A Computer Market Survey: The Banking Industry

Automatic Data Processing in the Internal Revenue Service

The Spectrum of Information Processing

A Report on The IFIP Congress 62

Management Decision Tester: Computer Used to Simulate Operations of Small Business
Not "people talk," of course. It's "machine talk"—made possible by Bell System DATA-PHONE service.

This new service gives business machines a "voice." It converts machine data (like that on the tape) into a tone language which is sent over telephone lines, then is reconverted instantly into its original form at the receiving end.

Vast quantities of business data can be transmitted this way—billing information, inventories, sales orders, payroll and production figures—at incredible speed. Data handled in 10 minutes by DATA-PHONE service would take the average secretary seven hours to type!

What's more, DATA-PHONE service enables you to send business data over regular telephone lines at regular telephone rates.

This dramatic, new service is saving time and cutting costs for companies all over the country. Could it do as much for your firm? Talk with one of our Communications Consultants and find out. Just call your Bell Telephone Business Office and ask for him.
MUST

- every computer be bound by the principles established for the first computers 16 years ago?
- the split-second reaction of a computer be forever limited by the time-consuming necessity for operator intervention?
- computer users be content with a conventional computer which was NOT designed or built to make effective use of higher level languages?
- the language of computers be irrevocably oriented more to machine than to man?
- computer users, hearing about the advantages of problem oriented hardware from computer experts, be satisfied with anything less?

NO to all five questions. Because Burroughs B 5000 Information Processing System has blasted the 16-year-old mold that has shaped all computer concepts up to now.

The B 5000 schedules its own jobs, assigns its own peripheral units and handles its own interrupt conditions. It processes several programs at the same time, handles its own file identification, and generally saves user, programmer and operator the cost and bother of the thousand and one details for which other systems are so often criticized.

In addition, the B 5000 was specifically designed to utilize the higher level languages of ALGOL and COBOL. The B 5000 is the first—and so far the only—American computer to integrate ALGOL and COBOL compilers into basic system design.

Must you have more details for a serious consideration of the B 5000? By all means. Call our local branch and let our Systems Counselor give them to you. Or first read our booklet “The B 5000 Concept.” Address your request to us at Detroit 32, Michigan.
A Computer Market Survey:
The Banking Industry

FRONT COVER
The Owl and the Computer

ARTICLES
Automatic Data Processing in the Internal Revenue Service, by WILLIAM H. SMITH
The Spectrum of Information Processing, by A. WALTHER
The IFIP Congress 62, Munich, Germany, by EDMUND C. BERKELEY
Management Decision Tester: Computer Used to Simulate Operations of Small Business, by ALFRED G. DALE

READERS' AND EDITOR'S FORUM
American Computers—A View from Poland
FJCC 62 Features Announced
Computer Financing
Two Locations Changed for JCC's—One Cancelled
Call for Papers for 63 SJCC
New Puzzle Book Available
Calendar of Coming Events

ACROSS THE EDITOR'S DESK
New Applications
Automation
New Products
Software News
New Firms, Divisions & Mergers
New Installations
Computing Centers
People of Note
New Contracts
Business News

REFERENCE INFORMATION
Monthly Computer Census
Books and Other Publications, by MOSES M. BERLIN
New Patents, by RAYMOND R. SKOLNICK

INDEX OF NOTICES
Advertising Index
Computer Directory and Buyers’ Guide
Glossary of Computer Terms
Manuscripts
Who's Who Entry Form
The far-reaching possibilities
of NCR's amazing new
reading machine!

Consider the promise of NCR's revolutionary optical scanner.

Now, it makes possible the direct processing of printed data without having to convert that data into "machine language" such as punched cards or punched tape.

It saves time and money by processing data that was obtained automatically in making original entries.

It reads and analyzes cash register tapes at the speed of 520 characters per second.

It processes printed data from adding machines and accounting machines as well.

Optical Scanning unlocks a whole new dimension in the simplification of paper work—for businesses large or small, NCR's reading machine shortens the time required to prepare reports... and helps answer today's problems today.

This exciting new development is another example of NCR's dedication to providing the finest in Total Systems to make your business life better. Let your local NCR representative explain how this can help your business.

NCR PROVIDES TOTAL SYSTEMS—FROM ORIGINAL ENTRY TO FINAL REPORT—THROUGH ACCOUNTING MACHINES, CASH REGISTERS OR ADDING MACHINES, AND DATA PROCESSING.

The National Cash Register Co. 1,133 offices in 120 countries 78 years of helping business save money

NCR
RCA ADDS NEW
SCIENTIFIC CAPABILITY
TO THE LOW COST,
HIGH CAPACITY 301

RCA's 301, today's best investment in low-cost commercial EDP, is now the best buy for commercial and scientific computer power at low cost.

TOTAL EDP CAPABILITY. The new RCA 301 gives you total EDP capability. With this capability you get greater efficiency for your rental dollars, can schedule time for both technical and business assignments. Use the 301 for all your routine EDP business accounting needs. And use it for statistical, analytical and control problems. Assign mathematical tasks to the new 301 and free professional time for creative work.

MANY NEW WAYS TO USE RCA 301. Open up new possibilities in your day-to-day data processing with this new 301. For instance—replace several smaller, less efficient computers with one 301. Or—if you have conflicts with time-sharing a large computer, give critical departments their own 301. Or—if you have an outdated computer that's slowing down work, replace it with a 301. You may well save half the cost to do the same job!

EXTENSIVE SOFTWARE COVERAGE. RCA makes available a variety of scientific sub-routines—for matrix operations, linear programming, statistical analysis, curve-fitting, double precision floating point, etc., plus Scientific and Bell Interpreter systems, UMAC (an Algebraic Compiler which employs Fortran mathematical statements), and 301 Fortran.

Check the specifications below and find out what the new 301 features can do for you. Then contact RCA Electronic Data Processing, Cherry Hill, Camden 8, N.J.

- An entire family of new fast circuitry arithmetic instructions, including:
 - fixed point
 - floating point
 - 16 digit accumulator manipulation and shifting facilities
 - This new instruction format allows the use of bit indicators for storage of operands and for address field modification.
 - Approximately 6000 floating or fixed point eight digit add/subtract and 2000 floating or fixed point multiply/divide operations per second. (With 2 digit exponent in floating point.)
 - Three index fields for address modification.

RCA
The Most Trusted Name in Electronics
The computer reacts faster—it can take a reading every servomechanism controlling the pupil of the eye. His some of the mysteries of the nervous system. The owl's name is Orpheus; the computer, a GE-225.

Dr. Lawrence Stark, a neurologist at the Massachusetts Institute of Technology, is using Orpheus, an Otus asio owl, in a pioneering study of pupillary systems. This and other experiments are aimed at development of a clearer understanding of human nerve and brain disorders such as Parkinson's disease.

Dr. Stark's specific interest in Orpheus is in the servomechanism controlling the pupil of the eye. His neurology group selected the eye for study because it is representative of other body systems and because it is externally located and easily observed.

The General Electric computer records the experimental data and takes complete closed-loop control of the problems introduced by Dr. Stark and his associates in the school's Electronics Systems Laboratory. The computer reacts faster—it can take a reading every 1/1000 of a second—than nature's servomechanism linking the eye with the brain.

For the experiments, the owl is carefully and comfortably placed in a pupillometer harness. Two devices, one a tiny light source and the other an infrared photocell, are trained on the pupil of the subject's eye.

The computer is programmed to direct a light beam of a certain intensity on the pupil. The beam causes no discomfort or damage to the eye. After the light passes through the pupil, it stimulates the photosensitive cells of the retina, sending electric nerve impulses to the brain.

The brain, then, analyzes the disturbance and sends a signal back to the pupil, causing it to contract. The time required for this circuit to be completed and the degree of dilation or constriction are recorded and analyzed by the computer.

As the reading from the photocell enters the computer and is recorded, the computer automatically introduces a different light intensity and starts the process again.

Through these experiments Dr. Stark and his associates are working toward the development of clearer definitions of some of the design principles which occur in the natural evolution of nature. It is his hope that they can then transfer these principles to man-designed electronic and mechanical systems.

AMERICAN COMPUTERS—A VIEW FROM POLAND

International computer crosstalk was promoted by the presence of a leading Polish computer expert at the National Meeting of the ACM last month. Dr. Wladyslaw Tarski of the Computer Center at the Polish Academy of Sciences came to the meeting primarily to present a paper on an external language for the Soviet-built URAL-II computer.

However, Dr. Tarski, in an interview with an editor of C&A had some provocative things to say about the American computer industry. He commented, for instance, that “there are presently in Poland a total of 10-20 computers, but we expect that there will be about 50 in 1965. There are two foreign computers: a URAL-II of which two more are on order, and the National Elliott 803 of which one more is on order. We are unable because of trade restrictions to buy any American-made computers directly. However, we are too poor to choose anything but the best, and the Europeans have some fine competition for you.

“We don't you Americans, with your fine technical capability, make such a fine computer as the Danish Disadec. This computer has a working ALGOL compiler, 1,024 words of core storage, and 12,000 words of drum storage. The access time from the drum is only 23 usec. It can perform 20,000 operations per second, and it has a total weight of only 1,100 lbs. And the Disadec only costs $110,000, without magnetic tape units.

“The Swedish people are also making some fine memory systems that are comparable with your own, and far more economical.”

On the role that computers are playing in Poland's economic development, Dr. Tarski noted, “There is about to be some significant advances in the application of computers in economic planning in Poland. A 'sensation' report is soon to be released on the use of computers to control housing development, and in the general construction industry. You know, we are about to suffer from a demographic peak due to a high rise in population soon after the war and before there was an active interest in birth control. To find housing and schools for this peak of people has to be a thoroughly planned operation, and a computer will be used to schedule this development. In fact, at the Warsaw computer center, the bread and butter group is the econometrics group who have been doing fine work in the field.”

FICCC 62 FEATURES ANNOUNCED

A varied program, offering 35 papers on the latest EDP developments by over 60 international authorities, has been arranged for the 1962 Fall Joint Computer Conference, December 4-7, Sheraton Hotel, Philadelphia.

The conference will be keynoted by Robert C. Seimens, Jr., associate administrator of NASA, who will (Please turn to Page 42)
Since 1952, EAI plotting equipment has been applied to a steadily lengthening list of data reduction applications—from simple, manual point plotting to high-speed magnetic tape input contour plotting. Again and again, the flexibility, speed and extreme accuracies of EAI plotters have dictated their selection over competing instruments. EAI standard plotters include 11"x17", 30"x30", and 45"x60" boards. Operation can be either off-line from punched cards, punched tape and magnetic tape, or on-line with various computers. Output modes include point, line, symbol, and contour plotting. Plotting speeds up to 4500 line segments per minute can be provided. Reliability is assured by solid-state circuitry and superior mechanical design. You can draw upon EAI's wide application and design knowledge by describing your requirements. Write for information, detailing your needs, today.
Automatic Data Processing In The Internal Revenue Service

William H. Smith
Assistant Commissioner
Internal Revenue Service
U. S. Treasury Dept.
Washington 25, D. C.

The mission of the Internal Revenue Service is to administer the Federal tax laws.

The art of administering Federal tax laws is doing a job which is almost unlimited in scope—with limited resources.

The special function of automatic data processing (ADP) in the Internal Revenue Service—in tax administration—is to enlarge and strengthen these limited resources, to give us the means and the capacity to make the job of tax administration one of manageable proportions.

Our ADP system was conceived about 4 years ago, and it came to life early this year. Although it is not scheduled to reach operational maturity for about 5 years, we believe that the objectives involved in strengthening our resources will be realized in full measure—and with extra dividends besides.

Our experience with ADP to date has been very gratifying. Apart from those situations ordinarily expected in launching a computer system, our greatest difficulty has been to resist the temptation to practice restraint and to hold off the conversion of applications until the system gains strength and is ready to absorb with facility operations now performed manually.

Need for ADP

With this as an introduction, let’s provide a perspective with a few words about the forces in Federal tax administration that gave rise to our ADP system.

The major physical or tangible factor was paper—hundreds of millions of documents annually moving in and out of the Service. Specifically, the Service receives a torrent of paper that includes:
- 61 million individual income tax returns;
- 96 million tax returns of all kinds;
- 350 million information returns;
- and much more. The Service mails:
 - 90-odd million blank forms;
 - 40 million refunds; and
 - millions of bills and notices.

And the volume grows every year.

Our limited resources, which I mentioned earlier, were hopelessly inadequate to cope with, and exploit, this kind of volume. We were forced to do what we could, and leave the rest undone. Under this kind of pressure, our tax administration gap—representing what we couldn’t accomplish—widened year after year.

A related and perhaps more critical problem in tax administration was lack of a master file of taxpayers—a single, central point at which we could identify every taxpayer, and record all transactions reflecting his current tax status. I’ll have more to say about the master file later, but the point should be made here that it was a practical impossibility to build a master file without an ADP mechanism.

We had the raw material, then—these hundreds of millions of documents—in over-abundance, but because of the staggering proportions of the processing and association job, we lacked the resources with which to do anything about it.

Out of these conditions grew the idea and then the design and organization of our ADP system.

Organization for ADP

The over-all structure of the Internal Revenue Service was well suited to accommodate an ADP organization.

Very briefly, we have 62 district offices where the main enforcement job of the Service is performed—collection, tax audit, and intelligence. In addition, there are 9 regional offices for the general supervision and support of the districts, and for the performance of certain operating functions (alcohol and tobacco tax supervision and the appeal of tax determinations) which can best be performed at a semi-centralized level. Then, capping the structure, we have our National Office in Washington, D. C., which is organized by functions: Compliance, Technical, Planning and Research, Administration, Inspection and, now, Data Processing. Each function is headed by an Assistant Commissioner who reports to the Commissioner and his Deputy.

Onto this structure, we have grafted several electronically equipped regional service centers and a National Computer Center. The entire operation is headed by an Assistant Commissioner for Data Processing who provides broad program and systems direction.

In broad terms, our main paper processing operation is to be transferred to these regional service centers. These centers, working in tandem with the National Computer Center—and we’ll see some examples of how they’ll work later—will perform a complete processing and revenue accounting operation for the district offices, and provide the personnel of these offices with up-to-date intelligence of a kind and quantity which was a practical impossibility before ADP.

In designing the ADP system and organization, we had to provide for easing it into our over-all operation by stages. The system represents such a complete change that Servicewide installation in a single stroke could have produced crippling dislocations in organization, systems, and personnel.

"How ADP is putting a sharp probe into the paperwork, pocket, and conscience of the taxpayer—as it helps to close the tax administration gap."
On January 1 of this year our first regional service center went into operation—in Atlanta. The Atlanta Center is servicing our district offices in 7 Southeastern states. At the same time, the National Computer Center went into operation in Martinsburg, West Virginia, with an IBM 7070 and peripheral equipment; and it is here that the Master File of taxpayer accounts will be maintained. The next regional center scheduled to come off the planning board and into operation is the one that, beginning on January 1, 1963, will service the 7 district offices making up our Philadelphia Region in the States of Pennsylvania, New Jersey, Delaware, and Maryland.

Over the next few years the remaining centers will be gradually phased into the system—and ADP will have become an accomplished Internal Revenue Service-wide fact.

Accounting Under ADP

Moving in now for a closer look at the system, I believe that its impact on our internal accounting methods would be of some interest. To begin with, under ADP the major revenue and refund accounting operations will move from the district offices to the regional service centers. The move will shift revenue accountability from our 62 district directors to our regional service center directors. Some idea of what this means in dollar terms can be gathered from the fact that in 1961 our district director in the Anchorage District collected and was accountable for about $86 million; the figure for the Manhattan District came to $13.6 billion, with the other districts coming in between these extremes for a grand total of $94.4 billion.

Under ADP, the general ledger, supporting journals, and data control accounts will be maintained at each regional service center instead of at each district office. Data for posting these accounts will come from two sources: From district offices will come a flow of summarized predetermined totals, as in the case of certificates of deposits made by district offices. Also from the district offices to the service centers will come a continuing stream of returns and documents reflecting transaction data affecting taxpayers’ tax liability—prepayments, payments, audit adjustments, and the like. These data will be recorded on magnetic tape, and the summary print-outs posted to data control accounts, including the general ledger. From the National Computer Center will come recapitulations of totals of detailed registers and vouchers produced on tape by the computer from input transactions or from computer-generated data printed as outputs for posting to control accounts. Also from Martinsburg will come reels of magnetic tape periodically bringing each taxpayer’s account up to date in terms of his total outstanding tax liability, including penalties, refunds and all other pertinent tax settlement information.

Districts now maintain unit ledger cards for accounts receivable—a separate card for each taxpayer, for each tax period, and for each type of tax. As accounts become delinquent, a transcript of pertinent data is prepared and distributed to revenue officers for follow-up action. This entire receivable mainte-

nance operation will be transferred to one point, Martinsburg, where the whole operation will be electronically telescoped—and where for the first time, through the master file, all receivable records will be pulled together.

The entire detail accounting operation, in fact, which is now done manually in district offices—by typewriter, adding machine, and bookkeeping machine—will be performed electronically at the centers, except for final postings of totals to the ledger and journals, and except for some miscellaneous accounts which will still be maintained in the districts. The nature and characteristics of the computer system will also make it possible to do away with many sectional controls now manually hand-posted, without affecting the internal control aspects of the accounting system.

Advances in Tax Management

Although ADP’s contribution toward a streamlined accounting operation is quite important, it means a great deal more to us than a mechanism for efficiency—a device which can perform electronically tasks that used to be performed manually. The central significance of ADP to the Revenue Service is its capacity to produce data and intelligence which will enable us to achieve broad, across-the-board advances in tax management of a character and degree we could not heretofore hope for.

Let’s look at a few.

Master File

I referred earlier to the master file—the master file of taxpayers. Although it would be clearly overstating it to say that without a master file the Service was operating blindly, I believe it would be fair to say that we have been operating myopically. Consider just part of the picture—practices in filing returns:

—62 million individual and fiduciary returns, and
—6 million declarations of estimated tax, being filed in 62 districts—with many individuals, because of population mobility and for other reasons, filing in one district one year, another district in the next year, and even a third district in the third year.

—One million partnership returns filed in 62 districts, with partners often filing their individual income tax returns in districts other than the one in which their partnership Forms 1065 are filed.

—Over 1 million returns for corporations, many of them closely held, filed in 62 districts, with the principal officer-stockholders filing their Form 1040 in districts other than the one in which the corporation filed its Form 1120.

Consider next the receipt by the Service of 100 million information returns a year reporting payments to individuals of dividends, interest, and certain other income by names of individuals, and the virtually impossible job of processing and matching an information return for J. Randolph Doe with his tax return filed under the name of John R. Doe—and perhaps different addresses.

Consider, finally, the problems involved in associating data from all these documents and a system of internal accounting under which the tax liability
of a single individual or corporation for different types of taxes, and for different tax periods, was maintained separately—in separate accounts.

Consider, then, these oversimplified statements of just these situations (there are others), and there may be little difficulty in visualizing the operational handicaps under which we have had to function without ADP—and what a master file of taxpayers created by ADP can mean to the tax administrator.

The concept of the master file is simple. Through association of data electronically, we will have a revealing tax profile of every individual and business tax entity in terms of:

- How much he owes the Government by type of tax and tax year;
- How much the Government owes him;
- What returns he must file, and when, and whether he has in fact filed them;
- His payments to the Government, and refunds to him;
- His income during the year as reported to the Service on information returns; and
- Similar and related data.

The file, when we complete it, will contain some 78 million taxing entities, about 6 million of them business establishments. It will be maintained on magnetic tape, will be updated weekly, and will include in each record-tax base and tax settlement information for each entity’s most recent 3 years of tax history, thus showing us significant patterns and trends about each taxpayer.

In summary, the other than professional operations of the Service—processing, matching, bookkeeping, and many other tasks—will have been performed by machine, leaving district office staffs free for personal contact with the taxpayers.

Other Uses

There are other benefits to be derived from the system. The identification of those who fail to file returns is one. Still another is represented by a long forward stride in the processing of refund claims; all of which henceforth will be passed against the master file before being approved to determine whether the claim is a duplicate, or perhaps even fraudulent, or whether the taxpayer’s record shows an unsatisfied indebtedness for the same or another tax for the same or a different period.

Selection of Returns for Audit

A third will involve the automatic selection of returns for audit by revenue agents. The selection or classification process is now done manually—by experienced agents who scan returns for apparent irregularities. Under ADP, the computer will be used to identify returns that suggest a need for audit examination and to print out for the revenue agent’s use apparent irregularities that caused selection—such as, under-reported income; excessive deduction for depreciation, or dependents, or charitable contributions; inventory discrepancies; and many other questionable items.

Fourthly—the Service will have a capability to associate data from a variety of sources on a scale heretofore unavailable.

Tax Model

Data processing has already made it possible for us to bring into being, on magnetic tape, a very useful device which we call our Tax Model. The tape contains about 50 items taken each year from each of 100,000 Forms 1040 and 1040A. The returns are carefully and scientifically selected to make sure that, collectively, they represent the universe—a microcosm of the individual taxpayer community.

The Tax Model, in one sense, is to tax administrators what a wind tunnel is to aircraft designers.

Assumed or hypothetical changes in tax law and other factors can be cranked into the Model which can then be quickly manipulated by computer to measure the revenue effects of the hypothetical changes. The special usefulness of the Tax Model is its capacity simultaneously to compute revenue effects of several assumptions—e.g., changes in tax rates, exclusions, certain types of deductions, etc.—by taking into consideration the interplay of these assumptions on each other as well as on factors that remain constant.

The Model in use today is built on 1960 tax year data; next year we’ll have one covering the 1961 tax year. It is small, flexible, and quite inexpensive and easy to work with. It should reduce the degree of guesswork in estimating. And it represents a very useful advance in tax research.

The Anomaly of ADP

For tax administration, ADP presents some interesting contrasts. For example, the processing and other related operations we perform manually will be performed with much greater efficiency with ADP. At the same time that the system reduces our paperwork burdens, it will expand our enforcement capability and narrow our tax administration gap. Among other things, for example, ADP will give us the capacity, to a much greater extent than we now have, to identify not only the universe of taxpayers but to provide the names and addresses of the people who aren’t taxpayers—but should be. It should be able to produce for us a multitude of leads to tax irregularities, and in that way very substantially enlarge our enforcement scope.

The result will not be, as some suspect, an uneven contest between machine and man. The system’s end product will be placed in the hands of people—Revenue Service people—who will go on from there to deal directly and personally with taxpayers, just as before, except that ADP will enable our staff to deal with taxpayers on a much more informed basis.

Benefits to Taxpayers

The benefits of ADP are not limited to the Internal Revenue Service. The public—our whole society—has a vital stake in Federal tax administration, and to the extent ADP strengthens tax administration the taxing public benefits by assurance of a fairer, more equitable, and more even distribution of its tax responsibilities under the laws enacted by the Congress.

In terms that are perhaps somewhat more recognizable and immediate to much of the public, ADP also means refunds that reflect all the facts . . . more accurate

Computers and Automation for October, 1962
At this point, I should note, before it is assumed that all the problems of the Revenue Service have been solved, that there is and always will be essential operations in tax administration which are beyond the scope of ADP. The computer cannot hear and judge appeals ... interpret laws and regulations ... assist taxpayers ... set up part-payment schedules for hard-pressed taxpayers ... conduct audits ... and it cannot collect tax.

At its core, tax administration is, and must remain, a very human business, requiring reason and judgment and understanding and evaluation in human terms. These and many gray areas of tax administration are, and will continue to be, safely beyond the reach of any ADP system.

The system is extremely efficient and useful in identifying areas of apparent audit irregularities and under-reporting and non-filing. The rest—the follow-up—requires manpower: revenue officers to contact delinquent or nonfilers; internal revenue agents and auditors to examine taxpayers' books and records and make technical and professional judgments on tax liability; special agents to investigate suspected tax fraud.

That, then, is the sober, or the balancing, side of the over-all ADP picture. This view sometimes has to be communicated with almost as much force as the other side, although the plus side needs no elaboration or eloquence. A well conceived and implemented system speaks for itself.

Conclusion

I want to conclude this rundown on ADP in the Revenue Service by pointing out what it means in the much broader context of Federal tax administration. The mission of the Revenue Service extends beyond the literal administration of the tax laws and the collection of revenues. Our tax system is grounded in a spirit of self-assessment—voluntary compliance with the law. In this country millions of taxpayers go through an annual ritual, in the privacy of their homes and offices, equipped with blank returns, instructions, paper and pencil—and their consciences—to determine their tax liability and then pay it. The resources that contribute to the strength and economic stability of the United States certainly include the asset of people's voluntary compliance with tax laws.

The thrust of tax administration, in large part, is

(Please Turn to Page 49)
A Computer Market Survey: The Banking Industry

Prepared by the Editors of Computers and Automation

An analysis of the present use of electronic banking aids, and a projection of the size of this market for computers during the coming half decade.

If the days are gone when the bearded miner hoarded his nuggets beneath the floorboards, gone are the days when a bank was a stuffy, imposing institution overstuffed with human calculators laboring over adding machines. The modern commercial bank is a revolutionary institution despite its image of im­perturbably stolid conservatism.

Growth of Banking

These innovations have not come without strong motivations. In the last decade the banking industry has enjoyed tremendous and remarkable growth. As the economy expanded in the post-war years, demand deposits grew. New activities and services heightened the administrative load. Large sums of money were wooed by salary deposit plans, accounting services, and research and advisory services. Simultaneously, banks have increased their retail lending, with the figure for loans, as a percentage of assets, more than doubling since 1946. The banking industry therefore today faces challenges that were unknown fifteen years ago.

These challenges are typified by the tremendous surge in checking popularity over the last decade. Ten years ago 8 billion checks were written in the United States. By 1960 the number had rocketed to 15 billion, and today hovers close to 15 billion. If the trend continues, by 1970 there will be 22 billion checks written each year, almost 43,000 checks a minute.

What's more, an average check must pass through 2.3 banks; during this financial sojourn it will be handled from 7 to 20 times. Within a decade, checking activities alone may require of the banking industry up to almost 440 billion handlings each year.

Moreover, external developments offer banks no hope of a respite.

Our population is presently increasing by approximately 2% a year.

By 1970, it is expected that our gross national product, or GNP, will have risen by 45%. The effects of this growth have already registered on the nation's banks. Since World War II, savings accounts have increased by more than 53%, checking account activity has grown by 163%, commercial loans are up 113%, mortgages are up 290%, while consumer installment credit is up an amazing 850%.

Functions of Bank Increase

Banks have gone out aggressively to meet these new demands. They have become increasingly responsive to the needs and interests of their customers. A suburban housewife enjoys the drive-in facilities of a new branch office. Holiday Clubs bring an affluent Santa to more and more children each year. The new customer is offered a spectrum of financial services, from bill paying plans to revolving check credit, from college loan plans to low tax "living trusts," from home improvement loans to investment counselling. The number of services is growing; the magnitude of each service is on the upswing, and the complexity of each activity sets new demands each day for more records and information.

The result is that the successful urban bank is engaged in a grandiose retail operation involving:

Special money handling: coins, money orders, traveler's checks, bills of credit, handling of foreign currency, foreign bonds.

Savings: savings bonds, Xmas clubs, school savings programs, savings clubs, banking by mail, night, and outdoor services.

Collect and disburse: coupons, drafts, rent payments, mortgage payments, bills, dividend disbursement, service payrolls, act as escrow agent. (Even merchandising of coupons and stamps!)

Protective services: rent safe deposit boxes, maintain night depository, custody of securities.

Special aids to business and individuals: assist in income tax preparation, financial advice, business assistance, credit information, statistical information, provide customer conference rooms, correspondent bank facilities, operate business-aid library, provide letters of introduction, stock transfer, investment advice, handles securities.

Trust Services: estate planning, management of estates.

During this rapid expansion in activity, banks are finding it difficult to obtain all the trained personnel they need, and still keep payrolls under control. While national nonagricultural employment has increased only 20% since the end of the war, employment within the banking industry has risen 65%. If the industry is to attract still more workers, while maintaining a minimum level of employee competence, the economics of supply and demand will require higher wage levels, aggravating the costs situation. The costs associated with a 20% annual turnover in the industry, and the training of new employees, make the employee problem a vital factor in a bank's economic survival. Since 1950, banks' gross earnings per dollar of assets have increased by nearly 50%. Yet bank profits have failed to show a similar rise, having stayed fairly constant at about 8% of total capital accounts. An increase of 98% in labor costs over this period seems to be a major factor in this profit rigidity.

The result of all this is an increasing and almost general acceptance of sophisticated electronic aids within the banking industry. Ledger clerks on high stools are extinct in this impending age of the computerized bank. Already, the first groundswells of this change are evident to the casual observer in the mechanization of vital bank functions.
Nature of Survey

To get an up-to-date picture of the present state of bank automation, the editors of Computers and Automation queried the top management of 1,500 banks, picked at random from among the 13,500 that exist in the United States today. We asked for a description of the data processing machines presently being used in banks, an indication of what devices are presently on order, and an estimation of the amount of money that would be invested in the coming years in data processing machines to mechanize banking operations. The rest of this article summarizes the facts we gathered from this survey.

Types of Electronic Aids

The survey showed that modern banks are now enjoying six major types of data processing aids: window posting machines, proof machines, bookkeeping machines, electronic bookkeeping machines, punch card tabulators, and electronic computers.

Description of Electronic Aids

Window posting machines are well known to every bank depositor. These are basically adding machines which record the deposit or withdrawal and strike the new balance. Shuffled piles of documents are sorted, and the ordered material is dropped into separate slots by the proof machines. Typical bookkeeping machines combine the features of adding machines and typewriters. Like the window posters, these machines can enter dates; unlike the posters, they can use symbols and keep track of checking accounts. The first of the truly electronic aids, however, are the electronic bookkeepers, nicknamed "tronics." Where they are used, 3/4 inch black strips on the monthly statements carry powdered ink, which stores information in the form of magnetic pulses. When a clerk inserts a ledger card into this machine, the machine compares the account number with that written on the black strip. If these match, the machine records the new balance on the ledger card, and stores it magnetically on the black strip as well. Of a still higher order of sophistication are the punch card tabulators. Punched cards, with supporting arrays of collators, verifiers, and card reproducers, have assumed an important role in the storage of masses of financial data.

Use of the Electronic Computer

Yet the most comprehensive solution to the problem of banking mechanization is the electronic computer. In 1956, the first computer went to work for the banking industry with the installation of an ERMA computer by the Bank of America. Its remarkable efficiency and potential was soon recognized. In processing checks, for example, the ERMA could sort according to destination, run check totals, pass along information and operate continuously at a rate of from 750 to 1,500 checks per minute.

As more and more banks organize for computer use, the experience of the Dime Savings Bank of Brooklyn may become fairly typical. The Dime Savings is the third largest financial institution in the country, and its assets are in the billions. It carries 600,000 depositor accounts on an automated basis. All accounts are handled by a National Cash Register

Figure 1. Size distribution of the nation's approximately 13,500 banks by amount of deposits.

315 system, which has brought "a 93% saving in normal effort, and with the highest accuracy," in the words of the bank's president.

When the Dime installed NCR class 42 window posting machines in 1957, it had begun its transition to automation. These machines, equipped with punched paper tape, keep a record of all transactions. By processing the information contained in these tapes on the NCR 304 system, the bank was able to obtain in twelve minutes all the data from 30,000 savings accounts on a peak day. In three hours, the entire day's business could be processed from initial entry to final tabulation.

With the installation of the NCR 315, the bank operates at an even higher level of automation. The NCR 315 computer has a random access card memory, permitting transition to an on line system with NCR teller machines linked directly to the computer.

It is not surprising that large banks like Dime Savings have accepted automation so enthusiastically. One
bank with 500 employees, and deposits of $125 million, is now ordering a second IBM 1401 computer system. It reported being able to reduce its employees by five per cent. Another bank notes that it has halved its employee costs, while still another reports savings of over one million dollars.

However, the plans and facilities of the Dime Savings and other large banks are far from typical. No small bank will ever rival the computerized giants in efficiency. Automation costs money; and small banks have limited budgets. Yet these banks are faced with the same costs problems, and the same competitive needs for high speed processing of information as their larger sisters. While they must automate to compete and grow, the lack of funds make the process very gradual. Once past the superbank's, however, computer manufacturers should find a fertile opportunity for equipment rentals among these smaller banks.

Structure of the Banking Industry

To understand this situation, we must examine the structure of the banking industry. Today, there are approximately 13,500 banks in the nation. Although 20 of these have deposits in excess of $1 billion, a look at Figure 1 shows that the deposits of very few banks exceed $10 million, and practically none exceed $50 million. Deposits of more than half the nation's banks lie between $2 and $10 million. In general, these banks have few employees and little inclination to automate.

The largest banks tend to be concentrated in the same areas. Of the twenty banks whose deposits ex-
Achphenomenon occurs. Call it insight, inspiration, or perception. It is that sudden impulse to think in another direction. Such impulses have produced our greatest achievements.

We welcome engineers who think in new dimensions, who form uncommon conclusions, who are not afraid to go outside the confines of accepted concepts. Insightful thinkers are invited to send a resume to Mr. Don B. Krause, Manager Professional and Scientific Staffing. You may expect prompt attention.
bury National Bank of Connecticut has established a computer division which handles for outside clients' transactions. Similarly, the Waterbury National Bank of Connecticut is beginning to follow the lead of the larger institutions in the mechanization of their information processing procedures. Both numbering of accounts and magnetic ink imprinting, the two preliminary steps to final automation, are either planned or in use in all banks with over $100 million in deposits. Although only a few per cent of the banks in the $5 million range are using these techniques, Figure 2 and Figure 3 show that the percentage rapidly increases with the size of the bank. Figures 4, 5, and 6 show similar patterns for the utilization of window posters, proof machines, and electronic bookkeepers.

Punched card tabulators are not in use in any of the banks surveyed with deposits under $50 million, and only 10% of the banks in the $50-100 million range have this equipment. However, virtually all (92%) of the banks with over $100 million have this equipment already in operation. The major change planned by the bigger banks is the introduction of sorting readers. Seventy-seven per cent of the big banks plan to use these machines.

However, 95% of the banks with deposits over $100 million have punched card tabulators already in operation. The major change planned by the bigger banks in improving this use is the introduction of sorting readers. Seventy-nine per cent of the banks with deposits between $50 and $100 million plan to use these machines.

Degree of Computer Use
At the present time, use of electronic computers is confined to banks with deposits over $20 million. Of banks within the $20-100 million range, six per cent presently rent, or lease a computer. Banks with deposits over $100 million represent an exclusive fraternity where 4% own part or all of an electronic computer, and 15% rent or lease one.

Methods to Computer Ownership
This level of computer ownership is cause for neither optimism nor pessimism. Computers are expensive creatures, and banks have been making purchasing decisions with studied caution. If a bank feels that it may have difficulty utilizing a computer full time, it is reluctant to purchase. However, there are two ways around this situation. One is by renting time on the bank-based computer to outside organizations. The other is to share the costs of a computer with a number of other organizations, especially other banks.

An example of the first approach is the Bank of America. It is presently processing payrolls for the 40,000 employees of 104 companies. It expects the number of firms contracting for this service to increase sixfold within the year. Similarly, the Waterbury National Bank of Connecticut has established a computer division which handles for outside clients...
such tasks as sales analysis, and matching buyers preferences with available homes.

Computer sharing arrangements have generated the greater amount of interest, however. Sharing arrangements are, in fact, preferred by 37% of the nation's banks. Figure 7 shows that this interest is particularly strong among the medium scale banks with deposits of $20-100 million.

Preference for Sharing Arrangements

In Figure 8, banker preferences for four possible alternative sharing arrangements are shown. While clearing house or regional bankers' association ownership is popular among the smaller banks, the most attractive proposal seems to be a computer sharing center run by the manufacturer of the equipment.

![Figure 7. Percentage of banks preferring some type of computer sharing arrangement.](image)

This preference might present a profitable opportunity for an imaginative computer sales organization.

The Size of the Bank Market

The information collected by the survey indicates that for every $100,000,000 in deposits, large banks can be expected, on the average, to expend approximately $250,000 over the next five years for electronic computers. It can be expected that smaller banks will expend less per million of deposits for computers than larger banks during the next five years. It seems likely that almost all computer sales will be to the top two-thirds of banks by size.

In Table A, which is at best an educated guess, no sales are contemplated to the smaller 5,000 of the 13,500 banks in the country. It must be emphasized that the figures are approximate averages only.

![Figure 8. Percentage of banks, by size, preferring each type of computer sharing plan.](image)

This table suggests that makers of systems in the million-dollar-and-up class are restricted to just 110 institutions—and some of these already have equipment in hand or on order. In the medium-priced computer range, from $100,000 to $500,000, there would seem to be 1,000 prospects. Another section of the market, about 1,400 prospects, are potentially in the market for computer equipment in the $100,000 class which can efficiently be applied to banking functions. The bulk of the market, some 6,800 prospects, are potential users of specialized off-line electronic bookkeeping aids in the $10,000 to $25,000 range.

The total market for computers in banks alone, then, appears to be approximately $750 million over the next five years.

Quick Profits Not Likely

A promise of quick profits is not, however, an adequate explanation of why banks will become increasingly computer-minded in the years ahead. Although many banks with a couple of years of experience with computers have reported very substantial cost savings, this is not the normal situation. Most banks do not anticipate immediate profits. They expect to wait a few years until the computers are fully integrated into the bank's operations. Nor is there any convincing evidence that capital funds for computer purchases can be generated by substantial payroll reductions. Although some banks have enjoyed very substantial labor cost savings, others have felt they were doing well by maintaining the payroll at pre-computer levels.

In fact, many banks will be purchasing computers
primarily to provide the services demanded by their customers. High speed data processing is often as essential to the maintenance of a bank's competitive position as it is to operational efficiency.

Future Outlook

Yet banking automation is no doubt inevitable in the long run. The projected 22 billion checks, and expanded activities and services of 1970, cannot be handled by manpower increases alone. There simply will not be enough manpower economically available.

To operate efficiently, banks will have to meet the challenge of automation. Checks must be standardized with magnetic ink imprinting. Large banks must aggressively streamline their internal operations. If they are to compete with these banks in efficiency and in services, small banks must jointly purchase and operate automatic data processing centers. Although the legality of such operations is now questionable, late in August the House of Representatives passed and submitted to the Senate a bill to make this form of computer sharing arrangement possible.

Equipment manufacturers must work aggressively to develop and introduce new equipment and methods. Bank officers must develop an intelligent and open-minded approach to upgrading their operational systems. Normal bank operations will then be handled with increased efficiency, and new machines and methods may even suggest new services.

The editors wish to express their appreciation to Roger Weissinger of MIT, and Leon Jacobson at Harvard University, for their cooperation in the preparation of this report.

Computer Financing

"It solved all our problems except the one of how we're going to pay for it."

Mr. Kingsley Andersson
WASHINGTON RESEARCH CENTER
3600 M Street, N.W., Washington 7, D. C.
ACROSS THE EDITOR'S DESK

News of Computers and Data Processors

NEW APPLICATIONS

COMPUTER TECHNOLOGY AN AID TO PSYCHIATRIC DIAGNOSIS

Computer technology is being put to use as an aid to psychiatric diagnosis. This application, reported to be the first of its kind, involves work with emotionally disturbed children. This work is currently underway in Philadelphia at the Children's Unit of the Eastern Pennsylvania Psychiatric Institute. Computer assistance is provided through the facilities of the Sperry Rand Corporation's UNIVAC Division.

The collection of data regarding symptom formation in emotionally disturbed children was begun at the Children's Unit of E.P.P.I. in 1956. The information was obtained from strictly controlled interviews with each parent of a child brought to the Institute for treatment. Questioning revolved around 130 key symptoms. With over 200 cases thoroughly documented, the staff personnel at the Children's Unit faced the problem of analyzing this overwhelming collection of data. The objective was to evolve, through analysis, a picture of how symptoms might tend to form patterns. Diagnosis and treatment procedures could be further advanced if consistent patterns could be shown.

The Institute sought help from Dr. Gilbert Kaskey, Director of Applied Mathematics, at the Sperry Rand Corporation's Univac Engineering Center in suburban Philadelphia. The project involves the use of a number of statistical correlation programs which are part of the extensive mathematical library for Univac computers. Some aspects of this application have required original approaches to statistical analysis. The project is now well on its way and preliminary results already point to new avenues of research.

SATELLITE COMMUNICATION EXPERIMENT

Plans for the first satellite communication experiment linking North and South America have been disclosed by ITT Federal Laboratories. The International Telephone and Telegraph Corporation division said the initial tests would connect ITT's space station in Nutley, N.J., with mobile ground equipment to be set up by ITT on the outskirts of Rio de Janeiro, Brazil. The National Aeronautics and Space Administration will use its soon-to-be-launched Project Relay satellite to close the 4620 mile Pan American communication system. (Relay will be boosted into orbit later this year from Cape Canaveral.)

The transportable equipment which makes the Brazilian participation possible is a completely self-contained space communication ground terminal designed and engineered by ITT Federal Laboratories to provide telephone, teleprinter, and high-speed data transmission capabilities. The mobile station travels in a van and three trailers which can be shipped by sea, air, rail, or road to any remote destination. Included in this packaging is a 30-foot "dish" antenna which can be dismantled into pie-shaped sections, and the antenna support tower which resembles an old-time locomotive when readied for shipment (see below).

--- This is the equipment that will take part in intercontinental communication tests via NASA's Relay experimental satellite. In the foreground is the antenna and control van of the transportable ground station that will be set up in Brazil as the southern link of the space communications experiments.

In practice runs, four men have assembled the terminal in as little as 16 hours.

The Rio station, to be operated by Companhia Radio Internacional do Brasil (Radional) by authority of the Brazilian Administration in cooperation with NASA, has a capacity for 12 simultaneous two-way telephone con-
The station can handle 12 simultaneous telexprinter or high-speed data circuits per voice channel, or 144 total circuits for data transmissions.

The ITT station uses a 40-foot "dish" antenna and support equipment housed in two igloo-type structures at the foot of the antenna tower. This complex includes a 10 kilowatt transmitter power supply, tracking and communications receivers, antenna controls, monitoring consoles and control equipment that will combine all voice communications into one signal for ease in handling.

The transmissions to and from South America are expected to demonstrate the feasibility of high-quality, long distance communications to any nation in the world. Direct communications via Relay will also be exchanged between the Rio station and Europe. The British Post Office Department's ground terminal at Goonhilly Downs in Cornwall, England, will beam its signal from a transmitter supplied by another ITT affiliate, Standard Telephones and Cables, Ltd.

STUDY PREPARES MEDICAL DATA FOR COMPUTER

A joint study of methods for processing large volumes of medical information is being undertaken by Tulane University and IBM's Advanced Systems Development Division. In this cooperative study a team of computer scientists will explore methods of using EDP equipment to analyze complex physiological data from hospital patients. A second objective will be to investigate a method of simplifying medical records-keeping by trying to design a standard medical record form that can be processed by machine.

The physiological data study phase of the program is expected to define requirements for data acquisition and surveillance systems capable of gathering information provided by special instrumentation, directly from patients in hospitals. A large quantity of data must be gathered before instrumentation is developed for such a system. Tulane medical researchers are now engaged in analyzing electroencephalograms (brain wave studies) to determine whether physicians can use mathematical models of these brain waves to distinguish between normality and abnormality in patients.

The researchers' approach to the problem of medical records-keeping will be to study the essential information content of medical records used today and determine which portions of the records might be adapted for machine handling. In later stages of the study a group of private and public hospitals throughout Louisiana are expected to participate in evaluating the standard medical records developed in the study.

TRANSLANTIC SERVICE FOR COMPUTER USERS

The first commercial transatlantic communications service capable of transmitting computer data has been inaugurated between the United States and England by RCA Communications, Inc. It is in operation between offices of Socony Mobil Oil Co., Inc. in New York City and London. The new high-speed service, called Datatelex, is capable of transmitting data in any form at speeds of approximately 1200 bits per second or 1500 words per minute.

Datatelex is a direct customer-to-customer service similar to telex service, yet faster than telex's standard speed of 66 words per minute. Each Datatelex subscriber has a digital sub-set in his office which alternately condition his lines to accept either telex or high speed data transmission. These sub-sets are provided and maintained by RCA on a monthly rental service charge. Depending on specific customer needs, some type of input/output equipment and high speed transmission and reception of data is also required.

Datatelex represents a step forward toward the eventual ability of computers to communicate directly with each other internationally.

IRE USING MICR

The first reported application of magnetic ink technology outside the financial industry has been completed at the Institute of Radio Engineers' international headquarters in New York City. A Burroughs B250 computer has taken over complex bookkeeping operations for the 100,000-member professional engineering organization.

IRE's new Burroughs B250 EDP system includes a sorter reader, a transistorized central processor, a ledger processor, and a punched card reader. The Burroughs P703 magnetic ink imprinter is used to make changes in members' personal history in MICR code.

IRE is using the computer-MICR combination to process invoices and related records for dues and special assessment notices. (Special assessments are levied for nearly half of the 100,000 members who also belong to one or more of 29 professional sub-groups within the parent organization.) The specially styled numbers and symbols which make up the MICR code are printed in magnetic ink on the face of the actual transaction documents. This allows an invoice itself, for example, to be read automatically by the computer as well as by the individual members.

The successful application of a magnetic ink computer at IRE is the first demonstration that this technique can be used beneficially by non-financial business and industrial firms. IRE plans to expand its computer operation in the future for payroll preparation, and for keeping records on subscriptions for 30 publications issued by the parent organization and its professional sub-groups.

ANALOG COMPUTER SIMULATES SATELLITE TEMPERATURES

Engineers, at Ford Motor Company's Aeronutronic Division, Newport Beach, Calif., are being provided with detailed pre-launch data on the effect of varying temperatures on an orbiting space vehicle. A compact analog computer used in conjunction with an environmental test chamber and heat exchanger is providing this information.

The 24-amplifier analog computer Model AD-1-24, supplied by Applied Dynamics, Inc., Ann Arbor, Mich., allows simplification of test procedures and confirms predictions and computations as to the actual influence which temperature variations will have on performance of a satellite payload. (Temperatures of a payload may vary as much as 275 degrees -- or from -160°F to +115°F -- during one orbit.)

To determine the effect on satellite performance, the computer generates curves corresponding to temperature differentials encountered by the satellite. The curves, translated into signals, are then fed into a heat exchanger which controls the temperature

22
-- Effects of alternating hot and cold environment on satellite performance are determined by Aeronutronic's engineer D. B. Harrington using Applied Dynamics' Model AD-1-24 analog computer to control environmental test chamber.

within an environmental test chamber containing the satellite. The computer signals are also fed into an X-Y plotter for immediate visual verification by Aeronutronic engineers. Measured temperature data from the test chamber is relayed back to the computer for comparison with desired conditions in order that modified signals may be introduced as necessary.

The result is greater certainty that the satellite will do the job it was intended to do.

AUTOMATION

TELEPHONE SWITCHING SYSTEM DIAGNOSES OWN FAILURES

An electronic telephone switching system, that diagnoses its own failures when they occur, has been developed at Bell Telephone Laboratories, Inc., Denver, Colo. The system tells maintenance men where to look for the trouble in a "directory" it helped "write". The directory helps insure the continuous operation of the electronic switching system, which must be able to handle telephone calls at any time and run 24 hours a day without more than a few thousands of a second lapse.

The directory of malfunctions was developed for an experimental Electronic Central Office at Morris, Ill. The system was programmed -- in preparing the directory -- to make over 900 different tests on each of 50,000 simulated failures. The test patterns for each failure and the identity of the faulty components was recorded by the system. A computer then sorted the patterns in numerical order and printed them in a four-volume directory totaling 1290 pages.

Bell engineers expect a directory of this type to locate 90 percent of the component failures that may develop in Bell System's first commercial Electronic Central Office which will open in Succasunna, N.J. in 1965.

AUTOMATIC TELEPHONE EXCHANGE

An electronic private automatic telephone exchange, the KELEX 2000, has been developed by the Telecommunications Department of ITT Kellogg, a division of International Telephone and Telegraph Corporation, New York, N.Y. The 100-line model is designed for private telephone systems in factories, schools, hospitals, offices, aboard ships, or wherever internal systems are needed.

The KELEX system has no moving parts, gears or contact points. All the functions of telephone communications are accomplished automatically through a new electronic switching concept. The switching network consists of a three-stage array of diodes providing an almost instantaneous choice of paths between line circuits and links without requiring separate control of each switching stage. Even in the event of failure of a particular crosspoint, a suitable path through the network for a particular call can be found by avoiding the defective diode.

KELEX 2000 is small compared with the 100-line conventional equipment in the background. A model holds one of the transistorized printed circuit boards which form the operating heart of the system.

The basic exchange accommodates 10 to 100 lines by the insertion of plug-in modules. All common circuits have standby units with automatic transfer. Lamps, as well as an audible signal, indicate malfunctions on circuit boards.

-- An office secretary can easily replace a transistorized printed circuit board with a spare in the event of a malfunction.

Installation of the KELEX 2000 is described as simple. With the subscriber's lines connected to terminals in the cabinet, and with power obtained from an ordinary convenience outlet, the exchange is immediately operational.
A single motor drive achieves three dimensional positioning. A lobe-type programming drum controls position and sequence of up to eight locations around a full 360° circle and through 120° vertical arc. The program drum provides for any combination of those eight points in a repeatable sequence of up to sixteen points. A specially designed DC motor drive provides for high speed movement, (up to 24 inches per second) and controlled deceleration which enables the hand to ease into position.

FLEXiMAN is claimed to have many and varied applications including the automotive electrical and jewelry fields. In one installation, this mechanical hand demonstrates its ability to shift from job-to-job as quantities and mix change by assembling earrings, decorative pins and bangles for a jewelry manufacturer. It can operate in hazardous environments as a programmed manipulator, performing simple repetitive jobs involving radioactive materials, corrosive fluids, chemicals, fuels, heat, dust or any situation where peoples' hands would be in danger.

-- The mechanical hand deals the cards to Anthony Kaye (seated at the right), President of the firm and inventor of FLEXiMAN. At the left is Vice-President Herbert Nidenberg and center is Mary Locke, model.

An automatic mechanical hand has been developed and manufactured by United Fleximation Corporation, Schenectady, N.Y. This portable hand, called FLEXiMAN®, can pick up and position objects as small as pins and as large as bowling balls with 0.002" accuracy. It can be programmed in minutes and under the control of the program, it moves and positions a part and releases it at the desired location.

---This multiple exposure photograph shows the FLEXiMAN automatic manipulator in action. It has a reach of 36" to handle objects weighing up to 25 pounds. FLEXiMAN can feed drill presses, assemble parts, feed conveyors, run parts through punch presses and welders and do many repetitive drudge jobs that use none of a person's intelligence or skill.

NEW PRODUCTS

The B260 can receive information from two punched card reading units instead of one. Temporary data storage areas for peripheral units of the system eliminate the time lag caused by one unit having to wait for another to complete its role. The paper tape reader operates at speeds of either 500 or 1000 characters per second, and can handle 5, 6, 7 or 8 channel tape interchangeably. Rewind speed of the reader is 1000 characters per second.

Optional paper tape subsystems include code translation facilities, format control for rearrangement of input and output channels, and automatic translation of upper/lower case teletype code to single frame code. The subsystems are compatible with most data collection and transmission devices.

---A typical complete AD-2-64PBC electronic analog computer with central pushbutton control and monitoring has been developed by this company. The new computer, called AD-2-64PBC, has the operating speed and convenience of central controls, and the flexibility of removable, color-coded patchboards.

A new console model electronic analog computer with central pushbutton control and monitoring has been developed by this company. The new computer, called AD-2-64PBC, has the operating speed and convenience of central controls, and the flexibility of removable, color-coded patchboards.
Four control modules are available with the computer: computer control module; voltmeter module; input-output module; and address selector module. Individual modules and meters are illuminated for easy readability. Real time, fast time, repetitive, and iterative operation are also available.

--- Operator pushes a few centrally located buttons to control and monitor the AD-2-64PBC electronic analog computer.

Field maintenance of the computer is simplified through the use of slide-out modules. Dual amplifiers and non-linear elements unplug for servicing.

--- The new Digital-to-Television Alphanumeric Display Model 905, converts digital data into a tabular display of alphanumeric characters on one or more television receivers. The scanning pattern resulting from use of a special circuitry produces a video-output similar to that which would come from a television camera viewing a printed page. The display is in tabular format; 24 characters per line, 10 lines per message. The 64 characters available can be coded to customer specifications. Applications are expected in any system that can use multiple display of digitally coded alphanumeric data, such as airline arrival and departure display systems and hospital computer-file interrogation systems.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

Input - Output

TV-COMPATIBLE DISPLAY SYSTEM

A. B. Dick Company
5700 West Touhy Avenue
Chicago 48, Ill.

A new TV-compatible character generator and display system has been developed by this company. It permits alphanumeric data presentation on one or more conventional off-the-shelf TV receivers. The new display system will accept data from punched cards, punched paper tape, magnetic tape or computer memories. Remote operations need only a telephone or radio voice circuit.

This system, called Digital-to-Television Alphanumeric Display Model 905, converts digital data into a tabular display of alphanumeric characters on one or more television receivers. The scanning pattern resulting from use of a special circuitry produces a video-output similar to that which would come from a television camera viewing a printed page. The display is in tabular format; 24 characters per line, 10 lines per message. The 64 characters available can be coded to customer specifications. Applications are expected in any system that can use multiple display of digitally coded alphanumeric data, such as airline arrival and departure display systems and hospital computer-file interrogation systems.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.

--- The new Digital-to-Television Alphanumeric Display Model 905 is shown at the left as it appears ready for operations. At the right is the home television receiver showing a picture of an actual display on the TV screen fed from a Model 905 at work.
NEW HIGH-SPEED
PAPER TAPE READER

Autometrics Industrial Products
3400 E. 70th Street
Long Beach 5, Calif.

A new high-speed paper tape reader, called the Facitape Model 510, has been developed by this company, a division of North American Aviation, Inc. The new device increases input speeds for the RECOMP III computer by more than 20 times.

The Facitape Model 510 includes printed circuitry, solid-state electronics and simplified load and unload characteristics. Tape is inserted or removed by lifting the hinged read head cover. A perforated metal tape catcher is through 8 channel tape at a basic speed of 510 characters/second, or approximately 500 characters/second when stopping on a character with the RECOMP III.

Facitape Model 510, described as a capacitance type reader, is unaffected by dust on the read heads or ambient light conditions. It is fully adjustable for variations in paper tape types and thickness.

IBM CARD KEYPUNCH

ElectroMechanics Corporation
502 Sherbrook Drive
High Point, N.C.

An all-mechanical, IBM card keypunch, called the EM Punch Model 80, has been developed by this company. It provides low cost punch card preparation or correction away from standard keypunch facilities. The EM Punch is all-metal with a one-piece aluminum base. It weighs 6% pounds and is only half again the size of a cigarette carton.

Model 80 is designed to handle the standard 80-column IBM card. (Low cost adapters for any card under 80 columns are available and can be installed by an operator in minutes.) Card insertion may be from either side of the punch head. Also, two cards or a two-card set with carbon paper can be punched without making adjustments to the mechanism. The EM Punch has a standard numeric key set to punch numeric or, with multiple key depressions, alphabetic and special characters. A special key disengages the normal automatic column spacing to permit multiple punching when required.

The EM Punch is useful in such areas as on-site recording in warehouses, recording of production control data, punched card stub transactions at cashier booths, and program card preparation for static readers.

NEW COMPUTER TAPE UNIT

Datamec Corporation
345 Middlefield Rd.
Mountain View, Calif.

The D-2020 computer tape unit, introduced by this company, is suited to applications on small and medium scale computers, and off-line systems where there are no-technical personnel. It is designed for long term continuous operation with low maintenance costs.

DIGITAL NUMERIC PRINTER

Franklin Electronics, Inc.
Bridgeport, Pa.

This company has developed a numeric printer line with claimed speeds up to 20 lines a second and up to 20 columns, including plus and minus signs and decimal point in position.

The printer, Model 1000, is completely solid-state using plug-in cards for all electronic functions. A variety of input signals from scanners or digital voltmeters can be accommodated by changing the proper cards. The printer accepts a 10-line coded input and provides an inhibiting signal to prevent any change of data while in the print cycle. It takes either folded or rolled paper.

Components

PULSE COUNTER WITH A MEMORY

General Electric
General Electric Meter Dept.
Somersworth, N.H.

A new input pulse counter with a memory makes readouts "on the fly" no longer necessary. The electromechanical device, developed by this company, is called the Digital Telemetering Register (DTR). It counts pulses that can represent any unit in the processing industry such as gallons, cubic feet of gas, linear yards, revolutions, paper, etc. The DTR is designed to be used as a component to feed back data into closed-loop, computer-controlled, process, digital telemetering systems, and other data logging applications.

DTR gives both visual and electrical readout of the pulses, after receiving the count, and automatically storing the count. It has two visual registers. The lower register receives input pulses on a continual, non-resettable basis. On orders from a transfer signal, either from a separate clock or other external source, the DTR transfers the number indicated on the lower register to the upper register. This number will stay stored until another transfer signal is given.

Electrical readout of the upper register into a computer or data printer is possible with a programming or scanning function. The electrical readout on the DTR which is transmitted and which is available for transfer.
is given in a parallel contact presentation in a binary coded 5-digit number.

MINIATURE MAGNETOSTRICTIVE DELAY LINE

Tempo Instrument Inc. East Bethpage Road Plainview, L.I., N.Y.

This company has developed a new family of miniature magnetostrictive delay lines intended for applications where both size and speed are important.

The delay lines are mountable on printed circuit boards. Repetition rates are from up to 5msec for "non return to zero" inputs. The delay lengths are from 3 to 25 usec with a signal to noise ratio of 25:1.

PROGRAMMABLE DIGITAL TRAINERS

Control Logic, Inc. Natick, Mass.

This company has designed and produced three digital training systems. Each system is constructed of individual logic panels, each panel containing large logic symbols and a color coded banana jack at each input and output. Patch cords are used to rapidly assemble any logic desired.

An intensive study program course entitled "Digital Control Systems Engineering" was completed this summer by more than thirty-five engineers from major companies in the Midwest. The course used a Digital Training System, Model PEI-10, which made possible the review of all basic logic functions and visual demonstration of control, storage, timing, and their integration into useful systems. Without previous experience, the students learned to perform high speed carry methods for binary and decimal counters, proper triggering techniques, parity checks, and more complex digital circuit applications.

The other two systems developed by Control Logic, Inc. consist of a student trainer, type PEI-1, and a large, two bay console for system design and simulation instruction.

DIGITAL INTERVAL TIMER

General Precision, Inc. Librascope Division Glendale 1, Calif.

This company has developed a digital timer capable of accuracies to 0.001 per cent. The solid-state timer is designed as a precision time-delay device for use in military applications such as missile guidance and control systems and in commercial applications such as production control systems.

The timer uses a countdown circuit that allows an operator to vary the time delay between functions. A typical time delay is from 0.5 second to 50 seconds in increments of 0.5 second. A countdown sequence is started externally by applying a voltage or by closing a switch. After the predetermined countdown is reached, a silicon-controlled rectifier is fired and the information is switched to the output.

NEW DIGITAL MULTIPLIER

General Data Corporation 1250 North Parker Street Orange, Calif.

This company has developed a digital multiplier which multiplies an eight-bit multiplicand and an eight-bit multiplier yielding a 16 bit product plus sign within twenty microseconds. A parallel circuit technique provides an additional feature of built-in memory.

SCHMITT TRIGGER MODULE

Scientific Data Systems, Inc. 1542 15th Street Santa Monica, Calif.

A new silicon circuit module, developed by this company, contains three identical Schmitt trigger circuits on a single 50" x 6" etched circuit card. Each circuit has two inputs and a single output, the phase of the output being the same as the input. Both hysteresis and triggering levels are adjustable. Each circuit uses silicon semiconductors to achieve reliable operation at temperatures from 0°C to +100°C.

SOFTWARE NEWS

COBOL AVAILABLE FOR IBM 1401

COBOL -- a standard computer business language of the data processing industry -- is now available for use with the IBM 1401. This brings to five the number of operational COBOL processors available for major IBM systems. Already in use are compilers for the IBM 1410, 7070-7074, 705 and 7090.

The first version of COBOL (Common Business Oriented Language), known as COBOL-60, was published by the Conference on Data Systems Languages (CODASYL) two years ago. The revised version, published in June, 1961, and designated COBOL-61, is the current and, with minor continuing modification, ultimate standard. Each of the IBM compilers meets the specifications of COBOL-61.

The new processor permits users of 1401 systems with 12 to 16 thousand positions of core storage to write computer programs in
COBOL and have it automatically translated by the 1401 into the system's binary coded machine language for processing.

A COBOL processor for the smaller 1401 (4 to 8 thousand positions of core storage) is scheduled for release next month.

PROGRAM AUTOMATES CIRCUIT CHECKOUT

A new method using a small-scale general purpose computer for automatically analyzing and evaluating new circuit designs and electronic subsystems has been demonstrated by Autonetics Industrial Products, a division of North American Aviation, Inc., Long Beach, Calif.

The program, called SPARC, can be used by a design engineer to facilitate the tedious process of breadboarding by allowing the engineer to perform parameter variations at the computer. It also allows rapid design optimization of the number and quality of components, allowable tolerances, and failure rates.

SPARC, using Recomp II computers, has already been used by Autonetics to develop several electronic components and subsystems for Air Force Minuteman and Hound Dog missiles, Navy Ships Inertial Guidance Systems and the Army MABLE orienter.

FOUR COMPUTER PROGRAMS DEVELOPED TO SPEED DESIGN OF LENSES

International Business Machines Corporation, White Plains, N.Y., has developed, with the technical assistance of the Institute of Optics, four computer programs which speed the intricate process of designing lenses.

The four programs make up the new IBM Lens Design Package. Lens designers, using a computer under control of the programs, will be able to evaluate proposed lens systems in seconds and correct the design specifications of the systems in minutes. The computer technique eliminates the need to construct actual models for each design change or make laborious, manual computations. The programs are written for the small-scale IBM 1620 data processing system.

Lens Design is used in such areas as missile guidance, space research and optical maser development.

HONEYWELL 800 "SPRECHT DEUTSCH"

Honeywell Electronic Data Processing, Wellesley Hills, Mass., has developed the first business multi-lingual compiler system. It enables the Honeywell 800 computer to understand German as well as English. The compiler, a German version of FACT (Fully Automatic Compiling Technique), permits a programmer to write a program in German using the lexicon provided, and employing the very same rules of FACT programming as in the English version.

The FACT Compiling system permits the business user to write computer instructions in the language with which he is familiar, having once learned the rules of syntax. The programmer can often direct the computer to execute a very lengthy and complicated sequence of operations, by stating relatively few instruction words.

The German version of FACT was developed to assist in the application of Honeywell 800 computers to business problems on the European Continent.

NEW FIRMS, DIVISIONS, AND MERGERS

DATA PROCESSING SYSTEMS CONSULTANTS

CIRAD (Corporation for Information Systems Research and Development) is a newly formed organization of data processing systems consultants. Corporate offices have been opened at 628 West Rittenhouse St., Philadelphia, Pa.

Paul Colen, president of the new corporation, describes CIRAD as an integrated systems design and product planning group. He says it plans to provide an in-depth consulting capability for data processing systems design and implementation for both government and industry. Mr. Colen is also director of Systems Planning for the firm.

Members of the senior staff are John J. Ogle, vice president and director of Systems Operations; Frank J. Weesner, vice president, treasurer and director of Systems Management; and Benjamin Kuby, secretary and general counsel. Robert S. Barton and Jackson Walter Granholm are consultants to the newly formed corporation and members of its Board of Directors.

In their previous affiliations, the senior staff has collaborated in many inter-industry projects in the computer field, including designing electronic computers, designing problem-oriented languages and designing and implementing comprehensive programming and data processing systems.

CIRAD presently has a contract with the Navy Department for data systems analysis based on a weapon-type inventory and control procedure. Plans call for eventual expansion into commercial data systems analysis and design.

JAPANESE FIRM SPECIALIZING IN MANUFACTURE, SALES AND CONTRACTING OF COMPUTERS

The first Japanese firm organized to sell electronic computers and lease computer time, has been founded by the Tokyo Shibaura Electric Co. (Toshiba), the Japan Engineering Consultant Corp., the Fuji Telecasting Co. and Toshiba Co., Ltd., Compus Branch.

The new company, the Japan Business Automation Company (JBAC), will sell and install computers, train programmers and provide allied services. JBAC will contract for computer time for companies which cannot economically purchase computers.

LITTON INDUSTRIES GROUP OPENS SALES AND SERVICE CENTER

A sales and service center for all products of the Business Machine Group of Litton Industries has opened in Scranton, Pa. The new center brings the various divisions of the Business Machines Group under one roof for the first time.

DIVISIONS REPRESENTED AT SCRANTON INCLUDE MONROE CALCULATING MACHINE COMPANY, MONROE/STUDEBAKER CASH REGISTER, INTEGRATED DATA PROCESSING, INC., A. KIMBALL COMPANY, COLE STEEL EQUIPMENT COMPANY, AND EUREKA SPECIALTY PRINTING COMPANY. PRODUCTS OF THE DIVISIONS ARE DISTRIBUTED IN 85 COUNTRIES THROUGH SCRANTON AND BRANCH DEPTHS.

GENERAL KINETICS ACQUIRES COMPUTER TEST EQUIPMENT COMPANY

General Kinetics Inc., Arlington, Va., has acquired a Philadelphia area manufacturer of computer test equipment. GKI has purchased all of the outstanding stock of Electro-Nucleonics, Inc., including the assets of Electro-Processor, Inc., and the Electro-Magnetic Test Equipment and the newly formed corporation and members of its Board of Directors.

In their previous affiliations, the senior staff has collaborated in many inter-industry projects in the computer field, including designing electronic computers, designing problem-oriented languages and designing and implementing comprehensive programming and data processing systems.

CIRAD presently has a contract with the Navy Department for data systems analysis based on a weapon-type inventory and control procedure. Plans call for eventual expansion into commercial data systems analysis and design.

SALI COMPUTERS

A sales and service center for all products of the Business Machine Group of Litton Industries has opened in Scranton, Pa. The new center brings the various divisions of the Business Machines Group under one roof for the first time.

DIVISIONS REPRESENTED AT SCRANTON INCLUDE MONROE CALCULATING MACHINE COMPANY, MONROE/STUDEBAKER CASH REGISTER, INTEGRATED DATA PROCESSING, INC., A. KIMBALL COMPANY, COLE STEEL EQUIPMENT COMPANY, AND EUREKA SPECIALTY PRINTING COMPANY. PRODUCTS OF THE DIVISIONS ARE DISTRIBUTED IN 85 COUNTRIES THROUGH SCRANTON AND BRANCH DEPTHS.

GENERAL KINETICS ACQUIRES COMPUTER TEST EQUIPMENT COMPANY

General Kinetics Inc., Arlington, Va., has acquired a Philadelphia area manufacturer of computer test equipment. GKI has purchased all of the outstanding stock of Electro-Nucleonics, Inc., including the assets of Electro-Processor, Inc., and the Electro-Magnetic Test Equipment and...
all of the outstanding stock of Computer Instrumentation Corporation in exchange for GKI common voting stock. No changes in management, service, or customer relations policies of the wholly-owned subsidiary are contemplated.

The new GKI subsidiary's equipment line includes automatic devices for testing individual magnetic memory cores, and complete core arrays. The company also is developing a line of analyzers for thin magnetic films and similar new memory devices. Products of the new GKI subsidiary will be sold under its own name.

LIBRASCOPE NAMES SALE REPRESENTATIVE FOR COMPUTING/CONTROL COMPONENTS

General Precision's Librascope Division, Glendale, Calif., has named Airsupply—Aero Engineering Co., a division of Garrett Corp., as exclusive national sales representatives for a line of Librascope precision control and control components produced by Librascope's Components and Special Devices Branch, Burbank, Calif. The components include ball-disc and packaged integrators, differentials, sine-cosine mechanisms, miniature servoamplifiers, and the Digilogs 101 solid-state converter.

Air Supply—Aero will market the mechanical, electromechanical, and electronic components to both military and industrial customers and will provide applications engineering services for the users. This company is also exclusive national sales representative for chemical ordnance equipment produced by Librascope's Sunnyvale, Calif., Branch.

ECMA and BEMA FORMING A JOINT WORKING PARTY

The European Computer Manufacturers Association (ECMA) and Business Equipment Manufacturers Association of America (BEMA) are forming a Joint Task Group to study the various proposed MICR codes. This study will result in a recommendation for a common language code or codes for the benefit of the users and manufacturers. The first work to be undertaken is that of MICR for Banks. The group is expected to make a recommendation to the European Bankers Association in the near future.

LITTON INDUSTRIES SIGNS WITH TWO TOKYO COMPANIES

Litton Industries, Beverly Hills, Calif., has signed an agreement with Mitsubishi Electric Manufacturing Company and Fuji Communication Apparatus Manufacturing Company (Fujitsu) both of Tokyo, for the production, sales and services of Litton's air defense control systems for Japan.

The three firms will cooperate in the production, sales and maintenance of JADE (Japanese Air Defense Environment System) for the air defense of Japan. The manufacture of the system will be done primarily in the Mitsubishi and Fujitsu plants in Japan, with the aid of technological data and assistance provided by Litton and its affiliates.

JADE consists of a series of command and control modules that can be assembled into a system suitable for any air defense and control mission. Three similar systems already have been produced by Litton and the proposed Japanese system is one of several planned for future use. Proposals have been made to the Japanese government on the JADE system and a decision on a contract is expected early next year.

PHILADELPHIA OFFICE ESTABLISHED BY DIGITRONICS

The Digitronics Corporation, Albertson, N.Y., has established a Mid-Atlantic District Office in Philadelphia, Pa., and Service Centers in Baltimore, Md., Washington, D.C., and Philadelphia.

Mr. Joseph Driscoll is the Mid-Atlantic District Manager and will be in charge of the Service Centers and the District Office.

OUTDATED ANALOG COMPUTERS MODERNIZED

Computer Products, Inc., Mansfield, N.J., serves the analog computer user by updating older computers to provide performance equal to newest technological developments. Melvin E. May, President of the new organization, reports that the methods CPI has developed for modernizing older computers effectively improve performance to equal -- and in some cases surpass -- those of current new computers.

Modernization programs represent far more than minor parts replacement. Completely redesigned networks, new and updated components give new usefulness to old computers. Modernization includes advanced display and readout devices and a reworking of the physical appearance of the console.

NEW INSTALLATIONS

FIRST SDS COMPUTER SHIPS TO NASA

Scientific Data Systems, Inc., Santa Monica, Calif., announced that the first production model SDS 900 Series digital computer has been installed at the National Aeronautics and Space Administration's Goddard Space Flight Center in Greenbelt, Maryland. The computer, an SDS 910, will be used to check out and evaluate various experimental equipment to be carried aloft by the NASA Instrument Geophysical Observatories (GIOO).

This delivery signaled the entry into full-scale production of Scientific Data Systems' 900 Series computers. The eleven month old firm shipped three additional computers during September, and is on a one-per-week shipment this month. Equipment is being shipped directly at the rate in excess of two million dollars annually, with a backlog of approximately six months. The company presently has offices in New York and Washington.

UNIVAC-SOLID-STATE II COMPUTER DELIVERED TO GENERAL MOTORS

The first Univac Solid-State II Computer to be shipped by the Univac Division of Sperry Rand Corporation, New York, has been delivered to the Guide Lamp Division of General Motors Corp., in Anderson, Ind.

The Univac Solid-State II Computer is the first computing system produced in the United States to combine the benefits of both core and drum memory in a medium scale computer. The Guide Lamp Division of General Motors Corp. will use the system for production control, critical path scheduling for model change-over planning, payroll preparation, general accounting, and other administrative applications.
ENGINEERING College of Engineering will initiate the new operations office in Hamburg. The second system is installed at the Bruno Bader Company, one of Germany's larger mail-order houses, which is located in Pforzheim. Lufthansa's 315 system is being used for cargo sales and ticket sales accounting. Later the German air line will also handle stock control and stock disposition on the 315.

The Bruno Bader mail-order company is using its system to keep track of more than one million accounts receivable. It will also handle other processing and bookkeeping work with the new system.

Oklahoma State University's College of Engineering, Stillwater, Okla., has developed a modern computer laboratory for undergraduate instruction. An IBM 1620 digital computer was delivered late this summer to be ready for the fall semester classes. The complete computer facility includes in its equipment: the 1620 central processing unit, a card input-output read punch unit, five card key-punch machines, a control unit for card-to-typewriter communication and the typewriter, a graph-plotting typewriter, and various accessories.

Oklahoma State University's College of Engineering will initiate and maintain the computer educational program for engineering undergraduates. The 1620 will allow engineering undergraduates to learn the types of problems that should be solved by computers.

Paul A. McCollum, professor of electrical engineering and newly appointed director of the engineering undergraduate computer laboratory, has coordinated the program. He has taught courses in computer logic, circuit design, and programming, and is now directing computer use training seminars for the engineering staff.

Oil Producing Company Installs GE 225

The Atlantic Refining Company has installed a General Electric 225 Information Processing System in the Producing Department's Southwest Data Processing Center, Dallas, Texas. The Atlantic central processor includes a magnetic tape unit, with six tape drives; a paper tape reader and punch, and a high-speed printer capable of printing 900 lines a minute. An electric typewriter also is part of the system.

The center is equipped with communications and data transmission facilities, key punch, and related components.

Publishers' Service Bureau Installs IBM 1401 Computer

IDR (Industrial Data Reduction), Philadelphia, Pa., has installed an IBM 1401 solid state computer. The computer consists of three major units: a processing unit; a combination card reader and punch; and a high-speed printer.

IDR specializes in high speed electronic processing of reader inquiries for a variety of magazines. Publisher clients are offered a complete processing program—from postal pickup to direct mailing of reports to individual advertisers.

The new 1401 replaces a Univac I computer, and it will permit an overall increase in the speed, quality, and application of processing operations.

MIT Will Use Honeywell 1800 on Moon Flight Navigation Problems

Honeywell Electronic Data Processing, Wellesley Hills, Mass., will install a Honeywell 1800, at the Instrumentation Laboratory of Massachusetts Institute of Technology early next year. The computer is capable of performing 120,000 additions and subtractions per second. The 1800 computer system will include a random access disc file, six high density magnetic tape transports, a high-speed printer, card punch and card reader.

The newly developed machine will be used to handle a variety of complex research and development jobs connected with the navigation of Project Apollo, America's first manned flight to the moon. The Honeywell 1800 will design the circuitry of the guidance computer that will be installed in the Apollo capsule to keep it on course. It also will check out the machine logic and guidance program of the spacecraft computer, and simulate its full operation before actual launching.

Computing Centers

Electronic Logbook

Polaris Director Rear Adm. I. J. "Pete" Galantin recently opened a new data processing center that will keep a 600 million-entry electronic logbook on every piece of navigation equipment in Polaris submarines scattered over the world.

Sperry Gyroscope Company is navigation system manager for Polaris submarines. The center, located in Syosset, N.Y., will permit Sperry to set up a complete control index on every navigation system in the missile-firing fleet. The exact status of every piece of equipment will be known at all times—when it was installed, what modifications have been made, and are due, and when it is scheduled for replacement.

A Univac Solid State 90 Tape Computer has as its first job the transfer to tape of data now on some 150,000 file cards. By the end of the year, Sperry expects to fill 112 reels of magnetic storage tape with 600 million "bits" of information. This data will be updated weekly.

As navigation system manager, Sperry determines requirements for new equipment; designs and field tests equipment; acts as procurement agent, and establishes and maintains development, production, and maintenance schedules as well as equipment quality.

Analog Computer Center

The only analog computer center in the South, designed to serve the chemical industry complex in Texas, Louisiana and Oklahoma, has been opened by Kinotrol, Inc. with offices at 5731 Gulf Freeway, Houston, Texas. Kinotrol, Inc. is a consulting firm for chemical process industries. The firm specializes in the use of the analog computer for solving problems.
The Dystac analog computer, which is in operation in the Kin O-Trol offices, is used to mathematically simulate chemical processes and determine the best conditions to operate a given chemical process. The center is available for rental to local industries. Instruction classes in the use of the analog computer are also offered.

PEOPLE OF NOTE

EXECUTIVE PROMOTIONS IN IBM

George F. Kennard has been promoted to president of IBM's Data Systems Division, located in White Plains, N.Y. He was formerly general manager of the company's Advanced Systems Development Division. He succeeds William B. McWhirter who was promoted to the post of director of organization for IBM.

Paul W. Knaplund succeeds Mr. Kennard as general manager of the Advanced Systems Development Division, Yorktown Heights, N.Y. He was assistant manager of the division.

John M. Norton will be the assistant general manager of the Advanced Systems Development Division. He was manager of the division's East Coast systems laboratory, also located at Yorktown Heights.

Leonard E. Clark has been named vice president, headquarters operations of IBM's Data Processing Division, White Plains, N.Y. He was formerly division vice president and manager of the Western Region, which serves 14 western states.

TWO VICE PRESIDENTS APPOINTED AT UNIVAC

The UNIVAC division of Sperry Rand Corporation has appointed Lee Johnson and Ralph S. La Montagne as vice presidents.

Mr. Johnson, as vice president of federal government marketing, is responsible for the sale of the entire range of commercially available UNIVAC electronic computer and tabulating equipment to federal government agencies.

Mr. La Montagne, as vice president, defense marketing, is responsible for the sale of special purpose UNIVAC electronic equipment to defense agencies.

Both Mr. Johnson and Mr. La Montagne will make their headquarters in Washington, D.C.

SMITH NAMED VICE PRESIDENT MARKETING FOR HONEYWELL EDP

Claude H. Smith has been named Vice President of Marketing for Honeywell Electronic Data Processing. He was formerly Director of Honeywell's EDP Federal Systems Marketing Division. In his new position he heads both the Federal Systems and Commercial Marketing organizations.

Mr. Smith has been a member of the Honeywell organization since 1943. He started as a technical representative to the U.S. Air Force at bases in the United States and the Caribbean, and on Guam, Tinian and Saipan.

INTERNATIONAL SYSTEMS MAN OF THE YEAR

The first woman ever to gain the honor of International Systems Man of the Year was named winner over 40 nominees from the United States, Canada, Europe, and South America. Miss Anita P. Loebcr of Los Angeles was named by Systems and Procedures Association, an international professional group of people engaged in scientific management operations.

Miss Loebcr is a member of the Management Division Staff of the County of Los Angeles and is also the first person engaged in government activities to be given this award. She won the Price Waterhouse Award in 1959 for the best published article in the systems management field and is the first person to have won both prizes. Miss Loebcr's activities and achievements in the systems field are numerous. She is also an author, lecturer, and teacher.

PRESIDENT, VICE PRESIDENT, 25 DIRECTORS NOMINATED TO LEAD IEEE

Dr. Ernst Weber, President of Polytechnic Institute of Brooklyn, has been nominated to serve as President of the Institute of Electrical and Electronic Engineers (IEEE), a 160,000 member organization that will come into existence with the IRE and AIEE merger in January, 1963. Dr. Weber was the 1959 President of IRE and is a Fellow of AIEE.

To serve as Vice President with Dr. Weber is Dr. B. Richard Teare, Jr., Dean, College of Engineering and Science, Carnegie Institute of Technology, Pittsburgh, Pa. Dr. Teare is President of the AIEE.

A slate of officers and directors to lead IEEE has been submitted to the membership of the two merging groups, the American Institute of Electrical Engineers and the Institute of Radio Engineers. All voting members of AIEE and IRE will receive ballots and be asked to vote either for or against the entire slate.

VICE PRESIDENT, RESEARCH NAMED BY LFE ELECTRONICS

Dr. Ward C. Low has been named to the new post of vice president, research, for LFE Electronics, the major operating group of Laboratory for Electronics, Inc., Boston.

COMPUTERS and AUTOMATION for October, 1962
Mass. Dr. Low joined LFE in 1961 from the Mitre Corporation. He has been technical director for LFE Electronics’ Systems division and will now direct all research programs and be responsible for long range technical planning.

USAF SCIENTIFIC ADVISORY BOARD MEMBER NAMED

Dr. Gilbert W. King, IBM director of research, has been named a member of the United States Air Force Scientific Advisory Board. Its members perform consultative services on scientific matters for the United States Air Force.

The group also reviews and evaluates the Air Force’s long-range plans for research and development.

Dr. King is also head of the Library of Congress’ study group for information retrieval and a recent appointee to the President’s Science Advisory Committee Panel on Problems of Scientific Information.

BENDIX G-20 USERS GROUP NAMES 1962-’63 OFFICERS

William Anderson was elected president of the Bendix G-20 Users Group at their recent New York City conference. Mr. Anderson is computer director for Bendix Corporation’s Mishawaka Division in South Bend, Ind. Bert Went, Battelle Memorial Institute, Columbus, Ohio, was elected vice president, and Dr. Bardley Whitman, Schering Corp., Union, N. J. as secretary.

Mr. Anderson announced the group will meet again in Chicago this November.

DR. JOHN BLYTH JOINS THE DIEBOLD GROUP, INC.

Dr. John Blyth, pioneer in the field of programmed learning, has joined The Diebold Group, Inc. to direct a new department in Programmed Learning. Dr. Blyth will provide services for the development of programmed courses for a wide variety of educational and training problems.

DR. M. S. WATANABE

The International Academy of Philosophy of Science, headquartered in Brussels, has elected to membership, Dr. M. S. Watanabe, a research staff member of International Business Machines Corporation’s Thomas J. Watson Research Center.

Membership in the Academy is limited to 52 scientists and philosophers who have made notable contributions to the philosophy of science.

NEW CONTRACTS

OLIVETTI ORDERS $2 MILLION OF MAGNETIC TAPE MEMORY UNITS

Ampex Corporation, Redwood City, Calif., has received the largest international order in its history from Ing. C. Olivetti & Co., Milan, Italy. The order calls for delivery of some $2,000,000 in Ampex magnetic tape units to be used in Olivetti electronic computers.

The equipment will be manufactured at Ampex facilities in Culver City, Calif. Part of the order will be shipped directly to Milan; the balance will be shipped in kit form for assembly by Ampex Electronics, Ltd., subsidiary of the corporation in Reading, England, before delivery to Olivetti.

NEARLY $2 MILLION IN CONTRACTS FOR COLLINS RADIO COMPANY

The U.S. Air Force has awarded Collins Radio Co. three contracts totaling more than $974,000. The largest of the contracts is for over $425,000 for ground communication equipment, which will be used primarily in downrange tracking situations on the Atlantic Missile Range. A second award calls for Collins flight control equipment for jet and heavy duty aircraft. The final contract from the U.S. Air Force is for flight directors computers. The equipment, the Collins CPU-4/A assists the pilot in steering his craft. It accepts standard guidance and sensor information for presentation to the pilot through a system of signals.

The Boeing Company Transport Division has awarded Collins Radio Company a contract for nearly $1 million to supply navigational equipment for its new three-engine 727 jet liners. The purchase calls for Collins course indicators, approach horizons, steering computers, and instrument amplifiers.

DIVISION OF ITT AWARDED CONTRACT FOR OVER $2.5 MILLION

The ITT Federal Laboratories, Nutley, N.J. has been awarded a contract for over $2.5 million to build additional units of high performance electronic air navigation equipment for the U.S. Navy. The contract calls for the ITT division to supply units of an improved airborne TACAN (Tactical Air Navigation) set which will provide the Navy’s jet aircraft with instantaneous, precise bearing and distance navigation information.

TACAN was originally developed by ITT to meet the precision navigational requirements of the U.S. Navy carrier-based aircraft, and is now a standard short range air navigation system for military aviation.

ELECTRIC COMPANY ORDERS IBM 1710 CONTROL SYSTEM

Public Service Company of Albuquerque, N.M., has ordered an IBM 1710 control system to balance 334,000 kilowatts of generating capability against the requirements of more than 100,000 customers. The electronic computing system will control and dispatch the flow of electricity across high voltage power lines serving a portion of the Southwestern United States. The computer-directed power dispatcher will be able to meet ever-changing load demands. It is scheduled to go into operation early next year.

NATIONAL GEOGRAPHIC TO HAVE UNIVAC III COMPUTER SYSTEM

A UNIVAC III computer system has been ordered from Sperry Rand Corporation for installation next year in the National Geographic Society’s Eckington offices in Washington, D.C.

COMPUTERS and AUTOMATION for October, 1962
The computer will make possible temporary changes of address on a day's notice. Magazine copies can be sent to vacationing families or travelers wherever and whenever they go. The adjustments in accounts of the Society's 3 million members will be processed as quickly as they are reported in the Washington headquarters. National Geographic Magazine expects to be the first publication in history to keep its subscriber's addresses -- both foreign and domestic -- and their accounts current on a daily basis through use of an electronic computer.

ARMY AWARDS HONEYWELL CONTRACT FOR MAGNETIC TAPE SUB-SYSTEM

Honeywell Electronic Data Processing, Wellesley Hills, Mass., has been awarded a $144,000 contract by the Army for delivery of a magnetic tape subsystem to the Army's Electronic Proving Ground at Ft. Huachuca, Ariz. The subsystem includes 8 Honeywell magnetic tape drives. It will be van-mounted for use in testing the Army's Field data systems.

NAVIGATION CHECKOUT TIME TO BE CUT 80% -- WILL HIDE POLARIS READINESS

Sperry Gyroscope Company, Great Neck, N.Y., has received $3.1 million from the U.S. Navy for 14 advanced design checkout consoles. The new shipboard units, called navigation operational checkout consoles, will permit monitoring of the at-sea operation of the submarines' precise navigation systems. The monitoring will be conducted from a central control station inside each sub. The consoles are expected to reduce present checkout time by 80 percent.

The first submarines to carry the equipment will be ten ships of the Lafayette class, scheduled to join the fleet by the end of 1964. Four of the 14 consoles will remain ashore: two for crew training, one for test purposes and one for installation and study in Sperry's landlocked replica of a Polaris submarine navigation center at its Syosset, L.I., location.

AIRLINE ORDERS UNIVAC SYSTEM

West Coast Airlines, Seattle, Wash., is the first commercial airline to order the new UNIVAC 1004 Data Processing System. This system is the most recent addition to the Sperry-Rand Corporation's data processing equipment.

The new equipment represents a transitional step toward West Coast's use of a total-company computer system. The UNIVAC 1004 system will be initially used by the firm's accounting department.

NASA SELECTS COMPUTER DYNAMICS TO OPERATE DATA PROCESSING FACILITY

Computer Dynamics Corporation, Silver Spring, Md., has been chosen by the National Aeronautics and Space Administration to operate the Data Processing Facility for its Launch Operations Center at Cocoa Beach, Fla. The quarter million dollar contract gives Computer Dynamics the responsibility for the design, programming and implementation of applications for all types of digital computers in use by the center. It also provides for the development of procedures, operation, and coordination of maintenance for the computers and peripheral equipment used by NASA.

The U.S. Navy's Bureau of Supplies and Accounts has also asked the company to install and make operational its IMPACT (Implementation, Planning and Control Techniques) system for administering and controlling the Bureau's conversion of its small-scale headquarters computer from card to tape operation.

LIBRASCOPE RECEIVES CONTRACT FROM U.S. AIR FORCE

General Precision's Librascope Division has received a letter contract from the U.S. Air Force to produce aircraft computers for the 665A reconnaissance/strike program. The $216,000 contract represents the initial funding for the program.

The contract calls for production of two AN/ASN-24(V) digital computer sets. The computer systems will be capable of aircraft navigation, processing of electronic intelligence data, and other functions.

BUSINESS NEWS

IBM IS ACCUSED OF CARD MONOPOLY

A $150,000,000 treble damage suit charging International Business Machines Corporation with monopoly practices in the tabulating card business has been filed under the antitrust laws in the United States District Court in Camden, N.J.

Business Supplies is asking for a decree forcing IBM to divest itself of its tabulating card business "to prevent perpetuation of its monopoly and stranglehold of all competition because of its superior position".

Business Supplies also asked the court to amend a 1956 consent decree to force IBM to give up all of its interests in the card business. In the 1956 order, signed in U.S. District Court in New York, IBM had agreed to divest itself of 50 percent of its card business.

Business Supplies states that the chief target of the suit is the tie-in of IBM's machines and cards, "which give IBM a virtual monopoly in both".

IBM has issued a statement categorically denying the charge that it has violated the antitrust laws or that it has engaged in any unethical conduct that might have adversely affected Business Supplies Corporation of America.

CONTROL DATA'S SALES, ORDERS UP

Control Data Corporation has reported that sales and service income for the fiscal year ended June 30, 1962, amounted to $41,034,009, up from $19,703,745 in 1961. Net profits after provision for taxes were $1,542,622 compared with $842,524 in the previous year. The backlog of orders on June 30, 1962 was $49,410,000 as compared to $24,220,000 on June 30, 1961.

CDC has recently increased its sales offices to 20, and has opened up new marketing areas for the 1604 and the 160 line of computers to include the oil industry, communications and space exploration.
"ONE IF BY LAND..."

The Elliott Computing Division of the Elliott Automation Group in England, is launching a drive to capture a part of the American computer market in scientific and educational organizations. The 503 and the 803 computer systems will be the units promoted in the United States. The E-A Industrial Corporation, 70 Pine Street, New York, will handle the American sales for the Division.

--- The Elliott 503

The 503 is a new computer presently undergoing final checkout at the Elliott factory in Borehamwood, England. It features an operating speed of 100,000 arithmetic operations per second, with 8192 thirty-nine bit words of basic core storage. Input/output for the computer is via punched tape, read at 1000 characters per second, and punched at 100 characters per second. Control is from an electric typewriter. An ALGOL-compiler is said to be completed for the 503, and the computer is compatible with the older 803 unit. Its price is about $200,000 in this country, and Elliott feels that it will compete with the GE 225, and the Bendix G20.

--- The Elliott 803

The 803 computer, an older, slower, and cheaper unit, has already been placed in over thirty-five installations. It has 4096 thirty-nine bit words for basic storage, and a mean working speed of 1500 operations per second. Price in the United States is set at approximately $95,000. The company hopes to compete with it in this country against the ASI 210, Recomp II and III, CDC 160A and IBM 1620 computers. The largest present installation of the 803 in the United States is an 8K store, two tape machines at the Lummas Co. plant in Newark, N.J., where it is used for chemical and structural engineering design calculations.

The Elliott Computing Division is the largest British computer manufacturer; they produced, in 1961, 62% of the computers manufactured in the United Kingdom. They have over 150 machines installed throughout the world, including fifteen in the United States.

The first six months of the marketing program for the 503 and the 803 computers will be a feeble program, Elliott reports, to determine if they can independently market their computer to the scientific and educational market. Elliott already has arrangements with National Cash Register and Information Systems, Inc. for marketing hardware to the business and process control field, respectively.

BURROUGHS

LOWERS COMPUTER PRICES

Burroughs Corporation has announced new prices for previously leased computer systems. They reduced the computer systems' cost to 30 per cent of the original list price. A 205 computer now sells for a base figure of $40,000.

Previously leased systems have been operated under maintenance contract with Burroughs and are sold with a 90 day warranty. Maintenance contracts are optional. Updated software, including an ALGOL compiler, assemblers, executive systems, utility routines and hundreds of programs, has been cataloged for the 205.

A previously leased system with paper tape and punched card input/output and floating point arithmetic now sells for $61,000, compared to an original list price of $210,000. Special lease rates for two and three year term leases are also available.

AUDIO DEVICES' SALES RISE

Audio Devices, Inc. has reported that sales for the six months ended June 30, 1962 were $4,070,103 compared with $3,677,089 for the same period in 1961. This represents an increase in total sales of 11%.

Earnings for the first half of 1962 were $446,196 before provision for taxes and $223,196 after taxes. This is double the earnings for the first half of 1961.

Sales were described as increasing at a steady rate due in part to the expanding market for tape for instrumentation and computer use.

ARMY EXPANDS ITS
MICROMODULE PROGRAM

MICROPAC COMPUTERS

EFFECTED

The United States Army has announced today it plans a substantial expansion of its Micromodule Program. The Army Signal Corps launched the Micromodule Program in 1958 to develop tiny circuit modules to reduce the size of electronic equipment and at the same time provide high reliability of production.

The Army anticipates committing some $6 million for equipment and systems in the fiscal year 1963 -- about double the 1962 funding. Up to 1962, $18 million had already been invested in the program. The Army-industry team conducting the program is expected to achieve a production rate of 250,000 micromodules a year by March of 1963, a million a year by June of 1964 and three to five million sometime in 1965, under existing plans.

Among the contracts the Army awarded during 1962 for new micromodule applications was procurement from RCA of a mobile computer for field data use, employing some 10,000 micromodules and to be delivered in about 14 months. Future plans provide for development of an entire family of varying sizes of such systems.

Among the micromodule applications chosen for the research and development program in 1963-64, is a production version of a small field computer known as Micropac, the prototype of which will be delivered this November by RCA. The micromodule is a stack of wafer-like components in the form of a compact module 0.36 inch square and usually 0.4 to 0.8 inch high. The micromodule takes advantage of automated production techniques and is compatible with both existing circuitry and with other microelectronic circuits under development.

TELEPHONE SWITCHING UNIT

ADVANCES

A telephone switching unit, designed by its own research laboratories, has been accepted by the Parke-Davis Telephone, Inc. of Denver, Colo. The advantage may lie in the trouble-free nature of the electronic "written" switch, which is caused when the electronic "wire" is cut. The trouble-free switch, which is caused when the electronic "wire" is cut, has been accepted for use in the Bell System's telephone switching system.

The switch was developed at the laboratories of the British Telephone Engineering Company. The switch is unique in that it has no moving parts and is capable of handling any number of calls simultaneously. It is made up of small electronic switches which can be turned on and off with a single switch operation. The switch is capable of handling any number of calls simultaneously.

The switch was designed to meet the needs of the British Telephone Engineering Company, which operates a large telephone switching system. The switch is unique in that it has no moving parts and is capable of handling any number of calls simultaneously. It is made up of small electronic switches which can be turned on and off with a single switch operation. The switch is capable of handling any number of calls simultaneously.

The switch was designed to meet the needs of the British Telephone Engineering Company, which operates a large telephone switching system. The switch is unique in that it has no moving parts and is capable of handling any number of calls simultaneously. It is made up of small electronic switches which can be turned on and off with a single switch operation. The switch is capable of handling any number of calls simultaneously.

The switch was designed to meet the needs of the British Telephone Engineering Company, which operates a large telephone switching system. The switch is unique in that it has no moving parts and is capable of handling any number of calls simultaneously. It is made up of small electronic switches which can be turned on and off with a single switch operation. The switch is capable of handling any number of calls simultaneously.
The number of electronic computers installed, or in production at any one time has been increasing at a bewildering pace in the past several years. New vendors have come into the computer market, and familiar machines have gone out of production. Some new machines have been received with open arms by users — others have been given the cold shoulder.

To aid our readers in keeping up with this mushrooming activity, the editors present below the first monthly report on the number of American-made computers installed or on order as of the preceding month. We expect to revise this computer census monthly, pointing out the changes from month-to-month, so that it will serve as a "box-score" to readers interested in following the growth of the American computer industry.

All figures have been verified by the respective manufacturers except where the figure is marked with an asterisk (*). In the latter cases, estimates were made based upon information in the reference files of *COMPUTERS AND AUTOMATION*, the figures were then reviewed by a group of computer industry cognoscenti.

Any additions, or corrections from informed readers will be welcomed.

AS OF SEPTEMBER 20, 1962

<table>
<thead>
<tr>
<th>NAME OF MANUFACTURER</th>
<th>NAME OF COMPUTER</th>
<th>SOLID STATE?</th>
<th>AVERAGE MONTHLY RENTAL</th>
<th>DATE OF FIRST INSTALLATION</th>
<th>NUMBER OF INSTALLATIONS</th>
<th>NUMBER OF UNFILLED ORDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressograph-Multigraph Corporation</td>
<td>EDP 900 system</td>
<td>Y</td>
<td>$7500</td>
<td>2/61</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Scientific Instruments</td>
<td>ASI 210</td>
<td>Y</td>
<td>$2850</td>
<td>4/62</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ASI 420</td>
<td>Y</td>
<td>$12,500</td>
<td>-/62</td>
<td>0</td>
<td>1*</td>
</tr>
<tr>
<td>Autonetics</td>
<td>RECOMP II</td>
<td>Y</td>
<td>$2495</td>
<td>11/58</td>
<td>130*</td>
<td>0*</td>
</tr>
<tr>
<td></td>
<td>RECOMP III</td>
<td>Y</td>
<td>$1495</td>
<td>6/61</td>
<td>25*</td>
<td>0*</td>
</tr>
<tr>
<td>Bendix</td>
<td>G-15</td>
<td>N</td>
<td>$2150</td>
<td>7/55</td>
<td>350*</td>
<td>14*</td>
</tr>
<tr>
<td></td>
<td>G-20</td>
<td>Y</td>
<td>$15,500</td>
<td>4/61</td>
<td>20*</td>
<td>6*</td>
</tr>
<tr>
<td>Burroughs</td>
<td>205</td>
<td>N</td>
<td>$4600</td>
<td>1/54</td>
<td>92</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>N</td>
<td>$14,000</td>
<td>10/58</td>
<td>58</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>E101-103</td>
<td>N</td>
<td>$1000</td>
<td>1/56</td>
<td>157</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>B250</td>
<td>Y</td>
<td>$5000</td>
<td>11/61</td>
<td>18</td>
<td>35*</td>
</tr>
<tr>
<td></td>
<td>B260</td>
<td>Y</td>
<td>$3750</td>
<td>-</td>
<td>0</td>
<td>40*</td>
</tr>
<tr>
<td></td>
<td>B280</td>
<td>Y</td>
<td>$7000</td>
<td>6/62</td>
<td>2</td>
<td>30*</td>
</tr>
<tr>
<td></td>
<td>B5000</td>
<td>Y</td>
<td>$6500</td>
<td>-</td>
<td>-</td>
<td>14*</td>
</tr>
<tr>
<td>Clary</td>
<td>DE-60/DE-60N</td>
<td>Y</td>
<td>$650</td>
<td>2/60</td>
<td>68</td>
<td>10</td>
</tr>
<tr>
<td>Computer Control Co.</td>
<td>DDP-19</td>
<td>Y</td>
<td>$2800</td>
<td>6/61</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DDP-25</td>
<td>Y</td>
<td>$3000</td>
<td>-</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SPEC</td>
<td>Y</td>
<td>$300</td>
<td>5/60</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1604</td>
<td>Y</td>
<td>$35,000</td>
<td>1/60</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3600</td>
<td>Y</td>
<td>$52,000</td>
<td>-</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Digital Equipment Corp.</td>
<td>PDP-1</td>
<td>Y</td>
<td>Sold only about $500,000</td>
<td>12/59</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>PDP-4</td>
<td>Y</td>
<td>Sold only about $100,000</td>
<td>8/62</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>El-tronics, Inc.</td>
<td>ALMAC IIIE</td>
<td>N</td>
<td>$2500</td>
<td>2/54</td>
<td>32</td>
<td>X</td>
</tr>
<tr>
<td>General Electric</td>
<td>210</td>
<td>Y</td>
<td>$16,000</td>
<td>7/59</td>
<td>53*</td>
<td>33*</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>Y</td>
<td>$7000</td>
<td>1/61</td>
<td>60*</td>
<td>57*</td>
</tr>
<tr>
<td>General Precision</td>
<td>LGP-30</td>
<td>semi</td>
<td>$1300</td>
<td>9/56</td>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>RPC-4000</td>
<td>Y</td>
<td>$1875</td>
<td>1/61</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Honeywell Electronic Data Processing</td>
<td>H-290</td>
<td>Y</td>
<td>$3000 up</td>
<td>6/60</td>
<td>9</td>
<td>4*</td>
</tr>
<tr>
<td></td>
<td>H-400</td>
<td>Y</td>
<td>$8000</td>
<td>12/60</td>
<td>14</td>
<td>11*</td>
</tr>
<tr>
<td>NAME OF MANUFACTURER</td>
<td>NAME OF COMPUTER</td>
<td>SOLID STATE?</td>
<td>AVERAGE MONTHLY RENTAL</td>
<td>DATE OF FIRST INSTALLATION</td>
<td>NUMBER OF INSTALLATIONS</td>
<td>NUMBER OF UNFULFILLED ORDERS</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Honeywell EDP (cont'd.)</td>
<td>H-800</td>
<td>Y</td>
<td>$22,000</td>
<td>12/60</td>
<td>36</td>
<td>14*</td>
</tr>
<tr>
<td></td>
<td>H-1800</td>
<td>Y</td>
<td>$30,000 up</td>
<td>-/63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>DATamatic 1000</td>
<td>N</td>
<td>-</td>
<td>12/57</td>
<td>7</td>
<td>X</td>
</tr>
<tr>
<td>H&B-Singer, Inc.</td>
<td>SEMA 2000</td>
<td>Y</td>
<td>$700</td>
<td>1/62</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>IBM</td>
<td>305</td>
<td>N</td>
<td>$3600</td>
<td>3/62</td>
<td>925*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>650-card</td>
<td>N</td>
<td>$3000</td>
<td>11/54</td>
<td>705*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>650-RAMAC</td>
<td>N</td>
<td>$9000</td>
<td>11/54</td>
<td>262*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>1401</td>
<td>Y</td>
<td>$2500</td>
<td>9/60</td>
<td>3000*</td>
<td>4500*</td>
</tr>
<tr>
<td></td>
<td>1410</td>
<td>Y</td>
<td>$10,000</td>
<td>11/61</td>
<td>33*</td>
<td>450*</td>
</tr>
<tr>
<td></td>
<td>1620</td>
<td>Y</td>
<td>$1620</td>
<td>9/60</td>
<td>1265*</td>
<td>450*</td>
</tr>
<tr>
<td></td>
<td>701</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>4*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>702</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>5*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>7030</td>
<td>Y</td>
<td>$300,000</td>
<td>5/61</td>
<td>3*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>704</td>
<td>N</td>
<td>$32,000</td>
<td>12/55</td>
<td>89*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>705</td>
<td>N</td>
<td>$30,000</td>
<td>11/55</td>
<td>160*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>7070</td>
<td>Y</td>
<td>$24,000</td>
<td>3/60</td>
<td>220*</td>
<td>265*</td>
</tr>
<tr>
<td></td>
<td>7072</td>
<td>Y</td>
<td>$15,000</td>
<td>-</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td></td>
<td>7074</td>
<td>Y</td>
<td>$29,300</td>
<td>-</td>
<td>0*</td>
<td>0*</td>
</tr>
<tr>
<td></td>
<td>7080</td>
<td>Y</td>
<td>$55,000</td>
<td>8/61</td>
<td>30*</td>
<td>25*</td>
</tr>
<tr>
<td></td>
<td>709</td>
<td>N</td>
<td>$40,000</td>
<td>8/58</td>
<td>45*</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>7090</td>
<td>Y</td>
<td>$64,000</td>
<td>11/59</td>
<td>190*</td>
<td>150*</td>
</tr>
<tr>
<td></td>
<td>7094</td>
<td>Y</td>
<td>$70,000</td>
<td>12/62</td>
<td>3*</td>
<td>X</td>
</tr>
<tr>
<td>Information Systems, Inc.</td>
<td>ISI-609</td>
<td>Y</td>
<td>$4000</td>
<td>2/58</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>ITT</td>
<td>7300 ADX</td>
<td>Y</td>
<td>$30,000</td>
<td>7/62</td>
<td>2</td>
<td>1*</td>
</tr>
<tr>
<td>Monroe Calculating Machine Co.</td>
<td>Monrobot IX</td>
<td>N</td>
<td>$3400</td>
<td>3/58</td>
<td>145*</td>
<td>20*</td>
</tr>
<tr>
<td></td>
<td>Monrobot XI</td>
<td>Y</td>
<td>$700</td>
<td>6/60</td>
<td>140*</td>
<td>110*</td>
</tr>
<tr>
<td>National Cash Register Co.</td>
<td>NCR - 102</td>
<td>Y</td>
<td>$14,000</td>
<td>1/60</td>
<td>29</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>- 304</td>
<td>Y</td>
<td>$2000</td>
<td>5/61</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- 310</td>
<td>Y</td>
<td>$7250</td>
<td>5/62</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- 390</td>
<td>Y</td>
<td>$1850</td>
<td>5/61</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Packard Bell</td>
<td>PB 250</td>
<td>Y</td>
<td>$1200</td>
<td>12/60</td>
<td>109*</td>
<td>22*</td>
</tr>
<tr>
<td>Philco</td>
<td>2000-212</td>
<td>Y</td>
<td>$66,000</td>
<td>-/63</td>
<td>0*</td>
<td>5*</td>
</tr>
<tr>
<td></td>
<td>-211</td>
<td>Y</td>
<td>$40,000</td>
<td>10/58</td>
<td>10*</td>
<td>10*</td>
</tr>
<tr>
<td></td>
<td>-210</td>
<td>Y</td>
<td>$36,000</td>
<td>10/58</td>
<td>7*</td>
<td>9*</td>
</tr>
<tr>
<td>Radio Corp. of America</td>
<td>Bizmac</td>
<td>N</td>
<td>-</td>
<td>-/56</td>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>RCA 301</td>
<td>Y</td>
<td>$6000</td>
<td>2/61</td>
<td>121</td>
<td>330*</td>
</tr>
<tr>
<td></td>
<td>RCA 501</td>
<td>Y</td>
<td>$15,000</td>
<td>6/59</td>
<td>78</td>
<td>10*</td>
</tr>
<tr>
<td></td>
<td>RCA 601</td>
<td>Y</td>
<td>$35,000</td>
<td>-/62</td>
<td>0</td>
<td>6*</td>
</tr>
<tr>
<td>Scientific Data Systems Inc.</td>
<td>SDS-910</td>
<td>Y</td>
<td>$1700</td>
<td>8/62</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>SDS-920</td>
<td>Y</td>
<td>$2500</td>
<td>9/62</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>TRW Computer Co.</td>
<td>RW3530</td>
<td>Y</td>
<td>$2500</td>
<td>8/61</td>
<td>13*</td>
<td>6*</td>
</tr>
<tr>
<td>UNIVAC</td>
<td>Solid-state 90, 90, 6, & Step</td>
<td>Y</td>
<td>$5000</td>
<td>8/58</td>
<td>523</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Solid-state II</td>
<td>Y</td>
<td>$8500</td>
<td>9/62</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>Y</td>
<td>$26,000</td>
<td>12/61</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1107</td>
<td>Y</td>
<td>$45,000</td>
<td>10/62</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>Y</td>
<td>$20,000</td>
<td>8/62</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>LARC</td>
<td>Y</td>
<td>$135,000</td>
<td>5/60</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>1100 Series (except 1107)</td>
<td>N</td>
<td>$35,000</td>
<td>12/50</td>
<td>32</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>I & II</td>
<td>N</td>
<td>$25,000</td>
<td>3/51 & 11/57</td>
<td>65</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>File Computers</td>
<td>N</td>
<td>$15,000</td>
<td>8/56</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>60 & 120</td>
<td>N</td>
<td>$1200</td>
<td>-/53</td>
<td>904</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1004</td>
<td>Y</td>
<td>$3350</td>
<td>2/62</td>
<td>0</td>
<td>700</td>
</tr>
</tbody>
</table>

TOTALS: 11,397 8,169

X -- no longer in production
CalComp digital plotters and plotter systems are uniquely capable of continuous, round-the-clock, unattended production of instantly available multiple plots. • Compatible on-line with any general purpose medium-scale digital computer, and off-line with most general purpose large-scale digital computers. • Plots automatically annotated in alphanumeric characters and any symbols. • No skilled personnel required. CalComp equipment never requires calibration, and produces plots continuously on roll-fed paper automatically maintained in precise alignment. • CalComp plotting equipment has operated for years with no maintenance other than replacing the paper and filling the pen. • CalComp equipment operates on 100-125 volts 50 or 60 cycle a.c.

ON-LINE. CalComp 560-R plotter produces plots at 12,000 line segments per minute 11 inches wide and up to 120 feet in length. Price: $3,300.
CalComp 563 plotter produces plots at 12,000 line segments per minute 29½ inches wide and up to 120 feet in length. Price: $8,000.
CalComp 565 plotter produces plots at 18,000 line segments per minute 11 inches wide and up to 120 feet in length. Price: $4,550.

OFF-LINE. CalComp 570 Magnetic Tape Plotting System, including any CalComp plotter. Price: $24,500 to $44,200 depending upon choice of plotter and type of computer.

PROGRAMS. We will be happy to provide information on CalComp programs for your computer.

REMOTE PLOTTING. CalComp Digital Data Terminal equipment permits controlling any number of remotely located digital plotters from a single computer or Magnetic Tape Plotting unit via conventional telephone company Dataphone. Price: CalComp 600 Transceiver $8,780. CalComp 620 Receiver $5,180.

PAPER. CalComp 120-foot rolls of paper are available either plain or with preprinted arithmetic or logarithmic grids. Price: $5 per roll (12-inch width), $20 per roll (30-inch width). Quotation on preprinted special designs and catalog of stock design paper samples available on request.

DEMONSTRATIONS. Demonstrations of CalComp plotting equipment at your installation arranged on request.

CALCOMP PLOTTING
VERSATILE • ECONOMICAL • RELIABLE

Send for your free subscription to DIGITAL PLOTTING NEWSLETTER
Let us recall the spectrum in optics. The white light of the sun is dispersed by a prism into the 7 magnificent colors of the rainbow: violet, blue, bluegreen, green, yellow, orange and red. At the upper and at the lower end invisible ultraviolet and infrared radiation has to be added. The white light is equivalent to information processing, the prism to the IFIP Congress. By its 25 sessions with 119 papers and by 26 symposia and panel discussions it separates the entire field of information processing into 7 subjects corresponding to the rainbow colors:

1) Business information processing
2) Scientific information processing
3) Real-time information processing
4) Storage and retrieval of information
5) Linguistic analysis and mechanical translation
6) Pattern recognition
7) Logical and technical fundamentals and progress

On the boundaries we find the university education in information processing is equivalent to the ultraviolet. Several advanced concepts are equivalent to the infrared, for instance, connections to biology, psychology and philology, generalizations of concepts, and methods and views into the future.

Now I shall give some characteristic examples for the subjects mentioned, which we may call Fraunhofer lines in the spectrum.

Subject 1: The business information processing is in principle electronic data processing with high volume input and output and relatively few and simple calculations, for instance: statistical evaluations, wage calculations, accounting in banks, insurance companies, and in the postal money order service, inventory control, seat reservation. All this means office automation.

An example is an original wage sheet such as one from a big car factory, Adam Opel A.G. at Russelsheim. The factory employs 28,000 workers to whom wages are paid weekly. An IBM 650 computer multiplies the working hours by the wage per hour, takes into account the family status and the number of children, subtracts taxes and insurance rates, performs all calculations otherwise necessary, and summarizes the results on the wage sheet. On the rear side, the worker finds his wages in cash in a plastic pocket. The second copy of the wage sheet is sent to the accounting office.

Another example is data processing in medicine. A patient asks the hospital for a questionnaire. This form carries a number. The connection of the number to the patient is known only to the hospital in order to guarantee confidential treatment. The patient answers by "yes" or "no" 254 precise questions for men and 266 questions for women, numerated according to symptoms, for example:

How often do you have a headache?
001 Very rarely?
002 Occasionally during the week or the month?
003 Several times per week?
004 Every day?

Where do you locate the headache?
008 In the front immediately above the eyes or in one of the cheeks below the eyes?
031 Do you suffer from noise in the ears?

Do you suffer from backaches and where do you locate them?
071 In the upper part?
072 In the middle part?
073 In the lower part?
241 Are you easily irritated and do you flare up easily?
251 Was there a case of alcoholism among your ancestors?
264 Do you suffer from irregularities in your blood circulation and do you perspire easily?

The answers are punched into a paper tape which is fed into an electronic computer. The computer compares the symptoms marked by the patient to combinations of symptoms characteristic for 80 diseases. Likely diagnoses are then printed out together with corresponding symptoms. Probability indications rated from 1 to 4 are added according to symptoms. This preliminary diagnosis is sent to the hospital by teletype where it is studied by the doctor. If he considers the case to be dangerous, he asks the patient for an immediate appointment. Otherwise the name of the patient is put on the general waiting list. From the machine diagnosis, from the personal impression, and, if necessary, from additional examinations the doctor writes the final diagnosis. This means that the machine assists in preparing the treatment, but it does not replace the personal contact between doctor and patient which is an essential part of the doctor's work. The results of the procedure have been reported to be most satisfying. In particular by the precise questions a great deal of unnecessary questioning and talking is avoided. Apparently patients are less hesitant about answering certain questions when asked in written form rather than in an interview.

Presented at the opening session of the IFIP Congress 62, Munich, Germany, Aug. 27, 1962.
Subject 2: An example for scientific data processing is the summary of the so-called Mersenne prime numbers \(2^p - 1\) which is one detail from the theory of numbers in pure mathematics. For more than seventy years \(2^{127} - 1\) was the highest prime number (39 decimal digits) known. Starting with 1952 in addition to the 12 Mersenne prime numbers known so far 8 further numbers were found. Several electronic computers cooperated in this project which honors the human mind. The last prime number was discovered by A. Hurwitz in Los Angeles late in 1961. He used the computer IBM 7090 for 50 minutes and he found the highest prime number known: \(2^{4423} - 1\), a number having 1392 decimal digits.

Another example is optimization programming, such as the production of a routing schedule for empty freight cars for a national railway system, and a minimum cost scheme for blending gasoline of a number of components that have different technological properties and different prices.

Subject 3: The most important example for real-time information processing is the automatic control of machine tools which can also be applied to controlling traffic signals. The prediction of bad weather conditions is based on a number of meteorological data which are transmitted by radio. If the prediction has to be useful, the information must be processed in real-time. The same is true for load calculations in an electric power network.

Subject 4: As an example of information storage and retrieval, I should like to mention documentation problems and the classification problem. These terms are self-explanatory.

Subject 5: An example here is the automatic translation from Latin into German produced at the institute of Professor Dörr in Saarbrücken by the computer Zuse Z 22. Since Latin is a dead language it is governed by a fixed set of rules and therefore it is particularly well suited for fundamental studies.

Linguistic analysis is related to semantics and syntax and creates new bridges between humanities and technology.

Subject 6: Automatic pattern recognition is one example of artificial perception. During the Congress, papers will be read about the automatic analysis of electroencephalographs and about the control of a typewriter by the human voice. Further reports about the automatic reading even of cursive writing will be heard. The technical realization of automatic reading will be of far-reaching importance for office automation. For example, it is to be appreciated that in the highly monotonous, though very responsible, process of punching data into cards the human being will be replaced by a machine.

Subject 7: The progress in components, for example, tunnel diodes, drift transistors, special forms of ferrite cores, carrier frequency systems for the parametron, cryotron circuits for very low temperatures, fast access storage disks, twistors, and thin magnetic films, has opened the realm of nanoseconds \((10^{-9} \text{ sec})\) for cycle time. Significant progress in logical de-
THE IFIP CONGRESS 62, MUNICH, GERMANY

Edmund C. Berkeley
Editor
Computers and Automation

The second congress of the International Federation for Information Processing in Munich, Germany, held during the six days, August 27 to Sept. 1, 1962, was a remarkable and rewarding conference. Most of the time there were five parallel sessions: two for papers and three for symposiums and panel discussions. No one could have personally attended more than 12 full sessions, yet there were 51. Dr. A. Walther’s introductory talk “The Spectrum of Information Processing” (printed elsewhere in this issue of Computers and Automation) gives a general report of the content of the conference. But there was no substitute for accidentally being present at some of the really interesting symposiums or panel discussions of the conference. For it was impossible to tell ahead of time who was going to speak well and clearly and have something worthwhile to say and relevant to the subject of the session.

The hosts for the conference, the program committee, the local arrangements committee, and the other committees, deserve praise for a splendidly organized conference, with plenty of signs, ample multiple translation facilities that worked well, and an endlessly working staff, including representatives of the Dresdner Bank, Lufthansa, the German post office, and other firms, who made one feel their only purpose was to be of real help, hour after hour, including Saturday until two p.m.

Although preprints of the contributed papers were given to every person who registered for the conference up to some time in August, these did not contain the texts of the invited papers, nor the texts of any prepared talks for the symposiums or panel discussions. The entire proceedings of the conference are to be published by the North Holland Publishing Co., Amsterdam, Netherlands.

Comparisons of How Computers Perform

J. A. Gosden and R. L. Sisson (U.S.A.) presented an invited paper “Standardized Comparisons of Computer Performance.” This paper is based on the sensible idea of constructing model problems requiring computers and model configurations of computer equipment, and then programming the model configuration to solve the model problem, and finding the time and cost for the solution. More than 13 model configurations have been worked out. For each configuration two or more sets of computing systems made by different companies have been specified. Then, having assumed the configuration, the particular computing system, and the problem, various times can be computed such as: the time to deal with a block record in the master file, the delays in the processor if any, etc. The model problems are constructed by selecting problem parameters, such as sizes of input and output records, amount of computing, and the “activity factor.” The activity factor can be 100% as in payroll where each payee recorded in the master file has a record for time worked in the detail file, and each person requires a calculation to be made for him. Or, the activity factor may be as low as 1% activity, in some specialized accounting problems. When the standardized comparisons of computer performance are given to a client, even though they will not directly apply without change, nevertheless the comparisons give him a head start in relating the problems of his organization to his choice of a computer. This gives him a non-sales-biased picture of computers.

Scheduling Classes and Teachers

As a result of the contributed paper “The Construction of Class-Teacher Timetables” by C. C. Gotlieb (Canada), it became evident that this is a very common problem and that very many people are working on it. To simulate the principal of a high school is difficult or impossible, because he carries too much in his head. But a systematic examination of requirements enables a high school to be scheduled rather easily, a university with more difficulty. Because of the interest shown, a group is being formed, according to Dr. Gotlieb, to pursue this topic.

Flame Cutting of Steel Plates

In the panel on Numerical Control of Machine Tools, P. M. Stocker (England) reported on a combination of two computers, a general purpose computer—the Ferranti Pegasus—and a special purpose one, or curve generator. Pegasus with an interpretive program accepts the geometrical and cutting information in the simplest possible way, and produces a punched paper tape containing information in “sentences”; each “sentence” defines the cutting line from the present position of the flame cutter nozzle to the next change point, along either a straight line, a circular arc, or a parabolic arc. The curve generator in turn accepts the punched paper tape and produces a magnetic tape used in the control console of the oxygen cutting machine. The system is used by 40 separate customers, and is having a significant effect on ship fabrication.

Douglas T. Ross (U.S.A.) said that an informal survey in December, 1961, had shown that over 40 different automatic programming systems for numerical control have been prepared on computers in the United States, and that of these, over 25 are still in use. Most of the applications are concerned with contour milling in a continuous path.

Learning Which Sentences Are Meaningful

In the session on Artificial Intelligence, V. M. Glushkov (U.S.S.R.) talked of some of the experimental work in self-learning systems going on at the Institute of Cybernetics in Kiev. He reported on a “self-learning” machine for learning the meaning of
simple sentences in Russian. Each sentence was constructed on the pattern: Subject, Verb, Preposition, Object. The machine had a dictionary of 100 Russian words, 70 nouns, 20 verbs, etc. Could the machine learn to construct phrases that were meaningful and grammatical? The machine was programmed to examine the information and from time to time offer a sentence to the programmer: Was it meaningful? The programmer would answer correctly. Then the machine would examine again, and again ask. (About one third of all possible phrases are meaningful.) The machine learned to correctly classify as not meaningful the remaining 2/3 of sentences. For example, the machine might offer as meaningful: "a professor is a thinker; a student is a thinker; a boy is a thinker; two talkers are thinkers; all talkers are thinkers."

The behavior of the machine varies considerably according to the values set in its hardware of the coefficient of retentivity and the coefficient of caution. Maximum retentivity leads to an appearance of learning by rote. Minimum retentivity leads to an appearance of fantasy.

Evolution in Learning Machines
O. G. Selfridge (U.S.A.), in the Symposium on Artificial Intelligence, discussed evolution as a notion in learning machines. The evolutionary mechanism which is available to us, as we produce machines with artificial intelligence, is broader than nature’s. In nature a profitable gene is restricted to one species; but as soon as a profitable design feature is observed in any machine, it can be incorporated in other machines. In nature, it is hard to see how a mechanism like wings could have evolved from non-wings; to account for it, we must assume that the intermediate stages from non-wings to wings were profitable ones, for example, that a transitional limb was useful for perhaps keeping balance or fluttering or gliding. With machines, we human beings can take a goal "we wish to fly" and construct parts individually, later putting them together to make a flying machine. But there is still diversity and beauty in nature which we have not yet expressed in learning machines. In nature, species have the ability to inherit an optimization procedure; this feature is not yet present in any learning machine.

The Pattern of Learning
A. Newell (U.S.A.), in his invited paper, "Problem Solving, Learning, and Generality," began by saying that "Our general problem is constructing the information mechanisms that we see in man," and he inquired what is the special role of learning. The pattern of learning is that the learning program modifies the performance program; and significant learning involves storing of information much longer than the duration of solving one problem. All learning requires a representation of the environment inside the machine; the purpose of the representation is bridging the gap between the environment and the machine’s experience. The variety of the world exceeds the capacity of any machine to hold it. He held out the possibility of environment-oriented machines, and programs that build constructive models of the environment.

Ultra High-Speed Computers
G. M. Amdahl (U.S.A.) reported at a press conference of the panel discussion on Ultra High-Speed Computers. The general opinion of the panel is that the expected gain in performance of computers is at least 20 to 50 times the speed of existing computers, before the end of the 1960’s. At least 8 companies are working vigorously in this field. Three major problem areas are: fabrication; organization; and adequate peripheral units. In fabrication, problems are how to deal with a dielectric .002 inch thick and metal ribbons deposited on the dielectric .010” wide and .004” thick. Temperature is a problem. In organization, in order to retain small dimensions, one has to build functionally independent boxes, putting all the controls within the box—as for example, what is to be done at any step in division depends on what happened at the last step. Adequate peripheral units include adequate input, output, and storage. Laboratory methods are very costly to produce devices of this degree of precision and miniaturization; it is better to set up production facilities. The ultra high-speed computers are facing the relativity barrier of the speed of light—the maximum speed of an electrical pulse in a conductor is about half a foot in a nanosecond (10^-9 second).

Investigation and Computers
M. S. Wilkes (England) at one of the press conferences spoke about the conference and the computer field in general. He objected to saying that a computer solved such and such a problem—he said the credit should go to the scientist who used the computer. One investigator has said that ever since he had a computer to play with, he had to think 10 times as fast to keep up with it. An astronomer has said that the most important instrument in astronomy, when he was young, was the telescope, but now it is the computer. A dozen years ago it might have been so long and troublesome to tell the computer what to do to solve a problem, that it would have been shorter to do it yourself; but nowadays a computer can be spoken to easily. And a world movement under the IFIP is under way to produce a standard language in which to talk to computers.

Some Meditations on Programming
E. W. Dijkstra (Netherlands) gave an invited paper "Some Meditations on Advanced Programming." He said he would express an honest personal conviction, rather than a colorless average of a number of conflicting personal opinions of other people. The programmer’s world is a very dark one, with only patches of bright sky on the horizon—based on the fact that when the first computers were built and mankind was faced with a new technical wonder, programmers did nearly impossible jobs by using the inadequate machines in tricky ways. There was an atmosphere of pioneering guided by opportunism rather than principles. No matter how crazy a computer facility was provided, a more crazy programmer would turn it to advantage. The employer would employ a programmer who was a good puzzle-solver rather than one who had a clear and systematic mind. But the sky is
lightening. The basic theorem of importance is that designing a computer is equivalent to making a program. Yet the computers of today are very disappointing, boring, uninspiring, and hopelessly old-fashioned—because they have been built subject to the requirement that all the old programs of previous models of that manufacturer must run on the new machine. This is a never-failing mechanism to prolong the lifetime of grievous mistakes. So the programmer suffers regularly from the monstrosity of his tool. But the situation is changing. The classical computer plus communication facilities is becoming equivalent to a group of sequential machines, with the central processor dividing its attention among and arbitrary number of sequential processes. But the publication of the ALGOL 60 report has had tremendous influence. However, the same attention to reliability which the computer receives must now be given to the translator from ALGOL which produces the program that actually runs on the computer. When changing from an old computer to a newer and faster one, why not invest some of the saving in the convenience, elegance, and reliability of the translator? The language for dealing with the problem should also be a reliable one; it should assist the programmer in his most difficult task, satisfying himself that the program he has written down really does solve the problem he wants to solve. Finally, we need to stress that the tools of the programmer should be charming, elegant, inspiring, and worthy of one's love, for unless a craftsman loves his tools he hardly can create something of superior quality.

READERS' AND EDITOR'S FORUM (Continued from Page 8)

offer a progress report entitled "The National Space Program," underscoring the theme of the conference "Computers in the Space Age."

The annual banquet will be highlighted by an address on the "Computer and Man" by Sir Edward Playfair, chairman of ICT, London. His comments will stress the need for realism—not ivory-tower daydreaming—in planning for the future of computers.

Evening discussion panels are planned for the first time at FJCC 62. The three sessions scheduled include the effect of new devices on computer technology, organization of computers, and computer languages.

Another innovation at the meeting will be a panel discussion on the impact of information processing, accenting the virtues of EDP as a national resource. Worldly representatives from the fields of education, industry, labor, government, and the scientific community will be on hand including J. B. Carey, president AFL-CIO International Union of Electrical Workers, and Dr. G. P. Harnwell, president of the Univ. of Penna.

A number of EDP educational events for high-school consumption has also been planned. Movies on electronic data processing will also be shown on a continuous basis during normal meeting hours of the conference.

TWO LOCATIONS CHANGED FOR JCC's—ONE CANCELLED

The change in location of two previously scheduled Joint Computer Conferences has been announced by Dr. Willis H. Ware, chairman of the governing board, American Federation of Information Processing Societies (AFIPS), sponsor of the conferences.

The FJCC, November 12-14, 1963, previously scheduled for Los Angeles has been changed to the Convention Center, Las Vegas, Nevada. The SJCC, May 26-28, 1964 has been changed from Boston to the new Washington Hilton Hotel, Washington, D. C., which is scheduled for completion October, 1963.

"Due to the growth in exhibitors and attendance at the JCC's it has become necessary for us to look for more space than conventional conference facilities offer," Dr. Ware explained.

The main auditorium at the Las Vegas Convention Center seats 8,500 and the center includes 90,000 sq. ft. of exhibit space and 17 meeting rooms for numbers from 25 to 1,000. It is one of the few centers in the world specifically designed for conference and exhibition activities.

The Washington Hilton has 50,000 sq. ft. of exhibit areas adjacent to a ballroom seating 4,000 (or 1,000, 1,000 & 2,000), as well as numerous meeting rooms seating from a few to a few hundred.

It was announced at the Munich meeting of the IFIPS that the next international conference of IFIPS would take place in New York in 1965. To allow full time for the preparations for this event, AFIPS, the host organization, has cancelled the SJCC that was scheduled to be held in New York in 1965.

CALL FOR PAPERS FOR 63 SJCC

The 1963 Spring Joint Computer Conference to be held May 21-23, 1963, at Cobo Hall, Detroit, Michigan, invites intending authors to submit full texts of their papers beginning with 100-150 word abstracts on or before December 1, 1962.

Papers making original contributions in the areas of programming, analog and hybrid systems, artificial intelligence, algorithms in business data processing, machine organization including hardware/software interplay, new logic and memory devices, data acquisition—transmission and display, information retrieval including applications, are invited as well as papers of outstanding significance in other areas.

Each accepted paper, preferably not exceeding 10,000 words, will be published in hard bound proceedings available at the conference and abstracts will be published in the conference programs.

Papers should be sent to: Mr. B. W. Pollard, Burroughs Corporation, 6071 Second Avenue, Detroit 32, Michigan.

NEW PUZZLE BOOK AVAILABLE

If you enjoy the challenge of a good math problem as much as we do, you'll be pleased to know that a new edition of "Mathematical Recreations" has been published. For free copies of this popular booklet, write to Litton Industries, Mathematical Recreations, 336 No. Foothill Road, Beverly Hills, Calif.
BENDIX G-20 COMPUTER SYSTEMS CUT HIDDEN PROGRAMMING COSTS

From every point of view—hardware, software, support, results—the Bendix G-20 makes immediate, practical, dollar-savings sense. Take software, for instance. As part of the integrated G-20 hardware/software package, Bendix provides a variety of programming systems. Major programming systems are now operational for average G-20 configurations. Designed to cut straight to the heart of hidden programming costs, these powerful and flexible systems allow you to make faster, more efficient use of your G-20 computer. Additional programming versatility and compatibility are provided by G-20 PERT, FORTRAN, 650 Simulator, and Linear Programming...plus a library of pre-tested utility, conversion and debugging routines and mathematical subroutines. SNAP—an independent, symbolic-language programming system—offers still another dimension of programming ease to G-20 users. But you will want to investigate the Bendix G-20 from every point of view. Call your nearest Bendix Computer sales/service office. Or write: Bendix Computer Division, 5630 Arbor Vitae St., Los Angeles 45, Calif., Dept. D-42.
We publish here citations and brief reviews of books and other publications which have a significant relation to computers, data processing, and automation, and which have come to our attention.

We shall be glad to report other information in future lists if a review copy is sent to us. The plan of each entry is: author or editor / title / publisher or issuer / date, publication process, number of pages, price or its equivalent / comments. If you write to a publisher or issuer, we would appreciate your mentioning Computers and Automation.

This is a second edition of "Servomechanism Analysis," and incorporates a number of revisions of the first edition. The authors consider feedback control problems as design problems and provide the engineer with a variety of analysis and design tools with which to approach the subject. The text is intended for use in a postgraduate level first course, and includes a chapter "General Background." Thirteen other chapters include: "The LaPlace Transformation," "Equations of Physical Systems," "Transit Analysis of Servomechanisms," "Introduction to Design," "Dynamic Structures," "Input-Output Principles," and "Describing Functions and Their Applications." This book also includes tables, and information about error detectors, feedback loops, and compensating devices.

This English translation from the Russian monograph on the concept of the complexity of a tabulation problem, i.e., the construction of tables for complex functions using concrete problems as examples. The text is highly advanced and mathematically rigorous, requiring a facile knowledge of advanced mathematics for full understanding.

This book, written for the social scientist who is not a specialist in computers, introduces the computer as a research tool in the behavioral sciences and provides numerous examples of applications of the computer.
Ir: Luke, 1962, printed, 284 pp, $7.95

This study of techniques for the synthesis of nonlinear systems applies the Volterra functional expansion to the synthesis of feedback systems. The author adopts an approach which concentrates on techniques not oriented to a specific system. The six chapters include: "The Nonlinear Control Problem," "Functional Power Series Compensation Solution," "Controllability of Fixed Elements," and a final chapter of "Critique and Extension." References and an index are included. The research reported in the text was supported in part by the M.I.T. Research Lab. of Electronics and U. S. Army Signal Corps.

936 classified entries giving titles in English and French, and indicating the original language of publication, are here published. In addition, an author index and lists of periodical and non-periodical sources are given. The sources are from the U. S. and many foreign countries, including France, Germany, Japan, the U.S.S.R., and Czechoslovakia. Topics covered include measurement, digital and analog computing, engineering, bio-engineering, standards, terminology, symbols, patent information, bibliography, and teaching. Publication is with the cooperation of the National Member Organizations and the Technical Bibliography Committee of the International Federation of Automatic Control, and the UNESCO Department of Natural and Exact Sciences.

This text, based on a two-semester course on mathematical methods in physics, presents fundamental information on many mathematical topics and includes exercises which enable the student to test his knowledge of the theory. The seven chapters are: "Vector Spaces and Matrices," "Orthogonal Functions," "The Roots of Polynomial Equations," "Asymptotic Expansions," "Ordinary Differential Equations," "Conformal Mapping," and "Extremum Problems," which discusses functions of real variables, the first problem of the calculus of variations, and problems with side conditions. Solutions to the exercises, bibliography and index.

An Equal Opportunity Employer

RCA The Most Trusted Name in Electronics

Engineers and scientists at R.C.A.'s Data Systems Division in Van Nuys, California are currently engaged in creating new dimensions in the development and design of digital data processing and display systems, special purpose data handling devices, information storage and retrieval systems, automatic launch control and checkout systems, and electronic warfare systems.

Professional engineers and scientists interested in exploring career employment opportunities at R.C.A.'s Data Systems Division in Van Nuys, 30 miles from metropolitan Los Angeles, are invited to contact:

MR. A. R. FLOURNOY
RCA DATA SYSTEMS DIVISION
Dept. A-153
8500 Balboa Blvd.
Van Nuys, California

An Equal Opportunity Employer

The Most Trusted Name in Electronics
Just published—

THE COMPUTER REVOLUTION

by EDMUND C. BERKELEY
editor of Computers and Automation

A provocative study of the machines that are revolutionizing every aspect of our society, by a man who knows their history, understands their capabilities, and here foresees a vivid picture of the social implications of their work. $4.50 at all booksellers, or postpaid from DOUBLEDAY & COMPANY, Inc., Garden City, New York

Goussinsky, B. / Continuity and Number / Government Printing Press, 5 Rosenbaum St., Tel Aviv, Israel / 1959, printed, 31 pp., 50c.
The logical foundations of mathematics are examined, with an emphasis on continuity and discontinuity, and the "riddle of the irrational numbers." The author, who conducted research on the subject under sponsorship by the Cultural Council of the General Federation of Labour in Israel, analyzes the number concept, the line-point relation and the concept of infinity. The text covers, briefly, a wide range of topics, including: masses and sets, mathematical paradoxes, the atomistic theory, Zeno's paradox of the arrow, and real line-point relation and the concept of infinity. A portion of the book, presented in sixteen sections, and the loose-leaf form allows for insertion of a dictionary section. The book is designed to be used by those who are interested in non-technical language. An Appendix includes basic definitions and rules; "Reduction of Linear Signal-Flow Graphs"; "Study of Some Properties of Linear Systems by Flow Graphs," and "Principles of Calculation and Transformation of Network Parameters." The book is 144 pages, $6.95.

The principles of operating computer and peripheral equipment and methods for communication with the machines are here discussed. The author, an Associate Professor of Industrial Engineering at Stanford University, uses the IBM 650 as the typical machine. The book's seven chapters are: What is Data Processing?; Coding of Alphabetic and Numeric Characters; "Electronic Computer Organization; Preparation of a Computer Program; Program Testing, Isolation of Errors and Computer Operation; Controlling Machine Functions by Plug-board Wiring and "An Algorithmic Language (BALGOL)." The text is presented in clear and relatively non-technical language. An Appendix describes the Program Test Supervisory Routine which is used to test batches of

WHO'S WHO IN THE COMPUTER FIELD — CUMULATIVE EDITION, 1962

Computers and Automation will publish this fall a cumulative edition of "Who's Who in the Computer Field." If you are interested in computers, please fill in the following Who's Who entry form (which may be copied on any piece of paper) and send it to us for your free listing. If you have friends in the computer field, please call their attention to sending us their Who's Who entries. The cumulative edition will include only the entries of persons who send us their Who's Who information.

Name? (please print) ..
Your Address? ...
Your Organization?
Its Address? ...
Your Title? ..

Your Main Computer Interests? () Applications () Business () Construction () Design () Electronics () Logic () Mathematics () Programming () Sales () Other (specify):

Year of birth? ...
College or last school?
Year entered the computer field?
Occupation? ..
Anything else? (publications, distincions, etc.)

When you have filled in this entry form please send it to: Who's Who Editor, Computers and Automation, 815 Washington Street, Newtonville 60, Mass.

On October 1, the Center became a non-profit educational institution and a part of the Baruch College-City University of New York System.

Your Organization?

Year of birth? ...
College or last school?
Year entered the computer field?
Occupation? ..
Anything else? (publications, distincions, etc.)

When you have filled in this entry form please send it to: Who's Who Editor, Computers and Automation, 815 Washington Street, Newtonville 60, Mass.

COMPUTERS and AUTOMATION for October, 1962

46
Management Decision Tester: Computer Used to Simulate Operations of Small Business

Alfred G. Dale
Bureau of Business Research
College of Business Administration
University of Texas
Austin, Texas

A debugged small business game for management training that allows the player to test tactics as well as grand strategy.

Existing computerized business games generally pose problems in a simulated environment to be designed to represent large-scale enterprises. The decision inputs required from participants in such games are usually on a grandiose scale and represent the allocation of very large expenditures at a top policy making level. The competitive environment is typically that of a closed oligopoly, in which participants may manipulate aggregate demand for their hypothetical products, as well as the allocation of demand within the industry. Whether or not such games adequately mirror the view from the board room of a large corporation, they clearly do not convey the flavor of managerial decision-making in smaller companies. Both have in common the requirement of resource allocation, but to the executive of a small company, the question of means is as important as the question of ends. His span of direct control over, and intervention in, the micro-processes of the enterprise is necessarily broader and deeper than that of his counterpart in the large company. He must be both strategist and tactician. He cannot, in general, avoid the administrative consequences of his major strategic decisions.

Small Business Game
The Texas Small Business Game is an attempt to construct an environment in which analogues of typical small business problems will be generated, and in which some of the skills necessary for their resolution can be illustrated.

Characteristics of the Model
The model permits competitive interaction among a maximum of ten competing companies operating manufacturing enterprises with initial assets of $250,000, and with 25-30 employees. They are producing a homogeneous (in the economic sense) small metal fitting used in building construction, and selling to construction contractors in a fairly well defined regional area. Aggregate demand for the product is externally determined. The small companies are also competing in the market with a number of much larger concerns who may unilaterally modify marketing procedures to the disadvantage of the small companies, with little fear of reprisal. In brief, the initial environmental situation is one in which the small companies occupy an essentially static and defensive position.

Internally, the scale of production facilities is non-optimal, inventories are relatively high, and the working capital situation is tight.

Trials of Small Business
These environmental and internal characteristics of the companies in the initial stage of the simulation typify the conditions under which many, perhaps most, small manufacturers live, and to which too many also succumb. In the long run, the success and viability of the small enterprise depends on how it adapts to its market environment, and how its internal operational procedures are organized. The small firm, operating in a restrictive competitive environment must seek to create or find a new set of conditions over which it can assert a greater measure of control, and within which it can reassert market initiative. Internally, because the firm does not possess the resources to cushion the consequences of poor decisions (a small company cannot launch an Edsel and survive its floundering), its information collection, analysis, and planning procedures should provide an adequate basis for necessary routine control over operations, and for rational risk-taking under conditions of uncertainty.

The Strategy Space
The Small Business Game permits solutions to the problem of initial environment via new product development and new geographic market penetration. An interesting and, in some respects, the key feature of the simulation is that while participants are given an elaborate scenario prior to play, describing the history and current conditions of the industry, the range of permissible strategies is not revealed. Participants are advised that they may request information of any type they desire, that is not included in their manual, or contained in the periodic feedback from the computer runs. They are also advised of the possibility of proposing changes in their method of operation. This open-end feature of the game has proved most successful. Psychologically, it leads participants to invest their mythical operations with a sort of auto-created reality. Pedagogically, it allows us to encourage players to recognize the existence of constraints, to seek relevant information in a specific type of problem context, and to propose solutions. The game administrator has an extensive pre-prepared information bank consisting of reports and data that cover most of the information typically requested during the course of a game. An inventive administrator can also produce relevant ad hoc information to supplement the prepackaged material at his dis-

Based on a paper presented at the National Meeting of the Association for Computing Machinery, Syracuse, N. Y., September, 1962.

1962
COMPUTERS and AUTOMATION for October, 1962
posal. We recognize, of course, that the market solutions permitted within the game are not necessarily relevant for all small companies under actual conditions. In post-game discussions with players we consider the solutions available within the model simply as particular instances of the general necessity for a small company to attempt to gain control over some of its environmental parameters.

Thirty-five Decision Variables

Operationally, the players are required to set values on up to 35 routine decision variables at each decision sequence, covering elements such as pricing, deployment and support of salesmen, production scheduling, short-term financing, and hiring and layoff of personnel. This relatively large number of inputs to the model, and the feedback in terms of manufacturing cost, financial status, and sales reports, puts a premium on adequate processing and analysis of internal accounting and other data.

Use of Computer

A group will take an average of one and a half hours to prepare a routine decision input. If nonroutine decisions are also in process, the time might be much longer. For this reason, we have never considered the game suitable for continuous sessions with rapid decision sequences. Data processing and keypunching take about thirty minutes. Running time on the 1604, exclusive of printing time, is less than three minutes when all sections of the model are being utilized. The model consists of three interlinked programs written in FORTRAN, one containing the demand model for the original geographic market area, together with all production and accounting models for all companies, one comprising the demand model for an additional market area, and a printing program to generate output for the companies and the administrator. The largest program uses about 12,000 words in the 1604, including arrays, although it has been compiled with modifications on a 7070 with 10K core.

The time requirements for the decision process, computer requirements, and the problems involved in small business in releasing managerial personnel for several days at a time, combined to suggest that use of the game by small business management would have to be incorporated in some type of discontinuous program organized so as to make minimal extra calls on executive time.

Experience With the Game

The gaming session plan adopted for a series of games initiated in September, last year, required participating groups to make decisions on their own time at 10-14 day intervals, mailing decisions to the University computer center for processing and running with a 2-3 day elapsed time between dispatch of the decisions and receipt of the results. Gaming sessions were organized in seven different cities, involving about 220 participants from 53 companies. Each gaming team consisted of officers from the same firm, an arrangement that permitted participants to organize decision-making sessions to suit their own convenience. After an initial briefing session, held as a joint meeting with all participants present, each team operated quite independently, subject only to the requirement that decisions be mailed in on designated dates. Each gaming session had a project representative in the locality for local liaison, but administration was centralized.

Results of Gaming

The sessions extended from September, 1961, to February, 1962, permitting play through twelve decision periods in most games. Aspects of a couple of the games are illustrated in the accompanying charts. The first shows the pricing patterns that developed in Game 1, with a steady initial decline in the average price of the original product to the $22 level, a period of stability in the middle game, and renewed competition in the closing periods. The red bars show the price ranges on the substitute new product, introduced in this game in the fourth quarter of play.

Contrast the pattern of Game 1 with that of Game 5. Again, there is an initial downward movement with a period of midgame stability, with prices tending to be somewhat lower than Game 1 for the original product. But aggressive price competition for the new product was characteristic almost from the outset, and the final stages of the game witnessed ruinous price cutting across the board among a group of companies laboring under chronic overcapacity.

The net income figures for Game 5 illustrate the dangerous state of the companies towards the end. The corporate histories in Game 1 tended to be more satisfactory, largely because the industry as a whole had not built an unsustainable capacity.

Advantages of the Small Business Game

Experience with the gaming sessions suggests that the technique we followed can be successfully applied in small business executive development programs. The two great advantages are, first, the possibility of efficiently and flexibly integrating program activity with other demands on participants' time, and, second, the high motivation and interest of participants in the problems generated by the simulation. Even though the gaming sessions extended over five months, we observed no significant diminution of interest.

Summary

In summary, we feel we have created a system suitable for middle-management training in larger small businesses and for top-management training in the smallest companies, that has been adequately debugged, and that can be used by interested organizations after minimal familiarization and set-up time. It appears to have particular training value in the following areas:

1. Use and analysis of internal accounting data for control and planning purposes.
2. Use and analysis of environmental information as a basis for planning.
3. Appreciation of the functional relationships existing within the total enterprise.
4. Emphasizing the need for evaluating information specific to a particular environment and acting upon it, rather than upon preconceived notions of what correct behavior may be.
Finally, the simulation illustrates the importance of certain principles crucial to the survival of the firm. For example, unbalanced inventory positions tend to cumulate rapidly in the simulation, and it is most difficult for players to recover from any severe erosion of their working capital position. Such principles may be clichés: but, one thing a businessman, and particularly an unsuccessful one, learns, both in the game and in the real world, is never to underestimate the value of a cliché.

ADP in the IRS
(Continued from Page 13)
in the direction of maintaining and promoting that asset. Voluntary compliance is sound and will remain that way as long as taxpayers know that the tax laws are equitably and fairly and justly administered—that each citizen bears the responsibility imposed on him by law. Strengthened tax administration contributes toward such assurance, and automatic data processing—the leading advancement in the field in many years—represents a major contribution to a strengthened tax administration.
CALENDAR OF COMING EVENTS

Oct. 7-12, 1962: AIEE Fall General Meeting, Pick-Congress Hotel, Chicago, Ill.; contact D. W. Gilman, AIEE, 345 East 47th St., New York 17, N. Y.

Nov. 4-7, 1962: 15th Annual Conf. on Elec. Tech. in Medicine and Biology, Conrad Hilton Hotel, Chicago, Ill.; contact Dr. J. E. Jacobs, 624 Lincoln Ave., Evanston, Ill.

Nov. 7-9, 1962: Data Processing Management Association South Central Div. Conference, Washington Youree Hotel, Shreveport, La.; contact J. D. Parker, Jr., Conference Chairman, P. O. Box 1724, Shreveport, La.

Dec. 3-7, 1962: Course in Mathematics of Information Storage and Retrieval, Georgia Institute of Technology, Atlanta 13, Ga.; contact Director, Department of Short Courses and Conferences, Georgia Institute of Technology, Atlanta 13, Ga.

Dec. 4-6, 1962: FJCC (Fall Joint Computer Conference), Sheraton Hotel, Philadelphia, Pa.; contact E. Gary Clark, Burroughs Research Center, Box 843, Paoli, Pa.

Feb. 4-8, 1963: ASTM Committee Week, Queen Elizabeth Hotel, Montreal, Canada

April 23-25, 1963: The Eleventh National Conference on Electromagnetic Relays, Student Union Bldg., Oklahoma State University, Stillwater, Okla.; contact Prof. Charles F. Cameron, Technical Coordinator of the NARM, Oklahoma State University School of Electrical Engineering, Stillwater, Okla.

May 20-22, 1963: National Telemetering Conference, Hilton Hotel, Albuquerque, N. M.; contact T. J. Hoban, NTC Program Chairman, Sandia Corp., P. O. Box 5800, Albuquerque, N. M.

Answers, Basic Source Information, Available to You from

COMPUTERS and AUTOMATION

DIRECTORY:
The Computer Directory and Buyers' Guide, 1962, 160 pages long (the June 1962 issue of COMPUTERS AND AUTOMATION), containing the following reference information:
Roster of Organizations in the Computer Field
Roster of Products and Services: Buyers' Guide to the Computer Field
Survey of Computing Services
Survey of consulting Services
Descriptions of Digital Computers
Survey of Commercial Analog Computers
Survey of Special Purpose Computers and Data Processors
Automatic Computing Machinery — List of Types
Components of Automatic Computing Machinery — List of Types
Over 500 Areas of Application of Computers
Computer Users Groups — Roster
Roster of School, College, and University Computing Centers
Robots — Roster of Organizations
Roster of Computer Associations

DIRECTORY...
...
Glossary of terms and expressions in the computer field:

NEW PATENTS
RAYMOND R. SKOLNICK
Reg. Patent Agent

The following is a compilation of patents pertaining to computer and associated equipment from the "Official Gazette of the U. S. Patent Office," dates of issue as indicated. Each entry consists of patent number / inventor(s) / assignee / invention. Printed copies of patents may be obtained from the U. S. Commissioner of Patents, Washington 25, D.C., at a cost of $25 cents each.

July 3, 1962

3,012,904 / Andrew E. Brennenmann, Ralph B. De Lano, Jr., and Donald R. Young, Poughkeepsie, N. Y. / I.B.M. Corp., New York, N. Y., a corp. of New York / Logical and memory elements and circuits.

3,012,905 / Walter F. Kosonocky, Newark, N. J. / Radio Corp. of America, a corp. of Delaware / Memory systems.

3,012,906 / Gerhard Diks, 44 Morfelder Landstrasse, Frankfurt am Main, Germany / Storage of Signals.

July 10, 1962

3,013,515 / Eugene W. Sard, Flushing, N. Y. / U.S.A. as represented by the Secretary of the Army / Magnetic core serial adder.
Plays any tempo:

12 bit time,
24 bit time,
36 bit time,
48 bit time,
54 bit time.
Only the new Philco 1000 implements system conversion so quickly, so economically. For the Philco 1000 inputs information from any system’s word size that is a multiple of 6 data bits (12, 24, 36, 48, 54), and outputs the same information in any multiple of 6 bits. The secret is in the Philco 1000’s exclusive N-register.

Turns up the volume of the Philco 212

Fast, economical system conversion is just one example of easy transition to a host of new Philco processing economies. The Philco 1000 handles Input/Output conversion (binary-to-decimal and decimal-to-binary) and relieves the Philco 212 Central Processor of input formatting and verification, file searching, and output editing. Result: 212 computation and 1000 I/O processing jobs proceed simultaneously...they are not merely time-interlaced. And the combination of the 212/1000 provides even greater capacity for data volume.

Only the Philco 1000 delivers all these satellite computing capabilities:

- Communicates with all types of input-output devices.
 Reason: 3 microsecond memory satisfies the speed requirements of known devices.

- Communicates directly with the Philco 212 system.
 Reason: Can be linked directly to the Philco 212 magnetic core memory and all tapes within the 212 system.

- Capable of autonomous action and decision.
 Reason: Stored program design, with arithmetic and logical ability.

- Can be used as an independent processor at a remote location.
 Reason: Contains complete processing ability, including binary arithmetic feature for scientific jobs, and character orientation for commercial-type jobs.

SEE THE PHILCO 1000 IN OPERATION AT THE FALL JOINT COMPUTER CONFERENCE

PHILCO’S ON THE MOVE!

PHILCO

A SUBSIDIARY OF Ford Motor Company,

Computer Division, 3900 Welsh Road, Willow Grove, Penna.

Phone: 215-0L 9-7700
GLOSSARY OF COMPUTER TERMS

Computers and Automation's Fifth Edition of the

Glossary of Terms in Computers and Data Processing

96 pages long, this edition contains over 860 computer terms and expressions with their definitions, EXPLAINED so that people new to the computer field can understand them. (Our previous edition, October, 1956, contained 490 terms.) This is an invaluable guide to “understanding your way around” the computer field. Returnable for full refund within 10 days if not satisfactory. . . . $3.95

MAIL THIS COUPON, OR A COPY OF IT

To: COMPUTERS AND AUTOMATION
815 Washington St., R112, Newtonville 60, Mass.

□ Please send me the Glossary. I enclose $3.95.

Name..
Address ..

July 17, 1962

3,045,228 / Andrew J. Bullock, Jr., Ithaca, N. Y. / I.B.M. Corp., New York, N. Y., a corp. of New York / Magnetic core storage device.

July 24, 1962

3,046,924 / Miles C. Johnson, Mount Holly, N. J., and Thomas J. Birke, Westmont, N. J., U.S.A. as represented by the Secretary of Navy / Error Store and Reset Circuit.

3,046,526 / John R. Scantlin, Los Angeles, Calif. / Scantline Electronics, Inc., a corp. of Delaware / Selector Apparatus.

3,046,529 / George R. Briggs, Princeton, N. J. / Radio Corp. of America, a corp. of Delaware / Ferroelectric memory systems.

July 31, 1962

3,047,226 / Desmond R. Hearn, Dayton, and Ernest V. Gulden, Centerville, Ohio / The National Cash Register Co., Dayton, Ohio, a corp. of Maryland / Data analyzing and recording systems.

ADVERTISING INDEX

Following is the index of advertisements. Each item contains: Name and address of the advertiser / page number where the advertisement appears / name of agency if any.

Bendix Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif. / Page 43 / John B. Shaw Co., Inc.

California Computer Products, Inc., 305 Muller Ave., Anaheim, Calif. / Page 37 / Hal Stebbins, Inc.

Control Data Corp., 8100 34th Ave., So., Minneapolis 20, Minn. / Page 35 / Erwin Wasye, Ruthrauff & Ryan, Inc.

Dialight Corp., 60 Stewart Ave., Brooklyn 37, N. Y. / Page 51 / H. J. Gold Advertising

Doubleday & Co., Inc., Garden City, N. Y. / Page 46 / Franklin Spier, Inc.

LFE Electronics, A Div. of Laboratory for Electronics, Inc., 305 Webster St., Monterey, Calif. / Page 13 / Fred L. Diefendorf Agency

National Cash Register Co., Main & K Sts., Dayton 9, Ohio / Page 5 / McCann-Erickson, Inc.

RCA, Data Systems Div., 8500 Balboa Blvd., Van Nuys, Calif. / Page 45 / Al Paul Lefton Co., Inc.

RCA, Electronic Data Processing, Cherry Hill, Camden 8, N. J. / Pages 6, 7 / Al Paul Lefton Co., Inc.

Reeves Soundcraft Corp., Great Pasture Rd., Danbury, Conn. / Page 36 / The Wexton Co., Inc.

Technical Operations, Inc., 3600 M St., N.W., Washington 7, D. C. / Page 20 / Edwin F. Hall...
TAKE YOUR FIRST LOOK AT THE NEW CONTROL DATA 3600 COMPUTER SYSTEM

EXECUTES OVER 500,000 INSTRUCTIONS PER SECOND!

At this speed, a typical Control Data 3600 system can automatically interchange data with peripheral equipment at 4 million characters per second. Through additional data channels, interchange rates are smoothly expandable to 15 million characters per second. The 3600 memory is expandable (in 16,384 word increments) to 262,144 words*.

These and many other performance characteristics put the Control Data 3600 Computer in a class by itself. This is also true for the 3600 programming services.

The 3600 is designed to take full advantage of new programming systems as they are developed—and is already compatible with most systems existing today. Yet, it is priced less than any computer approaching its capabilities.

Talk to your Control Data representative soon about your computing problems and the new Control Data 3600 Computer System.

* (51-bit parity-checked words)

THE BASIC PROGRAMMING SYSTEMS OF THE 3600

MCS (Master Control System) FORTRAN ALGOL COBOL COMPASS 1604 COMPATIBILITY PACKAGE

Offices: Albuquerque • Beverly Hills • Birmingham • Boston • Chicago • Cleveland • Dallas • Dayton • Denver • Detroit • Honolulu • Houston • Ithaca • Kansas City • Minneapolis • Newark • Orlando • Palo Alto • Toronto • Washington, D.C.

8100 34th Avenue South
Minneapolis 20, Minnesota
Developed by Soundcraft for use in the RCA 301 Computer Disc File, this disc offers the highest pulse packing capability of any system today. From outer to inner tracks, 200 to 888 bits per inch can be recorded flawlessly—for a total of 220,000 bits per side! (7" diameter) Two basic Soundcraft accomplishments contribute to this remarkable performance, the magnetic medium and the special disc base. Soundcraft's new heavy duty high density oxide formulation combines remarkable wear life and recording characteristics. This same formulation is used in Soundcraft LWD Computer Tape, the finest heavy-duty, high-density digital tape made today. To assure perfect head intimacy, Soundcraft also developed the special polycarbonate resilient disc base to which the incredibly thin oxide coating is applied. And, the cost of this disc is up to 1,000 times less than that of comparable disc-type storage media! Whether your data storage and acquisition requirements call for Computer Tape or rigid surface devices, you'll do best with Soundcraft.

REEVES SOUNDCRAFT CORP.
Main Office: Great Pasture Rd., Danbury, Conn. • New York: 10 E. 52nd St. • Chicago: 28 E. Jackson Blvd. • Los Angeles: 342 N. LaBrea • Canadian Reps: Toronto • Vancouver