
ULTRIX-32™

Supplementary Documents
Volume 3 System Manager

Order Number: AA-MFOSA-TE

/

UL TRIX-32 Supplementary Documents
System Manager

Order No. AA-MFOSA-TE

UL TRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright© 1984, 1988 by Digital Equipment Corporation.

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip­
ment that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
MASSBUS
PDP
ULTRIX
ULTRIX-11

ULTRIX-32
UNIBUS
VAX
VMS
VT

~nmnomo™

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the Electrical Engineering and Computer Science
Departments at the Berkeley Campus of the University of California for their
role in its development.

iii

This software and documentation is based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. Digital Equipment Corporation acknowledges
the following individuals and institutions for their role in its development:

"The UNIX Time-Sharing System": Copyright © 1974, Association for Computing Machinery, Inc.
reprinted by permission. This is a revised version of an article that appeared in Communications of the
ACM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version of a paper presnted at the
Fourth ACM Symposium on Operating Systems Principles, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, October 15-17, 1973. Acknowledgements: for their help and support,
R.H. Canaday, R. Morris, M.D. Mcilroy, and J.F. Ossanna.

"Advanced Editing on UNIX" acknowledgement: Ted Dolotta for his ideas and assistance.

"An Introduction to the UNIX Shell" acknowledgements: Dennis Ritchie, John Mashey and Joe Maran­
zano for their help and support.

"LEARN - Computer-Aided Instruction on UNIX" acknowledgements: for their help and support, M.E.
Bittrich, J.L. Blue, S.I. Feldman, P.A. Fox, M.J. McAlpin, E.Z. Rothkopf, Don Jackowski, and Tom
Plum.

"A System for Typesetting Mathematics" acknowledgements: J.F. Ossanna, A.V. Aho, and S.C. Johnson,
for their ideas and assistance.

"A TROFF Tutorial" acknowledgements: J. F. Ossanna, Jim Blinn, Ted Dolotta, Doug Mcilroy, Mike
Lesk and Joel Sturman, for their help and support.

The document "The C Programming Language - Reference Manual" is reprinted, with minor changes,
from "The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall,
Inc., 1978.

"Make - A Program for Maintaining Computer Programs" ackowledgements: S.C. Johnson, and H.
Gajewska, for their ideas and assistance.

"YACC: Yet Another Compiler-Compiler" acknowledgements: B.W. Kernighan, P.J. Plauger, S.I. Feld­
man, C. Imagna, M.E. Lesk, A. Snyder, C.B. Haley, D.M. Ritchie, M.O. Harris and Al Aho, for their
ideas and assistance.

"Lex - A Lexical Analyzer Generator" acknowledgements: S.C. Johnson, A.V. Aho, and Eric Schmidt, for
their help as originators of much of Lex, as well as debuggers of it.

The document "RATFOR - A Preprocessor for a Rational Fortran" is a revised and expanded version of
the one published in Software - Practice and Experience, October 1975. The Ratfor described here is
the one in use on UNIX and GCOS at A T & T Bell Laboratories. Acknowledgements: Dennis Ritchie,
and Stuart Feldman, for their ideas and assistance.

"The M4 Macro Processor" acknowledgements: Rick Becker, John Chambers, Doug Mcilroy, and Jim
Weythman, for the help and support.

"BC - An Arbitrary Precision Desk-Calculator Language" acknowledgement: The compiler is written in
YACC; its original version was written by S.C. Johnson.

"A Dial-Up Network of UNIX TM Systems" acknowledgements: G.L. Chesson, A.S. Cohen, J. Lions,
and P.F. Long, for their suggestions and assistance.

Copyright e 1979, 1980 Regents of the University of California. Permission to copy these documents or
any portion thereof as necessary for licensed use of the software is granted to licensees of this software,
provided this copyright notice and statement of p~rmission are included.

The document "Writing Tools - The STYLE and DICTION Programs" is copyrighted© 1979 by AT &
T Bell Laboratories. Holders of a UNIX TM/32V software license are permitted to copy this document,
or any portion of it, as necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

iv

The document "The Programming Language EFL" is copyrighted ® 1979 by A T & T Bell Laboratories.
EFL has been approved for general release, so that one may copy it subject only to the restriction of giv­
ing proper acknowledgement to A T & T Bell Laboratories.

The documents "A Portable Fortran 77 Compiler" and "Fsck - The UNIX File System Check Program"
are modifications of earlier documents which are copyrighted ® 1979 by A T & T Bell Laboratories.
Holders of a UNIX TM/32V software license are permitted to copy these documents, or any portion of
them, as necessary for licensed use of the software, provided this copyright notice and statement of per­
mission are included. This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE Contract DE-AT03-
76SF00034 and Project Agreement DE-AS03-79ER10358; and by Defense Advanced Research Projects
Agency (DoD) ARPA Order No. 4031, monitored by Naval Electronics Systems Command under Con­
tract No. N00039-80-K-0649.

"Ex Reference Manual" acknowledgements: Chuck Haley contributed greatly to the early development
of ex. Bruce Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and UNIX systems.

"A Guide to the Dungeons of Doom" acknowledgements: Rogue was originally conceived by Glenn Wich­
man and Michael Toy. Ken Arnold and Michael Toy then smoothed out the user interface, and added
many new features. We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman,
Mark Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott
Nelson for their ideas and assistance.

The document "The FRANZ LISP Manual" is copyrighted ® 1980, 1981, 1983 by the Regents of the
University of California. (exceptions: Chapters 13, 14 (first half), 15 and 16 have separate copyrights, as
indicated. These are reproduced by permission of the copyright holders.) Permission to copy without
fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, and the copyright notice of the Regents, University of California, is given. All
rights reserved. Work reported herein was supported in part by the U.S. Department of Energy, Con­
tract DE-AT03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National Science Founda­
tion under Grant No. MCS 7807291. MC68000 is a trademark of Motorola Semiconductor Products, Inc.

"The FRANZ LISP Manual" acknowledgements: Richard Fateman, Mike Curry, John Breedlove, Jeff
Levinsky, Bill Rowan, Tom London, Keith Sklower, Kipp Hickman, Charles Koester, Mitch Marcus,
Don Cohen, John Foderaro, and Kevin Layer.

The document "Berkeley Pascal User's Manual" is copyrighted® 1977, 1979, 1980, 1983 by W.N. Joy,
S.L. Graham, C.B. Haley, M.K. McKusick, P.B. Kessler. The financial support of the first and second
authors' work by the National Science Foundation under grants MCS74-07644-A04, MCS78-07291, and
MCSB0-05144, and the first author's work by an IBM Graduate Fellowship are gratefully acknowledged.

"Introduction to the f77 1/0 Library" acknowledgement: Peter J. Weinberger originally wrote the 1/0/
Library at A T & T Bell Laboratories.

"Writing Papers with NROFF Using -ME", and "-ME Reference Manual" acknowledgements: Bob
Epstein, Bill Joy, Larry Rowe, Ricki Blau, Pamela Humphrey, and Jim Joyce, for their ideas and assis­
tance. UNIX, NROFF, and TROFF are trademarks of AT & T Bell Laboratories.

"Refer - A Bibliography System" acknowledgements: Mike Lesk of AT & T Bell Laboratories wrote the
original refer software, including the indexing programs. Al Stanberger of the Forestry Department
wrote the first version of addbib, then called bibin. Greg Shenaut of the Linguistics Department wrote
the original versions of sortbib and roffbib.

"Screen Updating and Cursor Movement Optimization: A Library Package" acknowledgements: For
their help and support, Bill Joy, Doug Merritt, Kurt Shoens, Ken Abrams, Alan Char, Mark Horton, and
Joe Kalash.

"Disc Quotas in a UNIX Environment" acknowledgements: Sam Leffler and Kirk McKusick, for their

v

work on the quota code. The current disc quota system is loosely based on a very early scheme imple­
mented at the University of New South Wales and Syndey University.

The document, "Fsck - The UNIX File System Check Program", is a revision by Marshall Kirk
McKusick; T.J. Kowalski wrote the original paper. For their help and support, we thank Bill Joy, Sam
Leffler, Robert Elz, Dennis Ritchie, Robert Henry, Larry A. Wehr, and Rick B. Brandt. Our sponsors
were the National Science Foundation under grant MCSS0-05144, and the Defense Advance Research
Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command
under Contract No. N00039-82-C-0235.

"A Fast File System for UNIX" acknowledgements: William N. Joy, Samuel J. Leffler, Robert S. Fabry,
Marshall Kirk McKusick, Robert Elz, Michael Powell, Peter Kessler, Rober Henry, and Dennis Ritchie.
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and
the Defense Advance Research Projects Agency (DoD) under ARPA No. 4031 monitored by Naval Elec­
tronic System Command under Contract No. N00039-82-C-0235.

"4.2BSD Networking Implementation Notes" acknowledgements: The internal structure of the system is
patterned after the Xerox PUP architecture [Boggs79]. The use of software interrupts for process invo­
cation is based on similar facilities found in the VMS operating system. Many of the ideas are based on
Rob Gurwitz's TCP/IP implementation for the 4.lBSD version of UNIX on the VAX [Gurwitz81]. Greg
Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

"SENDMAIL - An Internetwork Mail Router" acknowledgements: For their ideas and assistance, Kurt
Shoens, Bill Joy, Mark Horton, Erick Schmidt, Kirk McKusick, Marvin Solomon, Mike Stonebraker, and
Bob Epstein. A considerable part of this work was done while under the employ of the INGRES Project
at the University of California at Berkeley.

vii

BEFORE YOU START

This is the third volume of ULTRIX Supplementary Documents, a three volume set that con­
tains articles describing the ULTRIX-32 system. The authors are computer scientists and
program developers at Bell Laboratories and the University of California at Berkeley. The
articles explain the software tools and utilities available on your ULTRIX-32 system. They
constitute most of the lore that enriches this operating system; topics range from getting
started to the details of screen updating and cursor movement facilities.

Each volume in this set contains several parts, and each part begins with an introduction.
The introduction to each part serves as a map that will help you find your way around in the
documentation, allowing you to select articles that relate to your interest. Each introduction
gives an overview of the material covered in the part and a description of the articles included.
Most readers will not need to read all articles, since many articles cover parallel topics.

These articles provide authoritative and accurate information that is unavailable elsewhere.
However, you should be aware that some of the information in some articles is dated. We
include those articles because many of the concepts they develop are still current and impor­
tant.

At the end of each volume in this set, you will find a master index identifying topics in all
three volumes.

Topics in Volume III
The articles in this third volume are written for people responsible for the installation,
administration, and daily maintenance of the ULTRIX-32 system. "Bug Fixes and Changes in
4.2BSD," in Part 1, lists changes in directories, libraries, and utilities between the 4.IBSD
software and ULTRIX-32 (based on 4.2BSD).

"A Fast File System for UNIX," by McKusick, Joy, Leffler, and Fabry, compares the new file
system used in ULTRIX-32 with the original UNIX file system. The new system is faster and
more reliable, and the block size is adjustable. The article also explains considerations and
procedures that will help you take full advantage of these improvements.

The articles in Part 2, Maintenance and Administration, deal with disk quotas, fixing cor­
rupted file systems, and management of the sendmail utility. The quota utility enables the
system manager to limit the number of blocks and the number of files available to each user.
Fsck, the file system check program, lets you examine the integrity of the file system and
repair any inconsistencies. The sendmail utility lets users send messages between computer
systems that are connected to different networks.

Articles in Part 3, Communication, explain the interprocess communication software. Articles
in Part 4, Security Considerations, off er a variety of tips on how you can protect your system
against crashes and unauthorized access. And Part 5, Supporting Documents, provides infor­
mation on software changes new to this release.

BEFORE YOU START

PART I: OPERATING SYSTEM CHANGES

BUG FIXES AND CHANGES IN 4.2BSD

NOTABLE IMPROVEMENTS.

Section 1.
Section 2.
Section 3.
Section 4.
Section 5.
Section 6.
Section 7.
Section 8.

A FAST FILE SYSTEM FOR UNIX

INTRODUCTION
OLD FILE SYSTEM
NEW FILE SYSTEM ORGANIZATION .

Optimizing Storage Utilization
File System Parameterization .
Layout Policies

PERFORMANCE
FILE SYSTEM FUNCTIONAL ENHANCEMENTS

Long File Names .
File Locking . .
Symbolic Links.
Rename
Quotas

SOFTWARE ENGINEERING .

PART 2: MAINTENANCE AND ADMINISTRATION

DISC QUOTAS IN A UNIX ENVIRONMENT

USERS' VIEW OF DISC QUOTAS.

Surviving When Quota Limit Is Reached.

ADMINISTERING THE QUOTA SYSTEM
SOME IMPLEMENTATION DETAIL

Table of Contents ix

. 1-3

. 1-5
1-10
1-14
1-15
1-16
1-17
1-17
1-18

1-23
1-25
1-26

1-26
1-28
1-29

1-31
1-33

1-33
1-33
1-34
1-35
1-35

1-36

. 2-3

. 2-3

. 2-4

. 2-5

x Table of Contents

FSCK - THE UNIX FILE SYSTEM CHECK PROGRAM

INTRODUCTION
OVERVIEW OF THE FILE SYSTEM

Superblock
Summary Information . . .
Cylinder Groups
Fragments
Updates to the File System .

FIXING CORRUPTED FILE SYSTEMS .

Detecting and Correcting Corruption.
Super-Block Checking . .
Free Block Checking . . .
Checking the Inode State .
Inode Links
Inode Data Size
Checking the Data Associated with an Inode .
File System Connectivity

APPENDIX A: FSCK ERROR CONDITIONS .

Conventions
Initialization
Phase 1 - Check Blocks and Sizes .
Phase 2 - Check Pathnames
Phase 3 - Check Connectivity . . .
Phase 4 - Check Reference Counts.
Phase 5 - Check Cyl Groups ...
Phase 6 - Salvage Cylinder Groups
Cleanup

SENDMAIL INSTALLATION AND OPERATION GUIDE

BASIC INSTALLATION

Off-the-Shelf Configurations. .
Installation Using the Makefile
Installation by Hand .

lib/libsys.a
/usr/lib/sendmail. .
/usr/lib/sendmail.cf
/usr/ucb/newaliases
/usr/lib/sendmail.cf
/usr/spool/mqueue .
/usr/lib/aliases . . .
/usr/lib/sendmail.fc
/etc/re
/usr/lib/sendmail.hf
/usr/lib/sendmail.st
/etc/syslog.
/usr/ucb/newaliases
/usr/ucb/mailq . . .

. 2-7

. 2-8

. 2-8

. 2-8

. 2-8

. 2-9

. 2-9

2-10

2-10
2-10
2-10
2-11
2-11
2-12
2-12
2-12

2-14

2-14
2-14
2-16
2-18
2-21
2-22
2-24
2-25
2-25

2-27

2-28
2-28
2-28

2-28
2-29
2-W
2-29
2-29
2-29
2-29
2-30
2-30
2-30
2-30
2-30
2-31
2-31

NORMAL OPERATIONS

Quick Configuration Startup
The System Log

Format ..
Levels ...

The Mail Queue

Printing the Queue
Format of Queue Files .
Forcing the Queue . . .

The Alias Database.

Rebuilding the Alias Database
Potential Problems
List Owners

Per-User Forwarding (.forward Files).
Special Header Lines . .

Return-Receipt-To:
Errors-To: . . .
Apparently-To:

ARGUMENTS ...

Queue Interval .
Daemon Mode .
Forcing the Queue
Debugging
Trying a Different Configuration File
Changing the Values of Options .

TUNING ...

Timeouts.

Queue Interval
Read Timeouts
Message Timeouts .

Delivery Mode
Log Level
File Modes

To Suid or Not To Suid?.
Temporary File Modes. .
Should My Alias Database Be Writable?

THE WHOLE SCOOP ON THE CONFIGURATION FILE

The Syntax

R and S - Rewriting Rules .
D - Define Macro
C and F - Define Classes.
M - Define Mailer.
H - Define Header. . . .
0 - Set Option
T - Define Trusted Users
P - Precedence Definitions .

Table of Contents xi

2-31

2-31
2-31

2-31
2-31

2-31

2-31
2-32
2-33

2-34

2-34
2-34
2-35

2-35
2-35

2-35
2-35
2-35

2-35

2-36
2-36
2-36
2-36
2-36
2-36

2-37

2-37

2-37
2-37
2-37

2-37
2-38
2-38

2-38
2-38
2-38

2-39

2-39

2-39
2-40
2-40
2-40
2-40
2-41
2-41
2-41

xii Table of Contents

SENDMAIL INSTALLATION AND OPERATION GUIDE (continued)

The Semantics

Special Macros, Conditionals .
Special Classes
The Left Hand Side
The Right Hand Side
Semantics of Rewriting Rule Sets.
Mailer Flags Etc.
The "Error" Mailer

Building a Configuration File From Scratch

What You Are Trying To Do
Philosophy

Large Site, Many Hosts - Minimum Information .
Small Site - Complete Information
Single Host.

Relevant Issues
How To Proceed
Testing the Rewriting Rules - The -ht Flag .
Building Mailer Descriptions

APPENDIX A: COMMAND LINE FLAGS ..
APPENDIX B: CONFIGURATION OPTIONS
APPENDIX C: MAILER FLAGS.
APPENDIX D: OTHER CONFIGURATION

Parameters in md/config.m4.
Parameters in src/conf.h
Configuration in src/conf.c ,

APPENDIX E: SUMMARY OF SUPPORT FILES.

PART 3: COMMUNICATIONS

A 4.2BSD INTERPROCESS COMMUNICATION PRIMER

INTRODUCTION .
BASICS

Socket Types .
Socket Creation
Binding Names. ,
Connection Establishment.
Data Transfer
Discarding Sockets
Connectionless Sockets . .
Input/Output Multiplexing

NETWORK LIBRARY ROUTINES

Host Names ..
Network Names
Protocol Names.
Service Names .
Miscellaneous .

2-41

2-41
2-43
2-43
2-44
2-44
2-45
2-45

2-45

2-45
2-46

2-46
2-47
2-47

2-47
2-48
2-48
2-48

2-51
2-52
2-54
2-56

2-56
2-56
2-57

2-60

. 3-5

. 3-6

. 3-6

. 3-7

. 3-7

. 3-8

. 3-9
3-10
3-10
3-11

3-12

3-12
3-13
3-13
3-14
3-14

Table of Contents xiii

CLIENT/SERVER MODEL 3-17

Servers. 3-17
Clients 3-19
Connectionless Servers 3-20

ADV AN CED TOPICS . . . 3-23

Out of Band Data . . 3-23
Signals and Process Groups . 3-23
Pseudo Terminals. 3-24
Internet Address Binding . . 3-24
Broadcasting and Datagram Sockets. 3-27
Signals. 3-27

4.2BSD NETWORKING IMPLEMENTATION NOTES

INTRODUCTION .
OVERVIEW
GOALS
INTERNAL ADDRESS REPRESENTATION.
MEMORY MANAGEMENT.
INTERNAL LAYERING.

Socket Layer

Socket State. . . .
Socket Data Queues .
Socket Connection Queueing .

Protocol Layer(s)
Network-Interface Layer

UNIBUS Interfaces

SOCKET/PROTOCOL INTERFACE.
PROTOCOL/PROTOCOL INTERFACE

pr_output ..
pr_input ..
pr_ctlinput .
pr_ctloutput.

PROTOCOL/NETWORK-INTERFACE INTERFACE.

Packet Transmission
Packet Reception

GATEWAYS AND ROUTING ISSUES.

Routing Tables
Routing Table Interface. . .
User Level Routing Policies .

RAW SOCKETS . .

Control Blocks . .
Input Processing .
Output Processing

3-29
3-30
3-31
3-32
3-33
3-35

3-35

3-36
3-36
3-37

3-37
3-39

3-40

3-42
3-45

3-45
3-45
3-45
3-46

3-47

3-47
3-47

3-48

3-48
3-49
3-49

3-51

3-51
3-51
3-52

xiv Table of Contents

4.2BSD NETWORKING IMPLEMENTATION NOTES (continued)

BUFFERING AND CONGESTION CONTROL.

Memory Management ...
Protocol Buffering Policies
Queue Limiting ..
Packet Forwarding .

OUT OF BAND DATA .
TRAILER PROTOCOLS.

SENDMAIL: AN INTERNETWORK MAIL ROUTER

DESIGN GOALS
OVERVIEW

System Organization .
Interfaces to the Outside World .

Argument Vector/Exit Status.
SMTP Over Pipes
SMTP Over an IPC Connection

Operational Description

Argument Processing and Address Parsing
Message Collection
Message Delivery
Queueing for Retransmission .
Return To Sender .

Message Header Editing . . .
Configuration File

USAGE AND IMPLEMENTATION

Arguments
Mail to Files and Programs . .
Aliasing, Forwarding, Inclusion

Aliasing ..
Forwarding . .
Inclusion ...

Message Collection .
Message Delivery.
Queued Messages.
Configuration. . .

Macros ...
Header Declarations .
Mailer Declarations .
Address Rewriting Rules .
Option Setting. •

COMPARISON WITH OTHER MAILERS .

Delivermail.
MMDF
Message Processing Module

EVALUATIONS AND FUTURE PLANS.

3-53

3-53
3-53
3-53
3-54

3-55
3-56

3-60
3-61

3-61
3-61

3-62
3-62
3-62

3-62

3-62
3-62
3-63
3-63
3-63

3-63
3-63

3-63

3-63
3-64
3-64

3-64
3-64
3-65

3-65
3-65
3-65
3-65

3-66
3-66
3-66
3-66
3-67

3-67

3-67
3-67
3-68

3-68

PART 4: SECURITY CONSIDERATIONS

ON THE SECURITY OF UNIX

PASSWORD SECURITY: A CASE HISTORY

INTRODUCTION . . .
PROLOGUE
THE FIRST SCHEME
ATTACKS ON THE FIRST APPROACH
AN ANECDOTE
IMPROVEMENTS TO THE FIRST APPROACH.

Slower Encryption
Less Predictable Passwords .
Salted Passwords
The Threat of the DES Chip
A Subtle PQint .

CONCLUSIONS

PART 5: SUPPORTING DOCUMENTS

CHANGES TO THE KERNEL IN 4.2BSD

CARRYING OVER LOCAL SOFTWARE.
ORGANIZATIONAL CHANGES.
BUG FIXES AND CHANGES .

/sys/h
/sys/sys

Initialization Code. .
Kernel-Level Support
Disk Quotas
General Subroutines .
System Level Support .
Terminal Handling . .
File System Support . .
Interprocess Communication .
Virtual Memory Support .

/sys/conf ..
/sys/vaxuba.
/sys/vax ..
/sys/vaxmba

STANDALONE SUPPORT

Disk Formatting . . .
Standalone I/0 Library .
System Bootstrapping ..

Table of Contents xv

. 4-7

. 4-8

. 4-8

. 4-8
4-10
4-10

4-10
4-10
4-11
4-11
4-11

4-12

. 5-3

. 5-4

. 5-5

. 5-5

. 5-7

. 5-8

. 5-8

. 5-9

. 5-9

. 5-9

. 5-9

. 5-9
5-10
5-10

5-11
5-12
5-13
5-14

5-15

5-15
5-15
5-15

xvi Table of Contents

INSTALLING AND OPERATING 4.2BSD ON THE VAX

INTRODUCTION

Hardware Supported
Distribution Format
VAX Hardware Terminology
UNIX Device Naming ...
UNIX Devices: Block and Raw

BOOTSTRAP PROCEDURE

Step 1: Formatting the Disk ..
Step 2: Copying the Mini-Root File System
Step 3: Booting from the Mini-Root File System .
Step 4: Restoring the Root File System . .
Step 5: Creating a Boot Floppy or Cassette
Rebooting the Completed Root File System
Step 7: Setting Up the /usr File System
Additional Software.

UPGRADING A 4BSD SYSTEM.

Step 1: What To Save .. .
Step 2: Merging
Step 3: Converting File Systems.
Bootstrapping Language Processors

SYSTEM SETUP

Making a UNIX Boot Floppy .
Making a UNIX Boot Cassette
Kernel Configuration

Kernel Organization . . .
Devices and Device Drivers.
Building New System Images.

Disk Configuration

Initializing /etc/fstab. . . .
Disk Naming and Divisions
Space Available
Layout Considerations .
File System Parameters
Implementing a Layout
Configuring Terminals .

--·-Adding Users.
Site Tailoring
Setting Up the Line Printer System .
Setting Up the Mail System

Setting Up a UUCP Connection

NETWORK SETUP. . . .

System Configuration .
Network Data Bases .

Regenerating /etc/hosts and /etc/networks .
/etc/hosts.equiv
/etc/re.local .
/etc/ftpusers . .

5-17

5-17
5-18
5-18
5-19
5-20

5-22

5-22
5-24
5-25
5-26
5-27
5-27
5-28
5-31

5-32

5-32
5-33
5-34
5-34

5-35

5-35
5-35
5-36

5-36
5-37
5-37

5-37

5-38
5-38
5-38
5-39
5-40
5-42
5-42

5-43
5-43
5-44
5-44

5-45

5-47

5-47
5-48

5-48
5-49
5-49
5-50

Table of Contents xvii

SYSTEM OPERATION 5-52

Bootstrap and Shutdown Procedures. 5-52
Device Errors and Diagnostics 5-53
File System Checks, Backups and Disaster Recovery 5-53
Moving Filesystem Data 5-54
Monitoring System Performance. 5-54
Recompiling and Reinstalling System Software. 5-55
Making Local Modifications. 5-56
Accounting 5-56
Resource Control 5-56
Network Troubleshooting . . 5-57
Files Which Need Periodic Attention 5-57

APPENDIX A: BOOTSTRAP DETAILS . 5-59

Contents of the Distribution Tapes . 5-59
Control Status Register Addresses . . 5-64
Generic System Control Status Register Addresses 5-64

APPENDIX B: LOADING THE TAPE MONITOR. . 5-65
APPENDIX C: INSTALLATION TROUBLESHOOTING. 5-69

Using the Distribution Console Medium . 5-69
Booting the Generic System . 5-70
Building Console Cassettes 5-71

BUILDING 4.2BSD SYSTEMS WITH CONFIG

INTRODUCTION
CONFIGURATION FILE CONTENTS .

Machine Type
Cpu Type
System Identification .
Timezone
Maximum Number of Users.
Root File System Location
Hardware Devices
Optional Items

SYSTEM BUILDING PROCESS.

Creating a Configuration File
Constructing Source Code Dependencies .
Building the System . . .
Sharing Object Modules . . .
Building Profiled Systems . . .

CONFIGURATION FILE SYNTAX

Global Configuration Parameters
System Image Parameters.
Device Specifications .
Pseudo-Devices

5-73
5-74

5-74
5-74
5-74
5-74
5-74
5-75
5-75
5-75

5-76

5-76
5-77
5-77
5-77
5-78

5-79

5-79
5-80
5-81
5-82

xviii Table of Contents

BUILDING 4.2BSD SYSTEMS WITH CONFIG (continued)

SAMPLE CONFIGURATION FILES ..

VAX-11/780 System
VAX-11/750 with Network Support
Miscellaneous Comments

ADDING NEW SYSTEM SOFTWARE.

Modifying System Code
Adding Device Drivers to 4.2BSD .
Autoconfiguration on the VAX . .
UNIBUS Resource Management Routines
Autoconfiguration Requirements.
Adding Nonstandard System Facilities. .

APPENDIX A: CONFIGURATION FILE GRAMMAR

Lexical Conventions

APPENDIX B: RULES FOR DEFAULTING SYSTEM DEVICES.
APPENDIX C: SAMPLE CONFIGURATION FILES
APPENDIX D: VAX KERNEL DATA STRUCTURE SIZING RULES.

Compile Time Rules . .
Run-Time Calculations .
System Size Limitations

SETTING UP VERSION 1.0 OF UNIX/32V OPERATING SYSTEM

MAKING A DISK FROM TAPE.
BOOTING UNIX ...
RECONFIGURATION.
SPECIAL FILES . . .
TIME CONVERSION .
DISK LAYOUT
NEW USERS
MULTIPLE USERS . .
FILE SYSTEM HEALTH.
CONVERTING SIXTH EDITION FILESYSTEMS .
ODDS AND ENDS

REGENERATING SYSTEM SOFTWARE FOR UNIX/32V

INTRODUCTION
WHERE COMMANDS AND SUBROUTINES LIVE
COMMANDS
THE ASSEMBLER.
THE C COMPILER .
UNIX
THE LIBRARY LIBC.A.
OTHER LIBRARIES
SYSTEM TUNING . . .

5-84

5-84
5-85
5-87

5-88

5-88
5-88
5-89
5-95
5-95
5-96

5-97

5-98

5-99
. 5-101
. 5-103

. 5-103

. 5-104

. 5-104

. 5-107

. 5-109

. 5-111

. 5-112

. 5-113

. 5-113

. 5-114

. 5-115

. 5-115

. 5-115

. 5-115

. 5-117

. 5-117

. 5-118

. 5-118

. 5-118

. 5-119

. 5-120

. 5-120

. 5-121

A DIAL-UP NETWORK OF UNIX SYSTEMS

PURPOSE ...
DESIGN GOALS
PROCESSING .

File Copy .
Scan for Work
Call Remote System
Line Protocol Selection .
Work Processing
Conversation Termination.

PRESENT USES . .
PERFORMANCE . .
FURTHER GOALS .
LESSONS

UUCP IMPLEMENTATION DESCRIPTION

UUCP - UNIX TO UNIX FILE COPY
UUX - UNIX TO UNIX EXECUTION
UUCICO - COPY IN, COPY OUT
UUXQT - UUCP COMMAND EXECUTION.
UULOG - UUCP LOG INQUIRY
UUCLEAN - UUCP SPOOL DIRECTORY CLEANUP
SECURITY
UUCP INSTALLATION.
ADMINISTRATION

Table of Contents xix

.- . 5-123
. 5-123
. 5-125

. 5-125

. 5-125

. 5-125

. 5-126

. 5-126

. 5-126

. 5-126

. 5-127

. 5-128

. 5-128

. 5-131

. 5-133

. 5-134

. 5-137

. 5-137

. 5-137

. 5-138

. 5-138

. 5-142

Introduction 1-1

PART 1: OPERATING SYSTEM CHANGES

The two articles in Part 1 deal with the differences between the 4.2BSD UNIX system (the
ULTRIX-32 system is based on 4.2BSD) and earlier versions of UNIX. "Bug Fixes and
Changes in 4.2BSD" gives a comprehensive list of improvements to the system including:

• A new set of interprocess communication facilities

• A new signal package

• Support for advisory locking on files

• Per-user and per-file system disk quotas

• A new symbolic debugger, dbx, for C and Fortran programs

• A new internetwork mail router, sendmail

Changes to specific software tools and commands are listed alphabetically.

"A Fast File System for UNIX," by McKusick, Joy, Leffler, and Fabry, explains the new file
system in detail. This file system is specifically designed for the VAX hardware; it is available
only on 4.2BSD and the ULTRIX-32 system. The article is essential to people responsible for
management and administration of ULTRIX-32 systems.

The new file system, unlike the original UNIX file system, allows you to select a block size.
The block size can be 4096 bytes or any power of 2 greater than 4096; you must choose the
size when you create the file system. You can optimize the disk usage and file transfer rates
on your ULTRIX-32 system by choosing a block size that:

• Matches the physical characteristics of your disk drives

• Is appropriate for your applications

The article also explains use of:

• A file-locking facility that allows cooperating programs to apply advisory locks on
files

• Symbolic links that allow references across separate physical file systems

• A rename facility that replaces three system calls with one

• A quota utility that allows the system administrator to set limits on the number of
blocks and the number of files available to each user

You can find more detailed information on the quota utility in "Disk Quotas in a UNIX
Environment" in Part 2 of this volume.

Bug Fixes and Changes in 4.2BSD 1-3

Bug fixes and changes in 4.2BSD

Samuel J. Leffier

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

Notable improvements

• The file system organization has been redesigned to provide at least an order of magni­
tude improvement in disk bandwidth.

• The system now provides full support for the DOD Standard TCP/IP network communi­
cation protocols. This support has been integrated into the system in a manner which
allows the development and concurrent use of other communication protocols. Hardware
support and routing have been isolated from the protocols to allow sharing between
varying network architectures. Software support is provided for 10 different hardware
devices including 3 different 10 Mb/s Ethernet modules.

• A new set of interprocess communication facilities has replaced the old multiplexed file
mechanism. These new facilities allow unrelated processes to exchange messages in
either a connection-oriented or connection-less manner. The interprocess communica­
tion facilities have been integrated with the networking facilities (described above) to
provide a single user interface which may be used in constructing applications which
operate on one or more machines.

• A new signal package which closely models the hardware interrupt facilities found on the
VAX replaces the old signals and jobs library of 4.lBSD. The new signal package pro­
vides for automatic masking of signals, sophisticated signal stack management, and reli­
able protection of critical regions.

• File names are now almost arbitrary length (up to 255 characters) and a new file type,
symbolic link, has been added. Symbolic links provide a "symbolic referencing" mechan­
ism similar to that found in Multics. They are interpolated during pathname expansion
and allow users to create links to files and directories which span file systems.

• The system supports advisory locking on files. Files can have "shared" or "exclusive"
locks applied by processes. Multiple processes may apply shared locks, but only one pro­
cess at any time may have an exclusive lock on a fiJ.e. Further, when an exclusive lock is
present on a file, shared locks are disallowed. Locking requests normally block a process
until they can be completed, or they may be indicated as "non-blocking" in which case
an error is returned if the lock can not be immediately obtained.

• The group identifier notion has been extended to a "group set". When users log in to
the system they are placed in all their groups. Access control is now done based on the
group set rather than just a single group id. This has obviated the need for the newgrp
command.

• Per-user, per-filesystem disk quotas are now part of the system. Soft and hard limits
may be specified on a per user and per filesystem basis to control the number of files and

1-4 Bug Fixes and Changes in 4.2BSD

amount of disk space allocated to a user. Users who exceed a soft limit are warned and
if, after three login sessions, their disk usage has not dropped below the soft limit, their
soft limit is treated as a hard limit. Utilities exist for the creation, maintenance, and
reporting of disk quotas.

• System time is now available in microsecond precision and millisecond accuracy. Users
are provided with 3 high-resolution timers which may be set up to automatically reload
on expiration. The timers operate in real time, user time, and process virtual time (for
profiling). All statistics and times returned to users are now given in a standard format
with seconds and microseconds separated. This eliminates program dependence on the
line clock frequency.

• A new system call to rename files in the same file system has been added. This call
eliminates many of the anomalies which could occur in older versions of the system due
to lack of atomicity in removing and renaming files.

• A new system call to truncate files to a specific length has been added. This call
improves the performance of the Fortran 1/0 library.

• Swap space configuration has been improved by allowing multiple swap partition of
varying sizes to be interleaved. These partitions are sized at boot time to minimize
configuration dependencies.

• The Fortran 77 compiler and associated 1/0 library have undergone extensive changes to
improve reliability and performance. Compilation may, optionally, include optimization
phases to improve code density and decrease execution time.

• A new symbolic debugger, dbx, replaces the old symbolic debugger sdb. Dbx works on
both C and Fortran 77 programs and allows users to set break points and trace execution
by source code line numbers, references to memory locations, procedure entry, etc. Dbx
allows users to reference structured and local variables using the program's programming
language syntax.

• The delivermail program has been replaced by sendmail. Sendmail provides full inter­
network routing, domain style naming as defined in the DARPA Request For Comments
document #833, and eliminates the compiled in configuration database previously used
by delivermail. Further, sendmail uses the DARPA standard Simple Mail Transfer Pro­
tocol (SMTP) for mail delivery.

• The system contains a new line printer system. Multiple line printers and spooling
queues are supported through a printer database file. Printers on serial lines, raster
printing devices, and laser printers are supported through a series of filter programs
which interface to the standard line printer "core programs". A line printer control pro­
gram, lpc, allows printers and printer queues to be manipulated. Spooling to remote
printers is supported in a transparent fashion.

• Cu has been replaced by a new program tip. Tip supports a number of auto-call units
and allows destination sites to be specified by name rather than phone number. Tip also
supports file transfer to non-UNIX machines and can be used with sites which require
half-duplex and/or odd-even parity.

• Uucp now supports many auto-call units other than the DNll. Spooling has been reor­
ganized into multiple directories to cut down on system overhead. Several new utilities
and shell scripts exist for use in adminstrating uucp traffic. Operation has been greatly
improved by numerous bug fixes.

adb

add bib

apply

ar

cc

chfn
chgrp

cp

csh

ctags

cu

db:x:

Bug Fixes and Changes in 4.2BSD 1-5

Bug fixes and changes

Section 1

Support has been added for interpreting kernel data structures on a running sys­
tem and in post mortem crash dumps created by savecore. A - k option causes
adb to map addresses according to the system and current process page tables. A
new command, $p, can be used to switch between process contexts. Many scripts
are available for symbolically displaying kernel data structures, searching for a
process' context by process ID, etc. A new document, "Using ADB to Debug the
UNIX Kernel", supplies hints in the use of adb with system crash dumps.

Is a new utility for creating and extending bibliographic data bases for use with
refer.

Is a new program which may be used to apply a command to a set of arguments.

Has a new key, 'o', for preserving a file's modification time when it is extracted
from an archive.

Supports the additional symbol information used by dbx. The old symbol infor­
mation, used by the defunct sdb debugger, is available by specifying the -go flag.
A new flag, -pg, creates executable programs which collect profiling information
to be interpreted by the new gprof program. A bug in the C preprocessor, which
caused line numbers to be incorrect for macros with formal parameters with
embedded newlines has been fixed. The C preprocessor now properly handles
hexadecimal constants in "#if" constructs and checks for missing "#endir' state­
ments.

Now works interactively in changing a user's information field in the password file.

Is now in section 1 and may be executed by anyone. Users other than the super­
user may change group ownership of a file they own to any group in their group
access list.

Now has a -r flag to copy recursively down a file system tree.

A bug which caused backquoted commands to wedge the terminal when inter­
rupted has been fixed. Job identifiers are now globbed. A bug which caused the
"wait" command to uninteruptible in certain cases has been fixed. History may
now be saved and restored across terminal sessions with the savehist variable.
The newgrp command has been deleted due to the new group facilities.

Now handles C typedefs.

Exists only in the form of a "compatible front-end" to the new tip program.

Is a new symbolic debugger replacing sdb. Dbx handles C and Fortran programs.

delivermail

df

du

dump

error

eyacc

Has been replaced by the new sendmail program.

Understands the new file system organization and reports all disk space totals in
kilobytes.

Now reports disk usage in kilobytes and uses the new field in the inode structure
which contains the actual number of blocks allocated to a file to increase accuracy
of calculations.

Has been moved to section 8.

Has been taught about the error message formats of troff.

A bug which caused the generated parser to not recognize valid null statements
has been fixed.

1-6 Bug Fixes and Changes in 4.2BSD

f77 Has undergone major changes.

fed

file

find

f p

fpr

fsplit

ftp

gcore

gprof

groups

hostid

The i/o library has been extensively tested and debugged. Sequential files are
now opened at the BEGINNING by default; previously they were opened at the
end.

Compilation of data statements has been substantially sped up. Significant new
optimization is optionally available (this is still a bit buggy and should be used
with caution). Even without optimization, however, single precision computations
execute much faster.

The new debugger, dbx, has replaced sdb for debugging Fortran programs; sdb is
no longer supported~

Files with ".F" suffixes are preprocessed by the C preprocessor. This allows C­
style "#include" and "#define" constructs to be used. The compiler has been
modified to print error messages with sensible line numbers. Make also under­
stands the ".F" suffix. Note that when using the C preprocessor, the 72 column
convention is not followed.

The - I option for specifying short integers has been changed to -i. The - I
option is now used to specify directory search paths for "#include" statements. A
-pg option for creating executable images which collect profiling information for
gprof has been added.

Is a font editor of dubious value.

Now understands symbolic links.

Has a new -type value, 'l', for finding symbolic links.

Is a new compiler/interpreter for the Functional Programming language. A sup­
porting document is present in Volume 2C of the UNIX Programmer's Manual.

Is a new program for printing Fortran files with embedded Fortran carriage con­
trols.

Is a new program for splitting a multi-function Fortran file into individual files.

Is a new program which supports the ARP A standard File Transfer Protocol.

Is a new program which creates a core dump of a running process.

Is a new profiling tool which displays execution time for the dynamic call graph of
a program. Gprof works on C, Fortran, and Pascal programs compiled with the
-pg option. Gprof may also be used in creating a call graph profile for the
operating system. A supporting document, "gprof: A Call Graph Execution
Profiler" is included in Volume 2C of the UNIX Programmer's Manual.

Is a new program which displays a user's group access list.

Is a new program which displays the system's unique identifier as returned by the
new gethostid system call. The super-user uses this program to set the host
identifier at boot time.

hostname Is a new program which displays the system's name as returned by the new
gethostname system call. The super-user uses this program to set the host name
at boot time.

indent

install

iostat

last

Is a new program for formatting C program source.

Is a shell script used in installing software.

Now reports kilobytes per second transferred for each disk. This is useful as the
unit of information transferred is no longer a constant one kilobytes.

Now displays the remote host from which a user logged in (when accessing a
machine across a network). The pseudo user "ftp" may be specified to find out
information about FTP file transfer sessions.

Bug Fixes and Changes in 4.2BSD 1-7

lastcomm Now displays flags for each command indicating if the program dumped core, used
PDP-11 mode, executed with a set-user-ID, or was created as the result of a fork
(with no following exec).

learn

lint

lisp

In
login

lpq

lpr

lprm

ls

m4

Mail

make

mkdir

mt

mv

net

netstat

oldcsh

od

Now has lessons for vi (this is user contributed software which is not part of the
standard system).

Has a new -C flag for creating lint libraries from C source code. Has improved
type checking on static variables.

Has been ported to several 68000 UNIX systems, the relevant code is included in
the distribution. A new vector data type and a form of "closure" have been
added.

Has a new flag, -s, for creating symbolic links.

Has been extensively modified for use with the rlogind and telnetd network
servers.

Is totally new, see lpr.

And its related programs are totally new. The line printer system supports multi­
ple printers of many different characteristics. A master data base, /etc/printcap,
describes both local printers and printers accessable across a network. A docu­
ment describing the line printer system is now part of Volume 2C of the UNIX
Programmer's Manual.

Is totally new, see lpr.

Has been rewritten for the new directory format. It understands symbolic links
and uses the new inode field which contains the actual number of blocks allocated
to a file when the -s flag is supplied. Many rarely used options have been
deleted.

A bug which caused m4 to dump core when keywords were undefined then
redefined has been fixed.

Now supports mail folders in the style of the Rand MH system. Has been
reworked to cooperate with sendmail in understanding the new mail address for­
mats. Allows users to defined message header fields which are not be displayed
when a messages is viewed. Many other changes are described in a revised version
of the user manual.

Understands not to unlink directories when interrupted. Understands the new
".F" suffix for Fortran source files which are to be run through the C preprocessor.
Has a new predefined macro MFLAGS which contains the flags supplied to make
on the command line (useful in creating hierarchies of makefiles).

Now uses the mkdir system call to run faster.

Has a new command, status, which shows the current state of a tape drive.

Has been rewritten to use the new rename system call. As a result, multiple direc­
tories may now be moved in a single command, the restrictions on having" .. " in a
pathname are·no longer present, and everything runs faster.

And all related Berknet programs are no longer part of the standard distribution.
These programs live on in /usr/src/old for those who can not do without them.

Is a new program which displays network statistics and active connections.

No longer exists.

Has gobs of new formats options.

pagesize Is a new program which prints the system page size for use in constructing port­
able shell scripts.

1-8 Bug Fixes and Changes in 4.2BSD

passwd Now reliably interlocks with chsh, chfn, and vipw, in guarding against concurrent
updates to the password file.

pc/pi For loops are now done according to the standard. Files may now be dynamically
allocated and disposed. Records and variant records are now aligned to
correspond to C structures and unions (this was falsely claimed before). Several
obscure bugs involving formal routines have been fixed. Three new library rou­
tines support random access file i/o, see /usr/include/pascal for details.

pc For loop variables and with pointers are now allocated to registers. Separate
compilation type checking can now be done without reference to the source file;
this permits movement (including distribution) of .o files and creation of libraries.
Display entries are saved only when needed (a speed optimization).

pdx Is a new debugger for use with pi. Pdx is invoked automatically by the inter­
preter if a run-time error is encountered. Future work is planned to extend the
new dbx debugger to understand code generated by the Pascal compiler pc.

ps Has been changed to work with the new kernel and is no longer dependent on sys­
tem page size. All process segment sizes are now shown in kilobytes. Understands
that the old "using new signal facilities" bit in the process structure now means
"using old 4.lBSD signal facilities".

pwd Now simply calls the getwd (3) routine.

rep Is a new program for copying files across a network. The complete syntax of cp is
supported, including recursive directory copying.

refer Has had many bugs fixed in it and the associated -ms macro package support
made to work.

reset Now resets all the special characters to the system defaults specified in the
include file <sys/ttychars.h>.

rlogin Is a new program for logging in to a machine across a network. Rlogin uses the
files /etc/hosts.equiv and .rhosts in the users login directory to allow logins to be
performed without a password. Rlogin supports proper handling of AS/"Q and
flushing of output when an interrupt is typed at the terminal. Its ·~· escape
sequences are reminiscent of the old cu program (as it is based on the same source
code).

rmdir Now uses the rmdir system call to run more efficiently and not require root
privileges. Unfortunately, this means arguments which end in one or more "/"
characters are no longer legal.

roftbib Is a new program for running off bibiliographic databases.

rsh Is a new program which supports remote command execution across a network.

ruptime Is a new program which displays system status information for clusters of
machines attached to a local area network.

rwho Is a new program which displays users logged in on clusters of machines attached
to a local area network.

script Has been rewritten to use pseudo-terminals. This allows the C shell job control
facilities (among other things) to be used while scripting. A side effect of this
change is that scripts now contain everything typed at a terminal.

sdb Has been replaced by dbx; it still lives on in /usr/src/old for those with a personal
attachment.

sendbug Is a new command for submitting bug reports on 4.2BSD in a standard format
suitable for automatic filing by the bugfiler program.

sh No longer has a newgrp command due to the new groups facilities.

sort bib

strip

stty

SU

sysline

tail

talk

tar

telnet

tip

ul

uucp

uusnap

vfontinfo

vgrind

vi

vlp

vmstat

Bug Fixes and Changes in 4.2BSD 1-9

Is a new command for sorting bibliographic databases.

Has been made blindingly fast by using the new truncate system call (thereby
eliminating the old method of copying the file).

The default system erase, kill, and interrupt characters have been made the DEC
standard values of DEL ('A?'), 'AU', and 'AC'. This is not expected to gain much
popularity, but was done in the interest of compatibility with many other stan­
dard operating systems.

Has been changed to do a "full login" when starting up the subshell. A new flag,
-f, does a "fast" su for when a system is heavily loaded. Extra arguments sup­
plied to su are now treated as a command line and executed directly instead of
creating an interactive shell.

Is a new program for maintaining system status information on terminals which
support a "status line"; a poor man's alternative to a window manager (or emacs).

Has a larger buffer so that "tail -r" and similar show more.

Is a new program which provides a screen-oriented write facility. Users may be
"talked to"across a network, though satellite response times have indicated over­
seas conversations are still best done by phone. Can be very obnoxious when
engaged in important work.

Now allocates its internal buffers dynamically so that the block size can be
specified to be very large for streaming tape drives. Also, now avoids many core­
core copy operations. Has a new -C option for forcing chdir operations in the
middle of operation (thereby allowing multiple disjoint subtrees to be easily
placed in a single file, each with short relative pathnames). Has a new flag, 'B',
for forcing 20 block records to be read and written; useful in joining two tar com­
mands with a remote shell to transfer large amounts of data across a network.

Is a new program which supports the ARP A standard Telnet protocol.

Replaces cu as the standard mechanism for connecting to machines across a phone
line or through a hardwired connection. Tip uses a database of system descrip­
tions, supports many different auto-call units, and understands many nuances
required to talk to non-UNIX systems. Files may be transferred to and from
non-UNIX systems in a simple fashion.

A bug which sometimes caused an extra blank line to be printed after reaching
end of file has been fixed.

And related programs have been extensively enhanced to support many different
auto-call units and multiple spooling directories (among other things). A large
number of bugs and performance enhancements have been made.

Is a new program which gives a snap-shot of the uucp spooling area.

Is a program used to inspect and print information about fonts.

Now uses a regular expression language to describe formatting. A -f flag forces
vgrind to act as a filter, generating output suitable for inclusion in troff and/or
nroff documents. Language descriptions exist for C, Pascal, Model, C shell,
Bourne shell, Ratfor, and Icon programs.

A bug which caused the AB command to place the cursor on the wrong line has
been fixed. A bug which caused vi to believe a file had been modified when an i/o
error occurred has been fixed. A bug which allowed "hardtabs" to be set to 0
causing a divide by zero fault has been fixed.

Is a new program for pretty printing Lisp programs.

Has had one new piece of information added to -s summary, the number of fast
page reclaims performed. The fields related to paging activity are now all given in
kilobytes.

1-10 Bug Fixes and Changes in 4.2BSD

vpr And associated programs for spooling and printing files on Varian and Versatec
printers are now shell scripts which use the new line printer support.

vwidth Is a new program for making troff width tables for a font.

wc Is once again identical to the version 7 program. That is, the -v, -t, -b, -s, and
-u flags have been deleted.

whereis Understands the new directory organization for the source code.

which Now understands how to handle aliases.

who Now displays the remote machine from which a user is logged in.

Section 2.

The most important change in section 2 is that the documentation has been significantly
improved. Manual page entries now indicate the possible error codes which may be returned
and how to interpret them. The introduction to section 2 now includes a glossary of terms
used throughout the section. The terminology and formatting have been made consistent.
~any manual pages now have "NOTES" or "CAVEATS" providing useful information here­
tofore left out for the sake of brevity. As always the manual pages are still for the program­
mer; they are terse and extremely concise. The "4.2BSD System Manual" is likewise concise,
but a bit more verbose in providing an overall picture of the system facilities.

With regard to changes in the facilities, these fall into three major categories: interpro­
cess communication, signals, and file system related calls. The interprocess communication
facilities center around the socket mechanism described in the "A 4.2BSD Interprocess Com­
munication Primer". The new signals do not have an accompanying document, so the manual
pages should be studied carefully. The new file system calls pretty much stand on their own,
with a late section of the document "A Fast File System for UNIX" supplying a quick over­
view of the most important new file system facilities. Finally, it should be noted that the job
control facilities introduced in 4.lBSD have been adopted as a standard part of 4.2BSD. No
special distinction is given to these calls (in 4.lBSD they were earmarked "2J").

Many of the new system calls have both a "set" and a "get" form. Only the "get" forms
are indicated below. Consult the manual for details on the "set" form.

intro Has been updated to reflect the new list of possible error codes. Now includes a
glossary of terminology used in section 2.

access Now has symbolic definitions for the mode parameter defined in <sys/file.h>.

bind

connect

creat

fchmod

fchown

fcntl

flock

Is a new interprocess communication system call for binding names to sockets.

Is a new interprocess communication system call for establishing a connection
between two sockets.

Has been obsoleted by the new open interface.

Is a new system call which does a chmod operation given a file descriptor; useful
in conjunction with the new advisory locking facilities.

Is a new system call which does a chown operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

Is a new system call which is useful in controlling how i/o is performed on a file
descriptor (non-blocking i/o, signal drive i/o). This interface is compatible with
the System III fcntl interface.

Is a new system call for manipulating advisory locks on files. Locks may be
shared or exclusive and locking operations may be indicated as being non­
blocking, in which case a process is not blocked if the requested lock is currently
in use.

fstat

fsync

Bug Fixes and Changes in 4.2BSD 1-11

Now returns a larger stat buffer; see below under stat.

Is a new system call for synchronizing a file's in-core state with that on disk. Its
intended use is in building transaction oriented facilities.

ftruncate Is a new system call which does a truncate operation given a file descriptor; useful
in conjunction with the new advisory locking facilities.

getdtablesize
Is a new system call which returns the size of the descriptor table.

getgroups Is a new system call which returns the group access list for the caller.

gethostid Is a new system call which returns the unique (hopefully) identifier for the current
host.

gethostname
Is a new system call which returns the name of the current host.

getitimer Is a new system call which gets the current value for an interval timer.

getpagesize
Is a new system call which returns the system page size.

getpriority Is a new system call which returns the current scheduling priority for a specific
process, a group of processes, or all processes owned by a user. In the latter two
cases, the priority returned is the highest (lowest numerical value) enjoyed by any
of the specified processes.

getrlimit Is a new system call which returns information about a resource limit. The
getrlimit and setrlimit calls replace the old vlimit call from 4.lBSD.

getrusage Is a new system call which returns information about resource utilitization of a
child process or the caller. This call replaces the vtimes call of 4.lBSD.

getsockoptls a new interprocess communication system call which returns the current
options present on a socket.

gettimeofday
Is a new system call which returns the current Greenwich date and time, and the
current timezone in which the machine is operating. Time is returned in seconds
and microseconds since January 1, 1970.

ioctl Has been changed to encode the size of parameters and whether they are to be
copied in, out, or in and out of the user address space in the request. The sym­
bolic names for the various ioctl requests remain the same, only the numeric
values have changed. A number of new ioctls exist for use with sockets and the
network facilities. The old LINTRUP request has been replaced by a call to fcntl
and the SIGIO signal.

kill pg

listen

ls eek

mkdir

mpx

open

profi.l

Has now been made a system call; in 4.lBSD it was a library routine.

Is a new interprocess communication system call used to indicate a socket will be
used to listen for incoming connection requests.

Now has symbolic definitions for its whence parameter defined in <sys/file.h>.

Is a new system call which creates a directory.

The multiplexed file facilities are no longer part of the system. They have been
replaced by the socket, and related, system calls.

Is different, now taking an optional third parameter and supporting file creation,
automatic truncation, automatic append on write, and "exclusive" opens. The
open interface has been made compatible with System III with the exception that
non-blocking opens on terminal lines requiring carrier are not supported.

Now returns statistical information based on a 100 hz clock rate.

1-12 Bug Fixes and Changes in 4.2BSD

quota Is a new system call which is part of the disk quota facilities. Quota is used to
manipulate disk quotas for a specific user, as well as perform certain random
chores such as syncing quotas to disk.

read Now automatically restarts when a read on a terminal is interrupted by a signal
before any data is read.

readv Is a new system call which supports scattering of read data into (possibly) disjoint
areas of memory.

readlink Is a new system call for reading the value of a symbolic link.

recv Is a new interprocess communication system call used to receive a message on a
connected socket.

recvfrom Is a new interprocess communication system call used to receive a message on a
(possibly) unconnected socket.

recvmsg

rename

rmdir

select

send

send to

Is a new interprocess communication system call used to receive a message on a
(possibly) unconnected socket which may have access rights included. When using
on-machine communication, recvmsg and sendmsg may be used to pass file
descriptors between processes.

Is a new system call which changes the name of an entry in the file system (plain
file, directory, character special file, etc.). Rename has an important property in
that it guarantees the target will always exist, even if the system crashes in the
middle of the operation. Rename only works with source and destination in the
same file system.

Is a new system call for removing a directory.

Is a new system call (mainly for interprocess communication) which provides facil­
ity for synchronous i/o multiplexing. Sets of file descriptors may be queried for
readability, writability, and if any exceptional conditions are present (such as out
of band data on a socket). An optional timeout may also be supplied in which
case the select operation will return after a specified period of time should no
descriptor satisfy the requests.

Is a new interprocess communication system call for sending a message on a con­
nected socket.

Is a new interprocess communication system call for sending a message on a (pos­
sibly) unconnected socket.

sendmsg Is a new interprocess communication system call for sending a message on a (pos­
sibly) unconnected socket which may included access rights.

setquota Is a new system call for enabling or disabling disk quotas on a file system.

setregid Is a new system call which replaces the 4.lBSD setgid system call. Setregid allows
the real and effective group ID's of a process to be set separately.

setreuid Is a new system call which replaces the 4.lBSD setuid system call. Setreuid
allows the real and effective user !D's of a process to be set separately.

shutdown Is a new interprocess communication system call for shutting down part or all of
full-duplex connection.

sigblock Is a new system call for blocking signals during a critical section of code.

sigpause Is a new system call for blocking a set of signals and then pausing indefinitely for
a signal to arrive.

sigsetmask
Is a new system call for setting the set of signals which are currently blocked from
delivery to a process.

sigstack Is a new system call for defining an alternate stack on which signals are to be pro­
cessed.

sigsys

sigvec

Bug Fixes and Changes in 4.2BSD 1-13

Is no longer supported. The new signal facilities are a superset of those which sig­
sys provided.

Is the new system call interface for defining signal actions. For each signal
(except SIGSTOP and SIGKILL), sigvec allows a "signal vector" to be defined.
The signal vector is comprised of a handler, a mask of signals to be blocked while
the handler executes, and an indication of whether or not the handler should exe­
cute on a signal stack defined by a sigstack call. The old signal interface is pro­
vided as a library routine with several important caveats. First, signal actions are
no longer reset to their default value after a signal is delivered to a process.
Second, while a signal handler is executing the signal which is being processed is
blocked until the handler returns. To simulate the old signal interface, the user
must explicitly reset the signal action to be the default value and unblock the sig­
nal being processed.

Four new signals have been added for the interprocess communication and inter­
val timer facilities. SIGIO is delivered to a process when an fcntl call enables sig­
nal driven i/o and input is present on a terminal (and a signal handler is defined).
SIGURG is delivered when an urgent condition arises on a socket (and a handler
is defined). SIGPROF and SIGVTALRM are associated with the !TIMER PROF
and !TIMER VIRTUAL interval timers, and delivered to a process when such a
timer expires (the SIGALRM signal is used for the !TIMER REAL interval
timer). The old SIGTINT signal is replaced by SIGIO.

socket Is a new interprocess communication system call for creating a socket.

socketpairls a new interprocess communication system call for creating a pair of connected
and unnamed sockets.

stat Now returns a larger structure. New fields are present indicating the optimal
blocking factor in which i/o should be performed (for disk files the block size of
the underlying file system) and the actual number of disk blocks allocated to the
file. !node numbers are now 32-bit quantities. Several spare fields have been allo­
cated for future expansion. These include space for 64-bit file sizes and 64-bit
time stamps. Two new file types may be returned, S IFLNK for symbolic links,
and S IFSOCK for sockets residing in the file system.

swapon Has been renamed from the vswapon call of 4.lBSD.

symlink Is a new system call for creating a symbolic link.

truncate Is a new system call for truncating a file to a specific size.

unlink

utime

utimes

vfork

vlimit

vread

Should no longer be used for removing directories. Directories should only be
created with mkdir and removed with rmdir. Creating hard links to directories
can cause disastrous results.

Is defunct, replaced by utimes.

Is a new system call which uses the new time format in setting the accessed and
updated times on a file.

Is still present, but definitely on its way out. Future plans include implementing
fork with a scheme in which pages are initially shared read-only. On the first
attempt by a process to write on a page the parent and child would receive
separate writable copies of the page.

Is no longer supported. Vlimit is repfaced by the getrlimit and setrlimit calls.

Is no longer supported in the system.

vswapon Has been renamed swapon.

vtimes Is no longer supported. Vtimes is replaced by the getrusage call.

vwrite Is no longer supported in the system.

1-14 Bug Fixes and Changes in 4.2BSD

wait

wait3

write

writev

Now is automatically restarted when interrupted by a signal before status could
be returned.

Returns resource usage in a different format than that which was returned in
4.lBSD. This structure is compatible with the new getrusage system call. Wait3
is now automatically restarted when interrupted by a signal before status could be
returned.

Now is automatically restarted when writing on a terminal and interrupted by a
signal before any i/o was completed.

Is a new version of the write system call which supports gathering of data in (pos­
sibly) discontiguous areas of memory

Section 3

The section 3 documentation has been reorganized to group manual entries by library.
Introductory sections for each logical and physical library contain lists of the entry points in
the library.

A number of routines which had been system calls under 4.lBSD are now user-level
library routines in 4.2BSD. These routines have been grouped under section "3C" headings,
"C" for compatibility. Further, certain routines present in the standard C run-time library
which do not easily categorize as part of one of the standard libraries, have been group under
"3X" headings.

curses A number of bug fixes have been incorporated, and the documentation has been
revised.

stdio The standard i/o library has been modified to block i/o operations to disk files
according to the block size of the underlying file system. This is accomplished
using the new st blksize value returned by {stat. The resultant performance
improvement is significant as the old 1 kilobyte buffer size often resulted in 7
memory-to-memory copy operations by the system on 8 kilobyte block file sys­
tems.

End-of-file marks now "stick". That is, all input requests on a stdio channel after
encountering end-of-file will return end-of-file until a clearerr call is made. This
has implications for programs which use stdio to read from a terminal and do not
process end-of-file as a terminating keystroke.

Two new functions may be used to control i/o buffering. The setlinebuf routine is
used to change stdout or stderr from block buffered or unbuffered to line
buffered. The setbuffer routine is an alternate form of setbuf which can be used
after a stream has been opened, but before it is read or written.

bstring Three new routines, bcmp, bcopy, and bzero have been added to the library.
These routines use the VAX string instructions to manipulate binary byte strings
of a known size.

ctime Now uses the gettimeofday system call and supports time conversion in six
different time z~nes. Daylight savings calculations are also performed in each
time zone when appropriate.

isprint Now considers space a printing character; as the manual page has always indi­
cated.

directory Is a new directory interface package which provides a portable interface to reading
directories. A version of this library which operates under 4.lBSD is also avail­
able.

getpass Now properly handles being unable to open /dev/tty.

Bug Fixes and Changes in 4.2BSD 1-15

getwd Has been moved from the old jobs library to the standard C run-time library. It
now returns an error string rather than printing on the standard error when
unable to decipher the current working directory.

perror Now uses the writev system call to pass all its arguments to the system in a single
system call. This has profound effects on programs which transmit error messages
across a network.

psignal And sys siglist are routines for printing signal names in an equivalent manner to
perror.

qsort Has been greatly sped up by choosing a random element with which to apply its
divide and conquer algorithm.

random Is a successor to rand which generates much better random numbers. The old
rand routine is still available and most programs have not been switched over to
random as doing so would make certain facilities such encrypted mail unable to
operate on existing data files.

setjmp And longjmp now save and restore the signal mask so that non-local exit from a
signal handler is transparent. The old semantics are available with setjmp and
longjmp.

net Is a new set of routines for accessing database files for the DARPA Internet. Four
databases exist: one for host names, one for network names, one for protocol
numbers, and one for network services. The latter returns an Internet port and
protocol to be used in accessing a given network service.

fstab

An additional collection of routines, all prefaced with "inet " may be used to
manipulate Internet addresses, and interpret and convert between Internet
addresses and ASCII representations in the Internet standard "dot" notation.

Finally, routines are available for converting 16 and 32 bit quantities between host
and network order (on high-ender machines these routines are defined to be
noops).

The routines for manipulating /etc/fstab have been rewritten to return arbitrary
length null-terminated strings.

Section 4

The system now supports the 11/730, the new 64Kbit RAM memory controllers for the
11/750 and 11/780, and the second UNIBUS adapter -for the 11/750. Several new character
and/or block device drivers have been added, as well as support for many hardware devices
which are accessible only through the network facilities. Each new piece of hardware sup­
ported is listed below.

New manual entries in section 4 have been created to describe communications proto­
cols, and network architectures suppotted. At present the only network architecture fully sup­
ported is the DARPA Internet with the TCP, IP, UDP, and ICMP protocols.

ace A network driver for the ACC LH/DH IMP interface.

ad A driver for the Data Translation AID converter.

arp The Address Resolution Protocol for dynamically mapping betwee 32-bit DARPA
Internet addresses and 48-bit Xerox lOMb/s Ethernet addresses.

css A network driver for the DEC IMP-llA LH/DH IMP interface.

dmc A network interface driver for the DEC DMC-11/DMR-11 point-to-point com­
munications device.

ec A network interface driver for the 3Com lOMb/s Ethernet controller.

1-16 Bug Fixes and Changes in 4.2BSD

en A network interface driver for the Xerox 3Mb/s experimental Ethernet controller.

hy A network interface driver for the Network Systems Hyperchannel Adapter.

ik A driver for an Ikonas frame buffer graphics device interface.

ii A network interface driver for the Interlan lOMb/s Ethernet interface.

imp A network interface driver for the standard 1822 interface to an IMP; used in con­
junction with either ace or css hardware.

kg A driver for a KL-11/DL-llW used as an alternate real time clock source for gath­
ering kernel statistics and profiling information.

lo A software loopback network interface for protocol testing and performance
analysis.

pcl A network interface driver for the DEC PCL-llB communications controller.

ps A driver for an Evans and Sutherland Picture System 2 graphics device connected
with a OMA interface.

pty Now includes a simple packet protocol to support flow controlled operation with
mechanisms for flushing data to be read and/or written.

rx A driver for the DEC dual RX02 floppy disk unit.

ts Now supports TU80 tape drives.

tu The VAX-11/750 console cassette interface has been made somewhat usable when
operating in single-user mode. The device driver employs assembly language
pseudo-dma code for the reception of incoming packets from the cassette.

uda Now supports RA81, RASO, and RA60 disk drives.

un A network interface driver for an Ungermann-Bass network interface unit con­
nected to the host via a DR-llW.

up Now supports ECC correction and bad sector handling. Also has improved logic
for recognizing many different kinds of disk drives automatically at boot time.

uu A driver for DEC dual TU58 tape cartridges connected via a DL-llW interface.

va The Varian driver has been rewritten so that it may coexist on the same UNIBUS
with devices which require exclusive use of the bus; i.e. RK07's.

vv A network interface driver for the Proteon proNET lOMb/s ring network con­
troller.

dir

disk tab

dump

fs
gettytab

hosts

mtab

Section 5

Reflects the new directory format.

Is a new file for maintaining disk geometry information. This is a temporary
scheme until the information stored in this file for each disk is recorded on the
disk pack itself.

Is a superset of that used in 4.lBSD.

Reflects the new file system organization.

Is a new file which idescribes terminal characteristics. Each entry in the file
describes one of the possible arguments to the getty program.

Is a database for mapping between host names and DARPA Internet host
addresses.

Has been modified to include a "type" field indicating whether the file system is
mounted read-only, read-write, or read-write with disk quotas enabled.

networks Is a database for mapping between network names and DARPA standard network
numbers.

Bug Fixes and Changes in 4.2BSD 1-17

phones Is a phone number data base for tip.

printcap Is a termcap clone for configuring printers.

protocols Is a database for mapping between protocol names and DARPA Internetwork
standard protocol numbers.

remote Is a database of remote hosts for use with tip.

services Is a database in which DARPA Internet services are recorded. The information
contained in this file indicates the name of the service, the protocol which is
required to access it, and the port number at which a client should connect to
utilize the service.

tar Is a new entry describing the format of a tar tape.

utmp Has been augmented to include a remote host from which a login session ori­
ginates. The wtmp file is also used to record FTP sessions.

vgrindef s Is a file describing how to vgrind programs written in many languages.

Section 6

aardvark Does not work because it requires the "Dungeon Definition Language" processor
which is a binary image requiring 4.lBSD compatibility mode; the DDL source is
still present.

aliens The aliens have returned home, the game is no longer included in the distribution.

backgammon
Is now screen oriented. A new program, teachgammon, instructs the new back­
gammon player. The old version is now called btlgammon.

canfield Is a new game which plays a brand of the popular game of solitaire. Betting is
included, the program cfscores may be used to find out your current debt.

ching Now pipes its output through more. Thus the hacker placates the seekers.

chase No longer exists because the binary does not work under 4.2BSD.

factor Is a rewrite in C of the old version 7 assembly language program which finds the
prime factors of a number.

fortune Has yet more adages.

hangman Is now screen oriented.

mille Now plays more int~lligently.

primes

rogue

sail

trek

hier

mailaddr

Is a rewrite in C of the old version 7 assembly language program which finds
prime numbers within a specified range.

Has been made more of a scoundrel. The supplementary document "A Guide to
the Dungeons of Doom", has been updated as well, and is now part of Volume 2C
of the programmer's manual.

Is a new game which simulates sea battles of yore. The manual page is large
enough to be a separate document and so has been left in its source directory.

The original trek has returned; trekies rejoice.

Section 7

Has been updated to reflect the reorganization to the user and system source.

Is a new entry describing mail addressing syntax under sendmail (possibly too
Berkeley specific).

1-18 Bug Fixes and Changes in 4.2BSD

ms The -ms macros have been extended to allow automatic creation of a table of
contents. Support for the refer preprocessor is improved. Several bugs related to
multi-column output and floating keeps have been fixed. Extensions to the accent
mark string set are available by including the .AM macro. Footnotes can now be
automatically numbered (in superscript) by -ms and referenced in the text with a
** string register. The manual page includes a summary of important number

and string registers. A new document "Changes to -ms" is included in Volume
2C of the programmer's manual.

Section 8
Major changes affecting system operations include:

• The system now supports disk quotas. These allow system administrators to control users'
disk space and file allocation on a per-file system basis. Utilities in this section exist for
fixing, summarizing, and editing disk quota summary files.

• File systems are now made with a new program, newfs, which acts as front end to the old
mkfs program. There no longer is a need to remember disk partition sizes, as newfs gets
this information automatically from the /etc/disktab file. In addition, newfs attempts to
lay out file systems according to the characteristics of the underlying disk drive (taking
into account disk geometry information).

• DEC standard bad block forwarding is now supported on the RP06 and second vendor
UNIBUS storage module disks. The bad144 program can now be used to mark sectors bad
on many disks, though inclusion in the bad sector table is still somewhat risky due to
requirements in the ordering of entries in the table.

• A new program, format, should be used to initialize all non-DEC storage modules before
creating file systems. Format formats the sector headers and creates a bad sector table
which is used in normal system operation. Format runs in a standalone mode.

• Getty has been rewritten to use a description file, /etc/gettytab. This allows sites to tailor
terminal operation and configuration without making modifications to getty.

• The line printer system is totally new. A program to administer the operation of printers,
lpc, is supplied, and printer accounting has been consolidated into a single program, pac.

• The program used to restore files from dump tapes is now called restore. This name
change was done to reinforce the fact that it is completely rewritten and operates in a very
different way than the old restor program. Restore operates on mounted file systems and
uses only normal file system operations to restore files. Versions of both dump and restore
which operate across a network are included as rdump and rrestore. Dump and restore
(and their network oriented counterparts) now perform so efficiently (mostly because of the
new file system), that disk to disk backups should no longer be an attractive alternative.

arft' No longer asks if you want to clobber the floppy when manipulating archives
which are not on the floppy.

bad144 Has been modified to use the /etc/disktab file. Can be used to create bad sector
tables for the DEC RP06 and several new Winchester disk drives. Consult the
source code for details and use with extreme care.

badsect Has been modified to work with the new file system and now must interact with
fsck to perform its duties. Consult the manual page for more information.

bugfi.ler Is a new program for automatic filing and acknowledgement of bug reports sub­
mitted by the sendbug program. Intended to operate with the Rand MH software
which is part of the user contributed software. Used at Berkeley to process bug
reports on 4.2BSD.

Bug Fixes and Changes in 4.2BSD 1-19

chgrp Has been moved to section 1.

comsat Has been changed to filter the noise lines in message headers when displaying
incoming mail. No longer uses a second process watchdog as it uses the more reli­
able socket facilities instead of the old mpx facilities.

config Has been extensively modified to handle the new root and swap device
specification syntax. A new document, "Configuring 4.2BSD UNIX Systems with
Config", describes its use, as well as other important information needed in
configuring system images; this is part of Volume 2C of the programmer's manual.

diskpart Is a new program which may be used to generate disk partition tables according to
the rules used at Berkeley. Can automatically generate entries required for device
drivers and for the /etc/diskpart file. (Does not handle the new DEC DSA style
drives properly because it tries to reserve space for the bad sector table.)

drtest Is a new standalone program which is useful in testing standalone disk device
drivers and for pinpointing bad sectors on a disk.

dump Has been modified for the new file system organization. Mainly due to the new
file system, it runs virtually at tape speed. Properly handles locking on the dump­
dates file when multiple dumps are performed concurrently on the same machine.

dumpfs Is a new program for dumping out information about a file system such as the
block size and disk layout information.

edquota Is a new program for editing user quotas. Operates by invoking your favorite edi­
tor on an ASCII representation of the information stored in the binary quota files.
Edquota also has a "replication" mode whereby a quota template may be used to
create quotas for a group of users.

f astboot Is a new shell script which reboots the system without checking the file systems;
should be used with extreme care.

fas th alt Is a new script which is similar to fast boot.

format Is a new standalone program for formatting non-DEC storage modules and creat­
ing the appropriate bad sector table on the disk.

f sck Has been changed for the new file system. Fsck is more paranoid then ever in
checking the disks, and has been sped up significantly. The accompanying
Volume 2C document has been updated to reflect the new file system organization.

ft pd Is the DARPA File Transfer Protocol server program. It supports C shell style
globbing of arguments and a large set of the commands in the specification
(except the ABORT command!).

gettable Is a new program which can be used in aquiring up to date DARPA Internet host
database files.

getty

icheck
init

kgmon

lpc

Has been rewritten to use a terminal description database, /etc/gettytab. Consult
the manual entries for getty (8) and gettytab (5) for more information.

Has been modified for the new file system.

Has been significantly modified to use the new signal facilities. In doing so,
several race conditions related to signal delivery have been fixed.

Is a new program for controlling running systems which have been created with
kernel profiling. Using kgmon, profiling can be turned on or off and internal
profiling buffers can dumped into a gmon.out file suiitable for interpretation by
gprof.

Is a new program controlling line printers and their associated spooling queues.
Lpc can be used to enable and disable printers and/or their spooling queues. Lpc
can also be used to rearrange existing jobs in a queue.

1-20 Bug Fixes and Changes in 4.2BSD

lpd Has been rewritten and now runs as a "server", using the interprocess communica­
tion facilities to service print requests. A supplementary document describing the
line printer system is now part of Volume 2C of the programmer's manual.

MAKEDEV

mkfs

mount

newfs

Is a new shell script which resides in /dev and is used to create special files there.
MAKEDEV keeps commands for creating and manipulating local devices in a
separate file MAKEDEV.local.

Has been virtually rewritten for the new file system. The arguments supplied are
very different. For the most part, users now use the newfs program when creating
file systems. Mkfs now automatically creates the lost+found directory.

Now indicates file systems which are mounted read-only or have disk quotas
enabled.

Is a new front-end to the mkfs program. Newfs figures out the appropriate
parameters to supply to mkfs, invokes it, and then, if necessary, installs the boot
blocks necessary to bootstrap UNIX on 11/750's.

pac Is a new program which can be used to do printer accounting on any printer. It
subsumes the vpac program.

quot Now uses the information in the inode of each file to find out how many blocks
are allocated to it.

quotacheck
Is a new program which performs consistency checks on disk quota files. Quota­
check is normally run from the /etc/re.local file after a system is rebooted, though
it can also be run on mounted on file systems which are not in use.

quotaon Is a new program which enables disk quotas on file systems. A link to quotaon,
named quotaoff, is used to disable disk quotas on file systems.

pstat Has been modified to understand new kernel data structures.

re Has had system dependent startup commands moved to /etc/re.local.

rdump Is a new program to dump file systems across a network.

renice Has been rewritten to use the new setpriority system call. As a result, you can
now renice users and process groups.

repquota Is a new program which summarizes disk quotas on one or more file systems.

restor No longer exists. A new program, restore, is its successor.

restore Replaces restor. Restore operates on mounted file systems; it contains an interac­
tive mode and can be used to restore files by name. Restore has become almost as
flexible to use as tar in retrieving files from tape.

rexecd Is a network server for the rexec (3X) library routine. Supports remote command
execution where authentication is performed using user accounts and passwords.

rlogind Is a network server for the rlogin (lC) command. Supports remote login sessions
where authentication is performed using privileged port numbers and two files,
/etc/hosts.equiv and .rhosts (in each users home directory).

rmt Is a program used by rrestore and rdump for doing remote tape operations.

route Is a program for manually manipulating network routing tables.

routed Is a routing daemon which uses a variant of the Xerox Routing Information Pro­
tocol to automatically maintain up to date routing tables.

rrestore Is a version of restore which works across a network.

rshd Is a server for the rsh (lC) command. It supports remote command execution
using privileged port numbers and the /etc/hosts.equiv and .rhosts files in users'
home directories.

rwhod

Bug Fixes and Changes in 4.2BSD I-2I

Is a server which generates and listens for host status information on local net­
works. The information stored by rwhod is used. by the rwho (IC)
andruptime (IC) programs.

rxformat Is a program for formatting floppy disks (this uses the rx device driver, not the
console floppy interface).

savecore Has been modified to get many pieces of information from the running system
and crash dump to avoid compiled in constants.

sendmail

setifaddr

syslog

telnetd

tftpd

trpt

tunefs

vipw

Is a new program replacing delivermail; it provides fully internetwork mail for­
warding capabilities. Sendmail uses the DARPA standard SMTP protocol to send
and receive mail. Sendmail uses a configuration file to control its operation, elim­
inating the compiled in description used in delivermail.

Is a new program used to set a network interface's address. Calls to this program
are normally placed in the /etc/re.local file to configure the network hardware
present on a machine.

Is a server which receives system logging messages. Currently, only the sendmail
program uses this server.

Is a server for the DARPA standard TELNET protocol.

Is a server for the DARPA Trivial File Transfer Protocol.

Is a program used in debugging TCP. Trpt transliterates protocol trace informa­
tion recorded by TCP in a circular buffer in kernel memory.

Is a program for modifying certain parameters in the super block of file systems.

Is no longer a shell script and properly interacts with passwd, chsh, and chfn in
locking the password file.

A Fast File System for UNIX*

Revised July 27, 1983

Fast File System 1-23

Marshall Kirk McKusick, William N. Joy t,
Samuel J. Le/ff,er :f ,Robert S. Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

1. Introduction
This paper describes the changes from the original 512 byte UNIX file system to the new

one released with the 4.2. Berkeley Software Distribution. It presents the motivations for the
changes, the methods used to affect these changes, the rationale behind the design decisions,
and a description of the new implementation. This discussion is followed by a summary of
the results that have been obtained, directions for future work, and the additions and changes
that have been made to the user visible facilities. The paper concludes with a history of the
software engineering of the project.

The original UNIX system that runs on the PDP-11 t has simple and elegant file system
facilities. File system input/output is buffered by the kernel; there are no alignment con­
straints on data transfers and all operations are made to appear synchronous. All transfers to
the disk are in 512 byte blocks, which can be placed arbitrarily within the data area of the file
system. No constraints other than available disk space are placed on file growth [Ritchie74],
[Thompson79].

When used on the VAX-11 together with other UNIX enhancements, the original 512
byte UNIX file system is incapable of providing the data throughput rates that many applica­
tions require. For example, applications that need to do a small amount of processing on a
large quantities of data such as VLSI design and image processing, need to have a high
throughput from the file system. High throughput rates are also needed by programs with
large address spaces that are constructed by mapping files from the file system into virtual
memory. Paging data in and out of the file system is likely to occur frequently. This requires
a file system providing higher bandwidth than the original 512 byte UNIX one which provides
only about two percent of the maximum disk bandwidth or about 20 kilobytes per second per
arm [White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance.
Since the UNIX file system interface is well understood and not inherently slow, this develop­
ment retained the abstraction and simply changed the underlying implementation to increase
its throughput. Consequently users of the system have not been faced with massive software
conversion.

* UNIX is a trademark of Bell Laboratories.
tWilliam N. Joy is currently employed by: Sun Microsystems, Inc, 2550 Garcia Avenue, Mountain View, CA
94043 :!:Samuel J. Leffier is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and the
Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Elec­
tronic System Command under Contract No. N00039-82-C-0235.
t DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.

1-24 Fast File System

Problems with file system performance have been dealt with extensively in the literature;
see [Smith81a] for a survey. The UNIX operating system drew many of its ideas from Mul­
tics, a large, high performance operating system [Feiertag71]. Other work includes Hydra
[Almes78], Spice [Thompson80], and a file system for a lisp environment [Symbolics81a].

A major goal of this project has been to build a file system that is extensible into a
networked environment [Holler73]. Other work on network file systems describe centralized
file servers [Accetta80], distributed file servers [Dion80], [Luniewski77], [Porcar82], and pro­
tocols to reduce the amount of information that must be transferred across a network
[Symbolics81b], [Sturgis80].

_______ .. _________ _

Fast File System 1-25

2. Old File System

In the old file system developed at Bell Laboratories each disk drive contains one or
more file systems.t A file system is described by its super-block, which contains the basic
parameters of the file system. These include the number of data blocks in the file system, a
count of the maximum number of files, and a pointer to a list of free blocks. All the free
blocks in the system are chained together in a linked list. Within the file system are files.
Certain files are distinguished as directories and contain pointers to files that may themselves
be directories. Every file has a descriptor associated with it called an inode. The inode con­
tains information describing ownership of the file, time stamps marking last modification and
access times for the file, and an array of indices that point to the data blocks for the file. For
the purposes of this section, we assume that the first 8 blocks of the file are directly ref er­
enced by values stored in the inode structure itself*. The inode structure may also contain
references to indirect blocks containing further data block indices. In a file system with a 512
byte block size, a singly indirect block contains 128 further block addresses, a doubly indirect
block contains 128 addresses of further single indirect blocks, and a triply indirect block con­
tains 128 addresses of further doubly indirect blocks.

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed
by 146 megabytes of data. This organization segregates the inode information from the data;
thus accessing a file normally incurs a long seek from its inode to its data. Files in a single
directory are not typically allocated slots in consecutive locations in the 4 megabytes of
inodes, causing many non-consecutive blocks to be accessed when executing operations on all
the files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file system
never transfers more than 512 bytes per disk transaction and often finds that the next sequen­
tial data block is not on the same cylinder, forcing seeks between 512 byte transfers. The
combination of the small block size, limited read-ahead in the system, and many seeks
severely limits file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliabil­
ity and throughput. The reliability was improved by changing the file system so that all
modifications of critical information were staged so that they could either be completed or
repaired cleanly by a program after a crash [Kowalski78]. The file system performance was
improved by a factor of more than two by changing the basic block size from 512 to 1024
bytes. The increase was because of two factors; each disk transfer accessed twice as much
data, and most files could be described without need to access through any indirect blocks
since the direct blocks contained twice as much data. The file system with these changes will
henceforth be referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size
was a good method for improving throughput. Although the throughput had doubled, the old
file system was still using only about four percent of the disk bandwidth. The main problem
was that although the free list was initially ordered for optimal access, it quickly became
scrambled as files were created and removed. Eventually the free list became entirely random
causing files to have their blocks allocated randomly over the disk. This forced the disk to
seek before every block access. Although old file systems provided transfer rates of up to 175
kilobytes per second when they were first created, this rate deteriorated to 30 kilobytes per
second after a few weeks of moderate use because of randomization of their free block list.
There was no way of restoring the performance an old file system except to dump, rebuild,
and restore the file system. Another possibility would be to have a process that periodically
reorganized the data on the disk to restore locality as suggested by [Maruyama76].

t A file system always resides on a single drive.
* The actual number may vary from system to system, but is usually in the range 5-13.

1-26 Fast File System

3. New file system organization

As in the old file system organization each disk drive contains one or more file systems.
A file system is described by its super-block, that is located at the beginning of its disk parti­
tion. Because the super-block contains critical data it is replicated to protect against catas­
trophic loss. This is done at the time that the file system is created; since the super-block
data does not change, the copies need not be referenced unless a head crash or other hard disk
error causes the default super-block to be unusable.

To insure that it is possible to create files as large as 2 3 2 bytes with only two levels of
indirection, the minimum size of a file system block is 4096 bytes. The size of file system
blocks can be any power of two greater than or equal to 4096. The block size of the file sys­
tem is maintained in the super-block so it is possible for file systems with different block sizes
to be accessible simultaneously on the same system. The block size must be decided at the
time that the file system is created; it cannot be subsequently changed without rebuilding the
file system.

The new file system organization partitions the disk into one or more areas called
cylinder groups. A cylinder group is comprised of one or more consecutive cylinders on a
disk. Associated with each cylinder group is some bookkeeping information that includes a
redundant copy of the super-block, space.for inodes, a bit map describing available blocks in
the cylinder group, and summary information describing the usage of data blocks within the
cylinder group. For each cylinder group a static number of inodes is allocated at file system
creation time. The current policy is to allocate one inode for each 2048 bytes of disk space,
expecting this to be far more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be
on the top platter. Thus a single hardware failure that destroyed the top platter could cause
the loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping
information begins at a floating offset from the beginning of the cylinder group. The offset for
each successive cylinder group is calculated to be about one track further from the beginning
of the cylinder group. In this way the redundant information spirals down into the pack so
that any single track, cylinder, or platter can be lost without losing all copies of the super­
blocks. Except for the first cylinder group, the space between the beginning of the cylinder
group and the beginning of the cylinder group information is used for data blocks. t

3.1. Optimizing storage utilization

Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly
increasing file system throughput. As an example, consider a file in the new file system com­
posed of 4096 byte data blocks. In the old file system this file would be composed of 1024
byte blocks. By increasing the block size, disk accesses in the new file system may transfer up
to four times as much information per disk transaction. In large files, several 4096 byte blocks
may be allocated from the same cylinder so that even larger data transfers are possible before
initiating a seek.

The main problem with bigger blocks is that most UNIX file systems are composed of
many small files. A uniformly large block size wastes space. Table 1 shows the effect of file
system block size on the amount of wasted space in the file system. The machine measured to
obtain these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line
storage. The measurements are based on the active user file systems containing about 920
megabytes of formated space. The space wasted is measured as the percentage of space on
the disk not containing user data. As the block size on the disk increases, the waste rises
quickly, to an intolerable 45.6 % waste with 4096 byte file system blocks.

t While it appears that the first cylinder group could be laid out with its super-block at the "known" loca­
tion, this would not work for file systems with blocks sizes of 16K or greater, because of the requirement
that the cylinder group information must begin at a block boundary.

775.2 Mb
807.8 Mb
828.7 Mb
866.5 Mb
948.5 Mb

0.0
4.2
6.9

11.8
22.4

Fast File System 1-27

Data only, no separation between files
Data only, each file starts on 512 byte boundary
512 byte block UNIX file system
1024 byte block UNIX file system
2048 byte block UNIX file system

Table 1 - Amount of wasted space as a function of block size.

To be able to use large blocks without undue waste, small files must be stored in a more
efficient way. The new file system accomplishes this goal by allowing the division of a single
file system block into one or more fragments. The file system fragment size is specified at the
time that the file system is created; each file system block can be optionally broken into 2, 4,
or 8 fragments, each of which is addressable. The lower bound on the size of these fragments
is constrained by the disk sector size, typically 512 bytes. The block map associated with each
cylinder group records the space availability at the fragment level; to determine block availa­
bility, aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024 file
system.

Bits in map
Fragment numbers

xx xx
0-3

xxoo
4-7

ooxx
8-11

0000
12-15

Figure 1 - Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in
use, while a "O" shows that the fragment is available for allocation. In this example, frag­
ments 0-5, 10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of
adjoining blocks cannot be used as a block, even if they are large enough. In this example,
fragments 6-9 cannot be coalesced into a block; only fragments 12-15 are available for alloca­
tion as a block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a 'file
is represented by zero or more 4096 byte blocks of data, and possibly a single fragmented
block. If a file system block must be fragmented to obtain space for a small amount of data,
the remainder of the block is made available for allocation to other files. As an example con­
sider an 11000 byte file stored on a 4096/1024 byte file system. This file would uses two full
size blocks and a 3072 byte fragment. If no 3072 byte fragments are available at the time the
file is created, a full size block is split yielding the necessary 3072 byte fragment and an
unused 1024 byte fragment. This remaining fragment can be allocated to another file as
needed.

The granularity of allocation is the write system call. Each time data is written to a file,
the system checks to see if the size of the file has increased*. If the file needs to hold the new
data, one of three conditions exists:

1) There is enough space left in an already allocated block to hold the new data. The new
data is written into the available space in the block.

2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte
block is allocated and the first 4096 bytes of new data is written there. This process is
repeated until less than 4096 bytes of new data remain. If the remaining new data to be
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located,

* A program may be overwriting data in the middle of an existing file in which case space will already be al­
located.

1-28 Fast File System

otherwise a 4096 byte block is located. The new data is written into the located piece.

3) A fragment has been allocated. If the number of bytes in the new data plus the number
of bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The
contents of the fragment is copied to the beginning of the block and the remainder of
the block is filled with the new data. The process then continues as in (2) above. If the
number of bytes in the new data plus the number of bytes already in the fragment will
fit in three or fewer 1024 byte pieces, an unallocated fragment is located, otherwise a
4096 byte block is located. The contents of the previous fragment appended with the
new data is written into the allocated piece.

The problem with allowing only a single fragment on a 4096/1024 byte file system is that
data may be potentially copied up to three times as its requirements grow from a 1024 byte
fragment to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block.
The fragment reallocation can be avoided if the user program writes a full block at a time,
except for a partial block at the end of the file. Because file systems with different block sizes
may coexist on the same system, the file system interface been extended to provide the ability
to determine the optimal size for a read or write. For files the optimal size is the block size of
the file system on which the file is being accessed. For other objects, such as pipes and sock­
ets, the optimal size is the underlying buffer size. This feature is used by the Standard
Input/Output Library, a package used by most user programs. This feature is also used by
certain system utilities such as archivers and loaders that do their own input and output
management and need the highest possible file system bandwidth.

The space overhead in the 4096/1024 bYte new file system organization is empirically
observed to be about the same as in the 1024 byte old file system organization. A file system
with 4096 byte blocks and 512 byte fragments has about the same amount of space overhead
as the 512 byte block UNIX file system. The new file system is more space efficient than the
512 byte or 1024 byte file systems in that it uses the same amount of space for small files
while requiring less indexing information for large files. This savings is offset by the need to
use more space for keeping track of available free blocks. The net result is about the same
disk utilization when the new file systems fragment size equals the old file systems block size.

In order for the layout policies to be effective, the disk cannot be kept completely full.
Each file system maintains a parameter that gives the minimum acceptable percentage of file
system blocks that can be free. If the the number of free blocks drops below this level only
the system administrator can continue to allocate blocks. The value of this parameter can be
changed at any time, even when the file system is mounted and active. The transfer rates to
be given in section 4 were measured on file systems kept less than 90% full. If the reserve of
free blocks is set to zero, the file system throughput rate tends to be cut in half, because of
the inability of the file system to localize the blocks in a file. If the performance is impaired
because of overfilling, it may be restore<:\ by removing enough files to obtain 10 % free space.
Access speed for files created during periods of little free space can be restored by recreating
them once enough space is available. The amount of free space maintained must be added to
the percentage of waste when comparing the organizations given in Table 1. Thus, a site run­
ning the old 1024 byte UNIX file system wastes 11.8 % of the space and one could expect to
fit the same amount of data into a 4096/512 byte new file system with 5% free space, since a
512 byte old file system wasted 6.9% of the space.

3.2. File system parameterization

Except for the initial creation of the free list, the old file system ignores the parameters
of the underlying hardware. It has no information about either the physical characteristics of
the mass storage device, or the hardware that interacts with it. A goal of the new file system
is to parameterize the processor capabilities and mass storage characteristics so that blocks
can be allocated in an optimum configuration dependent way. Parameters used include the
speed of the processor, the hardware support for mass storage transfers, and the characteris­
tics of the mass storage devices. Disk technology is constantly improving and a given

Fast File System 1-29

installation can have several different disk technologies running on a single processor. Each
file system is parameterized so that it can adapt to the characteristics of the disk on which it
is placed.

For mass storage devices such as disks, the new file system tries to allocate new blocks
on the same cylinder as the previous block in the same file. Optimally, these new blocks will
also be well positioned rotationally. The distance between "rotationally optimal" blocks varies
greatly; it can be a consecutive block or a rotationally delayed block depending on system
characteristics. On a processor with a channel that does not require any processor interven­
tion between mass storage transfer requests, two consecutive disk blocks often can be accessed
without suffering lost time because of an intervening disk revolution. For processors without
such channels, the main processor must field an interrupt and prepare for a new disk transfer.
The expected time to service this interrupt and schedule a new disk transfer depends on the
speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the
rate at which the disk spins. The allocation policy routines use this information to calculate
the number of milliseconds required to skip over a block. The characteristics of the processor
include the expected time to schedule an interrupt. Given the previous block allocated to a
file, the allocation routines calculate the number of blocks to skip over so that the next block
in a file will be coming into position under the disk head in the expected amount of time that
it takes to start a new disk transfer operation. For programs that sequentially access large
amounts of data, this strategy minimizes the amount of time spent waiting for the disk to
position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group sum­
mary information includes a count of the availability of blocks at different rotational posi­
tions. Eight rotational positions are distinguished, so the resolution of the summary informa­
tion is 2 milliseconds for a typical 3600 revolution per minute drive.

The parameter that defines the minimum number of milliseconds between the comple­
tion of a data transfer and the initiation of another data transfer on the same cylinder can be
changed at any time, even when the file system is mounted and active. If a file system is
parameterized to lay out blocks with rotational separation of 2 milliseconds, and the disk pack
is then moved to a system that has a processor requiring 4 milliseconds to schedule a disk
operation, the throughput will drop precipitously because of lost disk revolutions on nearly
every block. If the eventual target machine is known, the file system can be parameterized for
it even though it is initially created on a different processor. Even if the move is not known
in advance, the rotational layout delay can be reconfigured after the disk is moved so that all
further allocation is done based on the characteristics of the new host.

3.3. Layout policies

The file system policies are divided into two distinct parts. At the top level are global
policies that use file system wide summary information to make decisions regarding the place­
ment of new inodes and data blocks. These routines are responsible for deciding the place­
ment of new directories and files. They also calculate rotationally optimal block layouts, and
decide when to force a long seek to a new cylinder group because there are insufficient blocks
left in the current cylinder group to do reasonable layouts. Below the global policy routines
are the local allocation routines that use a locally optimal scheme to lay out data blocks.

Two methods for improving file system performance are to increase the locality of refer­
ence to minimize seek latency as described by [Trivedi80], and to improve the layout of data
to make larger transfers possible as described by [Nevalainen77]. The global layout policies
try to improve performance by clustering related information. They cannot attempt to local­
ize all data references, but must also try to spread unrelated data among different cylinder
groups. If too much localization is attempted, the local cylinder group may run out of space
forcing the data to be scattered to non-local cylinder groups. Taken to an extreme, total local­
ization can result in a single huge cluster of data resembling the old file system. The global

1-30 Fast File System

policies try to balance the two conflicting goals of localizing data that is concurrently accessed
while spreading out unrelated data.

One allocatable resource is inodes. lnodes are used to describe both files and directories.
Files in a directory are frequently accessed together. For example the "list directory" com­
mand often accesses the inode for each file in a directory. The layout policy tries to place all
the files in a directory in the same cylinder group. To ensure that files are allocated
throughout the disk, a different policy is used for directory allocation. A new directory is
placed in the cylinder group that has a greater than average number of free inodes, and the
fewest number of directories in it already. The intent of this policy is to allow the file cluster­
ing policy to succeed most of the time. The allocation of inodes within a cylinder group is
done using a next free strategy. Although this allocates the inodes randomly within a cylinder
group, all the inodes for each cylinder group can be read with 4 to 8 disk transfers. This puts
a small and constant upper bound on the number of disk transfers required to access all the
inodes for all the files in a directory as compared to the old file system where typically, one
disk transfer is needed to get the inode for each file in a directory.

The other major resource is the data blocks. Since data blocks for a file are typically
accessed together, the policy routines try to place all the data blocks for a file in the same
cylinder group, preferably rotationally optimally on the same cylinder. The problem with allo­
cating all the data blocks in the same cylinder group is that large files will quickly use up
available space in the cylinder group, forcing a spill over to other areas. Using up all the
space in a cylinder group has the added drawback that future allocations for any file in the
cylinder group will also spill to other areas. Ideally none of the cylinder groups should ever
become completely full. The solution devised is to redirect block allocation to a newly chosen
cylinder group when a file exceeds 32 kilobytes, and at every megabyte thereafter. The newly
chosen cylinder group is selected from those cylinder groups that have a greater than average
number of free blocks left. Although big files tend to be spread out over the disk, a megabyte
of data is typically accessible before a long seek must be performed, and the cost of one long
seek per megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks.
The local allocation routines will always allocate the requested block if it is free. If the
requested block is not available, the allocator allocates a free block of the requested size that
is rotationally closest to the requested block. If the global layout policies had complete infor­
mation, they could always request unused blocks and the allocation routines would be reduced
to simple bookkeeping. However, maintaining complete information is costly; thus the imple­
mentation of the global layout policy uses heuristic guesses based on partial information.

If a requested block is not available the local allocator uses a four level allocation stra­
tegy:

1)
2)

Use the available block rotationally closest to the requested block on the same cylinder.

If there are no blocks available on the same cylinder, use a block within the same
cylinder group.

3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups
looking for a free block.

4) Finally if the rehash fails, apply an exhaustive search.

The use of quadratic rehash is prompted by studies of symbol table strategies used in
programming languages. File systems that are parameterized to maintain at least 10 3 free
space almost never use this strategy; file systems that are run without maintaining any free
space typically have so few free blocks that almost any allocation is random. Consequently
the most important characteristic of the strategy used when the file system is low on space is
that it be fast.

Fast File System 1-31

4. Performance

Ultimately, the proof of the effectiveness of the algorithms described in the previous sec­
tion is the long term performance of the new file system.

Our empiric studies have shown that the inode layout policy has been effective. When
running the "list directory" command on a large directory that itself contains many direc­
tories, the number of disk accesses for inodes is cut by a factor of two. The. improvements are
even more dramatic for large directories containing only files, disk accesses for inodes being
cut by a factor of eight. This is most encouraging for programs such as spooling daemons that
access many small files, since these programs tend to flood the disk request queue on the old
file system.

Table 2 summarizes the measured throughput of the new file system. Several comments
need to be made about the conditions under which these tests were run. The test programs
measure the rate that user programs can transfer data to or from a file without performing
any processing on it. These programs must write enough data to insure that buffering in the
operating system does not affect the results. They should also be run at least three times in
succession; the first to get the system into a known state and the second two to insure that the
experiment has stabilized and is repeatable. The methodology and test results are discussed
in detail in [Kridle83]t. The systems were running multi-user but were otherwise quiescent.
There was no contention for either the cpu or the disk arm. The only difference between the
UNIBUS and MASSBUS tests was the controller. All tests used an Ampex Capricorn 330
Megabyte Winchester disk. As Table 2 shows, all file system test runs were on a VAX 11/750.
All file systems had been in production use for at least a month before being measured.

Type of Processor and Read
·1

old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 33 113
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/1100 203 433
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/1100 21 3 293
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/1200 393 733

Table 2a - Reading rates of the old and new UNIX file systems.

Type of

old 1024
new 4096/1024
new 8192/1024
new 4096/1024

Processor and

750/UNIBUS
750/UNIBUS
750/UNIBUS

750/MASSBUS

48 Kbytes/sec
142 Kbytes/sec
215 Kbytes/sec
323 Kbytes/sec

Write

48/1100 43
142/1100 13 3
215/1100 193
323/1200 27 3

293
433
463
943

Table 2b - Writing rates of the old and new UNIX file systems.

Unlike the old file system, the transfer rates for the new file system do not appear to
change over time. The throughput rate is tied much more strongly to the amount of free
space that is maintained. The measurements in Table 2 were based on a file system run with
103 free space. Synthetic work loads suggest the performance deteriorates to about half the
throughput rates given in Table 2 when no free space is maintained.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of
the disk by the file system. An upper bound on the transfer rate from the disk is measured by
doing 65536* byte reads from contiguous tracks on the disk. The bandwidth is calculated by

t A UNIX command that is similar to the reading test that we used is, "cp file /dev/null", where "file" is
eight Megabytes long.
* This number, 65536, is the maximal 1/0 size supported by the VAX hardware; it is a remnant of the

1-32 Fast File System

comparing the data rates the file system is able to achieve as a percentage of this rate. Using
this metric, the old file system is only able to use about 3-4 % of the disk bandwidth, while the
new file system uses up to 39% of the bandwidth.

In the new file system, the reading rate is always at least as fast as the writing rate.
This is to be expected since the kernel must do more work when allocating blocks than when
simply reading them. Note that the write rates are about the same as the read rates in the
8192 byte block file system; the write rates are slower than the read rates in the 4096 byte
block file system. The slower write rates occur because the kernel has to do twice as many
disk allocations per second, and the processor is unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them.
This is because the write system call is asynchronous and the kernel can generate disk
transfer requests much faster than they can be serviced, hence disk transfers build up in the
disk buffer cache. Because the disk buffer cache is sorted by minimum seek order, the average
seek between the scheduled disk writes is much less than they would be if the data blocks are
written out in the order in which they are generated. However when the file is read, the read
system call is processed synchronously so the disk blocks must be retrieved from the disk in
the order in which they are allocated. This forces the disk scheduler to do long seeks resulting
in a lower throughput rate.

The performance of the new file system is currently limited by a memory to memory
copy operation because it transfers data from the disk into buffers in the kernel address space
and then spends 40% of the processor cycles copying these buffers to user address space. If
the buffers in both address spaces are properly aligned, this transfer can be affected without
copying by using the VAX virtual memory management hardware. This is especially desirable
when large amounts of data are to be transferred. We did not implement this because it
would change the semantics of the file system in two major ways; user programs would be
required to allocate buffers on page boundaries, and data would disappear from buffers after
being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain
together kernel buffers. This would allow _files to be allocated to contiguous disk blocks that
could be read in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors
per track. The inability to use contiguous disk blocks effectively limits the performance on
these disks to less than fifty percent of the available bandwidth. Since each track has a multi­
ple of sixteen sectors it holds exactly two or three 8192 byte file system blocks, or four or six
4096 byte file system blocks. If the the next block for a file cannot be laid out contiguously,
then the minimum spacing to the next allocatable block on any platter is between a sixth and
a half a revolution. The implication of this is that the best possible layout without contiguous
blocks uses only half of the bandwidth of any given track. If each track contains an odd
number of sectors, then it is possible to resolve the rotational delay to any number of sectors
by finding a block that begins at the desired rotational position on another track. The reason
that block chaining has not been implemented is because it would require rewriting all the
disk drivers in the system, and the current throughput rates are already limited by the speed
of the available processors.

Currently only one block is allocated to a file at a time. A technique used by the
DEMOS file system when it finds that a file is growing rapidly, is to preallocate several blocks
at once, releasing them when the file is closed if they remain unused. By batching up the allo­
cation the system can reduce the overhead of allocating at each write, and it can cut down on
the number of disk writes needed to keep the block pointers on the disk synchronized with
the block allocation [Powell79].

system's PDP-11 ancestry.

Fast File System 1-33

5. File system functional enhancements

The speed enhancements to the UNIX file system did not require any changes to the
semantics or data structures viewed by the users. However several changes have been gen­
erally desired for some time but have not been introduced because they would require users to
dump and restore all their file systems. Since the new file system already requires that all
existing file systems be dumped and restored, these functional enhancements have been intro­
duced at this time.

5.1. Long file names

File names can now be of nearly arbitrary length. The only user programs affected by
this change are those that access directories. To maintain portability among UNIX systems
that are not running the new file system, a set of directory access routines have been intro­
duced that provide a uniform interface to directories on both old and new systems.

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation
can be transferred to disk in a single atomic operation. Each allocation unit contains
variable-length directory entries. Each entry is wholly contained in a single allocation unit.
The first three fields of a directory entry are fixed and contain an inode number, the length of
the entry, and the length of the name contained in the entry. Following this fixed size infor­
mation is the null terminated name, padded to a 4 byte boundary. The maximum length of a
name in a directory is currently 255 characters.

Free space in a directory is held by entries that have a record length that exceeds the
space required by the directory entry itself. All the bytes in a directory unit are claimed by
the directory entries. This normally results in the last entry in a directory being large. When
entries are deleted from a directory, the space is returned to the previous entry in the same
directory unit by increasing its length. If the first entry of a directory unit is free, then its
inode number is set to zero to show that it is unallocated.

5.2. File locking

The old file system had no provision for locking files. Processes that needed to syn­
chronize the updates of a file had to create a separate "lock" file to synchronize their updates.
A process would try to create a "lock" file. If the creation succeeded, then it could proceed
with its update; if the creation failed, then it would wait, and try again. This mechanism had
three drawbacks. Processes consumed CPU time, by looping over attempts to create locks.
Locks were left lying around following system crashes and had to be cleaned up by hand.
Finally, processes running as system administrator are always permitted to create files, so they
had to use a different mechanism. While it is possible to get around all these problems, the
solutions are not straight-forward, so a mechanism for locking files has been added.

The most general schemes allow processes to concurrently update a file. Several of these
techniques are discussed in [Peterson83]. A simpler technique is to simply serialize access
with locks. To attain reasonable efficiency, certain applications require the ability to lock
pieces of a file. Locking down to the byte level has been implemented in the Onyx file system
by [Bass81]. However, for the applications that currently run on the system, a mechanism
that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory
locks. The primary difference between advisory locks and hard locks is the decision of when
to override them. A hard lock is always enforced whenever a program tries to access a file; an
advisory lock is only applied when it is requested by a program. Thus advisory locks are only
effective when all programs accessing a file use the locking scheme. With hard locks there
must be some override policy implemented in the kernel, with advisory locks the policy is
implemented by the user programs. In the UNIX system, programs with system administra­
tor privilege can override any protection scheme. Because many of the programs that need to
use locks run as system administrators, we chose to implement advisory locks rather than
create a protection scheme that was contrary to the UNIX philosophy or could not be used by

1-34 Fast File System

system administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or
exclusive locks on files. Only one process has an exclusive lock on a file while multiple shared
locks may be present. Both shared and exclusive locks cannot be present on a file at the same
time. If any lock is requested when another process holds an exclusive lock, or an exclusive
lock is requested when another process holds any lock, the open will block until the lock can
be gained. Because shared and exclusive locks are advisory only, even if a process has
obtained a lock on a file, another process can override the lock by opening the same file
without a lock.

Locks can be applied or removed on open files, so that locks can be manipulated without
needing to close and reopen the file. 'I'his is useful, for example, when a process wishes to
open a file with a shared lock to read some information, to determine whether an update is
required. It can then get an exclusive lock so that it can do a read, modify, and write to
update the file in a consistent manner.

A request for a lock will cause the process to block if the lock can not be immediately
obtained. In certain instances this is unsatisfactory. For example, a process that wants only
to check if a lock is present would require a separate mechanism to find out this information.
Consequently, a process may specify that its locking request should return with an error if a
lock can not be immediately obtained. Being able to poll for a lock is useful to "daemon"
processes that wish to service a spooling area. If the first instance of the daemon locks the
directory where spooling takes place, later daemon processes can easily check to see if an
active daemon exists. Since the lock is removed when the process exits or the system crashes,
there is no problem with unintentional locks files that must be cleared by hand.

Almost no deadlock detection is attempted. The only deadlock detection made by the
system is that the file descriptor to which a lock is applied does not currently have a lock of
the same type (i.e. the second of two successive calls to apply a lock of the same type wiU fail).
Thus a process can deadlock itself by requesting locks on two separate file descriptors for the
same object.

5.3. Symbolic links

The 512 byte UNIX file system allows multiple directory entries in the same file system
to reference a single file. The link concept is fundamental; files do not live in directories, but
exist separately and are referenced by links. When all the links are removed, the file is deallo­
cated. This style of links does not allow references across physical file systems, nor does it
support inter-machine linkage. To avoid these limitations symbolic links have been added
similar to the scheme used by Multics [Feiertag71].

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the contents of the
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield
the resulting pathname. If the symbolic link contains an absolute pathname, the absolute
pathname is used, otherwise the contents of the symbolic link is evaluated relative to the loca­
tion of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname
that they are using. However certain system utilities must be able to detect and manipulate
symbolic links. Three new system calls provide the ability to detect, read, and write symbolic
links, and seven system utilities were modified to use these calls.

In future Berkeley software distributions it will be possible to mount file systems from
other machines within a local file system. When this occurs, it will be possible to create sym­
bolic links that span machines.

Fast File System 1-35

5.4. Rename

Programs that create new versions of data files typically create the new version as a tem­
porary file and then rename the temporary file with the original name of the data file. In the
old UNIX file systems the renaming required three calls to the system. If the program were
interrupted or the system crashed between these calls, the data file could be left with only its
temporary name. To eliminate this possibility a single system call has been added that per­
forms the rename in an atomic fashion to guarantee the existence of the original name.

In addition, the rename facility allows directories to be moved around in the directory
tree hierarchy. The rename system call performs special validation checks to insure that the
directory tree structure is not corrupted by the creation of loops or inaccessible directories.
Such corruption would occur if a parent directory were moved into one of its descendants.
The validation check requires tracing the ancestry of the target directory to insure that it does
not include the directory being moved.

5.5. Quotas

The UNIX system has traditionally attempted to share all available resources to the
greatest extent possible. Thus any single user can allocate all the available space in the file
system. In certain environments this is unacceptable. Consequently, a quota mechanism has
been added for restricting the amount of file system resources that a user can obtain. The
quota mechanism sets limits on both the number of files and the number of disk blocks that a
user may allocate. A separate quota can be set for each user on each file system. Each
resource is given both a hard and a soft limit. When a program exceeds a soft limit, a warning
is printed on the users terminal; the offending program is not terminated unless it exceeds its
hard limit. The idea is that users should stay below their soft limit between login sessions,
but they may use more space while they are actively working. To encourage this behavior,
users are warned when logging in if they are over any of their soft limits. If they fail to
correct the problem for too many login sessions, they are eventually reprimanded by having
their soft limit enforced as their hard limit.

1-36 Fast File System

6. Software engineering

The preliminary design was done by Bill Joy in late 1980; he presented the design at
The USENIX Conference held in San Francisco in January 1981. The implementation of his
design was done by Kirk McKusick in the summer of 1981. Most of the new system calls were
implemented by Sam Leffler. The code for enforcing quotas was implemented by Robert Elz
at the University of Melbourne.

To understand how the project was done it is necessary to understand the interfaces that
the UNIX system provides to the hardware mass storage systems. At the lowest level is a raw
disk. This interface provides access to the disk as a linear array of sectors. Normally this
interface is only used by programs that need to do disk to disk copies or that wish to dump
file systems. However, user programs with proper access rights can also access this interface.
A disk is usually formated with a file system that is interpreted by the UNIX system to pro­
vide a directory hierarchy and files. The UNIX system interprets and multiplexes requests
from user programs to create, read, write, and delete files by allocating and freeing inodes and
data blocks. The interpretation of the data on the disk could be done by the user programs
themselves. The reason that it is done by the UNIX system is to synchronize the user
requests, so that two processes do not attempt to allocate or modify the same resource simul­
taneously. It also allows access to be restricted at the file level rather than at the disk level
and allows the common file system routines to be shared between processes.

The implementation of the new file system amounted to using a different scheme for for­
mating and interpreting the disk. Since the synchronization and disk access routines them­
selves were not being changed, the changes to the file system could be developed by moving
the file system interpretation routines out of the kernel and into a user program. Thus, the
first step was to extract the file system code for the old file system from the UNIX kernel and
change its requests to the disk driver to accesses to a raw disk. This produced a library of
routines that mapped what would normally be system calls into read or write operations on
the raw disk. This library was then debugged by linking it into the system utilities that copy,
remove, archive, and restore files.

A new cross file system utility was written that copied files from the simulated file sys­
tem to the one implemented by the kernel. This was accomplished by calling the simulation
library to do a read, and then writing the resultant data by using the conventional write sys­
tem call. A similar utility copied data from the kernel to the simulated file system by doing a
conventional read system call and then writing the resultant data using the simulated file sys­
tem library.

The second step was to rewrite the file system simulation library to interpret the new file
system. By linking the new simulation library into the cross file system copying utility, it was
possible to easily copy files from the old file system into the new one and from the new one to
the old one. Having the file system interpretation implemented in user code had several
major benefits. These included being able to use the standard system tools such as the
debuggers to set breakpoints and single step through the code. When bugs were discovered,
the off ending problem could be fixed and tested without the need to reboot the machine.
There was never a period where it was necessary to maintain two concurrent file systems in
the kernel. Finally it was not necessary to dedicate a machine entirely to file system develop­
ment, except for a brief period while the new file system was boot strapped.

The final step was to merge the new file system back into the UNIX kernel. This was
done in less than two weeks, since the only bugs remaining were those that involved interfac­
ing to the synchronization routines that could not be tested in the simulated system. Again
the simulation system proved useful since it enabled files to be easily copied between old and
new file systems regardless of which file system was running in the kernel. This greatly
reduced the number of times that the system had to be rebooted.

The total design and debug time took about one man year. Most of the work was done
on the file system utilities, and changing all the user programs to use the new facilities. The
code changes in the kernel were minor, involving the addition of only about 800 lines of code
(including comments).

Fast File System 1-37

Acknowledgements
We thank Robert Elz for his ongoing interest in the new file system, and for adding disk

quotas in a rational and efficient manner. We also acknowledge Dennis Ritchie for his sugges­
tions on the appropriate modifications to the user interface. We appreciate Michael Powell's
explanations on how the DEMOS file system worked; many of his ideas were used in this
implementation. Special commendation goes to Peter Kessler and Robert Henry for acting
like real users during the early debugging stage when files were less stable than they should
have been. Finally we thank our sponsors, the National Science Foundation under grant
MCSB0-05144, and the Defense Advance Research Projects Agency (DoD) under Arpa Order
No. 4031 monitored by Naval Electronic System Command under Contract No. N00039-82-C-
0235.

References

[Accetta80]

[Almes78]

[Bass81]

[Dion80]

[Eswaran74]

[Holler73]

[Feiertag71]

[Kridle83]

[Kowalski78]

[Luniewski77]

[Maruyama76]

[Nevalainen77]

[Peterson83]

[Powell79]

Accetta, M., Robertson, G., Satyanarayanan, M., and Thompson, M.
"The Design of a Network-Based Central File System", Carnegie-Mellon
University, Dept of Computer Science Tech Report, #CMU-CS-80-134

Almes, G., and Robertson, G. "An Extensible File System for Hydra"
Proceedings of the Third International Conference on Software
Engineering, IEEE, May 1978.

Bass, J. "Implementation Description for File Locking", Onyx Systems
Inc, 73 E. Trimble Rd, San Jose, CA 95131 Jan 1981.

Dion, J. "The Cambridge File Server", Operating Systems Review, 14, 4.
Oct 1980. pp 26-35

Eswaran, K. "Placement of records in a file and file allocation in a com­
puter network", Proceedings IFIPS, 197 4. pp 304-307

Holler, J. "Files in Computer Networks", First European Workshop on
Computer Networks, April 1973. pp 381-396

Feiertag, R. J. and Organick, E. I., "The Multics Input-Output System",
Proceedings of the Third Symposium on Operating Systems Principles,
ACM, Oct 1971. pp 35-41

Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem
Choices for VAX Systems Running 4.2BSD UNIX", Computer Systems
Research Group, Dept of EECS, Berkeley, CA 94720, Technical Report
#8.

Kowalski, T. "FSCK - The UNIX System Check Program", Bell
Laboratory, Murray Hill, NJ 07974. March 1978

Luniewski, A. "File Allocation in a Distributed System", MIT Labora­
tory for Computer Science, Dec 1977.

Maruyama, K., and Smith, S. "Optimal reorganization of Distributed
Space Disk Files", Communications of the ACM, 19, 11. Nov 1976. pp
634-642

Nevalainen, 0., Vesterinen, M. "Determining Blocking Factors for
Sequential Files by Heuristic Methods", The Computer Journal, 20, 3.
Aug 1977. pp 245-247

Peterson, G. "Concurrent Reading While Writing", ACM Transactions
on Programming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55

Powell, M. "The DEMOS File System", Proceedings of the Sixth Sym­
posium on Operating Systems Principles, ACM, Nov 1977. pp 33-42

1-38 Fast File System

[Porcar82]

[Ritchie74]

[Smith81a]

[Smith81b]

[Sturgis80]

[Symbolics81a]

[Symbolics81b]

[Thompson79]

[Thompson80]

[Trivedi80]

[White80]

Porcar, J. "File Migration in Distributed Computer Systems", Ph.D.
Thesis, Lawrence Berkeley Laboratory Tech Report #LBL-14763.

Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System",
CACM 17, 7. July 1974. pp 365-375

Smith, A. "Input/Output Optimization and Disk Architectures: A Sur­
vey", Performance and Evaluation 1. Jan 1981. pp 104-117

Smith, A. "Bibliography on File and 1/0 System Optimization and
Related Topics", Operating Systems Review, 15, 4. Oct 1981. pp 39-54

Sturgis, H., Mitchell, J., and Israel, J. "Issues in the Design and Use of
a Distributed File System", Operating Systems Review, 14, 3. pp 55-79

"Symbolics File System", Symbolics Inc, 9600 DeSoto Ave, Chatsworth,
CA 91311 Aug 1981.

"Chaosnet FILE Protocol". Symbolics Inc, 9600 DeSoto Ave, Chats­
worth, CA 91311 Sept 1981.

Thompson, K. "UNIX Implementation", Section 31, Volume 2B, UNIX
Programmers Manual, Bell Laboratory, Murray Hill, NJ 07974. Jan 1979

Thompson, M. "Spice File System", Carnegie-Mellon University, Dept
of Computer Science Tech Report, #CMU-CS-80-???

Trivedi, K. "Optimal Selection of CPU Speed, Device Capabilities, and
File Assignments", Journal of the ACM, 27, 3. July 1980. pp 457-473

White, R. M. "Disk Storage Technology", Scientific American, 243(2),
August 1980.

Introduction 2-1

PART 2: MAINTENANCE AND ADMINISTRATION

The three articles in this part describe system administration utilities on ULTRIX-32. Two
of the utilities, quota and the file system check program (fsck), will help you keep your system
running efficiently. The third utility, sendmail, makes possible communication between users
on computers that use different networking software.

Disk Quotas

The ULTRIX-32 system allows the system manager to impose limits on the amount of disk
space and the number of files available to each user. Each category (disk space and the max­
imum number of files) has a hard limit and a soft limit. The hard limit for a user sets an
absolute maximum that cannot be exceeded. The soft limit is a guideline: the number of
blocks or files that the user should try not to exceed. The quota utility warns any user who
exceeds his or her soft limit. If the user consistently ignores the warnings, the soft limit
becomes a hard limit after a set number of warnings.

The article, "Disc Quotas in a UNIX Environment," by Elz, tells how the system manager can
establish, disable, or check the limits and the number of warnings for any user. Elz also
explains how a user can exit without loss from an editing session in which writing the edited
material to a file would exceed one of the hard limits.

Fixing Corrupted File Systems

The ULTRIX-32 system includes a file system check program called fsck. You can use this
utility to determine whether your file system is corrupted and to fix any inconsistencies you
find.

Fsck runs in two modes: noninteractive and interactive. Normally the boot procedure calls
fsck to run noninteractively after booting the operating system. In this mode, the utility
checks for inconsistencies and corrects only those that it can handle without help from an
operator. In general, these are problems associated with a system crash or improper shutdown
procedure. When the utility finds a problem it can't deal with, it notifies the operator and
stops. The operator can then run fsck interactively, deciding between the alternative meas­
ures presented by the utility.

The article by McKusick, "Fsck - The UNIX File System Check Program," gives an overview
of the file system, the kinds of corruption that can occur, and the methods that fsck uses to
check for inconsistencies. An appendix provides a comprehensive list of error messages
together with explanations and appropriate responses. Fsck is essential to proper maintenance
of the ULTRIX-32 system, and this article is essential to proper use of fsck.

2-2 Introduction

Managing the Sendmail Utility

Sendmail is an internetwork mail utility transparent to most users. Once it is installed and
running, you can send mail to users on foreign network systems in the same way that you send
mail to users on the local network. The sendmail utility handles the protocol and message­
routing differences between networks automatically.

The "Sendmail Installation and Operation Guide," by Allman, tells what you need to know to
start up the utility and to keep it running correctly from day to day. A second article, "Send­
mail - An Internetwork Mail Router," in Part 3 of this volume, gives background information
that tells how sendmail works. Read the background article before using the installation and
operating information included in this part.

The installation information in the "Sendmail Installation and Operation Guide" explains:

• How to use either of two off-the-shelf configuration files supplied with the software

• How to use a makefile to install sendmail automatically

• How to install sendmail by hand by building your own configuration file and setting
up the sendmail startup procedure on your ULTRIX-32 system

The day-to-day sendmail operations explained include:

• Use of the system log for records and debugging

• Mail queue processing

• Treatment of address aliases

• The mail-forwarding feature

• Special headers for return receipts and error situations

The article describes parameters you can adjust to tune sendmail to suit a specific site. If you
must build your own configuration file, you will find the list of configuration file rules and
hints to be helpful. And for expert system managers, the appendixes list detailed sendmail
information in five categories:

• Command line flags

• Configuration options

• Mailer flags

• Compilation options (other configuration)

• Support files

Disc Quotas in a UNIX* Environment

Robert Elz

Department of Computer Science

1. Users' view of disc quotas

University of Melbourne,
Parkville,
Victoria,
Australia.

Disk Quotas 2-3

To most users, disc quotas will either be of no concern, or a fact of life that cannot be
avoided. The _quota (1) command will provide information on any disc quotas that may have
been imposed upon a user.

There are two individual possible quotas that may be imposed, usually if one is, both
will be. A limit can be set on the amount of space a user can occupy, and there may be a
limit on the number of files (inodes) he can own.

Quota provides information on the quotas that have been set by the system administra­
tors, in each of these areas, and current usage.

There are four numbers for each limit, the current usage, soft limit (quota), hard limit,
and number of remaining login warnings. The soft limit is the number of lK blocks (or files)
that the user is expected to remain below. Each time the user's usage goes past this limit, he
will be warned. The hard limit cannot be exceeded. If a user's usage reaches this number,
further requests for space (or attempts to create a file) will fail with an EDQUOT error, and
the first time this occurs, a message will be written to the user's terminal. Only one message
will be output, until space occupied is reduced below the limit, and reaches it again, in order
to avoid continual noise from those programs that ignore write errors.

Whenever a user logs in with a usage greater than his soft limit, he will be warned, and
his login warning count decremented. When he logs in under quota, the counter is reset to its
maximum value (which is a system configuration parameter, that is typically 3). If the warn­
ing count should ever reach zero (caused by three successive logins over quota), the particular
limit that has been exceeded will be treated as if the hard limit has been reached, and no
more resources will be allocated to the user. The only way to reset this condition is to reduce
usage below quota, then log in again.

1.1. Surviving when quota limit is reached

In most cases, the only way to recover from over quota conditions, is to abort whatever
activity was in progress on the filesystem that has reached its limit, remove sufficient files to
bring the limit back below quota, and retry the failed program.

However, if you are in the editor and a write fails because of an over quota situation,
that is not a suitable course of action, as it is most likely that initially attempting to write the
file will have truncated its previous contents, so should the editor be aborted without correctly
writing the file not only will the recent changes be lost, but possibly much, or even all, of the
data that previously existed.

* UNIX is a trademark of Bell Laboratories.

2-4 Disk Quotas

There are several possible safe exits for a user caught in this situation. He may use the
editor ! shell escape command to examine his file space, and remove surplus files. Alterna­
tively, using csh, he may suspend the editor, remove some files, then resume it. A third possi­
bility, is to write the file to some other filesystem (perhaps to a file on /tmp) where the user's
quota has not been exceeded. Then after rectifying the quota situation, the file can be moved
back to the filesystem it belongs on.

2. Administering the quota system

To set up and establish the disc quota system, there are several steps necessary to be
performed by the system administrator.

First, the system must be configured to include the disc quota sub-system. This is done
by including the line:

options QUOTA

in the system configuration file, then running config(8) followed by a system configuration*.

Second, a decision as to what filesystems need to have quotas applied needs to be made.
Usually, only filesystems that house users' home directories, or other user files, will need to be
subjected to the quota system, though it may also prove useful to also include /usr. If possi­
ble, /tmp should usually be free of quotas.

Having decided on which filesystems quotas need to be set upon, the administrator
should then allocate the available space amongst the competing needs. How this should be
done is (way) beyond the scope of this document.

Then, the edquota (8) command can be used to actually set the limits desired upon each
user. Where a number of users are to be given the same quotas (a common occurrence) the -p
switch to edquota will allow this to be easily accomplished.

Once the quotas are set, ready to operate, the system must be informed to enforce quo­
tas on the desired filesystems. This is accomplished with the quotaon (8) command. Quotaon
will either enable quotas for a particular filesystem, or with the -a switch, will enable quotas
for each 1ilesystem indicated in /etc/fstab as using quotas. See {stab (5) for details. Most
sites using the quota system, will include the line

/etc/quotaon -a

in /etc/re.local.

Should quotas need to be disabled, the quotaoff(8) command will do that, however,
should the filesystem be about to be dismounted, the umount (8) command will disable quotas
immediately before the filesystem is unmounted. This is actually an effect of the umount (2)
system call, and it guarantees that the quota system will not be disabled if the umount would
fail because the filesystem is not idle.

Periodically (certainly after each reboot, and when quotas are first enabled for a filesys­
tem), the records retained in the quota file should be checked for consistency with the actual
number of blocks and files allocated to the user. The quotachk (8) command can be used to
accomplish this. It is not necessary to dismount the filesystem, or disable the quota system to
run this command, though on active filesystems inaccurate results may occur. This does no
real harm in most cases, another run of quotachk when the filesystem is idle will certainly
correct any inaccuracy.

The super-user may use the quota (1) command to examine the usage and quotas of any
user, and the repquota (8) command may be used to check the usages and limits for all users
on a filesystem.

*See also the document "Building 4.2BSD UNIX Systems with Config".

Disk Quotas 2-5

3. Some implementation detail

Disc quota usage and information is stored in a file on the filesystem that the quotas are
to be applied to. Conventionally, this file is quotas in the root of the filesystem. While this
name is not known to the system in any way, several of the user level utilities "know" it, and
choosing any other name would not be wise.

The data in the file comprises an array of structures, indexed by uid, one structure for
each user on the system (whether the user has a quota on this filesystem or not). If the uid
space is sparse, then the file may have holes in it, which would be lost by copying, so it is best
to avoid this.

The system is informed of the existence of the quota file by the setquota (2) system call.
It then reads the quota entries for each user currently active, then for any files open owned by
users who are not currently active. Each subsequent open of a file on the filesystem, will be
accompanied by a pairing with its quota information. In most cases this information will be
retained in core, either because the user who owns the file is running some process, because
other files are open owned by the same user, or because some file (perhaps this one) was
recently accessed. In memory, the quota information is kept hashed by user-id and filesystem,
and retained in an LRU chain so recently released data can be easily reclaimed. Information
about those users whose last process has recently terminated is also retained in this way.

Each time a block is accessed or released, and each time an inode is allocated or freed,
the quota system gets told about it, and in the case of allocations, gets the opportunity to
object.

Measurements have shown that the quota code uses a very small percentage of the sys­
tem cpu time consumed in writing a new block to disc.

4. Acknowledgments

The current disc quota system is loosely based upon a very early scheme implemented at
the University of New South Wales, and Sydney University in the mid 70's. That system
implemented a single combined limit for both files and blocks on all filesystems.

A later system was implemented at the University of Melbourne by the author, but was
not kept highly accurately, eg: chown's (etc) did not affect quotas, nor did i/o to a file other
than one owned by the instigator.

The current system has been running (with only minor modifications) since January 82
at Melbourne. It is actually just a small part of a much broader resource control scheme,
which is capable of controlling almost anything that is usually uncontrolled in unix. The rest
of this is, as yet, still in a state where it is far too subject to change to be considered for distri­
bution.

For the 4.2BSD release, much work has been done to clean up and sanely incorporate
the quota code by Sam Leffler and Kirk McKusick at The University of California at Berke­
ley.

Fsck - The UNIXt File System Check Program

Revised July 28, 1983

Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

1. Introduction

Berkeley, CA 94720

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

Fsck 2-7

This document reflects the use of fsck with the 4.2BSD file system organization. This is
a revision of the original paper written by T. J. Kowalski.

When a UNIX operating system is brought up, a consistency check of the file systems
should always be performed. This precautionary measure helps to insure a reliable environ­
ment for file storage on disk. If an inconsistency is discovered, corrective action must be
taken. Fsck runs in two modes. Normally it is run non-interactively by the system after a
normal boot. When running in this mode, it will only make changes to the file system that are
known to always be correct. If an unexpected inconsistency is found fsck will exit with a
non-zero exit status, leaving the system running single-user. Typically the operator then runs
fsck interactively. When running in this mode, each problem is listed followed by a suggested
corrective action. The operator must decide whether or not the suggested correction should
be made.

The purpose of this memo is to dispel the mystique surrounding file system inconsisten­
cies. It first describes the updating of the file system (the calm before the storm) and then
describes file system corruption (the storm). Finally, the set of deterministic corrective
actions used by fsck (the Coast Guard to the rescue) is presented.

UNIX is a trademark of Bell Laboratories.
This work was done under grants from the National Science Foundation under grant MCSS0-05144, and the
Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Elec­
tronic System Command under Contract No. N00039-82-C-0235.

2-8 Fsck

2. Overview of the file system

The file system is discussed in detail in [Mckusick83]; this section gives a brief overview.

2.1. Superblock

A file system is described by its super-block. The super-block is built when the file sys­
tem is created (newfs (8)) and never changes. The super-block contains the basic parameters
of the file system, such as the number -of data blocks it contains and a count of the maximum
number of files. Because the super-block contains critical data, newfs replicates it to protect
against catastrophic loss. The default super block always resides at a fixed offset from the
beginning of the file system's disk partition. The redundant super blocks are not referenced
unless a head crash or other hard disk error causes the default super-block to be unusable.
The redundant blocks are sprinkled throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and contain
collections of pointers to files that may themselves be directories. Every file has a descriptor
associated with it called an inode. The inode contains information describing ownership of
the file, time stamps indicating modification and access times for the file, and an array of
indices pointing to the data blocks for the file. In this section, we assume that the first 12
blocks of the file are directly referenced by values stored in the inode structure itselft. The
inode structure may also contain references to indirect blocks containing further data block
indices. In a file system with a 4096 byte block size, a singly indirect block contains 1024
further block addresses, a doubly indirect block contains 1024 addresses of further single
indirect blocks, and a triply indirect block contains 1024 addresses of further doubly indirect
blocks.

In order to create files with up to 2ft32 bytes, using only two levels of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks can be any
power of two greater than or equal to 4096. The block size of the file system is maintained in
the super-block, so it is possible for file systems of different block sizes to be accessible simul­
taneously on the same system. The block size must be decided when newfs creates the file
system; the block size cannot be subsequently changed without rebuilding the file system.

2.2. Summary information

Associated with the super block is non replicated summary information. The summary
information changes as the file system is modified. The summary information contains the
number of blocks, fragments, inodes and directories in the file system.

2.3. Cylinder groups

The file system partitions the disk into one or more areas called cylinder groups. A
cylinder group is comprised of one or more consecutive cylinders on a disk. Each cylinder
group includes inode slots for files, a block map describing available blocks in the cylinder
group, and summary information describing the usage of data blocks within the cylinder
group. A fixed number of inodes is allocated for each cylinder group when the file system is
created. The current policy is to allocate one inode for each 2048 bytes of disk space; this is
expected to be far more inodes than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be
on the top platter. A single hardware failure that destroyed the top platter could cause the
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping infor­
mation begins at a floating offset from the beginning of the cylinder group. The offset for the
i+ 1st cylinder group is about one track further from the beginning of the cylinder group than
it was for the ith cylinder group. In this way, the redundant information spirals down into

tThe actual number may vary from system to system, but is usually in the range 5-13.

\

Fsck 2-9

the pack; any single track, cylinder, or platter can be lost without losing all copies of the
super-blocks. Except for the first cylinder group, the space between the beginning of the
cylinder group and the beginning of the cylinder group information stores data.

2.4. Fragments

To avoid waste in storing small files, the file system space allocator divides a single file
system block into one or more fragments. The fragmentation of the file system is specified
when the file system is created; each file system block can be optionally broken into 2, 4, or 8
addressable fragments. The lower bound on the size of these fragments is constrained by the
disk sector size; typically 512 bytes is the lower bound on fragment size. The block map asso­
ciated with each cylinder group records the space availability at the fragment level. Aligned
fragments are examined to determine block availability.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file
is represented by zero or more 4096 byte blocks of data, and possibly a single fragmented
block. If a file system block must be fragmented to obtain space for a small amount of data,
the remainder of the block is made available for allocation to other files. For example, con­
sider an 11000 byte file stored on a 4096/1024 byte file system. This file uses two full size
blocks and a 3072 byte fragment. If no fragments with at least 3072 bytes are available when
the file is created, a full size block is split yielding the necessary 3072 byte fragment and an
unused 1024 byte fragment. This remaining fragment can be allocated to another file, as
needed.

2.5. Updates to the file system

Every working day hundreds of files are created, modified, and removed. Every time a
file is modified, the operating system performs a series of file system updates. These updates,
when written on disk, yield a consistent file system. The file system stages all modifications of
critical information; modification can either be completed or cleanly backed out after a crash.
Knowing the information that is first written to the file system, deterministic procedures can
be developed to repair a corrupted file system. To understand this process, the order that the
update requests were being honored must first be understood.

When a user program does an operation to change the file system, such as a write, the
data to be written is copied into an internal in-core buffer in the kernel. Normally, the disk
update is handled asynchronously; the user process is allowed to proceed even though the data
has not yet been written to the disk. The data, along with the inode information reflecting
the change, is eventually written out to disk. The real disk write may not happen until long
after the write system call has returned. Thus at any given time, the file system, as it resides
on the disk, lags the state of the file system represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is
required for another use, when a sync (2) is done (at 30 second intervals) by /etc/update (8), or
by manual operator intervention with the sync (8) command. If the system is halted without
writing out the in-core information, the file system on the disk will be in an inconsistent state.

If all updates are done asynchronously, several serious inconsistencies can arise. One
inconsistency is that a block may be claimed by two inodes. Such an inconsistency can occur
when the system is halted before the pointer to the block in the old inode has been cleared in
the copy of the old inode on the disk, and after the pointer to the block in the new inode has
been written out to the copy of the new inode on the disk. Here, there is no deterministic
method for deciding which inode should really claim the block. A similar problem can arise
with a multiply claimed inode.

The problem with asynchronous inode updates can be avoided by doing all inode deallo­
cations synchronously. Consequently, inodes and indirect blocks are written to the disk syn­
chronously (i.e. the process blocks until the information is really written to disk) when they
are being deallocated. Similarly inodes are kept consistent by synchronously deleting, adding,
or changing directory entries.

2-10 Fsck

3. Fixing corrupted file systems

A file system can become corrupted in several ways. The most common of these ways
are improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when proper
shutdown procedures are not observed, physically write-protecting a mounted file system, or a
mounted file system is taken off-line. The most common operator procedural failure is forget­
ting to sync the system before halting the CPU.

File systems may become further corrupted if proper startup procedures are not
observed, e.g., not checking a file system for inconsistencies, and not repairing inconsistencies.
Allowing a corrupted file system to be used (and, thus, to be modified further) can be disas­
trous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a
disk pack, or as blatant as a non-functional disk-controller.

3.1. Detecting and correcting corruption

Normally fsck is run non-interactively. In this mode it will only fix corruptions that are
expected to occur from an unclean halt. These actions are a proper subset of the actions that
fsck will take when it is running interactively. Throughout this paper we assume that fsck is
being run interactively, and all possible errors can be encountered. When an inconsistency is
discovered in this mode, fsck reports the inconsistency for the operator to chose a corrective
action.

A quiescent:j: file system may be checked for structural integrity by performing con­
sistency checks on the redundant data intrinsic to a file system. The redundant data is either
read from the file system, or computed from other known values. The file system must be in
a quiescent state when fsck is run, since fsck is a multi-pass program.

In the following sections, we discuss methods to discover inconsistencies and possible
corrective actions for the cylinder group blocks, the inodes, the indirect blocks, and the data
blocks containing directory entries.

3.2. Super-block checking

The most commonly corrupted item in a file system is the summary information associ­
ated with the super-block. The summary information is prone to corruption because it is
modified with every change to the file system's blocks or inodes, and is usually corrupted after
an unclean halt.

The super-block is checked for inconsistencies involving file-system size, number of
inodes, free-block count, and the free-inode count. The file-system size must be larger than
the number of blocks used by the super-block and the number of blocks used by the list of
inodes. The file-system size and layout information are the most critical pieces of information
for fsck. While there is no way to actually check these sizes, since they are statically deter­
mined by newfs, fsck can check that these sizes are within reasonable bounds. All other file
system checks require that these sizes be correct. If fsck detects corruption in the static
parameters of the default super-block, fsck requests the operator to specify the location of an
alternate super-block.

3.3. Free block checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are not
claimed by any files. When all the blocks have been initially accounted for, fsck checks that
the number of free blocks plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

t I.e., unmounted and not being written on.

(

I

(

··----- ~-------

Fsck 2-11

If anything is wrong with the block allocation maps, fsck will rebuild them, based on the
list it has computed of allocated blocks.

The summary information associated with the super-block counts the total number of
free blocks within the file system. Fsck compares this count to the number of free blocks it
found within the file system. If the two counts do not agree, then fsck replaces the incorrect
count in the summary information by the actual free-block count.

The summary information counts the total number of free inodes within the file system.
Fsck compares this count to the number of free inodes it found within the file system. If the
two counts do not agree, then fsck replaces the incorrect count in the summary information
by the actual free-inode count.

3.4. Checking the inode state

An individual inode is not as likely to be corrupted as the allocation information. How­
ever, because of the great number of active inodes, a few of the inodes are usually corrupted.

The list of inodes in the file system is checked sequentially starting with inode 2 (inode 0
marks unused inodes; inode 1 is saved for future generations) and progressing through the last
inode in the file system. The state of each inode is checked for inconsistencies involving for­
mat and type, link count, duplicate blocks, bad blocks, and inode size.

Each inode contains a mode word. This mode word describes the type and state of the
inode. !nodes must be one of six types: regular inode, directory inode, symbolic link inode,
special block in ode, special character in ode, or socket in ode. In odes may be found in one of
three allocation states: unallocated, allocated, and neither unallocated nor allocated. This last
state suggests an incorrectly formated inode. An inode can get in this state if bad data is
written into the inode list. The only possible corrective action is for fsck is to clear the inode.

3.5. Inode links

Each inode counts the total number of directory entries linked to the inode. Fsck
verifies the link count of each inode by starting at the root of the file system, and descending
through the directory structure. The actual link count for each inode is calculated during the
descent.

If the stored link count is non-zero and the actual link count is zero, then no directory
entry appears for the inode. If this happens, fsck will place the disconnected file in the
lost+found directory. If the stored and actual link counts are non-zero and unequal, a direc­
tory entry may have been added or removed without the inode being updated. If this hap­
pens, fsck replaces the incorrect stored link count by the actual link count.

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed
by the inode. Since indirect blocks are owned by an inode, inconsistencies in indirect blocks
directly affect the inode that owns it.

Fsck compares each block number claimed by an inode against a list of already allocated
blocks. If another inode already claims a block number, then the block number is added to a
list of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block
number.

If there are any duplicate blocks, fsck will perform a partial second pass over the inode
list to find the inode of the duplicated block. The second pass is needed, since without exa­
mining the files associated with these inodes for correct content, not enough information is
available to determine which inode is corrupted and should be cleared. If this condition does
arise (only hardware failure will cause it), then the inode with the earliest modify time is usu­
ally incorrect, and should be cleared. If this happens, fsck prompts the operator to clear both
inodes. The operator must decide which one should be kept and which one should be cleared.

Fsck checks the range of each block number claimed by an inode. If the block number
is lower than the first data block in the file system, or greater than the last data block, then

2-12 Fsck

the block number is a bad block number. Many bad blocks in an inode are usually caused by
an indirect block that was not written to the file system, a condition which can only occur if
there has been a hardware failure. If an inode contains bad block numbers, fsck prompts the
operator to clear it.

3.6. Inode data size

Each inode contains a count of the number of data blocks that it contains. The number
of actual data blocks is the sum of the allocated data blocks and the indirect blocks. Fsck
computes the actual number of data blocks and compares that block count against the actual
number of blocks the inode claims. If an inode contains an incorrect count fsck prompts the
operator to fix it.

Each inode contains a thirty-two bit size field. The size is the number of data bytes in
the file associated with the inode. The consistency of the byte size field is roughly checked by
computing from the size field the maximum number of blocks that should be associated with
the inode, and comparing that expected block count against the actual number of blocks the
inode claims.

3.7. Checking the data associated with an inode

An inode can directly or indirectly reference three kinds of data blocks. All referenced
blocks must be the same kind. The three types of data blocks are: plain data blocks, symbolic
link data blocks, and directory data blocks. Plain data blocks contain the inf ~rmation stored
in a file; symbolic link data blocks contain the path name stored in a link. Directory data
blocks contain directory entries. Fsck can only check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These incon­
sistencies include directory inode numbers pointing to unallocated inodes, directory inode
numbers that are greater than the number of inodes in the file system, incorrect directory
inode numbers for "." and " .• ", and directories that are not attached to the file system. If the
inode number in a directory data block references an unallocated inode, then fsck will remove
that directory entry. Again, this condition can only arise when there has been a hardware
failure.

If a directory entry inode number references outside the inode list, then fsck will remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for "." must be the first entry in the directory data
block. The inode number for "." must reference itself; e.g., it must equal the inode number
for the directory data block. The directory inode number entry for " .. " must be the second
entry in the directory data block. Its value must equal the inode number for the parent of the
directory entry (or the inode number of the directory data block if the directory is the root
directory). If the directory inode numbers are incorrect, fsck will replace them with the
correct values.

3.8. File system connectivity

Fsck checks the general connectivity of the file system. If directories are not linked into
the file system, then fsck links the directory back into the file system in the lost+found direc­
tory. This condition only occurs when there has been a hardware failure.

Fsck 2-13

Acknowledgements
I thank Bill Joy, Sam Leffier, Robert Elz and Dennis Ritchie for their suggestions and

help in implementing the new file system. Thanks also to Robert Henry for his editorial input
to get this document together. Finally we thank our sponsors, the National Science Founda­
tion under grant MCS80-05144, and the Defense Advance Research Projects Agency (DoD)
under Arpa Order No. 4031 monitored by Naval Electronic System Command under Contract
No. N00039-82-C-0235. (Kirk McKusick, July 1983)

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and
Rick B. Brandt for adapting fsck to UNIX/TS. (T. Kowalski, July 1979)

References

[Dolotta78]

[Joy83]

[McKusick83]

[Ritchie78]

[Thompson78]

Dolotta, T. A., and Olsson, S. B. eds., UNIX User's Manual, Edition
1.1 (January 1978).

Joy, W., Cooper, E., Fabry, R., Leffier, S., McKusick, M., and Mosher,
D. 4.2BSD System Manual, University of California at Berkeley, Com­
puter Systems Research Group Technical Report #4, 1982.

McKusick, M., Joy, W., Leffier, S., and Fabry, R. A Fast File System
for UNIX, University of California at Berkeley, Computer Systems
Research Group Technical Report #7, 1982.

Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System,
The Bell System Technical Journal 57, 6 (July-August 1978, Part 2),
pp. 1905-29.

Thompson, K., UNIX Implementation, The Bell System Technical
Journal 57, 6 (July-August 1978, Part 2), pp. 1931-46.

2-14 Fsck

4. Appendix A - Fsck Error Conditions

4.1. Conventions

Fsck is a multi-pass file system check program. Each file system pass invokes a different
Phase of the fsck program. After the initial setup, fsck performs successive Phases over each
file system, checking blocks and sizes, path-names, connectivity, reference counts, and the
map of free blocks, (possibly rebuilding it), and performs some cleanup.

Normally fsck is run non-interactively to preen the file systems after an unclean halt. While
preen'ing a file system, it will only fix corruptions that are expected to occur from an unclean·
halt. These actions are a proper subset of the actions that fsck will take when it is running
interactively. Throughout this appendix many errors have several options that the operator
can take. When an inconsistency is detected, fsck reports the error condition to the operator.
If a response is required, fsck prints a prompt message and waits for a response. When
preen'ing most errors are fatal. For those that are expected, the response taken is noted.
This appendix explains the meaning of each error condition, the possible responses, and the
related error conditions.

The error conditions are organized by the Phase of the fsck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed in initialization.

4.2. Initialization

Before a file system check can be performed, certain tables have to be set up and certain
files opened. This section concerns itself with the opening of files and the initialization of
tables. This section lists error conditions resulting from command line options, memory
requests, opening of files, status of files, file system size checks, and creation of the scratch
file. All of the initialization errors are fatal when the file system is being preen'ed.

C option?
C is not a legal option to fsck; legal options are -b, -y, -n, and -p. Fsck terminates on this
error condition. See the fsck (8) manual entry for further detail.

cannot alloc NNN bytes for blockmap
cannot alloc NNN bytes for freemap
cannot alloc NNN bytes for statemap
cannot alloc NNN bytes for lncntp
Fsck 's request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't open checklist file: F
The file system checklist file F (usually /etc/fstab) can not be opened for reading. Fsck ter­
minates on this error condition. Check access modes of F.

Can't stat root
Fsck 's request for statistics about the root directory "/" failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't stat F
Can't make sense out of name F
Fsck 's request for statistics about the file system F failed. When running manually, it ignores
this file system and continues checking the next file system given. Check access modes of F.

Can't open F
Fsck 's request attempt to open the file system F failed. When running manually, it ignores

Fsck 2-15

this file system and continues checking the next file system given. Check access modes of F.

F: (NO WRITE)
Either the -n flag was specified or f sck 's attempt to open the file system F for writing failed.
When running manually, all the diagnostics are printed out, but no modifications are
attempted to fix them.

file is not a block or character device; OK
You have given fsck a regular file name by mistake. Check the type of the file specified.

Possible responses to the OK prompt are:

YES Ignore this error condition.

NO ignore this file system and continues checking the next file system given.

One of the following messages will appear:
MAGIC NUMBER WRONG
NCG OUT OF RANGE
CPG OUT OF RANGE
NCYL DOES NOT JIVE WITH NCG*CPG
SIZE PREPOSTEROUSLY LARGE
TRASHED VALUES IN SUPER BLOCK

and will be followed by the message:
F: BAD SUPER BLOCK: B
USE-b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER-BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(S).
The super block has been corrupted. An alternative super block must be selected from among
those listed by newfs (8) when the file system was created. For file systems with a blocksize
less than 32K, specifying -b 32 is a good first choice.

INTERNAL INCONSISTENCY: M
Fsck 's has had an internal panic, whose message is specified as M. This should never happen.
See a guru.

CAN NOT SEEK: BLK B (CONTINUE)
Fsck 's request for moving to a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will per­
sist. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system. If the block was part of the vir­
tual memory buffer cache, fsck will terminate with the message "Fatal 1/0 error".

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)
Fsck 's request for reading a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will per­
sist. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-ch~ck this file system. If the block was part of the vir­
tual memory buffer cache, fsck will terminate with the message "Fatal 1/0 error".

2-16 Fsck

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)
Fsck 's request for writing a specified block number B in the file system failed. The disk is
write-protected. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will per­
sist. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system. If the block was part of the vir­
tual memory buffer cache, fsck will terminate with the message "Fatal 1/0 error".

NO terminate the program.

4.3. Phase 1 - Check Blocks and Sizes

This phase concerns itself with the inode list. This section lists error conditions result­
ing from checking inode types, setting up the zero-link-count table, examining inode block
numbers for bad or duplicate blocks, checking inode size, and checking inode format. All
errors in this phase except INCORRECT BLOCK COUNT are fatal if the file system is
being preen'ed,

CG C: BAD MAGIC NUMBER The magic number of cylinder group C is wrong. This usu­
ally indicates that the cylinder group maps have been destroyed. When running manually the
cylinder group is marked as needing to be reconstructed.

UNKNOWN FILE TYPE I=I (CLEAR) The mode word of the inode I indicates that the
inode is not a special block inode, special character inode, socket inode, regular inode, sym­
bolic link, or directory inode.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLO­
CATED error condition in Phase 2 for each directory entry pointing to this inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for fsck containing allocated inodes with a link count of zero has no more
room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
allocated inode with a zero link count is found, this error condition is repeated.

NO terminate the program.

B BAD I=I
Inode I contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode I
has too many block numbers outside the file system range. This error condition will always
invoke the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I=I (CONTINUE)
There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in

Fsck 2-17

the file system associated with inode I.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system.
A second run of fsck should be made to re-check this file system.

NO terminate the program.

B DUP I=/
!node I contains block number B which is already claimed by another inode. This error con­
dition may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode I has
too many block numbers claimed by other inodes. This error condition will always invoke
Phase lb and the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I=/ (CONTINUE)
There is more than a tolerable number (usually 10) of blocks claimed by other inodes.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system.
A second run of fsck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in fsck containing duplicate block numbers has no more room. Recompile
fsck with a larger value of DUPTBLSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
duplicate block is found, this error condition will repeat.

NO terminate the program.

PARTIALLY ALLOCATED INODE I=/ (CLEAR)
!node I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

INCORRECT BLOCK COUNT I=/ (X should be Y) (CORRECT)
The block count for inode I is X blocks, but should be Y blocks. When preen'ing the count is
corrected.

Possible responses to the CORRECT prompt are:

YES replace the block count of inode I with Y.

NO ignore this error condition.

4.4. Phase lB: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find
the inode which previously claimed that block. This section lists the error condition when the
duplicate block is found.

2-18 Fsck

B DUP I=/
Inode I contains block number B that is already claimed by another inode. This error condi­
tion will always invoke the BAD/DUP error condition in Phase 2. You can determine which
inodes have overlapping blocks by examining this error condition and the DUP error condition
in Phase 1.

4.5. Phase 2 - Check Pathnames

This phase concerns itself with removing directory entries pointing to error conditioned
inodes from Phase 1 and Phase lb. This section lists error conditions resulting from root
inode mode and status, directory inode pointers in range, and directory entries pointing to bad
inodes. All errors in this phase are fatal if the file system is being preen'ed.

ROOT INODE UNALLOCATED. TERMINATING.
The root inode (usually inode number 2) has no allocate mode bits. This should never hap­
pen. The program will terminate.

NAME TOO LONG F
An excessively long path name has been found. This is usually indicative of loops in the file
system name space. This can occur if the super user has made circular links to directories.
The offending links must be removed (by a guru).

ROOT INODE NOT DIRECTORY (FIX)
The root inode (usually inode number 2) is not directory inode type.

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are not
directory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)
Phase 1 or Phase lb have found duplicate blocks or bad blocks in the root inode (usually
inode number 2) for the file system.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run
the file system check. If the root inode is not correct, then this may result in a large
number of other error conditions.

NO terminate the program.

I OUT OF RANGE I=/ NAME=F (REMOVE)
A directory entry F has an inode number I which is greater than the end of the inode list.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

UNALLOCATED I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(REMOVE)
A directory entry F has a directory inode I without allocate mode bits. The owner 0, mode
M, size S, modify time T, and directory name Fare printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

Fsck 2-19

UNALLOCATED I=/ OWNER=O MODE=M SIZE=S MTIME=T FILE=F
(REMOVE)
A directory entry F has an inode I without allocate mode bits. The owner 0, mode M, size S,
modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

DUP/BAD I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F (REMOVE)
Phase 1 or Phase lb have found duplicate blocks or bad blocks associated with directory entry
F, directory inode I. The owner 0, mode M, size S, modify time T, and directory name Fare
printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

DUP/BAD I=/ OWNER=O MODE=M SIZE=S MTIME=T FILE=F (REMOVE)
Phase 1 or Phase lb have found duplicate blocks or bad blocks associated with directory entry
F, inode I. The owner 0, mode M, size S, modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.

NO ignore this error condition.

ZERO LENGTH DIRECTORY I=/ OWNER=O MODE=M SIZE=S MTIME=T
DIR=F (REMOVE)
A directory entry F has a size S that is zero. The owner 0, mode M, size S, modify time T,
and directory name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry Fis removed; this will always invoke the BAD/DUP error condition
in Phase 4.

NO ignore this error condition.

DIRECTORY TOO SHORT I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(FIX)
A directory F has been found whose size S is less than the minimum size directory. The
owner 0, mode M, size S, modify time T, and directory name F are printed.

Possible responses to the FIX prompt are:

YES increase the size of the directory to the minimum directory size.

NO ignore this directory.

DIRECTORY CORRUPTED I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
(SALVAGE)
A directory with an inconsistent internal state has been found.

Possible responses to the FIX prompt are:

2-20 Fsck

YES throw away all entries up to the next 512-byte boundary. This rather drastic action can
throw away up to 42 entries, and should be taken only after other recovery efforts have
failed.

NO Skip up to the next 512-byte boundary and resume reading, but do not modify the direc­
tory.

BAD INODE NUMBER FOR '.' I=I OWNER=O MODE=M SIZE=S MTIME=T
DIR=F (FIX)
A directory I has been found whose inode number for '.' does does not equal I.

Possible responses to the FIX prompt are:

YES change the inode number for '.' to be equal to I.

NO leave the inode number for'.' unchanged.

MISSING'.' I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose first entry is unallocated.

Possible responses to the FIX prompt are:

YES make an entry for '.' with inode number equal to I.

NO leave the directory unchanged.

MISSING'.' I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F
A directory I has been found whose first entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the offending entry F moved elsewhere. The file system
should then be unmounted and fsck should be run again.

MISSING'.' I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD'.'
A directory I has been found whose first entry is not'.'. Fsck cannot resolve this problem as
it should never happen. See a guru.

EXTRA'.' ENTRY I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for'.'.

Possible responses to the FIX prompt are:

YES remove the extra entry for '.'.

NO leave the directory unchanged.

BAD INODE NUMBER FOR ' • .' I=I OWNER=O MODE=M SIZE=S MTIME=T
DIR=F (FIX)
A directory I has been found whose inode number for ' . .' does does not equal the parent of I.

Possible responses to the FIX prompt are:

YES change the inode number for ' . .' to be equal to the parent of I.

NO leave the inode number for ' . .' unchanged.

MISSING' • .' I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose second entry is unallocated.

Possible responses to the FIX prompt are:

YES make an entry for ' . .' with inode number equal to the parent of I.

NO leave the directory unchanged.

MISSING' .. ' I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F

Fsck 2-21

A directory I has been found whose second entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the off ending entry F moved elsewhere. The file system
should then be unmounted and fsck should be run again.

MISSING' . .' I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F
CANNOT FIX, INSUFFICIENT SPACE TO ADD' . .'
A directory I has been found whose second entry is not' .. '. Fsck cannot resolve this problem
as it should never happen. See a guru.

EXTRA' .. ' ENTRY I=/ OWNER=O MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for ' . .'.

Possible responses to the FIX prompt are:

YES remove the extra entry for' . .'.

NO leave the directory unchanged.

4.6. Phase 3 - Check Connectivity

This phase concerns itself with the directory connectivity seen in Phase 2. This section
lists error conditions resulting from unreferenced directories, and missing or full lost+found
directories.

UNREF DIR I=/ OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT)
The directory inode I was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of directory inode I are printed.
When preen'ing, the directory is reconnected if its size is non-zero, otherwise it is cleared.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+found). This may invoke the lost+found error condition in Phase 3 if there are
problems connecting directory inode I to lost+found. This may also invoke the CON­
NECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in Phase
4.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the file system; fsck ignores the
request to link a directory in lost+ found. This will always invoke the UNREF error condition
in Phase 4. Check access modes of lost+ found. See fsck (8) manual entry for further detail.
This error is fatal if the file system is being preen'ed.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+found directory in the root directory of
the file system; fsck ignores the request to link a directory in lost+found. This will always
invoke the UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found
or make lost+ found larger. See fsck (8) manual entry for further detail. This error is fatal if
the file system is being preen'ed.

2-22 Fsck

DIR I=ll CONNECTED. PARENT WAS I=l2
This is an advisory message indicating a directory inode 11 was successfully connected to the
lost+found directory. The parent inode 12 of the directory inode 11 is replaced by the inode
number of the lost+ found directory.

4.7. Phase 4 - Check Reference Counts

This phase concerns itself with the link count information seen in Phase 2 and Phase 3.
This section lists error conditions resulting from unreferenced files, missing or full lost+found
directory, incorrect link counts for files, directories, symbolic links, or special files, unrefer­
enced files, symbolic links, and directories, bad and duplicate blocks in files, symbolic links,
and directories, and incorrect total free-inode counts. All errors in this phase are correctable
if the file system is being preen'ed except running out of space in the lost+found directory.

UNREF FILE I=l OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT)
!node l was not connected to a directory entry when the file system was traversed. The owner
0, mode M, size S, and modify time T of inode l are printed. When preen'ing the file is
cleared if either its size or its link count is zero, otherwise it is reconnected.

Possible responses to the RECONNECT prompt are:

YES reconnect inode l to the file system in the directory for lost files (usually lost+found).
This may invoke the lost+found error condition in Phase 4 if there are problems con­
necting inode l to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in Phase
4.

(CLEAR)
The inode mentioned in the immediately previous error condition can not be reconnected.
This cannot occur if the file system is being preen'ed, since lack of space to reconnect files is a
fatal error.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by zeroing
its contents.

NO ignore this error condition.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the file system; fsck ignores the
request to link a file in lost+found. This will always invoke the CLEAR error condition in
Phase 4. Check access modes of lost+found. This error is fatal if the file system is being
preen'ed.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+found directory in the root directory of
the file system; fsck ignores the request to link a file in lost+found. This will always invoke
the CLEAR error condition in Phase 4. Check size and contents of lost+found. This error is
fatal if the file system is being preen'ed.

LINK COUNT FILE I=l OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)
The link count for inode l which is a file, is X but should be Y. The owner 0, mode M, size
S, and modify time T are printed. When preen'ing the link count is adjusted.

Possible responses to the ADJUST prompt are:

YES replace the link count of file inode I with Y.

NO ignore this error condition.

Fsck 2-23

LINK COUNT DIR I=/ OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)
The link count for inode I which is a directory, is X but should be Y. The owner 0, mode M,
size S, and modify time T of directory inode I are printed. When preen'ing the link count is
adjusted.

Possible responses to the ADJUST prompt are:

YES replace the link count of directory inode I with Y.

NO ignore this error condition.

LINK COUNT F I=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)
The link count for F inode I is X but should be Y. The name F, owner 0, mode M, size S,
and modify time T are printed. When preen'ing the link count is adjusted.

Possible responses to the ADJUST prompt are:

YES replace the link count of inode I with Y.

NO ignore this error condition.

UNREF FILE I=/ OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)
Inode I which is a file, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. When
preen'ing, this is a file that was not connected because its size or link count was zero, hence it
is cleared.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

UNREF DIR I=/ OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)
!node I which is a directory, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. When
preen'ing, this is a directory that was not connected because its size or link count was zero,
hence it is cleared.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

BAD/DUP FILE I=/ OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)
Phase 1 or Phase lb have found duplicate blocks or bad blocks associated with file inode I.
The owner 0, mode M, size S, and modify time T of inode I are printed. This error cannot
arise when the file system is being preen'ed, as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

BAD/DUP DIR I=/ OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)
Phase 1 or Phase lb have found duplicate blocks or bad blocks associated with directory inode

2-24 Fsck

I. The owner 0, mode M, size S, and modify time T of inode I are printed. This error cannot
arise when the file system is being preen'ed, as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)
The actual count of the free inodes does not match the count in the super-block of the file
system. When preen'ing, the count is fixed.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.

NO ignore this error condition.

4.8. Phase 5 - Check Cyl groups

This phase concerns itself with the free-bloek maps. This section lists error conditions
resulting from allocated blocks in the free-block maps, free blocks missing from free-block
maps, and the total free-block count incorrect.

CG C: BAD MAGIC NUMBER
The magic number of cylinder group C is wrong~ This usually indicates that the cylinder
group maps have been destroyed. When running manually the cylinder group is marked as
needing to be reconstructed. This error is fatal if the file system is being preen'ed.

EXCESSIVE BAD BLKS IN BIT MAPS (CONTINUE)
An inode contains more than a tolerable number (usually 10) of blocks claimed by other
inodes or that are out of the legal range for the file system. This error is fatal if the file sys­
tem is being preen'ed.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block maps and continue the execution of fsck.

NO terminate the program.

SUMMARY INFORMATION T BAD
where T is one or more of:
(INODE FREE)
(BLOCK OFFSETS)
(FRAG SUMMARIES)
(SUPER BLOCK SUMMARIES)
The indicated summary information was found to be incorrect. This error condition will
always invoke the BAD CYLINDER GROUPS condition in Phase 6. When preen'ing, the
summary information is recomputed.

X BLK(S) MISSING
X blocks unused by the file system were not found in the free-block maps. This error condi­
tion will always invoke the BAD CYLINDER GROUPS condition in Phase 6. When
preen'ing, the block maps are rebuilt.

BAD CYLINDER GROUPS (SALVAGE)
Phase 5 has found bad blocks in the free-block maps, duplicate blocks in the free-block maps,
or blocks missing from the file system. When preen'ing, the cylinder groups are reconstructed.

Possible responses to the SALVAGE prompt are:

YES replace the actual free-block maps with a new free-block maps.

NO ignore this error condition.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

Fsck 2-25

The actual count of free blocks does not match the count in the super-block of the file system.
When preen'ing, the counts are fixed.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.

NO ignore this error condition.

4.9. Phase 6 - Salvage Cylinder Groups

This phase concerns itself with the free-block maps reconstruction. No error messages
are produced.

4.10. Cleanup

Once a file system has been checked, a few cleanup functions are performed. This sec­
tion lists advisory messages about the file system and modify status of the file system.

V files, W used, X free (Y frags, Z blocks)
This is an advisory message indicating that the file system checked contained V files using W
fragment sized blocks leaving X fragment sized blocks free in the file system. The numbers in
parenthesis breaks the free count down into Y free fragments and Z free full sized blocks.

***** REBOOT UNIX *****
This is an advisory message indicating that the root file system has been modified by fsck. If
UNIX is not rebooted immediately, the work done by fsck may be undone by the in-core
copies of tables UNIX keeps. When preen'ing, fsck will exit with a code of 4. The auto­
reboot script interprets an exit code of 4 by issuing a reboot system call.

*****FILE SYSTEM WAS MODIFIED*****
This is an advisory message indicating that the current file system was modified by fsck. If
this file system is mounted or is the current root file system, fsck should be halted and UNIX
rebooted. If UNIX is not rebooted immediately, the work done by fsck may be undone by the
in-core copies of tables UNIX keeps.

SEND MAIL

INSTALLATION AND OPERATION GUIDE

Eric Allman
Britton-Lee, Inc.

Version 4.2

Sendmail implements a general purpose internetwork mail routing facility under the
UNIX* operating system. It is not tied to any one transport protocol - its function may be
likened to a crossbar switch, relaying messages from one domain into another. In the process,
it can do a limited amount of message header editing to put the message into a format that is
appropriate for the receiving domain. All of this is done under the control of a configuration
file.

Due to the requirements of flexibility for sendmail, the configuration file can seem some­
what unapproachable. However, there are only a few basic configurations for most sites, for
which standard configuration files have been supplied. Most other configurations can be built
by adjusting an existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number
of features that may be used to monitor or adjust the operation under unusual circumstances.
These features are described.

Section one describes how to do a basic sendmail installation. Section two explains the
day-to-day information you should know to maintain your mail system. If you have a rela­
tively normal site, these two sections should contain sufficient information for you to install
sendmail and keep it happy. Section three describes some parameters that may be safely
tweaked. Section four has information regarding the command line arguments. Section five
contains the nitty-gritty information about the configuration file. This section is for maso­
chists and people who must write their own configuration file. The appendixes give a brief
but detailed explanation of a number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail - An
Internetwork Mail Router. This other paper should be read before this manual to gain a
basic understanding of how the pieces fit together.

1. BASIC INSTALLATION

There are two basic steps to installing sendmail. The hard part is to build the
configuration table. This is a file that sendmail reads when it starts up that describes the
mailers it knows about, how to parse addresses, how to rewrite the message header, and the
settings of various options. Although the configuration table is quite complex, a
configuration can usually be built by adjusting an existing off-the-shelf configuration. The
second part is actually doing the installation, i.e., creating the necessary files, etc.

The remainder of this section will describe the installation of sendmail assuming you
can use one of the existing configurations and that the standard installation parameters are

*UNIX is a trademark of Bell Laboratories.

Sendmail Installation and Operation Guide 2-27

2-28 Sendmail Installation and Operation Guide

acceptable. All pathnames and examples are given from the root of the sendmail subtree.

1.1. Oif-The-Shelf Configurations

The configuration files are all in the subdirectory cf of the sendmail directory.
The ones used at Berkeley are in m4(1) format; files with names ending ".m4" are m4
include files, while files with names ending ".me" are the master files. Files with names
ending ".er• are the m4 processed versions of the corresponding ".me" file.

Two off the shelf configuration files are supplied to handle the basic cases:
cf /arpaproto.cf for Arpanet (TCP) sites and cf /uucpproto.cf for UUCP sites. These are
not in m4 format. The file you need should be copied to a file with the same name as
your system, e.g.,

cp uucpproto.cf ucsfcgl.cf

This file is now ready for installation as /usr/lib/sendmail.cf.

1.2. Installation Using the Makefile

A makefile exists in the root of the sendmail directory that will do all of these
steps for a 4.2BSD system. It may have to be slightly tailored for use on other systems.

Before using this makefile, you should already have created your configuration file
and left it in the file "cf/system.er• where system is the name of your system (i.e., what
is returned by hostname (1)). If you do not have hostname you can use the declaration
"HOST=system" on the make(l) command line. You should also examine the file
md/config.m4 and change the m4 macros there to reflect any libraries and compilation
flags you may need.

The basic installation procedure is to type:

make
make install

in the root directory of the sendmail distribution. This will make all binaries and
install them in the standard places. The second make command must be executed as
the superuser (root).

1.3. Installation by Hand

Along with building a configuration file, you will have to install the sendmail
startup into your UNIX system. If you are doing this installation in conjunction with a
regular Berkeley UNIX install, these steps will already be complete. Many of these
steps will have to be executed as the superuser (root).

1.3.1. lib/libsys.a

The library in lib/libsys.a contains some routines that should in some sense be
part of the system library. These are the system logging routines and the new direc­
tory access routines (if required). If you are not running the new 4.2BSD directory
code and do not have the compatibility routines installed in your system library, you
should execute the commands:

cd lib
make ndir

This will compile and install the 4.2 compatibility routines in the library. You
should then type:

Sendmail Installation and Operation Guide 2-29

cd lib # if required
make

This will recompile and fill the library.

1.3.2. /usr/lib/sendmail

The binary for sendmail is located in /usr/lib. There is a version available in
the source directory that is probably inadequate for your system. You should plan
on recompiling and installing the entire system:

cd src
rm -f *.o
make
cp sendmail /usr/lib

1.3.3. /usr/lib/sendmail.cf

The configuration file that you created earlier should be installed in
/usr/lib/sendmail.cf:

cp cf/system.cf /usr/lib/sendmail.cf

1.3.4. /usr/ucb/newaliases

If you are running delivermail, it is critical that the newaliases command be
replaced. This can just be a link to sendmail:

rm -f /usr/ucb/newaliases
ln /usr/lib/sendmail /usr/ucb/newaliases

1.3.5. /usr/lib/sendmail.cf

The configuration file must be installed in /usr/lib. This is described above.

1.3.6. /usr/spool/mqueue

The directory /usr/spool/mqueue should be created to hold the mail queue.
This directory should be mode 777 unless sendmail is run setuid, when mqueue
should be owned by the sendmail owner and mode 755.

1.3.7. /usr/lib/aliases*

The system aliases are held in three files. The file "/usr/lib/aliases" is the
master copy. A sample is given in "lib/aliases" which includes some aliases which
must be defined:

cp lib/aliases /usr/lib/aliases

You should extend this file with any aliases that are apropos to your system.

Normally sendmail looks at a version of these files maintained by the dbm (3)
routines. These are stored in "/usr/lib/aliases.dir" and "/usr/lib/aliases.pag." These
can initially be created as empty files, but they will have to be initialized promptly.
These should be mode 666 if you are running a reasonably relaxed system:

cp /dev/null /usr/lib/aliases.dir
cp /dev/null /usr/lib/aliases.pag
chmod 666 /usr/lib/aliases.*
newaliases

2-30 Sendmail Installation and Operation Guide

1.3.8. /usr/lib/sendmail.f c

If you intend to install the frozen version of the configuration file (for quick
startup) you should create the file /usr/lib/sendmail.fc and initialize it. This step
may be safely skipped.

cp /dev/null /usr/lib/sendmail.fc
/usr/lib/sendmail -bz

1.3.9. /etc/re

It will be necessary to start up the sendmail daemon when your system
reboots. This daemon performs two functions: it listens on the SMTP socket for
connections (to receive mail from a remote system) and it processes the queue
periodically to insure that mail gets delivered when hosts come up.

Add the following lines to "/etc/re" (or "/etc/re.local" as appropriate) in the
area where it is starting up the daemons:

if [-f /usr/lib/sendmail]; then

fi

(cd /usr/spool/mqueue; rm -f [lnx]f*)
/usr/lib/sendmail -bd -q30m &
echo -n ' sendmail' >/dev/console

The "cd" and "rm" commands insure that all lock files have been removed; extrane­
ous lock files may be left around if the system goes down in the middle of processing
a message. The line that actually invokes sendmail has two flags: "-bd" causes it to
listen on the SMTP port, and "-q30m" causes it to run the queue every half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do
not include the -bd flag.

1.3.10. /usr/lib/sendmail.hf

This is the help file used by the SMTP HELP command. It should be copied
from "lib/sendmail.hf":

cp lib/sendmail.hf /usr/lib

1.3.11. /usr/lib/sendmail.st

If you wish to collect statistics about your mail traffic, you should create the
file "/usr/lib/sendmail.st":

cp /dev/null /usr/lib/sendmail.st
chmod 666 /usr/lib/sendmail.st

This file does not grow. It is printed with the program "aux/mailstats."

1.3.12. /etc/syslog

You may want to run the syslog program (to collect log information about
sendmail). This program normally resides in /etc/syslog, with support files
/etc/syslog.conf and /etc/syslog.pid. The program is located in the aux subdirectory
of the sendmail distribution. The file /etc/syslog.conf describes the file(s) that
sendmail will log in. For a complete description of syslog, see the manual page for
sys log (8) (located in sendmail/doc on the distribution).

Sendmail Installation and Operation Guide 2-31

1.3.13. /usr/ucb/newaliases

If sendmail is invoked as "newaliases," it will simulate the -bi flag (i.e., will
rebuild the alias database; see below). This should be a link to /usr/lib/sendmail.

1.3.14. /usr/ucb/mailq

If sendmail is invoked as "mailq," it will simulate the -hp flag (i.e., sendmail
will print the contents of the mail queue; see below). This should be a link to
/usr /lib/sendmail.

2. NORMAL OPERATIONS

2.1. Quick Configuration Startup

A fast version of the configuration file may be set up by using the -bz flag:

/usr/lib/sendmail -bz

This creates the file /usr/lib/sendmail.fc ("frozen configuration"). This file is an image
of sendmail's data space after reading in the configuration file. If this file exists, it is
used instead of /usr/lib/sendmail.cf sendmail.fc must be rebuilt manually every time
sendmail.cf is changed.

The frozen configuration file will be ignored if a -C flag is specified or if sendmail
detects that it is out of date. However, the heuristics are not strong so this should not
be trusted.

2.2. The System Log

The system log is supported by the syslog(B) program.

2.2.1. Format

Each line in the system log consists of a timestamp, the name of the machine
that generated it (for logging from several machines over the ethernet), the word
"sendmail:", and a message.

2.2.2. Levels

If you have syslog(8) or an equivalent installed, you will be able to do logging.
There is a large amount of information that can be logged. The log is arranged as a
succession of levels. At the lowest level only extremely strange situations are logged.
At the highest level, even the most mundane and uninteresting events are recorded
for posterity. As a convention, log levels under ten are considered "useful;" log lev­
els above ten are usually for debugging purposes.

A complete description of the log levels is given in section 4.3.

2.3. The Mail Queue

The mail queue should be processed transparently. However, you may find that
manual intervention is sometimes necessary. For example, if a major host is down for a
period of time the queue may become clogged. Although sendmail ought to recover
gracefully when the host comes up, you may find performance unacceptably bad in the
meantime.

2.3.1. Printing the queue

The contents of the queue can be printed using the mailq command (or by
specifying the -hp flag to sendmail):

2-32 Sendmail Installation and Operation Guide

mailq

This will produce a listing of the queue id's, the. size of the message, the date the
message entered the queue, and the sender and recipients.

2.3.2. Format of queue tiles

All queue files have the form x fAA99999 where AA99999 is the id for this file
and the x is a type. The types are:

d The data file. The message body (excluding the header) is kept in this file.

l The lock file. If this file exists, the job is currently being processed, and a
queue run will not process the file. For that reason, an extraneous If file can
cause a job to apparently disappear (it will not even time out!).

n This file is created when an id is being created. It is a separate file to insure
that no mail can ever be destroyed due to a race condition. It should exist for
no more than a few milliseconds at any given time.

q The queue control file. This file contains the information necessary to process
the job.

t A temporary file. These are an image of the qf file when it is being rebuilt. It
should be renamed to a qf file very quickly.

x A transcript file, existing during the life of a session showing everything that
happens during that session.

The qf file is structured as a series of lines each beginning with a code letter.
The lines are as follows:

D The name of the data file. There may only be one of these lines.

H A header definition. There may be any number of these lines. The order is
important: they represent the order in the final message. These use the same
syntax as header definitions in the configuration file.

R A recipient address. This will normally be completely aliased, but is actually
realiased when the job is processed. There will be one line for each recipient.

S The sender address. There may only be one of these lines.

T The job creation time. This is used to compute when to time out the job.

P The current message priority. This is used to order the queue. Higher
numbers mean lower priorities. The priority increases as the message sits in
the queue. The initial priority depends on the message class and the size of
the message.

M A message. This line is printed by the mailq command, and is generally used
to store status information. It can contain any text.

As an example, the following is a queue file sent to "mckusick@calder" and
"wnj":

DdfA13557
Serie
T404261372
P132
Rmckusick@calder
Rwnj

Sendmail Installation and Operation Guide 2-33

H?D?date: 23-0ct-82 15:49:32-PDT (Sat)
H?F?from: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])

id A13557; 23-0ct-82 15:49:32-PDT (Sat)
Hphone: (415) 548-3211
HTo: mckusick@calder, wnj

This shows the name of the data file, the person who sent the message, the submis­
sion time (in seconds since January 1, 1970), the message priority, the message class,
the recipients, and the headers for the message.

2.3.3. Forcing the queue

Sendmail should run the queue automatically at intervals. The algorithm is to
read and sort the queue, and then to attempt to process all jobs in order. When it
attempts to run the job, sendmail first checks to see if the job is locked. If so, it
ignores the job.

There is no attempt to insure that only one queue processor exists at any time,
since there is no guarantee that a job cannot take forever to process. Due to the
locking algorithm, it is impossible for one job to freeze the queue. However, an
uncooperative recipient host or a program recipient that never returns can accumu­
late many processes in your system. Unfortunately, there is no way to resolve this
without violating the protocol.

In some cases, you may find that a major host going down for a couple of days
may create a prohibitively large queue. This will result in sendmail spending an
inordinate amount of time sorting the queue. This situation can be fixed by moving
the queue to a temporary place and creating a new queue. The old queue can be
run later when the offending host returns to service.

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old
queue directory) and create a new daemon.

To run the old mail queue, run the following command:

/usr/lib/sendmail -oQ/usr/spool/omqueue -q

The -oQ flag specifies an alternate queue directory and the -q flag says to just run
every job in the queue. If you have a tendency toward voyeurism, you can use the
-v flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:

rmdir /usr/spool/omqueue

2-34 Sendmail Installation and Operation Guide

2.4. The Alias Database

The alias database exists in two forms. One is a text form, maintained in the file
/usr/lib/aliases. The aliases are of the form

name: namel, name2, ...

Only local names may be aliased; e.g.,

eric@mit-xx: eric@berkeley

will not have the desired effect. Aliases may be continued by starting any continuation
lines with a space or a tab. Blank lines and lines beginning with a sharp sign ("#") are
comments.

The second form is processed by the dbm (3) library. This form is in the files
/usr/lib/aliases.dir and /usr/lib/aliases.pag. This is the form that sendmail actually
uses to resolve aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the
command

newaliases

This is equivalent to giving sendmail the -bi flag:

/usr/lib/sendmail -bi

If the "D" option is specified in the configuration, sendmail will rebuild the
alias database automatically if possible when it is out of date. The conditions under
which it will do this are:

(1) The DBM version of the database is mode 666. -or­

(2) Sendmail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it
might take more than five minutes to rebuild the database, there is a chance that
several processes will start the rebuild process simultaneously.

2.4.2. Potential problems

There are a number of problems that can occur with the alias database. They
all result from a sendmail process accessing the DBM version while it is only par­
tially built. This can happen under two circumstances: One process accesses the
database while another process is rebuilding it, or the process rebuilding the data­
base dies (due to being killed or a system crash) before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores
interrupts while rebuilding the database; this avoids the problem of someone abort­
ing the process leaving a partially rebuilt database. Second, at the end of the
rebuild it adds an alias of the form

@:@

(which is not normally legal). Before sendmail will access the database, it checks to
insure that this entry exists1• It will wait up to five minutes for this entry to appear,
at which point it will force a rebuild itself2.

1The "a" option is required in the configuration for this action to occur. This should normally be specified un­
less you are running delivermail in parallel with sendmail.

2Note: the "D" option must be specified in the configuration file for this operation to occur.

Sendmail Installation and Operation Guide 2-35

2.4.3. List owners

If an error occurs on sending to a certain address, say "x", sendmail will look
for an alias of the form "owner-x" to receive the errors. This is typically useful for a
mailing list where the submitter of the list has no control over the maintanence of
the list itself; in this case the list maintainer would be the owner of the list. For
example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam@matisse

owner-unix-wizards: eric@ucbarpa

would cause "eric@ucbarpa" to get the error that will occur when someone sends to
unix-wizards due to the inclusion of "nosuchuser" on the list.

2.5. Per-User Forwarding (.forward Files)

As an alternative to the alias database, any user may put a file with the name
".forward" in his or her home directory. If this file exists, sendmail redirects mail for
that user to the list of addresses listed in the .forward file. For example, if the home
directory for user "mckusick" has a .forward file with contents:

mckusick@ernie
kirk@calder

then any mail arriving for "mckusick" will be redirected to the specified accounts.

2.6. Special Header Lines

Several header lines have special interpretations defined by the configuration file.
Others have interpretations built into sendmail that cannot be changed without chang­
ing the code. These builtins are described here.

2.6.1. Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when
the final delivery is complete. if the mailer has the 1 flag (local delivery) set in the
mailer descriptor.

2.6.2. Errors-To:

If errors occur anywhere during processing, this header will cause error mes­
sages to go to the listed addresses rather than to the sender. This is intended for
mailing lists.

2.6.3. Apparently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:, or
Bee: line) then sendmail will add an "Apparently-To:" header line for any recipients
it is aware of. This is not put in as a standard recipient line to warn any recipients
that the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS

The complete list of arguments to sendmail is described in detail in Appendix A.
Some important arguments are described here.

2-36 Sendmail Installation and Operation Guide

3.1. Queue Interval

The amount of time between forking a process to run through the queue is
defined by the -q flag. If you run in mode f or a this can be relatively large, since it
will only be relevant when a host that was down comes back up. If you run in q mode
it should be relatively short, since it defines the maximum amount of time that a mes­
sage may sit in the queue.

3.2. Daemon Mode

If you allow incoming mail over an IPC connection, you should have a daemon
running. This should be set by your /etc/re file using the -bd flag. The -bd flag and
the -q flag may be combined in one call:

/usr/lib/sendmail -bd -q30m

3.3. Forcing the Queue

In some cases you may find that the queue has gotten clogged for some reason.
You can force a queue run using the -q flag (with no value). It is entertaining to use
the -v flag (verbose) when this is done to watch what happens:

/usr/lib/sendmail -q -v

3.4. Debugging

There are a fairly large number of debug flags built into sendmail. Each debug
flag has a number and a level, where higher levels means to print out more information.
The convention is that levels greater than nine are "absurd," i.e., they print out so
much information that you wouldn't normally want to see them except for debugging
that particular piece of code. Debug flags are set using the -d option; the syntax is:

debug-flag: -d debug-list
debug-list: debug-option [,debug-option]
debug-option: debug-range [.debug-level]
debug-range: integer I integer - integer
debug-level: integer

where spaces are for reading ease only. For example,

-d12 Set flag .12 to level 1
-d12.3 Set flag 12 to level 3
-d3-17 Set flags 3 through 17 to level 1
-d3-17.4 Set flags 3 through 1 7 to level 4

For a complete list of the available debug flags you will have to look at the code (they
are too dynamic to keep this documentation up to date).

3.5. Trying a Different Configuration File

An alternative configuration file can be specified using the -C flag; for example,

/usr/lib/sendmail -Ctest.cf

uses the configuration file test.cf instead of the default /usr/lib/sendmail.cf. If the -C
flag has no value it defaults to sendmail.cf in the current directory.

3.6. Changing the Values of Options

Options can be overridden using the -o flag. For example,

-------- ---··--·-

Sendmail Installation and Operation Guide 2-37

/usr/lib/sendmail -oT2m

sets the T (timeout) option to two minutes for this run only.

4. TUNING

There are a number of configuration parameters you may want to change, depending
on the requirements of your site. Most of these are set using an option in the
configuration file. For example, the line "OT3d" sets option "T" to the value "3d" (three
days).

4.1. Timeouts

All time intervals are set using a scaled syntax. For example, "lOm" represents
ten minutes, whereas "2h30m" represents two and a half hours. The full set of scales
is:

s seconds
m minutes
h hours
d days
w weeks

4.1.1. Queue interval

The argument to the -q flag specifies how often a subdaemon will run the
queue. This is typically set to between five minutes and one half hour.

4.1.2. Read timeouts

It is possible to time out when reading the standard input or when reading
from a remote SMTP server. Technically, this is not acceptable within the pub­
lished protocols. However, it might be appropriate to set it to something large in
certain environments (such as an hour). This will reduce the chance of large
numbers of idle daemons piling up on your system. This timeout is set using the r
option in the configuration file.

4.1.3. Message timeouts

After sitting in the queue for a few days, a message will time out. This is to
insure that at least the sender is aware of the inability to send a message. The
timeout is typically set to three days. This timeout is set using the T option in the
configuration file.

The time of submission is set in the queue, rather than the amount of time left
until timeout. As a result, you can flush messages that have been hanging for a
short period by running the queue with a short message timeout. For example,

/usr/lib/sendmail -oTld -q

will run the queue and flush anything that is one day old.

4.2. Delivery Mode

There are a number of delivery modes that sendmail can operate in, set by the
"d" configuration option. These modes specify how quickly mail will be delivered.
Legal modes are:

2-38 Sendmail Installation and Operation Guide

deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don't deliver)

There are tradeoffs. Mode "i" passes the maximum amount of information to the
sender, but is hardly ever necessary. Mode "q" puts the minimum load on your
machine, but means that delivery may be delayed for up to the queue interval. Mode
"b" is probably a good compromise. However, this mode can cause large numbers of
processes if you have a mailer that takes a long time to deliver a message.

4.3. Log Level

The level of logging can be set for sendmail. The default using a standard
configuration table is level 9. The levels are as follows:

0 No logging.

1 Major problems only.

2 Message collections and failed deliveries.

3 Successful deliveries ..

4 Messages being defered (due to a host being down, etc.).

5 Normal message queueups.

6 Unusual but benign incidents, e.g., trying to process a locked queue file.

9 Log internal queue id to external message id mappings. This can be useful for
tracing a message as it travels between several hosts.

12 Several messages that are basically only of interest when debugging.

16 Verbose information regarding the queue.

4.4. File Modes

There are a number of files that may have a number of modes. The modes
depend on what functionality you want and the level of security you require.

4.4.1. To suid or not to suid?

Sendmail can safely be made setuid to root. At the point where it is about to
exec (2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and
groupid to a default (set by the u and g options). (This can be overridden by set­
ting the S flag to the mailer for mailers that are trusted and must be called as root.)
However, this will cause mail processing to be accounted (using sa (8)) to root rather
than to the user sending the mail.

4.4.2. Temporary file modes

The mode of all temporary files that sendmail creates is determined by the
"F" option. Reasonable values for this option are 0600 and 0644. If the more per­
missive mode is selected, it will not be necessary to run sendmail as root at all (even
when running the queue).

4.4.3. Should my alias database be writable?

At Berkeley we have the alias database (/usr/lib/aliases*) mode 666. There are
some dangers inherent in this approach: any user can add him-/her-self to any list,
or can "steal" any other user's mail. However, we have found users to be basically
trustworthy, and the cost of having a read-only database greater than the expense of
finding and eradicating the rare nasty person.

Sendmail Installation and Operation Guide 2-39

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /usr/lib). The mode on these files should match
the mode on /usr/lib/aliases. If aliases is writable and the DBM files (aliases.dir
and aliases.pag) are not, users will be unable to reflect their desired changes through
to the actual database. However, if aliases is read-only and the DBM files are writ­
able, a slightly sophisticated user can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto­
rebuild enabled (with the "D" option), then you must be careful to reconstruct the
alias database each time you change the text version:

newaliases

If this step is ignored or forgotten any intended changes will also be ignored or for­
gotten.

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE

This section describes the configuration file in detail, including hints on how to write
one of your own if you have to.

There is one point that should be made clear immediately: the syntax of the
configuration file is designed to be reasonably easy to parse, since this is done every time
sendmail starts up, rather than easy for a human to read or write. On the "future project"
list is a configuration-file compiler.

An overview of the configuration file is given first, followed by details of the seman-
tics.

5.1. The Syntax

The configuration file is organized as a series of lines, each of which begins with a
single character defining the semantics for the rest of the line. Lines beginning with a
space or a tab are continuation lines (although the semantics are not well defined in
many places). Blank lines and lines beginning with a sharp symbol('#') are comments.

5.1.1. R and S - rewriting rules

The core of address parsing are the rewriting rules. These are an ordered pro­
duction system. Sendmail scans through the set of rewriting rules looking for a
match on the left hand side (LHS) of the rule. When a rule matches, the address is
replaced by the right hand side (RHS) of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not have
specifically assigned semantics, and may be referenced by the mailer definitions or
by other rewriting sets.

The syntax of these two commands are:

Sn

Sets the current ruleset being collected to n. If you begin a ruleset more than once
it deletes the old definition.

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be embedded
spaces in the fields. The lhs is a pattern that is applied to the input. If it matches,
the input is rewritten to the rhs. The comments are ignored.

2-40 Sendmail Installation and Operation Guide

5.1.2. D - define macro

Macros are named with a single character. These may be selected from the
entire ASCII set, but user-defined macros should be selected from the set of upper
case letters only. Lower case letters and special symbols are used internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have. Macros can be
interpolated in most places using the escape sequence $x.

5.1.3. C and F - define classes

Classes of words may be defined to match on the left hand side of rewriting
rules. For example a class of all local names for this site might be created so that
attempts to send to oneself can be eliminated. These can either be defined directly
in the configuration file or read in from another file. Classes may be given names
from the set of upper case letters. Lower case letters and special characters are
reserved for system use.

The syntax is:

Cc wordl word2 ...
Fe file [format]

The first form defines the class c to match any of the named words. It is permissi­
ble to split them among multiple lines; for example, the two forms:

and

CHmonet ucbmonet

CHmonet
CHucbmonet

are equivalent. The second form reads the elements of the class c from the named
file; the format is a scanf(3) pattern that should produce a single string.

5.1.4. M - define mailer

Programs and interfaces to mailers are defined in this line. The format is:

Mname, {field=value }*

where name is the name of the mailer (used internally only) and the "field=name"
pairs define attributes of the mailer. Fields are:

Path The pathname of the mailer
Flags Special flags for this mailer
Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses
Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

5.1.5. H - define header

The format of the header lines that sendmail inserts into the message are
defined by the H line. The syntax of this line is:

H [?mfiags?]hname: htemplate

Sendmail Installation and Operation Guide 2-41

Continuation lines in this spec are reflected directly into the outgoing message. The
htemplate is macro expanded before insertion into the message. If the mfiags (sur­
rounded by question marks) are specified, at least one of the specified flags must be
stated in the mailer definition for this header to be automatically output. If one of
these headers is in the input it is reflected to the output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6. 0 - set option

There are a number of "random" options that can be set from a configuration
file. Options are represented by single characters. The syntax of this line is:

Oovalue

This sets option o to be value. Depending on the option, value may be a string, an
integer, a boolean (with legal values "t", "T", "r', or "F"; the default is TRUE), or a
time interval.

5.1.7. T - define trusted users

Trusted users are those users who are permitted to override the sender address
using the -f flag. These typically are "root," "uucp," and "network," but on some
users it may be convenient to extend this list to include other users, perhaps to sup­
port a separate UUCP login for each host. The syntax of this line is:

Tuser 1 user2 ...

There may be more than one of these lines.

5.1.8. P - precedence definitions

Values for the "Precedence:" field may be defined using the P control line.
The syntax of this field is:

Pname=num

When the name is found in a "Precedence:" field, the message class is set to num.
Higher numbers mean higher precedence. Numbers less than zero have the special
property that error messages will not be returned. The default precedence is zero.
For example, our list of precedences is:

Pfirst-class=O
Pspecial-delivery= 100
Pjunk=-100

5.2. The Semantics

This section describes the semantics of the configuration file.

5.2.1. Special macros, conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular, lower case letters are reserved to have spe­
cial semantics, used to pass information in or out of sendmail, and some special
characters are reserved to provide conditionals, etc.

The following macros must be defined to transmit information into sendmail:

2-42 Sendmail Installation and Operation Guide

e The SMTP entry message
j The "official" domain name for this site
1 The format of the UNIX from line
n The name of the daemon (for error messages)
o The set of "operators" in addresses
q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be the $j
macro. The $j macro should be in RFC821 format. The $1 and $n macros can be
considered constants except under terribly unusual circumstances. The $0 macro
consists of a list of characters which will be considered tokens and which will
separate tokens when doing parsing. For example, if "r" were in the $0 macro, then
the input "address" would be scanned as three tokens: "add," "r," and "ess."
Finally, the $q macro specifies how an address should appear in a message when it
is defaulted. For example, on our system these definitions are:

De$j Sendmail $v ready at $b
DnMAILER-DAEMON
DIFrom $g $d
Do.:%@r=/
Dqg?x ($x)$.
Dj$H.$D

An acceptable alternative for the $q macro is "$?x$x $.<$g>". These correspond to
the following two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley>

Some macros are defined by sendmail for interpolation into argv's for mailers
or for other contexts. These macros are:

a The origination date in Arpanet format
b The current date in Arpanet format
c The hop count
d The date in UNIX (ctime) format
f The sender (from) address
g The sender address relative to the recipient
h The recipient host

The queue id
p Sendmail's pid
r Protocol used
s Sender's host name
t A numeric representation of the current time
u The recipient user
v The version number of sendmail
w The hostname of this site
x The full name of the sender
y The id of the sender's tty
z The home directory of the recipient

There are three types of dates that can be used. The $a and $b macros are in
Arpanet format; $a is the time as extracted from the "Date:" line of the message (if
there was one), and $b is the current date and time (used for postmarks). If no·
"Date:" line is found in the incoming message, $a is set to the current time also.
The $d macro is equivalent to the $a macro in UNIX (ctime) format.

Sendmail Installation and Operation Guide 2-43

The $f macro is the id of the sender as originally determined; when mailing to
a specific host the $g macro is set to the address of the sender relative to the reci­
pient. For example, if I send to "bollard@matisse" from the machine "ucbarpa"
the $f macro will be "eric" and the $g macro will be "eric@ucbarpa."

The $x macro is set to the full name of the sender. This can be determined in
several ways. It can be passed as flag to sendmail. The second choice is the value
of the "Full-name:" line in the header if it exists, and the third choice is the com­
ment field of a "From:" line. If all of these fail, and if the message is being ori­
ginated locally, the full name is looked up in the /etc/passwd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home
directory (if local) of the recipient. The first two are set from the $@ and $: part
of the rewriting rules, respectively.

The $p and $t macros are used to create unique strings (e.g., for the
"Message-Id:" field). The $i macro is set to the queue id on this host; if put into
the timestamp line it can be extremely useful for tracking messages. The $y macro
is set to the id of the terminal of the sender (if known); some systems like to put
this in the Unix "From" line. The $v macro is set to be the version number of
sendmail; this is normally put in timestamps and has been proven extremely useful
for debugging. The $w macro is set to the name of this host if it can be deter­
mined. The $c field is set to the "hop count," i.e., the number of times this message
has been processed. This can be determined by the - h flag on the command line or
by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with send­
mail and the sending hostname; these are not supported in the current version.

Conditionals can be specified using the syntax:

$?x textl $1 text2 $.

This interpolates textl if the macro $x is set, and text2 otherwise. The "else"($ I)
clause may be omitted.

5.2.2. Special classes

The class $ = w is set to be the set of all names this host is known by. This
can be used to delete local hostnames.

5.2.3. The left hand side

The left hand side of rewriting rules contains a pattern. Normal words are
simply matched directly. Metasyntax is introduced using a dollar sign. The
metasymbols are:

$* Match zero or more tokens
$+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$-x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement on the
right hand side, where n is the index in the LHS. For example, if the LHS:

$-:$+

is applied to the input:

UCBARPA:eric

the rule will match, and the values passed to the RHS will be:

2-44 Sendmail Installation and Operation Guide

$1 UCBARPA
$2 eric

5.2.4. The right hand side

When the right hand side of a rewriting rule matches, the input is deleted and
replaced by the right hand side. Tokens are copied directly from the RHS unless
they are begin with a dollar sign. Metasymbols are:

$n Substitute indefinite token n from LHS
$>n "Call" ruleset n
$#mailer Resolve to mailer
$ @host Specify host
$:user Specify user

The $n syntax substitutes the corresponding value from a$+,$-,$*,$=, or
$- match on the LHS. It may be used anywhere.

The $>n syntax causes the remainder of the line to be substituted as usual
and then passed as the argument to ruleset n. The final value of ruleset n then
becomes the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of the
ruleset to terminate immediately, and signals to sendmail that the address has com­
pletely resolved. The complete syntax is:

$#mailer$ @host$:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the
mailer is local the host part may be omitted. The mailer and host must be a single
word, but the user may be multi-part.

A RHS may also be preceeded by a $ @ or a $: to control evaluation. A $@
prefix causes the ruleset to return with the remainder of the RHS as the value. A $:
prefix causes the rule to terminate immediately, but the ruleset to continue; this can
be used to avoid continued application of a rule. The prefix is stripped before con­
tinuing.

The $@ and $: prefixes may preceed a $> spec; for example:

R$+ $:$>7$1

matches anything, passes that to ruleset seven, and continues; the $: is necessary to
avoid an infinite loop.

5.2.5. Semantics of rewriting rule sets

There are five rewriting sets that have specific semantics. These are related as
depicted by figure 2.

Ruleset three should turn the address into "canonical form." This form should
have the basic syntax:

local-part@host-domain-spec

If no "@" sign is specified, then the host-domain-spec may be appended from the
sender address (if the C flag is set in the mailer definition corresponding to the
sending mailer). Ruleset three is applied by sendmail before doing anything with
any address.

Ruleset zero is applied after ruleset three to addresses that are going to actu­
ally specify recipients. It must resolve to a {mailer, host, user} triple. The mailer
must be defined in the mailer definitions from the configuration file. The host is

------~-----···------------·---

Sendmail Installation and Operation Guide 2-45

resolved address

s

addr 3 msg

R

Figure 2 Rewriting Set Semantics

D--Sender domain addition s--mailer-specific sender rewritin
R--mailer-specific recipient rewriting

defined into the $h macro for use in the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respec­
tively. They are applied before any specification in the mailer definition. They
must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external form.

5.2.6. Mailer flags etc.

There are a number of flags that may be associated with each mailer, each
identified by a letter of the alphabet. Many of them are assigned semantics inter­
nally. These are detailed in Appendix C. Any other flags may be used freely to con­
ditionally assign headers to messages destined for particular mailers.

5.2.7. The "error" mailer

The mailer with the special name "error" can be used to generate a user error.
The (optional) host field is a numeric exit status to be returned, and the user field is
a message to be printed. For example, the entry:

$#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the LHS
matches. This mailer is only functional in ruleset zero.

5.3. Building a Configuration File From Scratch

Building a configuration table from scratch is an extremely difficult job. For­
tunately, it is almost never necessary to do so; nearly every situation that may come up
may be resolved by changing an existing table. In any case, it is critical that you
understand what it is that you are trying to do and come up with a philosophy for the
configuration table. This section is intended to explain what the real purpose of a
configuration table is and to give you some ideas for what your philosophy might be.

5.3.1. What you are trying to do

The configuration table has three major purposes. The first and simplest is to
set up the environment for sendmail. This involves setting the options, defining a

2-46 Sendmail Installation and Operation Guide

few critical macros, etc. Since these are described in other places, we will not go
into more detail here.

The second purpose is to rewrite addresses in the message. This should typi­
cally be done in two phases. The first phase maps addresses in any format into a
canonical form. This should be done in ruleset three. The second phase maps this
canonical form into the syntax appropriate for the receiving mailer. Sendmail does
this in three subphases. Rulesets one and two are applied to all sender and reci­
pient addresses respectively. After this, you may specify per-mailer rulesets for both
sender and recipient addresses; this allows mailer-specific customization. Finally,
ruleset four is applied to do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions neces­
sary to get the message delivered. Ruleset zero must resolve to the internal form,
which is in turn used as a pointer to a mailer descriptor. The mailer descriptor
describes the interface requirements of the mailer.

5.3.2. Philosophy

The particular philosophy you choose will depend heavily on the size and
structure of your organization. I will present a few possible philosophies here.

One general point applies to all of these philosophies: it is almost always a mis­
take to try to do full name resolution. For example, if you are trying to get names
of the form "user@host" to the Arpanet, it does not pay to route them to
"xyzvax!decvax!ucbvax!c70:user@host" since you then depend on several links not
under your control. The best approach to this problem is to simply forward to
"xyzvax!user@host" and let xyzvax worry about it from there. In summary, just get
the message closer to the destination, rather than determining the full path.

5.3.2.1. Large site, many hosts - minimum information

Berkeley is an example of a large site, i.e., more than two or three hosts.
We have decided that the only reasonable philosophy in our environment is to
designate one host as the guru for our site. It must be able to resolve any piece
of mail it receives. The other sites should have the minimum amount of infor­
mation they can get away with. In addition, any information they do have
should be hints rather than solid information.

For example, a typical site on our local ether network is "monet." Monet
has a list of known ethernet hosts; if it receives mail for any of them, it can do
direct delivery. If it receives mail for any unknown host, it just passes it directly
to "ucbvax," our master host. Ucbvax may determine that the host name is ille­
gal and reject the message, or may be able to do delivery. However, it is impor­
tant to note that when a new ethernet host is added, the only host that must
have its tables updated is ucbvax; the others may be updated as convenient, but
this is not critical.

This picture is slightly muddied due to network connections that are not
actually located on ucbvax. For example, our TCP connection is currently on
"ucbarpa." However, monet does not know about this; the information is hidden
totally between ucbvax and ucbarpa. Mail going from monet to a TCP host is
transfered via the ethernet from monet to ucbvax, then via the ethernet from
ucbvax to ucbarpa, and then is submitted to the Arpanet. Although this involves
some extra hops, we feel this is an acceptable tradeoff.

An interesting point is that it would be possible to update monet to send
TCP mail directly to ucbarpa if the load got too high; if monet failed to note a

Sendmail Installation and Operation Guide 2-47

host as a TCP host it would go via ucbvax as before, and if monet incorrectly
sent a message to ucbarpa it would still be sent by ucbarpa to ucbvax as before.
The only problem that can occur is loops, as if ucbarpa thought that ucbvax had
the TCP connection and vice versa. For this reason, updates should always hap- ,
pen to the master host first.

This philosophy results as much from the need to have a single source for
the configuration files (typically built using m4 (I) or some similar tool) as any
logical need. Maintaining more than three separate tables by hand is essentially
an impossible job.

5.3.2.2. Small site - complete information

A small site (two or three hosts) may find it more reasonable to have com­
plete information at each host. This would require that each host know exactly
where each network connection is, possibly including the names of each host on
that network. As long as the site remains small and the the configuration
remains relatively static, the update problem will probably not be too great.

5.3.2.3. Single host

This is in some sense the trivial case. The only major issue is trying to
insure that you don't have to know too much about your environment. For
example, if you have a UUCP connection you might find it useful to know about
the names of hosts connected directly to you, but this is really not necessary
since this may be determined from the syntax.

5.3.3. Relevant issues

The canonical form you use should almost certainly be as specified in the
Arpanet protocols RFC819 and RFC822. Copies of these RFC's are included on the
sendmail tape as doc/rfc819.lpr and doc/rfc822.lpr.

RFC822 describes the format of the mail message itself. Sendmail follows this
RFC closely, to the extent that many of the standards described in this document
can not be changed without changing the code. In particular, the following charac­
ters have special interpretations:

<>()"\
Any attempt to use these characters for other than their RFC822 purpose in
addresses is probably doomed to disaster.

RFC819 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially each host is given a name which is a
right-to-left dot qualified pseudo-path from a distinguished root. The elements of
the path need not be physical hosts; the domain is logical rather than physical. For
example, at Berkeley one legal host is "a.cc.berkeley.arpa"; reading from right to
left, "arpa" is a top level domain (related to, but not limited to, the physical
Arpanet), "berkeley" is both an Arpanet host and a 1ogical domain which is actually
interpreted by a host called ucbvax (which is actually just the "major" host for this
domain), "cc" represents the Computer Center, (in this case a strictly logical entity),
and "a" is a host in the Computer Center; this particular host happens to be con­
nected via berknet, but other hosts might be connected via one of two ethernets or
some other network.

Beware when reading RFC819 that there are a number of errors in it.

2-48 Sendmail Installation and Operation Guide

5.3.4. How to proceed

Once you have decided on a philosophy, it is worth examining the available
configuration tables to decide if any of them are close enough to steal major parts of.
Even under the worst of conditions, there is a fair amount of boiler plate that can be
collected safely.

The next step is to build ruleset three. This will be the hardest part of the
job. Beware of doing too much to the address in this ruleset, since anything you do
will reflect through to the message. In particular, stripping of local domains is best
deferred, since this can leave you with addresses with no domain spec at all. Since
sendmail likes to append the sending domain to addresses with no domain, this can
change the semantics of addresses. Also try to avoid fully qualifying domains in this
ruleset. Although technically legal, this can lead to unpleasantly and unnecessarily
long addresses reflected into messages. The Berkeley configuration files define
ruleset nine to qualify domain names and strip local domains. This is called from
ruleset zero to get all addresses into a cleaner form.

Once you have ruleset three finished, the other rulesets should be relatively
trivial. If you need hints, examine the supplied configuration tables.

5.3.5. Testing the rewriting rules - the -ht ftag

When you build a configuration table, you can do a certain amount of testing
using the "test mode" of sendmail. For example, you could invoke sendmail as:

sendmail -ht -Ctest.cf

which would read the configuration file "test.er' and enter test mode. In this mode,
you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address to apply
the set to. Test mode shows you the steps it takes as it proceeds, finally showing
you the address it ends up with. You may use a comma separated list of rwsets for
sequential application of rules to an input; ruleset three is always applied first. For
example:

1,21,4 monet:bollard

first applies ruleset three to the input "monet:bollard." Ruleset one is then applied
to the output of ruleset three, followed similarly by rulesets twenty-one and four.

If you need more detail, you can also use the "-d21" flag to turn on more
debugging. For example,

sendmail -ht -d21.99

turns on an incredible amount of information; a single word address is probably
going to print out several pages worth of information.

5.3.6. Building mailer descriptions

To add an outgoing mailer to your mail system, you will have to define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that
the names "local" and "prog" must be defined.

The pathname of the mailer must be given in the P field. If this mailer should
be accessed via an IPC connection, use the string "[IPC]" instead.

Sendmail Installation and Operation Guide 2-49

The F field defines the mailer flags. You should specify an "f' or "r" flag to
pass the name of the sender as a -f or -r flag respectively. These flags are only
passed if they were passed to sendmail, so that mailers that give errors under some
circumstances can be placated. If the mailer is not picky you can just specify "-f
$g" in the argv template. If the mailer must he called as root the "S" flag should
be given; this will not reset the userid before calling the mailer3• If this mailer is
local (i.e., will perform final delivery rather than another network hop) the "l" flag
should be given. Quote characters (backslashes and " marks) can be stripped from
addresses if the "s" flag is specified; if this is not given they are passed through. If
the mailer is capable of sending to more than one user on the same host in a single
transaction the "m" flag should he stated. If this flag is on, then the argv template
containing $u will be repeated for each unique user on a given host. The "e" flag
will mark the mailer as being "expensive," which will cause sendmail to defer con-
nection until a queue run4•

An unusual case is the "C" flag. This flag applies to the mailer that the mes­
sage is received from, rather than the mailer being sent to; if set, the domain spec of
the sender (i.e., the "@host.domain" part) is saved and is appended to any
addresses in the message that do not already contain a domain spec. For example, a
message of the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will he modified to:

From: eric@ucharpa
To: wnj@monet, mckusick@ucbarpa

if and only if the "C" flag is defined in the mailer corresponding to "eric@ucbarpa."

Other flags are described in Appendix C.

The Sand R fields in the mailer description are per-mailer rewriting sets to he
applied to sender and recipient addresses respectively. These are applied after the
sending domain is appended and the general rewriting sets (numbers one and two)
are applied, hut before the output rewrite (ruleset four) is applied. A typical use is
to append the current domain to addresses that do not already have a domain. For
example, a header of the form:

From: eric

might he changed to be:

From: eric@ucbarpa

or

From: uchvax!eric

depending on the domain it is being shipped into. These sets can also he used to do
special purpose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string con­
taining only newline is the default. The usual backslash escapes (\r,\n,\f,\b) may
he used.

Finally, an argv template is given as the E field. It may have embedded
spaces. If there is no argv with a $u macro in it, sendmail will speak SMTP to the
mailer. If the pathname for this mailer is "[IPC]," the argv should be

3Sendmail must be running setuid to root for this to work.

"The "c" configuration option must be given for this to be effective.

2-50 Sendmail Installation and Operation Guide

IPC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P=/bin/mail, F=rlsm S=lO, R=20, A=mail -d $u
Mether,P=[IPC], F=meC, S=ll, R=21, A=IPC $h, M=lOOOOO

specifies a mailer to do local delivery and a mailer for ethernet delivery. The first is
called "local," is located in the file "/bin/mail," takes a picky -r flag, does local
delivery, quotes should be stripped from addresses, a,nd multiple users can be
delivered at once; ruleset ten should be applied to sender addresses in the message
and ruleset twenty should be applied to recipient addresses; the argv to send to a
message will be the word "mail," the word "-d," and words containing the name of
the receiving user. If a -r flag is inserted it will be between the words "mail" and
"-d." The second mailer is called "ether," it should be connected to via an IPC con­
nection, it can handle multiple users at once, connections should be deferred, and
any domain from the sender address should be appended to any receiver name
without a domain; sender addresses should be processed by ruleset eleven and reci­
pient addresses by ruleset twenty-one. There is a 100,000 byte limit on messages
passed through this mailer.

Sendmail Installation and Operation Guide 2-51

APPENDIX A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The flags are:

-f addr The sender's machine address is addr. This flag is ignored unless the real user
is listed as a "trusted user" or if addr contains an exclamation point (because
of certain restrictions in UUCP).

-r addr An obsolete form of -f.

-h cnt

-Fname

-n

-t

-bx

-qtime

-Cfile

-dlevel

-ox value

Sets the "hop count" to cnt. This represents the number of times this mes­
sage has been processed by sendmail (to the extent that it is supported by the
underlying networks). Cnt is incremented during processing, and if it reaches
MAXHOP (currently 30) sendmail throws away the message with an error.

Sets the full name of this user to name.

Don't do aliasing or forwarding.

Read the header for "To:", "Cc:", and "Bee:" lines, and send to everyone
listed in those lists. The "Bee:" line will be deleted before sending. Any
addresses in the argument vector will be deleted from the send list.

Set operation mode to x. Operation modes are:

m Deliver mail (default)
a Run in arpanet mode (see below)
s Speak SMTP on input side
d Run as a daemon
t Run in test mode
v Just verify addresses, don't collect or deliver

Initialize the alias database
p Print the mail queue
z Freeze the configuration file

The special processing for the ARPANET includes reading the "From:" line
from the header to find the sender, printing ARPANET style messages (pre­
ceded by three digit reply codes for compatibility with the FTP protocol
[Neigus73, Postel74, Postel77]), and ending lines of error messages with
<CRLF>.

Try to process the queued up mail. If the time is given, a sendmail will run
through the queue at the specified interval to deliver queued mail; otherwise,
it only runs once.

Use a different configuration file.

Set debugging level.

Set option x to the specified value. These options are described in Appendix
B.

There are a number of options that may be specified as primitive flags (provided for
compatibility with delivermail). These are the e, i, m, and v options. Also, the f option may
be specified as the -s flag.

2-52 Sendmail Installation and Operation Guide

APPENDIX B

CONFIGURATION OPTIONS

The following options may be set using the -o flag on the command line or the 0 line in
the configuration file:

Afile Use the named file as the alias file. If no file is specified, use aliases in the
current directory.

a If set, wait for an "@:@" entry to exist in the alias database before starting
up. If it does not appear in five minutes, rebuild the database.

c

dx

D

ex

Fn
f

gn

Hfile

Ln

Mxvalue

m

0

Qdir

rtime

If an outgoing mailer is marked as being expensive, don't connect immedi­
ately. This requires that queueing be compiled in, since it will depend on a
queue run process to actually send the mail.

Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If this option is not
set, sendmail will never rebuild the alias database unless explicitly requested
using -bi.

Dispose of errors using mode x. The values for x are:

p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
e Mail back errors and give zero exit stat always

The temporary file mode, in octal. 644 and 600 are good choices.

Save Unix-style "From" lines at the front of headers. Normally they are
assumed redundant and discarded.

Set the default group id for mailers to run in to n.

Specify the help file for SMTP.

Ignore dots in incoming messages.

Set the default log level to n.

Set the macro x to value. This is intended only for use from the command
line.

Send to me too, even if I am in an alias expansfon.

Assume that the headers may be in old format, i.e., spaces delimit names.
This actually turns on an adaptive algorithm: if any recipient address contains
a comma, parenthesis, or angle bracket, it will be assumed that commas
already exist. If this flag is not on, only commas delimit names. Headers are
always output with commas between the names.

Use the named dir as the queue directory.

Timeout reads after time interval.

Sfile

s

Ttime

tS,D

un

v

Sendmail Installation and Operation Guide 2-53

Log statistics in the named file.

Be super-safe when running things, i.e., always instantiate the queue file, even
if you are going to attempt immediate delivery. Sendmail always instantiates
the queue file before returning control the the client under any circumstances.

Set the queue timeout to time. After this interval, messages that have not
been successfully sent will be returned to the sender.

Set the local timezone name to S for standard time and D for daylight time;
this is only used under version six.

Set the default userid for mailers to n. Mailers without the S flag in the
mailer definition will run as this user.

Run in verbose mode.

2-54 Sendmail Installation and Operation Guide

APPENDIX C

MAILER FLAGS

The following flags may be set in the mailer description.

f The mailer wants a -f from flag, but only if this is a network forward operation (i.e., the
mailer will give an error if the executing user does not have special permissions).

r Same as f, but sends a -r flag.

S Don't reset the userid before calling the mailer. This would be used in a secure environ­
ment where sendmail ran as root. This could be used to avoid forged addresses. This
flag is suppressed if given from an "unsafe" environment (e.g, a user's mail.cf file).

n Do not insert a UNIX-style "From" line on the front of the message.

l This mailer is local (i.e., final delivery will be performed).

s Strip quote characters off of the address before calling the mailer.

m This mailer can send to multiple users on the same host in one transaction. When a $u
macro occurs in the argv part of the mailer definition, that field will be repeated as neces­
sary for all qualifying users.

F This mailer wants a "From:" header line.

D This mailer wants a "Date:" header line.

M This mailer wants a "Message-Id:" header line.

x This mailer wants a "Full-Name:" header line.

P This mailer wants a "Return-Path:" line.

u Upper case should be preserved in user names for this mailer.

h Upper case should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate modes should be set.

U This m.ailer wants Unix-style "From" lines with the ugly UUCP-style "remote from
<host>" on the end.

e This mailer is expensive to connect to, so try to avoid connecting normally; any necessary
connection will occur during a queue run.

X This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any
line beginning with a dot will have an extra dot prepended (to be stripped at the other
end). This insures that lines in the message containing a dot will not terminate the mes­
sage prematurely.

L Limit the line lengths as specified in RFC821.

P Use the return-path in the SMTP "MAIL FROM:" command rather than just the return
address; although this is required in RFC821, many hosts do not process return paths
properly.

I This mailer will be speaking SMTP to another sendmail - as such it can use special pro­
tocol features. This option is not required (i.e., if this option is omitted the transmission
will still operate successfully, although perhaps not as efficiently as possible).

C If mail is received from a mailer with this flag set, any addresses in the header that do
not have an at sign ("@") after being rewritten by ruleset three will have the "@domain"
clause from the sender tacked on. This allows mail with headers of the form:

Sendmail Installation and Operation Guide 2-55

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

2-56 Sendmail Installation and Operation Guide

APPENDIXD

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These
are located in three places:

md/config.m4 These contain operating-system dependent descriptions. They are interpo­
lated into the Makefiles in the src and aux directories. This includes informa­
tion about what version of UNIX you are running, what libraries you have to
include, etc.

src/conf.h Configuration parameters that may be tweaked by the installer are included in
conf.h.

src/conf.c Some special routines and a few variables may be defined in conf.c. For the
most part these are selected from the settings in conf.h.

Parameters in md/config.m4

The following compilation flags may be defined in the m4CONFIG macro in
md/config.m4 to define the environment in which you are operating.

V6 If set, this will compile a version 6 system, with 8-bit user id's, single character
tty id's, etc.

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.lBSD, including the
vfork (2) system call, special types defined in <sys/types.h> (e.g, u char), etc.

If none of these flags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendmail in the m4LIBS macro.
Most notably, you will have to include if you are running a 4.lBSD system.

Parameters in src/conf.h

Parameters and compilation options are defined in conf.h. Most of these need not nor­
mally be tweaked; common parameters are all in sendmail.cf. However, the sizes of certain
primitive vectors, etc., are included in this file. The numbers following the parameters are
their default value.

MAXLINE [256] The maximum line length of any input line. If message lines exceed this
length they will still be processed correctly; however, header lines,
configuration file lines, alias lines, etc., must fit within this limit.

MAXNAME [128] The maximum length of any name, such as a host or a user name.

MAXFIELD [2500]
The maximum total length of any header field, including continuation
lines.

MAXPV [40] The maximum number of parameters to any mailer. This limits the
number of recipients that may be passed in one transaction.

MAXHOP [30] When a message has been processed more than this number of times, send­
mail rejects the message on the assumption that there has been an aliasing
loop. This can be determined from the -h flag or by counting the number
of trace fields (i.e, "Received:" lines) in the message header.

Sendmail Installation and Operation Guide 2-57

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example,
the address "eric@Berkeley" is three atoms.

MAXMAILERS [25]
The maximum number of mailers that may be defined in the configuration
file.

MAXRWSETS [30]
The maximum number of rewriting sets that may be defined.

MAXPRIORITIES [25]
The maximum number of values for the "Precedence:" field that may be
defined (using the Pline in sendmail.cf).

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T
line in sendmail.cf).

A number of other compilation options exist. These specify whether or not specific code
should be compiled in.

DBM If set, the "DBM" package in UNIX is used (see DBM(3X) in [UNIX80]). If
not set, a much less efficient algorithm for processing aliases is used.

DEBUG If set, debugging information is compiled in. To actually get the debugging
output, the -d flag must be used.

LOG If set, the syslog routine in use at some sites is used. This makes an informa­
tional log record for each message processed, and makes a higher priority log
record for internal system errors.

QUEUE This flag should be set to compile in the queueing code. If this is not set,
mailers must accept the mail immediately or it will be returned to the sender.

SMTP If set, the code to handle user and server SMTP will be compiled in. This is
only necessary if your machine has some mailer that speaks SMTP.

DAEMON If set, code to run a daemon is compiled in. This code is for 4.2BSD if the
NVMUNIX flag is specified; otherwise, 4.la BSD code is used. Beware how­
ever that there are bugs in the 4.la code that make it impossible for send­
mail to work correctly under heavy load.

UGL YUUCP If you have a UUCP host adjacent to you which is not running a reasonable
version of rmail, you will have to set this flag to include the "remote from
sysname" info on the from line. Otherwise, UUCP gets confused about where
the mail came from.

NOTUNIX If you are using a non-UNIX mail format, you can set this flag to turn off spe­
cial processing of UNIX-style "From " lines.

Configuration in src/conf.c

Not all header semantics are defined in the configuration file. Header lines that should
only be included by certain mailers (as well as other more obscure semantics) must be
specified in the Hdrlnfo table in conf.c. This table contains the header name (which should
be in all lower case) and a set of header control flags (described below), The flags are:

H ACHECK Normally when the check is made to see if a header line is compatible with a
mailer, sendmail will not delete an existing line. If this flag is set, sendmail
will delete even existing header lines. That is, if this bit is set and the mailer
does not have flag bits set that intersect with the required mailer flags in the
header definition in sendmail.cf, the header line is always deleted.

H EOH If this header field is set, treat it like a blank line, i.e., it will signal the end of
the header and the beginning of the message text.

2-58 Sendmail Installation and Operation Guide

H.FORCE

HTRACE

Add this header entry even if one existed in the message before. If a header
entry does not have this bit set, sendmail will not add another header line if a
header line of this name already existed. This would normally be used to
stamp the message by everyone who handled it.

If set, this is a timestamp (trace) field. If the number of trace fields in a mes­
sage exceeds a preset amount the message is returned on the assumption that
it has an aliasing loop.

H RCPT If set, this field contains recipient addresses. This is used by the -t flag to
determine who to send to when it is collecting recipients from the message.

H FROM This flag indicates that this field specifies a sender. The order of these fields
in the Hdrlnfo table specifies sendmail's preference for which field to return
error messages to.

Let's look at a sample Hdrlnfo specification:

struct hdrinfo Hdrlnfo[] =
{

/* originator fields, most to least significant *I
"resent-sender", H FROM,
"resent-from", H FROM,
"sender", H FROM,
"from", H FROM,
"full-name", H ACHECK,

/* destination fields *I
"to", H RCPT,
"resent-to", H RCPT,
"cc", H RCPT,

/* message identification and control *I
"message", H EOH,
"text", H EOH,

/* trace fields *I
"received", H TRACEIH FORCE,

NULL, 0,
};

This structure indicates that the "To:", "Resent-To:", and "Cc:" fields all specify recipient
addresses. Any "Full-Name:" field will be deleted unless the required mailer flag (indicated in
the configuration file) is specified. The "Message:" and "Text:" fields will terminate the
header; these are specified in new protocols [NBS80] or used by random dissenters around the
network world. The "Received:" field will always be added, and can be used to trace mes­
sages.

There are a number of important points here. First, header fields are not added
automatically just because they are in the Hdrlnfo structure; they must be specified in the
configuration file in order to be added to the message. Any header fields mentioned in the
configuration file but not mentioned in the Hdrlnfo structure have default processing per­
formed; that is, they are added unless they were in the message already. Second, the Hdrlnfo
structure only specifies cliched processing; certain headers are processed specially by ad hoc
code regardless of the status specified in Hdrlnfo. For example, the "Sender:" and "From:"
fields are always scanned on ARPANET mail to determine the sender; this .is used to perform
the "return to sender" function. The "From:" and "Full-Name:" fields are used to determine
the full name of the sender if possible; this is stored in the macro $x and used in a number of
ways.

Sendmail Installation and Operation Guide 2-59

The file conf.c also contains the specification of ARPANET reply codes. There are four
classifications these fall into:

char Arpa Info[] = "050"; /* arbitrary info*/
char Arpa TSyserr[] = "455"; /* some (transient) system error*/
char Arpa PSyserr[] = "554"; /*some (transient) system error*/
char Arpa Usrerr[] = "554"; /*some (fatal) user error*/

The class Arpa Info is for any information that is not required by the protocol, such as for­
warding information. Arpa TSyserr and Arpa PSyserr is printed by the syserr routine.
TSyserr is printed out for transient errors, whereas PSyserr is printed for permanent errors;
the distinction is made based on the value of errno. Finally, Arpa Usrerr is the result of a
user error and is generated by the usrerr routine; these are generated when the user has
specified something wrong, and hence the error is permanent, i.e., it will not work simply by
resubmitting the request.

If it is necessary to restrict mail through a relay, the checkcompat routine can be
modified. This routine is called for every recipient address. It can return TRUE to indicate
that the address is acceptable and mail processing will continue, or it can return FALSE to
reject the recipient. If it returns false, it is up to checkcompat to print an error message
(using usrerr) saying why the message is rejected. For example, checkcompat could read:

bool
checkcompat(to)

register ADDRESS *to;

if (MsgSize > 50000 && to->q mailer!= LocalMailer)
{

}

usrerr("Message too large for non-local delivery");
NoReturn =TRUE;
return (FALSE);

return (TRUE);

This would reject messages greater than 50000 bytes unless they were local. The NoReturn
flag can be sent to supress the return of the actual body of the message in the error return.
The actual use of this routine is highly dependent on the implementation, and use should be
limited.

2-60 Sendmail Installation and Operation Guide

APPENDIXE

SUMMARY OF SUPPORT FILES

This is a summary of the support files that sendmail creates or generates.

/usr/lib/sendmail
The binary of sendmail.

/usr/bin/newaliases
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running
this program is completely equivalent to giving sendmail the -bi flag.

/usr/bin/mailq Prints a listing of the mail queue. This program is equivalent to using the
-bp flag to sendmail.

/usr/lib/sendmail.cf
The configuration file, in textual form.

/usr/lib/sendmail.fc
The configuration file represented as a memory image.

/usr/lib/sendmail.hf
The SMTP help file.

/usr/lib/sendmail.st
A statistics file; need not be present.

/usr/lib/aliases The textual version of the alias file.

/usr/lib/aliases. {pag,dir}
The alias file in dbm (3) format.

/etc/syslog The program to do logging.

/etc/syslog.conf The configuration file for syslog.

/etc/syslog.pid Contains the process id of the currently running syslog.

/usr/spool/mqueue
The directory in which the mail queue and temporary files reside.

/usr/spool/mqueue/qf*
Control (queue) files for messages.

/usr/spool/mqueue/df*
Data files.

/usr/spool/mqueue/lf*
, Lock files

/usr/spool/mqueue/tf*
Temporary versions of the qf files, used during queue file rebuild.

/usr/spool/mqueue/nf*
A file used when creating a unique id.

/usr/spool/mqueue/xf*
A transcript of the current session.

Introduction 3-1

PART 3: COMMUNICATIONS

The three articles in this part cover a range of communications topics, from general back­
ground information to detailed descriptions of program structures and protocols. They
describe the interprocess communication software (this can be either interactive or batch) and
sendmail, an internetwork mail server.

Ftp, telnet, and the r-command set are three other networking software utilities available on
the ULTRIX-32 system but not mentioned in these articles. See the end of this introduction
for a brief description of each.

Interprocess Communication
The first two articles describe the socket software, a set of system calls (new with the 4.2BSD
distribution) used for interprocess communication. The communicating processes can be run­
ning on the same computer or on separate computers linked by the DARPA standard com­
munication protocols.

Interprocess communication requires each process to set up one of three types of socket:

Stream socket Communication is bidirectional, reliable, sequenced, and unduplicated.

Datagram socket Communication is bidirectional but not promised to be reliable,
sequenced, or unduplicated.

Raw socket Communication is possible through access to underlying protocols.

"A 4.2BSD Interprocess Communication Primer" gives the format for each socket-related call
and explains how to coordinate the calls to establish a connection and send and receive mes­
sages:

• Create a socket

• Bind a name to a socket

• Connect - initiate a connection

• Listen for a connect request

• Accept a connect request

• Write a message

• Read a message

• Send a message

• Receive a message

• Sendto - send a datagram message

• Recvfrom - receive a datagram message

• Close a connection

• Shutdown a connection

• Select - multiplex the transfer of messages

3-2 Introduction

These commands are listed individually in the ULTRIX-32 Programmer's Manual. The arti­
cle also tells how to use: a library of routines that manipulate addresses, server and client
calls, and connectionless servers. And information on a variety of advanced topics is available
for sophisticated users.

The second article, "4.2BSD Networking Implementation Notes," describes the internal struc­
ture of the interprocess communication software. This information should be useful to
engineers who are developing new communication protocols and network utilities. The article
explains:

• Support for multiple protocol families and addressing styles

• Structures for internal address representation

• Memory management for network functions

• Internal layering

• Protocol interfaces

• Gateways

• Routing tables

• Use of raw sockets for direct access to low level protocols

• Buffering issues

• Handling out-of-band data

• Use of trailer protocols

You can also find a description of the user interface to the interprocess communication
software in Section 2.3 of the "4.2BSD System Manual" (in Volume II of this set). Prefer the
more recent "4.2BSD Interprocess Communication Primer" when you find discrepancies.

Sendmail
The article by Allman, "Sendmail - An Internetwork Mail Router," offers good background
information for people who install and maintain the sendmail utility. For actual instructions
on installation, see the "Sendmail Installation and Operation Guide" in Part 2 of this volume.

Sendmail acts like a post office, enabling different networking systems to route mail between
them. For example, people using the ARPANET and others using the ETHERNET can send
mail to each other, and sendmail will cooperate with the network software at each end to
make sure that the messages get through. The sendmail functions are transparent to people
sending the messages; each sender or receiver needs to deal only with the interface to the local
network used on his or her computer system.

A reading of this article is prerequisite to an understanding of the "Sendmail Installation and
Operation Guide."

Standard Networking Utilities
Three other networking systems are available on ULTRIX-32:

ftp File transfer program (a user interface to the ARPANET)

telnet Remote login protocol

r-commands New networking software layered on sockets

You can find information on these utilities in the ULTRIX-32 Programmer's Manual. Ftp
and telnet are utilities that prompt you for commands when you run them. Users must give
appropriate passwords when accessing information on remote systems. The command descrip­
tions listed under ftp and telnet are comprehensive.

The r-commands, like the interprocess communication commands, are listed individually in
the ULTRD{-32 Programmer's Manual, because you must call each one from the shell:

Introduction 3-3

rcmd Connect, then execute a command

rep Remote file copy

rdump File system dump across a network

rexec Remote execute

rlogin Remote login

rmt Remote magnetic tape dump

rrestore Restore a system from a file system dump across a network

rshell Remote shell; provide remote execution facilities

ruptime Show how long a remote system has been up

rwho Show who is on a remote system

However, the r-command software requires trust between system users, because remote access
using the r-commands does not require use of passwords.

Interprocess Communication Primer 3-5

A 4.2BSD Interprocess Communication Primer

Samuel J. Leffler

Robert S. Fabry

William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

1. INTRODUCTION
One of the most important parts of 4.2BSD is the interprocess communication facilities.

These facilities are the result of more than two years of discussion and research. The facilities
provided in 4.2BSD incorporate many of the ideas from current research, while trying to
maintain the UNIX* philosophy of simplicity and conciseness. It is hoped that the interpro­
cess communication facilities included in 4.2BSD will establish a standard for UNIX. From
the response to the design, it appears many organizations carrying out work with UNIX are
adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior
to the 4.2BSD facilities, the only standard mechanism which allowed two processes to com­
municate were pipes (the mpx files which were part of Version 7 were experimental). Unfor­
tunately, pipes are very restrictive in that the two communicating processes must be related
through a common ancestor. Further, the semantics of pipes makes them almost impossible
to maintain in a distributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction.
The majority of the problems have been related to the fact these facilities have been tied to
the UNIX file system; either through naming, or implementation. Consequently, the ipc facil­
ities provided in 4.2BSD have been designed as a totally independent subsystem. The 4.2BSD
ipc allows processes to rendezvous in many ways. Processes may rendezvous through a UNIX
file system-like name space (a space where all names are path names) as well as through a net­
work name space. In fact, new name spaces may be added at a future time with only minor
changes visible to users. Further, the communication facilities have been extended to
included more than the simple byte stream provided by a pipe-like entity. These extensions
have resulted in a completely new part of the system which users will need time to familiarize
themselves with. It is likely that as more use is made of these facilities they will be refined;
only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the
new system calls and the basic model of communication. Section 3 describes some of the sup­
porting library routines users may find useful in constructing distributed applications. Section
4 is concerned with the client/server model used in developing applications and includes
examples of the two major types of servers. Section 5 delves into advanced topics which
sophisticated users are likely to encounter when using the ipc facilities.

* UNIX is a Trademark of Bell Laboratories.

3-6 Interprocess Communication Primer

2. BASICS

The basic building block for communication is the socket. A socket is an endpoint of
communication to which a name may be bound. Each socket in use has a type and one or
more associated processes. Sockets exist within communication domains. A communication
domain is an abstraction introduced to bundle common properties of processes communicating
through sockets. One such property is the scheme used to name sockets. For example, in the
UNIX communication domain sockets are named with UNIX path names; e.g. a socket may
be named "/dev/foo". Sockets normally exchange data only with sockets in the same domain
(it may be possible to cross domain boundaries, but only if some translation process is per­
formed). The 4.2BSD ipc supports two separate communication domains: the UNIX domain,
and the Internet domain is used by processes which communicate using the the DARPA stan­
dard communication protocols. The underlying communication facilities provided by these
domains have a significant influence on the internal system implementation as well as the
interface to socket facilities available to a user. An example of the latter is that a socket
"operating" in the UNIX domain sees a subset of the possible error conditions which are pos­
sible when operating in the Internet domain.

2.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes
are presumed to communicate only between sockets of the same type, although there is noth­
ing that prevents communication between sockets of different types should the underlying
communication protocols support this.

Three types of sockets currently are available to a user. A stream socket provides for
the bidirectional, reliable, sequenced, and unduplicated flow of data without record boun­
daries. Aside from the bidirectionality of data flow, a pair of connected stream sockets pro­
vides an interface nearly identical to that of pipes*.

A datagram socket supports bidirectional flow of data which is not promised to be
sequenced, reliable, or unduplicated. That is, a process receiving messages on a datagram
socket may find messages duplicated, and, possibly, in an order different from the order in
which it was sent. An important characteristic of a datagram socket is that record boundaries
in data are preserved. Datagram sockets closely model the facilities found in many contem­
porary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which
support socket abstractions. These sockets are normally datagram oriented, though their
exact characteristics are dependent on the interface provided by the protocol. Raw sockets
are not intended for the general user; they have been provided mainly for those interested in
developing new communication protocols, or for gaining access to some of the more esoteric
facilities of an existing protocol. The use of raw sockets is considered in section 5.

Two potential socket types which have interesting properties are the sequenced packet
socket and the reliably delivered message socket. A sequenced packet socket is identical to a
stream socket with the exception that record boundaries are preserved. This interface is very
similar to that provided by the Xerox NS Sequenced Packet protocol. The reliably delivered
message socket has similar properties to a datagram socket, but with reliable delivery. While
these two socket types have been loosely defined, they are currently unimplemented in
4.2BSD. As such, in this document we will concern ourselves only with the three socket types
for which support exists.

* In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been imple­
mented internally as simply a pair of connected stream sockets.

Interprocess Communication Primer 3-7

2.2. Socket creation

To create a socket the socket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified
type. A particular protocol may also be requested. If the protocol is left unspecified (a value
of 0), the system will select an appropriate protocol from those protocols which comprise the
communication domain and which may be used to support the requested socket type. The
user is returned a descriptor (a small integer number) which may be used in later system calls
which operate on sockets. The domain is specified as one of the manifest constants defined in
the file <sys/socket.h>. For the UNIX domain the constant is AF_UNIX*; for the Internet
domain AF_INET. The socket types are also defined in this file and one of SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, O);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample
call might be:

s = socket(AE._UNIX, SOCK_DGRAM, O);

To obtain a particular protocol one selects the protocol number, as defined within the
communication domain. For the Internet domain the available protocols are defined in
<netinet/in.h> or, better yet, one may use one of the library routines discussed in section 3,
such as getprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

pp = getprotobyname("tcp");
s = socket(AF_INET, SOCK_STREAM, pp->p proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack
of memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

2.3. Binding names

A socket is created without a name. Until a name is bound to a socket, processes have
no way to reference it and, consequently, no messages may be received on it. The bind call is
used to assign a name to a socket:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting
protocol(s). Its interpretation may vary from communication domain to communication
domain (this is one of the properties which comprise the "domain"). In the UNIX domain
names are path names while in the Internet domain names contain an Internet address and
port number. If one wanted to bind the name "/dev/foo" to a UNIX domain socket, the fol­
lowing would be used:

* The manifest constants are named AF whatever as they indicate the "address format" to use in interpret­
ing names.

3-8 Interprocess Communication Primer

bind(s, "/dev/foo", sizeof (" /dev/foo") - 1);

(Note how the null byte in the name is not counted as part of the name.) In binding an Inter­
net address things become more complicated. The actual call is simple,

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddrjn sin;

bind(s, &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come
back to the problem of formulating Internet addresses in section 3 when the library routines
used in name resolution are discussed.

2.4. Connection establishment
With a bound socket it is possible to rendezvous with an unrelated process. This opera­

tion is usually asymmetric with one process a "client" and the other a "server". The client
requests services from the server by initiating a "connection" to the server's socket. The
server, when willing to offer its advertised services, passively "listens" on its socket. On the
client side the connect call is used to initiate a connection. Using the UNIX domain, this
might appear as,

connect(s, "server-name", sizeof ("server-name"));

while in the Internet domain,

struct sockaddr_in server;
connect(s, &server, sizeof (server));

If the client process's socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket; c.f. section 5.4. An error is returned when
the connection was unsuccessful (any name automatically bound by the system, however,
remains). Otherwise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was
no point in retrying the connection attempt any more. This usually occurs because the
destination host is down, or because problems in the network resulted in transmissions
being lost.

ECONNREFUSED
The host refused service for some reason. When connecting to a host running 4.2BSD
this is usually due to a server process not being present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client
host by the underlying communication services.

ENETUNREACHorEHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no
route to the network or host is present), or because of status information returned by
intermediate gateways or switching nodes. Many times the status returned is not
sufficient to distinguish a network being down from a host being down. In these cases
the system is conservative and indicates the entire network is unreachable.

For the server to receive a client's connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

Interprocess Communication Primer 3-9

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connec­
tions which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to
make room in its pending connection queue while the client retries the connection request.
Had the connection been returned with the ECONNREFUSED error, the client would be
unable to tell if the server was up or not. As it is now it is still possible to get the
ETIMEDOUT error back, though this is unlikely. The backlog figure supplied with the listen
call is limited by the system to a maximum of 5 pending connections on any one queue. This
avoids the problem of processes hogging system resources by setting an infinite backlog, then
ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the
server wishes to find out who its client is, it may supply a buffer for the client socket's name.
The value-result parameter fromlen is initialized by the server to indicate how much space is
associated with from, then modified on return to reflect the true size of the name. If the
client's name is not of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is
available or the system call is interrupted by a signal to the process. Further, there is no way
for a process to indicate it will accept connections from only a specific individual, or individu­
als. It is up to the user process to consider who the connection is from and close down the
connection if it does not wish to speak to the process. If the server process wants to accept
connections on more than one socket, or not block on the accept call there are alternatives;
they will be considered in section 5.

2.5. Data transfer
With a connection established,· data may begin to flow. To send and receive data there

are a number of possible calls. With the peer entity at each end of a connection anchored, a
user can send or receive a message without specifying the peer. As one might expect, in this
case, then the normal read and write system calls are useable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical to read and write, the extra flags argument is
important. The flags may be specified as a non-zero value if one or more of the following is
required:

SO~OOB
SOJLPREVIEW
SOt_DONTROUTE

send/receive out of band data
look at data without reading
send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest
to the casual user. The ability to preview data is, however, of interest. When

3-10 Interprocess Communication Primer

SOE_PREVIEW is specified with a recv call, any data present is returned to the user, but
treated as still "unread". That is, the next read or recv call applied to the socket will return
the data previously previewed.

2.6. Discarding sockets

Once a soc.ket is no longer of interest, it may be discarded by applying a close to the
descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when
a close takes place, the system will continue to attempt to transfer the data. However, after a
fairly long period of time, if the data is still undelivered, it will be discarded. Should a user
have no use for any pending data, it may perform a shutdown on the socket prior to closing it.
This call is of the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be
sent, or 2 if no data is to be sent or received. Applying shutdown to a socket causes any data
queued to be immediately discarded.

2.7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection
oriented model. However, there is also support for connectionless interactions typical of the
datagram facilities found in contemporary packet switched networks. A datagram socket pro­
vides a symmetric interface to data exchange. While processes are still likely to be client and
server, there is no requirement for connection establishment. Instead, each message includes
the destination address.

Datagram sockets are created as before, and each should have a name bound to it in
order that the recipient of a message may identify the sender. To send data, the sendto prim­
itive is used,

sendto(s, buf, buflen, flags, &to, tolen);

The s, buf, bufien, and fiags parameters are used as before. The to and tolen values are used
to indicate the intended recipient of the message. When using an unreliable datagram inter­
face, it is unlikely any errors will be reported to the sender. Where information is present
locally to recognize a message which may never be delivered (for instance when a network is
unreachable), the call will return -1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is pro­
vided:

recvfrom(s, buf, buflen, flags, &from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the
size of the from buffer.

In addition to the two calls mentioned above, datagram sockets may also use the connect
call to associate a socket with a specific address. In this case, any data sent on the socket will
automatically be addressed to the connected peer, and only data received from that peer will
be delivered to the user. Only one connected address is permitted for each socket (i.e. no
multi-casting). Connect requests on datagram sockets return immediately, as this simply
results in the system recording the peer's address (as compared to a stream socket where a
connect request initiates establishment of an end to end connection). Other of the less impor­
tant details of datagram sockets are described in section 5.

Interprocess Communication Primer 3-11

2.8. Input/Output multiplexing
One last facility often used in developing applications is the ability to multiplex i/o

requests among multiple sockets and/or files. This is done using the select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the
caller wishes to be able to read data on, one for those descriptors to which data is to be writ­
ten, and one for which exceptional conditions are pending. Bit masks are created by or-ing
bits of the form "l << fd". That is, a descriptor fd is selected if a 1 is present in the fd'th bit
of the mask. The parameter nfds specifies the range of file descriptors (i.e. one plus the value
of the largest descriptor) specified in a mask.

A timeout value may be specified if the selection is not to last more than a predeter­
mined period of time. If timeout is set to 0, the selection takes the form of a poll, returning
immediately. If the last parameter is a null pointer, the selection will block indefinitely*.
Select normally returns the number of file descriptors selected. If the select call returns due
to the timeout expiring, then a value of -1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output
completion, input availability, and exceptional conditions is possible through use of the SIGIO
and SIGURG signals described in section 5.

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received
by the caller, interrupting the system call.

3-12 Interprocess Communication Primer

3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment.
To aid in this task a number of routines have been added to the standard C run-time library.
In this section we will consider the new routines provided to manipulate network addresses.
While the 4.2BSD networking facilities support only the DARPA standard Internet protocols,
these routines have been designed with flexibility in mind. As more communication protocols
become available, we hope the same user interface will be maintained in accessing network­
related address data bases. The only difference should be the values returned to the user.
Since these values are normally supplied the system, users should not need to be directly
aware of the communication protocol and/or naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and
server may communicate. A service is assigned a name which is intended for human consump­
tion; e.g. "the login server on host monet". This name, and the name of the peer host, must
then be translated into network addresses which are not necessarily suitable for human con­
sumption. Finally, the address must then used in locating a physical location and route to the
service. The specifics of these three mappings is likely to vary between network architectures.
For instance, it is desirable for a network to not require hosts be named in such a way that
their physical location is known by the client host. Instead, underlying services in the net­
work may discover the actual location of the host at the time a client host wishes to communi­
cate. This ability to have hosts named in a location independent manner may induce over­
head in connection establishment, as a discovery process must take place, but allows a host to
be physically mobile without requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network
names to network numbers, protocol names to protocol numbers, and service names to port
numbers and the appropriate protocol to use in communicating with the server process. The
file <netdb.h> must be included when using any of these routines.

3.1. Host names

A host name to address mapping is represented by the hostent structure:

struct hostent {
char
char

};

int
int
char

*J:uiame;
* *h..Jiliases;
h_addrtype;
hjength;
*h addr - '

/* official name of host *I
/* alias list *I
/* host address type *I
/* length of address *I
/* address *I

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine gethostbyname(3N) takes a host name and returns a
hostent structure, while the routine gethostbyaddr(3N) maps host addresses into a hostent
structure. It is possible for a host to have many addresses, all having the same name.
Gethostybyname returns the first matching entry in the data base file /etc/hosts; if this is
unsuitable, the lower level routine gethostent(3N) may be used. For example, to obtain a hos­
tent structure for a host on a particular network the following routine might be used (for sim­
plicity, only Internet addresses are considered):

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct hostent "'
gethostbynameandnet(name, net)

char *name;

{
int net;

register struct hostent *hp;
register char **cp;

sethostent(0);

Interprocess Communication Primer 3-13

while ((hp= gethostent()) !=NULL) {
if (hp->h addrtype != A~_INET)

continue;
if (strcmp(name, hp->h name)) {

}
found:

for (cp = hp->h aliases; cp && *cp != NULL; cp++)
if (strcmp(name, *cp) = = O)
goto found;

continue;

if (in netof(*(struct in addr *)hp->h addr)) == net)
break;

}

}
endhostent(O);
return (hp);

(in netof(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network names
As for host names, routines for mapping network names to numbers, and back, are pro­

vided. These routines return a netent structure:

/*
"' Assumption here is that a network number
"' fits in 32 bits -- probably a poor one.
*I

struct netent {
char
char
int
int

};

"'n name;
**n aliases;
n addrtype;
n net;

/* official name of net "'I
/"' alias list "'I
/"' net address type "'I
/"' network# */

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network
counterparts to the host routines described above.

3.3. Protocol names
For protocols the protoent structure defines the protocol-name mapping used with the

routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

3-14 Interprocess Communication Primer

struct protoent {
char
char
int

};

3.4. Service names

*p_name;
**p_aliases;
pyroto;

/* official protocol name *I
/* alias list *I
/* protocol # *I

Information regarding services is a bit more complicated. A service is expected to reside
at a specific "port" and employ a particular communication protocol. This view is consistent
with the Internet domain, but inconsistent with other network architectures. Further, a ser­
vice may reside on multiple ports or support multiple protocols. If either of these occurs, the
higher level library routines will have to be bypassed in favor of homegrown routines similar
in spirit to the "gethostbynameandnet" routine described above. A service mapping is
described by the servent structure,

struct servent {
char
char
int
char

};

*s name· - ' **s aliases· - ' s_port;
*unoto;

/* official service name *I
/* alias list *I
/*port# */
/* protocol to use *I

The routine getservbyname(3N) maps service names to a servent structure by specifying a ser­
vice name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *)O);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N)
and getservent(3N) are also provided. The getservbyport routine has an interface similar to
that provided by getservbyname; an optional protocol name may be specified to qualify look­
ups.

3.5. Miscellaneous

With the support routines described above, an application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a
network independent fashion. It is clear, however, that purging all network dependencies is
very difficult. So long as the user is required to supply network addresses when naming ser­
vices and sockets there will always some network dependency in a program. For example, the
normal code included in client programs, such as the remote login program, is of the form
shown in Figure 1. (This example will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols
and addressing scheme we would be forced to add a layer of routines which masked the net­
work dependent aspects from the mainstream login code. For the current facilities available
in the system this does not appear to be worthwhile. Perhaps when the system is adapted to
different network architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines avail­
able in the run-time library which are of interest to users. These are intended mostly to sim­
plify manipulation of names and addresses. Table 1 summarizes the routines for manipulating
variable length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses
to be supplied in network order. On a VAX, or machine with similar architecture, this is

Interprocess Communication Primer 3-15

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
char *argv[];

{

}

struct sockaddr in sin;
struct servent *sp;
struct hostent *hp;
int s;

sp = getservbyname("login", "tcp");
if (sp = = NULL) {

}

fprintf(stderr, "rlogin: tcp/login: unknown service'°");
exit(l);

hp = gethostbyname(argv[l]);
if (hp = = NULL) {

fprintf(stderr, "rlogin: %s: unknown host'll", argv[l]);
exit(2);

}
bzero((char *)&sin, sizeof (sin));
bcopy(hp->h addr, (char *)&sin.sin addr, hp->h length);
sin.sin family = hp->h addrtype;
sin.sin port = sp->s port;
s = socket(AF_INET, SOCl_STREAM, O);
if (s < 0) {

perror("rlogin: socket");
exit(3);

}

if (connect(s, (char *)&sin, sizeof (sin)) < O) {
perror("rlogin: connect");
exit(5);

}

bcmp(sl, s2, n)
bcopy(sl, s2, n)
bzero(base, n)
htonl(val)
htons(val)
ntohl(val)

Figure 1. Remote login client code.

compare byte-strings; 0 if same, not 0 otherwise
copy n bytes from sl to s2
zero-fill n bytes starting at base
convert 32-bit quantity from host to network byte order
convert 16-bit quantity from host to network byte order
convert 32-bit quantity from network to host byte order

Table 1. C run-time routines.

3-16 Interprocess Communication Primer

usually reversed. Consequently, programs are sometimes required to byte swap quantities.
The library routines which return network addresses provide them in network order so that
they may simply be copied into the structures provided to the system. This implies users
should encounter the byte swapping problem only when interpreting network addresses. For
example, if an Internet port is to be printed out the following code would be required:

printf("port number %d'n", ntohs(sp->s port));

On machines other than the VAX these routines are defined as null macros.

Interprocess Communication Primer 3-17

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme client applications request services from a server process.
This implies an asymmetry in establishing communication between the client and server
which has been examined in section 2. In this section we will look more closely at the interac­
tions between client and server, and consider some of the problems in developing client and
server applications.

Client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at
both ends of a connection. Depending on the situation, the protocol may be symmetric or
asymmetric. In a symmetric protocol, either side may play the master or slave roles. In an
asymmetric protocol, one side is immutably recognized as the master, with the other the slave.
An example of a symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation. An example of an asymmetric protocol is the Internet file transfer proto­
col, FTP. No matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a "client process" and a "server process". We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clog­
ging the system while remaining dormant most of the time. The Xerox Courier protocol uses
the latter scheme. When using Courier, a Courier client process contacts a Courier server at
the remote host and identifies the service it requires. The Courier server process then creates
the appropriate server process based on a data base and "splices" the client and server
together, voiding its part in the transaction. This scheme is attractive in that the Courier
server process may provide a single contact point for all services, as well as carrying out the
initial steps in authentication. However, while this is an attractive possibility for standardiz­
ing access to services, it does introduce a certain amount of overhead due to the intermediate
process involved. Implementations which provide this type of service within the system can
minimize the cost of client server rendezvous. The portal notion described in the "4.2BSD
System Manual" embodies many of the ideas found in Courier, with the rendezvous mechan­
ism implemented internal to the system.

4.1. Servers
In 4.2BSD most servers are accessed at well known Internet addresses or UNIX domain

names. When a server is started at boot time it advertises it services by listening at a well
know location. For example, the remote login server's main loop is of the form shown in Fig­
ure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp");
if (sp = = NULL) {

}

fprintf(stderr, "rlogind: tcp/login: unknown service1o0");
exit(l);

This definition is used in later portions of the code to define the Internet port at which it
listens for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This
is important as the server will likely not want to receive signals delivered to the process group
of the controlling terminal.

Once a server has established a pristine environment, it creates a socket and begins
accepting service requests. The bind call is required to insure the server listens at its

3-18 Interprocess Communication Primer

main(argc, argv)

{

int argc;
char * *argv;

int f;
struct sockaddr in from;
struct servent *sp;

sp = getservbyname("login", "tcp");
if (sp = = NULL) {

}

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(l);

#ifndef DEBUG

#endif

}

<<disassociate server from controlling terminal>>

sin.si:ru>ort = sp->~ort;

f = socket(AFJNET, SOCK.STREAM, O);

if (bind(f, (cadd:i:_t)&sin, sizeof (sin)) < 0) {

}

listen(f, 5);
for (;;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < 0) {

}

if (errno != EINTR)
perror("rlogind: accept");

continue;

if (fork() = = O) {
close(f);
doit(g, &from);

}
close(g);

Figure 2. Remote login server.

expected location. The main body of the loop is fairly simple:

for (;;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < O) {

Interprocess Communication Primer 3-19

if (errno != EINTR)
perror("rlogind: accept");

continue;

}

}
if (fork() = = O) {

close(f);
doit(g, &from);

}
close(g);

An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5).
Therefore, the return value from accept is checked to insure a connection has actually been
established. With a connection in hand, the server then forks a child process and invokes the
main body of the remote login protocol processing. Note how the socket used by the parent
for queueing connection requests is closed in the child, while the socket created as a result of
the accept is closed in the parent. The address of the client is also handed the doit routine
because it requires it in authenticating clients.

4.2. Clients
The client side of the remote login service was shown earlier in Figure 1. One can see

the separate, asymmetric roles of the client and server clearly in the code. The server is a
passive entity, listening for client connections, while the client process is an active entity, ini­
tiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in
the server process the first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");
if (sp = = NULL) {

}

fprintf(stderr, "rlogin: tcp/login: unknown service~");
exit(l);

Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname(argv[l]);
if (hp = = NULL) {

}

fprintf(stderr, "rlogin: %s: unknown host'-i(l", argv[l]);
exit(2);

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then
filled in with the Internet address of the foreign host and the port number at which the login
process resides:

bzero((char *)&sin, sizeof (sin));
bcopy(hp->h_addr, (char *)sin.sin_addr, hp->hJength);
sin.siILfamily = hp->h..,!l.ddrtype;
sin.sin_port = sp->s_port;

3-20 Interprocess Communication Primer

A socket is created, and a connection initiated.

s = socket(hp->h..addrtype, SOCl_STREAM, O);
if (s < O) {

}

perror("rlogin: socket");
exit(3);

if (connect(s, (char *)&sin, sizeof (sin)) < O) {
perror("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are, based on the use of
datagram sockets. One, in particular, is the "rwho" service which provides users with status
information for hosts connected to a local area network. This service, while predicated on the
ability to broadcast information to all hosts connected to a particular network, is of interest as
an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a
machine with the ruptime(l) program. The output generated is illustrated in Figure 3.

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24
esvax down 17:04
in gr es down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07
oz down 16:09
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

Status information for each host is periodically broadcast by rwho server processes on
each machine. The same server process also receives the status information and uses it to
update a database. This database is then interpreted to generate the status information for
each host. Servers operate autonomously, coupled only by the local network and its broadcast
capabilities.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate
tasks performed by the server. The first task is to act as a receiver of status information
broadcast by other hosts on the network. This job is carried out in the main loop of the pro­
gram. Packets received at the rwho port are interrogated to insure they've been sent by
another rwho server process, then are time stamped with their arrival time and used to update

Interprocess Communication Primer 3-21

a file indicating the status of the host. When a host has not been heard from for an extended
period of time, the database interpretation routines assume the host is down and indicate such
on the status reports. This algorithm is prone to error as a server may be down while a host is
actually up, but serves our current needs.

main()
{

}

sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin_addr = inet_makeaddr(INADDR....ANY, net);
sin.sin_port = sp->s port;

s = socket(AF_INET, SOCK_pGRAM, O);

bind(s, &sin, sizeof (sin));

sigset(SIGALRM, onalrm);
onalrm();
for (;;) {

}

struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc<= O) {

}

if (cc < 0 && errno != EINTR)
perror("rwhod: recv");

continue;

if (from.sin_port != sp->!i...port) {

}

fprintf(stderr, "rwhod: %d: bad from port'-1",
ntohs(from.sin port));

continue;

if (!verify(wd.wd hostname)) {

}

fprintf(stderr, "rwhod: malformed host name from %x'11",
ntohl(from.sin addr.s addr));

continue;

(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd hostname);
whod = open(path, FWRONLYIFCREATFlFTRUNCATE,0666);

(void) time(&wd.wd recvtime);
(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4. rwho server.

The second task performed by the server is to supply information regarding the status of
its host. This involves periodically acquiring system status information, packaging it up in a
message and broadcasting it on the local network for other rwho servers to hear. The supply
function is triggered by a timer and runs off a signal. Locating the system status information
is somewhat involved, but uninteresting. Deciding where to transmit the resultant packet

3-22 Interprocess Communication Primer

does, however, indicates some problems with the current protocol.

Status information is broadcast on the local network. For networks which do not sup­
port the notion of broadcast another scheme must be used to simulate or replace broadcasting.
One possibility is to enumerate the known neighbors (based on the status received). This,
unfortunately, requires some bootstrapping information, as a server started up on a quiet net­
work will have no known neighbors and thus never receive, or send, any status information.
This is the identical problem faced by the routing table management process in propagating
routing status information. The standard solution, unsatisfactory as it may be, is to inform
one or more servers of known neighbors and request that they always communicate with these
neighbors. If each server has at least one neighbor supplied it, status information may then
propagate through a neighbor to hosts which are not (possibly) directly neighbors. If the
server is able to support networks which provide a broadcast capability, as well as those which
do not, then networks with an arbitrary topology may share status information*.

The second problem with the current scheme is that the rwho process services only a sin­
gle local network, and this network is found by reading a file. It is important that software
operating in a distributed environment not have any site-dependent information compiled into
it. This would require a separate copy of the server at each host and make maintenance a
severe headache. 4.2BSD attempts to isolate host-specific information from applications by
providing system calls which return the necessary informationt. Unfortunately, no straight­
forward mechanism currently exists for finding the collection of networks to which a host is
directly connected. Thus the rwho server performs a lookup in a file to find its local network.
A better, though still unsatisfactory, scheme used by the routing process is to interrogate the
system data structures to locate those directly connected networks. A mechanism to acquire
this information from the system would be a useful addition.

* One must, however, be concerned about "loops". That is, if a host is connected to multiple networks, it
will receive status information from itself. This can lead to an endless, wasteful, exchange of information.
t An example of such a system call is the gethostname(2) call which returns the host's "official" name.

Interprocess Communication Primer 3-23

5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechan­
isms already described will suffice in constructing distributed applications. However, others
will find need to utilize some of the features which we consider in this section.

5.1. Out of band data

The stream socket abstraction includes the notion of "out of band" data. Out of band
data is a logically independent transmission channel associated with each pair of connected
stream sockets. Out of band data is delivered to the user independently of normal data along
with the SIGURG signal. In addition to the information passed, a logical mark is placed in
the data stream to indicate the point at which the out of band data was sent. The remote
login and remote shell applications use this facility to propagate signals from between client
and server processes. When a signal is expected to flush any pending output from the remote
process(es), all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reli­
able delivery of at least one out of band message at a time. This message may contain at least
one byte of data, and at least one message may be pending delivery to the user at any one
time. For communications protocols which support only in-band signaling (i.e. the urgent
data is delivered in sequence with the normal data) the system extracts the data from the nor­
mal data stream and stores it separately. This allows users to choose between receiving the
urgent data in order and receiving it out of sequence without having to buffer all the interven­
ing data.

To send an out of band message the SOE._OOB flag is supplied to a send or sendto calls,
while to receive out of band data SOF_OOB should be indicated when performing a recvfrom
or recv call. To find out if the read pointer is currently pointing at the mark in the data
stream, the SIOCA TMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out
of band data has arrived), the next read will provide data sent by the client prior to transmis­
sion of the out of band signal. The routine used in the remote login process to flush output
on receipt of an interrupt or quit signal is shown in Figure 5.

5.2. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated
process group (just as is done for terminals). This process group is initialized to the process
group of its creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

3-24 Interprocess Communication Primer

ooh()
{

}

int out= 1+1;
char waste[BUFSIZ], mark;

signal(SIGURG, ooh);
/* flush local terminal input and output *I
ioctl(l, TIOCFLUSH, (char *)&out);
for (;;) {

}

if (ioctl(rem, SIOCATMARK, &mark)< O) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof (waste));

recv(rem, &mark, 1, SOF_.DOB);

Figure 5. Flushing terminal i/o on receipt of out of band data.

ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for determining the current process group of a
socket.

5.3. Pseudo terminals

Many programs will not function properly without a terminal for standard input and
output. Since a socket is not a terminal, it is often necessary to have a process communicating
over the network do so through a pseudo terminal. A pseudo terminal is actually a pair of
devices, master and slave, which allow a process to serve as an active agent in communication
between processes and users. Data written on the slave side of a pseudo terminal is supplied
as input to a process reading from the master side. Data written on the master side is given
the slave as input. In this way, the process manipulating the master side of the pseudo termi­
nal has control over the information read and written on the slave side. The remote login
server uses pseudo terminals for remote login sessions. A user logging in to a machine across
the network is provided a shell with a slave pseudo terminal as standard input, output, and
error. The server process then handles the communication between the programs invoked by
the remote shell and the user's local client process. When a user sends an interrupt or quit
signal to a process executing on a remote machine, the client login program traps the signal,
sends an out of band message to the server process who then uses the signal nutnber, sent as
the data value in the out of band message, to perform a killpg(2) on the appropriate process
group.

5.4. Internet address binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communi­
cating processes are bound by an association. An association is composed of local and foreign
addresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one
for each Internet protocol. Associations are always unique. That is, there may never be
duplicate <protocol, local address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local address,
local port>, while the connect and accept primitives are used to complete a socket's

--- -·----- --

Interprocess Communication Primer 3-25

association. Since the association is created in two steps the association uniqueness require­
ment indicated above could be violated unless care is taken. Further, it is unrealistic to
expect user programs to always know proper values to use for the local address and local port
since a host may reside on multiple networks and the set of allocated port numbers is not
directly accessible to a user.

To simplify local address binding the notion of a "wildcard" address has been provided.
When an address is specified as INADDll.ANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as "any valid address". For example, to
bind a specific port number to a socket, but leave the local address unspecified, the following
code might be used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr in sin;

s = socket(AF_INET, SOCK..STREAM, O);
sin.sin family = AF_INET;
sin.sin addr.s addr = INADDR..i\NY;
sin.sin port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port
number, and addressed to any of the possible addresses assigned a host. For example, if a
host is on a networks 46 and 10 and a socket is bound as above, then an accept call is per­
formed, the process will be able to accept connection requests which arrive either from net­
work 46 or network 10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case
the system will select an appropriate port number for it. For example:

sin.sin addr.s addr = MYADDRESS;
sin.sin port = O;
bind(s, (char *)&sin, sizeof (sin));

The system selects the port number based on two criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users (i.e. the super user). The second is that the
port number is not currently bound to some other socket. In order to find a free port number
in the privileged range the following code is used by the remote shell server:

3-26 Interprocess Communication Primer

struct sockaddr_in sin;

lport = IPPOR't..RESERVED - 1;
sin.sin addr.s addr = INADDJt.ANY;

for (;;) {

}

sin.sin port = htons((u short)lport);
if (bind(s, (caddr t)&sin, sizeof (sin)) >= 0)

break;
if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) {

perror(" socket");
break;

}
lport--;
if (lport = = IPPORT RESERVED/2) {

fprintf(stderr, "socket: All ports in use\1");
break;

}

The restriction on allocating ports was done to allow processes executing in a "secure"
environment to perform authentication based on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable
for an application. This is due to associations being created in a two step process. For exam­
ple, the Internet file transfer protocol, FTP, specifies that data connections must always ori­
ginate from the same local port. However, duplicate associations are avoided by connecting to
different foreign ports. In this situation the system would disallow binding the same local
address and port number to a socket if a previous data connection's socket were around. To
override the default port selection algorithm then an option call must be performed prior to
address binding:

setsockopt(s, SO~SOCKET, SQ.REUSEADDR, (char *)O, O);
bind(s, (char *)&sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not
violate the uniqueness requirement as the system still checks at connect time to be sure any
other sockets with the same local address and port do not have the same foreign address and
port (if an association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a
host is on multiple networks. Logically, one would expect the system to bind the local address
associated with the network through which a peer was communicating. For instance, if the
local host is connected to networks 46 and 10 and the foreign host is on network 32, and
traffic from network 32 were arriving via network 10, the local address to be bound would be
the host's address on network 10, not network 46. This unfortunately, is not always the case.
For reasons too complicated to discuss here, the local address bound may be appear to be
chosen at random. This property of local address binding will normally be invisible to users
unless the foreign host does not understand how to reach the address selected*.

* For example, if network 46 were unknown to the host on network 32, and the local address were bound to
that located on network 46, then even though a route between the two hosts existed through network 10, a
connection would fail.

Interprocess Communication Primer 3-27

5.5. Broadcasting and datagram sockets

By using a datagram socket it is possible to send broadcast packets on many networks
supported by the system (the network itself must support the notion of broadcasting; the sys­
tem provides no broadcast simulation in software). Broadcast messages can place a high load
on a network since they force every host on the network to service them. Consequently, the
ability to send broadcast packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be created:

s = socket(AVNET, SOCK_DGRAM, O);

and at least a port number should be bound to the socket:

sin.sir\ . ..family = AF_INET;
sin.siJLaddr.s addr = INADDR_ANY;
sin.sin_port = MYPORT;
bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:

dst.siI,Lfamily = A1l)NET;
dst.si:q_addr.s addr :1::: INADDJLANY;
dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:

sendto(s, buf, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
anchored before a message is allowed to go out).

5.6. Signals

Two new signals have been added to the system which may be used in conjunction with
the interprocess communication facilities. The SIGURG signal is associated with the
existence of an "urgent condition". The SIGIO signal is used with "interrupt driven i/o" (not
presently implemented). SIGURG is currently supplied a process when out of band data is
present at a socket. If multiple sockets have out of band data awaiting delivery, a select call
may be used to determine those sockets with such data.

An old signal which is useful when constructing server processes is SIGCHLD. This sig­
nal is delivered to a process when any children processes have changed state. Normally
servers use the signal to "reap" child processes after exiting. For example, the remote login
server loop shown in Figure 2 may be augmented as follows:

3-28 Interprocess Communication Primer

int reaper();

sigset(SIGCHLD, reaper);
listen(f, 10);
for (;;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len, O);
if (g < 0) {

}

if (errno != EINTR)
perror("rlogind: accept");

continue;

#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, O) > O)

}

If the parent server process fails to reap its children, a large number of "zombie"
processes may be created.

Networking Implementation Notes 3-29

4.2BSD Networking Implementation Notes

Revised July, 1983

Samuel J. Lef/f,er, William N. Joy, Robert S. Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

1. Introduction
This report describes the internal structure of facilities added to the 4.2BSD version of

the UNIX operating system for the VAX. The system facilities provide a uniform user inter­
face to networking within UNIX. In addition, the implementation introduces a structure for
network communications which may be used by system implementors in adding new network­
ing facilities. The internal structure is not visible to the user, rather it is intended to aid
implementors of communication protocols and network services by providing a framework
which promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system
interface, as described in the 4.2BSD System Manual [Joy82a]. Basic understanding of net­
work communication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding,
when possible, those portions which are utilized only by the interprocess communication facili­
ties.

UNIX is a trademark of Bell Laboratories.
DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

3-30 Networking Implementation Notes

2. Overview
If we consider the International Standards Organization's (ISO) Open System Intercon­

nection (OSI) model of network communication [IS081] [Zimmermann80), the networking
facilities described here correspond to a portion of the session layer (layer 3) and all of the
transport and network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal
addressing structure. Addressing at this level is normally host to host, with implicit or expli­
cit routing optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and
service addressing are normally included. Reliability is usually managed by explicit ack­
nowledgement of data delivered. Failure to acknowledge a transfer results in retransmission
of the data. Sequencing may be handled by tagging each message handed to the network
layer by a sequence number and maintaining state at the endpoints of communication to util­
ize received sequence numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into for­
mats required by the transport layer, service authentication and client authentication, etc.
Various systems also provide services such as data encryption and address and protocol trans­
lation.

The following sections begin by describing some of the common data structures and util­
ity routines, then examine the internal layering. The contents of each layer and its interface
are considered. Certain of the interfaces are protocol implementation specific. For these cases
examples have been drawn from the Internet [Cerf78] protocol family. Later sections cover
routing issues, the design of the raw socket interface and other miscellaneous topics.

Networking Implementation Notes 3-31

3. Goals
The networking system was designed with the goal of supporting multiple protocol fami­

lies and addressing styles. This required information to be "hidden" in common data struc­
tures which could be manipulated by all the pieces of the system, but which required interpre­
tation only by the protocols which "controlled" it. The system described here attempts to
minimize the use of shared data structures to those kept by a suite of protocols (a protocol
family), and those used for rendezvous between "synchronous" and "asynchronous" portions
of the system (e.g. queues of data packets are filled at interrupt time and emptied based on
user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deal of effort has been extended
to create utility routines which hide many of the more complex and/or hardware dependent
chores of networking. Later sections describe the utility routines and the underlying data
structures they manipulate.

3-32 Networking Implementation Notes

4. Internal address representation
Common to all portions of the system are two data structures. These structures are used

to represent addresses and various data objects. Addresses, internally are described by the
sockaddr structure,

struct sockaddr {
short saJamily; /* data format identifier *I
char sa...slata[14]; /*address*/

};

All addresses belong to one or more address families which define their format and interpreta­
tion. The sgjamily field indicates which address family the address belongs to, the sa data
field contains the actual data value. The size of the data field, 14 bytes, was selected based on
a study of current address formats*.

* Later versions of the system support variable length addresses.

Networking Implementation Notes 3-33

5. Memory management
A single mechanism is used for data storage: memory buffers, or mbuf s. An mbuf is a

structure of the form:

struct mbuf {
struct mbuf *m_pext; /* next buffer in chain *I
ujong IIL.off; /* offset of data *I
short mjen; /* amount of data in this mbuf *I
short IJLtype; /* mbuf type (accounting) *I
u._char IIL.dat[MLEN]; /* data storage *I
struct mbuf *m_!ict; /* link in higher-level mbuf list *I

};

The m _next field is used to chain mbufs together on linked lists, while the m_p.ct field allows
lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the m_pext field, while groups of objects are
linked via the m...!lct field (possibly when in a queue).

Each mbuf has a small data area for storing information, TrLdat. The m.J,en field indi­
cates the amount of data, while the m_gff field is an offset to the beginning of the data from
the base of the mbuf. Thus, for example, the macro mtod, which converts a pointer to an
mbuf to a pointer to the data stored in the mbuf, has the form

#define mtod(x,t) ((t)((int)(x) + (x)->m off))

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assign­
ment).

In addition to storing data directly in the mbuf's data area, data of page size may be also
be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages
for this purpose and manipulate a private page map for such pages. The virtual addresses of
these data pages precede those of mbufs, so when pages of data are separated from an mbuf,
the mbuf data offset is a negative value. An array of reference counts on pages is also main­
tained so that copies of pages may be made without core to core copying (copies are created
simply by duplicating the relevant page table entries in the data page map and incrementing
the associated reference counts for the pages). Separate data pages are currently used only
when copying data from a user process into the kernel, and when bringing data in at the
hardware level. Routines which manipulate mbufs are not normally aware if data is stored
directly in the mbuf data array, or if it is kept in separate pages.

The following utility routines are available for manipulating mbuf chains:

m = m copy(mO, off, len);
The rn_copy routine create a copy of all, or part, of a list of the mbufs in mO. Len bytes
of data, starting off bytes from the front of the chain, are copied. Where possible, refer­
ence counts on pages are used instead of core to core copies. The original mbuf chain
must have at least off + len bytes of data. If len is specified as M COPY ALL, all the
data present, offset as before, is copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is per­
formed.

nt.adj(m, diff);
The mbuf chain, mis adjusted in size by diff bytes. If diff is non-negative, diff bytes are
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed
from back to front. No space is reclaimed in this operation, alterations are accomplished
by changing the TTLlen and ~ff fields of mbufs.

m = m_pullup(mO, size);
After a successful call to TrL.PUllup, the mbuf at the head of the returned list, m, is

3-34 Networking Implementation Notes

guaranteed to have at least size bytes of data in contiguous memory (allowing access via
a pointer, obtained using the mtod macro). If the original data was less than size bytes
long, len was greater than the size of an mbuf data area (112 bytes), or required
resources were unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception.
For example, if a packet is received and only 8 of the necessary 16 bytes required for a
valid packet header are present at the head of the list of mbufs representing the packet,
the remaining 8 bytes may be "pulled up" with a single Tl'!.Pullup call. If the call fails
the invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate
the mbuf associated with a data area by masking off the low bits of the virtual address. This
allows modules to store data structures in mbufs and pass them around without concern for
locating the original mbuf when it comes time to free the structure. The dtom macro is used
to convert a pointer into an mbuf's data area to a pointer to the mbuf,

#define dtom(x) ((struct mbuf *)((int)x & -(MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets, as well as
memory allocated for packets. Statistics are maintained on mbuf usage and can be viewed by
users using the netstat(l) program.

Networking Implementation Notes 3-35

6. Internal layering
The internal structure of the network system is divided into three layers. These layers

correspond to the services provided by the socket abstraction, those provided by the commun­
ication protocols, and those provided by the hardware interfaces. The communication proto­
cols are normally layered into two or more individual cooperating layers, though they are col­
lectively viewed in the system as one layer providing services supportive of the appropriate
socket abstraction.

The following sections describe the properties of each layer in the system and the inter­
faces each must conform to.

6.1. Socket layer

The socket layer deals with the interprocess communications facilities provided by the
system. A socket is a bidirectional endpoint of communication which is "typed" by the
semantics of communication it supports. The system calls described in the 4.2BSD System
Manual are used to manipulate sockets.

A socket consists of the following data structure:

struct socket {
short so_ type; /* generic type *I
short so_ options; /* from socket call *I
short soj.inger; /* time to linger while closing *I
short SOJtate; /* internal state flags *I
caddi;:_t sq_pcb; /* protocol control block *I
struct protosw *sq_proto; /* protocol handle *I
struct socket *so_head; /* back pointer to accept socket *I
struct socket *so_qO; /* queue of partial connections *I
short so_gOlen; /* partials on so_gO *I
struct socket *so_q; /* queue of incoming connections *I
short so_qlen; /* number of connections on so q *I
short sq_qlimit; /* max number queued connections *I
struct sockbuf so_snd; /* send queue *I
struct sockbuf so_Jcv; /* receive queue *I
short soJimeo; /* connection timeout *I
UJhOrt sq_Jlrror; /* error affecting connection *I
short so_oobmark; /* chars to ooh mark *I
short S<LJ>grp; /* pgrp for signals *I

};

Each socket contains two data queues, so...rcv and so~nd, and a pointer to routines which
provide supporting services. The type of the socket, so_Jype is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting pro­
tocol is selected at socket creation time and recorded in the socket data structure for later use.
Protocols are defined by a table of procedures, the protosw structure, which will be described
in detail later. A pointer to a protocol specific data structure, the "protocol control block" is
also present in the socket structure. Protocols control this data structure and it normally
includes a back pointer to the parent socket structure(s) to allow easy lookup when returning
information to a user (for example, placing an error number in the so error field). The other
entries in the socket structure are used in queueing connection r;quests, validating user
requests, storing socket characteristics (e.g. options supplied at the time a socket is created),
and maintaining a socket's state.

Processes "rendezvous at a socket" in many instances. For instance, when a process
wishes to extract data from a socket's receive queue and it is empty, or lacks sufficient data to
satisfy the request, the process blocks, supplying the address of the receive queue as an "wait
channel' to be used in notification. When data arrives for the process and is placed in the

3-36 Networking Implementation Notes

socket's queue, the blocked process is identified by the fact it is waiting "on the queue".

6.1.1. Socket state

A socket's state is defined from the following:

#define SS_NOFDREF OxOOl
#define SS_ISCONNECTED Ox002
#define SS_ISCONNECTING Ox004
#define SS_ISDISCONNECTING Ox008
#define SS_CANTSENDMORE Ox010
#define SS_CANTRCVMORE Ox020
#define SS_CONNA WAITING Ox040
#define SS_RCV ATMARK Ox080

#define SS PRIV
#define SS_NBIO
#define S~ ASYNC

OxlOO
Ox200
Ox400

/* no file table ref any more *I
/* socket connected to a peer *I
/* in process of connecting to peer *I
/* in process of disconnecting *I
/* can't send more data to peer *I
/* can't receive more data from peer *I
/* connections awaiting acceptance *I
/* at mark on input *I

/* privileged *I
/* non-blocking ops*/
/* async i/o notify *I

The state of a socket is manipulated both by the protocols and the user (through system
calls). When a socket is created the state is defined based on the type of input/output the
user wishes to perform. "Non-blocking" 1/0 implies a process should never be blocked to
await resources. Instead, any call which would block returns prematurely with the error
EWOULDBLOCK (the service request may be partially fulfilled, e.g. a request for more data
than is present).

If a process requested "asynchronous" notification of events related to the socket the
SIGIO signal is posted to the process. An event is a change in the socket'~ state, examples of
such occurances are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked "priviledged" if it was created by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in priviledged portions of
an address space.

6.1.2. Socket data queues

A socket's data queue contains a pointer to the data stored in the queue and other
entries related to the management of the data. The following structure defines a data queue:

struct sockbuf {
short
short
short
short
short
short
struct
struct
short

};

sb_cc;
sb_hiwat;
sb mbcnt;
sb mbmax;
sbj.owat;
sb timeo;
mbuf*sb mb;
proc *sb_sel;
sb_flags;

/* actual chars in buffer *I
/* max actual char count *I
/* chars of mbufs used*/
/* max chars of mbufs to use *I
/* low water mark *I
/* timeout *I
/* the mbuf chain *I
/* process selecting read/write *I
/* flags, see below *I

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as
high and low water marks are used by the protocols in controlling the flow of data. The
socket routines cooperate in implementing the flow control policy by blocking a process when
it requests to send data and the high water mark has been reached, or when it requests to
receive data and less than the low water mark is present (assuming non-blocking 1/0 has not
been specified). "

Networking Implementation Notes 3-37

When a socket is created, the supporting protocol "reserves" space for the send and
receive queues of the socket. The actual storage associated with a socket queue may fluctuate
during a socket's lifetime, but is assumed this reservation will always allow a protocol to
acquire enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing
various portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in
acquiring resources;

#define
#define
#define
#define
#define

SB_LOCK
SB_WANT
SB WAIT
SBSEL
SB_COLL

OxOl
Ox02
Ox04
Ox08
OxlO

/* lock on data queue (so rev only) */
/* someone is waiting to lock *I
/* someone is waiting for data/space *I
/* buffer is selected *I
/* collision selecting *I

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queueing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are con­
sidered distinct. One side is termed active, and generates connection requests. The other side
is called passive and accepts connection requests.

From the passive side, a socket is created with the option SO_ACCEPTCONN specified,
creating two queues of sockets: so_qO for connections in progress and so_q for connections
already made and awaiting user acceptance. As a protocol is preparing incoming connections,
it creates a socket structure queued on sq_qO by calling the routine sonewconn(). When the
connection is established, the socket structure is then transfered to so_q, making it available
for an accept.

If an SO ACCEPTCONN socket is closed with sockets on either so qO or so g, these
sockets are dr~ped. - -

6.2. Protocol layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics,
some of which are used in deciding which socket type(s) they may support.

An entry in the "protocol switch" table exists for each protocol module configured into
the system. It has the following form:

3-38 Networking Implementation Notes

struct protosw {
short pr type;
short PtJamily;
short P!'.....Protocol;
short p~flags;

/* protocol-protocol hooks *I
int (*pr input)();
int (*proutput)O;
int (*p~ctlinput)();
int (*p~tloutput)();

/* user-protocol hook *I
int (*p!-.. usrreq)();

/* utility hooks *I
int (*pr_init)();
int (*p:~_fasttimo)();
int (*p~slowtimo)();
int (*pr_drain)();

};

/* socket type used for *I
/* protocol family *I
/* protocol number *I
/* socket visible attributes *I

/* input to protocol (from below) */
/* output to protocol (from above) *I
/* control input (from below) *I
/* control output (from above) *I

/* user request *I

/* initialization routine *I
/* fast timeout (200ms) *I
/* slow timeout (500ms) */
/* flush any excess space possible *I

A protocol is called through the pr_init entry before any other. Thereafter it is called
every 200 milliseconds through the pr_fasttimo entry and every 500 milliseconds through the
pr slowtimo for timer based actions. The system will call the pr drain entry if it is low on
space and this should throw away any non-critical data. -

Protocols pass data between themselves as chains of mbufs using the pr input and
pr_output routines. Pr input passes data up (towards the user) and pr:_output pas-;'es it down
(towards the network); control information passes up and down on pr:.stlinput and
pr ctloutput. The protocol is responsible for the space occupied by any the arguments to
these entries and must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.

The pr_fiags field is constructed from the following values:

#define PR ATOMIC OxOl /* exchange atomic messages only *I
#define PR ADDR Ox02 /* addresses given with messages *I
#define PR_CONNREQUIRED Ox04 /* connection required by protocol *I
#define PJLWANTRCVD Ox08 /*want PRU RCVD calls*/
#define PR RIGHTS OxlO /*passes capabilities*/ -
Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the
socket routines will never attempt to send data before a connection has been established. If
the PR_W ANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
removed data from the socket's receive queue. This allows the protocol to implement ack­
nowledgement on user receipt, and also update windowing information based on the amount
of space available in the receive queue. The PR_ADDR field indicates any data placed in the
socket's receive queue will be preceded by the address of the sender. The PR ATOMIC flag
specifies each user request to send data must be performed in a single protocol send request;
it is the protocol's responsibility to maintain record boundaries on data to be sent. The
PR RIGHTS flag indicates the protocol supports the passing of capabilities; this is currently
used only the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an
appropriate protocol to support the type of socket being created. The pr type field contains
one of the possible socket types (e.g. SOCJLSTREAM), while the pr;J;-mily field indicates
which protocol fam,ily the protocol belongs to. The purotocol field contains the protocol
number of the protocol, normally a well known value.

Networking Implementation Notes 3-39

6.3. Network-interface layer

Each network-interface configured into a system defines a path through which packets
may be sent and received. Normally a hardware device is associated with this interface,
though there is no requirement for this (for example, all systems have a software "loopback"
interface used for debugging and performance analysis). In addition to manipulating the
hardware device, an interface module is responsible for encapsulation and deencapsulation of
any low level header information required to deliver a message to it's destination. The selec­
tion of which interface to use in delivering packets is a routing decision carried out at a higher
level than the network-interface layer. Each interface normally identifies itself at boot time to
the routing module so that it may be selected for packet delivery.

An interface is defined by the following structure,

struct ifnet {
char
short
short
int
short
short
int
struct
union {

} if ifu;
struct
int
int
int
int
int
int
int
int
int
int
struct

};

*if name· - '
i(._unit;
if_mtu;
if_net;
i(._flags;
i{_timer;
if host[2];
sdckaddr if_addr;

struct
struct

ifqueue iund;
(*if init)();
(*i8>utput) ();
(*iUoctl)();
(*ifJeset)();
(*if_watchdog) ();
ifjpackets;
iUerrors;
if_2packets;
i(_oerrors;
i(sollisions;
ifnet *iLnext;

/* name, e.g. "en" or "lo" *I
/* sub-unit for lower level driver *I
/* maximum transmission unit *I
/* network number of interface *I
/* up/down, broadcast, etc. *I
/* time 'til if_watchdog called *I
/* local net host number *I
/* address of interface *I

sockaddr ifu..J>roadaddr;
sockaddr ifu_dstaddr;

/* output queue *I
/* init routine *I
/* output routine *I
/* ioctl routine *I
/* bus reset routine *I
/* timer routine *I
/* packets received on interface *I
/* input errors on interface *I
/* packets sent on interface *I
/* output errors on interface *I
/* collisions on csma interfaces *I

Each interface has a send queue and routines used for initialization, i[init, and output,
if...Eutput. If the interface resides on a system bus, the routine il.Ieset will be called after a
bus reset has been performed. An interface may also specify a timer routine, if_watchdog,
which should be called every if_Jimer seconds (if non-zero).

The state of an interface and certain characteristics are stored in the iiflags field. The
following values are possible:

#define IFF_UP Oxl , /* interface is up */
#define IFF_BROADCAST Ox2 /* broadcast address valid *I
#define IF~DEBUG Ox4 /*turn on debugging*/
#define IF~ROUTE Ox8 /* routing entry installed *I
#define IFF_POINTOPOINT OxlO /* interface is point-to-point link*/
#define IFF_NOTRAILERS Ox20 /*avoid use of trailers*/
#define IFt_RUNNING Ox40 /* resources allocated*/
#define IFLNOARP Ox80 /* no address resolution protocol *I

If the interface is connected to a network which supports transmission of broadcast packets,

3-40 Networking Implementation Notes

the IF:t._BROADCAST :flag will be set and the if.JJroadaddr field will contain the address to be
used in sending or accepting a broadcast packet. If the interface is associated with a point to
point hardware link (for example, a DEC DMR-11), the IFFJ>OINTOPOINT :flag will be set
and il dstaddr will contain the address of the host on the other side of the connection. These
addre;ses and the local address of the interface, il.g,ddr, are used in filtering incoming packets.
The interface sets IFF2_RUNNING after it has allocated system resources and posted an initial
read on the device it manages. This state bit is used to avoid multiple allocation requests
when an interface's address is changed. The IFE._NOTRAILERS flag indicates the interface
should refrain from using a trailer encapsulation on outgoing packets; trailer protocols are
described in section 14. The IFE..NOARP :flag indicates the interface should not use an
"address resolution protocol" in mapping internetwork addresses to local network addresses.

The information stored in an ifnet structure for point to point communication devices is
not currently used by the system internally. Rather, it is used by the user level routing pro­
cess in determining host network connections and in initially devising routes (refer to chapter
10 for more information).

Various statistics are also stored in the interface structure. These may be viewed by
users using the netstat(l) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIF­
FLAGS ioctls. SIOCSIFADDR is used to initially define each interface's address; SIOGSIF­
FLAGS can be used to mark an interface down and perform site-specific configuration.

6.3.1. UNIBUS interfaces
All hardware related interfaces currently reside on the UNIBUS. Consequently a com­

mon set of utility routines for dealing with the UNIBUS has been developed. Each UNIBUS
interface utilizes a structure of the following form:

struct ifuba {

};

short ifu_uban; /* uba number *I
short if'Lhlen;
struct uba_regs *ifu_uba;

/* local net header length *I
/* uba regs, in vm *I

struct ifrw {
caddr_t
int
int
int
struct

} if'!. r, ifu_ w;

ifrw_addr; /* virt addr of header *I
ifrw_bdp; /* unibus bdp *I
ifrV'l.,info; /* value from ubaalloc *I
ifrw_proto; /* map register prototype *I
pte *ifrV'l.,mr;/* base of map registers *I

struct pte ifu_wmap[IF MAXNUBAMR];/* base pages for output*/
short ifu_xswapd; /* mask of clusters swapped *I
short ifu_flags; /* used during uballoc's *I
struct mbuf *ifu_xtofree; /* pages being dma'd out *I

The if_y,ba structure describes UNIBUS resources held by an interface. IF NUBAMR
map registers are held for datagram data, starting at ifr;_mr. UNIBUS map register if'=.-mr[-1]
maps the local network header ending on a page boundary. UNIBUS data paths are reserved
for read and for write, given by ifr;_bdp. The prototype of the map registers for read and for
write is saved in ifr.proto.

When write transfers are not full pages on page boundaries the data is just copied into
the pages mapped on the UNIBUS and the transfer is started. If a write transfer is of a (1024
byte) page size and on a page boundary, UNIBUS page table entries are swapped to reference
the pages, and then the initial pages are remapped from ifZL.wmap when the transfer com­
pletes.

Networking Implementation Notes 3-41

When read transfers give whole pages of data to be input, page frames are allocated from
a network page list and traded with the pages already containing the data, mapping the allo­
cated pages to replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers,
all use the ifuba structure described above.

iLubainit(ifu, uban, hlen, nmr);
ii..JLbainit allocates resources on UNIBUS adaptor uban and stores the resultant infor­
mation in the ifuba structure pointed to by ifu. It is called only at boot time or after a
UNIBUS reset. Two data paths (buffered or unbuffered, depending on the ifu_fl,ags field)
are allocated, one for reading and one for writing. The nmr parameter indicates the
number of UNIBUS mapping registers required to map a maximal sized packet onto the
UNIBUS, while hlen specifies the size of a local network header, if any, which should be
mapped separately from the data (see the description of trailer protocols in chapter 14).
Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize the
input data path for an initial read. For the output data path, mapping registers and
pages of memory are also allocated and mapped onto the UNIBUS. The pages associ­
ated with the output data path are held in reserve in the event a write requires copying
non-page-aligned data (see if wubaput below). If iLubainit is called with resources
already allocated, they will be used instead of allocating new ones (this normally occurs
after a UNIBUS reset). A 1 is returned when allocation and initialization is successful, 0
otherwise.

m = if_rubaget(ifu, totlen, offO);
if._rubaget pulls read data off an interface. totlen specifies the length of data to be
obtained, not counting the local network header. If of/O is non-zero, it indicates a byte
offset to a trailing local network header which should be copied into a separate mbuf and
prepended to the front of the resultant mbuf chain. When page sized units of data are
present and are page-aligned, the previously mapped data pages are remapped into the
mbufs and swapped with fresh pages; thus avoiding any copying. A 0 return value indi­
cates a failure to allocate resources.

if_wubaput(ifu, m);
iLwubaput maps a chain of mbufs onto a network interface in preparation for output.
The chain includes any local network header, which is copied so that it resides in the
mapped and aligned 1/0 space. Any other mbufs which contained non-page sized data
portions are also copied to the 1/0 space. Pages mapped from a previous output opera­
tion (no longer needed) are unmapped and returned to the network page pool.

3-42 Networking Implementation Notes

7. Socket/protocol interface
The interface between the socket routines and the communication protocols is through

the pr usrreq routine defined in the protocol switch table. The following requests to a proto­
col module are possible:

#define PRU_ATTACH 0 /*attach protocol*/
#define PRU_pETACH 1 /*detach protocol*/
#define PRU_BIND 2 /* bind socket to address *I
#define PRU_LISTEN 3 /* listen for connection *I
#define PRU_CONNECT 4 /* establish connection to peer *I
#define PRU_ACCEPT 5 /* accept connection from peer *I
#define PRU_DISCONNECT 6 /* disconnect from peer *I
#define PRU_SHUTDOWN 7 /* won't send any more data *I
#define PRU_RCVD 8 /* have taken data; more room now *I
#define PRU_SEND 9 /* send this data *I
#define PRU ABORT 10 /*abort (fast DISCONNECT, DETATCH) */
#define PRu-:=_coNTROL 11 /* control operations on protocol *I
#define PRUj3ENSE 12 /* return status into m *I
#define PRU_RCVOOB 13 /* retrieve out of band data *I
#define PRU_SENDOOB 14 /*send out of band data*/
#define PRU_SOCKADDR 15 /* fetch socket's address *I
#define PRU PEERADDR 16 /* fetch peer's address *I
#define PRU-CONNECT2 17 /* connect two sockets *I
/* begin for protocols internal use *I
#define PRU_F ASTTIMO 18
#define PRU_SLOWTIMO 19
#define PRU PROTORCV 20
#define PRU PROTOSEND 21

/* 200ms timeout *I
/* 500ms timeout *I
/* receive from below *I
/* send to below *I

A call on the user request routine is of the form,

error = (*protosw[].pr usrreq)(up, req, m, addr, rights);
int error; struct socket *up; int req; struct mbuf *m, *rights; caddLt addr;

The mbuf chain, m, and the address are optional parameters. The rights parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the sendmsg and
recvmsg system calls). The protocol is responsible for disposal of both mbuf chains. A non­
zero return value gives a UNIX error number which should be passed to higher level software.
The following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socket system call) the protocol module
is called with this request. It is the responsibility of the protocol module to allocate any
resources necessary. The "attach" request will always precede any of the other requests,
and should not occur more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted.
The protocol module may deallocate any resources assigned to the socket.

PRU..J3IND
When a socket is initially created it has no address bound to it. This request indicates
an address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.

PRU LISTEN
The "listen" request indicates the user wishes to listen for incoming connection requests

on the associated socket. The protocol module should perform any state changes needed
to carry out this request (if possible). A "listen" request always precedes a request to

Networking Implementation Notes 3-43

accept a connection.

PRU_ CONNECT
The "connect" request indicates the user wants to a establish an association. The addr
parameter supplied describes the peer to be connected to. The effect of a connect
request may vary depending on the protocol. Virtual circuit protocols, such as TCP
[Postel80b], use this request to initiate establishment of a TCP connection. Datagram
protocols, such as UDP [Postel79], simply record the peer's address in a private data
structure and use it to tag all outgoing packets. There are no restrictions on how many
times a connect request may be used after an attach. If a protocol supports the notion
of multi-casting, it is possible to use multiple connects to establish a multi-cast group.
Alternatively, an association may be broken by a PR{L_DISCONNECT request, and a
new association created with a subsequent connect request; all without destroying and
creating a new socket.

PRl.LACCEPT
Following a successful PRU_LISTEN request and the arrival of one or more connections,
this request is made to indicate the user has accepted the first connection on the queue
of pending connections. The protocol module should fill in the supplied address buffer
with the address of the connected party.

PRU_DISCONNECT
Eliminate an association created with a PRQCONNECT request.

PRtL_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parame­
ter indicates the direction of the shutdown, as encoded in the soshutdown system call).
The protocol may, at its discretion, deallocate any data structures related to the shut­
down.

PRU_RCVD
This request is made only if the protocol entry in the protocol switch table includes the
PR_W ANTRCVD flag. When a user removes data from the receive queue this request
will be sent to the protocol module. It may be used to trigger acknowledgements, refresh
windowing information, initiate data transfer, etc.

PRU_SEND
Each user request to send data is translated into one or more PRQ_SEND requests (a
protocol may indicate a single user send request must be translated into a single
PRU SEND request by specifying the PR ATOMIC flag in its protocol description).
The data to be sent is presented to the protocol as a list of mbufs and an address is,
optionally, supplied in the addr parameter. The protocol is responsible for preserving
the data in the socket's send queue if it is not able to send it immediately, or if it may
need it at some later time (e.g. for retransmission).

PRU_ ABORT
This request indicates an abnormal termination of service. The protocol should delete
any existing association(s).

PRU_CONTROL
The "control" request is generated when a user performs a UNIX ioctl system call on a
socket (and the ioctl is not intercepted by the socket routines). It allows protocol­
specific operations to be provided outside the scope of the common socket interface.
The addr parameter contains a pointer to a static kernel data area where relevant infor­
mation may be obtained or returned. Them parameter contains the actual ioctl request
code (note the non-standard calling convention).

PRU~ENSE
The "sense" request is generated when the user makes an {stat system call on a socket;
it requests status of the associated socket. There currently is no common format for the
status returned. Information which might be returned includes per-connection statistics,

3-44 Networking Implementation Notes

protocol state, resources. currently in use by the connection, the optimal transfer size for
the connection (based on windowing information and maximum packet size). The addr
parameter contains a pointer to a static kernel data area where the status buffer should
be placed.

PRURCVOOB
-Any "out-of-band" data presently available is to be returned. An mbuf.is passed in to

the protocol module and the protocol should either place data in the mbuf or attach new
mbufs to the one supplied if there is insufficient space in the single mbuf.

PRU_SENDOOB
Like PRU SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The
address format (protocol specific) is returned in the addr parameter.

PRU_PEERADDR
The address of the peer to which the socket is connected is returned. The socket must
be in a SS ISCONNECTED state for this request to be made to the protocol. The
address format (protocol specific) is returned in the addr parameter.

PRQ_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection
between the two without binding any addresses, if possible. This call is used in imple­
menting the system call.

The following requests are used internally by the protocol modules and are never gen­
erated by the socket routines. In certain instances, they are handed to the pr_usrreq routine
solely for convenience in tracing a protocol's operation (e.g. PRU SLOWTIMO).

PRU_FASTTIMO
A "fast timeout" has occured. This request is made when a timeout occurs in the
protocol's pr._fastimo routine. The addr parameter indicates which timer expired.

PRU SLOWTIMO
- A "slow timeout" has occured. This request is made when a timeout occurs in the

protocol's pr...slowtimo routine. The addr parameter indicates which timer expired.

PRU PROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests

reception of data destined for the protocol and not the user. No protocols currently use
this facility.

PRU_PROTOSEND
This request allows a protocol to send data destined for another protocol module, not a
user. The details of how data is marked "addressed to protocol" instead of "addressed
to user" are left to the protocol modules. No protocols currently use this facility.

Networking Implementation Notes 3-45

8. Protocol/protocol interface
The interface between protocol modules is through the pr_usrreq, pr:_input, pc_output,

pr,_ctlinput, and pr;.stloutput routines. The calling conventions for all but the pc..,usrreq rou­
tine are expected to be specific to the protocol modules and are not guaranteed to be con­
sistent across protocol families. We will examine the conventions used for some of the Inter­
net protocols in this section as an example.

8.1. pr output

The Internet protocol UDP uses the convention,

error = udp_output(inp, m);
int error; struct inpcb *inp; struct mbuf *m;

where the inp, "internet protocol control block", passed between modules conveys per connec­
tion state information, and the mbuf chain contains the data to be sent. UDP performs con­
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on
to the IP module:

error = ip_2utput(m, opt, ro, allowbroadcast);
int error; struct mbuf *m, *opt; struct route *ro; int allowbroadcast;

The call to IP's output routine is more complicated than that for UDP, as befits the
additional work the IP module must do. The m parameter is the data to be sent, and the opt
parameter is an optional list of IP options which should be placed in the IP packet header.
Thero parameter is is used in making routing decisions (and passing them back to the caller).
The final parameter, allowbroadcast is a flag indicating if the user is allowed to transmit a
broadcast packet. This may be inconsequential if the underlying hardware does not support
the notion of broadcasting.

All output routines return 0 on success and a UNIX error number if a failure occured
which could be immediately detected (no buffer space available, no route to destination, etc.).

8.2. pi:.input

Both UDP and TCP use the following calling convention,

(void) (*protosw[].pr input)(m);
struct mbuf *m;

Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a VAX software interrupt level routine, and so is not called with
any parameters. It instead communicates with network interfaces through a queue, ipintrq,
which is identical in structure to the queues used by the network interfaces for storing packets
awaiting transmission.

8.3. pi:_ctlinput

This routine is used to convey "control" information to a protocol module (i.e. informa­
tion which might be passed to the user, but is not data). This routine, and the pr;_ftloutput
routine, have not been extensively developed, and thus suffer from a "clumsiness" that can
only be improved as more demands are placed on it.

The common calling convention for this routine is,

(void) (*protosw[].pr_ctlinput)(req, info);
int req; caddtj; info;

The req parameter is one of the following,

3-46 Networking Implementation Notes

#define PRC_IFDOWN O
#define PRC_ROUTEDEAD 1
#define PRC_QUENCH 4
#define PRC.JIOSTDEAD 6
#define PRC_HOSTUNREACH 7
#define PRC UNREACH NET 8
#define PRC:UNREACH HOST 9
#define PRC UNREACH PROTOCOL 10
#define PRC_UNREACH PORT 11
#define PRC MSGSIZE 12
#define PRCREDIRECT NET 13
#define PRC REDIRECT HOST 14
#define PRC_TIMXCEED INTRANS 17
#define PRCJ'IMXCEED REASS 18
#define PRC.J>ARAMPROB 19

/* interface transition *I
/* select new route if possible *I
/* some said to slow down *I
/* normally from IMP *I
/*ditto*/
/*no route to network*/
/* no route to host *I
/* dst says bad protocol *I
/*bad port# */
/* message size forced drop *I
/* net routing redirect *I
/* host routing redirect *I
/* packet lifetime expired in transit *I
/* lifetime expired on reass q *I
/* header incorrect *I

while the info parameter is a "catchall" value which is request dependent. Many of the
requests have obviously been derived from ICMP (the Internet Control Message Protocol),
and from error messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables
exist to convert control requests to UNIX error codes which are delivered to a user.

8.4. pr_ctloutput

This routine is not currently used by any protocol modules.

Networking lmple·mentation Notes 3-47

9. Protocol/network-interface interface
The lowest layer in the set of protocols which comprise a protocol family must interface

itself to one or more network interfaces in order to transmit and receive packets. It is
assumed that any routing decisions have been made before handing a packet to a network
interface, in fact this is absolutely necessary in order to locate any interface at all (unless, of
course, one uses a single "hardwired" interface). There are two cases to be concerned with,
transmission of a packet, and receipt of a packet; each will be considered separately.

9.1. Packet transmission

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it transmits a
fully formatted packet with the following call,

error = (*ifp->iU>utput)(ifp, m, dst)
int error; struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dst address, or
returns an error indication (a UNIX error number). In reality transmission may not be
immediate, or successful; normally the output routine simply queues the packet on its send
queue and primes an interrupt driven routine to actually transmit the packet. For unreliable
mediums, such as the Ethernet, "successful" transmission simply means the packet has been
placed on the cable without a collision. On the other hand, an 1822 interface guarantees
proper delivery or an error indication for each message transmitted. The model employed in
the networking system attaches no promises of delivery to the packets handed to a network
interface, and thus corresponds more closely to the Ethernet. Errors returned by the output
routine are normally trivial in nature (no buffer space, address format not handled, etc.).

9.2. Packet reception

Each protocol family must have one or more "lowest level" protocols. These protocols
deal with internetwork addressing and are responsible for the delivery of incoming packets to
the proper protocol processing modules. In the PUP model [Boggs78] these protocols are
termed Level 1 protocols, in the ISO model, network layer protocols. In our system each such
protocol module has an input packet queue assigned to it. Incoming packets received by a
network interface are queued up for the protocol module and a VAX software interrupt is
posted to initiate processing.

Three macros are available for queueing and dequeueing packets,

n:__ENQUEUE(ifq, m)
This places the packet mat the tail of the queue ifq.

I~ _ _DEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue ifq in m. A zero value will be
returned in m if the queue is empty.

IF PREPEND(ifq, m)
- This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple form of congestion con­
trol. The macro IF_QFULL(ifq) returns 1 if the queue is filled, in which case the macro
IF:DROP(ifq) should be used to bump a count of the number of packets dropped and the
offending packet dropped. For example, the following code fragment is commonly found in a
network interface's input routine,

if (IF QFULL(inq)) {
IF DROP(inq);

mfreem(m);
} else

IF_ENQUEUE(inq, m);

3-48 Networking Implementation Notes

10. Gateways and routing issues
The system has been designed with the expectation that it will be used in an internet­

work environment. The "canonical" environment was envisioned to be a collection of local
area networks connected at one or more points through hosts with multiple network interfaces
(one on each local area network), and possibly a connection to a long haul network (for exam­
ple, the ARPANET). In such an environment, issues of gatewaying and packet routing
become very important. Certain of these issues, such as congestion control, have been handled
in a simplistic manner or specifically not addressed. Instead, where possible, the network sys­
tem attempts to provide simple mechanisms upon which more involved policies may be imple­
mented. As some of these problems become better understood, the solutions developed will be
incorporated into the system.

This section will describe the facilities provided for packet routing. The simplistic
mechanisms provided for congestion control are described in chapter 12.

10.1. Routing tables

The network system maintains a set of routing tables for selecting a network interface to
use in delivering a packet to its destination. These tables are of the form:

struct rtentry {
ujong
struct
struct
short
short
t.Llong
struct

};

rLhash; /* hash key for lookups *I
sockaddr rt_dst; /* destination net or host *I
sockaddr rt.gateway;/* forwarding agent *I
rt_ flags; /* see below *I
rt_refcnt; /* no. of references to structure *I
rt_ use; /* packets sent using route *I
ifnet *rt ifp; /* interface to give packet to *I

The routing information is organized in two separate tables, one for routes to a host and
one for routes to a network. The distinction between hosts and networks is necessary so that
a single mechanism may be used for both broadcast and multi-drop type networks, and also
for networks built from point-to-point links (e.g DECnet [DECSO]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calcu­
lated by routines defined for each address family; one based on the destination being a host,
and one assuming the target is the network portion of the address. Each hash value is used to
locate a hash chain to search (by taking the value modulo the hash table size) and the entire
32-bit value is then used as a key in scanning the list of routes. Lookups are applied first to
the routing table for hosts, then to the routing table for networks. If both lookups fail, a final
lookup is made for a "wildcard" route (by convention, network 0). By doing this, routes to a
specific host on a network may be present as well as routes to the network. This also allows a
"fall back" network route to be defined to an "smart" gateway which may then perform more
intelligent routing.

Each routing table entry contains a destination (who's at the other end of the route), a
gateway to send the packet to, and various flags which indicate the route's status and type
(host or network). A count of the number of packets sent using the route is kept for use in
deciding between multiple routes to the same destination (see below), and a count of "held
references" to the dynamically allocated structure is maintained to insure memory reclamation
occurs only when the route is not in use. Finally a pointer to the a network interface is kept;
packets sent using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as "direct" or "indirect".
The host/network distinction determines how to compare the rt dst field during lookup. If
the route is to a network, only a packet's destination network is oompared to the rt dst entry
stored in the table. If the route is to a host, the addresses must match bit for bit.

Networking Implementation Notes 3-49

The distinction between "direct" and "indirect" routes indicates whether the destination
is directly connected to the source. This is needed when performing local network encapsula­
tion. If a packet is destined for a peer at a host or network which is not directly connected to
the source, the internetwork packet header will indicate the address of the eventual destina­
tion, while the local network header will indicate the address of the intervening gateway.
Should the destination be directly connected, these addresses are likely to be identical, or a
mapping between the two exists. The RTF_GATEWAY flag indicates the route is to an
"indirect" gateway agent and the local network header should be filled in from the rLgateway
field instead of rt_clst, or from the internetwork destination address.

It is assumed multiple routes to the same destination will not be present unless they are
deemed equal in cost (the current routing policy process never installs multiple routes to the
same destination). However, should multiple routes to the same destination exist, a request
for a route will return the "least used" route based on the total number of packets sent along
this route. This can result in a "ping-pong" effect (alternate packets taking alternate routes),
unless protocols "hold onto" routes until they no longer find them useful; either because the
destination has changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table
entries as well as dynamically create new routing table entries. On hosts where exhaustive
routing information is too expensive to maintain (e.g. work stations), the combination of wild­
card routing entries and routing redirect messages can be used to provide a simple routing
management scheme without the use of a higher level policy process. Statistics are kept by the
routing table routines on the use of routing redirect messages and their affect on the routing
tables. These statistics may be viewed using

Status information other than routing redirect control messages may be used in the
future, but at present they are ignored. Likewise, more intelligent "metrics" may be used to
describe routes in the future, possibly based on bandwidth and monetary costs.

10.2. Routing table interface

A protocol accesses the routing tables through three routines, one to allocate a route, one
to free a route, and one to process a routing redirect control message. The routine rtalloc per­
forms route allocation; it is called with a pointer to the following structure,

struct route {
struct
struct

};

rtentry *ro...rt;
sockaddr ro_dst;

The route returned is assumed "held" by the caller until disposed of with an rtfree call. Pro­
tocols which implement virtual circuits, such as TCP, hold onto routes for the duration of the
circuit's lifetime, while connection-less protocols, such as UDP, currently allocate and free
routes on each transmission.

The routine rtredirect is called to process a routing redirect control message. It is called
with a destination address and the new gateway to that destination. If a non-wildcard route
exists to the destination, the gateway entry in the route is modified to point at the new gate­
way supplied. Otherwise, a new routing table entry is inserted reflecting the information sup­
plied. Routes to interfaces and routes to gateways which are not directly accesible from the
host are ignored.

10.3. User level routing policies

Routing policies implemented in user processes manipulate the kernel routing tables
through two ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete rout­
ing entries, respectively; the tables are read through the /dev/kmem device. The decision to
place policy decisions in a user process implies routing table updates may lag a bit behind the
identification of new routes, or the failure of existing routes, but this period of instability is

3-50 Networking Implementation Notes

normally very small with proper implementation of the routing process. Advisory information,
such as ICMP error messages and IMP diagnostic messages, may be read from raw sockets
(described in the next section).

One routing policy process has already been implemented. The system standard "rout­
ing daemon" uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to main­
tain up to date routing tables in our local environment. Interaction with other existing rout­
ing protocols, such as the Internet GGP (Gateway-Gateway Protocol), may be accomplished
using a similar process.

Networking Implementation Notes 3-51

11. Raw sockets
A raw socket is a mechanism which allows users direct access to a lower level protocol.

Raw sockets are intended for knowledgeable processes which wish to take advantage of some
protocol feature not directly accessible through the normal interface, or for the development
of new protocols built atop existing lower level protocols. For example, a new version of TCP
might be developed at the user level by utilizing a raw IP socket for delivery of packets. The
raw IP socket interface attempts to provide an identical interface to the one a protocol would
have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, and (possibly)
augmented by protocol-specific processing routines. This section will describe the core of the
raw socket interface. ·

11.1. Control blocks
Every raw socket has a protocol control block of the following form,

struct rawcb {
struct
struct
struct
struct
struct
caddr t
short

};

rawcb *rcb_next;
rawcb *rcb_prev;
socket *rcb_socket;
sockaddr rcbJaddr;
sockaddr rcbjaddr;
rcb_pcb;
rcbjlags;

/* doubly linked list *I

/* back pointer to socket *I
/* destination address *I
/* socket's address *I
/* protocol specific stuff *I

All the control blocks are kept on a doubly linked list for performing lookups during packet
dispatch. Associations may be recorded in the control block and used by the output routine
in preparing packets for transmission. The addresses are also used to filter packets on input;
this will be described in more detail shortly. If any protocol specific information is required,
it may be attached to the control block using the rcfuJcb field.

A raw socket interface is datagram oriented. That is, each send or receive on the socket
requires a destination address. This address may be supplied by the user or stored in the con­
trol block and automatically installed in the outgoing packet by the output routine. Since it is
not possible to determine whether an address is present or not in the control block, two flags,
RAW_LADDR and RAWJADDR, indicate if a local and foreign address are present. Another
flag, RA W_DONTROUTE, indicates if routing should be performed on outgoing packets. If it
is, a route is expected to be allocated for each "new" destination address. That is, the first
time a packet is transmitted a route is determined, and thereafter each time the destination
address stored in rc1'.route differs from rcQ.jaddr, or rcb...!oute.rqJt is zero, the old route is
discarded and a new one allocated.

11.2. Input processing
Input packets are "assigned" to raw sockets based on a simple pattern matching scheme.

Each network interface or protocol gives packets to the raw input routine with the call:

raw input(m, proto, src, dst)
struct mbuf *m; struct sockproto *proto, struct sockaddr *src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw header {
struct sockproto raw_proto;
struct sockaddr raw_dst;
struct sockaddr rawJrc;

};

3-52 Networking Implementation Notes

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from
this queue are copied into any raw sockets that match the header according to the following
rules,

1) The protocol family of the socket and header agree.

2) If the protocol number in the socket is non-zero, then it agrees with that found in the
packet header.

3) If a local address is defined for the socket, the address format of the local address is the
same as the destination address's and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket's foreign address and the packet's source
address.

A basic assumption is that addresses present in the control block and packet header (as con­
structed by the network interface and any raw input protocol module) are in a canonical form
which may be "block compared".

11.3. Output processing
On output the raw pr_usrreq routine passes the packet and raw control block to the raw

protocol output routine for any processing required before it is delivered to the appropriate
network interface. The output routine is normally the only code required to implement a raw
socket interface.

Networking Implementation Notes 3-53

12. Buffering and congestion control
One of the major factors in the performance of a protocol is the buffering policy used.

Lack of a proper buffering policy can force packets to be dropped, cause falsified windowing
information to be emitted by protocols, fragment host memory, degrade the overall host per­
formance, etc. Due to problems such as these, most systems allocate a fixed pool of memory
to the networking system and impose a policy optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At boot
time a fixed amount of memory is allocated by the networking system. At later times more
system memory may be requested as the need arises, but at no time is memory ever returned
to the system. It is possible to garbage collect memory from the network, but difficult. In
order to perform this garbage collection properly, some portion of the network will have to be
"turned off" as data structures are updated. The interval over which this occurs must kept
small compared to the average inter-packet arrival time, or too much traffic may be lost,
impacting other hosts on the network, as well as increasing load on the interconnecting medi­
ums. In our environment we have not experienced a need for such compaction, and thus have
left the problem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will
be given of the allocation mechanisms, and policies used by the protocols in performing con­
nection level buffering.

12.1. Memory management

The basic memory allocation routines place no restrictions on the amount of space which
may be allocated. Any request made is filled until the system memory allocator starts refus­
ing to allocate additional memory. When the current quota of memory is insufficient to
satisfy an mbuf allocation request, the allocator requests enough new pages from the system to
satisfy the current request only. All memory owned by the network is described by a private
page table used in remapping pages to be logically contiguous as the need arises. In addition,
an array of reference counts parallels the page table and is used when multiple copies of a
page are present.

Mbufs are 128 byte structures, 8 fitting in a lKbyte page of memory. When data is
placed in mbufs, if possible, it is copied or remapped into logically contiguous pages of
memory from the network page pool. Data smaller than the size of a page is copied into one
or more 112 byte mbuf data areas.

12.2. Protocol buft'ering policies

Protocols reserve fixed amounts of buffering for send and receive queues at socket crea­
tion time. These amounts define the high and low water marks used by the socket routines in
deciding when to block and unblock a process. The reservation of space does not currently
result in any action by the memory management routines, though it is clear if one imposed an
upper bound on the total amount of physical memory allocated to the network, reserving
memory would become important.

Protocols which provide connection level flow control do this based on the amount of
space in the associated socket queues. That is, send windows are calculated based on the
amount of free space in the socket's receive queue, while receive windows are adjusted based
on the amount of data awaiting transmission in the send queue. Care has been taken to avoid
the "silly window syndrome" described in [Clark82] at both the sending and receiving ends.

12.3. Queue limiting

Incoming packets from the network are always received unless memory allocation fails.
However, each Level 1 protocol input queue has an upper bound on the queue's length, and
any packets exceeding that bound are discarded. It is possible for a host to be overwhelmed
by excessive network traffic (for instance a host acting as a gateway from a high bandwidth

3-54 Networking Implementation Notes

network to a low bandwidth network). As a "defensive" mechanism the queue limits may be
adjusted to throttle network traffic load on a host. Consider a host willing to devote some
percentage of its machine to handling network traffic. If the cost of handling an incoming
packet can be calculated so that an acceptable "packet handling rate" can be determined,
then input queue lengths may be dynamically adjusted based on a host's network load and the
number of packets awaiting processing. Obviously, discarding packets is not a satisfactory
solution to a problem such as this (simply dropping packets is likely to increase the load on a
network); the queue lengths were incorporated mainly as a safeguard mechanism.

12.4. Packet forwarding

When packets can not be forwarded because of memory limitations, the system generates
a "source quench" message. In addition, any other problems encountered during packet for­
warding are also reflected back to the sender in the form of ICMP packets. This helps hosts
avoid unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early
stage of network development, broadcast packets were forwarded and a "routing loop"
resulted in network saturation and every host on the network crashing.

Networking Implementation Notes 3-55

13. Out of band data
Out of band data is a facility peculiar to the stream socket abstraction defined. Little

agreement appears to exist as to what its semantics should be. TCP defines the notion of
"urgent data" as in-line, while the NBS protocols [Burruss81] and numerous others provide a
fully independent logical transmission channel along which out of band data is to be sent. In
addition, the amount of the data which may be sent as an out of band message varies from
protocol to protocol; everything from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable
common denominator (at least reasonable in our minds); clearly this is subject to debate. Out
of band data is expected to be transmitted out of the normal sequencing and flow control con­
straints of the data stream. A minimum of 1 byte of out of band data and one outstanding
out of band message are expected to be supported by the protocol supporting a stream socket.
It is a protocols perogative to support larger sized messages, or more than one outstanding out
of band message at a time.

Out of band data is maintained by the protocol and usually not stored in the socket's
send queue. The PRU_SENDOOB and PRU.-.RCVOOB requests to the pc_usrreq routine are
used in sending and receiving data.

3-56 Networking Implementation Notes

14. Trailer protocols
Core to core copies can be expensive. Consequently, a great deal of effort was spent in

minimizing such operations. The VAX architecture provides virtual memory hardware organ­
ized in page units. To cut down on copy operations, data is kept in page sized units on page­
aligned boundaries whenever possible. This allows data to be moved in memory simply by
remapping the page instead of copying. The mbuf and network interface routines perform
page table manipulations where needed, hiding the complexities of the VAX virtual memory
hardware from higher level code.

Data enters the system in two ways: from the user, or from the network (hardware inter­
face). When data is copied from the user's address space into the system it is deposited in
pages (if sufficient data is present to fill an entire page). This encourages the user to transmit
information in messages which are a multiple of the system page size.

Unfortunately, performing a similar operation when taking data from the network is very
difficult. Consider the format of an incoming packet. A packet usually contains a local net­
work header followed by one or more headers used by the high level protocols. Finally, the
data, if any, follows these headers. Since the header information may be variable length,
DMA'ing the eventual data for the user into a page aligned area of memory is impossible
without a priori knowledge of the format (e.g. supporting only a single protocol header for­
mat).

To allow variable length header information to be present and still ensure page align­
ment of data, a special local network encapsulation may be used. This encapsulation, termed
a trailer protocol, places the variable length header information after the data. A fixed size
local network header is then prepended to the resultant packet. The local network header con­
tains the size of the data portion, and a new trailer protocol header, inserted before the vari­
able length information, contains the size of the variable length header information. The fol­
lowing trailer protocol header is used to store information regarding the variable length proto­
col header:

struct {
short protocol; /* original protocol no. *I
short length; /* length of trailer *I

};

The processing of the trailer protocol is very simple. On output, the local network
header indicates a trailer encapsulation is being used. The protocol identifier also includes an
indication of the number of data pages present (before the trailer protocol header). The
trailer protocol header is initialized to contain the actual protocol and variable length header
size, and appended to the data along with the variable length header information.

On input, the interface routines identify the trailer encapsulation by the protocol type
stored in the local network header, then calculate the number of pages of data to find the
beginning of the trailer. The trailing information is copied into a separate mbuf and linked to
the front of the resultant packet.

Clearly, trailer protocols require cooperation between source and destination. In addi­
tion, they are normally cost effective only when sizable packets are used. The current scheme
works because the local network encapsulation header is a fixed size, allowing DMA operations
to be performed at a known offset from the first data page being received. Should the local
network header be variable length this scheme fails.

Statistics collected indicate as much as 200Kb/s can be gained by using a trailer protocol
with lKbyte packets. The average size of the variable length header was 40 bytes (the size of
a minimal TCP/IP packet header). If hardware supports larger sized packets, even greater
gains may be realized.

Networking Implementation Notes 3-57

Acknowledgements
The internal structure of the system is patterned after the Xerox PUP architecture

[Boggs79], while in certain places the Internet protocol family has had a great deal of
influence in the design. The use of software interrupts for process invocation is based on simi­
lar facilities found in the VMS operating system. Many of the ideas related to protocol modu­
larity, memory management, and network interfaces are based on Rob Gurwitz's TCP/IP
implementation for the 4.lBSD version of UNIX on the VAX [Gurwitz81]. Greg Chesson
explained his use of trailer encapsulations in Datakit, instigating their use in our system.

References

[Boggs79]

[BBN78]

[Cerf78]

[Clark82]

[DEC80]

[Gurwitz81]

[IS081]

[Joy82a]

[Postel79]

[Postel80a]

[Postel80b]

[Xerox81]

[Zimmermann80]

Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An
Internetwork Architecture. Report CSL-79-10. XEROX Palo Alto
Research Center, July 1979.

Bolt Beranek and Newman; Specification for the Interconnection of
Host and IMP. BBN Technical Report 1822. May 1978.

Cerf, V. G.; The Catenet Model for Internetworking. Internet Working
Group, IEN 48. July 1978.

Clark, D. D.; Window and Acknowledgement Strategy in TCP. Internet
Working Group, IEN Draft Clark-2. March 1982.

Digital Equipment Corporation; DECnet DIGITAL Network Architec­
ture - General Description. Order No. AA-K179A-TK. October 1980.

Gurwitz, R. F.; VAX-UNIX Networking Support Project - Implemen­
tation Description. Internetwork Working Group, IEN 168. January
1981.

International Organization for Standardization. ISO Open Systems
Interconnection - Basic Reference Model. ISO/TC 97/SC 16 N 719.
August 1981.

Joy, W.; Cooper, E.; Fabry, R.; Leffler, S.; and McKusick, M.; 4.2BSD
System Manual. Computer Systems Research Group, Technical Report
5. University of California, Berkeley. Draft of September 1, 1982.

Postel, J., ed. DOD Standard User Datagram Protocol. Internet Work­
ing Group, IEN 88. May 1979.

Postel, J., ed. DOD Standard Internet Protocol. Internet Working
Group, IEN 128. January 1980.

Postel, J., ed. DOD Standard Transmission Control Protocol. Internet
Working Group, IEN 129. January 1980.

Xerox Corporation. Internet Transport Protocols. Xerox System
Integration Standard 028112. December 1981.

Zimmermann, H. OSI Reference Model - The ISO Model of Architec­
ture for Open Systems Interconnection. IEEE Transactions on Com­
munications. Com-28(4); 425-432. April 1980.

Sendmail 3-59

SENDMAIL - An Internetwork Mail Router

Eric Allman t
Britton-Lee, Inc.

1919 Addison Street, Suite 105.
Berkeley, California 94704.

ABSTRACT

Routing mail through a heterogenous internet presents many new problems. Among
the worst of these is that of address mapping. Historically, this has been handled on
an ad hoc basis. However, this approach has become unmanageable as internets
grow.

Sendmail acts a unified "post office" to which all mail can be submitted. Address in­
terpretation is controlled by a production system, which can parse both domain-based
addressing and old-style ad hoc addresses. The production system is powerful
enough to rewrite addresses in the message header to conform to the standards of a
number of common target networks, including old (NCP/RFC733) Arpanet, new
(TCP/RFC822) Arpanet, UUCP, and Phonenet. Sendmail also implements an SMTP
server, message queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring aliasing and
forwarding, automatic routing to network gateways, and flexible configuration.

In a simple network, each node has an address, and resources can be identified with a
host-resource pair; in particular, the mail system can refer to users using a host-username
pair. Host names and numbers have to be administered by a central authority, but usernames
can be assigned locally to each host.

In an internet, multiple networks with different characterstics and managements must
communicate. In particular, the syntax and semantics of resource identification change. Cer­
tain special cases can be handled trivially by ad hoc techniques, such as providing network
names that appear local to hosts on other networks, as with the Ethernet at Xerox PARC.
However, the general case is extremely complex. For example, some networks require point­
to-point routing, which simplifies the database update problem since only adjacent hosts must
be entered into the system tables, while others use end-to-end addressing. Some networks use
a left-associative syntax and others use a right-associative syntax, causing ambiguity in mixed
addresses.

Internet standards seek to eliminate these problems. Initially, these proposed expanding
the address pairs to address triples, consisting of {network, host, resource} triples. Network
numbers must be universally agreed upon, and hosts can be assigned locally on each network.
The user-level presentation was quickly expanded to address domains, comprised of a local
resource identification and a hierarchical domain specification with a common static root. The
domain technique separates the issue of physical versus logical addressing. For example, an
address of the form "eric@a.cc.berkeley.arpa" describes only the logical organization of the

tA considerable part of this work was done while under the employ of the INGRES Project at the University of
California at Berkeley.

3-60 Sendmail

address space.

Sendmail is intended to help bridge the gap between the totally ad hoc world of net­
works that know nothing of each other and the clean, tightly-coupled world of unique network
numbers. It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics
specified by the system administrator, as well as domain-based addressing. It helps guide the
conversion of message formats between disparate networks. In short, sendmail is designed to
assist a graceful transition to consistent internetwork addressing schemes.

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the
basic functions of the system. In section 3, details of usage are discussed. Section 4 compares
sendmail to other internet mail routers, and an evaluation of sendmail is given in section 5,
including future plans.

1. DESIGN GOALS
- Design goals fOr- sendmail include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver­
sion 7 mail [UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and
hopefully UUCP mail [Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Pos­
tel77] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or
at least brought to the attention of a human for correct disposal; no message should
ever be completely lost. This goal was considered essential because of the emphasis
on mail in our environment. It has turned out to be one of the hardest goals to
satisfy, especially in the face of the many anomalous message formats produced by
various ARP ANET sites. For example, certain sites generate improperly formated
addresses, occasionally causing error-message loops. Some hosts use blanks in names,
causing problems with UNIX mail programs that assume that an address is one word.
The semantics of some fields are interpreted slightly differently by different sites. In
summary, the obscure features of the ARPANET mail protocol really are used and
are difficult to support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal
derives as much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a
single network type (such as with multiple UUCP or Ether nets [Metcalfe76]). This
goal requires consideration of the contents of an address as well as its syntax in order
to determine which gateway to use. For example, the ARP ANET is bringing up the
TCP protocol to replace the old NCP protocol. No host at Berkeley runs both TCP
and NCP, so it is necessary to look at the ARPANET host name to determine
whether to route mail to an NCP gateway or a TCP gateway.

(5) Configuration should not be compiled into the code. A single compiled program
should be able to run as is at any site (barring such basic changes as the CPU type or
the operating system). We have found this seemingly unimportant goal to be critical
in real life. Besides the simple problems that occur when any program gets recom­
piled in a different environment, many sites like to "fiddle" with anything that they
will be recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specify their own forwarding, without modifying the system alias file.

(7) Each user should be able to specify which mailer to execute to process mail being
delivered for him. This feature allows users who are using specialized mailers that
use a different format to build their environment without changing the system, and

Sendmail 3-61

facilitates specialized functions (such as returning an "I am on vacation" message).

(8) Network traffic should be minimized by batching addresses to a single host where
possible, without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with
a mail generating and sending program. When the mail is created, the generator calls
sendmail, which routes the message to the correct mailer(s). Since some of the senders
may be network servers and some of the mailers may be network clients, sendmail may be
used as an internet mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather,
it collects a message generated by a user interface program (UIP) such as Berkeley
Mail, MS [Crocker77b], or MH [Borden79], edits the message as required by the desti­
nation network, and calls appropriate mailers to do mail delivery or queueing for net-
work transmission1• This discipline allows the insertion of new mailers at minimum
cost. In this sense sendmail resembles the Message Processing Module (MPM) of
[Postel79b].

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in
receiving and in sending mail. These are using the conventional UNIX argument

s.ender 1 sender 2 sender 3

l J

send mail

l 1
mailer 1 mailer 2 mailer 3

Figure 1 - Sendmail System Structure.

1except when mailing to a file, when sendmail does the delivery directly.

3-62 Sendmail

vector/return status, speaking SMTP over a pair of UNIX pipes, and speaking SMTP
over an interprocess(or) channel.

2.2.1. Argument vector/exit status

This technique is the standard UNIX method for communicating with the pro­
cess. A list of recipients is sent in the argument vector, and the message body is
sent on the standard input. Anything that the mailer prints is simply collected and
sent back to the sender if there were any problems. The exit status from the mailer
is collected after the message is sent, and a diagnostic is printed if appropriate.

2.2.2. SMTP over pipes

The SMTP protocol [Postel82] can be used to run an interactive lock-step
interface with the mailer. A subprocess is still created, but no recipient addresses
are passed to the mailer via the argument list. Instead, they are passed one at a
time in commands sent to the processes standard input. Anything appearing on the
standard output must be a reply code in a special format.

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a
4.2BSD IPC channel [UNIX83]. This method is exceptionally flexible in that the
mailer need not reside on the same machine. It is normally used to connect to a
sendmail process on another machine.

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one
of the three methods described above. Sendmail operates in two distinct phases. In
the first phase, it collects and stores the message. In the second phase, message
delivery occurs. · If there were errors during processing during the second phase, send­
mail creates and returns a new message describing the error and/or returns an status
code telling what went wrong.

2.3.1. Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the argu­
ments are first scanned and option specifications are processed. Recipient addresses
are then collected, either from the command line or from the SMTP RCPT com­
mand, and a list of recipients is created. Aliases are expanded at this step, "including
mailing lists. As much validation as possible of the addresses is done at this step:
syntax is checked, and local addresses are verified, but detailed checking of host
names and addresses is deferred until delivery. Forwarding is also performed as the
local addresses are verified.

Sendmail appends each address to the recipient list after parsing. When a
name is aliased or forwarded, the old name is retained in the list, and a flag is set
that tells the delivery phase to ignore this recipient. This list is kept free from
duplicates, preventing alias loops and duplicate messages deliverd to the same reci­
pient, as might occur if a person is in two groups.

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the
beginning. No formatting requirements are imposed on the message except that
they must be lines of text (i.e., binary data is not allowed). The header is parsed
and stored in memory, and the body of the message is saved in a temporary file.

Sendmail 3-63

To simplify the program interface, the message is collected even if no
addresses were valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the recipient list, sendmail calls the
appropriate mailer. Each mailer invocation sends to all users receiving the message
on one host. Mailers that only accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used
to submit a message to sendmail. Each copy of the message is prepended by a cus­
tomized header. The mailer status code is caught and checked, and a suitable error
message given as appropriate. The exit code must conform to a system standard or
a generic message ("Service unavailable") is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle
the mail later, sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, sendmail returns the message to the sender
for retransmission. The letter can be mailed back or written in the file "dead.letter"
in the sender's home directory2•

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be
inserted under control of the configuration file. Some lines can be merged; for example,
a "From:" line and a "Full-name:" line can be merged under certain circumstances.

2.5. Configuration File

Almost all configuration information is read at runtime from an ASCII file, encod­
ing macro definitions (defining the value of macros used internally), header declarations
(telling sendmail the format of header lines that it will process specially, i.e., lines that
it will add or reformat), mailer definitions (giving information such as the location and
characteristics of each mailer), and address rewriting rules (a limited production system
to rewrite addresses which is used to parse and rewrite the addresses).

To improve performance when reading the configuration file, a memory image can
be provided. This provides a "compiled" form of the configuration file.

3. USAGE AND IMPLEMENTATION

3.1. Arguments

Arguments may be flags and addresses. Flags set various processing options. Fol­
lowing flag arguments, address arguments may be given, unless we are running in
SMTP mode. Addresses follow the syntax in RFC822 [Crocker82] for ARPANET
address formats. In brief, the format is:

(1) Anything in parentheses is thrown away (as a comment).

20bviously, if the site giving the error is not the originating site, the only reasonable option is to mail back to
the sender. Also, there are many more error disposition options, but they only effect the error message - the "return
to sender" function is always handled in one of these two ways.

3-64 Sendmail

(2) Anything in angle brackets ("<>") is preferred over anything else. This rule
implements the ARP ANET standard that addresses of the form

user name <machine-address>

will send to the electronic "machine-address" rather than the human "user name."

(3) Double quotes (") quote phrases; backslashes quote characters. Backslashes are
more powerful in that they will cause otherwise equivalent phrases to compare
differently - for example, user and "user" are equivalent, but Xtser is different
from either of them.

Parentheses, angle brackets, and double quotes must be properly balanced and
nested. The rewriting rules control remaining parsing3•

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival
storage of messages, useful for project administration and history. Programs are useful
as recipients in a variety of situations, for example, to maintain a public repository of
systems messages (such as the Berkeley msgs program, or the MARS system [Satt­
ley78]).

Any address passing through the initial parsing algorithm as a local address (i.e,
not appearing to be a valid address for another mailer) is scanned for two special cases.
If prefixed by a vertical bar ("I") the rest of the address is processed as a shell com­
mand. If the user name begins with a slash mark("/") the name is used as a file name,
instead of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits
honored if sendmail is running as root.

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding
allows each user to reroute incoming mail destined for that account. Inclusion directs
sendmail to read a file for a list of addresses, and is normally used in conjunction with
aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is
indexed to speed access. Only names that parse as local are allowed as aliases; this
guarantees a unique key (since there are no nicknames for the local host).

3.3.2. Forwarding

After aliasing, recipients that are local and valid are checked for the existence
of a ".forward" file in their home directory. If it exists, the message is not sent to
that user, but rather to the list of users in that file. Often this list will contain only
one address, and the feature will be used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For
example, forwarding to:

"l/usr/local/newmail myname"

will use a different incoming mailer.

3Disclaimer: Some special processing is done after rewriting local names; see below.

3.3.3. Inclusion

Inclusion is specified in RFC 733 [Crocker77a] syntax:

:Include: pathname

Sendmail 3-65

An address of this form reads the file specified by pathname and sends to all users
listed in that file.

The intent is not to support direct use of this feature, but rather to use this as
a subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction with the
system administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include:
list is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected. The
message comes in two parts: a message header and a message body, separated by a
blank line.

The header is formatted as a series of lines of the form

field-name: field-value

Field-value can be split across lines by starting the following lines with a space or a tab.
Some header fields have special internal meaning, and have appropriate special process­
ing. Other headers are simply passed through. Some header fields may be added
automatically, such as time stamps.

The body is a series of text lines. It is completely uninterpreted and untouched,
except that lines beginning with a dot have the dot doubled when transmitted over an
SMTP channel. This extra dot is stripped by the receiver.

3.5. Message Delivery

The send queue is ordered by receiving host before transmission to implement
message batching. Each address is marked as it is sent so rescanning the list is safe.
An argument list is built as the scan proceeds. Mail to files is detected during the scan
of the send list. The interface to the mailer is performed using one of the techniques
described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to the
header and sends the result to the mailer. If any mail is rejected by the mailer, a flag is
set to invoke the return-to-sender function after all delivery completes.

3.6. Queued Messages

If the mailer returns a "temporary failure" exit status, the message is queued. A
control file is used to describe the recipients to be sent to and various other parameters.
This control file is formatted as a series of lines, each describing a sender, a recipient,
the time of submission, or some other salient parameter of the message. The header of
the message is stored in the control file, so that the associated data file in the queue is
just the temporary file that was originally collected.

3.7. Configuration

Configuration is controlled primarily by a configuration file read at startup. Send­
mail should not need to be recomplied except

3-66 Sendmail

(1) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.

(3) To change ARPANET reply codes.

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not
require recompilation.

If the mail is being sent by a local user, and the file ".mailcf'' exists in the
sender's home directory, that file is read as a configuration file after the system
configuration file. The primary use of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer
definitions, rewriting rules, and options.

3.7.1. Macros

Macros can be used in three ways. Certain macros transmit unstructured tex­
tual information into the mail system, such as the name sendmail will use to iden­
tify itself in error messages. Other macros transmit information from sendmail to
the configuration file for use in creating other fields (such as argument vectors to
mailers); e.g., the name of the sender, and the host and user of the recipient. Other
macros are unused internally, and can be used as shorthand in the configuration file.

3.7.2. Header declarations

Header declarations inform sendmail of the format of known header lines.
Knowledge of a few header lines is built into sendmail, such as the "From:" and
"Date:" lines.

Most configured headers will be automatically inserted in the outgoing message
if they don't exist in the incoming message. Certain headers are suppressed by some
mailers.

3.7.3. Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The
definition specifies the internal name of the mailer, the pathname of the program to
call, some flags associated with the mailer, and an argument vector to be used on the
call; this vector is macro-expanded before use.

3.7.4. Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These are
an ordered list of pattern-replacement rules, (somewhat like a production system,
except that order is critical), which are applied to each address. The address is
rewritten textually until it is either rewritten into a special canonical form (i.e., a
(mailer, host, user) 3-tuple, such as {arpanet, usc-isif, postel} representing the
address "postel@usc-isif''), or it falls off the end. When a pattern matches, the rule
is reapplied until it fails.

The configuration file also supports the editing of addresses into different for­
mats. For example, an address of the form:

ucsfcgl!tef

might be mapped into:

tef@ucsfcgl. UUCP

to conform to the domain syntax. Translations can also be done in the other

Sendmail 3-67

direction.

3.7.5. Option setting

There are several options that can be set from the configuration file. These
include the pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

(1) Configuration information is not compiled in. This change simplifies many of the
problems of moving to other machines. It also allows easy debugging of new
mailers.

(2) Address parsing is more flexible. For example, delivermail only supported one
gateway to any network, whereas sendmail can be sensitive to host names and
reroute to different gateways.

(3) Forwarding and :include: features eliminate the requirement that the system alias
file be writable by any user (or that an update program be written, or that the
system administration make all changes).

(4) Send mail supports message batching across networks when a message is being
sent to multiple recipients.

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately
but can potentially be delivered later is stored in this queue for a later retry. The
queue also provides a buffer against system crashes; after the message has been
collected it may be reliably redelivered even if the system crashes during the ini­
tial delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct
interface networks such as the ARPANET and/or Ethernet using SMTP (the Sim­
ple Mail Transfer Protocol) over a TCP /IP connection.

4.2. MMDF

MMDF [Crocker79] spans a wider problem set than sendmail. For example, the
domain of MMDF includes a "phone network" mailer, whereas sendmail calls on preex­
isting mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message batch­
ing, automatic forwarding to gateways, queueing, and retransmission. MMDF supports
two-stage timeout, which sendmail does not support.

The configuration for MMDF is compiled into the code4•

Since MMDF does not consider backwards compatibility as a design goal, the
address parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channel5 into MMDF. In particular,
MMDF must know the location and format of host tables for all channels, and the
channel must speak a special protocol. This allows MMDF to do additional verification
(such as verifying host names) at submission time.

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either
compiled or dynamic tables.

5The MMDF equivalent of a sendmail "mailer."

3-68 Sendmail

MMDF strictly separates the submission and delivery phases. Although sendmail
has the concept of each of these stages, they are integrated into one program, whereas
in MMDF they are split into two programs.

4.3. Message Processing Module

The Message Processing Module (MPM) discussed by Postel [Postel79b] matches
sendmail closely in terms of its basic architecture. However, like MMDF, the MPM
includes the network interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus
allowing simpler handling of errors by the mailer than is possible in sendmail. When a
message queued by sendmail is sent, any errors must be returned to the sender by the
mailer itself. Both MPM and MMDF mailers can return an immediate error response,
and a single error processor can create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-value
tuples6• Such a convention requires a much higher degree of cooperation between
mailers than is required by sendmail. MPM also assumes a universally agreed upon
internet name space (with each address in the form of a net-host-user tuple), which
sendmail does not.

5. EVALUATIONS AND FUTURE PLANS

Sendmail is designed to work in a nonhomogeneous environment. Every attempt is
made to avoid imposing unnecessary constraints on the underlying mailers. This goal has
driven much of the design. One of the major problems has been the lack of a uniform
address space, as postulated in [Postel79a] and [Postel79b].

A nonuniform address space implies that a path will be specified in all addresses,
either explicitly (as part of the address) or implicitly (as with implied forwarding to gate­
ways). This restriction has the unpleasant effect of making replying to messages exceed­
ingly difficult, since there is no one "address" for any person, but only a way to get there
from wherever you are.

Interfacing to mail programs that were not initially intended to be applied in an
internet environment has been amazingly successful, and has reduced the job to a manage­
able task.

Sendmail has knowledge of a few difficult environments built in. It generates
ARP ANET FTP /SMTP compatible error messages (prepended with three-digit numbers
[Neigus73, Postel74, Postel82]) as necessary, optionally generates UNIX-style "From" lines
on the front of messages for some mailers, and knows how to parse the same lines on input.
Also, error handling has an option customized for BerkNet.

The decision to avoid doing any type of delivery where possible (even, or perhaps
especially, local delivery) has turned out to be a good idea. Even with local delivery, there
are issues of the location of the mailbox, the format of the mailbox, the locking protocol
used, etc., that are best decided by other programs. One surprisingly major annoyance in
many internet mailers is that the location and format of local mail is built in. The feeling
seems to be that local mail is so common that it should be efficient. This feeling is not
born out by our experience; on the contrary, the location and format of mailboxes seems to
vary widely from system to system.

The ability to automatically generate a response to incoming mail (by forwarding
mail to a program) seems useful ("I am on vacation until late August ") but can create
problems such as forwarding loops (two people on vacation whose programs send notes

6This is similar to the NBS standard.

Sendmail 3-69

back and forth, for instance) if these programs are not well written. A program could be
written to do standard tasks correctly, but this would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any
mail system that addresses this problem, nor am I aware of any reasonable solution at this
time.

The configuration file is currently practically inscrutable; considerable convenience
could be realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate changing
requirements and environments. These changes will include modifications to the message
header (e.g., [NBSSO]) or to the body of the message itself (such as for multimedia mes­
sages [Postel80]). Experience indicates that these changes should be relatively trivial to
integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server such as
Grapvine [Birrell82] integrated into the mail system. This would allow a site such as
"Berkeley" to appear as a single host, rather than as a collection of hosts, and would allow
people to move transparently among machines without having to change their addresses.
Such a facility would require an automatically updated database and some method of
resolving conflicts. Ideally this would be effective even without all hosts being under a sin­
gle management. However, it is not clear whether this feature should be integrated into
the aliasing facility or should be considered a "value added" feature outside sendmail
itself.

As a more interesting case, the CSNET name server [Solomon81] provides an facility
that goes beyond a single tightly-coupled environment. Such a facility would normally
exist outside of sendmail however.

ACKNOWLEDGEMENTS

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice,
Bill Joy for pointing me in the correct direction (over and over), and Mark Horton for more
advice, prodding, and many of the good ideas. Kurt and Eric Schmidt are to be credited for
using delivermail as a server for their programs (Mail and BerkNet respectively) before any
sane person should have, and making the necessary modifications promptly and happily. Eric
gave me considerable advice about the perils of network software which saved me an unknown
amount of work and grief. Mark did the original implementation of the DBM version of alias­
ing, installed the VFORK code, wrote the current version of rmail, and was the person who
really convinced me to put the work into delivermail to turn it into sendmail. Kurt deserves
accolades for using sendmail when I was myself afraid to take the risk; how a person can con­
tinue to be so enthusiastic in the face of so much bitter reality is beyond me.

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this
paper, giving considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at
Britton-Lee, who both knowingly allowed me to put so much work into this project when there
were so many other things I really should have been working on.

3-70 Sendmail

[Birrell82]

[Borden79]

[Crocker77a]

[Crocker77b]

[Crocker79]

[Crocker82]

[Metcalfe76]

[Feinler78]

[NBS80]

[Neigus73]

[Nowitz78a]

[Nowitz78b]

[Postel74]

[Postel77]

[Postel79a]

[Postel79b]

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D., "Gra­
pevine: An Exercise in Distributed Computing." In Comm. A.C.M. 25,
4, April 82.

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Han­
dling System: Users' Manual. R-2367-PAF. Rand Corporation.
October 1979.

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733,
NIC 41952. In [Feinler78]. November 1977.

Crocker, D. H., Framework and Functions of the MS Personal Mes­
sage System. R-2134-ARPA, Rand Corporation, Santa Monica, Cali­
fornia. 1977.

Crocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork
Memo Distribution Facility - MMDF. 6th Data Communication
Symposium, Asilomar. November 1979.

Crocker, D. H., Standard for the Format of Arpa Internet Text Mes­
sages. RFC 822. Network Information Center, SRI International,
Menlo Park, California. August 1982.

Metcalfe, R., and Boggs, D., "Ethernet: Distributed Packet Switching
for Local Computer Networks", Communications of the ACM 19, 7.
July 1976.

Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook.
NIC 7104, Network Information Center, SRI International, Menlo
Park, California. 1978.

National Bureau of Standards, Specification of a Draft Message For­
mat Standard. Report No. ICST/CBOS 80-2. October 1980.

Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542,
NIC 17759. In [Feinler78]. August, 1973.

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Sys­
tems. Bell Laboratories. In UNIX Programmer's Manual, Seventh
Edition, Volume 2. August, 1978.

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories.
In UNIX Programmer's Manual, Seventh Edition, Volume 2. October,
1978.

Postel, J., and Neigus, N., Revised FTP Reply Codes. RFC 640, NIC
30843. In [Feinler78]. June, 1974.

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977.

Postel, J., Internet Message Protocol. RFC 753, IEN 85. Network
Information Center, SRI International, Menlo Park, California. March
1979.

Postel, J. B., An Internetwork Message Structure. In Proceedings of
the Sixth Data Communications Symposium, IEEE. New York.
November 1979.

[Postel80]

[Postel82]

[Schmidt79]

[Shoens79]

[Sluizer81]

[Solomon81]

[Su82]

[UNIX83]

Sendmail 3-71

Postel, J. B., A Structured Format for Transmission of Multi-Media
Documents. RFC 767. Network Information Center, SRI Interna­
tional, Menlo Park, California. August 1980.

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting
RFC788). Network Information Center, SRI International, Meplo
Park, California. August 1982.

Schmidt, E., An Introduction to the Berkeley Network. University of
California, Berkeley California. 1979.

Shoens, K., Mail Reference Manual. University of California, Berke­
ley. In UNIX Programmer's Manual, Seventh Edition, Volume 2C.
December 1979.

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Net­
work Information Center, SRI International, Menlo Park, California.
May 1981.

Solomon, M., Landweber, L., and Neuhengen, D., "The Design of the
CSNET Name Server." CS-DN-2, University of Wisconsin, Madison.
November 1981.

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for
Internet User Applications. RFC819. Network Information Center,
SRI International, Menlo Park, California. August 1982.

The UNIX Programmer's Manual, Seventh Edition, Virtual VAX-11
Version, Volume 1. Bell Laboratories, modified by the University of
California, Berkeley, California. March, 1983.

Introduction 4-1

PART 4: SECURITY CONSIDERATIONS

Security on the ULTRIX-32 system is flexible and reasonably comprehensive. These two arti­
cles describe a number of measures you can take to make your installation moderately secure.
The first article in this part, "On the Security of UNIX," explains the major features and
weaknesses of ULTRIX-32 system security. The second article, "Password Security: A Case
History," tells how the password facility used on the ULTRIX-32 system was developed.

Protection Against Crashes and Unauthorized Access

Unrestricted use of disk space on the ULTRIX-32 system may cripple or stop the operating
system, and Ritchie indicates in "On the Security of UNIX" that the software cannot be pro­
tected from this type of abuse. However, the ULTRIX-32 system does include the quota util­
ity, which enables the system manager to control the use of resources by limiting the number
of blocks and the number of files available to each user. See "Disk Quotas in a UNIX
Environment" in Part 2 of this volume.

The Ritchie article explains the functions of the file protection bits, the user identification
number (UID), and the user-group identification number (GID); these functions allow users to
control access to their files.

In addition, Ritchie outlines the ULTRIX-32 system schemes for:

• Data encryption

• Password security

• Precautions concerning the superuser account, set-UID programs, mail, and the
mount command

Password Security Development

"Password Security: A Case History," by Morris and Thompson, outlines the objectives of the
password system on the ULTRIX-32 system:

• To protect the system against unauthorized users

• To prevent logged-in users from performing unauthorized functions

• To minimize inconvenience to legitimate users

The case history describes the early, rejected password schemes and their weaknesses, and it
shows how they evolved to the current scheme. You may find the article useful as well as
interesting, because it offers well-researched precautions to users and tested recommendations
to system managers.

UNIX Security 4-3

On the Security of UNIX

Dennis M. Ritchie

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the UNIXt system and offers a number of hints on how
to improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense,
in mind; this fact alone guarantees a vast number of holes. (Actually the same statement can
be made with respect to most systems.) The area of security in which UNIX is theoretically
weakest is in protecting against crashing or at least crippling the operation of the system. The
problem here is not mainly in uncritical acceptance of bad parameters to system calls- there
may be bugs in this area, but none are known- but rather in lack of checks for excessive con­
sumption of resources. Most notably, there is no limit on the amount of disk storage used,
either in total space allocated or in the number of files or directories. Here is a particularly
ghastly shell sequence guaranteed to stop the system:

while:; do
mkdir x
cd x

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that any one can stop
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for others. Also, if many large jobs are run simultaneously, swap space
may run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command
level. In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy
fix. The best that can be said is that it is generally fairly easy to detect what has happened
when disaster strikes, to identify the user responsible, and take appropriate action. In prac­
tice, we have found that difficulties in this area are rather rare, but we have not been faced
with malicious users, and enjoy a fairly generous supply of resources which have served to
cushion us against accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unau­
thorized perusal and destruction. Here the degree of security seems (almost) adequate
theoretically, and the problems lie more in the necessity for care in the actual use of the sys­
tem.

Each UNIX file has associated with it eleven bits of protection information together with
a user identification number and a user-group identification number (UID and GID). Nine of
the protection bits are used to specify independently permission to read, to write, and to

t UNIX is a trademark of Bell Laboratori{ls.

4-4 UNIX Security

execute the file to the user himself, to members of the user's group, and to all other users.
Each process generated by or for a user has associated with it an effective UID and a real
UID, and an effective and real GID. When an attempt is made to access the file for reading,
writing, or execution, the user process's effective UID is compared against the file's UID; if a
match is obtained, access is granted provided the read, write, or execute bit respectively for
the user himself is present. If the UID for the file and for the process fail to match, but the
GID's do match, the group bits are used; if the GID's do not match, the bits for other users
are tested. The last two bits of each file's protection information, called the set-UID and set­
GID bits, are used only when the file is executed as a program. If, in this case, the set-UID
bit is on for the file, the effective UID for the process is changed to the UID associated with
the file; the change persists until the process terminates or until the UID changed again by
another execution of a set-UID file. Similarly the effective group ID of a process is changed to
the GID associated with a file when that file is executed and has the set-GID bit set. The real
UID and GID of a process do not change when any file is executed, but only as the result of a
privileged system call.

The basic notion of the set-UID and set-GID bits is that one may write a program which
is executable by others and which maintains files accessible to others only by that program.
The classical example is the game-playing program which maintains records of the scores of
its players. The program itself has to read and write the score file, but no one but the game's
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their
own advantage. The solution is to turn on the set-UID bit of the game program. When, and
only when, it is invoked by players of the game, it may update the score file but ordinary pro­
grams executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name; thus if a directory has execute permission but no read permis­
sion for a given user, he may access files with known names in the directory, but may not read
(list) the entire contents of the directory. Write permission on a directory is interpreted to
mean that the user may create and delete files in that directory; it is impossible for any user
to write directly into any directory.

Another, and from the point of view of security, much more serious special case is that
there is a "super user" who is able to read any file and write any non-directory. The super­
user is also able to change the protection mode and the owner UID and GID of any file and to
invoke privileged system calls. It must be recognized that the mere notion of a super-user is a
theoretical, and usually practical, blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis­
sive in this regard; essentially all commands create files readable and writable by everyone. In
the current version, this policy may be easily adjusted to suit the needs of the installation or
the individual user. Associated with each process and its descendants is a mask, which is in
effect and-ed with the mode of every file and directory created by that process. In this way,
users can arrange that, by default, all their files are no more accessible than they wish. The
standard mask, set by login, allows all permissions to the user himself and to his group, but
disallows writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient,
to make one's files inaccessible to others. The lack of sufficiency could follow from the
existence of set-UID programs created by the user and the possibility of total breach of sys­
tem security in one of the ways discussed below (or one of the ways not discussed below). For
greater protection, an encryption scheme is available. Since the editor is able to create
encrypted documents, and the crypt command can be used to pipe such documents into the
other text-processing programs, the length of time during which cleartext versions need be
available is strictly limited. The encryption scheme used is not one of the strongest known,

UNIX Security 4-5

but it is judged adequate, in the sense that cryptanalysis is likely to require considerably more
effort than more direct methods of reading the encrypted files. For example, a user who
stores data that he regards as truly secret should be aware that he is implicitly trusting the
system administrator not to install a version of the crypt command that stores every typed
password in a file.

Needless to say, the system administrators must be at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In par­
ticular, it is necessary that special files be protected from writing, and probably reading, by
ordinary users when they store sensitive files belonging to other users. It is easy to write pro­
grams that examine and change files by accessing the device on which the files live.

On the issue of password security, UNIX is probably better than most systems. Pass­
words are stored in an encrypted form which, in the absence of serious attention from special­
ists in the field, appears reasonably secure, provided its limitations are understood. In the
current version, it is based on a slightly defective version of the Federal DES; it is purposely
defective so that easily-available hardware is useless for attempts at exhaustive key-search.
Since both the encryption algorithm and the encrypted passwords are available, exhaustive
enumeration of potential passwords is still feasible up to a point. We have observed that
users choose passwords that are easy to guess: they are short, or from a limited alphabet, or in
a dictionary. Passwords should be at least six characters long and randomly chosen from an
alphabet which includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out "login: " on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program
copied onto it. For example, if the super-user (su) command is writable, anyone can copy the
shell onto it and get a password-free version of su. A more subtle problem can come from set­
UID programs which are not sufficiently careful of what is fed into them. To take an obsolete
example, the previous version of the mail command was set-UID and owned by the super­
user. This version sent mail to the recipient's own directory. The notion was that one should
be able to send mail to anyone even if they want to protect their directories from writing.
The trouble was that mail was rather dumb: anyone could mail someone else's private file to
himself. Much more serious is the following scenario: make a file with a line like one in the
password file which allows one to log in as the super-user. Then make a link named ".mail" to
the password file in some writable directory on the same device as the password file (say
/tmp). Finally mail the bogus login line to /tmp/.mail; You can then login as the super-user,
clean up the incriminating evidence, and have your will.

The fact that users can mount their own disks and tapes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su; other files can be unprotected entries for special files. The only easy fix for this problem
is to forbid the use of mount to unprivileged users. A partial solution, not so restrictive,
would be to have the mount command examine the special file for bad data, set-UID pro­
grams owned by others, and accessible special files, and balk at unprivileged invokers.

Password Security 4-7

Password Security: A Case History

INTRODUCTION

Robert Morris

Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

Password security on the UNIXt time-sharing system [1] is provided by a collection of
programs whose elaborate and strange design is the outgrowth of many years of experience
with earlier versions. To help develop a secure system, we have had a continuing competition
to devise new ways to attack the security of the system (the bad guy) and, at the same time,
to devise new techniques to resist the new attacks (the good guy). This competition has been
in the same vein as the competition of long standing between manufacturers of armor plate
and those of armor-piercing shells. For this reason, the description that follows will trace the
history of the password system rather than simply presenting the program in its current state.
In this way, the reasons for the design will be made clearer, as the design cannot be under­
stood without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to
the users of the system. For example, those who want to run a completely open system
without passwords, or to have passwords only at the option of the individual users, are able to
do so, while those who require all of their users to have passwords gain a high degree of secu­
rity against penetration of the system by unauthorized users.

The password system must be able not only to prevent any access to the system by
unauthorized users (i.e. prevent them from logging in at all), but it must also prevent users
who are already logged in from doing things that they are not authorized to do. The so called
"super-user" password, for example, is especially critical because the super-user has all sorts
of permissions and has essentially unlimited access to all system resources.

Password security is of course only one component of overall system security, but it is an
essential component. Experience has shown that attempts to penetrate remote-access systems
have been astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are
threats at the remote terminal, along the communications link, as well as at the computer
itself. Although the security of a password encryption algorithm is an interesting intellectual
and mathematical problem, it is only one tiny facet of a very large problem. In practice, phy­
sical security of the computer, communications security of the communications link, and phy­
sical control of the computer itself loom as far more important issues. Perhaps most impor­
tant of all is control over the actions of ex-employees, since they are not under any direct con­
trol and they may have intimate knowledge about the system, its resources, and methods of
access. Good system security involves realistic evaluation of the risks not only of deliberate
attacks but also of casual unauthorized access and accidental disclosure.

t UNIX is a trademark of Bell Laboratories.

4-8 Password Security

PROLOGUE

The UNIX system was first implemented with a password file that contained the actual
passwords of all the users, and for that reason the password file had to be heavily protected
against being either read or written. Although historically, this had been the technique used
for remote-access systems, it was completely unsatisfactory for several reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protec­
tion can occur when the password file is being edited or otherwise modified. There is no way
to prevent the making of copies by privileged users. Experience with several earlier remote­
access systems showed that such lapses occur with frightening frequency. Perhaps the most
memorable such occasion occurred in the early 60's when a system administrator on the CTSS
system at MIT was editing the password file and another system administrator was editing the
daily message that is printed on everyone's terminal on login. Due to a software design error,
the temporary editor files of the two users were interchanged and thus, for a time, the pass­
word file was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed,
usually simultaneously, at a considerable administrative cost. This is not a great matter, but
far more serious is the high probability of such lapses going unnoticed by the system adminis­
trators.

Security against unauthorized disclosure of the passwords was, in the last analysis,
impossible with this system because, for example, if the contents of the file system are put on
to magnetic tape for backup, as they must be, then anyone who has physical access to the tape
can read anything on it with no restriction.

Many programs must get information of various kinds about the users of the system, and
these programs in general should have no special permission to read the password file. The
information which should have been in the password file actually was distributed (or repli­
cated) into a number of files, all of which had to be updated whenever a user was added to or
dropped from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all,
and it is not difficult to decide that this can be done by encrypting each user's password, put­
ting only the encrypted form in the password file, and throwing away his original password
(the one that he typed in). When the user later tries to log in to the system, the password
that he types is encrypted and compared with the encrypted version in the password file. If
the two match, his login attempt is accepted. Such a scheme was first described in [3, p.9lff.].
It also seemed advisable to devise a system in which neither the password file nor the pass­
word program itself needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was
very difficult to invert, even when the encryption program is available. Most of the standard
encryption methods used (in the past) for encryption of messages are rather easy to invert. A
convenient and rather good encryption program happened to exist on the system at the time;
it simulated the M-209 cipher machine [4] used by the U.S. Army during World War II. It
turned out that the M-209 program was usable, but with a given key, the ciphers produced by
this program are trivial to invert. It is a much more difficult matter to find out the key given
the cleartext input and the enciphered output of the program. Therefore, the password was
used not as the text to be encrypted but as the key, and a constant was encrypted using this
key. The encrypted result was entered into the password file.

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and
the complete password file. Suppose also that he has substantial computing capacity at his
disposal.

Password Security 4-9

One obvious approach to penetrating the password mechanism is to attempt to find a
general method of inverting the encryption algorithm. Very possibly this can be done, but few
successful results have come to light, despite substantial efforts extending over a period of
more than five years. The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one
succeeds; this is a general cryptanalytic approach called key search. Human beings being
what they are, there is a strong tendency for people to choose relatively short and simple pass­
words that they can remember. Given free choice, most people will choose their passwords
from a restricted character set (e.g. all lower-case letters), and will often choose words or
names. This human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a
potential password and to check the result against an entry in the password file. The running
time to encrypt one trial password and check the result turned out to be approximately 1.25
milliseconds on a PDP-11/70 when the encryption algorithm was recoded for maximum speed.
It is takes essentially no more time to test the encrypted trial password against all the pass­
words in an entire password file, or for that matter, against any collection of encrypted pass­
words, perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters,
the number of such passwords is 26n. If we suppose that the password consists of printable
characters only, then the number of possible passwords is somewhat less than 95n. (The stan­
dard system "character erase" and "line kill" characters are, for example, not prime candi­
dates.) We can immediately estimate the running time of a program that will test every pass­
word of a given length with all of its characters chosen from some set of characters. The fol­
lowing table gives estimates of the running time required on a PDP-11/70 to test all possible
character strings of length n chosen from various sets of characters: namely, all lower-case
letters, all lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII
characters, and finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-11 to test all
lower-case alphabetic strings up to length five and, given access to the machine for, say,
several weekends, to test all such strings up to six characters in length. By using such a pro­
gram against a collection of actual encrypted passwords, a substantial fraction of all the pass­
words will be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or
to use a list of names. For example, a large commercial dictionary contains typicallly about
250,000 words; these words can be checked in about five minutes. Again, a noticeable fraction
of any collection of passwords will be found. Improvements and extensions will be (and have
been) found by a determined bad guy. Some "good" things to try are:

The dictionary with the words spelled backwards.

A list of first names (best obtained from some mailing list). Last names, street names,
and city names also work well.

The above with initial upper-case letters.

4-10 Password Security

All valid license plate numbers in your state. (This takes about five hours in New Jer­
sey.)

Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users' habits in the
choice of passwords when no constraint is put on their choice. The results were disappointing,
except to the bad guy. In a collection of 3,289 passwords gathered from many users over a
long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;

605 were six letters, all lower-case.

An additional 492 passwords appeared in various available dictionaries, name lists, and the
like. A total of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the charac­
ter string searches. The dictionary search alone, which required only five minutes to run, pro­
duced about one third of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen
from a larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force
users to use less predictable passwords. The users did not choose their own passwords; the
system supplied them. The supplied passwords were eight characters long and were taken
from the character set consisting of lower-case letters and digits. They were generated by a
pseudo-random number generator with only 215 starting values. The time required to search
(again on a PDP-11/70) through all character strings of length 8 from a 36-character alphabet
is 112 years.

Unfortunately, only 215 of them need be looked at, because that is the number of possi­
ble outputs of the random number generator. The bad guy did, in fact, generate and test each
of these strings and found every one of the system-generated passwords using a total of only
about one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES
encryption algorithm [2] by the National Bureau of Standards was timely and fortunate. The
DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow
when implemented in software. The DES was implemented and used in the following way:
The first eight characters of the user's password are used as a key for the DES; then the algo­
rithm is used to encrypt a constant. Although this constant is zero at the moment, it is easily
accessible and can be made installation-dependent. Then the DES algorithm is iterated 25
times and the resulting 64 bits are repacked to become a string of 11 printable characters.

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (all upper-case or all lower-case) shorter
than six characters, or a password from a larger character set shorter than five characters,

Password Security 4-11

then the program asks him to enter a longer password. This further reduces the efficacy of
key search.

These improvements make it exceedingly difficult to find any individual password. The
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he
is not prevented from using his spouse's name if he wants to.

3. Salted Passwords
The key search technique is still likely to turn up a few passwords when it is used on a

large collection of passwords, and it seemed wise to make this task as difficult as possible. To
this end, when a password is first entered, the password program obtains a 12-bit random
number (by reading the real-time clock) and appends this to the password typed in by the
user. The concatenated string is encrypted and both the 12-bit random quantity (called the
salt) and the 64-bit result of the encryption are entered into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the pass­
word file and appended to the typed password. The encrypted result is required, as before, to
be the same as the remaining 64 bits in the password file. This modification does not increase
the task of finding any individual password, starting from scratch, but now the work of testing
a given character string against a large collection of encrypted passwords has been multiplied
by 4096 (212). The reason for this is that there are 4096 encrypted versions of each password
and one of them has been picked more or less at random by the system.

With this modification, it is likely that the bad guy can spend days of computer time
trying to find a password on a system with hundreds of passwords, and find none at all. More
important is the fact that it becomes impractical to prepare an encrypted dictionary in
advance. Such an encrypted dictionary could be used to crack new passwords in milliseconds
when they appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossi­
ble to find out whether a person with passwords on two or more systems has used the same
password on all of them, unless you already know that.

4. The Threat of the DES Chip
Chips to perform the DES encryption are already commercially available and they are

very fast. The use of such a chip speeds up the process of password hunting by three orders
of magnitude. To avert this possibility, one of the internal tables of the DES algorithm (in
particular, the so-called E-table) is changed in a way that depends on the 12-bit random
number. The E-table is inseparably wired into the DES chip, so that the commercial chip
cannot be used. Obviously, the bad guy could have his own chip designed and built, but the
cost would be unthinkable.

5. A Subtle Point
To login successfully on the UNIX system, it is necessary after dialing in to type a valid

user name, and then the correct password for that user name. It is poor design to write the
login command in such a way that it tells an interloper when he has typed in a invalid user
name. The response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done
only if the user name was valid, because otherwise there was no encrypted password to com­
pare with the supplied password. The result was that the response was delayed by about
one-half second if the name was valid, but was immediate if invalid. The bad guy could find
out whether a particular user name was valid. The routine was modified to do the encryption
in either case.

4-12 Password Security

CONCLUSIONS

On the issue of password security, UNIX is probably better than most systems. The use
of encrypted passwords appears reasonably secure in the absence of serious attention of
experts in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX sys­
tems have instituted what is called an "external security code" that must be typed when dial­
ing into the system, but before logging in. If this code is changed periodically, then someone
with an old password will likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthor­
ized persons, it is wise to keep a record of both successful and unsuccessful attempts to get at
the secured resource. Just as an out-of-hours visitor to a computer center normally must not
only identify himself, but a record is usually also kept of his entry. Just so, it is a wise pre­
caution to make and keep a record of all attempts to log into a remote-access time-sharing
system, and certainly all unsuccessful attempts.

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system
and whose goal is to find out a particular password (usually that of the super-user) and, at the
other end, someone who wishes to collect as much password information as possible from as
many systems as possible. Most of the work reported here serves to frustrate the latter type;
our experience indicates that the former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did
not attempt to hide the security aspects of the operating system, thereby playing the cus­
tomary make-believe game in which weaknesses of the system are not discussed no matter
how apparent. Rather we advertised the password algorithm and invited attack in the belief
that this approach would minimize future trouble. The approach has been successful.

References

[1] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17
(July 1974), pp. 365-375.

[2] Proposed Federal Information Processing Data Encryption Standard. Federal Register
(40FR12134), March 17, 1975

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968).

[4] U. S. Patent Number 2,089,603.

Introduction 5-1

PART 5: SUPPORTING DOCUMENTS

Of the seven articles in this part, only the first is current and directly applicable to the
ULTRIX-32 system. "Changes to the Kernel in 4.2BSD," by Leffler, describes the differences
between the 4.IBSD and 4.2BSD software distributions. The ULTRIX-32 system is based on
4.2BSD. Be sure to use this article if you are converting an existing UNIX 4.lBSD system to
ULTRIX-32. The information provided covers:

• Revising local software so that it is compatible with 4.2BSD

• New directory organization

Machine-independent code

- Machine-dependent code

• New file names

• Changes to old files

• Changes to stand-alone and bootstrap utilities

The six remaining articles in this part are included for historical reasons. They provide back­
ground information, some of which you may find useful in installing or tuning your UL TRIX-
32 system. However, much of the information in these articles is obsolete. Note in particular
that the articles on uucp do not refer to the current implementation. Check the ULTRIX-32
Installation Manual and the ULTRIX-32 System Management Guide for installation and
maintenance procedures.

Changes to the Kernel 5-3

Changes to the Kernel in 4.2BSD

July 25, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

This document summarizes the changes to the kernel between the September 1981
4.lBSD release and the July 1983 4.2BSD distribution. The information is presented in both
overall terms (e.g. organizational changes), and as specific comments about individual files.
See the source code itself for more details.

The system has undergone too many changes to detail everything. Instead the major
areas of change will pointed out, followed by a brief description of the contents of files present
in the 4.lBSD release. Where important changes and/or bug fixes were applied they are
described. The networking support is not discussed in this document, refer to "4.2BSD Net­
working Implementation Notes" for a discussion of the internal structure of the network facil­
ities.

Major changes include:

• organizational changes to isolate VAX specific portions of the system

• changes to support the new file system organization

• changes to support the new interprocess communication facilities

• changes for the new networking support; in particular, the DARPA standard Internet pro­
tocols TCP, UDP, IP, and ICMP, and the network interface drivers which provide
hardware support

• changes for the new signal facilities

• changes for the new time and interval timer facilities

• changes to eliminate references to global variables; in particular, the global variables
u.u base, u.u offset, u.u segfig, and u.u count have been almost completely replaced by uio
structures which are passed by reference; the u.u error variable has not been completely
purged from low level portions of the system, but is in many places now returned as a
function value; the uio changes were necessitated by the new scatter-gather i/o facilities

• changes for the new disk quota facilities

• changes for more flexible configuration of the disk space used for paging and swapping

1. Carrying over local software

With the massive changes made to the system, both in organization and in content, it
may take some time to understand how to carry over local software. The majority of this
document is devoted to describing the contents of each important source file in the system. If
you have local software other than device drivers to incorporate in the system you should first
read this document completely, then study the source code to more fully understand the
changes as they affect you.

5-4 Changes to the Kernel

Locally written device drivers will need to be converted to work in the new system. The
changes required of device drivers are:

1) The calling convention for the driver ioctl routine has changed. Any data copied in or
out of the system is now done at the highest level inside ioctl(). The third parameter to
the driver ioctl routine is a data buffer passed by reference. Values to be returned by a
driver must be copied into the associated buffer from which the system then copies them
into the user address space.

2) The read, write, and ioctl entry points in device drivers must return 0 or an error code
from <errno.h>.

3) The read and write entry points should no longer reference global variables out of the
user area. A new uio parameter is passed to these routines which should, in turn, be
passed to the physio () routine if the driver supports raw i/o.

4) Disk drivers which are to support swapping/paging must have a new routine which
returns the size, in sectors, of a disk partition. This value is used in calculating the size
of swapping/paging areas at boot time.

5) Code which previously used the iomove, passc, or cpass routines will have to be modified
to use the new uiomove, ureadc, and uwritec routines. The new routines all use a uio
structure to communicate the i/o base, offset, count, and segflag values previously passed
globally in the user area.

6) Include files have been rearranged and new ones have been created. Common machine­
dependent files such as mtpr.h, pte.h, reg.h, and psl.h are no longer in the "h" directory;
see below under organizational changes.

7) The handling of UNIBUS resets has changed. The reset routine should no longer deallo­
cate UNIBUS resources allocated to pending i/o requests (this is done in the ubareset
routine). For most drivers this means the reset routine simply needs to invalidate any
ub info values stored in local data structures to insure new UNIBUS resources will be
allocated the next time the "device start" routine is entered.

2. Organizational changes

The directory organization and file names are very different from 4.lBSD. The new
directory layout breaks machine-specific and network-specific portions of the system out into
separate directories. A new file, machine is a symbolic link to a directory for the target
machine, e.g. vax. This allows a single set of sources to be shared between multiple machine
types (by including header files as " . ./machine/file"). The directory naming conventions, as
they relate to the network support, are intended to allow expansion in supporting multiple
"protocol families". The following directories comprise the system sources for the VAX:

/sys/h
/sys/sys
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netpup
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

machine independent include files
machine independent system source files
site configuration files and basic templates
network independent, but network related code
DARPA Internet code
IMP support code
PUP-1 support code
VAX specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
VAX UNIBUS device drivers and related code

Files indicated as machine independent are shared among 4.2BSD systems running on
the VAX and Motorola 68010. Files indicated as machine dependent are located in direc­
tories indicative of the machine on which they are used; the 4.2BSD release from Berkeley

Changes to the Kernel 5-5

contains support only for the VAX. Files marked network independent form the "core" of
the networking subsystem, and are shared among all network software; the 4.2BSD release
from Berkeley contains complete support only for the DARPA Internet protocols IP, TCP,
UDP, and ICMP.

3. Bug fixes and changes

This section contains a brief description of each file which is not part of the network
subsystem, and also indicates important changes and bug fixes applied to the source code con­
tained in the file.

3.1. /sys/h

Files residing here are intended to be machine independent. Consequently, the header
files for device drivers which were present in this directory in 4.lBSD have been moved to
other directories; eig. /sys/vaxuba. Many files which had been duplicated in /usr/include are
now present only in /sys/h. Further, the 4.lBSD /usr/include/sys directory is now normally a
symbolic link to this directory. By having only a single copy of these files the "multiple
update" problem no longer occurs. (It is still possible to have /usr/include/sys be a copy of
the /sys/h for sites where it is not feasible to allow the general user community access to the
system source code.)

The following files are new to /sys/h in 4.2BSD:

domain.h

errno.h

fs.h

gprof.h

kernel.h

mbuf.h

mman.h

nami.h

protosw.h

quota.h

resource.h

socket.h

socketvar.h

ttychars.h

describes the internal structure of a communications domain; part of the new
ipc facilities

had previously been only in /usr/include; the file /usr/include/errno.h is now a
symbolic link to this file

replaces the old filsys.h description of the file system organization

describes various data structures used in profiling the kernel; see gprof (1) for
details

is an offshoot of systm.h and param.h; contains constants and definitions
related to the logical UNIX "kernel"

describes the memory managment support used mostly by the network; see
"4.2BSD Networking Implementation Notes" for more information

contains definitions for planned changes to the memory management facilities
(not implemented in 4.2BSD)

defines various structures and manifest constants used in conjunctions with
the namei routine (part of this file reflects future plans for changes to namei
rather than current use)

contains a description of the protocol switch table and related manifest con­
stants and data structures use in communicating with routines located in the
table

contains definitions related to the new disk quota facilities

contains definitions used in the getrusage, getrlimit, and getpriority system
calls (among others)

contains user-visible definitions related to the new socket ipc facilities

contains implementation definitions for the socket ipc facilities

contains definitions related to tty character handling; in particular, manifest
constants for the system standard erase, kill, interrupt, quit, etc. characters
are stored here (all the appropriate user programs use these manifest
definitions)

5-6 Changes to the Kernel

ttydev.h

uio.h

un.h
unpcb.h

wait.h

contains definitions related to hardware specific portions of tty handling (such
as baud rates); to be expanded in the future

contains definitions for users wishing to use the new scatter-gather i/o facili­
ties; also contains the kernel uio structure used in implementing scatter­
gather i/o

contains user-visible definitions related to the "unix" ipc domain

contains the definition of the protocol control block used in the "unix" ipc
domain

contains definitions used in the wait and wait3 (2) system calls; previously in
/usr/include/wait.h

The following files have undergone significant change:

buf.h reflects the changes made to the buffer cache for the new file system organiza­
tion - buffers are variable sized with pages allocated to buffers on demand
from a pool of pages dedicated to the buffer cache; one new structure member
has been added to eliminate overloading of a commonly unreferenced struc­
ture member; a new flag B CALL, when set, causes the function b iodone to
be called when i/o completes on a buffer (this is used to wakeup the pageout
daemon); macros have been added for manipulating the buffer queues, these
replace the previous subroutines used to insert and delete buffers from the
queues

conf.h

dir.h

file.h

inode.h

ioctl.h

mount.h
param.h

reflects changes made in the handling of swap space and changes made for the
new select (2) system call; the block device table has a new member, d psize,
which returns the size of a disk partition, in sectors, given a major/minor
value; the character device table has a new member, d select, which is passed
a dev t value and an FREAD (FWRITE) flag and returns 1 when data may be
read (written), and 0 otherwise; the swdevt structure now includes the size, in
sectors, of a swap partition

is completely different since directory entries are now variable length;
definitions for the user level interface routines described in directory (3) are
also present

has a very different file structure definition and definitions for the new open
and fiock system calls; symbolic definitions for many constants commonly
supplied to access and lseek, are also present

reflects the new hashed cacheing scheme as well additions made to the on­
disk and in-core inodes; on-disk inodes now contain a count of the actual
number of disk blocks allocated a file (used mostly by the disk quota facili­
ties), larger time stamps (for planned changes), more direct block pointers,
and room for future growth; in-core inodes have new fields for the advisory
locking facilities, a back pointer to the file system super block information (to
eliminate lookups), and a pointer to a structure used in implementing disk
quotas.

has all request codes constructed from IO, IOR, IOW, and IOWR macros
which encode whether the request requires data copied in, out, or in and out
of the kernel address space; the size of the data parameter (in bytes) is also
encoded in the request, allowing the ioctl() routine to perform all user-kernel
address space copies

the mount structure has a new member used in the disk quota facilities

has had numerous items deleted from it; in particular, many definitions logi­
cally part of the "kernel" have been moved to kernel.h, and machine­
dependent values and definitions are now found in param.h files located in
machine/param.h; contains a manifest constant, NGROUPS, which defines

proc.h

signal.h

stat.h

systm.h

time.h

tty.h

user.h

vmmac.h

vmparam.h

vmsystm.h

3.2. /sys/sys

Changes to the Kernel 5-7

the maximum size of the group access list

has changed extensively as a result of the new signals, the different resource
usage structure, the disk quotas, and the new timers; in addition, new
members are present to simplify searching the process tree for siblings; the
SDLYU and SDETACH bits are gone, the former is replaced by a second
parameter to pagein, the latter is no longer needed due to changes in the han­
dling of open's on /dev/tty by processes which have had their controlling ter­
minal revoked with vhangup

reflects the new signal facilities; several new signals have been added: SIGIO
for signal driven i/o; SIGURG for notification when an urgent condition
arises; and SIGPROF and SIGVTALRM for the new timer facilities; struc­
tures used in the sigvec (2) and sigstack (2) system calls, as well as signal
handler invocations are defined here

has been updated to reflect the changes to the inode structure; in addition a
new field st blksize contains an "optimal blocking factor" for performing i/o
(for files this is the block size of the underlying file system)

has been trimmed back a bit as various items were moved to kernel.h

contains the definitions for the new time and interval timer facilities; time
zone definitions for the half dozen time zones understood by the system are
also included here

reflects changes made to the internal structure of the terminal handler; the
"local" structures have been merged into the standard flags and character
definitions though the user interface is virtually identical to that of 4. lBSD;
the TTYHOG value has been changed from 256 to 255 to account for a count­
ing problem in the terminal handler on input buffer overflow

has been extensively modified; members have been grouped and categorized
to reflect the "4.2BSD System Manual" presentation; new members have been
added and existing members changed to reflect: the new groups facilities,
changes to resource accounting and limiting, new timer facilities, and new sig­
nal facilities

has had many macro definitions changed to eliminate assumptions about the
hardware virtual memory support; in particular, the stack and user area page
table maps are no longer assumed to be adjacent or mapped by a single page
table base register

now includes machine-dependent definitions from a file machine/vmparam.h.

has had several machine-dependent definitions moved to machine/vmparam.h

This directory contains the "mainstream" kernel code. Files in this directory are
intended to be shared between 4.2BSD implementations on all machines. As there is little
correspondence between the current files in this directory and those which were present in
4.lBSD a general overview of each files's contents will be presented rather than a file-by-file
comparison.

Files in the sys directory are named with prefixes which indicate their placement in the
internal system layering. The following table summarizes these naming eonventions.

5-8 Changes to the Kernel

init
kern
quota
sys
tty
ufs
uipc
vm

system initialization
kernel (authentication, process management, etc.)
disk quotas
system calls and similar
terminal handling
file system
interprocess communication
virtual memory

3.2.1. Initialization code

init main.c
init sysent.c

contains system startup code

contains the definition of the sysent table - the table of system calls sup­
ported by 4.2BSD

3.2.2. Kernel-level support
kern acct.c
kern clock.c

contains code used in per-process accounting

contains code for clock processing; work was done here to minimize time
spent in the hardclock routine; support for kernel profiling and statistics
collection from an alternate clock source have been added; a bug which
caused the system to lose time has been fixed; the code which drained ter­
minal multiplexor silos has been made the default mode of operation and
moved to locore.s

kern descrip.c contains code for management of descriptors; descriptor related system calls
such as dup and close (the upper-most levels) are present here

kern exec.c
kern exit.c

kern fork.c
kern mman.c

kern proc.c

kern prot.c

contains code for the exec system call

contains code for the exit system call

contains code for the fork (and vfork) system call

contains code for memory management related calls; the contents of this
file is expected to change when the revamped memory management facili-
ties are added to the system

contains code related to process management; in particular, support rou­
tines for process groups

contains code related to access control and protection; the notions of user
ID, group ID, and the group access list are implemented here

kern resource.c code related to resource accounting and limits; the getrusage and "get" and
"set" resource limit system calls are found here

kern sig.c the signal facilities; in particular, kernel level routines for posting and pro­
cessing signals

kern subr.c

kern synch.c

kern time.c

kern xxx.c

support routines for manipulating the uio structure: uiomove, ureadc, and
uwritec

code related to process synchonization and scheduling: sleep and wakeup
among others

code related to processing time; the handling of interval timers and time of
day

miscellaneous system facilities and code for supporting 4.lBSD compatibil­
ity mode (kernel level)

Changes to the Kernel 5-9

3.2.3. Disk quotas

quota kern.c

quota subr.c

quota sys.c

quota ufs.c

"kernel" of disk quota suppport

miscellaneous support routines for disk quotas

disk quota system call routines

portions of the disk quota facilities which interface to the file system rou­
tines

3.2.4. General subroutines

subr mcount.c code used when profiling the kernel

subr prf.c print{ and friends; also, code related to handling of the diagnostic message
buffer

subr rmap.c

subr xxx.c

subroutines which manage resource maps

miscellaneous routines and code for routines implemented with special
VAX instructions, e.g. bcopy

3.2.5. System level support

sys generic.c code for the upper-most levels of the "generic" system calls: read, write,
ioctl, and select; a "must read" file for the system guru trying to shake out
4.lBSD bad habits

sys inode.c code supporting the "generic" system calls of sys generic.c as they apply to
inodes; the guts of the byte stream file i/o interface

sys process.c code related to process debugging: ptrace and its support routine procxmt;
this file is expected to change as better process debugging facilities are
developed

sys socket.c code supporting the "generic" system calls of sys generic.c as they apply to
sockets

3.2.6. Terminal handling

tty.c

tty bk.c

tty conf.c

tty pty.c

tty subr.c

tty tb.c

tty tty.c

the terminal handler proper; both 4.lBSD and version 7 terminal interfaces
have been merged into a single set of routines which are selected as line dis­
ciplines; a bug which caused new line delays past column 127 to be calcu­
lated incorrectly has been fixed; the high water marks for terminals running
in tandem mode at 19.2 or 38.4 kilobaud have been upped

the old Berknet line discipline (defunct)

initialized data structures related to terminal handling;

support for pseudo-terminals; actually two device drivers in one; additions
over 4.lBSD pseudo-terminals include a simple "packet protocol" used to
support flow-control and output flushing on interrupt, as well as a "tran­
sparent" mode used in programs such as emacs

c-list support routines

two line disciplines for supporting RS232 interfaces to Genisco and Hitachi
tablets

trivial support routines for "/dev/tty"

3.2. 7. File system support

ufs alloc.c code which handles allocation and deallocation of file system related
resources: disk blocks, on-disk inodes, etc.

5-10 Changes to the Kernel

ufs bio.c block i/o support; the buffer cache proper; see description of buf.h and "A
Fast File System for UNIX" for information

ufs bmap.c code which handles logical file system to logical disk block number map­
ping; understands structure of indirect blocks and files with holes; handles
automatic extension of files on write

ufs dsort.c sort routine implementing prioritized seek sort algorithm for disk i/o opera­
tions

ufs fio.c code handling file system specific issues of access control and protection

ufs inode.c inode management routines; in-core inodes are now hashed and cached;
inode synchronization has been revamped since 4.lBSD to eliminate race
conditions present in 4.1

ufs mount.c code related to demountable file systems

ufs nami.c the namei routine (and related support routines) - the routine that maps
pathnames to inode numbers

ufs subr.c miscellaneous subroutines: this code is shared with certain user programs
such as fsck (8); for a good time look at the bufstats routine in this file

ufs syscalls.c file system related system calls, everything from open to unlink; many new
system calls are found here: rename, mkdir, rmdir, truncate, etc.

ufs tables.c static tables used in block and fragment accounting; this file is shared with
user programs such as fsck (8)°

ufs xxx.c miscellaneous routines and 4.lBSD compatibility code; all of the code which
still understands the old inode format is in here

3.2.8. Interprocess communication
uipc domain.c code implementing the "communication domain" concept; this file must be

augmented to incorporate new domains

uipc mbuf.c memory management routines for the ipc and network facilities; refer to the
document "4.2BSD Networking Implementation Notes" for a detailed
description of the routines in this file

uipc pipe.c leftover code for connecting two sockets into a pipe; actually a special case
of the code for the socketpair system call

uipc proto.c UNIX ipc communication domain configuration definitions; contains UNIX
domain data structure initialization

uipc socket.c top level socket support routines; these routines handle the interface to the
protocol request routines, move data between user address space and socket
data queues, understand the majority of the logic in process synchroniza­
tion as it relates to the ipc facilities

uipc socket2.c lower level socket support routines; provide nitty gritty bit twiddling of
socket data structures; manage placement of data on socket data queues

uipc syscalls.c user interface code to ipc system calls: socket, bind, connect, accept, etc.;
concerned exclusively with system call argument passing and validation

uipc usrreq.c UNIX ipc domain support; user request routine and supporting utility rou­
tines

3.2.9. Virtual memory support
The code in the virtual memory subsystem has changed very little from 4.lBSD; changes

made in these files were either to gain portability, handle the new swap space configuration
scheme, or fix bugs.

vm drum.c

vmmem.c

vm mon.c

vm page.c

vm proc.c

vm pt.c

vm sched.c

vm subr.c

vm sw.c

vm swap.c

vm swp.c

vm text.c

3.3. /sys/conf

Changes to the Kernel 5-11

code for the management of disk space used in paging and swapping

management of physical memory; the "core map" is implemented here as
well as the routines which lock down pages for physical i/o (the latter will
have to change when the memory management facilities are modified to
support sharing of pages); a sign extension bug on block numbers extracted
from the core map has been fixed (this caused the system to crash with cer­
tain disk partition layouts on RA81 disks)

support for virtual memory monitoring; code in this file is included in the
system only if the PGINPROF and/or TRACE options are configured

the code which handles and processes page faults: pagein; race conditions in
accessing pages in transit and requests to lock pages for raw i/o have been
fixed in this code; a major path through pagein whose sole purpose was to
implement the software simulated reference bit has been "parallel coded"
in assembly language (this appears to decrease system time by at least 5%
when a system is paging heavily); pagein now has a second parameter indi­
cating if the page to be faulted in should be left locked (this eliminated the
need for the SDLYU flag in the proc structure)

mainly code to manage virtual memory allocation during process creation
and destruction (the virtual memory equivalent of "passing the buck" is
done here).

code for manipulating process page tables; knowledge of the user area is
found here as it relates to the user address space page tables

the code for process 0, the scheduler, lives here; other routines which moni­
tor and meter virtual memory activity (used in implementing high level
scheduling policies) also are present; this code has been better parameter­
ized to isolate machine-dependent heuristics used in the scheduling policies

miscellaneous routines: some for manipulating accessability of virtual
memory, others for mapping virtual addresses to logical segments (text,
data, stack)

indirect driver for interleaved, multi-controller, paging area; modified to
support interleaved partitions of different sizes

code to handle process related issues of swapping

code to handle swap i/o

code to handle shared text segments - the "text" table

This directory contains files used in configuring systems. The format of configuration
files has changed slightly; it is described completely in a new document "Building 4.2BSD
UNIX Systems with Config". Several new files exist for use by the config(8) program, and
several old files have had their meaning changed slightly.

LINT a new configuration file for use in linting kernels

devices.vax maps block device names to major device numbers (on the VAX)

files

files.xxx

files.vax

now has only files containing machine-independent code

(where xxx is a system name) optional, xxx-specific files files

new file describing files which contain machine-dependent code

makefile.vax makefile template specific to the VAX

param.c updated calculations of ntext and nfile to reflect network requirements; new
quantities added for disk quotas

5-12 Changes to the Kernel

3.3.1. /sys/vaxuba

This directory contains UNIBUS device drivers and their related include files. The
latter have moved from /sys/h in an effort to isolate machine-dependent portions of the sys­
tem. The following device drivers were not present in the 4. lBSD release.

ad.c a driver for the Data Translation AID converter

ik.c an Ikonas frame buffer graphics interphase; user access to the device is imple­
mented by mapping the device registers directly into the virtual address space of a
user (the routines to map memory are included in uba.c only if an Ikonas is
configured in the system)

kgclock.ca driver for a DLll-W or KLll-W used as an auxiliary real-time clock source for
kernel profiling and/or statistics gathering; if this device is present, the system will
automatically collect its i/o statistics (and if profiling, pc samples) off the secondary
clock; very useful in kernel profiling as the second clock source eliminates most of
the statistical anomalies and shows the true time spent in the clock routine

ps.c driver for an Evans and Sutherland Picture System 2

rl.c driver for RLll controller with RL02 cartridge disks; does not support RLOl disks
though it should only require additions to disk geometry and partition tables

rx.c driver for RX211 floppy disk controller; provides both block and character device
interfaces; ioctl calls support floppy disk formatting and "deleted data mark" sens­
ing and writing; makes a great paging device

ut.c driver for tape controllers which emulate a TU45 on the UNIBUS; in particular,
the System Industries Model 9700 triple density tape drive

uu.c driver for dual UNIBUS TU58 cartridge tape cassettes accessed through a DLll
serial line; uses assembly language code in locore.s which provides pseudo-OMA on
input (necessary to avoid data overruns); using this driver while the system runs
multi-user degrades response severely (developed at Berkeley exclusively to pro­
duce distribution TU58 cassettes)

In addition to the above device drivers, many drivers present in 4.lBSD now sport
corresponding include files which contain device register definitions. For example, the DHll
driver is now broken into three files: dh.c, dhreg.h, and dmreg.h.

The following drivers have been significantly modified, or had bugs fixed in them, since
the 4.lBSD release:

dh.c changes to reflect the revised tty data organization

dmf.c

dz.c

lp.c

rk.c

tm.c

a bug where device register accesses caused unwitting modification of certain status
bits has been fixed; modem control has been fixed; a remnant of the DHll include
file which caused incorrect definitions for even/odd parity has been fixed; changes
to reflect the revised tty data organization

now supports the DZ32; changes to reflect the revised tty data organization

now takes a non-zero flags value specified in the configuration file as the printer
width (default is 132 columns); thus, to configure an 80 column printer, .include
"flags 80" in the device specification

a race condition has been fixed where a seek finishing on one drive appeared as an
i/o transfer completeing on another (this bug actually was present in all UNIBUS
disk drivers); changes for uio and swap space configuration

a typo which made the system crash with multiple slaves on a single controller has
been fixed; an incorrect priority level change in the watchdog timer routine which
caused the system to crash when a device operation timed out has been fixed;
changes for uio processing of raw i/o

ts.c

uba.c

uda.c

up.c

va.c

Changes to the Kernel 5-13

changes for uio processing of raw i/o

a new support routine for allocating UNIBUS memory for memory-mapped devices
such as the 3Com Ethernet interface; the handling of UNIBUS resets has been
changed, all UNIBUS resources are now reclaimed in the ubareset routine prior to
calling individual device driver reset routines - this implies driver reset routines
should no longer free up allocated UNIBUS resources; new routines for mapping
UNIBUS memory into the virtual address space of a process have been added to
support the Ikonas device driver; changes to fix the race condition described above
in the RK07 device driver; processes awaiting UNIBUS map registers now sleep on
a different event than those waiting for buffered data paths

the problem with multiplexing buffered data paths on an 11/750 has been fixed; a
bug in the setup of the ui dk field has been fixed; now properly defines the field
indicating the disk transfer rate; changes for uio processing and swap space
configuration

now supports ECC correction and bad sector forwarding; significant changes have
been made to make configuration of various disk drives simple (by probing the
holding register and using the resultant value indicating the number of tracks on
the disk); the race condition described under rk.c has been fixed; references to
UNIBUS map registers are now done with longword instructions so the device
driver does not cause the system to crash when an ECC or bad sector error occurs
on a disk attached to a 730 UNIBUS; the upSDIST/upRDIST parameters which
control the use of search and seek operations on controllers with multiple drives
have been made drive dependent; a bug whereby the probe routine would belive
certain non-existant drives were present has been fixed; changes for uio processing
and swap space configuration

has been rewritten to honor the software support for exclusive access to the
UNIBUS so that the device may coexist on the same UNIBUS with RK07 disk
drives; the driver now works with controllers which have a GO bit

3.3.2. /sys/vax

The following files are new in 4.2BSD:

crtO.ex

frame.h

in cksum.c

param.h

edit script for creating a profiled kernel

copied from /usr/include

checksum routine for the DARPA Internet protocols

machine-dependent portion of /sys/h/param.h

pup cksum.c checksum routine for PUP-I protocols

rsp.h protocol definitions for communicating with a TU58

sys machdep.cmachine-dependent portion of the "sys*" files of /sys/sys

ufs machdep.cmachine-dependent portion of the "ufs *" files of /sys/sys

vm machdep.cmachine-dependent portion of the "vm *"files of /sys/sys

vmparam.h machine-dependent portion of /sys/h/vmparam.h

The following files have been modified for 4.2BSD:

Locore.c

asm.sed

autoconf.c

includes new definitions for linting the network and ipc code

now massages insque, remque, and various routines which do byte swapping
into assembly language

handles MASSBUS drives which come on-line after the initial
autoconfiguration process; sizes and configures swap space at boot time in
addition to calculating the swap area allocation parameters dmtext, dmmax,
and dmmin (which were manifest constants in 4.lBSD); calculates the disk

5-14 Changes to the Kernel

conf.c

partition offset for system dumps at boot time to take into account variable
sized swap areas; now uses the per-driver array of standard control status
register addresses when probing for devices on the UNIBUS; now allows
MASSBUS tapes and disks to be wildcarded across controllers

uses many "local" spaces for new and uncommon device drivers

genassym.c

locore.s

generates several new definitions for use in locore.s

includes code to vector software interrupts to protocol processing modules;
assembly language assist routines for the console and UNIBUS TU58 cassette
drives; a new routine, Fastreclaim is a fast coding of a major path through the
pagein routine; copyin and copyout now handle greater than 64Kbyte data
copies and return EF AULT on failure; understands the new signal trampoline
code; now contains code for draining terminal multiplexor silos at clock time;
a bug where a the translation buffer was sometimes being improperly flushed
during a resume operation has been fixed

machdep.c a bug which caused memory errors to not be reported on 11/750's has been
fixed; has new code for handling the new signals; recovers from translation
buffer parity fault machine checks apparently caused by substandard memory
chips used in many 11/750's; includes optional code to pinpoint bad memory
chips on Trendata memory boards; the machine check routine now calls the
memerr routine to print out the memory controller status registers in case the
fault occurred because of a memory error

mem.c

pcb.h

now has correct definitions to enable correctable memory error reporting on
11/750's: DEC documentation incorrectly specifies use of the ICRD bit

has changes related to the new signal trampoline code

swapgeneric.csupports more devices which can be used as a generic root device; interacts
with the new swap configuration code to size the swap area properly when
running a generic system; understands the special "swap on root" device syn­
tax used when installing the system

trap.c can be compiled with a SYSCALLTRACE define to allow system calls to be
traced when the variable syscalltrace is non-zero;

tu.c includes (limited) support for the TU58 console cassette on the 11/750,
sufficient for use in single-user mode; supports the use of the MRSP ROM on
the 11/750.

3.3.3. /sys/vaxmba

The following bug fixes and modifications have been applied to the MASSBUS device
drivers:

hp.c

mba.c

a large number of disk drives attached to second vendor disk controllers are now
automatically recognized at boot time by probing the holding register and using
disk geometry information to decide what kind of drive is present; the
hpSDIST/hpRDIST parameters that control seek and search operations on con­
trollers with multiple drives have been made a per-drive parameter; a bug where
the sector number reported on a hard error was off by one has been fixed; the error
recovery code now searches the bad sector table when a header CRC error occurs;
the error recovery code now handles bad sectors on tracks which also have skip sec­
tors; a bug in the handling of ECC errors has been fixed; many separate driver data
structures have been consolidated into the software carrier structure; the driver
handles the ML-11 solid-state disk

now autoconfigures MASSBUS tapes and disks which "come on-line" after the ini­
tial boot

Changes to the Kernel 5-15

4. Standalone support

This section describes changes made to the standalone i/o facilities and the new methods
used in system bootstrapping.

4.1. Disk formatting

A new disk formatting program has been developed for use with non-DEC UNIBUS and
MASSBUS disk controllers. The format (8V) program has been tested mainly with disk drives
attached to Emulex MASSBUS and UNIBUS disk controllers, but should operate with any
controller which handles bad sector forwarding in an identical fashion to DEC RM03/RM05 or
RM80 (but not RP06) disk controllers. The program runs standalone formatting disk headers
and creating a bad sector table in the DEC standard 144 format.

4.2. Standalone i/o library

Changes to support more complex standalone i/o applications as well as changes for the new
file system organization, have resulted in significant revisions to the standalone i/o library.
Device drivers now support a new entry point for ioctl requests and library routines now
return error codes a la the UNIX system calls. In addition, standalone i/o library routines now
make many more internal consistency checks to verify data structures have not been cor­
rupted by faulty device drivers and that i/o errors have not occurred when reading critical file
system information. In conjunction with the new disk formatter, the up and hp standalone
drivers have been rewritten to support ECC correction and bad sector handling. These drivers
are used in bootstrapping from the console media on 11/780's and 11/730's thereby eliminating
the requirement for error free root partitions on disks attached to hp and up controllers.
Many bugs in the standalone tape drivers have been fixed.

4.3. System bootstrapping

On 11/780's and 11/730's, the console device is still used to load the "boot" program.
This in turn loads the system image from the root file system.

The method by which the system bootstraps on ll/750's is different in 4.2BSD. The sys­
tem is still bootstrapped from disk using a boot block in sector 0 of the root file system parti­
tion, but now this boot block simply reads in the next 7.5 kilobytes. The 7.5 kilobyte.program
is a version of the "/boot" program loaded only with the device driver required to read the
"/boot" program from the root file system. The "/boot" program then reads in the system
image, as done on 11/780's and 11/730's.

The additional level of bootstrap code was done to simplify the sector 0 boot programs
and minimize the total amount of assembly language code which had to be maintained. It was
also expected that 7.5 kilobytes would be sufficient to allow the new hp and up standalone
drivers which support ECC correction and bad sector handling to be used. Unfortunately, the
standalone system has not yet been trimmed down to allow the second level boot programs,
loaded with the new drivers, to fit in the space provided. Sites which have Winchester disk
drives with bad sectors in the root file system partition and which require this support should
be able to trim the size of the second level boot program to make it fit.

Installing and Operating 4.2BSD 5-17

Installing and Operating 4.2BSD on the VAX

July 21, 1983

Samuel J. Leffler

William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

1. INTRODUCTION

This document explains how to install the 4.2BSD release of the Berkeley version of
UNIX for the VAX on your system. Due to the new file system organization used in 4.2BSD,
no matter what version of UNIX you may currently be running you will have to perform a full
bootstrap from the distribution tape; the techniques for converting "old" systems are dis­
cussed in a chapter 3 of this document.

1.1. Hardware supported

This distribution can be booted on a VAX 11/780, VAX 11/750, or VAX 11/730 cpu with
any of the following disks:

DEC MASSBUS:
EMULEX MASSBUS:
DEC UNIBUS:
EMULEX SC-21 V UNIBUS*:
DEC JDC:

RM03, RM05, RM80, RP06, RP07
AMPEX 300M, 330M, CDC 300M, FUJITSU 404M
RK07, RASO, RA81, RASO
AMPEX 300M, 330M, CDC 300M, FUJITSU 160M, 404M
R80, RL02

The tape drives supported by this distribution are:

DEC MASSBUS:
DEC UNIBUS:
EMULEX TC-11 UNIBUS:
TU45 UNIBUS*:

TE16, TU45, TU77, TU78
TSU, TU80
KENNEDY 9300, CIPHER
SI 9700

The tapes and disks may be on any available UNIBUS or MASSBUS adapter at any slot
with the proviso that the tape device must be slave number 0 on the formatter if it is a
MASSBUS tape drive.

DEC, VAX, IDC, UNIBUS and MASSBUS are trademarks of Digital Equipment Corporation.
UNIX is a Trademark of Bell Laboratories.
* Other UNIBUS controllers and drives may be easily usable with the system, but will likely require minor
modifications to the system to allow bootstrapping. The EMULEX disk and SI tape controllers, and the
drives shown here are known to work as bootstrap devices.

5-18 Installing and Operating 4.2BSD

1.2. Distribution format

The basic distribution contains the following items:

(2) 1600bpi 2400' magnetic tapes,
(1) TU58 console cassette, and
(1) RXOl console floppy disk.

Installation on any machine requires a tape unit. Since certain standard VAX packages do not
include a tape drive, this means one must either borrow one from another VAX system or one
must be purchased separately. The console media distributed with the system are not suitable
for use as the standard console media; their intended use is only for installation.

The distribution does not fit on several standard VAX configurations which
contain only small disks. If your hardware configuration does not provide at least 75
Megabytes of disk space you can still install the distribution, but you will probably have to
operate without source for the user level commands and, possibly, the source for the operating
system. The previous RK07-only distribution format provided by our group is no longer avail­
able. Further, no attempt has ever been made to install the system on the standard VAX-
11/730 hardware configuration from DEC which contains only dual RL02 disk drives (though
the distribution tape may be bootstrapped on an RLll controller and the system provides
support for RL02 disk drives either on an IDC or an RLll). The labels on the two distribu­
tion tapes indicate the amount of disk space each tape file occupies, these should be used in
selecting file system layouts on systems with little disk space.

If you have the facilities, it is a good idea immediately to copy the magnetic tapes in the
distribution kit to guard against disaster. The tapes are 9-track 1600 BPI and contain some
512-byte records followed by many 10240-byte records. There are interspersed tape marks;
end-of-tape is signaled by a double end-of-file.

The basic bootstrap material is present in three short files at the beginning of the
bootstrap tape. The first file on the tape contains preliminary bootstrapping programs. This
is followed by a binary image of a 400 kilobyte "mini root" file system. Following the mini
root file is a full dump of the root file system (see dump (8)**). Additional files on the first
and second tapes contain tape archive images (see tar(l)): the fourth file on the first tape con­
tains source for the system (/sys); the fifth file on the first tape contains most of the files in
the file system /usr, except the source (/usr/src) which is in the first file on the second tape.
The second file on the second tape contains software contributed by the user community, refer
to the accompanying documentation for a description of its contents and an explanation of
how it should be installed.

1.3. VAX hardware terminology

This section gives a short discussion of VAX hardware terminology to help you get your
bearings.

If you have MASSBUS disks and tapes it is necessary to know the MASSBUS they are
attached to, at least for the purposes of bootstrapping and system description. The
MASSBUSes can have up to 8 devices attached to them. A disk counts as a device. A tape
formatter counts as a device, and several tape drives may be attached to a formatter. If you
have a separate MASSBUS adapter for a disk and one for a tape then it is conventional to put
the disk as unit 0 on the MASSBUS with the lowest "TR" number, and the tape formatter as
unit 0 on the next MASSBUS. On a 11/780 this would correspond to having the disk on
"mbaO" at "tr8" and the tape on "mbal" at "tr9". Here the MASSBUS adapter with the
lowest TR number has been called "mbaO" and the one with the next lowest number is called
"mbal".

** References of the form X(Y) mean the subsection named X in section Y of the UNIX programmer's
manual.

Installing and Operating 4.2BSD 5-19

To find out the MASSBUS your tape and disk are on you can examine the cabling and
the unit numbers or your site maintenance guide. Do not be fooled into thinking that the
number on the front of the tape drive is a device number; it is a slave number, one of several
possible tapes on the single tape formatter. For bootstrapping the slave number must be 0.
The formatter unit number may be anything distinct from the other numbers on the same
MASSBUS, but you must know what it is.

The MASSBUS devices are known by several different names by DEC software and by
UNIX. At various times it is necessary to know both names. There is, of course, the name of
the device like "RM03" or "RM80"; these are easy to remember because they are printed on
the front of the device. DEC also gives devices names by the names of the driver in the sys­
tem using a naming convention that reflects the interconnect topology of the machine. The
first letter of such a name is a "D" for a disk, the second letter depends on the type of the
drive, "DR" for RM03, RM05, and RM80's, "DB" for RP06's. The next letter is related to the
interconnect; DEC calls the first MASSBUS adapter "A", the second "B", etc. Thus "DRA"
is a RM drive on the first MASSBUS adapter. Finally, the name ends in a digit correspond­
ing to the unit number for the device on the MASSBUS, i.e. "DRAO" is a disk at the first dev­
ice slot on the first MASSBUS adapter and is a RM disk.

1.4. UNIX device naming

UNIX has a set of names for devices, which are different from the DEC names for the
devices, viz.:

RM/RP disks hp
TE/TU tapes ht
TU78 tape mt

The normal standalone system, used to bootstrap the full UNIX system, uses device
names:

xx(y,z)

where xx is either hp, ht, or mt. The value y specifies the MASSBUS to use and also the
device. It is computed as

8 * mba +device

Thus mbaO device 0 would have a y value of 0 while mbal device 0 would have a y value of 8.
The z value is interpreted differently for tapes and· disks: for disks it is a disk partition (in
the range 0-7), and for tapes it is a file number on the tape.

Each UNIX physical disk is divided into 8 logical disk partitions, each of which may
occupy any consecutive cylinder range on the physical device. The cylinders occupied by the
8 partitions for each drive type are specified in section 4 of the programmers manual and in
the disk description file /etc/disktab (c.f. disktab(5)).* Each partition may be used for either
a raw data area such as a paging area or to store a UNIX file system. It is conventional for
the first partition on a disk to be used to store a root file system, from which UNIX may be
bootstrapped. The second partition is traditionally used as a paging area, and the rest of the
disk is divided into spaces for additional "mounted file systems" by use of-one or more addi­
tional partitions.

The third logical partition of each physical disk also has a conventional usage: it allows
access to the entire physical device, including the bad sector forwarding information recorded
at the end of the disk (one track plus 126 sectors). It is occasionally used to store a single

* It is possible to change the partitions by changing the code for the table in the disk driver; since it is often
desirable to do this it is clear that these tables should be read off each pack; they may be in a future version
of the system.

5-20 Installing and Operating 4.2BSD

large file system or to access the entire pack when making a copy of it on another. Care must
be taken when using this partition to not overwrite the last few tracks and thereby clobber the
bad sector information.

The disk partitions have names in the standalone system of the form "hp(x,y)" with
varying y as described above. Thus partition 1 of a RM05 on mbaO at drive 0 would be
"hp(0,1)". When not running standalone, this partition would normally be available as
"/dev/hpOb". Here the prefix "/dev" is the name of the directory where all "special files" nor­
mally live, the "hp" serves an obvious purpose, the "O" identifies this as a partition of hp
drive number "O" and the "b" identifies this as the first partition (where we number from 0,
the O'th partition being "hpOa".)

In all simple cases, a drive with unit number 0 (in its unit plug on the front of the drive)
will be called unit 0 in its UNIX file name. This is not, however, strictly necessary, since the
system has a level of indirection in this naming. This can be taken advantage of to make the
system less dependent on the interconnect topology, and to make reconfiguration after
hardware failure extremely easy. We will not discuss that now.

Returning to the discussion of the standalone system, we recall that tapes also took two
integer parameters. In the normal case where the tape formatter is unit 0 on the second mba
(mbal), the files on the tape have names "ht(S,O)'', "ht(S,l)", etc. Here "file" means a tape
file containing a single data stream. The distribution tapes have data structures in the tape
files and though the tapes contain only 6 tape files, they contain several thousand UNIX files.

For the UNIBUS, there are also conventional names. The important DEC names to
know are DM?? for RK07 drives and DU?? for drives on a UDA50. For example, RK07 drive
0 on a controller on the first UNIBUS on the machine is "DMAO". UNIX calls such a device
a "bk" and the standalone name for the first partition of such a device is "hk(O,O)". If the
controller were on the second UNIBUS its name would be "hk(S,O)". If we wished to access
the first partition of a RK07 drive 1 on ubaO we would use "hk(l,O)".

The UNIBUS disk and tape names used by UNIX are:

RK disks bk
TS tapes ts
UDA disks ra
IDC disks rb
SMD disks up
TM tapes tm
TU tapes ut

Here SMD disks are disks on an RM emulating controller on the UNIBUS, and TM
tapes are tapes on a controller that emulates the DEC TM-11. TU tapes are tapes on a con­
troller that emulates the DEC TU45. IDC disks are disks on an 11/730 Integral Disk Con­
troller. TS tapes are tapes on a controller that emulates the DEC TS-11 (e.g. a TUSO). The
naming conventions for partitions in UNIBUS disks and files in UNIBUS tapes are the same

' as those for MASSBUS disks and tapes.

1.5. UNIX devices: block and raw
UNIX makes a distinction between "block" and "raw" (character) devices. Each disk

has a block device interface where the system makes the device byte addressable and you can
write a single byte in the middle of the disk. The system will read out the data from the disk
sector, insert the byte you gave it and put the modified data back. The disks with the names
"/dev/xxOa", etc are block devices. There are also raw devices available. These have names
like "/dev/rxxOa", the "r" here standing for "raw". In the bootstrap procedures we will often
suggest using the raw devices, because these tend to work faster in some cases. In general,
however, the block devices are used. They are where file systems are "mounted".

Installing and Operating 4.2BSD 5-21

You should be aware that it is sometimes important to use the character device (for
efficiency) or not (because it wouldn't work, e.g; to write a single byte in the middle of a sec­
tor). Don't change the instructions by using the wrong type of device indiscriminately.

5-22 Installing and Operating 4.2BSD

2. BOOTSTRAP PROCEDURE

This section explains the bootstrap procedure that can be used to get the kernel supplied
with tbi!! tape running on your machine. Even if you are currently running UNIX you will
have to do a full bootstrap.

If you are already running UNIX you should first save your existing files on magnetic
tape. 4.2BSD uses a totally different file system organization than previous versions of the sys­
tem; it is thus necessary to rebuild the file system format before restoring the data. The easi­
est way to save the current files on tape is by doing a full dump and then restoring under the
new system. Refer to chapter 3 in understanding how to upgrade an existing 4BSD system.

Booting from tape

The tape bootstrap procedure used to create a working system involves the following
major steps:

1) Format a disk pack with the format program.

2) Copy a "mini root" file system from the tape onto the swap area of the disk.

3) Boot the UNIX system on the "mini root".

4) Restore the full root file system using restore (8).

5) Build a console floppy or cassette for bootstrapping.

6) Reboot the completed root file system.

7) Build and restore the /usr file system from tape with tar (1).

Certain of these steps are dependent on your hardware configuration. Formatting the
disk pack used for the root file system may require using the DEC standard formatting pro­
grams. Also, if you are bootstrapping the system on an 11/750, no console cassette is created.

The following sections describe the above steps in detail. In these sections references to
disk drives are of the form xx (n,m) and references to files on tape drives are of the form
yy(n,m) where xx and yy are one of the names described in section 1.4 and n and m are the
unit and offset numbers described in section 1.4. Commands you are expected to type are
shown in roman, while that information printed by the system is shown emboldened.
Throughout the installation steps the reboot switch on an 11/780 or 11/730 should be set to
off; on an 11/750 set the power-on action to halt. (In normal operation an 11/780 or 11/730
will have the reboot switch on and an 11/750 will have the power-on action set to
re boot/restart.)

If you encounter problems in foliowing the instructions in this part of the document,
refer to Appendix C for help in troubleshooting.

2.1. Step 1: formatting the disk

All disks used with 4.2BSD should be formatted to insure the proper handling of physi­
cally corrupted disk sectors. If you have DEC disk drives, you should use the standard DEC
formatter to format your disks. If not, the format program included in the distribution, or a
vendor supplied formatting program, may be used to format disks. The format program is
capable of formatting any of the following supported distribution devices:

EMULEX MASSBUS:
EMULEX SC-21 V UNIBUS:

AMPEX 300M, 330M, CDC 300M, FUJITSU 404M
AMPEX 300M, 330M, CDC 300M, FUJITSU 160M, 404M

If you have run a pre-4.lBSD version of UNIX on the packs you are planning to use for
bootstrapping it is likely that the bad sector information on the packs has been destroyed,
since it was accessible as normal data in the last several tracks of the disk. You should

Installing and Operating 4.2BSD 5-23

therefore run the formatter again to make sure the information is valid.

On an 11/750, to use a disk pack as a bootstrap device, sectors 0 through 15, the disk
sectors in the files "/vmunix" (the system image) and "/boot" (the program that loads the sys­
tem image), and the file system indices that lead to these two files must not have any errors.
On an 11/780 or 11/730, the "boot" program is loaded from the console medium and includes
device drivers for the "hp" and "up" disks which perform ECC correction and bad sector for­
warding; consequently, on these machines the system may be bootstrapped on these disks
even if the disk is not error free in critical locations. In general, if the first 15884 sectors of
your disk are clean you are safe; if not you can take your chances.

To load the format program, insert the distribution TU58 cassette or RXOl floppy disk
in the appropriate console device (on the 11/730 use cassette O) and perform the following
steps.

If you have an 11/780 give the commands:

>>>HALT
>>>UNJAM
>>>LOAD FORMAT
>>>START 2

If you have an 11/750 give the commands:

>>>I
>>>B DDAO
=format

If you have an 11/730 give the commands:

>>>H
>>>I
>>>L DDO:FORMAT
>>>S2

The format program should now be running and awaiting your input:

Disk format/check utility

Enable debugging (l=bse, 2=ecc, 3=bse+ecc)?

If you made a mistake loading the program off the TU58 cassette the"=" prompt should
reappear and you can retype the program name. If something else happened, you may have a
bad distribution cassette or floppy, or your hardware may be broken; refer to Appendix C for
help in troubleshooting. If you are unable to load programs off the distributed medium, con­
sult Appendix B for an alternate (more painful) approach.

Format will create sector headers and verify the integrity of each sector formatted by
using the disk controller's "write check" command. Remember format runs only on the up
and hp drives indicated above. Format will prompt for the information required as shown
below. If you make a mistake in answering questions,"#" erases the last character typed, and
"@" erases the current input line.

5-24 Installing and Operating 4.2BSD

Enable debugging (O=none, l=bse, 2=ecc, 3=bse+ecc)?
Device to format? xx (O,O)
... (the old bad sector table is read; ignore any errors that occur here) ...

Formatting drive xxO on adaptor 0: verify (yes/no)? yes
Device data: #cylinders=842, #tracks=20, #sectors=48
Available test patterns are:

1 - (fOOf) RH750 worst case
2 - (ec6d) media worst case
3 - (a5a5) alternating l's and O's
4 - (trff) Severe burnin (takes several hours)

Pattern (one of the above, other to restart)? 2
Start f ormatting ... make sure the drive is online
... (soft ecc's and other errors are reported as they occur) ...
... (if 4 write check errors were found, the program terminates like this) ...

Errors:
Write check: 4
Bad sector: 0
ECC:O
Skip sector: 0
Total of 4 hard errors found.
Writing bad sector table at block 524256
(524256 is the block # of the first block in the bad sector table)
Done

Once the root device has been formatted, format will prompt for another disk to format. Halt
the machine by typing "control-P" and "H" (the "H" is necessary only on an 11/780, but does
not hurt on the other machines).

Enable debugging (l=bse, 2=ecc, 3=bse+ecc)?"P
>>>H

It may be necessary to format other drives before constructing file systems on them; this
can be done at a later time with the steps just performed. Format can also be used in an
extended test mode (pattern 4) that uses numerous test patterns in 46 passes to detect as
many disk surface errors as possible; this test runs for many hours, depending on the CPU
and controller. On an 11/780, this can be speeded up significantly by setting the clock fast.

2.2. Step 2: copying the mini-root file system

The second step is to run a simple program, copy, which copies a very small root file sys­
tem into the second partition of the disk. This file system will serve as the base for creating
the actual root file system to be restored. The version of the operating system maintained on
the "mini-root" file system understands not to swap on top of itself, thereby allowing double
use of the disk partition. Copy is loaded just as the format program was loaded; for example,
on an 11/780:

(copy mini root file system)
>>>LOAD COPY
>>>START2
From: yy(y,1)
To: xx(x,1)
Copy completed: 205 records copied
From:

while for an 11/750:

(unity, second tape file)
(mini root is on drive x; second partition)

(copy mini root file system)
>>>B DDAO
==copy
From: yy(y,l)
To: xx(x,1)
Copy completed: 205 records copied
From:

and for an 11/730:

(copy mini root file system)
>>>L DDO:COPY
>>>82
From: yy(y,1)
To: xx(x,1)
Copy completed: 205 records copied
From:

Installing and Operating 4.2BSD 5-25

(unity, second tape file)
(mini root is on drive x; second partition)

(unity, second tape file)
(mini root is on drive x; second partition)

(As above,'#' erases characters and'@' erases lines.)

2.3. Step 3: booting from the mini-root file system

You now have the minimal set of tools necessary to create a root file system and restore
the file system contents from tape. To access this file system load the bootstrap program and
boot the version of unix which has been placed in the "mini-root":

(load bootstrap program)
>>>LOAD BOOT
>>>8TART2
Boot
: xx(x,l)vmunix

or, on an 11/750:

(load bootstrap program)
>>>B DDAO
==boot
Boot
: xx(x,l)vmunix

or, on an 11/730:

(load bootstrap program)
>>> L DDO:BOOT
>>>82
Boot
: xx(x,l)vmunix

(bring in vmunix off mini root)

(bring in vmunix off mini root)

(bring in vmunix off mini root)

(As above,'#' erases characters and'@' erases lines.)

The standalone boot program should then read the system from the mini root file system you
just created, and the system should boot:

5-26 Installing and Operating 4.2BSD

215564+64088+69764 start Oxf98
4.2 BSD UNIX #1: Sun Feb 6 15:02:15 PST 1983
real mem = xxx
avail mem = yyy
... information about available devices ...
root device?

The first three numbers are printed out by the bootstrap programs and are the sizes of
different parts of the system (text, initialized and uninitialized data). The system also allo­
cates several system data structures after it starts running. The sizes of these structures are
based on the amount of available memory and the maximum count of active users expected,
as declared in a system configuration description. This will be discussed later.

UNIX itself then runs for the first time and begins by printing out a banner identifying
the release and version of the system that is in use and the date it was compiled. ·

Next the mem messages give the amount of real (physical) memory and the memory
available to user programs in bytes. For example, if your machine has only 512K bytes of
memory, then xxx will be 523264, 1024 bytes less than 512K. The system reserves the last
1024 bytes of memory for use in error logging and doesn't count it as part of real memory.

The messages that came out next show what devices were found on the current proces­
sor. These messages are described in autoconf(4). The distributed system may not have
found all the communications devices you have (dh's and dz's), or all the mass storage peri­
pherals you have if you have more than two of anything. This will be corrected soon, when
you create a description of your machine to configure UNIX from. The messages printed at
boot here contain much of the information that will be used in creating the configuration. In
a correctly configured system most of the information present in the configuration description
is printed out at boot time as the system verifies that each device is present.

The "root device?" prompt was printed by the system and is now asking you for the
name of the root file system to use. This happens because the distribution system is a generic
system. It can be bootstrapped on any VAX cpu and with its root device and paging area on
any available disk drive. You should respond to the root device question with xxO*. This
response supplies two pieces of information: first, xxO indicates the disk it is running on is
drive 0 of type xx, secondly the "*" indicates the system is running "atop" the paging area.
The latter is most important, otherwise the system will attempt to page on top of itself and
chaos will ensue. You will later build a system tailored to your configuration that will not ask
this question when it is bootstrapped.

root device? xxO*
WARNING: preposterous time in file system -- CHECK AND RESET THE DATE!
erase"?, kill AU, intr AC

The "erase ... " message is part of /.profile that was executed by the root shell when it
started. This message is present to remind you that the line character erase, line erase, and
interrupt characters are set to be what is standard on DEC systems; this insures things are
consistent with the DEC console interface characters.

2.4. Step 4: restoring the root :file system

UNIX is now running, and the 'UNIX Programmer's manual' applies. The '#' is the
prompt from the shell, and lets you know that you are the super-user, whose login name is
"root". To complete installation of the bootstrap system two steps remain. First, the root file
system must be created, and second a boot floppy or cassette must be constructed.

To create the root file system the shell script "xtr" should be run as follows:

Installing and Operating 4.2BSD 5-27

#disk=xxO type=tt tape=yy xtr

where xxO is the name of the disk on which the root file system is to be restored (unit 0), tt is
the type of drive on which the root file system is to be restored (see the table below), and yy
is the name of the tape drive on which the distribution tape is mounted.

If the root file system is to reside on a disk other than unit 0 (as shown in the informa­
tion printed out during autoconfiguration), you will have to create the necessary special files in
/dev and use the appropriate value. For example, if the root should be placed on hpl, you
must create /dev/rhpla and /dev/hpla using mknod(B).

DEC RM03
DEC RM80
DEC RP07
DEC RASO
DEC RA81
CDC 9766
AMPEX 300M
FUJITSU 160M

type=rm03
type=rm80
type=rp07
type=ra80
type=ra81
type=9766
type=9300
type=fuji160

DEC RM05
DEC RP06
DEC RK07
DEC RA60
DEC R80
CDC 9775
AMPEX 330M
FUJITSU 404M

type=rm05
type=rp06
type=rk07
type=ra60
type=rb80
type=9775
type=capricorn
type=eagle

This will generate many messages regarding the construction of the file system and the res­
toration of the tape contents, but should eventually terminate with the messages:

Root filesystem extracted

If this is a 780, update floppy
If this is a 730, update the cassette

2.5. Step 5: creating a boot floppy or cassette

If the machine is an 11/780 or 11/730, a boot floppy or cassette should be constructed
according to the instructions in chapter 4. For 11/750's, bootstrapping is performed by using
a boot prom and special code located in sectors 0-15 of the root file system. The newfs pro­
gram automatically installs the needed code, so you may continue on to the next step. On an
11/780 with interleaved memory, or other configurations that require alteration of the stan­
dard boot files, this step may be left for later.

2.6. Step 6: rebooting the completed root file system

With the above work completed, all that is left is to reboot:

5-28 Installing and Operating 4.2BSD

#sync
#AP
>>>HALT
>>>UNJAM
>>>I
>>>BxxS
... (boot program is eventually loaded) ...
Boot
: xx(x,O)vmunix
215564+64088+69764 start Oxf98

(synchronize file system state)
(halt machine)
(for ll/780's only)
(for ll/780's only)
(initialize processor state)
(on an 11/750, use B/2)

(vmunix brought in off root)

4.2 BSD UNIX #1: Sun Feb 6 15:02:15 PST 1983
real mem = xxx
avail mem = yyy
... information about available devices ...
root on xxO
WARNING: preposterous time in file system -- CHECK AND RESET THE DATE!
erase "?, kill AU, intr AC

(see section 6.1 if the system does not reboot properly)

The system is now running single user on the installed root file system. The next section
tells how to complete the installation of distributed software on the /usr file system.

2.7. Step 7: setting up the /usr file system

First set a shell variable to the name of your disk, so the commands we give will work
regardless of the disk you have; do one of

disk=hp
disk=hk
disk=ra
disk=up
disk=rb

(if you have an RP06, RM03, RM05, RMSO, or other MASSBUS drive)
(if you have RK07s)
(if you have UDA50 storage module drives)
(if you have UNIBUS storage module drives)
(if you have IDC storage module drives)

The next thing to do is to extract the rest of the data from the tape. You might wish to
review the disk configuration information in section 4.4 before continuing; the partitions used
below are those most appropriate in size. Find the disk you have in the following table and
execute the commands in the right hand portion of the table:

DECRM03
DEC RM05
DEC RMSO
DEC RP06
DEC RP07
DEC RK07
DEC RASO
DEC RA60
DEC RA81
DEC RSO
UNIBUS CDC 9766
UNIBUS AMPEX 300M
UNIBUS AMPEX 330M
UNIBUS FUJITSU 160M
UNIBUS FUJITSU 404M
MASSBUS CDC 9766
MASSBUS AMPEX 300M
MASSBUS AMPEX 330M
MASSBUS FUJITSU 404M

Installing and Operating 4.2BSD 5-29

name=hpOg; type=rm03
name=hpOg; type=rm05
name=hpOg; type=rm80
name=hpOg; type=rp06
name=hpOh; type=rp07
name=hkOg; type=rk07
name=raOh; type=ra80
name=raOh; type=ra60
name=raOh; type=ra81
name=rbOh; type=rb80
name=upOg; type=9766
name=upOg; type=9300
name=upOg; type=capricorn
name=upOg; type=fuji160
name=upOh; type=eagle
name=hpOg; type=9766
name=hpOg; type=9300
name=hpOg; type=capricorn
name=hpOh; type=eagle

Find the tape you have in the following table and execute the commands in the right hand
portion of the table:

DEC TE16/TU45/TU77
DEC TU78
DEC TSU
EMULEX TCll
SI 9700

cd /dev; MAKEDEV htO; sync
cd /dev; MAKEDEV mtO; sync
cd /dev; MAKEDEV tsO; sync
cd /dev; MAKEDEV tmO; sync
cd /dev; MAKEDEV utO; sync

Then execute the following commands

5-30 Installing and Operating 4.2BSD

date yymmddhhmm

passwd root
New password:
Retype new password:
newfs ${name} ${type}
(this takes a few minutes)
#mount /dev/${name} /usr
cd /usr
mkdir sys
cd sys
#mt fsf
tar xpbf 20 /dev/rmt12
(this takes about 5-10 minutes)
cd ..
#mt fsf
tar xpbf 20 /dev/rmt12
(this takes about 15-20 minutes)
cd I
chmod 755 I /usr /usr/sys
#rm -f sys
In -s /usr/sys sys
umount /dev/${name}

(set date, see date (1))

(set password for super-user)
(password will not echo)

(create empty user file system)

(mount the usr file system)
(make /usr the current directory)
(make directory for system source)
(make /usr/sys the current directory)

(extract the system source)

(back to /usr)

(extract all of usr except usr/src)

(back to root)

(make a symbolic link to the system source)
(unmount /usr)

The data on the fourth and fifth tape files has now been extracted and the first reel of the dis­
tribution is no longer needed. The remainder of the installation procedure uses the second
reel of tape which should be mounted in place of the first.

You can check the consistency of the /usr file system by doing

fsck /dev/r${name}

The output from fsck should look something like:

** /dev/rxxOh
** Last Mounted on /usr
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
671 files, 3497 used, 137067 free (75 frags, 34248 blocks)

If there are inconsistencies in the file system, you may be prompted to apply corrective
action; see the document describing fsck for information.

To use the /usr file system, you should now remount it by saying

#/etc/mount /dev/${name} /usr

You can now extract the first file on the second tape (the source for the commands). If you
have RK07's you must first put a formatted pack in drive 1 and set up a UNIX file system on
it by doing:

newfs hklg rk07
(this takes a few minutes)
#mount /dev/hklg /usr/src
cd /usr/src

Installing and Operating 4.2BSD 5-31

In any case you can then extract the source code for the commands (except on RK07's this
will fit in the /usr file system):

mkdir /usr/src
chmod 755 /usr/src
cd /usr/src
#tar xpb 20

If you get an error at this point, you can reposition the tape with the following command and
try the above commands again.

#mt rew

2.8. Additional software
There are three extra tape files on the distribution tapes which have not been installed

to this point. They are a font library for use with Varian and Versatec printers, the Ingres
database system, and user contributed software. All three tapes files are in tar (1) format and
can be installed by positioning the tape and reading in the files as was done for /usr/src above.
As distributed, the fonts should be placed in a directory /usr/lib/vfont, the Ingres system
should be placed in /usr/ingres, and the user contributed software should be placed in
/usr/src/new. The exact contents of the user contributed software is given in a separate docu­
ment.

5-32 Installing and Operating 4.2BSD

3. UPGRADING A 4BSD SYSTEM

Begin by reading the other parts of this document to see what has changed since the last
time you bootstrapped the system. Also read the "Changes in 4.2BSD" document, and look at
the new manual sections provided to you. If you have local system modifications to the kernel
to install, look at the document "Kernel changes in 4.2BSD" to get an idea of how the system
changes will affect your local mods.

If you are running a version of the system distributed prior to 4.0BSD, you are pretty
much on your own. Sites running 3BSD or 32N may be able to modify the restor program to
understand the old 512 byte block file system, but this has never been tried. This section
assumes you are running 4. lBSD.

3.1. Step 1: what to save

No matter what version of the system you may be running, you will have to rebuild your
root and usr file systems. The easist way to do this is to save the important files on your
existing system, perform a bootstrap as if you were installing 4.2BSD on a brand new
machine, then merge the saved files into the new system. The following list enumerates the
standard set of files you will want to save and indicates directories in which site specific files
should be present. This list will likely be augmented with non-standard files you have added
to your system; be sure to do a tar of the directories /etc, /lib, and /usr/lib to guard against
your missing something the first time around.

/.profile
/.login
/.cshrc
/dev/MAKE
/etc/fstab
/etc/group
/etc/passwd
/etc/re
/etc/ttys
/etc/ttytype
/etc/termcap
/lib
/usr/dict/*
/usr/include/*
/usr/lib/aliases
/usr/lib/crontab
/usr/lib/font/*
/usr/lib/lint/*
/usr/lib/tabset/*
/usr/lib/term/*
/usr/lib/tmac/*
/usr/lib/uucp/*
/usr/man/manl
/usr/msgs
/usr/spool/*
/usr I src/local

root sh startup script
root csh startup script
root csh startup script
for the LOCAL case for making devices
disk configuration data
group data base
user data base
for any local additions
terminal line configuration data
terminal line to terminal type mapping data
for any local entries which may have been added
for any locally developed language processors
for local additions to words and papers
for local additions
mail forwarding data base
cron daemon data base
for locally developed font libraries
for locally developed lint libraries
for locally developed tab setting files
for locally developed nroff drive tables
for locally developed troff/nroff macros
for local uucp configuration files
for manual pages for locally developed programs
for current msgs
for current mail, news, uucp files, etc.
for source for locally developed programs

As 4.lBSD binary images will run unchanged under 4.2BSD you should be certain to save any
programs such as compilers which you will need in bootstrapping to 4.2BSD. *

* 4.2BSD can support a "4.lBSD compatibility mode" of system operation whereby system calls from

Installing and Operating 4.2BSD 5-33

Once you have saved the appropriate files in a convenient format, the next step is to
dump your file systems with dump (8). For the utmost of safety this should be done to
magtape. However, if you enjoy gambling with your life (or you have a VERY friendly user
community) and you have sufficient disk space, you can try converting your file systems in­
place by using a disk partition. If you select the latter tact, a version of the 4.lBSD dump
program which runs under 4.2 is provided in /ete/dump.4.1; be sure to read through this
entire document before beginning the conversion. Beware that file systems created under
4.2BSD will use about 5-10% more disk space for file system related information than under
4.lBSD. Thus, before dumping each file system it is a good idea to remove any files which
may be easily regenerated. Since most all programs will likely be recompiled under the new
system your best bet is to remove any object files. File systems with at least 10% free space
on them should restore into an equivalently sized 4.2BSD file system without problem.

Once you have dumped the file systems you wish to convert to 4.2BSD, install the sys­
tem from the bootstrap tape as described in chapter 2, then proceed to the next section.

3.2. Step 2: merging
When your system is booting reliably and you have the 4.2BSD root and /usr file systems

fully installed you will be ready to proceed to the next step in the conversion process: merging
your old files into the new system.

Using the tar tape, or tapes, you created in step 1 .extract the appropriate files into a
scratch directory, say /usr/convert:

mkdir /usr/convert
cd /usr/convert
#tar x

Certain data files, such as those from the /etc directory, may simply be copied into place.

cp passwd group fstab ttys ttytype /etc
cp crontab /usr/lib

Other files, however, must be merged into the distributed versions by hand. In particular, be
careful with /etc/termcap.

The commands kept under the LOCAL entry in /dev/MAKE should be placed in the
new shell script /dev/MAKEDEV.local so that saying "MAKEDEV LOCAL" will create the
appropriate local devices and device names. If you have any homegrown device drivers which
use major device numbers reserved by the system you will have to modify the commands used
to create the devices or alter the system device configuration tables in /sys/vax/conf.c.

The spooling directories saved on tape may be restored in their eventual resting places
without too much concern. Be sure to use the 'p' option to tar so that files are recreated with
the same file modes:

cd /usr
tar xp msgs spool/mail spool/uucp spool/uucppublic spool/news

Whatever else is left is likely to be site specific or require careful scrutiny before placing
in its eventual resting place. Refer to the documentation and source code before arbitrarily
overwriting a file.

4.lBSD are either emulated or safely ignored. There are only two exceptions; programs which read direc­
tories or use the old jobs library will not operate properly. However, while 4.lBSD binaries will execute
under 4.2BSD it is STRONGLY RECOMMENDED that the programs be recompiled under the new sys­
tem. Refer to the document "Changes in 4.2BSD" for elaboration on this point.

5-34 Installing and Operating 4.2BSD

3.3. Step 3: converting file systems

The dump format used in 4.0 and 4.lBSD is upward compatible with that used in
4.2BSD. That is, the 4.2BSD restore program understands how to read old dump tapes,
although 4.2BSD dump tapes may not be properly restored under 4.0BSD or 4.lBSD. To con­
vert a file system dumped to magtape, simply create the appropriate file system and restore
the data. Note that the 4.2BSD restore program does its work on a mounted file system using
normal system operations (unlike the older restor which accessed the raw file system device
and deposited inodes in the appropriate locations on disk). This means that file system
dumps may be restored even if the characteristics of the file system changed. To restore a
dump tape for, say, the /a file system something like the following would be used:

mkdir /a
newfs hplg eagle
#mount /dev/hplg /a
cd /a
#restorer

If tar images were written instead of doing a dump, you should be sure to use the 'p' option
when reading the files back. No matter how you restore a file system, be sure and check its
integrity with fsck when the job is complete.

3.4. Bootstrapping language processors

To convert a compiler from 4.lBSD to 4.2BSD you should simply have to recompile and
relink the various parts. If the processor is written in itself, for instance a PASCAL compiler
written in PASCAL, the important step in converting is to save a working copy of the 4.lBSD
binary before converting to 4.2BSD. Then, once the system has been changed over, the
4.lBSD binary should be used in the rebuilding process. In order to do this, you should enable
the 4.1 compatibility option when you configure the kernel (below).

If no working 4.lBSD binary exists, or the language processor uses some nonstandard
system call, you will likely have to compile the language processor into an intermediate form,
such as assembly language, on a 4.lBSD system, then bring the intermediate form to 4.2BSD
for assembly and loading.

Installing and Operating 4.2BSD 5-35

4. SYSTEM SETUP

This section describes procedures used to setup a VAX UNIX system. Procedures
described here are used when a system is first installed or when the system configuration
changes. Procedures for normal system operation are described in the next section.

4.1. Making a UNIX boot floppy

If you have an 11/780 you will want to create a UNIX boot floppy by adding some files
to a copy of your current DEC console floppy, using ficopy(8) and ar{f(8). This floppy will
make standalone system operations such as bootstrapping much easier.

First change into the directory where the console floppy information is stored:

cd /sys/floppy

then set up the default boot device. If you have an RK07 as your primary root do:

cp defboo.hk defboo.cmd

If you have a drive on a UDA50 (e.g. an RA81) as your primary root do:

cp defboo.ra defboo.cmd

If you have a second vendor UNIBUS storage module as your primary root do:

cp defboo.up defboo.cmd

Otherwise:

cp defboo.hp defboo.cmd

If the local configuration requires any changes in restar.cmd or defboo.cmd (e.g., for inter­
leaved memory controllers), these should be made now. The following command will then
copy your DEC local console floppy, updating the copy appropriately.

make update
Change Floppy, Hit return when done.
(waits for you to put clean floppy in console)
Are you sure you want to clobber the floppy? yes

More copies of this floppy can be made using ficopy (8).

4.2. Making a UNIX boot cassette

If you have an 11/730 you will want to create a UNIX boot cassette by adding some files
to a copy of your current DEC console cassette, using ficopy(8) and arff(8). This cassette will
make standalone system operations such as bootstrapping much easier.

First change into the directory where the console cassette information is stored:

cd /sys/cassette

then set up the default boot device. If you have an IDC storage module as your primary root
do:

cp defboo.rb defboo.cmd

If you have an RK07 as your primary root do:

cp defboo.hk defboo.cmd

If you have a drive on a UDA50 as your primary root do:

cp defboo.ra defboo.cmd

5-36 Installing and Operating 4.2BSD

Otherwise:

cp defboo.up defboo.cmd

To complete the procedure place your DEC local console cassette in drive 0 (the drive at front
of the CPU); the following command will then copy it, updating the copy appropriately.

make update
Change Floppy, Hit return when done.
(waits for you to put clean cassette in console drive O)
Are you sure you want to clobber the floppy? yes

More copies of this cassette can best be made using dd (1).

4.3. Kernel configuration
This section briefly describes the layout of the kernel code and how files for devices are

made. For a full discussion of configuring and building system images, consult the document
"Building 4.2BSD UNIX Systems with Config".

4.3.1. Kernel organization

As distributed, the kernel source is in a separate tar image. The source may be physi­
cally located anywhere within any file system so long as a symbolic link to the location is
created for the file /sys (many files in /usr/include are normally symbolic links relative to
/sys). In further discussions of the system source all path names will be given relative to /sys.

The directory /sys/sys contains the mainline machine independent operating system
code. Files within this directory are conventionally named with the following prefixes.

init_
kern_
quota_
sys_
tty_
uf s_
uipc_
vm_

system initialization
kernel (authentication, process management, etc.)
disk quotas
system calls and similar
terminal handling
file system
interprocess communication
virtual memory

The remaining directories are organized as follows.

/sys/h
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netpup
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

machine independent include files
site configuration files and basic templates
network independent, but network related code
DARPA Internet code
IMP support code
PUP-1 support code
VAX specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
VAX UNIBUS device drivers and related code

Many of these directories are referenced through /usr/include with symbolic links. For
example, /usr/include/sys is a symbolic link to /sys/h. The system code, as distributed, is
totally independent of the include files in /usr/include. This allows the system to be recom­
piled from scratch without the /usr file system mounted.

Installing and Operating 4.2BSD 5-37

4.3.2. Devices and device drivers

Devices supported by UNIX are implemented in the kernel by drivers whose source is
kept in /sys/vax, /sys/vaxuba, or /sys/vaxmba. These drivers are loaded into the system when
included in a cpu specific configuration file kept in the conf directory. Devices are accessed
through special files in the file system, made by the mknod (8) program and normally kept in
the /dev directory. For all the devices supported by the distribution system, the files in /dev
are created by the /dev/MAKEDEV shell script.

Determine the set of devices that you have and create a new /dev directory by running
the MAKEDEV script. First create a new directory /newdev, copy MAKEDEV into it, edit
the file MAKEDEV.local to provide an entry for local needs, and run it to generate a /newdev
directory. For instance, if your machine has a single dz-11, a single dh-11, a single dmf-32, an
rm03 disk, an EMULEX controller, an AMPEX-9300 disk, and a te16 tape drive you would
do:

cd I
mkdir newdev
cp dev/MAKEDEV newdev/MAKEDEV
cd newdev
MAKEDEV dzO dhO dmfO hpO upO htO std LOCAL

Note the "std" argument causes standard devices such as /dev/console, the machine console,
/dev/floppy, the console floppy disk interface for the 11/780, and /dev/tuO and /dev/tul, the
console cassette interfaces for the 11/750 and 11/730, to be created.

You can then do

cd I
mv dev olddev ; mv newdev dev
#sync

to install the new device directory.

4.3.3. Building new system images

The kernel configuration of each UNIX system is described by a single configuration file,
stored in the /sys/conf directory. To learn about the format of this file and the procedure
used to build system images, start by reading "Building 4.2BSD UNIX Systems with Config",
look at the manual pages in section 4 of the UNIX manual for the devices you have, and look
at the configuration files in the /sys/conf directory.

The configured system image "vmunix" should be copied to the root, and then booted to
try it out. It is best to name it /newvmunix so as not to destroy the working system until
you're sure it does work:

cp vmunix /newvmunix
#sync

It is also a good idea to keep the old system around under some other name. In particular, we
recommend that you save the generic distribution version of the system permanently as
/genvmunix for use in emergencies.

To boot the new version of the system you should follow the bootstrap procedures out­
lined in section 6.1. A systematic scheme for numbering and saving old versions of the system
is best.

4.4. Disk configuration

This section describes how to layout file systems to make use of the available space and
to balance disk load for better system performance.

5-38 Installing and Operating 4.2BSD

4.4.1. Initializing /etc/fstab

Change into the directory /etc and copy the appropriate file from:

fstab.rm03
fstab.rm05
fstab.rm80
fstab.ra60
fstab.ra80
fstab.ra81
fstab.rb80
fstab.rp06
fstab.rp07
fstab.rk07
fstab.up160m (160Mb up drives)
fstab.up300m (300Mb up. drives)
fstab.hp400m (400Mb hp drives)
fstab.up (other up drives)
fstab.hp (other hp drives)

to the file /etc/fstab, i.e.:

cd /etc
cp fstab.xxx fstab

This will set up the initial information about the usage of disk partitions, which we see
how to update more below.

4.4.2. Disk naming and divisions

Each physical disk drive can be divided into up to 8 partitions; UNIX typically uses only
3 or 4 partitions. For instance, on an RM03 or RP06, the first partition, hpOa, is used for a
root file system, a backup thereof, or a small file system like, /tmp; the second partition, hpOb,
is used for paging and swapping; and the third partition hpOg holds a user file system. On an
RM05, the first three partitions are used as for the RM03, and the fourth partition, hpOh, is
used to hold the /usr file system, including source code.

The disk partition sizes for a drive are based on a set of four default partition tables; c.f.
disk part (8). The particular table used is dependent on the size of the drive. The "a" parti­
tion is the same size across all drives, 15884 sectors. The "b" partition, used for paging and
swapping, is sized according to the total space on the disk. For drives less than about 400
megabytes the partition is 33440 sectors, while for larger drives the partition size is doubled to
66880 sectors. The "c" partition is always used to access the entire physical disk, including
the space at the back of the disk reserved for the bad sector forwarding table. If the disk is
larger than about 250 megabytes, an "h" partition is created with size 291346 sectors, and no
matter whether the "h" partition is created or not, the remainder of the drive is allocated to
the "g" partition. Sites which want to split up the "g" partition into a number of smaller file
systems may use the "d", "e", and "f' partitions which overlap the "g" partition. The default
sizes for these partitions are 15884, 55936, and the remainder of the disk, respectively*.

4.4.3. Space available

The space available on a disk varies per device. The amount of space available on the
common disk partitions is listed in the following table. Not shown in the table are the parti­
tions of each drive devoted to the root file system and the paging area.

* These rules are, unfortunately not evenly applied to all disks. Drives on DEC UDA50 and IDC controllers
do not completely follow these rules; in particular, the swap partition on an RABI is only 33440 sectors, and
no "d", "e'', or "f' partitions are available on an RA60 or RASO. Consult uda (4) for more information.

Installing and Operating 4.2BSD 5-39

Type Name Size Name Size
rk07 hk?g 13 Mb
rm03 hp?g 41 Mb
rp06 hp?g 145 Mb
rm05 hp?g 80Mb hp?h 145 Mb
rm80 hp?g 96Mb
ra60 ra?g 41 Mb ra?h 139 Mb
ra80 ra?g 41 Mb ra?h 56Mb
ra81 ra?g 41 Mb ra?h 380Mb
rb80 rb?g 41 Mb rb?h 56Mb
rp07 hp?g 315 Mb hp?h 145Mb
up300 up?g 80Mb up?h 145 Mb
hp400 hp?g 216 Mb hp?h 145 Mb
up160 up?g 106Mb

Here up300 refers to either an AMPEX or CDC 300 Megabyte disk on a UNIBUS disk con­
troller, up160 refers to a FUJITSU 160 Megabyte disk on the UNIBUS, and hp400 refers to a
FUJITSU Eagle 400 Megabyte disk on a MASBUS disk controller. Consult the manual pages
for the specific controllers for other supported disks or other partitions.

Each disk also has a paging area, typically of 16 Megabytes, and a root file sytem of 8
Megabytes. The distributed system binaries occupy about 22 Megabytes while the major
sources occupy another 25 Megabytes. This overflows dual RK07 and dual RL02 systems, but
fits easily on most other hardware configurations.

Be aware that the disks have their sizes measured in disk sectors (512 bytes), while the
UNIX file system blocks are variable sized. All user programs report disk space in kilobytes
and, where needed, disk sizes are always specified in terms of sectors. The /etc/disktab file
used in making file systems specifies disk partition sizes in sectors; the default sector size of
512 bytes may be overridden with the "se" attribute.

4.4.4. Layout considerations

There are several considerations in deciding how to adjust the arrangement of things on
your disks: the most important is making sure there is adequate space for what is required;
secondarily, throughput should be maximized. Paging space is an important parameter. The
system, as distributed, sizes the configured paging areas each time the system is booted.
Further, multiple paging areas of different size may be interleaved. Drives smaller than 400
megabytes have swap partitions of 16 megabytes while drives larger than 400 megabytes have
32 megabytes. These values may be changed to get more paging space by changing the
appropriate partition table in the disk driver.

Many common system programs (C, the editor, the assembler etc.) create intermediate
files in the /tmp directory, so the file system where this is stored also should be made large
enough to accommodate most high-water marks; if you have several disks, it makes sense to
mount this in a "root" (i.e. first partition) file system on another disk. All the programs that
create files in /tmp take care to delete them, but are not immune to rare events and can leave
dregs. The directory should be examined every so often and the old files deleted.

The efficiency with which UNIX is able to use the CPU is often strongly affected by the
configuration of disk controllers. For general time-sharing applications, the best strategy is to
try to split the root file system (/), system binaries (/usr), the temporary files (/tmp), and the
user files among several disk arms, and to interleave the paging activity among a several arms.

It is critical for good performance to balance disk load. There are at least five com­
ponents of the disk load that you can divide between the available disks:

5-40 Installing and Operating 4.2BSD

1. The root file system.
2. The /tmp file system.
3. The /usr file system.
4. The user files.
5. The paging activity.

The following possibilities are ones we have used at times when we had 2, 3 arid 4 disks:

disks
lwwt _2_ _3_ A_

I 1 2 2
tmp 1 3 4
usr 1 1 1
paging 1+2 1+3 1+3+4
users 2 2+3 2+3

.1.. _JL _X_ _A_

The most important things to consider are to even out the disk load as much as possible,
and to do this by decoupling file systems (on separate arms) between which heavy copying
occurs. Note that a long term average balanced load is not important ... it is much more
important to have instantaneously balanced load when the system is busy.

Intelligent experimentation with a few file system arrangements can pay off in much
improved performance. It is particularly easy to move the root, the /tmp file system and the
paging areas. Place the· user files and the /usr directory as space needs dictate and experiment
with the other, more easily moved file systems.

4.4.5. File system parameters

Each file system is parameterized according to its block size, fragment size, and the disk
geometry characteristics of the medium on which it resides. Inaccurate specification of the
disk characteristics or haphazard choice of the file system parameters can result in substantial
throughput degradation or significant waste of disk space. As distributed, file systems are
configured according to the following table.

File system

I
usr
users

Block size
8 Kbytes
4 Kbytes
4 Kbytes

Fragment size
1 Kbytes
512 bytes
1 Kbytes

The root file system block size is made large to optimize bandwidth to the associated
disk; this is particularly important since the /tmp directory is normally part of the root file.
The large block size is also important as many of the most heavily used programs are demand
paged out of the /bin directory. The fragment size of 1 Kbytes is a "nominal" value to use
with a file system. With a 1 Kbyte fragment size disk space utilization is approximately the
same as with the earlier versions of the file system.

The usr file system uses a 4 Kbyte block size with 512 byte fragment size in an effort to
get high performance while conserving the amount of space wasted by a large fragment size.
Space compaction has been deemed important here because the source code for the system is
normally placed on this file system.

The file systems for users have a 4 Kbyte block size with 1 Kbyte fragment size. These
parameters have been selected based on observations of the performance of our user file sys­
tems. The 4 Kbyte block size provides adequate bandwidth while the 1 Kbyte fragment size
provides acceptable space compaction and disk fragmentation.

Installing and Operating 4.2BSD 5-41

Other parameters may be chosen in constructing file systems, but the factors involved in
choosing a block size and fragment size are many and interact in complex ways. Larger block
sizes result in better throughput to large files in the file system as larger i/o requests will then
be performed by the system. However, consideration must be given to the average file sizes
found in the file system and the performance of the internal system buffer cache. The system
currently provides space in the inode for 12 direct block pointers, 1 single indirect block
pointer, and 1 double indirect block pointer.* If a file uses only direct blocks, access time to it
will be optimized by maximizing the block size. If a file spills over into an indirect block,
increasing the block size of the file system may decrease the amount of space used by elim­
inating the need to allocate an indirect block. However, if the block size is increased and an
indirect block is still required, then more disk space will be used by the file because indirect
blocks are allocated according to the block size of the file system.

In selecting a fragment size for a file system, at least two considerations should be given.
The major performance tradeoffs observed are between an 8 Kbyte block file system and a 4
Kbyte block file system. Due to implementation constraints, the block size I fragment size
ratio can not be greater than 8. This means that an 8 Kbyte file system will always have a
fragment size of at least 1 Kbytes. If a file system is created with a 4 Kbyte block size and a 1
Kbyte fragment size, then upgraded to an 8 Kbyte block size and 1 Kbyte fragment size,
identical space compaction will be observed. However, if a file system has a 4 Kbyte block
size and 512 byte fragment size, converting it to an 8K/1K file system will result in
significantly more space being used. This implies that 4 Kbyte block file systems which might
be upgraded to 8 Kbyte blocks for higher performance should use fragment sizes of at least 1
Kbytes to minimize the amoun~ of work required in conversion.

A second, more important, consideration when selecting the fragment size for a file sys­
tem is the level of fragmentation on the disk. With a 512 byte fragment size, storage fragmen­
tation occurs much sooner, particularly with a busy file system running near full capacity. By
comparison, the level of fragmentation in a 1 Kbyte fragment file system is an order of magni­
tude less severe. This means that on file systems where many files are created and deleted the
512 byte fragment size is more likely to result in apparent space exhaustion due to fragmenta­
tion. That is, when the file system is nearly full, file expansion which requires locating a con­
tiguous area of disk space is more likely to fail on a 512 byte file system than on a 1 Kbyte file
system. To minimize fragmentation problems of this sort, a parameter in the super block
specifies a minimum acceptable free space threshhold. When normal users (i.e. anyone but
the super-user) attempt to allocate disk space and the free space threshold is exceeded, the
user is returned an error as if the file system were actually full. This parameter is nominally
set to 103; it may be changed by supplying a parameter to newfs, or by patching the super
block of an existing file system.

In general, unless a file system is to be used for a special purpose application (for exam­
ple, storing image processing data), we recommend using the default values supplied.
Remember that the current implementation limits the block size to at most 8 Kbytes and the
ratio of block size I fragment size must be in the range 1-8.

The disk geometry information used by the file system affects the block layout policies
employed. The file /etc/disktab, as supplied, contains the data for most all drives supported
by the system. When constructing a file system you should use the newfs (8) program and
specify the type of disk on which the file system resides. This file also contains the default
file system partition sizes, and default block and fragment sizes. To override any of the
default values you can modify the file or use one of the options to newfs.

* A triple indirect block pointer is also reserved, but not currently supported.

5-42 Installing and Operating 4.2BSD

4.4.6. Implementing a layout

To put a chosen disk layout into effect, you should use the newfs (8) command to create
each new file system. Each file system must also be added to the file /etc/fstab so that it will
be checked and mounted when the system is bootstrapped.

As an example, consider a system with rm03's. On the first rm03, hpO, we will put the
root file system in hpOa, and the /usr file system in hpOg, which has enough space to hold it
and then some. The /tmp directory will be part of the root file system, as no file system will
be mounted on /tmp. If we had only one rm03, we would put user files in the hpOg partition
with the system source and binaries.

If we had a second rm03, we would create a file system in hplg and put user files there,
calling the file system /mnt. We would also interleave the paging between the 2 rm03's. To
do this we would build a system configuration that specified:

config vmunix root on hpO swap on hpO and hpl

to get the swap interleaved, and add the lines

/dev/hplb::sw::
/dev /hp lg:/mnt:rw: 1:2

to the /etc/fstab file. We would keep a backup copy of the root file system in the hpla disk
partition.

To make the /mnt file system we would do:

cd /dev
MAKEDEV hpl
newfs hplg rm03
(information about file system prints out)
mkdir /mnt
#mount /dev/hplg /mnt

4.5. Configuring terminals

If UNIX is to support simultaneous access from more than just the console terminal, the
file /etc/ttys (ttys (5)) has to be edited.

Terminals connected via dz interfaces are conventionally named ttyDD where DD is a
decimal number, the "minor device" number. The lines on dzO are named /dev/ttyOO,
/dev/ttyOl, ... /dev/tty07. Lines on dh or dmf interfaces are conventionally named ttyhX,
where X is a hexadecimal digit. If more than one dh or dmf interface is present in a
configuration, successive terminals would be named ttyiX, ttyjX, etc.

To add a new terminal, be sure the device is configured into the system and that the
special file for the device has been made by /dev/MAKEDEV. Then, set the first character of
the appropriate line of /etc/ttys to 1 (or add a new line).

The second character of each line in the /etc/ttys file lists the speed and initial parame-
ter settings for the terminal. The commonly used choices are:

0 300-1200-150-110
2 9600
3 1200-300
5 300-1200

Here the first speed is the speed a terminal starts at, and "break" switches speeds. Thus a
newly added terminal /dev/ttyOO could be added as

12tty00

if it was wired to run at 9600 baud. The definition of each "terminal type" is located in the

Installing and Operating 4.2BSD 5-43

file /etc/gettytab and read by the getty program. To make custom terminal types, consult
gettytab (5) before modifying this file.

Dialup terminals should be wired so that carrier is asserted only when the phone line is
dialed up. For non-dialup terminals from which modem control is not available, you must
either wire back the signals so that the carrier appears to always be present, or show in the
system configuration that carrier is to be assumed to be present. See dh (4), dz (4), and
dmf (4) for details.

You should also edit the file /etc/ttytype placing the type of each new terminal there
(see ttytype (5)).

When the system is running multi-user, all terminals that are listed in /etc/ttys having a
1 as the first character of their line are enabled. If, during normal operations, it is desired to
disable a terminal line, you can edit the file /etc/ttys and change the first character of the
corresponding line to be a 0 and then send a hangup signal to the init process, by doing

#kill -1 1

Terminals can similarly be enabled by changing the first character of a line from a 0 to a 1
and sending a hangup signal to init.

Note that several programs, /usr/src/etc/init.c and /usr/src/etc/comsat.c in particular,
will have to be recompiled if there are to be more than 100 terminals. Also note that if a spe­
cial file is inaccessible when init tries to create a process for it, init will print a message on the
console and try to reopen the terminal every minute, reprinting the warning message every 10
minutes.

Finally note that you should change the names of any dialup terminals to ttyd? where ?
is in [0-9a-f], as some programs use this property of the names to determine if a terminal is a
dialup. Shell commands to do this should be put in the /dev/MAKEDEV.local script.

While it is possible to use truly arbitrary strings for terminal names, the accounting and
noticeably the ps (1) command make good use of the convention that tty names (by default,
and also after dialups ·are named as suggested above) are distinct in the last 2 characters.
Change this and you may be sorry later, as the heuristic ps (1) uses based on these conven­
tions will then break down and ps will run MUCH slower.

4.6. Adding users

New users can be added to the system by adding a line to the password file /etc/passwd.
The procedure for adding a new user is described in adduser (8).

You should add accounts for the initial user community, giving each a directory and a
password, and putting users who will wish to share software in the same groups.

A number of guest accounts have been provided on the distribution system; these
accounts are for people at Berkeley, DEC and at Bell Laboratories who have done major work
on UNIX in the past. You can delete these accounts, or leave them on the system if you
expect that these people would have occasion to login as guests on your system.

4.7. Site tailoring

All programs which require the site's name, or some similar characteristic, obtain the
information through system calls or from files located in /etc. Aside from parts of the system
related to the network, to tailor the system to your site you must simply select a site name,
then edit the file

I etc/re.local

The first line in /etc/re.local,

/bin/hostname mysitename

defines the value returned by the gethostname (2) system call. Programs such as getty (8),

5-44 Installing and Operating 4.2BSD

mail (1), wall (1), uucp (1), and who (1) use this system call so that the binary images are site
independent.

4.8. Setting up the line printer system

The line printer system consists of at least the following files and commands:

/usr/ucb/lpq
/usr/ucb/lprm
/usr/ucb/lpr
/etc/printcap
/usr/lib/lpd
/etc/lpc

spooling queue examination program
program to delete jobs from a queue
program to enter a job in a printer queue
printer configuration and capability data base
line printer daemon, scans spooling queues
line printer control program

The file /etc/printcap is a master data base describing line printers directly attached to a
machine and, also, printers accessible across a network. The manual page printcap (5)
describes the format of this data base and also indicates the default values for such things as
the directory in which spooling is performed. The line printer system handles multiple
printers, multiple spooling queues, local and remote printers, and also printers attached via
serial lines which require line initialization such as the baud rate. Raster output devices such
as a Varian or Versatec, and laser printers such as an Imagen, are also supported by the line
printer system.

Remote spooling via the network is handled with two spooling queues, one on the local
machine and one on the remote machine. When a remote printer job is initiated with lpr, the
job is queued locally and a daemon process created to oversee the transfer of the job to the
remote machine. If the destination machine is unreachable, the job will remain queued until
it is possible to transfer the files to the spooling queue on the remote machine. The lpq pro­
gram shows the contents of spool queues on both the local and remote machines.

To configure your line printers, consult the printcap manual page and the accompanying
document, "4.2BSD Line Printer Spooler Manual". A call to the lpd program should be
present in /etc/re.

4.9. Setting up the mail system

The mail system consists of the following commands:

/bin/mail
/usr/ucb/mail
/usr/lib/sendmail
/usr/spool/mail
/usr/spool/secretmail
/usr/bin/xsend
/usr /bin/xget
/usr/lib/aliases
/usr/ucb/newaliases
/usr/ucb/biff
/etc/comsat
/etc/syslog

old standard mail program (from 32N)
UCB mail program, described in mail(l)
mail routing program
mail spooling directory
secure mail directory
secure mail sender
secure mail receiver
mail forwarding information
command to rebuild binary forwarding database
mail notification enabler
mail notification daemon
error message logger, used by sendmail

Mail is normally sent and received using the mail (1) command, which provides a front-end to
edit the messages sent and received, and passes the messages to sendmail (8) for routing. The
routing algorithm uses knowledge of the network name syntax, aliasing and forwarding infor­
mation, and network topology, as defined in the configuration file /usr/lib/sendmail.cf, to pro­
cess each piece of mail. Local mail is delivered by giving it to the program /usr/bin/mail
which adds it to the mailboxes in the directory /usr/spool/mail/usemame, using a locking

Installing and Operating 4.2BSD 5-45

protocol to avoid problems with simultaneous updates. After the mail is delivered, the local
mail delivery daemon /etc/comsat is notified, which in turn notifies users who 1'ave issued a
"biff y" command that mail has arrived.

Mail queued in the directory /usr/spool/mail is normally readable only by the recipient.
To send mail which is secure against any possible perusal (except by a code-breaker) you
should use the secret mail facility, which encrypts the mail so that no one can read it.

To setup the mail facility you should read the instructions in the file READ ME in the
directory /usr/src/usr.lib/sendmail and then adjust the necessary configuration files. You
should also set up the file /usr/lib/aliases for your installation, creating mail groups as
appropriate. Documents describing sendmail 's operation and installation are also included in
the distribution.

4.9.1. Setting up a uucp connection
The version of uucp included in 4.2BSD is an enhanced version of that originally distri­

buted with 32N*. The enhancements include:

• support for many auto call units other than the DEC DNll,

• breakup of the spooling area into multiple subdirectories,

• addition of an L.cmds file to control the set of commands which may be executed by a
remote site,

• enhanced "expect-send" sequence capabilities when logging in to a remote site,

• new commands to be used in polling sites and obtaining snap shots of uucp activity.

This section gives a brief overview of uucp and points out the most important steps in its
installation.

To connect two UNIX machines with a uucp network link using modems, one site must
have an automatic call unit and the other must have a dialup port. It is better if both sites
have both.

You should first read the paper in volume 2B of the Unix Programmers Manual: "Uucp
Implementation Description". It describes in detail the file formats and conventions, and will
give you a little context. In addition, the document setup.tblms, located in the directory
/usr/src/usr.bin/uucp/UUAIDS, may be of use in tailoring the software to your needs.

The uucp support is located in three major directories: /usr/bin, /usr/lib/uucp, and
/usr/spool/uucp. User commands are kept in /usr/bin, operational commands in /usr/lib/uucp,
and /usr/spool/uucp is used as a spooling area. The commands in /usr/bin are:

/usr/bin/uucp
/usr/bin/uux
/usr/bin/uusend
/usr/bin/uuencode
/usr/bin/uudecode
/usr/bin/uulog
/usr/bin/uusnap
/usr/bin/uupoll

file-copy command
remote execution command
binary file transfer using mail
binary file encoder (for uusend)
binary file decoder (for uusend)
scans session log files
gives a snap-shot of uucp activity
polls remote system until an answer is received

The important files and commands in /usr/lib/uucp are:

* The uucp included in this distribution is the result of work by many people; we gratefully acknowledge
their contributions, but refrain from mentioning names in the interest of keeping this document current.

5-46 Installing and Operating 4.2BSD

/usr/lib/uucp/L-devices
/usr/lib/uucp/L-dialcodes
/usr/lib/uucp/L.cmds
/usr/lib/uucp/L.sys
/usr/lib/uucp/SEQF
/usr/lib/uucp/USERFILE
/usr/lib/uucp/uuclean
/usr/lib/uucp/uucico
/usr/lib/uucp/uuxqt

list of dialers and hardwired lines
dialcode abbreviations
commands remote sites may execute
systems to communicate with, how to connect, and when
sequence numbering control file
remote site pathname access specifications
cleans up garbage files in spool area
uucp protocol daemon
uucp remote execution server

while the spooling area contains the following important files and directories:

/usr/spool/uucp/C.
/usr/spool/uucp/D.
/usr/spool/uucp/X.
/usr/spool/uucp/D.machine
/usr/spool/uucp/D.machineX
/usr/spool/uucp/TM.
/usr/spool/uucp/LOG FILE
/usr/spool/uucp/SYSLOG

directory for command, "C." files
directory for data, "D.", files
directory for command execution, "X.", files
directory for local "D." files
directory for local "X." files
directory for temporary, "TM.", files
log file of uucp activity
log file of uucp file transfers

To install uucp on your system, start by selecting a site name (less than 8 characters). A
uucp account must be created in the password file and a password set up. Then, create the
appropriate spooling directories with mode 755 and owned by user uucp, group daemon.

If you have an auto-call unit, the L.sys, L-dialcodes, and L-devices files should be
created. The L.sys file should contain the phone numbers and login sequences required to
establish a connection with a uucp daemon on another machine. For example, our L.sys file
looks something like:

adiron Any ACU 1200 out0123456789- ogin-EOT-ogin uucp
cbosg Never Slave 300
cbosgd Never Slave 300
chico Never Slave 1200 out2010123456

The first field is the name of a site, the second indicates when the machine may be called, the
third field specifies how the host is connected (through an ACU, a hardwired line, etc.), then
comes the phone number to use in connecting , through an auto-call unit, and finally a login
sequence. The phone number may contain common abbreviations which are defined in the
L-dialcodes file. The device specification should refer to devices specified in the L-devices file.
Indicating only ACU causes the uucp daemon, uucico, to search for any available auto-call
unit in L-devices. Our L-dialcodes file is of the form:

ucb 2
out 9%

while our L-devices file is:

ACU culO unused 1200 ventel

Refer to the README file in the uucp source directory for more information about installa­
tion.

As uucp operates it creates (and removes) many small files in the directories underneath
/usr/spool/uucp. Sometimes files are left undeleted; these are most easily purged with the
uuclean program. The log files can grow without bound unless trimmed back; uulog is used to
maintain these files. Many useful aids in maintaining your uucp installation are included in a
subdirectory UUAIDS beneath /usr/src/usr.bin/uucp. Peruse this directory and read the
"setup" instructions also located there.

Installing and Operating 4.2BSD 5-47

5. NETWORK SETUP

4.2BSD provides support for the DARPA standard Internet protocols IP, ICMP, TCP,
and UDP. These protocols may be used on top of a variety of hardware devices ranging from
the IMP's used in the ARPANET to local area network controllers for the Ethernet. Network
services are split between the kernel (communication protocols) and user programs (user ser­
vices such as TELNET and FTP). This section describes how to configure your system to use
the networking support.

5.1. System configuration

To configure the kernel to include the Internet communication protocols, define the
INET option and include the pseudo-devices "inet", "pty'', and "loop" in your machine's
configuration file. The "pty" pseudo-device forces the pseudo terminal device driver to be
configured into the system, see pty(4), while the "loop" pseudo-device forces inclusion of the
software loopback interface driver. The loop driver is used in network testing and also by the
mail system.

If you are planning to use the network facilities on a lOMb/s Ethernet, the pseudo­
device "ether" should also be included in the configuration; this forces inclusion of the
Address Resolution Protocol module used in mapping between 48-bit Ethernet and 32-bit
Internet addresses. Also, if you have an imp, you will need to include the pseudo-device
"imp."

Before configuring the appropriate networking hardware, you should consult the manual
pages in section 4 of the programmer's manual. The following table lists the devices for which
software support exists.

Device name Manufacturer and product
ace ACC LH/DH interface to IMP
css DEC IMP-llA interface to IMP
dmc DEC DMC-11 (also works with DMR-11)
ec 3Com IOMb/s Ethernet
en Xerox 3Mb/s prototype Ethernet (not a product)
hy NSC Hyperchannel, w/ DR-llB and PI-13 interfaces
il Interlan lOMb/s Ethernet
pcl DEC PCL-11
un Ungermann-Bass network w/ DR-llW interface
vv Proteon ring network (V2LNI)

All network interface drivers require some or all of their host address be defined at boot
time. This is accomplished with ifconfig (SC) commands included in the /etc/re.local file.
Interfaces which are able to dynamically deduce the host part of an address, but not the net­
work number, take the network number from the address specified with ifconfig. Hosts which
use a more complex address mapping scheme, such as the Address Resolution Protocol,
arp (4), require the full address. The manual page for each network interface describes the
method used to establish a host's address. Ifconfig (8) can also be used to set options for the
interface at boot time. These options include disabling the use of the Address Resolution Pro­
tocol and/or the use of trailer encapsulation; this is useful if a network is shared with hosts
running software which is unable to perform these functions. Options are set independently
for each interface, and apply to all packets sent using that interface. An alternative approach
to ARP is to divide the address range, using ARP only for those addresses below the cutoff
and using another mapping above this constant address; see the source (/sys/netinet/if ether.c)
for more information.

5-48 Installing and Operating 4.2BSD

In order to use the pseudo terminals just configured, device entries must be created in
the /dev directory. To create 16 pseudo terminals (plenty, unless you have a heavy network
load) perform the following commands.

cd /dev
MAKEDEV ptyO

More pseudo terminals may be made by specifying pty 1, pty2, etc. The kernel normally
includes support for 32 pseudo terminals unless the configuration file specifies a different
number. Each pseudo terminal actually consists of two files in /dev: a master and a slave.
The master pseudo terminal file is named /dev/pty?, while the slave side is /dev/ttyp?.
Pseudo terminals are also used by the script (1) program. In addition to creating the pseudo
terminals, be sure to install them in the /etc/ttys file (with a 'O' in the first column so no
getty is started), and in the /etc/ttytype file (with type "network").

When configuring multiple networks some thought must be given to the ordering of the
devices in the configuration file. The first network interface configured in the system is used
as the default network when the system is forced to assign a local address to a socket. This
means that your most widely known network should always be placed first in the configuration
file. For example, hosts attached to both the ARPANET and our local area network have
devices configured in the order show below.

device
device

accO
enO

at uba? csr 0167600 vector accrint accxint
at uba? csr 0161000 vector enxint enrint encollide

5.2. Network data bases

A number of data files are used by the network library routines and server programs.
Most of these files are host independent and updated only rarely.

File
/etc/hosts
/etc/networks
/etc/services
I etc/protocols
/etc/hosts.equiv
I etc/re.local
/etc/ftpusers

Manual reference
hosts (5)
networks (5)
services (5)
protocols (5)
rshd(BC)
rc(8)
ftpd(BC)

Use
host names
network names
list of known services
protocol names
list of "trusted" hosts
command script for starting servers
list of "unwelcome" ftp users

The files distributed are set up for ARPANET or other Internet hosts. Local networks and
hosts should be added to describe the local configuration; the Berkeley entries may serve as
examples (see also the next section). Network numbers will have to be chosen for each ether­
net. For sites not connected to the Internet, these can be chosen more or less arbitrarily, oth­
erwise the normal channels should be used for allocation of network numbers.

5.2.1. Regenerating /etc/hosts and /etc/networks

The host and network name data bases are normally derived from a file retrieved from
the Internet Network Information Center at SRI. To do this you should use the program
/etc/gettable to retrieve the NIC host data base, and the program /etc/htable to convert it to
the format used by the libraries.

cd /usr/src/ucb/netser/htable
/etc/gettable sri-nic
Connection to sri-nic opened.
Host table received.
Connection to sri-nic closed.
/etc/htable hosts.txt
Warning, no localgateways file.

Installing and Operating 4.2BSD 5-49

The htable program generates two files of interest in the local directory: hosts and networks.
If a file "localhosts" is present in the working directory its contents are first copied to the out­
put file. Similarly, a "localnetworks" file may be prepended to the output created by htable.
It is usually wise to run dif/(1) on the new host and network data bases before installing them
in /etc.

5.2.2. /etc/hosts.equiv

The remote login and shell servers use an authentication scheme based on trusted hosts.
The hosts.equiv file contains a list of hosts which are considered trusted and/or, under a single
administrative control. When a user contacts a remote login or shell server requesting service,
the client process passes the user's name and the official name of the host on which the client
is located. In the simple case, if the hosts's name is located in hosts.equiv and the user has an
account on the server's machine, then service is rendered (i.e. the user is allowed to log in, or
the command is executed). Users may constrain this "equivalence" of machines by installing
a .rhosts file in their login directory. The root login is handled specially, bypassing the
hosts.equiv file, and using only the /.rhosts file.

Thus, to create a class of equivalent machines, the hosts.equiv file should contain the
official names for those machines. For example, most machines on our major local network
are considered trusted, so the hosts.equiv file is of the form:

ucbarpa
ucbcalder
ucbdali
ucbernie
ucbkim
ucbmatisse
ucbmonet
ucbvax
ucbmiro
ucbdegas

5.2.3. /etc/re.local

Most network servers are automatically started up at boot time by the command file
/etc/re (if they are installed in their presumed locations). These include the following:

/etc/rshd
/etc/rexecd
/etc/rlogind
/etc/rwhod

shell server
exec server
login server
system status daemon

To have other network servers started up as well, commands of the following sort should be
placed in the site dependent file /etc/re.local.

5-50 Installing and Operating 4.2BSD

if [-f /etc/telnetd]; then
/etc/telnetd & echo -n 'telnetd'

fi
>/dev/console

The following servers are included with the system and should be installed in /etc/re.local as
the need arises.

/etc/telnetd
/etc/ftpd
/etc/tftpd
/etc/syslog
/etc/sendmail
I etc/ courierd
/etc/routed

TELNET server
FTP server
TFTP server
error logging server
SMTP server
Courier remote procedure call server
routing table management daemon

Consult the manual pages and accompanying documentation (particularly for sendmail) for
details about their operation.

5.2.4. /etc/ftpusers

The FTP server included in the system provides support for an anonymous FTP
account. Due to the inherent security problems with such a facility you should read this sec­
tion carefully if you consider providing such a service.

An anonymous account is enabled by creating a user ftp. When a client uses the
anonymous account a chroot (2) system call is performed by the server to restrict the client
from moving outside that part of the file system where the user ftp home directory is located.
Because a chroot call is used, certain programs and files must be supplied the server process
for it to execute properly. Further, one must be sure that all directories and executable
images are unwritable. The following directory setup is recommended.

cd ~ftp
chmod 555 .; chown ftp.; chgrp ftp.
mkdir bin etc pub
chown root bin etc
chmod 555 bin etc
chown ftp pub
chmod 777 pub
cd bin
cp /bin/sh /bin/ls .
chmod 111 sh ls
cd . ./etc
cp /etc/passwd /etc/group.
chmod 444 passwd group

When local users wish to place files in the anonymous area, they must be placed in a subdirec­
tory. In the setup here, the directory ~ftp/pub is used.

Aside from the problems of directory modes and such, the ftp server may provide a loo­
phole for interlopers if certain user accounts are allowed. The file /etc/ftpusers is checked on
each connection. If the requested user name is located in the file, the request for service is
denied. This file normally has the following names on our systems.

uucp
root

Accounts with nonstandard shells and no passwords (e.g., who or finger) should also be listed
in this file to prevent their use as anonymous accounts with ftp.

Installing and Operating 4.2BSD 5-51

5.3. Routing and gateways/bridges

If your environment allows access to networks not directly attached to your host you will
need to set up routing information to allow packets to be properly routed. Two schemes are
supported by the system. The first scheme employs the routing table management daemon
/etc/routed to maintain the system routing tables. The routing daemon uses a variant of the
Xerox Routing Information Protocol to maintain up to date routing tables in a cluster of local
area networks. By using the /etc/gateways file created by /etc/htable, the routing daemon can
also be used to initialize static routes to distant networks. When the routing daemon is
started up (usually from /etc/re.local) it reads /etc/gateways and installs those routes defined
there, then broadcasts on each local network to which the host is attached to find other
instances of the routing daemon. If any responses are received, the routing daemons
cooperate in maintaining a globally consistent view of routing in the local environment. This
view can be extended to include remote sites also running the routing daemon by setting up
suitable entries in /etc/gateways; consult routed (SC) for a more thorough discussion.

The second approach is to define a wildcard route to a smart gateway and depend on the
gateway to provide ICMP routing redirect information to dynamically create a routing data
base. This is done by adding an entry of the form

/etc/route add 0 smart-gateway 1

to /etc/re.local; see route (SC) for more information. The wildcard route, indicated by a 0
valued destination, will be used by the system as a "last resort" in routing packets to their
destination. Assuming the gateway to which packets are directed is able to generate the
proper routing redirect messages, the system will then add routing table entries based on the
information supplied. This approach has certain advantages over the routing daemon, but is
unsuitable in an environment where their are only bridges (i.e. pseudo gateways which, for
instance, do not generate routing redirect messages). Further, if the smart gateway goes down
there is no alternative, save manual alteration of the routing table entry, to maintaining ser­
vice.

The system always listens, and processes, routing table redirect information, so it is pos­
sible to combine both the above facilities. For example, the routing table management process
might be used to maintain up to date information about routes to geographically local net­
works, while employing the wildcard routing techniques for "distant" networks. The
netstat (1) program may be used to display routing table contents as well as various routing
oriented statistics. For example,

#netstat -r

will display the contents of the routing tables, while

#nets tat -r -s

will show the number of routing table entries dynamically created as a result of routing
redirect messages, etc.

5-52 Installing and Operating 4.2BSD

6. SYSTEM OPERATION

This section describes procedures used to operate a VAX UNIX system. Procedures
described here are used periodically, to reboot the system, analyze error messages from dev­
ices, do disk backups, monitor system performance, recompile system software and control
local changes.

6.1. Bootstrap and shutdown procedures

In a normal reboot, the system checks the disks and comes up multi-user without inter­
vention at the console. Such a reboot can be stopped (after it prints the date) with a AC
(interrupt). This will leave the system in single-user mode, with only the console terminal
active.

If booting from the console command level is needed, then the command

>>>B

will boot from the default device. On an 11/780 (11/730) the default device is determined by a
"DEPOSIT" command stored on the floppy (cassette) in the file "DEFBOO.CMD"; on an
11/750 the default device is determined by the setting of a switch on the front panel.

You can boot a system up single user on a 780 or 730 by doing

>>>BXXS

where XX is one of HP, HK, UP, RA, or RB for a 730. The corresponding command on an
11/750 is

>>> B/1

For second vendor storage modules on the UNIBUS or MASSBUS of an 11/750 you will
need to have a boot prom. Most vendors will sell you such proms for their controllers; contact
your vendor if you don't have one.

Other possibilities are:

>>> B ANY

or, on a 750

>>> B/3

These commands boot and ask for the name of the system to be booted. They can be used
after building a new test system to give the boot program the name ~f the test version of the
system.

To bring the system up to a multi-user configuration from the single-user status after,
e.g., a "B HPS" on an 11/780, "B RBS" on a 730, or a "B/l" on an 11/750 all you have to do
is hit AD on the console. The system will then execute /etc/re, a multi-user restart script (and
/etc/re.local), and come up on the terminals listed as active in the file /etc/ttys. See init (8)
and ttys (5). Note, however, that this does not cause a file system check to be performed.
Unless the system was taken down cleanly, you should run "fsck -p" or force a reboot with
reboot (8) to have the disks checked.

To take the system down to a single user state you can use

#kill 1

or use the shutdown (8) command (which is much more polite, if there are other users logged
in.) when you are up multi-user. Either command will kill all processes and give you a shell
on the console, as if you had just booted. File systems remain mounted after the system is
taken single-user. If you wish to come up multi-user again, you should do this by:

cd I
/etc/umount -a
#AD

Installing and Operating 4.2BSD 5-53

Each system shutdown, crash, processor halt and reboot is recorded in the file
/usr/adm/shutdownlog with the cause.

6.2. Device errors and diagnostics

When errors occur on peripherals or in the system, the system prints a warning diagnos­
tic on the console. These messages are collected regularly and written into a system error log
file /usr/adm/messages.

Error messages printed by the devices in the system are described with the drivers for
the devices in section 4 of the programmer's manual. If errors occur indicating hardware
problems, you should contact your hardware support group or field service. It is a good idea
to examine the error log file regularly (e.g. with "tail -r /usr/adm/messages").

6.3. File system checks, backups and disaster recovery

Periodically (say every week or so in the absence of any problems) and always (usually
automatically) after a crash, all the file systems should be checked for consistency by fsck (1).
The procedures of reboot (8) should be used to get the system to a state where a file system
check can be performed manually or automatically.

Dumping of the file systems should be done regularly, since once the system is going it is
easy to become complacent. Complete and incremental dumps are easily done with dump (8).
You should arrange to do a towers-of-hanoi dump sequence; we tune ours so that almost all
files are dumped on two tapes and kept for at least a week in most every case. We take full
dumps every month (and keep these indefinitely). Operators can execute "dump w" at login
that will tell them what needs to be dumped (based on the /etc/fstab information). Be sure to
create a group operator in the file /etc/group so that dump can notify logged-in operators
when it needs help.

More precisely, we have three sets of dump tapes: 10 daily tapes, 5 weekly sets of 2
tapes, and fresh sets of three tapes monthly. We do daily dumps circularly on the daily tapes
with sequence '3 2 5 4 7 6 9 8 9 9 9 .. .'. Each weekly is a level 1 and the daily dump sequence
level restarts after each weekly dump. Full dumps are level 0 and the daily sequence restarts
after each full dump also.

Thus a typical dump sequence would be:

tape name le~el number date opr size
FULL 0 Nov 24, 1979 jkf 137K

Dl 3 Nov 28, 1979 jkf 29K
D2 2 Nov 29, 1979 rrh 34K
D3 5 Nov 30, 1979 rrh 19K
D4 4 Dec 1, 1979 rrh 22K
Wl 1 Dec 2, 1979 etc 40K
D5 3 Dec 4, 1979 rrh 15K
D6 2 Dec 5, 1979 jkf 25K
D7 5 Dec 6, 1979 jkf 15K
D8 4 Dec 7, 1979 rrh 19K
W2 1 Dec 9, 1979 etc 118K
D9 3 Dec 11, 1979 rrh 15K

DlO 2 Dec 12, 1979 rrh 26K
Dl 5 Dec 15, 1979 rrh 14K
W3 1 Dec 17, 1979 etc 71K
D2 3 Dec 18, 1979 etc 13K

5-54 Installing and Operating 4.2BSD

FULL 0 Dec 22, 1979 etc 135K

We do weekly's often enough that daily's always fit on one tape and never get to the sequence
of 9's in the daily level numbers.

Dumping of files by name is best done by tar (1) but the amount of data that can be
moved in this way is limited to a single tape. Finally if there are enough drives entire disks
can be copied with dd (1) using the raw special files and an appropriate blocking factor; the
number of sectors per track is usually a good value to use, consult /etc/disktab.

It is desirable that full dumps of the root file system be made regularly. This is espe­
cially true when only one disk is available. Then, if the root file system is damaged by a
hardware or software failure, you can rebuild a workable disk doing a restore in the same way
that the initial root file system was created.

Exhaustion of user-file space is certain to occur now and then; disk quotas may be
imposed, or if you prefer a less facist approach, try using the programs du(l), df(l), quot(8),
combined with threatening messages of the day, and personal letters.

6.4. Moving filesystem data

If you have the equipment, the best way to move a file system is to dump it to magtape
using dump (8), use newfs (8) to create the new file system, and restore the tape, using
restore (8). If for some reason you don't want to use magtape, dump accepts an argument tel­
ling where to put the dump; you might use another disk. The restore program uses an "in­
place" algorithm which allows file system dumps to be restored without concern for the origi­
nal size of the file system. Further, portions of a file system may be selectively restored in a
manner similar to the tape archive program.

If you have to merge a file system into another, existing one, the best bet is to use
tar (1). If you must shrink a file system, the best bet is to dump the original and restore it
onto the new file system. If you are playing with the root file system and only have one drive,
the procedure is more complicated. What you do is the following:

1. GET A SECOND PACK!!!!

2. Dump the root file system to tape using dump (8).

3. Bring the system down and mount the new pack.

4. Load the distribution tape and install the new root file system as you did when first
installing the system.

5. Boot normally using the newly created disk file system.

Note that if you change the disk partition tables or add new disk drivers they should
also be added to the standalone system in /sys/stand and the default disk partition tables in
/etc/disktab should be modified.

6.5. Monitoring System Performance

The vmstat program provided with the system is designed to be an aid to monitoring
systemwide activity. Together with the ps (1) command (as in "ps av"), it can be used to
investigate systemwide virtual memory activity. By running vmstat when the system is active
you can judge the system activity in several dimensions: job distribution, virtual memory load,
paging and swapping activity, disk and cpu utilization. Ideally, there should be few blocked
(b) jobs, there should be little paging or swapping activity, there should be available
bandwidth on the disk devices (most single arms peak out at 30-35 tps in practice), and the
user cpu utilization (us) should be high (above 60%).

If the system is busy, then the count of active jobs may be large, and several of these
jobs may often be blocked (b). If the virtual memory is active, then the paging demon will be
running (sr will be non-zero). It is healthy for the paging demon to free pages when the vir­
tual memory gets active; it is triggered by the amount of free memory dropping below a

Installing and Operating 4.2BSD 5-55

threshold and increases its pace as free memory goes to zero.

If you run vmstat when the system is busy (a "vmstat l" gives all the numbers com­
puted by the system), you can find imbalances by noting abnormal job distributions. If many
processes are blocked (b), then the disk subsystem is overloaded or imbalanced. If you have a
several non-dma devices or open teletype lines that are "ringing", or user programs that are
doing high-speed non-buffered input/output, then the system time may go high (60-70% or
higher). It is often possible to pin down the cause of high system time by looking to see if
there is excessive context switching (cs), interrupt activity (in) or system call activity (sy).
Cumulatively on one of our large machines we average about 60 context switches and inter­
rupts per second and about 90 system calls per second.

If the system is heavily loaded, or if you have little memory for your load (lM is little in
most any case), then the system may be forced to swap. This is likely to be accompanied by a
noticeable reduction in system performance and pregnant pauses when interactive jobs such as
editors swap out. If you expect to be in a memory-poor environment for an extended period
you might consider administratively limiting system load.

6.6. Recompiling and reinstalling system software

It is easy to regenerate the system, and it is a good idea to try rebuilding pieces of the
system to build confidence in the procedures. The system consists of two major parts: the
kernel itself (/sys) and the user programs (/usr/src and subdirectories). The major part of this
is /usr/src.

The three major libraries are the C library in /usr/src/lib/libc and the FORTRAN libraries
/usr/src/usr.lib/libI77 and /usr/src/usr.lib/libF77. In each case the library is remade by chang­
ing into the corresponding directory and doing

#make

and then installed by

make install

Similar to the system,

#make clean

cleans up.

The source for all other libraries is kept in subdirectories of /usr/src/usr.lib; each has a
makefile and can be recompiled by the above recipe.

If you look at /usr/src/Makefile, you will see that you can recompile the entire system
source with one command. To recompile a specific program, find out where the source resides
with the whereis (1) command, then change to that directory and remake it with the makefile
present in the directory. For instance, to recompile "date", all one has to do is

whereis date
date: /usr/src/bin/date.c /bin/date /usr/man/manl/date.1
cd /usr/src/bin
#make date

this will create an unstripped version of the binary of "date" in the current directory. To
install the binary image, use the install command as in

#install -s date /bin/date

The -s option will insure the installed version of date has its symbol table stripped. The
install com!JJ.and should be used instead of mv or cp as it understands how to install programs
even when the program is currently in use.

If you wish to recompile and install all programs in a particular target area you can over­
ride the default target by doing:

5-56 Installing and Operating 4.2BSD

#make
make DESTDIR= pathname install

To regenerate all the system source you can do

cd /usr/src
#make

If you modify the C library, say to change a system call, and want to rebuild and install
everything from scratch you have to be a little careful. You must insure the libraries are
installed before the remainder of the source, otherwise the loaded images will not contain the
new routine from the library. The following steps are recommended.

cd /usr/src
cd lib; make install
cd ..
make usr.lib
cd usr.lib; make install
cd ..
#make bin etc usr.bin ucb games local
#for i in bin etc usr.bin ucb games local; do (cd $i; make install); done

This will take about 12 hours on a reasonably configured 11/750.

6.7. Making local modifications

To keep track of changes to system source we migrate changed versions of commands in
/usr/src/bin, /usr/src/usr.bin, and /usr/src/ucb in through the directory /usr/src/new and out of
the original directory into /usr/src/old for a time before removing them. Locally written com­
mands that aren't distributed are kept in /usr/src/local and their binaries are kept in
/usr/local. This allows /usr/bin, /usr/ucb, and /bin to correspond to the distribution tape (and
to the manuals that people can buy). People wishing to use /usr/local commands are made
aware that they aren't in the base manual. As manual updates incorporate these commands
they are moved to /usr/ucb.

A directory /usr/junk to throw garbage into, as well as binary directories /usr/old and
/usr/new are useful. The man command supports manual directories such as /usr/man/manj
for junk and /usr/man/manl for local to make this or something similar practical.

6.8. Accounting

UNIX optionally records two kinds of accounting information: connect time accounting
and process resource accounting. The connect time accounting information is stored in the
file /usr/adm/wtmp, which is summarized by the program ac (8). The process time accounting
information is stored in the file /usr/adm/acct, and analyzed and summarized by the program
sa(8).

If you need to implement recharge for computing time, you can implement procedures
based on the information provided by these commands. A convenient way to do this is to give
commands to the clock daemon /etc/cron to be executed every day at a specified time. This is
done by adding lines to /usr/adm/crontab; see cron (8) for details.

6.9. Resource control

Resource control in the current version of UNIX is fairly elaborate compared to most
UNIX systems. The disc quota facilities developed at the University of Melbourne have been
incorporated in the system and allow control over the number of files and amount of disc
space each user may use on each file system. In addition, the resources consumed by any sin­
gle process can be limited by the mechanisms of setrlimit (2). As distributed, the latter
mechanism is voluntary, though sites may choose to modify the login mechanism to impose

Installing and Operating 4.2BSD 5-57

limits not covered with disc quotas.

To utilize the disc quota facilities, the system must be configured with "options
QUOTA". File systems may then be placed under the quota mechanism by creating a null file
quotas at the root of the file system, running quotacheck (8), and modifying /etc/fstab to indi­
cate the file system is read-write with disc quotas (a "rq" type field). The quotaon (8) pro­
gram may then be run to enable quotas.

Individual quotas are applied by using the quota editor edquota (8). Users may view
their quotas (but not those of other users) with the quota (1) program. The repquota (8) pro­
gram may be used to summarize the quotas and current space usage on a particular file sys­
tem or file systems.

Quotas are enforced with soft and hard limits. When a user first reaches a soft limit on
a resource, a message is generated on his/her terminal. If the user fails to lower the resource
usage below the soft limit the next time they log in to the system the login program will gen­
erate a warning about excessive usage. Should three login sessions go by with the soft limit
breached the system then treats the soft limit as a hard limit and disallows any allocations
until enough space is reclaimed to bring the user back below the soft limit. Hard limits are
enforced strictly resulting in errors when a user tries to create or write a file. Each time a
hard limit is exceeded the system will generate a message on the user's terminal.

Consult the auxiliary document, "Disc Quotas in a UNIX Environment" and the
appropriate manual entries for more information.

6.10. Network troubleshooting

If you have anything more than a trivial network configuration, from time to time you
are bound to run into problems. Before blaming the software, first check your network con­
nections. On networks such as the Ethernet a loose cable tap or misplaced power cable can
result in severely deteriorated service. The netstat (1) program may be of aid in tracking
down hardware malfunctions. In particular, look at the -i and -s options in the manual
page.

Should you believe a communication protocol problem exists, consult the protocol
specifications and attempt to isolate the problem in a packet trace. The SO DEBUG option
may be supplied before establishing a connection on a socket, in which case the system will
trace all traffic and internal actions (such as timers expiring) in a circular trace buffer. This
buffer may then be printed out with the trpt (SC) program. Most all the servers distributed
with the system accept a -d option forcing all sockets to be created with debugging turned on.
Consult the appropriate manual pages for more information.

6.11. Files which need periodic attention

We conclude the discussion of system operations by listing the files that require periodic
attention or are system specific

/etc/fstab
/etc/disktab
/etc/printcap
/etc/gettytab
/etc/remote
/etc/group
/etc/motd
/etc/passwd
/etc/re.local
/etc/hosts
/etc/networks
/etc/services
/etc/hosts.equiv

how disk partitions are used
disk partition sizes
printer data base
terminal type definitions
names and phone numbers of remote machines for tip(l)
group memberships
message of the day
password file; each account has a line
local system restart script; runs reboot; starts daemons
host name data base
network name data base
network services data base
hosts under same administrative control

5-58 Installing and Operating 4.2BSD

/etc/securetty
/etc/ttys
/etc/ttytype
/usr/lib/crontab
/usr/lib/aliases
/usr/adm/acct
/usr/adm/messages
/usr/adm/shutdownlog
/usr/adm/wtmp

restricted list of ttys where root can log in
enables/disables ports
terminal types connected to ports
commands that are run periodically
mail forwarding and distribution groups
raw process account data
system error log
log of system reboots
login session accounting

Installing and Operating 4.2BSD 5-59

APPENDIX A - BOOTSTRAP DETAILS

This appendix contains pertinent files and numbers regarding the bootstrapping pro­
cedure for 4.2BSD. You should never have to look at this appendix. However, if there are
problems in installing the distribution on your machine, the material contained here may
prove useful.

Contents of the distribution tapes
The distribution normally consists of two 1600bpi 2400' magnetic tapes. The first tape

contains the following files on it. All tape files are blocked in 10 kilobytes records, except for
the first file on the first tape which has 512 byte records.

Tape file
one

two
three
four
five
six

Records*
194

205
380
440
2111
576

Contents
8 bootstrap monitor programs and a
tp (1) file containing boot, format, and copy
"mini root" file system
dump (8) of distribution root file system
tar (1) image of /sys, including GENERIC system
tar (1) image of binaries and libraries in /usr
tar(l) image of /usr/lib/vfont

The second tape contains the following files.

Tape file
one
two
three

#Records
2100
973
420

Contents
tar(l) image of /usr/src
tar(l) image of user contributed software
tar(l) image of /usr/ingres

The distribution tape is made with the shell scripts located in the directory /sys/dist. To
construct a distribution tape one must first build a mini root file system with the buildmini
shell script.

* The number of records in each tape file may not be precisely that shown in this table; these values reflect
the contents of the distribution tape at the time this document was written.

5-60 Installing and Operating 4.2BSD

#!/bin/sh
@(#)buildmini 4.4 7/9/83

miniroot= hpOg
minitype=rm80

date
umount /dev/$ { miniroot}
newfs -s 4096 ${miniroot} ${minitype}
fsck /dev/r${miniroot}
mount /dev/${miniroot} /mnt
cd /mnt; sh /sys/dist/get
cd /sys/dist; sync
umount /dev/${ miniroot}
fsck /dev/${miniroot}
date

The buildmini script uses the get script to construct the actual file system.

Installing and Operating 4.2BSD 5-61

#!/bin/sh
@(#)get 4.13 7/19/83

Shell script to build a mini-root file system
in preparation for building a distribution tape.
The file system created here is image copied onto
tape, then image copied onto disk as the "first"
step in a cold boot of 4.2 systems.

DISTROOT=/nbsd

if ['pwd' = '/']
then

fi

echo You just '(almost)' destroyed the root
exit

cp $DISTROOT/a/sys/GENERIC/vmunix .
rm -rf bin; mkdir bin
rm -rf etc; mkdir etc
rm -rf a; mkdir a
rm -rf tmp; mkdir tmp
rm -rf usr; mkdir usr usr/mdec
rm -rf sys; mkdir sys sys/floppy sys/cassette
cp $DISTROOT/etc/disktab etc
cp $DISTROOT/etc/newfs etc; strip etc/newfs
cp $DISTROOT/etc/mkfs etc; strip etc/mkfs
cp $DISTROOT/etc/restore etc; strip etc/restore
cp $DISTROOT/etc/init etc; strip etc/init
cp $DISTROOT/etc/mount etc; strip etc/mount
cp $DISTROOT/etc/mknod etc; strip etc/mknod
cp $DISTROOT/etc/fsck etc; strip etc/fsck
cp $DISTROOT/etc/umount etc; strip etc/umount
cp $DISTROOT/etc/arff etc; strip etc/arff
cp $DISTROOT/etc/flcopy etc; strip etc/flcopy
cp $DISTROOT/bin/mt bin; strip bin/mt
cp $DISTROOT /bin/ls bin; strip bin/ls
cp $DISTROOT /bin/sh bin; strip bin/sh
cp $DISTROOT /bin/mv bin; strip bin/mv
cp $DISTROOT /bin/sync bin; strip bin/sync
cp $DISTROOT/bin/cat bin; strip bin/cat
cp $DISTROOT/bin/mkdir bin; strip bin/mkdir
cp $DISTROOT/bin/stty bin; strip bin/stty; ln bin/stty bin/STTY
cp $DISTROOT/bin/echo bin; strip bin/echo
cp $DISTROOT /bin/rm bin; strip bin/rm
cp $DISTROOT/bin/cp bin; strip bin/cp
cp $DISTROOT/bin/expr bin; strip bin/expr
cp $DISTROOT/bin/awk bin; strip bin/awk
cp $DISTROOT/bin/make bin; strip bin/make
cp $DISTROOT/usr/mdec/* usr/mdec
cp $DISTROOT/a/sys/floppy/[Ma-z0-9]* sys/floppy
cp $DISTROOT/a/sys/cassette/[Ma-z0-9]* sys/cassette
cp $DISTROOT/a/sys/stand/boot boot
cp $DISTROOT/.profile .profile
cat >etc/passwd <<EOF

5-62 Installing and Operating 4.2BSD

root::O:lO::/:/bin/sh
EOF
cat >etc/group <<EOF
wheel:*:O:
staff:*:lO:
EOF
cat >etc/fstab <<EOF
/dev/hpOa:/a:xx:l:l
/dev/upOa:/a:xx:l:l
/dev/hkOa:/a:xx:l:l
/dev/raOa:/a:xx:l:l
/dev/rbOa:/a:xx:l:l
EOF
cat >xtr <<'EOF'
: ${disk?'Usage: disk=xxO type=tt tape=yy xtr'}
: ${ type?'Usage: disk=xxO type=tt tape=yy xtr'}
: ${ tape?'Usage: disk=xxO type=tt tape=yy xtr'}
echo 'Build root file system'
newfs ${disk}a ${type}
sync
echo 'Check the file system'
fsck /dev/r${disk}a
mount /dev/${disk}a /a
cd /a
echo 'Rewind tape'
mt -t /dev/${tape}O rew
echo 'Restore the dump image of the root'
restore rsf 3 /dev/${tape}O
cd I
sync
umount /dev/${disk}a
sync
fsck /dev/r${disk}a
echo 'Root filesystem extracted'
echo
echo 'If this is a 780, update floppy'
echo 'If this is a 730, update the cassette'
EOF
chmod +x xtr
rm -rf dev; mkdir dev
cp $DISTROOT/sys/dist/MAKEDEV dev
chmod +x dev/MAKEDEV
cp /dev/null dev/MAKEDEV.local
cd dev
cd ..
sync

The mini root file system must have enough space to hold the files found on a floppy or
cassette.

Once a mini root file system is constructed, the maketape script is used to make a distri­
bution tape.

#!/bin/sh
@(#)maketape 4.12 8/4/83

miniroot= hpOg

Installing and Operating 4.2BSD 5-63

trap "rm -f /tmp/tape.$$; exit" 0 1 2 3 13 15
mtrew
date
umount /dev/hp2g /dev/hp2h
umount /dev/hp2a
mount -r /dev/hp2a /nbsd
mount -r /dev/hp2g /nbsd/usr
mount -r /dev/hp2h /nbsd/a
cd /nbsd/tp
tp emf /tmp/tape.$$ boot copy format
cd /nbsd/sys/mdec
echo "Build 1st level boot block file"
cat tsboot htboot tmboot mtboot utboot noboot noboot /tmp/tape.$$1\

dd of=/dev/rmt12 bs=512 conv=sync
cd /nbsd
sync
echo "Add dump of mini-root file system"
dd if=/dev/r${miniroot} of=/dev/rmt12 bs=20b count=205 conv=sync
echo "Add full dump of real file system"
/etc/dump Ouf /dev/rmt12 /nbsd
echo "Add tar image of system sources"
cd /nbsd/a/sys; tar cf /dev/rmt12 .
echo "Add tar image of /usr"
cd /nbsd/usr; tar cf /dev/rmt12 adm bin diet doc games\

guest hosts include lib local man mdec msgs new\
old preserve pub spool tmp ucb

echo "Add varian fonts"
cd /usr/lib/vfont; tar cf /dev/rmt12 .
echo "Done, rewinding first tape"
mtrew
echo "Mount second tape and hit return when ready"; read x
echo "Add user source code"
cd /nbsd/usr/src; tar cf /dev/rmt12 .
echo "Add user contributed software"
cd /usr/src/new; tar cf /dev/rmt12 .
echo "Add ingres source"
cd /nbsd/usr/ingres; tar cf /dev/rmt12.
echo "Done, rewinding second tape"
mtrew

Summarizing then, to construct a distribution tape you can use the above scripts and the
following commands.

5-64 Installing and Operating 4.2BSD

buildmini
maketape

Done, rewinding first tape
Mount second tape and hit return when ready
(remove the first tape and place a fresh one on the drive)

Done, rewinding second tape

Control status register addresses

The distribution uses many standalone device drivers which presume the location of a
UNIBUS device's control status register (CSR). The following table summarizes these values.

De~.ice name Controller CSR address (octal}
ra DEC UDA50 0172150
rb DEC 730 IDC 0175606
rk DEC RKll 0177440
rl DEC RLU 0174400
tm EMULEX TC-U 0172520
ts DEC TSU 0172520
up EMULEX SC-21V 0176700
ut SI 9700 0172440

All MASSBUS controllers are located at standard offsets from the base address of the
MASSBUS adapter register bank.

Generic system control status register addresses

The generic version of the operating system supplied with the distribution contains the
UNIBUS devices indicated below. These devices will be recognized if the appropriate control
status registers respond at any of the indicated UNIBUS addresses.

De~ice name Controller CSR addresses (octal}
hk DEC RKU 0177440
tm EMULEX TC-U 0172520
ut SI 9700 0172440
up EMULEX SC-21V 0176700,0174400, 0176300
ra DEC UDA-50 0172150,0172550, 0177550
rb DEC 730 IDC 0175606
rl DEC RLU 0174400
dn DEC DNU 0160020
dm DMU equivalent 0170500
dh DHU equivalent 0160040
dz DEC DZU 0160100, 0160UO, ... 0160170
ts DEC TSU 0172520
dmf DECDMF32 0160340
Ip DEC LPU 0177514

If devices other than the above are located at any of the addresses indicated, the system may
not bootstrap properly.

Installing and Operating 4.2BSD 5-65

APPENDIX B - LOADING THE TAPE MONITOR

This section indicates how the bootstrap monitor located on the first tape of the distri­
bution tape set may be loaded. This should not be necessary, but has been included as a fall­
back measure in case it is not possible to read the distributed console medium. WARNING:
the bootstraps supplied below may not work, in certain instances on an 11/730 because they
use a buffered data path for transferring data from tape to memory; consult our group if you
are unable to load the monitor on an 11/730.

To load the tape bootstrap monitor, first mount the magnetic tape on drive 0 at load
point, making sure that the write ring is not inserted. Temporarily set the reboot switch on
an 11/780 or 11/730 to off; on an 11/750 set the power-on action to halt. (In normal operation
an 11/780 or 11/730 will have the reboot switch on, and an 11/750 will have the power-on
action set to boot/restart.)

If you have an 11/780 give the commands:

>>>HALT
>>>UNJAM

Then, on any machine, give the init command:

>>>I

and then key in at location 200 and execute either the TS, HT, TM, or MT bootstrap that fol­
lows, as appropriate. The machine's printouts are shown in boldface, explanatory comments
are within (). (You can use 'delete' to delete a character and 'control U' to kill the whole
line.)

TS bootstrap

>>>DIP 200 3AEFDO
>>> D + D05AOOOO
>>>D + 3BEF
>>> D + 800CAOO
>>> D + 32EFC1
>>>D + CAOlOOOO
>>> D + EFC10804
>>>D + 24
>>>D + 15508F
>> > D + ABB45BOO
>>>D + 2AB9502
>>> D + 8FBOFB18

5-66 Installing and Operating 4.2BSD

>>> D + 956B024C
>>>D + FBI802AB
>>>D + 25C8FBO
>>>D + 6B

(The next two deposits set up the addresses of the UNIBUS)
(adapter and its memory; the 20006000 here is the address of)
(the 11/780 ubaO and the 2013EOOO the address of the 11/780 umemO)

>>> D + 20006000 (780 ubaO)
(780 ubal: 20008000, 750 uba: F30000, 730 uba: F26000)

>>>D + 2013EOOO (780 umemO)
(780 umeml: 2017EOOO, 750 umem: FFEOOO, 730 um.em: FFEOOO)

>>> D + 80000000
>>>D + 254C004
>>>D + 80000
>>>D + 264
>>>D + E
>>>D + COOI
>>>D + 2000000
>>>8 200

HT bootstrap

>>>DIP 200 3EEFDO
>> > D + C55AOOOO
>>>D + 3BEF
>>>D + 808FOO
>>> D + CI5BOOOO
>> > D + C05B5A5B
>>>D + 4008F
>>>D + D05BOO
>>>D + 9D004AA
>> > D + C08F326B
>>>D + D424ABI4
>>>D + 8FDOOCAA
> > > D + 80000000
>>>D + 320800CA
>>> D + AAFE008F
>>> D + 6B39DOIO
>>>D + O

(The next two deposits set up the addresses of the MASSBUS)
(adapter and the drive number for the tape formatter)
(the 20012000 here is the address of the 11/780 mbal and the 0)
(reflects that the formatter is drive 0 on mbal)

>>>D + 20012000 (780 mbal) (780 mbaO: 20010000, 750 mbaO. F28000)
>>>D + 0 (Formatter unit number in range 0-7)
>>>8 200
>>>8 200

TM bootstrap

>>>DIP 200 2AEFDO
>>>D + D0510000
>>> D + 2000008F
>>>D + 800CI80
>>>D + 804CID4

>>> D + lAEFDO
>>>D + C8520000
>>> D + F5508F
>>>D + 8FAE5200
>>>D + 4A20200
>>>D + B006A2B4
>>>D + 2A203

Installing and Operating 4.2BSD 5-67

(The following two numbers are ubaO and umemO; see TS above)
(for some hints on other values if your TM isn't on UBAO on a 780)

>>> D + 20006000 (780 ubaO)
>>> D + 2013EOOO (780 umemO)
>>>S 200
>>>S 200
>>>S 200

MT bootstrap

>>>DIP 200 46EFDO
>> > D + C55AOOOO
>>>D + 43EF
>>>D + 808FOO
>>>D + C15BOOOO
>>> D + C05B5A5B
>>>D + 4008F
>>>D + 19A5BOO
>>>D + 49A04AA
>>> D + AAD408AB
>>> D + 8FDOOC
>>> D + CA800000
>>> D + 8F320800
>>> D + lOAAFEOO
>>>D + 2008F3C
>>>D + ABD014AB
>>>D + FE15044
>>>D + 399AF850
>>>D + 6B

(The next two deposits set up the addresses of the MASSBUS)
(adapter and the drive number for the tape formatter)
(the 20012000 here is the address of the 11/780 mbal and the 0)
(reflects that the formatter is drive 0 on mbal)

>>> D + 20012000
>>>D + 0
>>>S 200
>>>S 200
>>>S 200
>>>S 200

(no toggle-in code exists for the UT device)

If the tape doesn't move the first time you start the bootstrap program with "S 200" you
probably have entered the program incorrectly (but also check that the tape is online). Start
over and check your typing. For the HT, MT, and TM bootstraps you will not be able to see
the tape motion as you advance through the first few blocks as the tape motion is all within
the vacuum columns.

5-68 Installing and Operating 4.2BSD

Next, deposit in RA the address of the tape MBANBA and in RB the address of the
device registers or unit number from one of:

>>>DIG A 20006000
>>>DIG A 20008000
>>>DIG A 20012000
>>>DIG A 20010000
>>>DIG A F30000
>>>DIG A F2AOOO
>>>DIG A F28000
>>>DIG A F26000

and for register B:

>>>DIG B 0
>>>DIG B 1
>>>DIG B 2013F550
>>>DIG B FFF550

(for tapes on 780 ubaO)
(for tapes on 780 ubal)
(for tapes on 780 mbal)
(for tapes on 780 mbaO)
(for tapes on 750 ubaO)
(for tapes on 750 mbal)
(for tapes on 750 mbaO)
(for tapes on 730 ubaO)

(for tm03ltm78 formatters at mba? drive O)
(for tm03ltm78 formatters at mba? drive 1)
(for tmllltsllltu80 tapes on 780 ubaO)
(for tmlllts11ltu80 tapes on 750 or 730 ubaO)

Then start the bootstrap program with

>>>80

The console should type

=
You are now talking to the tape bootstrap monitor. At any point in the following procedure
you can return to this section, reload the tape bootstrap, and restart the procedure. The con­
sole monitor is identical to that loaded from a TU58 console cassette, follow the instructions
in section 2 as they apply to this device. The only exception is that when using programs
loaded from the tape bootstrap monitor, programs will always return to the monitor (the"="
prompt). This saves your having to type in the above toggle-in code for each program to be
loaded.

Installing and Operating 4.2BSD 5-69

APPENDIX C - INSTALLATION TROUBLESHOOTING

This appendix lists and explains certain problems which might be encountered while try­
ing to install the 4.2BSD distribution. The information provided here is limited to the early
steps in. the installation process; i.e. up to the point where the root file system is installed. If
you have a problem installing the release consult this section for an indication of the problem
before contacting our group.

Using the distribution console medium.

This section describes problems which may occur when using the programs provided on the
distributed console medium: TU58 cassette or RXOl floppy disk.

program can not be loaded.

Check to make sure the correct floppy or cassette is being used. If using a floppy, be sure it is
not in upside down. If using a cassette on an 11/730, be certain drive 0 is being used. If a
hard i/o error occurred while reading a floppy, try reseting the console LSI-11 by powering it
on and off. If you can not boot the cassette's bootstrap monitor, verify the standard DEC
console cassette can be read; if it can not, your cassette is broken - not uncommon.

program halts without warning.

Check to make sure you have specified the correct disk to format; consult sections 1.3 and 1.4
for a discussion of the VAX and UNIX device naming conventions. On ll/750's, specifying a
non-existent MASSBUS device will cause the program to halt as it receives an interrupt (stan­
dalone programs operate by polling devices).

If using a floppy, try reading the floppy under your current system. If this works, copy the
floppy to a new one and begin again. If using a cassette on an 11/730, do likewise.

format prints "Known devices are ... ".

You have requested format to work on a device for which it has no driver, or which does not
exist; only the indicated devices are supported.

format, boot, or copy prints "unknown drive type".

A MASSBUS disk was specified, but the associated MASSBUS drive type register indicates a
drive of unknown type. This probably means you typed something wrong or your hardware is
incorrectly configured.

format, boot, or copy prints "unknown device".

The device specified is probably not one of those supported by the distribution; consult sec­
tion 1.1. If the device is listed in section 1.1, the drive may be dual-ported, or for some other
reason the driver was unable to decipher its characteristics. If this is a MASSBUS drive, try
powering the MASSBUS adapter and/or controller on and off to clear the drive type register.

5-70 Installing and Operating 4.2BSD

copy does not copy 205 records

If a tape read error occurred, clean your tape drive heads. If a disk write error occurred, the
disk formatting may have failed. If the disk pack is removable, try another one. If you are
currently running UNIX, you can reboot your old system and use dd to copy the mini-root file
system into a disk partition (assuming the destination is not in use by the running system).

boot prints "not a directory"

The boot program was unable to find the requested program because it encountered some­
thing other than a directory while searching the file system. This usually indicates no file sys­
tem is present on the disk partition supplied, or the file system has been corrupted. First
check to make sure you typed the correct line to boot. If this is the case and you are booting
off the mini-root file system, the mini-root was probably not copied correctly off the tape
(perhaps it was not placed in the correct disk partition). Try reinstalling the mini-root file
system or, if trying to boot the true root file system, try booting off the mini-root file system
and run fsck on the restored root file system to insure its integrity. Finally, as a last resort,
copy the boot program from the mini-root file system to the newly installed root file system.

boot prints "bad format"

The program you requested boot to load did not have a 407, 410, or 413 magic number in its
header. This should never happen on a distribution system. If you were trying to boot off the
root file system, reboot the system on the mini-root file system and look at the program on the
root file system. Try copying the copy of vmunix on the mini-root to the root file system also.

boot prints "read short"

The file header for the program indicated a size larger than the actual size of the file located
on disk. This is probably the result of file system corruption (or a disk i/o error). Try booting
again or creating a new copy of the program to be loaded (see above).

Booting the generic system

This section contains common problems encountered when booting the generic version of the
system.

system panics with "panic: iinit"

This occured because the system was unable to locate the program /etc/init. The root file sys­
tem supplied at the "root device?" prompt was probably incorrect. Remember that when run­
ning on the mini-root file system, this question must be answered with something of the form
"hpO*". If the answer had been "hpO", the system would have used the "a" partition on unit
0 of the "hp" drive, where presumably no file system exists.

Alternatively, the file system on which you were trying to run is corrupted, or simply missing
/etc/init. Try reinstalling the appropriate file system or installing a version of init.

system selects incorrect root device

That is, you try to boot the system single user with "B/2" or "B xxS" but do not get the root
file system in the expected location. This is most likely caused by your having many disks
available more suited to be a root file system than the one you wanted. For example, if you
have a "up" disk and an "hk" disk and install the system on the "hk", then try and boot the
system to single-user mode, the heuristic used by the generic system to select the root file sys­
tem will choose the "up" disk. The following list gives, in descending order, those disks
thought most suitable to be a root file system: "hp", "up", "ra'', "rb'', "rl'', "hk" (the position
of "rl" is subject to argument). To get the root device you want you must boot using "B/3" or
"B ANY", then supply the root device at the prompt.

system crashes during autoconfiguration

This is almost always caused by an unsupported UNIBUS device being present at a location
where a supported device was expected. You must disable the device in some way, either by
pulling it off the bus, or by moving the location of the console status register (consult

Installing and Operating 4.2BSD 5-71

Appendix A for a complete list of UNIBUS csr's used in the generic system).

system does not find device(s)

The UNIBUS device is not at a standard location. Consult the list of control status register
addresses in Appendix A, or wait to configure a system to your hardware.

Alternatively, certain devices are difficult to locate during autoconfiguration. A classic exam­
ple is the TSll tape drive which does not autoconfigure properly if it is rewinding when the
system is rebooted. Tape drives should configure properly if they are off-line, or are not per­
forming a tape movement. Disks which are dual-ported should autoconfigure properly if the
drive is not being simultaneously accessed through the alternate port.

Building console cassettes

This sections describes common problems encountered while constructing a console bootstrap
cassette.

system crashes

You are trying to build a cassette for an 11/750. On an 11/750 the system is booted by using a
bootstrap prom and sector 0 of the root file system. Refer to section 2.1.5 or tu (4) for the
appropriate reprimand.

system hangs

You are using an MRSP prom on an 11/750 and think you can ignore the instructions in this
document. The problem here is that the generic system only supports the MRSP prom on an
11/730. Using it on an 11/750 requires a special system configuration; consult tu (4) for more
information.

Building 4.2BSD with Config 5-73

Building 4.2BSD
UNIXt

Systems with Conftg

June, 1983

Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

(415) 642-7780

1. INTRODUCTION

Config is a tool used in building 4.2BSD system images. It takes a file describing a
system's tunable parameters and hardware support, and generates a collection of files which
are then used to build a copy of UNIX appropriate to that configuration. Config simplifies
system maintenance by isolating system dependencies in a single, easy to understand, file.

This document describes the content and format of system configuration files and the
rules which must be followed when creating these files. Example configuration files are con­
structed and discussed.

Later sections suggest guidelines to be used in modifying system source and explain
some of the inner workings of the autoconfiguration process. Appendix D summarizes the
rules used in calculating the most important system data structures and indicates some
inherent system data structure size limitations (and how to go about modifying them).

tUNIX is a Trademark of Bell Laboratories.

5-74 Building 4.2BSD with Con:ftg

2. CONFIGURATION FILE CONTENTS

A system configuration must include at least the following pieces of information:

• machine type

• cpu type

• system identification

• timezone

• maximum number of users

• location of the root file system

• available hardware
Config allows multiple system images to be generated from a single configuration

description. Each system image is configured for identical hardware, but may have different
locations for the root file system and, possibly, other system devices.

2.1. Machine type

The machine type indicates if the system is going to operate on a DEC VAX-11 com­
puter, or some other machine on which 4.2BSD operates. The machine type is used to locate
certain data files which are machine specific and, also, to select rules used in constructing the
resultant configuration files.

2.2. Cpu type

The cpu type indicates which, of possibly many, cpu's the system is to operate on. For
example, if the system is being configured for a VAX-11, it could be running on a VAX-
11/780, VAX-11/750, or VAX-11/730. Specifying more than one cpu type implies the system
should be configured to run on all the cpu's specified. For some types of machines this is not
possible and config will print a diagnostic indicating such.

2.3. System identification

The system identification is a moniker attached to the system, and often the machine
on which the system is to run. For example, at Berkeley we have machines named Ernie (Co­
V AX), Kim (No-VAX), and so on. The system identifier selected is used to create a global C
"#define" which may be used to isolate system dependent pieces of code in the kernel. For
example, Ernie's Varian driver used to be special cased because its interrupt vectors were
wired together. The code in the driver which understood how to handle this non-standard
hardware configuration was conditionally compiled in only if the system was for Ernie.

The system identifier "GENERIC" is given to a system which will run on any cpu of a
particular machine type; it should not otherwise be used for a system identifier.

2.4. Timezone

The timezone in which the system is to run is used to define the information returned by
the gettimeofday (2) system call. This value is specified as the number of hours east or west
of GMT. Negative numbers indicate a value east of GMT. The timezone specification may
also indicate the type of daylight savings time rules to be applied.

2.5. Maximum number of users

The system allocates many system data structures at boot time based on the maximum
number of users the system will support. This number is normally between 8 and 40, depend­
ing on the hardware and expected job mix. The rules used to calculate system data structures
are discussed in Appendix D.

Building 4.2BSD with Confi.g 5-75

2.6. Root file system location

When the system boots it must know the location of the root of the file system tree.
This location and the part(s) of the disk(s) to be used for paging and swapping must be
specified in order to create a complete configuration description. Config uses many rules to
calculate default locations for these items; these are described in Appendix B.

When a generic system is configured, the root file system is left undefined until the sys­
tem is booted. In this case, the root file system need not be specified, only that the system is
a generic system.

2.7. Hardware devices

When the system boots it goes through an autoconfiguration phase. During this period,
the system searches for all those hardware devices which the system builder has indicated
might be present. This probing sequence requires certain pieces of information such as regis­
ter addresses, bus interconnects, etc. A system's hardware may be configured in a very flexible
manner or be specified without any flexibility whatsoever. Most people do not configure
hardware devices into the system unless they are currently present on the machine, expect
them to be present in the near future, or are simply guarding against a hardware failure some­
where else at the site (it is often wise to configure in extra disks in case an emergency requires
moving one off a machine which has hardware problems).

The specification of hardware devices usually occupies the majority of the configuration
file. As such, a large portion of this document will be spent understanding it. Section 6.3 con­
tains a description of the autoconfiguration process, as it applies to those planning to write, or
modify existing, device drivers.

2.8. Optional items

Other than the mandatory pieces of information described above, it is also possible to
include various optional system facilities. For example, 4.2BSD can be configured to support
binary compatibility for programs built under 4.lBSD. Also, optional support is provided for
disk quotas and tracing the performance of the virtual memory subsystem. Any optional facil­
ities to be configured into the system are specified in the configuration file. The resultant files
generated by config will automatically include the necessary pieces of the system.

5-76 Building 4.2BSD with Config

3. SYSTEM BUILDING PROCESS

In this section we consider the steps necessary to build a bootable system image. We
assume the system source is located in the "/sys" directory and that, initially, the system is
being configured from source code.

Under normal circumstances there are 5 steps in building a system.

1) Create a configuration file for the system.

2) Make a directory for the system to be constructed in.

3) Run config on the configuration file to generate the files required to compile and load the
system image.

4) Construct the source code interdependency rules for the configured system.

5) Compile and load the system with make (1).

Steps 1 and 2 are usually done only once. When a system configuration changes it usu­
ally suffices to just run config on the modified configuration file, rebuild the source code
dependencies, and remake the system. Sometimes, however, configuration dependencies may
not be noticed in which case it is necessary to clean out the relocatable object files saved in
the system's directory; this will be discussed later.

3.1. Creating a configuration file
Configuration files normally reside in the directory "/sys/conf''. A configuration file is

most easily constructed by copying an existing configuration file and modifying it. The
4.2BSD distribution contains a number of configuration files for machines at Berkeley, one
may be suitable or, in worst case, you may take the generic configuration file and edit that.

The configuration file must have the same name as the directory in which the configured
system is to be built. Further, config assumes this directory is located in the parent directory
of the directory in which it is run. For example, the generic system has a configuration file
"/sys/conf/GENERIC" and an accompanying directory named "/sys/GENERIC". In general it
is unwise to move your configuration directories out of "/sys" as most of the system code and
the files created by config use pathnames of the form " . ./". If you are running out of space on
the file system where the configuration directories are located there is a mechanism for shar­
ing relocatable object files between systems; this is described later.

When building your configuration file, be sure to include the items described in section
2. In particular, the machine type, cpu type, timezone, system identifier, maximum users, and
root device must be specified. The specification of the hardware present may take a bit of
work; particularly if your hardware is configured at non-standard places (e.g. device registers
located at funny places or devices not supported by the system). Section 4 of this document
gives a detailed description of the configuration file syntax, section 5 explains some sample
configuration files, and section 6 discusses how to add new devices to the system. If the dev­
ices to be configured are not already described in one of the existing configuration files you
should check the manual pages in section 4 of the UNIX Programmers Manual. For each sup­
ported device, the manual page synopsis entry gives a sample configuration line.

Once the configuration file is complete, run it through config and look for any errors.
Never try and use a system which config lras complained about; the results are unpredictable.
For the most part, config's error diagnostics are self explanatory. It may be the case that the
line numbers given with the error messages are off by one.

A successful run of config on your configuration file will generate a number of files in the
configuration directory. These files are:

• A file to be used by make (1) in compiling and loading the system.

Building 4.2BSD with Config 5-77

• One file for each possible system image for your machine which describes where swapping,
the root file system, and other miscellaneous system devices are located.

• A collection of header files, one per possible device the system supports, which define the
hardware configured.

• A file containing the i/o configuration tables used by the system during its
autoconfiguration phase.

• An assembly language file of interrupt vectors which connect interrupts from your
machine's external buses to the main system path for handling interrupts.

Unless you have reason to doubt config, or are curious how the system's
autoconfiguration scheme works, you should never have to look at any of these files.

3.2. Constructing source code dependencies
When config is done generating the files needed to compile and link your system it will

terminate with a message of the form "Don't forget to run make depend". This is a reminder
that you should change over to the configuration directory for the system just configured and
type "make depend" to build the rules used by make to recognize interdependencies in the
system source code. This will insure that any changes to a piece of the system source code
will result in the proper modules being recompiled the next time make is run.

This step is particularly important if your site makes changes to the system include files.
The rules generated specify which source code files are dependent on which include files.
Without these rules, make will not recognize when it must rebuild modules due to a system
header file being modified. Note that ~ependency rules created by this step only reflect
directly included files. That is, if file "a" includes another file "b", which includes yet
another, say "c", and then "c" is modified, make will not recognize that "a" should be recom­
piled. It is best to keep include file dependencies only one level deep.

3.3. Building the system
The makefile constructed by config should allow a new system to be rebuilt by simply

typing "make image-name". For example, if you have named your bootable system image
"vmunix", then "make vmunix" will generate a bootable image named "vmunix". Alternate
system image names are used when the root file system location and/or swapping configuration
is done in more than one way. The makefile which config creates has entry points for each
system image defined in the configuration file. Thus, if you have configured "vmunix" to be a
system with the root file system on an "hp" device and "hkvmunix" to be a system with the
root file system on an "hk" device, then "make vmunix hkvmunix" will generate binary images
for each.

Note that the name of a bootable image is different from the system identHier. All boot­
able images are configured for the same system; only the information about the root file sys­
tem and paging devices differ. (This is described in more detail in section 4.)

The last step in the system building process is to rearrange certain commonly used sym­
bols in the symbol table of the system image; the makefile generated by config does this
automatically for you. This is advantageous for programs such as ps (1) and vmstat (1), which
run much faster when the symbols they need are located at the front of the symbol table.
Remember also that many programs expect the currently executing system to be named
"/vmunix". If you install a new system and name it something other than "/vmunix", many
programs are likely to give strange results.

3.4. Sharing object modules
If you have many systems which are all built on a single machine there are at least two

approaches to saving time in building system images. The best way is to have a single system
image which is run on all machi.nes. This is attractive since it minimizes disk space used and
time required to rebuild systems after making changes. However, it is often the case that one

'

5-78 Building 4.2BSD with Conftg

or more systems will require a separately configured system image. This may be due to lim­
ited memory (building a system with many unused device drivers can be expensive), or to
configuration requirements (one machine may be a development machine where disk quotas
are not needed, while another is a production machine where they are), etc. In these cases it
is possible for common systems to share relocatable object modules which are not
configuration dependent; most of the module in the directory "/sys/sys" are of this sort.

To share object modules, a generic system should be built. Then, for each system
configure the system as before, but before recompiling and linking the system, type "make
links". This will cause the system to be searched for source modules which are safe to share
between systems and generate symbolic links in the current directory to the appropriate
object modules in the directory " . ./GENERIC". A shell script, "makelinks" is generated with
this request and may be checked for correctness. The file "/sys/conf/defines" contains a list of
symbols which we believe are safe to ignore when checking the source code for modules which
may be shared. Note that this list includes the definitions used to conditionally compile in
the virtual memory tracing facilities, and the trace point support used only rarely (even at
Berkeley). It may be necessary to modify this file to reflect local needs. Note further, that as
described previously, interdependencies which are not directly visible in the source code are
not caught. This means that if you place per-system dependencies in an include file, they will
not be recognized and the shared code may be selected in an unexpected fashion.

3.5. Building profiled systems
It is simple to configure a system which will automatically collect profiling information

as it operates. The profiling data may be collected with kgmon (8) and processed with
gprof(I) to obtain information regarding the system's operation. Profiled systems maintain
histograms of the program counter as well as the number of invocations of each routine. The
gprof(I) command will also generate a dynamic call graph of the executing system and pro­
pagate time spent in each routine along the arcs of the call graph (consult the gprof documen­
tation for elaboration). The program counter sampling can be driven by the system clock, or
if you have an alternate real time clock this can be used. The latter is highly recommended as
use of the system clock will result in statistical anomalies and time spent in the clock routine
will not be accurately accounted for.

To configure a profiled system, the -p option should be supplied to config. A profiled
system is about 5-10% larger in its text space due to the calls to count the subroutine invoca­
tions. When the system executes, the profiling data is stored in a buffer which is 1.2 times the
size of the text space. The overhead for running a profiled system varies; under normal load
we see anywhere from 5-25 % of the system time spent in the profiling code.

Note that systems configured for profiling should not be shared as described above
unless all the other shared systems are also to be profiled.

Building 4.2BSD with Con:fi.g 5-79

4. CONFIGURATION FILE SYNTAX

In this section we consider the specific rules used in writing a configuration file. A com­
plete grammar for the input language can be found in Appendix A and may be of use if you
should have problems with syntax errors.

A configuration file is broken up into three logical pieces:

• configuration parameters global to all system images specified in the configuration file,

• parameters specific to each system image to be generated, and

• device specifications.

4.1. Global configuration parameters

The global configuration parameters are the type of machine, cpu types, options,
timezone, system identifier, and maximum users. Each is specified with a separate line in the
configuration file.

machine type
The system is to run on the machine type specified. No more than one machine type
can appear in the configuration file. Legal values are vax and sun.

cpu "type"
This system is to run on the cpu type specified. More than one cpu type specification
can appear in a configuration file. Legal types for a vax machine are
VAX780,VAX750, and VAX730.

options optionlist
Compile the listed optional code into the system. Options in this list are separated by
commas. Possible options are listed at the top of the generic makefile. A line of the
form "options FUNNY,HAHA" generates global "#define"s -DFUNNY -DHAHA in
the resultant makefile. An option may be given a value by following its name with"=",
then the value enclosed in (double) quotes. None of the standard options use such a
value. The following options are currently in use: COMPAT (include code for compati­
blity with 4.IBSD binaries), INET (Internet communication protocols), PUP (support
for a PUP raw interface), and QUOTA (enable disk quotas). There are additional
options which are associated with certain peripheral devices; those are listed in the
Synopsis section of the manual page for the device.

timezone number [dst [number]]
Specifies the timezone you are in. This is measured in the number of hours your
timezone is west of GMT. EST is 5 hours west of GMT, PST is 8. Negative numbers
indicate hours east of GMT. If you specify dst, the system will operate under daylight
savings time. An optional integer or floating point number may be included to specify a
particular daylight saving time correction algorithm; the default value is 1, indicating the
United States. Other values are: 2 (Australian style), 3 (Western European), 4 (Middle
European), and 5 (Eastern European). See gettimeofday (2) and ctime (3) for more
information.

ident name
This system is to be known as name. This is usually a cute name like ERNIE (short for
Ernie Co-Vax) or VAXWELL (for Vaxwell Smart).

maxusers number
The maximum expected number of simultaneously active user on this system is number.
This number is used to size several system data structures.

5-80 Building 4.2BSD with Config

4.2. System image parameters

Multiple bootable images may be specified in a single configuration file. The systems
will have the same global configuration parameters and devices, but the location of the root
file system and other system specific devices may be different. A system image is specified
with a "config" line:

config sysname config-clauses

The sysname field is the name given to the loaded system image; almost everyone names their
standard system image "vmunix". The configuration clauses are one or more specifications
indicating where the root file system is located, how many paging devices there are and where
they go. The device used by the system to process argument lists during execve(2) calls may
also be specified, though in practice this is almost always selected by config using one of its
rules for selecting default locations for system devices.

A configuration clause is one of the following

root [on] root-device
swap [on] swap-device [and swap-device]
dumps [on] dump-device
args [on] arg-device

(the "on" is optional.) Multiple configuration clauses are separated by white space; config
allows specifications to be continued across multiple lines by beginning the continuation line
with a tab character. The "root" clause specifies where the root file system is located, the
"swap" clause indicates swapping and paging area(s), the "dumps" clause can be used to force
system dumps to be taken on a particular device, and the "args" clause can be used to specify
that argument list processing for execve should be done on a particular disk.

The device names supplied in the clauses may be fully specified as a device, unit, and file
system partition; or underspecified in which case config will use builtin rules to select default
unit numbers and file system partitions. The defaulting rules are a bit complicated as they
are dependent on the overall system configuration. For example, the swap area need not be
specified at all if the root device is specified; in this case the swap area is placed in the "b"
partition of the same disk where the root file system is located. Appendix B contains a com­
plete list of the defaulting rules used in selecting system configuration devices.

The device names are translated to the appropriate major and minor device numbers on
a per-machine basis. A file, "/sys/conf/devices.machine" (where "machine" is the machine
type specified in the configuration file), is used to map a device name to its major block device
number. The minor device number is calculated using the standard disk partitioning rules: on
unit 0, partition "a" is minor device 0, partition "b" is minor device 1, and so on; for units
other than 0, add 8 times the unit number to get the minor device.

If the default mapping of device name to major/minor device number is incorrect for
your configuration, it can be replaced by an explicit specification of the major/minor device.
This is done by substituting

major x minor y

where the device name would normally be found. For example,

config vmunix root on major 99 minor 1

Normally, the areas configured for swap space are sized by the system at boot time. If a
non-standard partition size is to be used for one or more swap areas, this can also be specified.
To do this, the device name specified for a swap area should have a "size" specification
appended. For example,

config vmunix root on hpO swap on hpOb size 1200

would force swapping to be done in partition "b" of "hpO" and the swap partition size would
be set to 1200 sectors. A swap area sized larger than the associated disk partition is trimmed
to the partition size.

--·-- --···-·---·---·-------~----

Building 4.2BSD with Confi.g 5-81

To create a generic configuration, only the clause "swap generic" should be specified; any
extra clauses will cause an error.

4.3. Device specifications

Each device attached to a machine must be specified to config so that the system gen­
erated will know to probe for it during the autoconfiguration process carried out at boot time.
Hardware specified in the configuration need not actually be present on the machine where
the generated system is to be run. Only the hardware actually found at boot time will be used
by the system.

The specification of hardware devices in the configuration file parallels the interconnec­
tion hierarchy of the machine to be configured. On the VAX, this means a configuration file
must indicate what MASSBUS and UNIBUS adapters are present, and to which nexi they
might be connected*. Similarly, devices and controllers must be indicated as possibly being
connected to one or more adapters. A device description may provide a complete definition of
the possible configuration parameters or it may leave certain parameters undefined and make
the system probe for all the possible values. The latter allows a single device configuration list
to match many possible physical configurations. For example, a disk may be indicated as
present at UNIBUS adapter 0, or at any UNIBUS adapter which the system locates at boot
time. The latter scheme, termed wildcarding, allows more flexibility in the physical
configuration of a system; if a disk must be moved around for some reason, the system will
still locate it at the alternate location.

A device specification takes one of the following forms:

master device-name device-info
controller device-name device-info [interrupt-spec]
device device-name device-info interrupt-spec
disk device-name device-info
tape device-name device-info

A "master" is a MASSBUS tape controller; a "controller" is a disk controller, a UNIBUS tape
controller, 'l MAS&BUS adapter, or a UNIBUS adapter. A "device" is an autonomous device
which connects directly to a UNIBUS adapter (as opposed to something like a disk which con­
nects through a disk controller). "Disk" and "tape" identify disk drives and tape drives con­
nected to a "controller" or "master".

The device-name is one of the standard device names, as indicated in section 4 of the
UNIX Programmers Manual, concatenated with the logical unit number to be assigned the
device (the logical unit number may be different than the physical unit number indicated on
the front of something like a disk; the logical unit number is used to refer to the UNIX dev­
ice, not the physical unit number). For example, "hpO" is logical unit 0 of a MASSBUS
storage device, even though it might be physical unit 3 on MASSBUS adapter 1.

The device-info clause specifies how the hardware is connected in the interconnection
hierarchy. On the VAX, UNIBUS and MASSBUS adapters are connected to the internal sys­
tem bus through a nexus. Thus, one of the following specifications would be used:

controller mbaO at nexus x
controller ubaO at nexus x

To tie a controller to a specific nexus, "x" would be supplied as the number of that nexus;
otherwise "x" may be specified as "?", in which case the system will probe all nexi present
looking for the specified controller.

The remaining interconnections on the VAX are:

* While VAX-11/750's and VAX-11/730 do not actually have nexi, the system treats them as having simu­
lated nexi to simplify device configuration.

5-82 Building 4.2BSD with Config

• a controller may be connected to another controller (e.g. a disk controller attached to a
UNIBUS adapter),

• a master is always attached to a controller (a MASSBUS adaptor),

• a tape is always attached to a master (for MASSBUS tape drives),

• a disk is always attached to a controller, and

• devices are always attached to controllers (e.g. UNIBUS controllers attached to UNIBUS
adapters).

The following lines give an example of each of these interconnections:

controller hkO at ubaO .. .
master htO at mbaO .. .
tape tuO at htO .. .
disk rkl at hkO .. .
device dzO at ubaO .. .

Any piece of hardware which may be connected to a specific controller may also be wildcarded
across multiple controllers.

The final piece of information needed by the system to configure devices is some indica­
tion of where or how a device will interrupt. For tapes and disks, simply specifying the slave
or drive number is sufficient to locate the control status register for the device. For controll­
ers, the control status register must be given explicitly, as well how many interrupt vectors are
used and the names of the routines to which they should be bound. Thus the example lines
given above might be completed as:

controller hkO
master htO
tape tuO
disk rkl
device dzO

at ubaO csr 0177440
at mbaO drive 0
at htO slave 0
at hkO drive 1
at ubaO csr 0160100

vector rkintr

vector dzrint dzxint

Certain device drivers require extra information passed to them at boot time to tailor
their operation to the actual hardware present. The line printer driver, for example, needs to
know how many columns are present on each non-standard line printer (i.e. a line printer with
other than 80 columns). The drivers for the terminal multiplexors need to know which lines
are attached to modem lines so that no one will be allowed to use them unless a connection is
present. For this reason, one last parameter may be specified to a device, a flags field. It has
the syntax

:flags number

and is usually placed after the csr specification. The number is passed directly to the associ­
ated driver. The manual pages in section 4 should be consulted to determine how each driver
uses this value (if at all). Communications interface drivers commonly use the flags to indi­
cate whether modem control signals are in use.

The exact syntax for each specific device is given in the Synopsis section of its manual
page in section 4 of the manual.

4.4. Pseudo-devices

A number of drivers and software subsystems are treated like device drivers without any
associated hardware. To include any of these pieces, a "pseudo-device" specification must be
used. A specification for a pseudo device takes the form

pseudo-device device-name [howmany]

Examples of pseudo devices are bk, the Berknet line discipline, pty, the pseudo termi­
nal driver (where the optional howmany value indicates the number of pseudo terminals to
configure, 32 default), and inet, the DARPA Internet protocols (one must also specify INET
in the "options"). Other pseudo devices for the network include loop, the software loopback

Building 4.2BSD with Config 5-83

interface, imp (required when a CSS or ACC imp is configured), and ether (used by the
Address Resolution Protocol on 10 Mb/sec ethernets). More information on configuring each
of these can also be found in section 4 of the manual.

5-84 Building 4.2BSD with Config

5. SAMPLE CONFIGURATION FILES

In this section we will consider how to configure a sample VAX-11/780 system on which
the hardware can be reconfigured to guard against various hardware mishaps. We then study
the rules needed to configure a V AX-11/750 to run in a networking environment.

5.1. VAX-11/780 System

Our VAX-11/780 is configured with hardware recommended in the document "Hints on
Configuring a VAX for 4.2BSD" (this is one of the high-end configurations). Table 1 lists the
pertinent hardware to be configured.

cpu DEC VAX780
MASSBUS controller Emulex nexus? mbaO hp(4)
disk Fujitsu mbaO hpO
disk Fujitsu mbaO hpl
MASSBUS controller Emulex nexus? mbal
disk Fujitsu mbal hp2
disk Fujitsu mbal hp3
UNIBUS adapter DEC nexus?
tape controller Emulex ubaO tmO tm(4)
tape drive Kennedy tmO teO
tape drive Kennedy tmO tel
terminal multiplexor Emulex ubaO dhO dh(4)
terminal multiplexor Emulex ubaO dhl

Table 1. VAX-11/780 Hardware support.

We will call this machine ANSEL and construct a configuration file one step at a time.

The first step is to fill in the global configuration parameters. The machine is a VAX, so
the machine type is "vax". We will assume this system will run only on this one processor, so
the cpu type is "VAX780". The options are empty since this is going to be a "vanilla" VAX.
The system identifier, as mentioned before, is "ANSEL" and the maximum number of users
we plan to support is about 40. Thus the beginning of the configuration file looks like this:

ANSEL VAX (a picture perfect machine)

machine
cpu
timezone
ident
maxusers

vax
VAX780
8 dst
ANSEL
40

To this we must then add the specifications for three system images. The first will be
our standard system with the root on "hpO" and swapping on the same drive as the root. The
second will have the root file system in the same location, but swap space interleaved among
drives on each controller. Finally, the third will be a generic system, to allow us to boot off
any of the four disk drives.

config
con fig
config

vmunix
hpvmunix
genvmunix

- -----------

Building 4.2BSD with Config 5-85

root on hpO
root on hpO swap on hpO and hp2
swap generic

Finally, the hardware must be specified. Let us first just try transcribing the informa­
tion from Table 1.

controller mbaO at nexus?
disk hpO at mbaO disk 0
disk hpl at mbaO disk 1
controller mbal at nexus?
disk hp2 at mbal disk 2
disk hp3 at mbal disk 3
controller ubaO at nexus?
controller tmO at ubaO csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive 1
device dhO at ubaO csr 0160020 vector dhrint dhxint
device dmO at ubaO csr 0170500 vector dmintr
device dhl at ubaO csr 0160040 vector dhrint dhxint
device dh2 at ubaO csr 0160060 vector dhrint dhxint

(Oh, I forgot to mention one panel of the terminal multiplexor has modem control, thus the
"dmO" device.)

This will suffice, but leaves us with little flexibility. Suppose our first disk controller
were to break. We would like to recable the drives normally on the second controller so that
all our disks could still be used without reconfiguring the system. To do this we wildcard the
MASSBUS adapter connections and also the slave numbers. Further, we wildcard the
UNIBUS adapter connections in case we decide some time in the future to purchase another
adapter to oflload the single UNIBUS we currently have. The revised device specifications
would then be:

controller mbaO at nexus?
disk hpO at mba? disk ?
disk hpl at mba? disk ?
controller mbal at nexus?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller ubaO at nexus?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive 1
device dhO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device dhl at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

The completed configuration file for ANSEL is shown in Appendix C.

5.2. VAX-11/'?'50 with network support

Our VAX-11/750 system will be located on two lOMb/s Ethernet local area networks and
also the DARPA Internet. The system will have a MASSBUS drive for the root file system
and two UNIBUS drives. Paging is interleaved among all three drives. We have sold our
standard DEC terminal multiplexors since this machine will be accessed solely through the
network. This machine is not intended to have a large user community, it does not have a

5-86 Building 4.2BSD with Config

great deal of memory. First the global parameters:

UCBVAX (Gateway to the world)

machine
cpu
cpu
ident
timezone
maxusers
options

vax
"VAX780"
"VAX750"
UCBVAX
8 dst
32
INET

The multiple cpu types allow us to replace UCBVAX with a more powerful cpu without
reconfiguring the system. The value of 32 given for the maximum number of users is done to
force the system data structures to be over-allocated. That is desirable on this machine
because, while it is not expected to support many users, it is expected to perform a great deal
of work. Upping this value results in a larger disk buffer cache than would normally be allo­
cated if the true number of users were given. The "INET" indicates we plan to use the
DARPA standard Internet protocols on this machine.

The system images and disks are configured in next.

config vmunix root on hp swap on hp and rkO and rkl
config upvmunix root on up
config hkvmunix root on bk swap on rkO and rkl

controller mbaO at nexus?
controller ubaO at nexus?
disk hpO at mba? drive 0
disk hpl at mba? drive 1
controller scO at uba? csr 0176700 vector upintr
disk upO at scO drive 0
disk upl at scO drive 1
controller hkO at uba? csr 0177440 vector rkintr
disk rkO at hkO drive 0
disk rkl at hkO drive 1

UCBV AX requires heavy interleaving of its paging area to keep up with all the mail
traffic it handles. The limiting factor on this system's performance is usually the number of
disk arms, as opposed to memory or cpu cycles. The extra UNIBUS controller, "scO'', is in
case the MASSBUS controller breaks and a spare controller must be installed (most of our old
UNIBUS controllers have been replaced with the newer MASSBUS controllers, so we have a
number of these around as spares).

Finally, we add in the network support. The Internet protocols require an "inet"
pseudo-device in addition to the global "INET" option specified above. Pseudo terminals are
needed to allow users to log in across the network (remember the only hardwired terminal is
the console). The connection to the Internet is through an IMP, this requires yet another
pseudo-device (in addition to the actual hardware device used by the IMP software). And,
finally, there are the two Ethernet devices. These use a special protocol, the Address Resolu­
tion Protocol (ARP), to map between Internet and Ethernet addresses. Thus, yet another
pseudo-device is needed. The additional device specifications are show below.

pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device no

Building 4.2BSD with Config 5-87

at uba? csr 0167600

at uba? csr 0164330
at uba? csr 0164000

vector accrint accxint

vector ecrint eccollide ecxin
vector ilrint ilcint

The completed configuration file for UCBV AX is shown in Appendix C.

5.3. Miscellaneous comments

It should be noted in these examples that neither system was configured to use disk quo­
tas or the 4.lBSD compatibility mode. To use these optional facilities, and others, we would
probably clean out our current configuration, reconfigure the system, then recompile and
relink the system image(s). This could, of course, be avoided by figuring out which relocatable
object files are affected by the reconfiguration, then reconfiguring and recompiling only those
files affected by the configuration change. This technique should be used carefully.

5-88 Building 4.2BSD with Conftg

6. ADDING NEW SYSTEM SOFTWARE

This section is not for the novice, it describes some of the inner workings of the
configuration process as well as the pertinent parts of the system autoconfiguration process. It
is intended to give those people who intend to install new device drivers and/or other system
facilities sufficient information to do so in the manner which will allow others to easily share
the changes.

This section is broken into four parts:

• general guidelines to be followed in modifying system code,

• how to add a device driver to 4.2BSD,

• how UNIBUS device drivers are autoconfigured under 4.2BSD on the VAX, and

• how to add non-standard system facilities to 4.2BSD.

6.1. Modifying system code

If you wish to make site-specific modifications to the system it is best to bracket them
with

#ifdef SITENAME

#endif

to allow your source to be easily distributed to others, and also to simplify diff (1) listings. If
you choose not to use a source code control system (e.g. SCCS, RCS), and perhaps even if you
do, it is recommended that you save the old code with something of the form:

#ifndef SITENAME

#endif

We try to isolate our site-dependent code in individual files which may be configured with
pseudo-device specifications.

Indicate machine specific code with "#ifdef vax". 4.2BSD has undergone extensive work
to make it extremely portable to machines with similar architectures - you may someday find
yourself trying to use a single copy of the source code on multiple machines.

Use lint periodically if you make changes to the system. The 4.2BSD release has only
one line of lint in it. It is very simple to lint the kernel. Use the LINT configuration file,
designed to pull in as much of the kernel source code as possible, in the following manner.

$ cd /sys/conf
$ mkdir .. /LINT
$ config LINT
$ cd .. /LINT
$ make depend
$ make assym.s
$make -k lint> linterrs 2>&1 &
.(or for users of csh(l))
3 make -k >& linterrs

This takes about 45 minutes on a lightly loaded VAX-11/750, but is well worth it.

6.2. Adding device drivers to 4.2BSD

The i/o system and config have been designed to easily allow new device support to be
added. As described in "Installing and Operating 4.2BSD on the VAX", the system source
directories are organized as follows:

/sys/h
/sys/sys
/sys/conf
/sys/net
/sys/netinet
/sys/netimp
/sys/netpup
/sys/vax
/sys/vaxif
/sys/vaxmba
/sys/vaxuba

Building 4.2BSD with Config 5-89

machine independent include files
machine independent system source files
site configuration files and basic templates
network independent, but network related code
DARPA Internet code
IMP support code
PUP-1 support code
VAX specific mainline code
VAX network interface code
VAX MASSBUS device drivers and related code
VAX UNIBUS device drivers and related code

Existing block and character device drivers for the VAX reside in "/sys/vax",
"/sys/vaxmba", and "/sys/vaxuba". Network interface drivers reside in "/sys/vaxif''. Any new
device drivers should be placed in the appropriate source code directory and named so as not
to conflict with existing devices. Normally, definitions for things like device registers are
placed in a separate file in the same directory. For example, the "dh" device driver is named
"dh.c" and its associated include file is named "dhreg.h".

Once the source for the device driver has been placed in a directory, the file
"/sys/conf/files.machine", and possibly "/sys/conf/devices.machine" should be modified. The
files files in the conf directory contain a line for each source or binary-only file in the system.
Those files which are machine independent are located in "/sys/conf/files" while machine
specific files are in "/sys/conf/files.machine". The "devices.machine" file is used to map device
names to major block device numbers. If the device driver being added provides support for a
new disk you will want to modify this file (the format is obvious).

The format of the files file has grown somewhat complex over time. Entries are nor­
mally of the form

vaxuba/foo.c optional foo device-driver

where the keyword optional indicates that to compile the "foo" driver into the system it must
be specified in the configuration file. If instead the driver is specified as standard, the file will
be loaded no matter what configuration is requested. This is not normally done with device
drivers. The fact that the file is specified as a device-driver results, on the VAX, in the

1
com­

pilation including a -i option for the C optimizer. This is required when pointer refer~nces
are made to memory locations in the VAX i/o address space.

Aside from including the driver in the files file, it must also be added to the device
configuration tables. These are located in "/sys/vax/conf.c", or similar for machines other
than the VAX. If you don't understand what to add to this file, you should study an entry for
an existing driver. Remember that the position in the block device table specifies what the
major block device number is, this is needed in the "devices.machine" file if the device is a
disk.

With the configuration information in place, your configuration file appropriately
modified, and a system reconfigured and rebooted you should incorporate the shell commands
needed to install the special files in the file system to the file "/dev/MAKEDEV" or
"/dev/MAKEDEV.local". This is discussed in the document "Installing and Operating
4.2BSD on the VAX".

6.3. Autoconfiguration on the VAX

4.2BSD (and 4.lBSD) require all device drivers to conform to a set of rules which allow
the system to:

1) support multiple UNIBUS and MASSBUS adapters,

5-90 Building 4.2BSD with Con:fig

2) support system configuration at boot time, and

3) manage resources so as not to crash when devices request resources which are unavail-
able.

In addition, devices such as the RK07 which require everyone else to get off the UNIBUS
when they are running need cooperation from other DMA devices if they are to work. Since it
is unlikely that you will be writing a device driver for a MASSBUS device, this section is
devoted exclusively to describing the i/o system and autoconfiguration process as it applies to
UNIBUS devices.

Each UNIBUS on a VAX has a set of resources:

• 496 map registers which are used to convert from the 18 bit UNIBUS addresses into the
much larger VAX address space.

• Some number of buffered data paths (3 on an 11/750, 15 on an 11/780, 0 on an 11/730)
which are used by high speed devices to transfer data using fewer bus cycles.

There is a structure of type struct ubq_hd in the system per UNIBUS adapter used to manage
these resources. This structure also contains a linked list where devices waiting for resources
to complete DMA UNIBUS activity have requests waiting.

There are three central structures in the writing of drivers for UNIBUS controllers; dev­
ices which do not do DMA i/o can often use only two of these structures. The structures are
struct ubq_ctlr, the UNIBUS controller structure, struct ub<!_device the UNIBUS device struc­
ture, and struct uba_.sf,river, the UNIBUS driver structure. The uba,..£tlr and ubCLJlevice struc­
tures are in one-to-one correspondence with the definitions of controllers and devices in the
system configuration. Each driver has a struct ubq__driver structure specifying an internal
interface to the rest of the system.

Thus a specification

controller scO at ubaO csr 0176700 vector upintr

would cause a struct ubq__ctlr to be declared and initialized in the file ioconf.c for the system
configured from this description. Similarly specifying

disk upO at scO drive 0

would declare a related uba_device in the same file. The up.c driver which implements this
driver specifies in its declarations:

int upprobe(), upslave(), upattach(), updgo(), upintr();
struct ubiu:tlr *upminfo[NSC];
struct ubiulevice *updinfo[NUP];
\Ulhort upstd[] = { 0776700, 0774400, 0776300, 0 };
struct uba~river scdriver =

{ upprobe, upslave, upattach, updgo, upstd, "up", updinfo, "sc", upminfo };

initializing the uba_driver structure. The driver will support some number of controllers
named scO, scl, etc, and some number of drives named upO, upl, etc. where the drives may be
on any of the controllers (that is there is a single linear name space for devices, separate from
the controllers.)

We now explain the fields in the various structures. It may help to look at a copy of
vaxuba/ubareg.h, h/ubavar.h and drivers such as up.c and dz.c while reading the descriptions
of the various structure fields.

uba_driver structure

One of these structures exists per driver. It is initialized in the driver and contains func­
tions used by the configuration program and by the UNIBUS resource routines. The fields of
the structure are:

Building 4.2BSD with Config 5-91

u<!_probe
A routine which is given a cadd'C_t address as argument and should cause an interrupt on
the device whose control-status register is at that address in virtual memory. It may be
the case that the device does not exist, so the probe routine should use delays (via the
DELAY(n) macro which delays for n microseconds) rather than waiting for specific
events to occur. The routine must not declare its argument as a register parameter, but
must declare

register int hr, cvec;

as local variables. At boot time the system takes special measures that these variables
are "value-result" parameters. The br is the IPL of the device when it interrupts, and
the cvec is the interrupt vector address on the UNIBUS. These registers are actually
filled in in the interrupt handler when an interrupt occurs.

As an example, here is the up.c probe routine:

upprobe(reg)
cadd!_t reg;

{
register int hr, cvec;

#ifdef lint
hr = O; cvec = hr; hr = cvec;

#endif

}

((struct updevice *)reg)->upcsl = U~IEIU~RDY;
DELAY(lO);
((struct updevice *)reg)->upcsl = O;
return (sizeof (struct updevice));

The definitions for lint serve to indicate to it that the br and cvec variables are value­
result. The statements here interrupt enable the device and write the ready bit
U~RDY. The 10 microsecond delay insures that the interrupt enable will not be can­
celed before the interrupt can be posted. The return of "sizeof (struct updevice)" here
indicates that the probe routine is satisfied that the device is present (the value returned
is not currently used, but future plans dictate you should return the amount of space in
the device's register bank). A probe routine may use the function "badaddr" to see if
certain other addresses are accessible on the UNIBUS (without generating a machine
check), or look at the contents of locations where certain registers should be. If the
registers contents are not acceptable or the addresses don't respond, the probe routine
can return 0 and the device will not be considered to be there.

One other thing to note is that the action of different V AXen when illegal addresses are
accessed on the UNIBUS may differ. Some of the machines may generate machine
checks and some may cause UNIBUS errors. Such considerations are handled by the
configuration program and the driver writer need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if prob­
ing is difficult or impossible. Such a routine would include statements of the form:

hr= Ox15;
cvec = 0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vec­
tor 0200 on the UNIBUS. The current UDA-50 driver does something similar to this
because the device is so difficult to force an interrupt on that it hardly seems worthwhile.

ud_JJlave
This routine is called with a ubq_device structure (yet to be described) and the address
of the device controller. It should determine whether a particular slave device of a

5-92 Building 4.2BSD with Config

controller is present, returning 1 if it is and 0 if it is not. As an example here is the
slave routine for up.c.

upslave(ui, reg)

{

}

struct uba_device *ui;
cadd:t_t reg;

register struct updevice *upaddr = (struct updevice *)reg;

upaddr->upcsl = O; /* conservative *I
upaddr->upcs2 = ui->uLslave;
if (upaddr->upcs2&UPCS2 NED) {

upaddr->upcsl = UP DCLR\UP GO;
return (O);

}
return (1);

Here the code fetches the slave (disk unit) number from the ui_slave field of the
ubq_device structure, and sees if the controller responds that that is a non-existent
driver (NED). If the drive a drive clear is issued to clean the state of the controller, and
0 is returned indicating that the slave is not there. Otherwise a 1 is returned.

ud_ilttach
The attach routine is called after the autoconfigure code and the driver concur that a
peripheral exists attached to a controller. This is the routine where internal driver state
about the peripheral can be initialized. Here is the attach routine from the up.c driver:

upattach(ui)

{

}

register struct uba_9evice *ui;

register struct updevice *upaddr;

if (upwstart == O) {

}

timeout(upwatch, (caddt_t)O, hz);
upwstart++;

if (ui->uLdk >= O)
dk mspw[ui->ui dk] = .0000020345;

upip[ui->ui ctlr][ui->ul!ilave] = ui;
up..11oftc[ui->ui ctlr].sc_ndrive++;
ui->uij:,ype = upmaptype(ui);

The attach routine here performs a number of functions. The first time any drive is
attached to the controller it starts the timeout routine which watches the disk drives to
make sure that interrupts aren't lost. It also initializes, for devices which have been
assigned iostat numbers (when ui->ui dk >= 0), the transfer rate of the device in the
array dk_mspw, the fraction of a second it takes to transfer 16 bit word. It then initial­
izes an inverting pointer in the array upip which will be used later to determine, for a
particular up controller and slave number, the corresponding ubq_9evice. It increments
the count of the number of devices on this controller, so that search commands can later
be avoided if the count is exactly 1. It then attempts to decipher the actual type of
drive attached to the controller in a controller-specific way. On the EMULEX SC-21 it
may ask for the number of tracks on the device and use this to decide what the drive
type is. The drive type is used to setup disk partition mapping tables and other device
specific information.

Building 4.2BSD with Confi.g 5-93

uddgo
- Is the routine which is called by the UNIBUS resource management routines when an

operation is ready to be started (because the required resources have been allocated).
The routine in up.c is:

updgo(um)
struct_uba ctlr *um;

{
register struct updevice *upaddr = (struct updevice *)um->um_addr;

upaddr->upba = um->um ubinfo;
upaddr->upcsl = um->um cmd\((um->um ubinfo>>8)&0x300);

}

This routine uses the field um.Jtbinfo of the uba~tlr structure which is where the
UNIBUS routines store the UNIBUS map allocation information. In particluar, the low
18 bits of this word give the UNIBUS address assigned to the transfer. The assignment
to upba in the go routine places the low 16 bits of the UNIBUS address in the· disk
UNIBUS address register. The next assignment places the disk operation command and
the extended (high 2) address bits in the device control-status register, starting the i/o
operation. The field um_cmd was initialized with the command to be stuffed here in the
driver code itself before the call to the ubago routine which eventually resulted in the
call to updgo.

ud_addr
Are the conventional addresses for the device control registers in UNIBUS space. This
information is used by the system to look for instances of the device supported by the
driver. When the system probes for the device it first checks for a control-status register
located at the address indicated in the configuration file (if supplied), then uses the list
of conventional addresses pointed to be ucLJiddr.

uljname
Is the name of a device supported by this controller; thus the disks on a SC-21 controller
are called upO, upl, etc. That is because this field contains up.

ud_jlinfo
Is an array of back pointers to the uba device structures for each device attached to the
controller. Each driver defines a set of controllers and a set of devices. The device
address space is always one-dimensional, so that the presence of extra controllers may be
masked away (e.g. by pattern matching) to take advantage of hardware redundancy.
This field is filled in by the configuration program, and used by the driver.

u<Lmname
The name of a controller, e.g. sc for the up.c driver. The first SC-21 is called scO, etc.

u<Lminfo
The backpointer array to the structures for the controllers.

ud_xclu
If non-zero specifies that the controller requires exclusive use of the UNIBUS when it is
running. This is non-zero currently only for the RK611 controller for the RK07 disks to
map around a hardware problem. It could also be used if 6250bpi tape drives are to be
used on the UNIBUS to insure that they get the bandwidth that they need (basically the
whole bus).

ubiU)tlr structure
One of these structures exists per-controller. The fields link the controller to its

UNIBUS adapter and contain the state information about the devices on the controller. The
fields are:

5-94 Building 4.2BSD with Conftg

unulriver
A pointer to the struct uba_device for this driver, which has fields as defined above.

um_ctlr
The controller number for this controller, e.g. the 0 in scO.

UDLalive
Set to 1 if the controller is considered alive; currently, always set for any structure
encountered during normal operation. That is, the driver will have a handle on a
ubq_ctlr structure only if the configuration routines set this field to a 1 and entered it
into the driver tables.

UDLintr
The interrupt vector routines for this device. These are generated by config and this
field is initialized in the ioconf.c file.

um_hd
A back-pointer to the UNIBUS adapter to which this controller is attached.

um_cmd
A place for the driver to store the command which is to be given to the device before cal­
ling the routine ubago with the devices uba_device structure. This information is then
retrieved when the device go routine is called and stuffed in the device control status
register to start the i/o operation.

um_ubinfo
Information about the UNIBUS resources allocated to the device. This is normally only
used in device driver go routine (as updgo above) and occasionally in exceptional condi­
tion handling such as ECC correction.

um_tab
This buffer structure is a place where the driver hangs the device structures which are
ready to transfer. Each driver allocates a buf structure for each device (e.g. updtab in
the up.c driver) for this purpose. You can think of this structure as a device-control­
block, and the buf structures linked to it as the unit-control-blocks. The code for deal­
ing with this structure is stylized; see the rk.c or up.c driver for the details. If the ubago
routine is to be used, the structure attached to this buf structure must be:

• A chain of buf structures for each waiting device on this controller.

• On each waiting buf structure another buf structure which is the one containing the
parameters of the i/o operation.

ub'_device structure

One of these structures exist for each device attached to a UNIBUS controller. Devices
which are not attached to controllers or which perform no buffered data path DMA i/o may
have only a device structure. Thus dz and dh devices have only uba device structures. The
fields are:

ui_driver
A pointer to the struct uba_driver structure for this device type.

ui_pnit
The unit number of this device, e.g. 0 in upO, or 1 in dhl.

ui_ctlr
The number of the controller on which this device is attached, or -1 if this device is not
on a controller.

ui_ubanum
The number of the UNIBUS on which this device is attached.

ul,Jllave
The slave number of this device on the controller which it is attached to, or -1 if the

Building 4.2BSD with Config 5-95

device is not a slave. Thus a disk which was unit 2 on a SC-21 would have uulave 2; it
might or might not be up2, that depends on the system configuration specification.

uUntr
The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at
boot time. The values of these fields are filled in by config to small code segments which
it generates in the file ubglue.s.

ui_addr
The control-status register address of this device.

ui_dk
The iostat number assigned to this device. Numbers are assigned to disks only, and are
small positive integers which index the various dk *arrays in <sys/dk.h>.

ui_:ftags
The optional "flags xxx" parameter from the configuration specification was copied to
this field, to be interpreted by the driver. If ftags was not specified, then this field will
contain a 0.

ui_alive
The device is really there. Presently set to 1 when a device is determined to be alive,
and left 1.

ui_type
The device type, to be used by the driver internally.

ui_physaddr
The physical memory address of the device control-status register. This is used in the
device dump routines typically.

ui_mi
A struct uba_stlr pointer to the controller (if any) on which this device resides.

ui_hd
A struct ubq_hd pointer to the UNIBUS on which this device resides.

UNIBUS resource management routines
UNIBUS drivers are supported by a collection of utility routines which manage UNIBUS

resources. If a driver attempts to bypass the UNIBUS routines, other drivers may not operate
properly. The major routines are: uballoc to allocate UNIBUS resources, ubarelse to release
previously allocated resources, and ubago to initiate DMA. When allocating UNIBUS
resources you may request that you

NEEDBDP
if you need a buffered data path,

HAVEBDP
if you already have a buffered data path and just want new mapping registers (and
access to the UNIBUS), and

CANTWAIT
if you are calling (potentially) from interrupt level

If the presentation here does not answer all the questions you may have, consult the file
/sys/vaxuba/uba.c

Autoconfiguration requirements

Basically all you have to do is write a ucl_probe and a ud_attach routine for the con­
troller. It suffices to have a ud_probe routine which just initializes br and cvec, and a
ud_attach routine which does nothing. Making the device fully configurable requires, of
course, more work, but is worth it if you expect the device to be in common usage and want to
share it with others.

5-96 Building 4.2BSD with Config

If you managed to create all the needed hooks, then make sure you include the necessary
header files; the ones included by vaxuba/ct.c are nearly minimal. Order is important here,
don't be surprised at undefined structure complaints if you order the includes wrongly.
Finally if you get the device configured in, you can try bootstrapping and see if configuration
messages print out about your device. It is a good idea to have some messages in the probe
routine so that you can see that you are getting called and what is going on. If you do not get
called, then you probably have the control-status register address wrong in your system
configuration. The autoconfigure code notices that the device doesn't exist in this case and
you will never get called.

Assuming that your probe routine works and you manage to generate an interrupt, then
you are basically back to where you would have been under older versions of UNIX. Just be
sure to use the ui ctlr field of the uba device structures to address the device; compiling in
funny constants will make your driver only work on the CPU type you have (780, 750, or 730).

Other bad things that might happen while you are setting up the configuratiOn stuff:

• You get "nexus zero vector" errors from the system. This will happen if you cause a device
to interrupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels
the interrupt and confuses the processor. The best thing to do it to put a modest delay in
the probe code between the instructions which should cause and interrupt and the clearing
of the interrupt enable. (You should clear interrupt enable before you leave the probe rou­
tine so the device doesn't interrupt more and confuse the system while it is configuring
other devices.)

• The device refuses to interrupt or interrupts with a "zero vector". This typically indicates
a problem with the hardware or, for devices which emulate other devices, that the emula­
tion is incomplete. Devices may fail to present interrupt vectors because they have
configuration switches set wrong, or because they are being accessed in inappropriate ways.
Incomplete emulation can cause "maintenance mode" features to not work properly, and
these features are often needed to force device interrupts.

6.4. Adding non-standard system facilities

This section considers the work needed to augment config's data base files for non­
standard system facilities.

As far as config is concerned non-standard facilities may fall into two categories. Config
understands that certain files are used especially for kernel profiling. These files are indicated
in the files files with a profiling-routine keyword. For example, the current profiling subrou­
tines are sequestered off in a separate file with the following entry:

sys/subr mcount.c optional profiling-routine

The profiling-routine keyword forces config to not compile the source file with the -pg
option.

The second keyword which can be of use is the config-dependent keyword. This causes
config to compile the indicated module with the global configuration parameters. This allows
certain modules, such as machdep.c to size system data structures based on the maximum
number of users configured for the. system.

Building 4.2BSD with Config 5-97

APPENDIX A. CONFIGURATION FILE GRAMMAR

The following grammar is a compressed form of the actual yacc (1) grammar used by
config to parse configuration files. Terminal symbols are shown all in upper case, literals are
emboldened; optional clauses are enclosed in brackets, "[" and "]"; zero or more instantia­
tions are denoted with"*".

Configuration ::= [Spec;]*

Spec::= Config spec
I Device spec
I trace
I /* lambda *I

/* configuration specifications *I

Config spec::= machine ID
lcpu ID
I options Opt list
I ident ID
I System spec
I timezone [-] NUMBER [dst [NUMBER]]
I timezone [-] FPNUMBER [dst [NUMBER]]
I maxusers NUMBER

/* system configuration specifications *I

System spec::= config ID System parameter [System parameter]*

System parameter ::= swap spec I root spec I dump spec I arg spec

swap spec::= swap [on] swap dev [and swap dev]*

swap dev ::= dev spec [size NUMBER]

root spec :: = root [on] dev spec

dump spec::= dumps [on] dev spec

arg spec :: = args [on] dev spec

dev spec::= dev name I major minor

major minor::= major NUMBER minor NUMBER

dev name::= ID [NUMBER [ID]]

/* option specifications *I

Opt list::= Option [,Option]*

Option::= ID [=Opt value]

5-98 Building 4.2BSD with Config

Opt value :: = ID I NUMBER

/* device specifications *I

Device ,spec ::= device Dev name Dev info Int spec
I master Dev name Dev info
I disk Dev name Dev info
I tape Dev name Dev info
I controller Dev name Dev info [Int spec]
I pseudo-device Dev [NUMBER]

Dev name ::= Dev NUMBER

Dev ::= uba I mba I ID

Dev info::= Con info [Info]*

Con info::= at Dev NUMBER
I at nexus NUMBER

Info::= csr NUMBER
I drive NUMBER
I slave NUMBER
I flags NUMBER

Int spec :: = vector ID [ID] *
I priority NUMBER

Lexical Conventions

The terminal symbols are loosely defined as:

ID
One or more alphabetics, either upper or lower case, and underscore, " ".

NUMBER
Approximately the C language specification for an integer number. That is, a leading
"Ox" indicates a hexadecimal value, a leading "O" indicates an octal value, otherwise the
number is expected to be a decimal value. Hexadecimal numbers may use either upper
or lower case alphabetics.

FPNUMBER
A floating point number without exponent. That is a number of the form "nnn.ddd",
where the fractional component is optional.

In special instances a question mark,"?", can be substituted for a "NUMBER" token. This is
used to effect wildcarding in device interconnection specifications.

Comments in configuration files are indicated by a"#" character at the beginning of the line;
the remainder of the line is discarded.

A specification is interpreted as a continuation of the previous line if the first character of the
line is tab.

Building 4.2BSD with Con:fig 5-99

APPENDIX B. RULES FOR DEFAULTING SYSTEM DEVICES

When config processes a "config" rule which does not fully specify the location of the
root file system, paging area(s), device for system dumps, and device for argument list process­
ing it applies a set of rules to define those values left unspecified. The following list of rules
are used in defaulting system devices.

1) If a root device is not specified, the swap specification must indicate a "generic" system is
to be built.

2) If the root device does not specify a unit number, it defaults to unit 0.

3) If the root device does not include a partition specification, it defaults to the "a" partition.

4) If no swap area is specified, it defaults to the "b" partition of the root device.

5) If no device is specified for processing argument lists, the first swap partition is selected.

6) If no device is chosen for system dumps, the first swap partition is selected (see below to
find out where dumps are placed within the partition).

The following table summarizes the default partitions selected when a device
specification is incomplete, e.g. "hpO".

Type Eartition
root "a"
swap "b"
args "b"
dumps "b"

Multiple swap/paging areas

When multiple swap partitions are specified, the system treats the first specified as a
"primary" swap area which is always used. The remaining partitions are then interleaved into
the paging system at the time a swapon(2) system call is made. This is normally done at boot
time with a call to swapon(8) from the /etc/re file.

System dumps

System dumps are automatically taken after a system crash, provided the device driver
for the "dumps" device supports this. The dump contains the contents of memory, but not
the swap areas. Normally the dump device is a disk in which case the information is copied to
a location near the back of the partition. The dump is placed in the back of the partition
because the primary swap and dump device are commonly the same device and this allows the
system to be rebooted without immediately overwriting the saved information. When a dump
has occurred, the system variable dumpsize is set to a non-zero value indicating the size (in
bytes) of the dump. The savecore (8) program then copies the information from the dump
partition to a file in a "crash" directory and also makes a copy of the system which was run­
ning at the time of the crash (usually "/vmunix"). The offset to the system dump is defined
in the system variable dumplo (a sector offset from the front of the dump partition). The
savecore program operates by reading the contents of dumplo, dumpdev, and dumpmagic
from /dev/kmem, then comparing the value of dumpmagic read from /dev/kmem to that
located in corresponding location in the dump area of the dump partition. If a match is
found, savecore assumes a crash occurred and reads dumpsize from the dump area of the
dump partition. This value is then used in copying the system dump. Refer to savecore (8)
for more information about its operation.

The value dumplo is calculated to be

5-100 Building 4.2BSD with Con:fig

dumpdev-size - DUMPDEV

where dumpdev-size is the size of the disk partition where system dumps are to be placed,
and DUMPDEV is 10 Megabytes. If the disk partition is not large enough to hold a 10 Mega­
byte dump, dumplo is set to 0 (the front of the partition). For sites with more than 10 Mega­
bytes of memory the definition of DUMPDEV in /sys/vax/autoconf.c will have to be changed.

Building 4.2BSD with Config 5-101

APPENDIX C. SAMPLE CONFIGURATION FILES

The following configuration files are developed in section 5; they are included here for
completeness.

ANSEL VAX (a picture perfect machine)

machine vax
cpu VAX780
timezone 8 dst
ident ANSEL
max users 40

config vmunix root on hpO
config hpvmunix root on hpO swap on hpO and hp2
config genvmunix swap generic

controller mbaO at nexus?
disk hpO at mba? disk?
disk hpl at mba? disk ?
controller mbal at nexus?
disk hp2 at mba? disk ?
disk hp3 at mba? disk ?
controller ubaO at nexus?
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drive 0
tape tel at tmO drive 1
device dhO at uba? csr 0160020 vector dhrint dhxint
device dmO at uba? csr 0170500 vector dmintr
device dhl at uba? csr 0160040 vector dhrint dhxint
device dh2 at uba? csr 0160060 vector dhrint dhxint

5-102 Building 4.2BSD with Config

UCBVAX - Gateway to the world

machine vax
cpu "VAX780"
cpu "VAX750"
ident UCBVAX
timezone 8 dst
max users 32
options INET

config vmunix
config upvmunix
config hkvmunix

controller mbaO
controller ubaO
disk hpO
disk hpl
controller scO
disk upO
disk upl
controller hkO
disk rkO
disk rkl
pseudo-device inet
pseudo-device pty
software loopback device for testing
pseudo-device loop
pseudo-device imp
device accO
pseudo-device ether
device ecO
device ilO

root on hp swap on hp and rkO and rkl
root on up
root on hk swap on rkO and rkl

at nexus?
at nexus?
at mba? drive 0
at mba? drive 1
at uba? csr 0176700
at scO drive 0
at scO drive 1
at uba? csr 0177440
at hkO drive 0
at hkO drive 1

at uba? csr 0167600

at uba? csr 0164330
at uba? csr 0164000

vector upintr

vector rkintr

vector accrint accxint

vector ecrint eccollide ecxint
vector ilrint ilcint

Building 4.2BSD with Config 5-103

APPENDIX D. VAX KERNEL DATA STRUCTURE SIZING RULES

Certain system data structures are sized at compile time according to the maximum
number of simultaneous users expected, while others are calculated at boot time based on the
physical resources present; e.g. memory. This appendix lists both sets of rules and also
includes some hints on changing built-in limitations on certain data structures.

Compile time rules

The file /sys/conf/param.c contains the definitions of almost all data structures sized at
compile time. This file is copied into the directory of each configured system to allow
configuration-dependent rules and values to be maintained. The rules implied by its contents
are summarized below (here MAXUSERS refers to the value defined in the configuration file
in the "maxusers" rule).

nproc
The maximum number of processes which may be running at any time. It is defined to
be 20 + 8 * MAXUSERS and referred to in other calculations as NPROC.

ntext
The maximum number of active shared text segments. Defined as 24 + MAXUSERS +
NETSLOP, where NETSLOP is 20 when the Internet protocols are configured in the
system and 0 otherwise. The added size for supporting the network is to take into
account the numerous server processes which are likely to exist.

ninode

nfile

The maximum number of files in the file system which may be active at any time. This
includes files in use by users, as well as directory files being read or written by the sys­
tem and files associated with bound sockets in the UNIX ipc domain. This is defined as
(NPROC + 16 + MAXUSERS) + 32.

The number of "file table" structures. One file table structure is used for each open,
unshared, file descriptor. Multiple file descriptors may reference a single file table entry
when they are created through a dup call, or as the result of a fork. This is defined to
be

16 * (NPROC + 16+MAXUSERS)I10 + 32 + 2 * NETSLOP

where NETSLOP is defined as for ntext.

ncallout
The number of "callout" structures. One callout structure is used per internal system
event handled with a timeout. Timeouts are used for terminal delays, watchdog routines
in· device drivers, protocol timeout processing, etc. This is defined as 16 + NPROC.

nclist
The number of "c-list" structures. C-list structures are used in terminal i/o. This is
defined as 100 + 16 * MAXUSERS.

nmbclusters
The maximum number of pages which may be allocated by the network. This is defined
as 256 (a quarter megabyte of memory) in /sys/h/mbuf.h. In practice, the network rarely
uses this much memory. It starts off by allocating 64 kilobytes of memory, then request­
ing more as required. This value represents an upper bound.

nquota
The number of "quota" structures allocated. Quota structures are present only when
disc quotas are configured in the system. One quota structure is kept per user. This is
defined to be (MAXUSERS * 9) I 7 + 3.

5-104 Building 4.2BSD with Config

ndquot
The number of "dquot" structures allocated. Dquot structures are present only when
disc quotas are configured in the system. One dquot structure is required per user, per
active file system quota. That is, when a user manipulates a file on a file system on
which quotas are enabled, the information regarding the user's quotas on that file system
must be in-core. This information is cached, so that not all information must be present
in-core all the time. This is defined as (MAXUSERS * NMOUNT) I 4 + NPROC,
where NMOUNT is the maximum number of mountable file systems.

In addition to the above values, the system page tables (used to map virtual memory in the
kerners address space) are sized at compile time by the SYSPTSIZE definition in the file
/sys/vax/param.h. This is defined to be 20 + MAXUSERS pages of page tables. Its definition
affects the size of many data structures allocated at boot time because it constrains the
amount of virtual memory which may be addressed by the running system. This is often the
limiting factor in the size of the buffer cache.

Run-time calculations

The most important data structures sized at run-time are those used in the buffer cache.
Allocation is done by swiping physical memory (and the associated virtual memory) immedi­
ately after the system has been started up; look in the file /sys/vax/machdep.c. The amount
of physical memory which may be allocated to the buffer cache is constrained by the size of
the system page tables, among other things. While the system may calculate a large amount
of memory to be allocated to the buffer cache, if the system page table is too small to map
this physical memory into the virtual address space of the system, only as much as can be
mapped will be used.

The buffer cache is comprised of a number of "buffer headers" and a pool of pages
attached to these headers. Buffer headers are divided into two categories: those used for
swapping and paging, and those used for normal file i/o. The system tries to allocate 10% of
available physical memory for the buffer cache (where available does not count that space
occupied by the system's text and data segments). If this results in fewer than 16 pages of
memory allocated, then 16 pages are allocated. This value is kept in the initialized variabl~
bu/pages so that it may be patched in the binary image (to allow tuning without recompiling
the system). A sufficient number of file i/o buffer headers are then allocated to allow each to
hold 2 pages each, and half as many swap i/o buffer headers are then allocated. The number
of swap i/o buffer headers is constrained to be no more than 256.

System size limitations

As distributed, the sum of the virtual sizes of the core-resident processes is limited to
64M bytes. The size of the text, and data segments of a single process are currently limited to
6M bytes each, and the stack segment size is limited to 512K bytes as a soft, user-changeable
limit, and may be increased to 6M with the setrlimit (2) system call. If these are insufficient,
they can be increased by changing the constants MAXTSIZ, MAXDSIZ and MAXSSIZ in the
file /sys/vax/vmparam.h, while changing the definitions in /sys/h/dmap.h and /sys/h/text.h.
You must be careful in doing this that you have adequate paging space. As normally
configured , the system has only 16M bytes per paging area. The best way to get more space
is to provide multiple, thereby interleaved, paging areas.

To increase the amount of resident virtual space possible, you can alter the constant
USRPTSIZE (in /sys/vax/vmparam.h). To allow 128 megabytes of resident virtual space one
would change the 8 to a 16.

Because the file system block numbers are stored in page table pg blkno entries, the
maximum size of a file system is limited to 2~19 1024 byte blocks. Thus no file system can be
larger than 512M bytes.

The count of mountable file systems is limited to 15. This should be sufficient. If you
have many disks it makes sense to make some of them single file systems, and the paging

-- ------·--- -----------

Building 4.2BSD with Config 5-105

areas don't count in this total. To increase this it will be necessary to change the core-map
/sys/h/cmap.h since there is a 4 bit field used here. The size of the core-map will then expand
to 16 bytes per 1024 byte page. (Don't forget to change MSW APX and NMOUNT in
/sys/h/param.h also.)

The maximum value NOFILE (open files per process limit) can be raised to is 30
because of a bit field in the page table entry in /sys/machine/pte.h.

Setting Up Version 1.0 of UNIX 32N Operating System 5-107

Setting Up Version 1.0 of Unix/32V Operating System

Thomas B. London
John F. Reiser

Bell Laboratories
Holmdel, New Jersey 07733

The distribution tape can be used only on a DEC V AX-11/780 with RP06 or RM03 disks
and with TE16 tape drives. The tape consists of some preliminary bootstrapping programs fol­
lowed by one filesystem image and one tape archive image (see tar(l)); if needed, individual
files can be extracted after the initial construction of the filesystems.

If you are set up to do it, it is a good idea immediately to make a copy of the tape to
guard against disaster. The tape is 9-track 800 BPI and contains some 512-byte records fol­
lowed by many 10240-byte records. There are interspersed tapemarks; end-of-tape is signalled
by a double end-of-file.

The tape contains binary images of the system and all the user level programs, along with
source and manual sections for them. There are about 2100 UNIX files altogether. The first
two tape files contain binary images, along with other things needed to flesh out the filesystem
enough so UNIX will run. The second tape file is to be put on one filesystem called the 'root
filesystem'. The filesystem size required is about 9600 blocks. The third tape file has all of the
source and documentation. Altogether it requires about 20,000 512-byte disk blocks.

Making a Disk From Tape

This description is an annotated version of the 'sysgen' manual page in section 8 of the
UNIX Programmer's Manual.

Perform the following. bootstrap procedure to obtain a disk with a root filesystem on it.

1. Mount the magtape on drive 0 at load point. [Make sure that the ring is not inserted.]

2. Mount a disk pack on drive 0.

3. Key in at 30000 and execute the following boot program: [You may enter in lower-case,
the LSI-11 will echo in upper-case. The machine's printouts are shown in italic, explana­
tory comments are within (). Terminate each line you type by carriage return or line­
feed.}

5-108 Setting Up Version 1.0 of UNIX 32/V Operating System

>>>HALT
>>>UNJAM
>>>INIT
>>> D 30000 20009FDE
> > > D + 00512001
> > > D + 3204A101
> > > D + Cl13C08F
> > > D + Al040424
> > > D + 008FDOOC
> > > D + C1800000
> > > D + 8F320800
> > > D + lOAlFEOO
> > > D + OOC13900
> > > D + 00000004
>>>START 30000

The tape should move and the CPU should halt at location 3002A. If it doesn't, you
probably have entered the program incorrectly. Start over and check your typing.

4. Start the CPU with

>>>STARTO

5. The console should type

-
If the disk pack is already formatted, skip to step 6. Otherwise, format the pack with

(bring in standalone RP06 formatter)
-rp6fmt
rp6fmt : Format RP06 Disk

MBA no.: 0 (format spindle on mba # 0)
unit : 0 (format unit zero)
(this procedure should take about 20 minutes)
(some diagnostic messages may appear here)

unit: -l (exit from formatter) - (back at tape boot level)

6. Next, verify the readability of the pack via

(bring in RP06 verifier)
-rpread
rpread : Read RP06 Disk

disk unit: 0
start block : 0
no. blocks:

(specify unit zero)
(start at block zero)
(default is entire pack)

(this procedure should take about 10 minutes)
(some diagnostic messages may appear here)
Data Check errors : nn (number of soft errors)
Other errors : xx (number of hard errors)
disk unit: -l (exit verifier)
- (back to tape boot)

If the number of 'Other errors' is not zero, consideration should be given to obtaining a

Setting Up Version 1.0 of UNIX 32/V Operating System 5-109

clean pack before proceeding further.

7. Copy the magtape to disk by the following procedure.

(bring in the tape to disk program)
-tdcopy
tdcopy: TM03 tape-co-RP06 disk copy

tape MBA#: l
tape unit # : 0
tape file offiet : 1
tape block offiet : 0

disk MBA# :0
disk unit: 0
disk block offeet : 0

no. of input blocks : 480
10240 - tape block size

normal termination

(tape mba is normally 1)
(tape unit is normally 0)
(skip over tp tape file)

(disk mba is normally 0)
(disk unit is normally 0)
(start at block zero)

480 input blocks read
9600 output blocks written
- (back at tape boot level)

You now have a UNIX root filesystem.

Booting UNIX

Since DEC does not provide a program on the console floppy which boots the VAX from
a program located at block zero of a disk spindle, we provide one here.

If the console is not in 'LSI mode' (i.e. > > > prompt), type the 'CONTROL-p' key (i.e.
hold the control key down while you hit the 'p' key). Perform the following sequence.

5-110 Setting Up Version 1.0 of UNIX 32N Operating System

>>>HALT
>>>LINK

<<<HALT
<<<UNJAM
<<<INIT

(save the following sequence on the floppy)
(the prompt should change to < < <)

< < < D 30000 00009FDE (boot pgm for MBA 0, drive 0)
< < < D + 00512001
< < < D + 0004Al01
< < < D + 0400Cl13
< < < D + 10008F32
< < < D + 040424Cl
< < < D + 8FDOOCA1
< < < D + 80000000
< < < D + 320800Cl
< < < D + AlFEOOSF
< < < D + 28Cl0410
< < < D + 14Cl0404
< < < D + Cl390004
< < < D + 00000400
<<<START 30000
<<<START 2
(to exit from linking mode type 'control-c')
< < < 'control-c'
>>>

You are now ready to boot UNIX (yea!). Each time it is necessary to boot (or reboot) UNIX,
one simply follows the sequence

(we should now be in 'LSI mode')
(i.~. > > > prompt)
(if not, it may be necessary to type 'control-p')
(and 'HALT\r' i.e. HALT followed by return key)

> > > PERFORM (this executes the commands saved in floppy)
Oink file)
(the console should echo each command in the file)

file: unix (load and execute /unix)

The machine should type the following:

real mem - :ax
avail mem - yyy

The mem messages give the amount of real (physical) memory and the memory available to
user programs in bytes. For example, if your machine has 5 l 2K bytes of memory, then xxx
will be 524228, i.e. exactly 512K.

UNIX is now running, and the 'UNIX Programmer's manual' applies; references below of
the .form X(Y) mean the subsection named X in section Y of the manual. The '#' is the
prompt from the Shell, and indicates you are the super-user. The user name of the super-user
is 'root' if you should find yourself in multi-user mode and need to log in. There is no pass­
word provided for 'root'; provide one by using passwd(l). In the future, when you reboot
from 'LSI mode' (i.e. > > > prompt), you can type just

>>>PERFORM (let the LSI-11 boot the system)
file: unix (as above)

Setting Up Version 1.0 of UNIX 32/V Operating System 5-111

You now need to make some special file entries in the dev directory. These specify what
sort of disk you are running on, what sort of tape drive you have, and where the filesystems
are. For simplicity, this recipe creates fixed device names. These names will be used below,
and some of them are built into various programs, so they are most convenient. For example,
'rpOa' will be used for the name of the root filesystem, and 'rpOh' will be used for the name of
the filesystem. Also, this sequence will put the user filesystem on the same disk drive as the
root, which is not the best place if you have more than one drive. Thus the prescription below
should be taken only as one example of where to put things. See also the section on 'Disk lay­
out' below.

In any event, change to the dev directory (via cd /dev) and, if you like, examine and
perhaps change the entries there (use rm(l) and mknod(l)). The file 'rpOa' refers to the root
file system; 'swap' to the swap-space filesystem; 'rpOh' to the user filesystem. The devices
'rrpOa' and 'rrpOh' are the 'raw' versions of the disks. Also, 'mtO' is tape drive 0, at 800 BPI;
'rmtO' is the raw tape, on which large records can be read and written; 'rmt4' is raw tape with
the quirk that it does not rewind on close, which permits multifile tapes to be handled.

The next thing to do is to extract the rest of the data from the tape. Comments are
enclosed in (); don't type these. The number in the first command is the size of the filesys­
tem.

(in the following, xxx should be 322278 if
you are using RP06's, 113280 if RM03's)
(the following command creates an empty filesystem)

#/etc/mkfs /dev/rpOh xxx
isize - 65496 (this is the number of available inodes)
min - J 500 (f reelist interleave parameters)
#/etc/mount /dev/rpOh /usr (mount the usr filesystem)
#cd /usr (make /usr the current directory)
#cp /dev/rmt4 /dev/null (skip first tape file (tp format))
#cp /dev/rmt4 /dev/null (skip second tape file (root)}
#tar xbf 20 /dev/rmtO (extract the usr filesystem)
#cd I (back to root)
/etc/umount /dev/rpOh (unmount /usr)

All of the data on the tape has been extracted. The tape will rewind automatically.

You may at this point mount the source filesystem (mount{l)). To do this type the fol­
lowing:

/etc/mount /dev/rpOh /usr

The source and manual pages are now available in subdirectories of /usr.

The above mount command is only needed if you intend to play around with source on a
single user system. The filesystem is mounted automatically when multi-user mode is entered,
by a command in the file /etc/re. (See 'Disk Layout' below).

Before UNIX is turned up completely, a few configuration dependent exercises must be
performed. At this point, it would be wise to read all of the manuals (especially 'Regenerating
System Software') and to augment this reading with hand to hand combat.

Reconfiguration

The UNIX system running is configured to run with the given disk and tape, a console,
up to 1 megabyte of main memory, and 8 DZl 1 lines. This is probably not the correct
configuration. You will have to correct the configuration table to reflect the true state of your
machine.

It is wise at this point to know how to recompile the system. Print the file
/usr/src/sys/sys/makefile using the command cat /usr/src/sys/sys/makefile. This file is input

5-112 Setting Up Version 1.0 of UNIX 32/V Operating System

to the program 'make(l)' which if invoked with 'make unix', will recompile all of the system
source.

There are certain magic numbers and configuration parameters imbedded in various dev­
ice drivers that you may want to change. The device addresses of each device are defined in
each driver. In case you have any non-standard device addresses, just change the address and
recompile. Also, if the devices's interrupt vector address(es) are not currently known to the
system (this is likely), then the file /usr/src/sys/sys/univec.c must be modified appropriately:
namely, the proper interrupt routine addresses must be placed in the table 'UNivec'. Use the
DZl 1 as an example (as distributed, the DZl 1 vectors are assumed to be at locations cO and c4
(hexadecimal)).

The DZl 1 driver is set to run 8 lines. This can be changed in dz.c

The DCl 1 driver is set to run 4 lines. This can be changed in dc.c.

The DHl 1 driver is set to handle 3 DHl l's with a full complement of 48 lines. If you
have less, or more, you may want to edit dh.c.

The DNl 1 driver will handle 4 DN's. Edit dn.c.

The DUl 1 driver can only handle a single DU. This cannot be easily changed.

The KL/DL ·driver is set up to run a single DLll-A, -8, and no DLll-E's. To change
this, edit kl.c to have NKLll reflect the total number of DLll-AB's and NDLll to reflect the
number of DLll-E''s. So far as the driver is concerned, the difference between the devices is
their address.

The disk and tape drivers (hp.c, ht.c) are set up to run 1 drive and should be changed if
you have more. The disk driver {hp.c) has a partition table which you may want to experiment
with.

After all the corrections have been made, use 'make (1)' to recompile the system (or
recompile individually if you wish: use the makefile as a guide). If you compiled individually,
say 'make unix' in the directory /usr/src/sys/sys. The final object file (unix) should be moved
to the root, and then booted to try it out. It is best to name it /nunix so as not to destroy the
working system until you're sure it does work. See Boot Procedures(8) for a discussion of
booting. Note: before taking the system down, always (!!) perform a sync(l) to force delayed
output to the disk.

Special Files

Next you must put in special files for the new devices in the directory /dev using
mknod(l). Print the configuration file /usr/src/sys/sys/conf.c. This is the major device switch
of each device class (block and character). There is one line for each device configured in your
system and a null line for place holding for those devices not configured. The essential block
special files were installed above; for any new devices, the major device number is selected by
counting the line number (from zero) of the device's entry in the block configuration table.
Thus the first entry in the table bdevsw would be major device zero. This number is also
printed in the table along the right margin.

The minor device is the drive number, unit number or partition as described under each
device in section 4. For tapes where the unit is dial selectable, a special file may be made for
each possible selection. You can also add entries for other disk drives.

In reality, device names are arbitrary. It is usually convenient to have a system for deriv­
ing names, but it doesn't have to be the one presented above.

Some further notes on minor device numbers. The hp driver uses the 0100 bit of the
minor device number to indicate whether or not to interleave a filesystem across more than one
physical device. See hp(4) for more detail. The ht driver uses the 04 bit to indicate whether or
not to rewind the tape when it is closed. The 010 bit indicates the density of the tape on TE16
drives. Again, see ht(4).

Setting Up Version 1.0 of UNIX 32/V Operating System 5-113

The naming of character devices is similar to block devices. Here the names are even
more arbitrary except that devices meant· to be used for teletype access should (to avoid confu­
sion, no other reason) be named /dev/ttyX, where X is some string (as in '00' or 'library').
The files console, mem, kmem, and null are already correctly configured.

The disk and magtape drivers provide a 'raw' interface to the device which provides direct
transmission between the user's core and the device and allows reading or writing large records.
The raw device counts as a character device, and should have- the name of the corresponding
standard block special file with 'r' prepended. Thus the raw magtape files would be called
/dev/rmtX. These special files should be made.

When all the special files have been created, care should be taken to change the access
modes (chmod(l)) on these files to appropriate values.

Time Conversion
If your machine is not in the Eastern time zone, you must edit (ed(l)) the file

/usr/src/sys/h/param.h to reflect your local time .. The manifest 'TIMEZONE' should be
changed to reflect the time difference between local time and GMT in minutes. For EST, this
is 5*60; for PST it would be 8*60. Finally, there is a 'DSTFLAG' manifest; when it is 1 it
causes the time to shift to Daylight Savings automatically between the last Sundays in April and
October (or other algorithms in 1974 and 1975). Normally this will not have to be reset.
When the needed changes are done, recompile and load the system using make(l) and install
it. (As a general rule, when a system header file is changed, the entire system should be
recompiled. As it happens, the only uses of these flags are in /usr/src/sys/sys/sys4.c, so if this
is all that was changed it alone needs to be recompiled.)

You may also want to look at timezone(3) (/usr/src/libc/gen/timezone.c) to see if the
name of your timezone is in its internal table. If needed, edit the changes in. After timezone.c
has been edited it should be compiled and installed in its library. (See /usr/src/libc/Makefile).
Then you should (at your leisure) recompile and reinstall all programs that use it (such as
date(l)).

Disk Layout
If there are to be more filesystems mounted than just the root and /usr, use mkfs(l) to

create any new filesystem and put its mounting in the file /etc/re (see init(8) and mount(!)).
(You might look at /etc/re anyway to see what has been provided for you.)

There are two considerations in deciding how to adjust the arrangement of things on your
disks: the most important is making sure there is adequate space for what is required; secon­
darily, throughput should be maximized. Swap space is a critical parameter. The system as dis­
tributed has 8778 blocks for swap space. This should be large enough for most sites. You may
want to change these if local wisdom indicates otherwise.

The system as distributed has many of the binaries in /bin. Some of them should be
moved to /usr/bin, leaving only the ones required for system maintenance (such as icheck,
dcheck, cc, ed, tar, restor, etc.) and the most heavily used in /bin. This will speed things up a
bit if you have only one disk, and also free up space on the root filesystem for temporary files.
(See below).

Many common system programs (C, the editor, the assembler etc.} create intermediate
files in the /tmp directory, so the filesystem where this is stored also should be made large
enough to accommodate most high-water marks. If you leave the root filesystem as distributed
(except as discussed above) there should be no problem. All the programs that create files in
/tmp take care to delete them, but most are not immune to events like being hung up upon,
and can leave dregs. The directory should be examined every so often and the old files deleted.

Exhaustion of user-file space is certain to occur now and then; the only mechanisms for
controlling this phenomenon are occasional use of du(l), df(l), quot(l), threatening messages
of the day, and personal letters.

5-114 Setting Up Version 1.0 of UNIX 32N Operating System

The efficiency with which UNIX is able to use the CPU is largely dictated by the
configuration of disk controllers. For general time-sharing applications, the best strategy is to
try to split user files, the root directory (including the /tmp directory) and the swap area among
three controllers.

Once you have decided how to make best use of your hardware, the question is how to
initialize it. If you have the equipment, the best way to move a filesystem is to dump it
(dump(l)) to magtape, use mkfs(l) to create the new filesystem, and restore (restor(l)) the
tape. If for some reason you don't want to use magtape, dump accepts an argument telling
where to put the dump; you might use another disk. Sometimes a filesystem has to be
increased in logical size without copying. The super-block of the device has a word giving the
highest address which can be allocated. For relatively small increases, this word can be patched
using the debugger (adb (1)) and the free list reconstructed using icheck (1). The size should
not be increased very greatly by this technique, however, since although the allocatable space
will increase the maximum number of files will not (that is, the i-list size can't be changed).
Read and understand the description given in filesystem(5) before playing around in this way.
You may want to see section rp(4) for some suggestions on how to lay out the information on
RP disks.

If you have to merge a filesystem into another, existing one, the best bet is to use tar(l).
If you must shrink a filesystem, the best bet is to dump the original and restor it onto the new
filesystem. However, this might not work if the i-list on the smaller filesystem is smaller than
the maximum allocated inode on the larger. If this is the case, reconstruct the filesystem from
scratch on another filesystem (perhaps using tar(l)) and then dump it. If you are playing with
the root filesystem and only have one drive the procedure is more complicated. What you do is
the following:
1. GET A SECOND PACK!!!!
2. Create an image of the new root filesystem using mkfs(l), dump(l), and restor(l).
3. Make a binary tape image of the new filesystem using dd(l).
4. Bring the system down and mount the new pack.
5. Retrieve the WECo distribution tape and perform steps 1 through 4 at the beginning of

this document, then skip to step 7, substituting the desired filesystem size instead of 480
when asked for 'no. of input blocks'.

6. Boot(8) using the newly created disk filesystem.

New Users
Install new users by editing the password file I etc/ passwd (passwd (5)). This procedure

should be done before multi-user mode is entered (see init(8)). You'll have to make a current
directory for each new user and change its owner to the newly installed name. Login as each
user to make sure the password file is correctly edited. For example:

ed I etc/passwd
$a
joe::47:13::/usr/joe:

w
q
mkdir /usr/joe
chown joe /usr/joe
login joe
ls -la
login root

This will make a new login entry for joe, who should be encouraged to use passwd(l) to give
himself a password. His default current directory is /usr/joe which has been created. The

Setting Up Version 1.0 of UNIX 32/V Operating System 5-115

delivered password file has the user bin in h to be used as a prototype.

Multiple Users
If UNIX is to support simultaneous access from more than just the console terminal, the

file /etc/ttys (ttys{S)) has to be edited. To add a new terminal be sure the device is configured
and the special file exists, then set the first character of the appropriate line of /etc/ttys to 1 (or
add a new line). Note that init.c will have to be recompiled if there are to be more than 100
terminals. Also note that if the special file is inaccessible when init tries to create a process for
it, the system will thrash trying and retrying to open it.

File System Health
Periodically (say every day or so) and always after a crash, you should check all the

filesystems for consistency (icheck, dcheck(l)). It is quite important to execute sync (8)
before rebooting or taking the machine down. This is done automatically every 30 seconds by
the update program (8) when a multiple-user system is running, but you should do it anyway to
make sure.

Dumping of the filesystem should be done regularly, since once the system is going it is
very easy to become complacent. Complete and incremental dumps are easily done with
dump(!). Dumping of files by name is best done by tar(l) but the number of files is some­
what limited. Finally if there are enough drives entire disks can be copied using cp(l), or
preferably with dd(l) using the raw special tiles and an appropriate block size.

Converting Sixth Edition Filesystems
The best way to convert filesystems from 6th edition (V6) to 7th edition (V7) format is to

use tp(l) or tar(l).

Odds and Ends
The programs dump, icheck, quot, dcheck, ncheck, and df (source in /usr/source/cmd)

should be changed to reflect your default mounted filesystem devices. Print the first few lines
of tbese programs and the changes will be obvious. Tar should be changed to reflect your
desired default tape drive.

Good Luck

Thomas B. London
John F. Reiser

Regenerating System Software 5-117

REGENERATING SYSTEM SOFTWARE
For UNIX/32V

Thomas B. London

John F. Reiser

Bell Laboratories
Holmdel, New Jersey 07733

Introduction

This document discusses how to assemble or compile various parts of the UNIX/32Vt sys­
tem software. This may be necessary because a command or library is accidentally deleted or
otherwise destroyed; also, it may be desirable to install a modified version of some command
or library routine. A few commands depend to some degree on the current configuration of
the system; thus in any new system modifications to some commands are advisable. Most of
the likely modifications relate to the standard disk devices contained in the system. For
example, the df(l) ('disk free') command has built into it the names of the standardly present
disk storage drives (e.g. '/dev/rfO', '/dev/rpO'). Df(l) takes an argument to indicate which disk
to examine, but it is convenient if its default argument is adjusted to reflect the ordinarily
present devices. The companion document 'Setting up UNIX' discusses which commands are
likely to require changes.

Where Commands and Subroutines Live

The source files for commands and subroutines reside in several subdirectories of the
directory /usr/src. These subdirectories, and a general description of their contents, are

cmd Source files for commands.

libc/stdio Source files making up the 'standard i/o package'.

libc/sys Source files for the C system call interfaces.

libc/gen

libc/crt

libc/csu

games

libF77

libI77

libdbm

libm

libnm

libplot

Source files for most of the remaining routines described in section 3 of the
manual.

Source files making up the C runtime support package, as in call save-return and
long arithmetic.

Source for the C startup routines.

Source for (some of) the games. No great care has been taken to try to make it
obvious how to compile these; treat it as a game.

Source for the Fortran 77 runtime library, exclusive of IO.

Source for the Fortran 77 IO runtime routines.

Source for the 'data-base manager' package dbm (3).

Source for the mathematical library.

Source for the assembler language mathematical library.

Source for plotting routines.

t UNIX is a trademark of Bell Laboratories.

5-118 Regenerating System Software

Commands
The regeneration of most commands is straightforward. The 'cmd' directory will contain

either a source file for the command or a subdirectory containing the set of files that make up
the command. If it is a single file the command

cd /usr/src/cmd/Admin
Mk cmd name.c

suffices. (Cmd name is the name of the command you are playing with.) The result of the Mk
command will be an executable version, copied to /bin (or perhaps /etc or other places if
appropriate). If you want the result placed somewhere else, the command

cd /usr/src/cmd/Admin
DESTDIR=mydir Mk cmd name.c

where mydir is a full pathname of some destination directory (e.g. /usr/tbl/newcmds), will
compile the command and place the result in mydir/bin (or perhaps mydir/etc or
mydir/usr/bin, etc.).

If the source files are in a subdirectory there will be a 'makefile' (see make(l)) to control
the regeneration. After changing to the proper directory (cd(l)) you type one of the following:

make The program is compiled and loaded; the executable is left in the current
directory.

make install The program is compiled and loaded, and the executable is installed.

make clean Everything is cleanup; for example .o files are deleted.

Some of the makefiles have other options. Print (cat(l)) the ones you are interested in to
find out.

Alternately, to compiler and install a subdirectory command, one may perform the fol­
lowing

cd /usr/src/cmd/Admin
Mkcmd name

which combines all three of the above make options.

The Assembler
The assembler consists of one executable file: /bin/as. The source files for /bin/as are

named '/usr/src/cmd/as/as?.c'. Considerable care should be exercised in replacing the assem­
bler. Remember that if the assembler is lost, the only recourse is to replace it from some
backup storage; a broken assembler cannot assemble itself.

The C Compiler
The C compiler consists of six routines: '/bin/cc', which calls the phases of the compiler

proper, the compiler control line expander '/lib/cpp', the assembler ('as'), and the loader ('Id').
The C compiler proper is '/lib/ccom'; '/lib/c2' is the optional assembler-language optimizer.
The loss of the C compiler is as serious as that of the assembler.

The source for /bin/cc resides in '/usr/src/cmd/cc.c'. Its loss alone (or that of c2) is not
fatal. If needed, prog.c can be compiled by

/lib/cpp prog.c >tempo
/lib/ccom tempo templ
as temp3
Id /lib/crtO.o a.out -le

The source for the compiler proper is in the directories /usr/src/cmd/mip and
/usr/src/cmd/pcc. The /usr/src/cmd/mip directory contains files which are (relatively)

Regenerating System Software 5-119

machine independent; the machine dependent files reside in the directory /usr/src/cmd/pcc.
The compiler is 'made' by the makefile (see make(l)) in the directory /usr/src/cmd/pcc. To
make a new /lib/ccom use

cd /usr/src/cmd/pcc
make

which produces the compiler (named /usr/src/cmd/pcc/comp). Before installing the new com­
piler, it is prudent to save the old one someplace.

In a similar manner, the optimizer phase of the C compiler (/lib/c2) is made up from the
files c20.c, c21.c, and c22.c together with c2.h. Its loss is not critical since it is completely
"'optional.

UNIX
The source and object programs for UNIX are kept in two subdirectories of /usr/src/sys.

In the subdirectory h there are several files ending in '.h'; these are header files which are
picked up (via '#include .. .') as required by each system module. The subdirectory sys is the
rest of the system.

The file conf.c contains the tables which control device configuration of the system.
Locore.s specifies the contents of the interrupt vectors, and all the machine-language code in
the system.

To recreate the system, use

cd /usr/src/sys/sys
make unix

See 'Setting Up UNIX' for other information about configuration and such.

When the make is done, the new system is present in the current directory as 'unix'. It
should be tested before destroying the currently running '/unix', this is best done by doing
something like

mv /unix /ounix
mv unix /unix

If the new system doesn't work, you can still boot 'ounix' and come up (see boot(8)). When
you have satisfied yourself that the new system works, remove /ounix.

To install a new device driver, copy its source to /usr/src/sys/sys, and edit the 'makefile'
and the file 'loadall' if necessary (see make(l)).

Next, the 1/0 interrupt fielding mechanism must be modified to properly handle the new
device. If the device is connected via the UNIBUS, then one only need add the device's inter­
rupt handling routine address(s) in the proper position in the table 'UNlvec' in the file
/usr/src/sys/sys/univec.c. 'UNivec' should be modified by placing a pointer to a callout rou­
tine in the proper vector. Use some other device (like the DZll) as a guide. Notice that the
entries in 'UNivec' must be in order. Bits 27-31 of the vector address will be available as the
first argument of the interrupt routine. This stratagem is used when several similar devices
share the same interrupt routine (as in dzll's).

If the device is connected via the MASSBUS, then /usr/src/sys/sys/univec.c is not to be
modifed. Instead, code must be added to /usr/src/sys/sys/locore.s to actually transfer to the
interrupt routine. Use the RP06 interrupt routine 'XmbaOint' in locore.s as a guide. As an
aside, note that external names in C programs have an underscore (' ') prepended to them.

The second step which must be performed to add a new device is to add it to the
configuration table /usr/src/sys/sys/conf.c. This file contains two subtables, 'bdevsw' and
'cdevsw', one for block-type devices, and one for character-type devices. Block devices include
disks, and magtape. All other devices are character devices. A line in each of these tables
gives all the information the system needs to know about the device handler; the ordinal

5-120 Regenerating System Software

position of the line in the table implies its major device number, starting at 0.

There are four subentries per line in the block device table, which give its open routine,
close routine, strategy routine, and device table. The open and close routines may be nonex­
istent, in which case the name 'nulldev' is given; this routine merely returns. The strategy
routine is called to do any 1/0, and the device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and
write, and one which sets and returns device-specific status (used, for example, for stty and
gtty on typewriters). If there is no open or close routine, 'nulldev' may be given; if there is no
read, write, or status routine, 'nodev' may be given. Nodev sets an error flag and returns.

The final step which must be taken to install a device is to make a special file for it.
This is done by mknod(l), to which you must specify the device class (block or character),
major device number (relative line in the configuration table) and minor device number
(which is made available to the driver at appropriate times).

The documents 'Setting up Unix' and 'The Unix IO system' may aid in comprehending
these steps.

The Library Ube.a
The library /lib/libc.a is where most of the subroutines described in sections 2 and 3 of

the manual are kept. This library can be remade using the following commands:

cd /usr/src/libc
make libc.a
make install
make clean

If single routines need to be recompiled and replaced, use

cc -c -0 x.c
ar vr /lib/libc.a x.o
rmx.o

The above can also be used to put new items into the library. See ar(l), lorder(l), and
tsort(l).

The routines in /usr/src/cmd/libc/csu (C start up) are not in libc.a. These are separately
assembled and put into /lib. The commands to do this are

cd /usr/src/libc
for i in csu/* .s
do

done

j='basename $i .s'
as -o $j.o $i
mv $j.o /lib

or, if you need only redo one routine,

cd /usr/src/libc/csu
as -o x.o x.s
mv x.o /lib

where x is the routine you want.

Other Libraries
Likewise, the directories containing the source for the other libraries have makefiles.

Regenerating System Software 5-121

System Tuning
There are several tunable parameters in the system. These set the size of various tables

and limits. They are found in the file /usr/sys/h/param.h as manifests ('#define's). Their
values are rather generous in the system as distributed. Our typical maximum number of
users is about 20, but there are many daemon processes.

When any parameter is changed, it is prudent to recompile the entire system, as dis­
cussed above. A brief discussion of each follows:

NBUF This sets the size of the disk buffer cache. Each buffer is 512 bytes. This number
should be around 25 plus NMOUNT, or as big as can be if the above number of
buffers cause the system to not fit in memory.

NFILE This sets the maximum number of open files. An entry is made in this table
every time a file is 'opened' (see open(2), creat(2)). Processes\ share these table
entries across forks (fork(2)). This number should be about the same size as
NINODE below. (It can be a bit smaller.)

NMOUNT This indicates the maximum number of mounted file systems. Make it big
enough that you don't run out at inconvenient times.

MAXMEM This specifies the number of page-frames of real memory at this installation. It
is currently set at 1024 (512K bytes), and should be increased if you have more
(otherwise the additional memory will not be utilized).

MAXUMEMThis sets an administrative limit on the amount of memory a process may have.
It is currently set at MAXMEM-128 (i.e. 896). It will be increased automatically
by increasing MAXMEM. Note, however, that the current upper bound on
MAXUMEM is 128*12 (i.e. 1536) which limits user process space to 768K bytes.

PHYSPAGESThis indicates the number of pages which can be represented on the memory
freelist. Its current value is 2048, and is sufficient for systems of up to one mega­
byte. If this value is too small (i.e. more memory than freelist) then system will
only use PHYSPAGES page frames.

MAXUPRC This sets the maximum number of processes that any one user can be running at
any one time. This should be set just large enough that people can get work done
but not so large that a user can hog all the processes available (usually by
accident!).

NPROC This sets the maximum number of processes that can be active. It depends on
the demand pattern of the typical user; we seem to need about 8 times the
number of terminals.

NINODE This sets the size of the inode table. There is one entry in the inode table for
every open device, current working directory, sticky text segment, open file, and
mounted device. Note that if two users have a file open there is still only one
entry in the inode table. A reasonable rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminals)

SSIZE The initial size of a process stack. This may be made bigger if commonly run
processes have large data areas on the stack.

SINCR The size of the stack growth increment.

NOFILE This sets the maximum number of files that any one process can have open. 20
is plenty.

CANBSIZ This is the size of the typewriter canonicalization buffer. It is in this buffer that
erase and kill processing is done. Thus this is the maximum size of an input
typewriter line. 256 is usually plenty.

5-122 Regenerating System Software

SMAPSIZ The number of fragments that secondary (swap) memory can be broken into.
This should be big enough that it never runs out. The theoretical maximum is
twice the number of processes, but this is a vast overestimate in practice. 70
seems enough.

NCALL This is the size of the callout table. Callouts are entered in this table when some
sort of internal system timing must be done, as in carriage return delays for ter­
minals. The number must be big enough to handle all such requests.

NTEXT The maximum number of simultaneously executing pure programs. This should
be big enough so as to not run out of space under heavy load. A reasonable rule
of thumb is about

(number of terminals) + (number of sticky programs)

NCLIST The number of clist segments. A clist segment is 12 characters. NCLIST should
be big enough so that the list doesn't become exhausted when the machine is
busy. The characters that have arrived from a terminal and are waiting to be
given to a process live here. Thus enough space should be left so that every ter­
minal can have at least one average line pending (about 30 or 40 characters).

TIMEZONE The number of minutes westward from Greenwich. See 'Setting Up UNIX'.

DSTFLAG See 'Setting Up UNIX' section on time conversion.

MSGBUFS The maximum number of characters of system error messages saved. This is used
as a circular buffer.

NCARGS The maximum number of characters in an exec(2) arglist. This number controls
how many arguments can be passed into a process. 5120 is practically infinite.

HZ Set to the desired frequency of the system clock (e.g., 50 for a 50 Hz. clock). The
current value is 60 (i.e. 60 Hz. clock).

1. Purpose

A Dial-up Network of UNIX Systems 5-123

A Dial-Up Network of UNIX™ Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

The widespread use of the UNIXt system1 within Bell Laboratories has produced prob­
lems of software distribution and maintenance. A conventional mechanism was set up to dis­
tribute the operating system and associated programs from a central site to the various users.
However this mechanism alone does not meet all software distribution needs. Remote sites
generate much software and must transmit it to other sites. Some UNIX systems are them­
selves central sites for redistribution of a particular specialized utility, such as the Switching
Control Center System. Other sites have particular, often long-distance needs for software
exchange; switching research, for example, is carried on in New Jersey, Illinois, Ohio, and
Colorado. In addition, general purpose utility programs are written at all UNIX system sites.
The UNIX system is modified and enhanced by many people in many places and it would be
very constricting to deliver new software in a one-way stream without any alternative for the
user sites to respond with changes of their own.

Straightforward software distribution is only part of the problem. A large project may
exceed the capacity of a single computer and several machines may be used by the one group
of people. It then becomes necessary for them to pass messages, data and other information
back an forth between computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have
constructed networks built of hardwired connections only.1•2 Our network, however, uses both
dial-up and hardwired connections so that service can be provided to as many sites as possi­
ble.

2. Design Goals

Although some of our machines are connected directly, others can only communicate
over low-speed dial-up lines. Since the dial-up lines are often unavailable and file transfers
may take considerable time, we spool all work and transmit in the background. We also had
to adapt to a community of systems which are independently operated and resistant to sugges­
tions that they should all buy particular hardware or install particular operating system
modifications. Therefore, we make minimal demands on the local sites in the network. Our
implementation requires no operating system changes; in fact, the transfer programs look like
any other user entering the system through the normal dial-up login ports, and obeying all
local protection rules.

We distinguish "active" and "passive" systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection.
Passive systems do not have the hardware to initiate a connection. However, an active system
can be assigned the job of calling passive systems and executing work found there; this makes

t UNIX is a trademark of Bell Laboratories.

5-124 A Dial-up Network of UNIX Systems

a passive system the functional equivalent of an active system, except for an additional delay
while it waits to be polled. Also, people frequently log into active systems and request copy­
ing from one passive system to another. This requires two telephone calls, but even so, it is
faster than mailing tapes.

Where convenient, we use hardwired communication lines. These permit much faster
transmission and multiplexing of the communications link. Dial-up connections are made at
either 300 or 1200 baud; hardwired connections are asynchronous up to 9600 baud and might
run even faster on special-purpose communications hardware.3•4 Thus, systems typically join
our network first as passive systems and when they find the service more important, they
acquire automatic calling units and become active systems; eventually, they may install high­
speed links to particular machines with which they handle a great deal of traffic. At no point,
however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool
directory, in which work to be done (files to be moved, or commands to be executed remotely)
is stored. A standard program, uucico, performs all transfers. This program starts by identi­
fying a particular communication channel to a remote system with which it will hold a conver­
sation. Uucico then selects a device and establishes the connection, logs onto the remote
machine and starts the uucico program on the remote machine. Once two of these programs
are connected, they first agree on a line protocol, and then start exchanging work. Each pro­
gram in turn, beginning with the calling (active system) program, transmits everything it
needs, and then asks the other what it wants done. Eventually neither has any more work,
and both exit.

In this way, all services are available from all sites; passive sites, however, must wait
until called. A variety of protocols may be used; this conforms to the real, non-standard
world. As long as the caller and called programs have a protocol in common, they can com­
municate. Furthermore, each caller knows the hours when each destination system should be
called. If a destination is unavailable, the data intended for it remain in the spool directory
until the destination machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of
which store proprietary programs and data, illustratives the pervasive need for security and
administrative controls over file access. Each site, in configuring its programs and system
files, limits and monitors transmission. In order to access a file a user needs access permission
for the machine that contains the file and access permission for the file itself. This is achieved
by first requiring the user to use his password to log into his local machine and then his local
machine logs into the remote machine whose files are to be accessed. In addition, records are
kept identifying all files that are moved into and out of the local system, and how the reques­
tor of such accesses identified himself. Some sites may arrange to permit users only to call up
and request work to be done; the calling users are then called back before the work is actually
done. It is then possible to verify that the request is legitimate from the standpoint of the
target system, as well as the originating system. Furthermore, because of the call-back, no site
can masquerade as another even if it knows all the necessary passwords.

Each machine can optionally maintain a sequence count for conversations with other
machines and require a verification of the count at the start of each conversation. Thus, even
if call back is not in use, a successful masquerade requires the calling party to present the
correct sequence number. A would-be impersonator must not just steal the correct phone
number, user name, and password, but also the sequence count, and must call in sufficiently
promptly to precede the next legitimate request from either side. Even a successful
masquerade will be detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uucp to set up file copying,
and uux to set up command execution where some of the required resources (system and/or
files) are not on the local machine. Each of these commands will put work and data files into

A Dial-up Network of UNIX Systems 5-125

the spool directory for execution by uucp daemons. Figure 1 shows the major blocks of the
file transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It
performs the following functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be used.

Start program uucico on the remote system.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs
(uucico, uuxqt) to determine the files they should look at, the remote machines they should
call and the order in which the files for a particular remote machine should be processed.

Call Remote System
The call is made using information from several files which reside in the uucp program

directory. At the start of the call process, a lock is set on the system being called so that
another call will not be attempted at the same time.

The system name is found in a "systems" file. The information contained for each sys­
tem is:

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The
phone number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial
sequences using a "dial-codes" file. This permits the same "phone number" to be stored at
every site, despite local variations in telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an
available device for the connection. The program will try all devices which satisfy [3] and [4]
until a connection is made, or no more devices can be tried. If a non-multiplexable device is
successfully opened, a lock file is created so that another copy of uucico will not try to use it.
If the connection is complete, the login information is used to log into the remote system.
Then a command is sent to the remote system to start the uucico program. The conversation
between the two uucico programs begins with a handshake started by the called, SLAVE, sys­
tem. The SLAVE sends a message to let the MASTER know it is ready to recei.ve the system
identification and conversation sequence number. The response from the MASTER is verified
by the SLAVE and if acceptable, protocol selection begins.

5-126 A Dial-up Network of UNIX Systems

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling pro­
gram checks the proto-list for a letter corresponding to an available line protocol and returns
a use-protocol message. The use-protocol message is

Vcode

where code is either a one character protocol letter or a N which means there is no common
protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp
transmission program. Other protocols may be added by individual installations.

Work Processing

During processing, one program is the MASTER and the other is SLAVE. Initially, the
calling program is the MASTER. These roles may switch one or more times during the
conversation.

There are four messages used during the work processing, each specified by the first
character of the message. They are

S send a file,
R receive a file,
C copy complete,
H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete,
at which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY,
HN, corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested
file/directory. After each file is copied into the spool directory of the receiving system, a
copy-complete message is sent by the receiver of the file. The message CY will be sent if the
UNIX cp command, used to copy from the spool directory, is successful. Otherwise, a CN
message is sent. The requests and results are logged on both systems, and, if requested, mail
is sent to the user reporting completion (or the user can request status information from the
log program at any time).

The hangup response is determined by the SLAVE program by a work scan of the spool
directory. If work for the remote system exists in the SLA VE's spool directory, a HN mes­
sage is sent and the programs switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and
the protocols are turned off. Each program sends a final "00" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes
"mail dan" to send mail to user "dan". By writing "mail usg!dan" the mail is sent to user
"dan" on system "usg".

The primary uses of our network to date have been in software maintenance. Relatively
few of the bytes passed between systems are intended for people to read. Instead, new pro­
grams (or new versions of programs) are sent to users, and potential bugs are returned to
authors. Aaron Cohen has implemented a "stockroom" which allows remote users to call in

A Dial-up Network of UNIX Systems 5-127

and request software. He keeps a "stock list" of available programs, and new bug fixes and
utilities are added regularly. In this way, users can always obtain the latest version of any­
thing without bothering the authors of the programs. Although the stock list is maintained on
a particular system, the items in the stockroom may be warehoused in many places; typically
each program is distributed from the home site of its author. Where necessary, uucp does
remote-to-remote copies.

We also routinely retrieve test cases from other systems to determine whether errors on
remote systems are caused by local misconfigurations or old versions of software, or whether
they are bugs that must be fixed at the home site. This helps identify errors rapidly. For one
set of test programs maintained by us, over 70 % of the bugs reported from remote sites were
due to old software, and were fixed merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two
different machines. A very useful utility on one machine has been Doug Mcllroy's "diff'' pro­
gram which compares two text files and indicates the differences, line by line, between them. 5

Only lines which are not identical are printed. Similarly, the program "uudiff'' compares files
(or directories) on two machines. One of these directories may be on a passive system. The
"uudiff'' program is set up to work similarly to the inter-system mail, but it is slightly more
complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums
on each side, and only moves files that are different for detailed comparison. For large files,
this process can be iterated; checksums can be computed for each line, and only those lines
that are different actually moved.

The "uux" command has been useful for providing remote output. There are some
machines which do not have hard-copy devices, but which are connected over 9600 baud com­
munication lines to machines with printers. The uux command allows the formatting of the
printout on the local machine and printing on the remote machine using standard UNIX com­
mand programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below
shows the real throughput of characters on communication links of different speeds. These
numbers represent actual data transferred; they do not include bytes used by the line protocol
for data validation such as checksums and messages. At the higher speeds, contention for the
processors on both ends prevents the network from driving the line full speed. The range of
speeds represents the difference between light and heavy loads on the two systems. If desired,
operating system modifications can be installed that permit full use of even very fast links.

Nominal speed
300 baud

1200 baud
9600 baud

Characters/sec.
27

100-110
200-850

In addition to the transfer time, there is some overhead for making the connection and logging
in ranging from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte
source program can be transferred in four minutes instead of the 2 days that might be
required to mail a tape.

Traffic between systems is variable. Between two closely related systems, we observed 20
files moved and 5 remote commands executed in a typical day. A more normal traffic out of a
single system would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of
the Bell Laboratories full-size machines which run the UNIX operating system. Geographi­
cally, the machines range from Andover, Massachusetts to Denver, Colorado.

5-128 A Dial-up Network of UNIX Systems

Uucp has also been used to set up another network which connects a group of systems in
operational sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance.
Conventional maintenance (a support group which mails tapes) has many well-known disad­
vantages. 6 There are distribution errors and delays, resulting in old software running at
remote sites and old bugs continually reappearing. These difficulties are aggravated when
there are 100 different small systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it
possible just to send programs directly to the end user who wants them. This avoids the
bottleneck of negotiation and packaging in the central support group. The "stockroom" serves
this function for new utilities and fixes to old utilities. However, it is still likely that distribu­
tions will not be sent and installed as often as needed. Users are justifiably suspicious of the
"latest version" that has just arrived; all too often it features the "latest hug." What is needed
is to address both problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving
systems. Acceptance testing on the receiving systems can be automated and permits the local
system to ensure that its essential work can continue despite the constant installation of
changes sent from elsewhere. The work of writing the test sequences should be recovered in
lower counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter­
system "mail" and "diff," plus the many implied commands represented by "uux." However,
we still need inter-system "write" (real-time inter-user communication) and "who" (list of
people logged in on different systems). A slow-speed network of this sort may be very useful
for speeding up counseling and education, even if not fast enough for the distributed data
base applications that attract many users to networks. Effective use of remote execution over
slow-speed lines, however, must await the general installation of multiplexable channels so
that long file transfers do not lock out short inquiries.

7. Lessons

The following is a summary of the lessons we learned in building these programs.

1. By starting your network in a way that requires no hardware or major operating system
changes, you can get going quickly.

2. Support will follow use. Since the network existed and was being used, system main­
tainers were easily persuaded to help keep it operating, including purchasing additional
hardware to speed traffic.

3. Make the network commands look like local commands. Our users have a resistance to
learning anything new: all the inter-system commands look very similar to standard
UNIX system commands so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects:
thus, the first version of this network was restricted to dial-up, since it did not support
the various hardware links between systems. This has been fixed in the current system.

Acknowledgements

We thank G. L. Chesson for his design and implementation of the packet driver and pro­
tocol, and A. S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance.

A Dial-up Network of UNIX Systems 5-129

References

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.,
vol. 57, no. 6, pp. 1905-1929, 1978.

2. G. L. Chesson, "The Network UNIX System," Operating Systems Review, vol. 9, no. 5,
pp. 60-66, 1975. Also in Proc. 5th Symp. on Operating Systems Principles.

3. A. G. Fraser, "Spider - An Experimental Data Communications System," Proc. IEEE
Con{. on Communications, p. 21F, June 1974. IEEE Cat. No. 74CH0859-9-CSCB.

4. A. G. Fraser, "A Virtual Channel Network," Datamation, pp. 51-56, February 1975.

5. J. W. Hunt and M. D. Mcilroy, "An Algorithm for Differential File Comparison," Comp.
Sci. Tech. Rep. No. 41, Bell Laboratories, Murray Hill, New Jersey, June 1976.

6. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, Mass., 1975.

UUCP Implementation 5-131

Uucp Implementation Description

D. A. Nowitz

Introduction

Uucp is a series of programs designed to permit communication between UNIXt systems using
either dial-up or hardwired communication lines. It is used for file transfers and remote com­
mand execution. The first version of the system was designed and implemented by M. E.
Lesk.1 This paper describes the current (second) implementation of the system.

Uucp is a batch type operation. Files are created in a spool directory for processing by the
uucp demons. There are three types of files used for the execution of work. Data files con­
tain data for transfer to remote systems. Work files contain directions for file transfers
between systems. Execution files are directions for UNIX command executions which involve
the resources of one or more systems.

The uucp system consists of four primary and two secondary programs. The primary pro­
grams are:

uucp

uux

uucico

uuxqt

This program creates work and gathers data files in the spool directory for the
transmission of files.

This program creates work files, execute files and gathers data files for the
remote execution of UNIX commands.

This program executes the work files for data transmission.

This program executes the execution files for UNIX command execution.

The secondary programs are:

uulog This program updates the log file with new entries and reports on the status
of uucp requests.

uuclean This program removes old files from the spool directory.

The remainder of this paper will describe the operation of each program, the installation of
the system, the security aspects of the system, the files required for execution, and the
administration of the system.

1. Uucp - UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The uucp command was
designed to look like cp to the user. The syntax is

uucp [option] ... source ... destination

where the source and destination may contain the prefix system-name! which indicates the
system on which the file or files reside or where they will be copied.

The options interpreted by uucp are:

-d Make directories when necessary for copying the file.

t UNIX is a trademark of Bell Laboratories.
1 M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link, private communica­
tion.

5-132 UUCP Implementation

-c Don't copy source files to the spool directory, but use the specified source
when the actual transfer takes place.

-gletter Put letter in as the grade in the name of the work file. (This can be used to
change the order of work for a particular machine.)

-m Send mail on completion of the work.

The following options are used primarily for debugging:

-r Queue the job but do not start uucico program.

-sdir Use directory dir for the spool directory.

-xnum Num is the level of debugging output desired.

The destination may be a directory name, in which case the file name is taken from the last
part of the source's name. The source name may contain special shell characters such as
"?*[/'. If a source argument has a system-name! prefix for a remote system, the file name
expansion will be done on the remote system.

The command

uucp * .c usg!/usr/dan

will set up the transfer of all files whose names end with ".c" to the "/usr/dan" directory on
the"usg" machine.

The source and/or destination names may also contain a -user prefix. This translates to the
login directory on the specified system. For names with partial path-names, the current direc­
tory is prepended to the file name. File names with . ./ are not permitted.

The command

uucp usgrdan/* .h -dan

will set up the transfer of files whose names end with ".h" in dan's login directory on system
"usg" to dan's local login directory.

For each source file, the program will check the source and destination file-names and the
system-part of each to classify the work into one of five types:

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote systems.

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains special shell characters
as mentioned above.

After the work has been set up in the spool directory, the uucico program is started to try to
contact the other machine to execute the work (unless the -r option was specified).

Type 1

A cp command is used to do the work. The -d and the -m options are not honored in this
case.

Type 2

A one line work file is created for each file requested and put in the spool directory with the
following fields, each separated by a blank. (All work files and execute files use a blank as
the field separator.)

[1] R

[2] The full path-name of the source or a -user/path-name. The -user part will be
expanded on the remote system.

UUCP Implementation 5-133

[3] The full path-name of the destination file. If the -user notation is used, it will be
immediately expanded to be the login directory for the user.

[4] The user's login name.

[5] A"-" followed by an option list. (Only the -m and -d options will appear in this
list.)

Type 3

For each source file, a work file is created and the source file is copied into a data file in the
spool directory. (A "-c" option on the uucp command will prevent the data file from being
made.) In this case, the file will be transmitted from the indicated source.) The fields of each
entry are given below.

[1] s
[2] The full-path name of the source file.

[3] The full-path name of the destination or -user/file-name.

[4] The user's login name.

[5] A " - " followed by an option list.

[6] The name of the data file in the spool directory.

[7] The file mode bits of the source file in octal print format (e.g. 0666).

Type 4 and Type 5

Uucp generates a uucp command and sends it to the remote machine; the remote uucico exe­
cutes the uucp command.

2. Uux - UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

uux [-] [option] ... command-string

where the command-string is made up of one or more arguments. All special shell characters
such as "<>r" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. All arguments which do not contain a "!" will not be
treated as files. (They will not be copied to the execution machine.) The "-" is used to indi­
cate that the standard input for command-string should be inherited from the standard input
of the uux command. The options, essentially for debugging, are:

-r Don't start uucico or uuxqt after queuing the job;

-xnum Num is the level of debugging output desired.

The command

pr abc I uux - usg!lpr

will set up the output of "pr abc" as standard input to an lpr command to be executed on sys­
tem "usg".

Uux generates an execute file which contains the names of the files required for execution
(including standard input), the user's login name, the destination of the standard output, and
the command to be executed. This file is either put in the spool directory for local execution
or sent to the remote system using a generated send command (type 3 above).

For required files which are not on the execution machine, uux will generate receive command
files (type 2 above). These command-files will be put on the execution machine and executed
by the uucico program. (This will work only if the local system has permission to put files in
the remote spool directory as controlled by the remote USERFILE.)

5-134 UUCP Implementation

The execute file will be processed by the uuxqt program on the execution machine. It is
made up of several lines, each of which contains an identification character and one or more
arguments. The order of the lines in the file is not relevant and some of the lines may not be
present. Each line is described below.

User Line

U user system

where the user and system are the requester's login name and system.

Required File Line

F file-name real-name

where the file-name is the generated name of a file for the execute machine and real­
name is the last part of the actual file name (contains no path information). Zero or
more of these lines may be present in the execute file. The uuxqt program will check
for the existence of all required files before the command is executed.

Standard Input Line

I file-name

The standard input is either specified by a"<" in the command-string or inherited from
the standard input of the uux command if the "-" option is used. If a standard input is
not specified, "/dev/null" is used.

Standard Output Line

0 file-name system-name

The standard output is specified by a ">" within the command-string. If a standard
output is not specified, "/dev/null" is used. (Note - the use of ">>" is not imple­
mented.)

Command Line

C command [arguments] ...

The arguments are those specified in the command-string. The standard input and stan­
dard output will not appear on this line. All required files will be moved to the execu­
tion directory (a subdirectory of the spool directory) and the UNIX command is executed
using the Shell specified in the uucp.h header file. In addition, a shell "PATH" state­
ment is prepended to the command line as specified in the uuxqt program.

After execution, the standard output is copied or set up to be sent to the proper place.

3. Uucico - Copy In, Copy Out

The uucico program will perform the following major functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be used.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp, uux, uuxqt or uucico programs,

UUCP Implementation 5-135

c) directly by the user (this is usually for testing),

d) by a remote system. (The uucico program should be specified as the "shell" field in
the "/etc/passwd" file for the "uucp" logins.)

When started by method a, b or c, the program is considered to be in MASTER mode. In
this mode, a connection will be made to a remote system. If started by a remote system
(method d), the program is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (-s
option not specified) the program will scan the spool directory for systems to call. If a system
name is specified, that system will be called, and work will only be done for that system.

The uucico program is generally started by another program. There are several options used
for execution:

-rl

-ssys

Start the program in MASTER mode. This is used when uucico is started by
a program or "cron" shell.

Do work only for system sys. If -s is specified, a call to the specified system
will be made even if there is no work for system sys in the spool directory.
This is useful for polling systems which do not have the hardware to initiate a
connection.

The following options are used primarily for debugging:

-ddir Use directory dir for the spool directory.

-xnum Num is the level of debugging output desired.

The next part of this section will describe the major steps within the uucico program.

Scan For Work

The names of the work related files in the spool directory have format

type . system-name grade number

where:

Type is an upper case letter, (C - copy command file, D - data file, X - execute file);

System-name is the remote system;

Grade is a character;

Number is a four digit, padded sequence number.

The file

C.res45n0031

would be a work file for a file transfer between the local machine and the "res45" machine.

The scan for work is done by looking through the spool directory for work files (files with
prefix "C."). A list is made of all systems to be called. Uucico will then call each system and
process all work files.

Call Remote System

The call is made using information from several files which reside in the uucp program direc­
tory. At the start of the call process, a lock is set to forbid multiple conversations between the
same two systems.

The system name is found in the L.sys file. The information contained for each system is;

[1] system name,

[2] times to call the system (days-of-week and times-of-day),

[3] device or device type to be used for call,

[4] line speed,

5-136 UUCP Implementation

[5] phone number if field [3] is ACU or the device name (same as field [3]) if not
ACU,

[6] login information (multiple fields),

The time field is checked against the present time to see if the call should be made.

The phone number may contain abbreviations (e.g. mh, py, boston) which get translated into
dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available
device for the call. The program will try all devices which satisfy [3] and [4] until the call is
made, or no more devices can be tried. If a device is successfully opened, a lock file is created
so that another copy of uucico will not try to use it. If the call is complete, the login informa­
tion (field [6] of L.sys) is used to login.

The conversation between the two uucico programs begins with a handshake started by the
called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready
to receive the system identification and conversation sequence number. The response from
the MASTER is verified by the SLAVE and if acceptable, protocol selection begins. The
SLAVE can also reply with a "call-back required" message in which case, the current conver­
sation is terminated.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the proto-list for a letter corresponding to an available line proto­
col and returns a use-protocol message. The use-protocol message is

Ucode

where code is either a one character protocol letter or N which means there is no common
protocol.

Work Processing

The initial roles (MASTER or SLAVE) for the work processing are the mode in which each
program starts. (The MASTER has been specified by the "-rl" uucico option.) The MAS­
TER program does a work search similar to the one used in the "Scan For Work" section.

There are five messages used during the work processing, each specified by the first character
of the message. They are;

S send a file,

R receive a file,

C copy complete,

X execute a uucp command,

H hangup.

The MASTER will send R, S or X messages until all work from the spool directory is com­
plete, at which point an H message will be sent. The SLAVE will reply with SY, SN, RY,
RN, HY, HN, XY, XN, corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is
copied into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the file has successfully been moved"from
the temporary spool file to the actual destination. Otherwise, a CN message is sent. (In the

UUCP Implementation 5-137

case of CN, the transferred file will be in the spool directory with a name beginning with
"TM'.) The requests and results are logged on both systems.

The hangup response is determined by the SLAVE program by a work scan of the spool
directory. If work for the remote system exists in the SLAVE's spool directory, an HN mes­
sage is sent and the programs switch roles. If no work exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the
protocols are turned off. Each program sends a final "00" message to the other. The original
SLAVE program will clean up and terminate. The MASTER will proceed to call other sys­
tems and process work as long as possible or terminate if a -s option was specified.

4. Uuxqt - Uucp Command Execution

The uuxqt program is used to execute execute files generated by uux. The uuxqt program
may be started by either the uucico or uux programs. The program scans the spool directory
for execute files (prefix "X."). Each one is checked to see if all the required files are available
and if so, the command line or send line is executed.

The execute file is described in the "Uux" section above.

Command Execution

The execution is accomplished by executing a sh -c of the command line after appropriate
standard input and standard output have been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

5. Uulog - Uucp Log Inquiry

The uucp programs create individual log files for each program invocation. Periodically,
uulog may be executed to prepend these files to the system logfile. This method of logging
was chosen to minimize file locking of the logfile during program execution.

The uulog program merges the individual log files and outputs specified log entries. The out­
put request is specified by the use of the following options:

-ssys Print entries where sys is the remote system name;

-uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys or user means all
system names or users respectively.

6. Uuclean - Uucp Spool Directory Cleanup

This program is typically started by the daemon, once a day. Its function is to remove files
from the spool directory which are more than 3 days old. These are usually files for work
which can not be completed.

The options available are:

-ddir The directory to be scanned is dir.

-m Send mail to the owner of each file being removed. (Note that most files put
into the spool directory will be owned by the owner of the uucp programs
since the setuid bit will be set on these programs. The mail will therefore
most often go to the owner of the uucp programs.)

-nhours Change the aging time from 72 hours to hours hours.

-ppre Examine files with prefix pre for deletion. (Up to 10 file prefixes may be
specified.)

5-138 UUCP Implementation

-xnum This is the level of debugging output desired.

7. Security

The uucp system, left unrestricted, will let any outside user ex~­
cute any commands and copy in/out any file which is
readable/writable by the uucp login user. It is up to the individual
sites to be aware of this and apply the protections that they feel
are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by the installer of the uucp system.

- The login for uucp does not get a standard shell. Instead, the uucico program is started.
Therefore, the only work that can be done is through uucico.

- A path check is done on file names that are to be sent or received. The USERFILE sup­
plies the information for these checks. The USERFILE can also be set up to require call­
back for certain login-ids. (See the "Files required for execution" section for the file
description.)

- A conversation sequence count can be set up so that the called system can be more
confident that the caller is who he says he is.

- The uuxqt program comes with a list of commands that it will execute. A "PATH" shell
statement is prepended to the command line as specifed in the uuxqt program. The
installer may modify the list or remove the restrictions as desired.

- The L.sys file should be owned by uucp and have mode 0400 to protect the phone numbers
and login information for remote sites. (Programs uucp, uucico, uux, uuxqt should be also
owned by uucp and have the setuid bit set.)

8. Uucp Installation

There are several source modifications that may be required before the system programs are
compiled. These relate to the directories used during compilation, the directories used during
execution, and the local uucp system-name.

The four directories are:

lib (/usr/src/cmd/uucp) This directory contains the source files for generating
the uucp system.

program (/usr/lib/uucp) This is the directory used for the executable system pro­
grams and the system files.

spool

xqtdir

(/usr/spool/uucp) This is the spool directory used during uucp execution.

(/usr/spool/uucp/.XQTDIR) This directory is used during execution of exe­
cute files.

The names given in parentheses above are the default values for the directories. The itali­
cized named lib, program, xqtdir, and spool will be used in the following text to represent the
appropriate directory names.

There are two files which may require modification, the makefile file and the uucp.h file. The
following paragraphs describe the modifications. The modes of spool and xqtdir should be
made "0777".

Uucp.h modification

Change the program and the spool names from the default values to the directory names to
be used on the local system using global edit commands.

UUCP Implementation 5-139

Change the define value for MYNAME to be the local uucp system-name.

makefile modification

There are several make variable definitions which may need modification.

INSDIR This is the program directory (e.g. INSDIR=/usr/lib/uucp). This parameter
is used if "make cp" is used after the programs are compiled.

IOCTL This is required to be set if an appropriate ioctl interface subroutine does not
exist in the standard "C" library; the statement "IOCTL=ioctl.o" is required
in this case.

PKON The statement "PKON =pkon.o" is required if the packet driver is not in the
kernel.

Compile the system The command

make

will compile the entire system. The command

make cp

will copy the commands to the to the appropriate directories.

The programs uucp, uux, and uulog should be put in "/usr/bin". The programs uuxqt,
uucico, and uuclean should be put in the program directory.

Files required for execution

There are four files which are required for execution, all of which should reside in the pro­
gram directory. The field separator for all files is a space unless otherwise specified.

L-devices

This file contains entries for the call-unit devices and hardwired connections which are to be
used by uucp. The special device files are assumed to be in the /dev directory. The format
for each entry is

line call-unit speed

where;

line

call-unit

speed

The line

is the device for the line (e.g. culO),

is the automatic call unit associated with line (e.g. cuaO), (Hardwired lines
have a number "O" in this field.),

is the line speed.

culO cuaO 300

would be set up for a system which had device culO wired to a call-unit cuaO for use at 300
baud.

L-dialcodes

This file contains entries with location abbreviations used in the L.sys file (e.g. py, mh, bos­
ton). The entry format is

abb dial-seq

where;

abb

dial-seq

is the abbreviation,

is the dial sequence to call that location.

5-140 UUCP Implementation

The line

PY 165-

would be set up so that entry py7777 would send 165-7777 to the dial-unit.

LOGIN/SYSTEM NAMES
It is assumed that the login name used by a remote computer to call into a local computer is
not the same as the login name of a normal user of that local machine. However, several
remote computers may employ the same login name.

Each computer is given a unique system name which is transmitted at the start of each call.
This name identifies the calling machine to the called machine.

USERFILE
This file contains user accessibility information. It specifies four types of constraint;

[I] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,

[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the following format

login,sys [c] path-name [path-name] ...

where;

login is the login name for a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for user.

The constraints are implemented as follows.

[1] When the program is obeying a command stored on the local machine, MASTER
mode, the path-names allowed are those given for the first line in the USERFILE
that has a login name that matches the login name of the user who entered the
command. If no such line is found, the first line with a null login name is used.

[2] When the program is responding to a command from a remote machine, SLAVE
mode, the path-names allowed are those given for the first line in the file that has
the system name that matches the system name of the remote machine. If no such
line is found, the first one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the
USERFILE. There may be several lines with the same login name but one of
them must either have the name of the remote system or must contain a null sys­
tem name.

[4] If the line matched in ([3]) contains a "c", the remote machine is called back
before any transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start
with "/usr/xyz".

The line

dan, /usr/dan

\.

----~----·

UUCP Implementation 5-141

allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan".

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u, but if its system name is not m, it can only
ask to transfer files whose names start with "/usr/spool".

The lines

root, I
, /usr

allows any user to transfer files beginning with "/usr" but the user with login root can transfer
any file.

L.sys

Each entry in this file represents one system which can be called by the local uucp programs.
The fields are described below.

system name

The name of the remote system.

time

This is a string which indicates the days-of-week and times-of-day when the system
should be called (e.g. MoTuThOS00-1730).

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g. 0800-1230). If no time portion is specified,
any time of day is assumed to be ok for the call.

device

This is either ACU or the hardwired device to be used for the call. For the hardwired
case, the last part of the special file name is used (e.g. ttyO).

speed

This is the line speed for the call (e.g. 300).

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric
part. The abbreviation is one which appears in the L-dialcodes file (e.g. mh5900, bos­
ton995-9980).

For the hardwired devices, this field contains the same string as used for the device field.

login

The login information is given as a series of fields and subfields in the format

expect send [expect send] ...

where; expect is the string expected to be read and send is the string to be sent when
the expect string is received.

The expect field may be made up of subfields of the form

5-142 UUCP Implementation

expect[-send-expect] ...

where the send is sent if the prior expect is not successfully read and the expect follow­
ing the send is the next expected string.

There are two special names available to be sent during the login sequence. The string
EOT will send an EOT character and the string BREAK will try to send a BREAK
character. (The BREAK character is simulated using line speed changes and null char­
acters and may not work on all devices and/or systems.)

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as illustrated in the password field.

9. Administration

This section indicates some events and files which must be administered for the uucp system.
Some administration can be accomplished by shell files which can be initiated by crontab
entries. Others will require manual intervention. Some sample shell files are given toward
the end of this section.

SQFILE - sequence check fi.le

This file is set up in the program directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system
name of the remote system. The first conversation will add two items to the line, the conver­
sation count, and the date/time of the most resent conversation. These items will be updated
with each conversation. If a sequence check fails, the entry will have to be adjusted.

TM - temporary data fi.les

These files are created in the spool directory while files are being copied from a remote
machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero for each
invocation of uucico and incremented for each file received.

After the entire remote file is received, the TM file is moved/copied to the requested destina­
tion. If processing is abnormally terminated or the move/copy fails, the file will remain in the
spool directory.

The leftover files should be periodically removed; the uuclean program is useful in this
regard. The command

uuclean -pTM

will remove all TM files older than three days.

LOG - log entry fi.les

During execution of programs, individual LOG files are created in the spool directory with
information about queued requests, calls to remote systems, execution of uux commands and
file copy results. These files should be combined into the LOGFILE by using the uulog pro­
gram. This program will put the new LOG files at the beginning of the existing LOGFILE.
The command

uulog

will accomplish the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE should be removed periodically since it is copied each time
new LOG entries are put into the file.

UUCP Implementation 5-143

The LOG files are created initially with mode 0222. If the program which creates the file ter­
minates normally, it changes the mode to 0666. Aborted runs may leave the files with mode
0222 and the uulog program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them with the LOG FILE.

STST - system status files

These files are created in the spool directory by the uucico program. They contain informa­
tion of failures such as login, dialup or sequence check and will contain a TALKING status
when to machines are conversing. The form of the file name is

STST.sys

where sys is the remote system name.

For ordinary failures (dialup, login), the file will prevent repeated tries for about one hour.
For sequence check failures, the file must be removed before any future attempts to converse
with that remote system.

If the file is left due to an aborted run, it may contain a TALKING status. In this case, the
file must be removed before a conversation is attempted.

LCK - lock files

Lock files are created for each device in use (e.g. automatic calling unit) and each system
conversing. This prevents duplicate conversations and multiple attempts to use the same dev­
ices. The form of the lock file name is

LCK .. str

where str is either a device or system name. The files may be left in the spool directory if
runs abort. They will be ignored (reused) after a time of about 24 hours. When runs abort
and calls are desired before the time limit, the lock files should be removed.

Shell Files

The uucp program will spool work and attempt to start the uucico program, but the starting
of uucico will sometimes fail. (No devices available, login failures etc.). Therefore, the uucico
program should be periodically started. The command to start uucico can be put in a "shell"
file with a command to merge LOG files and started by a crontab entry on an hourly basis.
The file could contain the commands

program /uulog
program/uucico -rl

Note that the "-rl" option is required to start the uucico program in MASTER mode.

Another shell file may be set up on a daily basis to remove TM, ST and LCK files and C. or
D. files for work which can not be accomplished for reasons like bad phone number, login
changes etc. A shell file containing commands like

program/uuclean -pTM -pC. -pD.
program /uuclean -pST -pLCK -nl2

can be used. Note the "-nl2" option causes the ST and LCK files older than 12 hours to be
deleted. The absence of the "-n" option will use a three day time limit.

A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like

cp spool/LOGFILE spool/o.LOGFILE
rm spool/LOGFILE

can be used.

5-144 UUCP Implementation

Login Entry

One or more logins should be set up for uucp. Each of the "/etc/passwd" entries should have
the "program/uucico" as the shell to be executed. The login directory is not used, but if the
system has a special directory for use by the users for sending or receiving file, it should as the
login entry. The various logins are used in conjunction with the USERFILE to restrict file
access. Specifying the shell argument limits the login to the use of uucp (uucico) only.

File Modes
It is suggested that the owner and file modes of various programs and files be set as follows.

The programs uucp, uux, uucico and uuxqt should be owned by the uucp login with the
"setuid" bit set and only execute permissions (e.g. mode 04111). This will prevent outsiders
from modifying the programs to get at a standard shell for the uucp logins.

The L.sys, SQFILE and the USERFILE which are put in the program directory should be
owned by the uucp login and set with mode 0400.

Index-i

UNIX MASTER INDEX

The UNIX Master Index is a cumulative index; it brings together the indexes
of all the UNIX volumes. The Master Index appears at the end of each
volume.

Each entry is followed by one or more shortened volume titles, indicating the
volumes in which the topic is discussed and the pages containing the informa­
tion. The volumes and their shortened titles are shown in the following table:

Shortened

General use

Programming

System manager

Volume Title

GEN

PGM

SYS

If a topic is discussed in two or more volumes, the shortened volume names
are presented in alphabetical order. For example, an entry in the Master
Index might appear in the following way:

ed line editor

description, GEN 4-8 to 4-9, SYS 4-6

ed_.hup file

saving text, GEN 2-6

This entry indicates that a description of the ed line editor can be found on
pages 4-8 through 4-9 of the GEN volume and page 4-6 of the SYS volume.
The ed_.hup file is discussed on page 3-43 of the GEN volume.

ACRONYMS AND MNEMONICS

The acronym (or mnemonic) is the preferred entry. The acronym is cross­
referred from the complete form.

DEFINITIONS

Defined terms and glossary terms are indexed.

HOMONYMS

Things of the same name but different meaning are followed by a descriptive
word or by an abbreviation in parentheses.

KEYS FOR EXAMPLES, FIGURES, TABLES, AND FOOTNOTES

Page references for example, figure, and table index entries are keyed. Exam­
ple:

Example

Figure

Table

Footnote

4-13E

4-13F

4-13T

4-13n

ii-Index

NONALPHABETIC CHARACTERS

Entries containing leading nonalphabetic characters (symbols, numbers, and
punctuation) are placed at the beginning of the index. Nonalphabetic charac­
ters within index entries are sorted before alphabetic characters.

Nonalphabetic characters that serve as terms are indexed in a spelled-out
form whenever possible.

INDEX

! command (DC)
descripton, GEN 2-58

! command (ed)
escaping to use UNIX command,

GEN 3-51E
! command (ex)

description, GEN 3-95
! command (Mail)

marking commands for the shell,
GEN 2-28

! escape (Mail)
description, GEN 2-25

$character (ed)
printing last line, GEN 3-28

% command (DC)
descripton, GEN 2-57

% prompt
defined, GEN 3-5

& command (ex)
description, GEN 3-96

+ command (DC)
descripton, GEN 2-57

- command (DC)
descripton, GEN 2-57

- command (Mail)
printing previous message, GEN

2-28
.. file

defined, GEN 4-63
/etc/passwd file

defined, GEN 4-66

---------~-----

/etc/re command file
starting network servers, SYS 5-49

/sys directory
contents, SYS 5-36T

/sys/sys directory
file prefixes, SYS 5-36T

/usr/spooVmail directory
system mailbox and, GEN 2-17

0 command
defined, GEN 5-88

0 command (troff)
right-justifying digits, GEN 5-87

0 macro (me)
specifying section titles for

contents, GEN 5-41
1822 interface

See imp network interface driver
le command (me)

defined, GEN 5-43
returning one-column format,

GEN 5-35
lC command (ms)

returning one-column format,
GEN 5-6

2c command (me)
defined, GEN 5-43
specifying two-column format,

GEN 5-35
2C command (ms)

specifying two-column format,
GEN 5-6

lndex-1

3Com Ethernet controller
See ec network interface driver

4.2BSD file system
file set, SYS 5-32T

4.2BSD Interprocess Communication
Primer

See also Interprocess
communication

4.2BSD Interprocess Communication
Primer, SYS 3-5 to 3-28

4.2BSD Line Printer Spooler
Manual, PGM 4-99 to 4-105

See also Line printer spooling
system (4.2BSD)

4.2BSD system
4.lBSD files and, SYS 5-32 to

5-34
4.lBSD language processors and,

SYS 5-34
adding device drivers, SYS 5-88
adding users, SYS 5-43
bug fixes and changes, SYS 1-3 to

1-21
changes to the kernel, SYS 5-3 to

5-15
configuring for networking support,

SYS 5-47 to 5-51
configuring multiple networks,

SYS 5-48
creating boot floppy, SYS 5-35
disk space and, SYS 5-18
distribution format, SYS 5-18
hardware supported, SYS 5-17
installing on V AXNMS, SYS

5-17 to 5-71
making boot cassette, SYS 5-35
setting up, SYS 5-35 to 5-46
source directory organization, SYS

5-89T
system manual, PGM 4-15 to 4-52
tailoring to your site, SYS 5-43
upgrading, SYS 5-32 to 5-34

4.2BSD System Manual, PGM 4-15
to 4-52

: command (DC)
description, GEN 2-63

: escape (Mail)
description, GEN 2-25

; command (DC)
description, GEN 2-63

<symbol
meaning, GEN 2-10

=command (sed)
defined, GEN 3-114

Index-2

>symbol
meaning, GEN 2-10

? escape (Mail)
description, GEN 2-26

[...)
pattern-matching and, GEN 2-8

\ * command (troff)
entering comments in macros,

GEN 5-89
_exit function

description, PGM 1-8

A

a command (ed)
defined, GEN 3-34
using, GEN 3-25 to 3-26

a command (edit)
entering, GEN 3-6E

a command (ex)
description, GEN 3-88

A command (me)
defined, GEN 5-46

a command (sed)
See also i command (sed)
defined, GEN 3-108

A command (vi)
defined, GEN 3-78

a command (vi)
defined, GEN 3-80

a option (hunt)
defined, GEN 5-148

a option (inv)
defined, GEN 5-147

a option (troff)
defined, GEN 5-50

a.out file
as assembler and, GEN 6-53
defined, GEN 4-63

aardvark game
4.2BSD and, SYS 1-17

ab command (ex)
See also una command (ex)
description, GEN 3-87

AB command (me)
defined, GEN 5-46

AB command (ms)
entering abstract in text, GEN

5-5
ab command (nroff/troff)

message output, GEN 5-81
abbreviate command (ex)

See ab command (ex)

abort command (lpc)
description, PGM 4-103

Absolute pathname
See also Relative pathname
defined, GEN 4-63
description, GEN 4-33

Abstract
entering with -ms, GEN 5-5

ac command (me)
defined, GEN 5-46

ACC Lii/DH IMP interface
See ace network driver

ace network driver
4.2BSD improvement, SYS 1-15

Accent
creating with troff, GEN 5-88E
entering with -ms, GEN 5-9
new in -ms, GEN 5-19

access system call
4.2BSD improvement, SYS 1-10

ACM (Association for Computing
Machinery)

formatting papers for, GEN 5-46
acommute routine

operators and, PGM 2-67 to 2-68
Action statement (awk)

description, PGM 3-7 to 3-9
Active system

defined, SYS 5-123
Acute accent

See Metacharacters
ad command (nroff/troff)

defined, GEN 5-61
j register and, GEN 5-81

ad driver
4.2BSD improvement, SYS 1-15

ad.c device driver
4.2BSD improvement, SYS 5-12

ADB debugging program
4.2BSD improvement, SYS 1-5
C and, GEN 2-15
description, PGM 3-51 to 3-77

addbib utility
See also refer
description, SYS 1-5

addch routine
defined, PGM 4-80

Addition
DC and, GEN 2-60

Additive operator
description, GEN 2-53

Address (edit)
defined for buffer line, GEN 3-18

Address (sed)
description, GEN 3-107 to 3-108

Address Resolution Protocol
See arp driver

addstr routine
defined, PGM 4-81

Advisory lock
compared to hard lock, SYS 1-33

AE command (ms)
TL command and, GEN 5-6

af command (nroff/troff)
defined, GEN 5-66

Aho, A.V., & others
awk programming language, PGM

3-5 to 3-12
AI command (ms)

formatting author's institution
name, GEN 5-5

Alias
defined, GEN 2-21, 2-38, 4-63
removing from shell, GEN 4-52
specifying, GEN 2-21

alias command (C shell)
See also unalias command (C

shell)
displaying aliases, GEN 4-50E

alias command (Mail)
See also alternates command

(Mail)
See also metoo option
defining an alias, GEN 2-21
description, GEN 2-29
restriction, GEN 2-21

alias facility
shell command files and, GEN

4-43
startup and, GEN 4-44
uses for, GEN 4-43 to 4-44

aliens game
distribution and, SYS 1-17

Allman, E.
-Me Reference Manual, GEN 5-39

to 5-48
introduction to SCCS, PGM 3-23

to 3-37
sendmail, SYS 3-59 to 3-71
Sendmail Installation and

Operation Guide, SYS 2-27 to
2-60

writing papers with nroff using
-me, GEN 5-21 to 5-38

Allocator
description, GEN 2-59 to 2-60
design rationale, GEN 2-63

Index-3

ALT key
See ESCAPE key

alternates command (Mail)
description, GEN 2-29

am command (nroff/troff)
defined, GEN 5-64

AM macro
diacritical marks and, GEN 5-19

Ampersand character (C shell)
background jobs and, GEN 4-45
routing output, GEN 4-44

Ampersand character (ed)
meaning, GEN 3-42
printing, GEN 3-42
s command and, GEN 3-33 to

3-34
turning off, GEN 3-34
uses, GEN 3-42

Ampersand character (edit)
repeatings command, GEN 3-20

Ampersand character (shell)
multitasking and, GEN 1-29

ANAME operator (C compiler)
defined, PG M 2-65

ANSI Standard X3.9 1978
exceptions to, PGM 2-88
extensions, PGM 2-82 to 2-83

append command (ed)
See a command (ed)

append command (edit)
See a command (edit)

append command (ex)
See a command (ex)

Append mode
See Input mode

append option (Mail)
defined, GEN 2-34

Appendix
specifying page numbers, GEN

5-46
apply program

description, SYS 1-5
ar

4.2BSD improvement, SYS 1-5
ar command (me)

defined, GEN 5-44
Arabic number

setting page number, GEN 5-44
arff program

4.2BSD improvement, SYS 1-18
args command (ex)

description, GEN 3-88
Argument (C shell)

defined, GEN 4-63

Index-4

Argument (C shell) (Cont.)
expanding, GEN 4-60 to 4-61

Argument (nroff)
defined, GEN 5-21

argv variable (C shell)
defined, GEN 4-63
script files and, GEN 4-53

Arithmetic expression (troff)
entering, GEN 5-92

Arithmetic language
See BC language

Arnold, K.C.R.C.
Screen package, PGM 4-75 to

4-98
Arnold, K.C.R.C., & Toy, M.C.

guide to the dungeons of doom,
GEN 6-17 to 6-25

arp driver
4.2BSD improvement, SYS 1-15

ARP A File Transfer Protocol
ftp program and, SYS 1-6

ARP A Telnet protocol
See telnet program

ARPANET
sending mail to, GEN 2-26
UUCP network and, GEN 2-26

Array (awk)
description, PGM 3-9

Array element
defined, GEN 2-51

Array identifier
description, GEN 2-50

as assembler
command line format, GEN 6-53E
defined, GEN 6-53
errors, GEN 6-64
reference manual, GEN 6-53 to

6-64, PGM 4-53 to 4-65
segment types, GEN 6-54

as command (nroff/troff)
defined, GEN 5-64

ask option (Mail)
defined, GEN 2-34
prompting for subject header,

GEN 2-20
setting, GEN 2-20

askcc option (Mail)
defined, GEN 2-34

asm.sed file
4.2BSD improvement, SYS 5-13

Assembler
replacing, SYS 5-118

Assignment operator
description, GEN 2-53

Assignment statement (as)
defined, GEN 6-56

Assignment statement (BC)
value and, GEN 2-48

Association for Computing
Machinery

See ACM
Asterisk character

dot character and, GEN 3-40
ed and, GEN 3-33
printing multiple files, GEN 2-8
shell and, GEN 4-33
turning off, GEN 2-8
uses, GEN 3-40 to 3-41
zero and, GEN 3-41

Asymmetric protocol
defined, SYS 3-17

At sign
See also CTRL-H
See also u command (edit)
deleting a line, GEN 3-8E
entering in text, GEN 2-4
erasing characters on input line,

GEN 2-4
printing, GEN 3-39

AU command (ms)
formatting author's name in text,

GEN 5-5
Author institution

formatting in text, GEN 5-5
Author name

formatting in text, GEN 5-5
Auto array

specifying, GEN 2-54
auto statement (BC)

forming, GEN 2-55
autoconf.c file

4.2BSD improvement, SYS 5-13
Autoconfiguration

building systems with config, SYS
5-73 to 5-105

hardware devices and, SYS 5-75
requirements for VAXNMS, SYS

5-95
autoindent option (ex)

description, GEN 3-97
autoindent option (vi)

enabling, GEN 3-67
lisp and, GEN 3-68
using, GEN 3-73

autoprint option (ex)
description, GEN 3-98

autoprint option (Mail)
defined, GEN 2-34

autowrite option (ex)
description, GEN 3-98

awk programming language
command line format, PGM 3-5
compared with grep, PGM 3-5
defined, GEN 2-13, PGM 3-5
description, PGM 3-5 to 3-12
design, PGM 3-9 to 3-10
execution time compared, PGM

3-12T
fields, PGM 3-5
implementation, PGM 3-10
printing output, PGM 3-6
program structure, PGM 3-5
records, PGM 3-5
uses, PGM 3-10
variables, PGM 3-8

B

B command (me)
defined, GEN 5-46
specifying bibliographic section,

GEN 5-33
b command (me)

See also rh command (me)
defined, GEN 5-42, 5-44
entering, GEN 5-26
specifying bold font, GEN 5-36
specifying fill mode, GEN 5-26

B command (ms)
specifying boldface, GEN 5-8

b command (sed)
defined, GEN 3-114

b command (troff)
creating large brackets, GEN

5-88E
B command (vi)

defined, GEN 3-78
b command (vi)

defined, GEN 3-80
B flag (tar)

reading block records, SYS 1-9
writing block records, SYS 1-9

b option (troff)
defined, GEN 5-50

B_CALL flag
4.2BSD improvement, SYS 5-6

ha command (me)
defined, GEN 5-45

backgammon game
See also teachgammon program
4.2BSD improvement, SYS 1-17

Index-5

Background command (C shell)
defined, GEN 4-63

Background job
description, GEN 4-45 to 4-48
reading input from terminal, GEN

4-47E
suspending, GEN 4-46

Backslash character
erasing, GEN 2-4

Backslash character (ed)
context search and, GEN 3-43
restriction, GEN 3-33
searching for, GEN 3-39E
special characters and, GEN 3-39

Backslash character (troff)
translating for typesetter, GEN

5-86
Backus Functional Programming

Language
See FP programming language

Bad block forwarding
support, SYS 1-18

bad144 program
4.2BSD improvement, SYS 1-18

Baden, S.
Berkeley FP User Manual, PGM

2-359 to 2-391
badsect program

See also fsck program
4.2BSD improvement, SYS 1-18

Base (BC)
See also ibase; obase
description, GEN 2-44 to 2-45

be command (me)
defined, GEN 5-43
starting a column, GEN 5-35

BC language
C language and, GEN 2-43
defined, GEN 2-43
description, GEN 2-43 to 2-55
displaying library of math

functions, GEN 2-49
output bases and, GEN 2-45
restriction, GEN 2-43
simple computations and, GEN

2-43 to 2-44
subscript restriction, GEN 2-46

BC program
exiting, GEN 2-49

hemp library routine
4.2BSD improvement, SYS 1-14

bcopy library routine
4.2BSD improvement, SYS 1-14

Index-6

bd command (troff)
defined, GEN 5-59

BDATA operator (C compiler)
defined, PG M 2-64

beautify option (ex)
description, GEN 3-98

BEGIN/END pattern
description, PGM 3-6

Bell character
printing, GEN 3-37

Benson-Varian printer
output filters and, PGM 4-102

Berkeley font catalogue, GEN 6-27
to 6-51

Berkeley FP User's Manual, PGM
2-359 to 2-391

See also FP programming
language

Berkeley network
See Berknet

Berkeley Pascal programming
language

user's manual, PGM 2-159 to
2-209

Berkeley Pascal User Manual
See also Pascal programming

language
Berkeley Pascal User Manual, PGM

2-159 to 2-209
Berkeley system

See UNIX Operating System
Berkeley VAX/UNIX Assembler

Reference Manual, PGM 4-53 to
4-65

See also as assembler
Berknet

sending mail to, GEN 2-27
bg command (C shell)

continuing background jobs, GEN
4-46E

defined, GEN 4-64
running suspended job in

background, GEN 4-47
bi command (me)

defined, GEN 5-44
Bibliographic citations

formatting, GEN 2-13, 5-18, 5-33
specifying, GEN 5-34F

Bibliographic databases
See roffbib program, SYS 1-8

Bibliography
See Bibliographic citations

bin directory
defined, GEN 4-64

Binary date
Mail program and, GEN 2-37

Binary operator (C compiler)
description, PGM 2-66

Binary option (Mail)
See Option (Mail)

bind system call
assigning socket name, SYS 3-7E
binding names to sockets, SYS

1-10
specifying association, SYS 3-25

Bit mask
creating, SYS 3-11

bl command (me)
defined, GEN 5-44

Blau, R., & Joyce, J.
Edit tutorial, GEN 3-3 to 3-23

Block device
description, SYS 5-20

Block map
layout of blocks and fragments,

SYS 1-27F
Block of text

footnotes and, GEN 5-36
indenting from left and right,

GEN 5-86E
index entries and, GEN 5-36
keeping together in text, GEN

5-26
Block size

selecting, SYS 5-41
Boldface

entering, GEN 5-8
Bootstrap monitor

loading, SYS 5-65 to 5-68
Bootstrap procedure

booting from tape, SYS 5-22
description, SYS 5-22 to 5-31
details, SYS 5-59 to 5-64
messages about console bootstrap

cassette, SYS 5-71
messages about the distributed

console media, SYS 5-69
messages about the distributed

system, SYS 5-70
Bootstrap program

4.2BSD improvement, SYS 5-15
loading, SYS 5-25

Bourne shell
background command, GEN 4-3E
changing prompt, GEN 4-6
command execution, GEN 4-23 to

4-24
command grammar, GEN 4-26

Bourne shell (Cont.)
command substitution and, GEN

4-18 to 4-20
command syntax, GEN 4-3
defined, GEN 4-3
description, GEN 4-3 to 4-27
error handling, GEN 4-21
error signals, GEN 4-21F
fault handling, GEN 4-21
group set and, SYS 1-8
invoking, GEN 4-24
prompt, GEN 4-6
redirecting input, GEN 4-4
redirecting output, GEN 4-3

Bourne, S.R.
introducing the UNIX shell, GEN

4-3 to 4-27
Bourne, S.R., & Maranzano, J.F.

ADB debugging program, PGM
3-51 to 3-77

Box (nroff/troff)
creating smallest, GEN 5-68

box routine
defined, PGM 4-81

Boxing
description, GEN 5-69
entering, GEN 5-8 to 5-9

bp command (me)
See also pa command (me)
specifying blank column, GEN

5-35
specifying page break, GEN 5-23

bp command (nroff/troff)
See also ns command (nroff/trofO
defined, GEN 5-59

br command (me)
starting a line, GEN 5-24

hr command (nroff/troff)
defined, GEN 5-60

Braces
argument expansion and, GEN

4-60E
Braces (EQN)

typesetting in proper size, GEN
5-lOOE

Brackets (Bourne shell)
matching any single character,

GEN 4-34
Brackets (DC)

placing character string on stack,
GEN 2-58

Brackets (ed)
appearing in character class, GEN

3-41

Index-7

Brackets (ed) (Cont.)
deleting line numbers, GEN 3-41,

3-41E
Brackets (EQN)

typesetting in proper size, GEN
5-lOOE

Brackets (Mail)
beginning a line with, GEN 2-26

Brackets (nroff/troff)
creating, GEN 5-88E
creating large, GEN 5-68

BRANCH operator (C compiler)
defined, PGM 2-65

Break
defined, GEN 5-22
space and, GEN 5-23
specifying, GEN 5-24

break command (C shell)
See also breaksw command (C

shell)
csh script and, GEN 4-58
defined, GEN 4-64

break statement (awk)
defined, PG M 3-9

break statement (BC)
forming, GEN 2-54

breaksw command (C shell)
defined, GEN 4-64
exiting from switch statement,

GEN 4-58
Broadcast message

sending, SYS 3-27E
Broadcast packet

See also Broadcast message
datagram sockets and, SYS 3-27

Broken bar
shell and, GEN 2-27

BSS operator (C compiler)
defined, PGM 2-64

bss segment (as)
See also Assignment statement

(as)
See also Location counter (as)
description, GEN 6-54

bss statement
defined, GEN 6-59

bstring library
4.2BSD improvement, SYS 1-14

btlgammon game
See backgammon game

buf.h file
4.2BSD improvement, SYS 5-6

Buffer
defined, GEN 3-4

lndex-8

Buffer (Cont.)
ed and, GEN 3-25
writing part of, GEN 3-22

Buffer (nroff/troff)
flushing output buffer, GEN 5-73

Buffer (vi)
description, GEN 3-54
system commands and, GEN 3-68
types of, GEN 3-62

BUFSIZ
defined, PGM 1-21

bugfiler program
4.2BSD improvement, SYS 1-19

Built-in (M4)
See Command (M4)

built-in command (C shell)
defined, GEN 4-64

bx command (me)
boxing words, GEN 5-37
defined, GEN 5-44

byte statement (as)
defined, GEN 6-59

bzero library routine
4.2BSD improvement, SYS 1-14

c
C argument (nroff)

specifying, GEN 5-27
c command (DC)

descripton, GEN 2-58
c command (ed)

defined, GEN 3-34
using, GEN 3-31 to 3-32

c command (edit)
description, GEN 3-18

c command (ex)
description, GEN 3-88

C command (me)
defined, GEN 5-46

c command (me)
centering blocks of text, GEN

5-27
defined, GEN 5-43, 5-46
specifying a chapter without

number, GEN 5-33
specifying chapters, GEN 5-33

c command (sed)
defined, GEN 3-109

C command (vi)
defined, GEN 3-78

C compiler
description, PGM 2-63 to 2-77
as programming tool, GEN 2-15

C compiler (Cont.)
replacing, SYS 5-118

c escape (Mail)
description, GEN 2-25

C flag (lint)
creating libraries from C source

code, SYS 1-7
c flag (mkey)

specifying file of common words,
GEN 5-147

C library
reinstalling, SYS 5-56E

c macro (me)
defined, GEN 5-46

c number register (nroff/troff)
defined, GEN 5-81

c operator (vi)
defined, GEN 3-80

C option (hunt)
defined, GEN 5-148

C option (tar)
forcing chdir operations in an

operation, SYS 1-9
c option (uucp)

defined, SYS 5-132
C preprocessor

if statements and, SYS 1-5
line numbers and, SYS 1-5

C program
debugging, PGM 3-53 to 3-58

C programming language
See also M4 macro processor
CAI script for, GEN 6-7
command line format, PGM 1-3
computers supporting, GEN 2-15
programming in, GEN 2-14 to

2-15
reference manual, PGM 2-5 to

2-35
supporting programs, GEN 2-15

C Programming Language Reference
Manual, The, PGM 2-5 to 2-35

See also C programming language
C shell

4.2BSD improvement, SYS 1-5
built-in commands, GEN 4-50 to

4-52
compared to other command

interpreters, GEN 4-30
defined, GEN 4-29
details for terminal users, GEN

4-39 to 4-52
history list and, GEN 4-41
interrupts and, GEN 4-36

C shell (Cont.)
introduction, GEN 4-29 to 4-74
logging in, GEN 4-39
metacharacters and, GEN 4-32
overwriting files and, GEN 4-41
purpose of, GEN 4-29
using from the terminal, GEN

4-30 to 4-38
C shell variables

description, GEN 4-40 to 4-41
set command and, GEN 4-40E

c2 command (nroff/troff)
defined, GEN 5-67

CAI script, GEN 6-9E to 6-llE
description, GEN 6-6 to 6-7
prerequisites, GEN 6-6
prerequisites for the writer, GEN

6-8
types of, GEN 6-7

Campbell, R.
line printer spooling system

(4.2BSD), PGM 4-99 to 4-105
CANBSIZ parameter

description, SYS 5-121
canfield game

See also cfscores program
4.2BSD improvement, SYS 1-17

Carbon copy
See CC: list

Caret
See Circumflex character (ed)

case branch
description, GEN 4-8 to 4-9
form of, GEN 4-8E

case command (C shell)
defined, GEN 4-64

cat command (C shell)
collecting files, PGM 1-5E
combining files, GEN 3-48, 3-48E
defined, GEN 4-64
listing system users, GEN 4-35E
printing files, GEN 2-7
printing merged files, GEN 2-11
printing pipeline information,

GEN 2-11
terminating, GEN 4-36

cat program
See cat command (C shell)

CBRANCH operator (C compiler)
defined, PGM 2-66

cc
dbx and, SYS 1-5

cc command (nroff/troff)
defined, GEN 5-67

Index-9

CC: list
See also askcc option
adding people to, GEN 2-25

cctab table
defined, PGM 2-68

cd command (C shell)
See also pushd command (C shell)
changing working directory, GEN

2-10
defined, GEN 4-64
description, GEN 2-29
working directory and, GEN 4-48

ce command (me)
entering, GEN 5-24

ce command (nroff/troff)
defined, GEN 5-61

Cedilla
See Metacharacters

Centering
blocks of text, GEN 5-27, 5-61
specifying, GEN 5-24

ch command (nroff/troff)
defined, GEN 5-65

Change bars (nroff/troff)
specifying, GEN 5-72

change command (ed)
See c command (ed)

change command (edit)
See c command (edit)

change command (ex)
See c command (ex)

change directory command
See cd command (C shell)

Changequote command (M4)
description, PGM 2-395E

Chapter
formatting, GEN 5-33
inserting in table of contents

automatically, GEN 5-46
specifying page numbers, GEN

5-46
specifying without number, GEN

5-33
Chapter-oriented document

formatting, GEN 5-34F
Character class

circumflex within, GEN 3-42
defined, GEN 3-41
forming, GEN 3-33E
lowercase letters and, GEN 3-41
number ranges and, GEN 3-41
special characters and, GEN 3-41
specifying exceptions, GEN 3-42
uppercase letters and, GEN 3-41

Index-10

chase game
obsolete, SYS 1-17

chdir command (C shell)
See cd comm.and (C shell)

Cherry, L., & Morris, R.
BC and, GEN 2-43 to 2-55
DC and, GEN 2-57 to 2-64

Cherry, L.L., & Kernighan, B.W.
typesetting mathematics, GEN

5-97 to 5-104
Typesetting Mathematics - User's

Guide, GEN 5-105 to 5-114
Cherry, L.L., & Vesterman, W.

style and diction programs, GEN
5-163 to 5-177

chfn
4.2BSD improvement, SYS 1-5

chgrp
4.2BSD improvement, SYS 1-5

ching game
4.2BSD improvement, SYS 1-17

chmod command (Bourne shell)
making a file executable, GEN

4-7E
marking executable files, GEN

2-12
chsh command (C shell)

defined, GEN 4-64
CHSHR file

incoming mail and, GEN 2:-17
chshrc file

putting into effect before next
login, GEN 4-51

Circle
See Metacharacters

Circumftex (edit)
searching and, GEN 3-20

Circumftex character (ed)
at beginning of line and, GEN

3-40
meaning, GEN 3-33
uses, GEN 3-40

Circumftex character (me)
See Metacharacters

clear routine
defined, PGM 4-81

clearok routine
defined, PGM 4-81

Client process
See also Server process
description, SYS 3-19

Clist segment
setting number, SYS 5-122

close function
description, PGM 1-11

clrtoeol routine
defined, PGM 4-81

cmp program
defined, GEN 4-64

co command (edit)
description, GEN 3-15

co command (ex)
description, GEN 3-88

Code generation (C compiler)
description, PGM 2-68 to 2-76
matching table entries against

trees, PGM 2-69
Column

specifying, GEN 5-43
specifying headers for continuing

pages, GEN 5-42
specifying headers for continuing

pages with a macro, GEN
5-75E

specifying in text file, GEN 5-6
starting, GEN 5-35
text formatting commands for

double columns, GEN 5-15E,
5-35

Comma character (ed)
compared with semicolon, GEN

3-45
COMMA operator (C compiler)

defined, PGM 2-66
Command (Bourne shell)

See also specific commands
grammar, GEN 4-26
grouping, GEN 4-14

Command (C shell)
See also Program
See also specific commands
defined, GEN 4-64
reference list, GEN 4-63 to 4-7 4
regenerating, SYS 5-118
repeating, GEN 4-41 to 4-43,

4-51E
substituting output for, GEN

4-61E
suspending temporarily, GEN

4-36
terminating, GEN 4-35 to 4-38
typing, GEN 2-4
within quotation marks, GEN

4-60
Command (DC)

See also specific commands
for human use

Command (DC)
for human use (Cont.)

reference list, GEN 2-57 to 2-59
how they work, GEN 2-57

Command (ed)
See also specific commands
description, GEN 3-25
reference list, GEN 3-34

Command (ex)
See also specific commands
addressing primitives, GEN 3-87
combining addressing primitives,

GEN 3-87
exceeding thresholds, GEN 3-86
reference list, GEN 3-87 to 3-96
structure of, GEN 3-86
syntax, GEN 3-87E

Command (M4)
See also specific commands
reference list, PGM 2-398

Command (Mail)
See also specific commands
reference list, GEN 2-28 to 2-33,

2-39T
Command (make)

defined, PGM 3-16
Command (nroff)

description, GEN 5-22 to 5-25
Command (nroff/troff)

See also specific commands
reference list, GEN 5-51

Command (vi)
See also specific commands
case and, GEN 3-59
ex 3.5 changes and, GEN 3-103
for file manipulation, GEN 3-71T
preceding counts and, GEN 3-70

Command file
description, GEN 1-29

Command line
running two programs with one,

GEN 2-11
Command line flag (Mail)

See Flag (Mail)
Command mode (ex)

defined, GEN 3-85
Command name

defined, GEN 4-64
Command procedure

See Shell procedure
Command substitution

See also Modifier (C shell)
defined, GEN 4-65

Index-11

Command-list
defined, GEN 4-8
grouping commands, GEN 4-14

Comment (awk)
defined, PGM 3-9

Comment (BC)
convention, GEN 2-49, 2-50

Comment (ex)
description, GEN 3-86

Comment (nroff/troff)
specifying, GEN 5-67

Communication domain
defined, SYS 3-6

Component
defined, GEN 4-65

Compound statement (BC)
forming, GEN 2-54

Computer-aided instruction
See CAI scripts

comsat program
4.2BSD improvement, SYS 1-19

CON operator (C compiler)
defined, PGM 2-66

Conditional
See if/endif commands

conf.c file
4.2BSD improvement, SYS 5-14
installing device driver and, SYS

5-119
conf.h file

4.2BSD improvement, SYS 5-6
config program

4.2BSD improvement, SYS 1-19
adding nonstandard system

facilities, SYS 5-96
defined, SYS 5-73
description, SYS 5-73 to 5-105
device defaults, SYS 5-99 to 5-100
files generated by, SYS 5-76
modifying system code, SYS 5-88
modifying system configuration,

SYS 5-76
prerequisite information, SYS

5-74
profiled systems and, SYS 5-78
specifying options items, SYS

5-75
Configuration clause

description, SYS 5-80
Configuration file

contents, SYS 5-76
creating, SYS 5-76
grammar, SYS 5-97 to 5-98
specifying devices, SYS 5-81

Index-12

Configuration file (Cont.)
specifying multiple bootable

images, SYS 5-80
syntax, SYS 5-79 to 5-83
VAX-11/780 sample, SYS 5-84 to

5-87
connect system call

datagram sockets and, SYS 3-10
errors, SYS 3-8
establishing connection between

sockets, SYS 1-10
initiating connection, SYS 3-8E

Connect time accounting
summarizing, SYS 5-56

Connection
accepting, SYS 3-9E
receiving, SYS 3-8 to 3-9

Constant (BC)
defined, GEN 2-50

Context search (ed)
backslash character and, GEN

3-43
defined, GEN 3-35
methods, GEN 3-30 to 3-31
question mark character and,

GEN 3-43
repeating a search, GEN 3-31
reverse order and, GEN 3-31
slashes and, GEN 3-39

Context search (edit)
d command and, GEN 3-16
delete command and, GEN 3-16C
move command and, GEN 3-15
repeating, GEN 3-20E
reversing, GEN 3-20
s command and, GEN 3-20

continue command (C shell)
defined, GEN 4-65

continue statement (awk)
defined, PGM 3-9

Control character (C shell)
defined, GEN 4-65

Control character (nroff/troff)
changing, GEN 5-67
commands and, GEN 5-56

Control character (vi)
in text file, GEN 3-61

Control statement (BC), GEN
2-47E

description, GEN 2-47 to 2-48
Cooper, E., & others

4.2BSD System Manual, PGM
4-15 to 4-52

copy command (C shell)
See cp command (C shell)

copy command (edit)
See co command (edit)

copy command (ex)
See co command (ex)

copy command (Mail)
See also save command (Mail)
description, GEN 2-29
using, GEN 2-23E

copy program
loading, SYS 5-24E
mini-root file system and, SYS

5-24
Core dump tile

defined, GEN 4-65
program faults and, GEN 1-31
terminating a program and, GEN

4-37
Cover sheet

entering in text file, GEN 5-5
formatting commands, GEN 5-5E

cp command (C shell)
4.2BSD improvement, SYS 1-5
copying a file, GEN 2-7E, 3-47
defined, GEN 4-65
saving a file, GEN 3-47E

cpu type parameter (contig)
defined, SYS 5-79

CR key
See RETURN key

Crash
recovering files after, GEN 3-22

creat function
description, PGM 1-10

creat system call
obsolete in 4.2BSD, SYS 1-10

cref program
defined, GEN 2-13

crmode routine
defined, PGM 4-84

crt option (Mail)
paging mail, GEN 2-20
type command and, GEN 2-32

crtO.ex tile
4.2BSD improvement, SYS 5-13

cs command (troff)
defined, GEN 5-58

csh program
See C shell

cshrc tile
defined, GEN 4-65
logging in and, GEN 4-39

CSPACE operator (C compiler)
defined, PGM 2-64

css network driver
4.2BSD improvement, SYS 1-15

ctags
4.2BSD improvement, SYS 1-5

ctime library
4.2BSD improvement, SYS 1-14

CTRL-B
defined, GEN 3-75
description, GEN 3-56

CTRL-C
ULTRIX-32 and, GEN 2-1

CTRL-D
See also CTRL-U
defined, GEN 3-75
description, GEN 3-56

CTRL-E
defined, GEN 3-75
description, GEN 3-56

CTRL-F
defined, GEN 3-75
description, GEN 3-56

CTRL-G
defined, GEN 3-75
vi and, GEN 3-57

CTRL-H
See also At sign
See also u command (edit)
defined, GEN 3-75
deleting characters, GEN 3-7

CTRL-J
defined, GEN 3-75

CTRL-L
defined, GEN 3-75

CTRL-M
defined, GEN 3-75

CTRL-N
defined, GEN 3-75

CTRL-P
defined, GEN 3-76

CTRL-R
defined, GEN 3-76

CTRL-U
See also CTRL-D
defined, GEN 3-76
description, GEN 3-56
ULTRIX-32 and, GEN 2-1

CTRL-Y
defined, GEN 3-76
description, GEN 3-56

CTRL-Z
defined, GEN 3-76

Index-13

cu command (nroff)
defined, GEN 5-67

cu program
See tip program

Current line
printing, GEN 3-llE

curses library
4.2BSD improvement, SYS 1-14

Cursor motion optimization
stand alone, PGM 4-78 to 4-80

Cursor positioning key
terminals and, GEN 3-55

Cut mark
specifying for troff, GEN 5-74E

Cutting and pasting
See cp command (ed)
See m command (ed)
See mv program (ed)
with ed, GEN 3-49 to 3-51
with UNIX commands, GEN 3-47

to 3-49
cwd variable (C shell)

defined, GEN 4-65
working directory and, GEN 4-41

Cylinder group
description, SYS 1-26, 2-8

Czech
See Metacharacters

D

d command (DC)
descripton, GEN 2-58

d command (ed)
defined, GEN 3-34
using, GEN 3-29

d command (edit)
context search and, GEN 3-16
description, GEN 3-15

d command (ex)
description, GEN 3-88

d command (me)
defined, GEN 5-43

d command (sed)
defined, GEN 3-108

D command (vi)
defined, GEN 3-78

d escape (Mail)
description, GEN 2-24

d flag (Mail)
See also debug option
debugging information and, GEN

2-36

Index-14

d flag (make)
defined, PGM 3-17

d operator (vi)
defined, GEN 3-80

d option (inv)
defined, GEN 5-147

d option (uucico)
defined, SYS 5-135

d option (uuclean)
defined, SYS 5-137

d option (uucp)
defined, SYS 5-131

DA command (ms)
specifying date on text page, GEN

5-9
da command (nroff/troff)

defined, GEN 5-65
Daisy wheel printer

setting for 12-pitch, GEN 5-39
DARPA File Transfer Protocol

server program
See ftpd program

DARPA Internet
network architecture support, SYS

1-15
DARPA Internet protocol

support, SYS 5-47
DARPA Request For Comments

#833
sendmail and, SYS 1-4

DARPA Simple Mail Transfer
Protocol

sendmail and, SYS 1-4
DARPA TELNET protocol

See telnetd server program
DARPA Trivial File Transfer

Protocol
See tftpd server program

Dash
specifying em dash, GEN 5-47

Data block
kinds of, SYS 2-12

Data file
defined, SYS 5-131

DATA operator (C compiler)
defined, PGM 2-64

Data segment (as)
description, GEN 6-54

data statement
defined, GEN 6-59

Data Translation AID converter
See ad driver

Datagram socket
See also Raw socket

Datagram socket (Cont.)
creating for on-machine use, SYS

3-7E
defined, SYS 3-6
description, SYS 3-10
sending broadcast packets on

networks, SYS 3-27
Date

specifying with -me, GEN 5-47
specifying with -ms, GEN 5-9

date command (C shell)
defined, GEN 4-65
using, GEN 2-4

dbx symbolic debugger
description, SYS 1-4
Pascal compiler pc and, SYS 1-8

DC program
See also BC language
defined, GEN 2-57
description, GEN 2-57 to 2-64
internal arithmetic and, GEN

2-60
programming, GEN 2-62

de command (nroff/troff)
See also ig command (nroff/troff)
defined, GEN 5-64
defining macros, GEN 5-89E

Dead.letter file, GEN 2-24
canceling mail and, GEN 2-18

debug option (Mail)
See also -d flag
defined, GEN 2-34

Debugging
defined, GEN 4-65

DecWriter III printer
setting for serial lines, PGM

4-lOlE
Default

defined, GEN 4-65
define command (M4)

description, PGM 2-393 to 2-395
define keyword (BC), GEN 2-46E
define program (EQN)

description, GEN 5-100
define statement (BC)

forming, GEN 2-55
delay routine

description, PGM 2-76
Delayed text

defined, GEN 5-28
delch routine

defined, PGM 4-82
delete command (ed)

Seed command (ed)

delete command (edit)
Seed command (edit)

delete command (ex)
See d command (ex)

delete command (Mail)
See also autoprint option (Mail)
See also dt command (Mail)
See also undelete command

(Mail)
abbreviating, GEN 2-20
description, GEN 2-29
keeping message from mbox, GEN

2-20E
DELETE key

defined, GEN 4-65
description, GEN 3-55
ULTRIX-32 and, GEN 2-1

deleteln routine
defined, PGM 4-82

delivermail program
See sendmail program

delwin routine
defined, PGM 4-85

DES encryption algorithm
chips and, SYS 4-11

Description file (make), PGM 3-14E
See also -f flag (make)
description, PGM 3-15 to 3-16

Detached command
defined, GEN 4-65

Device driver
converting local to 4.2BSD, SYS

5-4
CSR value list, SYS 5-61
I/0 system and, PGM 4-67 to

4-73
installing new, SYS 5-119
prerquisites, SYS 5-89

Device name
convention, SYS 5-19

devices. vax file
4.2BSD improvement, SYS 5-11

df
reporting disk space in kilobytes,

SYS 1-5
dh.c device driver

4.2BSD improvement, SYS 5-12
di command (nroff/troff)

defined, GEN 5-64
diverting output to a macro, GEN

5-94
Diacritical marks

available
reference list, GEN 5-19

Index-15

Diacritical marks (Cont.)
entering with EQN, GEN 5-100

Diagnostic
defined, GEN 4-65

Diagnostic output
redirecting, GEN 4-44E

Dial-up network
description, SYS 5-123 to 5-129
operation, SYS 5-124
processing, SYS 5-125 to 5-126
protocol and, SYS 5-124, 5-126
security, SYS 5-125
starting your network, SYS 5-128
transmission speed, SYS 5-127
uses, SYS 5-126

Diction program
See also Style program
description, GEN 5-163 to 5-177

diff utility
comparing files, GEN 2-13

dir
4.2BSD improvement, SYS 1-16

dir.h file
4.2BSD improvement, SYS 5-6

directories command
See dirs command (C shell)

Directory
See also Home directory
See also Root directory
See also Working directory
allocating, SYS 1-33
alternate name for, GEN 2-10
changing, GEN 2-10
changing working directory, GEN

2-10
creating, GEN 2-10
defined, GEN 4-66, PGM 4-10
description, GEN 1-21, 2-9
determining, GEN 2-10
listing basic, GEN 2-9
moving up one level, GEN 2-lOE
organization changes for 4.2BSD,

SYS 5-4
project-related, GEN 4-48
removing, GEN 2-lOE
security of, SYS 4-4

Directory data block
defined, SYS 2-12

directory library
4.2BSD improvement, SYS 1-14

directory option (ex)
description, GEN 3-98

Directory stack
defined, GEN 4-66

Index-16

dirs command (C shell)
See also pwd command (C shell)
compared with pwd, GEN 4-49
defined, GEN 4-66
saving name of previous directory,

GEN 4-49
Disk

balancing load, SYS 5-39
configuring load, SYS 5-37 to 5-43
defined, GEN 3-4
dividing into partitions, SYS 5-38
formatting, SYS 5-22 to 5-24
reporting space in kilobytes, SYS

1-5
reporting usage in kilobytes, SYS

1-5
space limits, SYS 4-3
space per device, SYS 5-38, 5-39T

Disk bandwith
4.2BSD improvement, SYS 1-3

Disk driver
UNIX implementation and, PGM

4-9
Disk partition

description, SYS 5-19
sizes, SYS 5-38

Disk quota
4.2BSD improvement, SYS 1-18
disabling, SYS 2-4
enabling, SYS 2-4
enforcing, SYS 5-57
per filesystem, SYS 1-4
per user, SYS 1-4
recovering from over quota

condition, SYS 2-3
restricting, SYS 1-35
setting, SYS 2-4
types of, SYS 2-3

Disk quota system
configuration requirement, SYS

5-57
description, SYS 2-3 to 2-5
establishing, SYS 2-4
history, SYS 2-5
including, SYS 2-4E
programs, SYS 5-57

diskpart program
4.2BSD improvement, SYS 1-19

disktab file
4.2BSD improvement, SYS 1-16

Display (nroff)
defined, GEN 5-25, 5-42
description, GEN 5-25 to 5-27
specifying in fill mode, GEN 5-26

···--··-------

Display (nroff) (Cont.)
text formatting commands for,

GEN 5-15E
distrib routine

description, PGM 2-68
Distribution tape

constructing, SYS 5-59 to 5-61
contents, SYS 5-59T

Diversion (troff)
description, GEN 5-94

divert command (M4)
description, PGM 2-396

Division
DC and, GEN 2-61

divnum command (M4)
description, PGM 2-396

DL-llW
See kg driver

dmc network interface driver
4.2BSD improvement, SYS 1-15

DMC-11/DMR-11 point-to-point
communications device

See dmc network interface driver
dmf.c device driver

4.2BSD improvement, SYS 5-12
dnl command (M4)

description, PGM 2-397
Document preparation

description, GEN 2-12 to 2-14
hints, GEN 2-13 to 2-14
reading list, GEN 2-16

DOD Standard TCP/IP network
communication protocols

support for, SYS 1-3
Dollar sign character (ed)

end of line and, GEN 3-39
meaning, GEN 3-33, 3-40
p command and, GEN 3-28
printing value, GEN 3-35

Dollar sign character (edit)
equal sign and, GEN 3-17
printing last buffer line, GEN

3-17
searching and, GEN 3-20

domain.h file
4.2BSD improvement, SYS 5-5

don't command (sed)
defined, GEN 3-113

Dot character (C shell)
at beginning of file, GEN 4-34
defined, GEN 4-63
separating filename components,

GEN 4-33

Dot character (ed)
determining value, GEN 3-29E
equal sign and, GEN 3-35
line number defaults and, GEN

3-44 to 3-45
meaning, GEN 3-38, 3-39
meaning for context searching,

GEN 3-33
p command and, GEN 3-28
printing, GEN 3-39
s command and, GEN 3-29
setting with semicolon, GEN 3-45

to 3-46
using, GEN 3-28, 3-33

Dot character (edit)
equal sign and, GEN 3-17
uses, GEN 3-17

Dot character (nroff/troff)
See Control character (nroff/troff)
specifying lines of, GEN 5-88

dot option (Mail)
See also ignoreof option
defined, GEN 2-34

Doubles pacing
specifying, GEN 5-23

drtest program
4.2BSD improvement, SYS 1-19

DS command (ms)
specifying line breaks, GEN 5-8

ds command (nroff/troff)
defined, GEN 5-64
defining strings, GEN 5-89

DSTFLAG parameter
description, SYS 5-122

dt command (Mail)
description, GEN 2-29

dt command (nroff/troff)
defined, GEN 5-65

du command (C shell)
defined, GEN 4-66
reporting disk usage in kilobytes,

SYS 1-5
du program

See du command (C shell)
dump program

See also rdump program
4.2BSD improvement, SYS 1-16,

1-19
using, SYS 5-53

dumpdef command (M4)
description, PGM 2-397

dumpfs program
4.2BSD improvement, SYS 1-19

Index-17

Dungeons of doom
See Rogue game

Dynamic string storage allocator
See Allocator

E

e command (ed)
defined, GEN 3-34
using, GEN 3-27, 3-49E

e command (edit)
copying a file, GEN 3-14
r option and, GEN 3-23
u command and, GEN 3-16

e command (ex)
description, GEN 3-88

E command (vi)
defined, GEN 3-79

e command (vi)
defined, GEN 3-80

e escape (Mail)
description, GEN 2-24

e ftag (sed)
defined, GEN 3-106

e modifier (C shell)
extracting filename extension,

GEN 4-57E
e option (nroff)

defined, GEN 5-50
ec command (nroff/troff)

defined, GEN 5-66
ec network interface driver

4.2BSD improvement, SYS 1-15
echo command (C shell)

defined, GEN 4-66
echo routine

defined, PGM 4-84
ed line editor

See also edit line editor
See also ex line editor
accessing, GEN 3-25
adding text, GEN 3-25
addressing lines, GEN 3-43 to

3-46
advanced editing, GEN 3-37 to

3-52
backslash character and, GEN

3-33
breaking lines, GEN 3-42
CAI script for, GEN 6-7
changing text, GEN 3-31 to 3-32
command summary, GEN 3-34
context searching, GEN 3-30 to

3-31

lndex-18

ed line editor (Cont.)
copying lines, GEN 3-51
creating text, GEN 3-25
deleting text, GEN 3-29
description, GEN 2-6
escaping to use UNIX command,

GEN 3-51
global commands, GEN 3-32
inserting text, GEN 3-31 to 3-32
interrupting, GEN 3-46
introduction, GEN 3-25 to 3-35
joining lines, GEN 3-42
line number defaults, GEN 3-44

to 3-45
marking a line, GEN 3-50
moving text, GEN 3-32, 3-50
printing a file, GEN 2-7
printing lines, GEN 3-27
reading a file, GEN 3-27
rearranging a line, GEN 3-43
repeating searches, GEN 3-44
searching for first occurrence of

text string, GEN 3-46
sed and, GEN 3-105
setting dot, GEN 3-45 to 3-46
specifying lines with text patterns,

GEN 3-46 to 3-47
specifying the second occurrence

of text string, GEN 3-46
substituting text, GEN 3-29
supporting tools, GEN 3-51 to

3-52
using special characters, GEN

3-33
writing a file, GEN 3-26

ed.hup file
saving text, GEN 2-6

edcompatible option (ex)
description, GEN 3-98

edit command (ed)
See e command (ed)

edit command (edit)
See e command

edit command (ex)
See e command (ex)

edit command (Mail)
See also visual command (Mail)
description, GEN 2-29

edit line editor
See also ed line editor
See also ex line editor
accessing, GEN 3-5 to 3-6
adding text, GEN 3-9
correcting text, GEN 3-9

edit line editor (Cont.)
current line and, GEN 3-11
defined, GEN 3-3
entering text, GEN 3-6
ex editor and, GEN 3-23
finding a line, GEN 3-llE
issuing UNIX command from,

GEN 3-21
messages, GEN 3-6
moving around in the buffer, GEN

3-17
opening a file, GEN 3-9E, 3-14E
prerequisites, GEN 3-3
printing current line number,

GEN 3-11
printing nonprinting characters,

GEN 3-10
quitting, GEN 3-8
reversing last command, GEN

3-16
saving modified text, GEN 3-13
searching for characters, GEN

3-10, 3-lOE
tutorial, GEN 3-3 to 3-23

Editing
hints for, GEN 2-13

Editor
See ed editor
See edit editor
See ex editor
See Screen editor
See sed stream editor
See vi screen editor

EDITOR option (Mail)
defined, GEN 2-33
setting, GEN 2-33
specifying an editor, GEN 2-24

edquota program
4.2BSD improvement, SYS 1-19

ef command (me)
defined, GEN 5-41

etTtab table
defined, PGM 2-68

EFL programming language
description, PGM 2-123 to 2-157

eh command (me)
defined, GEN 5-41

el command (nroff/troff)
defined, GEN 5-71

else command (C shell)
See also if/endif commands (C

shell)
See also then command (C shell)
defined, GEN 4-66

else command (Mail)
See also if/endif commands (Mail)
description, GEN 2-30

else statement (awk)
defined, PGM 3-9

Elz, R.
disk quota system, SYS 2-3 to 2-5

em
defined, GEN 5-86

em command (nroff/troff)
defined, GEN 5-65

Em dash
in nroff/troff output, GEN 5-19

Emphasis
See Boldface
See Italic
See Overstriking
See Underlining

en network interface driver
4.2BSD improvement, SYS 1-16

enable/disable command (lpc)
description, PGM 4-103

endif command (C shell)
See if/endif commands (C shell)

endif command (Mail)
See if/endif commands (Mail)

endif statement (as)
See if/endif statement (as)

endwin routine
defined, PGM 4-85

Entry file
defined, GEN 5-145

Environment (C shell)
displaying, GEN 4-51E

Environment (nroff/troff)
description, GEN 5-71, 5-94

eo command (nroff/troff)
defined, GEN 5-66

EOF (End of File)
defined, GEN 2-5, .4-66

EOF operator (C compiler)
defined, PGM 2-64

EOF value
defined, PGM 1-21
description, PGM 1-4

ep command (me)
defined, GEN 5-42

EQ command (EQN)
specifying continuation, GEN 5-35
specifying equations, GEN 5-34
supplementing with troff

commands, GEN 5-101
EQ command (me)

defined, GEN 5-45

Index-19

EQ command (ms)
specifying equations, GEN 5-10

EQN program
See also NEQN program
CAI script for, GEN 6-7
connecting output to troff, GEN

5-101
deficiencies, GEN 5-102
defined, GEN 5-105
description, GEN 5-33, 5-97 to

5-104
forcing extra white space, GEN

5-99
formatting mathematics, GEN

2-13
grammar, GEN 5-101
language design, GEN 5-98
language theory, GEN 5-101
quoting an input string, GEN

5-100
Equal sign (ed)

dot character and, GEN 3-35
Equation

continuing, GEN 5-35E
formatting, GEN 5-33
numbering, GEN 5-34
setting with -ms, GEN 5-10
text formatting commands for,

GEN 5-16E
Erase character

See also Backspace character
default, GEN 4-30

erase routine
defined, PGM 4-82

errno cell
description, PGM 1-12

errno.h file
4.2BSD improvement, SYS 5-5

error
troff messages and, SYS 1-5

error bells option (ex)
description, GEN 3-98

Error condition (fsck)
conventions, SYS 2-14

Error log file
examining, SYS 5-53

Error message (ed)
description, GEN 3-26

errprint command (M4)
description, PGM 2-397

Escape character (Mail)
changing, GEN 2-26

Escape character (nroff/troff)
description, GEN 5-66

· Index-20

Escape character(C shell)
defined, GEN 4-66

escape command
See ! command (ed)

ESCAPE key
description, GEN 3-55

escape option (Mail)
changing escape character, GEN

2-26
defined, GEN 2-34

Escape sequence (nroff/troff)
reference list, GEN 5-54

ev command (nroff/troff)
changing environment, GEN 5-94
description, GEN 5-72

eval command (M4)
description, PGM 2-396

Evans and Sutherland Picture
System 2

See ps.c device driver
EVEN operator (C compiler)

defined, PGM 2-64
even statement (as)

defined, GEN 6-59
ex command (ex)

See e command (ex)
ex command (nroff/troff)

defined, GEN 5-72
ex line editor

See also ed line editor
See also edit line editor
See also sed stream editor
See also vi screen editor
3.5 changes, GEN 3-102
command line format, GEN 3-83
editing modes, GEN 3-85
encryption code and, GEN 3-102
entering multiple commands on a

line, GEN 3-86
errors and, GEN 3-85
file manipulation, GEN 3-84 to

3-85
limitations, GEN 3-101
printing current line number,

GEN 3-95
printing version number, GEN

3-94
recovering from crash, GEN 3-85
recovering work, GEN 3-85E
reference manual, GEN 3-83 to

3-104
starting, GEN 3-83
vi and, GEN 3-73

Ex Reference Manual, GEN 3-83 to
3-104

See also ex line editor
Examples

entering with troff, GEN 5-89
Exception word list (nroff/troff)

specifying, GEN 5-69
Exclamation mark (C shell)

using in command arguments,
GEN 4-35

Exclamation mark character (ed)
shell command and, GEN 3-35

Exclamation mark character (edit)
shell command and, GEN 3-21

Exclusive lock
process and, SYS 1-3

execl function
See also execv
See also fork function
description, PGM 1-13

Execute file
defined, SYS 5-133 to 5-134

execv routin
description, PGM 1-13

exit command (C shell)
defined, GEN 4-66

exit command (Mail)
description, GEN 2-30

exit function
error handling and, PGM 1-8

exit statement (awk)
defined, PGM 3-9

exit status
defined, GEN 4-66

exp function (awk)
defined, PGM 3-8

Expansion
defined, GEN 4-67

Exponentiation
DC and, GEN 2-61

Exponentiation operator
description, GEN 2-52

EXPR operator (C compiler)
defined, PGM 2-65

Expression
defined, GEN 4-67

Expression (as)
defined, GEN 6-56
types of

reference list, GEN 6-57
Expression (BC)

See also Primitive expression
defined, GEN 2-50 to 2-53
length, GEN 2-51

Expression (C shell)
evaluating, GEN 4-55

Expression operator (as)
reference list, GEN 6-57

Expression statement (as)
defined, GEN 6-55

Expression statement (BC)
description, GEN 2-54

Extended Fortran Language
See EFL programming language

Extension
defined, GEN 4-67

External security code
password security and, SYS 4-12

eyacc
4.2BSD improvement, SYS 1-5

F

F argument (nroff)
specifying fill mode, GEN 5-26

f command (ed)
defined, GEN 3-34
determining the filename, GEN

3-49
renaming a file, GEN 3-49E

f command (edit)
description, GEN 3-21

f command (ex)
description, GEN 3-89

f command (me)
defined, GEN 5-43
entering, GEN 5-28

f command (troff)
mixing fonts within a line, GEN

5-86
mixing fonts within a word, GEN

5-86
F command (vi)

defined, GEN 3-79
using, GEN 3-61

f command (vi)
defined, GEN 3-80
using, GEN 3-61

f flag (Mail)
defined, GEN 2-36
reading mail from specified file,

GEN 2-21
f flag (make)

defined, PGM 3-17
f flag (mkey)

reading file list, GEN 5-147
f flag (sed)

defined, GEN 3-106

Index-21

f ftag (su)
fast su and, SYS 1-9

f macro (me)
defined, GEN 5-42

F option (hunt)
defined, GEN 5-148

f option (troff)
defined, GEN 5-50

rn 1/0 ,library
4.2BSD improvement, SYS 1-6
description, PGM 2-79 to 2-88
error messages, PGM 2-85 to 2-87
exceptions to ANSI standard,

PGM2-88
Fabry, R., & others

4.2BSD System Manual, PGM
4-15 to 4-52

Fabry, R.S., & others
4.2BSD Interprocess

Communication Primer, SYS
3-5 to 3-28

fast file system, SYS 1-23 to 1-38
networking implementation notes,

SYS 3-29 to 3-57
factor program

4.2BSD improvement, SYS 1-17
fastboot script

See also fasthalt script
4.2BSD improvement, SYS 1-19C

fasthalt script
See also fastboot script
4.2BSD improvement, SYS 1-19

fc command (nroff/troff)
defined, GEN 5-66

fchmod system call
4.2BSD improvement fchmod,

SYS 1-10
fchown system call

4.2BSD improvement, SYS 1-10
fclose function

description, PGM 1-7
fcntl system call

4.2BSD improvement, SYS 1-10
FCON operator (C compiler)

defined, PGM 2-66
fed font editor

value of, SYS 1-6
Feldman, S.I.

EFL programming language, PGM
2-123 to 2-157

Make program, PGM 3-13 to 3-21
Feldman, S.I., & Weinberger, P.J.

Fortran 77 compiler, PGM 2-89 to
2-109

lndex-22

feof macro
breakpoints and, PGM 1-21

ferror macro
breakpoints and, PGM 1-21

mush function
description, PGM 1-8

fg command (C shell)
defined, GEN 4-67
running background job in

foreground, GEN 4-47E
running suspended job in

foreground, GEN 4-4 7
fgets function

description, PGM 1-8
fgrep

hunt program and, GEN 5-148
ti command (nroff/troff)

defined, GEN 5-61
Field (awk)

description, PGM 3-8
Field (nroff/troff)

defined, GEN 5-66
Figure

specifying blank page for, GEN
5-44

specifying ruling for, GEN 5-45
specifying space for, GEN 5-44

FILE
defined, PGM 1-21

File
See also File system
See also specific files
advisory locking and, SYS 1-3
appending, GEN 3-48
appending contents to mail, GEN

2-24
arranging, GEN 2-10
CAI script for, GEN 6-7
combining, GEN 2-10, 3-48, 3-49
comparing, GEN 2-13
copying, GEN 2-7E, 3-47
copying from other directories,

GEN 2-9
creating, GEN 2-6
defined, GEN 2-6, 3-3, PGM 4-10
description, GEN 1-20
displaying, GEN 2-10
handling multiple, GEN 2-8
1/0 device and, GEN 1-21
marking executable, GEN.2-12
merging multiple, GEN 2-14E
open limit, PGM 1-11
opening with edit, GEN 3-14
optimal size, SYS 1-28

File (Cont.)
paging, GEN 2-7
printing, GEN 2-7
printing from other directories,

GEN 2-9
printing merged, GEN 2-11
printing multiple, GEN 2-7, 2-8,

2-11
printing on high-speed printer,

GEN 2-7
programs executed by the shell

and, GEN 1-27
protection information, SYS 4-3
recovering with edit, GEN 3-22
removing, GEN 3-48
removing multiple from directory,

GEN 2-lOE
renaming, GEN 2-7
replacing the terminal, GEN 2-10
sending to several people, GEN

2-11
size of, GEN 1-23, 2-13
splitting, GEN 2-13
truncating to specific length, SYS

1-4
viewing in other directories, GEN

2-9
writing part of, GEN 3-49
writing to disk, GEN 3-8

File (C shell)
See also specific files
accessing from other directories,

GEN 4-34
directing input from, GEN 4-32E

to 4-33E
inputting to, GEN 4-31
maintaining related, GEN 4-53
outputting from, GEN 4-31
redirecting terminal output to,

GEN 4-31E
terminating a command, GEN

4-36E
File (line printer system)

reference list, PGM 4-99
File (M4)

manipulating, PGM 2-396
File (vi)

quitting, GEN 3-63
recovering, GEN 3-66
writing, GEN 3-63

file command
symbolic links and, SYS 1-6

file command (edit)
See f command (edit)

file command (ex)
See f command (ex)

file command (Mail)
See folder command (Mail)

File descriptor
changing assignments, GEN 1-28
description, PGM 1-8

File locking
description, SYS 1-33

File pointer
defined, PGM 1-5

File system
accessing directories on old and

new systems, SYS 1-33
block size, SYS 2-8
checking structural integrity, SYS

2-10
data structure, PGM 4-12F
defined, PGM 4-10 to 4-13
description, GEN 1-20 to 1-24
fixing corrupted, SYS 2-10 to 2-13
fragmentation of, SYS 2-9
implementation, PGM 4-11
implementing, GEN 1-24 to 1-26
overview, SYS 2-8 to 2-9
protecting, GEN 1-22
removable volume and, GEN 1-22
updating, SYS 2-9

File system (4.2BSD)
See also File system (Bell)
allocating data blocks, SYS 1-30
allocating directories, SYS 1-30
allocating new blocks, SYS 1-29
allocation strategy, SYS 1-30
block size, SYS 1-26
block size and wasted space, SYS

1-27T
compared to previous file system,

SYS 1-23 to 1-38
creating file versions, SYS 1-35
fragments and, SYS 1-27
free blocks and, SYS 1-28
hardware parameters and, SYS

1-28 to 1-29
implementing layout, SYS 5-42
layout policies, SYS 1-29 to 1-30
locking files, SYS 1-33
moving, SYS 5-54
optimizing storage, SYS 1-26
organization, SYS 1-26 to 1-30
performance, SYS 1-31 to 1-32
quotas and, SYS 2-4
reading rates, SYS 1-31T
restricting quota, SYS 1-35

Index-23

File system (4.2BSD) (Cont.)
selecting parameters, SYS 5-40 to

5-41
software engineering, SYS 1-36
space overhead, SYS 1-28
writing rates, SYS 1-31T

File system (Bell)
description, SYS 1-25

File System Check Program
See fsck program

file.h file
4.2BSD improvement, SYS 5-6

Filelist file
creating, GEN 2-10

Filename
4.2BSD changes, SYS 5-4
arbitrary length and, SYS 1-3
changing, GEN 3-47, 3-47W

restriction, GEN 3-47
conventions for, GEN 2-8
description, GEN 1-21
edit editor and, GEN 3-21
folder name and, GEN 2-23
maximum length, SYS 1-33
renaming in same file system,

SYS 1-4
specifying, GEN 3-8
suggestions, GEN 2-7

Filename (C shell)
base part and, GEN 4-63
characters in, GEN 4-33
defined, GEN 4-67

Filename expansion
defined, GEN 4-67

FILENAME variable (awk)
determining current input file,

PGM3-6
files file

4.2BSD improvement, SYS 5-11
adding device driver and, SYS

5-89
files. vax file

4.2BSD improvement, SYS 5-11
Fill mode

specifying, GEN 5-26
Filling (nroff/troff)

description, GEN 5-60 to 5-61
filsys.h file

See fs.h file
Filter

calling, PGM 4-103E
creating for printers, PGM 4-102
defined, GEN 4-4
description, GEN 1-28

lndex-24

find
finding symbolic links, SYS 1-6

Find key
defined, GEN 5-144

First page
entering in text file, GEN 5-5

ft command (nroff/troff)
defined, GEN 5-73

Flag (C shell)
purpose of, GEN 4-31

Flag (ex)
description, GEN 3-86

Flag (Mail)
reference list, GEN 2-41T

Flag option (C shell)
defined, GEN 4-67

Flag option (Mail)
defined, GEN 2-38

nags field (config
description, SYS 5-82

Floating keep, GEN 5-26F
defined, GEN 5-26

flock system call
4.2BSD improvement, SYS 1-10

fmt command
formatting outgoing mail, GEN

2-26
fo command (me)

defined, GEN 5-41
entering, GEN 5-23

Foderaro, J.K., & others
Franz Lisp Manual, The, PGM

2-211 to 2-358
Folder

specifying for file, GEN 2-23
folder command (Mail)

See also folders command (Mail)
description, GEN 2-30
directing Mail to a folder, GEN

2-23
Folder directory

specifying, GEN 2-23
Folder facility

description, GEN 2-23
folder option (Mail)

defined, GEN 2-34
Folders

maintaining, GEN 2-23
folders command (Mail)

See also folder command (Mail)
description, GEN 2-30
listing folder set, GEN 2-23

Font
changing, GEN 5-58, 5-86

Font (Cont.)
command list, GEN 5-51
default, GEN 5-58
defined, GEN 5-36
description, GEN 5-36 to 5-37
mixing within a line, GEN 5-86
mixing within a word, GEN 5-37,

5-86
setting, GEN 5-39
specifying, GEN 5-44, 5-85
specifying for a word, GEN 5-36E
specifying for more than one word,

GEN 5-36
style examples, GEN 5-78T
switching, GEN 5-36

Font library
installing, SYS 5-31

Footer
See also Header
formatting, GEN 5-41 to 5-42
specifying, GEN 5-23

Footnote
See also Delayed text
entering, GEN 5-8, 5-28, 5-43
entering with a macro, GEN

5-76E
numbered automatically, GEN

5-17
resetting the numbering, GEN

5-46
separating footnotes, GEN 5-43
specifying point size, GEN 5-8
text formatting commands for,

GEN 5-15E
fopen function

See also fclose function
See also open function
calling, PGM 1-5E
description, PGM 1-5

for loop
desc:t:iption, GEN 4-7
form, GEN 4-8E

for statement (awk)
defined, PG M 3-9

for statement (BC)
forming, GEN 2-54
process, GEN 2-4 7
writing, GEN 2-47

For system call
description, GEN 1-26

foreach command (C shell), GEN
4-56E

defined, GEN 4-67
exiting loop, GEN 4-58

foreach command (C shell) (Cont.)
performing similar commands,

GEN 4-60E
Foreground

defined, GEN 4-67
Foreground job

continuing, GEN 4-46
description, GEN 4-45 to 4-48
suspending, GEN 4-46

fork function
description, PGM 1-14

Form feed character
printing, GEN 3-37

Form letter
using with nroff/troff, GEN 5-72

format program
4.2BSD improvement, SYS 1-18,

1-19, 5-15
formatting disks, SYS 5-22 to

5-24
loading, SYS 5-23

Fortran
See f77 1/0 library
See Fortran 77
See Ratfor language

Fortran 77
C and, GEN 2-15
running old programs, PGM 2-83

Fortran 77 compiler
4.2BSD improvement, SYS 1-4
description, PGM 2-89 to 2-109

Fortran 1/0
See also f77 1/0 library
constraints, PGM 2-80 to 2-82
execution, PGM 2-80
forms of, PG M 2-79 to 2-80
general concepts, PGM 2-79 to

2-80
logical units and, PGM 2-80
unit numbers and, PGM 2-80

fortune game
4.2BSD improvement, SYS 1-17

Forward slash
searching for, GEN 3-39

fp command
specifying fonts on the typesetter,

GEN 5-86
fp compiler/interpreter

Functional Programming language
and, SYS 1-6

FP programming language
description, PGM 2-359 to 2-391

fpr program
printing Fortran files, SYS 1-6

Jndex-25

fprintf function
description, PGM 1-7

Fraction
setting with troff, GEN 5-86E
specifying with EQN, GEN 5-99

Fragment size
selecting, SYS 5-41

frame.h file
4.2BSD improvement, SYS 5-13

Franz Lisp Manual, The, PGM
2-211 to 2-358

See also Franz Lisp system
Franz Lisp system

user manual, PGM 2-211 to 2-358
from command (Mail)

description, GEN 2-30
message lists and, GEN 2-28

from keyword (EQN), GEN 5-lOOE
Front matter

specifying, GEN 5-33
fs

4.2BSD improvement, SYS 1-16
FS command (ms)

specifying footnotes, GEN 5-8
FS variable (awk)

defined, PGM 3-6
fs.h file

4.2BSD improvement, SYS 5-5
fscanf function

See also sscanf function
description, PGM 1-8

fsck program
See also badsect program
4.2BSD improvement, SYS 1-19
checking connectivity, SYS 2-12
checking directory data blocks,

SYS 2-12
checking free blocks, SYS 2-10
checking inode block count, SYS

2-12
checking inode links, SYS 2-11
checking inode state, SYS 2-11
checking super-block, SYS 2-10
description, SYS 2-7 to 2-25
error conditions, SYS 2-14 to 2-25
rebuilding block allocation maps,

SYS 2-11
fsplit program

splitting multi-function Fortran
files, SYS 1-6

fstab library
4.2BSD improvement, SYS 1-15

fstat system call
4.2BSD improvem~nt, SYS 1-11

lndex-26

fsync system call
4.2BSD improvement, SYS 1-11

ft command (troff)
defined, GEN 5-59
specifying fonts, GEN 5-86

FTP server
description, SYS 5-50

ftp server program
ARPA file transfer protocol and,

SYS 1-6
ftpd server program

4.2BSD improvement, SYS 1-19
ftpusers file

description, SYS 5-50
ftruncate system call

4.2BSD improvement, SYS 1-11
Function (BC)

description, GEN 2-45 to 2-46
number permitted, GEN 2-45

Function call
defined, GEN 2-51

Function identifier
description, GEN 2-50

fz command (nroff/troff)
specifying font size, GEN 5-81

G

g command (ed)
defined, GEN 3-34
process, GEN 3-46
s command and, GEN 3-46E
s command restriction and, GEN

3-47
specifying line numbers, GEN

3-47
specifying lines with text patterns,

GEN 3-46 to 3-47
specifying more than one

command, GEN 3-47
using, GEN 3-32

g command (edit)
description, GEN 3-19
p command and, GEN 3-19
substitute command and, GEN

3-19
uppercase letters and, GEN 3-19
using, GEN 3-19E

g command (ex)
description, GEN 3-89

G command (sed)
defined, GEN 3-113

g command (sed)
defined, GEN 3-113

G command (vi)
defined, GEN 3-79
finding text lines, GEN 3-57

g flag (sed)
defined, GEN 3-110

g option (hunt)
defined, GEN 5-148

g option (troff)
defined, GEN 5-50

g option (uucp)
defined, SYS 5-132

gcore program
creating a core dump of running

process, SYS 1-6
genassym.c file

4.2BSD improvement, SYS 5-14
getc macro

defined, PGM 1-6
getch routine

defined, PG M 4-84
getchar macro

input and, PGM 1-4
getdtablesize system call

4.2BSD improvement, SYS 1-11
getgroups system call

4.2BSD improvement, SYS 1-11
gethostbynameandnet routine, SYS

3-13E
gethostid system call

4.2BSD improvement, SYS 1-11
gethostname system call

4.2BSD improvement, SYS 1-11
getitimer system call

4.2BSD improvement, SYS 1-11
getpagesize system call

4.2BSD improvement, SYS 1-11
getpass library

4.2BSD improvement, SYS 1-14
getpriority system call

4.2BSD improvement, SYS 1-11
getrlimit system call

4.2BSD improvement, SYS 1-11
getservbyname routine

specifying a protocl, SYS 3-14
getsockopt system call

4.2BSD improvement, SYS 1-11
getstr routine

defined, PGM 4-84
gettable program

4.2BSD improvement, SYS 1-19
retrieving NIC host data base,

SYS 5-48
gettimeofday system call

4.2BSD improvement, SYS 1-11

gettimeofday system call (Cont.)
specifying value, SYS 5-74

gettmode routine
defined, PGM 4-88
variables set by, PGM 4-90T

getty program
See also gettytab file
4.2BSD improvement, SYS 1-18,

1-19
gettytab file

4.2BSD improvement, SYS 1-16
getwd library

4.2BSD improvement, SYS 1-15
getyx routine

defined, PGM 4-85
GID

description, SYS 4-4
global command (ed)

See g command (ed)
See v command (ed)

global command (edit)
See g command (edit)

global command (ex)
See g command (ex)

globl statement (as)
defined

go flag
accessing sdb symbol information,

SYS 1-5
goto command (C shell)

defined, GEN 4-67
form of, GEN 4-58E

gprof command
profiled systems and, SYS 5-78

gprof program
See also gprof.h file
displaying execution time, SYS

1-6
gprof.h file

4.2BSD improvement, SYS 5-5
Graham, S.L., & others

Berkeley Pascal User Manual,
PGM 2-159 to 2-209

Grave accent
See Metacharacters

Greek letters
setting with -ms, GEN 5-10
setting with troff, GEN 5-86E
troff command list, GEN 5-96

grep command (C shell)
defined, GEN 4-67

grep program
finding lines with combinations of

text patterns, GEN 3-51

lndex-27

grep program (Cont.)
finding lines without specified text,

GEN 3-51E
finding specified text in a set of

files, GEN 3-51, 3-51E
nonalphabetic characters and,

GEN 3-51
spell and, GEN 2-13
using, GEN 2-13E

Grep program
searching for text patterns, GEN

2-13
Group Identification Number

See GID
Group set

description, SYS 1-3
grouping command (sed)

defined, GEN 3-113
groups program

display access list for user's group,
SYS 1-6

H

H command (sed)
defined, GEN 3-113

h command (sed)
defined, GEN 3-113

h command (troff)
moving text backwards on a line,

GEN 5-87
specifying horizontal motion, GEN

5-68
H command (vi)

defined, GEN 3-79
h escape (Mail)

description, GEN 2-25
h flag (Mail)

defined, GEN 2-36
H macro (me)

specifying column heads on
continuing pages, GEN 5-42

h macro (me)
defined, GEN 5-42

h option (inv)
defined, GEN 5-147

h option (nroff)
defined, GEN 5-81

Haley, C.B., & others
Berkeley Pascal User Manual,

PGM 2-159 to 2-209
hangman game

4.2BSD improvement, SYS 1-17

Index-28

Hard limit
defined, SYS 2-3

Hard lock
compared to advisory lock, SYS

1-33
Hardcopy terminal

vi and, GEN 3-73
hardtabs option (ex)

description, GEN 3-98
Hash character

See Sharp character
Hat

See Circumflex character (ed)
he command (nroff/troff)

defined, GEN 5-69
he command (me)

defined, GEN 5-41
entering, GEN 5-23

head command (C shell)
defined, GEN 4-68

Header
See also Footer
formatting, GEN 5-41 to 5-42
specifying, GEN 5-23
suppressing, GEN 2-36

Header field
defined, GEN 2-38

headers command (Mail)
See also ignore command (Mail)
abbreviating, GEN 2-30
description, GEN 2-30

help command (Mail)
description, GEN 2-30
restriction, GEN 2-30
using, GEN 2-22

Henry, R.R., & Reiser, J.F.
Berkeley VAX/UNIX Assembler

Reference Manual, PGM 4-53
to 4-65

Here document
description, GEN 4-9 to 4-10

Hexadecimal notation
BC language and, GEN 2-44

hi er
4.2BSD improvement, SYS 1-17

history command (C shell)
defined, GEN 4-68
repeating previous commands,

GEN 4-43
History list

description, GEN 4-41 to 4-43
using, GEN 4-42E

hi command (me)
defined, GEN 5-45

hi command (me) (Cont.)
figures and, GEN 5-26

hold command (Mail)
See also preserve command (Mail)
description, GEN 2-31

hold option (Mail)
defined, GEN 2-34
storing mail, GEN 2-20

llome directory
defined, GEN 4-68
returning to, GEN 4-49

llOME variable (Bourne shell)
description, GEN 4-11

home variable (C shell)
displaying your home directory,

GEN 4-41
llorizonal line

See Ruling
llorton, M., & Joy, W.

editing with vi, GEN 3-53 to 3-82
Ex Reference Manual, GEN 3-83

to 3-104
llost name

represented by hostent structure,
SYS 3-12E

llostent structure
getting for host, SYS 3-13E

hostid program
displaying system unique

identifier, SYS 1-6
hostname program

setting host name, SYS 1-6
hosts database

4.2BSD improvement, SYS 1-16
hosts.equiv file

description, SYS 5-49
hp.c device driver

4.2BSD improvement, SYS 5-14
htable program

converting NIC host data base,
SYS 5-48

hunt program
defined, GEN 5-146
description, GEN 5-148
fgrep and, GEN 5-148
options list, GEN 5-148
timing, GEN 5-149

hw command (nroff/troff)
defined, GEN 5-69

hx command (me)
defined, GEN 5-41

hy command (nroff/troff)
defined, GEN 5-69

hy network interface driver
4.2BSD improvement, SYS 1-16

llyphen
entering with text, GEN 5-22

Hyphenation (nroff/troff)
automatic, GEN 5-69
command list, GEN 5-52

Hyphenation indicator character
specifying, GEN 5-69

HZ parameter
description, SYS 5-122

I

i command (DC)
changing the base of input

numbers, GEN 2-62
description, GEN 2-59

i command (ed)
defined, GEN 3-34
using, GEN 3-31 to 3-32

i command (ex)
description, GEN 3-89

i command (me)
defined, GEN 5-44
specifying italic font, GEN 5-36

I command (ms)
specifying italic, GEN 5-8

i command (sed)
See also a command (sed)
defined, GEN 3-109

I command (vi)
defined, GEN 3-79

i command (vi)
defined, GEN 3-81
description, GEN 3-58

i flag (Mail)
See also ignore option
defined, GEN 2-36

i flag (make)
defined, PGM 3-17

i flag (mkey)
ignoring lines, GEN 5-147

I option
changed to -i, SYS 1-6

i option
specifying directory search paths,

SYS 1-6
i option (hunt)

defined, GEN 5-148
i option (inv)

defined, GEN 5-148
i option (nroff/troff)

defined, GEN 5-49

Index-29

i-list
description, GEN 1-24

i-node
defined, PGM 4-10
file description and, GEN 1-24

i-number
defined, GEN 1-24

1/0
essentials of, GEN 1-23 to 1-24

1/0 request
multiplexing among sockets and

files, SYS 3-11
1/0 system

description, PGM 4-8 to 4-10
overview, PGM 4-67 to 4-73

ibase
defined, GEN 2-44, 2-51

icheck program
4.2BSD improvement, SYS 1-19

ident parameter (config)
defined, SYS 5-79

Identifier
defined, GEN 2-51
kinds of, GEN 2-50

Identifier (as)
defined, GEN 6-53

ie command (nroff/troff)
defined, GEN 5-71

if command (Bourne shell)
description, GEN 4-13 to 4-14

if command (C shell)
See if/endif commands (C shell)

if command (Mail)
See if/endif commands (Mail)

if command (nroff/troff)
defined, GEN 5-71

if/endif commands (C shell)
See also else command (C shell)
See also then command (C shell)
defined, GEN 4-66, 4-68
forms of, GEN 4-56 to 4-57

if/endif commands (Mail)
description, GEN 2-31
restriction, GEN 2-31

if/endif commands (nroff/troff)
description, GEN 5-93 to 5-94
reference list, GEN 5-52

if/endif statement (as)
defined, GEN 6-59

if statement (as)
See if/endif statement (as)

if statement (awk)
defined, PGM 3-9

Index-30

if statement (BC)
forming, GEN 2-54
restriction, GEN 2-47
writing, GEN 2-47

ifdef command (M4)
description, PGM 2-395

ifelse command (M4)
description, PGM 2-397

IFS variable
defined, GEN 4-12

ig command (nroff/troff)
defined, GEN 5-73

ignore command (Mail)
description, GEN 2-31

ignore option (Mail)
See also i flag (Mail)
defined, GEN 2-34

ignorecase option (ex)
description, GEN 3-98

ignoreeof variable (C shell)
defined, GEN 4-68
setting, GEN 4-41E

ignoreof option (Mail)
See also dot option
defined, GEN 2-34

ik driver
4.2BSD improvement, SYS 1-16

ik.c device driver
4.2BSD improvement, SYS 5-12

Ikonas frame buffer graphics device
interface

See ik driver
Ikonas frame buffer graphics

interface
See ik.c device driver

il network interface driver
4.2BSD improvement, SYS 1-16

Image
defined, GEN 1-26

imp network interface driver
4.2BSD improvement, SYS 1-16

IMP-llA LH/DH IMP interface
See css network driver

in command (me)
See also ix command (me)
entering, GEN 5-24

in command (nroff/troff)
defined, GEN 5-62

in_cksum.c file
4.2BSD improvement, SYS 5-13

include command (M4)
description, PGM 2-396

incr command (M4)
description, PGM 2-395

indent program
formatting C program source, SYS

1-6
Indention

command list, GEN 5-51
resetting base, GEN 5-45
specifying, GEN 5-24
specifyng with nroff/troff, GEN

5-62
Index

See Table of contents
index command (M4)

description, PGM 2-397
Index entry

specifying, GEN 5-43
Indexing

description, GEN 5-143 to 5-155
Indirect block

inode and, SYS 2-8
init program

4.2BSD improvement, SYS 1-19
description, GEN 1-30

iniL-main.c file
contents, SYS 5-8

init_sysent.c file
contents, SYS 5-8

initscr routine
defined, PGM 4-86

in ode
allocations states, SYS 2-11
defined, SYS 2-8
disk space and, SYS 2-8
types of, SYS 2-11

Inode table
setting size, SYS 5-121

inode.h file
4.2BSD improvement, SYS 5-6

input
defined, GEN 4-68

Input base
DC and, GEN 2-62

Input mode
description, GEN 3-7

Input/output
See I/0

insch routine
defined, PGM 4-82

Insert command (ed)
See i command (ed)

insert command (ex)
See i command (ex)

insert command (vi)
See i command (vi)

insertln routine
defined, PGM 4-82

install command, SYS 5-55E
install script

installing software, SYS 1-6
int function (awk)

defined, PGM 3-8
Interlan Ethernet interface

See ii network interface driver
Intermediate language (C compiler)

description, PGM 2-63 to 2-66
Internet address

binding, SYS 3-24 to 3-26
binding in Internet domain, SYS

3-8E
binding with wildcard address,

SYS 3-25E
Internet port

printing, SYS 3-16E
Interprocess communication

description, SYS 3-5 to 3-28
transferring data, SYS 3-9E

Interprocess communication
facilities

4.2BSD improvement, SYS 1-3
Interrupt message

description, GEN 3-9
Interrupt signal

See also oninvr command (C
shell)

See also stty command (C shell)
creating, GEN 1-31
defined, GEN 4-68
ignoring, GEN 2-36
scripts and, GEN 4-59

intro system call
4.2BSD improvement, SYS 1-10

inv program
defined, GEN 5-146
description, GEN 5-147
options list, GEN 5-147

Inverted indexes
See Indexing

1/0 library
restriction, GEN 2-15

ioctl system call
4.2BSD improvement, SYS 1-11

ioctl.h file
4.2BSD improvement, SYS 5-6

iostat
reporting kilobytes per second

transferred for each disk, SYS
1-6

Index-31

ip command (me)
See also np command
defined, GEN 5-40
specifying with label, GEN 5-30

IP command (ms)
indenting paragraphs, GEN 5-7
references and, GEN 5-7E

isprint library
4.2BSD improvement, SYS 1-14

it command (nroff/troff)
defined, GEN 5-65

Italic
See also Underlining
holding, GEN 5-44
specifying, GEN 5-8
troff and, GEN 5-66

ix command (me)
defined, GEN 5-44

J

j command (ed)
joining lines, GEN 3-42, 3-43E

j command (ex)
description, GEN 3-90

J command (vi)
defined, GEN 3-79

j number register (nroff/troff)
defined, GEN 5-81

Job
defined, GEN 4-45, 4-69
determining current job, GEN

4-46
suspending, GEN 4-46

Job control command
See also bg command (C shell)
See also fg command (C shell)
See also kill command (C shell)
See also stop command (C shell)
defined, GEN 4-69

Job name
beginning character, GEN 4-46

Job number
defined, GEN 4-69
description, GEN 4-45

jobs command (C shell)
defined, GEN 4-69
displaying jobs, GEN 4-47E

Johnson, S.C.
Lint command, PGM 3-39 to 3-50
tour through portable C compiler,

PGM 2-37 to 2-61
Yacc, PGM 3-79 to 3-111

Index-32

join command (ex)
See j command (ex)

Joy, W.
C shell introduction, GEN 4-29 to

4-74
Joy, W., & Horton, M.

editing with vi, GEN 3-53 to 3-82
Ex Reference Manual, GEN 3-83

to 3-104
Joy, W., & Leffler, S.J.

4.2BSD on VAXNMS, SYS 5-17
to 5-71

Joy, W., & others
4.2BSD Interprocess

Communication Primer, SYS
3-5 to 3-28

4.2BSD System Manual, PGM
4-15 to 4-52

Berkeley Pascal User Manual,
PGM 2-159 to 2-209

fast file system, SYS 1-23 to 1-38
networking implementation notes,

SYS 3-29 to 3-57
Joyce, J., & Blau, R.

Edit tutorial, GEN 3-3 to 3-23
Justifying (nroff/troff)

command list, GEN 5-51
description, GEN 5-60 to 5-61

K

k command (DC)
description, GEN 2-59
scale value and, GEN 2-60

k command (ed)
marking a line, GEN 3-50E

k command (ex)
See also mark command (ex)
description, GEN 3-90

k escape sequence (nroff/troff)
description, GEN 5-68

k nag (mkey)
specifying number of keys, GEN

5-147
k number register (nroff/troff)

defined, GEN 5-81
Keep

See also Floating keep
defined, GEN 5-26
footnotes and, GEN 5-35 to 5-36
index entries and, GEN 5-35 to

5-36
text formatting commands for,

GEN 5-15E

keep option (Mail)
defined, GEN 2-34

keepsave option (Mail)
See also nosave option
defined, GEN 2-35

kern_acct.c file
contents, SYS 5-8,

kern_clock.c file
4.2BSD improvement, SYS 5-8

kern_descrip.c file
contents, SYS 5-8

kern_exec.c file
contents, SYS 5-8

kern_exit.c file
contents, SYS 5-8

kern_fork.c file
contents, SYS 5-8

kern_mman.c file
contents, SYS 5-8

kern_proc.c file
contents, SYS 5-8

kern_prot.c file
contents, SYS 5-8

kern_resource.c file
contents, SYS 5-8

kern_sign.c file
contents, SYS 5-8

kern_subr.c file
contents, SYS 5-8

kern_synch.c file
contents, SYS 5-8

kern_time.c file
contents, SYS 5-8

kern_xxx.c file
contents, SYS 5-8

Kernel
4.2BSD improvement, SYS 5-3 to

5-15
configuration, SYS 5-36 to 5-37
implementation, PGM 4-5 to 4-8
implementing devices, SYS 5-37

kernel.h file
4.2BSD improvement, SYS 5-5

Kernighan, B.W.
advanced editing withed, GEN

3-37 to 3-52
introduction to ed, GEN 3-25 to

3-35
Ratfor language, PGM 2-111 to

2-122
troff tutorial, GEN 5-83 to 5-96
UNIX for beginners, GEN 2-3 to

2-16

Kernighan, B.W., & Cherry, L.L.
typesetting mathematics, GEN

5-97 to 5-104
Typesetting Mathematics - User's

Guide, GEN 5-105 to 5-114
Kernighan, B.W., & Lesk, M.E.

computer-naided instruction for
UNIX, GEN 6-3 to 6-16

Kernighan, B.W., & others
awk programming language, PGM

3-5 to 3-12
Kernighan, B.W., & Ritchie, D.M.

M4 macro processor, PGM 2-393
to 2-398

programming UNIX, PGM 1-3 to
1-24

Kessler, P.B., & others
Berkeley Pascal User Manual,

PGM 2-159 to 2-209
Key

defined, GEN 5-147
selected by program, GEN 5-145

Key file
defined, GEN 5-145

Key letters
reference list, GEN 5-152

Key-making program
format used, GEN 5-145

Keyword
supplementing, GEN 5-150

Keyword (BC)
reserved

reference list, GEN 2-50
Keyword parameter

description, GEN 4-17 to 4-25
Keyword statement (as)

defined, GEN 6-56
reference list, GEN 6-59 to 6-60

KF command (ms)
moving blocks of text, GEN 5-9

kg driver
4.2BSD improvement, SYS 1-16

kgclock.c device driver
4.2BSD improvement, SYS 5-12

kgmon program
See also gmon.out file
4.2BSD improvement, SYS 1-19

Kill character
default, GEN 4-30

kill command (C shell)
background commands and, GEN

4-37
background jobs and, GEN 4-47E
defined, GEN 4-69

Index-33

kill command (C shell) (Cont.)
killing processes, GEN 2-11
suspended jobs and, GEN 4-47

killpg library routine
See killpg system call

killpg system call
4.2BSD improvement, SYS 1-11

KL-11
See kg driver

Kowalski, T.J., & McKusick, M.K.
fsck, SYS 2-7 to 2-25

KS command (ms)

L

keeping text blocks together, GEN
5-9, 5-94E

L argument (nroff)
centering and, GEN 5-27
specifying, GEN 5-27

l command (DC)
programming DC, GEN 2-62

1 command (ed)
backspaces and, GEN 3-37
description, GEN 3-37
long lines and, GEN 3-37
p command and, GEN 3-37
tabs and, GEN 3-37

l command (me)
centering list elements, GEN 5-27
defined, GEN 5-42
entering, GEN 5-25
specifying fill mode, GEN 5-26
specifying left justification, GEN

5-27
L command (vi)

defined, GEN 3-79
1 flag (mkey)

specifying items to be ignored,
GEN 5-147

L number register (nroff/troff)
defined, GEN 5-81

l option (C shell)
description, GEN 2-6

l option (hunt)
defined, GEN 5-148

L-devices file
defined, SYS 5-139

L-dialcodes file
defined, SYS 5-139

L.sys file
contents, SYS 5-135
defined, SYS 5-141
ownership of, SYS 5-138

lndex-34

Label (as)
See Name label; Numeric label

label command (sed)
defined, GEN 3-114

LABEL operator (C compiler)
defined, PGM 2-65

last
displaying remote host, SYS 1-6

lastcomm
indicating program activity, SYS

1-7
Layer, K., & others

Franz Lisp Manual, The, PGM
2-211 to 2-358

le command (nroff/troff)
defined, GEN 5-66

LCK file
description, SYS 5-143

Leader character (nroff/troff)
setting, GEN 5-66
uninterpreted, GEN 5-66

Leadering
specifying with troff, GEN 5-88

Leading
See Vertical spacing

LEARN driver program
defined, GEN 6-3
description, GEN 2-6
directory structure, GEN 6-8
experience with students, GEN

6-8
introduction to UNIX, GEN 6-3

to 6-16
sequence of events, GEN 6-9
vi and, SYS 1-7

leaveok routine
defined, PG M 4-86

Lem.er, S.J.
building 4.2BSD systems with

config, SYS 5-73 to 5-105
improvements in 4.2BSD, SYS

1-3 to 1-21
kernel and 4.2BSD, SYS 5-3 to

5-15
Lem.er, S.J., & Joy, W.N.

4.2BSD on V AXNMS, SYS 5-17
to 5-71

Lem.er, S.J., & others
4.2BSD Interprocess

Communication Primer, SYS
3-5 to 3-28

4.2BSD System Manual, PGM
4-15 to 4-52

fast file system, SYS 1-23 to 1-38

Lemer, S.J., & others (Cont.)
networking implementation notes,

SYS 3-29 to 3-57
left keyword (EQN), GEN 5-lOOE
len command (M4)

description, PGM 2-397
length function (awk)

defined, PGM 3-8
Leres, C., & Shoens, K.

Mail Reference Manual, GEN
2-17 to 2-41

Lesk, M.E.
formatting tables, GEN 5-115 to

5-131
inverted indexes, GEN 5-143 to

5-155
preparing documents with -ms,

GEN 5-13 to 5-16
updating publication lists, GEN

5-155 to 5-162
using -ms macros with troff and

nroff, GEN 5-5 to 5-12
Lesk, M.E., & Kernighan, B.W.

computer-aided instruction for
UNIX, GEN 6-3 to 6-16

Lesk, M.E., & Nowitz, D.A.
a dial-up network of UNIX

systems, SYS 5-123 to 5-129
Lesk, M.E., & Schmidt, E.

Lex program generator, PGM
3-113 to 3-125

Lex program generator
description, PGM 3-113 to 3-125

LG command (ms)
increasing type size, GEN 5-8

lg command (troff)
defined, GEN 5-66

libc.a library
remaking, SYS 5-120

libl77 .a library
See f77 1/0 library

Life game
program for, PGM 4-94E

Ligature (troff)
types available, GEN 5-66

limit command (C shell)
displaying current limitations,

GEN 4-51E
setting limits, GEN 4-51E

Line
See Line drawing (nroff/troff)

Line dot
See Dot character (ed)

Line drawing (nroff/troff)
description, GEN 5-68

Line length (nroff/troff)
specifying, GEN 5-62, 5-86

Line printer
setting for serial lines, PGM 4-101
setting remote, PGM 4-101

Line printer control program
See lpc program

Line Printer Dameon
See lpd program

Line Printer Queue program
See lpq program

Line printer spooling system
devices supported, PGM 4-99,

SYS 5-44
file list, SYS 5-44
setting up, SYS 5-44

Line printer spooling system
(4.2BSD)

See also lpc program; pac program
4.2BSD improvement, SYS 1-4,

1-7, 1-18
controlling access, PGM 4-100 to

4-101
error messages, PGM 4-103 to

4-105
filters and, PGM 4-102
setting up, PGM 4-101 to 4-102
user manual, PGM 4-99 to 4-105

Line spacing
See Vertical spacing

Linking
description, GEN 1-21

Lint command
checking C programs, PGM 3-39

to 3-50
lint command

C and, GEN 2-15
creating libraries from C source

code, SYS 1-7
LINT configuration file

using, SYS 5-88E
LINT file

4.2BSD improvement, SYS 5-11
LINTRUP request

See fcntl system call
lisp option (ex)

description, GEN 3-99
lisp option (vi)

setting, GEN 3-68
Lisp program

See also vlp program
4.2BSD improvement, SYS 1-7

Index-35

Lisp program (Cont.)
editing with vi, GEN 3-68

List
defined, GEN 5-25
specifying in text, GEN 5-25
text formatting commands for,

GEN 5-15E
text formatting commands for

nested, GEN 5-15E
list command

See ls command (C shell)
List command (ed)

Seel command (ed)
list command (ex)

description, GEN 3-90
list command (Mail)

description, GEN 2-31
list files command

See ls command (C shell)
list option (ex)

description, GEN 3-99
listen system call

4.2BSD improvement, S~~ 1-11
incoming requests and, SYS 3-9E

ll command (me)
See also xl command (me)
defined, GEN 5-45

ll command (nroff/troff)
defined, GEN 5-62
resetting line length, GEN 5-86E

In
creating symbolic links, SYS 1-7

lo command (me)
defined, GEN 5-45

lo network interface
4.2BSD improvement, SYS 1-16

load command (DC)
See 1 command (DC)

local command (Mail)
description, GEN 2-31

Local motion
defined, GEN 5-67

Location counter (as)
See also bss segment
defined, GEN 6-55

Locore.c file
4.2BSD improvement, SYS 5-13

locore.s file
4.2BSD improvement, SYS 5-14
installing device drive and, SYS

5-119
LOG file

description, SYS 5-142

Index-36

log function (awk)
defined, PGM 3-8

Logging in
description, GEN 2-3 to 2-4
prerequisites, GEN 2-3
procedure, GEN 3-5
recording attempts, SYS 4-12

Logging out, GEN 3-8E
description, GEN 2-5

Login directory
startup file and, GEN 2-12

login file
See also logout file
background jobs and, GEN 4-48E
defined, GEN 4-69
logging in and, GEN 4-39, 4-39E
rlogin server and, SYS 1-7
telnetd server program and, SYS

1-7
Login shell

See also Script file
defined, GEN 4-69
logging in and, GEN 4-39

logout command
exiting from UNIX, GEN 3-8

logout command (C shell)
defined, GEN 4-69

logout file
See also login file
C shell and, GEN 4-39
defined, GEN 4-69

London, T.B., & Reiser, J.F.
regenerating system software, SYS

5-117 to 5-122
setting up UNIX/32V Vl.O, SYS

5-107 to 5-115
longjmp library

old semantics and, SYS 1-15
longjump library

4.2BSD improvement, SYS 1-15
longname routine

defined, PGM 4-86
lookbib command

checking the data base, GEN
5-150

Loop
variables and, GEN 4-60

Low-level 1/0
description, PGM 1-8 to 1-12

Ip command (me)
defined, GEN 5-40
entering, GEN 5-29

LP command (ms)
specifying block paragraphs, GEN

5-5
lp.c device driver

4.2BSD improvement, SYS 5-12
lpc program

4.2BSD improvement, SYS 1-4,
1-18, 1-19

description, PGM 4-100
lpd program

description, PGM 4-99
requests understood

reference list, PG M 4-100
lpd server program

4.2BSD improvement, SYS 1-20
lpq program

4.2BSD improvement, SYS 1-7
description, PGM 4-100

lpr command (C shell)
defined, GEN 4-69

lpr program
lpd and, PGM 4-100

lprm program
4.2BSD improvement
description, PGM 4-100

lq command (me)
specifying quotation marks, GEN

5-38
ls command (C shell)

4.2 BSD improvement, SYS 1-7
defined, GEN 4-69
description, GEN 2-6
listing files in three columns,

GEN 2-11
specifying numeric sort, GEN

4-32E
ls command (Mail)

displaying files on your terminal,
GEN 2-10

ls command (me)
entering, GEN 5-23

ls command (nroff/troff)
defined, GEN 5-61

lseek system call
4.2BSD improvement, SYS 1-11
description, PGM 1-11

It command (nroff/troff)
defined, GEN 5-70

M

m command (e)
reversing two adjacent lines, GEN

3-50E

m command (ed)
caution, GEN 3-50
defined, GEN 3-34
moving text, GEN 3-50E
using, GEN 3-32

m command (edit)
context search and, GEN 3-15
moving text, GEN 3-14

m command (ex)
description, GEN 3-90

M command (vi)
defined, GEN 3-79

m command (vi)
defined, GEN 3-81

m escape (Mail)
description, GEN 2-25

m option (nroff/troff)
defined, GEN 5-49

m option (uuclean)
defined, SYS 5-137

m option (uucp)
defined, SYS 5-132

ml command (me)
defined, GEN 5-41

m2 command (me)
defined, GEN 5-41

m3 command (me)
defined, GEN 5-42

m4 command (me)
defined, GEN 5-42

M4 macro processor
arguments, PGM 2-395
arithmetic built-ins, PGM 2-395
command line format, PGM 2-393
conditionals, PGM 2-397
defining macros, PGM 2-393 to

2-395
description, PGM 2-393 to 2-398
manipulating files, PGM 2-396
manipulating strings, PGM 2-397
operation, PGM 2-393
printing, PGM 2-397

m4 macro processor
4.2BSD improvement, SYS 1-7

machdep.c file
4.2BSD improvement, SYS 5-14

machine file
4.2BSD improvement, SYS 5-4

Machine instruction statement (as)
syntax, GEN 6-60 to 6-63

machine type parameter (config)
defined, SYS 5-79

Macro (M4)
defining, PGM 2-393 to 2-395

Index-37

Macro (nroff)
defined, GEN 5-35
defining, GEN 5-35E
naming, GEN 5-35
using, GEN 5-35E

Macro (nroff/troff)
arguments, GEN 5-63
defined, GEN 5-62
description, GEN 5-62 to 5-65
diversions, GEN 5-63
printing, GEN 5-73
traps, GEN 5-64

Macro (troff)
arguments and, GEN 5-92 to 5-93
arguments and blanks, GEN 5-93
arguments and trailing

punctuation, GEN 5-92
Macro (vi)

See also Word abbreviation
types of, GEN 3-68

Macro definition (make), PGM
3-15E

defined, PGM 3-15
Macro-invocation trap (nroff/troff)

description, GEN 5-64
magic option (ex)

description, GEN 3-96
magic option (ex)

description, GEN 3-99
Magnetic tape

FORTRAN-77 and, PGM 2-84
Mail

adding to mail list, GEN 2-25
answering, GEN 2-19 to 2-20
C shell watching for, GEN 4-39E
canceling, GEN 2-18
changing the subject line, GEN

2-25
commands to be executed by the

shell, GEN 2-28
defined, GEN 2-38
deleting, GEN 2-20
description, GEN 2-5
filing, GEN 2-24
format, GEN 2-37
forwarding, GEN 2-25
holding in system mailbox, GEN

2-31
including in other mail, GEN 2-25
indicating indirect recipients,

GEN 2-25
keeping, GEN 2-35
keeping outgoing, GEN 2-35
length restricted, GEN 2-37

Index-38

Mail (Cont.)
line width, GEN 2-37
maintaining groups of mail, GEN

2-23
message lists and user names,

GEN 2-28
notification of, GEN 2-17
paging, GEN 2-20
process, GEN 2-17
protecting, GEN 2-34E
reading, GEN 2-18 to 2-19
reading in home directory, GEN

2-21
reading next, G ~N 2-19
reading other people's, GEN 2-36
recovering deleted, GEN 2-30
saving related in a file, GEN 2-32
searching for subjects, GEN 2-28
sending, GEN 2-18
sending multiple messages, GEN

2-28
sending remote, SYS 5-126
sending source program text, GEN

2-33
sending to file, GEN 2-27
sending to folder, GEN 2-27
sending to list, GEN 2-21
sending to multiple users, GEN

2-18
sending to other machines, GEN

2-26 to 2-27
sending to programs, GEN 2-27
sending to user name, GEN 2-27
specifying mailbox, GEN 2-36
terms defined, GEN 2-38
writing to others online, GEN 2-5

mail command
abbreviating, GEN 2-20
description, GEN 2-31
uses of, GEN 2-18

Mail list
editing, GEN 2-25

Mail program
setting up, SYS 5-44

mail program
4.2BSD improvement, SYS 1-7
defined, GEN 4-69
escaping temporarily to command

mode, GEN 2-26
escaping temporarily to shell,

GEN 2-25
reading folders, GEN 2-23
reference manual, GEN 2-17 to

2-41

mail program (Cont.)
senting source program text, GEN

2-33
shell and, GEN 2-32
suspending, GEN 4-37E
using, GEN 2-17 to 2-41

Mail Reference Manual
See also Mail program

Mail routing facility
See sendmail

mail system
See also sendmail

MAIL variable
description, GEN 4-11

mailaddr
4.2BSD improvement, SYS 1-17

Mailbox
defined, GEN 2-38

mailrc file, GEN 2-21E
defined, GEN 2-21
specifying folder directory, GEN

2-23
make command

command line format, PGM 3-16
operation, PGM 3-16 to 3-17

make depend command
system source code and, SYS 5-77

make directory command
See mkdir command (C shell)

make program
See also makefile
4.2BSD improvement, SYS 1-7
C and, GEN 2-15
defined, GEN 4-69
description, PGM 3-13 to 3-21
description file for, PGM 3-18 to

3-20
maintaining related files, GEN

4-53
operation, PGM 3-13 to 3-15
suffix list, PGM 3-17
transformation paths

summary, PGM 3-17
warnings, PGM 3-20

MAKEDEV script
See also MAKEDEV .local file
4.2BSD improvement, SYS 1-20

makefile
See also make program
defined, GEN 4-69
description, GEN 4-53
modifying for uucp, SYS 5-139

makefile. vax file
contents, SYS 5-11

makelinks command
source modules and, SYS 5-78

maketemp command (M4)
description, PGM 2-396

man command (Bourne shell)
printing the UNIX manual, GEN

4-15
printing UNIX manual, GEN

4-16F
man command (C shell)

accessing online programmer's
manual, GEN 4-63E, 4-69E

using, GEN 2-6
Manual

defined, GEN 4-69
map command (ex)

See also unmap command (ex)
description, GEN 3-90

Maranzano, J.F., & Bourne, S.R.
ADB debugging program, PGM

3-51 to 3-77
Margin number

setting, GEN 5-44
mark command (ex)

See also k command (ex)
description, GEN 3-90

Mass storage
UNIX interfaces, SYS 1-36

MASSBUS
description, SYS 5-18
specifying, SYS 5-19

MASTER mode
description, SYS 5-135

Mathematics
text formatting commands for,

GEN 5-14E
typesetting, GEN 5-97 to 5-104,

5-105 to 5-114
MAXMEM parameter

description, SYS 5-121
MAXUMEM parameter

See also MAXMEM parameter
description, SYS 5-121

MAXUPRC parameter
description, SYS 5-121

maxusers parameter (config)
defined, SYS 5-79

mba.c device driver
4.2BSD improvement, SYS 5-14

mbox command (Mail)
abbreviating, GEN 2-22
description, GEN 2-31
saving unread mail, GEN 2-22

Index-39

mbox file
mail and, GEN 2-20
system mailbox and, GEN 2-20

mbuf.h file
4.2BSD improvement, SYS 5-5

me command (nroff/troff)
defined, GEN 5-72

McKusick, M.K., & Kowalski, T.J.
fsck, SYS 2-7 to 2-25

McKusick, M.K., & others
4.2BSD System Manual, PGM

4-15 to 4-52
Berkeley Pascal User Manual,

PGM 2-159 to 2-209
fast file system, SYS 1-23 to 1-38

McMahon, L.E.
sed stream editor and, GEN 3-105

to 3-114
me macro package

initializing, GEN 5-40
naming convention, GEN 5-39
predefined strings, GEN 5-47
reference manual, GEN 5-39 to

5-48
Me Reference Manual, GEN 5-39

See also me macro package
mem.c file

4.2BSD improvement, SYS 5-14
Memorandum

text formatting commands for,
GEN 5-14E

mesg option (ex)
description, GEN 3-99

Message
See also Mail
defined, GEN 2-38

Message list
defined, GEN 2-28, 2-38

Metacharacters (Bourne shell)
defined, GEN 4-5
quoting, GEN 4-5
quoting a string, GEN 4-5E
quoting mechanisms, GEN 4-20F
reference list, GEN 4-27

Metacharacters (C shell)
defined, GEN 4-69
description, GEN 4-32
reference list, GEN 4-62
using with command arguments,

GEN 4-35
Metacharacters (ed)

character classes and, GEN 3-41
deleting, GEN 3-38

Index-40

Metacharacters (ed) (Cont.)
delimiting text for s command,

GEN 3-39
editing with, GEN 3-37 to 3-43
entering, GEN 3-33
reference list, GEN 3-33
searching for, GEN 3-39, 3-41

Metacharacters (ed) (ed)
combining, GEN 3-40
description, GEN 3-38 to 3-42

Metacharacters (ex)
X and, GEN 3-96

Metacharacters (me)
reference list, GEN 5-47

Metacharacters (nroff/troff)
specifying, GEN 5-79

Metacharacters (troff)
automatically translated, GEN

5-86
command list, GEN 5-96
entering, GEN 5-86

metoo option (Mail)
defined, GEN 2-35

MFLAGS macro
supplying flags to make, SYS 1-7

mille game
4.2BSD improvement, SYS 1-17

Mini-root file system
booting from, SYS 5-25
copying, SYS 5-24

Minus sign
translating for troff, GEN 5-86

mk command (nroff/troff)
See also rt command (nroff/troff);

sp command (nroff/troff)
defined, GEN 5-60

mkdir command
4.2BSD improvement, SYS 1-7
creating directories, GEN 2-10

mkdir command (C shell)
creating a directory, GEN 4-48
defined, GEN 4-70

mkdir system call
4.2BSD improvement, SYS 1-11

mkey program
defined, GEN 5-146
description, GEN 5-147

mkfs program
See newfs program
4.2BSD improvement, SYS 1-20

mman.h file
future plans and, SYS 5-5

Modifier (C shell)
See also Command substitution

Modifier (C shell) (Cont.)
defined, GEN 4-70
description, GEN 4-57
restriction, GEN 4-57n

more program
defined, GEN 4-70
paging mail, GEN 2-20
terminal screen and, GEN 4-37

Morris, R., & Cherry, L.
BC and, GEN 2-43 to 2-55
DC and, GEN 2-57 to 2-64

Morris, R., & Thompson, K.
password system, SYS 4-7 to 4-12

mos
old version of -ms, GEN 5-17

Mosher, D., & others
4.2BSD System Manual, PGM

4-15 to 4-52
mount command

unprivileged users and, SYS 4-5
mount program

4.2BSD improvement, SYS 1-20
mount.h file

4.2BSD improvement, SYS 5-6
Move command (ed)

See m command (ed)
move command (edit)

See m command
move command (ex)

See m command (ex)
move routine

defined, PGM 4-83
mpx system call

See socket system call and related
system calls

ms macro package
See also -mos
4.2BSD improvement, SYS 1-18
CAI script for, GEN 6-7
command reference list, GEN

5-11
default settings, GEN 5-9
entering cover sheet, GEN 5-5
entering first page, GEN 5-5
entering page footer, GEN 5-6
entering page heading, GEN 5-6
entering paragraphs, GEN 5-5
entering section heads, GEN 5-6
keeping text blocks together, GEN

5-9
order for input commands, GEN

5-12F
preparing documents, GEN 5-13

to 5-16

ms macro package (Cont.)
printing files on the terminal,

GEN 5-9E
register name reference list, GEN

5-11
revised version, GEN 5-17 to 5-19
specifying column format, GEN

5-6
using with troff and nroff, GEN

5-5 to 5-12
ms package

description, GEN 2-12
formatting a document with nroff,

GEN 2-13
formatting a document with troff,

GEN 2-12
MSGBUFS parameter

description, SYS 5-122
mt

showing state of tape drive, SYS
1-7

mtab
4.2BSD improvement, SYS 1-16

Multiplication
DC and, GEN 2-61

Multiplicative operator
description, GEN 2-52

Multitasking
description, GEN 1-29

MV command
renaming a file, GEN 2-7

mv program
4.2BSD improvement, SYS 1-7

mv program (ed)
renaming a file, GEN 3-47

mvcur routine
defined, PGM 4-88

mvwin routine
defined, PGM 4-86

N

n command (ex)
description, GEN 3-90

n command (sed)
defined, GEN 3-108

N command (vi)
See also n command (vi)
defined, GEN 3-79

n command (vi)
See also N command (vi)
defined, GEN 3-81

N flag (Mail)
See also noheader option

Index-41

N flag (Mail) (Cont.)
defined, GEN 2-36

n flag (Mail)
defined, GEN 2-36

n flag (make)
defined, PGM 3-17

n flag (mkey)
ignoring words, GEN 5-147

n flag (sed)
defined, GEN 3-106

n option
specifying numeric sort, GEN 4-32

n option (inv)
defined, GEN 5-148

n option (nroff/troff)
defined, GEN 5-49

n option (uuclean)
defined, SYS 5-137

nl command (me)
defined, GEN 5-44

n2 command (me)
defined, GEN 5-44

Name label (as)
defined, GEN 6-55

NAME operator (C compiler)
defined, PG M 2-66

Named expression
defined, GEN 2-51

nami routine
See also nami.h file

nami.h file
4.2BSD improvement, SYS 5-5

NBUF parameter
description, SYS 5-121

NCALL parameter
description, SYS 5-122

NCARGS parameter
description, SYS 5-122

NCLIST parameter
description, SYS 5-122

ND command (ms)
cover sheet and, GEN 5-9

ne command (nroff/troff)
defined, GEN 5-59

NEQN program
See also EQN program
description, GEN 5-33
formatting mathematics, GEN

2-13
net library

4.2BSD improvement, SYS 1-15
net program

UNIX distribution and, SYS 1-7

Index-42

netstat program
displaying network statistics, SYS

1-7, 5-51E
displaying routing table contents,

SYS 5-51E
Network

See Dial-up network
See uucp system
troubleshooting, SYS 5-57

Network data base
files list, SYS 5-48

Network library routines
description, SYS 3-12 to 3-16

Network name
represented by netent structure,

SYS 3-13E
Network server program

included with system, SYS 5-50T
started up automatically at boot

time, SYS 5-49T
network server program

reference list, SYS 5-49
Network Systems Hyperchannel

Adapter
See hy network interface driver

Networking
implementation, SYS 3-29 to 3-57

networks database
4.2BSD improvement, SYS 1-16

newfs program
See also mkfs program
4.2BSD improvement, SYS 1-18,

1-20
newgrp command

See Group set
newwin routine

defined, PGM 4-86
next command (ex)

Seen command (ex)
next command (Mail)

abbreviating, GEN 2-31
description, GEN 2-31

next statement (awk)
defined, PGM 3-9

NF variable (awk)
determining number of fields,

PGM 3-6
NFILE parameter

description, SYS 5-121
NH command (ms)

entering section heads, GEN 5-6E
specifying numbered section heads,

GEN 5-6

nh command (nroff/troff)
defined, GEN 5-69

NIC host data base
retrieving, SYS 5-48E

NINODE parameter
description, SYS 5-121

nl routine
defined, PGM 4-87

NLABEL operator (C compiler)
defined, PGM 2-64

nm command (nroff/troff)
defined, GEN 5-70

NMOUNT parameter
description, SYS 5-121

nn command (nroff/troff)
defined, GEN 5-70

Nobreak control character
changing, GEN 5-67

noclobber variable (C shell)
defined, GEN 4-70
protecting files and, GEN 4-41

NOFILE parameter
description, SYS 5-121

noglob variable (C shell), GEN
4-56E

defined, GEN 4-70
noheader option (Mail)

See also -N flag
See also quiet option
defined, GEN 2-35

nosave option (Mail)
See also keepsave option
defined, GEN 2-35

notify command (C shell)
See also notify variable
defined, GEN 4-70
reporting job complete, GEN 4-47

notify variable (C shell)
See also notify command (C shell)
background jobs and, GEN 4-45

Nowitz, D.A.
implementing uucp, SYS 5-131 to

5-144
Nowitz, D.A., & Lesk, M.E.

a dial-up network of UNIX
systems, SYS 5-123 to 5-129

np command (me)
defined, GEN 5-40
numbering paragraphs

automatically, GEN 5-31E
NPROC parameter

description, SYS 5-121
nr command (me)

indenting sections, GEN 5-32E

nr command (me) (Cont.)
specifying with Ii, GEN 5-30

nr command (nroff/troff)
defined, GEN 5-65

NR variable (awk)
determining current record

number, PGM 3-5
nroff text processor

See also nroff/troff text processor
See also troff text processor
calling, GEN 5-21E
defined, GEN 2-12
device resolution and, GEN 5-56
entering text, GEN 5-22
formatting a document with -ms,

GEN 2-13
function, GEN 5-22
invoking, GEN 5-49
stopping printer to change paper,

GEN 5-49
writing papers using -me, GEN

5-21 to 5-38
nroff/troff text processor

See also -ms macros
See also nroff text processor
See also troff text processor
-ms macros and, GEN 5-5 to 5-12
boxing words, GEN 5-69
breaking a line, GEN 5-60
character set, GEN 5-57
character translation, GEN 5-66
concealed newlines and, GEN

5-67
contol characters beginning lines,

GEN 5-60
defined, GEN 5-49
description, GEN 2-12
error messages, GEN 5-73
input, GEN 5-56
justifying text, GEN 5-61
marking horizontal space, GEN

5-68
numbering output lines, GEN

5-70
numerical expressions, GEN 5-57
numerical parameters, GEN 5-56
post processors and, GEN 5-50
preprocessors and, GEN 5-50
specifying conditional input, GEN

5-71
specifying indention, GEN 5-62
specifying line length, GEN 5-62
specifying page margins, GEN

5-74E

lndex-43

nroff/troff text processor (Cont.)
specifying vertical spacing, GEN

5-61
switching environment, GEN 5-71
transparent throughput, GEN

5-67
transposing characters, GEN 5-67
underlining words, GEN 5-69
user's manual, GEN 5-49 to 5-81
writing paragraph macros, GEN

5-75E
Nroff/Troff User's Manual

update, GEN 5-81
Nroff/Troff User's Manual, GEN

5-49 to 5-81
See also nroff/troff text processor

ns command (nroff/troff)
defined, GEN 5-62

NTEXT parameter
description, SYS 5-122

nu command (edit)
printing text with line numbers,

GEN 3-11
nu command (ex)

description, GEN 3-91
NULL

defined, PGM 1-21
NULL operator (C compiler)

defined, PGM 2-66
Null statement (as)

defined, GEN 6-55
Number

internal representation in DC,
GEN 2-59

right justifying with troff, GEN
5-87

number command (DC)
descripton, GEN 2-57

number command (edit)
See nu command (edit)

number command (ex)
See nu command (ex)

number option (ex)
description, GEN 3-99

Number register (nroff/troff)
See also nr command (nroff/troff)
See also specific registers
command list, GEN 5-52, 5-55
description, GEN 5-65 to 5-66

Number register (troff)
description, GEN 5-91 to 5-92
predefined, GEN 5-91

Numeric label (as)
defined, GEN 6-55

Index-44

nx command (nroff/troff)
defined, GEN 5-72

0

o command (DC)
changing the output base, GEN

2-62
description, GEN 2-59

o command (ex)
See also open option
description, GEN 3-91
line editing and, GEN 3-85

o command (nroff/troff)
description, GEN 5-68

0 command (Rogue)
using, GEN 6-23

0 command (vi)
See also o command (vi)
See also slowopen option
defined, GEN 3-79

o command (vi)
See also 0 command (vi)
defined, GEN 3-81

o option (hunt)
defined, GEN 5-148

o option (nroff/troff)
defined, GEN 5-49

obase
defined, GEN 2-44, 2-51

Octal
converting to decimal, GEN 2-44

od
4.2BSD improvement, SYS 1-7

of command (me)
defined, GEN 5-41

of filter
calling, PGM 4-102E
printers and, PGM 4-102

OF macro
specifying page footers, GEN 5-19

OFS variable
defined, PGM 3-6

oh command (me)
defined, GEN 5-41

OH macro
specifying page headings, GEN

5-19
oldcsh

4.2BSD and, SYS 1-7
onintr command (C shell)

See also Interrupt signal
defined, GEN 4-70

open command (ex)
See o command ex)

open function
See also open function
description, PGM 1-10

open option (ex)
description, GEN 3-99

open system call
4.2BSD improvement, SYS 1-11

Operators
available, GEN 2-43

optim routine (C compiler)
description, PGM 2-66 to 2-67

optim routine (C shell)
See also unoptim routine (C shell)

optimize option (ex)
description, GEN 3-99

Option (C shell)
combining, GEN 2-6

Option (ex)
See also specific options
reference list, GEN 3-97 to 3-101

Option (Mail)
See also specific options
defined, GEN 2-38
reference list, GEN 2-33 to 2-36,

2-40T
setting, GEN 2-32, 2-32E

Option (nroff/troff)
invoking, GEN 5-50
reference list, GEN 5-49 to 5-50

Option (vi)
See also specific options
listing values, GEN 3-65
reference list, GEN 3-65
setting, GEN 3-65
setting automatically, GEN 3-65

options parameter (config)
defined, SYS 5-79

ORS variable
defined, PGM 3-6

os command (nroff/troff)
defined, GEN 5-62

Ossanna, J .F.
Nroff/Troff User's Manual, GEN

5-49 to 5-81
Out of band data

description, SYS 3-23
flushing I/0 on receipt, SYS

3-23F
Output

defined, GEN 4-70
Output base

DC and, GEN 2-62

over keyword (EQN)
specifying fractions, GEN 5-99E

overlay routine
defined, PGM 4-83

Overstrike command (nroff/troff)
See o command (nroff/troff)

Overstriking
creating with troff, GEN 5-88

overwrite routine
defined, PGM 4-83

p

p command (DC)
descripton, GEN 2-58

p command (ed)
defined, GEN 3-34
printing a line, GEN 3-28
printing all lines, GEN 3-28
printing last line, GEN 3-28
printing lines, GEN 3-27
stopping, GEN 3-28
using, GEN 3-27 to 3-28

p command (edit)
printing buffer contents, GEN

3-10
u command and, GEN 3-16

p command (ex)
description, GEN 3-91

P command (me)
defined, GEN 5-46
specifying front matter, GEN 5-33

p command (sed)
defined, GEN 3-111

P command (vi)
See also p command (vi)
defined, GEN 3-79

p command (vi)
See also P command (vi)
defined, GEN 3-81

p escape (Mail)
description, GEN 2-24

p flag (make)
defined, PGM 3-17

p flag (sed)
defined, GEN 3-110

p macro (me)
defined, GEN 5-41

P number register (nroff/troff)
defined, GEN 5-81

p option (hunt)
defined, GEN 5-149

p option (inv)
defined, GEN 5-148

Index-45

p option (troff)
defined, GEN 5-50

p option (uuclean)
defined, SYS 5-137

pa command (me)
defined, GEN 5-44

pac program
4.2BSD improvement, SYS 1-18,

1-20
Page

command list, GEN 5-51
formatting the last page with a

macro, GEN 5-77E
printing specific, GEN 5-49
setting margins with nroff/troff,

GEN 5-74E
specifying blank, GEN 5-44
specifying new, GEN 5-23

Page commands
description, GEN 5-59

Page footer
entering in text file, GEN 5-6
specifying, GEN 5-70
specifying for multiple columns

with a macro, GEN 5-75E
specifying with troff, GEN 5-91
varying on alternate pages, GEN

5-19
Page header

entering in text file, GEN 5-6
specifying for multiple columns

with a macro, GEN 5-75E
spedfying formats for alternating,

GEN 5-71
specifying with troff, GEN 5-90

Page heading
specifying, GEN 5-70
varying on alternate pages, GEN

5-19
Page layout

specifying, GEN 5-23
Page number

setting arabic, GEN 5-44
setting roman, GEN 5-44
specifying, GEN 5-59, 5-91
specifying for appendix, GEN 5-46
specifying for chapter, GEN 5-46

Page offset (nroff/troff)
specifying, GEN 5-59

Page trap (nroff/troff)
description, GEN 5-64

pagesize program
printing system page size, SYS

1-7

Index-46

Paging
defined, GEN 3-13
versus scrolling, GEN 3-56

Paper
formatting, GEN 5-34F

Paragraph, GEN 5-40
-me restrictions, GEN 5-40
creating decorative initial capital

with troff, GEN 5-86
editing with vi, GEN 3-61
entering in text file, GEN 5-5
indenting, GEN 5-7 to 5-8
numbering automatically, GEN

5-31
specifying, GEN 5-22
specifying block format, GEN

5-29
specifying hanging indent format,

GEN 5-29
specifying hanging indent format

with a macro, GEN 5-75E
specifying indention, GEN 5-30
specifying indention amount,

GEN 5-39E
vi definition, GEN 3-61
writing a macro for, GEN 5-75E

paragraph option (ex)
description, GEN 3-99

param.c file
contents, SYS 5-11, 5-103

param.h file
See also kernel.h file
4.2BSD improvement, SYS 5-6,

5-13
Parentheses (BC)

primitive expression and, GEN
2-51

Parentheses (EQN)
typesetting in proper size, GEN

5-lOOE
Pascal programming language

See Berkeley Pascal programming
language

Passive system
defined, SYS 5-123

passwd
concurrent updates to password

file and, SYS 1-8
Password

entering, GEN 3-5
Password entry program

predictable passwords and, SYS
4-10

random numbers and, SYS 4-11

-------··---

Password file
restricting users, GEN 1-31
security and, SYS 4-8

Password system
history, SYS 4-7 to 4-12

Pasting and cutting
Seem command (ed)

PATH variable (Bourne shell)
description, GEN 4-11 to 4-12

path variable (C shell)
See also rehash command (C

shell)
default value, GEN 4-40
defined, GEN 4-40, 4-70

Pathname
See also Absolute pathname
defined, GEN 2-9, 4-71
description, GEN 4-33

Pattern (awk)
description, PGM 3-6 to 3-7

Pattern space
defined, GEN 3-106

pc
4.2BSD improvement, SYS 1-8

pc command (nroff/troff)
defined, GEN 5-70

pc/pi
4.2BSD improvement, SYS 1-8

pcb.h file
4.2BSD improvement, SYS 5-14

pcl network interface driver
4.2BSD improvement, SYS 1-16

pd command (me)
defined, GEN 5-43

pdx debugger
pi and, SYS 1-8

Period
See Dot character (ed)

perror function
description, PGM 1-12

perror library
4.2BSD improvement, SYS 1-15

pg flag
collecting information for gprof,

SYS 1-5
pg option

creating images for gprof, SYS 1-6
phones database

See also tip program
4.2BSD improvement, SYS 1-17

Phototypesetter
defined, GEN 5-98
stopping automatically to reload,

GEN 5-49

Phototypesetting
See nroff/troff text processor

PHYSPAGES parameter
description, SYS 5-121

pi command (nroff)
defined, GEN 5-72

Picture System 2 graphics device
See ps driver

piles program (EQN)
description, GEN 5-100

Pipe
defined, GEN 1-26, 2-11, PGM

1-14
description, GEN 2-11, PGM 1-14

to 1-17
optimal size, SYS 1-28
programs and, GEN 2-11

pipe system call
description, PGM 1-15 to 1-17

Pipeline, GEN 4-4E
combining command input/output,

GEN 4-32
defined, GEN 2-11, 4-4, ~--71
description, GEN 4-32 to 4-33
elements in, GEN 2-11
files read from terminal and, GEN

2-11
pl command (nroff/troff)

defined, GEN 5-59
Plain data block

defined, SYS 2-12
pm command (nroff/troff)

defined, GEN 5-73
pn command (nroff/troff)

defined, GEN 5-59
po command (nroff/troff)

defined, GEN 5-59
setting left margin, GEN 5-86E

Point size
changing, GEN 5-38, 5-58
defaults, GEN 5-38
setting, GEN 5-84

pop directory command
See popd command (C shell)

popd command (C shell)
See also pushd command (C shell)
defined, GEN 4-71
without argument, GEN 4-49

Port
defined, GEN 4-71

Port number
algorithm for selecting, SYS 3-26
overriding selection algorithm,

SYS 3-26E

Index-47

Portable C Compiler
description, PGM 2-37 to 2-61

Posting file
defined, GEN 5-145

Pound sign
See Sharp character

pp command (me)
See also ip command (me)
See also Ip command (me)
defined, GEN 5-40
description, GEN 5-22
meaning of, GEN 2-12

pr command (C shell)
defined, GEN 4-71
printing files, GEN 2-7
printing files in three columns,

GEN 2-11
pre command (edit)

recovering files, GEN 3-22
Preface

formatting, GEN 5-34F
Preliminary text

See Front matter
preserve command (edit)

See pre command (edit)
preserve command (ex)

description, GEN 3-91
preserve command (Mail)

See also hold command (Mail)
abbreviating, GEN 2-22
description, GEN 2-31
keeping mail in your system

mailbox, GEN 2-21
primes program

4.2BSD improvement, SYS 1-17
Primitive expression

description, GEN 2-51
Print command

See p command
print command (awk)

description, PGM 3-6
print command (edit)

See p command (edit)
print command (ex)

See p command (ex)
print command (Mail)

See also ignore command (Mail)
description, GEN 2-29
ignored fields and, GEN 2-31

Print file
UNIX and, PGM 2-83

print working directory command
See pwd command (C shell)

lndex-48

printcap file
4.2BSD improvement, SYS 1-17
creating, PGM 4-101

printenv command (C shell)
See also setenv command (C

shell)
defined, GEN 4-71

printf function
See also fprintf function
output and, PGM 1-4

printf statement (awk)
formatting output, PGM 3-6

printw routine
defined, PGM 4-83

proc.h file
4.2BSD improvement, SYS 5-7

Process
See also ps command (C shell)
See also System process
See also User process
defined, GEN 1-26, 4-71
maximum active, SYS 5-121
maximum per user, SYS 5-121
setting maximum files for, SYS

5-121
space for, SYS 5-121
stopping, GEN 2-11
syncronizing, GEN 1-27
terminating, GEN 1-27

Process control
data structure, PGM 4-6F
description, PGM 4-5 to 4-6

Process number
defined, GEN 2-11
determining, GEN 2-11

Process stack
setting growth increment, SYS

5-121
setting initial size, SYS 5-121

Process time accounting
summarizing, SYS 5-56

PROFIL operator (C compiler)
defined, PGM 2-65

profil system call
4.2BSD improvement, SYS 1-12

profile file
login and, GEN 4-6
shell and, GEN 2-12

Profiled system
description, SYS 5-78

PROG operator (C compiler)
defined, PGM 2-64

Program
See also Command (C shell)

Program (Cont.)
defined, GEN 3-3, 4-71
editing with vi, GEN 3-67
executing, GEN 1-26
executing from another, PGM

1-12
maintaining with make, PGM

3-13 to 3-21
running simultaneously, GEN

2-11
running two with one command

line, GEN 2-11
saving output, GEN 2-11
setting maximum executing, SYS

5-122
stopping, GEN 2-4, 2-11

Programmer's manual
See Manual

Programming
reading list, GEN 2-16
tools for, GEN 2-14 to 2-15
translating a language, GEN 2-15

Prompt
defined, GEN 4-71

Prompt character
defined, GEN 2-4

prompt option (ex)
description, GEN 3-99

Protection mode
description, PGM 1-10

Proteon proNET ring network
controller

See vv network interface driver
Protocol name

represented by protoent structure,
SYS 3-13, 3-14E

protocol switch table
See also protosw.h file

protocols database
4.2BSD improvement, SYS 1-17

protosw.h file
4.2BSD improvement, SYS 5-5

ps command (C shell)
See also Process
4.2BSD improvement, SYS 1-8
defined, GEN 4-72
determining the process number,

GEN 2-11
displaying all programs running,

GEN 2-11
displaying unstarted background

jobs, GEN 4-48
ps command (troff)

defined, GEN 5-58

ps command (troff) (Cont.)
setting point size, GEN 5-84

ps driver
4.2BSD improvement, SYS 1-16

ps.c device driver
4.2BSD improvement, SYS 5-12

PSl variable
defined, GEN 4-12

P82 variable
defined, GEN 4-12

Pseudo device
specifying, SYS 5-82

Pseudo terminal
creating, SYS 5-48E
description, SYS 3-24
remote login sessions and, SYS

3-24
Pseudo-font

description, GEN 5-37
restriction, GEN 5-37

psignal library
4.2BSD improvement, SYS 1-15

pstat program
4.2BSD improvement, SYS 1-20

ptx program
defined, GEN 2-13

pty driver
4.2BSD improvement, SYS 1-16

pu command (ex)
description, GEN 3-91

Publication list
indexing, GEN 5-143 to 5-155
updating, GEN 5-155 to 5-162

pup_cksum.c file
4.2BSD improvement, SYS 5-13

purchar function
output and, PGM 1-4.,

push directory command
See pushd command (C shell)

push directory command (C shell)
See pushd command

pushd command (C shell)
See also cd command (C shell)
See also popd command (C shell)
defined, GEN 4-70
saving name of previous directory,

GEN 4-49
without argument, GEN 4-49

put command (ex)
See pu command (ex)

putc macro
See also fflush function
defined, PGM 1-6

Index-49

pwd command (C shell)
See also dirs command (C shell)
4.2BSD improvement, SYS 1-8
defined, GEN 4-72
print your directory name, GEN

2-9
working directory pathname and,

GEN 4-48E
PX macro

description, GEN 5-18

Q

Q command
quitting ed, GEN 2-6

q command (DC)
descripton, GEN 2-58

q command (ed)
defined, GEN 3-34
using" GEN 3-26

q command (edit)
exiting without saving edits, GEN

3-13
using, GEN 3-8

q command (ex)
See also wq command (ex)
description, GEN 3-91

q command (me)
defined, GEN 5-42, 5-44
entering, GEN 5-25
specifying quoted text, GEN 5-38

q command (sed)
defined, GEN 3-114

Q command (vi)
defined, GEN 3-79

q flag (make)
defined, PGM 3-17

q option (nroff/troff)
defined, GEN 5-49

qsort library
4.2BSD improvement, SYS 1-15

Question mark character (C shell)
description, GEN 4-34

Question mark character (DC)
description, GEN 2-59
pattern matching and, GEN 2-8

Question mark character (ed)
context search and, GEN 3-43

quiet option (Mail)
See also noheader option
defined, GEN 2-35

Quit command (ed)
See q command (ed)

Index-50

quit command (edit)
See q command (edit)

quit command (ex)
See q command (ex)

quit command (Mail)
abbreviating, GEN 2-22
description, GEN 2-31
saving typed mail, GEN 2-22

Quit signal
defined, GEN 4-72
terminating a program, GEN 4-37

quit statement (BC)
description, GEN 2-55

quot program
4.2BSD improvement, SYS 1-20

Quota
exceeding, GEN 3-22

Quota file
comparing with allocated disk

space, SYS 2-4
description, SYS 2-5

Quota system
See Disk quota system

quota system call
4.2BSD improvement, SYS 1-12

quota.h file
4.2BSD improvement, SYS 5-5

quot&-kern.c file
contents, SYS 5-9

quota_subr .c file
contents, SYS 5-9

quota_sys.c file
contents, SYS 5-9

quota_ufs.c file
contents, SYS 5-9

quotacheck program
4.2BSD improvement, SYS 1-20

quotaon program
See also quotaoff
4.2BSD improvement, SYS 1-20

Quotation
defined, GEN 4-72
setting apart, GEN 5-25

Quotation marks (C shell)
using metacharacters in command

arguments, GEN 4-35
Quotation marks (me)

making compatible for printers
and typesetters, GEN 5-38

translating for typesetter, GEN
5-38

Quotation marks (ms)
translating for typesetter, GEN

5-19

Quotation marks (nroff)
specifying font, GEN 5-36

Quotation marks (troff)
translating, GEN 5-86

Quoted string statement (BC)
forming, GEN 2-54

R

r command (ed)
defined, GEN 3-34
using, GEN 3-27
without line address, GEN 3-49

r command (edit)
description, GEN 3-22

r command (ex)
description, GEN 3-91

r command (me)
defined, GEN 5-44
specifying roman font, GEN 5-36

R command (ms)
restoring regular font, GEN 5-8

r command (sed), GEN 3-112E
defined, GEN 3-112

R command (vi)
See also r command (vi)
defined, GEN 3-79

r command (vi)
See also R command (vi)
defind, GEN 3-81

r escape (Mail)
description, GEN 2-24

r flag (cp)
file system tree and, SYS 1-5

r flag (Mail)
defined, GEN 2-36

r flag (make)
defined, PGM 3-17

r modifier (C shell)
extracting filename root, GEN

4-57E
r option (edit)

recovering files, GEN 3-23
r option (nroff/troff)

defined, GEN 5-49
r option (uucp)

defined, SYS 5-132
r option (uux)

description, SYS 5-133
RAGO disk drive

See uda driver
RASO disk drive

See uda driver

RA81 disk drive
See uda driver

Rand MH system
mail program and, SYS 1-7

random library
4.2BSD improvement, SYS 1-15

Ratfor language
See also EFL programming

language
See also M4 macro processor
C and, GEN 2-15
description, PGM 2-111 to 2-122

Raw device
description, SYS 5-20

raw routine
defined, PGM 4-85

Raw socket
See also Datagram socket
defined, SYS 3-6

rb command (me)
defined, GEN 5-44

RC command (me)
defined, GEN 5-46

re program
4.2BSD improvement, SYS 1-20

rcexpr routine
arguments, PGM 2-68

rep program
cp support and, SYS 1-8

rd command (nroff/troff)
defined, GEN 5-72

rdump program
See also rmt program
4.2BSD improvement, SYS 1-18,

1-20
re command (me)

defined, GEN 5-45
Read command (ed)

Seer command (ed)
read command (edit)

Seer command (edit)
read commapd (ex)

Seer command (ex)
read function

description, PGM 1-9
Read only mode (ex)

description, GEN 3-85
read system call

4.2BSD improvement, SYS 1-12
Read-ahead

description, GEN 2-4
readlink system call

4.2BSD improvement, SYS 1-12

Index-51

readv system call
4.2BSD improvement, SYS 1-12

record option (Mail)
defined, GEN 2-35

recover command (edit)
description, GEN 3-22

recover command (ex)
description, GEN 3-92

recv system call
4.2BSD improvement, SYS 1-12
previewing data, SYS 3-10
transferring data, SYS 3-9E

recvfrom system call
4.2BSD improvement, SYS 1-12
receiving data, SYS 3-lOE

recvmsg system call
See also sendmsg system call
4.2BSD improvement, SYS 1-12

Redirection
defined, GEN 4-72

redraw option (ex)
description, GEN 3-99

refer program
See also Refer system.if ref
output, GEN 5-152E
placing a reference in a paper,

GEN 5-150
Refer system

See also addbib utility
See also Indexing
4.2BSD improvement, SYS 1-8
description, GEN 5-133 to 5-142
formatting bibliographic citations,

GEN 2-13
Reference

formatting, GEN 5-151
overriding numbering, GEN 5-155
private file of, GEN 5-155

Reference file
defined, GEN 5-151

refresh routine
defined, PGM 4-83

Register
changing for text formatting, GEN

5-16
used by -ms

reference list, GEN 5-11
regtab table

defined, PGM 2-68
Regular expression (ex)

defined, GEN 3-96
description, GEN 3-96 to 3-97
reference list, GEN 3-96

lndex-52

rehash command (C shell)
See also path variable
adding commands to directory

and, GEN 4-40
defined, GEN 4-72
required for current path, GEN

4-51
Reiser, J.F., & Henry. R.R.

Berkeley VAX/UNIX Assembler
Reference Manual, PGM 4-53
to 4-65

Reiser, J.F., & London, T.B.
regenerating system software, SYS

5-117 to 5-122
setting up UNIX/32V Vl.O, SYS

5-107 to 5-115
Relational operator

description, GEN 2-53
form, GEN 2-47

Relative pathname
See also Absolute pathname
defined, GEN 4-72

Reliably delivered message socket
(unsupported)

defined, SYS 3-6
Remainder

DC and, GEN 2-61
remap option (ex)

description, GEN 3-99
remote database

See also tip program
4.2BSD improvement, SYS 1-17

Remote login program, SYS 3-15F
Remote login server program

main loop, SYS 3-18F
pseudo terminals and, SYS 3-24

Remote system
calling, SYS 5-125

rename system call
4.2BSD improvement, SYS 1-12
description, SYS 1-35

renice program
4.2BSD improvement, SYS 1-20

reorder routine
description, PGM 2-76 to 2-77

repeat command (C shell)
defined, GEN 4-72
repeating a command, GEN 4-51

Reply command (Mail)
See also reply command (Mail)
abbreviating, GEN 2-20
answering mail, GEN 2-19
answering the sender only, GEN

2-20

Reply command (Mail) (Cont.)
definition, GEN 2-29

reply command (Mail)
See also Reply command (Mail)
description, GEN 2-32

report option (ex)
description, GEN 3-100

repquota program
4.2BSD improvement, SYS 1-20

Request (nroff)
See Command (nroff)

Reserved word
reference list, GEN 4-27

reset command
include file and, SYS 1-8

resource.h file
4.2BSD improvement, SYS 5-5

restart command (lpc)
description, PGM 4-103

restor program
See restore program

restore program
See also rrestore
4.2BSD improvement, SYS 1-18

restore server program
See also tar program

RETRN operator (C compiler)
defined, PGM 2-65

RETURN key
commands and, GEN 2-4
description, GEN 3-55
moving the cursor in vi, GEN

3-57
return statement (BC)

form of, GEN 2-46
forming, GEN 2-55

rew command (ex)
description, GEN 3-92

rewind command (ex)
See rew command (ex)

rexecd server program
4.2BSD improvement, SYS 1-20

rhosts file
description, SYS 5-49

Ritchie, D.M.
C Programming Language

Reference Manual, The, PGM
2-5 to 2-35

I/0 system, PGM 4-67 to 4-73
standard I/0 library, PGM 1-21 to

1-24
system security, SYS 4-3 to 4-5
tour through C compiler, PGM

2-63 to 2-77

Ritchie, D.M. (Cont.)
UNIX Assembler Reference

Manual, GEN 6-53 to 6-64
Ritchie, D.M., & Kernighan, B.W.

M 4 macro processor, PG M 2-393
to 2-398

programming UNIX, PGM 1-3 to
1-24

Ritchie, D.M., & Thompson, K.
implementation of file system and

user command interface, GEN
1-19 to 1-34

rk.c device driver
4.2BSD improvement, SYS 5-12

RK07 disk
See va driver

rl option (uucico)
defined, SYS 5-135

rl.c device driver
4.2BSD improvement, SYS 5-12

RLll controller
See rl.c device driver

RLABEL operator (C compiler)
defined, PG M 2-65

rlogin server program
.login file and, SYS 1-7
cu program and, SYS 1-8
description, SYS 1-8

rlogind server program
4.2BSD improvement, SYS 1-20

rm command (nroff/troff)
defined, GEN 5-64

rm command (shell)
deleting files, GEN 2-7
recover command (edit) and, GEN

3-22
removing a file, GEN 3-48E

rmdir command
4.2BSD improvement, SYS 1-8

rmdir system call
4.2BSD improvement, SYS 1-12

rmt program
4.2BSD improvement, SYS 1-20

rn command (nroff/troff)
defined, GEN 5-64

RNAME operator (C compiler)
defined, PGM 2-65

ro command (me)
defined, GEN 5-44

roftbib program
bibliographic databases and, SYS

1-8
rogue game

4.2BSD improvement, SYS 1-17

Index-53

rogue game (Cont.)
command reference list, GEN

6-19 to 6-21
displaying top players, GEN 6-25
fighting, GEN 6-21
objects you can find, GEN 6-21
option reference list, GEN 6-24
playing, GEN 6-17 to 6-25
rooms, GEN 6-21
sample screen, GEN 6-18F
scoring, GEN 6-24
screen layout, GEN 6-18 to 6-19
screen symbol reference list, GEN

6-19
setting options, GEN 6-23

ROGUEOPTS variable
using, GEN 6-23

Roman number
setting page number, GEN 5-44
specifying for front matter, GEN

5-33
Root directory

defined
description, GEN 1-21

Root tile system
block size, SYS 5-40
dump and, SYS 5-54
rebuilding, SYS 5-32
restoring, SYS 5-26

route program
4.2BSD improvement, SYS 1-20
description, SYS 5-51

routed server program
4.2BSD improvement, SYS 1-20
description, SYS 5-51

RP command (ms)
specifying cover sheet, GEN 5-5

RP06 disk
bad block forwarding support,

SYS 1-18
rr command (nroff/troff)

defined, GEN 5-66
rrestore program

See also rmt program
4.2BSD improvement, SYS 1-20

RS command (ms)
specifying indention level, GEN

5-7
rs command (nroff/troff)

defined, GEN 5-62
RS variable (awk)

defined, PGM 3-6
rsh command

See also rshd server program

lndex-54

rsh server program
executing remote commands, SYS

1-8
rshd server program

4.2BSD improvement, SYS 1-20
rsp.h file

4.2BSD improvement, SYS 5-13
rt comm:and (nroff/troff)

See also mk command
(nroff/troff); sp command
(nroff/troff)

defined, GEN 5-60
RUBOUT character

ignoring while sending mail, GEN
2-34

RUBOUT key
See DELETE key

Ruling
specifying, GEN 5-88
specifying for figure, GEN 5-45
specifying in text, GEN 5-26
with tab character, GEN 5-87E

Ruling (nroff/troff)
outside text margin, GEN 5-72

Running foot
See Page footer

Running head
See Page header

Runtime routine (C)
handling network addresses and

values, SYS 3-15T
ruptime program

See also rwhod server program
displaying status for cluster, SYS

1-8
output, SYS 3-20E

rwho program
See also rwhod server program
displaying users on clusters, SYS

1-8
rwho server program

description, SYS 3-20 to 3-22
simplified form, SYS 3-21F

rwhod server program
4.2BSD improvement, SYS 1-21

rx driver
4.2BSD improvement, SYS 1-16

rx.c device driver
4.2BSD improvement, SYS 5-12

RX02 floppy disk unit
See rx driver

rxl nag (me)
setting 12 pitch, GEN 5-39

RX211 noppy disk controller
See rx.c device driver

rxformat program
4.2BSD improvement, SYS 1-21

s
s command (DC)

affecting register content, GEN
2-62

descripton, GEN 2-58
destructive, GEN 2-63
programming DC, GEN 2-62

s command (ed)
ampersand character and, GEN

3-34
breaking lines, GEN 3-42
changing all occurrences, GEN

3-30
changing every occurrence, GEN

3-38E
defined, GEN 3-34
deleting text, GEN 3-30
delimiters, GEN 3-30
description, GEN 3-37 to 3-38
g command and, GEN 3-46E
g command restriction and, GEN

3-47
rearranging a line, GEN 3-43
undoing the last substitution,

GEN 3-38
using, GEN 3-29

s command (edit)
replacing text, GEN 3-11
uppercase letters and, GEN 3-19

s command (ex)
See also & command (ex)
description, GEN 3-92

S command (vi)
defined, GEN 3-79

s command (vi)
defined, GEN 3-81

s escape (Mail)
description, GEN 2-25

snag (In)
creating symbolic links, SYS 1-7

snag (Mail)
defined, GEN 2-36

snag (make)
defined, PGM 3-17

snag (mkey)
ignoring labels, GEN 5-147

s macro (me)
defined, GEN 5-43

s option (nroff/troff)
defined, GEN 5-49

s option (uucico)
defined, SYS 5-135

s option (uucp)
defined, SYS 5-132

s option (uulog)
defined, SYS 5-137

sail game
4.2BSD improvement, SYS 1-17

save command (Mail)
See also write command (Mail)
abbreviating, GEN 2-32
system mailbox and, GEN 2-23

SAVE operator (C compiler)
defined, PGM 2-65

savehist variable
saving history across terminal

sessions, SYS 1-5
savetty routine

defined, PGM 4-88
sc command (me)

defined, GEN 5-47
Scale

defined, GEN 2-45, 2-51
increasing value, GEN 2-45E
limits, GEN 2-45
printing current value, GEN

2-45E
rules for, GEN 2-45

Scale factor
defined, GEN 2-59

Scale indicator
attaching to numbers for troff,

GEN 5-92
Scale register

description, GEN 2-60
Scaling

BC language and, GEN 2-45
scanf function

See also fscanf function
input and, PGM 1-4

scanw routine
defined, PGM 4-85

SCCS
introduction, PGM 3-23 to 3-37

Schmidt, E., & Lesk, M.E.
Lex program generator, PGM

3-113 to 3-125
Scratch character

creating a scratch file, GEN 4-31
Scratch file

creating, GEN 4-31
defined, GEN 4-72

lndex-55

Scratch file (Cont.)
Fortran and, PGM 2-83

Screen (Screen package)
defined, PGM 4-75
updating, PGM 4-92E
updating, PGM 4-76 to 4-77

Screen (vi)
breaking lines at right margin,

GEN 3-67
controlling window size, GEN

3-65
refreshing, GEN 3-64

Screen editor
invoking from Mail, GEN 2-24

screen option (Mail)
defined, GEN 2-35

Screen package
description, PGM 4-75 to 4-98
input functions, PGM 4-78

reference list, PGM 4-84 to 4-85
miscellaneous functions

reference list, PGM 4-85 to 4-88
output functions, PGM 4-78

reference list, PGM 4-80 to 4-84
prerequisites, PGM 4-75
starting, PGM 4-77
terminal information and, PGM

4-79
Script

See also Script file
script

4.2BSD improvement, SYS 1-8
Script file, GEN 4-55E

See also Login shell
See also make command (C shell)
break statement and, GEN 4-58
commands useful to writers of,

GEN 4-53
comments in, GEN 4-59
creating, GEN 2-10, 3-52E
defined, GEN 3-51, 4-53, 4-72
interrupts and, GEN 4-59
invoking, GEN 4-53
making executable, GEN 4-53
preventing variable substitution

by the shell, GEN 4-59
shell input and, GEN 4-58

Script.out file
creating, GEJY 2-11

scroll routine
defined, PG M 4-88

Scrolling
versus paging, GEN 3-56

lndex-56

scrollok routine
defined, PGM 4-87

sdb symbolic debugger
See also dbx symbolic debugger
accessing symbol information,

SYS 1-5
locating, SYS 1-8
support, SYS 1-6

search command (edit)
See Context search (edit)

Search path
See PATH variable

Section
editing with vi, GEN 3-61
indenting, GEN 5-32E
vi definition, GEN 3-62

Section head
coordinating numbers with

chapter numbers, GEN 5-41
entering in text file, GEN 5-6
indenting, GEN 5-7E
numbering automatically, GEN

5-31 to 5-32, 5-40 to 5-41
numbering automatically with a

macro, GEN 5-75E
specifying beginning number,

GEN 5-32E
specifying unnumbered, GEN

5-32E
text formatting commands for,

GEN 5-14E
sections option (ex)

description, GEN 3-100
Security

dial-up network and, SYS 5-125
UNIX and, SYS 4-3 to 4-5
uucp system and, SYS 5-138

sed stream editor
address types, GEN 3-107 to

3-108
command line format, GEN

3-105E
defined, GEN 2-13, 3-52
description, GEN 3-105 to 3-114
ed and, GEN 3-105
functions, GEN 3-108 to 3-114
operation, GEN 3-105 to 3-106
taking commands from a file,

GEN 3-52E
uses, GEN 3-105

seek function
See also lseek
description, PGM 1-12

select system call
4.2BSD improvement, SYS 1-12
multiplexing VO requests, SYS

3-llE
Semicolon character (ed)

compared with comma, GEN 3-45
setting dot, GEN 3-45 to 3-46

send system call
4.2BSD improvement, SYS 1-12
transferring data, SYS 3-9E

sendbug program
See also bugfiler program
submitting 4.2BSD bug reports,

SYS 1-8
sendmail

installation and operation guide,
SYS 2-27 to 2-60

Sendmail Installation and Operation
Guide, SYS 2-27 to 2-60

See also sendmail
sendmail option (Mail)

defined, GEN 2-35
sendmail program

See also mailaddr
See also sendmail option
See also syslog server program
4.2BSD improvement, SYS 1-4,

1-21
implementing aliases, GEN 2-21

sendmsg system call
See also recvmsg system call
4.2BSD improvement, SYS 1-12

sendto primitive
sending data, SYS 3-lOE

sendto system call
4.2BSD improvement, SYS 1-12

Sentence
editing with vi, GEN 3-61
vi definition, GEN 3-61

Sequenced packet socket
(unsupported)

defined, SYS 3-6
Server process

See also Client process
description, SYS 3-17

Service name
represented by the servent

structure, SYS 3-14
Service process

See also Service server
Service server

See also Xerox Courier protocol
description, SYS 3-17

services database
4.2BSD improvement, SYS 1-17

set command (C shell)
C shell variables and, GEN 4-40E
defined, GEN 4-72

set command (ex)
description, GEN 3-92

set command (Mail)
See also unset command (Mail)
forms of, GEN 2-20
options and, GEN 2-32
restriction, GEN 2-21

Set terminal options command
See stty command (C shell)

Set-GID bit
description, SYS 4-4
security and, SYS 4-5

Set-UID bit
description, SYS 4-4
security and, SYS 4-5

setbuf library routine
See also setbuffer library routine

setbuffer library routine
See also setbuf library routine
4.2BSD improvement, SYS 1-14

setenv command (C shell)
See also printenv command (C

shell)
defined, GEN 4-73
setting variables in environment,

GEN 4-51E
setgid system call

See setregid system call
Sethi-Ullman algorithm

C compiler and, PGM 2-69 to
2-70

setifaddr program
4.2BSD improvement, SYS 1-21

setlinebuf library routine
4.2BSD improvement, SYS 1-14

setquota system call
4.2BSD improvement, SYS 1-12

SETREG operator (C compiler)
defined, PGM 2-65

setregid system call
4.2BSD improvement, SYS 1-12

setreuid system call
4.2BSD improvement, SYS 1-12

setterm routine
defined, PG M 4-88

setuid system call
See setreuid system call

SFCON operator (C compiler)
defined, PG M 2-66

Index-57

SG command (ms)
specifying signature line, GEN 5-9

sh command (ex)
description, GEN 3-92

sh command (me)
See also uh command (me)
defined, GEN 5-40
numbering section heads, GEN

5-31 to 5-32
SH command (ms)

specifying unnumbered section
head, GEN 5-6

sh program
See Bourne shell

Shared lock
multiple processes and, SYS 1-3

Sharp character
printing, GEN 3-39

Sharp character (#)
entering in text, GEN 2-4
erasing last character typed, GEN

2-4
shell comments and, GEN 4-57

Shell
See also C shell
See Bourne shell
defined, GEN 4-73
description, GEN 1-27 to 1-31
implementing, GEN 1-29

shell command (ex)
See sh command (ex)

shell command (Mail)
See also SHELL option
description, GEN 2-32
executing Shell command from

Mail, GEN 2-22
shell option (ex)

description, GEN 3-100
SHELL option (Mail)

defined, GEN 2-33
setting, GEN 2-32
specifying, GEN 2-20

Shell procedure
debugging, GEN 4-15
defined, GEN 4-7
description, GEN 4-7 to 4-16

Shell program
definition, GEN 2-11
description, GEN 2-11 to 2-12
escaping to from Mail, GEN 2-25
profile file and, GEN 2-12
programming aids, GEN 2-14
as programming language, GEN

2-14

Index-58

Shell program (Cont.)
reading a file for commands, GEN

2-12
specifying for Mail, GEN 2-20

Shell script
See Script file

shiftwidth option (ex)
description, GEN 3-100

Shoens, K., & Leres, C.
Mail Reference Manual, GEN

2-17 to 2-41
showmatch option (ex)

description, GEN 3-100
showmatch option (vi)

lisp and, GEN 3-68
shutdown system call

4.2BSD improvement, SYS 1-12
data pending and, SYS 3-lOE

sigblock system call
4.2BSD improvement, SYS 1-12

SIGCHLD signal
constructing server processes, SYS

3-27
reaping child processes, SYS

3-28E
SIGIO signal

4.2BSD improvement, SYS 1-13,
5-7

interrupt-drive I/0 and, SYS 3-27
Signal

defined, GEN 4-73
description, PGM 1-17 to 1-20
handling methods, GEN 4-22

Signal facilities
4.2BSD improvement, SYS 1-3

signal function
descripton, PGM 1-17 to 1-20

signal.h file
4.2BSD improvement, SYS 5-7
signals and, PGM 1-17

Signataure line
specifying, GEN 5-9

sigpause system call
4.2BSD improvement, SYS 1-12

SIGPROF signal
4.2BSD improvement, SYS 1-13,

5-7
sigsetmask system call

4.2BSD improvement, SYS 1-12
sigstack system call

4.2BSD improvement, SYS 1-12
sigsys system call

See signal facilities

SIGTINT signal
See SIGIO signal

SIGURG signal
4.2BSD improvement, SYS 1-13,

5-7
out of band data and, SYS 3-27

sigvec system call
4.2BSD improvement, SYS 1-13

SIGVTALRM signal
4.2BSD improvement, SYS 1-13,

5-7
sinclude command (M4)

description, PGM 2-396
SINCR parameter

description, SYS 5-121
Singles pacing

specifying, GEN 5-23
size keyword (EQN)

changing point size, GEN 5-100
sk command (me)

defined, GEN 5-44
Sklower, K.L., & others

Franz Lisp Manual, The, PGM
2-211 to 2-358

Slash
See Backslash

Slow terminal
editing on, GEN 3-64
vi and, GEN 3-74

slowopen option (ex)
description, GEN 3-100

SM command (ms)
decreasing type size, GEN 5-8

SMAPSIZ parameter
description, SYS 5-122

SMTP
See DARPA Simple Mail Transfer

Protocol
SNAME operator (C compiler)

defined, PGM 2-65
so command (ex)

See so command (ex)
description, GEN 3-92

so command (nroff/troff)
defined, GEN 5-72
interpolating file name, GEN 5-81

SO_DEBUG option
network and, SYS 5-57

Socket
binding, SYS 3-7
creating, SYS 3-7
description, SYS 3-6 to 3-11
discarding, SYS 3-10, 3-lOE
naming, SYS 3-6

Socket (Cont.)
optimal size, SYS 1-28
process group and, SYS 3-23
types of, SYS 3-6

Socket name
binding to UNIX domain socket,

SYS 3-8E
description, SYS 3-7

Socket system call
creating a socket, SYS 3-7E

socket system call
4.2BSD improvement, SYS 1-13
failure, SYS 3-7

socket.h file
4.2BSD improvement, SYS 5-5

socketpair system call
4.2BSD improvement, SYS 1-13

socketvar .h file
4.2BSD improvement, SYS 5-5

Soft limit
defined, SYS 2-3

Software maintenance
using network for, SYS 5-127

SOH
See Leader character (nroff/troff)

sort program
defined, GEN 2-13, 4-73
specifying numeric sort, GEN

4-32E
sortbib command

sorting bibliographic databases
and, SYS 1-9

Source Code Control System
See secs

source command
description, GEN 2-32

source command (C shell)
defined, GEN 4-73
effecting changes to .chshrc

immediately, GEN 4-51
Source file

locating
reference list, SYS 5-117

Source management system
defined, PGM 3-23

sp command (me)
See also bl command (me)
entering, GEN 5-23

sp command (nroff/troff)
defined, GEN 5-62
setting, GEN 5-84

Space character
edit and, GEN 3-7

Index-59

Special character
See Metacharacters
searching, GEN 3-21

Spell
defined, GEN 2-13
detecting spelling errors, GEN

2-13
sprintf function

See also fprintf function
description, PGM 1-8

sprintf function (awk)
defined, PGM 3-8

sptab table
defined, PGM 2-68

SQ FILE
description, SYS 5-142

sqrt function (awk)
defined, PGM 3-8

sqrt keyword, GEN 2-44E
defined, GEN 2-51

sqrt operator (EQN)
creating square roots, GEN 5-100

Square root
creating with EQN, GEN 5-100
DC and, GEN 2-61

Square root (BC), GEN 2-44
ss command (troff)

defined, GEN 5-58
sscanf function

description, PGM 1-8
SSIZE parameter

description, SYS 5-121
SSPACE operator (C compiler)

defined, PGM 2-64
Stack command (DC)

description, GEN 2-62
Standalone 1/0 library

4.2BSD improvement, SYS 5-15
Standard error output file

description, PGM 1-6
Standard 1/0 library

call formats, PGM 1-21 to 1-24
defined, PG M 1-5
description, PGM 1-5 to 1-8, 1-21

to 1-24
Standard input

See Input
typing form letters or text with

nroff/troff, GEN 5-72
Standard input file

description, PGM 1-6
Standard output

See Output

Index-60

Standard output file
description, PGM 1-6

standout routine
defined, PGM 4-84

Star
See Asterisk character

start command (lpc)
description, PGM 4-103

Startup file
running, GEN 2-12

stat system call
4.2BSD improvement, SYS 1-13

stat.h file
4.2BSD improvement, SYS 5-7

Statement (as)
description, GEN 6-55 to 6-56

Statement (BC)
See also specific statements
description, GEN 2-54 to 2-55
typing several on one line, GEN

2-48
Status

defined, GEN 4-73
status command (mt)

showing state of tape drive, SYS
1-7

stderr file pointer
description, PGM 1-6
error handling and, PGM 1-7

stdin file pointer
description, PGM 1-6

stdio library
4.2BSD improvement, SYS 1-14

stdout file pointer
description, PGM 1-6

stop command (C shell)
background jobs and, GEN 4-46E
defined, GEN 4-73

stop command (ex)
Berkeley TTY driver and, GEN

3-102
description, GEN 3-93

stop command (lpc)
description, PGM 4-103

Stopped message
suspending jobs and, GEN 4-46

Storage class
description, GEN 2-53

store command (DC)
See s command (DC)

Stream socket
See also Datagram socket
creating in Internet domain, SYS

3-7E

Stream socket (Cont.)
defined, SYS 3-6

String (C shell)
defined, GEN 4-73

String (nroff/troff)
defined, GEN 5-62
description, GEN 5-62 to 5-65

String statement (as)
defined, GEN 6-56

strip
4.2BSD improvement, SYS 1-9

STST file
description, SYS 5-143

stterm routine
variables set by, PGM 4-89T to

4-90T
stty command

DEC standard values and, SYS
1-9

stty command (C shell)
background jobs and, GEN 4-48
defined, GEN 4-73

Style program
See also Diction program
description, GEN 5-163 to 5-177

SU
4.2BSD improvement and, SYS

1-9
sub keyword (EQN)

specifying subscripts, GEN 5-99
subr_mcount.c file

contents, SYS 5-9
subr_prf.c file

contents, SYS 5-9
subr_rmap.c file

contents, SYS 5-9
subr_xxx.c file

contents, SYS 5-9
Subscript

specifying, GEN 5-47
Subscript (EQN)

specifying, GEN 5-99
Subscript (nroff/troff)

specifying, GEN 5-68
Subscript (troff)

specifying, GEN 5-87E
Subscripted variable

defined, GEN 2-46 to 2-4 7
Substitute command

See s command
substitute command (edit)

Sees command (edit)
substitute command (ex)

Sees command (ex)

substitute command (sed), GEN
3-lllE

description, GEN 3-110 to 3-111
special characters and, GEN

3-110
Substitution

See also Expansion
defined, GEN 4-73

substr command (M4)
description, PGM 2-397

substr function (awk)
defined, PGM 3-8

Subtraction
DC and, GEN 2-60

subwin routine
defined, PGM 4-87

Suffix list (make), PGM 3-17
description, PGM 3-21

Summary information
contents, SYS 2-8

sup keyword (EQN)
specifying superscripts, GEN 5-99

Super user
security and, SYS 4-4

Super-block
description, SYS 2-8

Superscript
specifying, GEN 5-47

Superscript (EQN)
specifying, GEN 5-99

Superscript (nroff/troff)
specifying, GEN 5-68

Superscript (troff)
specifying, GEN 5-87E

Suspended job
defined, GEN 4-73
description, GEN 4-36

sv command (me)
specifying blank lines, GEN 5-44

sv command (nroff/troff)
defined, GEN 5-62

Swap space configuration
4.2BSD improvement, SYS 1-4

swapgeneric.c file
4.2BSD improvement, SYS 5-14

swapon system call
4.2BSD improvement, SYS 1-13

SWIT operator (C compiler)
defined, PG M 2-65

switch command (C shell)
defined, GEN 4-73
exiting from, GEN 4-58
forms of, GEN 4-58

Index-61

sx command (me)
defined, GEN 5-41

Symbolic link
description, SYS 1-3, 1-34

Symbolic link data block
defined, SYS 2-12

SYMDEF operator (C compiler)
defined, PGM 2-64

symlink system call
4.2BSD improvement, SYS 1-13

Symmetric protocol
defined, SYS 3-17

sys directory
file prefixes, SYS 5-8T

sys_errno
printing, PGM 1-12

sys_generic.c file
contents, SYS 5-9

sys__inode.c file
contents, SYS 5-9

sys_machdep.c file
4.2BSD improvement, SYS 5-13

sys_process.c file
contents, SYS 5-9

sys_socket.c file
contents, SYS 5-9

syscmd command (M4)
description, PGM 2-396

sysline program
maintaining terminal status, SYS

1-9
syslog server program

4.2BSD improvement, SYS 1-21
System function

description, PGM 1-12
System identifier

defined, SYS 5-74
System mailbox file

commands for folders and, GEN
2-23

hold option and, GEN 2-32
incoming mail and, GEN 2-17
mbox and, GEN 2-20
storing mail, GEN 2-20, 2-21

System management
best reference, SYS

System process
defined, PGM 4-5

System time
4.2BSD improvement, SYS 1-4

System-wide file
defined, GEN 2-21

Systems Industries 9700 tape drive
See ut.c device driver

lndex-62

systm.h file
See also kernel.h file
4.2BSD improvement, SYS 5-7

sz command (me)

T

changing point size, GEN 5-38W
defined, GEN 5-44

t command (ed)
compared with m command, GEN

3-51
creating a series of variable lines,

GEN 3-51
t command (ex)

See copy command (ex)
t command (sed)

defined, GEN 3-114
T command (vi)

defined, GEN 3-79
t command (vi)

defined, GEN 3-81
t escape (Mail)

description, GEN 2-25
T flag (Mail)

defined, GEN 2-36
t flag (make)

defined, PGM 3-17
T option (hunt)

defined, GEN 5-149
t option (hunt)

defined, GEN 5-149
T option (nroff)

defined, GEN 5-50
t option (troff)

defined, GEN 5-50
ta command (nroff/troff)

defined, GEN 5-66
Tab

resetting, GEN 5-45
setting multiple, GEN 5-87

Tab character
printing, GEN 3-37
terminals without, GEN 2-4

Tab character (nroff/troff)
setting, GEN 5-66
uninterpreted, GEN 5-66

Tab replacement character
See tc command (troff), GEN

5-87
Tab stop

setting, GEN 3-61n
vi and, GEN 3-61

Table
breaking across pages, GEN 5-10
continuing, GEN 5-35
entering with -ms, GEN 5-8
floating, GEN 5-45
formatting, GEN 2-13, 5-33
keeping on one page, GEN 5-42
text formatting commands for,

GEN 5-16E
Table of contents

entering, GEN 5-28
formatting, GEN 5-34F
producing, GEN 5-18, 5-18E
specifying multiple, GEN 5-29
specifying section titles for, GEN

5-41
specifying without leadering, GEN

5-29
Tables

formatting, GEN 5-115 to 5-131
tabstop option (ex)

description, GEN 3-100
Tag

defined, GEN 5-145
tag command (ex)

description, GEN 3-93
Tag file

defined, GEN 5-145
taglength option (ex)

description, GEN 3-100
tags option (ex)

3.5 changes, GEN 3-103
description, GEN 3-100

tail
4.2BSD improvement, SYS 1-9

talk program
description, SYS 1-9

tar program
4.2BSD improvement, SYS 1-9,

1-17
tbl program

description, GEN 5-33, 5-115 to
5-131

formatting tables, GEN 2-13
tc command (nroff/troff)

defined, GEN 5-66
tc command (troff)

replacing tab character, GEN 5-87
TCP program

See trpt program
teachgammon program

4.2BSD improvement, SYS 1-17

Technical memorandum
text formatting commands for,

GEN 5-13E
Tektronix 4025 terminal

command character for, GEN 3-76
Tektronix 4027 terminal

command character for, GEN 3-76
telnet program

ARPA Telnet protocol and, SYS
1-9

telnetd server program
.login file and, SYS 1-7
4.2BSD improvement, SYS 1-21

term option (ex)
description, GEN 3-101

Terminal
See also Hardcopy terminal
See also Pseudo terminal
See also Screen (Screen package)
See also Screen package
See also Slow terminal
See also Uppercase terminal
configuring, SYS 5-42
programs changing mode of, GEN

4-48
replacing with a file, GEN 2-10
specifying output type with nroff,

GEN 5-50
specifying standard output with

troff, GEN 5-50
specifying type, GEN 3-54E
strange behavior, GEN 2-4
supported

reference list, GEN 2-3
switch settings, GEN 2-3
type codes, GEN 3-53T
without tabs, GEN 2-4

Terminal screen
defined, PGM 4-75

Termination
defined, GEN 4-73

terse option (ex)
description, GEN 3-101

test command
Bourne shell and, GEN 4-12

Text editor
See ed editor
defined, GEN 3-3, 3-25
See also Edit editor, GEN 3-3

Text Formatting
See also nroff/troff text processor

Text input mode (ex)
defined, GEN 3-85

Index-63

Text segment (as)
description, GEN 6-54

text statement
defined, GEN 6-59

tftpd server program
4.2BSD improvement, SYS 1-21

TH command (me)
continuing a table, GEN 5-35E

th command (me)
defined, GEN 5-45
formatting a thesis, GEN 5-33

then command (C shell)
See also else command (C shell)
See also if/endif commands (C

shell)
defined, GEN 4-73

Thesis
formatting, GEN 5-18, 5-33, 5-45
text formatting commands for,

GEN 5-13E
Thompson, K.

UNIX implementation, PGM 4-5
to 4-14

Thompson, K., & Morris, R.
password system, SYS 4-7 to 4-12

Thompson, K., & Ritchie, D.M.
implementation of file system and

user command interface, GEN
1-19 to 1-34

ti command (me)
entering, GEN 5-24

ti command (nroff/troff)
defined, GEN 5-62
ems and, GEN 5-86

Tilde character (C shell)
accessing files from other

directories, GEN 4-34
Tilde character (me)

See Metacharacters
Tilde escape (Mail)

defined, GEN 2-24
description, GEN 2-24 to 2-26
lines beginning with, GEN 2-26
printing summary of, GEN 2-26
reference list, GEN 2-40T

time command (C shell)
defined, GEN 4-74
timing a command, GEN 4-52E

time.h file
4.2BSD improvement, SYS 5-7

timeout option (ex)
description, GEN 3-102

TIMEZONE parameter
description, SYS 5-122

lndex-64

timezone parameter (config)
defined, SYS 5-79

tip program
cu program as front end, SYS 1-5
description, SYS 1-4, 1-9

Title page
formatting informal, GEN 5-46
specifying, GEN 5-32, 5-45

TL command (ms)
AE command and, GEN 5-6

ti command (nroff/troff)
defined, GEN 5-70

ti command (troff)
printing page numbers, GEN

5-91E
tm command (nroff/troff)

defined, GEN 5-73
TM file

description, SYS 5-142
TM macro

description, GEN 5-18
tm.c device driver

4.2BSD improvement, SYS 5-12
to keyword (EQN), GEN 5-lOOE
Token

defined, GEN 2-50
top command (Mail)

See also toplines option
abbreviating, GEN 2-32
description, GEN 2-32

toplines option (Mail)
defined, GEN 2-35
setting, GEN 2-32E

topq command (lpc)
description, PGM 4-103

touchwin routine
defined, PGM 4-87

Toy, M.C., & Arnold, K.C.R.C.
guide to the dungeons of doom,

GEN 6-17 to 6-25
tp command (me)

defined, GEN 5-45
specifying a title page, GEN 5-32
specifying title page, GEN 5-33E

tr command (nroff/troff)
defined, GEN 2-13, 5-67
using, GEN 2-13E

transfer command
See t command (ed)

translit command (M4)
description, PGM 2-397

Transparent throughput (nroff/troff)
specifying, GEN 5-67

Trap
description, GEN 1-31

trap command (Bourne shell)
fault handling, GEN 4-21 to 4-23

trap.c file
4.2BSD improvement, SYS 5-14

trek game
4.2BSD improvement, SYS 1-17

troff text processor
See also EQN program
See also ms macro package
See also nroff text processor
See also nroff/troff text processor
See also tbl program
defined, GEN 2-12, 5-83
defining macros, GEN 5-89 to

5-90
defining strings, GEN 5-88, 5-89
device resolution and, GEN 5-56
drawing horizontal and vertical

lines of characters, GEN 5-88
entering arithmetic expressions,

GEN 5-92
entering commands, GEN 5-83
environments, GEN 5-94
formatting a document with -ms,

GEN 2-12
indenting lines, GEN 5-86
invoking, GEN 5-49
moving characters up and down,

GEN 5-87
moving text backwards on a line,

GEN 5-87
setting point sizes, GEN 5-84
setting tabs, GEN 5-86
setting vertical spacing, GEN 5-84
specifying cut mark, GEN 5-74E
specifying fonts, GEN 5-85
specifying fonts on the typesetter,

GEN 5-86
specifying metacharacters, GEN

5-86
specifying page heading, GEN

5-90
specifying unpaddable characters,

GEN 5-88
stopping phototypesetter to reload,

GEN 5-49
tutorial, GEN 5-83 to 5-96

trpt program
4.2BSD improvement, SYS 1-21

truncate system call
4.2BSD improvement, SYS 1-13

TS command (me)
continuing tables, GEN 5-35
defined, GEN 5-45
formatting tables, GEN 5-35

ts driver
4.2BSD improvement, SYS 1-16

ts.c device driver
4.2BSD improvement, SYS 5-13

tset command (C shell)
defined, GEN 4-7 4
using, GEN 4-30E

tstp routine
defined, PG M 4-88

tty
See also ttydev.h file
handling, SYS 5-6

tty character
See also ttychars.h file
handling, SYS 5-5

tty command (C shell)
defined, GEN 4-74

tty.c file
4.2BSD improvement, SYS 5-9

tty.h file
4.2BSD improvement, SYS 5-7

tty_bk.c file
obsolete, SYS 5-9

tty_conf.c file
contents, SYS 5-9

tty_pty.c file
4.2BSD improvement, SYS 5-9

tty_subr.c file
contents, SYS 5-9

tty_tb.c file
contents, SYS 5-9

tty _tty .c file
contents, SYS 5-9

ttychars.h file
4.2BSD improvement, SYS 5-5

ttydev.h file
4.2BSD improvement, SYS 5-6

tu driver
4.2BSD improvement, SYS 1-16

tu.c file
4.2BSD improvement, SYS 5-14

TU58 cartridge tape cassette
See uu driver
See uu.c device driver

TU80 tape drive
See ts driver

tunefs program
4.2BSD improvement, SYS 1-21

Index-65

Tuthill, B.
-ms revised version, GEN 5-17 to

5-19
using refer, GEN 5-133 to 5-142

Twinkle program
description, PGM 4-92E
motion optimization and, PGM

4-97E
Two-column output

See Column
type command (Mail)

See print command (Mail)
abbreviating, GEN 2-18
description, GEN 2-32
reading mail and, GEN 2-18 to

2-19
Type-number (refer)

reference list, GEN 5-152
Typesetting Mathematics - User's

Guide, GEN 5-105 to 5-114
Typing

correcting mistakes, GEN 2-4
Typo

defined, GEN 2-13
detecting spelling errors, GEN

2-13

u
u command (ed)

using, GEN 3-38
u command (edit)

See also At sign
See also CTRL-H
description, GEN 3-16
recovering files, GEN 3-23

u command (ex)
description, GEN 3-93

u command (me)
defined, GEN 5-44

u command (troff)
specifying superscripts and

subscripts, GEN 5-87
U command (vi)

defined, GEN 3-79
u command (vi)

defined, GE/I{ 3-81
u flag (Mail)

defined, GEN 2-36
u option (uulog)

defined, SYS 5-137
uba.c device driver

4.2BSD improvement, SYS 5-13

Index-66

uba_ctrl structure
description, SYS 5-93

uba_device structure
description, SYS 5-94

uba_driver structure
description, SYS 5-90

uLaddr routine
description, SYS 5-93

uLattach routine
description, SYS 5-92

uLdgo routine
description, SYS 5-93

uLdinfo routine
description, SYS 5-93

uLdname routine
description, SYS 5-93

uLminfo routine
description, SYS 5-93

uLmname routine
description, SYS 5-93

uLprobe routine
description, SYS 5-91

uLslave routine
description, SYS 5-91

ud-xclu routine
description, SYS 5-93

uda driver
4.2BSD improvement, SYS 1-16

uda.c device driver
4.2BSD improvement, SYS 5-13

uf command (nroff/troff)
defined, GEN 5-67

ufs_alloc.c file
contents, SYS 5-9

ufs_bio.c file
contents, SYS 5-10

ufs_bmap.c file
contents, SYS 5-10

ufs_dsort.c file
contents, SYS 5-10

ufs___fio.c file
contents, SYS 5-10

ufs_inode.c file
contents, SYS 5-10

ufs_machdep.c file
4.2BSD improvement, SYS 5-13

ufs_mount.c file
contents, SYS 5-10

ufs_nami.c file
contents, SYS 5-10

ufs___subr.c file
contents, SYS 5-10

ufs___syscalls.c file
contents, SYS 5-10

ufs_tables.c file
contents, SYS 5-10

ufs_xxx.c file
contents, SYS 5-10

uh command (me)
defined, GEN 5-41
specifying unnumbered section

heads, GEN 5-32E
uLaddr routine

description, SYS 5-95
uLalive routine

description, SYS 5-95
uLctlr routine

description, SYS 5-94
uLdk routine

description, SYS 5-95
uLdriver routine

description, SYS 5-94
uLflags routine

description, SYS 5-95
uLhd routine

description, SYS 5-95
uLintr routine

description, SYS 5-95
uLmi routine

description, SYS 5-95
uLphysaddr routine

description, SYS 5-95
uLslave routine

description, SYS 5-94
uLtype routine

description, SYS 5-95
uLubanum routine

description, SYS 5-94
uLunit routine

description, SYS 5-94
UID

description, GEN 1-22, SYS 4-4
uio.h file

4.2BSD improvement, SYS 5-6
uipc_domain.c file

contents, SYS 5-10
uipc__mbuf .c file

contents, SYS 5-10
uipc_pipe.c file

contents, SYS 5-10
uipc_proto.c file

contents, SYS 5-10
uipc_socket.c file

contents, SYS 5-10
uipc_socket2.c file

contents, SYS 5-10
uipc_syscalls.c file

contents, SYS 5-10

uipc_usrreq.c tile
contents, SYS 5-10

ul command
4.2BSD improvement, SYS 1-9

ul command (me)
See also u command (me)
entering, GEN 5-25
troff and, GEN 5-36

UL command (ms)
underlining a word, GEN 5-8

ul command (nroff/troff)
defined, GEN 5-67

ul command (troff)
specifying italic lines, GEN 5-86

ULTRIX-32
See also UNIX

ULTRIX-32 Operating System
getting started, GEN 2-1 to 2-64

um_cmd routine
description, SYS 5-94

um_ctrl routine
description, SYS 5-94

um_driver routine
description, SYS 5-94

um_hd routine
description, SYS 5-94

um_intr routine
description, SYS 5-94

um_tab routine
description, SYS 5-94

um_ubinfo routine
description, SYS 5-94

Umlat
See Metacharacters

un network interface driver
4.2BSD improvement, SYS 1-16

un.h tile
4.2BSD improvement, SYS 5-6

una command (ex)
See also abcommand (ex)
description, GEN 3-93

unabbreviate command (ex)
See una command (ex)

unalias command (C shell)
See also alias command (C shell)
defined, GEN 4-74

Unary operator
defined, GEN 2-52

Unary operator (C compiler)
description, PGM 2-66

unctrl routine
defined, PGM 4-87

undelete command (Mail)
See also delete command (Mail)

lndex-67

undelete command (Mail) (Cont.)
abbreviating, GEN 2-33
description, GEN 2-33

Underlining
See also Italic
nroff and, GEN 5-66
on the typesetter, GEN 5-8
specifying, GEN 5-8, 5-25
technique for, GEN 3-42

Undo command
See u command

undo command (edit)
See u command (edit)

undo command (ex)
See u command (ex)

Ungermann-Bass network interface
unit

See un network interface driver
ungetc function

description, PGM 1-8
UNIBUS

device naming, SYS 5-20
UNIBUS device driver

support routines, SYS 5-95
univec.c file

installing device driver and, SYS
5-119

UNIX Assembler Reference Manual,
GEN 6=-53 to 6-64

See also as assembler
UNIX Operating System

See also 4.2BSD
See also UL TRIX-32
See also VAX UNIX system
bootstrapping and 4.2BSD, SYS

5-15
building process, SYS 5-76 to

5-78
building with config, SYS 5-73 to

5-105
changes in 4.2BSD, SYS 1-3 to

1-21
computer-aided instruction for,

GEN 6-3 to 6-16
crashing, SYS 4-3
defined, GEN 3-3
design considerations, GEN 1-31
device naming, SYS 5-19
distinguishing block and raw

devices, SYS 5-20
for beginners, GEN 2-3 to 2-16
getting started, GEN 6-15 to 6-16
hardware environment, GEN 1-20
implementation, PGM 4-5 to 4-14

Index-68

UNIX Operating System (Cont.)
introduction, GEN 1-19 to 1-20
managing

See SYS
other operating systems and,

PGM 4-13
programming, PGM 1-3 to 1-24
reading list, GEN 2-15
software environment, GEN 1-20

UNIX Programmer's Manual
accessing on line, GEN 2-5

UNIX/32V Operating System
hardware requirements, GEN 1-4
highlights, GEN 1-3 to 1-18
recreating, SYS 5-119
regenerating system software, SYS

5-117 to 5-122
setting up Vl.O, SYS 5-107 to

5-115
tuning, SYS 5-121 to 5-122

UNIX/32V Programmer's Manual
online, GEN 1-11

unlink function
description, PGM 1-11

unlink system call
See mkdir command

unmap command (ex)
See also map command (ex)
description, GEN 3-93

unoptim routine (C shell)
See also optim routine (C shell)
description, PGM 2-67 to 2-68

Unpaddable space character
(nroff/troff)

defined, GEN 5-60, 5-88
specifying for digits, GEN 5-88
specifying for spaces, GEN 5-88

unpcb.h file
4.2BSD improvement, SYS 5-6

unset command (C shell)
defined, GEN 4-74

unset command (Mail)
See also set command (Mail)
description, GEN 2-33

until statement (C shell)
See also while statement (C shell)
description, GEN 4-13

up driver
4.2BSD improvement, SYS 1-16

up.c device driver
4.2BSD improvement, SYS 5-13

Uppercase terminal
vi and

User ID
See UID

User Identification Number
See Um

User identification number
See Um

User process
defined, PGM 4-5

user.h file
4.2BSD improvement, SYS 5-7

USERFILE
defined, SYS 5-140

USR directory
block size, SYS 5-40
description, GEN 2-9
rebuilding, SYS 5-32
setting up, SYS 5-28

ut.c device driver
4.2BSD improvement, SYS 5-12

utime system call
See utimes system call

utimes system call
4.2BSD improvement, SYS 1-13

utmp file
See also wtmp file
4.2BSD improvement, SYS 1-17

uu driver
4.2BSD improvement, SYS 1-16

uu.c device driver
4.2BSD improvement, SYS 5-12

uucico program
defined, SYS 5-131
description, SYS 5-124, 5-134 to

5-137
functions, SYS 5-125
starting, SYS 5-125, 5-134
starting with shell file, SYS 5-143

uuclean program
defined, SYS 5-131
description, SYS 5-137

uucp command
command line format, SYS 5-131
defined, SYS 5-125
description, SYS 5-131 to 5-133
transferring files between

machines, SYS 5-132E
UUCP network

ARPANET and, GEN 2-26
uucp program

defined, SYS 5-131
uucp system

4.2BSD improvement, SYS 1-4,
1-9, 5-45

uucp system (Cont.)
administration, SYS 5-142 to

5-144
defined, SYS 5-131
directory list, SYS 5-45
file list, SYS 5-45 to 5-46
implementing, SYS 5-131 to 5-144
installing, SYS 5-138 to 5-142
login entry and, SYS 5-144
security and, SYS 5-138
setting up, SYS 5-45 to 5-46

uucp.h file
modifying for uucp, SYS 5-138

uulog program
defined, SYS 5-131
description, SYS 5-137

uusnap program
description, SYS 1-9

uux command
command line format, SYS 5-133
defined, SYS 5-125
description, SYS 5-133 to 5-134
providing remote output, SYS

5-127
uux program

defined, SYS 5-131
uuxqt program

defined, SYS 5-131
description, SYS 5-137

v
v command (DC)

descripton, GEN 2-58
v command (ed)

defined, GEN 3-34
specifying line numbers, GEN

3-47
specifying lines without text

patterns, GEN 3-46 to 3-47
using, GEN 3-33

v command (troff)
creating decorative initial capital,

GEN 5-87E
moving characters up and down,

GEN 5-87
specifying vertical motion, GEN

5-68
v escape (Mail)

description, GEN 2-24
v flag (Mail)

See also verbose option
defined, GEN 2-36

Index-69

v option (inv)
defined, GEN 5-148

va driver
4.2BSD improvement, SYS 1-16

va.c f'ile
4.2BSD improvement, SYS 5-13

Valued option (Mail)
See also Option (Mail)
defined, GEN 2-20

Variable (BC)
declaring automatic, GEN 2-46
number permitted, GEN 2-45

Variable (Bourne shell)
description, GEN 4-10 to 4-12
reference list, GEN 4-11

Variable (C shell)
accessing components, GEN 4-54
checking for assigned value, GEN

4-53
defined, GEN 4-74
removing definition from shell,

GEN 4-52
removing from environment, GEN

4-52
Variable (Screen package)

reference list, PGM 4-77
Variable expansion

See Expansion
See Variable

Variable substitution
description, GEN 4-53

VAX UNIX system
accounting, SYS 5-56
booting, SYS 5-52
booting for single user, SYS 5-52
changing from single user to

multiuser status, SYS 5-52
changing to multiuser from single

user status, SYS 5-52
checking file system, SYS 5-53
file maintenance list, SYS 5-57
monitoring system performance,

SYS 5-54
operating procedures, SYS 5-52
regenerating, SYS 5-55
resource control, SYS 5-56
tracking changes, SYS 5-56

VAX-11/750
configuration file, SYS 5-85

VAX-11/750 console cassette
interface

See tu driver
VAX-11/780

configuration file, SYS 5-84

lndex-70

VAX/VMS Operating System
autoconfiguration, SYS 5-89 to

5-95
data structure sizing rules, SYS

5-103 to 5-105
VAX/VMS system sources

directory list, SYS 5-4
ve command (ex)

description, GEN 3-94
verbose option (Mail)

See also -v flag
defined, GEN 2-35

verbose variable (C shell)
defined, GEN 4-74

Version
suppressing for Mail, GEN 2-35

version command (ex)
See ve command ex)

Vertical bar (EQN)
typesetting in proper size, GEN

5-lOOE
Vertical spacing

setting with troff, GEN 5-84
Vesterman, W., & Cherry, L.L.

style and diction programs, GEN
5-163 to 5-177

vfontinfo program
font information and, SYS 1-9

vfork system call
future plans, SYS 1-13

vgrind
4.2BSD improvement, SYS 1-9

vgrindefs file
4.2BSD improvement, SYS 1-17

vi command (ex)
See also open option
3.5 changes, GEN 3-102
description, GEN 3-94
screen editing and, GEN 3-85

vi screen editor
4.2BSD improvement, SYS 1-9
changing words, GEN 3-60
character editing, GEN 3-59
character editing, low level, GEN

3-61
character functions, GEN 3-75T
characters for making corrections

in input mode, GEN 3-72T
commands for file manipulation,

GEN 3-71T
deleting lines, GEN 3-60
deleting words, GEN 3-59
description, GEN 3-53 to 3-82

\

/

\
)

vi screen editor (Cont.)
determining state of file, GEN

3-57
editing programs, GEN 3-67
ending a session, GEN 3-55
ex 3.5 changes and, GEN 3-103 to

3-104
ex and, GEN 3-73
executing shell command from,

GEN 3-63
ignoring case, GEN 3-72
inserting text, GEN 3-58
invoking, GEN 3-54E
line editing, GEN 3-60
manipulating files, GEN 3-70
marking return points, GEN 3-64
moving blocks of text, GEN 3-62
moving in the file, GEN 3-56 to

3-58
moving on the screen, GEN 3-57
moving to previous position, GEN

3-57
moving within a line, GEN 3-57
option list, GEN 3-65
presenting lines, GEN 3-69
recovering lost files, GEN 3-66
recovering lost lines, GEN 3-66
reversing your changes, GEN 3-60
saving changes automatically,

GEN 3-63
searching for strings in text, GEN

3-56, 3-71
sentences and, GEN 3-61

view command (ex)
description, GEN 3-102

view command (vi)
reading a file, GEN 3-58

vipw program
4.2BSD improvement, SYS 1-21

vipw script
See vipw program

visual command (ex)
See vi command (ex)

visual command (Mail)
See also edit command (Mail)
description, GEN 2-33

VISUAL option (Mail)
defined, GEN 2-33
setting, GEN 2-33
specifying an editor, GEN 2-24

vlimit system call
See getrlimit system call

vlp program
printing lisp programs, SYS 1-9

VIJL_lJlachdep.c file
4.2BSD improvement, SYS 5-13

v:m_mem.c file
contents, SYS 5-11

VIJL_lJlOn.C file
contents, SYS 5-11

vm_page.c file
4.2BSD improvement, SYS 5-11

vm_proc.c file
contents, SYS .5-11

vm_pt.c file
contents, SYS 5-11

vm_sched.c file
contents, SYS 5-11

vm_subr .c file
contents, SYS 5-11

vm_sw .c file
contents, SYS 5-11

vm_swap.c file
contents, SYS 5-11

vm_swp.c file
contents, SYS 5-11

vm_text.c file
contents, SYS 5-11

vmmac.h file
4.2BSD improvement, SYS 5-7

vmparam.h file
4.2BSD improvement, SYS 5-7,

5-13
vmstat program

4.2BSD improvement, SYS 1-9
monitoring system activity, SYS

5-54
vmsystm.h file

4.2BSD improvement, SYS 5-7
vpr program

shell scripts and, SYS 1-10
vread system call

obsolete, SYS 1-13
vs command (nroff/troft')

defined, GEN 5-61
setting, GEN 5-84

vswapon system call
See swapon system call

vtimes system call
See getrusage system call

vv network interface driver
4.2BSD improvement, SYS 1-16

vwidth program
troff width tables and, SYS 1-10

vwrite system call
obsolete, SYS 1-13

Index-71

w

w command (ed)
defined, GEN 3-34
e command and, GEN 3-27
entering text into a file, GEN 2-6
saving lines for input, GEN 3-50
using, GEN 3-26

w command (edit)
description, GEN 3-22
u command and, GEN 3-16
using, GEN 3-8

w command (ex)
See also wq command (ex)
description, GEN 3-94

w command (nroff/troff)
description, GEN 5-68

w command (sed)
defined, GEN 3-111

W command (vi)
defined, GEN 3-80

w command (vi)
defined, GEN 3-81

w escape (Mail)
description, GEN 2-24

w flag (mkey)
specifying a file, GEN 5-147

w flag (sed)
defined, GEN 3-110

w option (troff)
defined, GEN 5-50

wait function
description, PGM 1-14

wait system call
See also wait.h file
4.2BSD improvement, SYS 1-14

wait.h file
4.2BSD improvement, SYS 5-6

wait3 system call
See also wait.h file
4.2BSD improvement, SYS 1-14

warn option (ex)
description, GEN 3-101

Wasley, D.L.
introduction to f77 I/0 library,

PG M 2-79 to 2-88
wc command (C shell)

4.2 BSD improvements, SYS 1-10
defined, GEN 2-13, 4-74
printing a list of files and, GEN

2-11
WDATA operator (C compiler)

defined, PGM 2-64

lndex-72

Weinberger, P.J., & Feldman, S.I.
Fortran 77 compiler, PGM 2-89 to

2-109
Weinberger, P.J., & others

awk programming language, PGM
3-5 to 3-12

wh command (nroff/troff)
defined, GEN 5-65

whereis
4.2BSD improvement, SYS 1-10

which
4.2BSD improvement, SYS 1-10

while statement (awk)
defined, PGM 3-9

while statement (BC), GEN 2-47
forming, GEN 2-54
writing, GEN 2-47

while statement (C shell)
See also until statement (C shell)
defined, GEN 4-74
description, GEN 4-12 to 4-13
exiting, GEN 4-58
form of, GEN 4-12E
forms of, GEN 4-58

who command
4.2BSD improvement, SYS 1-10
printing list of people logged on,

GEN 2-llE
using, GEN 2-4

Width command (nroff/troff)
See w command (nroff/troff)

winch routine
defined, PGM 4-86

Window
defined, PGM 4-75
description, PGM 4-76
moving, GEN 2-33

window option (ex)
description, GEN 3-101

window option (Mail)
headers command and, GEN 2-30

WINDOW structure
defined, PGM 4-91E
description, PGM 4-76

Word (C shell)
defined, GEN 4-74

Word (nroff/troff)
defined, GEN 5-60

Word abbreviation
See also Macro (vi)
description, GEN 3-69

Word list
specifying for hyphenation, GEN

5-69

Work file
defined, SYS 5-132

Working directory
changing, GEN 4-48
changing background job to

foreground job and, GEN 4-50
changing with programs, GEN

4-50
defined, GEN 4-74
description, GEN 4-48 to 4-50

wq command (ex)
See also xit command (ex)
description, GEN 3-94

wrapmargin option (ex)
3.5 changes, GEN 3-102
description, GEN 3-101

wrapscan option (ex)
description, GEN 3-101

write command (C shell)
defined, GEN 4-74

write command (ed)
See w command (ed)

write command (edit)
See w command (edit)

write command (ex)
See w command (ex)

write command (Mail)
See also save command (Mail)
description, GEN 2-33

write function
description, PGM 1-9

write system call
4.2BSD improvement, SYS 1-14

writeany option (ex)
description, GEN 3-101

writev system call
4.2BSD improvement, SYS 1-14

wtmp file
See also utmp file
4.2BSD improvement, SYS 1-17

x
x command (Mail)

exiting Mail, GEN 2-22
x command (me)

defined, GEN 5-43
entering, GEN 5-29

X command (sed)
defined, GEN 3-113

X command (vi)
defined, GEN 3-80

x command (vi)
defined, GEN 3-81

x option (uucico)
defined, SYS 5-135

x option (uuclean)
defined, SYS 5-138

x option (uucp)
defined, SYS 5-132

x option (uux)
description, SYS 5-133

Xerox Courier protocol
description, SYS 3-17

Xerox experimental Ethernet
controller

See en network interface driver
Xerox NS Sequenced Packet

protocol
sequenced packet socket and, SYS

3-6
Xerox Routing Information Protocol

See routed program
xit command (ex)

See also wq command (ex)
description, GEN 3-94

xi command (me)
defined, GEN 5-45

xp command (me)
defined, GEN 5-43

XP macro
description, GEN 5-18

XS macro
description, GEN 5-18

xtr script file
running, SYS 5-26E

y

Y command (vi)
defined, GEN 3-80
using, GEN 3-62

y operator
See also Y command (vi)
moving blocks of text, GEN 3-62

ya command (ex)
description, GEN 3-95

Yacc
See also Lex program generator
description, PGM 3-79 to 3-111

yank command (ex)
See ya command (ex)

z

z command (DC)
description, GEN 2-59

Index-73

z command (edit)
printing a screen of text, GEN

3-12, 3-13E
z command (ex)

description, GEN 3-95
z command (Mail)

description, GEN 2-33
z command (me)

defined, GEN 5-42
entering, GEN 5-26
specifying fill mode, GEN 5-26

z command (nroff/troff)
creating overstruck characters,

GEN 5-88

Index-74

z command (nroff/troff) (Cont.)
description, GEN 5-68

z command (vi)
defined, GEN 3-81
positioning screen text, GEN 3-64

z option (nroff/troff)
defined, GEN 5-81

Zero
as legal line number, GEN 3-46

ZZ command (vi)
defined, GEN 3-80
description, GEN 3-55

Notes:
\

\

Notes:

