is set to "1"b. If invoked,
the cleanup handler resets cseg.file_lock to "Dub. The return
code is initialized to zero and control transfers to process the
particular order requested:

hardware_statu:3

The hardware status string pointed to by infoP is filled
with the 10M status bits from the last I/O operation
(cseg.hdw_status.bits) and control passes to the exit routine.

status

Th~ status structure (declared by device_status.incl.p11)
painted to by infoP is filled from the I/O status structured
generated by the last I/O operation (cseg.hdw_status) and control
passes to the exit routine.

volume_status

The volume status structure (declared by
tape_volume_status.incl.pI1) pointed to by infoP is filled with
status information describing the "current" volume. If the file

11-111 AN57

set is IBM nonlabeled, the current volume is specified by fd.vIX,
the volume currently (or last) in use. If no volume has yet been
used (fd.vlX = 0), the first volume of the volume set is the
current volume. For ANSI and IBM SL file sets, the current
volume is specified by fl.vlX, the volume on which the file
section currently (or last) in use resides. If no file section
has yet been used (cseg.flP = cseg.fcP), or the file link pointer
has been invalidated due to an error (cseg.flP.= null), the first
volume of the volume set is the current volume. The structure is
filled in from the volume link and control passes to the exit
routine.

feov

This order forces end of volume on the current volume. If
the 1/0 switch is not open-for sequential_output, code is set to
error_table_$action_not_performed and control pas~es to the exit
routine. (This order is used only to force a volume switch when
writing.) Either· tape_ansi_file_cntl_$data_eot or
tape_ansi_nl_file_cntl_$data_eot is called to simulate the
detection of end-of-tape. The file control procedure performs
all necessary volume termination and switching functions. If the
returned code is zero, volume switching has been performed
successfully and control passes to the exit routine. If the
returned code is nonzero, volume switching did not occur, due
either to an error or the lack of another volume. In either
case, the logical record 1/0 lock (cseg.lrec.code) is locked to
inhibit further 1/0, by setting it equal to the returned code.
If the returned code is error_table_$no_next_volume, it is set to
zero and control passes to the exit routine. Otherwise, an error
has occurred and the value of code is passed on to the exit
routine.

This order specifies that the current volume is to be
rewound when the 1/0 switch is next closed. The rewind function
is performed by the file control procedure. The variable
cseg.close_rewind is set to "1"b and control passes to the exit
routine.

retention

This order is preserved for historical reasons only. The
resource retention variable (cseg.retain) is set to the value of
the number pOinted to by infoP.

The file status structure (declared by
tape_file_status.incl.p11) pointed to by infoP is filled in with
status information describing the "current" file. If the file
set is IBM NL and no file has yet been used, the file status
state variable (tape_file_status.state) is set to zero (no

11-112 AN57

information) and control passes to the exit routine. If the file
set is ANSI or IBM SL and the file link pointer does not point to
a link (cseg.fIP = null or cseg.fcP), tape_file_status.state is
similarly set to zero and control passes to the exit routine.
Even if cseg.flP does point to a link, the file section may not
be a part of the attached file. In this case, the above action
is also taken.

Once the current file is known, the rOCB open description
pointer is checked to determine whether or not the I/O switch is
open. If it is not open, tape_file_status.state is set to 1 (not
open). If it is open, the state variable is set to either 2
(cseg.lrec.code = 0, logical I/O not locked), 'or 3
(cseg.lrec.code = 0, logical I/O locked.) The remainder of the
file status structure is filled in according to whether or not
the file set is IBM NL.

retain_none
retain_all

These orders set cseg.retain to 1 (retain neither volumes
not devices) or 4 (retain both volumes and devices),
respectively. Control then passes to the exit routine.
Eventually, the following retain orders should be implemented:

retain_default
retain_devices
retain_volumes

cseg.retain = Q
cseg.retain = 2
cseg.retain = 3

If the I/O switch is not open for sequential_input, the
return code is set to error_table_$action_not_performed and
control passes to the exit routine. If the I/O switch is open
for sequential_input, the logical record I/O lock
(cseg.lrec.code) is checked to determine if it can be unlocked
(cseg.lrec.code = error_table_$tape_error). If it can, the lock
is unlocked (set = 0). (If the lock value is already zero,
nothing need be done.) Any other lock value causes the return
code to be set to error_table_$action_not_performed. Control
then passes to the exit routine.

The exit routine sets the file lock to "Q"b and returns
whatever code has been previously set.

11-113 ANS7

SECTION XII

THE tape_mult_ I/O MODULE

INTRODUCTION

The tape_mult_ I/O module supports I/O to and from Multics
standard tapes. (See "Multics Standard Magnetic Tape Format" in
Section III of the MPM Peripheral Input/Output Manual, Order
No. AX49.

This section will be expanded in a future edition.

12-1 AN57

SECTION XIII

THE tape_nstd_ 1/0 MODULE

INTRODUCTION

The tape_nstd_ 1/0 module supports 1/0 to and from records
on magnetic tape. No logical record or file format is proce~sed
or enforced.

This section will be expanded in a future edition.

13-1 AN57

SECTION XIV

Ti-iE rdisk_ IiO MODULE

INTRODUCTION

The rdisk_ 1/0 module performs explicit 1/0 on
user-attachable disk volumes. These volumes are mounted as "1/0"
disks as opposed to storage system disks. Physical operations on
the disk are performed via the 110 interfacer ioi_o

This section will be expanded in a future edition.

14-1 AN57

SECTION XV

THE record_stream_ IIO MODULE

INTRODUCTION

This liD module associates two IIO switches, causing
sequential operations on one switch to generate (or be generated
by) corresponding stream operations on the other switch.

PROGRAM MODULES

The record_stream IIO module is composed of the following
five programs:

record_stream_attach.p11
implements attach, detach, open, and close
operations. Dispatches to the appropriate module for
the opening mode at open and close.

rs_open_str_in.p11
implements the get_chars, get_line, and position
operations in openings for stream_input.

rs_open_str_out.p11
implements the put_chars operation in openings for
stream_output~

rs_open_seq_in.p11
implements the read_record, read_length, and position
operations in openings for sequential_input.

rs_open_seq_out.pll
implements the write record operation in openings for
sequential_output.

15-1 AN57

MODULE record_stream_attach.pI1

~ntry: record_stream_attach

This entry point performs the attach operation aocording to
the specified attach options. The attach description is
validated and placed in an initialized data block, pointed to by
iocb.attach_data_ptr. If the -target option is specified, a
uniquely named 1/0 switch is attached using the remaining options
to form the target attach description.

This entry poin~ implements the open operation for all
opening modes. The target 1/0 switch is opened, or if already
open, its mode is verified.

Except in the case of openings for sequential output, a
uniquely named temporary buffer segment is created and pointed to
by iocb.open_data_ptr.

The appropriate module for the given opening mode is called
to set up the IOCB entry values for the supported operations,
before completing the opeping in the common code.

Entry: close_rs

This entry point implements the close operation. In the
case of stream_output, the remaining buffer contents (if any) are
written out on the target switch. The temporary buffer segment
is deleted. If the target switch was initially closed, it is
closed again.

Entry: detach_rs

This entry point implements the detach_iocb operation. If
the target switch was specified via the ~target option, it is
detached as well.

15-2 AN51

These entry points implement
operations simply by passing the
without modification.

Entry: get_chars_rs

the modes and control
call to the target switch

This entry point implements the get_chars operation. The
returned data is copied from the buffer segment, whose initial
offset and tail_length are adjusted accordingly. When its
contents are exhausted, read_record operations are issued on the
target switch into the buffer segment. If the attachment does
not specify the -nnl option, a newline character is appended to
each record placed in the buffer.

This entry point implements the get_line operation similarly
to the get_chars operation. The difference is that the length of
the returned string is determined via the index of a newline
character in the buffer tail.

This entry point implements the position operation (except
for skipping backwards, which is not supported).

For positioning to either end of the file, the call is
simply passed on to the target switch and the buffer contents are
discarded.

For skipping forward, the logic is identical to that for the
get_line operation, except that no data is copied out of the
buffer.

15-3 AN57

This entry point implements the put_chars operation.
-length (-In) attach option was specified, fixed length
are written to the target switch as the required number
are made available. The remainder, if any, is appended
buffer segment, to be written by a subsequent operation.

If the
records

of bytes
to the

In the default attachment case, the treatment is similar.
Variable-length records are formed from lines with trailing
newlines deleted and are written out as they become available.
An incomplete line is appended to the buffer and is written on
the target switch as part of the next record.

This entry point implements the read_record operation. If
the buffer segment contains a record, it is returned to the user
and the buffer contents are discarded.

If the buffer is empty, a record is obtained directly from
the target switch via either a get_chars or get~line operation,
depending on the specified attach option.

This entry point implement 9 the read_length operation.
the buffer segment contains a record, its length is returned.

Otherwise, a record is read into the buffer from the target.
switch using either get_line or get~charsJ and its length is
returned.

15-4 AN57

~ntry: position_seq_rs

This entry point implements the position operation (except
for backward skipping).

For positioning to either end of
passed directly to the target switch and
contents are discarded.

the file, the call is
the buffer segment's

For skipping forward in the default case, the call is simply
passed to the target switch. Otherwise, if the -length (-In)
attach option was specified, records are successively read into
the buffer segment until the required number has been skipped or
the end of the file is reached. 1 If the buffer segment initially
contained a record, the first skip is accomplished by discarding
the buffer contertts.

This entry point implements the write_reco~d operation. No
buffer segment is required in this case. A put_chars operation
is issued to the target switch with the same arguments as those
passed to this entry point. If the -nnl attach option was not
~pecified, a second put_chars operation is issued to the target
switch to append a single newline-character.

15-5 AN57

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
LEVEL 68 MULTICS
USER RING INPUT/OUTPUT SYSTEM
PROGRAM LOGIC MANUAL

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your com'ments will be investigated by appropriate technical personnel
and action will be taken as reauired. Receiot of all forms will be
acknowledged; however, if yo~ require a d~tailed reply, check here. 0

FROM: NAME ---
TITLE __________________________________ _

COMPANY ---------
ADDRESS _____________________________________ __

ORDER No·1 ANS 7, Rev. 0

DATED I MAY 1977

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Honeywell
HOII.~"'" IntoImalion Systems .

~ the U.SA: 200 &nih S1raet, MS 486, Wallham. MassactUIeIIs 02154
~ OnIda: 2025 ~ Avenue East, WIowdaIe, Ontario M2J 1W5

~ the UK: Great West Road, BrenIIord, MiddIeaex TW8 9DH
~ AuaIraIa: 124 W",. SIraet, North Sydney, N.S.W. 2060
~ Mexico: AY8I'ida Nuew Leon 250, Mexico 11, D.F.

31490, 1C581, Pmted i1 U.S.A. NEl, Rev. 0

