ULTRIX-32"

Supplementary Documents
Volume 3 System Manager

Order Number: AA-MFO8A-TE

ULTRIX-32 Supplementary Documents
System Manager

Order No. AA-MFO8A-TE

ULTRIX-32 Operating System, Version 3.0

Digital Equipment Corporation

Copyright © 1984, 1988 by Digital Equipment Corporation.

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC ULTRIX-32
DECUS UNIBUS
MASSBUS VAX

PDP VMS
ULTRIX

ULTRIX-11 \é’rnannan "

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the Electrical Engineering and Computer Science
Departments at the Berkeley Campus of the University of California for their
role in its development.

iii

This software and documentation is based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. Digital Equipment Corporation acknowledges
the following individuals and institutions for their role in its development:

"The UNIX Time-Sharing System”: Copyright © 1974, Association for Computing Machinery, Inc.
reprinted by permission. This is a revised version of an article that appeared in Communications of the
ACM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version of a paper presnted at the
Fourth ACM Symposium on Operating Systems Principles, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, October 15-17, 1973. Acknowledgements: for their help and support,
R.H. Canaday, R. Morris, M.D. Mcllroy, and J.F. Ossanna.

”Advanced Editing on UNIX” acknowledgement: Ted Dolotta for his ideas and assistance.

”An Introduction to the UNIX Shell” acknowledgements: Dennis Ritchie, John Mashey and Joe Maran-
zano for their help and support.

"LEARN - Computer-Aided Instruction on UNIX” acknowledgements: for their help and support, M.E.
Bittrich, J.L. Blue, S.I. Feldman, P.A. Fox, M.J. McAlpin, E.Z. Rothkopf, Don Jackowski, and Tom
Plum.

”A System for Typesetting Mathematics” acknowledgements: J.F. Ossanna, A.V. Aho, and S.C. Johnson,
for their ideas and assistance.

”A TROFF Tutorial” acknowledgements: J. F. Ossanna, Jim Blinn, Ted Dolotta, Doug Mcllroy, Mike
Lesk and Joel Sturman, for their help and support.

The document "The C Programming Language - Reference Manual” is reprinted, with minor changes,
from "The C Programming Language, by Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall,
Inc., 1978.

"Make - A Program for Maintaining Computer Programs” ackowledgements: S.C. Johnson, and H.
Gajewska, for their ideas and assistance.

"YACC: Yet Another Compiler-Compiler” acknowledgements: B.W. Kernighan, P.J. Plauger, S.I. Feld-
man, C. Imagna, M.E. Lesk, A. Snyder, C.B. Haley, D.M. Ritchie, M.O. Harris and Al Aho, for their
ideas and assistance.

"Lex - A Lexical Analyzer Generator” acknowledgements: S.C. Johnson, A.V. Aho, and Eric Schmidt, for
their help as originators of much of Lex, as well as debuggers of it.

The document "RATFOR - A Preprocessor for a Rational Fortran” is a revised and expanded version of
the one published in Software - Practice and Experience, October 1975. The Ratfor described here is
the one in use on UNIX and GCOS at A T & T Bell Laboratories. Acknowledgements: Dennis Ritchie,
and Stuart Feldman, for their ideas and assistance.

"The M4 Macro Processor” acknowledgements: Rick Becker, John Chambers, Doug Mcllroy, and Jim
Weythman, for the help and support.

"BC - An Arbitrary Precision Desk-Calculator Language” acknowledgement: The compiler is written in
YACSC,; its original version was written by S.C. Johnson.

”A Dial-Up Network of UNIX TM Systems” acknowledgements: G.L. Chesson, A.S. Cohen, J. Lions,
and P.F. Long, for their suggestions and assistance.

Copyright © 1979, 1980 Regents of the University of California. Permission to copy these documents or
any portion thereof as necessary for licensed use of the software is granted to licensees of this software,
provided this copyright notice and statement of permission are included.

The document "Writing Tools - The STYLE and DICTION Programs” is copyrighted ® 1979 by A T &
T Bell Laboratories. Holders of a UNIX TM/32V software license are permitted to copy this document,
or any portion of it, as necessary for licensed use of the software, provided this copyright notice and
statement of permission are included.

iv

The document "The Programming Language EFL” is copyrighted © 1979 by A T & T Bell Laboratories.
EFL has been approved for general release, so that one may copy it subject only to the restriction of giv-
ing proper acknowledgement to A T & T Bell Laboratories.

The documents ”A Portable Fortran 77 Compiler” and "Fsck - The UNIX File System Check Program”
are modifications of earlier documents which are copyrighted © 1979 by A T & T Bell Laboratories.
Holders of a UNIX TM/32V software license are permitted to copy these documents, or any portion of
them, as necessary for licensed use of the software, provided this copyright notice and statement of per-
mission are included. This manual reflects system enhancements made at Berkeley and sponsored in
part by NSF Grants MCS-7807291, MCS-8005144, and MCS-74-07644-A04; DOE Contract DE-AT03-
76SF00034 and Project Agreement DE-AS03-79ER10358; and by Defense Advanced Research Projects
Agency (DoD) ARPA Order No. 4031, monitored by Naval Electronics Systems Command under Con-
tract No. N00039-80-K-0649.

”Ex Reference Manual” acknowledgements: Chuck Haley contributed greatly to the early development
of ex. Bruce Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users see in the present editor. Mark Horton added macros
and other features and made the editor work on a large number of terminals and UNIX systems.

”A Guide to the Dungeons of Doom” acknowledgements: Rogue was originally conceived by Glenn Wich-
man and Michael Toy. Ken Arnold and Michael Toy then smoothed out the user interface, and added
many new features. We would like to thank Bob Arnold, Michelle Busch, Andy Hatcher, Kipp Hickman,
Mark Horton, Daniel Jensen, Bill Joy, Joe Kalash, Steve Maurer, Marty McNary, Jan Miller, and Scott
Nelson for their ideas and assistance.

The document "The FRANZ LISP Manual” is copyrighted © 1980, 1981, 1983 by the Regents of the
University of California. (exceptions: Chapters 13, 14 (first half), 15 and 16 have separate copyrights, as
indicated. These are reproduced by permission of the copyright holders.) Permission to copy without
fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, and the copyright notice of the Regents, University of California, is given. All
rights reserved. Work reported herein was supported in part by the U.S. Department of Energy, Con-
tract DE-AT03-76SF00034, Project Agreement DE-AS03-79ER10358, and the National Science Founda-
tion under Grant No. MCS 7807291. MC68000 is a trademark of Motorola Semiconductor Products, Inc.

"The FRANZ LISP Manual” acknowledgements: Richard Fateman, Mike Curry, John Breedlove, Jeff
Levinsky, Bill Rowan, Tom London, Keith Sklower, Kipp Hickman, Charles Koester, Mitch Marcus,
Don Cohen, John Foderaro, and Kevin Layer.

The document "Berkeley Pascal User’s Manual” is copyrighted © 1977, 1979, 1980, 1983 by W.N. Joy,
S.L. Graham, C.B. Haley, M.K. McKusick, P.B. Kessler. The financial support of the first and second
authors’ work by the National Science Foundation under grants MCS74-07644-A04, MCS78-07291, and
MCS80-05144, and the first author’s work by an IBM Graduate Fellowship are gratefully acknowledged.

“Introduction to the f77 I/O Library” acknowledgement: Peter J. Weinberger originally wrote the 1/0/
Library at A T & T Bell Laboratories.

"Writing Papers with NROFF Using -ME”, and ”"-ME Reference Manual” acknowledgements: Bob
Epstein, Bill Joy, Larry Rowe, Ricki Blau, Pamela Humphrey, and Jim Joyce, for their ideas and assis-
tance. UNIX, NROFF, and TROFF are trademarks of A T & T Bell Laboratories.

"Refer - A Bibliography System” acknowledgements: Mike Lesk of A T & T Bell Laboratories wrote the
original refer software, including the indexing programs. Al Stanberger of the Forestry Department
wrote the first version of addbib, then called bibin. Greg Shenaut of the Linguistics Department wrote
the original versions of sortbib and roffbib.

”Screen Updating and Cursor Movement Optimization: A Library Package” acknowledgements: For
their help and support, Bill Joy, Doug Merritt, Kurt Shoens, Ken Abrams, Alan Char, Mark Horton, and
Joe Kalash.

"Disc Quotas in a UNIX Environment” acknowledgements: Sam Leffler and Kirk McKusick, for their

work on the quota code. The current disc quota system is loosely based on a very early scheme imple-
mented at the University of New South Wales and Syndey University.

The document, "Fsck - The UNIX File System Check Program”, is a revision by Marshall Kirk
McKusick; T.J. Kowalski wrote the original paper. For their help and support, we thank Bill Joy, Sam
Leffler, Robert Elz, Dennis Ritchie, Robert Henry, Larry A. Wehr, and Rick B. Brandt. Our sponsors
were the National Science Foundation under grant MCS80-05144, and the Defense Advance Research
Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command
under Contract No. N00039-82-C-0235.

”A Fast File System for UNIX” acknowledgements: William N. Joy, Samuel J. Leffler, Robert S. Fabry,
Marshall Kirk McKusick, Robert Elz, Michael Powell, Peter Kessler, Rober Henry, and Dennis Ritchie.
This work was done under grants from the National Science Foundation under grant MCS80-05144, and
the Defense Advance Research Projects Agency (DoD) under ARPA No. 4031 monitored by Naval Elec-
tronic System Command under Contract No. N00039-82-C-0235.

”4.2BSD Networking Implementation Notes” acknowledgements: The internal structure of the system is
patterned after the Xerox PUP architecture [Boggs79]. The use of software interrupts for process invo-
cation is based on similar facilities found in the VMS operating system. Many of the ideas are based on
Rob Gurwitz’s TCP/IP implementation for the 4.1BSD version of UNIX on the VAX [Gurwitz81]. Greg
Chesson explained his use of trailer encapsulations in Datakit, instigating their use in our system.

"SENDMAIL - An Internetwork Mail Router” acknowledgements: For their ideas and assistance, Kurt
Shoens, Bill Joy, Mark Horton, Erick Schmidt, Kirk McKusick, Marvin Solomon, Mike Stonebraker, and
Bob Epstein. A considerable part of this work was done while under the employ of the INGRES Project
at the University of California at Berkeley.

vii

BEFORE YOU START

This is the third volume of ULTRIX Supplementary Documents, a three volume set that con-
tains articles describing the ULTRIX-32 system. The authors are computer scientists and
program developers at Bell Laboratories and the University of California at Berkeley. The
articles explain the software tools and utilities available on your ULTRIX-32 system. They
constitute most of the lore that enriches this operating system; topics range from getting
started to the details of screen updating and cursor movement facilities.

Each volume in this set contains several parts, and each part begins with an introduction.
The introduction to each part serves as a map that will help you find your way around in the
documentation, allowing you to select articles that relate to your interest. Each introduction
gives an overview of the material covered in the part and a description of the articles included.
Most readers will not need to read all articles, since many articles cover parallel topics.

These articles provide authoritative and accurate information that is unavailable elsewhere.
However, you should be aware that some of the information in some articles is dated. We
include those articles because many of the concepts they develop are still current and impor-
tant.

At the end of each volume in this set, you will find a master index identifying topics in all
three volumes.

Topics in Volume III

The articles in this third volume are written for people responsible for the installation,
administration, and daily maintenance of the ULTRIX-32 system. “Bug Fixes and Changes in
4.2BSD,” in Part 1, lists changes in directories, libraries, and utilities between the 4.1BSD
software and ULTRIX-32 (based on 4.2BSD).

“A Fast File System for UNIX,” by McKusick, Joy, Leffler, and Fabry, compares the new file
system used in ULTRIX-32 with the original UNIX file system. The new system is faster and
more reliable, and the block size is adjustable. The article also explains considerations and
procedures that will help you take full advantage of these improvements.

The articles in Part 2, Maintenance and Administration, deal with disk quotas, fixing cor-
rupted file systems, and management of the sendmail utility. The quota utility enables the
system manager to limit the number of blocks and the number of files available to each user.
Fsck, the file system check program, lets you examine the integrity of the file system and
repair any inconsistencies. The sendmail utility lets users send messages between computer
systems that are connected to different networks.

Articles in Part 3, Communication, explain the interprocess communication software. Articles
in Part 4, Security Considerations, offer a variety of tips on how you can protect your system
against crashes and unauthorized access. And Part 5, Supporting Documents, provides infor-
mation on software changes new to this release.

Table of Contents ix

BEFORE YOU START
PART 1: OPERATING SYSTEM CHANGES

BUG FIXES AND CHANGES IN 4.2BSD

NOTABLE IMPROVEMENTS. e e e e e e e s e e e 1-3
Section 1. L e e e e e e e e e e 1-5
Section 2. L e e e e e e e e e e s e e e 1-10
Section 3. e e e e e e e e e e e 1-14
Section 4. L L e e e e e e e e e e e e 1-15
Section 5. L L e e e e e e e e e 1-16
Section 6. L e e e e e e e e e e 1-17
Section 7. L L e e e e e e e e e e 1-17
Section 8. e e e e e e e e e 1-18

A FAST FILE SYSTEM FOR UNIX

INTRODUCTION s e e e e e 1-23
OLD FILE SYSTEM e s e e e e e s s e 1-25
NEW FILE SYSTEM ORGANIZATION« v v v o v oo 1-26
Optimizing Storage Utilization 1-26
File System Parameterization e 1-28
Layout Policies. e e e e e e e e e e e 1-29
PERFORMANCE e e e e e s e s e e e e e e 1-31
FILE SYSTEM FUNCTIONAL ENHANCEMENTS 1-33
Long File Names e e e e 1-33
File Locking e e e e e e e e e 1-33
Symbolic Links. e e e e e 1-34
Rename e e e e e e e e e 1-35
Quotas. e e e e e [1-35
SOFTWARE ENGINEERING 0 e e e e e e e e 1-36

PART 2: MAINTENANCE AND ADMINISTRATION

DISC QUOTAS IN A UNIX ENVIRONMENT

USERS’ VIEW OF DISC QUOTAS. e e e e e e e e e 2-3
Surviving When Quota Limit Is Reached. 2-3
ADMINISTERING THE QUOTA SYSTEM« v .. 2-4

SOME IMPLEMENTATION DETAIL v v 2-5

x Table of Contents

FSCK - THE UNIX FILE SYSTEM CHECK PROGRAM

INTRODUCTION o o o e s e e e d e e e s 2-7
OVERVIEW OF THE FILE SYSTEM e 2-8
Superblock L e e 2-8
Summary Information Lo 2-8
Cylinder Groups o o i e e e e e e e e e 2-8
Fragments L e e e e e e e e e e 2-9
Updates to the File Systemo 2-9
FIXING CORRUPTED FILE SYSTEMS« 2-10
Detecting and Correcting Corruption.o 2-10
Super-Block Checkingo e 2-10
Free Block Checkingo 2-10
Checking the Inode State 2-11
Inode Links L 2-11
Inode Data Size e e e e e e 2-12
Checking the Data Associated withanInode. 2-12
File System Connectivity e e 2-12
APPENDIX A: FSCK ERROR CONDITIONS. 2-14
Conventions e e e e e e e 2-14
Initialization L L e e e e 2-14
Phase 1 - Check Blocks and Sizes 2-16
Phase 2 - Check Pathnames. 2-18
Phase 3 - Check Connectivity o oo e 2-21
Phase 4 - Check Reference Counts. 2-22
Phase 5 - Check Cyl Groups« o o v i v vt 2-24
Phase 6 - Salvage Cylinder Groups« . o v oo 2-25
Cleanup e e e e e e 2-25

SENDMAIL INSTALLATION AND OPERATION GUIDE

BASIC INSTALLATION. e e e s s e s e e 2-27
Off-the-Shelf Configurations. 2-28
Installation Using the Makefile 2-28
Installation by Hand o 2-28

lib/libsys.a e 2-28
fusr/lib/sendmail. L L e 2-29
/usr/lib/sendmail.cf L L e 2-29
fusr/ucb/mewaliases e e e e 2-29
fusr/lib/sendmail.cf L e e 2-29
fusr/spool/mqueue e e e e .. 2229
fusr/lib/aliases L e e e 2-29
fusr/lib/sendmail.fc e 2-30
fete/re. . .. e 2-30
fusr/lib/sendmail.hf 2-30
fusr/lib/sendmail.st Lo 2-30
fete/syslog. L e e e 2-30
fusr/ucb/newaliases e e e 2-31

fust/ucb/mailq. e e 2-31

Table of Contents xi

NORMAL OPERATIONS e e e e e e e e e e e e 2-31
Quick Configuration Startupo L. 2-31
The System Log e e e e e e e 2-31

Format e e e e e e 2-31
Levels. e e e e e e 2-31
The Mail Queue e e e e e e e e 2-31
Printing the Queue 2-31
Format of Queue Files 2-32
Forcing the Queue. e e e e e 2-33
The Alias Database. e e e e e e 2-34
Rebuilding the Alias Database 2-34
Potential Problems00 2-34
List Owners e e e e e e e 2-35
Per-User Forwarding (.forward Files). 2-35
Special Header Lines e 2-35
Return-Receipt-To: e e e 2-35
Errors-To:. e e e 2-35
Apparently-To:o 2-35

ARGUMENTS e 2-35
Queue Intervalo Y. .. 2-36
Daemon Mode e e e e e e 2-36
Forcing the Queue L 2-36
Debugging e e e e e 2-36
Trying a Different Configuration File 2-36
Changing the Values of Options v v v v v v v 2-36

TUNING o e e e e s e e e 2-37
TIMEOULS. . . . o o e e 2-37

Queue Interval L 2-37
Read Timeouts e e e e e 2-37
Message Timeouts. e e e 2-37
Delivery Mode e e e e e e 2-37
Log Level e e e 2-38
File Modes. e e e e 2-38
To Suid or Not To Suid?. 2-38
Temporary File Modes.o 2-38
Should My Alias Database Be Writable? 2-38
THE WHOLE SCOOP ON THE CONFIGURATION FILE 2-39
The Syntax e e e e e e e e e e 2-39
Rand S-RewritingRules. 2-39
D - Define Macro e e e e e 2-40
Cand F - Define Classes. 2-40
M - Define Mailer.o 2-40
H - Define Header. e 2-40
O-Set Option e e e e e e e e 2-41
T - Define Trusted Users v v .. 2-41

P - Precedence Definitionso e 2-41

xii Table of Contents

SENDMAIL INSTALLATION AND OPERATION GUIDE (continued)

The Semantics e e e e e 2-41
Special Macros, Conditionals. 2-41

Special Classes v e e e e e e 2-43

The Left Hand Side e 2-43

The Right Hand Side 2-44
Semantics of Rewriting Rule Sets. 2-44

Mailer Flags Etc. e e e 2-45

The “Error” Mailer e e 2-45

Building a Configuration File From Scratch 2-45
What You Are Trying ToDo 2-45
Philosophy e e e e e e e 2-46

Large Site, Many Hosts -~ Minimum Information. 2-46

Small Site - Complete Information 2-47

Single Host. e e 2-47

Relevant Issues e 2-47

How To Proceed. e e e 2-48

Testing the Rewriting Rules - The -bt Flag. 2-48

Building Mailer Descriptions0 2-48
APPENDIX A: COMMAND LINE FLAGS 2-51
APPENDIX B: CONFIGURATION OPTIONS 2-52
APPENDIX C: MAILER FLAGS. e e e e e e 2-54
APPENDIX D: OTHER CONFIGURATION oo 2-56
Parameters in md/config.m4. e 2-56
Parameters in src/confh oL L L L 2-56
Configuration in src/conf.c L L. e e e 2-57
APPENDIX E: SUMMARY OF SUPPORT FILES. 2-60

PART 3: COMMUNICATIONS

A 4.2BSD INTERPROCESS COMMUNICATION PRIMER

INTRODUCTION s e s s e e s s e 3-5
BASICS. . . . e e e e e s e 3-6
Socket Types. e e e e 3-6
Socket Creation e e e e 3-7
Binding Names. e 3-7
Connection Establishment. 3-8
Data Transfer e e e e 3-9
Discarding Sockets L., e e e e e 3-10
Connectionless Sockets e 310
Input/Output Multiplexing 3-11
NETWORK LIBRARY ROUTINES e e 3-12
Host Names e e e e e e e 3-12
Network Names e e e e e e e 3-13
Protocol Names. 3-13
Service Names e e e e e e e e e 3-14

Miscellaneous L e e e e e e 3-14

CLIENT/SERVER MODEL e e e e 3-17
Servers. o e e e e 3-17
Clients. e e e e e e s e 3-19
Connectionless Servers e e e e e 3-20

ADVANCED TOPICS e e e s e e 3-23
Outof Band Data 3-23
Signals and Process Groups0 e e e 3-23
Pseudo Terminals. e e e e 3-24
Internet Address Binding L. e e 3-24
Broadcasting and Datagram Sockets. 3-27
Signals. L e e e e e e e e 3-27

4.2BSD NETWORKING IMPLEMENTATION NOTES

INTRODUCTION s e e e e e s s s 3-29
OVERVIEW. e e e e 3-30
GOALS e e e e e 3-31
INTERNAL ADDRESS REPRESENTATION. 3-32
MEMORY MANAGEMENT. oo e 3-33
INTERNAL LAYERING. o e e 3-35
Socket Layer e e e e e 3-35
Socket State. L e e e 3-36

Socket Data Queues 3-36

Socket Connection Queueingo 3-37

Protocol Layer(s) e e e 3-37
Network-Interface Layero 3-39
UNIBUS Interfaces v v v it e e 3-40
SOCKET/PROTOCOL INTERFACE. e o 3-42
PROTOCOL/PROTOCOL INTERFACE e . 3-45
proutput L. e e e e e e e e e e e e e e e 3-45
Pr—input L e e e e e e e e e e e e e e e e 3-45
pr—ctlinput L L L e e e e e 3-45
pr—ctloutput. L e e e e e 3-46
PROTOCOL/NETWORK-INTERFACE INTERFACE. 3-47
Packet Transmission e e e e 3-47
Packet Reception. 3-47
GATEWAYS AND ROUTING ISSUES. o o e e e e e 3-48
Routing Tables e 3-48
Routing Table Interface. 3-49
User Level Routing Policies 3-49
RAW SOCKETS e s e e s s e s e e e 3-51
Control Blocks e e 3-51
Input Processing e 3-51

Output Processing 0 0 e e e e e e e e e e e e e 3-52

xiv Table of Contents

4.2BSD NETWORKING IMPLEMENTATION NOTES (continued)

BUFFERING AND CONGESTION CONTROL. 3-53
Memory Management. e e e e e e e e 3-53
Protocol Buffering Policies e 3-53
Queue Limiting. 3-53
Packet Forwardingo 3-54

OUT OF BAND DATA e e e e e e e e 3-55

TRAILER PROTOCOLS. e e e e e e e 3-56

SENDMAIL: AN INTERNETWORK MAIL ROUTER

DESIGN GOALS e e e e 3-60
OVERVIEW. s e e e e e s e e 3-61
System Organization e e e e e e e 3-61
Interfaces to the Outside World 3-61
Argument Vector/Exit Status.00 3-62

SMTP Over Pipes« o o i e e e e e e e 3-62

SMTP Over an IPC Connection 3-62
Operational Description. 0 e e e e e e 3-62
Argument Processing and Address Parsing 3-62

Message Collection 3-62

Message Delivery 3-63

Queueing for Retransmissiono 3-63

Return ToSender e 3-63

Message Header Editing e 3-63
Configuration File e 3-63
USAGE AND IMPLEMENTATION v it 3-63
Arguments L L L L e e e e 3-63
Mail to Files and Programs 3-64
Aliasing, Forwarding, Inclusion, 3-64
Aliasing. L e e e 3-64
Forwarding e 3-64

Inclusion e 3-65

Message Collection L e e 3-65
Message Delivery L e e 3-65
Queued Messages. L. 0 e e e e e e e e e e e 3-65
Configuration. e e e e e e e e e 3-65
Macros e e e e e e e e e 3-66

Header Declarations 3-66

Mailer Declarations e e e e e 3-66

Address Rewriting Rules 0000 3-66

Option Setting. O e e e e e e e e e e 3-67
COMPARISON WITH OTHER MAILERS 3-67
Delivermail. e e e e e 3-67
MMDF . . e e e e e e e 3-67
Message Processing Moduleo 3-68

Table of Contents xv

PART 4: SECURITY CONSIDERATIONS
ON THE SECURITY OF UNIX

PASSWORD SECURITY: A CASE HISTORY

INTRODUCTION e e e e e e s e s e s e e s s s s e e 4-7
PROLOGUE e e s e e e e e s e e e e 4-8
THE FIRST SCHEME e e e e e e e 4-8
ATTACKS ON THE FIRST APPROACH 4-8
AN ANECDOTE e e e e 4-10
IMPROVEMENTS TO THE FIRST APPROACH. 4-10
Slower Encryption L. 4-10
Less Predictable Passwords 4-10
Salted Passwords 4-11
The Threat of the DES Chip 4-11
A Subtle Paint L. e e e e e e e e 4-11
CONCLUSIONS 4-12

PART 5: SUPPORTING DOCUMENTS

CHANGES TO THE KERNEL IN 4.2BSD

CARRYING OVER LOCAL SOFTWARE., 5-3
ORGANIZATIONAL CHANGES. e e e e 5-4
BUG FIXES AND CHANGES o o s e e 5-5
fsys/h o o 5-5
JSYSISYS o o e e e e 5-7
Initialization Code. Lo 5-8
Kernel-Level Support e e e 5-8

Disk Quotas. e e e e e e e e 5-9

General Subroutines L 5-9

System Level Supporto e e 5-9

Terminal Handlingo 5-9

File System Support. 5-9
Interprocess Communication 5-10

Virtual Memory Support. e e e e 5-10

[sys/conf L 5-11
fsys/vaxuba. L e e 5-12
JSYS/VAX . . . L e e e e e 5-13
fsys/vaxmba L L L e e 5-14
STANDALONE SUPPORT o e 5-15
Disk Formatting e e e 5-15
Standalone I/O Library o 5-15

System Bootstrapping. L L e e e e e e e e e e e 5-15

xvi Table of Contents

INSTALLING AND OPERATING 4.2BSD ON THE VAX

INTRODUCTION e e e e e e e e e s e 5-17
Hardware Supported e e e e e 5-17
Distribution Format e e e e e e 5-18
VAX Hardware Terminology e 5-18
UNIX Device Naming 0 v v i e e e e e e e e e e 5-19
UNIX Devices: Blockand Raw 5-20

BOOTSTRAP PROCEDURE. e e e e 5-22
Step 1: Formatting the Disk. 5-22
Step 2: Copying the Mini-Root File System 5-24
Step 3: Booting from the Mini-Root File System 5-25
Step 4: Restoring the Root File System 5-26
Step 5: Creating a Boot Floppy or Cassette 5-27
Rebooting the Completed Root File System 5-27
Step 7: Setting Up the /usr File System 5-28
Additional Software. e 5-31

UPGRADING A 4BSD SYSTEM. o e e e e 5-32
Step 1: What To Save e e 5-32
Step 2: Merging e e e e e e e e e e e e e 5-33
Step 3: Converting File Systems. 5-34
Bootstrapping Language Processors 00 5-34

SYSTEM SETUP e e e e e e e e 5-35
Making a UNIX Boot Floppy v e e 5-35
Making a UNIX Boot Cassette v v v v v v e 5-35
Kernel Configuration e 5-36

Kernel Organization . 5-36
Devices and Device Drivers. 5-37
Building New System Images. 5-37
Disk Configuration e 5-37
Initializing /etc/fstab. 5-38

Disk Naming and Divisions 5-38
Space Available e 5-38
Layout Considerations e 5-39

File System Parameters 5-40
Implementing a Layout, 5-42
Configuring Terminals e 5-42
o= Adding USEIS. .« 0 0 0 0 0 o s e e e e e e e e e e e e e e e e e e e 5-43
Site Tailoring e e e e e 5-43
Setting Up the Line Printer System 5-44
Setting Up the Mail System., 5-44
Setting Up a UUCP Connection v v v 5-45

NETWORK SETUP. e e e d 5-47
System Configuration. e 5-47
Network Data Baseso 5-48

Regenerating /etc/hosts and /ete/metworks 5-48
fetc/hosts.equiv L L L L e e e e e 5-49
fete/redocal . .. L L L L L e e 5-49

Jete/fEpusers 5-50

SYSTEM OPERATION o e e e s s e e e s e e 5-52
Bootstrap and Shutdown Procedures. oo 5-52
Device Errors and Diagnostics.o o0 5-53
File System Checks, Backups and Disaster Recovery 5-53
Moving Filesystem Data Lo 5-54
Monitoring System Performance.o 5-54
Recompiling and Reinstalling System Software. 5-55
Making Local Modifications.o 5-56
Accounting. L L L e e e e e e e e 5-56
Resource Controlo 5-56
Network Troubleshooting 5-57
Files Which Need Periodic Attention 5-57

APPENDIX A: BOOTSTRAP DETAILS o v e e et 5-59
Contents of the Distribution Tapes 5-59
Control Status Register Addresses 5-64
Generic System Control Status Register Addresses 5-64

APPENDIX B: LOADING THE TAPE MONITOR 5-65

APPENDIX C: INSTALLATION TROUBLESHOOTING 5-69
Using the Distribution Console Medium 5-69
Booting the Generic System. L. e e e e e e e e e 5-70
Building Console Cassettes e 5-71

BUILDING 4.2BSD SYSTEMS WITH CONFIG

INTRODUCTION e s s s e s s 5-73
CONFIGURATION FILE CONTENTS. o o e e . 5-74
Machine Type e e e e e 5-74
CpuType e e e 5-74
System Identification e 5-74
Timezone L. e e e 5-74
Maximum Number of Users.o 5-74
Root File System Location 5-75
Hardware Devices s s 5-T75
Optional Ttems e e 5-75
SYSTEM BUILDING PROCESS. e e e e e, 5-76
Creating a Configuration File, 5-76
Constructing Source Code Dependencies 5-77
Building the System e e e e e 5-77
Sharing Object Modules 5-77
Building Profiled Systems.o e 5-78
CONFIGURATION FILE SYNTAX o o e e . 5-79
Global Configuration Parameters 5-79
System Image Parameters.o 5-80
Device Specifications e e e 5-81

Pseudo-Devices. e s 5-82

xviii Table of Contents

BUILDING 4.2BSD SYSTEMS WITH CONFIG (continued)

SAMPLE CONFIGURATION FILES.

VAX-11/780 System o e e e e e e e e e e e e
VAX-11/750 with Network Support
Miscellaneous Comments e

ADDING NEW SYSTEM SOFTWARE.

Modifying System Code. e e e e e e e e
Adding Device Drivers to 4.2BSDo
Autoconfiguration on the VAXo Lo
UNIBUS Resource Management Routines
Autoconfiguration Requirements.o
Adding Nonstandard System Facilities.

APPENDIX A: CONFIGURATION FILE GRAMMAR
Lexical Conventions e e e e

APPENDIX B: RULES FOR DEFAULTING SYSTEM DEVICES
APPENDIX C: SAMPLE CONFIGURATION FILES
APPENDIX D: VAX KERNEL DATA STRUCTURE SIZING RULES.

Compile Time Rules oo
Run-Time Calculations e
System Size Limitations e

SETTING UP VERSION 1.0 OF UNIX/32V OPERATING SYSTEM

MAKING ADISK FROM TAPE. e
BOOTING UNIX o e s e e e e
RECONFIGURATION. o e e e e
SPECIAL FILES e

REGENERATING SYSTEM SOFTWARE FOR UNIX/32V

INTRODUCTION e e
WHERE COMMANDS AND SUBROUTINES LIVE
COMMANDS e e

OTHER LIBRARIES e
SYSTEM TUNING e e e

Table of Contents xix

A DIAL-UP NETWORK OF UNIX SYSTEMS

PURPOSE e e e e e e e e - . 5-123
DESIGN GOALS e e e e e e e 5-123
PROCESSING s e e e e e e e 5-125
File Copy e 5-125
Scan for Work e e 5-125
Call Remote System e e e e e e e e e 5-125
Line Protocol Selection e 5-126
Work Processing L e e e e e e e 5-126
Conversation Termination. e 5-126
PRESENT USES e e e e e 5-126
PERFORMANCE e e e e e e e 5-127
FURTHER GOALS e e e e e e e e 5-128
LESSONS e e s 5-128

UUCP IMPLEMENTATION DESCRIPTION

UUCP-UNIXTOUNIX FILECOPY 5-131
UUX - UNIX TO UNIX EXECUTION. v 5-133
UUCICO - COPY IN, COPY OUT e i it e e e 5-134
uuXQT - UUCP COMMAND EXECUTION. 5-137
UULOG - UUCP LOG INQUIRY o oo i e 5-137
UUCLEAN - UUCP SPOOL DIRECTORY CLEANUP 5-137
SECURITY o e e 5-138
UUCP INSTALLATION oo e e e e 5-138

Introduction 1-1

PART 1: OPERATING SYSTEM CHANGES

The two articles in Part 1 deal with the differences between the 4.2BSD UNIX system (the
ULTRIX-32 system is based on 4.2BSD) and earlier versions of UNIX. “Bug Fixes and
Changes in 4.2BSD” gives a comprehensive list of improvements to the system including:

e A new set of interprocess communication facilities
e A new signal package
* Support for advisory locking on files
e Per-user and per-file system disk quotas
¢ A new symbolic debugger, dbx, for C and Fortran programs
e A new internetwork mail router, sendmail
Changes to specific software tools and commands are listed alphabetically.

“A Fast File System for UNIX,” by McKusick, Joy, Leffler, and Fabry, explains the new file
system in detail. This file system is specifically designed for the VAX hardware; it is available
only on 4.2BSD and the ULTRIX-32 system. The article is essential to people responsible for
management and administration of ULTRIX-32 systems.

The new file system, unlike the original UNIX file system, allows you to select a block size.
The block size can be 4096 bytes or any power of 2 greater than 4096; you must choose the
size when you create the file system. You can optimize the disk usage and file transfer rates
on your ULTRIX-32 system by choosing a block size that:

e Matches the physical characteristics of your disk drives
e Is appropriate for your applications
The article also explains use of:

e A file-locking facility that allows cooperating programs to apply advisory locks on
files

* Symbolic links that allow references across separate physical file systems
¢ A rename facility that replaces three system calls with one

e A quota utility that allows the system administrator to set limits on the number of
blocks and the number of files available to each user

You can find more detailed information on the quota utility in “Disk Quotas in a UNIX
Environment” in Part 2 of this volume.

Bug Fixes and Changes in 4.2BSD 1-3

Bug fixes and changes in 4.2BSD
Samuel J. Leffler

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720
(415) 642-7780

Notable improvements

The file system organization has been redesigned to provide at least an order of magni-
tude improvement in disk bandwidth.

The system now provides full support for the DOD Standard TCP/IP network communi-
cation protocols. This support has been integrated into the system in a manner which
allows the development and concurrent use of other communication protocols. Hardware
support and routing have been isolated from the protocols to allow sharing between
varying network architectures. Software support is provided for 10 different hardware
devices including 3 different 10 Mb/s Ethernet modules.

A new set of interprocess communication facilities has replaced the old multiplexed file
mechanism. These new facilities allow unrelated processes to exchange messages in
either a connection-oriented or connection-less manner. The interprocess communica-
tion facilities have been integrated with the networking facilities (described above) to
provide a single user interface which may be used in constructing applications which
operate on one or more machines.

A new signal package which closely models the hardware interrupt facilities found on the
VAX replaces the old signals and jobs library of 4.1BSD. The new signal package pro-
vides for automatic masking of signals, sophisticated signal stack management, and reli-
able protection of critical regions.

File names are now almost arbitrary length (up to 255 characters) and a new file type,
symbolic link, has been added. Symbolic links provide a “symbolic referencing” mechan-
ism similar to that found in Multics. They are interpolated during pathname expansion
and allow users to create links to files and directories which span file systems.

The system supports advisory locking on files. Files can have “shared” or “exclusive”
locks applied by processes. Multiple processes may apply shared locks, but only one pro-
cess at any time may have an exclusive lock on a file. Further, when an exclusive lock is
present on a file, shared locks are disallowed. Locking requests normally block a process
until they can be completed, or they may be indicated as “non-blocking” in which case
an error is returned if the lock can not be immediately obtained.

The group identifier notion has been extended to a “group set”. When users log in to
the system they are placed in all their groups. Access control is now done based on the
group set rather than just a single group id. This has obviated the need for the newgrp
command.

Per-user, per-filesystem disk quotas are now part of the system. Soft and hard limits
may be specified on a per user and per filesystem basis to control the number of files and

1-4 Bug Fixes and Changes in 4.2BSD

amount of disk space allocated to a user. Users who exceed a soft limit are warned and
if, after three login sessions, their disk usage has not dropped below the soft limit, their
soft limit is treated as a hard limit. Utilities exist for the creation, maintenance, and
reporting of disk quotas.

. System time is now available in microsecond precision and millisecond accuracy. Users
are provided with 3 high-resolution timers which may be set up to automatically reload
on expiration. The timers operate in real time, user time, and process virtual time (for
profiling). All statistics and times returned to users are now given in a standard format
with seconds and microseconds separated. This eliminates program dependence on the
line clock frequency.

. A new system call to rename files in the same file system has been added. This call
eliminates many of the anomalies which could occur in older versions of the system due
to lack of atomicity in removing and renaming files.

. A new system call to truncate files to a specific length has been added. This call
improves the performance of the Fortran I/O library.

. Swap space configuration has been improved by allowing multiple swap partition of
varying sizes to be interleaved. These partitions are sized at boot time to minimize
configuration dependencies.

. The Fortran 77 compiler and associated I/0 library have undergone extensive changes to
improve reliability and performance. Compilation may, optionally, include optimization
phases to improve code density and decrease execution time.

. A new symbolic debugger, dbx, replaces the old symbolic debugger sdb. Dbx works on
both C and Fortran 77 programs and allows users to set break points and trace execution
by source code line numbers, references to memory locations, procedure entry, etc. Dbx
allows users to reference structured and local variables using the program’s programming
language syntax.

. The delivermail program has been replaced by sendmail. Sendmail provides full inter-
network routing, domain style naming as defined in the DARPA Request For Comments
document #833, and eliminates the compiled in configuration database previously used
by delivermail. Further, sendmail uses the DARPA standard Simple Mail Transfer Pro-
tocol (SMTP) for mail delivery.

. The system contains a new line printer system. Multiple line printers and spooling
queues are supported through a printer database file. Printers on serial lines, raster
printing devices, and laser printers are supported through a series of filter programs
which interface to the standard line printer “core programs”. A line printer control pro-
gram, lpc, allows printers and printer queues to be manipulated. Spooling to remote
printers is supported in a transparent fashion.

. Cu has been replaced by a new program tip. Tip supports a number of auto-call units
and allows destination sites to be specified by name rather than phone number. Tip also
supports file transfer to non-UNIX machines and can be used with sites which require
half-duplex and/or odd-even parity.

. Uucp now supports many auto-call units other than the DN11. Spooling has been reor-
ganized into multiple directories to cut down on system overhead. Several new utilities
and shell scripts exist for use in adminstrating uucp traffic. Operation has been greatly
improved by numerous bug fixes.

adb

addbib

apply
ar

cc

chfn
chgrp

cp
csh

ctags
cu
dbx

Bug Fixes and Changes in 4.2BSD 1-5

Bug fixes and changes
Section 1

Support has been added for interpreting kernel data structures on a running sys-
tem and in post mortem crash dumps created by savecore. A —k option causes
adb to map addresses according to the system and current process page tables. A
new command, $p, can be used to switch between process contexts. Many scripts
are available for symbolically displaying kernel data structures, searching for a
process’ context by process ID, etc. A new document, “Using ADB to Debug the
UNIX Kernel”, supplies hints in the use of adb with system crash dumps.

Is a new utility for creating and extending bibliographic data bases for use with
refer.

Is a new program which may be used to apply a command to a set of arguments.

Has a new key, ‘0’, for preserving a file’s modification time when it is extracted
from an archive.

Supports the additional symbol information used by dbx. The old symbol infor-
mation, used by the defunct sdb debugger, is available by specifying the —go flag.
A new flag, —pg, creates executable programs which collect profiling information
to be interpreted by the new gprof program. A bug in the C preprocessor, which
caused line numbers to be incorrect for macros with formal parameters with
embedded newlines has been fixed. The C preprocessor now properly handles
hexadecimal constants in “#if” constructs and checks for missing “#endif” state-
ments.

Now works interactively in changing a user’s information field in the password file.

Is now in section 1 and may be executed by anyone. Users other than the super-
user may change group ownership of a file they own to any group in their group
access list.

Now has a —r flag to copy recursively down a file system tree.

A bug which caused backquoted commands to wedge the terminal when inter-
rupted has been fixed. Job identifiers are now globbed. A bug which caused the
“wait” command to uninteruptible in certain cases has been fixed. History may
now be saved and restored across terminal sessions with the savehist variable.
The newgrp command has been deleted due to the new group facilities.

Now handles C typedefs.

Exists only in the form of a “compatible front-end” to the new tip program.

Is a new symbolic debugger replacing sdb. Dbx handles C and Fortran programs.

delivermail

df
du
dump

error
eyace

Has been replaced by the new sendmail program.

Understands the new file system organization and reports all disk space totals in
kilobytes.

Now reports disk usage in kilobytes and uses the new field in the inode structure
which contains the actual number of blocks allocated to a file to increase accuracy
of calculations.

Has been moved to section 8.
Has been taught about the error message formats of troff.

A bug which caused the generated parser to not recognize valid null statements
has been fixed.

1-6 Bug Fixes and Changes in 4.2BSD

£77

fed
file
find

fp
fpr

fsplit
ftp

gcore
gprof

groups
hostid

hostname

indent
install
iostat

last

Has undergone major changes.

The i/o library has been extensively tested and debugged. Sequential files are
now opened at the BEGINNING by default; previously they were opened at the
end.

Compilation of data statements has been substantially sped up. Significant new
optimization is optionally available (this is still a bit buggy and should be used
with caution). Even without optimization, however, single precision computations
execute much faster.

The new debugger, dbx, has replaced sdb for debugging Fortran programs; sdb is
no longer supported.

Files with “.F” suffixes are preprocessed by the C preprocessor. This allows C-
style “#include” and “#define” constructs to be used. The compiler has been
modified to print error messages with sensible line numbers. Make also under-
stands the “.F” suffix. Note that when using the C preprocessor, the 72 column
convention is not followed.

The —I option for specifying short integers has been changed to —i. The —I
option is now used to specify directory search paths for “#include” statements. A
—pg option for creating executable images which collect profiling information for
gprof has been added.

Is a font editor of dubious value.
Now understands symbolic links.
Has a new —type value, ‘I, for finding symbolic links.

Is a new compiler/interpreter for the Functional Programming language. A sup-
porting document is present in Volume 2C of the UNIX Programmer’s Manual.

Is a new program for printing Fortran files with embedded Fortran carriage con-
trols.

Is a new program for splitting a multi-function Fortran file into individual files.
Is a new program which supports the ARPA standard File Transfer Protocol.
Is a new program which creates a core dump of a running process.

Is a new profiling tool which displays execution time for the dynamic call graph of
a program. Gprof works on C, Fortran, and Pascal programs compiled with the
—pg option. Gprof may also be used in creating a call graph profile for the
operating system. A supporting document, “gprof: A Call Graph Execution
Profiler” is included in Volume 2C of the UNIX Programmer’s Manual.

Is a new program which displays a user’s group access list.

Is a new program which displays the system’s unique identifier as returned by the
new gethostid system call. The super-user uses this program to set the host
identifier at boot time.

Is a new program which displays the system’s name as returned by the new
gethostname system call. The super-user uses this program to set the host name
at boot time.

Is a new program for formatting C program source.
Is a shell script used in installing software.

Now reports kilobytes per second transferred for each disk. This is useful as the
unit of information transferred is no longer a constant one kilobytes.

Now displays the remote host from which a user logged in (when a}ccessing a
machine across a network). The pseudo user “ftp” may be specified to find out
information about FTP file transfer sessions.

Bug Fixes and Changes in 4.2BSD 1-7

lastcomm Now displays flags for each command indicating if the program dumped core, used

learn
lint
lisp
In
login

Ipq
Ipr

Iprm
Is

make

mkdir
mt

net

netstat
oldcsh
od
pagesize

PDP-11 mode, executed with a set-user-ID, or was created as the result of a fork
(with no following exec).

Now has lessons for vi (this is user contributed software which is not part of the
standard system).

Has a new —C flag for creating lint libraries from C source code. Has improved
type checking on static variables.

Has been ported to several 68000 UNIX systems, the relevant code is included in
the distribution. A new vector data type and a form of “closure” have been
added.

Has a new flag, —s, for creating symbolic links.

Has been extensively modified for use with the rlogind and telnetd network
servers.

Is totally new, see lpr.

And its related programs are totally new. The line printer system supports multi-
ple printers of many different characteristics. A master data base, /etc/printcap,
describes both local printers and printers accessable across a network. A docu-
ment describing the line printer system is now part of Volume 2C of the UNIX
Programmer’s Manual.

Is totally new, see lpr.

Has been rewritten for the new directory format. It understands symbolic links
and uses the new inode field which contains the actual number of blocks allocated
to a file when the —s flag is supplied. Many rarely used options have been
deleted.

A bug which caused m4 to dump core when keywords were undefined then
redefined has been fixed.

Now supports mail folders in the style of the Rand MH system. Has been
reworked to cooperate with sendmail in understanding the new mail address for-
mats. Allows users to defined message header fields which are not be displayed
when a messages is viewed. Many other changes are described in a revised version
of the user manual.

Understands not to unlink directories when interrupted. Understands the new
“F” suffix for Fortran source files which are to be run through the C preprocessor.
Has a new predefined macro MFLAGS which contains the flags supplied to make
on the command line (useful in creating hierarchies of makefiles).

Now uses the mkdir system call to run faster.
Has a new command, status, which shows the current state of a tape drive.

Has been rewritten to use the new rename system call. As a result, multiple direc-
tories may now be moved in a single command, the restrictions on having “..” in a
pathname are no longer present, and everything runs faster.

And all related Berknet programs are no longer part of the standard distribution.
These programs live on in /usr/src/old for those who can not do without them.

Is a new program which displays network statistics and active connections.
No longer exists.
Has gobs of new formats options.

Is a new program which prints the system page size for use in constructing port-
able shell scripts.

1-8 Bug Fixes and Changes in 4.2BSD

passwd

pc/pi

pc

pdx

ps

pwd
rep

refer
reset

rlogin

rmdir

roffbib
rsh
ruptime

rwho

script

sdb
sendbug

sh

Now reliably interlocks with chsh, chfn, and vipw, in guarding against concurrent
updates to the password file.

For loops are now done according to the standard. Files may now be dynamically
allocated and disposed. Records and variant records are now aligned to
correspond to C structures and unions (this was falsely claimed before). Several
obscure bugs involving formal routines have been fixed. Three new library rou-
tines support random access file i/o, see /usr/include/pascal for details.

For loop variables and with pointers are now allocated to registers. Separate
compilation type checking can now be done without reference to the source file;
this permits movement (including distribution) of .o files and creation of libraries.
Display entries are saved only when needed (a speed optimization).

Is a new debugger for use with pi. Pdx is invoked automatically by the inter-
preter if a run-time error is encountered. Future work is planned to extend the
new dbx debugger to understand code generated by the Pascal compiler pc.

Has been changed to work with the new kernel and is no longer dependent on sys-
tem page size. All process segment sizes are now shown in kilobytes. Understands
that the old “using new signal facilities” bit in the process structure now means
“using old 4.1BSD signal facilities”.

Now simply calls the getwd (3) routine.

Is a new program for copying files across a network. The complete syntax of cp is
supported, including recursive directory copying.

Has had many bugs fixed in it and the associated —ms macro package support
made to work.

Now resets all the special characters to the system defaults specified in the
include file <sys/ttychars.h>.

Is a new program for logging in to a machine across a network. Rlogin uses the
files /etc/hosts.equiv and .rhosts in the users login directory to allow logins to be
performed without a password. Rlogin supports proper handling of “S/°Q and
flushing of output when an interrupt is typed at the terminal. Its ‘” escape
sequences are reminiscent of the old cu program (as it is based on the same source
code).

Now uses the rmdir system call to run more efficiently and not require root
privileges. Unfortunately, this means arguments which end in one or more “/”
characters are no longer legal.

Is a new program for running off bibiliographic databases.
Is a new program which supports remote command execution across a network.

Is a new program which displays system status information for clusters of
machines attached to a local area network.

Is a new program which displays users logged in on clusters of machines attached
to a local area network.

Has been rewritten to use pseudo-terminals. This allows the C shell job control
facilities (among other things) to be used while scripting. A side effect of this
change is that scripts now contain everything typed at a terminal.

Has been replaced by dbx; it still lives on in /usr/src/old for those with a personal
attachment.

Is a new command for submitting bug reports on 4.2BSD in a standard format
suitable for automatic filing by the bugfiler program.

No longer has a newgrp command due to the new groups facilities.

sortbib
strip

stty

su

sysline

tail
talk

tar

telnet
tip

ul

uucp

uusnap
vfontinfo
vgrind

vi

vlp
vmstat

Bug Fixes and Changes in 4.2BSD 1-9

Is a new command for sorting bibliographic databases.

Has been made blindingly fast by using the new truncate system call (thereby
eliminating the old method of copying the file).

The default system erase, kill, and interrupt characters have been made the DEC
standard values of DEL (*°?’), “U’, and “°C’. This is not expected to gain much
popularity, but was done in the interest of compatibility with many other stan-
dard operating systems.

Has been changed to do a “full login” when starting up the subshell. A new flag,
—f, does a “fast” su for when a system is heavily loaded. Extra arguments sup-
plied to su are now treated as a command line and executed directly instead of
creating an interactive shell.

Is a new program for maintaining system status information on terminals which
support a “status line”’; a poor man’s alternative to a window manager (or emacs).

Has a larger buffer so that “tail —r” and similar show more.

Is a new program which provides a screen-oriented write facility. Users may be
“talked to”across a network, though satellite response times have indicated over-
seas conversations are still best done by phone. Can be very obnoxious when
engaged in important work.

Now allocates its internal buffers dynamically so that the block size can be
specified to be very large for streaming tape drives. Also, now avoids many core-
core copy operations. Has a new —C option for forcing chdir operations in the
middle of operation (thereby allowing multiple disjoint subtrees to be easily
placed in a single file, each with short relative pathnames). Has a new flag, ‘B’,
for forcing 20 block records to be read and written; useful in joining two tar com-
mands with a remote shell to transfer large amounts of data across a network.

Is a new program which supports the ARPA standard Telnet protocol.

Replaces cu as the standard mechanism for connecting to machines across a phone
line or through a hardwired connection. Tip uses a database of system descrip-
tions, supports many different auto-call units, and understands many nuances
required to talk to non-UNIX systems. Files may be transferred to and from
non-UNIX systems in a simple fashion.

A bug which sometimes caused an extra blank line to be printed after reaching
end of file has been fixed.

And related programs have been extensively enhanced to support many different
auto-call units and multiple spooling directories (among other things). A large
number of bugs and performance enhancements have been made.

Is a new program which gives a snap-shot of the uucp spooling area.
Is a program used to inspect and print information about fonts.

Now uses a regular expression language to describe formatting. A —f flag forces
vgrind to act as a filter, generating output suitable for inclusion in troff and/or
nroff documents. Language descriptions exist for C, Pascal, Model, C shell,
Bourne shell, Ratfor, and Icon programs.

A bug which caused the "B command to place the cursor on the wrong line has
been fixed. A bug which caused vi to believe a file had been modified when an i/o
error occurred has been fixed. A bug which allowed “hardtabs” to be set to 0
causing a divide by zero fault has been fixed.

Is a new program for pretty printing Lisp programs.

Has had one new piece of information added to —s summary, the number of fast
page reclaims performed. The fields related to paging activity are now all given in
kilobytes.

1-10 Bug Fixes and Changes in 4.2BSD

vpr And associated programs for spooling and printing files on Varian and Versatec
printers are now shell scripts which use the new line printer support.

vwidth Is a new program for making troff width tables for a font.

wce Is once again identical to the version 7 program. That is, the —v, —t, —b, —s, and
—u flags have been deleted.

whereis Understands the new directory organization for the source code.
which Now understands how to handle aliases.
who Now displays the remote machine from which a user is logged in.

Section 2.

The most important change in section 2 is that the documentation has been significantly
improved. Manual page entries now indicate the possible error codes which may be returned
and how to interpret them. The introduction to section 2 now includes a glossary of terms
used throughout the section. The terminology and formatting have been made consistent.
Many manual pages now have “NOTES” or “CAVEATS” providing useful information here-
tofore left out for the sake of brevity. As always the manual pages are still for the program-
mer; they are terse and extremely concise. The “4.2BSD System Manual” is likewise concise,
but a bit more verbose in providing an overall picture of the system facilities.

With regard to changes in the facilities, these fall into three major categories: interpro-
cess communication, signals, and file system related calls. The interprocess communication
facilities center around the socket mechanism described in the “A 4.2BSD Interprocess Com-
munication Primer”. The new signals do not have an accompanying document, so the manual
pages should be studied carefully. The new file system calls pretty much stand on their own,
with a late section of the document “A Fast File System for UNIX” supplying a quick over-
view of the most important new file system facilities. Finally, it should be noted that the job
control facilities introduced in 4.1BSD have been adopted as a standard part of 4.2BSD. No
special distinction is given to these calls (in 4.1BSD they were earmarked “2J”).

Many of the new system calls have both a “set” and a “get” form. Only the “get” forms
are indicated below. Consult the manual for details on the “set” form.

intro Has been updated to reflect the new list of possible error codes. Now includes a
glossary of terminology used in section 2.

access Now has symbolic definitions for the mode parameter defined in <sys/file.h>.
bind Is a new interprocess communication system call for binding names to sockets.

connect Is a new interprocess communication system call for establishing a connection
between two sockets.

creat Has been obsoleted by the new open interface.

fchmod Is a new system call which does a chmod operation given a file descriptor; useful
in conjunction with the new advisory locking facilities.

fchown Is a new system call which does a chown operation given a file descriptor; useful in
conjunction with the new advisory locking facilities.

fentl Is a new system call which is useful in controlling how i/o is performed on a file
descriptor (non-blocking i/o, signal drive i/0). This interface is compatible with
the System III fentl interface.

flock Is a new system call for manipulating advisory locks on files. Locks may be
shared or exclusive and locking operations may be indicated as being non-
blocking, in which case a process is not blocked if the requested lock is currently
in use.

Bug Fixes and Changes in 4.2BSD 1-11

fstat Now returns a larger stat buffer; see below under stat.

fsync Is a new system call for synchronizing a file’s in-core state with that on disk. Its
intended use is in building transaction oriented facilities.

ftruncate Is a new system call which does a truncate operation given a file descriptor; useful
in conjunction with the new advisory locking facilities.

getdtablesize
Is a new system call which returns the size of the descriptor table.

getgroupsIs a new system call which returns the group access list for the caller.

gethostid Is a new system call which returns the unique (hopefully) identifier for the current
host.

gethostname
Is a new system call which returns the name of the current host.

getitimer Is a new system call which gets the current value for an interval timer.

getpagesize
Is a new system call which returns the system page size.

getpriorityls a new system call which returns the current scheduling priority for a specific
process, a group of processes, or all processes owned by a user. In the latter two
cases, the priority returned is the highest (lowest numerical value) enjoyed by any
of the specified processes.

getrlimit Is a new system call which returns information about a resource limit. The
getrlimit and setrlimit calls replace the old vlimit call from 4.1BSD.

getrusagels a new system call which returns information about resource utilitization of a
child process or the caller. This call replaces the vtimes call of 4.1BSD.

getsockoptls a new interprocess communication system call which returns the current
options present on a socket.

gettimeofday
Is a new system call which returns the current Greenwich date and time, and the
current timezone in which the machine is operating. Time is returned in seconds
and microseconds since January 1, 1970.

ioctl Has been changed to encode the size of parameters and whether they are to be
copied in, out, or in and out of the user address space in the request. The sym-
bolic names for the various ioctl requests remain the same, only the numeric
values have changed. A number of new ioctls exist for use with sockets and the
network facilities. The old LINTRUP request has been replaced by a call to fentl
and the SIGIO signal.

killpg Has now been made a system call; in 4.1BSD it was a library routine.

listen Is a new interprocess communication system call used to indicate a socket will be
used to listen for incoming connection requests.

Iseek Now has symbolic definitions for its whence parameter defined in <sys/file.h>.

mkdir Is a new system call which creates a directory.

mpx The multiplexed file facilities are no longer part of the system. They have been

replaced by the socket, and related, system calls.

open Is different, now taking an optional third parameter and supporting file creation,
automatic truncation, automatic append on write, and “exclusive” opens. The
open interface has been made compatible with System III with the exception that
non-blocking opens on terminal lines requiring carrier are not supported.

profil Now returns statistical information based on a 100 hz clock rate.

1-12 Bug Fixes and Changes in 4.2BSD

quota

read
readv

readlink
recv

recvfrom

recvmsg

rename

rmdir
select

send
sendto
sendmsg

setquota
setregid

setreuid

Is a new system call which is part of the disk quota facilities. Quota is used to
manipulate disk quotas for a specific user, as well as perform certain random
chores such as syncing quotas to disk.

Now automatically restarts when a read on a terminal is interrupted by a signal
before any data is read.

Is a new system call which supports scattering of read data into (possibly) disjoint
areas of memory.

Is a new system call for reading the value of a symbolic link.

Is a new interprocess communication system call used to receive a message on a
connected socket.

Is a new interprocess communication system call used to receive a message on a
(possibly) unconnected socket.

Is a new interprocess communication system call used to receive a message on a
(possibly) unconnected socket which may have access rights included. When using
on-machine communication, recvimsg and sendmsg may be used to pass file
descriptors between processes.

Is a new system call which changes the name of an entry in the file system (plain
file, directory, character special file, etc.). Rename has an important property in
that it guarantees the target will always exist, even if the system crashes in the
middle of the operation. Rename only works with source and destination in the
same file system.

Is a new system call for removing a directory.

Is a new system call (mainly for interprocess communication) which provides facil-
ity for synchronous i/o multiplexing. Sets of file descriptors may be queried for
readability, writability, and if any exceptional conditions are present (such as out
of band data on a socket). An optional timeout may also be supplied in which
case the select operation will return after a specified period of time should no
descriptor satisfy the requests.

Is a new interprocess communication system call for sending a message on a con-
nected socket.

Is a new interprocess communication system call for sending a message on a (pos-
sibly) unconnected socket.

Is a new interprocess communication system call for sending a message on a (pos-
sibly) unconnected socket which may included access rights.

Is a new system call for enabling or disabling disk quotas on a file system.

Is a new system call which replaces the 4.1BSD setgid system call. Setregid allows
the real and effective group ID’s of a process to be set separately.

Is a new system call which replaces the 4.1BSD setuid system call. Setreuid
allows the real and effective user ID’s of a process to be set separately.

shutdown Is a new interprocess communication system call for shutting down part or all of

sigblock
sigpause

full-duplex connection.
Is a new system call for blocking signals during a critical section of code.

Is a new system call for blocking a set of signals and then pausing indefinitely for
a signal to arrive.

sigsetmask

sigstack

Is a new system call for setting the set of signals which are currently blocked from
delivery to a process.

Is a new system call for defining an alternate stack on which signals are to be pro-
cessed.

sigsys

sigvec

socket

Bug Fixes and Changes in 4.2BSD 1-13

Is no longer supported. The new signal facilities are a superset of those which sig-
sys provided.

Is the new system call interface for defining signal actions. For each signal
(except SIGSTOP and SIGKILL), sigvec allows a “signal vector” to be defined.
The signal vector is comprised of a handler, a mask of signals to be blocked while
the handler executes, and an indication of whether or not the handler should exe-
cute on a signal stack defined by a sigstack call. The old signal interface is pro-
vided as a library routine with several important caveats. First, signal actions are
no longer reset to their default value after a signal is delivered to a process.
Second, while a signal handler is executing the signal which is being processed is
blocked until the handler returns. To simulate the old signal interface, the user
must explicitly reset the signal action to be the default value and unblock the sig-
nal being processed.

Four new signals have been added for the interprocess communication and inter-
val timer facilities. SIGIO is delivered to a process when an fentl call enables sig-
nal driven i/o and input is present on a terminal (and a signal handler is defined).
SIGURG is delivered when an urgent condition arises on a socket (and a handler
is defined). SIGPROF and SIGVTALRM are associated with the ITIMER PROF
and ITIMER VIRTUAL interval timers, and delivered to a process when such a
timer expires (the SIGALRM signal is used for the ITIMER REAL interval
timer). The old SIGTINT signal is replaced by SIGIO.

Is a new interprocess communication system call for creating a socket.

socketpairls a new interprocess communication system call for creating a pair of connected

stat

swapon
symlink
truncate
unlink

utime
utimes

vfork

vlimit
vread
vswapon
vtimes
vwrite

and unnamed sockets.

Now returns a larger structure. New fields are present indicating the optimal
blocking factor in which i/o should be performed (for disk files the block size of
the underlying file system) and the actual number of disk blocks allocated to the
file. Inode numbers are now 32-bit quantities. Several spare fields have been allo-
cated for future expansion. These include space for 64-bit file sizes and 64-bit
time stamps. Two new file types may be returned, S IFLNK for symbolic links,
and S IFSOCK for sockets residing in the file system.

Has been renamed from the vswapon call of 4.1BSD.
Is a new system call for creating a symbolic link.
Is a new system call for truncating a file to a specific size.

Should no longer be used for removing directories. Directories should only be
created with mkdir and removed with rmdir. Creating hard links to directories
can cause disastrous results.

Is defunct, replaced by utimes.

Is a new system call which uses the new time format in setting the accessed and
updated times on a file.

Is still present, but definitely on its way out. Future plans include implementing
fork with a scheme in which pages are initially shared read-only. On the first
attempt by a process to write on a page the parent and child would receive
separate writable copies of the page.

Is no longer supported. Vlimit is replaced by the getrlimit and setrlimit calls.
Is no longer supported in the system.

Has been renamed swapon.

Is no longer supported. Vtimes is replaced by the getrusage call.

Is no longer supported in the system.

1-14 Bug Fixes and Changes in 4.2BSD

wait

wait3

write

writev

Now is automatically restarted when interrupted by a signal before status could
be returned.

Returns resource usage in a different format than that which was returned in
4.1BSD. This structure is compatible with the new getrusage system call. Wait3
is now automatically restarted when interrupted by a signal before status could be
returned.

Now is automatically restarted when writing on a terminal and interrupted by a
signal before any i/o was completed.

Is a new version of the write system call which supports gathering of data in (pos-
sibly) discontiguous areas of memory

Section 3

The section 3 documentation has been reorganized to group manual entries by library.
Introductory sections for each logical and physical library contain lists of the entry points in

the library.

A number of routines which had been system calls under 4.1BSD are now user-level
library routines in 4.2BSD. These routines have been grouped under section “3C” headings,
“C” for compatibility. Further, certain routines present in the standard C run-time library
which do not easily categorize as part of one of the standard libraries, have been group under
“3X” headings.

curses

stdio

bstring

ctime

isprint

directory

getpass

A number of bug fixes have been incorporated, and the documentation has been
revised.

The standard i/o library has been modified to block i/o operations to disk files
according to the block size of the underlying file system. This is accomplished
using the new st blksize value returned by fstat. The resultant performance
improvement is significant as the old 1 kilobyte buffer size often resulted in 7
memory-to-memory copy operations by the system on 8 kilobyte block file sys-
tems.

End-of-file marks now “stick”. That is, all input requests on a stdio channel after
encountering end-of-file will return end-of-file until a clearerr call is made. This
has implications for programs which use stdio to read from a terminal and do not
process end-of-file as a terminating keystroke.

Two new functions may be used to control i/o buffering. The setlinebuf routine is
used to change stdout or stderr from block buffered or unbuffered to line
buffered. The setbuffer routine is an alternate form of setbuf which can be used
after a stream has been opened, but before it is read or written.

Three new routines, bcmp, bcopy, and bzero have been added to the library.
These routines use the VAX string instructions to manipulate binary byte strings
of a known size.

Now uses the gettimeofday system call and supports time conversion in six
different time zones. Daylight savings calculations are also performed in each
time zone when appropriate.

Now considers space a printing character; as the manual page has always indi-
cated.

Is a new directory interface package which provides a portable interface to reading
directories. A version of this library which operates under 4.1BSD is also avail-
able.

Now properly handles being unable to open /dev/tty.

getwd

perror

psignal
gsort

random

setjmp

net

fstab

Bug Fixes and Changes in 4.2BSD 1-15

Has been moved from the old jobs library to the standard C run-time library. It
now returns an error string rather than printing on the standard error when
unable to decipher the current working directory.

Now uses the writev system call to pass all its arguments to the system in a single
system call. This has profound effects on programs which transmit error messages
across a network.

And sys siglist are routines for printing signal names in an equivalent manner to
perror.

ﬁas been greatly sped up by choosing a random element with which to apply its
divide and conquer algorithm.

Is a successor to rand which generates much better random numbers. The old
rand routine is still available and most programs have not been switched over to
random as doing so would make certain facilities such encrypted mail unable to
operate on existing data files.

And longjmp now save and restore the signal mask so that non-local exit from a
signal handler is transparent. The old semantics are available with setjmp and
longjmp.

Is a new set of routines for accessing database files for the DARPA Internet. Four
databases exist: one for host names, one for network names, one for protocol
numbers, and one for network services. The latter returns an Internet port and
protocol to be used in accessing a given network service.

An additional collection of routines, all prefaced with “inet ” may be used to
manipulate Internet addresses, and interpret and convert between Internet
addresses and ASCII representations in the Internet standard “dot” notation.

Finally, routines are available for converting 16 and 32 bit quantities between host
and network order (on high-ender machines these routines are defined to be
noops).

The routines for manipulating /etc/fstab have been rewritten to return arbitrary
length null-terminated strings.

Section 4

The system now supports the 11/730, the new 64Kbit RAM memory controllers for the
11/750 and 11/780, and the second UNIBUS adapter for the 11/750. Several new character
and/or block device drivers have been added, as well as support for many hardware devices
which are accessible only through the network facilities. Each new piece of hardware sup-
ported is listed below.

New manual entries in section 4 have been created to describe communications proto-
cols, and network architectures supported. At present the only network architecture fully sup-
ported is the DARPA Internet with the TCP, IP, UDP, and ICMP protocols.

acce
ad
arp

css
dme

ec

A network driver for the ACC LH/DH IMP interface.
A driver for the Data Translation A/D converter.

The Address Resolution Protocol for dynamically mapping betwee 32-bit DARPA
Internet addresses and 48-bit Xerox 10Mb/s Ethernet addresses.

A network driver for the DEC IMP-11A LH/DH IMP interface.

A network interface driver for the DEC DMC-11/DMR-11 point-to-point com-
munications device.

A network interface driver for the 3Com 10Mb/s Ethernet controller.

1-16 Bug Fixes and Changes in 4.2BSD

en
hy
ik
il
imp
kg

lo

pcl
ps

pty

rx
ts
tu

uda
un

up

uu
va

vv

dir
disktab

dump
fs
gettytab

hosts
mtab

networks

A network interface driver for the Xerox 3Mb/s experimental Ethernet controller.
A network interface driver for the Network Systems Hyperchannel Adapter.

A driver for an Ikonas frame buffer graphics device interface.

A network interface driver for the Interlan 10Mb/s Ethernet interface.

A network interface driver for the standard 1822 interface to an IMP; used in con-
junction with either acc or css hardware.

A driver for a KL-11/DL-11W used as an alternate real time clock source for gath-
ering kernel statistics and profiling information.

A software loopback network interface for protocol testing and performance
analysis.

A network interface driver for the DEC PCL-11B communications controller.

A driver for an Evans and Sutherland Picture System 2 graphics device connected
with a DMA interface.

Now includes a simple packet protocol to support flow controlled operation with
mechanisms for flushing data to be read and/or written.

A driver for the DEC dual RX02 floppy disk unit.
Now supports TU80 tape drives.

The VAX-11/750 console cassette interface has been made somewhat usable when
operating in single-user mode. The device driver employs assembly language
pseudo-dma code for the reception of incoming packets from the cassette.

Now supports RA81, RA80, and RA60 disk drives.

A network interface driver for an Ungermann-Bass network interface unit con-
nected to the host via a DR-11W.

Now supports ECC correction and bad sector handling. Also has improved logic
for recognizing many different kinds of disk drives automatically at boot time.

A driver for DEC dual TU58 tape cartridges connected via a DL-11W interface.

The Varian driver has been rewritten so that it may coexist on the same UNIBUS
with devices which require exclusive use of the bus; i.e. RK07’s.

A network interface driver for the Proteon proNET 10Mb/s ring network con-
troller.

Section 5

Reflects the new directory format.

Is a new file for maintaining disk geometry information. This is a temporary
scheme until the information stored in this file for each disk is recorded on the
disk pack itself.

Is a superset of that used in 4.1BSD.
Reflects the new file system organization.

Is a new file which idescribes terminal characteristics. Each entry in the file
describes one of the possible arguments to the getty program.

Is a database for mapping between host names and DARPA Internet host
addresses.

Has been modified to include a “type” field indicating whether the file system is
mounted read-only, read-write, or read-write with disk quotas enabled.

Is a database for mapping between network names and DARPA standard network
numbers.

phones
printcap
protocols

remote
services

tar
utmp

Bug Fixes and Changes in 4.2BSD 1-17

Is a phone number data base for tip.
Is a termcap clone for configuring printers.

Is a database for mapping between protocol names and DARPA Internetwork
standard protocol numbers.

Is a database of remote hosts for use with tip.

Is a database in which DARPA Internet services are recorded. The information
contained in this file indicates the name of the service, the protocol which is
required to access it, and the port number at which a client should connect to
utilize the service.

Is a new entry describing the format of a tar tape.

Has been augmented to include a remote host from which a login session ori-
ginates. The wtmp file is also used to record FTP sessions.

vgrindefs Is a file describing how to vgrind programs written in many languages.

Section 6

aardvark Does not work because it requires the “Dungeon Definition Language” processor

which is a binary image requiring 4.1BSD compatibility mode; the DDL source is
still present.

aliens The aliens have returned home, the game is no longer included in the distribution.

backgammon
Is now screen oriented. A new program, teachgammon, instructs the new back-
gammon player. The old version is now called btlgammon.

canfield Is a new game which plays a brand of the popular game of solitaire. Betting is
included, the program cfscores may be used to find out your current debt.

ching Now pipes its output through more. Thus the hacker placates the seekers.

chase No longer exists because the binary does not work under 4.2BSD.

factor Is a rewrite in C of the old version 7 assembly language program which finds the
prime factors of a number.

fortune Has yet more adages.

hangman Is now screen oriented.

mille Now plays more intelligently.

primes Is a rewrite in C of the old version 7 assembly language program which finds
prime numbers within a specified range.

rogue Has been made more of a scoundrel. The supplementary document “A Guide to
the Dungeons of Doom”, has been updated as well, and is now part of Volume 2C
of the programmer’s manual.

sail Is a new game which simulates sea battles of yore. The manual page is large
enough to be a separate document and so has been left in its source directory.

trek The original trek has returned; trekies rejoice.

Section 7
hier Has been updated to reflect the reorganization to the user and system source.
mailaddr Is a new entry describing mail addressing syntax under sendmail (possibly too

Berkeley specific).

1-18 Bug Fixes and Changes in 4.2BSD

ms The —ms macros have been extended to allow automatic creation of a table of
contents. Support for the refer preprocessor is improved. Several bugs related to
multi-column output and floating keeps have been fixed. Extensions to the accent
mark string set are available by including the .AM macro. Footnotes can now be
automatically numbered (in superscript) by —ms and referenced in the text with a
** string register. The manual page includes a summary of important number
and string registers. A new document “Changes to —ms” is included in Volume
2C of the programmer’s manual.

Section 8
Major changes affecting system operations include:

e The system now supports disk quotas. These allow system administrators to control users’
disk space and file allocation on a per-file system basis. Utilities in this section exist for
fixing, summarizing, and editing disk quota summary files.

e File systems are now made with a new program, newfs, which acts as front end to the old
mkfs program. There no longer is a need to remember disk partition sizes, as newfs gets
this information automatically from the /etc/disktab file. In addition, newfs attempts to
lay out file systems according to the characteristics of the underlying disk drive (taking
into account disk geometry information).

e« DEC standard bad block forwarding is now supported on the RP06 and second vendor
UNIBUS storage module disks. The bad144 program can now be used to mark sectors bad
on many disks, though inclusion in the bad sector table is still somewhat risky due to
requirements in the ordering of entries in the table.

¢ A new program, format, should be used to initialize all non-DEC storage modules before
creating file systems. Format formats the sector headers and creates a bad sector table
which is used in normal system operation. Format runs in a standalone mode.

e Getty has been rewritten to use a description file, /etc/gettytab. This allows sites to tailor
terminal operation and configuration without making modifications to getty.

e The line printer system is totally new. A program to administer the operation of printers,
Ipc, is supplied, and printer accounting has been consolidated into a single program, pac.

e The program used to restore files from dump tapes is now called restore. This name
change was done to reinforce the fact that it is completely rewritten and operates in a very
different way than the old restor program. Restore operates on mounted file systems and
uses only normal file system operations to restore files. Versions of both dump and restore
which operate across a network are included as rdump and rrestore. Dump and restore
(and their network oriented counterparts) now perform so efficiently (mostly because of the
new file system), that disk to disk backups should no longer be an attractive alternative.

arff No longer asks if you want to clobber the floppy when manipulating archives
which are not on the floppy.

bad144 Has been modified to use the /etc/disktab file. Can be used to create bad sector
tables for the DEC RP06 and several new Winchester disk drives. Consult the
source code for details and use with extreme care.

badsect Has been modified to work with the new file system and now must interact with
fsck to perform its duties. Consult the manual page for more information.

bugfiler Is a new program for automatic filing and acknowledgement of bug reports sub-
mitted by the sendbug program. Intended to operate with the Rand MH software
which is part of the user contributed software. Used at Berkeley to process bug
reports on 4.2BSD.

chgrp
comsat

config

diskpart

drtest

dump

dumpfs

edquota

fastboot

fasthalt
format

fsck

ftpd

gettable

getty

icheck

init

kgmon

Ipc

Bug Fixes and Changes in 4.2BSD 1-19

Has been moved to section 1.

Has been changed to filter the noise lines in message headers when displaying
incoming mail. No longer uses a second process watchdog as it uses the more reli-
able socket facilities instead of the old mpx facilities.

Has been extensively modified to handle the new root and swap device
specification syntax. A new document, “Configuring 4.2BSD UNIX Systems with
Config”, describes its use, as well as other important information needed in
configuring system images; this is part of Volume 2C of the programmer’s manual.

Is a new program which may be used to generate disk partition tables according to
the rules used at Berkeley. Can automatically generate entries required for device
drivers and for the /etc/diskpart file. (Does not handle the new DEC DSA style
drives properly because it tries to reserve space for the bad sector table.)

Is a new standalone program which is useful in testing standalone disk device
drivers and for pinpointing bad sectors on a disk.

Has been modified for the new file system organization. Mainly due to the new
file system, it runs virtually at tape speed. Properly handles locking on the dump-
dates file when multiple dumps are performed concurrently on the same machine.

Is a new program for dumping out information about a file system such as the
block size and disk layout information.

Is a new program for editing user quotas. Operates by invoking your favorite edi-
tor on an ASCII representation of the information stored in the binary quota files.
Edquota also has a “replication” mode whereby a quota template may be used to
create quotas for a group of users.

Is a new shell script which reboots the system without checking the file systems;
should be used with extreme care.

Is a new script which is similar to fastboot.

Is a new standalone program for formatting non-DEC storage modules and creat-
ing the appropriate bad sector table on the disk.

Has been changed for the new file system. Fsck is more paranoid then ever in
checking the disks, and has been sped up significantly. The accompanying
Volume 2C document has been updated to reflect the new file system organization.

Is the DARPA File Transfer Protocol server program. It supports C shell style
globbing of arguments and a large set of the commands in the specification
(except the ABORT command!).

Is a new program which can be used in aquiring up to date DARPA Internet host
database files.

Has been rewritten to use a terminal description database, /etc/gettytab. Consult
the manual entries for getty(8) and gettytab (5) for more information.

Has been modified for the new file system.

Has been significantly modified to use the new signal facilities. In doing so,
several race conditions related to signal delivery have been fixed.

Is a new program for controlling running systems which have been created with
kernel profiling. Using kgmon, profiling can be turned on or off and internal
profiling buffers can dumped into a gmon.out file suiitable for interpretation by
gprof.

Is a new program controlling line printers and their associated spooling queues.
Lpc can be used to enable and disable printers and/or their spooling queues. Lpc
can also be used to rearrange existing jobs in a queue.

1-20 Bug Fixes and Changes in 4.2BSD

Ipd Has been rewritten and now runs as a “server”, using the interprocess communica-
tion facilities to service print requests. A supplementary document describing the
line printer system is now part of Volume 2C of the programmer’s manual.

MAKEDEV
Is a new shell script which resides in /dev and is used to create special files there.
MAKEDEV keeps commands for creating and manipulating local devices in a
separate file MAKEDEYV local.

mkfs Has been virtually rewritten for the new file system. The arguments supplied are
very different. For the most part, users now use the newfs program when creating
file systems. Mkfs now automatically creates the lost+found directory.

mount Now indicates file systems which are mounted read-only or have disk quotas

: enabled.

newfs Is a new front-end to the mkfs program. Newfs figures out the appropriate
parameters to supply to mkfs, invokes it, and then, if necessary, installs the boot
blocks necessary to bootstrap UNIX on 11/750’s.

pac Is a new program which can be used to do printer accounting on any printer. It
subsumes the vpac program.

quot Now uses the information in the inode of each file to find out how many blocks
are allocated to it.

quotacheck
Is a new program which performs consistency checks on disk quota files. Quota-
check is normally run from the /etc/rc.local file after a system is rebooted, though
it can also be run on mounted on file systems which are not in use.

quotaon Is a new program which enables disk quotas on file systems. A link to quotaon,
named quotaoff, is used to disable disk quotas on file systems.

pstat Has been modified to understand new kernel data structures.

re Has had system dependent startup commands moved to /etc/rc.local.

rdump Is a new program to dump file systems across a network.

renice Has been rewritten to use the new setpriority system call. As a result, you can
now renice users and process groups.

repquota Is a new program which summarizes disk quotas on one or more file systems.

restor No longer exists. A new program, restore, is its successor.

restore Replaces restor. Restore operates on mounted file systems; it contains an interac-
tive mode and can be used to restore files by name. Restore has become almost as
flexible to use as tar in retrieving files from tape.

rexecd Is a network server for the rexec(3X) library routine. Supports remote command
execution where authentication is performed using user accounts and passwords.

rlogind Is a network server for the rlogin (1C) command. Supports remote login sessions
where authentication is performed using privileged port numbers and two files,
/etc/hosts.equiv and .rhosts (in each users home directory).

rmt Is a program used by rrestore and rdump for doing remote tape operations.

route Is a program for manually manipulating network routing tables.

routed Is a routing daemon which uses a variant of the Xerox Routing Information Pro-
tocol to automatically maintain up to date routing tables.

rrestore Is a version of restore which works across a network.

rshd Is a server for the rsh(1C) command. It supports remote command execution

using privileged port numbers and the /etc/hosts.equiv and .rhosts files in users’
home directories.

rwhod

rxformat
savecore

sendmail

setifaddr

syslog

telnetd
tftpd
trpt

tunefs

vipw

Bug Fixes and Changes in 4.2BSD 1-21

Is a server which generates and listens for host status information on local net-
works. The information stored by rwhod is used by the rwho(1C)
andruptime (1C) programs. "

Is a program for formatting floppy disks (this uses the rx device driver, not the
console floppy interface).

Has been modified to get many pieces of information from the running system
and crash dump to avoid compiled in constants.

Is a new program replacing delivermail; it provides fully internetwork mail for-
warding capabilities. Sendmail uses the DARPA standard SMTP protocol to send
and receive mail. Sendmail uses a configuration file to control its operation, elim-
inating the compiled in description used in delivermail.

Is a new program used to set a network interface’s address. Calls to this program
are normally placed in the /etc/rc.local file to configure the network hardware
present on a machine.

Is a server which receives system logging messages. Currently, only the sendmail
program uses this server.

Is a server for the DARPA standard TELNET protocol.
Is a server for the DARPA Trivial File Transfer Protocol.

Is a program used in debugging TCP. Trpt transliterates protocol trace informa-
tion recorded by TCP in a circular buffer in kernel memory.

Is a program for modifying certain parameters in the super block of file systems.

Is no longer a shell script and properly interacts with passwd, chsh, and chfn in
locking the password file.

Fast File System 1-23

A Fast File System for UNIX*
Revised July 27, 1983

Marshall Kirk McKusick, William N. Joy?t,
Samuel J. Leffler f ,Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

1. Introduction

This paper describes the changes from the original 512 byte UNIX file system to the new
one released with the 4.2 Berkeley Software Distribution. It presents the motivations for the
changes, the methods used to affect these changes, the rationale behind the design decisions,
and a description of the new implementation. This discussion is followed by a summary of
the results that have been obtained, directions for future work, and the additions and changes
that have been made to the user visible facilities. The paper concludes with a history of the
software engineering of the project.

The original UNIX system that runs on the PDP-11} has simple and elegant file system
facilities. File system input/output is buffered by the kernel; there are no alignment con-
straints on data transfers and all operations are made to appear synchronous. All transfers to
the disk are in 512 byte blocks, which can be placed arbitrarily within the data area of the file
system. No constraints other than available disk space are placed on file growth [Ritchie74],
[Thompson79].

When used on the VAX-11 together with other UNIX enhancements, the original 512
byte UNIX file system is incapable of providing the data throughput rates that many applica-
tions require. For example, applications that need to do a small amount of processing on a
large quantities of data such as VLSI design and image processing, need to have a high
throughput from the file system. High throughput rates are also needed by programs with
large address spaces that are constructed by mapping files from the file system into virtual
memory. Paging data in and out of the file system is likely to occur frequently. This requires
a file system providing higher bandwidth than the original 512 byte UNIX one which provides
only about two percent of the maximum disk bandwidth or about 20 kilobytes per second per
arm [White80], [Smith81b].

Modifications have been made to the UNIX file system to improve its performance.
Since the UNIX file system interface is well understood and not inherently slow, this develop-
ment retained the abstraction and simply changed the underlying implementation to increase
its throughput. Consequently users of the system have not been faced with massive software
conversion.

* UNIX is a trademark of Bell Laboratories.

tWilliam N. Joy is currently employed by: Sun Microsystems, Inc, 2550 Garcia Avenue, Mountain View, CA
94043 3Samuel J. Leffler is currently employed by: Lucasfilm Ltd., PO Box 2009, San Rafael, CA 94912
This work was done under grants from the National Science Foundation under grant MCS80-05144, and the
Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Elec-
tronic System Command under Contract No. N00039-82-C-0235.

+ DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation.

1-24 Fast File System

Problems with file system performance have been dealt with extensively in the literature;
see [Smith81a] for a survey. The UNIX operating system drew many of its ideas from Mul-
tics, a large, high performance operating system [Feiertag71]. Other work includes Hydra
[Almes78], Spice [Thompson80], and a file system for a lisp environment [Symbolics81a].

A major goal of this project has been to build a file system that is extensible into a
networked environment [Holler73]. Other work on network file systems describe centralized
file servers [Accetta80], distributed file servers [Dion80], [Luniewski77], [Porcar82], and pro-
tocols to reduce the amount of information that must be transferred across a network
[Symbolics81b], [Sturgis80].

Fast File System 1-25

2. Old File System

In the old file system developed at Bell Laboratories each disk drive contains one or
more file systems.T A file system is described by its super-block, which contains the basic
parameters of the file system. These include the number of data blocks in the file system, a
count of the maximum number of files, and a pointer to a list of free blocks. All the free
blocks in the system are chained together in a linked list. Within the file system are files.
Certain files are distinguished as directories and contain pointers to files that may themselves
be directories. Every file has a descriptor associated with it called an inode. The inode con-
tains information describing ownership of the file, time stamps marking last modification and
access times for the file, and an array of indices that point to the data blocks for the file. For
the purposes of this section, we assume that the first 8 blocks of the file are directly refer-
enced by values stored in the inode structure itself*. The inode structure may also contain
references to indirect blocks containing further data block indices. In a file system with a 512
byte block size, a singly indirect block contains 128 further block addresses, a doubly indirect
block contains 128 addresses of further single indirect blocks, and a triply indirect block con-
tains 128 addresses of further doubly indirect blocks.

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed
by 146 megabytes of data. This organization segregates the inode information from the data;
thus accessing a file normally incurs a long seek from its inode to its data. Files in a single
directory are not typically allocated slots in consecutive locations in the 4 megabytes of
inodes, causing many non-consecutive blocks to be accessed when executing operations on all
the files in a directory.

The allocation of data blocks to files is also suboptimum. The traditional file system
never transfers more than 512 bytes per disk transaction and often finds that the next sequen-
tial data block is not on the same cylinder, forcing seeks between 512 byte transfers. The
combination of the small block size, limited read-ahead in the system, and many seeks
severely limits file system throughput.

The first work at Berkeley on the UNIX file system attempted to improve both reliabil-
ity and throughput. The reliability was improved by changing the file system so that all
modifications of critical information were staged so that they could either be completed or
repaired cleanly by a program after a crash [Kowalski78]. The file system performance was
improved by a factor of more than two by changing the basic block size from 512 to 1024
bytes. The increase was because of two factors; each disk transfer accessed twice as much
data, and most files could be described without need to access through any indirect blocks
since the direct blocks contained twice as much data. The file system with these changes will
henceforth be referred to as the old file system.

This performance improvement gave a strong indication that increasing the block size
was a good method for improving throughput. Although the throughput had doubled, the old
file system was still using only about four percent of the disk bandwidth. The main problem
was that although the free list was initially ordered for optimal access, it quickly became
scrambled as files were created and removed. Eventually the free list became entirely random
causing files to have their blocks allocated randomly over the disk. This forced the disk to
seek before every block access. Although old file systems provided transfer rates of up to 175
kilobytes per second when they were first created, this rate deteriorated to 30 kilobytes per
second after a few weeks of moderate use because of randomization of their free block list.
There was no way of restoring the performance an old file system except to dump, rebuild,
and restore the file system. Another possibility would be to have a process that periodically
reorganized the data on the disk to restore locality as suggested by [Maruyama76].

t A file system always resides on a single drive.
* The actual number may vary from system to system, but is usually in the range 5-13.

1-26 Fast File System

3. New file system organization

As in the old file system organization each disk drive contains one or more file systems.
A file system is described by its super-block, that is located at the beginning of its disk parti-
tion. Because the super-block contains critical data it is replicated to protect against catas-
trophic loss. This is done at the time that the file system is created; since the super-block
data does not change, the copies need not be referenced unless a head crash or other hard disk
error causes the default super-block to be unusable.

To insure that it is possible to create files as large as 232 bytes with only two levels of
indirection, the minimum size of a file system block is 4096 bytes. The size of file system
blocks can be any power of two greater than or equal to 4096. The block size of the file sys-
tem is maintained in the super-block so it is possible for file systems with different block sizes
to be accessible simultaneously on the same system. The block size must be decided at the
time that the file system is created; it cannot be subsequently changed without rebuilding the
file system.

The new file system organization partitions the disk into one or more areas called
cylinder groups. A cylinder group is comprised of one or more consecutive cylinders on a
disk. Associated with each cylinder group is some bookkeeping information that includes a
redundant copy of the super-block, space.for inodes, a bit map describing available blocks in
the cylinder group, and summary information describing the usage of data blocks within the
cylinder group. For each cylinder group a static number of inodes is allocated at file system
creation time. The current policy is to allocate one inode for each 2048 bytes of disk space,
expecting this to be far more than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be
on the top platter. Thus a single hardware failure that destroyed the top platter could cause
the loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping
information begins at a floating offset from the beginning of the cylinder group. The offset for
each successive cylinder group is calculated to be about one track further from the beginning
of the cylinder group. In this way the redundant information spirals down into the pack so
that any single track, cylinder, or platter can be lost without losing all copies of the super-
blocks. Except for the first cylinder group, the space between the beginning of the cylinder
group and the beginning of the cylinder group information is used for data blocks.*

3.1. Optimizing storage utilization

Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly
increasing file system throughput. As an example, consider a file in the new file system com-
posed of 4096 byte data blocks. In the old file system this file would be composed of 1024
byte blocks. By increasing the block size, disk accesses in the new file system may transfer up
to four times as much information per disk transaction. In large files, several 4096 byte blocks
may be allocated from the same cylinder so that even larger data transfers are possible before
initiating a seek.

The main problem with bigger blocks is that most UNIX file systems are composed of
many small files. A uniformly large block size wastes space. Table 1 shows the effect of file
system block size on the amount of wasted space in the file system. The machine measured to
obtain these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line
storage. The measurements are based on the active user file systems containing about 920
megabytes of formated space. The space wasted is measured as the percentage of space on
the disk not containing user data. As the block size on the disk increases, the waste rises
quickly, to an intolerable 45.6% waste with 4096 byte file system blocks.

+ While it appears that the first cylinder group could be laid out with its super-block at the “known” loca-
tion, this would not work for file systems with blocks sizes of 16K or greater, because of the requirement
that the cylinder group information must begin at a block boundary.

Fast File System 1-27

| Space used | % waste | Organization
775.2 Mb 0.0 Data only, no separation between files
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary
828.7 Mb 6.9 512 byte block UNIX file system
866.5 Mb 11.8 1024 byte block UNIX file system
948.5 Mb 22.4 2048 byte block UNIX file system
1128.3 Mb 45.6 4096 byte block UNIX file system |

Table 1 — Amount of wasted space as a function of block size.

To be able to use large blocks without undue waste, small files must be stored in a more
efficient way. The new file system accomplishes this goal by allowing the division of a single
file system block into one or more fragments. The file system fragment size is specified at the
time that the file system is created; each file system block can be optionally broken into 2, 4,
or 8 fragments, each of which is addressable. The lower bound on the size of these fragments
is constrained by the disk sector size, typically 512 bytes. The block map associated with each
cylinder group records the space availability at the fragment level; to determine block availa-
bility, aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024 file
system.

Bits in map XXXX XX00 00XX 0000
Fragment numbers 0-3 4-7 8-11 12-15
ck numbers Q 1 2 3

Figure 1 — Example layout of blocks and fragments in a 4096/1024 file system.

Each bit in the map records the status of a fragment; an “X” shows that the fragment is in
use, while a “O” shows that the fragment is available for allocation. In this example, frag-
ments 0—5, 10, and 11 are in use, while fragments 6—9, and 12—15 are free. Fragments of
adjoining blocks cannot be used as a block, even if they are large enough. In this example,
fragments 6—9 cannot be coalesced into a block; only fragments 12—15 are available for alloca-
tion as a block.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file
is represented by zero or more 4096 byte blocks of data, and possibly a single fragmented
block. If a file system block must be fragmented to obtain space for a small amount of data,
the remainder of the block is made available for allocation to other files. As an example con-
sider an 11000 byte file stored on a 4096/1024 byte file system. This file would uses two full
size blocks and a 3072 byte fragment. If no 3072 byte fragments are available at the time the
file is created, a full size block is split yielding the necessary 3072 byte fragment and an
unused 1024 byte fragment. This remaining fragment can be allocated to another file as
needed.

The granularity of allocation is the write system call. Each time data is written to a file,
the system checks to see if the size of the file has increased*. If the file needs to hold the new
data, one of three conditions exists:

1) There is enough space left in an already allocated block to hold the new data. The new
data is written into the available space in the block.

2) Nothing has been allocated. If the new data contains more than 4096 bytes, a 4096 byte
block is allocated and the first 4096 bytes of new data is written there. This process is
repeated until less than 4096 bytes of new data remain. If the remaining new data to be
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located,

* A program may be overwriting data in the middle of an existing file in which case space will already be al-
located.

1-28 Fast File System

otherwise a 4096 byte block is located. The new data is written into the located piece.

3) A fragment has been allocated. If the number of bytes in the new data plus the number
of bytes already in the fragment exceeds 4096 bytes, a 4096 byte block is allocated. The
contents of the fragment is copied to the beginning of the block and the remainder of
the block is filled with the new data. The process then continues as in (2) above. If the
number of bytes in the new data plus the number of bytes already in the fragment will
fit in three or fewer 1024 byte pieces, an unallocated fragment is located, otherwise a
4096 byte block is located. The contents of the previous fragment appended with the
new data is written into the allocated piece.

The problem with allowing only a single fragment on a 4096/1024 byte file system is that
data may be potentially copied up to three times as its requirements grow from a 1024 byte
fragment to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block.
The fragment reallocation can be avoided if the user program writes a full block at a time,
except for a partial block at the end of the file. Because file systems with different block sizes
may coexist on the same system, the file system interface been extended to provide the ability
to determine the optimal size for a read or write. For files the optimal size is the block size of
the file system on which the file is being accessed. For other objects, such as pipes and sock-
ets, the optimal size is the underlying buffer size. This feature is used by the Standard
Input/Output Library, a package used by most user programs. This feature is also used by
certain system utilities such as archivers and loaders that do their own input and output
management and need the highest possible file system bandwidth.

The space overhead in the 4096/1024 byte new file system organization is empirically
observed to be about the same as in the 1024 byte old file system organization. A file system
with 4096 byte blocks and 512 byte fragments has about the same amount of space overhead
as the 512 byte block UNIX file system. The new file system is more space efficient than the
512 byte or 1024 byte file systems in that it uses the same amount of space for small files
while requiring less indexing information for large files. This savings is offset by the need to
use more space for keeping track of available free blocks. The net result is about the same
disk utilization when the new file systems fragment size equals the old file systems block size.

In order for the layout policies to be effective, the disk cannot be kept completely full.
Each file system maintains a parameter that gives the minimum acceptable percentage of file
system blocks that can be free. If the the number of free blocks drops below this level only
the system administrator can continue to allocate blocks. The value of this parameter can be
changed at any time, even when the file system is mounted and active. The transfer rates to
be given in section 4 were measured on file systems kept less than 90% full. If the reserve of
free blocks is set to zero, the file system throughput rate tends to be cut in half, because of
the inability of the file system to localize the blocks in a file. If the performance is impaired
because of overfilling, it may be restored by removing enough files to obtain 10% free space.
Access speed for files created during periods of little free space can be restored by recreating
them once enough space is available. The amount of free space maintained must be added to
the percentage of waste when comparing the organizations given in Table 1. Thus, a site run-
ning the old 1024 byte UNIX file system wastes 11.8% of the space and one could expect to
fit the same amount of data into a 4096/512 byte new file system with 5% free space, since a
512 byte old file system wasted 6.9% of the space.

3.2. File system parameterization

Except for the initial creation of the free list, the old file system ignores the parameters
of the underlying hardware. It has no information about either the physical characteristics of
the mass storage device, or the hardware that interacts with it. A goal of the new file system
is to parameterize the processor capabilities and mass storage characteristics so that blocks
can be allocated in an optimum configuration dependent way. Parameters used include the
speed of the processor, the hardware support for mass storage transfers, and the characteris-
tics of the mass storage devices. Disk technology is constantly improving and a given

Fast File System 1-29

installation can have several different disk technologies running on a single processor. Each
file system is parameterized so that it can adapt to the characteristics of the disk on which it
is placed.

For mass storage devices such as disks, the new file system tries to allocate new blocks
on the same cylinder as the previous block in the same file. Optimally, these new blocks will
also be well positioned rotationally. The distance between “rotationally optimal” blocks varies
greatly; it can be a consecutive block or a rotationally delayed block depending on system
characteristics. On a processor with a channel that does not require any processor interven-
tion between mass storage transfer requests, two consecutive disk blocks often can be accessed
without suffering lost time because of an intervening disk revolution. For processors without
such channels, the main processor must field an interrupt and prepare for a new disk transfer.
The expected time to service this interrupt and schedule a new disk transfer depends on the
speed of the main processor.

The physical characteristics of each disk include the number of blocks per track and the
rate at which the disk spins. The allocation policy routines use this information to calculate
the number of milliseconds required to skip over a block. The characteristics of the processor
include the expected time to schedule an interrupt. Given the previous block allocated to a
file, the allocation routines calculate the number of blocks to skip over so that the next block
in a file will be coming into position under the disk head in the expected amount of time that
it takes to start a new disk transfer operation. For programs that sequentially access large
amounts of data, this strategy minimizes the amount of time spent waiting for the disk to
position itself.

To ease the calculation of finding rotationally optimal blocks, the cylinder group sum-
mary information includes a count of the availability of blocks at different rotational posi-
tions. Eight rotational positions are distinguished, so the resolution of the summary informa-
tion is 2 milliseconds for a typical 3600 revolution per minute drive.

The parameter that defines the minimum number of milliseconds between the comple-
tion of a data transfer and the initiation of another data transfer on the same cylinder can be
changed at any time, even when the file system is mounted and active. If a file system is
parameterized to lay out blocks with rotational separation of 2 milliseconds, and the disk pack
is then moved to a system that has a processor requiring 4 milliseconds to schedule a disk
operation, the throughput will drop precipitously because of lost disk revolutions on nearly
every block. If the eventual target machine is known, the file system can be parameterized for
it even though it is initially created on a different processor. Even if the move is not known
in advance, the rotational layout delay can be reconfigured after the disk is moved so that all
further allocation is done based on the characteristics of the new host.

3.3. Layout policies

The file system policies are divided into two distinct parts. At the top level are global
policies that use file system wide summary information to make decisions regarding the place-
ment of new inodes and data blocks. These routines are responsible for deciding the place-
ment of new directories and files. They also calculate rotationally optimal block layouts, and
decide when to force a long seek to a new cylinder group because there are insufficient blocks
left in the current cylinder group to do reasonable layouts. Below the global policy routines
are the local allocation routines that use a locally optimal scheme to lay out data blocks.

Two methods for improving file system performance are to increase the locality of refer-
ence to minimize seek latency as described by [Trivedi80], and to improve the layout of data
to make larger transfers possible as described by [Nevalainen77]. The global layout policies
try to improve performance by clustering related information. They cannot attempt to local-
ize all data references, but must also try to spread unrelated data among different cylinder
groups. If too much localization is attempted, the local cylinder group may run out of space
forcing the data to be scattered to non-local cylinder groups. Taken to an extreme, total local-
ization can result in a single huge cluster of data resembling the old file system. The global

1-30 Fast File System

policies try to balance the two conflicting goals of localizing data that is concurrently accessed
while spreading out unrelated data.

One allocatable resource is inodes. Inodes are used to describe both files and directories.
Files in a directory are frequently accessed together. For example the “list directory” com-
mand often accesses the inode for each file in a directory. The layout policy tries to place all
the files in a directory in the same cylinder group. To ensure that files are allocated
throughout the disk, a different policy is used for directory allocation. A new directory is
placed in the cylinder group that has a greater than average number of free inodes, and the
fewest number of directories in it already. The intent of this policy is to allow the file cluster-
ing policy to succeed most of the time. The allocation of inodes within a cylinder group is
done using a next free strategy. Although this allocates the inodes randomly within a cylinder
group, all the inodes for each cylinder group can be read with 4 to 8 disk transfers. This puts
a small and constant upper bound on the number of disk transfers required to access all the
inodes for all the files in a directory as compared to the old file system where typically, one
disk transfer is needed to get the inode for each file in a directory.

The other major resource is the data blocks. Since data blocks for a file are typically
accessed together, the policy routines try to place all the data blocks for a file in the same
cylinder group, preferably rotationally optimally on the same cylinder. The problem with allo-
cating all the data blocks in the same cylinder group is that large files will quickly use up
available space in the cylinder group, forcing a spill over to other areas. Using up all the
space in a cylinder group has the added drawback that future allocations for any file in the
cylinder group will also spill to other areas. Ideally none of the cylinder groups should ever
become completely full. The solution devised is to redirect block allocation to a newly chosen
cylinder group when a file exceeds 32 kilobytes, and at every megabyte thereafter. The newly
chosen cylinder group is selected from those cylinder groups that have a greater than average
number of free blocks left. Although big files tend to be spread out over the disk, a megabyte
of data is typically accessible before a long seek must be performed, and the cost of one long
seek per megabyte is small.

The global policy routines call local allocation routines with requests for specific blocks.
The local allocation routines will always allocate the requested block if it is free. If the
requested block is not available, the allocator allocates a free block of the requested size that
is rotationally closest to the requested block. If the global layout policies had complete infor-
mation, they could always request unused blocks and the allocation routines would be reduced
to simple bookkeeping. However, maintaining complete information is costly; thus the imple-
mentation of the global layout policy uses heuristic guesses based on partial information.

If a requested block is not available the local allocator uses a four level allocation stra-
tegy:
1) Use the available block rotationally closest to the requested block on the same cylinder.

2) If there are no blocks available on the same cylinder, use a block within the same
cylinder group.

3) If the cylinder group is entirely full, quadratically rehash among the cylinder groups
looking for a free block.

4) Finally if the rehash fails, apply an exhaustive search.

The use of quadratic rehash is prompted by studies of symbol table strategies used in
programming languages. File systems that are parameterized to maintain at least 10% free
space almost never use this strategy; file systems that are run without maintaining any free
space typically have so few free blocks that almost any allocation is random. Consequently
the most important characteristic of the strategy used when the file system is low on space is
that it be fast.

Fast File System 1-31

4. Performance

Ultimately, the proof of the effectiveness of the algorithms described in the previous sec-
tion is the long term performance of the new file system.

Our empiric studies have shown that the inode layout policy has been effective. When
running the “list directory” command on a large directory that itself contains many direc-
tories, the number of disk accesses for inodes is cut by a factor of two. The improvements are
even more dramatic for large directories containing only files, disk accesses for inodes being
cut by a factor of eight. This is most encouraging for programs such as spooling daemons that
access many small files, since these programs tend to flood the disk request queue on the old
file system.

Table 2 summarizes the measured throughput of the new file system. Several comments
need to be made about the conditions under which these tests were run. The test programs
measure the rate that user programs can transfer data to or from a file without performing
any processing on it. These programs must write enough data to insure that buffering in the
operating system does not affect the results. They should also be run at least three times in
succession; the first to get the system into a known state and the second two to insure that the
experiment has stabilized and is repeatable. The methodology and test results are discussed
in detail in [Kridle83]tf. The systems were running multi-user but were otherwise quiescent.
There was no contention for either the cpu or the disk arm. The only difference between the
UNIBUS and MASSBUS tests was the controller. All tests used an Ampex Capricorn 330
Megabyte Winchester disk. As Table 2 shows, all file system test runs were on a VAX 11/750.
All file systems had been in production use for at least a month before being measured.

Type of Processor and Read
File S Bus M] Speed Bandwidil % CPU
old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 3% 11%

new 4096/1024 750/UNIBUS | 221 Kbytes/sec 221/1100 20% 43%
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/1100 21% 29%
new 4096/1024 750/MASSBUS | 466 Kbytes/sec 466/1200 39% 3%

| new 8192/1024 750/MASSBUS | 466 Khytes/sec 466/120039% 54% |
Table 2a — Reading rates of the old and new UNIX file systems.

Type of Processor and Write
| File System Bus Measured | ~ Speed =~ Bandwidth % CPU |
old 1024 750/UNIBUS 48 Kbytes/sec 48/1100 4% 29 %

new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/1100 13% 43%
new 8192/1024 750/UNIBUS | 215 Kbytes/sec 215/1100 19% 46 %
new 4096/1024 750/MASSBUS | 323 Kbytes/sec 323/1200 27% 94%

| new 8192/1024 750/MASSBUS | 466 Kbytes/sec 466/120039% 95% |
Table 2b — Writing rates of the old and new UNIX file systems.

Unlike the old file system, the transfer rates for the new file system do not appear to
change over time. The throughput rate is tied much more strongly to the amount of free
space that is maintained. The measurements in Table 2 were based on a file system run with
10% free space. Synthetic work loads suggest the performance deteriorates to about half the
throughput rates given in Table 2 when no free space is maintained.

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of
the disk by the file system. An upper bound on the transfer rate from the disk is measured by
doing 65536* byte reads from contiguous tracks on the disk. The bandwidth is calculated by

t A UNIX command that is similar to the reading test that we used is, “cp file /dev/null”, where “file” is
eight Megabytes long.
* This number, 65536, is the maximal I/O size supported by the VAX hardware; it is a remnant of the

1-32 Fast File System

comparing the data rates the file system is able to achieve as a percentage of this rate. Using
this metric, the old file system is only able to use about 3-4% of the disk bandwidth, while the
new file system uses up to 39% of the bandwidth.

In the new file system, the reading rate is always at least as fast as the writing rate.
This is to be expected since the kernel must do more work when allocating blocks than when
simply reading them. Note that the write rates are about the same as the read rates in the
8192 byte block file system; the write rates are slower than the read rates in the 4096 byte
block file system. The slower write rates occur because the kernel has to do twice as many
disk allocations per second, and the processor is unable to keep up with the disk transfer rate.

In contrast the old file system is about 50% faster at writing files than reading them.
This is because the write system call is asynchronous and the kernel can generate disk
transfer requests much faster than they can be serviced, hence disk transfers build up in the
disk buffer cache. Because the disk buffer cache is sorted by minimum seek order, the average
seek between the scheduled disk writes is much less than they would be if the data blocks are
written out in the order in which they are generated. However when the file is read, the read
system call is processed synchronously so the disk blocks must be retrieved from the disk in
the order in which they are allocated. This forces the disk scheduler to do long seeks resulting
in a lower throughput rate.

The performance of the new file system is currently limited by a memory to memory
copy operation because it transfers data from the disk into buffers in the kernel address space
and then spends 40% of the processor cycles copying these buffers to user address space. If
the buffers in both address spaces are properly aligned, this transfer can be affected without
copying by using the VAX virtual memory management hardware. This is especially desirable
when large amounts of data are to be transferred. We did not implement this because it
would change the semantics of the file system in two major ways; user programs would be
required to allocate buffers on page boundaries, and data would disappear from buffers after
being written.

Greater disk throughput could be achieved by rewriting the disk drivers to chain
together kernel buffers. This would allow files to be allocated to contiguous disk blocks that
could be read in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors
per track. The inability to use contiguous disk blocks effectively limits the performance on
these disks to less than fifty percent of the available bandwidth. Since each track has a multi-
ple of sixteen sectors it holds exactly two or three 8192 byte file system blocks, or four or six
4096 byte file system blocks. If the the next block for a file cannot be laid out contiguously,
then the minimum spacing to the next allocatable block on any platter is between a sixth and
a half a revolution. The implication of this is that the best possible layout without contiguous
blocks uses only half of the bandwidth of any given track. If each track contains an odd
number of sectors, then it is possible to resolve the rotational delay to any number of sectors
by finding a block that begins at the desired rotational position on another track. The reason
that block chaining has not been implemented is because it would require rewriting all the
disk drivers in the system, and the current throughput rates are already limited by the speed
of the available processors.

Currently only one block is allocated to a file at a time. A technique used by the
DEMOS file system when it finds that a file is growing rapidly, is to preallocate several blocks
at once, releasing them when the file is closed if they remain unused. By batching up the allo-
cation the system can reduce the overhead of allocating at each write, and it can cut down on
the number of disk writes needed to keep the block pointers on the disk synchronized with
the block allocation [Powell79].

system’s PDP-11 ancestry.

Fast File System 1-33

5. File system functional enhancements

The speed enhancements to the UNIX file system did not require any changes to the
semantics or data structures viewed by the users. However several changes have been gen-
erally desired for some time but have not been introduced because they would require users to
dump and restore all their file systems. Since the new file system already requires that all
existing file systems be dumped and restored, these functional enhancements have been intro-
duced at this time.

5.1. Long file names

File names can now be of nearly arbitrary length. The only user programs affected by
this change are those that access directories. To maintain portability among UNIX systems
that are not running the new file system, a set of directory access routines have been intro-
duced that provide a uniform interface to directories on both old and new systems.

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation
can be transferred to disk in a single atomic operation. Each allocation unit contains
variable-length directory entries. Each entry is wholly contained in a single allocation unit.
The first three fields of a directory entry are fixed and contain an inode number, the length of
the entry, and the length of the name contained in the entry. Following this fixed size infor-
mation is the null terminated name, padded to a 4 byte boundary. The maximum length of a
name in a directory is currently 255 characters.

Free space in a directory is held by entries that have a record length that exceeds the
space required by the directory entry itself. All the bytes in a directory unit are claimed by
the directory entries. This normally results in the last entry in a directory being large. When
entries are deleted from a directory, the space is returned to the previous entry in the same
directory unit by increasing its length. If the first entry of a directory unit is free, then its
inode number is set to zero to show that it is unallocated.

5.2. File locking

The old file system had no provision for locking files. Processes that needed to syn-
chronize the updates of a file had to create a separate ‘“lock” file to synchronize their updates.
A process would try to create a “lock” file. If the creation succeeded, then it could proceed
with its update; if the creation failed, then it would wait, and try again. This mechanism had
three drawbacks. Processes consumed CPU time, by looping over attempts to create locks.
Locks were left lying around following system crashes and had to be cleaned up by hand.
Finally, processes running as system administrator are always permitted to create files, so they
had to use a different mechanism. While it is possible to get around all these problems, the
solutions are not straight-forward, so a mechanism for locking files has been added.

The most general schemes allow processes to concurrently update a file. Several of these
techniques are discussed in [Peterson83)]. A simpler technique is to simply serialize access
with locks. To attain reasonable efficiency, certain applications require the ability to lock
pieces of a file. Locking down to the byte level has been implemented in the Onyx file system
by [Bass81]. However, for the applications that currently run on the system, a mechanism
that locks at the granularity of a file is sufficient.

Locking schemes fall into two classes, those using hard locks and those using advisory
locks. The primary difference between advisory locks and hard locks is the decision of when
to override them. A hard lock is always enforced whenever a program tries to access a file; an
advisory lock is only applied when it is requested by a program. Thus advisory locks are only
effective when all programs accessing a file use the locking scheme. With hard locks there
must be some override policy implemented in the kernel, with advisory locks the policy is
implemented by the user programs. In the UNIX system, programs with system administra-
tor privilege can override any protection scheme. Because many of the programs that need to
use locks run as system administrators, we chose to implement advisory locks rather than
create a protection scheme that was contrary to the UNIX philosophy or could not be used by

1-34 Fast File System

system administration programs.

The file locking facilities allow cooperating programs to apply advisory shared or
exclusive locks on files. Only one process has an exclusive lock on a file while multiple shared
locks may be present. Both shared and exclusive locks cannot be present on a file at the same
time. If any lock is requested when another process holds an exclusive lock, or an exclusive
lock is requested when another process holds any lock, the open will block until the lock can
be gained. Because shared and exclusive locks are advisory only, even if a process has
obtained a lock on a file, another process can override the lock by opening the same file
without a lock.

Locks can be applied or removed on open files, so that locks can be manipulated without
needing to close and reopen the file. This is useful, for example, when a process wishes to
open a file with a shared lock to read some information, to determine whether an update is
required. It can then get an exclusive lock so that it can do a read, modify, and write to
update the file in a consistent manner.

A request for a lock will cause the process to block if the lock can not be immediately
obtained. In certain instances this is unsatisfactory. For example, a process that wants only
to check if a lock is present would require a separate mechanism to find out this information.
Consequently, a process may specify that its locking request should return with an error if a
lock can not be immediately obtained. Being able to poll for a lock is useful to “daemon”
processes that wish to service a spooling area. If the first instance of the daemon locks the
directory where spooling takes place, later daemon processes can easily check to see if an
active daemon exists. Since the lock is removed when the process exits or the system crashes,
there is no problem with unintentional locks files that must be cleared by hand.

Almost no deadlock detection is attempted. The only deadlock detection made by the
system is that the file descriptor to which a lock is applied does not currently have a lock of
the same type (i.e. the second of two successive calls to apply a lock of the same type will fail).
Thus a process can deadlock itself by requesting locks on two separate file descriptors for the
same object.

5.3. Symbolic links

The 512 byte UNIX file system allows multiple directory entries in the same file system
to reference a single file. The link concept is fundamental; files do not live in directories, but
exist separately and are referenced by links. When all the links are removed, the file is deallo-
cated. This style of links does not allow references across physical file systems, nor does it
support inter-machine linkage. To avoid these limitations symbolic links have been added
similar to the scheme used by Multics [Feiertag71].

A symbolic link is implemented as a file that contains a pathname. When the system
encounters a symbolic link while interpreting a component of a pathname, the contents of the
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield
the resulting pathname. If the symbolic link contains an absolute pathname, the absolute
pathname is used, otherwise the contents of the symbolic link is evaluated relative to the loca-
tion of the link in the file hierarchy.

Normally programs do not want to be aware that there is a symbolic link in a pathname
that they are using. However certain system utilities must be able to detect and manipulate
symbolic links. Three new system calls provide the ability to detect, read, and write symbolic
links, and seven system utilities were modified to use these calls.

In future Berkeley software distributions it will be possible to mount file systems from
other machines within a local file system. When this occurs, it will be possible to create sym-
bolic links that span machines.

Fast File System 1-35

5.4. Rename

Programs that create new versions of data files typically create the new version as a tem-
porary file and then rename the temporary file with the original name of the data file. In the
old UNIX file systems the renaming required three calls to the system. If the program were
interrupted or the system crashed between these calls, the data file could be left with only its
temporary name. To eliminate this possibility a single system call has been added that per-
forms the rename in an atomic fashion to guarantee the existence of the original name.

In addition, the rename facility allows directories to be moved around in the directory
tree hierarchy. The rename system call performs special validation checks to insure that the
directory tree structure is not corrupted by the creation of loops or inaccessible directories.
Such corruption would occur if a parent directory were moved into one of its descendants.
The validation check requires tracing the ancestry of the target directory to insure that it does
not include the directory being moved.

5.5. Quotas

The UNIX system has traditionally attempted to share all available resources to the
greatest extent possible. Thus any single user can allocate all the available space in the file
system. In certain environments this is unacceptable. Consequently, a quota mechanism has
been added for restricting the amount of file system resources that a user can obtain. The
quota mechanism sets limits on both the number of files and the number of disk blocks that a
user may allocate. A separate quota can be set for each user on each file system. Each
resource is given both a hard and a soft limit. When a program exceeds a soft limit, a warning
is printed on the users terminal; the offending program is not terminated unless it exceeds its
hard limit. The idea is that users should stay below their soft limit between login sessions,
but they may use more space while they are actively working. To encourage this behavior,
users are warned when logging in if they are over any of their soft limits. If they fail to
correct the problem for too many login sessions, they are eventually reprimanded by having
their soft limit enforced as their hard limit.

1-36 Fast File System

6. Software engineering

The preliminary design was done by Bill Joy in late 1980; he presented the design at
The USENIX Conference held in San Francisco in January 1981. The implementation of his
design was done by Kirk McKusick in the summer of 1981. Most of the new system calls were
implemented by Sam Leffler. The code for enforcing quotas was implemented by Robert Elz
at the University of Melbourne.

To understand how the project was done it is necessary to understand the interfaces that
the UNIX system provides to the hardware mass storage systems. At the lowest level is a raw
disk. This interface provides access to the disk as a linear array of sectors. Normally this
interface is only used by programs that need to do disk to disk copies or that wish to dump
file systems. However, user programs with proper access rights can also access this interface.
A disk is usually formated with a file system that is interpreted by the UNIX system to pro-
vide a directory hierarchy and files. The UNIX system interprets and multiplexes requests
from user programs to create, read, write, and delete files by allocating and freeing inodes and
data blocks. The interpretation of the data on the disk could be done by the user programs
themselves. The reason that it is done by the UNIX system is to synchronize the user
requests, so that two processes do not attempt to allocate or modify the same resource simul-
taneously. It also allows access to be restricted at the file level rather than at the disk level
and allows the common file system routines to be shared between processes.

The implementation of the new file system amounted to using a different scheme for for-
mating and interpreting the disk. Since the synchronization and disk access routines them-
selves were not being changed, the changes to the file system could be developed by moving
the file system interpretation routines out of the kernel and into a user program. Thus, the
first step was to extract the file system code for the old file system from the UNIX kernel and
change its requests to the disk driver to accesses to a raw disk. This produced a library of
routines that mapped what would normally be system calls into read or write operations on
the raw disk. This library was then debugged by linking it into the system utilities that copy,
remove, archive, and restore files.

A new cross file system utility was written that copied files from the simulated file sys-
tem to the one implemented by the kernel. This was accomplished by calling the simulation
library to do a read, and then writing the resultant data by using the conventional write sys-
tem call. A similar utility copied data from the kernel to the simulated file system by doing a
conventional read system call and then writing the resultant data using the simulated file sys-
tem library.

The second step was to rewrite the file system simulation library to interpret the new file
system. By linking the new simulation library into the cross file system copying utility, it was
possible to easily copy files from the old file system into the new one and from the new one to
the old one. Having the file system interpretation implemented in user code had several
major benefits. These included being able to use the standard system tools such as the
debuggers to set breakpoints and single step through the code. When bugs were discovered,
the offending problem could be fixed and tested without the need to reboot the machine.
There was never a period where it was necessary to maintain two concurrent file systems in
the kernel. Finally it was not necessary to dedicate a machine entirely to file system develop-
ment, except for a brief period while the new file system was boot strapped.

The final step was to merge the new file system back into the UNIX kernel. This was
done in less than two weeks, since the only bugs remaining were those that involved interfac-
ing to the synchronization routines that could not be tested in the simulated system. Again
the simulation system proved useful since it enabled files to be easily copied between old and
new file systems regardless of which file system was running in the kernel. This greatly
reduced the number of times that the system had to be rebooted.

The total design and debug time took about one man year. Most of the work was done
on the file system utilities, and changing all the user programs to use the new facilities. The
code changes in the kernel were minor, involving the addition of only about 800 lines of code
(including comments).

Fast File System 1-37

Acknowledgements

We thank Robert Elz for his ongoing interest in the new file system, and for adding disk
quotas in a rational and efficient manner. We also acknowledge Dennis Ritchie for his sugges-
tions on the appropriate modifications to the user interface. We appreciate Michael Powell’s
explanations on how the DEMOS file system worked; many of his ideas were used in this
implementation. Special commendation goes to Peter Kessler and Robert Henry for acting
like real users during the early debugging stage when files were less stable than they should
have been. Finally we thank our sponsors, the National Science Foundation under grant
MCS80-05144, and the Defense Advance Research Projects Agency (DoD) under Arpa Order
No. 4031 monitored by Naval Electronic System Command under Contract No. N00039-82-C-
0235.

References

[Accetta80] Accetta, M., Robertson, G., Satyanarayanan, M., and Thompson, M.
"The Design of a Network-Based Central File System”, Carnegie-Mellon
University, Dept of Computer Science Tech Report, #CMU-CS-80-134

[Almes78] Almes, G., and Robertson, G. "An Extensible File System for Hydra”
Proceedings of the Third International Conference on Software
Engineering, IEEE, May 1978.

[Bass81] Bass, J. "Implementation Description for File Locking”, Onyx Systems
Inc, 73 E. Trimble Rd, San Jose, CA 95131 Jan 1981.

[Dion80] Dion, J. "The Cambridge File Server”, Operating Systems Review, 14, 4.
Oct 1980. pp 26-35

[Eswaran74] Eswaran, K. ”Placement of records in a file and file allocation in a com-
puter network”, Proceedings IFIPS, 1974. pp 304-307

[Holler73] Holler, J. ”Files in Computer Networks”, First European Workshop on
Computer Networks, April 1973. pp 381-396

[Feiertag71] Feiertag, R. J. and Organick, E. 1., ”The Multics Input-Output System”,

Proceedings of the Third Symposium on Operating Systems Principles,
ACM, Oct 1971. pp 35-41

[Kridle83] Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem
Choices for VAX Systems Running 4.2BSD UNIX”, Computer Systems
Research Group, Dept of EECS, Berkeley, CA 94720, Technical Report

#8.

[Kowalski78] Kowalski, T. "FSCK - The UNIX System Check Program”, Bell
Laboratory, Murray Hill, NJ 07974. March 1978

[Luniewski77] Luniewski, A. ”File Allocation in a Distributed System”, MIT Labora-
tory for Computer Science, Dec 1977.

[Maruyama76] Maruyama, K., and Smith, S. ”Optimal reorganization of Distributed
Space Disk Files”, Communications of the ACM, 19, 11. Nov 1976. pp
634-642

[Nevalainen77] Nevalainen, O., Vesterinen, M. ”“Determining Blocking Factors for

Sequential Files by Heuristic Methods”, The Computer Journal, 20, 3.
Aug 1977. pp 245-247

[Peterson83] Peterson, G. ”"Concurrent Reading While Writing”, ACM Transactions
on Programming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55
[Powell79] Powell, M. "The DEMOS File System”, Proceedings of the Sixth Sym-

posium on Operating Systems Principles, ACM, Nov 1977. pp 33-42

1-38 Fast File System

[Porcar82]
[Ritchie74]
[Smith81a]
[Smith81b]
[Sturgis80]
[Symbolics81a]
[Symbolics81b]
[Thompson79]
[Thompson80]
[Trivedi80]

[White80]

Porcar, J. ”File Migration in Distributed Computer Systems”, Ph.D.
Thesis, Lawrence Berkeley Laboratory Tech Report #LBL-14763.
Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing System”,
CACM 17, 7. July 1974. pp 365-375

Smith, A. “Input/Output Optimization and Disk Architectures: A Sur-
vey”, Performance and Evaluation 1. Jan 1981. pp 104-117

Smith, A. ”Bibliography on File and I/O System Optimization and
Related Topics”, Operating Systems Review, 15, 4. Oct 1981. pp 39-54
Sturgis, H., Mitchell, J., and Israel, J. ”Issues in the Design and Use of
a Distributed File System”, Operating Systems Review, 14, 3. pp 55-79
”Symbolics File System”, Symbolics Inc, 9600 DeSoto Ave, Chatsworth,
CA 91311 Aug 1981.

*Chaosnet FILE Protocol”. Symbolics Inc, 9600 DeSoto Ave, Chats-
worth, CA 91311 Sept 1981.

Thompson, K. "UNIX Implementation”, Section 31, Volume 2B, UNIX
Programmers Manual, Bell Laboratory, Murray Hill, NJ 07974. Jan 1979

Thompson, M. ”Spice File System”, Carnegie-Mellon University, Dept
of Computer Science Tech Report, #CMU-CS-80-7??

Trivedi, K. ”Optimal Selection of CPU Speed, Device Capabilities, and
File Assignments”, Journal of the ACM, 27, 3. July 1980. pp 457-473

White, R. M. ”"Disk Storage Technology”, Scientific American, 243(2),
August 1980.

Introduction 2-1

PART 2: MAINTENANCE AND ADMINISTRATION

The three articles in this part describe system administration utilities on ULTRIX-32. Two
of the utilities, guota and the file system check program (fsck), will help you keep your system
running efficiently. The third utility, sendmail, makes possible communication between users
on computers that use different networking software.

Disk Quotas

The ULTRIX-32 system allows the system manager to impose limits on the amount of disk
space and the number of files available to each user. Each category (disk space and the max-
imum number of files) has a hard limit and a soft limit. The hard limit for a user sets an
absolute maximum that cannot be exceeded. The soft limit is a guideline: the number of
blocks or files that the user should try not to exceed. The quota utility warns any user who
exceeds his or her soft limit. If the user consistently ignores the warnings, the soft limit
becomes a hard limit after a set number of warnings.

The article, “Disc Quotas in a UNIX Environment,” by Elz, tells how the system manager can
establish, disable, or check the limits and the number of warnings for any user. Elz also
explains how a user can exit without loss from an editing session in which writing the edited
material to a file would exceed one of the hard limits.

Fixing Corrupted File Systems

The ULTRIX-32 system includes a file system check program called fsck. You can use this
utility to determine whether your file system is corrupted and to fix any inconsistencies you
find.

Fsck runs in two modes: noninteractive and interactive. Normally the boot procedure calls
fsck to run noninteractively after booting the operating system. In this mode, the utility
checks for inconsistencies and corrects only those that it can handle without help from an
operator. In general, these are problems associated with a system crash or improper shutdown
procedure. When the utility finds a problem it can’t deal with, it notifies the operator and
stops. The operator can then run fsck interactively, deciding between the alternative meas-
ures presented by the utility.

The article by McKusick, “Fsck - The UNIX File System Check Program,” gives an overview
of the file system, the kinds of corruption that can occur, and the methods that fsck uses to
check for inconsistencies. An appendix provides a comprehensive list of error messages
together with explanations and appropriate responses. Fsck is essential to proper maintenance
of the ULTRIX-32 system, and this article is essential to proper use of fsck.

2-2 Introduction

Managing the Sendmail Utility

Sendmail is an internetwork mail utility transparent to most users. Once it is installed and
running, you can send mail to users on foreign network systems in the same way that you send
mail to users on the local network. The sendmail utility handles the protocol and message-
routing differences between networks automatically.

The “Sendmail Installation and Operation Guide,” by Allman, tells what you need to know to
start up the utility and to keep it running correctly from day to day. A second article, “Send-
mail - An Internetwork Mail Router,” in Part 3 of this volume, gives background information
that tells how sendmail works. Read the background article before using the installation and
operating information included in this part.

The installation information in the “Sendmail Installation and Operation Guide” explains:
¢ How to use either of two off-the-shelf configuration files supplied with the software
¢ How to use a makefile to install sendmail automatically

* How to install sendmail by hand by building your own configuration file and setting
up the sendmail startup procedure on your ULTRIX-32 system

The day-to-day sendmail operations explained include:
¢ Use of the system log for records and debugging
e Mail queue processing
e Treatment of address aliases
e The mail-forwarding feature
* Special headers for return receipts and error situations

The article describes parameters you can adjust to tune sendmail to suit a specific site. If you
must build your own configuration file, you will find the list of configuration file rules and
hints to be helpful. And for expert system managers, the appendixes list detailed sendmail
information in five categories:

e Command line flags

* Configuration options

¢ Mailer flags

* Compilation options (other configuration)
¢ Support files

Disk Quotas 2-3

Disc Quotas in a UNIX" Environment

Robert Elz

Department of Computer Science
University of Melbourne,
Parkville,

Victoria,

Australia.

1. Users’ view of disc quotas

To most users, disc quotas will either be of no concern, or a fact of life that cannot be
avoided. The guota (1) command will provide information on any disc quotas that may have
been imposed upon a user.

There are two individual possible quotas that may be imposed, usually if one is, both
will be. A limit can be set on the amount of space a user can occupy, and there may be a
limit on the number of files (inodes) he can own.

Quota provides information on the quotas that have been set by the system administra-
tors, in each of these areas, and current usage.

There are four numbers for each limit, the current usage, soft limit (quota), hard limit,
and number of remaining login warnings. The soft limit is the number of 1K blocks (or files)
that the user is expected to remain below. Each time the user’s usage goes past this limit, he
will be warned. The hard limit cannot be exceeded. If a user’s usage reaches this number,
further requests for space (or attempts to create a file) will fail with an EDQUOT error, and
the first time this occurs, a message will be written to the user’s terminal. Only one message
will be output, until space occupied is reduced below the limit, and reaches it again, in order
to avoid continual noise from those programs that ignore write errors.

Whenever a user logs in with a usage greater than his soft limit, he will be warned, and
his login warning count decremented. When he logs in under quota, the counter is reset to its
maximum value (which is a system configuration parameter, that is typically 3). If the warn-
ing count should ever reach zero (caused by three successive logins over quota), the particular
limit that has been exceeded will be treated as if the hard limit has been reached, and no
more resources will be allocated to the user. The only way to reset this condition is to reduce
usage below quota, then log in again.

1.1. Surviving when quota limit is reached

In most cases, the only way to recover from over quota conditions, is to abort whatever
activity was in progress on the filesystem that has reached its limit, remove sufficient files to
bring the limit back below quota, and retry the failed program.

However, if you are in the editor and a write fails because of an over quota situation,
that is not a suitable course of action, as it is most likely that initially attempting to write the
file will have truncated its previous contents, so should the editor be aborted without correctly
writing the file not only will the recent changes be lost, but possibly much, or even all, of the
data that previously existed.

* UNIX is a trademark of Bell Laboratories.

2-4 Disk Quotas

There are several possible safe exits for a user caught in this situation. He may use the
editor ! shell escape command to examine his file space, and remove surplus files. Alterna-
tively, using csh, he may suspend the editor, remove some files, then resume it. A third possi-
bility, is to write the file to some other filesystem (perhaps to a file on /tmp) where the user’s
quota has not been exceeded. Then after rectifying the quota situation, the file can be moved
back to the filesystem it belongs on.

2. Administering the quota system

To set up and establish the disc quota system, there are several steps necessary to be
performed by the system administrator.

First, the system must be configured to include the disc quota sub-system. This is done
by including the line:

options QUOTA

in the system configuration file, then running config (8) followed by a system configuration®.

Second, a decision as to what filesystems need to have quotas applied needs to be made.
Usually, only filesystems that house users’ home directories, or other user files, will need to be
subjected to the quota system, though it may also prove useful to also include /usr. If possi-
ble, /tmp should usually be free of quotas.

Having decided on which filesystems quotas need to be set upon, the administrator
should then allocate the available space amongst the competing needs. How this should be
done is (way) beyond the scope of this document.

Then, the edquota (8) command can be used to actually set the limits desired upon each
user. Where a number of users are to be given the same quotas (a common occurrence) the —p
switch to edquota will allow this to be easily accomplished.

Once the quotas are set, ready to operate, the system must be informed to enforce quo-
tas on the desired filesystems. This is accomplished with the quotaon (8) command. Quotaon
will either enable quotas for a particular filesystem, or with the —a switch, will enable quotas
for each filesystem indicated in /etc/fstab as using quotas. See fstab(5) for details. Most
sites using the quota system, will include the line

/etc/quotaon -a

in /etc/redocal.

Should quotas need to be disabled, the quotaoff(8) command will do that, however,
should the filesystem be about to be dismounted, the umount (8) command will disable quotas
immediately before the filesystem is unmounted. This is actually an effect of the umount(2)
system call, and it guarantees that the quota system will not be disabled if the umount would
fail because the filesystem is not idle.

Periodically (certainly after each reboot, and when quotas are first enabled for a filesys-
tem), the records retained in the quota file should be checked for consistency with the actual
number of blocks and files allocated to the user. The quotachk(8) command can be used to
accomplish this. It is not necessary to dismount the filesystem, or disable the quota system to
run this command, though on active filesystems inaccurate results may occur. This does no
real harm in most cases, another run of quotachk when the filesystem is idle will certainly
correct any inaccuracy.

The super-user may use the quota (1) command to examine the usage and quotas of any
user, and the repquota (8) command may be used to check the usages and limits for all users
on a filesystem.

* See also the document “Building 4.2BSD UNIX Systems with Config”.

Disk Quotas 2-5

3. Some implementation detail

Disc quota usage and information is stored in a file on the filesystem that the quotas are
to be applied to. Conventionally, this file is quotas in the root of the filesystem. While this
name is not known to the system in any way, several of the user level utilities ’know” it, and
choosing any other name would not be wise.

The data in the file comprises an array of structures, indexed by uid, one structure for
each user on the system (whether the user has a quota on this filesystem or not). If the uid
space is sparse, then the file may have holes in it, which would be lost by copying, so it is best
to avoid this.

The system is informed of the existence of the quota file by the setquota (2) system call.
It then reads the quota entries for each user currently active, then for any files open owned by
users who are not currently active. Each subsequent open of a file on the filesystem, will be
accompanied by a pairing with its quota information. In most cases this information will be
retained in core, either because the user who owns the file is running some process, because
other files are open owned by the same user, or because some file (perhaps this one) was
recently accessed. In memory, the quota information is kept hashed by user-id and filesystem,
and retained in an LRU chain so recently released data can be easily reclaimed. Information
about those users whose last process has recently terminated is also retained in this way.

Each time a block is accessed or released, and each time an inode is allocated or freed,
the quota system gets told about it, and in the case of allocations, gets the opportunity to
object.

Measurements have shown that the quota code uses a very small percentage of the sys-
tem cpu time consumed in writing a new block to disc.

4. Acknowledgments

The current disc quota system is loosely based upon a very early scheme implemented at
the University of New South Wales, and Sydney University in the mid 70’s. That system
implemented a single combined limit for both files and blocks on all filesystems.

A later system was implemented at the University of Melbourne by the author, but was
not kept highly accurately, eg: chown’s (etc) did not affect quotas, nor did i/o to a file other
than one owned by the instigator.

The current system has been running (with only minor modifications) since January 82
at Melbourne. It is actually just a small part of a much broader resource control scheme,
which is capable of controlling almost anything that is usually uncontrolled in unix. The rest
of this is, as yet, still in a state where it is far too subject to change to be considered for distri-
bution.

For the 4.2BSD release, much work has been done to clean up and sanely incorporate
the quota code by Sam Leffler and Kirk McKusick at The University of California at Berke-
ley.

Fsck 2-7
Fsck — The UNIX+¥ File System Check Program

Revised July 28, 1983
Marshall Kirk McKusick

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

This document reflects the use of fsck with the 4.2BSD file system organization. This is
a revision of the original paper written by T. J. Kowalski.

When a UNIX operating system is brought up, a consistency check of the file systems
should always be performed. This precautionary measure helps to insure a reliable environ-
ment for file storage on disk. If an inconsistency is discovered, corrective action must be
taken. Fsck runs in two modes. Normally it is run non-interactively by the system after a
normal boot. When running in this mode, it will only make changes to the file system that are
known to always be correct. If an unexpected inconsistency is found fsck will exit with a
non-zero exit status, leaving the system running single-user. Typically the operator then runs
fsck interactively. When running in this mode, each problem is listed followed by a suggested
corrective action. The operator must decide whether or not the suggested correction should
be made.

The purpose of this memo is to dispel the mystique surrounding file system inconsisten-
cies. It first describes the updating of the file system (the calm before the storm) and then
describes file system corruption (the storm). Finally, the set of deterministic corrective
actions used by fsck (the Coast Guard to the rescue) is presented.

UNIX is a trademark of Bell Laboratories.

This work was done under grants from the National Science Foundation under grant MCS80-05144, and the
Defense Advance Research Projects Agency (DoD) under Arpa Order No. 4031 monitored by Naval Elec-
tronic System Command under Contract No. N00039-82-C-0235.

2-8 Fsck

2. Overview of the file system
The file system is discussed in detail in [Mckusick83]; this section gives a brief overview.

2.1. Superblock

A file system is described by its super-block. The super-block is built when the file sys-
tem is created (newfs(8)) and never changes. The super-block contains the basic parameters
of the file system, such as the number of data blocks it contains and a count of the maximum
number of files. Because the super-block contains critical data, newfs replicates it to protect
against catastrophic loss. The default super block always resides at a fixed offset from the
beginning of the file system’s disk partition. The redundant super blocks are not referenced
unless a head crash or other hard disk error causes the default super-block to be unusable.
The redundant blocks are sprinkled throughout the disk partition.

Within the file system are files. Certain files are distinguished as directories and contain
collections of pointers to files that may themselves be directories. Every file has a descriptor
associated with it called an inode. The inode contains information describing ownership of
the file, time stamps indicating modification and access times for the file, and an array of
indices pointing to the data blocks for the file. In this section, we assume that the first 12
blocks of the file are directly referenced by values stored in the inode structure itselff. The
inode structure may also contain references to indirect blocks containing further data block
indices. In a file system with a 4096 byte block size, a singly indirect block contains 1024
further block addresses, a doubly indirect block contains 1024 addresses of further single
indirect blocks, and a triply indirect block contains 1024 addresses of further doubly indirect
blocks.

In order to create files with up to 2132 bytes, using only two levels of indirection, the
minimum size of a file system block is 4096 bytes. The size of file system blocks can be any
power of two greater than or equal to 4096. The block size of the file system is maintained in
the super-block, so it is possible for file systems of different block sizes to be accessible simul-
taneously on the same system. The block size must be decided when newfs creates the file
system; the block size cannot be subsequently changed without rebuilding the file system.

2.2. Summary information

Associated with the super block is non replicated summary information. The summary
information changes as the file system is modified. The summary information contains the
number of blocks, fragments, inodes and directories in the file system.

2.3. Cylinder groups

The file system partitions the disk into one or more areas called cylinder groups. A
cylinder group is comprised of one or more consecutive cylinders on a disk. Each cylinder
group includes inode slots for files, a block map describing available blocks in the cylinder
group, and summary information describing the usage of data blocks within the cylinder
group. A fixed number of inodes is allocated for each cylinder group when the file system is
created. The current policy is to allocate one inode for each 2048 bytes of disk space; this is
expected to be far more inodes than will ever be needed.

All the cylinder group bookkeeping information could be placed at the beginning of each
cylinder group. However if this approach were used, all the redundant information would be
on the top platter. A single hardware failure that destroyed the top platter could cause the
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping infor-
mation begins at a floating offset from the beginning of the cylinder group. The offset for the
i+1st cylinder group is about one track further from the beginning of the cylinder group than
it was for the ith cylinder group. In this way, the redundant information spirals down into

tThe actual number may vary from system to system, but is usually in the range 5-13.

Fsck 2-9

the pack; any single track, cylinder, or platter can be lost without losing all copies of the
super-blocks. Except for the first cylinder group, the space between the beginning of the
cylinder group and the beginning of the cylinder group information stores data.

24. Fragments

To avoid waste in storing small files, the file system space allocator divides a single file
system block into one or more fragments. The fragmentation of the file system is specified
when the file system is created; each file system block can be optionally broken into 2, 4, or 8
addressable fragments. The lower bound on the size of these fragments is constrained by the
disk sector size; typically 512 bytes is the lower bound on fragment size. The block map asso-
ciated with each cylinder group records the space availability at the fragment level. Aligned
fragments are examined to determine block availability.

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file
is represented by zero or more 4096 byte blocks of data, and possibly a single fragmented
block. If a file system block must be fragmented to obtain space for a small amount of data,
the remainder of the block is made available for allocation to other files. For example, con-
sider an 11000 byte file stored on a 4096/1024 byte file system. This file uses two full size
blocks and a 3072 byte fragment. If no fragments with at least 3072 bytes are available when
the file is created, a full size block is split yielding the necessary 3072 byte fragment and an
unused 1024 byte fragment. This remaining fragment can be allocated to another file, as
needed.

2.5. Updates to the file system

Every working day hundreds of files are created, modified, and removed. Every time a
file is modified, the operating system performs a series of file system updates. These updates,
when written on disk, yield a consistent file system. The file system stages all modifications of
critical information; modification can either be completed or cleanly backed out after a crash.
Knowing the information that is first written to the file system, deterministic procedures can
be developed to repair a corrupted file system. To understand this process, the order that the
update requests were being honored must first be understood.

When a user program does an operation to change the file system, such as a write, the
data to be written is copied into an internal in-core buffer in the kernel. Normally, the disk
update is handled asynchronously; the user process is allowed to proceed even though the data
has not yet been written to the disk. The data, along with the inode information reflecting
the change, is eventually written out to disk. The real disk write may not happen until long
after the write system call has returned. Thus at any given time, the file system, as it resides
on the disk, lags the state of the file system represented by the in-core information.

The disk information is updated to reflect the in-core information when the buffer is
required for another use, when a sync(2) is done (at 30 second intervals) by /etc/update (8), or
by manual operator intervention with the sync(8) command. If the system is halted without
writing out the in-core information, the file system on the disk will be in an inconsistent state.

If all updates are done asynchronously, several serious inconsistencies can arise. One
inconsistency is that a block may be claimed by two inodes. Such an inconsistency can occur
when the system is halted before the pointer to the block in the old inode has been cleared in
the copy of the old inode on the disk, and after the pointer to the block in the new inode has
been written out to the copy of the new inode on the disk. Here, there is no deterministic
method for deciding which inode should really claim the block. A similar problem can arise
with a multiply claimed inode.

The problem with asynchronous inode updates can be avoided by doing all inode deallo-
cations synchronously. Consequently, inodes and indirect blocks are written to the disk syn-
chronously (i.e. the process blocks until the information is really written to disk) when they
are being deallocated. Similarly inodes are kept consistent by synchronously deleting, adding,
or changing directory entries.

2-10 Fsck

3. Fixing corrupted file systems

A file system can become corrupted in several ways. The most common of these ways
are improper shutdown procedures and hardware failures.

File systems may become corrupted during an unclean halt. This happens when proper
shutdown procedures are not observed, physically write-protecting a mounted file system, or a
mounted file system is taken off-line. The most common operator procedural failure is forget-
ting to sync the system before halting the CPU.

File systems may become further corrupted if proper startup procedures are not
observed, e.g., not checking a file system for inconsistencies, and not repairing inconsistencies.
Allowing a corrupted file system to be used (and, thus, to be modified further) can be disas-
trous.

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a
disk pack, or as blatant as a non-functional disk-controller.

3.1. Detecting and correcting corruption

Normally fsck is run non-interactively. In this mode it will only fix corruptions that are
expected to occur from an unclean halt. These actions are a proper subset of the actions that
fsck will take when it is running interactively. Throughout this paper we assume that fsck is
being run interactively, and all possible errors can be encountered. When an inconsistency is
discovered in this mode, fsck reports the inconsistency for the operator to chose a corrective
action.

A quiescent} file system may be checked for structural integrity by performing con-
sistency checks on the redundant data intrinsic to a file system. The redundant data is either
read from the file system, or computed from other known values. The file system must be in
a quiescent state when fsck is run, since fsck is a multi-pass program.

In the following sections, we discuss methods to discover inconsistencies and possible
corrective actions for the cylinder group blocks, the inodes, the indirect blocks, and the data
blocks containing directory entries.

3.2. Super-block checking

The most commonly corrupted item in a file system is the summary information associ-
ated with the super-block. The summary information is prone to corruption because it is
modified with every change to the file system’s blocks or inodes, and is usually corrupted after
an unclean halt.

The super-block is checked for inconsistencies involving file-system size, number of
inodes, free-block count, and the free-inode count. The file-system size must be larger than
the number of blocks used by the super-block and the number of blocks used by the list of
inodes. The file-system size and layout information are the most critical pieces of information
for fsck. While there is no way to actually check these sizes, since they are statically deter-
mined by newfs, fsck can check that these sizes are within reasonable bounds. All other file
system checks require that these sizes be correct. If fsck detects corruption in the static
parameters of the default super-block, fsck requests the operator to specify the location of an
alternate super-block.

3.3. Free block checking

Fsck checks that all the blocks marked as free in the cylinder group block maps are not
claimed by any files. When all the blocks have been initially accounted for, fsck checks that
the number of free blocks plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

I Le., unmounted and not being written on.

PN

Fsck 2-11

If anything is wrong with the block allocation maps, fsck will rebuild them, based on the
list it has computed of allocated blocks.

The summary information associated with the super-block counts the total number of
free blocks within the file system. Fsck compares this count to the number of free blocks it
found within the file system. If the two counts do not agree, then fsck replaces the incorrect
count in the summary information by the actual free-block count.

The summary information counts the total number of free inodes within the file system.
Fsck compares this count to the number of free inodes it found within the file system. If the
two counts do not agree, then fsck replaces the incorrect count in the summary information
by the actual free-inode count.

3.4. Checking the inode state

An individual inode is not as likely to be corrupted as the allocation information. How-
ever, because of the great number of active inodes, a few of the inodes are usually corrupted.

The list of inodes in the file system is checked sequentially starting with inode 2 (inode 0
marks unused inodes; inode 1 is saved for future generations) and progressing through the last
inode in the file system. The state of each inode is checked for inconsistencies involving for-
mat and type, link count, duplicate blocks, bad blocks, and inode size.

Each inode contains a mode word. This mode word describes the type and state of the
inode. Inodes must be one of six types: regular inode, directory inode, symbolic link inode,
special block inode, special character inode, or socket inode. Inodes may be found in one of
three allocation states: unallocated, allocated, and neither unallocated nor allocated. This last
state suggests an incorrectly formated inode. An inode can get in this state if bad data is
written into the inode list. The only possible corrective action is for fsck is to clear the inode.

3.5. Inode links

Each inode counts the total number of directory entries linked to the inode. Fsck
verifies the link count of each inode by starting at the root of the file system, and descending
through the directory structure. The actual link count for each inode is calculated during the
descent.

If the stored link count is non-zero and the actual link count is zero, then no directory
entry appears for the inode. If this happens, fsck will place the disconnected file in the
lost+found directory. If the stored and actual link counts are non-zero and unequal, a direc-
tory entry may have been added or removed without the inode being updated. If this hap-
pens, fsck replaces the incorrect stored link count by the actual link count.

Each inode contains a list, or pointers to lists (indirect blocks), of all the blocks claimed
by the inode. Since indirect blocks are owned by an inode, inconsistencies in indirect blocks
directly affect the inode that owns it.

Fsck compares each block number claimed by an inode against a list of already allocated
blocks. If another inode already claims a block number, then the block number is added to a
list of duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block
number.

If there are any duplicate blocks, fsck will perform a partial second pass over the inode
list to find the inode of the duplicated block. The second pass is needed, since without exa-
mining the files associated with these inodes for correct content, not enough information is
available to determine which inode is corrupted and should be cleared. If this condition does
arise (only hardware failure will cause it), then the inode with the earliest modify time is usu-
ally incorrect, and should be cleared. If this happens, fsck prompts the operator to clear both
inodes. The operator must decide which one should be kept and which one should be cleared.

Fsck checks the range of each block number claimed by an inode. If the block number
is lower than the first data block in the file system, or greater than the last data block, then

2-12 Fsck

the block number is a bad block number. Many bad blocks in an inode are usually caused by
an indirect block that was not written to the file system, a condition which can only occur if
there has been a hardware failure. If an inode contains bad block numbers, fsck prompts the
operator to clear it.

3.6. Inode data size

Each inode contains a count of the number of data blocks that it contains. The number
of actual data blocks is the sum of the allocated data blocks and the indirect blocks. Fsck
computes the actual number of data blocks and compares that block count against the actual
number of blocks the inode claims. If an inode contains an incorrect count fsck prompts the
operator to fix it.

Each inode contains a thirty-two bit size field. The size is the number of data bytes in
the file associated with the inode. The consistency of the byte size field is roughly checked by
computing from the size field the maximum number of blocks that should be associated with
the inode, and comparing that expected block count against the actual number of blocks the
inode claims.

38.7. Checking the data associated with an inode

An inode can directly or indirectly reference three kinds of data blocks. All referenced
blocks must be the same kind. The three types of data blocks are: plain data blocks, symbolic
link data blocks, and directory data blocks. Plain data blocks contain the information stored
in a file; symbolic link data blocks contain the path name stored in a link. Directory data
blocks contain directory entries. Fsck can only check the validity of directory data blocks.

Each directory data block is checked for several types of inconsistencies. These incon-
sistencies include directory inode numbers pointing to unallocated inodes, directory inode
numbers that are greater than the number of inodes in the file system, incorrect directory
inode numbers for “.” and “..”, and directories that are not attached to the file system. If the
inode number in a directory data block references an unallocated inode, then fsck will remove
that directory entry. Again, this condition can only arise when there has been a hardware
failure.

If a directory entry inode number references outside the inode list, then fsck will remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for “.” must be the first entry in the directory data

({2824

block. The inode number for “.” must reference itself; e.g., it must equal the inode number
for the directory data block. The directory inode number entry for “..” must be the second
entry in the directory data block. Its value must equal the inode number for the parent of the
directory entry (or the inode number of the directory data block if the directory is the root
directory). If the directory inode numbers are incorrect, fsck will replace them with the

correct values.

3.8. File system connectivity

Fsck checks the general connectivity of the file system. If directories are not linked into
the file system, then fsck links the directory back into the file system in the lost+found direc-
tory. This condition only occurs when there has been a hardware failure.

Fsck 2-13

Acknowledgements

I thank Bill Joy, Sam Leffler, Robert Elz and Dennis Ritchie for their suggestions and
help in implementing the new file system. Thanks also to Robert Henry for his editorial input
to get this document together. Finally we thank our sponsors, the National Science Founda-
tion under grant MCS80-05144, and the Defense Advance Research Projects Agency (DoD)
under Arpa Order No. 4031 monitored by Naval Electronic System Command under Contract
No. N00039-82-C-0235. (Kirk McKusick, July 1983)

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and
Rick B. Brandt for adapting fsck to UNIX/TS. (T. Kowalski, July 1979)

References

[Dolotta78] Dolotta, T. A., and Olsson, S. B. eds., UNIX User’s Manual, Edition
1.1 (January 1978).

[Joy83] Joy, W., Cooper, E., Fabry, R., Leffler, S., McKusick, M., and Mosher,

D. 4.2BSD System Manual, University of California at Berkeley, Com-
puter Systems Research Group Technical Report #4, 1982.

[McKusick83] McKusick, M., Joy, W., Lefller, S., and Fabry, R. A Fast File System
for UNIX, University of California at Berkeley, Computer Systems
Research Group Technical Report #7, 1982.

[Ritchie78] Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System,
The Bell System Technical Journal 57, 6 (July-August 1978, Part 2),
pp. 1905-29.

[Thompson78] Thompson, K., UNIX Implementation, The Bell System Technical

Journal 57, 6 (July-August 1978, Part 2), pp. 1931-46.

2-14 Fsck
4. Appendix A — Fsck Error Conditions

4.1. Conventions

Fsck is a multi-pass file system check program. Each file system pass invokes a different
Phase of the fsck program. After the initial setup, fsck performs successive Phases over each
file system, checking blocks and sizes, path-names, connectivity, reference counts, and the
map of free blocks, (possibly rebuilding it), and performs some cleanup.

Normally fsck is run non-interactively to preen the file systems after an unclean halt. While
preen’ing a file system, it will only fix corruptions that are expected to occur from an unclean
halt. These actions are a proper subset of the actions that fsck will take when it is running
interactively. Throughout this appendix many errors have several options that the operator
can take. When an inconsistency is detected, fsck reports the error condition to the operator.
If a response is required, fsck prints a prompt message and waits for a response. When
preen’ing most errors are fatal. For those that are expected, the response taken is noted.
This appendix explains the meaning of each error condition, the possible responses, and the
related error conditions.

The error conditions are organized by the Phase of the fsck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed in initialization.

4.2, Initialization

Before a file system check can be performed, certain tables have to be set up and certain
files opened. This section concerns itself with the opening of files and the initialization of
tables. This section lists error conditions resulting from command line options, memory
requests, opening of files, status of files, file system size checks, and creation of the scratch
file. All of the initialization errors are fatal when the file system is being preen’ed.

C option?
C is not a legal option to fsck; legal options are —b, —y, —n, and —p. Fsck terminates on this
error condition. See the fsck (8) manual entry for further detail.

cannot alloc NNN bytes for blockmap

cannot alloc NNN bytes for freemap

cannot alloc NNN bytes for statemap

cannot alloc NNN bytes for Incntp

Fsck’s request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can’t open checklist file: F
The file system checklist file F (usually /etc/fstab) can not be opened for reading. Fsck ter-
minates on this error condition. Check access modes of F.

Can’t stat root
Fsck’s request for statistics about the root directory “/” failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can’t stat F

Can’t make sense out of name F

Fsck’s request for statistics about the file system F failed. When running manually, it ignores
this file system and continues checking the next file system given. Check access modes of F.

Can’t open F
Fsck’s request attempt to open the file system F failed. When running manually, it ignores

Fsck 2-15

this file system and continues checking the next file system given. Check access modes of F.

F: (NO WRITE)

Either the —n flag was specified or fsck’s attempt to open the file system F for writing failed.
When running manually, all the diagnostics are printed out, but no modifications are
attempted to fix them.

file is not a block or character device; OK
You have given fsck a regular file name by mistake. Check the type of the file specified.

Possible responses to the OK prompt are:
YES Ignore this error condition.
NO ignore this file system and continues checking the next file system given.

One of the following messages will appear:
MAGIC NUMBER WRONG

NCG OUT OF RANGE

CPG OUT OF RANGE

NCYL DOES NOT JIVE WITH NCG*CPG
SIZE PREPOSTEROUSLY LARGE
TRASHED VALUES IN SUPER BLOCK

and will be followed by the message:

F: BAD SUPER BLOCK: B

USE -b OPTION TO FSCK TO SPECIFY LOCATION OF AN ALTERNATE
SUPER-BLOCK TO SUPPLY NEEDED INFORMATION; SEE fsck(8).

The super block has been corrupted. An alternative super block must be selected from among
those listed by newfs (8) when the file system was created. For file systems with a blocksize
less than 32K, specifying —b 32 is a good first choice.

INTERNAL INCONSISTENCY: M
Fsck’s has had an internal panic, whose message is specified as M. This should never happen.
See a guru.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck’s request for moving to a specified block number B in the file system failed. This should

never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will per-
sist. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to re-check this file system. If the block was part of the vir-
tual memory buffer cache, fsck will terminate with the message “Fatal I/O error”.

NO terminate the program.

CAN NOT READ: BLK B (CONTINUE)
Fsck’s request for reading a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:
YES attempt to continue to run the file system check. Often, however, the problem will per-
sist. This error condition will not allow a complete check of the file system. A second

run of fsck should be made to re-check this file system. If the block was part of the vir-
tual memory buffer cache, fsck will terminate with the message “Fatal I/O error”.

2-16 Fsck

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)
Fsck’s request for writing a specified block number B in the file system failed. The disk is
write-protected. See a guru.

Possible responses to the CONTINUE prompt are:
YES attempt to continue to run the file system check. Often, however, the problem will per-
sist. This error condition will not allow a complete check of the file system. A second

run of fsck should be made to re-check this file system. If the block was part of the vir-
tual memory buffer cache, fsck will terminate with the message “Fatal 1/0 error”.

NO terminate the program.

4.3. Phase 1 — Check Blocks and Sizes

This phase concerns itself with the inode list. This section lists error conditions result-
ing from checking inode types, seiting up the zero-link-count table, examining inode block
numbers for bad or duplicate blocks, checking inode size, and checking inode format. All
errors in this phase except INCORRECT BLOCK COUNT are fatal if the file system is
being preen’ed,

CG C: BAD MAGIC NUMBER The magic number of cylinder group C is wrong. This usu-
ally indicates that the cylinder group maps have been destroyed. When running manually the
cylinder group is marked as needing to be reconstructed.

UNKNOWN FILE TYPE I=] (CLEAR) The mode word of the inode I indicates that the

inode is not a special block inode, special character inode, socket inode, regular inode, sym-

bolic link, or directory inode.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLO-
CATED error condition in Phase 2 for each directory entry pointing to this inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An internal table for fsck containing allocated inodes with a link count of zero has no more
room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
allocated inode with a zero link count is found, this error condition is repeated.

NO terminate the program.

B BAD I=]

Inode I contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode I
has too many block numbers outside the file system range. This error condition will always
invoke the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I=] (CONTINUE)
There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in

Fsck 2-17

the file system associated with inode I.
Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system.
A second run of fsck should be made to re-check this file system.

NO terminate the program.

B DUP I=1

Inode I contains block number B which is already claimed by another inode. This error con-
dition may invoke the EXCESSIVE DUP BLKS error condition in Phase 1 if inode I has
too many block numbers claimed by other inodes. This error condition will always invoke
Phase 1b and the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I=/ (CONTINUE)
There is more than a tolerable number (usually 10) of blocks claimed by other inodes.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode in
the file system. This error condition will not allow a complete check of the file system.
A second run of fsck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)
An internal table in fsck containing duplicate block numbers has no more room. Recompile
fsck with a larger value of DUPTBLSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If another
duplicate block is found, this error condition will repeat.

NO terminate the program.

PARTIALLY ALLOCATED INODE I=] (CLEAR)
Inode I is neither allocated nor unallocated.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

INCORRECT BLOCK COUNT I=I (X should be Y) (CORRECT)
The block count for inode I is X blocks, but should be Y blocks. When preen’ing the count is
corrected.

Possible responses to the CORRECT prompt are:
YES replace the block count of inode I with Y.
NO ignore this error condition.

4.4. Phase 1B: Rescan for More Dups

When a duplicate block is found in the file system, the file system is rescanned to find
the inode which previously claimed that block. This section lists the error condition when the
duplicate block is found.

2-18 Fsck

B DUP I=1

Inode I contains block number B that is already claimed by another inode. This error condi-
tion will always invoke the BAD/DUP error condition in Phase 2. You can determine which
inodes have overlapping blocks by examining this error condition and the DUP error condition
in Phase 1.

4.5. Phase 2 — Check Pathnames

This phase concerns itself with removing directory entries pointing to error conditioned
inodes from Phase 1 and Phase 1b. This section lists error conditions resulting from root
inode mode and status, directory inode pointers in range, and directory entries pointing to bad
inodes. All errors in this phase are fatal if the file system is being preen’ed.

ROOT INODE UNALLOCATED. TERMINATING.
The root inode (usually inode number 2) has no allocate mode bits. This should never hap-
pen. The program will terminate.

NAME TOO LONG F

An excessively long path name has been found. This is usually indicative of loops in the file
system name space. This can occur if the super user has made circular links to directories.
The offending links must be removed (by a guru).

ROOT INODE NOT DIRECTORY (FIX)
The root inode (usually inode number 2) is not directory inode type.

Possible responses to the FIX prompt are:

YES replace the root inode’s type to be a directory. If the root inode’s data blocks are not
directory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks in the root inode (usually
inode number 2) for the file system.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run
the file system check. If the root inode is not correct, then this may result in a large
number of other error conditions.

NO terminate the program.

I OUT OF RANGE I=] NAME=F (REMOVE)
A directory entry F has an inode number I which is greater than the end of the inode list.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

UNALLOCATED I=I OWNER=0 MODE=M SIZE=S MTIME=T DIR=F
(REMOVE)

A directory entry F has a directory inode I without allocate mode bits. The owner O, mode
M, size S, modify time T, and directory name F are printed.

Possible responses to the REMOVE prompt are:

Fsck 2-19

YES the directory entry F is removed.
NO ignore this error condition.

UNALLOCATED 1I=I OWNER=0 MODE=M SIZE=S MTIME=T FILE=F
(REMOVE)

A directory entry F has an inode I without allocate mode bits. The owner O, mode M, size S,
modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry
F, directory inode I. The owner O, mode M, size S, modify time T, and directory name F are
printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD I=] OWNER=0 MODE=M SIZE=S MTIME=T FILE=F (REMOVE)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry
F, inode I. The owner O, mode M, size S, modify time T, and file name F are printed.

Possible responses to the REMOVE prompt are:
YES the directory entry F is removed.
NO ignore this error condition.

ZERO LENGTH DIRECTORY I=I OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (REMOVE)

A directory entry F has a size S that is zero. The owner O, mode M, size S, modify time T,
and directory name F are printed.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed; this will always invoke the BAD/DUP error condition
in Phase 4.

NO ignore this error condition.

DIRECTORY TOO SHORT I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F
(FIX)

A directory F has been found whose size S is less than the minimum size directory. The
owner O, mode M, size S, modify time T, and directory name F are printed.

Possible responses to the FIX prompt are:
YES increase the size of the directory to the minimum directory size.
NO ignore this directory.

DIRECTORY CORRUPTED I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F
(SALVAGE)
A directory with an inconsistent internal state has been found.

Possible responses to the FIX prompt are:

2-20 Fsck

YES throw away all entries up to the next 512-byte boundary. This rather drastic action can
throw away up to 42 entries, and should be taken only after other recovery efforts have
failed.

NO Skip up to the next 512-byte boundary and resume reading, but do not modify the direc-
tory.

BAD INODE NUMBER FOR ¢’ I=] OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX)
A directory I has been found whose inode number for ‘.” does does not equal I.

Possible responses to the FIX prompt are:
YES change the inode number for ‘.’ to be equal to I.
NO leave the inode number for ‘.’ unchanged.

MISSING ¢’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose first entry is unallocated.

Possible responses to the FIX prompt are:
YES make an entry for ‘.’ with inode number equal to I.
NO leave the directory unchanged.

MISSING “’ I=1 OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS F

A directory I has been found whose first entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the offending entry F moved elsewhere. The file system
should then be unmounted and fsck should be run again.

MISSING ‘’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, INSUFFICIENT SPACE TO ADD “’

A directory I has been found whose first entry is not ‘’. Fsck cannot resolve this problem as
it should never happen. See a guru.

EXTRA ¢ ENTRY I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for “.’.

Possible responses to the FIX prompt are:
YES remove the extra entry for ‘..
NO leave the directory unchanged.

BAD INODE NUMBER FOR ‘.’ I=I OWNER=0 MODE=M SIZE=S MTIME=T
DIR=F (FIX)
A directory I has been found whose inode number for ‘..” does does not equal the parent of I.

Possible responses to the FIX prompt are:
YES change the inode number for ‘..” to be equal to the parent of I.
NO leave the inode number for ‘..” unchanged.

MISSING ‘.’ I=1 OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found whose second entry is unallocated.

Possible responses to the FIX prompt are:
YES make an entry for ‘..” with inode number equal to the parent of I.

Fsck 2-21

NO leave the directory unchanged.

MISSING ‘.’ I=1 OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS F

A directory I has been found whose second entry is F. Fsck cannot resolve this problem. The
file system should be mounted and the offending entry F moved elsewhere. The file system
should then be unmounted and fsck should be run again.

MISSING ‘.’ I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F

CANNOT FIX, INSUFFICIENT SPACE TO ADD .’

A directory I has been found whose second entry is not ‘..". Fsck cannot resolve this problem
as it should never happen. See a guru.

EXTRA ‘. ENTRY I=] OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (FIX)
A directory I has been found that has more than one entry for ‘..".

Possible responses to the FIX prompt are:
YES remove the extra entry for ‘..".
NO leave the directory unchanged.

4.6. Phase 3 — Check Connectivity

This phase concerns itself with the directory connectivity seen in Phase 2. This section
lists error conditions resulting from unreferenced directories, and missing or full lost+found
directories.

UNREF DIR I=] OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of directory inode I are printed.
When preen’ing, the directory is reconnected if its size is non-zero, otherwise it is cleared.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+found). This may invoke the lost+found error condition in Phase 3 if there are
problems connecting directory inode I to lost+found. This may also invoke the CON-
NECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in Phase
4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the
request to link a directory in lost+found. This will always invoke the UNREF error condition
in Phase 4. Check access modes of lost+found. See fsck(8) manual entry for further detail.
This error is fatal if the file system is being preen’ed.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of
the file system; fsck ignores the request to link a directory in lost+found. This will always
invoke the UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found
or make lost+found larger. See fsck(8) manual entry for further detail. This error is fatal if
the file system is being preen’ed.

2-22 Fsck

DIR I=11 CONNECTED. PARENT WAS I=12

This is an advisory message indicating a directory inode /1 was successfully connected to the
lost+found directory. The parent inode I2 of the directory inode I1I is replaced by the inode
number of the lost+found directory.

4.7. Phase 4 — Check Reference Counts

This phase concerns itself with the link count information seen in Phase 2 and Phase 3.
This section lists error conditions resulting from unreferenced files, missing or full lost+found
directory, incorrect link counts for files, directories, symbolic links, or special files, unrefer-
enced files, symbolic links, and directories, bad and duplicate blocks in files, symbolic links,
and directories, and incorrect total free-inode counts. All errors in this phase are correctable
if the file system is being preen’ed except running out of space in the lost+found directory.

UNREF FILE 1= OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

Inode I was not connected to a directory entry when the file system was traversed. The owner
0O, mode M, size S, and modify time T of inode I are printed. When preen’ing the file is
cleared if either its size or its link count is zero, otherwise it is reconnected.

Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the file system in the directory for lost files (usually lost+found).
This may invoke the lost+found error condition in Phase 4 if there are problems con-
necting inode I to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in Phase
4,

(CLEAR)
The inode mentioned in the immediately previous error condition can not be reconnected.
This cannot occur if the file system is being preen’ed, since lack of space to reconnect files is a
fatal error.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by zeroing
its contents.

NO ignore this error condition.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the
request to link a file in lost+found. This will always invoke the CLEAR error condition in
Phase 4. Check access modes of lost+found. This error is fatal if the file system is being
preen’ed.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of
the file system; fsck ignores the request to link a file in lost+found. This will always invoke
the CLEAR error condition in Phase 4. Check size and contents of lost+found. This error is
fatal if the file system is being preen’ed.

LINK COUNT FILE I=I OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)

The link count for inode I which is a file, is X but should be Y. The owner O, mode M, size
S, and modify time T are printed. When preen’ing the link count is adjusted.

Possible responses to the ADJUST prompt are:

Fsck 2-23

YES replace the link count of file inode I with Y.
NO ignore this error condition.

LINK COUNT DIR I=I OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)

The link count for inode I which is a directory, is X but should be Y. The owner O, mode M,
size S, and modify time T of directory inode I are printed. When preen’ing the link count is
adjusted.

Possible responses to the ADJUST prompt are:
YES replace the link count of directory inode I with Y.
NO ignore this error condition.

LINK COUNT F I=I OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST)

The link count for F inode I is X but should be Y. The name F, owner O, mode M, size S,
and modify time T are printed. When preen’ing the link count is adjusted.

Possible responses to the ADJUST prompt are:
YES replace the link count of inode I with Y.
NO ignore this error condition.

UNREF FILE I=] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I which is a file, was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of inode I are printed. When
preen’ing, this is a file that was not connected because its size or link count was zero, hence it
is cleared.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

UNREF DIR I=] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I which is a directory, was not connected to a directory entry when the file system was
traversed. The owner O, mode M, size S, and modify time T of inode I are printed. When
preen’ing, this is a directory that was not connected because its size or link count was zero,
hence it is cleared.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition. \

BAD/DUP FILE I=] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with file inode I.
The owner O, mode M, size S, and modify time T of inode I are printed. This error cannot
arise when the file system is being preen’ed, as it would have caused a fatal error earlier.

Possible responses to the CLEAR prompt are:
YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

BAD/DUP DIR I=] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)
Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory inode

2-24 Fsck

I. The owner O, mode M, size S, and modify time T of inode I are printed. This error cannot
arise when the file system is being preen’ed, as it would have caused a fatal error earlier.
Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.

NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the super-block of the file
system. When preen’ing, the count is fixed.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.

NO ignore this error condition.

4.8. Phase 5 - Check Cyl groups

This phase concerns itself with the free-bloek maps. This section lists error conditions
resulting from allocated blocks in the free-block maps, free blocks missing from free-block
maps, and the total free-block count incorrect.

CG C: BAD MAGIC NUMBER

The magic number of cylinder group C is wrong. This usually indicates that the cylinder
group maps have been destroyed. When running manually the cylinder group is marked as
needing to be reconstructed. This error is fatal if the file system is being preen’ed.

EXCESSIVE BAD BLKS IN BIT MAPS (CONTINUE)

An inode contains more than a tolerable number (usually 10) of blocks claimed by other
inodes or that are out of the legal range for the file system. This error is fatal if the file sys-
tem is being preen’ed.

Possible responses to the CONTINUE prompt are:
YES ignore the rest of the free-block maps and continue the execution of fsck.
NO terminate the program.

SUMMARY INFORMATION T BAD

where T is one or more of:

(INODE FREE)

(BLOCK OFFSETS)

(FRAG SUMMARIES)

(SUPER BLOCK SUMMARIES)

The indicated summary information was found to be incorrect. This error condition will
always invoke the BAD CYLINDER GROUPS condition in Phase 6. When preen’ing, the
summary information is recomputed.

X BLK(S) MISSING

X blocks unused by the file system were not found in the free-block maps. This error condi-
tion will always invoke the BAD CYLINDER GROUPS condition in Phase 6. When
preen’ing, the block maps are rebuilt.

BAD CYLINDER GROUPS (SALVAGE)
Phase 5 has found bad blocks in the free-block maps, duplicate blocks in the free-block maps,
or blocks missing from the file system. When preen’ing, the cylinder groups are reconstructed.

Fsck 2-25

Possible responses to the SALVAGE prompt are:
YES replace the actual free-block maps with a new free-block maps.
NO ignore this error condition.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)
The actual count of free blocks does not match the count in the super-block of the file system.
When preen’ing, the counts are fixed.

Possible responses to the FIX prompt are:
YES replace the count in the super-block by the actual count.
NO ignore this error condition.

4.9. Phase 6 - Salvage Cylinder Groups

This phase concerns itself with the free-block maps reconstruction. No error messages
are produced.

4.10. Cleanup

Once a file system has been checked, a few cleanup functions are performed. This sec-
tion lists advisory messages about the file system and modify status of the file system.

V files, W used, X free (Y frags, Z blocks)
This is an advisory message indicating that the file system checked contained V files using W
fragment sized blocks leaving X fragment sized blocks free in the file system. The numbers in
parenthesis breaks the free count down into Y free fragments and Z free full sized blocks.

sk akkok REBOOT UNIX L2 22 2]

This is an advisory message indicating that the root file system has been modified by fsck. If
UNIX is not rebooted immediately, the work done by fsck may be undone by the in-core
copies of tables UNIX keeps. When preen’ing, fsck will exit with a code of 4. The auto-
reboot script interprets an exit code of 4 by issuing a reboot system call.

+x% FILE SYSTEM WAS MODIFIED ***

This is an advisory message indicating that the current file system was modified by fsck. If
this file system is mounted or is the current root file system, fsck should be halted and UNIX
rebooted. If UNIX is not rebooted immediately, the work done by fsck may be undone by the
in-core copies of tables UNIX keeps.

SENDMAIL

INSTALLATION AND OPERATION GUIDE

Eric Allman
Britton-Lee, Inc.

Version 4.2

Sendmail implements a general purpose internetwork mail routing facility under the
UNIX* operating system. It is not tied to any one transport protocol — its function may be
likened to a crossbar switch, relaying messages from one domain into another. In the process,
it can do a limited amount of message header editing to put the message into a format that is
appropriate for the receiving domain. All of this is done under the control of a configuration
file.

Due to the requirements of flexibility for sendmail, the configuration file can seem some-
what unapproachable. However, there are only a few basic configurations for most sites, for
which standard configuration files have been supplied. Most other configurations can be built
by adjusting an existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number
of features that may be used to monitor or adjust the operation under unusual circumstances.
These features are described.

Section one describes how to do a basic sendmail installation. Section two explains the
day-to-day information you should know to maintain your mail system. If you have a rela-
tively normal site, these two sections should contain sufficient information for you to install
sendmail and keep it happy. Section three describes some parameters that may be safely
tweaked. Section four has information regarding the command line arguments. Section five
contains the nitty-gritty information about the configuration file. This section is for maso-
chists and people who must write their own configuration file. The appendixes give a brief
but detailed explanation of a number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail — An
Internetwork Mail Router. This other paper should be read before this manual to gain a
basic understanding of how the pieces fit together.

1. BASIC INSTALLATION

There are two basic steps to installing sendmail. The hard part is to build the
configuration table. This is a file that sendmail reads when it starts up that describes the
mailers it knows about, how to parse addresses, how to rewrite the message header, and the
settings of various options. Although the configuration table is quite complex, a
configuration can usually be built by adjusting an existing off-the-shelf configuration. The
second part is actually doing the installation, i.e., creating the necessary files, etc.

The remainder of this section will describe the installation of sendmail assuming you
can use one of the existing configurations and that the standard installation parameters are

*UNIX is a trademark of Bell Laboratories.

Sendmail Installation and Operation Guide 2-27

2-28 Sendmail Installation and Operation Guide

acceptable. All pathnames and examples are given from the root of the sendmail subtree.

1.1. Off-The-Shelf Configurations

The configuration files are all in the subdirectory cf of the sendmail directory.
The ones used at Berkeley are in m4 (1) format; files with names ending “.m4” are m4
include files, while files with names ending “.mc” are the master files. Files with names
ending “.cf” are the m4 processed versions of the corresponding “.mc” file.

Two off the shelf configuration files are supplied to handle the basic cases:
cf/arpaproto.cf for Arpanet (TCP) sites and cf/uucpproto.cf for UUCP sites. These are
not in m4 format. The file you need should be copied to a file with the same name as
your system, e.g.,

cp uucpproto.cf ucsfegl.cf
This file is now ready for installation as /usr/lib/sendmail.cf.

1.2. Installation Using the Makefile

A makefile exists in the root of the sendmail directory that will do all of these
steps for a 4.2BSD system. It may have to be slightly tailored for use on other systems.

Before using this makefile, you should already have created your configuration file
and left it in the file “cf/system.cf”’ where system is the name of your system (i.e., what
is returned by hostname(1)). If you do not have hostname you can use the declaration
“HOST=system” on the make(1) command line. You should also examine the file
md/config.m4 and change the m4 macros there to reflect any libraries and compilation
flags you may need.

The basic installation procedure is to type:

make
make install

in the root directory of the sendmail distribution. This will make all binaries and
install them in the standard places. The second make command must be executed as
the superuser (root).

1.3. Installation by Hand

Along with building a configuration file, you will have to install the sendmail
startup into your UNIX system. If you are doing this installation in conjunction with a
regular Berkeley UNIX install, these steps will already be complete. Many of these
steps will have to be executed as the superuser (root).

1.3.1. lib/libsys.a

The library in lib/libsys.a contains some routines that should in some sense be
part of the system library. These are the system logging routines and the new direc-
tory access routines (if required). If you are not running the new 4.2BSD directory
code and do not have the compatibility routines installed in your system library, you
should execute the commands:

cd lib
make ndir

This will compile and install the 4.2 compatibility routines in the library. You
should then type:

Sendmail Installation and Operation Guide 2-29

cd lib # if required
make

This will recompile and fill the library.

1.3.2. /usr/lib/sendmail

The binary for sendmail is located in /usr/lib. There is a version available in
the source directory that is probably inadequate for your system. You should plan
on recompiling and installing the entire system:

cd src

rm —f *.0

make

cp sendmail /usr/lib

1.3.3. /usr/lib/sendmail.cf

The configuration file that you created earlier should be installed in
/usr/lib/sendmail.cf:

cp cf/system.cf /usr/lib/sendmail.cf

1.3.4. /usr/ucb/newaliases

If you are running delivermail, it is critical that the newaliases command be
replaced. This can just be a link to sendmail:

rm —f /usr/ucb/newaliases
In /usr/lib/sendmail /usr/ucb/newaliases

1.3.5. /usr/lib/sendmail.cf
The configuration file must be installed in /usr/lib. This is described above.

1.3.6. /usr/spool/mqueue

The directory /usr/spool/mqueue should be created to hold the mail queue.
This directory should be mode 777 unless sendmail is run setuid, when mqueue
should be owned by the sendmail owner and mode 755.

1.3.7. /usr/lib/aliases*

The system aliases are held in three files. The file “/usr/lib/aliases” is the
master copy. A sample is given in “lib/aliases” which includes some aliases which
must be defined:

cp lib/aliases /usr/lib/aliases
You should extend this file with any aliases that are apropos to your system.

Normally sendmail looks at a version of these files maintained by the dbm (3)
routines. These are stored in *“/usr/lib/aliases.dir” and “/usr/lib/aliases.pag.” These
can initially be created as empty files, but they will have to be initialized promptly.
These should be mode 666 if you are running a reasonably relaxed system:

cp /dev/null /usr/lib/aliases.dir
cp /dev/null /usr/lib/aliases.pag
chmod 666 /usr/lib/aliases.*
newaliases

2-30 Sendmail Installation and Operation Guide

1.3.8. /usr/lib/sendmail.fc

If you intend to install the frozen version of the configuration file (for quick
startup) you should create the file /usr/lib/sendmail.fc and initialize it. This step
may be safely skipped.

cp /dev/null /usr/lib/sendmail.fc
/usr/lib/sendmail —bz

1.3.9. /etc/re

It will be necessary to start up the sendmail daemon when your system
reboots. This daemon performs two functions: it listens on the SMTP socket for
connections (to receive mail from a remote system) and it processes the queue
periodically to insure that mail gets delivered when hosts come up.

Add the following lines to “/etc/rc” (or “/etc/rc.local” as appropriate) in the
area where it is starting up the daemons:

if [—f /usr/lib/sendmail]; then
(cd /usr/spool/mqueue; rm —f [Inx]f*)
/usr/lib/sendmail —bd —q30m &

echo —n ’ sendmail’ >/dev/console
fi

The “cd” and “rm” commands insure that all lock files have been removed; extrane-
ous lock files may be left around if the system goes down in the middle of processing
a message. The line that actually invokes sendmail has two flags: “—bd” causes it to
listen on the SMTP port, and “—q30m” causes it to run the queue every half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do
not include the —bd flag.

1.3.10. /usr/lib/sendmail.hf

This is the help file used by the SMTP HELP command. It should be copied
from “lib/sendmail.hf”:

cp lib/sendmail.hf /usr/lib

1.3.11. /usr/lib/sendmail.st

If you wish to collect statistics about your mail traffic, you should create the
file “/usr/lib/sendmail.st”:

cp /dev/null /usr/lib/sendmail.st
chmod 666 /usr/lib/sendmail.st

This file does not grow. It is printed with the program “aux/mailstats.”

1.3.12. /etc/syslog

You may want to run the syslog program (to collect log information about
sendmail). This program normally resides in /etc/syslog, with support files
/etc/syslog.conf and /etc/syslog.pid. The program is located in the aux subdirectory
of the sendmail distribution. The file /etc/syslog.conf describes the file(s) that
sendmail will log in. For a complete description of syslog, see the manual page for
syslog (8) (located in sendmail/doc on the distribution).

Sendmail Installation and Operation Guide 2-31

1.3.13. /usr/ucb/newaliases

If sendmail is invoked as “newaliases,” it will simulate the ~bi flag (i.e., will
rebuild the alias database; see below). This should be a link to /usr/lib/sendmail.

1.3.14. /usr/ucb/mailq

If sendmail is invoked as “mailq,” it will simulate the —bp flag (i.e., sendmail
will print the contents of the mail queue; see below). This should be a link to
/usr/lib/sendmail.

2. NORMAL OPERATIONS

2.1. Quick Configuration Startup
A fast version of the configuration file may be set up by using the —bz flag:
/usr/lib/sendmail —bz

This creates the file /usr/lib/sendmail.fc (“frozen configuration”). This file is an image
of sendmail’s data space after reading in the configuration file. If this file exists, it is
used instead of /usr/lib/sendmail.cf sendmail.fc must be rebuilt manually every time
sendmail.cf is changed.

The frozen configuration file will be ignored if a —C flag is specified or if sendmail
detects that it is out of date. However, the heuristics are not strong so this should not
be trusted.

2.2, The System Log
The system log is supported by the syslog(8) program.

2.2.1. Format

Each line in the system log consists of a timestamp, the name of the machine
that generated it (for logging from several machines over the ethernet), the word
“sendmail:”, and a message.

2.2.2. Levels

If you have syslog(8) or an equivalent installed, you will be able to do logging.
There is a large amount of information that can be logged. The log is arranged as a
succession of levels. At the lowest level only extremely strange situations are logged.
At the highest level, even the most mundane and uninteresting events are recorded
for posterity. As a convention, log levels under ten are considered “useful;” log lev-
els above ten are usually for debugging purposes.

A complete description of the log levels is given in section 4.3.

2.3. The Mail Queue

The mail queue should be processed transparently. However, you may find that
manual intervention is sometimes necessary. For example, if a major host is down for a
period of time the queue may become clogged. Although sendmail ought to recover
gracefully when the host comes up, you may find performance unacceptably bad in the
meantime.

2.3.1. Printing the queue

The contents of the queue can be printed using the mailg command (or by
specifying the —bp flag to sendmail):

2-32 Sendmail Installation and Operation Guide

mailq

This will produce a listing of the queue id’s, the size of the message, the date the
message entered the queue, and the sender and recipients.

2.3.2. Format of queue files

All queue files have the form xfAA99999 where AA99999 is the id for this file

and the x is a type. The types are:

d
1

The data file. The message body (excluding the header) is kept in this file.

The lock file. If this file exists, the job is currently being processed, and a
queue run will not process the file. For that reason, an extraneous If file can
cause a job to apparently disappear (it will not even time out!).

This file is created when an id is being created. It is a separate file to insure
that no mail can ever be destroyed due to a race condition. It should exist for
no more than a few milliseconds at any given time.

The queue control file. This file contains the information necessary to process
the job.

A temporary file. These are an image of the qf file when it is being rebuilt. It
should be renamed to a qf file very quickly.

A transcript file, existing during the life of a session showing everything that
happens during that session.

The qf file is structured as a series of lines each beginning with a code letter.

The lines are as follows:

D
H

~3

(3

The name of the data file. There may only be one of these lines.

A header definition. There may be any number of these lines. The order is
important: they represent the order in the final message. These use the same
syntax as header definitions in the configuration file.

A recipient address. This will normally be completely aliased, but is actually
realiased when the job is processed. There will be one line for each recipient.

The sender address. There may only be one of these lines.
The job creation time. This is used to compute when to time out the job.

The current message priority. This is used to order the queue. Higher
numbers mean lower priorities. The priority increases as the message sits in
the queue. The initial priority depends on the message class and the size of
the message.

A message. This line is printed by the mailg command, and is generally used
to store status information. It can contain any text.

As an example, the following is a queue file sent to “mckusick@calder” and

9,

wnj’:

Sendmail Installation and Operation Guide 2-33

DdfA13557

Seric

T404261372

P132

Rmckusick@calder

Rwnj

H?D?date: 23-Oct-82 15:49:32-PDT (Sat)

H?F?from: eric (Eric Allman)

H?x?full-name: Eric Allman

Hsubject: this is an example message

Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA>

Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])
id A13557; 23-Oct-82 15:49:32-PDT (Sat)

Hphone: (415) 548-3211

HTo: mckusick@calder, wnj

This shows the name of the data file, the person who sent the message, the submis-
sion time (in seconds since January 1, 1970), the message priority, the message class,
the recipients, and the headers for the message.

2.3.3. Forcing the queue

Sendmail should run the queue automatically at intervals. The algorithm is to
read and sort the queue, and then to attempt to process all jobs in order. When it
attempts to run the job, sendmail first checks to see if the job is locked. If so, it
ignores the job.

There is no attempt to insure that only one queue processor exists at any time,
since there is no guarantee that a job cannot take forever to process. Due to the
locking algorithm, it is impossible for one job to freeze the queue. However, an
uncooperative recipient host or a program recipient that never returns can accumu-
late many processes in your system. Unfortunately, there is no way to resolve this
without violating the protocol.

In some cases, you may find that a major host going down for a couple of days
may create a prohibitively large queue. This will result in sendmail spending an
inordinate amount of time sorting the queue. This situation can be fixed by moving
the queue to a temporary place and creating a new queue. The old queue can be
run later when the offending host returns to service.

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old
queue directory) and create a new daemon.

To run the old mail queue, run the following command:
/usr/lib/sendmail —o0Q/usr/spool/omqueue —q

The —o0Q flag specifies an alternate queue directory and the —q flag says to just run
every job in the queue. If you have a tendency toward voyeurism, you can use the
—v flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:

rmdir /usr/spool/omqueue

2-34 Sendmail Installation and Operation Guide

2.4. The Alias Database

The alias database exists in two forms. One is a text form, maintained in the file
Jusr/lib/aliases. The aliases are of the form

name: namel, name2, ...
Only local names may be aliased; e.g.,
eric@mit-xx: eric@berkeley

will not have the desired effect. Aliases may be continued by starting any continuation
lines with a space or a tab. Blank lines and lines beginning with a sharp sign (“#”) are
comments.

The second form is processed by the dbm(3) library. This form is in the files
/usr/lib/aliases.dir and /usr/lib/aliases.pag. This is the form that sendmail actually
uses to resolve aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the
command

newaliases
This is equivalent to giving sendmail the —bi flag:
/usr/lib/sendmail —bi

If the “D” option is specified in the configuration, sendmail will rebuild the
alias database automatically if possible when it is out of date. The conditions under
which it will do this are:

(1) The DBM version of the database is mode 666. -or-
(2) Sendmail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it
might take more than five minutes to rebuild the database, there is a chance that
several processes will start the rebuild process simultaneously.

2.4.2. Potential problems

There are a number of problems that can occur with the alias database. They
all result from a sendmail process accessing the DBM version while it is only par-
tially built. This can happen under two circumstances: One process accesses the
database while another process is rebuilding it, or the process rebuilding the data-
base dies (due to being killed or a system crash) before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores
interrupts while rebuilding the database; this avoids the problem of someone abort-
ing the process leaving a partially rebuilt database. Second, at the end of the
rebuild it adds an alias of the form

@ @
(which is not normally legal). Before sendmail will access the database, it checks to
insure that this entry exists!. It will wait up to five minutes for this entry to appear,
at which point it will force a rebuild itself2.

The “a” option is required in the configuration for this action to occur. This should normally be specified un-
less you are running delivermail in parallel with sendmail.

Note: the “D” option must be specified in the configuration file for this operation to occur.

Sendmail Installation and Operation Guide 2-35

2.4.3. List owners

If an error occurs on sending to a certain address, say “x”, sendmail will look
for an alias of the form “owner-x” to receive the errors. This is typically useful for a
mailing list where the submitter of the list has no control over the maintanence of
the list itself; in this case the list maintainer would be the owner of the list. For
example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam(@matisse
owner-unix-wizards: eric@ucbarpa

would cause “eric@ucbarpa” to get the error that will occur when someone sends to
unix-wizards due to the inclusion of “nosuchuser” on the list.

2.5. Per-User Forwarding (.forward Files)

As an alternative to the alias database, any user may put a file with the name
“forward” in his or her home directory. If this file exists, sendmail redirects mail for
that user to the list of addresses listed in the .forward file. For example, if the home
directory for user “mckusick” has a .forward file with contents:

mckusick@ernie
kirk@calder

then any mail arriving for “mckusick” will be redirected to the specified accounts.

2.6. Special Header Lines

Several header lines have special interpretations defined by the configuration file.
Others have interpretations built into sendmail that cannot be changed without chang-
ing the code. These builtins are described here.

2.6.1. Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when
the final delivery is complete. if the mailer has the 1 flag (local delivery) set in the
mailer descriptor.

2.6.2. Errors-To:

If errors occur anywhere during processing, this header will cause error mes-
sages to go to the listed addresses rather than to the sender. This is intended for
mailing lists.

2.6.3. Apparently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:, or
Bcc: line) then sendmail will add an “Apparently-To:” header line for any recipients
it is aware of. This is not put in as a standard recipient line to warn any recipients
that the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS

The complete list of arguments to sendmail is described in detail in Appendix A.
Some important arguments are described here.

2-36 Sendmail Installation and Operation Guide

3.1. Queue Interval

The amount of time between forking a process to run through the queue is
defined by the —q flag. If you run in mode f or a this can be relatively large, since it
will only be relevant when a host that was down comes back up. If you run in q mode
it should be relatively short, since it defines the maximum amount of time that a mes-
sage may sit in the queue.

3.2. Daemon Mode

If you allow incoming mail over an IPC connection, you should have a daemon
running. This should be set by your /etc/rc file using the —bd flag. The —bd flag and
the —q flag may be combined in one call:

/usr/lib/sendmail —bd —q30m

3.3. Forcing the Queue

In some cases you may find that the queue has gotten clogged for some reason.
You can force a queue run using the —q flag (with no value). It is entertaining to use
the —v flag (verbose) when this is done to watch what happens:

/usr/lib/sendmail —q —v

3.4. Debugging

There are a fairly large number of debug flags built into sendmail. Each debug
flag has a number and a level, where higher levels means to print out more information.
The convention is that levels greater than nine are “absurd,” i.e., they print out so
much information that you wouldn’t normally want to see them except for debugging
that particular piece of code. Debug flags are set using the —d option; the syntax is:

debug-flag: —d debug-list

debug-list: debug-option [, debug-option]
debug-option: debug-range [. debug-level]
debug-range: integer | integer — integer
debug-level: integer

where spaces are for reading ease only. For example,

—d12 Set flag 12 to level 1
—-d12.3 Set flag 12 to level 3
—-d3-17 Set flags 3 through 17 to level 1

-d3-174 Set flags 3 through 17 to level 4

For a complete list of the available debug flags you will have to look at the code (they
are too dynamic to keep this documentation up to date).

3.5. Trying a Different Configuration File
An alternative configuration file can be specified using the —C flag; for example,
/usr/lib/sendmail —Ctest.cf

uses the configuration file test.cf instead of the default /usr/lib/sendmail.cf. If the —C
flag has no value it defaults to sendmail.cf in the current directory.

3.6. Changing the Values of Options
Options can be overridden using the —o flag. For example,

Sendmail Installation and Operation Guide 2-37

/usr/lib/sendmail —0oT2m
sets the T (timeout) option to two minutes for this run only.

4. TUNING

There are a number of configuration parameters you may want to change, depending
on the requirements of your site. Most of these are set using an option in the
configuration file. For example, the line “OT3d” sets option “T” to the value “3d” (three
days).

4.1. Timeouts

All time intervals are set using a scaled syntax. For example, “10m” represents
ten minutes, whereas ‘“2h30m” represents two and a half hours. The full set of scales
is:

s seconds
m minutes
h hours

d days

w weeks

4.1.1. Queue interval

The argument to the —q flag specifies how often a subdaemon will run the
queue. This is typically set to between five minutes and one half hour.

4.1.2. Read timeouts

It is possible to time out when reading the standard input or when reading
from a remote SMTP server. Technically, this is not acceptable within the pub-
lished protocols. However, it might be appropriate to set it to something large in
certain environments (such as an hour). This will reduce the chance of large
numbers of idle daemons piling up on your system. This timeout is set using the r
option in the configuration file.

4.1.3. Message timeouts

After sitting in the queue for a few days, a message will time out. This is to
insure that at least the sender is aware of the inability to send a message. The
timeout is typically set to three days. This timeout is set using the T option in the
configuration file.

The time of submission is set in the queue, rather than the amount of time left
until timeout. As a result, you can flush messages that have been hanging for a
short period by running the queue with a short message timeout. For example,

/usr/lib/sendmail —oT1d —q
will run the queue and flush anything that is one day old.

4.2. Delivery Mode

There are a number of delivery modes that sendmail can operate in, set by the
“d” configuration option. These modes specify how quickly mail will be delivered.
Legal modes are:

2-38 Sendmail Installation and Operation Guide

i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don’t deliver)

There are tradeoffs. Mode “i” passes the maximum amount of information to the
sender, but is hardly ever necessary. Mode “q” puts the minimum load on your
machine, but means that delivery may be delayed for up to the queue interval. Mode
“b” is probably a good compromise. However, this mode can cause large numbers of
processes if you have a mailer that takes a long time to deliver a message.

4.3. Log Level

The level of logging can be set for sendmail. The default using a standard
configuration table is level 9. The levels are as follows:

No logging.

Major problems only.

Message collections and failed deliveries.

Successful deliveries..

Messages being defered (due to a host being down, etc.).

Normal message queueups.

Unusual but benign incidents, e.g., trying to process a locked queue file.

© O O W N = O

Log internal queue id to external message id mappings. This can be useful for
tracing a message as it travels between several hosts.

12 Several messages that are basically only of interest when debugging.

16 Verbose information regarding the queue.

4.4. File Modes

There are a number of files that may have a number of modes. The modes
depend on what functionality you want and the level of security you require.

4.4.1. To suid or not to suid?

Sendmail can safely be made setuid to root. At the point where it is about to
exec(2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and
groupid to a default (set by the u and g options). (This can be overridden by set-
ting the S flag to the mailer for mailers that are trusted and must be called as root.)
However, this will cause mail processing to be accounted (using sa (8)) to root rather
than to the user sending the mail. ‘

4.4.2. Temporary file modes

The mode of all temporary files that sendmail creates is determined by the
“F” option. Reasonable values for this option are 0600 and 0644. If the more per-
missive mode is selected, it will not be necessary to run sendmail as root at all (even
when running the queue).

4.4.3. Should my alias database be writable?

At Berkeley we have the alias database (/usr/lib/aliases*) mode 666. There are
some dangers inherent in this approach: any user can add him-/her-self to any list,
or can ‘“steal” any other user’s mail. However, we have found users to be basically
trustworthy, and the cost of having a read-only database greater than the expense of
finding and eradicating the rare nasty person.

Sendmail Installation and Operation Guide 2-39

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /usr/lib). The mode on these files should match
the mode on /usr/lib/aliases. If aliases is writable and the DBM files (aliases.dir
and aliases.pag) are not, users will be unable to reflect their desired changes through
to the actual database. However, if aliases is read-only and the DBM files are writ-
able, a slightly sophisticated user can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto-
rebuild enabled (with the “D” option), then you must be careful to reconstruct the
alias database each time you change the text version:

newaliases

If this step is ignored or forgotten any intended changes will also be ignored or for-
gotten.

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE

This section describes the configuration file in detail, including hints on how to write
one of your own if you have to.

There is one point that should be made clear immediately: the syntax of the
configuration file is designed to be reasonably easy to parse, since this is done every time
sendmail starts up, rather than easy for a human to read or write. On the “future project”
list is a configuration-file compiler.

An overview of the configuration file is given first, followed by details of the seman-
tics.

5.1. The Syntax

The configuration file is organized as a series of lines, each of which begins with a
single character defining the semantics for the rest of the line. Lines beginning with a
space or a tab are continuation lines (although the semantics are not well defined in
many places). Blank lines and lines beginning with a sharp symbol (‘#’) are comments.

5.1.1. R and S — rewriting rules

The core of address parsing are the rewriting rules. These are an ordered pro-
duction system. Sendmail scans through the set of rewriting rules looking for a
match on the left hand side (LHS) of the rule. When a rule matches, the address is
replaced by the right hand side (RHS) of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not have
specifically assigned semantics, and may be referenced by the mailer definitions or
by other rewriting sets.

The syntax of these two commands are:
Sn

Sets the current ruleset being collected to n. If you begin a ruleset more than once
it deletes the old definition.

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be embedded
spaces in the fields. The lhs is a pattern that is applied to the input. If it matches,
the input is rewritten to the rhs. The comments are ignored.

2-40 Sendmail Installation and Operation Guide

5.1.2. D — define macro

Macros are named with a single character. These may be selected from the
entire ASCII set, but user-defined macros should be selected from the set of upper
case letters only. Lower case letters and special symbols are used internally.

The syntax for macro definitions is:
Dxval

where x is the name of the macro and val is the value it should have. Macros can be
interpolated in most places using the escape sequence $x.

5.1.3. C and F — define classes

Classes of words may be defined to match on the left hand side of rewriting
rules. For example a class of all local names for this site might be created so that
attempts to send to oneself can be eliminated. These can either be defined directly
in the configuration file or read in from another file. Classes may be given names
from the set of upper case letters. Lower case letters and special characters are
reserved for system use.

The syntax is:

Ccwordl word?2...
Fcfile [format]

The first form defines the class ¢ to match any of the named words. It is permissi-
ble to split them among multiple lines; for example, the two forms:

CHmonet ucbmonet
and

CHmonet
CHucbmonet

are equivalent. The second form reads the elements of the class ¢ from the named
file; the format is a scanf(3) pattern that should produce a single string.

5.1.4. M — define mailer
Programs and interfaces to mailers are defined in this line. The format is:
Mname, {field=value }*

where name is the name of the mailer (used internally only) and the “field=name”
pairs define attributes of the mailer. Fields are:

Path The pathname of the mailer

Flags Special flags for this mailer

Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses

Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

5.1.5. H — define header

The format of the header lines that sendmail inserts into the message are
defined by the H line. The syntax of this line is:

H[?mflags?)hname: htemplate

Sendmail Installation and Operation Guide 2-41

Continuation lines in this spec are reflected directly into the outgoing message. The
htemplate is macro expanded before insertion into the message. If the mflags (sur-
rounded by question marks) are specified, at least one of the specified flags must be
stated in the mailer definition for this header to be automatically output. If one of
these headers is in the input it is reflected to the output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6. O — set option

There are a number of “random” options that can be set from a configuration
file. Options are represented by single characters. The syntax of this line is:

QOovalue

This sets option o to be value. Depending on the option, value may be a string, an
integer, a boolean (with legal values “t”, “T”, “f”, or “F”; the default is TRUE), or a
time interval.

5.1.7. T — define trusted users

Trusted users are those users who are permitted to override the sender address
using the —f flag. These typically are “root,” “uucp,” and “network,” but on some
users it may be convenient to extend this list to include other users, perhaps to sup-
port a separate UUCP login for each host. The syntax of this line is:

Tuserl user?2...

There may be more than one of these lines.

5.1.8. P — precedence definitions

Values for the “Precedence:” field may be defined using the P control line.
The syntax of this field is:

Pname=num

When the name is found in a “Precedence:” field, the message class is set to num.
Higher numbers mean higher precedence. Numbers less than zero have the special
property that error messages will not be returned. The default precedence is zero.
For example, our list of precedences is:

Pfirst-class=0
Pspecial-delivery=100
Pjunk=-100

5.2. The Semantics

This section describes the semantics of the configuration file.

5.2.1. Special macros, conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular, lower case letters are reserved to have spe-
cial semantics, used to pass information in or out of sendmail, and some special
characters are reserved to provide conditionals, etc.

The following macros must be defined to transmit information into sendmail:

2-42 Sendmail Installation and Operation Guide

The SMTP entry message

The “official” domain name for this site

The format of the UNIX from line

The name of the daemon (for error messages)
The set of "operators” in addresses

q default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be the $j
macro. The $j macro should be in RFC821 format. The $1 and $n macros can be
considered constants except under terribly unusual circumstances. The $0 macro
consists of a list of characters which will be considered tokens and which will
separate tokens when doing parsing. For example, if “r” were in the $0 macro, then
the input “address” would be scanned as three tokens: “add,” “r,” and ‘“ess.”
Finally, the $q macro specifies how an address should appear in a message when it
is defaulted. For example, on our system these definitions are:

De$j Sendmail $v ready at $b
DnMAILER-DAEMON
DIFrom $g $d

Do..%@""=/

Dqg?x ($x)$.

Dj$H.$D

An acceptable alternative for the $q macro is “$7x$x $.<$g>". These correspond to
the following two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley>

o= — s D

Some macros are defined by sendmail for interpolation into argv’s for mailers
or for other contexts. These macros are:

The origination date in Arpanet format
The current date in Arpanet format

The hop count

The date in UNIX (ctime) format

The sender (from) address

The sender address relative to the recipient
The recipient host

The queue id

Sendmail’s pid

Protocol used

Sender’s host name

A numeric representation of the current time
The recipient user

The version number of sendmail

The hostname of this site

The full name of the sender

The id of the sender’s tty

The home directory of the recipient

N<dMg<o R g =o' "o o

There are three types of dates that can be used. The $a and $b macros are in
Arpanet format; $a is the time as extracted from the “Date:” line of the message (if
there was one), and $b is the current date and time (used for postmarks). If no
“Date:” line is found in the incoming message, $a is set to the current time also.
The $d macro is equivalent to the $a macro in UNIX (ctime) format.

Sendmail Installation and Operation Guide 2-43

The $f macro is the id of the sender as originally determined; when mailing to
a specific host the $g macro is set to the address of the sender relative to the reci-
pient. For example, if I send to “bollard@matisse” from the machine “ucbarpa”
the $f macro will be “eric” and the $g macro will be “eric@ucbarpa.”

The $x macro is set to the full name of the sender. This can be determined in
several ways. It can be passed as flag to sendmail. The second choice is the value
of the “Full-name:” line in the header if it exists, and the third choice is the com-
ment field of a “From:” line. If all of these fail, and if the message is being ori-
ginated locally, the full name is looked up in the /etc/passwd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home
directory (if local) of the recipient. The first two are set from the $ @ and $: part
of the rewriting rules, respectively.

The $p and $t macros are used to create unique strings (e.g., for the
“Message-1d:” field). The $i macro is set to the queue id on this host; if put into
the timestamp line it can be extremely useful for tracking messages. The $y macro
is set to the id of the terminal of the sender (if known); some systems like to put
this in the Unix “From” line. The $v macro is set to be the version number of
sendmail; this is normally put in timestamps and has been proven extremely useful
for debugging. The $w macro is set to the name of this host if it can be deter-
mined. The $c field is set to the “hop count,” i.e., the number of times this message
has been processed. This can be determined by the —h flag on the command line or
by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with send-
mail and the sending hostname; these are not supported in the current version.

Conditionals can be specified using the syntax:
$7x textl $ltext2 $.

This interpolates textl if the macro $x is set, and text2 otherwise. The “else”($1)
clause may be omitted.

5.2.2. Special classes

The class $=w is set to be the set of all names this host is known by. This
can be used to delete local hostnames.

5.2.3. The left hand side

The left hand side of rewriting rules contains a pattern. Normal words are
simply matched directly. Metasyntax is introduced using a dollar sign. The
metasymbols are:

$* Match zero or more tokens

$+ Match one or more tokens

$— Match exactly one token

$=x Match any token in class x
$x Match any token not in class x

If any of these match, they are assigned to the symbol $n for replacement on the
right hand side, where n is the index in the LHS. For example, if the LHS:

$—:5+
is applied to the input:
UCBARPA:eric
the rule will match, and the values passed to the RHS will be:

2-44 Sendmail Installation and Operation Guide

$1 UCBARPA
$2 eric

5.2.4. The right hand side

When the right hand side of a rewriting rule matches, the input is deleted and
replaced by the right hand side. Tokens are copied directly from the RHS unless
they are begin with a dollar sign. Metasymbols are:

$n Substitute indefinite token n from LHS
$>n “Call” ruleset n

$#mailer Resolve to mailer

$ @host Specify host

$:user Specify user

The $n syntax substitutes the corresponding value from a $+, $—, $*, $=, or
$~ match on the LHS. It may be used anywhere.

The $>n syntax causes the remainder of the line to be substituted as usual
and then passed as the argument to ruleset n. The final value of ruleset n then
becomes the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of the
ruleset to terminate immediately, and signals to sendmail that the address has com-
pletely resolved. The complete syntax is:

$#mailer$ @hostP:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the
mailer is local the host part may be omitted. The mailer and host must be a single
word, but the user may be multi-part.

A RHS may also be preceeded by a $ @ or a $: to control evaluation. A $ @
prefix causes the ruleset to return with the remainder of the RHS as the value. A $:
prefix causes the rule to terminate immediately, but the ruleset to continue; this can
be used to avoid continued application of a rule. The prefix is stripped before con-
tinuing.

The $ @ and $: prefixes may preceed a $> spec; for example:
R$+ $:$>731

matches anything, passes that to ruleset seven, and continues; the $: is necessary to
avoid an infinite loop.

5.2.5. Semantics of rewriting rule sets

There are five rewriting sets that have specific semantics. These are related as
depicted by figure 2.

Ruleset three should turn the address into “canonical form.” This form should
have the basic syntax:

local-part@host-domain-spec

If no “@” sign is specified, then the host-domain-spec may be appended from the
sender address (if the C flag is set in the mailer definition corresponding to the
sending mailer). Ruleset three is applied by sendmail before doing anything with
any address.

Ruleset zero is applied after ruleset three to addresses that are going to actu-
ally specify recipients. It must resolve to a {mailer, host, user} triple. The mailer
must be defined in the mailer definitions from the configuration file. The host is

Sendmail Installation and Operation Guide 2-45

0 b resolved address

1 >t S
addr 5f 3 > D 4 b msg
2 R
Figure 2 Rewriting Set Semantics

D--Sender domain addition S--mailer-specific sender rewritin
R--mailer-specific recipient rewriting

defined into the $h macro for use in the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respec-
tively. They are applied before any specification in the mailer definition. They
must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external form.

5.2.6. Mailer flags etc.

There are a number of flags that may be associated with each mailer, each
identified by a letter of the alphabet. Many of them are assigned semantics inter-
nally. These are detailed in Appendix C. Any other flags may be used freely to con-
ditionally assign headers to messages destined for particular mailers.

5.2.7. The “error” mailer

The mailer with the special name “error” can be used to generate a user error.
The (optional) host field is a numeric exit status to be returned, and the user field is
a message to be printed. For example, the entry:

$#terror$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the LHS
matches. This mailer is only functional in ruleset zero.

5.3. Building a Configuration File From Scratch

Building a configuration table from scratch is an extremely difficult job. For-
tunately, it is almost never necessary to do so; nearly every situation that may come up
may be resolved by changing an existing table. In any case, it is critical that you
understand what it is that you are trying to do and come up with a philosophy for the
configuration table. This section is intended to explain what the real purpose of a
configuration table is and to give you some ideas for what your philosophy might be.

5.3.1. What you are trying to do

The configuration table has three major purposes. The first and simplest is to
set up the environment for sendmail. This involves setting the options, defining a

2-46 Sendmail Installation and Operation Guide

few critical macros, etc. Since these are described in other places, we will not go
into more detail here.

The second purpose is to rewrite addresses in the message. This should typi-
cally be done in two phases. The first phase maps addresses in any format into a
canonical form. This should be done in ruleset three. The second phase maps this
canonical form into the syntax appropriate for the receiving mailer. Sendmail does
this in three subphases. Rulesets one and two are applied to all sender and reci-
pient addresses respectively. After this, you may specify per-mailer rulesets for both
sender and recipient addresses; this allows mailer-specific customization. Finally,
ruleset four is applied to do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions neces-
sary to get the message delivered. Ruleset zero must resolve to the internal form,
which is in turn used as a pointer to a mailer descriptor. The mailer descriptor
describes the interface requirements of the mailer.

5.3.2. Philosophy

The particular philosophy you choose will depend heavily on the size and
structure of your organization. I will present a few possible philosophies here.

One general point applies to all of these philosophies: it is almost always a mis-
take to try to do full name resolution. For example, if you are trying to get names
of the form ‘“user@host” to the Arpanet, it does not pay to route them to
“xyzvax!decvaxlucbvax!c70:user@host” since you then depend on several links not
under your control. The best approach to this problem is to simply forward to
“xyzvax!user@host” and let xyzvax worry about it from there. In summary, just get
the message closer to the destination, rather than determining the full path.

5.3.2.1. Large site, many hosts — minimum information

Berkeley is an example of a large site, i.e., more than two or three hosts.
We have decided that the only reasonable philosophy in our environment is to
designate one host as the guru for our site. It must be able to resolve any piece
of mail it receives. The other sites should have the minimum amount of infor-
mation they can get away with. In addition, any information they do have
should be hints rather than solid information.

For example, a typical site on our local ether network is “monet.” Monet
has a list of known ethernet hosts; if it receives mail for any of them, it can do
direct delivery. If it receives mail for any unknown host, it just passes it directly
to “ucbvax,” our master host. Ucbvax may determine that the host name is ille-
gal and reject the message, or may be able to do delivery. However, it is impor-
tant to note that when a new ethernet host is added, the only host that must
have its tables updated is ucbvax; the others may be updated as convenient, but
this is not critical.

This picture is slightly muddied due to network connections that are not
actually located on ucbvax. For example, our TCP connection is currently on
“ucbarpa.” However, monet does not know about this; the information is hidden
totally between ucbvax and ucbarpa. Mail going from monet to a TCP host is
transfered via the ethernet from monet to ucbvax, then via the ethernet from
ucbvax to ucbarpa, and then is submitted to the Arpanet. Although this involves
some extra hops, we feel this is an acceptable tradeoff.

An interesting point is that it would be possible to update monet to send
TCP mail directly to ucbarpa if the load got too high; if monet failed to note a

Sendmail Installation and Operation Guide 2-47

host as a TCP host it would go via ucbvax as before, and if monet incorrectly

sent a message to ucbarpa it would still be sent by ucbarpa to ucbvax as before.

The only problem that can occur is loops, as if ucbarpa thought that ucbvax had

the TCP connection and vice versa. For this reason, updates should always hap-
pen to the master host first.

This philosophy results as much from the need to have a single source for
the configuration files (typically built using m4(1) or some similar tool) as any
logical need. Maintaining more than three separate tables by hand is essentially
an impossible job.

5.3.2.2. Small site — complete information

A small site (two or three hosts) may find it more reasonable to have com-
plete information at each host. This would require that each host know exactly
where each network connection is, possibly including the names of each host on
that network. As long as the site remains small and the the configuration
remains relatively static, the update problem will probably not be too great.

5.3.2.3. Single host

This is in some sense the trivial case. The only major issue is trying to
insure that you don’t have to know too much about your environment. For
example, if you have a UUCP connection you might find it useful to know about
the names of hosts connected directly to you, but this is really not necessary
since this may be determined from the syntax.

5.3.3. Relevant issues

The canonical form you use should almost certainly be as specified in the
Arpanet protocols RFC819 and RFC822. Copies of these RFC’s are included on the
sendmail tape as doc/rfc819.lpr and doc/rfc822.1pr.

RFC822 describes the format of the mail message itself. Sendmail follows this
RFC closely, to the extent that many of the standards described in this document
can not be changed without changing the code. In particular, the following charac-
ters have special interpretations:

<>(0)"\

Any attempt to use these characters for other than their RFC822 purpose in
addresses is probably doomed to disaster.

RFC819 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially each host is given a name which is a
right-to-left dot qualified pseudo-path from a distinguished root. The elements of
the path need not be physical hosts; the domain is logical rather than physical. For
example, at Berkeley one legal host is “a.cc.berkeley.arpa”; reading from right to
left, “arpa” is a top level domain (related to, but not limited to, the physical
Arpanet), “berkeley” is both an Arpanet host and a logical domain which is actually
interpreted by a host called ucbvax (which is actually just the “major” host for this
domain), “cc” represents the Computer Center, (in this case a strictly logical entity),
and “a” is a host in the Computer Center; this particular host happens to be con-
nected via berknet, but other hosts might be connected via one of two ethernets or
some other network.

Beware when reading RFC819 that there are a number of errors in it.

2-48 Sendmail Installation and Operation Guide

5.3.4. How to proceed

Once you have decided on a philosophy, it is worth examining the available
configuration tables to decide if any of them are close enough to steal major parts of.
Even under the worst of conditions, there is a fair amount of boiler plate that can be
collected safely.

The next step is to build ruleset three. This will be the hardest part of the
job. Beware of doing too much to the address in this ruleset, since anything you do
will reflect through to the message. In particular, stripping of local domains is best
deferred, since this can leave you with addresses with no domain spec at all. Since
sendmail likes to append the sending domain to addresses with no domain, this can
change the semantics of addresses. Also try to avoid fully qualifying domains in this
ruleset. Although technically legal, this can lead to unpleasantly and unnecessarily
long addresses reflected into messages. The Berkeley configuration files define
ruleset nine to qualify domain names and strip local domains. This is called from
ruleset zero to get all addresses into a cleaner form.

Once you have ruleset three finished, the other rulesets should be relatively
trivial. If you need hints, examine the supplied configuration tables.

5.3.5. Testing the rewriting rules — the —bt flag

When you build a configuration table, you can do a certain amount of testing
using the “test mode” of sendmail. For example, you could invoke sendmail as:
sendmail —bt —Ctest.cf

which would read the configuration file “test.cf”” and enter test mode. In this mode,
you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address to apply
the set to. Test mode shows you the steps it takes as it proceeds, finally showing
you the address it ends up with. You may use a comma separated list of rwsets for
sequential application of rules to an input; ruleset three is always applied first. For
example:

1,21,4 monet:bollard

first applies ruleset three to the input “monet:bollard.” Ruleset one is then applied
to the output of ruleset three, followed similarly by rulesets twenty-one and four.

If you need more detail, you can also use the “—d21” flag to turn on more
debugging. For example,

sendmail —bt —d21.99

turns on an incredible amount of information; a single word address is probably
going to print out several pages worth of information.

5.3.6. Building mailer descriptions

To add an outgoing mailer to your mail system, you will have to define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that
the names “local” and “prog” must be defined.

The pathname of the mailer must be given in the P field. If this mailer should
be accessed via an IPC connection, use the string “[IPC]” instead.

Sendmail Installation and Operation Guide 2-49

I
r

The F field defines the mailer flags. You should specify an “f” or flag to
pass the name of the sender as a —f or —r flag respectively. These flags are only
passed if they were passed to sendmail, so that mailers that give errors under some
circumstances can be placated. If the mailer is not picky you can just specify “—f
$g” in the argv template. If the mailer must be called as root the “S” flag should
be given; this will not reset the userid before calling the mailer’. If this mailer is
local (i.e., will perform final delivery rather than another network hop) the “1” flag
should be given. Quote characters (backslashes and ” marks) can be stripped from
addresses if the “s” flag is specified; if this is not given they are passed through. If
the mailer is capable of sending to more than one user on the same host in a single
transaction the “m” flag should be stated. If this flag is on, then the argv template
containing $u will be repeated for each unique user on a given host. The “e” flag
will mark the mailer as being “expensive,” which will cause sendmail to defer con-

nection until a queue run*.

An unusual case is the “C” flag. This flag applies to the mailer that the mes-
sage is received from, rather than the mailer being sent to; if set, the domain spec of
the sender (i.e., the “@host.domain” part) is saved and is appended to any
addresses in the message that do not already contain a domain spec. For example, a
message of the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckusick@ucbarpa

if and only if the “C” flag is defined in the mailer corresponding to “eric@ucbarpa.”
Other flags are described in Appendix C.

The S and R fields in the mailer description are per-mailer rewriting sets to be
applied to sender and recipient addresses respectively. These are applied after the
sending domain is appended and the general rewriting sets (numbers one and two)
are applied, but before the output rewrite (ruleset four) is applied. A typical use is
to append the current domain to addresses that do not already have a domain. For
example, a header of the form:

From: eric
might be changed to be:
From: eric@ucbarpa
or
From: ucbvax'eric

depending on the domain it is being shipped into. These sets can also be used to do
special purpose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string con-
taining only newline is the default. The usual backslash escapes (\r,\n,\f,\b) may
be used.

Finally, an argv template is given as the E field. It may have embedded
spaces. If there is no argv with a $u macro in it, sendmail will speak SMTP to the
mailer. If the pathname for this mailer is “[IPC],” the argv should be

3Sendmail must be running setuid to root for this to work.

“The “c” configuration option must be given for this to be effective.

2-50 Sendmail Installation and Operation Guide

IPC $h [port]
where port is the optional port number to connect to.
For example, the specifications:

Mlocal, P=/bin/mail, F=rlsm S=10, R=20, A=mail —d $u
Mether,P=[IPC], F=meC, S=11, R=21, A=IPC $h, M=100000

specifies a mailer to do local delivery and a mailer for ethernet delivery. The first is
called “local,” is located in the file “/bin/mail,” takes a picky —r flag, does local
delivery, quotes should be stripped from addresses, and multiple users can be
delivered at once; ruleset ten should be applied to sender addresses in the message
and ruleset twenty should be applied to recipient addresses; the argv to send to a
message will be the word “mail,” the word “—d,” and words containing the name of
the receiving user. If a —r flag is inserted it will be between the words “mail” and
“~d.” The second mailer is called “ether,” it should be connected to via an IPC con-
nection, it can handle multiple users at once, connections should be deferred, and
any domain from the sender address should be appended to any receiver name
without a domain; sender addresses should be processed by ruleset eleven and reci-
pient addresses by ruleset twenty-one. There is a 100,000 byte limit on messages
passed through this mailer.

Sendmail Installation and Operation Guide 2-51

APPENDIX A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The flags are:

—f addr

—r addr
—h ent

—Fname

—qtime

—Cfile
—dlevel

—ox value

The sender’s machine address is addr. This flag is ignored unless the real user
is listed as a “trusted user” or if addr contains an exclamation point (because
of certain restrictions in UUCP).

An obsolete form of —f.

Sets the “hop count” to cnt. This represents the number of times this mes-
sage has been processed by sendmail (to the extent that it is supported by the
underlying networks). Cnt is incremented during processing, and if it reaches
MAXHOP (currently 30) sendmail throws away the message with an error.

Sets the full name of this user to name.
Don’t do aliasing or forwarding.

Read the header for “To:”, “Cc:”, and “Bcc:” lines, and send to everyone
listed in those lists. The “Bcc:” line will be deleted before sending. Any
addresses in the argument vector will be deleted from the send list.

Set operation mode to x. Operation modes are:

m Deliver mail (default)

Run in arpanet mode (see below)

Speak SMTP on input side

Run as a daemon

Run in test mode

Just verify addresses, don’t collect or deliver
Initialize the alias database

Print the mail queue

Freeze the configuration file

The special processing for the ARPANET includes reading the “From:” line
from the header to find the sender, printing ARPANET style messages (pre-
ceded by three digit reply codes for compatibility with the FTP protocol
[Neigus73, Postel74, Postel77]), and ending lines of error messages with
<CRLF>.

Try to process the queued up mail. If the time is given, a sendmail will run
through the queue at the specified interval to deliver queued mail; otherwise,
it only runs once.

NG =g e

Use a different configuration file.
Set debugging level.

Set option x to the specified value. These options are described in Appendix
B.

There are a number of options that may be specified as primitive flags (provided for
compatibility with delivermail). These are the e, i, m, and v options. Also, the f option may
be specified as the —s flag.

2-52 Sendmail Installation and Operation Guide

APPENDIX B

CONFIGURATION OPTIONS

The following options may be set using the —o flag on the command line or the O line in
the configuration file:

Afile

ex

Fn

gn
Hfile

i

Ln
Mzxvalue

Qdir

rtime

Use the named file as the alias file. If no file is specified, use aliases in the
current directory.

If set, wait for an “@:@” entry to exist in the alias database before starting
up. If it does not appear in five minutes, rebuild the database.

If an outgoing mailer is marked as being expensive, don’t connect immedi-
ately. This requires that queueing be compiled in, since it will depend on a
queue run process to actually send the mail.

Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If this option is not
set, sendmail will never rebuild the alias database unless explicitly requested
using —bi.

Dispose of errors using mode x. The values for x are:

p Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
e Mail back errors and give zero exit stat always
The temporary file mode, in octal. 644 and 600 are good choices.

Save Unix-style “From” lines at the front of headers. Normally they are
assumed redundant and discarded.

Set the default group id for mailers to run in to n.
Specify the help file for SMTP.

Ignore dots in incoming messages.

Set the default log level to n.

Set the macro x to value. This is intended only for use from the command
line.

Send to me too, even if I am in an alias expansien.

Assume that the headers may be in old format, i.e., spaces delimit names.
This actually turns on an adaptive algorithm: if any recipient address contains
a comma, parenthesis, or angle bracket, it will be assumed that commas
already exist. If this flag is not on, only commas delimit names. Headers are
always output with commas between the names.

Use the named dir as the queue directory.

Timeout reads after time interval.

Sfile

Ttime
tS,D

un

Sendmail Installation and Operation Guide 2-53

Log statistics in the named file.

Be super-safe when running things, i.e., always instantiate the queue file, even
if you are going to attempt immediate delivery. Sendmail always instantiates
the queue file before returning control the the client under any circumstances.

Set the queue timeout to time. After this interval, messages that have not
been successfully sent will be returned to the sender.

Set the local timezone name to S for standard time and D for daylight time;
this is only used under version six.

Set the default userid for mailers to n. Mailers without the S flag in the
mailer definition will run as this user.

Run in verbose mode.

2-54 Sendmail Installation and Operation Guide

APPENDIX C

MAILER FLAGS

The following flags may be set in the mailer description.

f

o a»5 e Ux 2O g @ — B wn

o

The mailer wants a —f from flag, but only if this is a network forward operation (i.e., the
mailer will give an error if the executing user does not have special permissions).

Same as f, but sends a —r flag.

Don’t reset the userid before calling the mailer. This would be used in a secure environ-
ment where sendmail ran as root. This could be used to avoid forged addresses. This
flag is suppressed if given from an “unsafe” environment (e.g, a user’s mail.cf file).

Do not insert a UNIX-style “From” line on the front of the message.
This mailer is local (i.e., final delivery will be performed).
Strip quote characters off of the address before calling the mailer.

This mailer can send to multiple users on the same host in one transaction. When a $u
macro occurs in the argv part of the mailer definition, that field will be repeated as neces-
sary for all qualifying users.

This mailer wants a “From:” header line.

This mailer wants a “Date:” header line.

This mailer wants a “Message-Id:” header line.

This mailer wants a “Full-Name:” header line.

This mailer wants a “Return-Path:” line.

Upper case should be preserved in user names for this mailer.

Upper case should be preserved in host names for this mailer.

This is an Arpanet-compatible mailer, and all appropriate modes should be set.

This mailer wants Unix-style “From” lines with the ugly UUCP-style “remote from
<host>" on the end.

This mailer is expensive to connect to, so try to avoid connecting normally; any necessary
connection will occur during a queue run.

This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any
line beginning with a dot will have an extra dot prepended (to be stripped at the other
end). This insures that lines in the message containing a dot will not terminate the mes-
sage prematurely.

Limit the line lengths as specified in RFC821.

Use the return-path in the SMTP “MAIL FROM:” command rather than just the return
address; although this is required in RFC821, many hosts do not process return paths
properly.

This mailer will be speaking SMTP to another sendmail — as such it can use special pro-

tocol features. This option is not required (i.e., if this option is omitted the transmission
will still operate successfully, although perhaps not as efficiently as possible).

If mail is received from a mailer with this flag set, any addresses in the header that do
not have an at sign (“@”) after being rewritten by ruleset three will have the “@domain”
clause from the sender tacked on. This allows mail with headers of the form:

Sendmail Installation and Operation Guide 2-55

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

2-56 Sendmail Installation and Operation Guide

APPENDIX D

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These
are located in three places:

md/configmd4 These contain operating-system dependent descriptions. They are interpo-
lated into the Makefiles in the src and aux directories. This includes informa-
tion about what version of UNIX you are running, what libraries you have to
include, etc.

src/conf.h Configuration parameters that may be tweaked by the installer are included in
conf.h.
src/conf.c Some special routines and a few variables may be defined in conf.c. For the

most part these are selected from the settings in conf.h.

Parameters in md/config.m4

The following compilation flags may be defined in the m4CONFIG macro in
md/config.m4 to define the environment in which you are operating.

V6 If set, this will compile a version 6 system, with 8-bit user id’s, single character
tty id’s, etc.

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.1BSD, including the
vfork (2) system call, special types defined in <sys/types.h> (e.g, u char), etc.

If none of these flags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendmail in the m4LIBS macro.
Most notably, you will have to include if you are running a 4.1BSD system.

Parameters in src/conf.h

Parameters and compilation options are defined in conf.h. Most of these need not nor-
mally be tweaked; common parameters are all in sendmail.cf. However, the sizes of certain
primitive vectors, etc., are included in this file. The numbers following the parameters are
their default value.

MAXLINE [256] The maximum line length of any input line. If message lines exceed this
length they will still be processed correctly; however, header lines,
configuratiov file lines, alias lines, etc., must fit within this limit.

MAXNAME [128] The maximum length of any name, such as a host or a user name.

MAXFIELD [2500]
The maximum total length of any header field, including continuation
lines.

MAXPV [40] The maximum number of parameters to any mailer. This limits the
number of recipients that may be passed in one transaction.

MAXHOP [30] When a message has been processed more than this number of times, send-
mail rejects the message on the assumption that there has been an aliasing
loop. This can be determined from the —h flag or by counting the number
of trace fields (i.e, “Received:” lines) in the message header.

Sendmail Installation and Operation Guide 2-57

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example,
the address “eric@Berkeley” is three atoms.

MAXMAILERS [25]
The maximum number of mailers that may be defined in the configuration
file.

MAXRWSETS [30]
The maximum number of rewriting sets that may be defined.

MAXPRIORITIES [25]
The maximum number of values for the “Precedence:” field that may be
defined (using the P line in sendmail.cf). '

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T
line in sendmail.cf).

A number of other compilation options exist. These specify whether or not specific code
should be compiled in.

DBM If set, the “DBM” package in UNIX is used (see DBM(3X) in [UNIX80]). If
not set, a much less efficient algorithm for processing aliases is used.

DEBUG If set, debugging information is compiled in. To actually get the debugging
output, the —d flag must be used.

LOG If set, the syslog routine in use at some sites is used. This makes an informa-
tional log record for each message processed, and makes a higher priority log
record for internal system errors.

QUEUE This flag should be set to compile in the queueing code. If this is not set,
mailers must accept the mail immediately or it will be returned to the sender.
SMTP If set, the code to handle user and server SMTP will be compiled in. This is

only necessary if your machine has some mailer that speaks SMTP.

DAEMON If set, code to run a daemon is compiled in. This code is for 4.2BSD if the
NVMUNIX flag is specified; otherwise, 4.1a BSD code is used. Beware how-
ever that there are bugs in the 4.1a code that make it impossible for send-
mail to work correctly under heavy load.

UGLYUUCP If you have a UUCP host adjacent to you which is not running a reasonable
version of rmail, you will have to set this flag to include the “remote from
sysname” info on the from line. Otherwise, UUCP gets confused about where
the mail came from.

NOTUNIX If you are using a non-UNIX mail format, you can set this flag to turn off spe-
cial processing of UNIX-style “From ” lines.

Configuration in src/conf.c

Not all header semantics are defined in the configuration file. Header lines that should
only be included by certain mailers (as well as other more obscure semantics) must be
specified in the HdrInfo table in conf.c. This table contains the header name (which should
be in all lower case) and a set of header control flags (described below), The flags are:

H ACHECK Normally when the check is made to see if a header line is compatible with a
mailer, sendmail will not delete an existing line. If this flag is set, sendmail
will delete even existing header lines. That is, if this bit is set and the mailer
does not have flag bits set that intersect with the required mailer flags in the
header definition in sendmail.cf, the header line is always deleted.

H EOH If this header field is set, treat it like a blank line, i.e., it will signal the end of
the header and the beginning of the message text.

2-58 Sendmail Installation and Operation Guide

H FORCE Add this header entry even if one existed in the message before. If a header
entry does not have this bit set, sendmail will not add another header line if a
header line of this name already existed. This would normally be used to
stamp the message by everyone who handled it.

H TRACE If set, this is a timestamp (trace) field. If the number of trace fields in a mes-
sage exceeds a preset amount the message is returned on the assumption that
it has an aliasing loop.

H RCPT If set, this field contains recipient addresses. This is used by the —t flag to
determine who to send to when it is collecting recipients from the message.

H FROM This flag indicates that this field specifies a sender. The order of these fields
in the HdrInfo table specifies sendmail’s preference for which field to return
error messages to.

Let’s look at a sample HdrInfo specification:

struct hdrinfo HdrInfo[] =
{

/* originator fields, most to least significant */
resent-sender”, H FROM,

"resent-from”, H FROM,
”sender”, H FROM,
”from”, H FROM,
”full-name”, H ACHECK,
/* destination fields */
”to”, H RCPT,
"resent-to”, H RCPT,
?ec”, H RCPT,
/* message identification and control */
“message”, H EOH,
“text”, H EOH,
/* trace fields */
*received”, H TRACEH FORCE,
NULL, 0,

|5
This structure indicates that the “To:”, “Resent-To:”, and “Cc:” fields all specify recipient
addresses. Any “Full-Name:” field will be deleted unless the required mailer flag (indicated in
the configuration file) is specified. The “Message:” and “Text:” fields will terminate the
header; these are specified in new protocols [NBS80] or used by random dissenters around the
network world. The “Received:” field will always be added, and can be used to trace mes-
sages.

There are a number of important points here. First, header fields are not added
automatically just because they are in the HdrInfo structure; they must be specified in the
configuration file in order to be added to the message. Any header fields mentioned in the
configuration file but not mentioned in the HdrInfo structure have default processing per-
formed; that is, they are added unless they were in the message already. Second, the HdrInfo
structure only specifies cliched processing; certain headers are processed specially by ad hoc
code regardless of the status specified in HdrInfo. For example, the “Sender:” and “From:”
fields are always scanned on ARPANET mail to determine the sender; this is used to perform
the “return to sender” function. The “From:” and “Full-Name:” fields are used to determine
the full name of the sender if possible; this is stored in the macro $x and used in a number of
ways.

Sendmail Installation and Operation Guide 2-59

The file conf.c also contains the specification of ARPANET reply codes. There are four
classifications these fall into:
char Arpa Info[] = ”050”; /* arbitrary info */
char Arpa TSyserr[] ”455”; /* some (transient) system error */
char Arpa PSyserr[] ”554”; /* some (transient) system error */
char Arpa Usrerr[] = ”554”; /* some (fatal) user error */

The class Arpa Info is for any information that is not required by the protocol, such as for-
warding information. Arpa TSyserr and Arpa PSyserr is printed by the syserr routine.
TSyserr is printed out for transient errors, whereas PSyserr is printed for permanent errors;
the distinction is made based on the value of errno. Finally, Arpa Usrerr is the result of a
user error and is generated by the usrerr routine; these are generated when the user has
specified something wrong, and hence the error is permanent, i.e., it will not work simply by
resubmitting the request.

If it is necessary to restrict mail through a relay, the checkcompat routine can be
modified. This routine is called for every recipient address. It can return TRUE to indicate
that the address is acceptable and mail processing will continue, or it can return FALSE to
reject the recipient. If it returns false, it is up to checkcompat to print an error message
(using usrerr) saying why the message is rejected. For example, checkcompat could read:

bool

checkcompat(to)
register ADDRESS *to;

if (MsgSize > 50000 && to->q mailer != LocalMailer)
{

usrerr("Message too large for non-local delivery”);
NoReturn = TRUE;
return (FALSE);

}
return (TRUE);
}

This would reject messages greater than 50000 bytes unless they were local. The NoReturn
flag can be sent to supress the return of the actual body of the message in the error return.
The actual use of this routine is highly dependent on the implementation, and use should be
limited.

2-60 Sendmail Installation and Operation Guide

APPENDIX E

SUMMARY OF SUPPORT FILES

This is a summary of the support files that sendmail creates or generates.

/usr/lib/sendmail
The binary of sendmail.

/usr/bin/newaliases
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running
this program is completely equivalent to giving sendmail the —bi flag.

/usr/bin/mailq Prints a listing of the mail queue. This program is equivalent to using the
—bp flag to sendmail.

/usr/lib/sendmail.cf
The configuration file, in textual form.

/usr/lib/sendmail.fc
The configuration file represented as a memory image.

/usr/lib/sendmail.hf
The SMTP help file.

/usr/lib/sendmail.st
A statistics file; need not be present.

/usr/lib/aliases The textual version of the alias file.

/usr/lib/aliases.{pag,dir}
The alias file in dbm (3) format.

/etc/syslog The program to do logging.
/etc/syslog.conf The configuration file for syslog.
/etc/syslog.pid Contains the process id of the currently running syslog.

/usr/spool/mqueue
The directory in which the mail queue and temporary files reside.

/usr/spool/mqueue/qf*
Control (queue) files for messages.

/usr/spool/mqueue/df*
Data files.

/usr/spool/mqueue/If*
Lock files

/usr/spool/mqueue/tf*
Temporary versions of the qf files, used during queue file rebuild.

/usr/spool/mqueue/nf*
A file used when creating a unique id.

/usr/spool/mqueue/xf*
A transcript of the current session.

Introduction 3-1

PART 3: COMMUNICATIONS

The three articles in this part cover a range of communications topics, from general back-
ground information to detailed descriptions of program structures and protocols. They
describe the interprocess communication software (this can be either interactive or batch) and
sendmail, an internetwork mail server.

Ftp, telnet, and the r-command set are three other networking software utilities available on
the ULTRIX-32 system but not mentioned in these articles. See the end of this introduction
for a brief description of each.

Interprocess Communication

The first two articles describe the socket software, a set of system calls (new with the 4.2BSD
distribution) used for interprocess communication. The communicating processes can be run-
ning on the same computer or on separate computers linked by the DARPA standard com-
munication protocols.

Interprocess communication requires each process to set up one of three types of socket:
Stream socket Communication is bidirectional, reliable, sequenced, and unduplicated.

Datagram socket =~ Communication is bidirectional but not promised to be reliable,
sequenced, or unduplicated.

Raw socket Communication is possible through access to underlying protocols.

“A 4.2BSD Interprocess Communication Primer” gives the format for each socket-related call
and explains how to coordinate the calls to establish a connection and send and receive mes-
sages:

* Create a socket

* Bind a name to a socket

¢ Connect - initiate a connection

e Listen for a connect request

e Accept a connect request

e Write a message

¢ Read a message

¢ Send a message

¢ Receive a message

e Sendto - send a datagram message
¢ Recuvfrom - receive a datagram message
e Close a connection

* Shutdown a connection

e Select - multiplex the transfer of messages

3-2 Introduction

These commands are listed individually in the ULTRIX-32 Programmer’s Manual. The arti-
cle also tells how to use: a library of routines that manipulate addresses, server and client
calls, and connectionless servers. And information on a variety of advanced topics is available
for sophisticated users.

The second article, “4.2BSD Networking Implementation Notes,” describes the internal struc-
ture of the interprocess communication software. This information should be useful to
engineers who are developing new communication protocols and network utilities. The article
explains:

» Support for multiple protocol families and addressing styles
* Structures for internal address representation

¢ Memory management for network functions

¢ Internal layering

¢ Protocol interfaces

¢ Gateways

¢ Routing tables

¢ Use of raw sockets for direct access to low level protocols
+ Buffering issues

e Handling out-of-band data

e Use of trailer protocols

You can also find a description of the user interface to the interprocess communication
software in Section 2.3 of the “4.2BSD System Manual” (in Volume II of this set). Prefer the
more recent “4.2BSD Interprocess Communication Primer” when you find discrepancies.

Sendmail

The article by Allman, “Sendmail - An Internetwork Mail Router,” offers good background
information for people who install and maintain the sendmail utility. For actual instructions
on installation, see the “Sendmail Installation and Operation Guide” in Part 2 of this volume.

Sendmail acts like a post office, enabling different networking systems to route mail between
them. For example, people using the ARPANET and others using the ETHERNET can send
mail to each other, and sendmail will cooperate with the network software at each end to
make sure that the messages get through. The sendmail functions are transparent to people
sending the messages; each sender or receiver needs to deal only with the interface to the local
network used on his or her computer system.

A reading of this article is prerequisite to an understanding of the “Sendmail Installation and
Operation Guide.”

Standard Networking Utilities

Three other networking systems are available on ULTRIX-32:

ftp File transfer program (a user interface to the ARPANET)

telnet Remote login protocol

r-commands New networking software layered on sockets

You can find information on these utilities in the ULTRIX-32 Programmer’s Manual. Ftp
and telnet are utilities that prompt you for commands when you run them. Users must give

appropriate passwords when accessing information on remote systems. The command descrip-
tions listed under ftp and telnet are comprehensive.

The r-commands, like the interprocess communication commands, are listed individually in
the ULTRIX-32 Programmer’s Manual, because you must call each one from the shell:

Introduction 3-3

remd Connect, then execute a command
rep Remote file copy

rdump File system dump across a network
rexec Remote execute

rlogin Remote login

rmt Remote magnetic tape dump

rrestore Restore a system from a file system dump across a network
rshell Remote shell; provide remote execution facilities
ruptime Show how long a remote system has been up

rwho Show who is on a remote system

However, the r-command software requires trust between system users, because remote access
using the r-commands does not require use of passwords.

Interprocess Communication Primer 3-5

A 4.2BSD Interprocess Communication Primer

Samuel J. Leffler
Robert S. Fabry
William N. Joy

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720
(415) 642-7780

1. INTRODUCTION

One of the most important parts of 4.2BSD is the interprocess communication facilities.
These facilities are the result of more than two years of discussion and research. The facilities
provided in 4.2BSD incorporate many of the ideas from current research, while trying to
maintain the UNIX* philosophy of simplicity and conciseness. It is hoped that the interpro-
cess communication facilities included in 4.2BSD will establish a standard for UNIX. From
the response to the design, it appears many organizations carrying out work with UNIX are
adopting it.

UNIX has previously been very weak in the area of interprocess communication. Prior
to the 4.2BSD facilities, the only standard mechanism which allowed two processes to com-
municate were pipes (the mpx files which were part of Version 7 were experimental). Unfor-
tunately, pipes are very restrictive in that the two communicating processes must be related
through a common ancestor. Further, the semantics of pipes makes them almost impossible
to maintain in a distributed environment.

Earlier attempts at extending the ipc facilities of UNIX have met with mixed reaction.
The majority of the problems have been related to the fact these facilities have been tied to
the UNIX file system; either through naming, or implementation. Consequently, the ipc facil-
ities provided in 4.2BSD have been designed as a totally independent subsystem. The 4.2BSD
ipc allows processes to rendezvous in many ways. Processes may rendezvous through a UNIX
file system-like name space (a space where all names are path names) as well as through a net-
work name space. In fact, new name spaces may be added at a future time with only minor
changes visible to users. Further, the communication facilities have been extended to
included more than the simple byte stream provided by a pipe-like entity. These extensions
have resulted in a completely new part of the system which users will need time to familiarize
themselves with. It is likely that as more use is made of these facilities they will be refined;
only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces the
new system calls and the basic model of communication. Section 3 describes some of the sup-
porting library routines users may find useful in constructing distributed applications. Section
4 is concerned with the client/server model used in developing applications and includes
examples of the two major types of servers. Section 5 delves into advanced topics which
sophisticated users are likely to encounter when using the ipc facilities.

* UNIX is a Trademark of Bell Laboratories.

3-6 Interprocess Communication Primer

2. BASICS

The basic building block for communication is the socket. A socket is an endpoint of
communication to which a name may be bound. Each socket in use has a type and one or
more associated processes. Sockets exist within communication domains. A communication
domain is an abstraction introduced to bundle common properties of processes communicating
through sockets. One such property is the scheme used to name sockets. For example, in the
UNIX communication domain sockets are named with UNIX path names; e.g. a socket may
be named “/dev/foo”. Sockets normally exchange data only with sockets in the same domain
(it may be possible to cross domain boundaries, but only if some translation process is per-
formed). The 4.2BSD ipc supports two separate communication domains: the UNIX domain,
and the Internet domain is used by processes which communicate using the the DARPA stan-
dard communication protocols. The underlying communication facilities provided by these
domains have a significant influence on the internal system implementation as well as the
interface to socket facilities available to a user. An example of the latter is that a socket
“operating” in the UNIX domain sees a subset of the possible error conditions which are pos-
sible when operating in the Internet domain.

2.1. Socket types

Sockets are typed according to the communication properties visible to a user. Processes
are presumed to communicate only between sockets of the same type, although there is noth-
ing that prevents communication between sockets of different types should the underlying
communication protocols support this.

Three types of sockets currently are available to a user. A stream socket provides for
the bidirectional, reliable, sequenced, and unduplicated flow of data without record boun-
daries. Aside from the bidirectionality of data flow, a pair of connected stream sockets pro-
vides an interface nearly identical to that of pipes*.

A datagram socket supports bidirectional flow of data which is not promised to be
sequenced, reliable, or unduplicated. That is, a process receiving messages on a datagram
socket may find messages duplicated, and, possibly, in an order different from the order in
which it was sent. An important characteristic of a datagram socket is that record boundaries
in data are preserved. Datagram sockets closely model the facilities found in many contem-
porary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which
support socket abstractions. These sockets are normally datagram oriented, though their
exact characteristics are dependent on the interface provided by the protocol. Raw sockets
are not intended for the general user; they have been provided mainly for those interested in
developing new communication protocols, or for gaining access to some of the more esoteric
facilities of an existing protocol. The use of raw sockets is considered in section 5.

Two potential socket types which have interesting properties are the sequenced packet
socket and the reliably delivered message socket. A sequenced packet socket is identical to a
stream socket with the exception that record boundaries are preserved. This interface is very
similar to that provided by the Xerox NS Sequenced Packet protocol. The reliably delivered
message socket has similar properties to a datagram socket, but with reliable delivery. While
these two socket types have been loosely defined, they are currently unimplemented in
4.2BSD. As such, in this document we will concern ourselves only with the three socket types
for which support exists.

* In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been imple-
mented internally as simply a pair of connected stream sockets.

Interprocess Communication Primer 3-7

2.2. Socket creation
To create a socket the socket system call is used:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified
type. A particular protocol may also be requested. If the protocol is left unspecified (a value
of 0), the system will select an appropriate protocol from those protocols which comprise the
communication domain and which may be used to support the requested socket type. The
user is returned a descriptor (a small integer number) which may be used in later system calls
which operate on sockets. The domain is specified as one of the manifest constants defined in
the file <sys/socket.h>. For the UNIX domain the constant is AF_ UNIX*; for the Internet
domain AF INET. The socket types are also defined in this file and one of SOCK_STREAM,
SOCK DGRAM, or SOCK_ RAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample
call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

To obtain a particular protocol one selects the protocol number, as defined within the
communication domain. For the Internet domain the available protocols are defined in
<netinet/in.h> or, better yet, one may use one of the library routines discussed in section 3,
such as getprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

pp = getprotobyname("tcp”);
s = socket(AF_INET, SOCK_STREAM, pp->p proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack
of memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

2.3. Binding names

A socket is created without a name. Until a name is bound to a socket, processes have
no way to reference it and, consequently, no messages may be received on it. The bind call is
used to assign a name to a socket:

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting
protocol(s). Its interpretation may vary from communication domain to communication
domain (this is one of the properties which comprise the “domain”). In the UNIX domain
names are path names while in the Internet domain names contain an Internet address and
port number. If one wanted to bind the name “/dev/foo” to a UNIX domain socket, the fol-
lowing would be used:

* The manifest constants are named AF whatever as they indicate the “address format” to use in interpret-
ing names.

3-8 Interprocess Communication Primer

bind(s, ”/dev/foo”, sizeof ("/dev/foo”) — 1);

(Note how the null byte in the name is not counted as part of the name.) In binding an Inter-
net address things become more complicated. The actual call is simple,

#tinclude <sys/types.h>
#tinclude <netinet/in.h>

struct sockaddr_in sin;

bind(s, &sin, sizeof (sin));

but the selection of what to place in the address sin requires some discussion. We will come
back to the problem of formulating Internet addresses in section 3 when the library routines
used in name resolution are discussed.

2.4. Connection establishment

With a bound socket it is possible to rendezvous with an unrelated process. This opera-
tion is usually asymmetric with one process a “client” and the other a “server”. The client
requests services from the server by initiating a “connection” to the server’s socket. The
server, when willing to offer its advertised services, passively “listens” on its socket. On the
client side the connect call is used to initiate a connection. Using the UNIX domain, this
might appear as,

connect(s, “server-name”, sizeof ("server-name”));
while in the Internet domain,

struct sockaddr _in server;
connect(s, &server, sizeof (server));

If the client process’s socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket; c.f. section 5.4. An error is returned when
the connection was unsuccessful (any name automatically bound by the system, however,
remains). Otherwise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was
no point in retrying the connection attempt any more. This usually occurs because the
destination host is down, or because problems in the network resulted in transmissions
being lost.

ECONNREFUSED
The host refused service for some reason. When connecting to a host running 4.2BSD
this is usually due to a server process not being present at the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client
host by the underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no
route to the network or host is present), or because of status information returned by
intermediate gateways or switching nodes. Many times the status returned is not
sufficient to distinguish a network being down from a host being down. In these cases
the system is conservative and indicates the entire network is unreachable.

For the server to receive a client’s connection it must perform two steps after binding its
socket. The first is to indicate a willingness to listen for incoming connection requests:

Interprocess Communication Primer 3-9

listen(s, 5);

The second parameter to the listen call specifies the maximum number of outstanding connec-
tions which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to
make room in its pending connection queue while the client retries the connection request.
Had the connection been returned with the ECONNREFUSED error, the client would be
unable to tell if the server was up or not. As it is now it is still possible to get the
ETIMEDOUT error back, though this is unlikely. The backlog figure supplied with the listen
call is limited by the system to a maximum of 5 pending connections on any one queue. This
avoids the problem of processes hogging system resources by setting an infinite backlog, then
ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the
server wishes to find out who its client is, it may supply a buffer for the client socket’s name.
The value-result parameter fromlen is initialized by the server to indicate how much space is
associated with from, then modified on return to reflect the true size of the name. If the
client’s name is not of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is
available or the system call is interrupted by a signal to the process. Further, there is no way
for a process to indicate it will accept connections from only a specific individual, or individu-
als. It is up to the user process to consider who the connection is from and close down the
connection if it does not wish to speak to the process. If the server process wants to accept
connections on more than one socket, or not block on the accept call there are alternatives;
they will be considered in section 5.

2.5. Data transfer

With a connection established, data may begin to flow. To send and receive data there
are a number of possible calls. With the peer entity at each end of a connection anchored, a
user can send or receive a message without specifying the peer. As one might expect, in this
case, then the normal read and write system calls are useable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While send and recv are virtually identical to read and write, the extra flags argument is
important. The flags may be specified as a non-zero value if one or more of the following is
required:

SOF OOB send/receive out of band data
SOF PREVIEW look at data without reading
SOF DONTROUTE send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest
to the casual user. The ability to preview data is, however, of interest. When

3-10 Interprocess Communication Primer

SOE_PREVIEW is specified with a recv call, any data present is returned to the user, but
treated as still “unread”. That is, the next read or recv call applied to the socket will return
the data previously previewed.

2.6. Discarding sockets

Once a socket is no longer of interest, it may be discarded by applying a close to the
descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when
a close takes place, the system will continue to attempt to transfer the data. However, after a
fairly long period of time, if the data is still undelivered, it will be discarded. Should a user
have no use for any pending data, it may perform a shutdown on the socket prior to closing it.
This call is of the form:

shutdown(s, how);

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be
sent, or 2 if no data is to be sent or received. Applying shutdown to a socket causes any data
queued to be immediately discarded.

2.7. Connectionless sockets

To this point we have been concerned mostly with sockets which follow a connection
oriented model. However, there is also support for connectionless interactions typical of the
datagram facilities found in contemporary packet switched networks. A datagram socket pro-
vides a symmetric interface to data exchange. While processes are still likely to be client and
server, there is no requirement for connection establishment. Instead, each message includes
the destination address.

Datagram sockets are created as before, and each should have a name bound to it in
order that the recipient of a message may identify the sender. To send data, the sendto prim-
itive is used,

sendto(s, buf, buflen, flags, &to, tolen);

The s, buf, buflen, and flags parameters are used as before. The to and tolen values are used
to indicate the intended recipient of the message. When using an unreliable datagram inter-
face, it is unlikely any errors will be reported to the sender. Where information is present
locally to recognize a message which may never be delivered (for instance when a network is
unreachable), the call will return —1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is pro-
vided:

recvfrom(s, buf, buflen, flags, &from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the
size of the from buffer.

In addition to the two calls mentioned above, datagram sockets may also use the connect
call to associate a socket with a specific address. In this case, any data sent on the socket will
automatically be addressed to the connected peer, and only data received from that peer will
be delivered to the user. Only one connected address is permitted for each socket (i.e. no
multi-casting). Connect requests on datagram sockets return immediately, as this simply
results in the system recording the peer’s address (as compared to a stream socket where a
connect request initiates establishment of an end to end connection). Other of the less impor-
tant details of datagram sockets are described in section 5.

Interprocess Communication Primer 3-11

2.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to multiplex i/o
requests among multiple sockets and/or files. This is done using the select call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the
caller wishes to be able to read data on, one for those descriptors to which data is to be writ-
ten, and one for which exceptional conditions are pending. Bit masks are created by or-ing
bits of the form “1 << fd”. That is, a descriptor fd is selected if a 1 is present in the fd’th bit
of the mask. The parameter nfds specifies the range of file descriptors (i.e. one plus the value
of the largest descriptor) specified in a mask.

A timeout value may be specified if the selection is not to last more than a predeter-
mined period of time. If timeout is set to 0, the selection takes the form of a poll, returning
immediately. If the last parameter is a null pointer, the selection will block indefinitely*.
Select normally returns the number of file descriptors selected. If the select call returns due
to the timeout expiring, then a value of —1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output
completion, input availability, and exceptional conditions is possible through use of the SIGIO
and SIGURG signals described in section 5.

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received
by the caller, interrupting the system call.

3-12 Interprocess Communication Primer

3. NETWORK LIBRARY ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network
addresses when using the interprocess communication facilities in a distributed environment.
To aid in this task a number of routines have been added to the standard C run-time library.
In this section we will consider the new routines provided to manipulate network addresses.
While the 4.2BSD networking facilities support only the DARPA standard Internet protocols,
these routines have been designed with flexibility in mind. As more communication protocols
become available, we hope the same user interface will be maintained in accessing network-
related address data bases. The only difference should be the values returned to the user.
Since these values are normally supplied the system, users should not need to be directly
aware of the communication protocol and/or naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and
server may communicate. A service is assigned a name which is intended for human consump-
tion; e.g. “the login server on host monet”. This name, and the name of the peer host, must
then be translated into network addresses which are not necessarily suitable for human con-
sumption. Finally, the address must then used in locating a physical location and route to the
service. The specifics of these three mappings is likely to vary between network architectures.
For instance, it is desirable for a network to not require hosts be named in such a way that
their physical location is known by the client host. Instead, underlying services in the net-
work may discover the actual location of the host at the time a client host wishes to communi-
cate. This ability to have hosts named in a location independent manner may induce over-
head in connection establishment, as a discovery process must take place, but allows a host to
be physically mobile without requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network
names to network numbers, protocol names to protocol numbers, and service names to port
numbers and the appropriate protocol to use in communicating with the server process. The
file <netdb.h> must be included when using any of these routines.

3.1. Host names
A host name to address mapping is represented by the hostent structure:

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype; /* host address type */
int h length; /* length of address */
char *h addr; /* address */

b

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine gethostbyname(3N) takes a host name and returns a
hostent structure, while the routine gethostbyaddr(3N) maps host addresses into a hostent
structure. It is possible for a host to have many addresses, all having the same name.
Gethostybyname returns the first matching entry in the data base file /etc/hosts; if this is
unsuitable, the lower level routine gethostent(3N) may be used. For example, to obtain a hos-
tent structure for a host on a particular network the following routine might be used (for sim-
plicity, only Internet addresses are considered):

Interprocess Communication Primer 3-13

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct hostent *
gethostbynameandnet(name, net)
char *name;
int net;

register struct hostent *hp;
register char **cp;

sethostent(0);
while ((hp = gethostent()) != NULL) {
if (hp->h addrtype != AF INET)
continue;
if (stremp(name, hp->h name)) {
for (cp = hp->h aliases; cp && *cp != NULL; cp++)
if (strcmp(name, *cp) == 0)
goto found;
continue;

found:
if (in netof(*(struct in addr *)hp->h addr)) == net)
break;

}
endhostent(0);
return (hp);

}

(in netof(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network names

As for host names, routines for mapping network names to numbers, and back, are pro-
vided. These routines return a netent structure:

/*
* Assumption here is that a network number
* fits in 32 bits -- probably a poor one.

*/

struct netent {
char *n name; /* official name of net */
char **n aliases; /* alias list */
int n addrtype; /* net address type */
int n net; /* network # */

b

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network
counterparts to the host routines described above.

3.3. Protocol names

For protocols the protoent structure defines the protocol-name mapping used with the
routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

3-14 Interprocess Communication Primer

struct protoent {

char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol # */

b

3.4. Service names

Information regarding services is a bit more complicated. A service is expected to reside
at a specific “port” and employ a particular communication protocol. This view is consistent
with the Internet domain, but inconsistent with other network architectures. Further, a ser-
vice may reside on multiple ports or support multiple protocols. If either of these occurs, the
higher level library routines will have to be bypassed in favor of homegrown routines similar
in spirit to the “gethostbynameandnet” routine described above. A service mapping is
described by the servent structure,

struct servent {

char *s name; /* official service name */
char **g aliases; /* alias list */

int s port; /* port # */

char *s proto; /* protocol to use */

|5
The routine getservbyname(3N) maps service names to a servent structure by specifying a ser-
vice name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname(”telnet”, (char *)0);
returns the service specification for a telnet server using any protocol, while the call
sp = getservbyname(”telnet”, "tcp”);

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N)
and getservent(3N) are also provided. The getservbyport routine has an interface similar to
that provided by getservbyname; an optional protocol name may be specified to qualify look-
ups.

3.5. Miscellaneous

With the support routines described above, an application program should rarely have to
deal directly with addresses. This allows services to be developed as much as possible in a
network independent fashion. It is clear, however, that purging all network dependencies is
very difficult. So long as the user is required to supply network addresses when naming ser-
vices and sockets there will always some network dependency in a program. For example, the
normal code included in client programs, such as the remote login program, is of the form
shown in Figure 1. (This example will be considered in more detail in section 4.)

If we wanted to make the remote login program independent of the Internet protocols
and addressing scheme we would be forced to add a layer of routines which masked the net-
work dependent aspects from the mainstream login code. For the current facilities available
in the system this does not appear to be worthwhile. Perhaps when the system is adapted to
different network architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines avail-
able in the run-time library which are of interest to users. These are intended mostly to sim-
plify manipulation of names and addresses. Table 1 summarizes the routines for manipulating
variable length byte strings and handling byte swapping of network addresses and values.

The byte swapping routines are provided because the operating system expects addresses
to be supplied in network order. On a VAX, or machine with similar architecture, this is

Interprocess Communication Primer 3-15

#include <sys/types.h>
#tinclude <sys/socket.h>
#tinclude <netinet/in.h>
#include <stdio.h>
#tinclude <netdb.h>

main(argc, argv)
char *argv[];
{

struct sockaddr in sin;
struct servent *sp;
struct hostent *hp;
int s;

sp = getservbyname(”login”, "tcp”);

if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown servicewa”);
exit(1);

}

hp = gethostbyname(argv[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown hostw”, argv[1]);
exit(2);

bzero((char *)&sin, sizeof (sin));
becopy(hp->h addr, (char *)&sin.sin addr, hp->h length);
sin.sin family = hp->h addrtype;
sin.sin port = sp->s port;
s = socket(AF_INET, SOCK_STREAM, 0);
if (s <0) {
perror("rlogin: socket”);
exit(3);
}

if (connect(s, (char *)&sin, sizeof (sin)) < 0) {
perror("rlogin: connect”);
exit(5);

Figure 1. Remote login client code.

| Call Synopsis
bemp(sl, s2, n) | compare byte-strings; 0 if same, not 0 otherwise
beopy(sl, s2, n) | copy n bytes from sl to s2

bzero(base, n) zero-fill n bytes starting at base

htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order |

Table 1. C run-time routines.

3-16 Interprocess Communication Primer

usually reversed. Consequently, programs are sometimes required to byte swap quantities.
The library routines which return network addresses provide them in network order so that
they may simply be copied into the structures provided to the system. This implies users
should encounter the byte swapping problem only when interpreting network addresses. For
example, if an Internet port is to be printed out the following code would be required:

printf("port number %dwn”, ntohs(sp->s port));

On machines other than the VAX these routines are defined as null macros.

Interprocess Communication Primer 3-17

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme client applications request services from a server process.
This implies an asymmetry in establishing communication between the client and server
which has been examined in section 2. In this section we will look more closely at the interac-
tions between client and server, and consider some of the problems in developing client and
server applications.

Client and server require a well known set of conventions before service may be rendered
(and accepted). This set of conventions comprises a protocol which must be implemented at
both ends of a connection. Depending on the situation, the protocol may be symmetric or
asymmetric. In a symmetric protocol, either side may play the master or slave roles. In an
asymmetric protocol, one side is immutably recognized as the master, with the other the slave.
An example of a symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation. An example of an asymmetric protocol is the Internet file transfer proto-
col, FTP. No matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a “client process” and a “server process”. We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clog-
ging the system while remaining dormant most of the time. The Xerox Courier protocol uses
the latter scheme. When using Courier, a Courier client process contacts a Courier server at
the remote host and identifies the service it requires. The Courier server process then creates
the appropriate server process based on a data base and “splices” the client and server
together, voiding its part in the transaction. This scheme is attractive in that the Courier
server process may provide a single contact point for all services, as well as carrying out the
initial steps in authentication. However, while this is an attractive possibility for standardiz-
ing access to services, it does introduce a certain amount of overhead due to the intermediate
process involved. Implementations which provide this type of service within the system can
minimize the cost of client server rendezvous. The portal notion described in the “4.2BSD
System Manual” embodies many of the ideas found in Courier, with the rendezvous mechan-
ism implemented internal to the system.

4.1. Servers

In 4.2BSD most servers are accessed at well known Internet addresses or UNIX domain
names. When a server is started at boot time it advertises it services by listening at a well
know location. For example, the remote login server’s main loop is of the form shown in Fig-
ure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname(”login”, "tcp”);

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown servicewn”);
exit(1);

}

This definition is used in later portions of the code to define the Internet port at which it
listens for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This
is important as the server will likely not want to receive signals delivered to the process group
of the controlling terminal.

Once a server has established a pristine environment, it creates a socket and begins
accepting service requests. The bind call is required to insure the server listens at its

3-18 Interprocess Communication Primer

main(arge, argv)
int argc;
char **argv;

int f;
struct sockaddr in from;
struct servent *sp;

sp = getservbyname(”login”, “tcp”);

if (sp == NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n”);
exit(1);

}

#ifndef DEBUG
<<disassociate server from controlling terminal>>
#endif

sin.sin_port = sp->s port;

f = socket(AE_ INET, SOCK_STREAM, 0);

if (bind(f, (caddr_t)&sin, sizeof (sin)) < 0) {

}

listen(f, 5);
for ;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g<0){
if (errno != EINTR)
perror("rlogind: accept”);
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

close(g);

Figure 2. Remote login server.

expected location. The main body of the loop is fairly simple:

Interprocess Communication Primer 3-19

for (;;) {
int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g<0){
if (errno != EINTR)
perror("rlogind: accept”);
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

close(g);
}

An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5).
Therefore, the return value from accept is checked to insure a connection has actually been
established. With a connection in hand, the server then forks a child process and invokes the
main body of the remote login protocol processing. Note how the socket used by the parent
for queueing connection requests is closed in the child, while the socket created as a result of
the accept is closed in the parent. The address of the client is also handed the doit routine
because it requires it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see
the separate, asymmetric roles of the client and server clearly in the code. The server is a
passive entity, listening for client connections, while the client process is an active entity, ini-
tiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in
the server process the first step is to locate the service definition for a remote login:

sp = getservbyname(”login”, "tcp”);

if (sp == NULL) {
fprintf(stderr, rlogin: tcp/login: unknown servicewn”);
exit(1);

}

Next the destination host is looked up with a gethostbyname call:

hp = gethostbyname(argv[1]);

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n”, argv[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then
filled in with the Internet address of the foreign host and the port number at which the login
process resides:

bzero((char *)&sin, sizeof (sin));

bcopy(hp->h_addr, (char *)sin.sin_addr, hp->h length);
sin.sin_family = hp->h addrtype;

sin.sin port = sp->s port;

3-20 Interprocess Communication Primer

A socket is created, and a connection initiated.
s = socket(hp->h_addrtype, SOCK_STREAM, 0);

if s<0){
perror(”rlogin: socket”);
exit(3);

}

if (connect(s, (char *)&sin, sizeof (sin)) < 0) {
perror(rlogin: connect”);
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless servers

While connection-based services are the norm, some services are based on the use of
datagram sockets. One, in particular, is the “rwho” service which provides users with status
information for hosts connected to a local area network. This service, while predicated on the
ability to broadcast information to all hosts connected to a particular network, is of interest as
an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a
machine with the ruptime(1) program. The output generated is illustrated in Figure 3.

arpa up 9:45, 5 users, load 1.15, 139, 1.31
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59
calder up 10:10, 0 users, load 0.27, 0.15, 0.14
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
degas up 25+09:48, O users,load 1.49, 143, 141
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56
ernie down 0:24

esvax down 17:04

ingres down 0:26

kim up 3+09:16, 8 users, load 2.03, 246, 3.11
matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50
merlin down 19+15:37

miro up 1+407:20, 7 users, load 4.59, 3.28, 2.12
monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07
0z down 16:09

statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

Status information for each host is periodically broadcast by rwho server processes on
each machine. The same server process also receives the status information and uses it to
update a database. This database is then interpreted to generate the status information for
each host. Servers operate autonomously, coupled only by the local network and its broadcast
capabilities. ‘

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate
tasks performed by the server. The first task is to act as a receiver of status information
broadcast by other hosts on the network. This job is carried out in the main loop of the pro-
gram. Packets received at the rwho port are interrogated to insure they’ve been sent by
another rwho server process, then are time stamped with their arrival time and used to update

Interprocess Communication Primer 3-21

a file indicating the status of the host. When a host has not been heard from for an extended
period of time, the database interpretation routines assume the host is down and indicate such
on the status reports. This algorithm is prone to error as a server may be down while a host is
actually up, but serves our current needs.

main()

{

sp = getservbyname(*who”, "udp”);
net = getnetbyname(”localnet”);
sin.sin_addr = inet makeaddr(INADDR _ANY, net);

sin.sin_port = sp->s port;
s = socket(AF_INET, SOCK_DGRAM, 0);
bind(s, &sin, sizeof (sin));

sigset(SIGALRM, onalrm);
onalrm();
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, &from, &len);
if (cc <= 0) {
if (cc < 0 && errno != EINTR)
perror("rwhod: recv”);
continue;

if (from.sin port != sp->g port) {
fprintf(stderr, "rwhod: %d: bad from port\1”,
ntohs(from.sin port));
continue;

}

if (Iverify(wd.wd hostname)) {
fprintf(stderr, "rwhod: malformed host name from % x%n”,
ntohl(from.sin addr.s addr));
continue;

}
(void) sprintf(path, ” % s/whod.%s”, RWHODIR, wd.wd hostname);
whod = open(path, FWRONLYIFCREATEIFTRUNCATE, 0666);

(void) time(&wd.wd recvtime);
(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4. rwho server.

The second task performed by the server is to supply information regarding the status of
its host. This involves periodically acquiring system status information, packaging it up in a
message and broadcasting it on the local network for other rwho servers to hear. The supply
function is triggered by a timer and runs off a signal. Locating the system status information
is somewhat involved, but uninteresting. Deciding where to transmit the resultant packet

3-22 Interprocess Communication Primer

does, however, indicates some problems with the current protocol.

Status information is broadcast on the local network. For networks which do not sup-
port the notion of broadcast another scheme must be used to simulate or replace broadcasting.
One possibility is to enumerate the known neighbors (based on the status received). This,
unfortunately, requires some bootstrapping information, as a server started up on a quiet net-
work will have no known neighbors and thus never receive, or send, any status information.
This is the identical problem faced by the routing table management process in propagating
routing status information. The standard solution, unsatisfactory as it may be, is to inform
one or more servers of known neighbors and request that they always communicate with these
neighbors. If each server has at least one neighbor supplied it, status information may then
propagate through a neighbor to hosts which are not (possibly) directly neighbors. If the
server is able to support networks which provide a broadcast capability, as well as those which
do not, then networks with an arbitrary topology may share status information*.

The second problem with the current scheme is that the rwho process services only a sin-
gle local network, and this network is found by reading a file. It is important that software
operating in a distributed environment not have any site-dependent information compiled into
it. This would require a separate copy of the server at each host and make maintenance a
severe headache. 4.2BSD attempts to isolate host-specific information from applications by
providing system calls which return the necessary informationf. Unfortunately, no straight-
forward mechanism currently exists for finding the collection of networks to which a host is
directly connected. Thus the rwho server performs a lookup in a file to find its local network.
A Dbetter, though still unsatisfactory, scheme used by the routing process is to interrogate the
system data structures to locate those directly connected networks. A mechanism to acquire
this information from the system would be a useful addition.

* One must, however, be concerned about “loops”. That is, if a host is connected to multiple networks, it
will receive status information from itself. This can lead to an endless, wasteful, exchange of information.
+ An example of such a system call is the gethostname(2) call which returns the host’s “official” name.

Interprocess Communication Primer 3-23

5. ADVANCED TOPICS

A number of facilities have yet to be discussed. For most users of the ipc the mechan-
isms already described will suffice in constructing distributed applications. However, others
will find need to utilize some of the features which we consider in this section.

5.1. Out of band data

The stream socket abstraction includes the notion of “out of band” data. Out of band
data is a logically independent transmission channel associated with each pair of connected
stream sockets. Out of band data is delivered to the user independently of normal data along
with the SIGURG signal. In addition to the information passed, a logical mark is placed in
the data stream to indicate the point at which the out of band data was sent. The remote
login and remote shell applications use this facility to propagate signals from between client
and server processes. When a signal is expected to flush any pending output from the remote
process(es), all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reli-
able delivery of at least one out of band message at a time. This message may contain at least
one byte of data, and at least one message may be pending delivery to the user at any one
time. For communications protocols which support only in-band signaling (i.e. the urgent
data is delivered in sequence with the normal data) the system extracts the data from the nor-
mal data stream and stores it separately. This allows users to choose between receiving the
urgent data in order and receiving it out of sequence without having to buffer all the interven-
ing data.

To send an out of band message the SOE_OOB flag is supplied to a send or sendto calls,
while to receive out of band data SOF_OOB should be indicated when performing a recvfrom
or recv call. To find out if the read pointer is currently pointing at the mark in the data
stream, the SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, the next read will return data after the mark. Otherwise (assuming out
of band data has arrived), the next read will provide data sent by the client prior to transmis-
sion of the out of band signal. The routine used in the remote login process to flush output
on receipt of an interrupt or quit signal is shown in Figure 5.

5.2. Signals and process groups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated
process group (just as is done for terminals). This process group is initialized to the process
group of its creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

3-24 Interprocess Communication Primer

oob()
{
int out = 1+1;
char waste[BUFSIZ], mark;

signal(SIGURG, oob);
/* flush local terminal input and output */
ioctl(1, TIOCFLUSH, (char *)&out);
for () {
if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror(”ioctl”);
break;

if (mark)
break;
(void) read(rem, waste, sizeof (waste));

recv(rem, &mark, 1, SOE_OOB);

Figure 5. Flushing terminal i/o on receipt of out of band data.

ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for determining the current process group of a
socket.

5.3. Pseudo terminals

Many programs will not function properly without a terminal for standard input and
output. Since a socket is not a terminal, it is often necessary to have a process communicating
over the network do so through a pseudo terminal. A pseudo terminal is actually a pair of
devices, master and slave, which allow a process to serve as an active agent in communication
between processes and users. Data written on the slave side of a pseudo terminal is supplied
as input to a process reading from the master side. Data written on the master side is given
the slave as input. In this way, the process manipulating the master side of the pseudo termi-
nal has control over the information read and written on the slave side. The remote login
server uses pseudo terminals for remote login sessions. A user logging in to a machine across
the network is provided a shell with a slave pseudo terminal as standard input, output, and
error. The server process then handles the communication between the programs invoked by
the remote shell and the user’s local client process. When a user sends an interrupt or quit
signal to a process executing on a remote machine, the client login program traps the signal,
sends an out of band message to the server process who then uses the signal number, sent as
the data value in the out of band message, to perform a killpg(2) on the appropriate process
group.

5.4. Internet address binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communi-
cating processes are bound by an association. An association is composed of local and foreign
addresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one
for each Internet protocol. Associations are always unique. That is, there may never be
duplicate <protocol, local address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local address,
local port>, while the connect and accept primitives are used to complete a socket’s

Interprocess Communication Primer 3-25

association. Since the association is created in two steps the association uniqueness require-
ment indicated above could be violated unless care is taken. Further, it is unrealistic to
expect user programs to always know proper values to use for the local address and local port
since a host may reside on multiple networks and the set of allocated port numbers is not
directly accessible to a user.

To simplify local address binding the notion of a “wildcard” address has been provided.
When an address is specified as INADDR_ANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as “any valid address”. For example, to
bind a specific port number to a socket, but leave the local address unspecified, the following
code might be used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr in sin;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin family = AF INET;

sin.sin addr.s addr = INADDR_ANY;
sin.sin port = MYPORT;

bind(s, (char *)&sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port
number, and addressed to any of the possible addresses assigned a host. For example, if a
host is on a networks 46 and 10 and a socket is bound as above, then an accept call is per-
formed, the process will be able to accept connection requests which arrive either from net-
work 46 or network 10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case
the system will select an appropriate port number for it. For example:

sin.sin addr.s addr = MYADDRESS;
sin.sin port = 0;
bind(s, (char *)&sin, sizeof (sin));

The system selects the port number based on two criteria. The first is that ports numbered 0
through 1023 are reserved for privileged users (i.e. the super user). The second is that the
port number is not currently bound to some other socket. In order to find a free port number
in the privileged range the following code is used by the remote shell server:

3-26 Interprocess Communication Primer

struct sockaddr_in sin;

Iport = IPPORT._RESERVED - 1;
sin.sin addr.s addr = INADDR ANY;

for (;;) {

sin.sin port = htons((u short)lport);

if (bind(s, (caddr t)&sin, sizeof (sin)) >= 0)
break;

if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) {
perror(”socket”);
break;

}

Iport--;

if (Iport == IPPORT RESERVED/2) {
fprintf(stderr, "socket: All ports in use\2”);
break;

}

The restriction on allocating ports was done to allow processes executing in a “secure”
environment to perform authentication based on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable
for an application. This is due to associations being created in a two step process. For exam-
ple, the Internet file transfer protocol, FTP, specifies that data connections must always ori-
ginate from the same local port. However, duplicate associations are avoided by connecting to
different foreign ports. In this situation the system would disallow binding the same local
address and port number to a socket if a previous data connection’s socket were around. To
override the default port selection algorithm then an option call must be performed prior to
address binding:

setsockopt(s, SOL_SOCKET, SQ REUSEADDR, (char *)0, 0);
bind(s, (char *)&sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not
violate the uniqueness requirement as the system still checks at connect time to be sure any
other sockets with the same local address and port do not have the same foreign address and
port (if an association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a
host is on multiple networks. Logically, one would expect the system to bind the local address
associated with the network through which a peer was communicating. For instance, if the
local host is connected to networks 46 and 10 and the foreign host is on network 32, and
traffic from network 32 were arriving via network 10, the local address to be bound would be
the host’s address on network 10, not network 46. This unfortunately, is not always the case.
For reasons too complicated to discuss here, the local address bound may be appear to be
chosen at random. This property of local address binding will normally be invisible to users
unless the foreign host does not understand how to reach the address selected*.

* For example, if network 46 were unknown to the host on network 32, and the local address were bound to
that located on network 46, then even though a route between the two hosts existed through network 10, a
connection would fail.

Interprocess Communication Primer 3-27

5.5. Broadcasting and datagram sockets

By using a datagram socket it is possible to send broadcast packets on many networks
supported by the system (the network itself must support the notion of broadcasting; the sys-
tem provides no broadcast simulation in software). Broadcast messages can place a high load
on a network since they force every host on the network to service them. Consequently, the
ability to send broadcast packets has been limited to the super user.

To send a broadcast message, an Internet datagram socket should be created:
s = socket(AF_INET, SOCK_DGRAM, 0);
and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s addr = INADDR_ANY;
sin.sin_port = MYPORT;

bind(s, (char *)&sin, sizeof (sin));

Then the message should be addressed as:

dst.sin family = AF INET;
dst.sin_addr.s addr = INADDR ANY;
dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:
sendto(s, buf, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
anchored before a message is allowed to go out).

5.6. Signals

Two new signals have been added to the system which may be used in conjunction with
the interprocess communication facilities. The SIGURG signal is associated with the
existence of an “urgent condition”. The SIGIO signal is used with “interrupt driven i/0” (not
presently implemented). SIGURG is currently supplied a process when out of band data is
present at a socket. If multiple sockets have out of band data awaiting delivery, a select call
may be used to determine those sockets with such data.

An old signal which is useful when constructing server processes is SIGCHLD. This sig-
nal is delivered to a process when any children processes have changed state. Normally
servers use the signal to “reap” child processes after exiting. For example, the remote login
server loop shown in Figure 2 may be augmented as follows:

3-28 Interprocess Communication Primer

int reaper();

sigset(SIGCHLD, reaper);
listen(f, 10);
for (;;) {

int g, len = sizeof (from);

g = accept(f, &from, &len, 0);
if (g <0) {
if (errno != EINTR)
perror(”rlogind: accept”);

continue;
}
}
#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

.

}

If the parent server process fails to reap its children, a large number of “zombie”
processes may be created.

Networking Implementation Notes 3-29

4.2BSD Networking Implementation Notes
Revised July, 1983
Samuel J. Leffler, William N. Joy, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(415) 642-7780

1. Introduction

This report describes the internal structure of facilities added to the 4.2BSD version of
the UNIX operating system for the VAX. The system facilities provide a uniform user inter-
face to networking within UNIX. In addition, the implementation introduces a structure for
network communications which may be used by system implementors in adding new network-
ing facilities. The internal structure is not visible to the user, rather it is intended to aid
implementors of communication protocols and network services by providing a framework
which promotes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system
interface, as described in the 4.2BSD System Manual [Joy82a]. Basic understanding of net-
work communication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding,
when possible, those portions which are utilized only by the interprocess communication facili-
ties.

UNIX is a trademark of Bell Laboratories.
DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

3-30 Networking Implementation Notes

2. Overview

If we consider the International Standards Organization’s (ISO) Open System Intercon-
nection (OSI) model of network communication [ISO81] [Zimmermann80], the networking
facilities described here correspond to a portion of the session layer (layer 3) and all of the
transport and network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal
addressing structure. Addressing at this level is normally host to host, with implicit or expli-
cit routing optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and
service addressing are normally included. Reliability is usually managed by explicit ack-
nowledgement of data delivered. Failure to acknowledge a transfer results in retransmission
of the data. Sequencing may be handled by tagging each message handed to the network
layer by a sequence number and maintaining state at the endpoints of communication to util-
ize received sequence numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into for-
mats required by the transport layer, service authentication and client authentication, etc.
Various systems also provide services such as data encryption and address and protocol trans-
lation.

The following sections begin by describing some of the common data structures and util-
ity routines, then examine the internal layering. The contents of each layer and its interface
are considered. Certain of the interfaces are protocol implementation specific. For these cases
examples have been drawn from the Internet [Cerf78] protocol family. Later sections cover
routing issues, the design of the raw socket interface and other miscellaneous topics.

Networking Implementation Notes 3-31

3. Goals

The networking system was designed with the goal of supporting multiple protocol fami-
lies and addressing styles. This required information to be “hidden” in common data struc-
tures which could be manipulated by all the pieces of the system, but which required interpre-
tation only by the protocols which “controlled” it. The system described here attempts to
minimize the use of shared data structures to those kept by a suite of protocols (a protocol
family), and those used for rendezvous between “synchronous” and “asynchronous” portions
of the system (e.g. queues of data packets are filled at interrupt time and emptied based on
user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deal of effort has been extended
to create utility routines which hide many of the more complex and/or hardware dependent
chores of networking. Later sections describe the utility routines and the underlying data
structures they manipulate.

3-32 Networking Implementation Notes

4. Internal address representation

Common to all portions of the system are two data structures. These structures are used
to represent addresses and various data objects. Addresses, internally are described by the
sockaddr structure,

struct sockaddr {
short sa family; /* data format identifier */
char sa_data[14]; /* address */
b
All addresses belong to one or more address families which define their format and interpreta-
tion. The sa family field indicates which address family the address belongs to, the sa data

field contains the actual data value. The size of the data field, 14 bytes, was selected based on
a study of current address formats*.

* Later versions of the system support variable length addresses.

Networking Implementation Notes 3-33

5. Memory management

A single mechanism is used for data storage: memory buffers, or mbuf’s. An mbuf is a
structure of the form:

struct mbuf {

struct mbuf *m_next; /* next buffer in chain */

u_long m_off; /* offset of data */

short m_len; /* amount of data in this mbuf */
short m_type; /* mbuf type (accounting) */

u_char m_dat[MLEN]; /* data storage */

struct mbuf *m_act; /* link in higher-level mbuf list */

b
The m _next field is used to chain mbufs together on linked lists, while the m_act field allows
lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the m_next field, while groups of objects are
linked via the m_act field (possibly when in a queue).

Each mbuf has a small data area for storing information, m_dat. The m_len field indi-
cates the amount of data, while the m_off field is an offset to the beginning of the data from
the base of the mbuf. Thus, for example, the macro mtod, which converts a pointer to an
mbuf to a pointer to the data stored in the mbuf, has the form

#define mtod(x,t) ((t)((int)(x) + (x)->m off))

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assign-
ment).

In addition to storing data directly in the mbuf’s data area, data of page size may be also
be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages
for this purpose and manipulate a private page map for such pages. The virtual addresses of
these data pages precede those of mbufs, so when pages of data are separated from an mbuf,
the mbuf data offset is a negative value. An array of reference counts on pages is also main-
tained so that copies of pages may be made without core to core copying (copies are created
simply by duplicating the relevant page table entries in the data page map and incrementing
the associated reference counts for the pages). Separate data pages are currently used only
when copying data from a user process into the kernel, and when bringing data in at the
hardware level. Routines which manipulate mbufs are not normally aware if data is stored
directly in the mbuf data array, or if it is kept in separate pages.

The following utility routines are available for manipulating mbuf chains:

m = m copy(m0, off, len);
The m_copy routine create a copy of all, or part, of a list of the mbufs in m0. Len bytes
of data, starting off bytes from the front of the chain, are copied. Where possible, refer-
ence counts on pages are used instead of core to core copies. The original mbuf chain
must have at least off + len bytes of data. If len is specified as M COPYALL, all the
data present, offset as before, is copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is per-
formed.

m_adj(m, diff);
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed
from back to front. No space is reclaimed in this operation, alterations are accomplished
by changing the m_len and m_off fields of mbufs.

m = m_pullup(m0, size);
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is

3-34 Networking Implementation Notes

guaranteed to have at least size bytes of data in contiguous memory (allowing access via
a pointer, obtained using the mtod macro). If the original data was less than size bytes
long, len was greater than the size of an mbuf data area (112 bytes), or required
resources were unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception.
For example, if a packet is received and only 8 of the necessary 16 bytes required for a
valid packet header are present at the head of the list of mbufs representing the packet,
the remaining 8 bytes may be “pulled up” with a single m_pullup call. If the call fails
the invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate
the mbuf associated with a data area by masking off the low bits of the virtual address. This
allows modules to store data structures in mbufs and pass them around without concern for
locating the original mbuf when it comes time to free the structure. The dtom macro is used
to convert a pointer into an mbuf’s data area to a pointer to the mbuf,

tdefine dtom(x) ((struct mbuf *)((int)x & “(MSIZE-1)))
Mbufs are used for dynamically allocated data structures such as sockets, as well as

memory allocated for packets. Statistics are maintained on mbuf usage and can be viewed by
users using the netstat(1) program.

Networking Implementation Notes 3-35

6. Internal layering

The internal structure of the network system is divided into three layers. These layers
correspond to the services provided by the socket abstraction, those provided by the commun-
ication protocols, and those provided by the hardware interfaces. The communication proto-
cols are normally layered into two or more individual cooperating layers, though they are col-
lectively viewed in the system as one layer providing services supportive of the appropriate
socket abstraction.

The following sections describe the properties of each layer in the system and the inter-
faces each must conform to.

6.1. Socket layer

The socket layer deals with the interprocess communications facilities provided by the
system. A socket is a bidirectional endpoint of communication which is “typed” by the
semantics of communication it supports. The system calls described in the 4.2BSD System
Manual are used to manipulate sockets.

A socket consists of the following data structure:

struct socket {

short s0_type; /* generic type */

short so_options; /* from socket call */

short so linger; /* time to linger while closing */
short so_state; /* internal state flags */

caddr t sQ_pcb; /* protocol control block */

struct protosw *so proto; /* protocol handle */

struct socket *so_head; /* back pointer to accept socket */
struct socket *so_q0; /* queue of partial connections */
short s _gO0len; /* partials on so g0 */

struct socket *so_g; /* queue of incoming connections */
short 50 _glen; /* number of connections on so q */
short so_qlimit; /* max number queued connections */
struct sockbuf so snd; /* send queue */

struct sockbuf s rev; /* receive queue */

short so_timeo; /* connection timeout */

u short SQ_error; /* error affecting connection */
short so_oobmark; /* chars to oob mark */

short SO_pgrp; /* pgrp for signals */

1

Each socket contains two data queues, sq_rcv and sq_snd, and a pointer to routines which
provide supporting services. The type of the socket, so_type is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting pro-
tocol is selected at socket creation time and recorded in the socket data structure for later use.
Protocols are defined by a table of procedures, the protosw structure, which will be described
in detail later. A pointer to a protocol specific data structure, the “protocol control block” is
also present in the socket structure. Protocols control this data structure and it normally
includes a back pointer to the parent socket structure(s) to allow easy lookup when returning
information to a user (for example, placing an error number in the so error field). The other
entries in the socket structure are used in queueing connection requests, validating user
requests, storing socket characteristics (e.g. options supplied at the time a socket is created),
and maintaining a socket’s state.

Processes “rendezvous at a socket” in many instances. For instance, when a process
wishes to extract data from a socket’s receive queue and it is empty, or lacks sufficient data to
satisfy the request, the process blocks, supplying the address of the receive queue as an “wait
channel’ to be used in notification. When data arrives for the process and is placed in the

3-36 Networking Implementation Notes

socket’s queue, the blocked process is identified by the fact it is waiting “on the queue”.

6.1.1. Socket state
A socket’s state is defined from the following:

ttdefine SS_ NOFDREF 0x001 /* no file table ref any more */
ttdefine SS_ISCONNECTED 0x002 /* socket connected to a peer */
ttdefine SS ISCONNECTING 0x004 /* in process of connecting to peer */
#define SS ISDISCONNECTING 0x008 /* in process of disconnecting */
#define SS CANTSENDMORE 0x010 /* can’t send more data to peer */
ttdefine SS CANTRCVMORE 0x020 /* can’t receive more data from peer */
ttdefine SS CONNAWAITING 0x040 /* connections awaiting acceptance */

#tdefine SS RCVATMARK 0x080 /* at mark on input */
#define SS PRIV 0x100 /* privileged */
#define SS NBIO 0x200 /* non-blocking ops */
#tdefine SS ASYNC 0x400 /* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system
calls). When a socket is created the state is defined based on the type of input/output the
user wishes to perform. “Non-blocking” I/0 implies a process should never be blocked to
await resources. Instead, any call which would block returns prematurely with the error
EWOULDBLOCK (the service request may be partially fulfilled, e.g. a request for more data
than is present).

If a process requested “asynchronous” notification of events related to the socket the
SIGIO signal is posted to the process. An event is a change in the socket’s state, examples of
such occurances are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked “priviledged” if it was created by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in priviledged portions of
an address space.

6.1.2. Socket data queues

A socket’s data queue contains a pointer to the data stored in the queue and other
entries related to the management of the data. The following structure defines a data queue:

struct sockbuf {

short sb_cc; /* actual chars in buffer */

short sh_hiwat; /* max actual char count */
short sb mbent; /* chars of mbufs used */

short sb mbmax; /* max chars of mbufs to use */
short sb lowat; /* low water mark */

short sb_timeo; /* timeout */

struct mbuf *sh mb; /* the mbuf chain */

struct proc *sb_sel; /* process selecting read/write */
short sb flags; /* flags, see below */

1

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as
high and low water marks are used by the protocols in controlling the flow of data. The
socket routines cooperate in implementing the flow control policy by blocking a process when
it requests to send data and the high water mark has been reached, or when it requests to
receive data and less than the low water mark is present (assuming non-blocking I/O has not
been specified). -

Networking Implementation Notes 3-37

When a socket is created, the supporting protocol “reserves” space for the send and
receive queues of the socket. The actual storage associated with a socket queue may fluctuate
during a socket’s lifetime, but is assumed this reservation will always allow a protocol to
acquire enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing
various portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in
acquiring resources;

#define SB LOCK 0x01 /* lock on data queue (so rcv only) */
#tdefine SB WANT 0x02 /* someone is waiting to lock */
#tdefine SB WAIT 0x04 /* someone is waiting for data/space */
#tdefine SB SEL 0x08 /* buffer is selected */

#define SB COLL 0x10 /* collision selecting */

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket connection queueing

In dealing with connection oriented sockets (e.g. SOCK STREAM) the two sides are con-
sidered distinct. One side is termed active, and generates connection requests. The other side
is called passive and accepts connection requests.

From the passive side, a socket is created with the option SO ACCEPTCONN specified,
creating two queues of sockets: so g0 for connections in progress and so g for connections
already made and awaiting user acceptance. As a protocol is preparing incoming connections,
it creates a socket structure queued on sg g0 by calling the routine sonewconn(). When the
connection is established, the socket structure is then transfered to so g, making it available
for an accept.

If an SO ACCEPTCONN socket is closed with sockets on either so g0 or so g, these
sockets are dropped.

6.2. Protocol layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics,
some of which are used in deciding which socket type(s) they may support.

An entry in the “protocol switch” table exists for each protocol module configured into
the system. It has the following form:

3-38 Networking Implementation Notes

struct protosw {

short pr type; /* socket type used for */
short pr family; /* protocol family */
short pr protocol; /* protocol number */
short pr flags; /* socket visible attributes */
/* protocol-protocol hooks */
int (*pr input)(); /* input to protocol (from below) */
int (*pr output)(); /* output to protocol (from above) */

int (*pl:—_::tlinput)(); /* control input (from below) */

int (*pr_ctloutput)(); /* control output (from above) */
/* user-protocol hook */

int (*pr_usrreq)(); /* user request */
/* utility hooks */

int (*pr_init)(); /* initialization routine */

int (*pr_fasttimo)(); /* fast timeout (200ms) */

int (*pr_slowtimo)(); /* slow timeout (500ms) */

int (*pr_drain)(); /* flush any excess space possible */

b

A protocol is called through the pr init entry before any other. Thereafter it is called
every 200 milliseconds through the pr fasttimo entry and every 500 milliseconds through the
pr_slowtimo for timer based actions. The system will call the pr drain entry if it is low on
space and this should throw away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the prinput and
pr_output routines. Pr input passes data up (towards the user) and pr_output passes it down
(towards the network); control information passes up and down on pr ctlin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>