System Administrator's Reference Manual
(Command m-z)

Intel Processors
ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4 documentation, please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:
For bulk purchases in excess of 30 copies, please write to:

Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632

Or call: (201) 461-8441.

ATTENTION GOVERNMENT CUSTOMERS:
For GSA and other pricing information, please call (201) 767-5994.

Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Preface

UNIX System V Reference Manuals describe the interfaces and execution behavior of each System V component. The components of UNIX System V include the graphical user interface (GUI), Shell command line interface, application program interface (API) and Device Driver Interface / Driver Kernel Interface (DDI/DKI), as well as device special files, header files and other system files. The following table summarizes the general categories of manual pages:

Table 1: Manual Page Categories

<table>
<thead>
<tr>
<th>Description</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell & Command Line Interface</td>
<td></td>
</tr>
<tr>
<td>— General Purpose Utilities</td>
<td>1</td>
</tr>
<tr>
<td>— Maintenance Utilities</td>
<td>1M</td>
</tr>
<tr>
<td>Application Program Interface (API)</td>
<td></td>
</tr>
<tr>
<td>— UNIX System Calls</td>
<td>2</td>
</tr>
<tr>
<td>— C Language Libraries</td>
<td>3</td>
</tr>
<tr>
<td>System Files & Devices</td>
<td></td>
</tr>
<tr>
<td>— System File Formats</td>
<td>4</td>
</tr>
<tr>
<td>— Miscellaneous Facilities</td>
<td>5</td>
</tr>
<tr>
<td>— Special Files (Devices)</td>
<td>7</td>
</tr>
<tr>
<td>Device Driver Interface/Driver Kernel Interface (DDI/DKI)</td>
<td></td>
</tr>
<tr>
<td>— DDI/DKI Driver Data Definitions</td>
<td>D1</td>
</tr>
<tr>
<td>— DDI/DKI Driver Entry Point Routines</td>
<td>D2</td>
</tr>
<tr>
<td>— DDI/DKI Kernel Utility Routines</td>
<td>D3</td>
</tr>
<tr>
<td>— DDI/DKI Kernel Data Structures</td>
<td>D4</td>
</tr>
<tr>
<td>— DDI/DKI Kernel Defines</td>
<td>D5</td>
</tr>
</tbody>
</table>

Reference Manuals supply technical reference information that describes the source-code interfaces and run-time behavior of each component of System V on a component by component basis. As concise reference material, manual pages assume some familiarity with the information.
Organization of the Reference Manuals

Each section in a Reference Manual consists of a number of independent entries called "manual pages." A "Table of Contents" precedes each manual page section. Within each section, manual pages are arranged in alphabetical order based on the name of the component described by that manual page. Some manual pages may describe several commands, functions, or other type of system facility. In such cases, the manual page appears only once in a table of contents, alphabetized under its "primary" name, the name that appears at the upper corners of each manual page. For each Reference Manual, a "Permuted Index" of all manual pages for that manual is provided at the back of the book.

This latest edition of the UNIX System V Release 4 Reference Manuals has reorganized the reference manuals to make it easier to identify which manual contains a given manual page, and to locate the manual page within that manual. The new organization of the UNIX System V Reference Manuals

- includes all reference manual pages found in various Programmer’s Guides in the Reference Manuals
- makes each manual page unique, rather than repeating it in different Reference Manuals
- sorts each section together, rather than breaking it out by subsection, for example, all of Section 1, including subsections 1C, 1F, 1M, and 1N
- precedes each section with its own table of contents

The set of UNIX System V Reference Manuals organizes the manual pages into volumes aligned with the different types of interfaces that make up UNIX System V Release 4. Manual pages for the same type of components are found in the same volume, and components of different types are found in separate volumes. For example, you will no longer find programming commands (cc, make, and so on) in the Programmer’s Reference Manual. Those commands have been moved to join Section 1 commands in the User’s Reference Manual/System Administrator’s Reference Manual. At the same time, all Section 4, 5 and 7 manual pages, which describe various system files and special files (devices) and were previously located in the Programmer’s Reference Manual or the System Administrator’s Reference Manual, have been consolidated in a new, separate volume entitled System Files and Devices Reference Manual. The table on the following page lists the contents of the new complete set of Reference Manuals:
Table 2: The UNIX System V Release 4 Reference Manual Set

<table>
<thead>
<tr>
<th>Reference Manual</th>
<th>Description</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>User’s Reference Manual/ System Administrator’s Reference Manual (Commands a - 1 and m - z)</td>
<td>General-Purpose User Commands</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Basic Networking Commands</td>
<td>1C</td>
</tr>
<tr>
<td></td>
<td>Form and Menu Language Interpreter</td>
<td>1F</td>
</tr>
<tr>
<td></td>
<td>System Maintenance Commands</td>
<td>1M</td>
</tr>
<tr>
<td></td>
<td>Enhanced Networking Commands</td>
<td>1N</td>
</tr>
<tr>
<td></td>
<td>BSD System Compatibility Library</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Standard C Library</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>Executable and Linking Format Library</td>
<td>3E</td>
</tr>
<tr>
<td></td>
<td>General-Purpose Library</td>
<td>3G</td>
</tr>
<tr>
<td></td>
<td>Math Library</td>
<td>3M</td>
</tr>
<tr>
<td></td>
<td>Networking Library</td>
<td>3N</td>
</tr>
<tr>
<td></td>
<td>Standard I/O Library</td>
<td>3S</td>
</tr>
<tr>
<td></td>
<td>Specialized Library</td>
<td>3X</td>
</tr>
<tr>
<td></td>
<td>X Window System Toolkit</td>
<td>3Xt</td>
</tr>
<tr>
<td></td>
<td>OPEN LOOK Intrinsics Toolkit</td>
<td>3W</td>
</tr>
<tr>
<td>System Files and Devices Reference Manual</td>
<td>System File Formats</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Facilities</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Special Files (Devices)</td>
<td>7</td>
</tr>
<tr>
<td>Device Driver Interface/ Driver Kernel Interface Reference Manual</td>
<td>DDI/DKI Driver Data Definitions</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Driver Entry Point Routines</td>
<td>D2</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Kernel Utility Routines</td>
<td>D3</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Kernel Data Structures</td>
<td>D4</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Kernel Defines</td>
<td>D5</td>
</tr>
</tbody>
</table>
Reference Manual Index

A "Permuted Index" for this reference manual is provided at the back. The Permuted Index is a list of keywords, alphabetized in the second of three columns, together with the context in which each keyword is found. The manual page that produced an entry is listed in the right column.

Entries are identified with their section numbers shown in parentheses. This is important because there is considerable duplication of names among the sections, arising principally from commands and functions that exist only to exercise a particular system call.

The index is produced by rotating the NAME section of each manual page to alphabetize each keyword in it. Words that cannot fit in the middle column are rotated into the left column. If the entry is still too long, some words are omitted, and their omission is indicated with a slash ("/").

Here is an example of some of the entries produced for the manual pages rand(3C), sleep(1), sleep(3), and sleep(3C):

![Figure 1: Sample of a Permuted Index](image)

- generator rand, srand simple random number rand(3C)
- srand simple random number generator rand, rand(3C)
- rand, srand simple random number generator rand(3C)
- interval sleep suspend execution for an sleep(1)
- interval sleep suspend execution for an sleep (3)
- interval sleep suspend execution for an sleep(3C)
- generator rand, srand simple random number rand(3C)
Table of Contents

Section 1 – Commands a – I

intro(1) introduction to commands and application programs
accept, reject(1M) accept or reject print requests
acct: acctdisk, acctdusg, accton, acctwtmp closewtmp, utmp2wtmp(1M)

acctcns(1M) overview of accounting and miscellaneous accounting commands
acctcom(1) search and print process accounting file(s)
acctcon, acctcon1, acctcon2(1M) connect-time accounting
acctmerg(1M) merge or add total accounting files
acctprc, acctprc1, acctprc2(1M) process accounting
chargefee, cpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,
runacct, shutacct, startup, turnacct(1M) shell procedures for accounting
addbib(1) create or extend a bibliographic database
admin(1) create and administer SCCS files
apropos(1) locate commands by keyword lookup
ar(1) maintain portable archive or library
arch(1) display the architecture of the current host
arp(1M) address resolution display and control
as(1) assembler
at, batch(1) execute commands at a later time
atq(1) display the jobs queued to run at specified times
atrm(1) remove jobs spooled by at or batch
automount(1M) automatically mount NFS file systems
autopush(1M) configure lists of automatically pushed STREAMS modules
awk(1) pattern scanning and processing language
backup(1M) initiate or control a system backup session
backup(1) perform backup functions
banner(1) make posters
basename, dirname(1) deliver portions of path names
basename(1) display portions of pathnames
bc(1) arbitrary-precision arithmetic language
bdiff(1) big diff
bfs(1) big file scanner
biff(1) give notice of incoming mail messages
biod(1M) NFS daemon
Table of Contents

bkexcept(1M) .. change or display an exception list for incremental backups
bkhistory(1M) .. report on completed backup operations
bkoper(1M) .. interact with backup operations to service media insertion prompts
bkreg(1M) .. change or display the contents of a backup register
bkstatus(1M) .. display the status of backup operations
boot(1M) .. UNIX system boot program
bootparamd(1M) .. boot parameter server
brc, bcheckrc(1M) .. system initialization procedures
cal(1) .. print calendar
calendar(1) .. reminder service
captoinfo(1M) .. convert a termcap description into a terminfo description
cat(1) .. concatenate and print files
catman(1M) .. create the cat files for the manual
cb(1) .. C program beautifier
cc(1) .. C compiler
cdc(1) ..
checkfsys(1M) .. check a file system
checknr(1) .. check nroff and troff input files; report possible errors
chgrp(1) .. change the group ownership of a file
chkey(1) .. change user encryption key
chmod(1) .. change file mode
chown(1) .. change file owner
chown(1) .. change file owner
chroot(1M) .. change root directory for a command
chrbl(1M) .. generate character classification and conversion tables
ckbinarsys(1M) .. determine whether remote system can accept binary messages
ckbupsd(1M) .. check file system backup schedule
ckdate, errdate, helpdate, valdate(1) prompt for and validate a date
ckgid, errgid, helpgid, valgid(1) prompt for and validate a group ID
ckint(1) .. display a prompt; verify and return an integer value
ckitem(1) .. build a menu; prompt for and return a menu item
ckkeywd(1) .. prompt for and validate a keyword
ckpath(1) .. display a prompt; verify and return a pathname
ckrange(1) .. prompt for and validate an integer
ckstr(1) .. display a prompt; verify and return a string answer
cktime(1) .. display a prompt; verify and return a time of day
ckuid(1) .. prompt for and validate a user ID
Table of Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ckyorn(1)</td>
<td>Prompt for and validate yes/no</td>
</tr>
<tr>
<td>clear(1)</td>
<td>Clear the terminal screen</td>
</tr>
<tr>
<td>cmp(1)</td>
<td>Compare two files</td>
</tr>
<tr>
<td>cof2elf(1)</td>
<td>COFF to ELF object file translation</td>
</tr>
<tr>
<td>col(1)</td>
<td>Filter reverse line-feeds</td>
</tr>
<tr>
<td>colltbl(1M)</td>
<td>Create collation database</td>
</tr>
<tr>
<td>comb(1)</td>
<td>Combine SCCS deltas</td>
</tr>
<tr>
<td>comm(1)</td>
<td>Select or reject lines common to two sorted files</td>
</tr>
<tr>
<td>compress, uncompress, zcat(1)</td>
<td>Compress data for storage, uncompress and display compressed files</td>
</tr>
<tr>
<td>comsat, in.comsat(1M)</td>
<td>Biff server</td>
</tr>
<tr>
<td>conflgs(1M)</td>
<td>Change and display console flags</td>
</tr>
<tr>
<td>convert(1)</td>
<td>Convert archive files to common formats</td>
</tr>
<tr>
<td>cocreate, cosend, cocheck, coreceive, codestroy(1F)</td>
<td>Communicate with a process</td>
</tr>
<tr>
<td>copy(1)</td>
<td>Copy groups of files</td>
</tr>
<tr>
<td>cp(1)</td>
<td>Copy files</td>
</tr>
<tr>
<td>cpio(1)</td>
<td>Copy file archives in and out</td>
</tr>
<tr>
<td>crash(1M)</td>
<td>Examine system images</td>
</tr>
<tr>
<td>cron(1M)</td>
<td>Clock daemon</td>
</tr>
<tr>
<td>crontab(1)</td>
<td>User crontab file</td>
</tr>
<tr>
<td>crypt(1)</td>
<td>Encode/decode</td>
</tr>
<tr>
<td>cscope(1)</td>
<td>Interactively examine a C program</td>
</tr>
<tr>
<td>csh(1)</td>
<td>Shell command interpreter with a C-like syntax</td>
</tr>
<tr>
<td>csplit(1)</td>
<td>Context split</td>
</tr>
<tr>
<td>ct(1C)</td>
<td>Spawn login to a remote terminal</td>
</tr>
<tr>
<td>ctags(1)</td>
<td>Create a tags file for use with vi</td>
</tr>
<tr>
<td>ctrace(1)</td>
<td>C program debugger</td>
</tr>
<tr>
<td>cu(1C)</td>
<td>Call another UNIX system</td>
</tr>
<tr>
<td>custom(1M)</td>
<td>Install specific portions of a UNIX package</td>
</tr>
<tr>
<td>custom(1)</td>
<td>Install specific portions of certain UNIX or XENIX packages</td>
</tr>
<tr>
<td>cut(1)</td>
<td>Cut out selected fields of each line of a file</td>
</tr>
<tr>
<td>cvtomflib(1)</td>
<td>Convert OMF (XENIX) libraries to ELF</td>
</tr>
<tr>
<td>cxref(1)</td>
<td>Generate C program cross-reference</td>
</tr>
<tr>
<td>date(1)</td>
<td>Print and set the date</td>
</tr>
<tr>
<td>dbcmd(1M)</td>
<td>Load command and macro files into a kernel executable file</td>
</tr>
<tr>
<td>dbsym(1M)</td>
<td>Add symbols to kernel debugger</td>
</tr>
<tr>
<td>dc(1)</td>
<td>Desk calculator</td>
</tr>
<tr>
<td>dcopy (generic)(1M)</td>
<td>Copy file systems for optimal access time</td>
</tr>
<tr>
<td>dcopy (s5)(1M)</td>
<td>Copy s5 file systems for optimal access time</td>
</tr>
<tr>
<td>dd(1M)</td>
<td>Convert and copy a file</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>delsysadm(IM)</td>
<td>sysadm interface menu or task removal tool</td>
</tr>
<tr>
<td>delta(1)</td>
<td>make a delta (change) to an SCCS file</td>
</tr>
<tr>
<td>deroff(l)</td>
<td>remove nroff/troff, tbl, and eqn constructs</td>
</tr>
<tr>
<td>devattr(1M)</td>
<td>lists device attributes</td>
</tr>
<tr>
<td>devfree(IM)</td>
<td>release devices from exclusive use</td>
</tr>
<tr>
<td>devreserv(IM)</td>
<td>reserve devices for exclusive use</td>
</tr>
<tr>
<td>df (generic), dfspace(IM)</td>
<td>report number of free disk blocks and files/free disk space</td>
</tr>
<tr>
<td>df (ufs)(1M)</td>
<td>report number of free disk blocks and i-nodes for ufs file systems</td>
</tr>
<tr>
<td>df(1)</td>
<td>report free disk space on file systems</td>
</tr>
<tr>
<td>dfmounts(IM)</td>
<td>display mounted resource information</td>
</tr>
<tr>
<td>dfmounts(IM)</td>
<td>display mounted NFS resource information</td>
</tr>
<tr>
<td>dfmounts(IM)</td>
<td>display mounted RFS resource information</td>
</tr>
<tr>
<td>dfshares(IM)</td>
<td>list available resources from remote or local systems</td>
</tr>
<tr>
<td>dfshares(IM)</td>
<td>list available NFS resources from remote systems</td>
</tr>
<tr>
<td>dfshares(IM)</td>
<td>list available RFS resources from remote systems</td>
</tr>
<tr>
<td>diff(l)</td>
<td>differential file comparator</td>
</tr>
<tr>
<td>diff3(1)</td>
<td>3-way differential file comparison</td>
</tr>
<tr>
<td>diffmk(l)</td>
<td>mark differences between versions of a troff input file</td>
</tr>
<tr>
<td>dircmp(l)</td>
<td>directory comparison</td>
</tr>
<tr>
<td>dis(1)</td>
<td>object code disassembler</td>
</tr>
<tr>
<td>diskadd(IM)</td>
<td>disk set up utility</td>
</tr>
<tr>
<td>disksetup(IM)</td>
<td>disk set up utility</td>
</tr>
<tr>
<td>diskusg(IM)</td>
<td>generate disk accounting data by user ID</td>
</tr>
<tr>
<td>dispadmin(IM)</td>
<td>process scheduler administration</td>
</tr>
<tr>
<td>dispgid(l)</td>
<td>displays a list of all valid group names</td>
</tr>
<tr>
<td>dispuid(l)</td>
<td>displays a list of all valid user names</td>
</tr>
<tr>
<td>dname(IM)</td>
<td>print Remote File Sharing domain and network names</td>
</tr>
<tr>
<td>domainname(IM)</td>
<td>get/set name of current secure RPC domain</td>
</tr>
<tr>
<td>dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosls, dosrm, dosrmdir(1)</td>
<td>access and manipulate DOS files</td>
</tr>
<tr>
<td>download(1)</td>
<td>host resident PostScript font downloader</td>
</tr>
<tr>
<td>dpost(l)</td>
<td>troff postprocessor for PostScript printers</td>
</tr>
<tr>
<td>du(IM)</td>
<td>summarize disk usage</td>
</tr>
<tr>
<td>du(1M)</td>
<td>display the number of disk blocks used per directory or file</td>
</tr>
<tr>
<td>dump(1)</td>
<td>dump selected parts of an object file</td>
</tr>
<tr>
<td>echo(l)</td>
<td>echo arguments</td>
</tr>
<tr>
<td>echo(1F)</td>
<td>put string on virtual output</td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>echo(1)</td>
<td>echo arguments</td>
</tr>
<tr>
<td>ed, red(1)</td>
<td>text editor (variant of ex for casual users)</td>
</tr>
<tr>
<td>edquota(1M)</td>
<td>edit user quotas</td>
</tr>
<tr>
<td>edsysadm(1M)</td>
<td>sysadm interface editing tool</td>
</tr>
<tr>
<td>edvtoc(1M)</td>
<td>VTOC (Volume Table of Contents) editing utility</td>
</tr>
<tr>
<td>egrep(1)</td>
<td>search a file for a pattern using full regular expressions</td>
</tr>
<tr>
<td>enable, disable(1)</td>
<td>enable/disable LP printers</td>
</tr>
<tr>
<td>env(1)</td>
<td>set environment for command execution</td>
</tr>
<tr>
<td>eqn, neqn, checkeq(1)</td>
<td>typeset mathematics</td>
</tr>
<tr>
<td>evgainit(1M)</td>
<td>Extended VGA keyboard/display driver initialization</td>
</tr>
<tr>
<td>ex(1)</td>
<td>text editor</td>
</tr>
<tr>
<td>expr(1)</td>
<td>evaluate arguments as an expression</td>
</tr>
<tr>
<td>exstr(1)</td>
<td>extract strings from source files</td>
</tr>
<tr>
<td>face(1)</td>
<td>executable for the Framed Access Command Environment Interface</td>
</tr>
<tr>
<td>factor(1)</td>
<td>obtain the prime factors of a number</td>
</tr>
<tr>
<td>fastboot, fasthalt(1M)</td>
<td>reboot/halt the system without checking the disks</td>
</tr>
<tr>
<td>fdetach(1M)</td>
<td>detach a name from a STREAMS-based file descriptor</td>
</tr>
<tr>
<td>fdisk(1M)</td>
<td>create or modify hard disk partition table</td>
</tr>
<tr>
<td>fdp(1M)</td>
<td>create, or restore from, a full file system archive</td>
</tr>
<tr>
<td>ff (generic)(1M)</td>
<td>list file names and statistics for a file system</td>
</tr>
<tr>
<td>ff (s5)(1M)</td>
<td>display i-list information</td>
</tr>
<tr>
<td>ff (ufs)(1M)</td>
<td>list file names and statistics for a ufs file system</td>
</tr>
<tr>
<td>ffile(1M)</td>
<td>create, or restore from, a full file system archive</td>
</tr>
<tr>
<td>fgrep(1)</td>
<td>search a file for a character string</td>
</tr>
<tr>
<td>file(1)</td>
<td>determine file type</td>
</tr>
<tr>
<td>fimage(1M)</td>
<td>create, restore an image archive of a filesystem</td>
</tr>
<tr>
<td>find(1)</td>
<td>find files</td>
</tr>
<tr>
<td>finger(1)</td>
<td>display information about local and remote users</td>
</tr>
<tr>
<td>fingerd, in.fingerd(1M)</td>
<td>remote user information server</td>
</tr>
<tr>
<td>fixperm(1M)</td>
<td>correct or initialize XENIX file permissions and ownership</td>
</tr>
<tr>
<td>fixperm(1)</td>
<td>correct or initialize file permissions and ownership</td>
</tr>
<tr>
<td>fixshlib(1M)</td>
<td>alters executables to call SCO UNIX System V/386 Release 3.2-compatible libnsl</td>
</tr>
<tr>
<td>fmlcut(IF)</td>
<td>cut out selected fields of each line of a file</td>
</tr>
<tr>
<td>fmlexpr(IF)</td>
<td>evaluate arguments as an expression</td>
</tr>
<tr>
<td>fmlgrep(IF)</td>
<td>search a file for a pattern</td>
</tr>
<tr>
<td>fml(1)</td>
<td>invoke FMLI</td>
</tr>
<tr>
<td>fmt(1)</td>
<td>simple text formatters</td>
</tr>
<tr>
<td>fmtmsg(1)</td>
<td>display a message on stderr or system console</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>fold(1)</td>
<td>fold long lines</td>
</tr>
<tr>
<td>format(1M)</td>
<td>format floppy disk tracks</td>
</tr>
<tr>
<td>fromsmtp(1M)</td>
<td>receive RFC822 mail from SMTP</td>
</tr>
<tr>
<td>fsba(1M)</td>
<td>file system block analyzer</td>
</tr>
<tr>
<td>fsck (generic)(1M)</td>
<td>check and repair file systems</td>
</tr>
<tr>
<td>fsck (bfs)(1M)</td>
<td>check and repair bfs file systems</td>
</tr>
<tr>
<td>fsck (s5)(1M)</td>
<td>check and repair s5 file systems</td>
</tr>
<tr>
<td>fsck (ufs)(1M)</td>
<td>file system consistency check and interactive repair</td>
</tr>
<tr>
<td>fsdb (generic)(1M)</td>
<td>file system debugger</td>
</tr>
<tr>
<td>fsdb (s5)(1M)</td>
<td>s5 file system debugger</td>
</tr>
<tr>
<td>fsdb (ufs)(1M)</td>
<td>ufs file system debugger</td>
</tr>
<tr>
<td>fsirand(1)</td>
<td>install random inode generation numbers</td>
</tr>
<tr>
<td>fstyp (generic)(1M)</td>
<td>determine file system type</td>
</tr>
<tr>
<td>ftp(1)</td>
<td>file transfer program</td>
</tr>
<tr>
<td>ftpd(1M)</td>
<td>file transfer protocol server</td>
</tr>
<tr>
<td>fumount(1M)</td>
<td>forced unmount of advertised resources</td>
</tr>
<tr>
<td>fusage(1M)</td>
<td>disk access profiler</td>
</tr>
<tr>
<td>fuser(1M)</td>
<td>identify processes using a file or file structure</td>
</tr>
<tr>
<td>fwtmp, wtmpfix(1M)</td>
<td>manipulate connect accounting records</td>
</tr>
<tr>
<td>gcore(l)</td>
<td>get core images of running processes</td>
</tr>
<tr>
<td>gencat(l)</td>
<td>generate a formatted message catalogue</td>
</tr>
<tr>
<td>gencc(lM)</td>
<td>create a front-end to the cc command</td>
</tr>
<tr>
<td>get(l)</td>
<td>get a version of an SCCS file</td>
</tr>
<tr>
<td>getdgrp(1M)</td>
<td>lists device groups which contain devices that match criteria</td>
</tr>
<tr>
<td>getfrm(IF)</td>
<td>returns the current frameID number</td>
</tr>
<tr>
<td>getitems(IF)</td>
<td>return a list of currently marked menu items</td>
</tr>
<tr>
<td>getopt(l)</td>
<td>parse command options</td>
</tr>
<tr>
<td>getopt, getoptcvt(l)</td>
<td>parse command options</td>
</tr>
<tr>
<td>gettable(1M)</td>
<td>get DoD Internet format host table from a host</td>
</tr>
<tr>
<td>gettext(l)</td>
<td>retrieve a text string from a message data base</td>
</tr>
<tr>
<td>getty(1M)</td>
<td>set terminal type, modes, speed, and line discipline</td>
</tr>
<tr>
<td>getvol(1M)</td>
<td>verifies device accessibility</td>
</tr>
<tr>
<td>grep(l)</td>
<td>search a file for a pattern</td>
</tr>
<tr>
<td>groupadd(1M)</td>
<td>add (create) a new group definition on the system</td>
</tr>
<tr>
<td>groupdel(1M)</td>
<td>delete a group definition from the system</td>
</tr>
<tr>
<td>groupmod(1M)</td>
<td>modify a group definition on the system</td>
</tr>
<tr>
<td>groups(1)</td>
<td>print group membership of user</td>
</tr>
<tr>
<td>groups(1)</td>
<td>display a user's group memberships</td>
</tr>
<tr>
<td>grpck(1M)</td>
<td>check group database entries</td>
</tr>
</tbody>
</table>
halt(1M) ... stop the processor
hd(1) ... display files in hexadecimal format
head(1) ... display first few lines of files
help(1) ... ask for help with message numbers or SCCS commands
hostid(1) .. print the numeric identifier of the current host
hostname(1) ... set or print name of current host system
htable(1M) ... convert DoD Internet format host table
iconv(1) .. code set conversion utility
id(1M) ... print the user name and ID, and group name and ID
idbuild(1M) .. build new UNIX System kernel
idcheck(1M) .. returns selected information
idconfig(1M) .. produce a new kernel configuration
idinstall(1M) .. add, delete, update, or get device driver configuration data
idload(1M) .. Remote File Sharing user and group mapping
idmkninit(1M) ... reads files containing specifications
idmknod(1M) .. removes nodes and reads specifications of nodes
idmknunix(1M) ... build new UNIX System kernel
idspace(1M) .. investigates free space
idtune(1M) .. attempts to set value of a tunable parameter
ifconfig(1M) .. configure network interface parameters
incfile(1M) .. create, restore an incremental filesystem archive
indicator(1F) .. display application specific alarms and/or the “working” indicator
indxbib(1) .. create an inverted index to a bibliographic database
inetd(1M) ... Internet services daemon
infocmp(1M) .. compare or print out terminfo descriptions
init, telinit(1M) .. process control initialization
install(1M) .. install commands
install(1) .. install files
installf(1M) .. add a file to the software installation database
ipcrm(1) .. remove a message queue, semaphore set, or shared memory ID
ipcs(1) ... report inter-process communication facilities status
ismpx(1) .. return windowing terminal state
join(1) ... relational database operator
jterm(1) ... reset layer of windowing terminal
jwin(1) ... print size of layer
kcrash(1M) .. examine system images
kdb(1M) ... kernel debugger
kdb(1M) ... multiprocessor kernel debugger
keylogin(1) .. decrypt and store secret key
keyserv(1M) .. server for storing public and private keys
Table of Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kill(1)</td>
<td>terminate a process by default</td>
</tr>
<tr>
<td>killall(1M)</td>
<td>kill all active processes</td>
</tr>
<tr>
<td>ksh, rksh(1)</td>
<td>KornShell, a standard/restricted command and programming language</td>
</tr>
<tr>
<td>labelit (generic)(1M)</td>
<td>provide labels for file systems</td>
</tr>
<tr>
<td>labelit (s5)(1M)</td>
<td>provide labels for s5 file systems</td>
</tr>
<tr>
<td>labelit (ufs)(1M)</td>
<td>provide labels for ufs file systems</td>
</tr>
<tr>
<td>last(1)</td>
<td>indicate last user or terminal logins</td>
</tr>
<tr>
<td>lastcomm(1)</td>
<td>show the last commands executed, in reverse order</td>
</tr>
<tr>
<td>layers(1)</td>
<td>layer multiplexor for windowing terminals</td>
</tr>
<tr>
<td>ld(1)</td>
<td>link editor for object files</td>
</tr>
<tr>
<td>ld(1)</td>
<td>link editor, dynamic link editor</td>
</tr>
<tr>
<td>ldd(1)</td>
<td>list dynamic dependencies</td>
</tr>
<tr>
<td>ldysysdump(1M)</td>
<td>load system dump from floppy diskettes</td>
</tr>
<tr>
<td>lex(1)</td>
<td>generate programs for simple lexical tasks</td>
</tr>
<tr>
<td>line(1)</td>
<td>read one line</td>
</tr>
<tr>
<td>link, unlink(1M)</td>
<td>link and unlink files and directories</td>
</tr>
<tr>
<td>lint(1)</td>
<td>a C program checker</td>
</tr>
<tr>
<td>listdgrp(1M)</td>
<td>lists members of a device group</td>
</tr>
<tr>
<td>listen(1M)</td>
<td>network listener daemon</td>
</tr>
<tr>
<td>listusers(1)</td>
<td>list user login information</td>
</tr>
<tr>
<td>ln(1)</td>
<td>link files</td>
</tr>
<tr>
<td>ln(1)</td>
<td>make hard or symbolic links to files</td>
</tr>
<tr>
<td>lockd(1M)</td>
<td>network lock daemon</td>
</tr>
<tr>
<td>logger(1)</td>
<td>add entries to the system log</td>
</tr>
<tr>
<td>login(1)</td>
<td>sign on</td>
</tr>
<tr>
<td>logins(1M)</td>
<td>list user and system login information</td>
</tr>
<tr>
<td>logname(1)</td>
<td>get login name</td>
</tr>
<tr>
<td>look(1)</td>
<td>find words in the system dictionary or lines in a sorted list</td>
</tr>
<tr>
<td>lookbib(1)</td>
<td>find references in a bibliographic database</td>
</tr>
<tr>
<td>lorder(1)</td>
<td>find ordering relation for an object library</td>
</tr>
<tr>
<td>lp, cancel(1)</td>
<td>send/cancel requests to an LP print service</td>
</tr>
<tr>
<td>lpadmin(1M)</td>
<td>configure the LP print service</td>
</tr>
<tr>
<td>lpc(1M)</td>
<td>line printer control program</td>
</tr>
<tr>
<td>lpfilter(1M)</td>
<td>administer filters used with the LP print service</td>
</tr>
<tr>
<td>lpforms(1M)</td>
<td>administer forms used with the LP print service</td>
</tr>
<tr>
<td>lpq(1)</td>
<td>display the queue of printer jobs</td>
</tr>
<tr>
<td>lpr(1)</td>
<td>send a job to the printer</td>
</tr>
<tr>
<td>lprm(1)</td>
<td>remove jobs from the printer queue</td>
</tr>
<tr>
<td>lprof(1)</td>
<td>display line-by-line execution count profile data</td>
</tr>
<tr>
<td>lpsched, lpstart, lpmove(1M)</td>
<td>start/stop the LP print service and move requests</td>
</tr>
</tbody>
</table>
Section 1 – Commands m – z

m4(1) ... macro processor
mach(1) ... display the processor type of the current host
machid(1) ... get processor type truth value
mail, rmail(1) ... read mail or send mail to users
mail_pipe(1M) ... invoke recipient command for incoming mail
mailalias(1) ... translate mail alias names
mailstats(1M) .. print statistics collected by sendmail
mailx(1) ... interactive message processing system
make(1) ... maintain, update, and regenerate groups of programs
makedbm(1M) .. make a Network Information Service (NIS) dbm file
makefsys(1M) ... create a file system
makekey(1) ... generate encryption key
man(1) ... display reference manual pages; find reference pages by keyword
mapchan(1M) ... Configure tty device mapping
mapkey, mapscrn, mapstr(1M) .. configure monitor screen mapping
maplocale(1M) .. convert Release 4 locale information to different format
mconnect(1M) .. connect to SMTP mail server socket
mcs(1) ... manipulate the comment section of an object file
msg(1) ... permit or deny messages
message(1F) ... put arguments on FMLI message line
migration(1M) .. move an archive from one set of volumes to another
mkdir(1) ... make directories
mkfifo(1M) ... make FIFO special file
mkfs (generic)(1M) .. construct a file system
mkfs (bfs)(1M) .. construct a boot file system
mkfs (s5)(1M) .. construct an s5 file system
mkfs (ufs)(1M) .. construct a ufs file system
mkmsgs(1) .. create message files for use by gettxt
mknod (1M) .. make a special file
mknod (1M) .. make a special file
mkpart (1M) .. disk maintenance utility
montbl (1M) .. create monetary database
more, page(1) .. browse or page through a text file
mount, umount (generic) (1M) mount or unmount file systems and remote resources
mount (bfs) (1M) .. mount bfs file systems
mount (1M) .. mount remote NFS resources
mount (1M) .. mount remote resources
mount (s5) (1M) .. mount an s5 file system
mount (ufs) (1M) .. mount ufs file systems
mountall, umountall (1M) mount, unmount multiple file systems
mountd (1M) .. NFS mount request server
mountfsys, umountfsys (1M) mount, unmount a file system
mouseadmin (1) .. mouse administration
mt (1) .. magnetic tape control
mv (1) .. move files
mvdir (1M) .. move a directory
named, in.named (1M) Internet domain name server
nawk (1) .. pattern scanning and processing language
nccheck (generic) (1M) generate a list of path names vs i-numbers
nccheck (s5) (1M) .. generate path names versus i-numbers for s5 file systems
nccheck (ufs) (1M) .. generate pathnames versus i-numbers for ufs file systems
netstat (1M) .. show network status
newaliases (1M) .. rebuild the data base for the mail aliases file
newform (1) .. change the format of a text file
newgrp (1M) .. log in to a new group
newkey (1M) .. create a new key in the publickey database
news (1) .. print news items
newvt (1) .. opens virtual terminals
nfsd (1M) .. NFS daemon
nfsstat (1M) .. Network File System statistics
nice (1) .. run a command at low priority
nl (1) .. line numbering filter
nlsadmin (1M) .. network listener service administration
nm (1) .. print name list of an object file
nohup (1) .. run a command immune to hangups and quits
notify (1) .. notify user of the arrival of new mail
nroff (1) .. format documents for display or line-printer
nslookup (1M) .. query name servers interactively
nsquery(1M) .. Remote File Sharing name server query
od(1) ... octal dump
offline(1M) ... take a processor offline
online(1M) ... bring a processor online
pack, pcat, unpack(1) compress and expand files
pagesize(1) ... display the size of a page of memory
partsize(1M) ... returns the size of the active UNIX System partition
password(1M) ... password files management
passwd(1) .. change login password and password attributes
paste(1) ... merge same lines of several files or subsequent lines of one file
pathconv(1F) .. search FMLI criteria for filename
pbind(1M) ... bind a process to a processor
pexbind(1M) .. exclusively bind processes to a processor
pg(1) ... file perusal filter for CRTs
pinfo(1M) .. get information about processors
ping(1M) ... send ICMP ECHO_REQUEST packets to network hosts
pkgadd(1M) .. transfer software package to the system
pkgask(1M) .. stores answers to a request script
pkgchk(1M) .. check accuracy of installation
pkginfo(1) .. display software package information
pkgmk(1) ... produce an installable package
pkgparam(1) .. displays package parameter values
pkgproto(1) .. generate a prototype file
pkgrm(1M) ... removes a package from the system
pkgtrans(1) .. translate package format
plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa,
t300, t300s, t4013, t450, tek(1G) graphics filters for various plotters
pmadm(1M) .. port monitor administration
postdaisy(1) ... PostScript translator for Diablo 630 files
postmd(1) ... PostScript translator for DMD bitmap files
postio(1) .. serial interface for PostScript printers
postmd(1) ... matrix display program for PostScript printers
postplot(1) .. PostScript translator for plot graphics files
postprint(1) .. PostScript translator for text files
postreverse(1) ... reverse the page order in a PostScript file
posttek(1) .. PostScript translator for tektronix 4014 files
pr(1) ... print files
printenv(1) .. display environment variables currently set
printf(1) .. print formatted output
priocntl(1) .. process scheduler control
prof(1) ... display profile data
profiler: prfld, prfstat, prfdc, prfsnap, prfpr(1M) UNIX system profiler
profiler: prfld, prfstat, prfdc, prfsnap, prfpr(1M) UNIX system profiler
prs(1) .. print an SCCS file
prt(1) ... display the delta and commentary history of an SCCS file
prtvtoc(1M) .. disk information display utility
ps(1) ... report process status
ps(1) ... report process status
ps(1) ... display the status of current processes
putdev(1) ... edits device table
putdgrp(1) ... edits device group table
pwck, grpck(1M) .. password/group file checkers
pwck(1M) .. check password database entries
pwconv(1M) .. install and update /etc/shadow with information from /etc/passwd
pwd(1) .. working directory name
quota(1M) ... summarize file system ownership
quota(1M) ... display a user’s disk quota and usage
quotacheck(1M) .. file system quota consistency checker
quotaon, quotaoff(1M) .. turn file system quotas on and off
random(1) .. generate a random number
rarpd(1M) .. DARPA Reverse Address Resolution Protocol server
rc0(1M) .. run commands performed to stop the operating system
rc2(1M) .. run commands performed for multi-user environment
rc6(1M) .. run commands performed to stop and reboot the operating system
rcp(1) .. remote file copy
rdate(1M) .. set system date from a remote host
readfile, longline(1F) .. reads file, gets longest line
reboot(1M) ... restart the operating system
refer(1) .. expand and insert references from a bibliographic database
regcmp(1) .. regular expression compile
regex(1F) ... match patterns against a string
reinit(1F) ... runs an initialization file
relogin(1M) ... rename login entry to show current layer
removef(1M) .. remove a file from software database
rename(1) ... change the name of a file
renice(1M) .. alter priority of running processes
repquota(1M) .. summarize quotas for a file system
reset(1F) .. reset the current form field to its default values
restore(1M) .. initiate restores of filesystems, data partitions, or disks
restore(1) .. restore file to original directory
rexecd(1M) ... remote execution server
rfadmin(1M) ... Remote File Sharing domain administration
rfpasswd(1M) .. change Remote File Sharing host password
rfstart(1M) ... start Remote File Sharing
rfstop(1M) ... stop the Remote File Sharing environment
rfuadmin(1M) .. Remote File Sharing notification shell script
rfudaemon(1M) .. Remote File Sharing daemon process
rlogin(1) ... remote login
rlogind(1M) .. remote login server
rm, rmdir(1) .. remove files or directories
rmdel(1) ... remove a delta from an SCCS file
rmntstat(1M) .. display mounted resource information
rmnttry(1M) .. attempt to mount queued remote resources
rmount(1M) ... queue remote resource mounts
rmountall, rumountall(1M) mount, unmount Remote File Sharing resources
roffbib(1) .. format and print a bibliographic database
route(1M) ... manually manipulate the routing tables
routed(1M) .. network routing daemon
rpcbind(1M) ... universal addresses to RPC program number mapper
rpcgen(1) ... an RPC protocol compiler
rpcinfo(1M) .. report RPC information
rsh(1) .. remote shell
rshd(1M) .. remote shell server
rsoper(1M) .. service pending restore requests and service media insertion prompts
rumount(1M) .. cancel queued remote resource request
run(1F) ... run an executable
runacct(1M) .. run daily accounting
ruptime(1) .. show host status of local machines
rusers(1) .. who’s logged in on local machines
rpc.rusersd(1M) .. network username server
rwall(1M) ... write to all users over a network
rpc.rwalld(1M) .. network rwall server
rwho(1) ... who’s logged in on local machines
rwhod, in.rwhod(1M) .. system status server
sac(1M) ... system status server
sacadm(1M) .. service access controller administration
sact(1) ... print current SCCS file editing activity
sadc, sal, sa2(1M) .. system activity report package
sag(1M) .. system activity graph
sar(1M) .. system activity reporter

Table of Contents

rexecd(1M) ... remote execution server
rfadmin(1M) ... Remote File Sharing domain administration
rfpasswd(1M) .. change Remote File Sharing host password
rfstart(1M) ... start Remote File Sharing
rfstop(1M) ... stop the Remote File Sharing environment
rfuadmin(1M) .. Remote File Sharing notification shell script
rfudaemon(1M) .. Remote File Sharing daemon process
rlogin(1) ... remote login
rlogind(1M) .. remote login server
rm, rmdir(1) .. remove files or directories
rmdel(1) ... remove a delta from an SCCS file
rmntstat(1M) .. display mounted resource information
rmnttry(1M) .. attempt to mount queued remote resources
rmount(1M) ... queue remote resource mounts
rmountall, rumountall(1M) mount, unmount Remote File Sharing resources
roffbib(1) .. format and print a bibliographic database
route(1M) ... manually manipulate the routing tables
routed(1M) .. network routing daemon
rpcbind(1M) ... universal addresses to RPC program number mapper
rpcgen(1) ... an RPC protocol compiler
rpcinfo(1M) .. report RPC information
rsh(1) .. remote shell
rshd(1M) .. remote shell server
rsoper(1M) .. service pending restore requests and service media insertion prompts
rumount(1M) .. cancel queued remote resource request
run(1F) ... run an executable
runacct(1M) .. run daily accounting
ruptime(1) .. show host status of local machines
rusers(1) .. who’s logged in on local machines
rpc.rusersd(1M) .. network username server
rwall(1M) ... write to all users over a network
rpc.rwalld(1M) .. network rwall server
rwho(1) ... who’s logged in on local machines
rwhod, in.rwhod(1M) .. system status server
sac(1M) ... system status server
sacadm(1M) .. service access controller administration
sact(1) ... print current SCCS file editing activity
sadc, sal, sa2(1M) .. system activity report package
sag(1M) .. system activity graph
sar(1M) .. system activity reporter
Table of Contents

sar(1M) ... system activity reporter
sccs(1) ... front end for the Source Code Control System (SCCS)
sccsdiff(1) .. compare two versions of an SCCS file
scompat(1) ... set up compatibility environment for console applications
script(1) .. make typescript of a terminal session
sdb(1) ... symbolic debugger
sdiff(1) .. print file differences side-by-side
sed(1) ... stream editor
sendmail(IM) .. send mail over the internet
set, unset(IF) .. set and unset local or global environment variables
setclk(IM) ... set system time from hardware clock
setcolor, setcolour(1) ... set screen color
setcolor(IF) .. redefine or create a color
setkey(1) ... assigns the function keys
setmnt(IM) ... establish mount table
settime(1) .. change the access and modification dates of files
setuname(IM) .. changes machine information
setup(1M) ... initialize system for first user
sh, jsh, rsh(1) ... command interpreters: standard shell, job control shell, restricted shell
share(IM) .. make local resource available for mounting by remote systems
share(IM) .. make local NFS resource available for mounting by remote systems
share(IM) .. make local RFS resource available for mounting by remote systems
shareall, unshareall(IM) share, unshare multiple resources
shell(IF) ... run a command using shell
shl(1) ... shell layer manager
shutdown(1M) .. shut down system, change system state
shutdown(1M) .. close down the system at a given time
size(1) ... print section sizes in bytes of object files
sleep(1) .. suspend execution for an interval
slink(1M) ... streams linker
smtp(1M) ... send SMTP mail to a remote host using Simple Mail Transfer Protocol
smtpd(1M) ... receive incoming SMTP messages
smtpqer(IM) .. queue mail for delivery by SMTP
smtpsched(IM) .. process messages queued in the SMTP mail queue
soelim(l) ... resolve and eliminate .so requests from nroff or troff input
sort(1) .. sort and/or merge files
sortbib(1) ... sort a bibliographic database
spell, hashmake, spellin, hashcheck, compress(l) ... find spelling errors
split(1) ... split a file into pieces
spray(1M) .. spray packets
Table of Contents

- `rpc.sprayd (1M)` spray server
- `srchtxt (1)` display contents of, or search for a text string in, message data bases
- `stattd (1M)` network status monitor
- `strace (1M)` print STREAMS trace messages
- `strchg, strconf (1)` change or query stream configuration
- `strclean (1M)` STREAMS error logger cleanup program
- `strerr (1M)` STREAMS error logger daemon
- `strings (1)` find printable strings in an object file or binary
- `strip (1)` strip symbol table, debugging and line number information from an object file
- `stty (1)` set the options for a terminal
- `stty (1M)` set the options for a terminal
- `sttydefs (1M)` maintain line settings and hunt sequences for TTY ports
- `su (1M)` become super-user or another user
- `sulogin (1M)` access single-user mode
- `sum (1)` print checksum and block count of a file
- `sum (1)` calculate a checksum for a file
- `swap (1M)` swap administrative interface
- `sync (1M)` update the super block
- `sysadm (1M)` visual interface to perform system administration
- `syslogd (1M)` log system messages
- `tabs (1)` set tabs on a terminal
- `tail (1)` deliver the last part of a file
- `talk (1)` talk to another user
- `talkd, in.talkd (1M)` server for talk program
- `tape (1)` magnetic tape maintenance
- `tapecntl (1)` tape control for tape device
- `tar (1)` tape file archiver
- `tbl (1)` format tables for nroff or troff
- `tcopy (1)` copy a magnetic tape
- `tee (1)` pipe fitting
- `telnet (1)` user interface to a remote system using the TELNET protocol
- `telnetd (1M)` DARPA TELNET protocol server
- `test (1)` condition evaluation command
- `test (1F)` condition evaluation command
- `tftp (1)` condition evaluation command
- `tftp (1)` trivial file transfer program
- `tftpd (1M)` DARPA Trivial File Transfer Protocol server
- `tic (1M)` terminfo compiler
- `time (1)` time a command
- `timex (1)` time a command; report process data and system activity
Table of Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tnamed, in.tnamed(1M)</td>
<td>DARPA trivial name server</td>
</tr>
<tr>
<td>tosmtp(1M)</td>
<td>send mail to SMTP</td>
</tr>
<tr>
<td>touch(1)</td>
<td>update access and modification times of a file</td>
</tr>
<tr>
<td>tput(1)</td>
<td>initialize a terminal or query terminfo database</td>
</tr>
<tr>
<td>tr(1)</td>
<td>translate characters</td>
</tr>
<tr>
<td>tr(1)</td>
<td>translate characters</td>
</tr>
<tr>
<td>trchan(1)</td>
<td>translate character sets</td>
</tr>
<tr>
<td>troff(1)</td>
<td>typeset or format documents</td>
</tr>
<tr>
<td>trpt(1M)</td>
<td>transliterate protocol trace</td>
</tr>
<tr>
<td>true, false(1)</td>
<td>provide truth values</td>
</tr>
<tr>
<td>truss(1)</td>
<td>trace system calls and signals</td>
</tr>
<tr>
<td>tset(1)</td>
<td>provide information to set terminal modes</td>
</tr>
<tr>
<td>tset, reset(1)</td>
<td>establish or restore terminal characteristics</td>
</tr>
<tr>
<td>tsort(1)</td>
<td>provide information for setting terminal modes</td>
</tr>
<tr>
<td>tty(1)</td>
<td>topological sort</td>
</tr>
<tr>
<td>ttyadm(1M)</td>
<td>format and output port monitor-specific information</td>
</tr>
<tr>
<td>ttymon(1M)</td>
<td>port monitor for terminal ports</td>
</tr>
<tr>
<td>tunefs(1M)</td>
<td>tune up an existing file system</td>
</tr>
<tr>
<td>uadmin(1M)</td>
<td>administrative control</td>
</tr>
<tr>
<td>ufsdump(1M)</td>
<td>incremental file system dump</td>
</tr>
<tr>
<td>ufsrestore(1M)</td>
<td>incremental file system restore</td>
</tr>
<tr>
<td>ul(1)</td>
<td>underline</td>
</tr>
<tr>
<td>umask(1)</td>
<td>set file-creation mode mask</td>
</tr>
<tr>
<td>uname(1)</td>
<td>print name of current UNIX system</td>
</tr>
<tr>
<td>unget(1)</td>
<td>undo a previous get of an SCCS file</td>
</tr>
<tr>
<td>unifdef(1)</td>
<td>resolve and remove ifdef'ed lines from C program source</td>
</tr>
<tr>
<td>uniq(1)</td>
<td>report repeated lines in a file</td>
</tr>
<tr>
<td>units(1)</td>
<td>conversion program</td>
</tr>
<tr>
<td>unshare(1M)</td>
<td>make local resource unavailable for mounting by remote systems</td>
</tr>
<tr>
<td>unshare(1M)</td>
<td>make local NFS resource unavailable for mounting by remote systems</td>
</tr>
<tr>
<td>unshare(1M)</td>
<td>make local RFS resource unavailable for mounting by remote systems</td>
</tr>
<tr>
<td>uptime(1)</td>
<td>show how long the system has been up</td>
</tr>
<tr>
<td>urestore(1M)</td>
<td>request restore of files and directories</td>
</tr>
<tr>
<td>useradd(1M)</td>
<td>administer a new user login on the system</td>
</tr>
<tr>
<td>userdel(1M)</td>
<td>delete a user's login from the system</td>
</tr>
<tr>
<td>usermod(1M)</td>
<td>modify a user's login information on the system</td>
</tr>
<tr>
<td>users(1)</td>
<td>display a compact list of users logged in</td>
</tr>
<tr>
<td>uucheck(1M)</td>
<td>check the uucp directories and permissions file</td>
</tr>
<tr>
<td>uucico(1M)</td>
<td>file transport program for the uucp system</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>uucleanup (1M)</td>
<td>uucp spool directory clean-up</td>
</tr>
<tr>
<td>uucp, uulog, uuname (1C)</td>
<td>UNIX-to-UNIX system copy</td>
</tr>
<tr>
<td>uuencode, uudecode (1C)</td>
<td>encode a binary file, or decode its ASCII representation</td>
</tr>
<tr>
<td>uugetty (1M)</td>
<td>set terminal type, modes, speed, and line discipline</td>
</tr>
<tr>
<td>uuulog list (1C)</td>
<td>list service grades available on this UNIX system</td>
</tr>
<tr>
<td>uuusched (1M)</td>
<td>the scheduler for the uucp file transport program</td>
</tr>
<tr>
<td>uustat (1C)</td>
<td>uucp status inquiry and job control</td>
</tr>
<tr>
<td>uuto, upick (1C)</td>
<td>public UNIX-to-UNIX system file copy</td>
</tr>
<tr>
<td>Uutry (1M)</td>
<td>try to contact remote system with debugging on</td>
</tr>
<tr>
<td>uux (1C)</td>
<td>UNIX-to-UNIX system command execution</td>
</tr>
<tr>
<td>uuxqt (1M)</td>
<td>execute remote command requests</td>
</tr>
<tr>
<td>vacation (1)</td>
<td>automatically respond to incoming mail messages</td>
</tr>
<tr>
<td>vacation (1)</td>
<td>reply to mail automatically</td>
</tr>
<tr>
<td>val (1)</td>
<td>validate an SCCS file</td>
</tr>
<tr>
<td>vc (1)</td>
<td>version control</td>
</tr>
<tr>
<td>vi (1)</td>
<td>screen-oriented (visual) display editor based on ex</td>
</tr>
<tr>
<td>vidi (1)</td>
<td>sets the font and video mode for a video device</td>
</tr>
<tr>
<td>volcopy (generic) (1M)</td>
<td>make literal copy of file system</td>
</tr>
<tr>
<td>volcopy (s5) (1M)</td>
<td>make a literal copy of an s5 file system</td>
</tr>
<tr>
<td>volcopy (ufs) (1M)</td>
<td>make a literal copy of a ufs file system</td>
</tr>
<tr>
<td>vsig (1F)</td>
<td>synchronize a co-process with the controlling FMLI application</td>
</tr>
<tr>
<td>vtgetty (1M)</td>
<td>sets terminal type, modes, speed, and line discipline</td>
</tr>
<tr>
<td>vtlmgr (1)</td>
<td>monitors and opens virtual terminals</td>
</tr>
<tr>
<td>w (1)</td>
<td>who is logged in, and what are they doing</td>
</tr>
<tr>
<td>wait (1)</td>
<td>await completion of process</td>
</tr>
<tr>
<td>wall (1M)</td>
<td>write to all users</td>
</tr>
<tr>
<td>wc (1)</td>
<td>word count</td>
</tr>
<tr>
<td>what (1)</td>
<td>print identification strings</td>
</tr>
<tr>
<td>whatis (1)</td>
<td>display a one-line summary about a keyword</td>
</tr>
<tr>
<td>which (1)</td>
<td>locate a command; display its pathname or alias</td>
</tr>
<tr>
<td>who (1)</td>
<td>who is on the system</td>
</tr>
<tr>
<td>whoami (1)</td>
<td>display the effective current username</td>
</tr>
<tr>
<td>whoodo (1M)</td>
<td>who is doing what</td>
</tr>
<tr>
<td>whois (1)</td>
<td>Internet user name directory service</td>
</tr>
<tr>
<td>write (1)</td>
<td>write to another user</td>
</tr>
<tr>
<td>wtinit (1M)</td>
<td>object downloader for the 5620 DMD terminal</td>
</tr>
<tr>
<td>x286emul (1)</td>
<td>emulate XENIX 80286</td>
</tr>
<tr>
<td>xargs (1)</td>
<td>construct argument list(s) and execute command</td>
</tr>
<tr>
<td>xfsck (1M)</td>
<td>check and repair XENIX filesystems</td>
</tr>
<tr>
<td>xinstall (1M)</td>
<td>XENIX installation shell script</td>
</tr>
</tbody>
</table>
Table of Contents

xinstall(1M) ... install commands
xrestore, xrestor(1M) .. invoke XENIX incremental filesystem restorer
xts(1M) ... extract and print xt driver statistics
xtt(1M) ... extract and print xt driver packet traces
yacc(1) .. yet another compiler-compiler
yes(1) .. print string repeatedly
ypcat(1) ... print values in a NIS data base
ypinit(1M) ... build and install YP database
ypmake(1M) .. rebuild YP database
ypmatch(1) ... print the value of one or more keys from the NIS map
yppoll(1M) .. return current version of the map at the NIS server host
yppush(1M) .. force propagation of a changed NIS map
ypserv, ypbind(1M) ... NIS server and binder processes
ypset(1M) ... point ypbind at a particular server
ypupdated(1M) .. server for changing NIS information
ypwhich(1) .. return name of NIS server or map master
ypxfr(1M) .. transfer YP map from a YP server to host
zdump(1M) .. time zone dumper
zic(1M) .. time zone compiler

Section 4 – File Formats

intro(4) ... introduction to file formats
a.out(4) .. ELF (Executable and Linking Format) files
acct(4) ... per-process accounting file format
admin(4) ... installation defaults file
aliases, addresses, forward(4) ... addresses and aliases for sendmail
ar(4) ... archive file format
archives(4) ... device header file
binarsys(4) ... remote system information for the ckbinarsys command
boot(4) .. boot
compver(4) ... compatible versions file
copyright(4) ... copyright information file
core(4) .. core image file
cron(4) .. cron
depend(4) .. software dependencies files
dfstab(4) ... file containing commands for sharing resources
dir (s5)(4) .. format of s5 directories
Table of Contents

dir (ufs)(4) ... format of ufs directories
dirent(4) .. file system independent directory entry
dump(4) .. dump
ethers(4) .. Ethernet address to hostname database or domain
/dev/fd(4) .. file descriptor files
filehdr(4) .. file header for common object files
fs (bfs)(4) .. format of the bfs file system volume
fs (s5)(4) .. format of s5 file system volume
fs (ufs)(4) .. format of ufs file system volume
fspec(4) .. format specification in text files
fstypes(4) .. file that registers distributed file system packages
group(4) .. group file
hosts(4) ... host name data base
hosts.equiv, .rhosts(4) .. trusted hosts by system and by user
inetd.conf(4) .. Internet servers database
inittab(4) .. script for init
inode (bfs)(4) .. format of a bfs i-node
inode (s5)(4) .. format of an s5 i-node
inode (ufs)(4) .. format of a ufs inode
issue(4) .. issue identification file
limits(4) .. header file for implementation-specific constants
login(4) .. login default file
loginlog(4) .. log of failed login attempts
mailcnfg(4) .. initialization information for mail and rmail
mailsurr(4) .. surrogate commands for routing and transport of mail
mapchan(4) .. Format of tty device mapping files
mdevice (4) .. file format
mdevice (4) .. file format
mfsys (4) .. file format
mnttab(4) .. mounted file system table
mtune(4) .. file format
netconfig(4) .. network configuration database
netmasks(4) .. network mask data base
netrc(4) .. file for ftp remote login data
networks(4) .. network name data base
passwd(4) .. password file
pathalias(4) .. alias file for FACE
pkginfo(4) .. package characteristics file
pkgmap(4) .. package contents description file
pnch(4) .. file format for card images
Table of Contents

/proc(4) .. process file system
profile(4) ... setting up an environment at login time
protocols(4) ... protocol name data base
prototype(4) .. package information file
publickey(4) ... public key database
resolv.conf(4) .. configuration file for name server routines
rfmaster(4) .. Remote File Sharing name server master file
routing(4) ... system supporting for packet network routing
rpc(4) ... rpc program number data base
rt_dptbl(4) ... real-time dispatcher parameter table
sccsfile(4) ... format of SCCS file
sdevice (4) .. file format
services(4) .. Internet services and aliases
sfsys (4) .. file format
shadow(4) ... shadow password file
sharetab(4) .. shared file system table
space(4) .. disk space requirement file
stat(4) .. data returned by stat system call
strcf(4) ... STREAMS Configuration File for STREAMS TCP/IP
strftime(4) ... language specific strings
stune (4) .. file format
su(4) .. su
syslog.conf(4) .. configuration file for syslogd system log daemon
term(4) ... format of compiled term file
terminfo(4) .. terminal capability data base
timezone(4) .. set default system time zone
ts_dptbl(4) .. time-sharing dispatcher parameter table
ttydefs(4) ... file contains terminal line settings information for ttymon
ttysrch(4) ... directory search list for ttymon
unistd(4) .. header file for symbolic constants
updaters(4) .. configuration file for Network Information Service (NIS) updating
utmp, wtmp(4) .. utmp and wtmp entry formats
utmpx, wtmpx(4) ... utmpx and wtmpx entry formats
vfstab(4) .. table of file system defaults
ypfiles(4) .. the Network Information Service (NIS) database and directory structure
Section 5 – Miscellaneous Facilities

intro(5) ... introduction to miscellany
ascii(5) ... map of ASCII character set
environ(5) ... user environment
eqnchar(5) ... special character definitions for eqn
fcntl(5) .. file control options
iconv(5) .. code set conversion tables
jagent(5) ... host control of windowing terminal
langinfo(5) ... language information constants
layers(5) ... protocol used between host and windowing terminal under layers(1)
math(5) ... math functions and constants
man(5) ... macros to format Reference Manual pages
me(5) ... macros for formatting papers
ms(5) ... text formatting macros
nl_types(5) .. native language data types
prof(5) .. profile within a function
regexp: compile, step, advance(5) regular expression compile and match routines
siginfo(5) ... signal generation information
signal(5) .. base signals
stat(5) ... data returned by stat system call
stdarg(5) .. handle variable argument list
term(5) .. conventional names for terminals
types(5) .. primitive system data types
ucontext(5) ... user context
values(5) .. machine-dependent values
varargs(5) ... handle variable argument list
wstat(5) ... wait status
xtproto(5) .. multiplexed channels protocol used by xt driver
Section 7 – Special Files

intro(7) .. introduction to special files
ARP(7) ... Address Resolution Protocol
asy(7) ... asynchronous serial port
clone(7) ... open any major/minor device pair on a STREAMS driver
connd(7) .. line discipline for unique stream connections
console(7) ... STREAMS-based console interface
cram(7) ... CMOS RAM interface
disk(7) .. random access bulk storage medium
display(7) ... system console display
fd(7) .. diskette (floppy disk)
filesystem(7) .. file system organization
hd(7) ... hard (fixed) disk
ICMP(7) ... Internet Control Message Protocol
ie6(7) ... 3C503 3Com Ethernet Driver
if(7) ... general properties of Internet Protocol network interfaces
inet(7) .. Internet protocol family
IP(7) .. Internet Protocol
keyboard(7) ... system console keyboard
ldterm(7) ... standard STREAMS terminal line discipline module
lo(7) .. software loopback network interface
log(7) ... interface to STREAMS error logging and event tracing
lp(7) .. parallel port interface
mem, kmem(7) ... core memory
mouse(7) ... mouse device driver supporting bus, serial, and PS/2 compatible mouse devices
null(7) .. the null file
pckt(7) .. STREAMS Packet Mode module
ports(7) .. five-line asynchronous communications interface STREAMS driver
prf(7) ... operating system profiler
ptem(7) ... STREAMS Pseudo Terminal Emulation module
qt(7) .. QIC cartridge magnetic tape streamer interface
rtc(7) ... real time clock interface
SA(7) .. devices administered by System Administration
sad(7) .. STREAMS Administrative Driver
scsi_adaptec(7) ... Adaptec 1542A SCSI host adapter subsystem
scsi_cdrom(7) ... CD-ROM Target Driver
scsi_disk(7) ... sd01 SCSI disk driver
scsi_dpt(7) ... SCSI host adapter subsystem
scsi_tape(7) ... st01 SCSI tape driver
scsi_wd7000(7) .. WD7000 FASST2 host adapter subsystem
scsi_worm(7) ... sw01 SCSI WORM Target Driver
sockio(7) .. ioctls that operate directly on sockets
streamio(7) ... STREAMS ioctl commands
sxt(7) .. pseudo-device driver
TCP(7) ... Internet Transmission Control Protocol
termio(7) ... general terminal interface
termiox(7) ... extended general terminal interface
ticlts, ticots, ticotsord(7) .. loopback transport providers
timod(7) ... Transport Interface cooperating STREAMS module
tirdwr(7) ... Transport Interface read/write interface STREAMS module
ttcompat(7) .. V7, 4BSD and XENIX STREAMS compatibility module
tty(7) .. controlling terminal interface
UDP(7) ... Internet User Datagram Protocol
wd(7) .. Western Digital S003 Adapter Board
xt(7) .. STREAMS-based multiplexed tty driver for AT&T windowing terminals
zero(7) .. source of zeroes

Permuted Index
Introduction

This reference manual describes the commands of the UNIX system. It contains individual manual pages that describe user and administrative commands. (For a general overview of the UNIX system, see the Product Overview.)

Note that not all commands described in this manual are available in every UNIX system. Some of the features require additional utilities that may not exist on your system.

Organization of this Reference Manual

This manual contains the following sections (sorted together, alphabetically):

<table>
<thead>
<tr>
<th>Section</th>
<th>Component Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commands (User)</td>
</tr>
<tr>
<td>1C</td>
<td>Commands (Basic Networking)</td>
</tr>
<tr>
<td>1F</td>
<td>Commands (Form & Menu Language Interpreter (FMLI))</td>
</tr>
<tr>
<td>1M</td>
<td>Commands (Administration)</td>
</tr>
<tr>
<td>1N</td>
<td>Commands (Enhanced Networking)</td>
</tr>
</tbody>
</table>

Section 1 (Commands, user) describes programs intended to be invoked directly by the user or by command language procedures, as opposed to subroutines that are called by the user’s programs. Commands usually are in the /usr/bin and /usr/sbin directories. In addition, some commands are in /sbin. These directories are searched automatically by the command interpreter called the shell. Also, UNIX systems often have a directory called /usr/lbin that contains local commands.

Section 1C (Commands, basic networking) contains commands that are used when files are exchanged with another computer system.

Section 1F (Commands, forms and menus) contains commands and programs that are used by the Form & Menu Interpreter (FMLI).

Section 1M (Commands, system maintenance) contains commands and programs that are used in administering a UNIX system.

Section 1N (Commands, enhanced networking) contains commands and programs that are used for enhanced networking.
Manual Page Format

All manual page entries use a common format, not all of whose parts always appear:

- The NAME section gives the name(s) of the entry and briefly states its purpose.
- The SYNOPSIS section summarizes the use of the command, program or function. A few conventions are used:
 - *Constant width typeface* strings are literals and are to be typed just as they appear.
 - *Italic* strings usually represent substitutable argument prototypes and functions.
 - Square brackets [] around an argument prototype indicate that the argument is optional. When an argument prototype is given as *name* or *file*, it typically refers to a file name.
 - Ellipses . . . are used to show that the previous argument prototype may be repeated.
 - For commands, an argument beginning with a minus – or plus + sign is often taken to be a flag argument, even if it appears in a position where a file name could appear. Therefore, it is unwise to have files whose names begin with – or +.
- The DESCRIPTION section describes the utility.
- The EXAMPLE section gives example(s) of usage, where appropriate.
- The FILES section gives the file names that are built into the program.
- The SEE ALSO section gives pointers to related information. Reference to manual pages with section numbers other than those in this book can be found in other reference manuals, as listed above.
- The DIAGNOSTICS section discusses the diagnostic indications that may be produced. Messages that are intended to be self-explanatory are not listed.
How to Get Started

This discussion provides the basic information you need to get started on the UNIX system: how to log in and log out, how to communicate through your terminal, and how to run a program. (See the User’s Guide for a more complete introduction to the system.)

Logging In

You must connect to the UNIX system from a full-duplex ASCII terminal or the console monitor (on a PC). You must also have a valid login ID, which may be obtained (together with how to access your UNIX system) from the administrator of your system. Common terminal speeds are 1200, 2400, 4800 and 9600 baud. Some UNIX systems have different ways of accessing each available terminal speed, while other systems offer several speeds through a common access method. In the latter case, there is one “preferred” speed; if you access it from a terminal set to a different speed, you will be greeted by a string of meaningless characters. Keep hitting the BREAK, INTERRUPT, or ATTENTION key until the login: prompt appears.

Most terminals have a speed switch that should be set to the appropriate speed and a half-/full-duplex switch that should be set to full-duplex. When a connection has been established, the system displays login:. You respond by typing your login ID followed by the RETURN key. If you have a password, the system asks for it but will not print, or “echo,” it on the screen. After you have logged in, the ENTER, RETURN, NEW-LINE, and LINE-FEED keys all have equivalent meanings.

Make sure you type your login name in lower-case letters. Typing upper-case letters causes the UNIX system to assume that your terminal can generate only upper-case letters, and it will treat all letters as upper-case for the remainder of your login session. The shell will print a $ on your screen when you have logged in successfully.
Introduction

When you log in, a message-of-the-day may greet you before you receive your prompt. For more information, consult the `login(1)` manual page, which discusses the login sequence in more detail, and the `stty(1)` manual page, which tells you how to describe your terminal to the system. The `profile(4)` manual page explains how to accomplish this last task automatically every time you log in.

Logging Out

To log out of your system type an end-of-file indication (ASCII EOT character, usually typed as CTRL-d) to the shell. The shell will terminate, and the `login:` message will appear again.

How to Communicate Through Your Terminal

When you type on your keyboard, your individual characters are being gathered and temporarily saved. Although they are echoed back to you (displayed on the screen), these characters will not be “seen” by a program until you press ENTER (or RETURN or NEW-LINE) as described above in “Logging In.”

UNIX system terminal input/output is full duplex. It has full read-ahead, which means that you can type at any time, even while a program is displaying characters on the screen. Of course, if you type during output, your input characters will have output characters interspersed among them. In any case, whatever you type will be saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but it is not likely to be exceeded.

The character @ cancels all the characters typed before it on a line, effectively deleting the line. (@ is called the “line kill” character.) The character # erases the last character typed. Successive uses of # will erase characters back to, but not beyond, the beginning of the line; @ and # can be typed as themselves by preceding them with \ (thus, to erase a \, you need two #s). These default erase and line kill characters can be changed; see the `stty(1)` manual page.

CTRL-s (also known as the ASCII DC3 character) is entered by pressing the CONTROL key and the alphabetic s simultaneously; it is used to stop temporarily screen output. It is useful with CRT terminals to prevent output from disappearing before it can be read. Output is resumed when a CTRL-q (also known as DC1) is pressed. Thus, if you had typed `cat yourfile` and the contents of `yourfile` were passing by on the screen more rapidly than you could read it, you would enter CTRL-s to freeze the output. Entering CTRL-q would allow the output to resume. The CTRL-s and CTRL-q characters are not passed to any
other program when used in this manner. Also, there may be a scroll lock key on your keyboard that can be used to stop temporarily screen output.

The ASCII DEL (also called "rubout") character is not passed to programs but instead generates an interrupt signal, just like the BREAK, INTERRUPT, or ATTENTION signal. This signal generally causes whatever program you are running to terminate. It is typically used to stop a long printout to the screen that you do not want. Programs, however, can arrange either to ignore this signal altogether or to be notified and take a specific action when it happens (instead of being terminated). The editor ed(1), for example, catches interrupts and stops what it's doing, instead of terminating, so an interrupt can be used to halt an editor printout without losing the file being edited.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelligent about whether you have a terminal with the NEW-LINE function, or whether it must be simulated with a CARRIAGE-RETURN and LINE-FEED pair. In the latter case, all input CARRIAGE-RETURN characters are changed to LINE-FEED characters (the standard line delimiter), and a CARRIAGE-RETURN and LINE-FEED pair is echoed to the terminal. If you get into the wrong mode, the stty(1) command will rescue you.

Tab characters are used freely in UNIX system source programs. If your terminal does not have the tab function, you can arrange to have tab characters changed into spaces during output, and echoed as spaces during input. Again, the stty(1) command will set or reset this mode. The system assumes that tabs are set every eight character positions. The tabs(1) command will set tab stops on your terminal, if that is possible.

How to Run a Program

When you have successfully logged into the UNIX system, a program called the shell is communicating with your terminal. The shell reads each line you type, splits the line into a command name and its arguments, and executes the command. A command is simply an executable program. Normally, the shell looks first in your current directory (see "The Current Directory" below) for the named program and, if none is there, then in system directories, such as /usr/bin. There is nothing special about system-provided commands except that they are kept in directories where the shell can find them. You can also keep commands in your own directories and instruct the shell to find them there. See the manual entry for sh(1), under the sub-heading "Parameter
Substitution,” for the discussion of the **PATH** shell environmental variable.

The command name is the first word on an input line to the shell; the command and its arguments are separated from one another by space or tab characters.

When a program terminates, the shell will ordinarily regain control and give you back your prompt to show that it is ready for another command. The shell has many other capabilities, which are described in detail on the **sh**(1) manual page.

The Current Directory

The UNIX system has a file system arranged in a hierarchy of directories. When you received your login ID, the system administrator also created a directory for you (ordinarily with the same name as your login ID, and known as your login or home directory). When you log in, that directory becomes your current or working directory, and any file name you type is, by default, assumed to be in that directory. Because you are the owner of this directory, you have full permissions to read, write, alter, or remove its contents. Permissions to enter or change other directories and files will have been granted or denied to you by their respective owners or by the system administrator. To change the current directory, use the **cd** command (see the **cd**(1) manual page.

Pathnames

To refer to files or directories not in the current directory, you must use a pathname. Full pathnames begin with `/`, which is the name of the root directory of the whole file system. After the slash comes the name of each directory containing the next subdirectory (followed by a `/`), until finally the file or directory name is reached (for example, `/usr/ae/filex` refers to file `filex` in directory `ae`, while `ae` is itself a subdirectory of `usr`, and `usr` is a subdirectory of the root directory). Use the **pwd** command (see the **pwd**(1) manual page) to print the full pathname of the directory you are working in. See the introduction to section 2 in the **Programmer’s Reference Manual: Operating System API** for a formal definition of *pathname*.
If your current directory contains subdirectories, the pathnames of their respective files begin with the name of the corresponding subdirectory (without a prefixed `/`). A pathname may be used anywhere a file name is required.

Important commands that affect files are `cp`, `mv`, and `rm`, which respectively copy, move (that is, rename), and remove files (see the `cp(1)`, `mv(1)` and `rm(1)` manual pages). To find out the status of files or directories, use `ls` (see the `ls(1)` manual page). Use `mkdir` for making directories and `rmdir` for removing them (see the `mkdir(1)` and `rm(1)` manual pages).

Text Entry and Display

Almost all text is entered through an editor. Common examples of UNIX system editors are `ed(1)` and `vi(1)`. The commands most often used to print text on a terminal are `cat`, `pr`, and `pg` (see the `cat(1)`, `pr(1)` and `pg(1)` manual pages). The `cat` command displays the contents of ASCII text files on the screen, with no processing at all. The `pr` command paginates the text, supplies headings, and has a facility for multi-column output. The `pg` command displays text in successive portions no larger than your screen.

Writing a Program

Once you have entered the text of your program into a file with an editor, you are ready to give the file to the appropriate language processor. The processor will accept only files observing the correct naming conventions: all C programs must end with the suffix `.c`, and Fortran programs must end with `.f`. The output of the language processor will be left in a file named `a.out` in the current directory, unless you have invoked an option to save it in another file. (Use `mv` to rename `a.out`.) If the program is written in assembly language, you will probably need to load library subroutines with it (see the `ld(1)` manual page).

When you have completed this process without provoking any diagnostics, you may run the program by giving its name to the shell in response to the `$` prompt. Your programs can receive arguments from the command line just as system programs do; see the `exec(2)` manual page. For more information on writing and running programs, see the *Programmer's Guide: ANSI C and Programming Support Tools*.
Communicating with Others

Certain commands provide inter-user communication. Even if you do not plan to use them, it’s helpful to learn something about them because someone else may try to contact you. `mail` or `mailx` (see the `mail(1)` and `mailx(1)` manual pages) will leave a message whose presence will be announced to another user when they next log in and at periodic intervals during the session. To communicate with another user currently logged in, use `write` (see the `write(1)` manual page). The corresponding entries in this manual also suggest how to respond to these commands if you are their target.

See the tutorials in the User's Guide for more information on communicating with others.
Section 1 – Commands m – z

m4(1) ... macro processor
mach(1) .. display the processor type of the current host
machid(1) ... get processor type truth value
mail, rmail(1) ... read mail or send mail to users
mail_pipe(1M) .. invoke recipient command for incoming mail
mailalias(1) ... translate mail alias names
mailstats(1M) .. print statistics collected by sendmail
mailx(1) .. interactive message processing system
make(1) .. maintain, update, and regenerate groups of programs
makedbm(1M) ... make a Network Information Service (NIS) dbm file
makefsys(1M) .. create a file system
makekey(1) .. generate encryption key
man(1) .. display reference manual pages; find reference pages by keyword
mapchan(1M) .. Configure tty device mapping
mapkey, mapscrn, mapstr(1M) .. configure monitor screen mapping
maplocale(1M) .. convert Release 4 locale information to different format
mconnect(1M) .. connect to SMTP mail server socket
mcs(1) ... manipulate the comment section of an object file
mesg(1) .. permit or deny messages
message(1F) .. put arguments on FMLI message line
migration(1M) .. move an archive from one set of volumes to another
mkdir(1) .. make directories
mkfifo(1M) ... make FIFO special file
mkfs (generic)(1M) .. construct a file system
mkfs (bfs)(1M) .. construct a boot file system
mkfs (s5)(1M) .. construct an s5 file system
mkfs (ufs)(1M) ... construct a ufs file system
mkmsgs(1) .. create message files for use by gettxt
mknod(1M) ... make a special file
mknod(1M) ... make a special file
mkpart(1M) ... disk maintenance utility
montbl(1M) ... create monetary database
more, page(1) ... browse or page through a text file
mount, umount (generic)(1M) mount or unmount file systems and remote resources
mount (bfs)(1M) .. mount bfs file systems
mount(1M) .. mount remote NFS resources
mount(1M) .. mount remote resources
mount (s5)(1M) .. mount an s5 file system
mount (ufs)(1M) .. mount ufs file systems
mountall, umountall(1M) .. mount, unmount multiple file systems
mountd(1M) .. NFS mount request server
mountfsys, umountfsys(1M) .. mount, unmount a file system
mouseadmin(1) .. mouse administration
mt(1) .. magnetic tape control
mv(1) .. move files
mvdir(1M) .. move a directory
named, in.named(1M) .. Internet domain name server
nawk(1) ... pattern scanning and processing language
ncheck (generic)(1M) .. generate a list of path names vs i-numbers
ncheck (s5)(1M) ... generate path names versus i-numbers for s5 file systems
ncheck (ufs)(1M) ... generate pathnames versus i-numbers for ufs file systems
netstat(1M) .. show network status
newaliases(1M) ... rebuild the data base for the mail aliases file
newform(1) .. change the format of a text file
newgrp(1M) .. log in to a new group
newkey(1M) .. create a new key in the publickey database
news(1) .. print news items
newvvt(1) ... opens virtual terminals
nfsd(1M) ... NFS daemon
nfsstat(1M) ... Network File System statistics
nice(1) .. run a command at low priority
nl(1) .. line numbering filter
nlsadmin(1M) ... network listener service administration
nm(1) ... print name list of an object file
nohup(1) .. run a command immune to hangups and quits
notify(1) ... notify user of the arrival of new mail
nroff(1) .. format documents for display or line-printer
nslookup (1M) .. query name servers interactively
nsquery(1M) .. Remote File Sharing name server query
od(1) ... octal dump
offline(1M) ... take a processor offline
online(1M) .. bring a processor online
pack, pcat, unpack(1) .. compress and expand files
pagesize(1) ... display the size of a page of memory
partsize(1M) .. returns the size of the active UNIX System partition
passmgmt(1M) ... password files management
passwd(1) ... change login password and password attributes
paste(1) .. merge same lines of several files or subsequent lines of one file
pathconv(1F) ... search FMLI criteria for filename
Section 1 - Commands m – z

pbinding(1M) ... bind a process to a processor
pexbind(1M) .. exclusively bind processes to a processor
pg(1) .. file perusal filter for CRTs
pinfo(1M) .. get information about processors
ping(1M) ... send ICMP ECHO REQUEST packets to network hosts
pkgadd(1M) ... transfer software package to the system
pkgask(1M) .. stores answers to a request script
pkgchk(1M) ... check accuracy of installation
pkginfo(1) ... display software package information
pkgmk(1) .. produce an installable package
pkgparam(1) ... displays package parameter values
pkgproto(1) ... generate a prototype file
pkgrm(1M) ... removes a package from the system
pkgtrans(1) ... translate package format
plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa,
plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa,
t300, t300s, t4013, t450, tek(1G) graphics filters for various plotters
pmadm(1M) ... port monitor administration
postdaisy(1) .. PostScript translator for Diablo 630 files
postdmd(1) .. PostScript translator for DMD bitmap files
postio(1) .. serial interface for PostScript printers
postmd(1) .. matrix display program for PostScript printers
postplot(1) .. PostScript translator for plot graphics files
postprint(1) .. PostScript translator for text files
postreverse(1) .. reverse the page order in a PostScript file
posttek(1) .. PostScript translator for tektronix 4014 files
pr(1) ... print files
printenv(1) .. display environment variables currently set
printf(1) .. print formatted output
priocntl(1) .. process scheduler control
prof(1) .. display profile data
profiler: prflc, prflcstat, prfstat, prfstatsnap, prflcpr(1M) UNIX system profiler
profile: prflc, prflcstat, prfstat, prfstatsnap, prflcpr(1M) UNIX system profiler
prs(1) .. print an SCCS file
prt(1) .. display the delta and commentary history of an SCCS file
prtvtoc(1M) .. disk information display utility
ps(1) .. report process status
ps(1) .. report process status
putdev(1) .. display the status of current processes
putdev(1) .. edit device table
putdgrp(1) .. edit device group table

Section 1 – Commands m – z

3
Section 1 – Commands m – z

pwck, grpck(1M) ... password/group file checkers
pwck(1M) ... check password database entries
pwconv(1M) .. install and update /etc/shadow with information from /etc/passwd
pwd(1) ... working directory name
quot(1M) .. summarize file system ownership
quota(1M) ... display a user’s disk quota and usage
quotacheck(1M) ... file system quota consistency checker
quotaon, quotaoff(1M) .. turn file system quotas on and off
random(1) .. generate a random number
rarpd(1M) .. DARPA Reverse Address Resolution Protocol server
rc0(1M) .. run commands performed to stop the operating system
rc2(1M) .. run commands performed for multi-user environment
rc6(1M) .. run commands performed to stop and reboot the operating system
rcp(1) .. remote file copy
rdate(1M) .. set system date from a remote host
readfile, longline(IF) .. reads file, gets longest line
reboot(1M) .. restart the operating system
refer(l) .. expand and insert references from a bibliographic database
regcmp(l) .. regular expression compile
regex(IF) .. match patterns against a string
reinit(IF) .. runs an initialization file
relogin(1M) .. rename login entry to show current layer
removef(1M) .. remove a file from software database
rename(1) .. change the name of a file
renice(1M) .. alter priority of running processes
repquota(1M) .. summarize quotas for a file system
reset(IF) .. reset the current form field to its default values
restore(1M) .. initiate restores of filesystems, data partitions, or disks
restore(1) .. restore file to original directory
rexecd(1M) .. remote execution server
rfadmin(1M) .. Remote File Sharing domain administration
rfpasswd(1M) .. change Remote File Sharing host password
rfstart(1M) .. start Remote File Sharing
rfstop(1M) .. stop the Remote File Sharing environment
rfuadmin(1M) .. Remote File Sharing notification shell script
rfudaemon(1M) .. Remote File Sharing daemon process
rlogin(l) .. remote login
rlogind(1M) .. remote login server
rm, rmdir(l) .. remove files or directories
rmdel(l) .. remove a delta from an SCCS file
rmntstat(1M) ... display mounted resource information
rmnttry(1M) ... attempt to mount queued remote resources
rmount(1M) ... queue remote resource mounts
rmountall, rumountall(1M) ... mount, unmount Remote File Sharing resources
roffbib(1) ... format and print a bibliographic database
route(1M) ... manually manipulate the routing tables
routed(1M) ... network routing daemon
rpcbind(1M) .. universal addresses to RPC program number mapper
rpcgen(1) ... an RPC protocol compiler
rpcinfo(1M) ... report RPC information
rsh(1) ... remote shell
rshd(1M) ... remote shell server
rsoper(1M) ... service pending restore requests and service media insertion prompts
rmount(1M) ... cancel queued remote resource request
run(1F) ... run an executable
runacct(1M) ... run daily accounting
ruptime(1) ... show host status of local machines
rusers(1) ... who's logged in on local machines
rpc.rusersd(1M) .. network username server
rwall(1M) ... write to all users over a network
rpc.rwalld(1M) ... network rwall server
rwho(1) ... who's logged in on local machines
rwhod, in.rwhod(1M) ... system status server
sac(1M) ... service access controller
sacadm(1M) .. service access controller administration
sact(1) ... print current SCCS file editing activity
sadc, sa1, sa2(1M) ... system activity report package
sag(1M) ... system activity graph
sar(1M) ... system activity reporter
sar(1M) ... system activity reporter
sccs(1) ... front end for the Source Code Control System (SCCS)
sccsdiff(1) .. compare two versions of an SCCS file
scompat(1) .. set up compatibility environment for console applications
script(1) ... make typescript of a terminal session
sdb(1) ... symbolic debugger
sdiff(1) ... print file differences side-by-side
sed(1) ... stream editor
sendmail(1M) .. send mail over the internet
set, unset(1F) .. set and unset local or global environment variables
setclk(1M) .. set system time from hardware clock
setcolor, setcolour(1) ... set screen color
setcolor(1F) .. redefine or create a color
setkey(1) .. assigns the function keys
setmnt(1M) .. establish mount table
settime(1) ... change the access and modification dates of files
setuname(1M) ... changes machine information
setup(1M) .. initialize system for first user
sh, jsh, rsh(1) .. command interpreters: standard shell, job control shell, restricted shell
share(1M) .. make local resource available for mounting by remote systems
share(1M) .. make local NFS resource available for mounting by remote systems
share(1M) .. make local RFS resource available for mounting by remote systems
shareall, unshareall(1M) ... share, unshare multiple resources
shell(1F) ... run a command using shell
shl(1) .. shell layer manager
shutdown(1M) ... shut down system, change system state
shutdown(1M) ... close down the system at a given time
size(1) ... print section sizes in bytes of object files
sleep(1) ... suspend execution for an interval
slink(1M) ... streams linker
smtp(1M) ... send SMTP mail to a remote host using Simple Mail Transfer Protocol
smtpd(1M) ... receive incoming SMTP messages
smtpscher(1M) .. process messages queued in the SMTP mail queue
soelim(1) ... resolve and eliminate .so requests from nroff or troff input
sort(1) ... sort and/or merge files
sortbib(1) ... sort a bibliographic database
spell, hashmake, spellin, hashcheck, compress(1) .. find spelling errors
split(1) ... split a file into pieces
spray(1M) .. spray packets
rpc.sprayd(1M) ... spray server
srchtxt(1) ... display contents of, or search for a text string in, message data bases
statd(1M) .. network status monitor
strace(1M) .. print STREAMS trace messages
strchg, strconf(1) ... change or query stream configuration
strclean(1M) ... STREAMS error logger cleanup program
strerr(1M) ... STREAMS error logger daemon
strings(1) .. find printable strings in an object file or binary
strip(1) ... strip symbol table, debugging and line number information from an object file
stty(1) ... set the options for a terminal
stty(1) ... set the options for a terminal
sttydefs(1M) .. maintain line settings and hunt sequences for TTY ports
su(1M) .. become super-user or another user
sulogin(1M) ... access single-user mode
sum(1) .. print checksum and block count of a file
sum(1) .. calculate a checksum for a file
swap(1M) ... swap administrative interface
sync(1M) ... update the super block
sysadm(1M) ... visual interface to perform system administration
syslogd(1M) ... log system messages
tabs(1) .. set tabs on a terminal
tail(1) ... deliver the last part of a file
talk(1) .. talk to another user
talkd, in.talkd(1M) .. server for talk program
tape(1) .. magnetic tape maintenance
tapecntl(1) .. tape control for tape device	ar(1) .. tape file archiver	tbl(1) ... format tables for nroff or troff	ccopy(1) ... copy a magnetic tape	tee(1) .. pipe fitting
telnet(1) ... user interface to a remote system using the TELNET protocol
telnetd(1M) .. DARPA TELNET protocol server
test(1) .. condition evaluation command
test(1F) ... condition evaluation command
test(1) .. condition evaluation command
tftp(1) .. trivial file transfer program
tftpd(1M) ... DARPA Trivial File Transfer Protocol server
tic(1M) .. terminfo compiler
time(1) .. time a command	timex(1) ... time a command; report process data and system activity
tnamed, in.tnamed(1M) DARPA trivial name server
tosmtpl(1M) .. send mail to SMTP
touch(1) .. update access and modification times of a file	put(1) .. initialize a terminal or query terminfo database	tr(1) ... translate characters	tr(1) ... translate characters
trchan(1) .. translate character sets
troff(1) ... typeset or format documents
trpt(1M) .. transliterate protocol trace	true, false(1) ... provide truth values
truss(1) .. trace system calls and signals
Section 1 - Commands m - z

tset(1) .. provide information to set terminal modes
tset, reset(1) ... establish or restore terminal characteristics
tset(1) ... provide information for setting terminal modes
tsort(1) .. topological sort
tty(1) .. get the name of the terminal
ttyadm(1M) .. format and output port monitor-specific information
ttymon(1M) ... port monitor for terminal ports	uneefs(1M) .. tune up an existing file system
uadmin(1M) .. administrative control
ufsdump(1M) ... incremental file system dump
ufsrestore(1M) .. incremental file system restore
ul(1) .. underline
umask(1) ... set file-creation mode mask
uname(1) .. print name of current UNIX system
unget(1) ... undo a previous get of an SCCS file
unifdef(1) .. resolve and remove ifdef'ed lines from C program source
uniq(1) .. report repeated lines in a file
units(1) .. conversion program
unshare(1M) ... make local resource unavailable for mounting by remote systems
unshare(1M) ... make local NFS resource unavailable for mounting by remote systems
unshare(1M) ... make local RFS resource unavailable for mounting by remote systems
uptime(1) ... show how long the system has been up
urestore(1M) .. request restore of files and directories
useradd(1M) .. administer a new user login on the system
userdel(1M) .. delete a user's login from the system
usermod(1M) .. modify a user's login information on the system
users(1) .. display a compact list of users logged in
uucheck(1M) .. uucp spool directory clean-up
uucico (1M) .. file transport program for the uucp system
uucleanup(1M) .. UNIX-to-UNIX system copy
uuencode, uudecode(1C) ... encode a binary file, or decode its ASCII representation
uuglist(1C) .. list service grades available on this UNIX system
uusched(1M) .. the scheduler for the uucp file transport program
uustat(1C) ... uucp status inquiry and job control
uuto, uupick(1C) .. public UNIX-to-UNIX system file copy
uutry(1M) .. try to contact remote system with debugging on
uu(1C) .. UNIX-to-UNIX system command execution
uuxqt(1M) .. execute remote command requests
vacation(1) ... automatically respond to incoming mail messages
vacation(1) .. reply to mail automatically
val(1) ... validate an SCCS file
vc(1) ... version control
vi(1) .. screen-oriented (visual) display editor based on ex
vidi(1) .. sets the font and video mode for a video device
volcopy (generic)(1M) ... make literal copy of file system
volcopy (s5)(1M) ... make a literal copy of an s5 file system
volcopy (ufs)(1M) .. make a literal copy of a ufs file system
vsig(1F) .. synchronize a co-process with the controlling FMLI application
vtgetty(1M) ... sets terminal type, modes, speed, and line discipline
vtlmg(1) ... monitors and opens virtual terminals
w(1) .. who is logged in, and what are they doing
wait(1) .. await completion of process
wall(1M) .. write to all users
wc(1) .. word count
what(1) .. print identification strings
whatis(1) ... display a one-line summary about a keyword
which(1) ... locate a command; display its pathname or alias
who(1) ... who is on the system
whoami(1) ... display the effective current username
whodo(1M) ... who is doing what
whois(1) .. Internet user name directory service
write(1) ... write to another user
wtinit(1M) ... object downloader for the 5620 DMD terminal
x286emul(1) .. emulate XENIX 80286
xargs(1) ... construct argument list(s) and execute command
xfsck(1M) ... check and repair XENIX filesystems
xinstall(1M) .. XENIX installation shell script
xinstall(1M) .. install commands
xrestore, xrestor(1M) ... invoke XENIX incremental filesystem restorer
xts(1M) .. extract and print xt driver statistics
xtt(1M) .. extract and print xt driver packet traces
yacc(1) .. yet another compiler-compiler
yes(1) .. print string repeatedly
ypcat(1) .. print values in a NIS data base
ypinit(1M) .. build and install YP database
ypmake(1M) .. rebuild YP database
ypmatch(1) ... print the value of one or more keys from the NIS map
yppoll(1M) .. return current version of the map at the NIS server host
Section 1 – Commands m – z

yppush(1M) ... force propagation of a changed NIS map
ypserv, ypbind(1M) .. NIS server and binder processes
ypset(1M) ... point ypbind at a particular server
ypupdated(1M) .. server for changing NIS information
ypwhich(1) ... return name of NIS server or map master
ypxfr(1M) ... transfer YP map from a YP server to host
zdump(1M) ... time zone dumper
zic(1M) ... time zone compiler
NAME
m4 – macro processor

SYNOPSIS
m4 [options] [files]

DESCRIPTION
The m4 command is a macro processor intended as a front end for C, assembler, and other languages. Each of the argument files is processed in order; if there are no files, or if a file name is -, the standard input is read. The processed text is written on the standard output.

The options and their effects are as follows:
-e Operate interactively. Interrupts are ignored and the output is unbuffered.
-s Enable line sync output for the C preprocessor (#line ...)
-Bint Change the size of the push-back and argument collection buffers from the default of 4,096.
-Hint Change the size of the symbol table hash array from the default of 199. The size should be prime.
-Sint Change the size of the call stack from the default of 100 slots. Macros take three slots, and non-macro arguments take one.
-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, the above flags must appear before any file names and before any -D or -U flags:
-Dname [=val] Defines name to val or to null in val’s absence.
-Uname undefines name.

Macro calls have the form:
name(arg1, arg2, ..., argn)

The (must immediately follow the name of the macro. If the name of a defined macro is not followed by a), it is deemed to be a call of that macro with no arguments. Potential macro names consist of alphanumeric characters and underscore (_), where the first character is not a digit.

Leading unquoted blanks, tabs, and new-lines are ignored while collecting arguments. Left and right single quotes are used to quote strings. The value of a quoted string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right parenthesis. If fewer arguments are supplied than are in the macro definition, the trailing arguments are taken to be null. Macro evaluation proceeds normally during the collection of the arguments, and any commas or right parentheses that happen to turn up within the value of a nested call are as effective as those in the original input text. After argument collection, the value of the macro is pushed back onto the input stream and rescanned.
m4 makes available the following built-in macros. These macros may be redefined, but once this is done the original meaning is lost. Their values are null unless otherwise stated.

define
the second argument is installed as the value of the macro whose name is the first argument. Each occurrence of \$n in the replacement text, where n is a digit, is replaced by the n-th argument. Argument 0 is the name of the macro; missing arguments are replaced by the null string; \$# is replaced by the number of arguments; \$* is replaced by a list of all the arguments separated by commas; \$@ is like \$*, but each argument is quoted (with the current quotes).

undefine
removes the definition of the macro named in its argument.

defn
returns the quoted definition of its argument(s). It is useful for renaming macros, especially built-ins.

pushdef
like define, but saves any previous definition.

popdef
removes current definition of its argument(s), exposing the previous one, if any.

ifdef
if the first argument is defined, the value is the second argument, otherwise the third. If there is no third argument, the value is null. The word unix is predefined.

shift
returns all but its first argument. The other arguments are quoted and pushed back with commas in between. The quoting nullifies the effect of the extra scan that will subsequently be performed.

changequote
change quote symbols to the first and second arguments. The symbols may be up to five characters long. changequote without arguments restores the original values (that is, ,).

changecom
change left and right comment markers from the default # and new-line. With no arguments, the comment mechanism is effectively disabled. With one argument, the left marker becomes the argument and the right marker becomes new-line. With two arguments, both markers are affected. Comment markers may be up to five characters long.

divert
m4 maintains 10 output streams, numbered 0-9. The final output is the concatenation of the streams in numerical order; initially stream 0 is the current stream. The divert macro changes the current output stream to its (digit-string) argument. Output diverted to a stream other than 0 through 9 is discarded.

undivert
causes immediate output of text from diversions named as arguments, or all diversions if no argument. Text may be undiverted into another diversion. Undiverting discards the diverted text.

divnum
returns the value of the current output stream.
dnl reads and discards characters up to and including the next newline.

ifelse has three or more arguments. If the first argument is the same string as the second, then the value is the third argument. If not, and if there are more than four arguments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is either the fourth string, or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of the argument is calculated by interpreting an initial digit-string as a decimal number.

decr returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Operators include +, -, *, /, %, ** (exponentiation), bitwise &, |, ^, and ~; relational operators; parentheses. Octal and hex numbers may be specified as in C. The second argument specifies the radix for the result; the default is 10. The third argument may be used to specify the minimum number of digits in the result.

len returns the number of characters in its argument.

index returns the position in its first argument where the second argument begins (zero origin), or -1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero origin number selecting the first character; the third argument indicates the length of the substring. A missing third argument is taken to be large enough to extend to the end of the first string.

translit transliterates the characters in its first argument from the set given by the second argument to the set given by the third. No abbreviations are permitted.

include returns the contents of the file named in the argument.

ssinclude is identical to include, except that it says nothing if the file is inaccessible.

syscmd executes the UNIX System command given in the first argument. No value is returned.

sysval is the return code from the last call to syscmd.

maketemp fills in a string of XXXXX in its argument with the current process ID.

m4exit causes immediate exit from m4. Argument 1, if given, is the exit code; the default is 0.

m4wrap argument 1 will be pushed back at final EOF; example: m4wrap(`cleanup()')
errprint prints its argument on the diagnostic output file.
dumpdef prints current names and definitions, for the named items, or for all if no arguments are given.
traceon with no arguments, turns on tracing for all macros (including built-ins). Otherwise, turns on tracing for named macros.
traceoff turns off trace globally and for any macros specified. Macros specifically traced by traceon can be untraced only by specific calls to traceoff.

SEE ALSO
as(1), cc(1)
NAME
 mach – display the processor type of the current host

SYNOPSIS
 /usr/ucb/mach

DESCRIPTION
 The mach command displays the processor-type of the current host.

SEE ALSO
 arch(1)
 machid(1), uname(1) in the User's Reference Manual
 uname(2), sysinfo(2) in the Programmer's Reference Manual
machid(1) (Essential/User Environment Utilities) machid(1)

NAME
 machid -- get processor type truth value

SYNOPSIS
 machid [option]

DESCRIPTION
 The machid command returns a value to indicate the computer processor, model,
hard disk, and/or bus architecture.

 The following are machid usages and the meaning of their return codes.

 machid
 Exit Code Machine Type
 0 Generic AT386 machine
 1 Compaq 386
 2 AT&T 6386 or 6386E
 4 AT&T 6386/SX
 5 AT&T 6386/25
 6 AT&T 6386E/33
 10 AT&T 6386E/33 Model S

 machid -s
 Exit Code Meaning
 0 Bootable Non-SCSI Hard Disk
 1 Bootable SCSI Hard Disk

 machid -e
 Exit Code Meaning
 0 AT&T 6386E/33 Model S configured correctly
 3 Not configured correctly

 machid -p
 Exit Code Meaning
 3 Machine has a 80386
 4 Machine has a 80486

 machid -a
 Exit Code Meaning
 0 Machine uses an AT Bus Architecture
 1 Machine uses an EISA Bus Architecture

SEE ALSO
 sh(1), test(1), true(1), uname.

NOTES
 This command supersedes the old machid family (pdp11, u3b2, u3b5, u3b15, vax,
 386, u370) manual page which is obsolescent.
NAME

mail, rmail – read mail or send mail to users

SYNOPSIS

Sending mail:

mail [-tw] [-m message_type] recipient ...

rmail [-tw] [-m message_type] recipient ...

Reading mail:

mail [-ehPqr] [-f file]

Forwarding mail:

mail -F recipient ...

Debugging:

mail [-xdebug_level] [other_mail_options] recipient ...

mail -T mailsurr_file recipient ...

DESCRIPTION

A recipient is usually a user name recognized by login(1). When recipients are named, mail assumes a message is being sent (except in the case of the -F option). It reads from the standard input up to an end-of-file (CTRL-d) or, if reading from a terminal device, until it reads a line consisting of just a period. When either of those indicators is received, mail adds the letter to the mailfile for each recipient.

A letter is composed of some header lines followed by a blank line followed by the message content. The header lines section of the letter consists of one or more UNIX postmarks:

From sender date_and_time [remote from remote_system_name]

followed by one or more standardized message header lines of the form:

keyword-name: [printable text]

where keyword-name is comprised of any printable, non-whitespace, characters other than colon (':'). A Content-Length: header line, indicating the number of bytes in the message content will always be present. A Content-Type: header line that describes the type of the message content (such as text, binary, multipart, etc.) will always be present unless the letter consists of only header lines with no message content. Header lines may be continued on the following line if that line starts with white space.

Sending mail:

The following command-line arguments affect SENDING mail:

-m causes a Message-Type: line to be added to the message header with the value of message_type.
-t causes a To: line to be added to the message header for each of the intended recipients.
-w causes a letter to be sent to a remote recipient without waiting for the completion of the remote transfer program.
If a letter is found to be undeliverable, it is returned to the sender with diagnostics that indicate the location and nature of the failure. If mail is interrupted during input, the message is saved in the file dead.letter to allow editing and resending. dead.letter is always appended to, thus preserving any previous contents. The initial attempt to append to (or create) dead.letter will be in the current directory. If this fails, dead.letter will be appended to (or created in) the user's login directory. If the second attempt also fails, no dead.letter processing will be done.

rmail only permits the sending of mail; uucp(1C) uses rmail as a security precaution. Any application programs that generate mail messages should be sure to invoke rmail rather than mail for message transport and/or delivery.

If the local system has the Basic Networking Utilities installed, mail may be sent to a recipient on a remote system. There are numerous ways to address mail to recipients on remote systems depending on the transport mechanisms available to the local system. The two most prevalent addressing schemes are UUCP-style and Domain-style. With UUCP-style addressing, remote recipients are specified by prefixing the recipient name with the remote system name and an exclamation point (such as sysa!user). A series of system names separated by exclamation points can be used to direct a letter through an extended network (such as sysalsysbysyscluser). With Domain-style addressing, remote recipients are specified by appending an '@' and domain (and possibly sub-domain) information to the recipient name (such as user@sf.att.com). (The local System Administrator should be consulted for details on which addressing conventions are available on the local system.)

Reading Mail:
The following command-line arguments affect READING mail:
- `e` causes mail not to be printed. An exit value of 0 is returned if the user has mail; otherwise, an exit value of 1 is returned.
- `h` causes a window of headers to be initially displayed rather than the latest message. The display is followed by the '?' prompt.
- `p` causes all messages to be printed without prompting for disposition.
- `P` causes all messages to be printed with all header lines displayed, rather than the default selective header line display.
- `q` causes mail to terminate after interrupts. Normally an interrupt causes only the termination of the message being printed.
- `r` causes messages to be printed in first-in, first-out order.
- `f file` causes mail to use file (such as mbox) instead of the default mailfile.

mail, unless otherwise influenced by command-line arguments, prints a user's mail messages in last-in, first-out order. The default mode for printing messages is to display only those header lines of immediate interest. These include, but are not limited to, the UNIX From and >From postmarks, From:, Date:, Subject:, and Content-Length: header lines, and any recipient header lines such as To:, Cc:, Bcc:, etc. After the header lines have been displayed, mail will display the contents (body) of the message only if it contains no unprintable characters. Otherwise, mail will issue a warning statement about the message having binary content and not display the content. (This may be overridden via the p command. See below.)
For each message, the user is prompted with a ?, and a line is read from the standard input. The following commands are available to determine the disposition of the message:

- `#` Print the number of the current message.
- `-` Print previous message.
- `<new-line>`, `+`, or `n` Print the next message.
- `!command` Escape to the shell to do `command`.
- `a` Print message that arrived during the `mail` session.
- `d`, or `dp` Delete the current message and print the next message.
- `dn` Delete message number `n`. Do not go on to the next message.
- `dq` Delete message and quit `mail`.
- `h` Display a window of headers around current message.
- `hn` Display a window of headers around message number `n`.
- `ha` Display headers of all messages in the user's `mailfile`.
- `hd` Display headers of messages scheduled for deletion.
- `m [persons]` Mail (and delete) the current message to the named persons.
- `n` Print message number `n`.
- `p` Print current message again, overriding any indications of binary (that is, unprintable) content.
- `P` Override default brief mode and print current message again, displaying all header lines.
- `q`, or `CTRL-D` Put undeleted mail back in the `mailfile` and quit `mail`.
- `r [users]` Reply to the sender, and other users, then delete the message.
- `s [files]` Save message in the named files (`mbox` is default) and delete the message.
- `u [n]` Undelete message number `n` (default is last read).
- `w [files]` Save message contents, without any header lines, in the named files (`mbox` is default) and delete the message.
- `x` Put all mail back in the `mailfile` unchanged and exit `mail`.
- `y [files]` Same as save.
- `?` Print a command summary.

When a user logs in, the presence of mail, if any, is usually indicated. Also, notification is made if new mail arrives while using `mail`.

The permissions of `mailfile` may be manipulated using `chmod` in two ways to alter the function of `mail`. The other permissions of the file may be read-write (0666), read-only (0664), or neither read nor write (0660) to allow different levels of privacy. If changed to other than the default (mode 0660), the file will be
preserved even when empty to perpetuate the desired permissions. (The administrator may override this file preservation using the `DEL_EMPTY_MAILFILE` option of `mailcnfg`.)

The group id of the mailfile must be `mail` to allow new messages to be delivered, and the mailfile must be writable by group `mail`.

Forwarding mail:
The following command-line argument affects FORWARDING of mail:

- `-F recipients` Causes all incoming mail to be forwarded to `recipients`. The mailbox must be empty.

The `-F` option causes the `mailfile` to contain a first line of:

```
Forward to recipient ...
```

Thereafter, all mail sent to the owner of the `mailfile` will be forwarded to each recipient.

An `Auto-Forwarded-From: ...` line will be added to the forwarded message's header. This is especially useful in a multi-machine environment to forward all a person's mail to a single machine, and to keep the recipient informed if the mail has been forwarded.

Installation and removal of forwarding is done with the `-F` invocation option. To forward all your mail to systema!user enter:

```
mail -F systema!user
```

To forward to more than one recipient enter:

```
mail -F "user1,user2@att.com,systemc!systemd!user3"
```

Note that when more than one recipient is specified, the entire list should be enclosed in double quotes so that it may all be interpreted as the operand of the `-F` option. The list can be up to 1024 bytes; either commas or white space can be used to separate users.

If the first character of any forwarded-to recipient name is the pipe symbol (`|`), the remainder of the line will be interpreted as a command to pipe the current mail message to. The command, known as a `Personal Surrogate`, will be executed in the environment of the recipient of the message (that is, basename of the `mailfile`). For example, if the mailfile is `/var/mail/foo`, `foo` will be looked up in `/etc/passwd` to determine the correct userID, groupID, and HOME directory. The command’s environment will be set to contain only `HOME`, `LOGNAME`, `TZ`, `PATH` (= `/usr/usr/bin:`), and `SHELL` (= `/usr/bin/sh`), and the command will execute in the recipient’s `HOME` directory. If the message recipient cannot be found in `/etc/passwd`, the command will not be executed and a non-delivery notification with appropriate diagnostics will be sent to the message’s originator.

After the pipe symbol, escaped double quotes should be used to have strings with embedded whitespace be considered as single arguments to the command being executed. No shell syntax or metacharacters may be used unless the command specified is `/usr/bin/sh`. For example,

```
mail -F "|/bin/sh -c "shell_command_line\""
```
will work, but is not advised since using double quotes and backslashes within the shell command line is difficult to do correctly and becomes tedious very quickly.

Certain %keywords are allowed within the piped-to command specification and will be textually substituted for before the command line is executed.

%R Return path to the message originator.
%c Value of the Content-Type: header line if present.
%S Value of the Subject: header line if present.

If the command being piped to exits with any non-zero value, mail will assume that message delivery failed and will generate a non-delivery notification to the message's originator. It is allowable to forward mail to other recipients and pipe it to a command, as in

```sh
cat -n <<EOF | mail -F "carol,joe,|myvacationprog %R"
Please read these.
EOF
```

Two UNIX System facilities that use the forwarding of messages to commands are notify(1), which causes asynchronous notification of new mail, and vacation(1), which provides an auto-answer capability for messages when the recipient will be unavailable for an extended period of time.

To remove forwarding enter:

```sh
cat -n <<EOF | mail -F ""
EOF
```

The pair of double quotes is mandatory to set a NULL argument for the -F option.

In order for forwarding to work properly the mailfile should have mail as group ID, and the group permission should be read-write.

mail will exit with a return code of 0 if forwarding was successfully installed or removed.

Debugging:

The following command-line arguments cause mail to provide DEBUGGING information:

```sh
-T mailsurr_file
-xdebug_level
```

causes mail to display how it will parse and interpret the mailsurr file.

causes mail to create a trace file containing debugging information.

The -T option requires an argument that will be taken as the pathname of a test mailsurr file. If NULL (as in -T ""), the system mailsurr file will be used. To use, type `mail -T test_file recipient` and some trivial message (like "testing"), followed by a line with either just a dot (\'.\') or a CTRL-D. The result of using the -T option will be displayed on standard output and show the inputs and resulting transformations as mailsurr is processed by the mail command for the indicated recipient. Mail messages will never actually be sent or delivered when the -T option is used.
The \(-x\) option causes \texttt{mail} to create a file named \texttt{/tmp/MLDBGprocess_id} that contains debugging information relating to how \texttt{mail} processed the current message. The absolute value of \texttt{debug_level} controls the verboseness of the debug information. Zero implies no debugging. If \texttt{debug_level} is greater than zero, the debug file will be retained only if \texttt{mail} encountered some problem while processing the message. If \texttt{debug_level} is less than zero the debug file will always be retained. The \texttt{debug_level} specified via \(-x\) overrides any specification of \texttt{DEBUG} in \texttt{/etc/mail/mailcnfg}. The information provided by the \(-x\) option is esoteric and is probably only useful to System Administrators. The output produced by the \(-x\) option is a superset of that provided by the \(-T\) option.

Delivery Notification

Several forms of notification are available for \texttt{mail} by including one of the following lines in the message header.

\texttt{Transport-Options: [/options]}
\texttt{Default-Options: [/options]}
\texttt{To: recipient [/options]}

where the "/options" may be one or more of the following:

\texttt{/delivery} Inform the sender that the message was successfully delivered to the recipient's mailbox.

\texttt{/nodelivery} Do not inform the sender of successful deliveries.

\texttt{/ignore} Do not inform the sender of unsuccessful deliveries.

\texttt{/return} Inform the sender if mail delivery fails. Return the failed message to the sender.

\texttt{/report} Same as \texttt{return} except that the original message is not returned.

The default is \texttt{/nodelivery/return}. If contradictory options are used, the first will be recognized and later, conflicting, terms will be ignored.

FILES

dead.letter
\texttt{/etc/passwd} to identify sender and locate recipients
\texttt{/etc/mail/mailsurr} routing / name translation information
\texttt{/etc/mail/mailcnfg} initialization information
$\texttt{HOME/mbox}$ saved mail
\texttt{MAIL} variable containing path name of \texttt{mailfile}
\texttt{/tmp/ma*} temporary file
\texttt{/tmp/MLDBG*} debug trace file
\texttt{/var/mail/.*.lock} lock for mail directory
\texttt{/var/mail/.*saved} directory for holding temp files to prevent loss of data in the event of a system crash.
\texttt{/var/mail/user} incoming mail for \texttt{user}; that is, the \texttt{mailfile}
SEE ALSO

chmod(1), login(1), mailx(1), notify(1), write(1), vacation(1)

mail_pipe(1M), mailsurr(4), mailcnfg(4) in the System Administrator's Reference Manual
User's Guide

NOTES

The "Forward to recipient" feature may result in a loop. Local loops (messages sent to usera, which are forwarded to userb, which are forwarded to usera) will be detected immediately. Remote loops (mail sent to sys1!usera1 which is forwarded to sys2!userb, which is forwarded to sys1!usera) will also be detected, but only after the message has exceeded the built-in hop count limit of 20. Both cases of forwarding loops will result in a non-delivery notification being sent to the message originator.

As a security precaution, the equivalent of a chmod s+g is performed on the mailfile whenever forwarding is activated via the -F option, and a chmod s-g is done when forwarding is removed via the -F option. If the setGID mode bit is not set when mail attempts to forward an incoming message to a command, the operation will fail and a non-delivery report with appropriate diagnostics will be sent to the message's originator.

The interpretation and resulting action taken because of the header lines described in the Delivery Notifications section above will only occur if this version of mail is installed on the system where the delivery (or failure) happens. Earlier versions of mail may not support any types of delivery notification.

Conditions sometimes result in a failure to remove a lock file.

After an interrupt, the next message may not be printed; printing may be forced by typing a p.
NAME
mail_pipe – invoke recipient command for incoming mail

SYNOPSIS
mail_pipe [-x debug_level] -r recipient -R path_to_sender -c content_type
- S subject

DESCRIPTION
When a new mail message arrives, the mail command first checks if the recipient’s mailbox indicates that the message is to be forwarded elsewhere (to some other recipient or as the input to some command). If the message is to be piped into a recipient-specified command, mail invokes mail_pipe to do some validation and then execute the command in the context of the recipient.

Command-line arguments are:
-x debug_level Turn on debugging for this invocation. See the description of the -x option for the mail command for details.
-r recipient The recipient’s login id.
-R path_to_sender The return address to the message’s originator.
-c content_type The value of the Content-Type: header line in the message.
-S subject The value of the Subject: header line in the message if present.

mail_pipe is installed as a setuid-to-root process, thus enabling itself to change it’s user and group ids to that of the recipient as necessary.

When invoked, mail_pipe performs the following steps (if a step fails, the exit code is noted as [N]):
- Validate invocation arguments [1].
- Verify that recipient name is ≤ 14 characters long [2].
- Verify that the setgid flag for the recipient mailbox is set [3].
- Open /var/mail/recipient [4].
- Verify that recipient’s mailbox starts with the string Forward to [5].
- Find pipe symbol indicating start of command string in recipient mailbox [6].
- Find entry for recipient in /etc/passwd [7].
- Set gid to recipient’s gid [8].
- Set uid to recipient’s uid [9].
- Change current directory to recipient’s login directory [10].
- Allocate space to hold newly exec’ed environment for recipient command [11].
- Parse the recipient command, performing any %keyword expansions required. See the ‘Forwarding mail’ section of mail(1), for more information regarding %keyword substitutions [12].
- Execute recipient command [13 if exec fails, otherwise exit code from recipient command itself].

FILES

/etc/passwd to identify sender and locate recipients
/var/mail/recipient incoming mail for recipient; that is, the mail file
/tmp/MLDBG* debug trace file
/usr/lib/mail/mail_pipe mail_pipe program

SEE ALSO

mail(1), notify(1), vacation(1)
NAME
mailalias – translate mail alias names

SYNOPSIS
mailalias [-s] [-v] name ...

DESCRIPTION
mailalias is called by mail. It places on the standard output a list of mail
addresses corresponding to name. The mail addresses are found by performing
the following steps:

1. Look for a match in the user’s local alias file $HOME/lib/names. If a line is
 found beginning with the word name, print the rest of the line on standard
 output and exit.

2. Look for a match in the system-wide alias files, which are listed in the master
 path file /etc/mail/namefiles. If a line is found beginning with the word
 name, print the rest of the line on standard output and exit. If an alias file is
 a directory name dir, then search the file dir/name. By default, the file
 /etc/mail/namefiles lists the directory /etc/mail/lists and the file
 /etc/mail/names.

3. Otherwise print name and exit.

The alias files may contain comments (lines beginning with #) and information
lines of the form:

 name list-of-addresses

Tokens on these lines are separated by white-space. Lines may be continued by
placing a backslash (\) at the end of the line.

If the -s option is not specified and more than one name is being translated, each
line of output will be prefixed with the name being translated.

The -v option causes debugging information to be written to standard output.

FILES
$HOME/lib/names private aliases
/etc/mail/namefiles list of files to search
/etc/mail/names standard file to search

SEE ALSO
uucp(1), mail(1)
ssmtp(1M), smtpd(1M), smtpqer(1M), smtpsched(1M), tosmtp(1M) in the System
Administrator’s Reference Manual
NAME
mailstats -- print statistics collected by sendmail

SYNOPSIS
/usr/ucb/mailstats [filename]

DESCRIPTION
mailstats prints out the statistics collected by the sendmail program on mailer usage. These statistics are collected if the file indicated by the S configuration option of sendmail exists. mailstats first prints the time that the statistics file was created and the last time it was modified. It will then print a table with one row for each mailer specified in the configuration file. The first column is the mailer number, followed by the symbolic name of the mailer. The next two columns refer to the number of messages received by sendmail, and the last two columns refer to messages sent by sendmail. The number of messages and their total size (in 1024 byte units) is given. No numbers are printed if no messages were sent (or received) for any mailer.

You might want to add an entry to /var/spool/cron/crontab/root to reinitialize the statistics file once a night. Copy /dev/null into the statistics file or otherwise truncate it to reset the counters.

FILES
/var/spool/cron/crontab/root
/dev/null

SEE ALSO
sendmail(1M)

NOTES
mailstats should read the configuration file instead of having a hard-wired table mapping mailer numbers to names.
NAME

mailx – interactive message processing system

SYNOPSIS

mailx [options] [name . . .]

DESCRIPTION

The command mailx provides a comfortable, flexible environment for sending and receiving messages electronically. When reading mail, mailx provides commands to facilitate saving, deleting, and responding to messages. When sending mail, mailx allows editing, reviewing and other modification of the message as it is entered.

Many of the remote features of mailx work only if the Basic Networking Utilities are installed on your system.

Incoming mail is stored in a standard file for each user, called the mailbox for that user. When mailx is called to read messages, the mailbox is the default place to find them. As messages are read, they are marked to be moved to a secondary file for storage, unless specific action is taken, so that the messages need not be seen again. This secondary file is called the mbox and is normally located in the user’s HOME directory [see MBOX (ENVIRONMENT VARIABLES) for a description of this file]. Messages can be saved in other secondary files named by the user. Messages remain in a secondary file until forcibly removed.

The user can access a secondary file by using the -f option of the mailx command. Messages in the secondary file can then be read or otherwise processed using the same COMMANDS as in the primary mailbox. This gives rise within these pages to the notion of a current mailbox.

On the command line, options start with a dash (–) and any other arguments are taken to be destinations (recipients). If no recipients are specified, mailx attempts to read messages from the mailbox. Command-line options are:

- Turn on debugging output.
- Test for presence of mail. mailx prints nothing and exits with a successful return code if there is mail to read.
- Read messages from filename instead of mailbox. If no filename is specified, the mbox is used.
- Record the message in a file named after the first recipient. Overrides the record variable, if set (see ENVIRONMENT VARIABLES).
- The number of network ‘hops’ made so far. This is provided for network software to avoid infinite delivery loops. This option and its argument is passed to the delivery program.
- Print header summary only.
- Ignore interrupts. See also ignore (ENVIRONMENT VARIABLES).
-I Include the newsgroup and article-id header lines when printing mail messages. This option requires the -f option to be specified.

-n Do not initialize from the system default mailx.rc file.

-N Do not print initial header summary.

-r address Use address as the return address when invoking the delivery program. All tilde commands are disabled. This option and its argument is passed to the delivery program.

-s subject Set the Subject header field to subject.

-T file Message-id and article-id header lines are recorded in file after the message is read. This option will also set the -I option.

-u user Read user’s mailbox. This is only effective if user’s mailbox is not read protected.

-U Convert uucp style addresses to internet standards. Overrides the conv environment variable.

-v Print the mailx version number and exit.

When reading mail, mailx is in command mode. A header summary of the first several messages is displayed, followed by a prompt indicating mailx can accept regular commands (see COMMANDS below). When sending mail, mailx is in input mode. If no subject is specified on the command line, a prompt for the subject is printed. (A subject longer than 1024 characters causes mailx to print the message mail: ERROR signal 10; the mail will not be delivered.) As the message is typed, mailx reads the message and store it in a temporary file. Commands may be entered by beginning a line with the tilde (') escape character followed by a single command letter and optional arguments. See TILDE ESCAPES for a summary of these commands.

At any time, the behavior of mailx is governed by a set of environment variables. These are flags and valued parameters which are set and cleared via the set and unset commands. See ENVIRONMENT VARIABLES below for a summary of these parameters.

Recipients listed on the command line may be of three types: login names, shell commands, or alias groups. Login names may be any network address, including mixed network addressing. If mail is found to be undeliverable, an attempt is made to return it to the sender’s mailbox. If the recipient name begins with a pipe symbol (’|’), the rest of the name is taken to be a shell command to pipe the message through. This provides an automatic interface with any program that reads the standard input, such as lp(1) for recording outgoing mail on paper. Alias groups are set by the alias command (see COMMANDS below) and are lists of recipients of any type.

Regular commands are of the form

[command] [msglist] [arguments]
If no command is specified in *command mode*, print is assumed. In *input mode*, commands are recognized by the escape character, and lines not treated as commands are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion of a current message, marked by a right angle bracket (>) in the header summary. Many commands take an optional list of messages (*msglist*) to operate on. The default for *msglist* is the current message. A *msglist* is a list of message identifiers separated by spaces, which may include:

- **n** Message number n.
- **.** The current message.
- **^** The first undeleted message.
- **$** The last message.
- ***** All messages.
- **n-m** An inclusive range of message numbers.
- **user** All messages from *user*.
- **/string** All messages with *string* in the subject line (case ignored).
- **:c** All messages of type c, where c is one of:
 - **d** deleted messages
 - **n** new messages
 - **o** old messages
 - **r** read messages
 - **u** unread messages

Note that the context of the command determines whether this type of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command involved. File names, where expected, are expanded via the normal shell conventions [see *sh*(1)]. Special characters are recognized by certain commands and are documented with the commands below.

At start-up time, *mailx* tries to execute commands from the optional system-wide file (*/etc/mail/mailx.rc*) to initialize certain parameters, then from a private start-up file (*$HOME/ .mailrc*) for personalized variables. With the exceptions noted below, regular commands are legal inside start-up files. The most common use of a start-up file is to set up initial display options and alias lists. The following commands are not legal in the start-up file: !, Copy, edit, followup, Followup, hold, mail, preserve, reply, Reply, shell, and visual. An error in the start-up file causes the remaining lines in the file to be ignored. The *.mailrc* file is optional, and must be constructed locally.

COMMANDS

The following is a complete list of *mailx* commands:

shell-command
Escape to the shell. See SHELL (ENVIRONMENT VARIABLES).

comment
Null command (comment). This may be useful in .mailrc files.

= Print the current message number.

? Prints a summary of commands.

alias alias name ...
group alias name ...
Declare an alias for the given names. The names are substituted when alias is used as a recipient. Useful in the .mailrc file.

alternates name ...
Declares a list of alternate names for your login. When responding to a message, these names are removed from the list of recipients for the response. With no arguments, alternates prints the current list of alternate names. See also allnet (ENVIRONMENT VARIABLES).

cd [directory]
chdir [directory]
Change directory. If directory is not specified, $HOME is used.

copy [filename]
copy [msglist] filename
Copy messages to the file without marking the messages as saved. Otherwise equivalent to the save command.

Copy [msglist]
Save the specified messages in a file whose name is derived from the author of the message to be saved, without marking the messages as saved. Otherwise equivalent to the save command.

delete [msglist]
Delete messages from the mailbox. If autoprint is set, the next message after the last one deleted is printed (see ENVIRONMENT VARIABLES).

discard [header-field ...]
ignore [header-field ...]
Suppresses printing of the specified header fields when displaying messages on the screen. Examples of header fields to ignore are status and cc. The fields are included when the message is saved. The Print and Type commands override this command. If no header is specified, the current list of header fields being ignored will be printed. See also the undiscard and unignore commands.

dp [msglist]
dt [msglist]
Delete the specified messages from the mailbox and print the next message after the last one deleted. Roughly equivalent to a delete command followed by a print command.
echo string ...
 Echo the given strings [like echo(1)].

edit [msglist]
 Edit the given messages. The messages are placed in a temporary file and
 the EDITOR variable is used to get the name of the editor (see ENVIRON-
 MENT VARIABLES). Default editor is ed(1).

exit
 Exit from mailx, without changing the mailbox. No messages are saved
 in the mbox (see also quit).

file [filename]
 Quit from the current file of messages and read in the specified file.
 Several special characters are recognized when used as file names, with
 the following substitutions:
 % the current mailbox.
 %user the mailbox for user.
 # the previous file.
 & the current mbox.
 Default file is the current mailbox.

folders
 Print the names of the files in the directory set by the folder variable (see
 ENVIRONMENT VARIABLES).

followup [message]
 Respond to a message, recording the response in a file whose name is
 derived from the author of the message. Overrides the record variable, if
 set. See also the Followup, Save, and Copy commands and outfolder
 (ENVIRONMENT VARIABLES).

Followup [msglist]
 Respond to the first message in the msglist, sending the message to the
 author of each message in the msglist. The subject line is taken from the
 first message and the response is recorded in a file whose name is derived
 from the author of the first message. See also the followup, Save, and
 Copy commands and outfolder (ENVIRONMENT VARIABLES).

from [msglist]
 Prints the header summary for the specified messages.

group alias name ...
 alias alias name ...
 Declare an alias for the given names. The names are substituted when
 alias is used as a recipient. Useful in the .mailrc file.

headers [message]
 Prints the page of headers which includes the message specified. The
 screen variable sets the number of headers per page (see ENVIRONMENT
 VARIABLES). See also the z command.
help Prints a summary of commands.
hold [msglist]
preserve [msglist]
 Holds the specified messages in the mailbox.

if s | r
mail-commands
else
mail-commands
endif Conditional execution, where s executes following mail-commands, up to an else or endif, if the program is in send mode, and r causes the mail-commands to be executed only in receive mode. Useful in the .mailrc file.

ignore [header-field ...]

discard [header-field ...]
 Suppresses printing of the specified header fields when displaying messages on the screen. Examples of header fields to ignore are status and cc. All fields are included when the message is saved. The Print and Type commands override this command. If no header is specified, the current list of header fields being ignored will be printed. See also the undiscard and unignore commands.

list Prints all commands available. No explanation is given.

mail name ...
 Mail a message to the specified users.

Mail name
 Mail a message to the specified user and record a copy of it in a file named after that user.

mbox [msglist]
 Arrange for the given messages to end up in the standard mbox save file when mailx terminates normally. See MBOX (ENVIRONMENT VARIABLES) for a description of this file. See also the exit and quit commands.

next [message]
 Go to next message matching message. A msglist may be specified, but in this case the first valid message in the list is the only one used. This is useful for jumping to the next message from a specific user, since the name would be taken as a command in the absence of a real command. See the discussion of msglists above for a description of possible message specifications.

pipe [msglist] [shell-command]
 Pipe the message through the given shell-command. The message is treated as if it were read. If no arguments are given, the current message is piped through the command specified by the value of the cmd variable. If the page variable is set, a form feed character is inserted after each message (see ENVIRONMENT VARIABLES).
preserve [msglist]
hold [msglist]
 Preserve the specified messages in the mailbox.

print [msglist]
type [msglist]
 Print the specified messages on the screen, including all header fields.
 Overrides suppression of fields by the ignore command.

print [msglist]
type [msglist]
 Print the specified messages. If crt is set, the messages longer than the
 number of lines specified by the crt variable are paged through the com-
 mand specified by the PAGER variable. The default command is pg(1) (see
 ENVIRONMENT VARIABLES).

quit
 Exit from mailx, storing messages that were read in mbox and unread
 messages in the mailbox. Messages that have been explicitly saved in a
 file are deleted.

Reply [msglist]
Respond [msglist]
 Send a response to the author of each message in the msglist. The subject
 line is taken from the first message. If record is set to a file name, the
 response is saved at the end of that file (see ENVIRONMENT VARIABLES).

reply [message]
respond [message]
 Reply to the specified message, including all other recipients of the mes-
 sage. If record is set to a file name, the response is saved at the end of
 that file (see ENVIRONMENT VARIABLES).

save [msglist]
 Save the specified messages in a file whose name is derived from the
 author of the first message. The name of the file is taken to be the
 author’s name with all network addressing stripped off. See also the
 Copy, followup, and Followup commands and outfolder (ENVIRON-
 MENT VARIABLES).

save [filename]
save [msglist] filename
 Save the specified messages in the given file. The file is created if it does
 not exist. The file defaults to mbox. The message is deleted from the
 mailbox when mailx terminates unless keepsave is set (see also
 ENVIRONMENT VARIABLES and the exit and quit commands).

set
set name
set name=string
set name=number
 Define a variable called name. The variable may be given a null, string, or
 numeric value. Set by itself prints all defined variables and their values.
See ENVIRONMENT VARIABLES for detailed descriptions of the `mailx` variables.

shell
Invoke an interactive shell [see also `SHELL` (ENVIRONMENT VARIABLES)].

size [msglist]
Print the size in characters of the specified messages.

source filename
Read commands from the given file and return to command mode.

top [msglist]
Print the top few lines of the specified messages. If the `toplines` variable is set, it is taken as the number of lines to print (see ENVIRONMENT VARIABLES). The default is 5.

touch [msglist]
Touch the specified messages. If any message in `msglist` is not specifically saved in a file, it is placed in the `mbox`, or the file specified in the `MBOX` environment variable, upon normal termination. See `exit` and `quit`.

Type [msglist]
Print [msglist]
Print the specified messages on the screen, including all header fields. Overrides suppression of fields by the `ignore` command.

type [msglist]
print [msglist]
Print the specified messages. If `crt` is set, the messages longer than the number of lines specified by the `crt` variable are paged through the command specified by the `PAGER` variable. The default command is `pg(1)` (see ENVIRONMENT VARIABLES).

undelete [msglist]
Restore the specified deleted messages. Will only restore messages deleted in the current mail session. If `auto` is set, the last message of those restored is printed (see ENVIRONMENT VARIABLES).

undiscard header-field ...
unignore header-field ...
Remove the specified header fields from the list being ignored.

unset name ...
Causes the specified variables to be erased. If the variable was imported from the execution environment (for example, a shell variable) then it cannot be erased.

version
Prints the current version.

visual [msglist]
Edit the given messages with a screen editor. The messages are placed in
a temporary file and the VISUAL variable is used to get the name of the editor (see ENVIRONMENT VARIABES).

write [msglist] filename
Write the given messages on the specified file, minus the header and trailing blank line. Otherwise equivalent to the save command.

xit
Exit from mailx, without changing the mailbox. No messages are saved in the mbox (see also quit).

z[+ | -]
Scroll the header display forward or backward one screen-full. The number of headers displayed is set by the screen variable (see ENVIRONMENT VARIABES).

TILDE ESCAPES
The following commands may be entered only from input mode, by beginning a line with the tilde escape character ('). See escape (ENVIRONMENT VARIABLES) for changing this special character.

- **~! shell-command**
 Escape to the shell.

- **~.**
 Simulate end of file (terminate message input).

- **~: mail-command**
 ~ mail-command
 Perform the command-level request. Valid only when sending a message while reading mail.

- **~?**
 Print a summary of tilde escapes.

- **~A**
 Insert the autograph string sign into the message (see ENVIRONMENT VARIABLES).

- **~a**
 Insert the autograph string sign into the message (see ENVIRONMENT VARIABLES).

- **~b names ...**
 Add the names to the blind carbon copy (Bcc) list.

- **~c names ...**
 Add the names to the carbon copy (Cc) list.

- **~d**
 Read in the dead.letter file. See DEAD (ENVIRONMENT VARIABLES) for a description of this file.

- **~e**
 Invoke the editor on the partial message. See also EDITOR (ENVIRONMENT VARIABLES).

- **~f [msglist]**
 Forward the specified messages. The messages are inserted into the message without alteration.
-h Prompt for Subject line and To, Cc, and Bcc lists. If the field is displayed with an initial value, it may be edited as if you had just typed it.

-i string Insert the value of the named variable into the text of the message. For example, -A is equivalent to Environment variables set and exported in the shell are also accessible by -i.

-m [msglist] Insert the specified messages into the letter, shifting the new text to the right one tab stop. Valid only when sending a message while reading mail.

-p Print the message being entered.

-q Quit from input mode by simulating an interrupt. If the body of the message is not null, the partial message is saved in dead.letter. See DEAD (ENVIRONMENT VARIABLES) for a description of this file.

-r filename -< filename

-< !shell-command Read in the specified file. If the argument begins with an exclamation point (!), the rest of the string is taken as an arbitrary shell command and is executed, with the standard output inserted into the message.

-s string ... Set the subject line to string.

-t names ... Add the given names to the To list.

-v Invoke a preferred screen editor on the partial message. See also VISUAL (ENVIRONMENT VARIABLES).

-w filename Write the message into the given file, without the header.

-x Exit as with -q except the message is not saved in dead.letter.

-1 shell-command Pipe the body of the message through the given shell-command. If the shell-command returns a successful exit status, the output of the command replaces the message.

ENVIRONMENT VARIABLES
The following are environment variables taken from the execution environment and are not alterable within mailx.

HOME=directory The user's base of operations.

MAILRC=filename The name of the start-up file. Default is $HOME/.mailrc.
The following variables are internal `mailx` variables. They may be imported from the execution environment or set via the `set` command at any time. The `unset` command may be used to erase variables.

allnet
All network names whose last component (login name) match are treated as identical. This causes the `msglist` message specifications to behave similarly. Default is `noallnet`. See also the `alternates` command and the `metoo` variable.

append
Upon termination, append messages to the end of the `mbox` file instead of prepending them. Default is `noappend`.

askcc Prompt for the Cc list after the Subject is entered. Default is `noaskcc`.

askbcc
Prompt for the Bcc list after the Subject is entered. Default is `noaskbcc`.

asksub
Prompt for subject if it is not specified on the command line with the `-s` option. Enabled by default.

autoprint
Enable automatic printing of messages after delete and undelete commands. Default is `noautoprint`.

bang Enable the special-casing of exclamation points (!) in shell escape command lines as in `vi(1)`. Default is `nobang`.

cmd=shell-command
Set the default command for the `pipe` command. No default value.

conv=conversion
Convert uucp addresses to the specified address style. The only valid conversion now is `internet`, which uses domain-style addressing. Conversion is disabled by default. See also the `-u` command-line option.

crt=number
Pipe messages having more than `number` lines through the command specified by the value of the `PAGER` variable [pg(1) by default]. Disabled by default.

DEAD=filename
The name of the file in which to save partial letters in case of untimely interrupt. Default is `$HOME/dead.letter`.

debug Enable verbose diagnostics for debugging. Messages are not delivered. Default is `nodebug`.

dot Take a period on a line by itself during input from a terminal as end-of-file. Default is `nodot`.

EDITOR=shell-command
The command to run when the `edit` or `-e` command is used. Default is `ed(1)`.
escape=c
Substitute c for the ` escape character. Takes effect with next message sent.

folder=directory
The directory for saving standard mail files. User-specified file names beginning with a plus (+) are expanded by preceding the file name with this directory name to obtain the real file name. If directory does not start with a slash (/), $HOME is prepended to it. In order to use the plus (+) construct on a mailx command line, folder must be an exported sh environment variable. There is no default for the folder variable. See also outf dele below.

header
Enable printing of the header summary when entering mailx. Enabled by default.

hold
Preserve all messages that are read in the mailbox instead of putting them in the standard mbox save file. Default is nohold.

ignore
Ignore interrupts while entering messages. Handy for noisy dial-up lines. Default is noignore.

ignoreeof
Ignore end-of-file during message input. Input must be terminated by a period (.) on a line by itself or by the -. command. Default is noignoreeof. See also dot above.

keep
When the mailbox is empty, truncate it to zero length instead of removing it. Disabled by default.

keepsave
Keep messages that have been saved in other files in the mailbox instead of deleting them. Default is nokeepsave.

MBox=filename
The name of the file to save messages which have been read. The xit command overrides this function, as does saving the message explicitly in another file. Default is $HOME/mbox.

metoo
If your login appears as a recipient, do not delete it from the list. Default is nometoo.

LISTER=shell-command
The command (and options) to use when listing the contents of the folder directory. The default is ls(1).

onehop
When responding to a message that was originally sent to several recipients, the other recipient addresses are normally forced to be relative to the originating author's machine for the response. This flag disables alteration of the recipients' addresses, improving efficiency in a network where all machines can send directly to all other machines (for example, one hop away).
outfolder
Causes the files used to record outgoing messages to be located in the
directory specified by the `folder` variable unless the path name is
absolute. Default is `nooutfolder`. See `folder` above and the `Save`, `Copy`,
`followup`, and `Followup` commands.

page
Used with the `pipe` command to insert a form feed after each message
sent through the pipe. Default is `nopage`.

PAGER=shell-command
The command to use as a filter for paginating output. This can also be
used to specify the options to be used. Default is `pg(1)`.

prompt=string
Set the `command mode` prompt to `string`. Default is `"? "`.

quiet
Refrain from printing the opening message and version when entering
`mailx`. Default is `noquiet`.

record=filename
Record all outgoing mail in `filename`. Disabled by default. See also `out-
folder` above. If you have the record and `outfolder` variables set but
the `folder` variable not set, messages are saved in `+filename` instead of
`filename`.

save
Enable saving of messages in `dead.letter` on interrupt or delivery error.
See `DEAD` for a description of this file. Enabled by default.

screen=number
Sets the number of lines in a screen-full of headers for the `headers com-
mand`. It must be a positive number.

sendmail=shell-command
Alternate command for delivering messages. Default is `/usr/bin/rmail`.

sendwait
Wait for background mailer to finish before returning. Default is `nosendwait`.

SHELL=shell-command
The name of a preferred command interpreter. Default is `sh(1)`.

showto
When displaying the header summary and the message is from you, print
the recipient’s name instead of the author’s name.

sign=string
The variable inserted into the text of a message when the `-a` (autograph)
command is given. No default [see also `-i` (TILDE ESCAPES)].

Sign=string
The variable inserted into the text of a message when the `-A` command is
given. No default [see also `-i` (TILDE ESCAPES)].
mailx(1) (Essential Utilities) mailx(1)

toplines=number
The number of lines of header to print with the `top` command. Default is 5.

VISUAL=shell-command
The name of a preferred screen editor. Default is `vi(1)`.

FILES
- `$HOME/.mailrc` personal start-up file
- `$HOME/mbox` secondary storage file
- `/var/mail/*` post office directory
- `/usr/share/lib/mailx/mailx.help*` help message files
- `/etc/mail/mailx.rc` optional global start-up file
- `/tmp/R[emq][sx]*` temporary files

SEE ALSO
- `ls(1)`, `mail(1)`, `pg(1)`

NOTES
The `-h` and `-r` options can be used only if `mailx` is using a delivery program other than `/usr/bin/nnail`.

Where `shell-command` is shown as valid, arguments are not always allowed. Experimentation is recommended.

Internal variables imported from the execution environment cannot be `unset`.

The full internet addressing is not fully supported by `mailx`. The new standards need some time to settle down.

Attempts to send a message having a line consisting only of a `"."` are treated as the end of the message by `mail(1)` (the standard mail delivery program).
NAME
make - maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-eiknpqrst] [names]

DESCRIPTION
make allows the programmer to maintain, update, and regenerate groups of computer programs. make executes commands in makefile to update one or more target names (names are typically programs). If the -f option is not present, then makefile, Makefile, and the Source Code Control System (SCCS) files s.makefile, and s.Makefile are tried in order. If makefile is -, the standard input is taken. More than one -f makefile argument pair may appear.

make updates a target only if its dependents are newer than the target. All prerequisite files of a target are added recursively to the list of targets. Missing files are deemed to be outdated.

The following list of four directives can be included in makefile to extend the options provided by make. They are used in makefile as if they were targets:

.DEFAULT: If a file must be made but there are no explicit commands or relevant built-in rules, the commands associated with the name .DEFAULT are used if it exists.

.IGNORE: Same effect as the -i option.

.PRECIOUS: Dependents of the .PRECIOUS entry will not be removed when quit or interrupt are hit.

.SILENT: Same effect as the -s option.

The options for make are listed below:

-e Environment variables override assignments within makefiles.

-f makefile Description filename (makefile is assumed to be the name of a description file).

-i Ignore error codes returned by invoked commands.

-k Abandon work on the current entry if it fails, but continue on other branches that do not depend on that entry.

-n No execute mode. Print commands, but do not execute them. Even command lines beginning with an @ are printed.

-p Print out the complete set of macro definitions and target descriptions.

-q Question. make returns a zero or non-zero status code depending on whether or not the target file has been updated.

-r Do not use the built-in rules.

-s Silent mode. Do not print command lines before executing.

-t Touch the target files (causing them to be updated) rather than issue the usual commands.
Creating the makefile

The makefile invoked with the -f option is a carefully structured file of explicit instructions for updating and regenerating programs, and contains a sequence of entries that specify dependencies. The first line of an entry is a blank-separated, non-null list of targets, then a : , then a (possibly null) list of prerequisite files or dependencies. Text following a : and all following \ lines that begin with a tab are shell commands to be executed to update the target. The first non-empty line that does not begin with a tab or # begins a new dependency or macro definition. Shell commands may be continued across lines with a backslash-new-line (\ new-line) sequence. Everything printed by make (except the initial tab) is passed directly to the shell as is. Thus,

```
  echo a
  b
```

will produce

```
ab
```

exactly the same as the shell would.

Sharp (#) and new-line surround comments including contained \ new-line sequences.

The following makefile says that `pgm` depends on two files `a.o` and `b.o`, and that they in turn depend on their corresponding source files (`a.c` and `b.c`) and a common file `incl.h`:

```
pgm: a.o b.o
    cc a.o b.o -o pgm
a.o: incl.h a.c
    cc -c a.c
b.o: incl.h b.c
    cc -c b.c
```

Command lines are executed one at a time, each by its own shell. The SHELL environment variable can be used to specify which shell make should use to execute commands. The default is `/usr/bin/sh`. The first one or two characters in a command can be the following: @, -, @-, or -@. If @ is present, printing of the command is suppressed. If - is present, make ignores an error. A line is printed when it is executed unless the -s option is present, or the entry `SILENT:` is included in `makefile`, or unless the initial character sequence contains a @. The -n option specifies printing without execution; however, if the command line has the string `$MAKE` in it, the line is always executed (see the discussion of the `MAKEFLAGS` macro in the "Environment" section below). The -t (touch) option updates the modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is present, if the entry `.IGNORE:` is included in `makefile`, or if the initial character sequence of the command contains -, the error is ignored. If the -k option is present, work is abandoned on the current entry, but continues on other branches that do not depend on that entry.
Interrupt and quit cause the target to be deleted unless the target is a dependent of the directive .PRECIOUS.

Environment

The environment is read by make. All variables are assumed to be macro definitions and are processed as such. The environment variables are processed before any makefile and after the internal rules; thus, macro assignments in a makefile override environment variables. The -e option causes the environment to override the macro assignments in a makefile. Suffixes and their associated rules in the makefile will override any identical suffixes in the built-in rules.

The MAKEFLAGS environment variable is processed by make as containing any legal input option (except -f and -p) defined for the command line. Further, upon invocation, make "invents" the variable if it is not in the environment, puts the current options into it, and passes it on to invocations of commands. Thus, MAKEFLAGS always contains the current input options. This feature proves very useful for "super-makes". In fact, as noted above, when the --n option is used, the command $(MAKE) is executed anyway; hence, one can perform a make --n recursively on a whole software system to see what would have been executed. This result is possible because the --n is put in MAKEFLAGS and passed to further invocations of $(MAKE). This usage is one way of debugging all of the makefiles for a software project without actually doing anything.

Include Files

If the string include appears as the first seven letters of a line in a makefile, and is followed by a blank or a tab, the rest of the line is assumed to be a filename and will be read by the current invocation, after substituting for any macros.

Macros

Entries of the form string1 = string2 are macro definitions. string2 is defined as all characters up to a comment character or an unescaped new-line. Subsequent appearances of $(string1[: subj1 = [subst2]]) are replaced by string2. The parentheses are optional if a single-character macro name is used and there is no substitute sequence. The optional : subj1 = subst2 is a substitute sequence. If it is specified, all non-overlapping occurrences of subj1 in the named macro are replaced by subst2. Strings (for the purposes of this type of substitution) are delimited by blanks, tabs, new-line characters, and beginnings of lines. An example of the use of the substitute sequence is shown in the "Libraries" section below.

Internal Macros

There are five internally maintained macros that are useful for writing rules for building targets.

$* The macro $* stands for the filename part of the current dependent with the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module that is outdated with respect to the target (the "manufactured" dependent file name). Thus, in the .c.o rule, the $< macro would
evaluate to the .c file. An example for making optimized .o files from .c files is:

```
.c.o:
   cc -c -0 $*.c
or:
.c.o:
   cc -c -0 $<
```

The `$?` macro is evaluated when explicit rules from the makefile are evaluated. It is the list of prerequisites that are outdated with respect to the target, and essentially those modules that must be rebuilt.

The `$%` macro is only evaluated when the target is an archive library member of the form `lib(file.o)`. In this case, `$@` evaluates to `lib` and `$%` evaluates to the library member, `file.o`.

Four of the five macros can have alternative forms. When an upper case D or F is appended to any of the four macros, the meaning is changed to "directory part" for D and "file part" for F. Thus, `$(@D)` refers to the directory part of the string `$@`. If there is no directory part, `. /` is generated. The only macro excluded from this alternative form is `$?`.

Suffixes

Certain names (for instance, those ending with .o) have inferable prerequisites such as .c, .s, etc. If no update commands for such a file appear in `makefile`, and if an inferable prerequisite exists, that prerequisite is compiled to make the target. In this case, `make` has inference rules that allow building files from other files by examining the suffixes and determining an appropriate inference rule to use. The current default inference rules are:

```
.c   .c-   .f   .f-   .s   .s-   .sh   .sh-   .C   .C-
.c.a  .c.o  .c-.a  .c-.c  .c-.o  .f.a  .f.o  .f-.a  .f-.f  .f-.o
.h-.h  .I.c  .I.o  .I-.c  .I-.l  .I-.o  .s.a  .s.o  .s-.a  .s-.o
.s-.s  .sh-.sh .y.c  .y.o  .y-.c  .y-.o  .y-.y  .C.a  .C.o  .C-.a
.Y-.o  .Y-.y
```

The internal rules for `make` are contained in the source file `rules.c` for the `make` program. These rules can be locally modified. To print out the rules compiled into the `make` on any machine in a form suitable for recompilation, the following command is used:

```
make -pf - 2>/dev/null </dev/null
```

A tilde in the above rules refers to an SCCS file [see `sccsfile(4)`]. Thus, the rule `.c-.o` would transform an SCCS C source file into an object file (.o). Because the s. of the SCCS files is a prefix, it is incompatible with the make suffix point of view. Hence, the tilde is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (for example, .c:) is the definition of how to build x from x.c. In effect, the other suffix is null. This feature is useful for building targets from only one source file, for example, shell procedures and simple C programs.
Additional suffixes are given as the dependency list for `.SUFFIXES`. Order is significant: the first possible name for which both a file and a rule exist is inferred as a prerequisite. The default list is:

Here again, the above command for printing the internal rules will display the list of suffixes implemented on the current machine. Multiple suffix lists accumulate; `.SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules

The first example can be done more briefly.

```
pgm: a.o b.o
    cc a.o b.o -o pgm
    a.o b.o: incl.h
```

This abbreviation is possible because `make` has a set of internal rules for building files. The user may add rules to this list by simply putting them in the `makefile`.

Certain macros are used by the default inference rules to permit the inclusion of optional matter in any resulting commands. For example, `CFLAGS`, `LFLAGS`, and `YFLAGS` are used for compiler options to `cc(1)`, `lex(1)`, and `yacc(1)`, respectively. Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix `.o` from a file with suffix `.c` is specified as an entry with `.c.o` as the target and no dependents. Shell commands associated with the target define the rule for making a `.o` file from a `.c` file. Any target that has no slashes in it and starts with a dot is identified as a rule and not a true target.

Libraries

If a target or dependency name contains parentheses, it is assumed to be an archive library, the string within parentheses referring to a member within the library. Thus, `lib(file.o)` and `$(LIB)(file.o)` both refer to an archive library that contains `file.o`. (This example assumes the `LIB` macro has been previously defined.) The expression `$(LIB)(file1.o file2.o)` is not legal. Rules pertaining to archive libraries have the form `.xx.a` where the `XX` is the suffix from which the archive member is to be made. An unfortunate by-product of the current implementation requires the `XX` to be different from the suffix of the archive member. Thus, one cannot have `lib(file.o)` depend upon `file.o` explicitly. The most common use of the archive interface follows. Here, we assume the source files are all C type source:

```
lib: lib(file1.o) lib(file2.o) lib(file3.o)
    @echo lib is now up-to-date
    .c.a:
        $(C) -c $(CFLAGS) <
        $(AR) $(ARFLAGS) @ $*.o
    rm -f $*.o
```
In fact, the `.c.a` rule listed above is built into `make` and is unnecessary in this example. A more interesting, but more limited example of an archive library maintenance construction follows:

```
lib: lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) -c $(CFLAGS) $(?:.o=.c)
$(AR) $(ARFLAGS) lib $?
rm $? 
@echo lib is now up-to-date 
.c.a: 
```

Here the substitution mode of the macro expansions is used. The `??` list is defined to be the set of object filenames (inside `lib`) whose C source files are outdated. The substitution mode translates the `.o` to `.c`. (Unfortunately, one cannot as yet transform to `.c`; however, this transformation may become possible in the future.) Also note the disabling of the `.c.a:` rule, which would have created each object file, one by one. This particular construct speeds up archive library maintenance considerably. This type of construct becomes very cumbersome if the archive library contains a mix of assembly programs and C programs.

FILES

[Mm]akefile and s. [Mm]akefile
/usr/bin/sh

SEE ALSO

cc(l), lex(l), yacc(l), printf(3S), sccsfile(4)
cd(l), sh(l) in the User's Reference Manual

See the "make" chapter in the Programmer's Guide: ANSI C and Programming Support Tools

NOTES

Some commands return non-zero status inappropriately; use `-i` or the `-c` command line prefix to overcome the difficulty.

Filenames with the characters `=` `:` `@` will not work. Commands that are directly executed by the shell, notably `cd(l)`, are ineffectual across new-lines in `make`. The syntax `lib(file1.o file2.o file3.o)` is illegal. You cannot build `lib(file.o)` from `file.o`.
NAME
makedbm – make a Network Information Service (NIS) dbm file

SYNOPSIS
/usr/sbin/makedbm [-l] [-s] [-i yp_input_file] [-o yp_output_name]
[-d yp_domain_name] [-m yp_master_name] infile outfile
makedbm [-u dbmfilename]

DESCRIPTION
The makedbm command takes infile and converts it to a pair of files in dbm(3) format, namely outfile.pag and outfile.dir. Each line of the input file is converted to a single dbm record. All characters up to the first TAB or SPACE form the key, and the rest of the line is the data. If a line ends with '\', then the data for that record is continued on to the next line. It is left for NIS clients to interpret '#'; makedbm does not itself treat it as a comment character. infile can be ‘-’, in which case the standard input is read.

makedbm is meant to be used in generating dbm files for NIS and it generates a special entry with the key yp_last_modified, which is the date of infile (or the current time, if infile is ‘-’).

The following options are available:

-1 Lowercase. Convert the keys of the given map to lower case, so that host name matches, for example, can work independent of upper or lower case distinctions.

-s Secure map. Accept connections from secure NIS networks only.

-i yp_input_file
Create a special entry with the key yp_input_file.

-o yp_output_name
Create a special entry with the key yp_output_name.

-d yp_domain_name
Create a special entry with the key yp_domain_name.

-m yp_master_name
Create a special entry with the key yp_master_name. If no master host name is specified, yp_master_name will be set to the local host name.

-u dbmfilename
Undo a dbm file. That is, print out a dbm file one entry per line, with a single space separating keys from values.

SEE ALSO
dbm(3)
NAME
makefsys – create a file system

SYNOPSIS
makefsys

DESCRIPTION
The makefsys command allows you to create a file system.
The command invokes a visual interface (the make task available through the
sysadm command).
The initial prompt allows you to select the device on which to create the file sys­
tem. After selecting the device, you are asked some further questions before the
file system is created.
The identical function is available under the sysadm menu:
sysadm make

DIAGNOSTICS
The makefsys command exits with one of the following values:
0 Normal exit.
2 Invalid command syntax. A usage message is displayed.
7 The visual interface for this command is not available because it cannot
invoke fmil. (The FMLI package is not installed or is corrupted.)

SEE ALSO
checkfsys(1M), labelit(1M), mkfs(1M), mountfsys(1M), sysadm(1M)
makekey(1) (Encryption Utilities) makekey(1)

NAME
makekey – generate encryption key

SYNOPSIS
/usr/lib/makekey

DESCRIPTION
makekey improves the usefulness of encryption schemes depending on a key by increasing the amount of time required to search the key space. It attempts to read 8 bytes for its key (the first eight input bytes), then it attempts to read 2 bytes for its salt (the last two input bytes). The output depends on the input in a way intended to be difficult to compute (that is, to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the salt) are best chosen from the set of digits, ., /, and upper- and lower-case letters. The salt characters are repeated as the first two characters of the output. The remaining 11 output characters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4,096 cryptographic machines all based on the National Bureau of Standards DES algorithm, but broken in 4,096 different ways. Using the input key as key, a constant string is fed into the machine and recirculated a number of times. The 64 bits that come out are distributed into the 66 output key bits in the result.

makekey is intended for programs that perform encryption. Usually, its input and output will be pipes.

SEE ALSO
ed(1), crypt(1), vi(1)
passwd(4) in the System Administrator’s Reference Manual

NOTES
makekey can produce different results depending upon whether the input is typed at the terminal or redirected from a file.

This command is provided with the Encryption Utilities, which is only available in the United States.
NAME
man - display reference manual pages; find reference pages by keyword

SYNOPSIS
/usr/ucb/man [-] [-t] [-M path] [-T macro-package] [[section] title . .]
title . . .

DESCRIPTION
The man command displays information from the reference manuals. It can
display complete manual pages that you select by title, or one-line summaries
selected either by keyword (-k), or by the name of an associated file (-f).

A section, when given, applies to the titles that follow it on the command line (up
to the next section, if any). man looks in the indicated section of the manual for
those titles. section is either a digit (perhaps followed by a single letter indicating
the type of manual page), or one of the words new, local, old, or public. If section is omitted, man searches all reference sections (giving preference to com-
mands over functions) and prints the first manual page it finds. If no manual
page is located, man prints an error message.

The reference page sources are typically located in the /usr/share/man/man?directories. Since these directories are optionally installed, they may not reside
on your host; you may have to mount /usr/share/man from a host on which
they do reside. If there are preformatted, up-to-date versions in corresponding
cat? or fmt? directories, man simply displays or prints those versions. If the preformatted version of interest is out of date or missing, man reformats it prior
to display. If directories for the preformatted versions are not provided, man
reformats a page whenever it is requested; it uses a temporary file to store the
formatted text during display.

If the standard output is not a terminal, or if the - flag is given, man pipes its out-
put through cat. Otherwise, man pipes its output through more to handle paging
and underlining on the screen.

The following options are available:
-t man arranges for the specified manual pages to be troffed to a suitable
raster output device (see troff or vtroff). If both the - and -t flags are
given, man updates the troffed versions of each named title (if necessary),
but does not display them.

-M path
Change the search path for manual pages. path is a colon-separated list of
directories that contain manual page directory subtrees. When used with
the -k or -f options, the -M option must appear first. Each directory in
the path is assumed to contain subdirectories of the form man[1-8l-p].

-T macro-package
man uses macro-package rather than the standard -man macros defined in
-k keyword ...

man prints out one-line summaries from the whatis database (table of contents) that contain any of the given keywords.

-f filename ...

man attempts to locate manual pages related to any of the given filenames. It strips the leading pathname components from each filename, and then prints one-line summaries containing the resulting basename or names.

MANUAL PAGES

Manual pages are troff or nroff source files prepared with the -man macro package.

When formatting a manual page, man examines the first line to determine whether it requires special processing.

Preprocessing Manual Pages

If the first line is a string of the form:

```
x
```

where x is separated from the ‘n’ by a single SPACE and consists of any combination of characters in the following list, man pipes its input to troff or nroff through the corresponding preprocessors.

- e eqn, or neqn for nroff
- r refer
- t tbl, and col for nroff

If eqn or neqn is invoked, it will automatically read the file /usr/ucb/lib/pub/eqnchar [see eqnchar(5)].

ENVIRONMENT

MANPATH If set, its value overrides /usr/share/man as the default search path. The -M flag, in turn, overrides this value.

PAGER A program to use for interactively delivering man’s output to the screen. If not set, ‘more -s’ (see more) is used.

TCAT The name of the program to use to display troffed manual pages. If not set, ‘lp -Ttroff’ (see lp) is used.

TROFF The name of the formatter to use when the -t flag is given. If not set, troff is used.

FILES

/usr/share/man root of the standard manual page directory subtree
/usr/share/man/man?/* unformatted manual entries
/usr/share/man/cat?/* nroffed manual entries
/usr/share/man/fmt?/* troffed manual entries
/usr/share/man/whatis table of contents and keyword database
/usr/ucb/lib/doctools/tmac/man.macs standard -man macro package
/usr/ucb/lib/pub/eqnchar
SEE ALSO

apropos(1), cat(1), catman(1M), col(1), eqn(1), nroff(1), refer(1), tbl(1), troff(1), whatis(1), eqnchar(5)

col(1), lp(1), more(1) in the User's Reference Manual

NOTES

The manual is supposed to be reproducible either on a phototypesetter or on an ASCII terminal. However, on a terminal some information (indicated by font changes, for instance) is necessarily lost.

Some dumb terminals cannot process the vertical motions produced by the e (eqn(1)) preprocessing flag. To prevent garbled output on these terminals, when you use e also use t, to invoke col(1) implicitly. This workaround has the disadvantage of eliminating superscripts and subscripts — even on those terminals that can display them. CTRL-Q will clear a terminal that gets confused by eqn(1) output.
NAME
mapchan – Configure tty device mapping.

SYNOPSIS
mapchan [-ans] [-f mapfile] [channels . . .]
mapchan [-o] [-d] [channel]

DESCRIPTION
mapchan configures the mapping of information input and output of the UNIX system. The mapchan utility is intended for users of applications that employ languages other than English (character sets other than 7 bit ASCII).

mapchan translates codes sent by peripheral devices, such as terminals, to the internal character set used by the UNIX system. mapchan can also map codes in the internal character set to other codes for output to peripheral devices (such as terminals, printers, console screen, etc.). Note that PC keyboard configuration is accomplished through the mapkey(1) utility.

mapchan has several uses: to map a channel (-a or -s); to unmap a channel (–n and optionally -a); or to display the map on a channel (optionally -o, -d, channels).

mapchan with no options displays the map on the user's channel. The map displayed is suitable as input for mapchan.
The options are:

-a When used alone, sets all channels given in the default file (/etc/default/mapchan) with the specified map. When used with -n, it refers to all channels given in the default file. Superuser maps or unmaps all channels, other users map only channels they own. The -a option can not be used with the -d, -o, or -s options.

-d Causes the mapping table currently in use on the given device, channel, to be displayed in decimal instead of the default hexadecimal. An ASCII version is displayed on standard output. This output is suitable as an input file to mapchan for another channel. Mapped values are displayed. Identical pairs are not output. The -d option can not be used with -a, -f, -n, -o or -s options.

-f Causes the current channel or list of channels to be mapped with mapfile. The -f option can not be used with -d, -n, -s, or -o options.

-n Causes null mapping to be performed. All codes are input and output as received. Mapping is turned off for the user’s channel or for other channels, if given. -a used with -n will turn mapping off for all channels given in the default file. This is the default mapping for all channels unless otherwise configured. The -n option can not be used with -d, -f, -o, or -s options.

-o Causes the mapping table currently in use on the given device, channel, to be displayed in octal instead of the default hexadecimal. An ASCII version is displayed on standard output. This output is suitable as an input file to mapchan for another port. Mapped values are displayed. Identical pairs are not output. The -o option can not be used with -a, -d, -f, -n, or -s options.
-s Sets the user’s current channel with the mapfile given in the default file. The -s option can not be used with any other option.

The user must own the channel in order to map it. The super-user can map any channel. Read or write permission is required to display the map on a channel.

Each tty device channel (display adapter and video monitor on computer, parallel port, serial port, etc.) can have a different map. When the UNIX system boots, mapping is off for all channels.

mapchan is usually invoked in the /etc/rc2 file. This file is executed when the system enters the multiuser mode and sets up the default mapping for the system. Users can invoke mapchan when they log in by including a mapchan command line in their .profile or .login file. In addition, users can remap their channel at any time by invoking mapchan from the command line. Channels not listed in the default file are not automatically mapped. Channels are not changed on logout. Whatever mapping was in place for the last user remains in effect for the next user, unless they modify their .profile or .login file.

For example, the default file /etc/default/mapchan can obtain:

```plaintext
tty1
tty2  ibm
tty3  wy60.ger
lp   ibm
```

The default directory containing mapfiles is /usr/lib/mapchan. The default directory containing channel files is /dev. Full pathnames may be used for channels or mapfiles. If a channel has no entry, or the entry field is blank, no mapping is enabled on that channel. Additional channels added to the system (for example, adding a serial or parallel port), are not automatically entered in the mapchan default file. If mapping is required, the system administrator must make the entries. The format of the mapfiles is documented in the mapchan(4) manual page.

Using a Mapped channel
The input information is assumed to be 7-or 8-bit codes sent by the peripheral device. The device may make use of dead or compose keys to produce the codes. If the device does not have dead or compose keys, these keys can be simulated using mapchan.

One to one mapped characters are displayed when the key is pressed and the mapped value is passed to the kernel.

Certain keys are designated as dead keys in the mapfile. Dead key sequences are two keystrokes that produce a single mapped value that is passed to the kernel. The dead key is usually a diacritical character, the second key is usually the letter being modified. For example, the sequence ‘e could be mapped to the ASCII value 0xE9, and displayed as e’.

One key is designated as the compose key in the mapfile. Compose key sequences are composed of three keystrokes that produce a single mapped value that is passed to the kernel. The compose key is usually a seldom used character or CTRL-letter combination. The second key is usually the letter being modified. The third key may be another character being combined, or a diacritical character.
For example, if @ is the compose key, the sequence @ c 0 could be mapped to the ASCII value 0xA9, and displayed as ©.

Characters are not echoed to the screen during a dead or compose sequence. The mapped character is echoed and passed to the kernel once the sequence is correctly completed.

Characters are always put through the input map, even when part of dead or compose sequences. The character is then checked for the internal value. The value may also be mapped on output. This should be kept in mind when preparing map files.

The following conditions will cause an error during input:

1. non-recognized (not defined in the map file) dead or compose sequence.
2. restarting a compose sequence before completion by pressing the compose key in the middle of a dead or compose sequence (this is an error, but a new compose sequence is initiated).

If the map file contains the keyword beep, a bell sounds when either of the above conditions occurs. In either case, the characters are not echoed to the screen, or passed to the kernel.

In order to allow for character sequences sent to control the terminal (move the cursor, and so on) rather than to print characters on the screen, mapchan allows character sequences to be specified as special sequences which are not passed through the normal mapping procedure. Two sections may be specified, one for each of the input (keyboard) and output (screen) controls.

Character Sets

The internal character set used is defined by the mapfiles used. By default, this is the ISO 8859/1 character set which is also known as dpANS X3.4.2 and ISO/TC97/SC2. It supports most of the Latin alphabet and can represent most European languages.

Several partial map files are provided as examples. They must be modified for use with specific peripheral devices. Consult your hardware manual for the codes needed to display the desired characters. Two map files are provided for use with the console device: /usr/lib/mapchan/ibm for systems with a standard PC character set ROM, and /usr/lib/mapchan/iso for systems with an optional ISO 8859/1 character set ROM.

Care should be taken that the stty settings [see stty(1M)] are correct for 8-bit terminals. The /etc/gettydefs file may require modifications to allow logging with the correct settings.

7-bit U.S ASCII (ANSI X3.4) should be used if no mapping is enabled on the channel.

FILES

/etc/default/mapchan
/usr/lib/mapchan/*
NOTES

Some non-U.S keyboards and display devices do not support characters commonly used by command shells and the C programming language. It is not recommended that these devices be used for system administration tasks.

Printers can be mapped, output only, and can either be sent 8-bit codes or one-to-many character strings using mapchan. Line printer spooler interface scripts can be used (setuid root) to change the output map on the printer when different maps are required (as in changing print wheels to display a different character set). See lpadmin(1M) and lp(7) for information on installing and administering interface scripts.

Not all terminals or printers can display all the characters that can be represented using this utility. Refer to the device’s hardware manual for information on the capabilities of the peripheral device.

Use of mapfiles that specify a different internal character set per channel, or a set other than the 8-bit ISO 8859 set supplied by default can cause strange side effects. It is especially important to retain the 7-bit ASCII portion of the character set [see ascii(5)]. System utilities and many applications assume these values.

Media transported between machines with different internal code set mappings may not be portable as no mapping is performed on block devices, such as tape and floppy drives. However, trchan with an appropriate mapfile can be used to translate from one internal character set to another.

Do not set ISTRIP [see stty(1)] when using mapchan. This option causes the eighth bit to be stripped before mapping occurs.

SEE ALSO
lpadmin(1M), mapkey(1M), mapchan(4), ascii(5), keyboard(7), lp(7)
stty(1M) in the User’s Reference Manual
NAME
 mapkey, mapscrn, mapstr — configure monitor screen mapping

SYNOPSIS
 mapkey [-doxV] [datafile]
 mapscrn [-dg] [datafile]
 mapstr [-dg] [datafile]

DESCRIPTION
 mapscrn configures the output mapping of the virtual terminal screen on which it
 is invoked. mapkey and mapstr configure the mapping of the keyboard and
 string keys (e.g., function keys) of the virtual terminal. mapkey can only be run
 by the superuser.

 mapscrn and mapstr function on a per-virtual terminal (VT) basis. Mapping on
 one VT does not affect any other VT. Setting the default for every VT can be
 done using the -g option.

 If a file name is given on the argument line, the respective mapping table is
 configured from the contents of the input file. If no file is given, the default files
 in /usr/lib/keyboard and /usr/lib/console are used. The -d option causes
 the mapping table to be read from the kernel instead of written and an ASCII
 version to be displayed on the standard output. The format of the output is suit­
 able for use as input files to mapscrn, mapkey, or mapstr.

 The sum of the characters in the strings for mapstr (in the
 /usr/lib/keyboard/strings file) can be a maximum of 512.

 mapkey, when downloading a mapping table, overwrites the default mapping
 table for all VTs (thus affecting all VTs using the default mapping table) unless
 the -V option is specified. In this case, only the VT in which mapkey -V was
 invoked is affected, and the VT will revert to using the default mapping table
 when it is closed or the user logs out.

 When mapkey displays the mapping table being used, it is the default mapping
 table unless the -V option is specified. In this case, mapkey displays the mapping
 table in use on the VT in which mapkey -V was invoked.

 Non-superusers can run mapkey and mapstr when the -d option is given.

 With the -o or -x options, mapkey displays the mapping table in octal or hexade­
 cimal, respectively.

FILES
 /usr/lib/keyboard/*
 /usr/lib/console/*

NOTES
 There is no way to specify that the map utilities read their configuration tables
 from standard input.

SEE ALSO
 keyboard(7), display(7)
maplocale(1M) (Application Compatibility Package) maplocale(1M)

NAME
maplocale — convert Release 4 locale information to different format

SYNOPSIS
maplocale -f new_format [-t territory] [-c codeset] SVR4_locale_name

DESCRIPTION
maplocale converts Release 4 locale information into a format suitable for use
with applications that require a different locale format. Currently, only conver­
sion to SCO UNIX/XENIX format is supported, therefore, new_format must be
XENIX.

The SVR4.locale_name must be the name of a valid locale, which will be the name
of one of the sub-directories in the /usr/lib/locale directory.

Release 4 locale names use the form language[.territory[.codeset]]. If the locale
name does not have the optional codeset or territory parts the -t and -c options
must be used to specify the territory and code set for the locale.

SCO Specific Information
The converted data files will be placed in the directory:

If an abbreviated Release 4 locale name is used, the file /etc/default/lang will
be updated and a line of the following form added to it:
LANG=language_territory.codeset

EXAMPLE
To convert the Spanish locale which is stored in the ISO 8859-1 code set, use the
command:
maplocale -fxENIX -tES -c88591 es

DIAGNOSTICS
All error messages should be self explanatory.

FILES
/usr/lib/locale
/usr/lib/lang
/etc/default/lang
mconnect(1M) (BSD Compatibility Package) mconnect(1M)

NAME
mconnect – connect to SMTP mail server socket

SYNOPSIS
/usr/ucb/mconnect [-p port] [-r] [hostname]

DESCRIPTION
mconnect opens a connection to the mail server on a given host, so that it can be tested independently of all other mail software. If no host is given, the connection is made to the local host. Servers expect to speak the Simple Mail Transfer Protocol (SMTP) on this connection. Exit by typing the quit command. Typing EOF sends an end of file to the server. An interrupt closes the connection immediately and exits.

OPTIONS
- -p port Specify the port number instead of the default SMTP port (number 25) as the next argument.
- -r ‘Raw’ mode: disable the default line buffering and input handling. This gives you a similar effect as telnet to port number 25, not very useful.

FILES
/usr/ucblib/sendmail.hf help file for SMTP commands

SEE ALSO
sendmail(1M)
Postel, Jonathan B Simple Mail Transfer Protocol, RFC821 August 1982, SRI Network Information Center
mcs(1) (Software Generation System Utilities) mcs(1)

NAME
mcs – manipulate the comment section of an object file

SYNOPSIS
mcs [-a string] [-c] [-d] [-n name] [-p] [-v] file ...

DESCRIPTION
The mcs command is used to manipulate a section, by default the .comment section, in an ELF object file. It is used to add to, delete, print, and compress the contents of a section in an ELF object file, and only print the contents of a section in a COFF object file. mcs must be given one or more of the options described below. It applies each of the options in order to each file.

The following options are available.

-a string Append string to the comment section of the object files. If string contains embedded blanks, it must be enclosed in quotation marks.
-c Compress the contents of the comment section of the ELF object files. All duplicate entries are removed. The ordering of the remaining entries is not disturbed.
-d Delete the contents of the comment section from the ELF object files. The section header for the comment section is also removed.
-n name Specify the name of the comment section to access if other than .comment. By default, mcs deals with the section named .comment. This option can be used to specify another section.
-p Print the contents of the comment section on the standard output. Each section printed is tagged by the name of the file from which it was extracted, using the format filename[member_name]: for archive files; and filename: for other files.
-v Print, on standard error, the version number of mcs.

If the input file is an archive [see ar(4)], the archive is treated as a set of individual files. For example, if the -a option is specified, the string is appended to the comment section of each ELF object file in the archive; if the archive member is not an ELF object file, then it is left unchanged.

If mcs is executed on an archive file the archive symbol table will be removed, unless only the -p option has been specified. The archive symbol table must be restored by executing the ar command with the -s option before the archive can be linked by the ld command. mcs will produce appropriate warning messages when this situation arises.

EXAMPLES
mcs -p file # Print file’s comment section
mcs -a string file # Append string to file’s comment section
FILES

TMPDIR/mcs* temporary files

TMPDIR usually /var/tmp but can be redefined by setting the environment variable TMPDIR [see tempnam in tmpnam(3S)].

SEE ALSO

ar(1), as(1), cc(1), ld(1), tmpnam(3S), a.out(4), ar(4)
See the "Object Files" chapter in Programmer's Guide: ANSI C and Programming Support Tools

NOTES

mcs cannot add to, delete or compress the contents of a section that is contained within a segment.
NAME
 mesg – permit or deny messages

SYNOPSIS
 mesg [-n] [-y]

DESCRIPTION
 mesg with argument -n forbids messages via write(1) by revoking non-user write permission on the user's terminal. mesg with argument -y reinstates permission. All by itself, mesg reports the current state without changing it.

FILES
 /dev/tty*

SEE ALSO
 write(1)

DIAGNOSTICS
 Exit status is 0 if messages are receivable, 1 if not, 2 on error.
NAME
message – put arguments on FMLI message line

SYNOPSIS
message [-t] [-b [num]] [-o] [-w] [string]
message [-f] [-b [num]] [-o] [-w] [string]
message [-p] [-b [num]] [-o] [-w] [string]

DESCRIPTION
The message command puts string out on the FMLI message line. If there is no
string, the stdin input to message will be used. The output of message has a
duration (length of time it remains on the message line). The default duration is
"transient": it or one of two other durations can be requested with the following
mutually-exclusive options:

-t explicitly defines a message to have transient duration. Transient mes-
sages remain on the message line only until the user presses another key
or a CHECKWORLD occurs. The descriptors itemmsg, fieldmsg,
invalidmsg, choicemsg, the default-if-not-defined value of oninter-
rupt, and FMLI generated error messages (for example, from syntax
errors) also output transient duration messages. Transient messages
take precedence over both frame messages and permanent messages.

-f defines a message to have "frame" duration. Frame messages remain on
the message line as long as the frame in which they are defined is
current. The descriptor framemsg also outputs a frame duration
message. Frame messages take precedence over permanent messages.

-p defines a message to have "permanent" duration. Permanent messages
remain on the message line for the length of the FMLI session, unless
explicitly replaced by another permanent message or temporarily super-
seded by a transient message or frame message. A permanent message
is not affected by navigating away from, or by closing, the frame which
generated the permanent message. The descriptor permanentmsg also
outputs a permanent duration message.

Messages displayed with message -p will replace (change the value of) any mes-
sage currently displayed or stored via use of the permanentmsg descriptor. Like-
wise, message -f will replace any message currently displayed or stored via use
of the framemsg descriptor. If more than one message in a frame definition file is
specified with the -p option, the last one specified will be the permanent duration
message.

The string argument should always be the last argument. Other options available
with message are the following:

-b [num] rings the terminal bell num times, where num is an integer from 1 to
10. The default value is 1. If the terminal has no bell, the screen will
flash num times instead, if possible.
message(1F) (Form and Menu Language Interpreter Utilities) message(1F)

-o forces message to duplicate its message to stdout.
-w turns on the working indicator.

EXAMPLES
When a value entered in a field is invalid, ring the bell 3 times and then display
Invalid Entry: Try again! on the message line:

invalidmsg=`message -b 3 "Invalid Entry: Try again!"`

Display a message that tells the user what is being done:

done=`message EDITOR has been set in your environment` close

Display a message on the message line and stdout for each field in a form (a
pseudo-"field duration" message):

fieldmsg=`message-o -f "Enter a filename."`

Display a blank transient message (effect is to "remove" a permanent or frame
duration message):

done=`message ""` nop

NOTES
If message is coded more than once on a single line, it may appear that only the
right-most instance is interpreted and displayed. Use sleep(1) between uses of
message in this case, to display multiple messages.

message -f should not be used in a stand-alone backquoted expression or with
the init descriptor because the frame is not yet current when these are
evaluated.

In cases where `message -f "string"` is part of a stand-alone backquoted expres-
sion, the context for evaluation of the expression is the previously current frame.
The previously current frame can be the frame that issued the open command for
the frame containing the backquoted expression, or it can be a frame given as an
argument when fmli was invoked. That is, the previously current frame is the
one whose frame message will be modified.

Permanent duration messages are displayed when the user navigates to the com-
mand line.

SEE ALSO
sleep(1) in the UNIX System V User’s Reference Manual
migration (1M) (System Administration Utilities) migration (1M)

NAME
migration - move an archive from one set of volumes to another

SYNOPSIS
migration -B [-dlmotuvAENS] bkjobid ofsname ofsdvs ofslab descript

DESCRIPTION
migration is invoked as a child process by bkdaemon(1M) to move an existing
archive made by some other arbitrary method to a new set of volumes. The
existing backup history log entry of the archive is updated to reflect the new
volumes and destination information of the archive.

bkjobid is the job id assigned by backup(1M). ofsdvs is the name of the UNIX
(character) device on which the archive resides. ofslab is the volume label on the
archive [see labelit(1M)]. descript is a description for a destination device in the
form:

dgroup:dname:dchar:dlabels

dgroup specifies a device group. dname specifies a device name. dchars specifies
 characteristics for the specified device and group (see device.tab(4) for a further
description of device characteristics). dlabels specifies the media names for the
media to be used for the archive.

Options
 d* Do not update the backup history log entry for the archive.
 l* Create a long form of the backup history log that includes a table-of-
 contents for the archive. This includes the data used to generate an
 ls -l-like listing of each file in the archive.
 m* Mount the originating filesystem read-only before starting the backup and
 remount it with its original permissions after completing the backup.
 o Permit the user to override media insertion requests (see getvol(1M) -o).
 t* Create a table of contents for the backup on additional media instead of in
 the backup history log.
 u* Unmount the originating filesystem before performing the backup and
 remount it with its original permissions after completing the backup.
 v* Validate the archive as it is written. A checksum is computed as the
 archive is being written; as each medium is completed, it is re-read and
 the checksum recomputed to verify that each block is readable and
correct. If either check fails, the medium is considered unreadable. If -A
 has been specified, the archiving operation fails; otherwise, the operator is
 prompted to replace the failed medium.
 A Do not prompt the user for removable media operations (automated
 operation).
 E* Report an estimate of media usage for the archive; then perform the
 backup.
N* Report an estimate of media usage for the archive; do not perform the backup.

S* Generate a period (.) for every 100 (512 byte) blocks read-from or written-to the archive on the destination device.

User Interactions
The connection between an archiving method and `backup(1M)` is more complex than a simple fork/exec or pipe. `backup(1M)` is responsible for all interactions with the user, either directly, or through `bkoper(1M)`. Therefore, `migration` neither reads from standard-input nor writes to standard-output or standard-error. A method library must be used [see `libbrmeth(3)`] to communicate reports (estimates, periods, status, and so on) to `backup(1M)`.

DIAGNOSTICS
If `migration` successfully completes its task, it exits with a 0 status. If any of the parameters to `migration` are invalid, it exits with a 1 status. If any error occurs which causes `migration` to fail to complete all portions of its task, it exits with a 2 status.

Errors are reported if any of the following occur:

1. `-t` is specified together with `-A`.
2. `-A` is specified together with `-o`.
3. `-t` is specified and the destination device does not support removable media.
4. `-A` is specified and more than one removable medium is required.
5. Unrecoverable errors occurred in trying to read or write the destination device.
6. `-m` is specified and the originating filesystem could not be mounted read-only.
7. `-m` is specified and the originating filesystem could not be unmounted.
8. `-o` is not specified and insufficient media names are supplied in `descript`.
9. `-u` is specified and the filesystem could not be unmounted.
10. `-u` is specified and the filesystem could not be remounted.

FILES

```
/usr/oam/bkrs/tables/bkhist.tab
$'l'MP/filelist$$
```

SEE ALSO

`awk(1), backup(1M), device.tab(4), getvol(1M), grep(1), labelit(1M), libbrmeth(3), ls(1), prtvtoc(1M), restore(1M), rsoper(1M), sed(1), time(2), urestore(1M)`
NAME
mkdir – make directories

SYNOPSIS
mkdir [-m mode] [-p] dirname ...

DESCRIPTION
mkdir creates the named directories in mode 777 (possibly altered by umask(1)).
Standard entries in a directory (for example, the files ., for the directory itself,
and .., for its parent) are made automatically. mkdir cannot create these entries
by name. Creation of a directory requires write permission in the parent direc-
tory.
The owner ID and group ID of the new directories are set to the process’s real
user ID and group ID, respectively.
Two options apply to mkdir:
-m This option allows users to specify the mode to be used for new directories.
Choices for modes can be found in chmod(1).
-p With this option, mkdir creates dirname by creating all the non-existing
parent directories first.

EXAMPLE
To create the subdirectory structure ltr/jd/jan, type:

 mkdir -p ltr/jd/jan

SEE ALSO
sh(1), rm(1), umask(1)
intro(2), mkdir(2) in the Programmer’s Reference Manual

DIAGNOSTICS
mkdir returns exit code 0 if all directories given in the command line were made
successfully. Otherwise, it prints a diagnostic and returns non-zero.
NAME
mkfifo - make FIFO special file

SYNOPSIS
mkfifo path...

DESCRIPTION
mkfifo creates the FIFO special files named by its argument list. The arguments are taken sequentially, in the order specified; and each FIFO special file is either created completely or, in the case of an error or signal, not created at all.

For each path argument, the mkfifo command behaves as if the function mkfifo [see mkfifo(3C)] was called with the argument path set to path and the mode set to the bitwise inclusive OR of S_IRUSR, S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH and S_IWOTH.

If errors are encountered in creating one of the special files, mkfifo writes a diagnostic message to the standard error and continues with the remaining arguments, if any.

SEE ALSO
mkfifo(3C) in the Programmer’s Reference Manual

DIAGNOSTICS
mkfifo returns exit code 0 if all FIFO special files were created normally; otherwise it prints a diagnostic and returns a value greater than 0.
NAME
mkfs (generic) — construct a file system

SYNOPSIS
mkfs [-F FSType] [-v] [-m] [current_options] [-o specific_options] special [operands]

DESCRIPTION
mkfs constructs a file system by writing on the special file; special must be the first argument. The file system is created based on the FSType, specific_options and operands specified on the command line. mkfs waits 10 seconds before starting to construct the file system. During this time the command can be aborted by entering a delete (DEL).

operands are FSType-specific and the FSType specific manual page of mkfs should be consulted for a detailed description.

current_options are options supported by the s5-specific module of mkfs. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

The options are:

-F Specify the FSType to be constructed. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table.

-V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

-m Return the command line which was used to create the file system. The file system must already exist. This option provides a means of determining the command used in constructing the file system. It cannot be used with current_options, specific_options, or operands. It must be invoked by itself.

-o Specify FSType-specific options.

NOTES
This command may not be supported for all FSTypes.

FILES
/etc/vfstab list of default parameters for each file system

SEE ALSO
makefsys{1M}, vfstab(4)
Manual pages for the FSType-specific modules of mkfs
NAME
mkfs (bfs) – construct a boot file system

SYNOPSIS
mkfs [-F bfs] special blocks [inodes]

DESCRIPTION
mkfs is used to create a boot file system, which is a contiguous flat file system, to
hold the bootable programs and data files necessary for the boot procedure.

The argument special is the device special file that refers to the partition on which
the file system is to be created. The blocks argument is used to specify the size of
the file system. The block size is automatically 512 bytes.

The inodes argument specifies the number of files that the file system will hold.

NOTES
This file system is intended to hold the bootable files and data files for the boot
procedure. Use as a general purpose file system is not recommended.

SEE ALSO
See the System Administrator’s Guide for more information about the boot file sys-

3/91
NAME
mkfs (s5) – construct an s5 file system

SYNOPSIS
mkfs [-F s5] [generic_options] special
mkfs [-F s5] [generic_options] [-b block_size] special blocks[:i-nodes] [gap blocks/cyl]
mkfs [-F s5] [generic_options] [-b block_size] special proto [gap blocks/cyl]

DESCRIPTION
generic_options are options supported by the generic mkfs command.

mkfs constructs an s5 file system by writing on the special file using the values found in the remaining arguments of the command line. mkfs builds a file system with a root directory and a lost+found directory.

The options are:
-F s5 Specifies an s5-FSType.
-b blocksize Specifies the logical block size for the file system. The logical block size is the number of bytes read or written by the operating system in a single I/O operation. Valid values for blocksize are 512, 1024, and 2048. The default is 1024.

If the second argument to mkfs is a string of digits, the size of the file system is the value of blocks interpreted as a decimal number. This is the number of physical (512 byte) disk blocks the file system will occupy. If the number of i-nodes is not given, the default is approximately the number of logical blocks divided by 4. mkfs builds a file system with a single empty directory on it. The boot program block (block zero) is left uninitialized.

If the second argument is the name of a file that can be opened, mkfs assumes it to be a prototype file proto, and will take its directions from that file. The prototype file contains tokens separated by spaces or new-lines. A sample prototype specification follows (line numbers have been added to aid in the explanation):

1. /dev/rdsk/0s0
2. 4872 110
3. d--777 3 1
4. usr d--777 3 1
5. sh ---755 3 1 /sbin/sh
6. ken d--755 6 1
7. $
8. b0 b--644 3 1 0 0
9. c0 c--644 3 1 0 0
10. slnk l--777 2 2 /var/tmp
11. $
12. $

Line 1 in the example is the name of a file to be copied onto block zero as the bootstrap program.

Line 2 specifies the number of physical (512 byte) blocks the file system is to occupy and the number of i-nodes in the file system.
Lines 3-10 tell `mkfs` about files and directories to be included in this file system.

Line 3 specifies the root directory.

Lines 4-6 and 8-10 specify other directories and files.

Line 10 specifies the symbolic link `slnk` set up in `/usr` and containing `/var/tmp`.

The $ on line 7 tells `mkfs` to end the branch of the file system it is on, and continue from the next higher directory. The $ on lines 11 and 12 end the process, since no additional specifications follow.

File specifications give the mode, the user ID, the group ID, and the initial contents of the file. Valid syntax for the contents field depends on the first character of the mode.

The mode for a file is specified by a 6-character string. The first character specifies the type of the file. The character range is `-bcdl` to specify regular, block special, character special, directory, and symbolic link files respectively. The second character of the mode is either `u` or `-` to specify set-user-id mode or not. The third is `g` or `-` for the set-group-id mode. The rest of the mode is a 3 digit octal number giving the owner, group, and other read, write, execute permissions [see `chmod(1)`].

Two decimal number tokens come after the mode; they specify the user and group IDs of the owner of the file.

If the file is a regular file, the next token of the specification may be a path name whence the contents and size are copied. If the file is a block or character special file, two decimal numbers follow which give the major and minor device numbers. If the file is a directory, `mkfs` makes the entries. and then reads a list of names and (recursively) file specifications for the entries in the directory. As noted above, the scan is terminated with the token $.

The `gap blocks/cyl` argument in both forms of the command specifies the rotational gap and the number of blocks/cylinder. If the `gap` and `blocks/cyl` are not specified or are considered illegal values a default value of gap size 10 and 162 blocks/cyl is used.

NOTES

With a prototype file there is no way to specify hard links.

The maximum number of i-nodes configurable is 65500.

FILES

`/etc/vtoc/*`

SEE ALSO

`generic mkfs(1M), dir(4), fs(4)`

`chmod(1)` in the *User's Reference Manual*
NAME

mkfs (ufs) – construct a ufs file system

SYNOPSIS

mkfs [-F ufs] -C [generic_options] special
mkfs [-F ufs] -C [generic_options] [-o specific_options] special size

DESCRIPTION

generic_options are options supported by the generic mkfs command.

mkfs constructs a file system by writing on the special file special unless the ‘-o N’ flag has been specified. The numeric size specifies the number of sectors in the file system. mkfs builds a file system with a root directory and a lost+found directory [see fsck(1M)]. The number of inodes is calculated as a function of the file system size.

The options are:

- F ufs Specifies the ufs-FSType.
- C Create no more than 64K inodes. Ensures compatibility with the pre-Release 4 UNIX System. diskadd [see diskadd(1M)] calls mkfs with this option.
- o Specify ufs file system specific options. The following options are available:

 N Do not write the file system to the special file. This suboption gives all the information needed to create a file system but does not create it.

 nsect=n The number of sectors per track on the disk. The default is 18.

 ntrack=n The number of tracks per cylinder on the disk. The default is 9.

 bsize=n The primary block size for files on the file system. It must be a power of two, currently selected from 4096 (the default) or 8192.

 fragsize=n The fragment size for files on the file system. The frag-size represents the smallest amount of disk space that will be allocated to a file. It must be a power of two currently selected from the range 512 to 8192. The default is 1024.

 cgsize=n The number of disk cylinders per cylinder group. This number must be in the range 1 to 32. The default is 16.

 free=n The minimum percentage of free disk space allowed. Once the file system capacity reaches this threshold, only a privileged user is allowed to allocate disk blocks. The default value is 10%.

3/91

Page 1
`rps=n` The rotational speed of the disk, in revolutions per second. The default is 60.

`nbpi=n` The number of bytes for which one inode block is allocated. This parameter is currently set at one inode block for every 2048 bytes.

`opt=s|t` Space or time optimization preference; `s` specifies optimization for space, `t` specifies optimization for time. The default is `t`.

`apc=n` The number of alternates per cylinder (SCSI devices only). The default is 0.

`gap=n` The expected time (in milliseconds) to service a transfer completion interrupt and initiate a new transfer on the same disk. It is used to decide how much rotational spacing to place between successive blocks in a file. The default is 4.

NOTES

The value of the `nbpi` operand in the output of `mkfs -m` is always 2048, even if the file system was created with some other value.

SEE ALSO

`fsck(1M), generic mkfs(1M), dir(4), fs(4)`
NAME

mkmsgs – create message files for use by gettext

SYNOPSIS

mkmsgs [-0] [-i locale] inputstrings msgfile

DESCRIPTION

The mkmsgs utility is used to create a file of text strings that can be accessed using the text retrieval tools (see gettext(1), srchtxt(1), exstr(1), and gettext(3C)). It will take as input a file of text strings for a particular geographic locale (see setlocale(3C)) and create a file of text strings in a format that can be retrieved by both gettext(1) and gettext(3C). By using the -i option, you can install the created file under the /usr/lib/locale/locale/LC_MESSAGES directory (locale corresponds to the language in which the text strings are written).

inputstrings the name of the file that contains the original text strings.

msgfile the name of the output file where mkmsgs writes the strings in a format that is readable by gettext(1) and gettext(3C). The name of msgfile can be up to 14 characters in length, but may not contain either \0 (null) or the ASCII code for / (slash) or : (colon).

-i locale install msgfile in the /usr/lib/locale/locale/LC_MESSAGES directory. Only someone who is super-user or a member of group bin can create or overwrite files in this directory. Directories under /usr/lib/locale will be created if they don’t exist.

-o overwrite msgfile, if it exists.

The input file contains a set of text strings for the particular geographic locale. Text strings are separated by a new-line character. Nongraphic characters must be represented as alphabetic escape sequences. Messages are transformed and copied sequentially from inputstrings to msgfile. To generate an empty message in msgfile, leave an empty line at the correct place in inputstrings.

Strings can be changed simply by editing the file inputstrings. New strings must be added only at the end of the file; then a new msgfile file must be created and installed in the correct place. If this procedure is not followed, the retrieval function will retrieve the wrong string and software compatibility will be broken.

EXAMPLES

The following example shows an input message source file c.str:

 File %s:\t cannot be opened
 %s: Bad directory
 .
 .
 .
 write error
 .
 .

The following command uses the input strings from c.str to create text strings in the appropriate format in the file ux in the current directory:

 mkmsgs c.str ux
The following command uses the input strings from `FR.str` to create text strings in the appropriate format in the file `UX` in the directory

```
/usr/lib/locale/french/LC_MESSAGES/UX.
```

```
mkmsgs -i french FR.str UX
```

These text strings would be accessed if you had set the environment variable `LC_MESSAGES=french` and then invoked one of the text retrieval tools listed at the beginning of the DESCRIPTION section.

FILES

```
/usr/lib/locale/locale/LC_MESSAGES/* message files created by mkmsgs(1M)
```

SEE ALSO

`exstr(1), gettext(1), srchtxt(1)`

`gettext(3C), setlocale(3C)` in the *Programmer’s Reference Manual*
NAME

mknod – make a special file

SYNOPSIS

mknod name b | c major minor
mknod name p

DESCRIPTION

mknod makes a directory entry for a special file.

name is the special file to be created. The second argument is either b, to indicate a block-type special file, or c, to indicate a character-type. The last two arguments are numbers specifying the major and minor device numbers; these may be either decimal or octal. The assignment of major device numbers is specific to each system. You must be a privileged user to use this form of the command.

The second case is used to create a FIFO (named pipe).

NOTES

If mknod is used to create a device in a remote directory (Remote File Sharing), the major and minor device numbers are interpreted by the server.

SEE ALSO

mknod(2) in the Programmer’s Reference Manual
mknod (1M) (Application Compatibility Package) mknod (1M)

NAME

mknod – make a special file

SYNOPSIS

mknod name b | c major minor
mknod name p
mknod name m
mknod name s

DESCRIPTION

mknod makes a directory entry for a special file.

In the first case, name is the special file to be created. The second argument is either b to indicate a block-type special file or c to indicate a character-type. The last two arguments are numbers specifying the major and minor device numbers; these may be either decimal or octal [see mknod(2) in the Programmer’s Reference Manual for information on minor device number values]. The assignment of major device numbers is specific to each system. You must be the super-user to use this form of the command.

The second case is used to create a FIFO (named pipe).

The third case is used to create XENIX shared memory handles.

The fourth case is used to create XENIX semaphore handles.

NOTES

If mknod is used to create a device in a remote directory (Remote File Sharing), the major and minor device numbers are interpreted by the server.

SEE ALSO

mknod(2) in the Programmer’s Reference Manual
NAME
mkpart - disk maintenance utility

SYNOPSIS
/etc/mkpart [-f filename] [-p partition] ... [-P partition] ... [-b]
[-B filename] [-A sector] ... [-V] [-v] [-i] [-x file]
[-t [vpa]] device
/etc/mkpart -F interleave raw_device

DESCRIPTION
mkpart will not be supported in a future release. See ’NOTES’ below.

This program allows the system administrator to display and modify the data
structures that the disk driver uses to access disks. These structures describe the
number, size, and type of the partitions, as well as the physical characteristics of
the disk drive itself.

The user maintains a file of stanzas, each of which contains comments and
parameters. The stanzas are of two varieties: those that describe disk partitions
and disk devices. Stanzas may refer to other stanzas of the same type so that
common device or partition types may be customized. By default, the stanza file
is named /etc/partitions. The required parameter, device, specifies the device
 stanza for the disk to be used.

The following options may be used with mkpart:

- f filename specifies the partition and device specification stanza file. If not
 present, /etc/partitions is assumed.

- p partition removes a partition from the vtoc on the specified device. The
 partition is a stanza that indicates the partition to be removed by its
 partition number parameter; no comparisons are made by attribute.
 Note: Alternate partitions cannot be removed.

- P partition adds a partition to the vtoc on the specified device. partition is a
 stanza which contains and/or refers to other stanzas that contain
 all of the necessary parameters for a vtoc partition.

- b causes only the boot program to be updated, unless other options
 are specified.

- B filename specifies a different boot program than the one given by the device
 stanza.

- A sector marks the specified sector as bad and assigns it an alternate if pos-
 sible. sector is a zero-based absolute sector number from the begin-
 ning of the drive. To compute a sector number given cylinder,
 head, and (0-based) sector in track, the formula is cylinder *
 (sectors-per-track * heads-per-cylinder) + head * (sectors-per-track)
 + sector.

- V causes a complete surface-analysis pass to be run. This first writes
 a data pattern (currently 0xe5 in every byte) to each sector of the
disk, then reads each sector. Any errors are noted and the bad sec-
tors found are added to the alternates table if possible.
causes a non-destructive surface-analysis pass to be run. This just reads every sector of the disk, noting bad sectors as above.

initializes the VTOC on the drive to default values, clearing any existing partition and bad-sector information which may have existed. This is the only way to remove an alternate partition and can be used to re-initialize a drive which may have obsolete or incorrect VTOC data on it.

writes a complete device and partition stanza list for the specified device to file.
Note: The tags in the file are pseudo names used to identify the slice.

creates a listing of the current vtoc. The sub-parameters specify pieces to be printed: a - alternate sectors, p - partitions, and v - vtoc and related structures.

The partitions file is composed of blank-line-separated stanzas. (Blank lines have only tabs and spaces between new-lines). Commentary consists of all text between a '#' and a new-line. Stanzas begin with an identifier followed by a ':', and are followed by a comma-separated list of parameters. Each parameter has a keyword followed by an '=' followed by a value. The value may be a number, another stanza’s name, a double quoted string, or a parenthesis-surrounded, comma-separated list of numbers or ranges of numbers, as appropriate for the keyword. Numbers may be written as decimal, octal, or hexadecimal constants in the form familiar to C programmers.

Device specification stanzas may contain the following parameters:

causes the named stanza’s parameters to be included in the device definition.

indicates that the string is the filename of a bootstrap program to install on the disk.

gives the filename of the character special device for the disk.

specifies the number of tracks per cylinder on the device.

is the number of cylinders on the disk.

is the number of sectors per track.

is the number of bytes per sector.

is an arbitrary string which is recorded in the volume label. (Multibus systems only)

gives the sector number to use for the volume table of contents.
Note: for AT386 systems, this number must be 17.

is the sector to use for the alternate block table.
badsec = number-list lists the known bad sectors. These are appended to any
specified in the command line or found during surface
analysis.

Partition stanzas may have the following parameters:

usepart = name refers to another partition stanza.

partition = number gives this partition’s entry number in the vtoc.

tag = tagname A partition tag specifies the purpose of the partition. The
tag names are reserved words which are presently used for
identification purposes only:

 - BACKUP means the entire disk.
 - ROOT is a root file system partition.
 - BOOT is a bootstrap partition.
 - SWAP is a partition that does not contain a file system.
 - USR is a partition that does contain a file system.
 - ALTS contains alternate sectors to which the driver re-
 maps bad sectors. Currently a maximum of 62 alter-
 nate sectors is supported.
 - OTHER is a partition that the UNIX system does not
 know how to handle, such as MS-DOS space.

perm = permname specifies a permission type for the partition. Permissions
are not mutually exclusive.

 - RO indicates that the partition cannot be written upon.
 Normally, write access is granted (standard UNIX system
 file permissions notwithstanding).
 - NOMOUNT disallows the driver from mounting the file sys-
 tem that may be contained in the partition.
 - VALID indicates that the partition contains valid data. Any
 partition added with the -A flag will be marked VALID.

start = number is the starting sector number for the partition.

Note: For AT386 systems, the root file system should start
at the second track of the cylinder which is the beginning of
the active UNIX system 'fdisk' partition. This allows
space for the writing of the boot code.

size = number is the size, in sectors, of the partition.

When mkpart is run, it first attempts to read the volume label (for multibus sys-
tems) or the 'fdisk' table (for AT386 systems), the VTOC block, and the alternate
sector table. If any of the structures is invalid or cannot be read, or if the -i flag
is specified, the internal tables are initialized to default values for the device
specified (taken from the device stanza in the partition file). If the -F flag is
specified, the device is formatted. If either the -V or -v flag is specified, the
appropriate surface analysis is performed. After these steps, partitions are
deleted or added as required. Next, any bad sectors specified in the partition file,
found during surface analysis, or specified in the command line with -A flags are
merged into the alternate sectors table. Note that an alternate partition must exist
for any bad-sector marking to occur, as bad sectors are assigned good alternates
at this point. Finally, the boot program is written to track 0 of cylinder 0.
(Multibus systems) or the cylinder where the active UNIX system `fdisk' partition starts (AT386 systems). If `-b` was not the only parameter specified, the updated VTOC and alternates tables are written, and the disk driver is instructed to re-read the tables when the drive is opened the next time. When only `-t` is specified, only a listing is created and no updating occurs.

`-F interleve` causes the entire device to be hardware formatted. This process re-writes all the sector headers on each track of the disk, enabling subsequent access using normal reads and writes. `interleave` is the distance in physical sectors between each successive logical sector. Normal values are 1 for track-cache controllers, 3-4 for standard controllers. The device for this option must be a raw UNIX system device. The `-F` option precludes all other options, thus should be used alone.

FILES

`/etc/partitions` `/etc/boot` `/dev/rdsn/*s0`

NOTES

The `mkpart` command will not be supported in a future release. Use `prtvtoc` and `edvtoc` instead [see `prtvtoc(1M)` and `edvtoc(1M)`]. Currently, very little consistency checking is done. No checks are made to ensure that the `fdisk` partition table is consistent with the UNIX system partitions placed in the VTOC. If a DOS `fdisk` partition is started at cylinder 0, DOS will happily overwrite the UNIX system VTOC.

SEE ALSO

`edvtoc(1M)`, `prtvtoc(1M)`
NAME
montbl - create monetary database

SYNOPSIS
montbl [-o outfile] infile

DESCRIPTION
The montbl command takes as input a specification file, infile, that describes the
formatting conventions for monetary quantities for a specific locale.

-o outfile Write the output on outfile; otherwise, write the output on a file
named LC_MONETARY.

The output of montbl is suitable for use by the localeconv() function (see
localeconv(3C)). Before outfile can be used by localeconv(), it must be
installed in the /usr/lib/locale/locale directory with the name LC_MONETARY by
someone who is super-user or a member of group bin. locale is the locale whose
monetary formatting conventions are described in infile. This file must be readable
by user, group, and other; no other permissions should be set. To use formatting
conventions for monetary quantities described in this file, use
setlocale(3C) to change the locale for category LC_MONETARY to locale [see
setlocale(3C)].

Once installed, this file will be used by the localeconv() function to initialize the
monetary specific fields of a structure of type struct lconv. For a description
of each field in this structure, see localeconv(3C).

```
struct lconv
{
    char *decimal_point;    /* "." */
    char *thousands_sep;    /* " " (zero length string) */
    char *grouping;

    char *int_curr_symbol;
    /* " " */
    char *currency_symbol;
    /* " " */
    char *mon_decimal_point;
    /* " " */
    char *mon_thousands_sep;
    /* " " */
    char *mon_grouping;
    /* " " */
    char *positive_sign;
    /* " " */
    char *negative_sign;
    /* " " */
    char int_frac_digits;   /* CHAR_MAX */
    char frac_digits;       /* CHAR_MAX */
    char p_cs_precedes;     /* CHAR_MAX */
    char p_sep_by_space;    /* CHAR_MAX */
    char n_cs_precedes;     /* CHAR_MAX */
    char n_sep_by_space;    /* CHAR_MAX */
    char p_sign_posn;       /* CHAR_MAX */
    char n_sign_posn;       /* CHAR_MAX */
};
```

The specification file specifies the value of each struct lconv member, except
for the first three members, decimal_point, thousands_sep, and grouping which are
set by the **LC_NUMERIC** category of **setlocale(3C)**. Each member's value is given on a line with the following format:

```
keyword <white space> value
```

where `keyword` is identical to the **struct lconv** field name and `value` is a quoted string for those fields that are a `char *` and an integer for those fields that are an `int`. For example,

```
int_curr_symbol       "ITL."
int_frac_digits       0
```

will set the international currency symbol and the number of fractional digits to be displayed in an internationally formatted monetary quantity to `ITL.` and `0`, respectively.

Blank lines and lines starting with a `#` are taken to be comments and are ignored. A character in a string may be in octal or hex representation. For example, `\141` or `\x61` could be used to represent the letter ‘a’. If there is no specification line for a given structure member, then the default ‘C’ locale value for that member is used (see the values in comments in the **struct lconv** definition above).

Given below is an example of what the specification file for Italy would look like:

```
# Italy

int_curr_symbol       "ITL."
currency_symbol       "L."
mon_decimal_point     "" 
mon_thousands_sep     "."
mon_grouping          "\w3"
positive_sign         "" 
negative_sign         "_"
int_frac_digits       0
frac_digits           0
p_cs_precedes         1
p_sep_by_space        0
n_cs_precedes         1
n_sep_by_space        0
p_sign_posn           1
n_sign_posn           1
```

FILES

```
/usr/lib/locale/locale/LC_MONETARY
```

`LC_MONETARY` database for `locale`

```
/usr/lib/locale/C/montbl_C
```

input file used to construct `LC_MONETARY` in the default locale.

SEE ALSO

`localeconv(3C)`, `setlocale(3C)` in the `Programmer's Reference Manual`
NAME
more, page — browse or page through a text file

SYNOPSIS
more [-cdflrsuw] [-lines] [+linenumber] [+pattern] [filename . .
page [-cdflrsuw] [-lines] [+linenumber] [+pattern] [filename . .

DESCRIPTION
more is a filter that displays the contents of a text file on the terminal, one screenful at a time. It normally pauses after each screenful, and prints --More-- at the bottom of the screen. more provides a two-line overlap between screens for continuity. If more is reading from a file rather than a pipe, the percentage of characters displayed so far is also shown.

more scrolls up to display one more line in response to a RETURN character; it displays another screenful in response to a SPACE character. Other commands are listed below.

page clears the screen before displaying the next screenful of text; it only provides a one-line overlap between screens.

more sets the terminal to noecho mode, so that the output can be continuous. Commands that you type do not normally show up on your terminal, except for the / and ! commands.

If the standard output is not a terminal, more acts just like cat(1V), except that a header is printed before each file in a series.

OPTIONS
The following options are available with more:

-c Clear before displaying. Redrawing the screen instead of scrolling for faster displays. This option is ignored if the terminal does not have the ability to clear to the end of a line.

-d Display error messages rather than ringing the terminal bell if an unrecognized command is used. This is helpful for inexperienced users.

-f Do not fold long lines. This is useful when lines contain nonprinting characters or escape sequences, such as those generated when nroff(1) output is piped through ul(1).

-l Do not treat FORMFEED characters (CTRL-d) as page breaks. If -l is not used, more pauses to accept commands after any line containing a ^L character (CTRL-d). Also, if a file begins with a FORMFEED, the screen is cleared before the file is printed.

-r Normally, more ignores control characters that it does not interpret in some way. The -r option causes these to be displayed as ^C where C stands for any such control character.

-s Squeeze. Replace multiple blank lines with a single blank line. This is helpful when viewing nroff(1) output, on the screen.
more(1) (Directory and File Management Utilities) more(1)

-\(u\)
Suppress generation of underlining escape sequences. Normally, more handles underlining, such as that produced by \texttt{mroff(1)}, in a manner appropriate to the terminal. If the terminal can perform underlining or has a stand-out mode, more supplies appropriate escape sequences as called for in the text file.

-w
Normally, more exits when it comes to the end of its input. With \(w\), however, more prompts and waits for any key to be struck before exiting.

-lines
Display the indicated number of lines in each screenful, rather than the default (the number of lines in the terminal screen less two).

+linenumber
Start up at linenumber.

+/pattern
Start up two lines above the line containing the regular expression pattern. Note: unlike editors, this construct should \textit{not} end with a ‘/’. If it does, then the trailing slash is taken as a character in the search pattern.

\textbf{Usage}

\textbf{Environment}

more uses the terminal's \texttt{termcap(5)} entry to determine its display characteristics, and looks in the environment variable for any preset options. For instance, to page through files using the \(-c\) mode by default, set the value of this variable to \(-c\). (Normally, the command sequence to set up this environment variable is placed in the \texttt{.login} or \texttt{.profile} file).

\textbf{Commands}

The commands take effect immediately; it is not necessary to type a carriage return. Up to the time when the command character itself is given, the user may type the line kill character to cancel the numerical argument being formed. In addition, the user may type the erase character to redisplay the ‘\texttt{--More--(xx\%)\'} message.

In the following commands, \(i\) is a numerical argument (1 by default).

i\texttt{SPACE}
Display another screenful, or \(i\) more lines if \(i\) is specified.

i\texttt{RETURN}
Display another line, or \(i\) more lines, if specified.

i\texttt{D}
(CTRL-d) Display (scroll down) 11 more lines. If \(i\) is given, the scroll size is set to \(i\).

id
Same as \texttt{D}.

iz
Same as \texttt{SPACE}, except that \(i\), if present, becomes the new default number of lines per screenful.

is
Skip \(i\) lines and then print a screenful.

if
Skip \(i\) screenfuls and then print a screenful.

i\texttt{B}
(CTRL-b) Skip back \(i\) screenfuls and then print a screenful.

b
Same as \texttt{B} (CTRL-d).
more(1)

q
Q
Exit from more.
=
Display the current line number.
v
Drop into the editor indicated by the EDITOR environment variable, at the current line of the current file. The default editor is ed(1).
h
Help. Give a description of all the more commands.

i/pattern
Search forward for the i th occurrence of the regular expression pattern. Display the screenful starting two lines before the line that contains the i th match for the regular expression pattern, or the end of a pipe, whichever comes first. If more is displaying a file and there is no such match, its position in the file remains unchanged. Regular expressions can be edited using erase and kill characters. Erasing back past the first column cancels the search command.

in
Search for the i th occurrence of the last pattern entered.
'
Single quote. Go to the point from which the last search started. If no search has been performed in the current file, go to the beginning of the file.

!command
Invoke a shell to execute command. The characters % and !, when used within command are replaced with the current filename and the previous shell command, respectively. If there is no current filename, % is not expanded. Prepend a backslash to these characters to escape expansion.

i:n
Skip to the i th next filename given in the command line, or to the last filename in the list if i is out of range.

i:p
Skip to the i th previous filename given in the command line, or to the first filename if i is out of range. If given while more is positioned within a file, go to the beginning of the file. If more is reading from a pipe, more simply rings the terminal bell.

:f
Display the current filename and line number.

: q
: Q
Exit from more (same as q or Q).
.
Dot. Repeat the previous command.

^ \nHalt a partial display of text. more stops sending output, and displays the usual --More-- prompt. Unfortunately, some output is lost as a result.

FILES
/usr/share/lib/termcap terminal data base
/usr/lib/more.help help file

SEE ALSO
cat(1), csh(1), man(1), script(1), sh(1)
environ(5V), termcap(5) in the System Administrator’s Reference Manual

NOTES
Skipping backwards is too slow on large files.
mount (1M) mount (1M)

NAME

mount, umount (generic) – mount or unmount file systems and remote resources

SYNOPSIS

mount [-v | -p]
mount [-F FSType] [-v] [current_options] [-o specific_options] {special | mount_point}
mount [-F FSType] [-v] [current_options] [-o specific_options] special mount_point
umount [-v] [-o specific_options] {special | mount_point}

DESCRIPTION

File systems other than root (/) are considered removable in the sense that they can be either available to users or unavailable. mount notifies the system that special, a block special device or a remote resource, is available to users from the mount_point which must already exist; it becomes the name of the root of the newly mounted special or resource.

mount, when entered with arguments, validates all arguments except for the device name and invokes an FSType specific mount module. If invoked with no arguments, mount lists all the mounted file systems from the mount table. If invoked with any of the following partial argument lists, for example, one of special or mount_point or when both arguments are specified but no FSType is specified mount will search /etc/vfstab to fill in the missing arguments: FSType, special, mount_point, and specific_options. It will then invoke the FSType-specific mount module.

Most FSTypes do not have a umount specific module. If one exists it is executed; otherwise the generic module unmounts the file systems. If the -o option is specified the umount specific module is always executed.

current_options are options supported by the s5-specific module of mount and umount. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

The options are:

- v
 Print the output in a new style. The new output has the FSType and flags displayed in addition to the old output. The mount_point and special fields are reversed.

- p
 Print the list of mounted file systems in the /etc/vfstab format.

- F
 used to specify the FSType on which to operate. The FSType must be specified or must be determinable from /etc/vfstab while mounting a file system.

- v
 Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.
mount can be used by any user to list mounted file systems and resources. Only a super-user can mount or unmount file systems.

NOTES

mount will not prevent you from mounting a file system on a directory that's not empty.

The old output format will be phased out in a future release and all output will be in the new -v format. The most significant changes are the addition of two new fields to show the FSType and flags and the reversal of the mount_point and special name.

mount adds an entry to the mount table /etc/mnttab; umount removes an entry from the table.

FILES

/etc/mnttab mount table
/etc/vfstab list of default parameters for each file system.

SEE ALSO

setmnt(1M), mountfsys(1M), umountfsys(1M), mnttab(4), vfstab(4)

Manual pages for the FSType-specific modules of mount
NAME
mount (bfs) - mount bfs file systems

SYNOPSIS
mount [-F bfs] [generic_options] [-r] [-o specific_options] {special | mount_point}
mount [-F bfs] [generic_options] [-r] [-o specific_options] special mount_point

DESCRIPTION
generic_options are options supported by the generic mount command.

mount attaches a bfs file system, referenced by special, to the file system hierarchy at the pathname location mount_point, which must already exist. If mount_point has any contents prior to the mount operation, these are hidden until the file system is unmounted.

The options are:
- F bfs Specify the bfs-FSType
- r Mount the file system read-only
- o Specify the options specific to the bfs file system. Available options are:
 rw | ro Read/write or read-only. Default is read/write.

Only a privileged user can mount file systems.

FILES
/etc/mnttab mount table

SEE ALSO
generic mount(1M), mountfatsys(1M), mnttab(4)
mount(2) in the Programmer's Reference Manual
NAME

mount – mount remote NFS resources

SYNOPSIS

mount [-F nfs] [-r] [-o specific_options] {resource | mountpoint}
mount [-F nfs] [-r] [-o specific_options] resource mountpoint

DESCRIPTION

The mount command attaches a named resource to the file system hierarchy at the
pathname location mountpoint, which must already exist. If mountpoint has any
contents prior to the mount operation, the contents remain hidden until the
resource is once again unmounted.

If the resource is listed in the vfstab file, the command line can specify either
resource or mountpoint, and mount will consult vfstab for more information. If
the -F option is omitted, mount will take the file system type from vfstab.

mount maintains a table of mounted file systems in /etc/mnttab, described in
mnttab(4).

The following options are available to the mount command:

- Mount the specified file system read-only.
- Specify the nfs file-specific options in a comma-separated list. The available options are:

 rw| ro resource is mounted read-write or read-only. The default is rw.

 suid| nosuid Setuid execution allowed or disallowed. The default is suid.

 remonunt If a file system is mounted read-only, remounts the file
system read-write.

 bg| fg If the first attempt fails, retry in the background, or, in the
foreground. The default is fg.

 retry=n The number of times to retry the mount operation. The
default is 10000.

 port=n The server IP port number. The default is NFS_PORT.

 grpid Create a file with its GID set to the effective GID of the calling
process. This behavior may be overridden on a per-directory basis by setting the set-GID bit of the parent
directory; in this case, the GID is set to the GID of the
parent directory [see open(2) and mkdir(2)]. Files created
on file systems that are not mounted with the grpid option
will obey BSD semantics; that is, the GID is unconditionally
inherited from that of the parent directory.

 rsize=n Set the read buffer size to n bytes.

 wsize=n Set the write buffer size to n bytes.

 timeo=n Set the NFS timeout to n tenths of a second.

 retrans=n Set the number of NFS retransmissions to n.

 soft| hard Return an error if the server does not respond, or continue
the retry request until the server responds.
intr Allow keyboard interrupts to kill a process that is hung while waiting for a response on a hard-mounted file system.
secure Use a more secure protocol for NFS transactions.
noc Suppress attribute caching.
acregmin=n Hold cached attributes for at least n seconds after file modification.
acregmax=n Hold cached attributes for no more than n seconds after file modification.
acdirmin=n Hold cached attributes for at least n seconds after directory update.
acdirmax=n Hold cached attributes for no more than n seconds after directory update.
actimeo=n Set min and max times for regular files and directories to n seconds.

NFS FILE SYSTEMS

Background vs. Foreground
File systems mounted with the bg option indicate that mount is to retry in the background if the server’s mount daemon [mountd(1M)] does not respond. mount retries the request up to the count specified in the retry=n option. Once the file system is mounted, each NFS request made in the kernel waits timeo=n tenths of a second for a response. If no response arrives, the time-out is multiplied by 2 and the request is retransmitted. When the number of retransmissions has reached the number specified in the retrans=n option, a file system mounted with the soft option returns an error on the request; one mounted with the hard option prints a warning message and continues to retry the request.

Read-Write vs. Read-Only
File systems that are mounted rw (read-write) should use the hard option.

Secure File Systems
The secure option must be given if the server requires secure mounting for the file system.

File Attributes
The attribute cache retains file attributes on the client. Attributes for a file are assigned a time to be flushed. If the file is modified before the flush time, then the flush time is extended by the time since the last modification (under the assumption that files that changed recently are likely to change soon). There is a minimum and maximum flush time extension for regular files and for directories. Setting actimeo=n extends flush time by n seconds for both regular files and directories.

EXAMPLES
To mount a remote file system: mount -F nfs serv:/usr/src /usr/src
To hard mount a remote file system: mount -o hard serv:/usr/src /usr/src
FILES
/etc/mnttab mount table
/etc/dfs/fstypes default distributed file system type
/etc/vfstab table of automatically mounted resources

SEE ALSO
mountall(1M), mount(2), umount(2), mnttab(4)

NOTES
If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.
mount(1M) (RFS) mount(1M)

NAME
mount – mount remote resources

SYNOPSIS
mount [-F rfs] [-cr] [-o specific_options] resource directory

DESCRIPTION
The mount command makes a remote resource available to users from the mount point directory. The command adds an entry to the table of mounted devices, /etc/mnttab.

If multiple transport providers are installed and administrators attempt to mount a resource over them, the transport providers should be specified as network IDs in the /etc/netconfig file. The NETPATH environment variable can be used to specify the sequence of transport providers mount will use to attempt a connection to a server machine (NETPATH=tcp:starlan). If only one transport provider is installed and /etc/netconfig has not been set up, all resources will be mounted over this transport provider by default.

The following options are available:

-F rfs Specify the rfs-FSType.
-c Disable client caching. This is the same as -o nocaching.
-r resource is to be mounted read-only. If the resource is write-protected, this flag or the -o ro specific option must be used.
-o Specify the rfs file system specific options in a comma-separated list. The available options are:

nocaching Disable client caching.

rw|ro resource is to be mounted read/write or read-only. The default is read/write.

suid|nosuid Set-uid bits are to be obeyed or ignored, respectively, on execution. The default is nosuid.

Note that mounting a resource from an untrusted server introduces possible security risks. While the use of nosuid protects against some risks, it is not completely effective. The best defense against such security risks is to avoid such mounts.

FILES
/etc/mnttab mount table
/etc/netconfig network configuration database
/etc/vfstab table of automatically mounted resources

SEE ALSO
dfmounts(1M), dfshares(1M), fuser(1M), share(1M), umount(1M), unshare(1M), vfstab(1M), mnttab(4), netconfig(4)
NAME

mount (s5) – mount an s5 file system

SYNOPSIS

mount [-F s5] [generic_options] [-r] [-o specific_options] {special | mount_point}
mount [-F s5] [generic_options] [-r] [-o specific_options] special mount_point

DESCRIPTION

generic_options are options supported by the generic mount command.

mount notifies the system that special, an s5 block special device, is available to users from the mount_point which must exist before mount is called; it becomes the name of the root of the newly mounted special.

The options are:

- -F s5 Specify an s5 FSType.
- -r Mount the file system read-only.
- -o Specify s5 file-specific options in a comma-separated list. The available options are:
 - rw | ro Read/write or read-only. Default is rw.
 - suid | nosuid

Suid is honored or ignored on execution. Default is suid.

Note that a mount of an unprotected medium (such as a floppy disk) introduces possible security risks. While the use of nosuid protects against some risks, it is not completely effective. The best defense against such security risks is to avoid mounting unprotected media.

remount Used in conjunction with rw. A file system mounted read-only can be remounted read-write. Fails if the file system is not currently mounted or if the file system is mounted rw. Option is in force only when specified.

Only a privileged user can mount file systems.

FILES

/etc/mnttab mount table

SEE ALSO

generic mount(1M), mountfsys(1M), setmnt(1M)
mnttаб(4) in the System Administrator’s Reference Manual
mount (1M) (UFS) mount (1M)

NAME
mount (ufs) – mount ufs file systems

SYNOPSIS
mount [-F ufs] [generic_options] [-r] [-o specific_options] { special\ mount_point }
mount [-F ufs] [generic_options] [-r] [-o specific_options] special mount_point

DESCRIPTION
generic_options are options supported by the generic mount command. mount attaches a ufs file system, referenced by special, to the file system hierarchy at the pathname location mount_point, which must already exist. If mount_point has any contents prior to the mount operation, these remain hidden until the file system is once again unmounted.

The options are:
- F ufs Specifies the ufs-FSType.
- r Mount the file system read-only.
- o Specify the ufs file system specific options in a comma-separated list. If invalid options are specified, a warning message is printed and the invalid options are ignored. The following options are available:
f Fake an /etc/mnttab entry, but do not actually mount any file systems. Parameters are not verified.

n Mount the file system without making an entry in /etc/mnttab.

rw| ro Read/write or read-only. Default is rw.
	nosuid By default the file system is mounted with setuid execution allowed. Specifying nosuid overrides the default and causes the file system to be mounted with setuid execution disallowed.

remount Used in conjunction with rw. A file system mounted read-only can be remounted read-write. Fails if the file system is not currently mounted or if the file system is mounted rw.

NOTES
If the directory on which a file system is to be mounted is a symbolic link, the file system is mounted on the directory to which the symbolic link refers, rather than on top of the symbolic link itself.

FILES
/etc/mnttab mount table

SEE ALSO
generic mount(1M), mountfsys(1M), umountfsys(1M), mkdir(2), mount(2),
open(2), umount(2), mnttab(4)
NAME
mountall, umountall – mount, unmount multiple file systems

SYNOPSIS
mountall [-F FSType] [-l | -r] [file_system_table]
umountall [-F FSType] [-k] [-l | -r]

DESCRIPTION
These commands may be executed only by a privileged user.

mountall is used to mount file systems according to a file_system_table.
(/etc/vfstab is the default file system table.) The special file name "-" reads
from the standard input. If the dash is specified, then the standard input must be
in the same format as /etc/vfstab. With no arguments mountall restricts the
mount to all systems with automnt field set to yes in the file_system_table.

Before each file system is mounted, a sanity check is done using fsck [see
fsck(1M)] to see if it appears mountable. If the file system does not appear
mountable, it is fixed, using fsck, before the mount is attempted.

umountall causes all mounted file systems except root, /proc, /stand, and
/dev/fd to be unmounted. If the FSType is specified mountall and umountall
limit their actions to the FSType specified.

The options are:

- F Specify the File System type to be mounted or unmounted. If FSType
 is specified the action is limited to file systems of this FSType.
- l Limit the action to local file systems.
- r Limit the action to remote file system types.
- k Send a SIGKILL signal to processes that have files opened.

DIAGNOSTICS
No messages are printed if the file systems are mountable and clean.
Error and warning messages come from fsck(1M) and mount(1M).

SEE ALSO
fsck(1M), fuser(1M), mount(1M), mnttab(4), vfstab(4)
signal(2) in the Programmer's Reference Manual
NAME
mountd - NFS mount request server

SYNOPSIS
mountd [-n]

DESCRIPTION
mountd is an RPC server that answers file system mount requests. It reads the file
/etc/dfs/sharetab, described in sharetab(4), to determine which file systems
are available for mounting by which machines. It also provides information as to
what file systems are mounted by which clients. This information can be printed
using the dfmounts(1M) command.

The mountd daemon is automatically invoked in run level 3.

With the -n option, mountd does not check that the clients are root users.
Though this option makes things slightly less secure, it does allow older versions
(pre-3.0) of client NFS to work.

FILES
/etc/dfs/sharetab

SEE ALSO
dfmounts(1M), sharetab(4)
mountfsys (1M) (Essential Utilities) mountfsys (1M)

NAME
mountfsys, umountfsys – mount, unmount a file system

SYNOPSIS
mountfsys
umountfsys

DESCRIPTION
The mountfsys command mounts a file system so that users can read from it and write to it. The umountfsys command unmounts the file system.

The command invokes a visual interface (the mount or unmount tasks available through the sysadm command).

The initial prompt for both commands allows you to select the device on which to mount/unmount the file system.

For the mountfsys command, you are asked to select how the file system is to be mounted; for example, read-only or read/write.

The identical functions are available under the sysadm menu:

sysadm mount
sysadm unmount

DIAGNOSTICS
Both mountfsys and umountfsys exit with one of the following values:

0 Normal exit.
2 Invalid command syntax. A usage message is displayed.
7 The visual interface for this command is not available because it cannot invoke fmli. (The fmli package is not installed or is corrupt.)

NOTES
For a removable medium, once the disk is mounted it must not be removed from the disk drive until it has been unmounted. Removing the disk while it is still mounted can cause severe damage to the data on the disk.

SEE ALSO
checkfsys(1M), labelit(1M), makefsys(1M), mkfs(1M), mount(1M), sysadm(1M)
NAME
mouseadmin - mouse administration

SYNOPSIS
mouseadmin [-nbl] [-d terminal] [-a terminal mouse]

DESCRIPTION
mouseadmin allows any user with system administrator privileges to add or delete mouse devices. Users without "superuser" privileges will only be allowed to list the current mouse/display assignments. The mouseadmin command issued without arguments will execute in menu mode, providing the user with a listing of current assignments and a selection menu of operations.

OPTIONS
The command line arguments are defined as follows:
- n build mouse/display pair table without downloading to driver. (This option should only be used within install scripts.)
- b do not validate for BUS mouse in system configuration. (This option should only be used within install scripts.)
- l list mouse/display assignments.
- d delete terminal assignment.
- a assign mouse device (PS2, BUS, tty00, s0tty0, etc.) to terminal (console, s0vt00, etc.).

When using the -a option, the mouseadmin command format is:
mouseadmin -a terminal mouse_device

For example:
mouseadmin -a console PS2
mouseadmin -a console BUS
mouseadmin -a s0vt00 tty00
mouseadmin -a s0vt00 tty01

FILES
/usr/bin/mouseadmin
/usr/lib/mousemgr

SEE ALSO
mouse(7)
Mouse Driver Administrator's Guide
NAME
mt – magnetic tape control

SYNOPSIS
/usr/ucb/mt [-f tapename] command [count]

DESCRIPTION
mt sends commands to a magnetic tape drive. If tapename is not specified, the
environment variable TAPE is used. If TAPE does not exist, mt uses the device
/dev/rmt12. tapename must refer to a raw (not block) tape device. By default,
mt performs the requested operation once; multiple operations may be per­
formed by specifying count.

The available commands are listed below. Only as many characters as are
required to uniquely identify a command need be specified.

mt returns a 0 exit status when the operation(s) were successful, 1 if the com­
mand was unrecognized or if mt was unable to open the specified tape drive, and
2 if an operation failed.

the following commands are available to mt:

eof, weof Write count EOF marks at the current position on the tape.
fsf Forward space count files.
fsr Forward space count records.
bsf Back space count files.
bsr Back space count records.
asf Absolute space to count file number. This is equivalent to a rewind
followed by a fsf count.

For the following commands, count is ignored:
eom Space to the end of recorded media on the tape (SCSI only). This is
useful for appending files onto previously written tapes.
rewind Rewind the tape.
offline, rewoffl Rewind, unload, and place the tape drive unit off-line.
status Print status information about the tape unit.
retension Wind the tape to the end of the reel and then rewind it, smoothing
out the tape tension.
erase Erase the entire tape.

FILES
/dev/rmt* raw magnetic tape interface
/dev/rar* raw Archive cartridge tape interface
/dev/rst* raw SCSI tape interface
/dev/rmt* raw Xylogics® tape interface
SEE ALSO

dd(1M), ar(4), environ(5), xt(7) in the *System Administrator's Reference Manual*

NOTES

Not all devices support all options. For example, ar currently does not support the `fsr`, `bsf`, or `bsr` options. The half-inch tape driver, `/dev/rmt*`, does not support the `retension` option.
NAME
mv – move files

SYNOPSIS
mv [-f] [-i] file1 [file2 ...] target

DESCRIPTION
The mv command moves file to target. file and target may not have the same
name. (Care must be taken when using sh(1) metacharacters). If target is not a
directory, only one file may be specified before it; if it is a directory, more than
one file may be specified. If target does not exist, mv creates a file named target.
If target exists and is not a directory, its contents are overwritten. If target is a
directory the file(s) are moved to that directory. target and file do not have to
share the same parent directory.

If mv determines that the mode of target forbids writing, it will print the mode
[see chmod(2)], ask for a response, and read the standard input for one line. If
the line begins with y, the mv occurs, if permissible; otherwise, the command
exits. When the parent directory of file is writable and has the sticky bit set, one
or more of the following conditions must be true:

- the user must own the file
- the user must own the directory
- the file must be writable by the user
- the user must be a privileged user

The following options are recognized:

-i mv will prompt for confirmation whenever the move would overwrite an
existing target. A y answer means that the move should proceed. Any
other answer prevents mv from overwriting the target.

-f mv will move the file(s) without prompting even if it is writing over an
existing target. This option overrides the -i option. Note that this is the
default if the standard input is not a terminal.

You can use mv to move directories as well as files. If file is a directory, target
must be a directory in the same physical file system.

If file is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

NOTES
If file and target are on different file systems, mv copies the file and deletes the
original; any links to other files are lost.

A -- permits the user to mark explicitly the end of any command line options,
allowing mv to recognize filename arguments that begin with a --. As an aid to
BSD migration, mv will accept - as a synonym for --. This migration aid may
disappear in a future release. If a -- and a - both appear on the same command
line, the second will be interpreted as a filename.

SEE ALSO
chmod(1), cp(1), cpio(1), ln(1), rm(1)
NAME
mvdir - move a directory

SYNOPSIS
/usr/sbin/mvdir dirname name

DESCRIPTION
mvdir moves directories within a file system. dirname must be a directory. If name does not exist, it will be created as a directory. If name does exist, and is a directory, dirname will be created as name/dirname. dirname and name may not be on the same path; that is, one may not be subordinate to the other. For example:

mvdir x/y x/z

is legal, but

mvdir x/y x/y/z

is not.

SEE ALSO
mkdir(1), mv(1) in the User's Reference Manual

NOTE
Only the super-user can use mvdir.
named (1M) (Internet Utilities) named (1M)

NAME
named, in.named – Internet domain name server

SYNOPSIS
in.named [-d level] [-p port] [-b bootfile]

DESCRIPTION
named is the Internet domain name server. It is used by hosts on the Internet to provide access to the Internet distributed naming database. See RFC 1034 and RFC 1035 for more details. With no arguments named reads /etc/named.boot for any initial data, and listens for queries on a privileged port.

The following options are available:

- \(d\) level Print debugging information. level is a number indicating the level of messages printed.
- \(p\) port Use a different port number.
- \(b\) bootfile Use bootfile rather than /etc/named.boot.

EXAMPLE
;
;
; boot file for name server
;
; type domain source file or host
;
domain berkeley.edu
primary berkeley.edu named.db
secondary cc.berkeley.edu 10.2.0.78 128.32.0.10
cache . named.ca

The domain line specifies that berkeley.edu is the domain of the given server.
The primary line states that the file named.db contains authoritative data for berkeley.edu. The file named.db contains data in the master file format, described in RFC 1035, except that all domain names are relative to the origin; in this case, berkeley.edu (see below for a more detailed description).
The secondary line specifies that all authoritative data under cc.berkeley.edu is to be transferred from the name server at 10.2.0.78. If the transfer fails it will try 128.32.0.10, and continue for up to 10 tries at that address. The secondary copy is also authoritative for the domain.
The cache line specifies that data in named.ca is to be placed in the cache (typically such data as the locations of root domain servers). The file named.ca is in the same format as named.db.

The master file consists of entries of the form:

$INCLUDE < filename >
$ORIGIN < domain >
< domain > < opt_ttl > < opt_class > < type > < resource_record_data >

where domain is "." for the root, "@" for the current origin, or a standard domain name. If domain is a standard domain name that does not end with ".", the current origin is appended to the domain. Domain names ending with "." are unmodified.

3/91 Page 1
The opt_ttl field is an optional integer number for the time-to-live field. It defaults to zero.

The opt_class field is currently one token, IN for the Internet.

The type field is one of the following tokens; the data expected in the resource_record_data field is in parentheses.

- **A**: A host address (dotted quad).
- **NS**: An authoritative name server (domain).
- **MX**: A mail exchanger (domain).
- **CNAME**: The canonical name for an alias (domain).
- **SOA**: Marks the start of a zone of authority (5 numbers). See RFC 1035.
- **MB**: A mailbox domain name (domain).
- **MG**: A mail group member (domain).
- **MR**: A mail rename domain name (domain).
- **NULL**: A null resource record (no format or data).
- **WKS**: A well know service description (not implemented yet).
- **PTR**: A domain name pointer (domain).
- **HINFO**: Host information (cpu_type OS_type).
- **MINFO**: Mailbox or mail list information (request_domain error_domain).

FILES

- `/etc/named.boot`: name server configuration boot file
- `/etc/named.pid`: the process ID
- `/var/tmp/named.run`: debug output
- `/var/tmp/named_dump.db`: dump of the name servers database

SEE ALSO

- `kill(1)`, `signal(3)`, `resolver(3N)`, `resolve.conf(4)`
NOTES

The following signals have the specified effect when sent to the server process using the `kill(1)` command.

- **SIGHUP**: Reads `/etc/named.boot` and reloads database.
- **SIGINT**: Dumps the current database and cache to `/var/tmp/named_dump.db`.
- **SIGUSR1**: Turns on debugging; each subsequent SIGUSR1 increments debug level.
- **SIGUSR2**: Turns off debugging completely.
nawk(1) (Directory and File Management Utilities) nawk(1)

NAME
nawk – pattern scanning and processing language

SYNOPSIS
nawk [-F re] [-v var=value] ['prog'] [file ...]
nawk [-F re] [-v var=value] [-f progfile] [file ...]

DESCRIPTION
nawk scans each input file for lines that match any of a set of patterns specified in prog. The prog string must be enclosed in single quotes (') to protect it from the shell. For each pattern in prog there may be an associated action performed when a line of a file matches the pattern. The set of pattern-action statements may appear literally as prog or in a file specified with the -f progfile option. Input files are read in order; if there are no files, the standard input is read. The file name – means the standard input.

Each input line is matched against the pattern portion of every pattern-action statement; the associated action is performed for each matched pattern. Any file of the form var=value is treated as an assignment, not a filename, and is executed at the time it would have been opened if it were a filename, and is executed at the time it would have been opened if it were a filename. The option -v followed by var=value is an assignment to be done before prog is executed; any number of -v options may be present.

An input line is normally made up of fields separated by white space. (This default can be changed by using the FS built-in variable or the -F re option.) The fields are denoted $1, $2, ..., $0 refers to the entire line.

A pattern-action statement has the form:

 pattern { action }

Either pattern or action may be omitted. If there is no action with a pattern, the matching line is printed. If there is no pattern with an action, the action is performed on every input line. Pattern-action statements are separated by newlines or semicolons.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of relational expressions and regular expressions. A relational expression is one of the following:

 expression relop expression
 expression matchop regular_expression
 expression in array-name
 (expression, expression, ...) in array-name

where a relop is any of the six relational operators in C, and a matchop is either ~ (contains) or !~ (does not contain). An expression is an arithmetic expression, a relational expression, the special expression

 var in array

or a Boolean combination of these.
Regular expressions are as in `egrep(1)`. In patterns they must be surrounded by slashes. Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all lines between an occurrence of the first pattern and the next occurrence of the second pattern.

The special patterns `BEGIN` and `END` may be used to capture control before the first input line has been read and after the last input line has been read respectively. These keywords do not combine with any other patterns.

A regular expression may be used to separate fields by using the `-P re` option or by assigning the expression to the built-in variable `FS`. The default is to ignore leading blanks and to separate fields by blanks and/or tab characters. However, if `FS` is assigned a value, leading blanks are no longer ignored.

Other built-in variables include:

- `ARGC` command line argument count
- `ARGV` command line argument array
- `ENVIRON` array of environment variables; subscripts are names
- `FILENAME` name of the current input file
- `FNR` ordinal number of the current record in the current file
- `FS` input field separator regular expression (default blank and tab)
- `NF` number of fields in the current record
- `NR` ordinal number of the current record
- `OFMT` output format for numbers (default `%6g`)
- `OFS` output field separator (default blank)
- `ORS` output record separator (default new-line)
- `RS` input record separator (default new-line)
- `SUBSEP` separates multiple subscripts (default is 034)

An action is a sequence of statements. A statement may be one of the following:

```c
if ( expression ) statement [ else statement ]
while ( expression ) statement
do statement while ( expression )
for ( expression ; expression ; expression ) statement
for ( var in array ) statement
delete array[subscript] #delete an array element
break
continue
{ [ statement ] ... }
ex pression # commonly variable = expression
print [ expression-list ] [ >expression ]
printf format [ , expression-list ] [ >expression ]
next # skip remaining patterns on this input line
```
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list stands for the whole input line. Expressions take on string or numeric values as appropriate, and are built using the operators +, -, *, /, %, ^ and concatenation (indicated by a blank). The operators ++ -- += -= *= /= %= ^= > >= < <= != ?: are also available in expressions. Variables may be scalars, array elements (denoted x[i]), or fields. Variables are initialized to the null string or zero. Array subscripts may be any string, not necessarily numeric; this allows for a form of associative memory. Multiple subscripts such as [i,j,k] are permitted; the constituents are concatenated, separated by the value of SUBSEP. String constants are quoted (""), with the usual C escapes recognized within.

The print statement prints its arguments on the standard output, or on a file if >expression is present, or on a pipe if | cmd is present. The arguments are separated by the current output field separator and terminated by the output record separator. The printf statement formats its expression list according to the format [see printf(3S) in the Programmer's Reference Manual]. The built-in function close(expr) closes the file or pipe expr.

The mathematical functions: atan2, cos, exp, log, sin, sqrt, are built-in.

Other built-in functions include:

gsub(for, repl, in)
behaves like sub (see below), except that it replaces successive occurrences of the regular expression (like the ed global substitute command).

index(s, t) returns the position in string s where string t first occurs, or 0 if it does not occur at all.

int truncates to an integer value.

length(s) returns the length of its argument taken as a string, or of the whole line if there is no argument.

match(s, re) returns the position in string s where the regular expression re occurs, or 0 if it does not occur at all. RSTART is set to the starting position (which is the same as the returned value), and RLENGTH is set to the length of the matched string.

rand random number on (0, 1).

split(s, a, fs) splits the string s into array elements a[1], a[2],..., a[n], and returns n. The separation is done with the regular expression fs or with the field separator FS if fs is not given.

srand sets the seed for rand

sprintf(fmt, expr, expr, ...) formats the expressions according to the printf(3S) format given by fmt and returns the resulting string.
sub(for, repl, in) substitutes the string repl in place of the first instance of the regular expression for in string in and returns the number of substitutions. If in is omitted, **nawk** substitutes in the current record ($0).

substr(s, m, n) returns the n-character substring of s that begins at position m.

The input/output built-in functions are:

close(filename) closes the file or pipe named filename.

cmd | getline pipes the output of cmd into getline; each successive call to getline returns the next line of output from cmd.

getline sets $0 to the next input record from the current input file.

getline <file sets $0 to the next record from file.

getline x sets variable x instead.

getline x <file sets x from the next record of file.

system(cmd) executes cmd and returns its exit status.

All forms of **getline** return 1 for successful input, 0 for end of file, and -1 for an error.

nawk also provides user-defined functions. Such functions may be defined (in the pattern position of a pattern-action statement) as

```
function name(args, ...) { stmts }
```

Function arguments are passed by value if scalar and by reference if array name. Argument names are local to the function; all other variable names are global. Function calls may be nested and functions may be recursive. The return statement may be used to return a value.

EXAMPLES

Print lines longer than 72 characters:

```
length > 72
```

Print first two fields in opposite order:

```
{ print $2, $1 }
```

Same, with input fields separated by comma and/or blanks and tabs:

```
BEGIN { FS = ",\[ \t\]+\[ \t\]+\] }
{ print $2, $1 }
```

Add up first column, print sum and average:

```
{ s += $1 }
END { print "sum is", s, " average is", s/NR }
```

Print fields in reverse order:

```
{ for (i = NF; i > 0; --i) print $i }
```

Print all lines between start/stop pairs:
Print all lines whose first field is different from previous one:

```bash
$1 != prev { print; prev = $1 }
```

Simulate `echo(1)`:

```bash
BEGIN {
    for (i = 1; i < ARGC; i++)
        printf "%s", ARGV[i]
    printf \n
    exit
}
```

Print a file, filling in page numbers starting at 5:

```bash
/Page/ { $2 = n++; }
{ print }
```

Assuming this program is in a file named `prog`, the following command line prints the file `input` numbering its pages starting at 5: `nawk -f prog n=5 input`.

SEE ALSO
`egrep(1), grep(1), sed(1)`
`lex(1), printf(3S)` in the *Programmer’s Reference Manual*
The *awk* chapter in the *User’s Guide*
A. V. Aho, B. W. Kernighan, P. J. Weinberger, *The AWK Programming Language*
Addison-Wesley, 1988

NOTES
`nawk` is a new version of `awk` that provides capabilities unavailable in previous versions. This version will become the default version of `awk` in the next major UNIX system release.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression to be treated as a number add 0 to it; to force it to be treated as a string concatenate the null string (""") to it.
ncheck (1M)

NAME
ncheck (generic) – generate a list of path names vs i-numbers

SYNOPSIS
ncheck [-F FSType] [-v] [current_options] [-o specific_options] [special . . .]

DESCRIPTION
ncheck with no options generates a path-name vs. i-number list of all files on special. If special is not specified on the command line the list is generated for all specials in /etc/vfstab for entries which have a numeric fsckpass. special is a block special device on which the file system exists.

current_options are options supported by the s5-specific module of ncheck. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

The options are:

- F Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by finding an entry in the table that has a numeric fsckpass field and a matching special if specified.

- v Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

- o used to specify FSType specific options if any.

FILES
/etc/vfstab list of default parameters for each file system

SEE ALSO
vfstab(4)
Manual pages for the FSType-specific modules of ncheck

NOTES
This command may not be supported for all FSTypes.
NAME
ncheck (s5) – generate path names versus i-numbers for s5 file systems

SYNOPSIS
ncheck [-F s5] [generic_options] [-i i-number . . .] [-a] [-s] [special . . .]

DESCRIPTION
generic_options are options supported by the generic ncheck command.
ncheck generates a path-name vs. i-number list of all files on the specified special
device(s). Names of directory files are followed by "/ . ".
The options are:
- F s5 Specifies the s5-FSType.
- i i-number
 Limits the report to those files whose i-numbers follow. The i-numbers
 must be separated by commas without spaces.
- a Allows printing of the names ". " and " . . ", which are ordinarily
 suppressed.
- s Limits the report to special files and files with set-user-ID mode. This
 option may be used to detect violations of security policy.

DIAGNOSTICS
If the file system structure is not consistent, ?? denotes the parent of a parentless
file and a path-name beginning with . . . denotes a loop.

SEE ALSO
generic ncheck(1M)
ncheck (1M) (UFS) ncheck (1M)

NAME
ncheck (ufs) – generate pathnames versus i-numbers for ufs file systems

SYNOPSIS
ncheck [-F ufs] [generic_options] [-i i-list] [-a] [-s] [-o m] [special ...]

DESCRIPTION

generic_options are options supported by the generic ncheck command.
ncheck generates a pathname versus i-number list of files for the ufs file system.
Names of directory files are followed by "/. ".
The options are:
- F ufs Specifies the ufs-FSType.
- i i-list Limits the report to the files on the i-list that follows. The i-list must
be separated by commas without spaces.
- a Allows printing of the names "." and ".", which are ordinarily
suppressed.
- s Limits the report to special files and files with set-user-ID mode. This
option may be used to detect violations of security policy.
- o Specify ufs file system specific options. The available option is:

m Print mode information.

DIAGNOSTICS

When the file system structure is improper, ?? denotes the parent of a parentless
file and a pathname beginning with . . denotes a loop.

SEE ALSO

generic ncheck(1M)
NAME
netstat – show network status

SYNOPSIS
netstat [-aAn] [-f addr_family] [system] [core]
netstat [-n] [-s] [-i] [-r] [-f addr_family] [system] [core]
netstat [-n] [-I interface] interval [system] [core]

DESCRIPTION
netstat displays the contents of various network-related data structures in various formats, depending on the options you select.

The first form of the command displays a list of active sockets for each protocol. The second form selects one from among various other network data structures. The third form displays running statistics of packet traffic on configured network interfaces; the interval argument indicates the number of seconds in which to gather statistics between displays.

The default value for the system argument is /unix; for core, the default is /dev/kmem.

The following options are available:
-a Show the state of all sockets; normally sockets used by server processes are not shown.
-A Show the address of any protocol control blocks associated with sockets; used for debugging.
-i Show the state of interfaces that have been auto-configured. Interfaces that are statically configured into a system, but not located at boot time, are not shown.
-n Show network addresses as numbers. netstat normally displays addresses as symbols. This option may be used with any of the display formats.
-r Show the routing tables. When used with the -s option, show routing statistics instead.
-s Show per-protocol statistics. When used with the -r option, show routing statistics.
-f addr_family
Limit statistics or address control block reports to those of the specified addr_family, which can be one of:

inet For the AF_INET address family, or
unix For the AF_UNIX family.

-I interface
Highlight information about the indicated interface in a separate column; the default (for the third form of the command) is the interface with the most traffic since the system was last rebooted. interface can be any valid interface listed in the system configuration file, such as emdl or lo0.
DISPLAYS

Active Sockets (First Form)
The display for each active socket shows the local and remote address, the send and receive queue sizes (in bytes), the protocol, and the internal state of the protocol.

The symbolic format normally used to display socket addresses is either:

- hostname:port

when the name of the host is specified, or:

- network:port

if a socket address specifies a network but no specific host. Each hostname and network is shown according to its entry in the /etc/hosts or the /etc/networks file, as appropriate.

If the network or hostname for an address is not known (or if the -n option is specified), the numerical network address is shown. Unspecified, or wildcard, addresses and ports appear as *.

For more information regarding the Internet naming conventions, refer to inet(7).

TCP Sockets
The possible state values for TCP sockets are as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED</td>
<td>Closed. The socket is not being used.</td>
</tr>
<tr>
<td>LISTEN</td>
<td>Listening for incoming connections.</td>
</tr>
<tr>
<td>SYN_SENT</td>
<td>Actively trying to establish connection.</td>
</tr>
<tr>
<td>SYN_RECEIVED</td>
<td>Initial synchronization of the connection under way.</td>
</tr>
<tr>
<td>ESTABLISHED</td>
<td>Connection has been established.</td>
</tr>
<tr>
<td>CLOSE_WAIT</td>
<td>Remote shut down; waiting for the socket to close.</td>
</tr>
<tr>
<td>FIN_WAIT_1</td>
<td>Socket closed; shutting down connection.</td>
</tr>
<tr>
<td>CLOSING</td>
<td>Closed, then remote shutdown; awaiting acknowledgement.</td>
</tr>
<tr>
<td>LAST_ACK</td>
<td>Remote shut down, then closed; awaiting acknowledgement.</td>
</tr>
<tr>
<td>FIN_WAIT_2</td>
<td>Socket closed; waiting for shutdown from remote.</td>
</tr>
<tr>
<td>TIME_WAIT</td>
<td>Wait after close for remote shutdown retransmission.</td>
</tr>
</tbody>
</table>

Network Data Structures (Second Form)
The form of the display depends upon which of the -i or -r options you select. If you specify more than one of these options, netstat selects one in the order listed here.

Routing Table Display
The routing table display lists the available routes and the status of each. Each route consists of a destination host or network, and a gateway to use in forwarding packets. The flags column shows the status of the route (U if up), whether the route is to a gateway (G), and whether the route was created dynamically by a redirect (D).

Direct routes are created for each interface attached to the local host; the gateway field for such entries shows the address of the outgoing interface.
The refcnt column gives the current number of active uses per route. Connection-oriented protocols normally hold on to a single route for the duration of a connection, whereas connectionless protocols obtain a route while sending to the same destination.

The use column displays the number of packets sent per route.

The interface entry indicates the network interface utilized for the route.

Cumulative Traffic Statistics (Third Form)

When the interval argument is given, netstat displays a table of cumulative statistics regarding packets transferred, errors and collisions, the network addresses for the interface, and the maximum transmission unit (mtu). The first line of data displayed, and every 24th line thereafter, contains cumulative statistics from the time the system was last rebooted. Each subsequent line shows incremental statistics for the interval (specified on the command line) since the previous display.

SEE ALSO

iostat(1M), trpt(1M), vmstat(1M), hosts(4), networks(4), protocols(4), services(4)

NOTES

The notion of errors is ill-defined.

The kernel's tables can change while netstat is examining them, creating incorrect or partial displays.
newaliases(1M) (BSD Compatibility Package) newaliases(1M)

NAME
 newaliases – rebuild the data base for the mail aliases file

SYNOPSIS
 /usr/ucb/newaliases

DESCRIPTION
 newaliases rebuilds the random access data base for the mail aliases file
 /etc/aliases. newaliases should be run whenever the /etc/aliases file is
 updated.

FILES
 /etc/aliases
 /etc/aliases.dir
 /etc/aliases.pag

SEE ALSO
 sendmail(1M), aliases(4)
newform(1) (Directory and File Management Utilities) newform(1)

NAME
newform - change the format of a text file

SYNOPSIS

DESCRIPTION
newform reads lines from the named files, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted
in accordance with command line options in effect.

Except for -s, command line options may appear in any order, may be repeated,
and may be intermingled with the optional files. Command line options are pro­
cessed in the order specified. This means that option sequences like "-e15 -160"
will yield results different from "-160 -e15". Options are applied to all files on
the command line.

-s Shears off leading characters on each line up to the first tab and places
up to 8 of the sheared characters at the end of the line. If more than 8
characters (not counting the first tab) are sheared, the eighth character
is replaced by a * and any characters to the right of it are discarded.
The first tab is always discarded.

An error message and program exit will occur if this option is used on
a file without a tab on each line. The characters sheared off are saved
internally until all other options specified are applied to that line. The
characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs,
and text on each line, to a file beginning with the text, all tabs after the
first expanded to spaces, padded with spaces out to column 72 (or
truncated to column 72), and the leading digits placed starting at
column 73, the command would be:

newform -s -i -1 -a -e file

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. tabspec accepts four types of tab specifications:
canned, repetitive, arbitrary and file. -n represents the repetitive tab
specification. This format can be used to replace each tab in a file with
n spaces. For example,

newform -i-4 file

replaces tabs with 4 spaces. For more information about the tabspec
formats see tabs(1). In addition, tabspec may be --, in which newform
assumes that the tab specification is to be found in the first line read
from the standard input (see fspec(4)). If no tabspec is given, tabspec
defaults to -8. A tabspec of -0 expects no tabs; if any are found, they
are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for
-otabspec. If no tabspec is given, tabspec defaults to -8. A tabspec of -0
means that no spaces will be converted to tabs on output.
newform(1) (Directory and File Management Utilities) newform(1)

-bn Truncate n characters from the beginning of the line when the line
 length is greater than the effective line length (see -ln). Default is to
 truncate the number of characters necessary to obtain the effective line
 length. The default value is used when -b with no n is used. This
 option can be used to delete the sequence numbers from a COBOL pro-
 gram as follows:

 newform -11 -b7 file

-en Same as -bn except that characters are truncated from the end of the
 line.

-pn Prefix n characters (see -ck) to the beginning of a line when the line
 length is less than the effective line length. Default is to prefix the
 number of characters necessary to obtain the effective line length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output before
 any other lines are output. The tab specification format line which is
 printed will correspond to the format specified in the last -o option. If
 no -o option is specified, the line which is printed will contain the
 default specification of -8.

-ck Change the prefix/append character to k. Default character for k is a
 space.

-ln Set the effective line length to n characters. If n is not entered, -l
 defaults to 72. The default line length without the -l option is
 80 characters. Note that tabs and backspaces are considered to be one
 character (use -i to expand tabs to spaces).

 The -11 must be used to set the effective line length shorter than any
 existing line in the file so that the -b option is activated.

DIAGNOSTICS

All diagnostics are fatal.

usage: . . . newform was called with a bad option.
"not -s format" There was no tab on one line.
"can't open file" Self-explanatory.
"internal line too long" A line exceeds 512 characters after being expanded in the
 internal work buffer.
"tabspec in error" A tab specification is incorrectly formatted, or specified
 tab stops are not ascending.
"tabspec indirection illegal" A tabspec read from a file (or standard input) may not
 contain a tabspec referencing another file (or standard
 input).

0 – normal execution
1 – for any error
SEE ALSO

csplt(1), tabs(1)
fspec(4) in the System Administrator's Reference Manual

NOTES

newform normally only keeps track of physical characters; however, for the -i and -o options, newform will keep track of backspaces in order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the standard input (by use of -i-- or -o--).

If the -f option is used, and the last -o option specified was -o-- and was preceded by either a -o-- or a -i--, the tab specification format line will be incorrect.
newgrp(1M)

(Essential Utilities)

newgrp(1M)

NAME

newgrp - log in to a new group

SYNOPSIS

newgrp [-] [group]

DESCRIPTION

newgrp changes a user’s real and effective group ID. The user remains logged in
and the current directory is unchanged. The user is always given a new shell,
replacing the current shell, by newgrp, regardless of whether it terminated suc-
cessfully or due to an error condition (i.e., unknown group).

Exported variables retain their values after invoking newgrp; however, all unex-
ported variables are either reset to their default value or set to null. System vari-
ables (such as PS1, PS2, PATH, MAIL, and HOME), unless exported by the system or
explicitly exported by the user, are reset to default values. For example, a user
has a primary prompt string (PS1) other than $ (default) and has not exported
PS1. After an invocation of newgrp, successful or not, the user’s PS1 will now be
set to the default prompt string $. Note that the shell command export [see the
sh(1) manual page] is the method to export variables so that they retain their
assigned value when invoking new shells.

With no arguments, newgrp changes the user’s group IDs (real and effective) back
to the group specified in the user’s password file entry. This is a way to exit the
effect of an earlier newgrp command.

If the first argument to newgrp is a -, the environment is changed to what would
be expected if the user actually logged in again as a member of the new group.

A password is demanded if the group has a password and the user is not listed
in /etc/group as being a member of that group.

FILES

/etc/group system’s group file
/etc/passwd system’s password file

NOTES

The ability of the user to enter a password when using this command will be
removed in a future release.

SEE ALSO

login(1), sh(1) in the User’s Reference Manual
see intro(2) “Effective User ID and Effective Group ID” in Programmer’s Reference Manual
newkey(1M)

NAME
newkey – create a new key in the publickey database

SYNOPSIS
newkey -h hostname
newkey -u username

DESCRIPTION
The newkey command is normally run by the RPC administrator on the machine that contains the publickey(4) database, to establish public keys for users and privileged users on the network. These keys are needed when using secure RPC or secure NFS.

tnewkey will prompt for a password for the given username or hostname and then create a new public/secret key pair for the user or host in /etc/publickey, encrypted with the given password.

The following options are available:
- -h hostname Create a new public/secret key pair for the privileged user at the given hostname. Prompts for a password for the given hostname.
- -u username Create a new public/secret key pair for the given username. Prompts for a password for the given username.

SEE ALSO
chkey(1), keylogin(1), keylogout(1), keyserv(1M), publickey(4)
NAME
news – print news items

SYNOPSIS
news [-a] [-n] [-s] [items]

DESCRIPTION
news is used to keep the user informed of current events. By convention, these
events are described by files in the directory /var/news.

When invoked without arguments, news prints the contents of all current files in
/var/news, most recent first, with each preceded by an appropriate header. news
stores the “currency” time as the modification date of a file named .news_time
in the user’s home directory (the identity of this directory is determined by the
environment variable $HOME); only files more recent than this currency time are
considered “current.”

-a option causes news to print all items, regardless of currency. In this case,
the stored time is not changed.

-n option causes news to report the names of the current items without print­
ing their contents, and without changing the stored time.

-s option causes news to report how many current items exist, without print­
ing their names or contents, and without changing the stored time. It is
useful to include such an invocation of news in one’s .profile file, or in
the system’s /etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next
item is started. Another delete within one second of the first causes the program
to terminate.

FILES
/etc/profile
/var/news/*
$HOME/.news_time

SEE ALSO
profile(4), environ(5) in the System Administrator's Reference Manual
NAME
newvt – opens virtual terminals.

SYNOPSIS
newvt [-e prog] [-n vt_number]

DESCRIPTION
Use the newvt command to open a new virtual terminal. The newly opened virtual terminal will inherit your environment.

- e Specifies a program (prog) to execute in the new virtual terminal. Without the -e option, the program pointed to by the $SHELL environment variable is started in the new virtual terminal. If $SHELL is NULL or points to a nonexecutable program, then /bin/sh is invoked.

- n Specifies a particular virtual terminal (vt number) to open. If the -n option is not specified, then the next available virtual terminal is opened. Close virtual terminals by pressing CTRL-d (control d). Repeat CTRL-d until all open virtual terminals are closed.

DIAGNOSTICS
The newvt command will fail under the following conditions:

If an illegal option is specified.
If the device cannot be opened.
If newvt is invoked from a remote terminal.
If no virtual terminals are available (-n option not specified).
If the requested virtual terminal is not available (-n option specified).
If the requested virtual terminal cannot be opened.
If the specified command cannot be executed (-e option specified).
If the $SHELL program cannot be executed ($SHELL set and -e option not specified).
If /dev/vtmon cannot be opened.

SEE ALSO
vtlmgr(1)
vtgetty(1M) in the System Administrator’s Reference Manual
NAME
nfsd – NFS daemon

SYNOPSIS
nfsd [-a] [-p protocol] [-t device] [nservers]

DESCRIPTION
nfsd starts the daemons that handle client file system requests.
The following options are recognized:
- a start nfsd’s over all available connectionless transports
- p protocol start nfsd’s over the specified protocol
- t device start nfsd’s for the transport specified by the given device
nservers the number of file system request daemons to start.
nservers should be based on the load expected on this server. Four is the usual
number of nservers.
The nfsd daemons are automatically invoked in run level 3.

FILES
.nfsXXX client machine pointer to an open-but-unlinked file

SEE ALSO
biod(1M), mountd(1M), sharetab(4).
nfsstat(1M)

NAME
nfsstat – Network File System statistics

SYNOPSIS
nfsstat [-csnrz]

DESCRIPTION
nfsstat displays statistical information about the NFS (Network File System) and RPC (Remote Procedure Call), interfaces to the kernel. It can also be used to reinitialize this information. If no options are given the default is

 nfsstat -csnr

That is, display everything, but reinitialize nothing.

Options
The options for nfsstat are as follows:

-c Display client information. Only the client side NFS and RPC information will be printed. Can be combined with the -n and -r options to print client NFS or client RPC information only.

-s Display server information.

-n Display NFS information. NFS information for both the client and server side will be printed. Can be combined with the -c and -s options to print client or server NFS information only.

-r Display RPC information.

-z Zero (reinitialize) statistics. This option is for use by the super-user only, and can be combined with any of the above options to zero particular sets of statistics after printing them.

Displays
The server RPC display includes the fields:

 calls total number of RPC calls received
 badcalls total number of calls rejected
 nullrecv number of times no RPC packet was available when trying to receive
 badlen number of packets that were too short
 xdrcall number of packets that had a malformed header

The server NFS display shows the number of NFS calls received (calls) and rejected (badcalls), and the counts and percentages for the various calls that were made.

The client RPC display includes the following fields:

 calls total number of RPC calls sent
 badcalls total of calls rejected by a server
 retrans number of times a call had to be retransmitted
badxid number of times a reply did not match the call
timeout number of times a call timed out
wait number of times a call had to wait on a busy CLIENT handle
newcred number of times authentication information had to be refreshed

The client NFS display shows the number of calls sent and rejected, as well as the number of times a CLIENT handle was received (nclget), the number of times a call had to sleep while awaiting a handle (nclsleep), as well as a count of the various calls and their respective percentages.

FILES
/vmunix system namelist
/dev/kmem kernel memory
nice(1) (User Environment Utilities) nice(1)

NAME
nice – run a command at low priority

SYNOPSIS
nice [-increment] command [arguments]

DESCRIPTION
nice executes command with a lower CPU scheduling priority. The priocntl command is a more general interface to scheduler functions.

The invoking process (generally the user's shell) must be in the time-sharing scheduling class. The command is executed in the time-sharing class.

If the increment argument (in the range 1-19) is given, it is used; if not, an increment of 10 is assumed.

The super-user may run commands with priority higher than normal by using a negative increment, e.g., --10.

SEE ALSO
nohup(1), priocntl(1)
nice(2) in the Programmer's Reference Manual

DIAGNOSTICS
nice returns the exit status of command.

NOTES
An increment larger than 19 is equivalent to 19.
NAME
nl – line numbering filter

SYNOPSIS
[-nformat] [-ddelim] [file]

DESCRIPTION
nl reads lines from the named file, or the standard input if no file is named, and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect.
nl views the text it reads in terms of logical pages. Line numbering is reset at
the start of each logical page. A logical page consists of a header, a body, and a
footer section. Empty sections are valid. Different line numbering options are
independently available for header, body, and footer. For example, -bt (the
default) numbers non-blank lines in the body section and does not number any
lines in the header and footer sections.
The start of logical page sections are signaled by input lines containing nothing
but the following delimiter character(s):
 Line contents Start of
 \\
: : : header
 \\
: : body

: footer

Unless optioned otherwise, nl assumes the text being read is in a single logical
page body.
Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:
-btype Specifies which logical page body lines are to be numbered. Recognized types and their meanings are:
a number all lines
t number lines with printable text only
n no line numbering
pexp number only lines that contain the regular expression
specified in exp (see ed(1))

Default type for logical page body is t (text lines numbered).

-ftype Same as -btype except for footer. Default type for logical page footer
is n (no lines numbered).

-htype Same as -btype except for header. Default type for logical page header
is n (no lines numbered).

-vstart# start# is the initial value used to number logical page lines. Default
start# is 1.
nl(1) (Directory and File Management Utilities) nl(1)

-incr incr is the increment value used to number logical page lines. Default incr is 1.

-p Do not restart numbering at logical page delimiters.

-1num num is the number of blank lines to be considered as one. For example, -12 results in only the second adjacent blank being numbered (if the appropriate -ba, -ba, and/or -fa option is set). Default num is 1.

-sep sep is the character(s) used in separating the line number and the corresponding text line. Default sep is a tab.

-wwidth width is the number of characters to be used for the line number. The default for width is 6. The maximum for width is 100. If a number greater than the maximum is specified for width, the maximum is automatically used.

-nformat format is the line numbering format. Recognized values are: ln, left justified, leading zeroes suppressed; rn, right justified, leading zeroes suppressed; rz, right justified, leading zeroes kept. Default format is rn (right justified).

-adelim The two delimiter characters specifying the start of a logical page section may be changed from the default characters (\:;) to two user-specified characters. If only one character is entered, the second character remains the default character (:). No space should appear between the -d and the delimiter characters. To enter a backslash, use two backslashes.

EXAMPLE
The command:

 nl -v10 -i10 -d!+ file1

will cause the first line of the page body to be numbered 10, the second line of the page body to be numbered 20, the third 30, and so forth. The logical page delimiters are !+.

SEE ALSO
pr(1), ed(1)
NAME

nlsadmin - network listener service administration

SYNOPSIS

/usr/sbin/nlsadmin

/usr/sbin/nlsadmin [options] net_spec

/usr/sbin/nlsadmin [options] -N port_monitor_tag

/usr/sbin/nlsadmin -V

/usr/sbin/nlsadmin [-c cmd] [-o streamname] [-p modules]

[-A address | -D] [-R prognum:versnum]

DESCRIPTION

nlsadmin is the administrative command for the network listener process(es) on a machine. Each network has at least one instance of the network listener process associated with it; each instance (and thus, each network) is configured separately. The listener process "listens" to the network for service requests, accepts requests when they arrive, and invokes servers in response to those service requests. The network listener process may be used with any network (more precisely, with any connection-oriented transport provider) that conforms to the transport provider specification.

nlsadmin can establish a listener process for a given network, configure the specific attributes of that listener, and start and kill the listener process for that network. nlsadmin can also report on the listener processes on a machine, either individually (per network) or collectively.

The list below shows how to use nlsadmin. In this list, net_spec represents a particular listener process. Specifically, net_spec is the relative path name of the entry under /dev for a given network (that is, a transport provider). address is a transport address on which to listen and is interpreted using a syntax that allows for a variety of address formats. By default, address is interpreted as the symbolic ASCII representation of the transport address. An address preceded by a \x will let you enter an address in hexadecimal notation. Note that address must appear as a single word to the shell and thus must be quoted if it contains any blanks.

Changes to the list of services provided by the listener or the addresses of those services are put into effect immediately.

nlsadmin may be used with the following combinations of options and arguments:

nlsadmin gives a brief usage message.

nlsadmin -x reports the status of all of the listener processes installed on this machine.

nlsadmin net_spec prints the status of the listener process for net_spec.

nlsadmin -q net_spec queries the status of the listener process for the specified network, and reflects the result of that query in its exit code. If a listener process is active, nlsadmin will exit with a status of 0; if no process is active, the exit code will be 1; the exit code will be greater than 1 in case of error.
nlsadmin -v net_spec
prints a verbose report on the servers associated with net_spec, giving the service code, status, command, and comment for each. It also specifies the uid the server will run as and the list of modules to be pushed, if any, before the server is started.

nlsadmin -z service_code net_spec
prints a report on the server associated with net_spec that has service code service_code, giving the same information as in the -v option.

nlsadmin -q -z service_code net_spec
queries the status of the service with service code service_code on network net_spec, and exits with a status of 0 if that service is enabled, 1 if that service is disabled, and greater than 1 in case of error.

nlsadmin -l address net_spec
changes or set the transport address on which the listener listens (the general listener service). This address can be used by remote processes to access the servers available through this listener (see the -a option, below).

If address is just a dash ("-"), nlsadmin will report the address currently configured, instead of changing it.

A change of address takes effect immediately.

nlsadmin -t address net_spec
changes or sets the address on which the listener listens for requests for terminal service but is otherwise similar to the -l option above. A terminal service address should not be defined unless the appropriate remote login software is available; if such software is available, it must be configured as service code 1 (see the -a option, below).

nlsadmin -i net_spec
initializes an instance of the listener for the network specified by net_spec; that is, creates and initializes the files required by the listener as well as starting that instance of the listener. Note that a particular instance of the listener should be initialized only once. The listener must be initialized before assigning addresses or services.

nlsadmin -a service_code [-p modules] [-w name] -c cmd -y comment net_spec
adds a new service to the list of services available through the indicated listener. service_code is the code for the service, cmd is the command to be invoked in response to that service code, comprised of the full path name of the server and its arguments, and comment is a brief (free-form) description of the service for use in various reports. Note that cmd must appear as a single word to the shell; if arguments are required the cmd and its arguments must be enclosed in quotation marks. The comment must also
appear as a single word to the shell. When a service is added, it is initially enabled (see the -e and -d options, below).

Service codes are alphanumeric strings, and are administered by AT&T. The numeric service codes 0 through 100 are reserved for internal use by the listener. Service code 0 is assigned to the nlps server, which is the service invoked on the general listening address. In particular, code 1 is assigned to the remote login service, which is the service automatically invoked for connections to the terminal login address.

If the -p option is specified, then modules will be interpreted as a list of STREAMS modules for the listener to push before starting the service being added. The modules are pushed in the order they are specified. modules should be a comma-separated list of modules, with no white space included.

If the -w option is specified, then name is interpreted as the user name from /etc/passwd that the listener should look up. From the user name, the listener obtains the user ID, the group ID(s), and the home directory for use by the server. If -w is not specified, the default is to use the user name listen.

A service must explicitly be added to the listener for each network on which that service is to be available. This operation will normally be performed only when the service is installed on a machine, or when populating the list of services for a new network.

```
nlsadmin -r service_code net_spec
removes the entry for the service_code from that listener's list of services. This is normally done only in conjunction with the deinstallation of a service from a machine.
```

```
nlsadmin -e service_code net_spec
nlsadmin -d service_code net_spec
```
enables or disables (respectively) the service indicated by service_code for the specified network. The service must previously have been added to the listener for that network (see the -a option, above). Disabling a service will cause subsequent service requests for that service to be denied, but the processes from any prior service requests that are still running will continue unaffected.

```
nlsadmin -s net_spec
nlsadmin -k net_spec
```
starts and kills (respectively) the listener process for the indicated network. These operations will normally be performed as part of the system startup and shutdown procedures. Before a listener can be started for a particular network, it must first have been initialized (see the -i option, above). When a listener is killed, processes that are still running as a result of prior service requests will continue unaffected.
Under the Service Access Facility, it is possible to have multiple instances of the listener on a single net_spec. In any of the above commands, the option \(-N\) port monitor tag may be used in place of the net_spec argument. This argument specifies the tag by which an instance of the listener is identified by the Service Access Facility. If the \(-N\) option is not specified (i.e., the net_spec is specified in the invocation), then it will be assumed that the last component of the net_spec represents the tag of the listener for which the operation is destined. In other words, it is assumed that there is at least one listener on a designated net_spec, and that its tag is identical to the last component of the net_spec. This listener may be thought of as the primary, or default, listener for a particular net_spec.

\textbf{nlsadmin} is also used in conjunction with the Service Access Facility commands. In that capacity, the following combinations of options can be used:

\texttt{nlsadmin -v}

writes the current version number of the listener's administrative file to the standard output. It is used as part of the \texttt{sacadm} command line when \texttt{sacadm} add a port monitor to the system.

\texttt{nlsadmin -c cmd | \textasciitilde o streamname [-p modules] [-A address | -D] [-R prognum:versnum]}

formats the port monitor-specific information to be used as an argument to \texttt{pmadm(1M)}.

The \texttt{-c} option specifies the full path name of the server and its arguments. \texttt{cmd} must appear as a single word to the shell, and its arguments must therefor be surrounded by quotes.

The \texttt{-o} option specifies the full path name of a FIFO or named STREAM through which a standing server is actually receiving the connection.

If the \texttt{-p} option is specified, then \texttt{modules} will be interpreted as a list of STREAMS modules for the listener to push before starting the service being added. The modules are pushed in the order in which they are specified. \texttt{modules} must be a comma-separated list, with no white space included.

If the \texttt{-A} option is specified, then \texttt{address} will be interpreted as the server's private address. The listener will monitor this address on behalf of the service and will dispatch all calls arriving on this address directly to the designated service. This option may not be used in conjunction with the \texttt{-D} option.

If the \texttt{-D} option is specified, then the service is assigned a private address dynamically, that is, the listener will have the transport provider select the address each time the listener begins listening on behalf of this service. For RPC services, this option will often be used in conjunction with the \texttt{-R} option to register the dynamically assigned address with the rpcbinder. This option may not be used in conjunction with the \texttt{-A} option.

When the \texttt{-R} option is specified, the service is an RPC service whose address, program number, and version number should be registered with the rpcbinder for this transport provider. This registration is performed each time the listener begins listening on behalf of the service. \texttt{prognum} and \texttt{versnum} are the program number and version number, respectively, of the RPC service.
nlsadmin (1M)

nlsadmin may be invoked by any user to generate reports but all operations that affect a listener's status or configuration are restricted to privileged users.

The options specific to the Service Access Facility may not be mixed with any other options.

SEE ALSO

`listen(1M), pmadm(1M), rpcbind(1M), sacadm(1M)`

Network Programmer's Guide

NOTES

Dynamically assigned addresses are not displayed in reports as statically assigned addresses are.
NAME

nm – print name list of an object file

SYNOPSIS

nm [-oxhvnefurplVT] files

DESCRIPTION

The nm command displays the symbol table of each ELF or COFF object file, specified by file(s). The file may be a relocatable or absolute ELF or COFF object file; or it may be an archive of relocatable or absolute ELF or COFF object files. For each symbol, the following information will be printed:

Index The index of the symbol. (The index appears in brackets.)
Value The value of the symbol is one of the following: a section offset for defined symbols in a relocatable file; alignment constraints for symbols whose section index is SHN_COMMON; a virtual address in executable and dynamic library files.
Size The size in bytes of the associated object.
Type A symbol is of one of the following types: NOTYPE (no type was specified), OBJECT (a data object such as an array or variable), FUNC (a function or other executable code), SECTION (a section symbol), or FILE (name of the source file).
Bind The symbol’s binding attributes. LOCAL symbols have a scope limited to the object file containing their definition; GLOBAL symbols are visible to all object files being combined; and WEAK symbols are essentially global symbols with a lower precedence than GLOBAL.
Other A field reserved for future use, currently containing 0.
Shndx Except for three special values, this is the section header table index in relation to which the symbol is defined. The following special values exist: ABS indicates the symbol’s value will not change through relocation; COMMON indicates an unallocated block and the value provides alignment constraints; and UNDEF indicates an undefined symbol.
Name The name of the symbol.

The output of nm may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of decimal.
-x Print the value and size of a symbol in hexadecimal instead of decimal.
-h Do not display the output heading data.
-v Sort external symbols by value before they are printed.
-n Sort external symbols by name before they are printed.
-e See NOTES below.
-f See NOTES below.
-u Print undefined symbols only.
Prepend the name of the object file or archive to each output line.

Produce easily parsable, terse output. Each symbol name is preceded by its value (blanks if undefined) and one of the letters U (undefined), N (symbol has no type), D (data object symbol), T (text symbol), S (section symbol), or F (file symbol). If the symbol’s binding attribute is LOCAL, the key letter is lower case; if the symbol’s binding attribute is WEAK, the key letter is upper case; if the -1 modifier is specified, the upper case key letter is followed by a *; if the symbol’s binding attribute is GLOBAL, the key letter is upper case.

Distinguish between WEAK and GLOBAL symbols by appending a * to the key letter for WEAK symbols.

Print the version of the nm command executing on the standard error output.

See NOTES below.

Options may be used in any order, either singly or in combination, and may appear anywhere in the command line. When conflicting options are specified (such as nm -v -n) the first is taken and the second ignored with a warning message to the user.

SEE ALSO
as(1), cc(1), dump(1), ld(1), a.out(4), ar(4)

NOTES
The following options are obsolete because of changes to the object file format and will be deleted in a future release.

Print only external and static symbols. The symbol table now contains only static and external symbols. Automatic symbols no longer appear in the symbol table. They do appear in the debugging information produced by cc -g, which may be examined using dump(1).

Produce full output. Redundant symbols (such as .text, .data, and so on) which existed previously do not exist and producing full output will be identical to the default output.

By default, nm prints the entire name of the symbols listed. Since symbol names have been moved to the last column, the problem of overflow is removed and it is no longer necessary to truncate the symbol name.
NAME
nohup – run a command immune to hangups and quits

SYNOPSIS
nohup command [arguments]

DESCRIPTION
nohup executes command with hangups and quits ignored. If output is not re-directed by the user, both standard output and standard error are sent to nohup.out. If nohup.out is not writable in the current directory, output is redirected to $HOME/nohup.out.

EXAMPLE
It is frequently desirable to apply nohup to pipelines or lists of commands. This can be done only by placing pipelines and command lists in a single file, called a shell procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to be executed often, then the need to type sh can be eliminated by giving file execute permission. Add an ampersand and the contents of file are run in the background with interrupts also ignored (see sh(1)):

nohup file &

An example of what the contents of file could be is:

sort ofile > nfile

SEE ALSO
chmod(1), nice(1), sh(1)
signal(2) in the Programmer's Reference Manual

NOTES
In the case of the following command

nohup command1; command2

nohup applies only to command1. The command

nohup (command1; command2)

is syntactically incorrect.
NAME

notify – notify user of the arrival of new mail

SYNOPSIS

notify -y [-m mailfile]
notify [-n]

DESCRIPTION

When a new mail message arrives, the mail command first checks if the recipient’s mailbox indicates that the message is to be forwarded elsewhere (to some other recipient or as the input to some command). notify is used to set up forwarding on the user’s mailbox so that the new message is saved into an alternative mailbox and, if the user is currently logged in, he or she is notified immediately of the arrival of new mail.

Command-line options are:

-m mailfile File to save mail messages into while automatic notification is activated. If not specified, it defaults to $HOME/.mailfile.
-n Remove mail notification facility
-y Install mail notification facility

If invoked with no arguments, notify reports whether automatic mail notification is activated or not.

The notification is done by looking in /var/adm/utmp to determine if the recipient is currently logged in, and if so, on which terminal device. Then the terminal device is opened for writing and the user is notified about the new message. The notification will indicate who the message is from. If the message contains a Subject: header line it will be included. (For security, all unprintable characters within the header will be converted to an exclamation point.)

If the user is logged in multiple times he or she will get multiple notifications, one per terminal. To disable notifications to a particular login session, the mesg(1) command can be used to disable writing to that terminal.

If there are multiple machines connected together via RFS or NFS, notify will look up the /var/adm/utmp files on the other systems as well. To do this, the file /etc/mail/notify.sys will be consulted, which will contain two columns, the first being the name of a system and the second being a path to find the root filesystem for that machine.

If notify has troubles delivering the mail to the specified mailfile, notify will look up the directory of the mailfile in /etc/mail/notify.fsys. If the file’s directory is found in the first column of the file, the mail will be forwarded to the system listed in the second column instead of being returned to the sender.

FILES

/tmp/notify* temporary file
/var/mail/* users’ standard mailboxes
/usr/lib/mail/notify2 program that performs the notification
/etc/mail/notify.fsys list of file systems and home systems
notify(1) Essential Utilities notify(1)

/etc/mail/notify.sys list of machines and paths to their root filesystems
/var/adm/utmp list of users who are logged in

SEE ALSO
mail(1), mesg(1)
User’s Guide

NOTES
Because notify uses the “Forward to |command” facility of mail to implement
notifications, /var/mail/username should not be specified as the place to put
newly arrived messages via the -m invocation option. The mail command uses
/var/mail/username to hold either mail messages, or indications of mail forward­ing, but not both simultaneously.

If the user is using layers(1), the notification will only appear in the login win­
dow.
NAME
nroff - format documents for display or line-printer

SYNOPSIS
[-sN] [-Tname] [-uN] [filename ...]

DESCRIPTION
nroff formats text in the named filename for typewriter-like devices. See also troff.

If no filename argument is present, nroff reads the standard input. An argument consisting of a '-' is taken to be a file name corresponding to the standard input.

The following options may appear in any order, but must appear before the files.
-e Produce equally-spaced words in adjusted lines, using full terminal resolution.
-h Use output TAB characters during horizontal spacing to speed output and reduce output character count. TAB settings are assumed to be every 8 nominal character widths.
-i Read the standard input after the input files are exhausted.
-q Invoke the simultaneous input-output mode of the rd request.
-Fdir Search directory dir for font tables instead of the system-dependent default.
-mname Prepend the macro file /usr/share/lib/tmac/tmac.name to the input files.
-nN Number first generated page N.
-opagelist Print only pages whose page numbers appear in the comma-separated list of numbers and ranges. A range N- M means pages N through M; an initial - N means from the beginning to page N; and a final N- means from N to the end.
-raN Set register a (one-character) to N.
-sN Stop every N pages. nroff will halt prior to every N pages (default N=1) to allow paper loading or changing, and will resume upon receipt of a NEWLINE.
-Tname Prepare output for a device of the specified name. Known names are:
37 Teletype Corporation Model 37 terminal — this is the default.
crt | lpr | tn300 GE TermiNet 300, or any line printer or terminal without half-line capability.
300 DASI-300.
300-12 DASI-300 — 12-pitch.
nroff(1) (BSD Compatibility Package) nroff(1)

300S | 302 | dtc
 DASI-300S.
300S-12 | 302-12 | dtc12
 DASI-300S.
382 DASI-382 (fancy DTC 382).
382-12 DASI-82 (fancy DTC 382 — 12-pitch).
450 | ipsi DASI-450 (Diablo Hyterm).
450-12 | ipsi12
 DASI-450 (Diablo Hyterm) — 12-pitch.
450-12-8 DASI-450 (Diablo Hyterm) — 12-pitch and 8 lines-per-inch.
450X DASI-450X (Diablo Hyterm).
832 AJ 832.
833 AJ 833.
832-12 AJ 832 — 12-pitch.
833-12 AJ 833 — 12-pitch.
epson Epson FX80.
itoh C:ITOH Prowriter.
itoh-12 C:ITOH Prowriter — 12-pitch.
nec NEC 5570s0 or NEC 7770s0 Spinwriter.
nec12 NEC 5570 or NEC 7770 Spinwriter — 12-pitch.
nec-t NEC 5570/7770 Spinwriter — Tech-Math/Times-Roman thimble.
qume Qume Sprint — 5 or 9.
qume12 Qume Sprint — 5 or 9,12-pitch.
xerox Xerox 1770 or Diablo 1670.
xerox12 Xerox 1770 or Diablo 1670 — 12-pitch.
x-ecs Xerox/Diablo 1730/630 — Extended Character Set.
x-ecs12 Xerox/Diablo 1730/630 — Extended Character Set, 12-pitch.

-uN Set emboldening factor for the font mounted on position 3 to N. Emboldening is accomplished by overstriking the specified number of times.

-z Suppress formatted output. The only output will consist of diagnostic messages from nroff and messages output with the .tm request.
nroff(1) (BSD Compatibility Package) nroff(1)

EXAMPLE

The following command:

 nroff -s4 -me users.guide

formats users.guide using the -me macro package, and stopping every 4 pages.

FILES

 /tmp/ta* temporary file
 /usr/ucbib/doctools/tmac/tmac.* standard macro files
 /usr/ucbib/doctools/term/* terminal driving tables for nroff
 /usr/ucbib/doctools/term/README index to terminal description files

SEE ALSO

 checknr(1), eqn(1), tbl(1), troff(1), man(7), me(7), ms(7)
 col(1) in the User's Reference Manual
 term(4) in the System Administrator's Reference Manual
NAME
nslookup - query name servers interactively

SYNOPSIS
nslookup [-l] [address]

DESCRIPTION
nslookup is an interactive program to query ARPA Internet domain name servers. The user can contact servers to request information about a specific host or print a list of hosts in the domain.

OPTIONS
-1 Use the local host's name server instead of the servers in /etc/resolv.conf. (If /etc/resolv.conf does not exist or does not contain server information, the -1 option does not have any effect).

address Use the name server on the host machine with the given Internet address.

USAGE
Overview
The Internet domain name-space is tree-structured, with four top-level domains at present:

- COM commercial establishments
- EDU educational institutions
- GOV government agencies
- MIL MILNET hosts

If you are looking for a specific host, you need to know something about the host's organization in order to determine the top-level domain it belongs to. For instance, if you want to find the Internet address of a machine at UCLA, do the following:

- Connect with the root server using the root command. The root server of the name space has knowledge of the top-level domains.
- Since UCLA is a university, its domain name is ucla.edu. Connect with a server for the ucla.edu domain with the command server ucla.edu. The response will print the names of hosts that act as servers for that domain. Note: the root server does not have information about ucla.edu, but knows the names and addresses of hosts that do. Once located by the root server, all future queries will be sent to the UCLA name server.
- To request information about a particular host in the domain (for instance, locus), just type the host name. To request a listing of hosts in the UCLA domain, use the ls command. The ls command requires a domain name (in this case, ucla.edu) as an argument.

If you are connected with a name server that handles more than one domain, all lookups for host names must be fully specified with its domain. For instance, the domain harvard.edu is served by seismo.css.gov, which also services the
css.gov and cornell.edu domains. A lookup request for the host aiken in the harvard.edu domain must be specified as aiken.harvard.edu. However, the

```bash
set domain=name
```

and

```bash
set defname
```

commands can be used to automatically append a domain name to each request.

After a successful lookup of a host, use the finger command to see who is on the system, or to finger a specific person. To get other information about the host, use the

```bash
set querytype=value
```

command to change the type of information desired and request another lookup. (finger requires the type to be A.)

Commands

To exit, type Ctrl-D (EOF). The command line length must be less than 80 characters. An unrecognized command will be interpreted as a host name.

```bash
host [server]
```

Look up information for host using the current default server or using server if it is specified.

```bash
server domain
```

Change the default server to domain. lserver uses the initial server to look up information about domain while server uses the current default server. If an authoritative answer can’t be found, the names of servers that might have the answer are returned.

```bash
root
```

Changes the default server to the server for the root of the domain name space. Currently, the host sri-nic.arpa is used; this command is a synonym for lserver sri-nic.arpa.) The name of the root server can be changed with the set root command.

```bash
finger [ name ]
```

Connect with the finger server on the current host, which is defined by a previous successful lookup for a host’s address information (see the set querytype =A command). As with the shell, output can be redirected to a named file using > and >>.

```bash
ls [-ah]
```

List the information available for domain. The default output contains host names and their Internet addresses. The -a option lists aliases of hosts in the domain. The -h option lists CPU and operating system information for the domain. As with the shell, output can be redirected to a named file using > and >>. When output is directed to a file, hash marks are printed for every 50 records received from the server.

```bash
view filename
```

Sort and list the output of the ls command with more(1).
help

Print a brief summary of commands.

set keyword [= value] This command is used to change state information that affects the lookups. Valid keywords are:

all Prints the current values of the various options to set. Information about the current default server and host is also printed.

[no] debug[ug]

Turn debugging mode on. A lot more information is printed about the packet sent to the server and the resulting answer. The default is nodebug.

[no] def[name]

Append the default domain name to every lookup. The default is nodefname.

do [main] = filename

Change the default domain name to filename. The default domain name is appended to all lookup requests if defname option has been set. The default is the value in /etc/resolve.conf.

q [querytype] = value

Change the type of information returned from a query to one of:

A The host’s Internet address (the default).
CNAME The canonical name for an alias.
HINFO The host CPU and operating system type.
MD The mail destination.
MX The mail exchanger.
MB The mailbox domain name.
MG The mail group member.
MINFO The mailbox or mail list information.

(Other types specified in the RFC883 document are valid, but are not very useful.)

[no] recurse

Tell the name server to query other servers if it does not have the information. The default is recurse.

ret [ry] = count

Set the number of times to retry a request before giving up to count. When a reply to a request is not received within a certain amount of time (changed with set timeout), the request is resent. The default is count is 2.

ro [ot] = host

Change the name of the root server to host. This affects the root command. The default root server is sri-nic.arpa.
t [timeout] = interval
 Change the time-out for a reply to interval seconds. The default
 interval is 10 seconds.

[no] v[c]
 Always use a virtual circuit when sending requests to the server.
 The default is novc.

FILES
/etc/resolve.conf initial domain name and name server addresses.

SEE ALSO
named(1M), resolver(3N), resolve.conf(4), RFC 882, RFC 883

DIAGNOSTICS
If the lookup request was not successful, an error message is printed. Possible
errors are:

Time-out
 The server did not respond to a request after a certain amount of time
 (changed with set timeout = value) and a certain number of retries
 (changed with set retry = value).

No information
 Depending on the query type set with the set querytype command, no
 information about the host was available, though the host name is valid.

Non-existent domain
 The host or domain name does not exist.

Connection refused

Network is unreachable
 The connection to the name or finger server could not be made at the
 current time. This error commonly occurs with finger requests.

Server failure
 The name server found an internal inconsistency in its database and could
 not return a valid answer.

Refused
 The name server refused to service the request.

The following error should not occur and it indicates a bug in the program.

Format error
 The name server found that the request packet was not in the proper for-
 mat.
nsquery(1M) (RFS) nsquery(1M)

NAME
nsquery – Remote File Sharing name server query

SYNOPSIS
nsquery [-h] [name]

DESCRIPTION
nsquery provides information about resources available to the host from both the
local domain and from other domains. All resources are reported, regardless of
whether the host is authorized to access them. When used with no options,
snsquery identifies all resources in the domain that have been advertised as shar­
able. A report on selected resources can be obtained by specifying name, where
name is:
nodename The report will include only those resources available from
 nodename.
domain. The report will include only those resources available from
 domain.
domain.nodename The report will include only those resources available from
 domain.nodename.

When the name does not include the delimiter ".", it will be interpreted as a
nodename within the local domain. If the name ends with a delimiter ".", it will be
interpreted as a domain name.

The information contained in the report on each resource includes its advertised
name (domain.resource), the read/write permissions, the server (nodename.domain)
that advertised the resource, and a brief textual description.

When -h is used, the header is not printed.

A remote domain must be listed in your rfmaster file in order to query that
domain.

EXIT STATUS
If no entries are found when nsquery is executed, the report header is printed.

SEE ALSO
adv(1M), unadv(1M), rfmaster(4)

NOTES
If your host cannot contact the domain name server, an error message will be
sent to standard error.
NAME
od - octal dump

SYNOPSIS
od [-bcDdfOosvXx] [file] [+ offset [. b]]

DESCRIPTION
od displays file in one or more formats, as selected by the first argument. If the first argument is missing, -o is default. If no file is specified, the standard input is used. For the purposes of this description, "word" refers to a 16-bit unit, independent of the word size of the machine; "long word" refers to a 32-bit unit, and "double long word" refers to a 64-bit unit. The meanings of the format options are:

- Interpret bytes in octal.
-bc Interpret bytes as single-byte characters. Certain non-graphic characters appear as C-language escapes: null=\0, backspace=\b, form-feed=\f, newline=\n, return=\r, tab=\t; others appear as 3-digit octal numbers. For example:
echo "hello world" | od -c
0000000 he ll o w or ld \n 0000014
-D Interpret long words in unsigned decimal.
-d Interpret words in unsigned decimal.
-F Interpret double long words in extended precision.
-f Interpret long words in floating point.
-O Interpret long words in unsigned octal.
-o Interpret words in octal.
-S Interpret long words in signed decimal.
-s Interpret words in signed decimal.
-v Show all data (verbose).
-X Interpret long words in hex.
-x Interpret words in hex.

offset specifies an offset from the beginning of file where the display will begin. offset is normally interpreted as octal bytes. If . is appended, offset is interpreted in decimal. If x is appended, offset is interpreted in hexadecimal. If b is appended, offset is interpreted in blocks of 512 bytes. If file is omitted, offset must be preceded by +.

The display continues until an end-of-file is reached.
NAME
offline – take a processor offline

SYNOPSIS
offline [-v] [processor-id ...]

DESCRIPTION
offline takes each processor that is specified on the command line offline. If no
processors are specified, all processors in the system are taken offline. In either
case, some processors may not be taken offline because of hardware restrictions.
At least one processor must remain online at all times. Processors that have
bound processes can not be taken offline. If the -v flag is specified, the status of
the processor is displayed before and after the attempt to take it offline.

SEE ALSO
online(1M), p_online(2)

NOTES
This command may not be supported in future releases.
NAME
online - bring a processor online

SYNOPSIS
online [-v] [processor-id ...]

DESCRIPTION
online brings each processor that is specified on the command line online. If no
processors are listed, all processors are brought online. If the -v flag is specified,
the status of the processor is displayed before and after the attempt to turn it on.

SEE ALSO
offline(1M), p_online(2)

NOTES
This command may not be supported in future releases.
NAME
pack, pcat, unpack – compress and expand files

SYNOPSIS
pack [-] [-f] name . . .
pcat name . . .
unpack name . . .

DESCRIPTION
pack attempts to store the specified files in a compressed form. Wherever possible (and useful), each input file name is replaced by a packed file name.z with the same access modes, access and modified dates, and owner as those of name. The -f option will force packing of name. This is useful for causing an entire directory to be packed even if some of the files will not benefit. If pack is successful, name will be removed. Packed files can be restored to their original form using unpack or pcat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the - argument is used, an internal flag is set that causes the number of times each byte is used, its relative frequency, and the code for the byte to be printed on the standard output. Additional occurrences of - in place of name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and the character frequency distribution. Because a decoding tree forms the first part of each .z file, it is usually not worthwhile to pack files smaller than three blocks, unless the character frequency distribution is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which use a larger character set and have a more uniform distribution of characters, show little compression, the packed versions being about 90% of the original size.

pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

- the file appears to be already packed;
- the file name has more than 12 characters;
- the file has links;
- the file is a directory;
- the file cannot be opened;
- no disk storage blocks will be saved by packing;
- a file called name.z already exists;
- the .z file cannot be created;
- an I/O error occurred during processing;
- the file size is over 16 MB.

The last segment of the file name must contain no more than 12 characters to allow space for the appended .z extension. Directories cannot be compressed.
pack(1) (Directory and File Management Utilities) pack(1)

pcat does for packed files what cat(1) does for ordinary files, except that pcat cannot be used as a filter. The specified files are unpacked and written to the standard output. Thus to view a packed file named name.z use:

 pcat name.z

or just:

 pcat name

To make an unpacked copy, say nnn, of a packed file named name.z (without destroying name.z) use the command:

 pcat name >nnn

pcat returns the number of files it was unable to unpack. Failure may occur if:

 the file name (exclusive of the .z) has more than 12 characters;
 the file cannot be opened;
 the file does not appear to be the output of pack.

unpack expands files created by pack. For each file name specified in the command, a search is made for a file called name.z (or just name, if name ends in .z). If this file appears to be a packed file, it is replaced by its expanded version. The new file has the .z suffix stripped from its name, and has the same access modes, access and modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. Failure may occur for the same reasons that it may in pcat, as well as for the following:

 a file with the "unpacked" name already exists;
 if the unpacked file cannot be created.

SEE ALSO

cat(1), compress(1)
NAME

pagesize – display the size of a page of memory

SYNOPSIS

/usr/ucb/pagesize

DESCRIPTION

pagesize prints the size of a page of memory in bytes, as returned by getpagesize. This program is useful in constructing portable shell scripts.

SEE ALSO

getpagesize(3)
NAME
partsize - returns the size of the active UNIX System partition

SYNOPSIS
partsize raw-device

DESCRIPTION
The function of partsize is to print the size of the active UNIX System partition for the raw-device disk drive. The size value returned is in megabytes (MB = 2^20 bytes). This command is intended for use with the installation scripts, but is available for general use. If the system cannot retrieve a valid partition table, there will be a non-zero exit value. If a valid partition table is found, but no active UNIX system partition is found, it will display a value of zero.

raw-device the required raw-device argument is the character special device for the disk drive to be accessed. It should be the slice 0 device to represent the entire device (for example, /dev/rdsk/0s0 or /dev/rdsk/c0t0d0s0).

FILES
/dev/dsk/0s0
/dev/rdsk/1s0
/dev/rdsk/c?t?d?s0

SEE ALSO
fdisk(1M)
NAME

passmgmt – password files management

SYNOPSIS

passmgmt -a options name
passmgmt -m options name
passmgmt -d name

DESCRIPTION

The passmgmt command updates information in the password files. This command works with both /etc/passwd and /etc/shadow.

passmgmt -a adds an entry for user name to the password files. This command does not create any directory for the new user and the new login remains locked (with the string *LK* in the password field) until the passwd(1) command is executed to set the password.

passmgmt -m modifies the entry for user name in the password files. The name field in the /etc/shadow entry and all the fields (except the password field) in the /etc/passwd entry can be modified by this command. Only fields entered on the command line will be modified.

passmgmt -d deletes the entry for user name from the password files. It will not remove any files that the user owns on the system; they must be removed manually.

The following options are available:

-\(c\) comment A short description of the login. It is limited to a maximum of 128 characters and defaults to an empty field.

-\(h\) homedir Home directory of name. It is limited to a maximum of 256 characters and defaults to /usr/name.

-\(u\) uid UID of the name. This number must range from 0 to the maximum non-negative value for the system. It defaults to the next available UID greater than 99. Without the \(-o\) option, it enforces the uniqueness of a UID.

-\(o\) This option allows a UID to be non-unique. It is used only with the \(-u\) option.

-\(g\) gid GID of the name. This number must range from 0 to the maximum non-negative value for the system. The default is 1.

-\(s\) shell Login shell for name. It should be the full pathname of the program that will be executed when the user logs in. The maximum size of shell is 256 characters. The default is for this field to be empty and to be interpreted as /usr/bin/sh.

-\(l\) logname This option changes the name to logname. It is used only with the \(-m\) option.

The total size of each login entry is limited to a maximum of 511 bytes in each of the password files.
passmgmt(1M)

FILES
/etc/passwd,
/etc/shadow,
/etc/opasswd,
/etc/oshaad

SEE ALSO
useradd(1M), userdel(1M), usermod(1M), passwd(4), and shadow(4) in the
System Administrator's Reference Manual
passwd(1) in the User's Reference Manual

DIAGNOSTICS
The passmgmt command exits with one of the following values:
0 Success.
1 Permission denied.
2 Invalid command syntax. Usage message of the passmgmt command
will be displayed.
3 Invalid argument provided to option.
4 UID in use.
5 Inconsistent password files (e.g., name is in the /etc/passwd file and
not in the /etc/shadow file, or vice versa).
6 Unexpected failure. Password files unchanged.
7 Unexpected failure. Password file(s) missing.
8 Password file(s) busy. Try again later.
9 name does not exist (if -m or -d is specified), already exists (if -a is
specified), or logname already exists (if -m -l is specified).

NOTES
You cannot use a colon or carriage return as part of an argument because it is
interpreted as a field separator in the password file.

This command will be removed in a future release. Its functionality has been
replaced and enhanced by useradd, userdel, and usermod. These commands
are currently available.
NAME
passwd – change login password and password attributes

SYNOPSIS
passwd [name]
passwd [-l | -d] [-f] [-n min] [-x max] [-w warn] name
passwd -s [-a]
passwd -s [name]

description
The passwd command changes the password or lists password attributes associated with the user’s login name. Additionally, privileged-users may use passwd to install or change passwords and attributes associated with any login name.

When used to change a password, passwd prompts ordinary users for their old password, if any. It then prompts for the new password twice. When the old password is entered, passwd checks to see if it has aged sufficiently. If aging is insufficient, passwd terminates; see shadow(4).

If the user’s password aging has not been turned on, then password aging is turned on for the user using the MAXWEEKS and MINWEEKS parameters in /etc/default/passwd. If password aging is turned on the password aging information in /etc/shadow remains unmodified.

Assuming aging is sufficient, a check is made to ensure that the new password meets construction requirements. When the new password is entered a second time, the two copies of the new password are compared. If the two copies are not identical the cycle of prompting for the new password is repeated for at most two more times.

Passwords must be constructed to meet the following requirements:

Each password must have at least PASSLENGTH characters as set in /etc/default/passwd. PASSLENGTH must contain a minimum of six characters, but only the first eight characters are significant.

Each password must contain at least two alphabetic characters and at least one numeric or special character. In this case, alphabetic refers to all upper or lower case letters.

Each password must differ from the user’s login name and any reverse or circular shift of that login name. For comparison purposes, an upper case letter and its corresponding lower case letter are equivalent.

New passwords must differ from the old by at least three characters. For comparison purposes, an upper case letter and its corresponding lower case letter are equivalent.

Privileged users (for example, real and effective uid equal to zero, see id(1M) and su(1M) may change any password; hence, passwd does not prompt privileged users for the old password. Privileged users are not forced to comply with password aging and password construction requirements. A privileged-user can create a null password by entering a carriage return in response to the prompt for a new password. (This differs from passwd -d because the password prompt will still be displayed.)
Any user may use the `-s` option to show password attributes for his or her own login `name`.

The format of the display will be:

```
name status mm/dd/yy min max warn
```

or, if password aging information is not present,

```
name status
```

where

- `name` The login ID of the user.
- `status` The password status of `name`: `PS` stands for passworded or locked, `LK` stands for locked, and `NP` stands for no password.
- `mm/dd/yy` The date password was last changed for `name`. (Note that all password aging dates are determined using Greenwich Mean Time and, therefore, may differ by as much as a day in other time zones.)
- `min` The minimum number of days required between password changes for `name`. `MINWEEKS` is found in `/etc/default/passwd` and is set to 0.
- `max` The maximum number of days the password is valid for `name`. `MAXWEEKS` is found in `/etc/default/passwd` and is set to 0.
- `warn` The number of days relative to `max` before the password expires that the `name` will be warned.

Only a privileged user can use the following options:

- `-l` Lock password entry for `name`.
- `-d` Delete password for `name`. The login `name` will not be prompted for password.
- `-n` Set minimum field for `name`. The `min` field contains the minimum number of days between password changes for `name`. If `min` is greater than `max`, the user may not change the password. Always use this option with the `-x` option, unless `max` is set to -1 (aging turned off). In that case, `min` need not be set.
- `-x` Set maximum field for `name`. The `max` field contains the number of days that the password is valid for `name`. The aging for `name` will be turned off immediately if `max` is set to -1. (Aging will be turned on again if the password is changed.) If it is set to 0, then aging is turned off.
- `-w` Set warn field for `name`. The `warn` field contains the number of days before the password expires that the user will be warned.
- `-a` Show password attributes for all entries. Use only with `-s` option; `name` must not be provided.
- `-f` Force the user to change password at the next login by expiring the password for `name`.
FILES
/etc/shadow, /etc/passwd, /etc/oshadow

SEE ALSO
login(1)
crypt(3C) in the Programmer's Reference Manual
useradd(1M), usermod(1M), userdel(1M), id(1M), passwdmgmt(1M), pwconv(1M),
su(1M), passwd(4), shadow(4) in the System Administrator's Reference Manual

DIAGNOSTICS
The passwd command exits with one of the following values:

0 SUCCESS.
1 Permission denied.
2 Invalid combination of options.
3 Unexpected failure. Password file unchanged.
4 Unexpected failure. Password file(s) missing.
5 Password file(s) busy. Try again later.
6 Invalid argument to option.

WARNING
If root deletes a password for a user with the passwd -d command and pass-
word aging is in effect for that user, the user will not be allowed to add a new
password until the null password has been aged. This is true even if the
PASSREQ flag in /etc/default/login is set to YES. This results in a user
without a password. It is recommended that the -f option be used whenever the
-d (delete) option is used. This will force a user to change the password at the
next login.

If a user is to be set up without a password, the password entry of the user must
be absent from the /etc/shadow file. (When a user has no password, passwd -s
user should return NP.)
NAME
paste – merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste -I file1 -I file2 ...
paste -d list -I file1 -I file2 ...
paste -s [-d list] -I file1 ...

DESCRIPTION
In the first two forms, paste concatenates corresponding lines of the given input
files file1, file2, etc. It treats each file as a column or columns of a table and
pastes them together horizontally (parallel merging). If you will, it is the counter­
part of cat(1) which concatenates vertically, that is, one file after the other. In
the last form above, paste replaces the function of an older command with the
same name by combining subsequent lines of the input file (serial merging). If
more than one file is specified with the -s option, paste(1) concatenates the
merged files one below the other. In all cases, lines are glued together with the
tab character, or with characters from an optionally specified list. Output is to
the standard output, so it can be used as the start of a pipe, or as a filter, if – is
used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or
last line in case of the -s option) are replaced by a tab character. This
option allows replacing the tab character by one or more alternate charac­
ters (see below).

list One or more characters immediately following -d replace the default tab
as the line concatenation character. The list is used sequentially and circu­
larly: first, the first element on the list is used to concatenate the lines,
then the next, and so on; when all elements have been used, the list is
reused starting from the first element. In parallel merging (that is, no -s
option), the lines from the last file are always terminated with a new-line
character, not from the list. The list may contain the special escape
sequences: \n (new-line), \t (tab), \ (backslash), and \0 (empty string,
not a null character). Quoting may be necessary, if characters have special
meaning to the shell (e.g., to get one backslash, use -d \"\" \").

-s Merge subsequent lines rather than one from each input file. Use tab for
concatenation, unless a list is specified with -d option. Regardless of the
list, the very last character of the file is forced to be a new-line.

- May be used in place of any file name, to read a line from the standard
input. (There is no prompting).

EXAMPLES
1s | paste -d " " - Lists directory in one column
1s | paste - - - - Lists directory in four columns
paste -d "\t\n" file1 file2 Lists file1 in column 1 and file2 in column 2. The
columns are separated by a tab.
paste -s -d"\t\n" file1 file2 Merges pairs of subsequent lines first in file1, then in file2. Concatenates the merged file2 below file1.

DIAGNOSTICS
"line too long" Output lines are restricted to 511 characters.
"too many files" Except for -s option, no more than 12 input files may be specified.

SEE ALSO
 cut(1), grep(1), pr(1)
NAME
pathconv - search FMLI criteria for filename

SYNOPSIS
pathconv [-f] [-v alias]
pathconv [-t] [-1] [-n num] [-v string]

DESCRIPTION
The pathconv function converts an alias to its pathname. By default, it takes the alias as a string from stdin.

-f If -f is specified, the full path will be returned (this is the default).

-t If -t is specified, pathconv will truncate a pathname specified in string in a format suitable for display as a frame title. This format is a shortened version of the full pathname, created by deleting components of the path from the middle of the string until it is under DISPLAYW - 6 characters in length, and then inserting ellipses (...) between the remaining pieces. Ellipses are also used to show truncation at the ends of the strings if necessary, unless the -1 option is given.

-1 If -1 is specified, < and > will be used instead of ellipses (...) to indicate truncation at the ends of the string generated by the -t option. Truncation in the middle of the string is still indicated with ellipses. Using -1 allows display of the longest possible string while still notifying users it has been truncated.

-n num If -n is specified, num is the maximum length of the string (in characters) generated by the -t option. The argument num can be any integer from 1 to 255.

-v arg If the -v option is used, then alias or string can be specified when pathconv is called. The argument alias must be an alias defined in the alias file named when fmli was invoked. The argument string can only be used with the -t option and must be a pathname.

EXAMPLES
Here is a menu descriptor that uses pathconv to construct the menu title. It searches for MYPATH in the alias file named when fmli was invoked:

 menu='pathconv -v MYPATH/ls'
 .
 .
 .

where there is a line in alias file that defines MYPATH. For example, MYPATH=$HOME/bin:/usr/bin.

Here is a menu descriptor that takes alias from stdin.

 menu='echo MYPATH/ls | pathconv'
 .
 .
 .
SEE ALSO
fmli(1)
NAME
pbind - bind a process to a processor

SYNOPSIS
pbind -b processor-id pid . . .
pbind -u pid . . .
pbind -q [pid . . .]

DESCRIPTION
If the -b option is specified, pbind binds the processes specified by the process ID (pid) arguments to the processor specified by processor-id. Processes that are bound to a processor will run only on that processor, except briefly when the process requires a resource that only another processor can provide. The processor may run other processes in addition to those which are bound to it.

If there are already processes exclusively bound to the specified processor (for example, by pexbind), the pbind command will fail.

If a process specified by pid is already bound to a different processor, the binding for that process shall be changed to the specified processor. If, however, a process specified by pid is bound exclusively (for example, by pexbind) the pbind command will fail.

If the -u option is specified, any binding will be removed for the specified processes.

Users can control only those processes they own unless the user is a super-user.

If the -q option is specified, pbind displays binding information for the specified pids. If no pids are specified, pbind displays binding information for the entire system.

NOTES
The format of the output displayed by pbind -q may change significantly in a future release. Applications and shell scripts should not depend on this format.

SEE ALSO
pexbind(1M)
processor_bind(2) in the Programmer's Supplement
NAME
pexbind - exclusively bind processes to a processor

SYNOPSIS
pexbind -b processor-id pid . . .
pexbind -u pid . . .
pexbind -q [pid . . .]

DESCRIPTION
If the -b option is specified pexbind exclusively binds the process(es) specified by the pid arguments to the processor specified by processor-id. Processes that are exclusively bound to a processor will execute only on that processor. However, an exclusively bound process will execute briefly on another processor if the process requires a resource that only that other processor can provide. In general, the processor will execute only those processes that are exclusively bound to it. However, the processor can briefly execute other processes in the system if it must provide a resource to the other processes that no other processor can provide.

If there are already processes bound to the specified processor, either exclusively or non-exclusively, the pexbind(1M) command will fail. Note, to exclusively bind several processes to a processor, all processes must be specified in one invocation of pexbind.

If a process specified by pid is already exclusively bound to a different processor, the exclusive binding for that process will be changed to the specified processor. If, however, a process specified by pid is bound non-exclusively (for example, with pbind) the previous non-exclusive binding will remain in effect for that process (the pexbind call will have no effect on that process).

If the -u option is specified, any exclusive binding will be removed for the specified processes.

Only the super-user can change the exclusive binding of processes using the pexbind command.

If the -q option is specified, pexbind displays exclusive binding information for the specified pids. If no pids are specified, pexbind displays exclusive binding information for the entire system.

NOTES
This command may not be supported in future releases. The format of the output displayed by pexbind -q may change significantly in a future release. Applications and shell scripts should not depend on this format.

SEE ALSO
pbind(1M)
processor_bind(2) in the Programmer's Supplement
NAME

pg - file perusal filter for CRTs

SYNOPSIS

pg [-number] [-p string] [-cefnrs] [+linenumber] [+/-pattern/] [file ...]

DESCRIPTION

The pg command is a filter that allows the examination of files one screenful at a time on a CRT. (If no file is specified or if it encounters the file name -, pg reads from standard input.) Each screenful is followed by a prompt. If the user types a carriage return, another page is displayed; other possibilities are listed below.

This command is different from previous paginators in that it allows you to back up and review something that has already passed. The method for doing this is explained below.

To determine terminal attributes, pg scans the terminfo(4) data base for the terminal type specified by the environment variable TERM. If TERM is not defined, the terminal type dumb is assumed.

The command line options are:

-number An integer specifying the size (in lines) of the window that pg is to use instead of the default. (On a terminal containing 24 lines, the default window size is 23).

-c Home the cursor and clear the screen before displaying each page. This option is ignored if clear_screen is not defined for this terminal type in the terminfo(4) data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some sequences of characters in the text being displayed (for example, escape sequences for underlining) generate undesirable results. The -f option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a <newline> character. This option causes an automatic end of command as soon as a command letter is entered.

-p string Causes pg to use string as the prompt. If the prompt string contains a %d, the first occurrence of %d in the prompt will be replaced by the current page number when the prompt is issued. The default prompt string is "":

-r Restricted mode. The shell escape is disallowed. pg will print an error message but does not exit.

-s Causes pg to print all messages and prompts in standout mode (usually inverse video).

+linenumber Start up at linenumber.

+/pattern/ Start up at the first line containing the regular expression pattern.
The responses that may be typed when `pg` pauses can be divided into three categories: those causing further perusal, those that search, and those that modify the perusal environment.

Commands that cause further perusal normally take a preceding `address`, an optionally signed number indicating the point from which further text should be displayed. This `address` is interpreted in either pages or lines depending on the command. A signed `address` specifies a point relative to the current page or line, and an unsigned `address` specifies an address relative to the beginning of the file. Each command has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

\[+1]\langle newline\rangle \text{ or } <\text{blank}>\]
This causes one page to be displayed. The address is specified in pages.

\[+1]1\]
With a relative address this causes `pg` to simulate scrolling the screen, forward or backward, the number of lines specified. With an absolute address this command prints a screenful beginning at the specified line.

\[+1]d \text{ or } ^D\]
Simulates scrolling half a screen forward or backward.

\[if\]
Skip `i` screens of text.

\[iz\]
Same as \langle newline\rangle except that `i`, if present, becomes the new default number of lines per screenful.

The following perusal commands take no `address`.

\[. \text{ or } ^L\]
Typing a single period causes the current page of text to be redisplayed.

\[$\]
Displays the last windowful in the file. Use with caution when the input is a pipe.

The following commands are available for searching for text patterns in the text. The regular expressions described in \texttt{ed(1)} are available. They must always be terminated by a \langle newline\rangle, even if the \texttt{-n} option is specified.

\textit{i/pattern/}\]
Search forward for the \textit{i}th (default \textit{i}=1) occurrence of \textit{pattern}. Searching begins immediately after the current page and continues to the end of the current file, without wrap-around.

\textit{i\textasciicircum{pattern}^}\]
Search backwards for the \textit{i}th (default \textit{i}=1) occurrence of \textit{pattern}. Searching begins immediately before the current page and continues to the beginning of the current file, without wrap-around. The \textasciicircum{notation is useful for Adds 100 terminals which will not properly handle the ?.}

After searching, `pg` will normally display the line found at the top of the screen. This can be modified by appending \texttt{m} or \texttt{b} to the search command to leave the line found in the middle or at the bottom of the window from now on. The suffix \texttt{t} can be used to restore the original situation.
The user of \texttt{pg} can modify the environment of perusal with the following commands:

- \texttt{in} Begin perusing the \texttt{i}th next file in the command line. The \texttt{i} is an unsigned number, default value is 1.
- \texttt{ip} Begin perusing the \texttt{i}th previous file in the command line. \texttt{i} is an unsigned number, default is 1.
- \texttt{iw} Display another window of text. If \texttt{i} is present, set the window size to \texttt{i}.
- \texttt{s filename} Save the input in the named file. Only the current file being perused is saved. The white space between the \texttt{s} and \texttt{filename} is optional. This command must always be terminated by a <newline>, even if the \texttt{-n} option is specified.
- \texttt{h} Help by displaying an abbreviated summary of available commands.
- \texttt{q} or \texttt{Q} Quit \texttt{pg}.
- \texttt{!command} Command is passed to the shell, whose name is taken from the \texttt{SHELL} environment variable. If this is not available, the default shell is used. This command must always be terminated by a <newline>, even if the \texttt{-n} option is specified.

At any time when output is being sent to the terminal, the user can hit the quit key (normally CTRL-\textbackslash) or the interrupt (break) key. This causes \texttt{pg} to stop sending output, and display the prompt. The user may then enter one of the above commands in the normal manner. Unfortunately, some output is lost when this is done, because any characters waiting in the terminal's output queue are flushed when the quit signal occurs.

If the standard output is not a terminal, then \texttt{pg} acts just like \texttt{cat(1)}, except that a header is printed before each file (if there is more than one).

EXAMPLE

The following command line uses \texttt{pg} to read the system news:

```
news | pg -p "(Page %d):"
```

FILES

- `/usr/share/lib/terminfo/*` terminal information database
- `/tmp/pg*` temporary file when input is from a pipe

SEE ALSO

\texttt{ed(1)}, \texttt{grep(1)}, \texttt{more(1)}

\texttt{terminfo(4)} in the \texttt{System Administrator's Reference Manual}

NOTES

While waiting for terminal input, \texttt{pg} responds to BREAK, DEL, and CTRL-\textbackslash by terminating execution. Between prompts, however, these signals interrupt \texttt{pg}'s current task and place the user in prompt mode. These should be used with caution when input is being read from a pipe, since an interrupt is likely to terminate the other commands in the pipeline.
The terminal /, ^, or ? may be omitted from the searching commands.
If terminal tabs are not set every eight positions, undesirable results may occur.
When using `pg` as a filter with another command that changes the terminal I/O options, terminal settings may not be restored correctly.
NAME
pinfo – get information about processors

SYNOPSIS
pinfo [-v] [processor-id ...]

DESCRIPTION
pinfo displays information about the processors named in the command line by
their processor-ids. If no processors are specified, information is displayed about
all processors in the system. The online/offline status of the processor is
displayed. If the processor is online and the -v flag is specified, the type of the
processor is also displayed, along with the clock rate (in megahertz) of the pro­
cessor, and the types of any floating point units attached to the processor.

SEE ALSO
processor_info(2) in the Programmer's Supplement

NOTES
This command may not be supported in future releases.
NAME

ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS

/usr/sbin/ping host [timeout]
/usr/sbin/ping -s [-lrRv] host [packetsize] [count]

DESCRIPTION

ping utilizes the ICMP protocol’s ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from the specified host or network gateway. If host responds, ping will print host is alive on the standard output and exit. Otherwise after timeout seconds, it will write no answer from host. The default value of timeout is 20 seconds.

When the -s flag is specified, ping sends one datagram per second, and prints one line of output for every ECHO_RESPONSE that it receives. No output is produced if there is no response. In this second form, ping computes round trip times and packet loss statistics; it displays a summary of this information upon termination or timeout. The default datagram packet size is 64 bytes, or you can specify a size with the packetsize command-line argument. If an optional count is given, ping sends only that number of requests.

When using ping for fault isolation, first ping the local host to verify that the local network interface is running.

OPTIONS

-1 Loose source route. Use this option in the IP header to send the packet to the given host and back again. Usually specified with the -R option.

-r Bypass the normal routing tables and send directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to ping a local host through an interface that has been dropped by the router daemon [see routed(1M)].

-R Record route. Sets the IP record route option, which will store the route of the packet inside the IP header. The contents of the record route will only be printed if the -v option is given, and only be set on return packets if the target host preserves the record route option across echos, or the -l option is given.

-v Verbose output. List any ICMP packets, other than ECHO_RESPONSE, that are received.

SEE ALSO

ifconfig(1M), netstat(1M), rpcinfo(1M), icmp(7)
NAME
pkgadd – transfer software package to the system

SYNOPSIS
pkgadd [-d device] [-r response] [-n] [-a admin] [pkginst1
[pkginst2[. . .]]]

pkgadd -s spool [-d device] [pkginst1 [pkginst2[. . .]]]

DESCRIPTION
pkgadd transfers the contents of a software package from the distribution
medium or directory to install it onto the system. Used without the -d option,
pkgadd looks in the default spool directory for the package (/var/spool/pkg).
Used with the -s option, it reads the package to a spool directory instead of in-
stalling it.

-d device Installs or copies a package from device. device can be (a) the full path-
name to a directory (such as /var/tmp), (b) the full pathname to a
device (such as /dev/rmt/c0s0 or /dev/dsk/f0t), or (c) a device
alias. An alias is the unique name by which a device is known. (For
example, the alias for a cartridge tape drive might be ctape1.) The
name must be limited in length to 64 characters (DDB_MAXALIAS) and
may contain only alphanumeric characters and/or any of the following
special characters: underscore (_), dollar sign ($), hyphen (-), and
period (.). No two devices in the database may share the same alias.

-r response Identifies a file or directory, response, which contains the answers to
questions posed by a “request script” during a previous pkgask ses-
sion conducted in interactive mode. (For a complete description of
request scripts and response files, see the Programmer’s Guide: Applica-
tion Development.) response must be a full pathname.

-n Installation occurs in non-interactive mode. The default mode is
interactive.

-a admin Defines an installation administration file, admin, to be used in place of
the default administration file to specify whether installation checks
(such as the check on the amount of space, the system state, and so
on) are done. [For a description of the format of an “admin” file, see
admin(4).] The token none overrides the use of any admin file, and
thus forces interaction with the user. Unless a full pathname is given,
pkgadd looks in the /var/sadm/install/admin directory for the file.

pkginst A short string used to designate a package. It is composed of one or
two parts: pkg (an abbreviation for the package name) or, if more than
one instance of that package exists, pkg plus inst (an instance
identifier). (The term “package instance” is used loosely: it refers to
all instantiations of pkginst, even those that do not include instance
identifiers.)

The package name abbreviation (pkg) is the mandatory part of pkginst.
To create such an abbreviation, assign it with the PKG parameter. For
example, to assign the abbreviation sds to the Software Distribution
Service package, enter PKG=sds.
pkgadd(1M)

The second part (inst), which is required only if you have more than one instance of the package in question, is a suffix that identifies the instance. This suffix is either a number (preceded by a period) or any short mnemonic string you choose. If you don’t assign your own instance identifier when one is required, the system assigns a numeric one by default. For example, if you have three instances of the Software Distribution Service package and you don’t create your own mnemonic identifiers (such as old and beta), the system adds the suffixes .2 and .3 to the second and third packages, automatically.

To indicate all instances of a package, specify inst.*. (When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character.) Use the token all to refer to all packages available on the source medium.

-s spool Reads the package into the directory spool instead of installing it.

When executed without options, pkgadd uses /var/spool/pkg (the default spool directory).

NOTES
When transferring a package to a spool directory, the -r, -n, and -a options cannot be used.

The -r option can be used to indicate a directory name as well as a filename. The directory can contain numerous response files, each sharing the name of the package with which it should be associated. This would be used, for example, when adding multiple interactive packages with one invocation of pkgadd. Each package would need a response file. If you create response files with the same name as the package (for example, package1 and package2) then, after the -r option, name the directory in which these files reside.

The -n option will cause the installation to halt if any interaction is needed to complete it.

SEE ALSO
admin(4), compver(4), copyright(4), depend(4), installf(1M), pkgask(1M), pkgchk(1M), pkginfo(1), pkginfo(4), pkgmap(4), pkgparam(1), pkgrm(1M), putdev(1M), removef(1), space(4)
NAME
pkgask – stores answers to a request script

SYNOPSIS
/usr/sbin/pkgask [-d device] -r response [pkginst [pkginst [...]]]

DESCRIPTION
pkgask allows the administrator to store answers to an interactive package (one with a request script). Invoking this command generates a response file that is then used as input at installation time. The use of this response file prevents any interaction from occurring during installation since the file already contains all of the information the package needs.

-d Runs the request script for a package on device. device can be a full pathname to a directory or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp, /dev/dsk/0s2, and /dev/dsk/f0t). The default device is the installation spool directory.

-r Identifies a file or directory, which should be created to contain the responses to interaction with the package. The name must be a full pathname. The file, or directory of files, can later be used as input to the pkgadd command.

pkginst Specifies the package instance or list of instances for which request scripts will be created. The token all may be used to refer to all packages available on the source medium. The format pkginst.* can be used to indicate all instances of a package. When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character.

NOTES
The -r option can be used to indicate a directory name as well as a filename. The directory name is used to create numerous response files, each sharing the name of the package with which it should be associated. This would be used, for example, when you will be adding multiple interactive packages with one invocation of pkgadd. Each package would need a response file. To create multiple response files with the same name as the package instance, name the directory in which the files should be created and supply multiple instance names with the pkgask command. When installing the packages, you will be able to identify this directory to the pkgadd command.

SEE ALSO
installf(1M), pkgadd(1M), pkgchk(1), pkgmk(1), pkginfo(1), pkgparam(1), pkgproto(1), pkgtrans(1), pkgrm(1M), removef(1M)
pkgchk (1M) (Essential Utilities) pkgchk (1M)

NAME
pkgchk – check accuracy of installation

SYNOPSIS
/usr/sbin/pkgchk [-l| -acfqv] [-nx] [-p path1[, path2 . . .]] [-i file] [pkginst . . .]
/usr/sbin/pkgchk -d device [-l| v] [-p path1[, path2 . . .]] [-i file] [pkginst . . .]
/usr/sbin/pkgchk -m pkgmap [-e envfile] [-l| -acfqv] [-nx] [-i file]
 [-p path1[, path2 . . .]]

DESCRIPTION
pkgchk checks the accuracy of installed files or, by use of the -l option, displays
information about package files. The command checks the integrity of directory
structures and the files. Discrepancies are reported on stderr along with a
detailed explanation of the problem.

The first synopsis defined above is used to list or check the contents and/or attributes
of objects that are currently installed on the system. Package
names may be listed on the command line, or by default the entire contents of a machine will be
checked.

The second synopsis is used to list or check the contents of a package which has
been spooled on the specified device, but not installed. Note that attributes cannot
be checked for spooled packages.

The third synopsis is used to list or check the contents and/or attributes of
objects which are described in the indicated pkgmap.

The option definitions are:
-1 Lists information on the selected files that make up a package. It is not compatible with the a, c, f, g, and v options.
-a Audits the file attributes only, does not check file contents. Default is to check both.
-c Audits the file contents only, does not check file attributes. Default is to check both.
-f Corrects file attributes if possible. When pkgchk is invoked with this option it creates directories, named pipes, links and special devices if they do not already exist.
-q Quiet mode. Does not give messages about missing files.
-v Verbose mode. Files are listed as processed.
-n Does not check volatile or editable files. This should be used for most post-installation checking.
-x Searches exclusive directories only, looking for files which exist that are not in the installation software database or the indicated pkgmap file. If used with the -f option, hidden files are removed; no other checking is done.
pkgchk(1M) (Essential Utilities) pkgchk(1M)

-p Only checks the accuracy of the pathname or pathnames listed. pathname can be one or more pathnames separated by commas (or by white space, if the list is quoted).

-i Reads a list of pathnames from file and compares this list against the installation software database or the indicated pkgmap file. Pathnames which are not contained in inputfile are not checked.

-d Specifies the device on which a spooled package resides. device can be a directory pathname or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp or /dev/diskette).

-m Requests that the package be checked against the pkgmap file pkgmap.

-e Requests that the pkginfo file named as envfile be used to resolve parameters noted in the specified pkgmap file.

pkginst Specifies the package instance or instances to be checked. The format pkginst.* can be used to check all instances of a package. When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character. The default is to display all information about all installed packages.

NOTES

To remove hidden files only, use the -f and -x options together. To remove hidden files and check attributes and contents of files, use the -f, -x, -c, and -a options together.

SEE ALSO

pkgadd(1M), pkgask(1M), pkginfo(1), pkgrm(1M), pkgtrans(1)
pkginfo(1)

NAME
pkginfo – display software package information

SYNOPSIS
pkginfo [-q x i] [-p i] [-a arch] [-v version]
 [-c category1,[category2[, ...]]] [pkginst[, pkginst[, ...]]]

pkginfo [-d device [-q x i] [-a arch] [-v version]
 [-c category1,[category2[, ...]]] [pkginst[, pkginst[, ...]]]

DESCRIPTION
pkginfo displays information about software packages which are installed on the
system (with the first synopsis) or which reside on a particular device or directory
(with the second synopsis). Only the package name and abbreviation for
pre-System V Release 4 packages will be included in the display.

The options for this command are:
-q
 Does not list any information, but can be used from a program to
 check (that is, query) whether or not a package has been installed.

-x
 Designates an extracted listing of package information. It contains the
 package abbreviation, package name, package architecture (if available)
 and package version (if available).

-l
 Designates long format, which includes all available information about
 the designated package(s).

-p
 Designates that information should be presented only for partially
 installed packages.

-i
 Designates that information should be presented only for fully
 installed packages.

-a
 Specifies the architecture of the package as arch.

-v
 Specifies the version of the package as version. All compatible versions
 can be requested by preceding the version name with a tilde (-). The
 list produced by -v will include pre-Release 4 packages (with which
 no version numbers are associated). Multiple white spaces are
 replaced with a single space during version comparison.

-c
 Selects packages to be displayed based on the category category.
 (Categories are defined in the category field of the pkginfo file.) If
 more than one category is supplied, the package must only match one
 of the list of categories. The match is not case specific.

pkginst
 Designates a package by its instance. An instance can be the package
 abbreviation or a specific instance (for example, inst.1 or
 inst.beta). All instances of package can be requested by inst.*.
 When using this format, enclose the command line in single quotes to
 prevent the shell from interpreting the * character.

-d
 Defines a device, device, on which the software resides. device can be a
 full pathname to a directory or the identifiers for tape, floppy disk,
 removable disk, and so on. The special token “spool” may be used to
 indicate the default installation spool directory.
NOTES

Without options, `pkginfo` lists the primary category, package instance, and name of all completely installed and partially installed packages. One line per package selected is produced.

The `-p` and `-i` options are meaningless if used in conjunction with the `-d` option.

The options `-q`, `-x`, and `-1` are mutually exclusive.

`pkginfo` cannot tell if a pre-Release 4 package is only partially installed. It is assumed that all pre-Release 4 packages are fully installed.

SEE ALSO

`pkgadd(1M), pkgask(1M), pkgchk(1M), pkgrm(1M), pkgtrans(1)`
NAME
pkgmk – produce an installable package

SYNOPSIS
pkgmk [-o] [-d device] [-r rootpath] [-b basedir] [-l limit] [-a arch]
[-v version] [-p pstamp] [-f prototype] [variable=value ...] [pkginst]

DESCRIPTION
pkgmk produces an installable package to be used as input to the pkgadd com-
mand. The package contents will be in directory structure format.
The command uses the package prototype file as input and creates a pkgmap file.
The contents for each entry in the prototype file is copied to the appropriate
output location. Information concerning the contents (checksum, file size,
modification date) is computed and stored in the pkgmap file, along with attribute
information specified in the prototype file.

-o Overwrites the same instance, package instance will be overwritten if it already exists.
-d device Creates the package on device. device can be a full pathname to a
directory or the identifiers for a floppy disk or removable disk
(for example, /dev/diskette). The default device is the installa-
tion spool directory.
-r rootpath Ignores destination paths in the prototype file. Instead, uses the
indicated rootpath with the source pathname appended to locate
objects on the source machine.
-b basedir Prepends the indicated basedir to locate relocatable objects on the
source machine.
-l limit Specifies the maximum size in 512 byte blocks of the output
device as limit. By default, if the output file is a directory or a
mountable device, pkgmk will employ the df command to
dynamically calculate the amount of available space on the out-
put device. Useful in conjunction with pkgtrans to create pack-
age with datastream format.
-a arch Overrides the architecture information provided in the pkginfo
file with arch.
-v version Overrides version information provided in the pkginfo file with
version.
-p pstamp Overrides the production stamp definition in the pkginfo file
with pstamp.
-f prototype Uses the file prototype as input to the command. The default
name for this file is either Prototype or prototype.
variable=value Places the indicated variable in the packaging environment. [See
prototype(4) for definitions of packaging variables.]
pkginst Specifies the package by its instance. pkgmk will automatically
create a new instance if the version and/or architecture is dif-
ferent. A user should specify only a package abbreviation; a particu-
lar instance should not be specified unless the user is
overwriting it.
NOTES

Architecture information is provided on the command line with the -a option or in the prototype file. If no architecture information is supplied at all, the output of `uname -m` will be used.

Version information is provided on the command line with the -v option or in the prototype file. If no version information is supplied, a default based on the current date will be provided.

Command line definitions for both architecture and version override the prototype definitions.

SEE ALSO

`pkgparam(1), pkgproto(1), pkgtrans(1)`
NAME
pkgparam – displays package parameter values

SYNOPSIS
pkgparam [-v][-d device] pkginst [param[. . .]]
pkgparam -f file [-v] [param[. . .]]

DESCRIPTION
pkgparam displays the value associated with the parameter or parameters requested on the command line. The values are located in either the pkginfo file for pkginst or from the specific file named with the -f option.

One parameter value is shown per line. Only the value of a parameter is given unless the -v option is used. With this option, the output of the command is in this format:

 parameter1='value1'
 parameter2='value2'
 parameter3='value3'

If no parameters are specified on the command line, values for all parameters associated with the package are shown.

Options and arguments for this command are:

- v Specifies verbose mode. Displays name of parameter and its value.
- d Specifies the device on which a pkginst is stored. It can be a full path-name to a directory or the identifiers for tape, floppy disk or removable disk (for example, /var/tmp, /dev/dsk/f0t, and /dev/dsk/Os2). The default device is the installation spool directory. If no instance name is given, parameter information for all packages residing in device is shown.
- f Requests that the command read file for parameter values.
pkginst Defines a specific package instance for which parameter values should be displayed. The format pkginst.* can be used to indicate all instances of a package. When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character.
param Defines a specific parameter whose value should be displayed.

ERRORS
If parameter information is not available for the indicated package, the command exits with a non-zero status.

NOTES
The -f synopsis allows you to specify the file from which parameter values should be extracted. This file should be in the same format as a pkginfo file. As an example, such a file might be created during package development and used while testing software during this stage.

SEE ALSO
installf(lM), pkgmk(l), pkgparam(3x), pkgproto(l), pgktrans(l)
NAME
pkgproto - generate a prototype file

SYNOPSIS
pkgproto [-i] [-c class] [path1[=path2] ...]

DESCRIPTION
pkgproto scans the indicated paths and generates a prototype file that may be
used as input to the pkgmk command.
- i Ignores symbolic links and records the paths as ftype=f (a file) versus
ftype=s(symbolic link)
- c Maps the class of all paths to class.
path1 Path of directory where objects are located.
path2 Path that should be substituted on output for path1.

If no paths are specified on the command line, standard input is assumed to be a
list of paths. If the path listed on the command line is a directory, the contents of
the directory are searched. However, if input is read from stdin, a directory
specified as a path will not be searched.

NOTES
By default, pkgproto creates symbolic link entries for any symbolic link encoun­
tered (ftype=s). When you use the -i option, pkgproto creates a file entry for
symbolic links (ftype=f). The prototype file would have to be edited to assign
such file types as v (volatile), e (editable), or x (exclusive directory). pkgproto
detects linked files. If multiple files are linked together, the first path encoun­
tered is considered the source of the link.

EXAMPLE
The following two examples show uses of pkgproto and a partial listing of the
output produced.

Example 1:
$ pkgproto /usr/bin=bin /usr/usr/bin=usrbin /etc=etc
f none bin/sed=/bin/sed 0775 bin bin
f none bin/sh=/bin/sh 0755 bin daemon
f none bin/sort=/bin/sort 0755 bin bin
f none usrbin/sdb=/usr/bin/sdb 0775 bin bin
f none usrbin/shl=/usr/bin/shl 4755 bin bin
d none etc/master.d 0755 root daemon
d none etc/master.d/kernel=/etc/master.d/kernel 0644 root daemon
d none etc/rc=/etc/rc 0744 root daemon

Example 2:
$ find / -type d -print | pkgproto
d none / 755 root root
d none /usr/bin 755 bin bin
d none /usr 755 root root
d none /usr/bin 775 bin bin
d none /etc 755 root root
d none /tmp 777 root root
SEE ALSO
installf(1M), pkgmk(1), pkgparam(1), pkgtrans(1)
NAME
pkgrm – removes a package from the system

SYNOPSIS
pkgrm [-n] [-a admin] [pkginst1 [pkginst2[. . .]]]

pkgrm -s spool [pkginst]

DESCRIPTION
pkgrm will remove a previously installed or partially installed package from the system. A check is made to determine if any other packages depend on the one being removed. The action taken if a dependency exists is defined in the admin file.

The default state for the command is interactive mode, meaning that prompt messages are given during processing to allow the administrator to confirm the actions being taken. Non-interactive mode can be requested with the -n option.

The -s option can be used to specify the directory from which spooled packages should be removed.

The options and arguments for this command are:

-n Non-interactive mode. If there is a need for interaction, the command will exit. Use of this option requires that at least one package instance be named upon invocation of the command.

-a admin Defines an installation administration file, admin, to be used in place of the default admin file.

-s spool Removes the specified package(s) from the directory spool.

pkginst A short string used to designate a package. It is composed of one or two parts: pkg (an abbreviation for the package name) or, if more than one instance of that package exists, pkg plus inst (an instance identifier). (The term "package instance" is used loosely: it refers to all instantiations of pkginst, even those that do not include instance identifiers.)

The package name abbreviation (pkg) is the mandatory part of pkginst. To create such an abbreviation, assign it with the PKG parameter. For example, to assign the abbreviation sds to the Software Distribution Service package, enter PKG=sds.

The second part (inst), which is required only if you have more than one instance of the package in question, is a suffix that identifies the instance. This suffix is either a number (preceded by a period) or any short mnemonic string you choose. If you don’t assign your own instance identifier when one is required, the system assigns a numeric one by default. For example, if you have three instances of the Software Distribution Service package and you don’t create your own mnemonic identifiers (such as old and beta), the system adds the suffixes .2 and .3 to the second and third packages, automatically.
To indicate all instances of a package, specify `inst.*`. (When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character.) Use the token `all` to refer to all packages available on the source medium.

SEE ALSO

compver(4), copyright(4), depend(4), installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1M), pkginfo(1), pkginfo(4), pkgmap(4), pkgmk(1), pkgparam(1), pkgproto(1), pkgtrans(1), removef(1M), space(4)
pkgtrans(1) (Essential Utilities) pkgtrans(1)

NAME
pkgtrans – translate package format

SYNOPSIS
pkgtrans [-ions] device1 device2 [pkginst1 [pkginst2 [...]]]

DESCRIPTION
pkgtrans translates an installable package from one format to another. It translates:
- a file system format to a datastream
- a datastream to a file system format
- a file system format to another file system format

The options and arguments for this command are:

- **-i** Copies only the pkginfo and pkgmap files.
- **-o** Overwrites the same instance on the destination device, package instance will be overwritten if it already exists.
- **-n** Creates a new instance if any instance of this package already exists.
- **-s** Indicates that the package should be written to device2 as a datastream rather than as a file system. The default behavior is to write a file system format on devices that support both formats.

device1 Indicates the source device. The package or packages on this device will be translated and placed on device2.

device2 Indicates the destination device. Translated packages will be placed on this device.

pkginst A short string used to designate a package. It is composed of one or two parts: pkg (an abbreviation for the package name) or, if more than one instance of that package exists, pkg plus inst (an instance identifier). (The term “package instance” is used loosely: it refers to all instantiations of pkginst, even those that do not include instance identifiers.)

The package name abbreviation (pkg) is the mandatory part of pkginst. To create such an abbreviation, assign it with the PKG parameter. For example, to assign the abbreviation sds to the Software Distribution Service package, enter PKG=sds.

The second part (inst), which is required only if you have more than one instance of the package in question, is a suffix that identifies the instance. This suffix is either a number (preceded by a period) or any short mnemonic string you choose. If you don’t assign your own instance identifier when one is required, the system assigns a numeric one by default. For example, if you have three instances of the Software Distribution Service package and you don’t create your own mnemonic identifiers (such as old and beta), the system adds the suffixes .2 and .3 to the second and third packages, automatically.
pkgtrans(1) (Essential Utilities) pkgtrans(1)

To indicate all instances of a package, specify inst.*. (When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character.) Use the token all to refer to all packages available on the source medium.

NOTES

Device specifications can be either the special node name (/dev/rmt/ctape) or the device alias (ctape1). The device spool indicates the default spool directory. Source and destination devices may not be the same.

By default, pkgtrans will not transfer any instance of a package if any instance of that package already exists on the destination device. Use of the -n option will create a new instance if an instance of this package already exists. Use of the -o option will overwrite the same instance if it already exists. Neither of these options are useful if the destination device is a datastream.

pkgtrans depends on the integrity of the /etc/device. tab file to determine whether a device can support a datastream and/or file system formats. Problems in transferring a device in a particular format could mean corruption of /etc/device.tab.

EXAMPLE

The following example translates all packages on the tape drive /dev/rmt/ctape and places the translations on /tmp.

 pkgtrans /dev/rmt/ctape /tmp all

The next example translates packages pkg1 and pkg2 on /tmp and places their translations (that is, a datastream) on the 9track1 output device.

 pkgtrans /tmp 9track1 pkg1 pkg2

The next example translates pkg1 and pkg2 on /tmp and places them on the tape in a datastream format.

 pkgtrans -s /tmp /dev/rmt/ctape pkg1 pkg2

SEE ALSO

installf(1M), pkgadd(1M), pkgask(1M), pkginfo(1), pkgmk(1), pkgparam(1), pkgproto(1), pkgrm(1M), putdev(1M), removef(1M)
plot (1G) (BSD Compatibility Package) plot (1G)

NAME
plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa, t300, t300s, t4013, t450, tek – graphics filters for various plotters

SYNOPSIS
/usr/ucb/plot [-T terminal]

DESCRIPTION
plot reads plotting instructions [see plot(4)] from the standard input and produces plotting instructions suitable for a particular terminal on the standard output.

If no terminal is specified, the environment variable TERM is used. The default terminal is tek.

ENVIRONMENT
Except for ver, the following terminal-types can be used with ‘lpr -g’ (see lpr) to produce plotted output:

2648 | 2648a | h8 | hp2648 | hp2648a
Hewlett Packard® 2648 graphics terminal.
300 DASI 300 or GSI terminal (Diablo® mechanism).
300s | 300S
DASI 300s terminal (Diablo mechanism).
450 DASI Hyterm 450 terminal (Diablo mechanism).
4013 Tektronix® 4013 storage scope.
4014 | tek Tektronix 4014 and 4015 storage scope with Enhanced Graphics Module. (Use 4013 for Tektronix 4014 or 4015 without the Enhanced Graphics Module).
aed AED 512 color graphics terminal.
bgplot | bitgraph
BBN bitgraph graphics terminal.
crt Any crt terminal capable of running vi(1).
dumb | un | unknown
Dumb terminals without cursor addressing or line printers.
gigi | vt125
DEC® vt125 terminal.
h7 | hp7 | hp7221
Hewlett Packard 7221 graphics terminal.
implot Imagen plotter.
var Benson Varian printer-plotter
ver Versatec® D1200A printer-plotter. The output is scan-converted and suitable input to ‘lpr -v’.
FILES

/usr/ucb/aedplot
/usr/ucb/atoplot
/usr/ucb/bgplot
/usr/ucb/crtplot
/usr/ucb/dumbplot
/usr/ucb/gigiplot
/usr/ucb/hpplot
/usr/ucb/implot
/usr/ucb/plot
/usr/ucb/plottoa
/usr/ucb/t300
/usr/ucb/t300s
/usr/ucb/t4013
/usr/ucb/t450
/usr/ucb/tek
/usr/ucb/vplot
/var/ucb/vplot

SEE ALSO

lpr(1)

vi(1) in the User’s Reference Manual
plot(3X), plot(4) in the Programmer’s Reference Manual
NAME

pmadm - port monitor administration

SYNOPSIS

pmadm -a [-p pmtag | -t type] -s svctag -i id -m pmspecific
 [-v ver [-f xu] [-y comment] [-z script]]

pmadm -r -p pmtag -s svctag

pmadm -e -p pmtag -s svctag

pmadm -d -p pmtag -s svctag

pmadm -l [-t type | -p pmtag] [-s svctag]

pmadm -L [-t type | -p pmtag] [-s svctag]

pmadm -g -p pmtag -s svctag [-z script]

pmadm -g -s svctag -t type [-z script]

DESCRIPTION

pmadm is the administrative command for the lower level of the Service Access
Facility hierarchy, that is, for service administration. A port may have only one
service associated with it although the same service may be available through
more than one port. In order to uniquely identify an instance of a service the
pmadm command must identify both the port monitor or port monitors through
which the service is available (-p or -t) and the service (-s). See the option
descriptions below.

pmadm performs the following functions:

- add or remove a service
- enable or disable a service
- install or replace a per-service configuration script
- print requested service information

Any user on the system may invoke pmandm to request service status (-l or -L) or
to print per-service configuration scripts (-g without the -z option). pmandm with
other options may be executed only by a privileged user.

The options have the following meanings:

-a Add a service. pmandm adds an entry for the new service to the port
monitor's administrative file. Because of the complexity of the options
and arguments that follow the -a option, it may be convenient to use a
command script or the menu system to add services. If you use the
menu system, enter sysadm ports, then choose the port_services
option.

-d Disable a service. Add x to the flag field in the entry for the service
svctag in the port monitor's administrative file. This is the entry used by
port monitor pmtag. See the -f option, below, for a description of the
flags available.
pmadm(1M) (Essential Utilities) pmadm(1M)

-e Enable a service. Remove x from the flag field in the entry for the service svctag in the port monitor administrative file. This is the entry used by port monitor pmtag. See the -f option, below, for a description of the flags available.

-f xu The -f option specifies one or both of the following two flags which are then included in the flag field of the entry for the new service in the port monitor's administrative file. If the -f option is not included, no flags are set and the default conditions prevail. By default, a new service is enabled and no utmp entry is created for it. A -f option without a following argument is illegal.

 x Do not enable the service svctag available through port monitor pmtag.

 u Create a utmp entry for service svctag available through port monitor pmtag.

-g Print, install, or replace a per-service configuration script. The -g option with a -p option and a -s option prints the per-service configuration script for service svctag available through port monitor pmtag. The -g option with a -p option, a -s option, and a -z option installs the per-service configuration script contained in the file script as the per-service configuration script for service svctag available through port monitor pmtag. The -g option with a -s option, a -t option, and a -z option installs the file script as the per-service configuration script for service svctag available through any port monitor of type type. Other combinations of options with -g are invalid.

-l id id is the identity that is to be assigned to service svctag when it is started. id must be an entry in /etc/passwd.

-1 The -1 option requests service information. Used by itself and with the options described below it provides a filter for extracting information in several different groupings.

 -1 By itself, the -1 option lists all services on the system.

 -1 -p pmtag Lists all services available through port monitor pmtag.

 -1 -s svctag Lists all services with tag svctag.

 -1 -p pmtag -s svctag Lists service svctag.

 -1 -t type Lists all services available through port monitors of type type.

 -1 -t type -s svctag Lists all services with tag svctag available through a port monitor of type type.

Other combinations of options with -1 are invalid.
The `-L` option is identical to the `-l` option except that output is printed in a condensed format.

-m pmspecific

`pmspecific` is the port monitor-specific portion of the port monitor administrative file entry for the service.

-p pmtag

Specifies the tag associated with the port monitor through which a service (specified as `-s svctag`) is available.

-r

Remove a service. When `pmadm` removes a service, the entry for the service is removed from the port monitor's administrative file.

-s svctag

Specifies the service tag associated with a given service. The service tag is assigned by the system administrator and is part of the entry for the service in the port monitor's administrative file.

-t type

Specifies the the port monitor type.

-v ver

Specifies the version number of the port monitor administrative file. The version number may be given as

```
-v `pmspec -V`
```

where `pmspec` is the special administrative command for port monitor `pmtag`. This special command is `ttyadm` for `ttymon` and `nlsadmin` for `listen`. The version stamp of the port monitor is known by the command and is returned when `pmspec` is invoked with a `-V` option.

-y comment

Associate `comment` with the service entry in the port monitor administrative file.

-z script

Used with the `-g` option to specify the name of the file that contains the per-service configuration script. Modifying a configuration script is a three-step procedure. First a copy of the existing script is made (`-g` alone). Then the copy is edited. Finally, the copy is put in place over the existing script (`-g` with `-z`).

OUTPUT

If successful, `pmadm` will exit with a status of 0. If it fails for any reason, it will exit with a nonzero status.

Options that request information write the requested information to the standard output. A request for information using the `-l` option prints column headers and aligns the information under the appropriate headings. In this format, a missing field is indicated by a hyphen. A request for information in the condensed format using the `-L` option prints the information in colon-separated fields; missing fields are indicated by two successive colons. # is the comment character.

EXAMPLES

Add a service to a port monitor with tag `pmtag`. Give the service the tag `svctag`. Port monitor-specific information is generated by `specpm`. The service defined by `svctag` will be invoked with identity `root`.
pmadm -a -p pmtag -s svctag -i root -m `specpm -a arg1 -b arg2` -v `specpm -v`

Add a service with service tag svctag, identity guest, and port monitor-specific information generated by specpm to all port monitors of type type:

pmadm -a -s svctag -i guest -t type -m `specpm -a arg1 -b arg2` -v `specpm -v`

Remove the service svctag from port monitor pmtag:

pmadm -r -p pmtag -s svctag

Enable the service svctag available through port monitor pmtag:

pmadm -e -p pmtag -s svctag

Disable the service svctag available through port monitor pmtag:

pmadm -d -p pmtag -s svctag

List status information for all services:

pmadm -l

List status information for all services available through the port monitor with tag ports:

pmadm -l -p ports

List the same information in condensed format:

pmadm -L -p ports

List status information for all services available through port monitors of type listen:

pmadm -l -t listen

Print the per-service configuration script associated with the service svctag available through port monitor pmtag:

pmadm -g -p pmtag -s svctag

FILES

/etc/saf/pmtag/_config
/etc/saf/pmtag/svctag
/var/saf/pmtag/*

SEE ALSO
doconfig(3n), sacadm(1M), sac(1M).
NAME
postdaisy – PostScript translator for Diablo 630 files

SYNOPSIS
/usr/lib/lp/postscript/postdaisy [options] [files]

DESCRIPTION
The postdaisy filter translates Diablo 630 daisy-wheel files into PostScript and writes the results on the standard output. If no files are specified, or if – is one of the input files, the standard input is read. The following options are understood:

- c num Print num copies of each page. By default only one copy is printed.
- f name Print files using font name. Any PostScript font can be used, although the best results will be obtained only with constant-width fonts. The default font is Courier.
- h num Set the initial horizontal motion index to num. Determines the character advance and the default point size, unless the -s option is used. The default is 12.
- m num Magnify each logical page by the factor num. Pages are scaled uniformly about the origin, which is located near the upper left corner of each page. The default magnification is 1.0.
- n num Print num logical pages on each piece of paper, where num can be any positive integer. By default, num is set to 1.
- o list Print pages whose numbers are given in the comma-separated list. The list contains single numbers N and ranges N1 - N2. A missing N1 means the lowest numbered page, a missing N2 means the highest.
- p mode Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.
- r num Selects carriage return and linefeed behavior. If num is 1, a line feed generates a carriage return. If num is 2, a carriage return generates a line feed. Setting num to 3 enables both modes.
- s num Use point size num instead of the default value set by the initial horizontal motion index.
- v num Set the initial vertical motion index to num. The default is 8.
- x num Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed near the upper left corner of the page, with positive x to the right and positive y down the page. Positive num moves everything right. The default offset is 0.25 inches.
- y num Translate the origin num inches along the positive y axis. Positive num moves text up the page. The default offset is -0.25 inches.
DIAGNOSTICS
An exit status of 0 is returned if files were successfully processed.

FILES
/usr/lib/lp/postscript/postdaisy.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

SEE ALSO
download(1), dpost(1), postdmd(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1)
NAME
postdmd – PostScript translator for DMD bitmap files

SYNOPSIS
/usr/lib/lp/postscript/postdmd [options] [files]

DESCRIPTION
postdmd translates DMD bitmap files, as produced by dmdps, or files written in the Ninth Edition bitfile format into PostScript and writes the results on the standard output. If no files are specified, or if – is one of the input files, the standard input is read. The following options are understood:

-b num Pack the bitmap in the output file using num byte patterns. A value of 0 turns off all packing of the output file. By default, num is 6.
-c num Print num copies of each page. By default only one copy is printed.
-f Flip the sense of the bits in files before printing the bitmaps.
-m num Magnify each logical page by the factor num. Pages are scaled uniformly about the origin, which by default is located at the center of each page. The default magnification is 1.0.
-n num Print num logical pages on each piece of paper, where num can be any positive integer. By default num is set to 1.
-o list Print pages whose numbers are given in the comma-separated list. The list contains single numbers N and ranges N1 – N2. A missing N1 means the lowest numbered page, a missing N2 means the highest.
-p mode Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.
-x num Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive num moves everything right. The default offset is 0 inches.
-y num Translate the origin num inches along the positive y axis. Positive num moves everything up the page. The default offset is 0.

Only one bitmap is printed on each logical page, and each of the input files must contain complete descriptions of at least one bitmap. Decreasing the pattern size using the -b option may help throughput on printers with fast processors (such as PS-810s), while increasing the pattern size will often be the right move on older models (such as PS-800s).

DIAGNOSTICS
An exit status of 0 is returned if files were successfully processed.

FILES
/usr/lib/lp/postscript/postdmd.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests
SEE ALSO

download(1), dpost(1), postdaisy(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1)
NAME
postio - serial interface for PostScript printers

SYNOPSIS
postio -l line [options] [files]

DESCRIPTION
postio sends files to the PostScript printer attached to line. If no files are specified the standard input is sent. The first group of options should be sufficient for most applications:

-\b speed Transmit data over line at baud rate speed. Recognized baud rates are 1200, 2400, 4800, 9600, and 19200. The default speed is 9600 baud.

-\l line Connect to the printer attached to line. In most cases there is no default and postio must be able to read and write line. If the line doesn’t begin with a / it may be treated as a Datakit destination.

-\q Prevents status queries while files are being sent to the printer. When status queries are disabled a dummy message is appended to the log file before each block is transmitted.

-\B num Set the internal buffer size for reading and writing files to num bytes. By default num is 2048 bytes.

-\D Enable debug mode. Guarantees that everything read on line will be added to the log file (standard error by default).

-\L file Data received on line gets put in file. The default log file is standard error. Printer or status messages that don’t show a change in state are not normally written to file but can be forced out using the -\D option.

-\P string Send string to the printer before any of the input files. The default string is simple PostScript code that disables timeouts.

-\R num Run postio as a single process if num is 1 or as separate read and write processes if num is 2. By default postio runs as a single process.

The next two options are provided for users who expect to run postio on their own. Neither is suitable for use in spooler interface programs:

-\i Run the program in interactive mode. Any files are sent first and followed by the standard input. Forces separate read and write processes and overrides many other options. To exit interactive mode use your interrupt or quit character. To get a friendly interactive connection with the printer type executive on a line by itself.

-\t Data received on line and not recognized as printer or status information is written to the standard output. Forces separate read and write processes. Convenient if you have a PostScript program that will be returning useful data to the host.
The last option is not generally recommended and should only be used if all else fails to provide a reliable connection:

-\(s \) Slow the transmission of data to the printer. Severely limits throughput, runs as a single process, disables the -q option, limits the internal buffer size to 1024 bytes, can use an excessive amount of CPU time, and does nothing in interactive mode.

The best performance will usually be obtained by using a large internal buffer (the -B option) and by running the program as separate read and write processes (the -R 2 option). Inability to fork the additional process causes postio to continue as a single read/write process. When one process is used, only data sent to the printer is flow controlled.

The options are not all mutually exclusive. The -i option always wins, selecting its own settings for whatever is needed to run interactive mode, independent of anything else found on the command line. Interactive mode runs as separate read and write processes and few of the other options accomplish anything in the presence of the -i option. The -t option needs a reliable two way connection to the printer and therefore tries to force separate read and write processes. The -s option relies on the status query mechanism, so -q is disabled and the program runs as a single process.

In most cases postio starts by making a connection to line and then attempts to force the printer into the IDLE state by sending an appropriate sequence of ^T (status query), ^C (interrupt), and ^D (end of job) characters. When the printer goes IDLE, files are transmitted along with an occasional ^T (unless the -q option was used). After all the files are sent the program waits until it's reasonably sure the job is complete. Printer generated error messages received at any time except while establishing the initial connection (or when running interactive mode) cause postio to exit with a non-zero status. In addition to being added to the log file, printer error messages are also echoed to standard error.

EXAMPLES

Run as a single process at 9600 baud and send file1 and file2 to the printer attached to /dev/tty01:

```
postio -l /dev/tty01 file1 file2
```

Same as above except two processes are used, the internal buffer is set to 4096 bytes, and data returned by the printer gets put in file log:

```
postio -R2 -B4096 -l/dev/tty01 -L log file1 file2
```

Establish an interactive connection with the printer at Datakit destination my/printer:

```
postio -i -l my/printer
```

Send file program to the printer connected to /dev/tty22, recover any data in file results, and put log messages in file log:

```
postio -t -l /dev/tty22 -L log program >results
```
NOTES
The input files are handled as a single PostScript job. Sending several different jobs, each with their own internal end of job mark (^D) is not guaranteed to work properly. postio may quit before all the jobs have completed and could be restarted before the last one finishes.

All the capabilities described above may not be available on every machine or even across the different versions of the UNIX system that are currently supported by the program. For example, the code needed to connect to a Datakit destination may work only on System V and may require that the DKHOST software package be available at compile time.

There may be no default line, so using the -l option is strongly recommended. If omitted, postio may attempt to connect to the printer using the standard output. If Datakit is involved, the -b option may be ineffective and attempts by postio to impose flow control over data in both directions may not work. The -q option can help if the printer is connected to RADIAN. The -s option is not generally recommended and should be used only if all other attempts to establish a reliable connection fail.

DIAGNOSTICS
An exit status of 0 is returned if the files ran successfully. System errors (such as an inability to open the line) set the low order bit in the exit status, while PostScript errors set bit 1. An exit status of 2 usually means the printer detected a PostScript error in the input files.

SEE ALSO
download(1), dpost(1), postdaisy(1), postdmd(1), postmd(1), postprint(1), postreverse(1), posttek(1)
NAME
postnn – matrix display program for PostScript printers

SYNOPSIS
/usr/lib/lp/postscript/postnn [options] [files]

DESCRIPTION
The postnn filter reads a series of floating point numbers from files, translates them into a PostScript gray scale image, and writes the results on the standard output. In a typical application the numbers might be the elements of a large matrix, written in row major order, while the printed image could help locate patterns in the matrix. If no files are specified, or if – is one of the input files, the standard input is read. The following options are understood:

-b num Pack the bitmap in the output file using num byte patterns. A value of 0 turns off all packing of the output file. By default, num is 6.

-c num Print num copies of each page. By default, only one copy is printed.

-d dimen Sets the default matrix dimensions for all input files to dimen. The dimen string can be given as rows or rowsxcolumns. If columns is omitted it will be set to rows. By default, postnn assumes each matrix is square and sets the number of rows and columns to the square root of the number of elements in each input file.

-g list List is a comma or space separated string of integers, each lying between 0 and 255 inclusive, that assigns PostScript gray scales to the regions of the real line selected by the -i option. 255 corresponds to white, and 0, to black. The postnn filter assigns a default gray scale that omits white (that is, 255) and gets darker as the regions move from left to right along the real line.

-i list List is a comma, space or slash(/) separated string of N floating point numbers that partition the real line into 2N+1 regions. The list must be given in increasing numerical order. The partitions are used to map floating point numbers read from the input files into gray scale integers that are either assigned automatically by postnn or arbitrarily selected using the -g option. The default interval list is -1,0,1, which partitions the real line into seven regions.

-m num Magnify each logical page by the factor num. Pages are scaled uniformly about the origin which, by default, is located at the center of each page. The default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can be any positive integer. By default, num is set to 1.

-o list Print pages whose numbers are given in the comma separated list. The list contains single numbers N and ranges N1 – N2. A missing N1 means the lowest numbered page, a missing N2 means the highest.
Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is portrait.

Window is a comma or space separated list of four positive integers that select the upper left and lower right corners of a submatrix from each of the input files. Row and column indices start at 1 in the upper left corner and the numbers in the input files are assumed to be written in row major order. By default, the entire matrix is displayed.

Translate the origin num inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive num moves everything right. The default offset is 0 inches.

Translate the origin num inches along the positive y axis. Positive num moves everything up the page. The default offset is 0.

Only one matrix is displayed on each logical page, and each of the input files must contain complete descriptions of exactly one matrix. Matrix elements are floating point numbers arranged in row major order in each input file. White space, including newlines, is not used to determine matrix dimensions. By default, postmd assumes each matrix is square and sets the number of rows and columns to the square root of the number of elements in the input file. Supplying default dimensions on the command line with the -d option overrides this default behavior, and in that case the dimensions apply to all input files.

An optional header can be supplied with each input file and is used to set the matrix dimensions, the partition of the real line, the gray scale map, and a window into the matrix. The header consists of keyword/value pairs, each on a separate line. It begins on the first line of each input file and ends with the first unrecognized string, which should be the first matrix element. Values set in the header take precedence, but apply only to the current input file. Recognized header keywords are dimension, interval, grayscale, and window. The syntax of the value string that follows each keyword parallels what's accepted by the -d, -i, -g, and -w options.

EXAMPLES

For example, suppose file initially contains the 1000 numbers in a 20x50 matrix. Then you can produce exactly the same output by completing three steps. First, issue the following command line:

```
postmd -d20X50 -i"-100 100" -g0,128,254,128,0 file
```

Second, prepend the following header to file:

```
dimension 20x50
interval -100.0 .100e+3
grayscale 0 128 254 128 0
```

Third, issue the following command line:
postmd file

The interval list partitions the real line into five regions and the gray scale list maps numbers less than −100 or greater than 100 into 0 (that is, black), numbers equal to −100 or 100 into 128 (that is, 50 percent black), and numbers between −100 and 100 into 254 (that is, almost white).

NOTES

The largest matrix that can be adequately displayed is a function of the interval and gray scale lists, the printer resolution, and the paper size. A 600x600 matrix is an optimistic upper bound for a two element interval list (that is, five regions) using 8.5x11 inch paper on a 300 dpi printer.

Using white (that is, 255) in a gray scale list is not recommended and won’t show up in the legend and bar graph that postmd displays below each image.

DIAGNOSTICS

An exit status of 0 is returned if files were successfully processed.

FILES

/usr/lib/lp/postscript/postmd.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

SEE ALSO

dpost(1), postdaisy(1), postmd(1), postio(1), postprint(1), postreverse(1), posttek(1)
NAME

postplot – PostScript translator for plot graphics files

SYNOPSIS

/usr/lib/lp/postscript/postplot [options] [files]

DESCRIPTION

The postplot filter translates plot(4) graphics files into PostScript and writes the results on the standard output. If no files are specified, or if - is one of the input files, the standard input is read. The following options are understood:

-\(c \) \(\text{num} \)
Print \(\text{num} \) copies of each page. By default, only one copy is printed.

-\(f \) \(\text{name} \)
Print text using font \(\text{name} \). Any PostScript font can be used, although the best results will be obtained only with constant width fonts. The default font is Courier.

-\(m \) \(\text{num} \)
Magnify each logical page by the factor \(\text{num} \). Pages are scaled uniformly about the origin which, by default, is located at the center of each page. The default magnification is 1.0.

-\(n \) \(\text{num} \)
Print \(\text{num} \) logical pages on each piece of paper, where \(\text{num} \) can be any positive integer. By default, \(\text{num} \) is set to 1.

-\(o \) \(\text{list} \)
Print pages whose numbers are given in the comma-separated list. The list contains single numbers \(N \) and ranges \(N1 - N2 \). A missing \(N1 \) means the lowest numbered page, a missing \(N2 \) means the highest.

-\(p \) \(\text{mode} \)
Print files in either portrait or landscape mode. Only the first character of mode is significant. The default mode is landscape.

-\(w \) \(\text{num} \)
Set the line width used for graphics to \(\text{num} \) points, where a point is approximately 1/72 of an inch. By default, \(\text{num} \) is set to 0 points, which forces lines to be one pixel wide.

-\(x \) \(\text{num} \)
Translate the origin \(\text{num} \) inches along the positive x axis. The default coordinate system has the origin fixed at the center of the page, with positive x to the right and positive y up the page. Positive \(\text{num} \) moves everything right. The default offset is 0.0 inches.

-\(y \) \(\text{num} \)
Translate the origin \(\text{num} \) inches along the positive y axis. Positive \(\text{num} \) moves everything up the page. The default offset is 0.0.

DIAGNOSTICS

An exit status of 0 is returned if files were successfully processed.

NOTES

The default line width is too small for write-white print engines, such as the one used by the PS-2400.

FILES

/usr/lib/lp/postscript/postplot.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests
SEE ALSO
download(l), dpost(l), postdaisy(l), postdmd(l), postio(l), postmd(l), postprint(l), postreverse(l), plot(4)
NAME
postprint – PostScript translator for text files

SYNOPSIS
/usr/lib/lp/postscript/postprint [options] [files]

DESCRIPTION
The postprint filter translates text files into PostScript and writes the results on
the standard output. If no files are specified, or if - is one of the input files, the
standard input is read. The following options are understood:

-c num
 Print num copies of each page. By default, only one copy is
 printed.

-f name
 Print files using font name. Any PostScript font can be used,
 although the best results will be obtained only with constant
 width fonts. The default font is Courier.

-l num
 Set the length of a page to num lines. By default, num is 66.
 Setting num to 0 is allowed, and will cause postprint to guess a
 value, based on the point size that’s being used.

-m num
 Magnify each logical page by the factor num. Pages are scaled
 uniformly about the origin, which is located near the upper left
 corner of each page. The default magnification is 1.0.

-n num
 Print num logical pages on each piece of paper, where num can
 be any positive integer. By default, num is set to 1.

-o list
 Print pages whose numbers are given in the comma-separated
 list. The list contains single numbers N and ranges N1 – N2. A
 missing N1 means the lowest numbered page, a missing N2
 means the highest.

-p mode
 Print files in either portrait or landscape mode. Only the first
 character of mode is significant. The default mode is portrait.

-r num
 Selects carriage return behavior. Carriage returns are ignored if
 num is 0, cause a return to column 1 if num is 1, and generate a
 newline if num is 2. The default num is 0.

-s num
 Print files using point size num. When printing in landscape
 mode num is scaled by a factor that depends on the imaging
 area of the device. The default size for portrait mode is 10.

-t num
 Assume tabs are set every num columns, starting with the first
 column. By default, tabs are set every 8 columns.

-x num
 Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper
 left corner of the page, with positive x to the right and positive
 y down the page. Positive num moves everything right. The
 default offset is 0.25 inches.

-y num
 Translate the origin num inches along the positive y axis. Positive
 num moves text up the page. The default offset is –0.25
 inches.
A new logical page is started after 66 lines have been printed on the current page, or whenever an ASCII form feed character is read. The number of lines per page can be changed using the -1 option. Unprintable ASCII characters are ignored, and lines that are too long are silently truncated by the printer.

EXAMPLES
To print file1 and file2 in landscape mode, issue the following command:

```
postprint -pland file1 file2
```
To print three logical pages on each physical page in portrait mode:

```
postprint -n3 file
```

DIAGNOSTICS
An exit status of 0 is returned if files were successfully processed.

FILES
/usr/lib/lp/postscript/postprint.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

SEE ALSO
download(1), dpst(1), postdaisy(1), postdmd(1), postio(1), postmd(1),
postreverse(1), posttek(1)
NAME
postreverse - reverse the page order in a PostScript file

SYNOPSIS
/usr/lib/lp/postscript/postreverse [options] [file]

DESCRIPTION
The postreverse filter reverses the page order in files that conform to Adobe's
Version 1.0 or Version 2.0 file structuring conventions, and writes the results on
the standard output. Only one input file is allowed and if no file is specified, the
standard input is read. The following options are understood:

-o list
Select pages whose numbers are given in the comma-separated
list. The list contains single numbers N and ranges N1 - N2. A
missing N1 means the lowest numbered page, a missing N2
means the highest.

-r
Don't reverse the pages in file.

The postreverse filter can handle a limited class of files that violate page
independence, provided all global definitions are bracketed by %%BeginGlobal
and %%EndGlobal comments. In addition, files that mark the end of each page
with %%EndPage: label ordinal comments will also reverse properly, provided
the prologue and trailer sections can be located. If postreverse fails to find an
%%EndProlog or %%EndSetup comment, the entire file is copied, unmodified, to
the standard output.

Because global definitions are extracted from individual pages and put in the pro­
logue, the output file can be minimally conforming, even if the input file wasn't.

EXAMPLES
To select pages 1 to 100 from file and reverse the pages:
 postreverse -01-100 file
To print four logical pages on each physical page and reverse all the pages:
 postprint -n4 file | postreverse
To produce a minimally conforming file from output generated by dpost without
reversing the pages:
 dpost file | postreverse -r

DIAGNOSTICS
An exit status of a is returned if file was successfully processed.

NOTES
No attempt has been made to deal with redefinitions of global variables or pro­
cedures. If standard input is used, the input file will be read three times before
being reversed.

SEE ALSO
download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), post­
print(1), posttek(1)
NAME
posttek – PostScript translator for tektronix 4014 files

SYNOPSIS
/usr/lib/lp/postscript/posttek [options] [files]

DESCRIPTION
The posttek filter translates tektronix 4014 graphics files into PostScript and
writes the results on the standard output. If no files are specified, or if – is one of
the input files, the standard input is read. The following options are understood:

-c num Print num copies of each page. By default, only one copy is
 printed.

-f name Print text using font name. Any PostScript font can be used,
 although the best results will be obtained only with constant
 width fonts. The default font is Courier.

-m num Magnify each logical page by the factor num. Pages are scaled
 uniformly about the origin which, by default, is located at the
 center of each page. The default magnification is 1.0.

-n num Print num logical pages on each piece of paper, where num can
 be any positive integer. By default, num is set to 1.

-o list Print pages whose numbers are given in the comma-separated
 list. The list contains single numbers N and ranges N1 – N2. A
 missing N1 means the lowest numbered page, a missing N2
 means the highest.

-p mode Print files in either portrait or landscape mode. Only the first
 character of mode is significant. The default mode is landscape.

-w num Set the line width used for graphics to num points, where a
 point is approximately 1/72 of an inch. By default, num is set
 to 0 points, which forces lines to be one pixel wide.

-x num Translate the origin num inches along the positive x axis. The
 default coordinate system has the origin fixed at the center of
 the page, with positive x to the right and positive y up the
 page. Positive num moves everything right. The default offset
 is 0.0 inches.

-y num Translate the origin num inches along the positive y axis. Positive
 num moves everything up the page. The default offset is
 0.0.

DIAGNOSTICS
An exit status of 0 is returned if files were successfully processed.

NOTES
The default line width is too small for write-white print engines, such as the one
used by the PS-2400.

FILES
/usr/lib/lp/postscript/posttek.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests

3/91
SEE ALSO

download(1), dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1), postreverse(1)
NAME
pr – print files

SYNOPSIS
[-llength] [-sseparator] [-bheader] [-F] [file ...]
[-sseparator] [-bheader] [-F] [file1 file2 ...]

DESCRIPTION
The pr command formats and prints the contents of a file. If file is -, or if no files are specified, pr assumes standard input. pr prints the named files on standard output.

By default, the listing is separated into pages, each headed by the page number, the date and time that the file was last modified, and the name of the file. Page length is 66 lines which includes 10 lines of header and trailer output. The header is composed of 2 blank lines, 1 line of text (can be altered with -h), and 2 blank lines; the trailer is 5 blank lines. For single column output, line width may not be set and is unlimited. For multicolumn output, line width may be set and the default is 72 columns. Diagnostic reports (failed options) are reported at the end of standard output associated with a terminal, rather than interspersed in the output. Pages are separated by series of line feeds rather than form feed characters.

By default, columns are of equal width, separated by at least one space; lines which do not fit are truncated. If the -s option is used, lines are not truncated and columns are separated by the separator character.

Either -columns or -m should be used to produce multi-column output. -a should only be used with -columns and not -m.

Command line options are
+page Begin printing with page numbered page (default is 1).
-columns Print columns columns of output (default is 1). Output appears as if -e and -i are on for multi-column output. May not use with -m.
-a Print multi-column output across the page one line per column. columns must be greater than one. If a line is too long to fit in a column, it is truncated.
-m Merge and print all files simultaneously, one per column. The maximum number of files that may be specified is eight. If a line is too long to fit in a column, it is truncated. May not use with -columns.
-d Double-space the output. Blank lines that result from double-spacing are dropped when they occur at the top of a page.
-eck Expand input tabs to character positions k+1, 2*k+1, 3*k+1, etc. If k is 0 or is omitted, default tab settings at every eighth position are assumed. Tab characters in the input are expanded into the appropriate number of spaces. If c (any non-digit character) is given, it is treated as the input tab character (default for c is the tab character).
-ick

In output, replace white space wherever possible by inserting tabs to character positions \(k+1, 2k+1, 3k+1 \), etc. If \(k \) is 0 or is omitted, default tab settings at every eighth position are assumed. If \(c \) (any non-digit character) is given, it is treated as the output tab character (default for \(c \) is the tab character).

-nck

Provide \(k \)-digit line numbering (default for \(k \) is 5). The number occupies the first \(k+1 \) character positions of each column of single column output or each line of \(-m\) output. If \(c \) (any non-digit character) is given, it is appended to the line number to separate it from whatever follows (default for \(c \) is a tab).

-wwidth

Set the width of a line to \(width \) character positions (default is 72). This is effective only for multi-column output (\(-column\) and \(-m\)). There is no line limit for single column output.

-ooffset

Offset each line by \(offset \) character positions (default is 0). The number of character positions per line is the sum of the width and offset.

-llength

Set the length of a page to \(length \) lines (default is 66). A \(length \) of 0 specifies the default length. By default, output contains 5 lines of header and 5 lines of trailer leaving 56 lines for user-supplied text. When \(-llength\) is used and \(length \) exceeds 10, then \(length-10 \) lines are left per page for user supplied text. When \(length \) is 10 or less, header and trailer output is omitted to make room for user supplied text; see the \(-t\) option.

-h header

Use \(header \) as the text line of the header to be printed instead of the file name. \(-h\) is ignored when \(-t\) is specified or \(-llength\) is specified and the value of \(length \) is 10 or less. (\(-h\) is the only \(pr \) option requiring space between the option and argument.)

-p

Pause before beginning each page if the output device is a terminal. \(pr \) rings the terminal bell and waits for a carriage return.

-f

Use a single form-feed character for new pages (default is to use a sequence of line feeds). Pause before beginning the first page if the standard output is associated with a terminal.

-r

Print no diagnostic reports on files that cannot be opened.

-t

Print neither the five-line identifying header nor the five-line trailer normally supplied for each page. Quit printing after the last line of each file without spacing to the end of the page. Use of \(-t\) overrides the \(-h\) option.

-separator

Separate columns by the single character \(separator \) instead of by the appropriate number of spaces (default for \(separator \) is a tab). Prevents truncation of lines on multicolumn output unless \(-w\) is specified.

-\(F\)

Fold the lines of the input file. When used in multi-column mode (with the \(-a\) or \(-m\) options) lines will be folded to fit the current column’s width, otherwise they will be folded to fit the current line width (80 columns).
EXAMPLES
Print file1 and file2 as a double-spaced, three-column listing headed by "file list":

```
pr -3dh "file list" file1 file2
```
Copy file1 to file2, expanding tabs to columns 10, 19, 28, 37, ...:

```
pr -e9 -t < file1 > file2
```
Print file1 and file2 simultaneously in a two-column listing with no header or trailer where both columns have line numbers:

```
pr -t -D file1 | pr -t -m -n file2 -
```

FILES
/dev/tty* If standard output is directed to one of the special files /dev/tty*, then other output directed to this terminal is delayed until standard output is completed. This prevents error messages from being interspersed throughout the output.

SEE ALSO
 cat(1), fold(1), more(1), pg(1), page(1)
printenv(1) (BSD Compatibility Package) printenv(1)

NAME

printenv – display environment variables currently set

SYNOPSIS

/usr/ucb/printenv [variable]

DESCRIPTION

printenv prints out the values of the variables in the environment. If a variable
is specified, only its value is printed.

SEE ALSO

tset(1)

csh(1), echo(1), sh(1), stty(1) in the User’s Reference Manual
environ(5) in the System Administrator’s Reference Manual

DIAGNOSTICS

If a variable is specified and it is not defined in the environment, printenv
returns an exit status of 1.
NAME
printf – print formatted output

SYNOPSIS
printf format [arg ...]

DESCRIPTION
The printf command converts, formats, and prints its args under control of the format. It fully supports conversion specifications for strings (%s descriptor); however, the results are undefined for the other conversion specifications supported by printf(3S).

format a character string that contains three types of objects: 1) plain characters, which are simply copied to the output stream; 2) conversion specifications, each of which results in fetching zero or more args; and 3) C-language escape sequences, which are translated into the corresponding characters.

arg string(s) to be printed under the control of format. The results are undefined if there are insufficient args for the format. If the format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following appear in sequence:

- An optional field, consisting of a decimal digit string followed by a $, specifying the next arg to be converted. If this field is not provided, the arg following the last arg converted is used.

- An optional decimal digit string specifying a minimum field width. If the converted value has fewer characters than the field width, it is padded on the left (or right, if the left-adjustment flag ‘-’ has been given) to the field width. The padding is with blanks unless the field width digit string starts with a zero, in which case the padding is with zeros.

- An optional precision that gives the maximum number of characters to be printed from a string in %s conversion. The precision takes the form of a period (.) followed by a decimal digit string; a null digit string is treated as zero (nothing is printed). Padding specified by the precision overrides the padding specified by the field width. That is, if precision is specified, its value is used to control the number of characters printed.

- A field width or precision or both may be indicated by an asterisk (*) instead of a digit string. In this case, an integer arg supplies the field width or precision. The arg that is actually converted is not fetched until the conversion letter is seen, so the args specifying field width or precision must appear before the arg (if any) to be converted. A negative field width argument is taken as a ‘-’ (left-adjustment) flag followed by a positive field width. If the precision argument is negative, it is changed to zero (nothing is printed). In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion is wider than the field width, the field is simply expanded to contain the conversion result.
The conversion characters and their meanings are:

%s The *arg* is taken to be a string and characters from the string are printed until a null character (\0) is encountered or the number of characters indicated by the precision specification is reached. If the precision is missing, it is taken to be infinite, so all characters up to the first null character are printed. A null value for *arg* yields undefined results.

%% Print a %; no argument is converted.

EXAMPLES

The command

```c
printf '%s %s %s\n' Good Morning World
```

results in the output:

Good Morning World

The following command produces the same output.

```c
printf '%2$s %s %1$s\n' World Good Morning
```

Here is an example that prints the first 6 characters of $PATH left-adjusted in a 10-character field:

```c
printf 'First 6 chars of %s are %-10.6s.\n' $PATH $PATH
```

If $PATH has the value /usr/bin:/usr/local/bin, then the above command would print the following output:

First 6 chars of /usr/bin:/usr/local/bin are /usr/b

SEE ALSO

`printf(3S)` in the *Programmer’s Reference Manual*
NAME
priocntl – process scheduler control

SYNOPSIS
priocntl -l
priocntl -d [-i idtype] [idlist]
priocntl -s [-c class] [class-specific options] [-i idtype] [idlist]
priocntl -e [-c class] [class-specific options] command [argument(s)]

DESCRIPTION
The priocntl command displays or sets scheduling parameters of the specified process(es). It can also be used to display the current configuration information for the system’s process scheduler or execute a command with specified scheduling parameters.

Processes fall into distinct classes with a separate scheduling policy applied to each class. The two process classes currently supported are the real-time class and the time-sharing class. The characteristics of these two classes and the class-specific options they accept are described below under the headings REAL-TIME CLASS and TIME-SHARING CLASS. With appropriate permissions, the priocntl command can change the class and other scheduling parameters associated with a running process.

In the default configuration, a runnable real-time process runs before any other process. Therefore, inappropriate use of real-time processes can have a dramatic negative impact on system performance.

The command

 priocntl -l

displays a list of classes currently configured in the system along with class-specific information about each class. The format of the class-specific information displayed is described under the appropriate heading below.

The -d and -s options to priocntl allow the user to display or set the scheduling parameters associated with a set of processes. The -i option and its associated idtype argument, together with the idlist arguments to priocntl (if any), specify one or more processes to which the priocntl command is to apply. The interpretation of idlist depends on the value of idtype. The valid idtype arguments and corresponding interpretations of idlist are as follows:

- i pid idlist is a list of process IDs. The priocntl command applies to the specified processes.
- i ppid idlist is a list of parent process IDs. The priocntl command applies to all processes whose parent process ID is in the list.
- i pgid idlist is a list of process group IDs. The priocntl command applies to all processes in the specified process groups.
- i sid idlist is a list of session IDs. The priocntl command applies to all processes in the specified sessions.
-i class idlist consists of a single class name (RT for real-time or TS for time-sharing). The priocntl command applies to all processes in the specified class.

- i uid idlist is a list of user IDs. The priocntl command applies to all processes with an effective user ID equal to an ID from the list.

- i gid idlist is a list of group IDs. The priocntl command applies to all processes with an effective group ID equal to an ID from the list.

- i all The priocntl command applies to all existing processes. No idlist should be specified (if one is it is ignored). The permission restrictions described below still apply.

If the -i idtype option is omitted when using the -d or -s options the default idtype of pid is assumed.

If an idlist is present it must appear last on the command line and the elements of the list must be separated by white space. If no idlist is present an idtype argument of pid, ppid, pgid, sid, class, uid, or gid specifies the process ID, parent process ID, process group ID, session ID, class, user ID, or group ID respectively of the priocntl command itself.

The command

 priocntl -d [-i idtype] [idlist]

displays the class and class-specific scheduling parameters of the process(es) specified by idtype and idlist.

The command

 priocntl -s [-c class] [class-specific options] [-i idtype] [idlist]

sets the class and class-specific parameters of the specified processes to the values given on the command line. The -c class option specifies the class to be set. (The valid class arguments are RT for real-time or TS for time-sharing). The class-specific parameters to be set are specified by the class-specific options as explained under the appropriate heading below. If the -c class option is omitted, idtype and idlist must specify a set of processes which are all in the same class, otherwise an error results. If no class-specific options are specified the process's class-specific parameters are set to the default values for the class specified by -c class (or to the default parameter values for the process's current class if the -c class option is also omitted).

In order to change the scheduling parameters of a process using priocntl the real or effective user ID of the user invoking priocntl must match the real or effective user ID of the receiving process or the effective user ID of the user must be super-user. These are the minimum permission requirements enforced for all classes. An individual class may impose additional permissions requirements when setting processes to that class or when setting class-specific scheduling parameters.

When idtype and idlist specify a set of processes, priocntl acts on the processes in the set in an implementation-specific order. If priocntl encounters an error for one or more of the target processes, it may or may not continue through the set of processes, depending on the nature of the error. If the error is related to
permissions, `prioctl` prints an error message and then continue through the
process set, resetting the parameters for all target processes for which the user
has appropriate permissions. If `prioctl` encounters an error other than permis-
sions, it does not continue through the process set but prints an error message
and exits immediately.

A special `sys` scheduling class exists for the purpose of scheduling the execution
of certain special system processes (such as the swapper process). It is not possible
to change the class of any process to `sys`. In addition, any processes in the
`sys` class that are included in the set of processes specified by `idtype` and `idlist` are
disregarded by `prioctl`. For example, if `idtype` were `uid`, an `idlist` consisting of
a zero would specify all processes with a UID of zero except processes in the `sys`
class and (if changing the parameters using the `-s` option) the `init` process.

The `init` process may be assigned to any class configured on the system, but the
time-sharing class is almost always the appropriate choice. (Other choices may be
highly undesirable; see the `System Administrator's Guide` for more information.)

The command

```
prioctl -e [-c class] [class-specific options] command [argument(s)]
```

executes the specified command with the class and scheduling parameters
specified on the command line (`arguments` are the arguments to the command). If
the `-c class` option is omitted the command is run in the user's current class.

REAL-TIME CLASS
The real-time class provides a fixed priority preemptive scheduling policy for
those processes requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the real-time class is
configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable real-time pro-
cess is given CPU service before any process belonging to any other class.

The real-time class has a range of real-time priority (`rtpri`) values that may be
assigned to processes within the class. Real-time priorities range from 0 to `x`,
where the value of `x` is configurable and can be displayed for a specific installa-
tion by using the command

```
prioctl -l
```

The real-time scheduling policy is a fixed priority policy. The scheduling priority
of a real-time process never changes except as the result of an explicit request by
the user/application to change the `rtpri` value of the process.

For processes in the real-time class, the `rtpri` value is, for all practical purposes,
equivalent to the scheduling priority of the process. The `rtpri` value completely
determines the scheduling priority of a real-time process relative to other
processes within its class. Numerically higher `rtpri` values represent higher priori-
ties. Since the real-time class controls the highest range of scheduling priorities in
the system it is guaranteed that the runnable real-time process with the highest
`rtpri` value is always selected to run before any other process in the system.
In addition to providing control over priority, `priocntl` provides for control over the length of the time quantum allotted to processes in the real-time class. The time quantum value specifies the maximum amount of time a process may run assuming that it does not complete or enter a resource or event wait state (`sleep`). Note that if another process becomes runnable at a higher priority the currently running process may be preempted before receiving its full time quantum.

The command

```
priocntl -d [-i idtype] [idlist]
```

displays the real-time priority and time quantum (in millisecond resolution) for each real-time process in the set specified by `idtype` and `idlist`.

The valid class-specific options for setting real-time parameters are:

- `p rtpri` Set the real-time priority of the specified process(es) to `rtpri`.
- `t tqntm [-r res]` Set the time quantum of the specified process(es) to `tqntm`. You may optionally specify a resolution as explained below.

Any combination of the `-p` and `-t` options may be used with `priocntl -s` or `priocntl -e` for the real-time class. If an option is omitted and the process is currently real-time the associated parameter is unaffected. If an option is omitted when changing the class of a process to real-time from some other class, the associated parameter is set to a default value. The default value for `rtpri` is 0 and the default for time quantum is dependent on the value of `rtpri` and on the system configuration; see `rt_dptbl(4)`.

When using the `-t tqntm` option you may optionally specify a resolution using the `-r res` option. (If no resolution is specified, millisecond resolution is assumed.) If `res` is specified it must be a positive integer between 1 and 1,000,000,000 inclusive and the resolution used is the reciprocal of `res` in seconds. For example, specifying `-t 10 -r 100` would set the resolution to hundredths of a second and the resulting time quantum length would be 10/100 seconds (one tenth of a second). Although very fine (nanosecond) resolution may be specified, the time quantum length is rounded up by the system to the next integral multiple of the system clock’s resolution. For example the finest resolution currently available on the 3B2 is 10 milliseconds (1 "tick"). If the `-t` and `-r` options are used to specify a time quantum of 34 milliseconds, it is rounded up to 4 ticks (40 milliseconds) on the 3B2. Requests for time quantums of zero or quantums greater than the (typically very large) implementation-specific maximum quantum result in an error.

In order to change the class of a process to real-time (from any other class) the user invoking `priocntl` must have super-user privileges. In order to change the `rtpri` value or time quantum of a real-time process the user invoking `priocntl` must either be super-user, or must currently be in the real-time class (shell running as a real-time process) with a real or effective user ID matching the real or effective user ID of the target process.
The real-time priority and time quantum are inherited across the *fork*(2) and *exec*(2) system calls.

Examples

```
priocntl -s -c RT -t 1 -r 10 -i idtype idlist
```

sets the class of any non-real-time processes selected by *idtype* and *idlist* to real-time and sets their real-time priority to the default value of 0. The real-time priorities of any processes currently in the real-time class are unaffected. The time quantum of all of the specified processes are set to 1/10 seconds.

```
priocntl -e -c RT -p 15 -t 20 command
```

executes *command* in the real-time class with a real-time priority of 15 and a time quantum of 20 milliseconds.

TIME-SHARING CLASS

The time-sharing scheduling policy provides for a fair and effective allocation of the CPU resource among processes with varying CPU consumption characteristics. The objectives of the time-sharing policy are to provide good response time to interactive processes and good throughput to CPU-bound jobs while providing a degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (*tsupri*) values that may be assigned to processes within the class. User priorities range from \(-x\) to \(+x\), where the value of \(x\) is configurable. The range for a specific installation can be displayed by using the command

```
priocntl -l
```

The purpose of the user priority is to provide some degree of user/application control over the scheduling of processes in the time-sharing class. Raising or lowering the *tsupri* value of a process in the time-sharing class raises or lowers the scheduling priority of the process. It is not guaranteed, however, that a time-sharing process with a higher *tsupri* value will run before one with a lower *tsupri* value. This is because the *tsupri* value is just one factor used to determine the scheduling priority of a time-sharing process. The system may dynamically adjust the internal scheduling priority of a time-sharing process based on other factors such as recent CPU usage.

In addition to the system-wide limits on user priority (displayed with *priocntl* -l), there is a per process user priority limit (*tsuprilim*), which specifies the maximum *tsupri* value that may be set for a given process.

The command

```
priocntl -d [-i idtype] [idlist]
```

displays the user priority and user priority limit for each time-sharing process in the set specified by *idtype* and *idlist*.

The valid class-specific options for setting time-sharing parameters are:

```
-m tsuprilim Set the user priority limit of the specified process(es) to tsuprilim.
```
Set the user priority of the specified process(es) to tsupri$. Any time-sharing process may lower its own tsuprilim (or that of another process with the same user ID). Only a time-sharing process with super-user privileges may raise a tsuprilim. When changing the class of a process to time-sharing from some other class, super-user privileges are required in order to set the initial tsuprilim to a value greater than zero.

Any time-sharing process may set its own tsupri (or that of another process with the same user ID) to any value less than or equal to the process's tsuprilim. Attempts to set the tsupri above the tsuprilim (and/or set the tsuprilim below the tsupri) result in the tsupri being set equal to the tsuprilim.

Any combination of the -1 and $-p$ options may be used with priocntl -s or priocntl -e for the time-sharing class. If an option is omitted and the process is currently time-sharing the associated parameter is normally unaffected. The exception is when the $-p$ option is omitted and -1 is used to set a tsuprilim below the current tsupri. In this case the tsupri is set equal to the tsuprilim which is being set. If an option is omitted when changing the class of a process to time-sharing from some other class, the associated parameter is set to a default value. The default value for tsuprilim is 0 and the default for tsupri is to set it equal to the tsuprilim value which is being set.

The time-sharing user priority and user priority limit are inherited across the fork(2) and exec(2) system calls.

Examples

```
prioctl -s -c TS -i idtype idlist
```
sets the class of any non-time-sharing processes selected by idtype and idlist to time-sharing and sets both their user priority limit and user priority to 0. Processes already in the time-sharing class are unaffected.

```
prioctl -e -c TS -l 0 -p -15 command [arguments]
```
executes command with the arguments arguments in the time-sharing class with a user priority limit of 0 and a user priority of -15.

SEE ALSO

ps(1), nice(1), priocntl(2), rt_dptbl(4)

DIAGNOSTICS

prioctl prints the following error messages:

Process(es) not found: None of the specified processes exists.

Specified processes from different classes: The $-s$ option is being used to set parameters, the $-c$ class option is not present, and processes from more than one class are specified.

Invalid option or argument: An unrecognized or invalid option or option argument is used.
prof(1)

(Enhanced Programming Utilities)

NAME
prof – display profile data

SYNOPSIS
prof [-t | c | a | n] [-0 | x] [-g | l] [-z] [-h] [-s] [-m mdata] -V [prog]

DESCRIPTION
The prof command interprets a profile file produced by the monitor function. The symbol table in the object file prog (a.out by default) is read and correlated with a profile file (mon.out by default). For each external text symbol the percentage of time spent executing between the address of that symbol and the address of the next is printed, together with the number of times that function was called and the average number of milliseconds per call.

The mutually exclusive options -t, -c, -a, and -n determine the type of sorting of the output lines:
- t Sort by decreasing percentage of total time (default).
- c Sort by decreasing number of calls.
- a Sort by increasing symbol address.
- n Sort lexically by symbol name.

The mutually exclusive options -0 and -x specify the printing of the address of each symbol monitored:
- 0 Print each symbol address (in octal) along with the symbol name.
- x Print each symbol address (in hexadecimal) along with the symbol name.

The mutually exclusive options -g and -1 control the type of symbols to be reported. The -1 option must be used with care; it applies the time spent in a static function to the preceding (in memory) global function, instead of giving the static function a separate entry in the report. If all static functions are properly located (see example below), this feature can be very useful. If not, the resulting report may be misleading.

Assume that A and B are global functions and only A calls static function S. If S is located immediately after A in the source code (that is, if S is properly located), then, with the -1 option, the amount of time spent in A can easily be determined, including the time spent in S. If, however, both A and B call S, then, if the -1 option is used, the report will be misleading; the time spent during B’s call to S will be attributed to A, making it appear as if more time had been spent in A than really had. In this case, function S cannot be properly located.

- g Include static (non-global) functions.
- l Do not include static (non-global) functions (default).

The following options may be used in any combination:
- z Include all symbols in the profile range, even if associated with zero number of calls and zero time.
prof(1) (Enhanced Programming Utilities) prof(1)

-h Suppress the heading normally printed on the report. (This is useful if the
report is to be processed further.)

-s Print a summary of several of the monitoring parameters and statistics on
the standard error output.

-m mdata
 Use file mdata instead of mon.out as the input profile file.

-v Print prof version information on the standard error output.

A program creates a profile file if it has been link edited with the -p option of cc.
This option to the cc command arranges for calls to monitor at the beginning
and end of execution. It is the call to monitor at the end of execution that causes
the system to write a profile file. The number of calls to a function is tallied if
the -p option was used when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environ­
mental variable PROFDIR. If PROFDIR is not set, mon.out is produced in the
directory current when the program terminates. If PROFDIR=string,
string/pid.progname is produced, where progname consists of argv[0] with any
path prefix removed, and pid is the process ID of the program. If PROFDIR is set,
but null, no profiling output are produced.

A single function may be split into subfunctions for profiling by means of the
MARK macro [see prof(5)].

FILES
 mon.out default profile file
 a.out default namelist (object) file

SEE ALSO
 cc(1), lprof(1), exit(2), profil(2), monitor(3C), prof(5)
 The "lprof" chapter in the Programmer's Guide: ANSI C and Programming Support
 Tools

NOTES
 The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden back­
ground or asynchronous processes may blur the data. In rare cases, the clock
ticks initiating recording of the program counter may “beat” with loops in a pro­
gram, grossly distorting measurements. Call counts are always recorded pre­
cisely, however.

 Only programs that call exit or return from main are guaranteed to produce a
profile file, unless a final call to monitor is explicitly coded.

 The times for static functions are attributed to the preceding external text symbol
if the -g option is not used. However, the call counts for the preceding function
are still correct; that is, the static function call counts are not added to the call
counts of the external function.
If more than one of the options -t, -c, -a, and -n is specified, the last option specified is used and the user is warned.

Profiling may be used with dynamically linked executables, but care must be applied. Currently, shared objects cannot be profiled with prof. Thus, when a profiled, dynamically linked program is executed, only the "main" portion of the image is sampled. This means that all time spent outside of the "main" object, that is, time spent in a shared object, will not be included in the profile summary; the total time reported for the program may be less than the total time used by the program.

Because the time spent in a shared object cannot be accounted for, the use of shared objects should be minimized whenever a program is profiled with prof. If possible, the program should be linked statically before being profiled.

Consider an extreme case. A profiled program dynamically linked with the shared C library spends 100 units of time in some libc routine, say, malloc. Suppose malloc is called only from routine B and B consumes only 1 unit of time. Suppose further that routine A consumes 10 units of time, more than any other routine in the "main" (profiled) portion of the image. In this case, prof will conclude that most of the time is being spent in A and almost no time is being spent in B. From this it will be almost impossible to tell that the greatest improvement can be made by looking at routine B and not routine A. The value of the profiler in this case is severely degraded; the solution is to use archives as much as possible for profiling.
NAME

profiler: prfld, prfstat, prfdc, prfsnap, prfpr – UNIX system profiler

SYNOPSIS

```
/usr/sbin/prfld [ system_namelist ]
/usr/sbin/prfstat on
/usr/sbin/prfstat off
/usr/sbin/prfdc file [ period [ off_hour ] ]
/usr/sbin/prfsnap file
/usr/sbin/prfpr file [ cutoff [ system_namelist ] ]
```

DESCRIPTION

profiler, prfstat, prfdc, prfsnap, and prfpr form a system of programs to facilitate an activity study of the UNIX operating system.

prfld is used to initialize the recording mechanism in the system. It generates a table containing the starting address of each system subroutine as extracted from system_namelist.

prfstat is used to enable or disable the sampling mechanism. Profiler overhead is less than 1% as calculated for 500 text addresses. prfstat will also reveal the number of text addresses being measured.

prfdc and **prfsnap** perform the data collection function of the profiler by copying the current value of all the text address counters to a file where the data can be analyzed. prfdc will store the counters into file every period minutes and will turn off at off_hour (valid values for off_hour are 0–24). prfsnap collects data at the time of invocation only, appending the counter values to file.

prfpr formats the data collected by prfdc or prfsnap. Each text address is converted to the nearest text symbol (as found in system_namelist) and is printed if the percent activity for that range is greater than cutoff.

FILES

```
/dev/prf        interface to profile data and text addresses
/stand/unix    default for system namelist file
```
profiler(1M) (Multiprocessing) profiler(1M)

NAME

profiler: prfld, prfstat, prfde, prfsnap, prfpr – UNIX system profiler

SYNOPSIS

/usr/sbin/prfld [system_namelist]
/usr/sbin/prfstat on
/usr/sbin/prfstat off
/usr/sbin/prfde file [period [off_hour]]
/usr/sbin/prfsnap file
/usr/sbin/prfpr [-P] file [cutoff [system_namelist]]

DESCRIPTION

prfld, prfstat, prfde, prfsnap, and prfpr form a system of programs to facilitate an activity study of the UNIX operating system.

prfld is used to initialize the recording mechanism in the system. It generates a table containing the starting address of each system subroutine as extracted from system_namelist.

prfstat is used to enable or disable the sampling mechanism. Profiler overhead is less than 1% as calculated for 500 text addresses. prfstat will also reveal the number of text addresses being measured.

prfde and prfsnap perform the data collection function of the profiler by copying the current value of all the text address counters to a file where the data can be analyzed. prfde will store the counters into file every period minutes and will turn off at off_hour (valid values for off_hour are 0–24). prfsnap collects data at the time of invocation only, appending the counter values to file.

prfpr formats the data collected by prfde or prfsnap. Each text address is converted to the nearest text symbol (as found in system_namelist) and is printed if the percent activity for that range is greater than cutoff. By default, system-wide totals are printed.

Specifying the -P option prints the per-processor total.

FILES

/dev/prf interface to profile data and text addresses
/dev/stand/unix default for system namelist file
NAME
prs – print an SCCS file

SYNOPSIS
prs [-d[dataspec]] [-r[SID]] [-e] [-l] [-c[date–time]] [-a] files

DESCRIPTION
prs prints, on the standard output, parts or all of an SCCS file [see sccsfile(4)] in a user-supplied format. If a directory is named, prs prints the files in that directory, except the non-SCCS files (last component of the path name does not begin with s.) and unreadable files. If a name of - is given, the standard input is read; each line of the standard input is taken to be the name of an SCCS file or directory to be processed. prs silently ignores non-SCCS files and unreadable files.

Arguments to prs, which may appear in any order, consist of keyletter arguments and file names.

The keyletter arguments apply independently to each named file:

- `-d[dataspec]` Specifies the output data specification. The `dataspec` is a string consisting of SCCS file data keywords (see the DATA KEYWORDS section) interspersed with optional user-supplied text.
- `-r[SID]` Specifies the SCCS identification (SID) string of a delta for which information is desired. The default is the top delta.
- `-e` Requests information for all deltas created earlier than and including the delta designated via the `-r` keyletter or the date given by the `-c` option.
- `-l` Requests information for all deltas created later than and including the delta designated via the `-r` keyletter or the date given by the `-c` option.
- `-c[date–time]` The cutoff date–time in the form:

 `YY[MM][DD][HH][MM][SS][SS]`

 Units omitted from the date–time default to their maximum possible values; for example, `-c7502` is equivalent to `-c750228235959`. Any number of non-numeric characters may separate the fields of the cutoff date; for example, `"–c77/2/2 9:22:25"`.
- `-a` Requests printing of information for both removed, that is, delta type = R, [see rmdel(1)] and existing, that is, delta type = D, deltas. If the `-a` keyletter is not specified, information for existing deltas only is provided.

DATA KEYWORDS
Data keywords specify those parts of an SCCS file that are to be retrieved and output. All parts of an SCCS file [see sccsfile(4)] have an associated data keyword. There is no limit on the number of times a data keyword may appear in a `dataspec`.

Page 1
The information printed by `prs` consists of: (1) the user-supplied text; and (2) appropriate values (extracted from the SCCS file) substituted for the recognized data keywords in the order of appearance in the `dataspec`. The format of a data keyword value is either "Simple" (S), in which keyword substitution is direct, or "Multi-line" (M), in which keyword substitution is followed by a carriage return.

User-supplied text is any text other than recognized data keywords. A tab is specified by `\t` and carriage return/new-line is specified by `\n`. The default data keywords are:

```
":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"
```

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Data Item</th>
<th>File Section</th>
<th>Value</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:Dt:</td>
<td>Delta information</td>
<td>Delta Table</td>
<td>See below*</td>
<td>S</td>
</tr>
<tr>
<td>:DL:</td>
<td>Delta line statistics</td>
<td></td>
<td>:Li:/ :Ld:/ :Lu:</td>
<td>S</td>
</tr>
<tr>
<td>:Li:</td>
<td>Lines inserted by Delta</td>
<td></td>
<td>nnnnn</td>
<td>S</td>
</tr>
<tr>
<td>:Ld:</td>
<td>Lines deleted by Delta</td>
<td></td>
<td>nnnnn</td>
<td>S</td>
</tr>
<tr>
<td>:Lu:</td>
<td>Lines unchanged by Delta</td>
<td></td>
<td>nnnnn</td>
<td>S</td>
</tr>
<tr>
<td>:DT:</td>
<td>Delta type</td>
<td></td>
<td>D or R</td>
<td>S</td>
</tr>
<tr>
<td>:I:</td>
<td>SCCS ID string (SID)</td>
<td></td>
<td>:R: :Li: :B: :S:</td>
<td>S</td>
</tr>
<tr>
<td>:R:</td>
<td>Release number</td>
<td></td>
<td>nnnn</td>
<td>S</td>
</tr>
<tr>
<td>:L:</td>
<td>Level number</td>
<td></td>
<td>nnnn</td>
<td>S</td>
</tr>
<tr>
<td>:B:</td>
<td>Branch number</td>
<td></td>
<td>nnnn</td>
<td>S</td>
</tr>
<tr>
<td>:S:</td>
<td>Sequence number</td>
<td></td>
<td>nnnn</td>
<td>S</td>
</tr>
<tr>
<td>:D:</td>
<td>Date Delta created</td>
<td></td>
<td>:Dy:/ :Dm:/ :Dd:</td>
<td>S</td>
</tr>
<tr>
<td>:Dy:</td>
<td>Year Delta created</td>
<td></td>
<td>nn</td>
<td>S</td>
</tr>
<tr>
<td>:Dm:</td>
<td>Month Delta created</td>
<td></td>
<td>nn</td>
<td>S</td>
</tr>
<tr>
<td>:Dd:</td>
<td>Day Delta created</td>
<td></td>
<td>nn</td>
<td>S</td>
</tr>
<tr>
<td>:T:</td>
<td>Time Delta created</td>
<td></td>
<td>:Th:/ :Tm:/ :Ts:</td>
<td>S</td>
</tr>
<tr>
<td>:Th:</td>
<td>Hour Delta created</td>
<td></td>
<td>nn</td>
<td>S</td>
</tr>
<tr>
<td>:Tm:</td>
<td>Minutes Delta created</td>
<td></td>
<td>nn</td>
<td>S</td>
</tr>
<tr>
<td>:Ts:</td>
<td>Seconds Delta created</td>
<td></td>
<td>nn</td>
<td>S</td>
</tr>
<tr>
<td>:P:</td>
<td>Programmer who created Delta</td>
<td></td>
<td>logname</td>
<td>S</td>
</tr>
<tr>
<td>:DS:</td>
<td>Delta sequence number</td>
<td></td>
<td>nnnn</td>
<td>S</td>
</tr>
<tr>
<td>:DP:</td>
<td>Predecessor Delta seq-no.</td>
<td></td>
<td>nnnn</td>
<td>S</td>
</tr>
<tr>
<td>:DI:</td>
<td>Seq-no. of deltas incl., excl., ignored</td>
<td></td>
<td>:Dn:/ :Dx:/ :Dg:</td>
<td>S</td>
</tr>
<tr>
<td>:Dn:</td>
<td>Deltas included (seq #)</td>
<td></td>
<td>:DS: :DS: ...</td>
<td>S</td>
</tr>
<tr>
<td>:Dx:</td>
<td>Deltas excluded (seq #)</td>
<td></td>
<td>:DS: :DS: ...</td>
<td>S</td>
</tr>
<tr>
<td>:Dg:</td>
<td>Deltas ignored (seq #)</td>
<td></td>
<td>:DS: :DS: ...</td>
<td>S</td>
</tr>
<tr>
<td>:MR:</td>
<td>MR numbers for delta</td>
<td></td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:C:</td>
<td>Comments for delta</td>
<td></td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:UN:</td>
<td>User names</td>
<td>User Names</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:FL:</td>
<td>Flag list</td>
<td>Flags</td>
<td>text</td>
<td>M</td>
</tr>
</tbody>
</table>
Keyword Data Item File Section Value Format

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Section</th>
<th>Value</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>:Y:</td>
<td>Module type flag</td>
<td>"</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:MF:</td>
<td>MR validation flag</td>
<td>"</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:MP:</td>
<td>MR validation pgm name</td>
<td>"</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:KF:</td>
<td>Keyword error/warning flag</td>
<td>"</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:KV:</td>
<td>Keyword validation string</td>
<td>"</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:BF:</td>
<td>Branch flag</td>
<td>"</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:J:</td>
<td>Joint edit flag</td>
<td>"</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:LK:</td>
<td>Locked releases</td>
<td>"</td>
<td>:R: ...</td>
<td>S</td>
</tr>
<tr>
<td>:Q:</td>
<td>User-defined keyword</td>
<td>"</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:M:</td>
<td>Module name</td>
<td>"</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:FB:</td>
<td>Floor boundary</td>
<td>"</td>
<td>:R:</td>
<td>S</td>
</tr>
<tr>
<td>:CB:</td>
<td>Ceiling boundary</td>
<td>"</td>
<td>:R:</td>
<td>S</td>
</tr>
<tr>
<td>:DS:</td>
<td>Default SID</td>
<td>"</td>
<td>:I:</td>
<td>S</td>
</tr>
<tr>
<td>:ND:</td>
<td>Null delta flag</td>
<td>"</td>
<td>yes or no</td>
<td>S</td>
</tr>
<tr>
<td>:FD:</td>
<td>File descriptive text</td>
<td>Comments</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:BD:</td>
<td>Body</td>
<td>Body</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:GB:</td>
<td>Gotten body</td>
<td>"</td>
<td>text</td>
<td>M</td>
</tr>
<tr>
<td>:W:</td>
<td>A form of what(1) string</td>
<td>N/A</td>
<td>:Z: :M: \t: I:</td>
<td>S</td>
</tr>
<tr>
<td>:Z:</td>
<td>what(1) string delimiter</td>
<td>N/A</td>
<td>(?,?,?,?,?,?,?</td>
<td>S</td>
</tr>
<tr>
<td>:F:</td>
<td>SCCS file name</td>
<td>N/A</td>
<td>text</td>
<td>S</td>
</tr>
<tr>
<td>:PN:</td>
<td>SCCS file path name</td>
<td>N/A</td>
<td>text</td>
<td>S</td>
</tr>
</tbody>
</table>

EXAMPLES

The command

```
prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file
```

may produce on the standard output:

```
Users and/or user IDs for s.file are:
xyz
131
abc
```

The command

```
prs -d"Newest delta for pgm :M: :I: Created :D: By :P:"
```

may produce on the standard output:

```
Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas
```

The default case:

```
prs s.file
```
produces on the standard output:

```
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
  this is the comment line for s.file initial delta
```

for each delta table entry of the "D" type. The only keyletter argument allowed to be used with the "special case" is the -a keyletter.

FILES

```
/var/tmp/pr?????
```

SEE ALSO

```
admin(1), delta(1), get(1), help(1), sccsfile(4)
```

DIAGNOSTICS

Use help(1) for explanations.
prt(1) (BSD Compatibility Package) prt(1)

NAME
prt – display the delta and commentary history of an SCCS file

SYNOPSIS
/usr/ucb/prt [-abdefistu] [-y[SID]] [-c[cutoff]] [-r[rev-cutoff]] filename...

DESCRIPTION
Note: the prt command is an older version of prs(1) that in most circumstances is more convenient to use, but is less flexible than prs.

prt prints part or all of an SCCS file in a useful format. If a directory is named, prt behaves as though each file in the directory were specified as a named file, except that non-SCCS files (last component of the pathname does not begin with s.) and unreadable files are silently ignored. If a name of ‘-’ is given, the standard input is read; each line of the standard input is taken to be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are silently ignored.

The following options are available with prt:

- `-a` Print those types of deltas normally not printed by the `d` keyletter. These are types `R` (removed). This keyletter is effective only if the `d` keyletter is also specified (or assumed).
- `-b` Print the body of the SCCS file.
- `-d` This keyletter normally prints delta table entries of the `D` type.
- `-e` This keyletter implies the `d`, `i`, `u`, `f`, and `t` keyletters and is provided for convenience.
- `-f` Print the flags of the named file.
- `-i` Print the serial numbers of those deltas included, excluded, and ignored. This keyletter is effective only if the `d` keyletter is also specified (or assumed).

The following format is used to print those portions of the SCCS file as specified by the above keyletters. The printing of each delta table entry is preceded by a NEWLINE.

- Type of delta (`D` or `R`).
- SPACE.
- SCCS identification string (SID).
- TAB.
- Date and time of creation (in the form YY/MM/DD HH:MM:SS).
- SPACE.
- Creator.
- TAB.
- Serial number.
- SPACE.
- Predecessor delta’s serial number.
- TAB.
• Statistics (in the form inserted/deleted/unchanged).
• NEWLINE.
• “Included:TAB”, followed by SID’s of deltas included, followed by NEWLINE (only if there were any such deltas and if i keyletter was supplied).
• “Excluded:TAB”, followed by SID’s of deltas excluded, followed by NEWLINE (see note above).
• “Ignored:TAB”, followed by SID’s of deltas ignored, followed by NEWLINE (see note above).
• “MRs:TAB”, followed by MR numbers related to the delta, followed by NEWLINE (only if any MR numbers were supplied).
• Lines of comments (delta commentary), followed by newline (if any were supplied).

-s Print only the first line of the delta table entries; that is, only up to the statistics. This keyletter is effective only if the d keyletter is also specified (or assumed).
-t Print the descriptive text contained in the file.
-u Print the login-names and/or numerical group IDs of those users allowed to make deltas.
-y[SID] Print the delta table entries to stop when the delta just printed has the specified SID. If no delta in the table has the specified SID, the entire table is printed. If no SID is specified, the first delta in the delta table is printed. This keyletter will print the entire delta table entry for each delta as a single line (the NEWLINE in the normal multi-line format of the d keyletter are replaced by SPACE characters) preceded by the name of the SCCS file being processed, followed by a ;, followed by a TAB. This keyletter is effective only if the d keyletter is also specified (or assumed).
-c[cutoff] Stop printing the delta table entries if the delta about to be printed is older than the specified cutoff date-time (see get(1) for the format of date-time). If no date-time is supplied, the epoch 0000 GMT Jan. 1, 1970 is used. As with the y keyletter, this keyletter will cause the entire delta table entry to be printed as a single line and to be preceded by the name of the SCCS file being processed, followed by a ;, followed by a tab. This keyletter is effective only if the d keyletter is also specified (or assumed).
-z[rev-cutoff] Begin printing the delta table entries when the delta about to be printed is older than or equal to the specified cutoff date-time (see get(1) for the format of date-time). If no date-time is supplied, the epoch 0000 GMT Jan. 1, 1970 is used. (In this case, nothing will be printed). As with the y keyletter, this keyletter will cause the entire delta table entry to be printed as a single line and to be preceded by the name of the SCCS file being processed, followed by a ;, followed by a tab. This keyletter is effective only if the d keyletter is also specified (or assumed).
If any keyletter but `y`, `c`, or `r` is supplied, the name of the file being processed (preceded by one NEWLINE and followed by two NEWLINE characters) is printed before its contents.

If none of the `u`, `f`, `t`, or `b` keyletters is supplied, the `d` keyletter is assumed.

Note: the `s` and `i` keyletters, and the `c` and `r` keyletters are mutually exclusive; therefore, they may not be specified together on the same `prt` command.

The form of the delta table as produced by the `y`, `c`, and `r` keyletters makes it easy to sort multiple delta tables in chronological order.

When both the `y` and `c` or the `y` and `r` keyletters are supplied, `prt` will stop printing when the first of the two conditions is met.

SEE ALSO

`admin(1)`, `get(1)`, `delta(1)`, `prs(1)`, `what(1)`, `sccs(1)`

`sccsfile(5)` in the *System Administrator’s Reference Manual*
NAME
prtvtoe - disk information display utility

SYNOPSIS
prtvtoe [-aep] [-f vtoc-file] raw-device

DESCRIPTION
The default and primary function of prtvtoe is to display the contents of the VTOC (Volume Table Of Contents). The information displayed for each valid slice includes slice number, slice tag, slice flag/permissions, slice start sector, slice size (in sectors).

When editing the VTOC, the following entries are the valid slice tags and slice permission flags.

Slice Tags

<table>
<thead>
<tr>
<th>Slice Tags</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#define V_BOOT</td>
<td>0x01</td>
</tr>
<tr>
<td>#define V_ROOT</td>
<td>0x02</td>
</tr>
<tr>
<td>#define V_SWAP</td>
<td>0x03</td>
</tr>
<tr>
<td>#define V_USR</td>
<td>0x04</td>
</tr>
<tr>
<td>#define V_BACKUP</td>
<td>0x05</td>
</tr>
<tr>
<td>#define V_ALTS</td>
<td>0x06</td>
</tr>
<tr>
<td>#define V_OTHER</td>
<td>0x07</td>
</tr>
<tr>
<td>#define V_ALTTRK</td>
<td>0x08</td>
</tr>
<tr>
<td>#define V_STAND</td>
<td>0x09</td>
</tr>
<tr>
<td>#define V_VAR</td>
<td>0x0a</td>
</tr>
<tr>
<td>#define V_HOME</td>
<td>0x0b</td>
</tr>
<tr>
<td>#define V_DUMP</td>
<td>0x0c</td>
</tr>
</tbody>
</table>

Slice Permission Flags

<table>
<thead>
<tr>
<th>Slice Permission Flags</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>#define V_UNMNT</td>
<td>0x01</td>
</tr>
<tr>
<td>#define V_RONLY</td>
<td>0x10</td>
</tr>
<tr>
<td>#define V_VALID</td>
<td>0x200</td>
</tr>
</tbody>
</table>

The start and size value are in absolute sector numbers where the first sector on the drive is 0 (which is reserved for the partition table). Slices should start and end on a cylinder boundary if possible. The head, cylinder and sectors/track information provided by prtvtoe -p will assist in the calculations. Slices should not overlap (slice 0 is the exception, it describes the entire UNIX partition).

OPTIONS
-a prints the alternates tables (bad tracks and bad sectors).
-e creates or adds information to the /etc/partitions file. This option is provided to allow support for mkpart[see mkpart(1M)]. Dependence on this feature is not suggested since it will not be supported in a future release.
-p prints the information contained in the pdinfo structure.
-f vtoc-file writes the current contents of the VTOC into the vtoc-file in a condensed format. The format of the file is slice number, slice tag value, slice flag value, slice start sector, slice size (in sectors). The purpose of this file is to
be input for the `edvtoc` command.

raw-device

`raw-device` is the character special device for the disk drive to be accessed. It must be the slice 0 device to represent the entire device (for example, `/dev/rdsk/0s0` or `/dev/rdsk/c0t0d0s0`).

FILES

- `/dev/dsk/0s0`
- `/dev/rdsk/1s0`
- `/dev/rdsk/c?t?d?s0`

SEE ALSO

`edvtoc(1M)`
ps(1) (Essential Utilities) ps(1)

NAME
ps – report process status

SYNOPSIS
ps [options]

DESCRIPTION
ps prints information about active processes. Without options, ps prints information about processes associated with the controlling terminal. The output contains only the process ID, terminal identifier, cumulative execution time, and the command name. Otherwise, the information that is displayed is controlled by the options.

Some options accept lists as arguments. Items in a list can be either separated by commas or else enclosed in double quotes and separated by commas or spaces. Values for proclist and grplist must be numeric.

The options are:

-e Print information about every process now running.
-d Print information about all processes except session leaders.
-a Print information about all processes most frequently requested: all those except session leaders and processes not associated with a terminal.
-j Print session ID and process group ID.
-f Generate a full listing. (See below for significance of columns in a full listing.)
-l Generate a long listing. (See below.)
-c Print information in a format that reflects scheduler properties as described in priocntl(1). The -c option affects the output of the -f and -l options, as described below.
-t termlist List only process data associated with the terminal given in termlist. Terminal identifiers may be specified in one of two forms: the device's file name (e.g., tty04) or, if the device's file name starts with tty, just the digit identifier (e.g., 04).
-p proclist List only process data whose process ID numbers are given in proclist.
-u uidlist List only process data whose user ID number or login name is given in uidlist. In the listing, the numerical user ID will be printed unless you give the -f option, which prints the login name.
-g grplist List only process data whose group leader's ID number(s) appears in grplist. (A group leader is a process whose process ID number is identical to its process group ID number.
-s sesslist List information on all session leaders whose IDs appear in sesslist.

Under the -f option, ps tries to determine the command name and arguments given when the process was created by examining the user block. Failing this, the command name is printed, as it would have appeared without the -f option, in square brackets.
The column headings and the meaning of the columns in a `ps` listing are given below; the letters \texttt{f} and \texttt{l} indicate the option (\texttt{full} or \texttt{long}, respectively) that causes the corresponding heading to appear; \texttt{all} means that the heading always appears. Note that these two options determine only what information is provided for a process; they do not determine which processes will be listed.

\textbf{F} \hspace{1em} (l) Flags (hexadecimal and additive) associated with the process
\begin{itemize}
 \item 00 Process has terminated: process table entry now available.
 \item 01 A system process: always in primary memory.
 \item 02 Parent is tracing process.
 \item 04 Tracing parent’s signal has stopped process: parent is waiting \texttt{[pttrace(2)]}.
 \item 08 Process is currently in primary memory.
 \item 10 Process currently in primary memory: locked until an event completes.
\end{itemize}

\textbf{S} \hspace{1em} (l) The state of the process:
\begin{itemize}
 \item O Process is running on a processor.
 \item S Sleeping: process is waiting for an event to complete.
 \item R Runnable: process is on run queue.
 \item I Idle: process is being created.
 \item Z Zombie state: process terminated and parent not waiting.
 \item T Traced: process stopped by a signal because parent is tracing it.
 \item X SXBRK state: process is waiting for more primary memory.
\end{itemize}

\textbf{UID} \hspace{1em} (f,l) The user ID number of the process owner (the login name is printed under the \texttt{-f} option).

\textbf{PID} \hspace{1em} (all) The process ID of the process (this datum is necessary in order to kill a process).

\textbf{PPID} \hspace{1em} (f,l) The process ID of the parent process.

\textbf{PRI} \hspace{1em} (l) The priority of the process. Without the \texttt{-c} option, higher numbers mean lower priority. With the \texttt{-c} option, higher numbers mean higher priority.

\textbf{NI} \hspace{1em} (l) Nice value, used in priority computation. Not printed when the \texttt{-c} option is used. Only processes in the time-sharing class have a nice value.

\textbf{ADDR} \hspace{1em} (l) The memory address of the process.
The size (in pages or clicks) of the swappable process’s image in main memory.

The address of an event for which the process is sleeping, or in SXBRK state, (if blank, the process is running).

The starting time of the process, given in hours, minutes, and seconds. (A process begun more than twenty-four hours before the ps inquiry is executed is given in months and days.)

The controlling terminal for the process (the message, ?, is printed when there is no controlling terminal).

The cumulative execution time for the process.

The command name (the full command name and its arguments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by the parent, is marked <defunct>.

FILES
/dev
/dev/sxt/*
/dev/tty*
/dev/xt/* terminal ("tty") names searcher files
/dev/kmem kernel virtual memory
/dev/swap the default swap device
/dev/mem memory
/etc/passwd UID information supplier
/etc/ps_data internal data structure

SEE ALSO
kill(1), nice(1), priocntl(1).

NOTES
Things can change while ps is running; the snap-shot it gives is true only for a split-second, and it may not be accurate by the time you see it. Some data printed for defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, and stderr in that order, looking for the controlling terminal and will attempt to report on processes associated with the controlling terminal. In this situation, if stdin, stdout, and stderr are all redirected, ps will not find a controlling terminal, so there will be no report.

On a heavily loaded system, ps may report an lseek error and exit. ps may seek to an invalid user area address: having obtained the address of a process’ user area, ps may not be able to seek to that address before the process exits and the address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an earlier time, when a getty was last respawned on the tty line.
NAME
 ps - report process status

SYNOPSIS
 ps [-P edajflc] [-t termlist] [-p proclist] [-u uidlist] [-g grplist] [-s sesslist]

DESCRIPTION
 ps prints information about active processes. Without options, ps prints information about processes associated with the controlling terminal. The output contains only the process ID, terminal identifier, cumulative execution time, and the command name. Otherwise, the information that is displayed is controlled by the options.

Some options accept lists as arguments. Items in a list can be either separated by commas or else enclosed in double quotes and separated by commas or spaces. Values for proclist and grplist must be numeric.

The options are:
 -P Print the processor ID number of the processor on which a process is executing, in the case of processor binding. The processor ID number appears under the PSR column heading. If the process is not bound to a specific processor, a dash appears in the field.
 -e Print information about every process now running.
 -d Print information about all processes except session leaders.
 -a Print information about all processes most frequently requested: all those except session leaders and processes not associated with a terminal.
 -j Print session ID and process group ID.
 -f Generate a full listing. (See below for significance of columns in a full listing.)
 -l Generate a long listing. (See below.)
 -c Print information in a format that reflects scheduler properties as described in priocntl(1). The -c option affects the output of the -f and -l options, as described below.

 -t termlist
 List only process data associated with the terminal given in termlist. Terminal identifiers may be specified in one of two forms: the device’s file name (for example, term/04) or, if the device’s file name starts with term, just the digit identifier (for example, 04).

 -p proclist
 List only process data whose process ID numbers are given in proclist.

 -u uidlist
 List only the process data for those user IDs or login names given in uidlist. In the listing, the numerical user ID will be printed unless you give the -f option, which prints the login name.
-g grplist
List only process data whose group leader's ID number(s) appears in grplist. (A group leader is a process whose process ID number is identical to its process group ID number.)

-s sesslist
List information on all session leaders whose IDs appear in sesslist.

Under the -f option, ps tries to determine the command name and arguments given when the process was created by examining the user block. Failing this, the command name is printed, as it would have appeared without the -f option, in square brackets.

The column headings and the meaning of the columns in a ps listing are given below; the letters f and 1 indicate the option (full or long, respectively) that causes the corresponding heading to appear; all means that the heading always appears. Note that these two options determine only what information is provided for a process; they do not determine which processes will be listed.

F (1) Flags (hexadecimal and additive) associated with the process:
- 00 Process has terminated: process table entry now available.
- 01 A system process: always in primary memory.
- 02 Parent is tracing process.
- 04 Tracing parent’s signal has stopped process: parent is waiting [ptrace(2)].
- 08 Process is currently in primary memory.
- 10 Process currently in primary memory: locked until an event completes.

S (1) The state of the process:
- O Process is running on a processor.
- S Sleeping: process is waiting for an event to complete.
- R Runnable: process is on run queue.
- I Idle: process is being created.
- Z Zombie state: process terminated and parent not waiting.
- T Traced: process stopped by a signal because parent is tracing it.
- X SXBRK state: process is waiting for more primary memory.

UID (f, 1) The user ID number of the process owner (the login name is printed under the -f option).

PID (all) The process ID of the process (the PID is necessary in order to kill a process).

PPID (f, 1) The process ID of the parent process.

C (f, 1) Processor utilization for scheduling. Not printed when the -c option is used.
ps(1) (Multiprocessing) ps(1)

CLS (f, 1) Scheduling class. Printed only when the -c option is used.

PRI (1) The priority of the process. Without the -c option, higher
numbers mean lower priority. With the -c option, higher
numbers mean higher priority.

NI (1) Nice value, used in priority computation. Not printed when
the -c option is used. Only processes in the time-sharing
class have a nice value.

ADDR (1) The memory address of the process.

SZ (1) The size (in pages or clicks) of the virtual address space of the
process.

WCHAN (1) The address of an event for which the process is sleeping, or
in SXBRK state, (if blank, the process is running).

STIME (f) The starting time of the process, given in hours, minutes, and
seconds. (A process begun more than twenty-four hours
before the ps inquiry is executed is given in months and
days.)

TTY (all) The controlling terminal for the process (the message, ?, is
printed when there is no controlling terminal).

TIME (all) The cumulative execution time for the process.

COMMAND (all) The command name (the full command name and its argu-
ments are printed under the -f option).

A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct>.

FILES
/dev
/dev/sxt/*
/dev/term*
/dev/xt/*
/dev/kmem terminal ("tty") names searcher files
/dev/kmem kernel virtual memory
/dev/swap the default swap device
/dev/mem memory
/etc/passwd UID information supplier
/etc/ps_data internal data structure

SEE ALSO
kill(1), nice(1), priocntl(1)
getty(1M) in the System Administrator's Reference Manual
ps(1) in the User's Reference Manual

NOTES
Things can change while ps is running; the snap-shot it gives is true only for a
split second, and it may not be accurate by the time you see it. Some data
printed for defunct processes is irrelevant.
If no *term* list, *proc* list, *uid* list, or *gr* list is specified, *ps* checks *stdin*, *stdout*, and *stderr* in that order, looking for the controlling terminal, and will attempt to report on processes associated with the controlling terminal. In this situation, if *stdin*, *stdout*, and *stderr* are all redirected, *ps* will not find a controlling terminal, so there will be no report.

ps may report an *lseek* error and exit. *ps* may seek to an invalid user area address: having obtained the address of a process' user area, *ps* may not be able to seek to that address before the process exits and the address becomes invalid.

ps -ef may not report the actual start of a tty login session, but rather an earlier time, when a *getty* was last respawned on the tty line.
NAME
ps – display the status of current processes

SYNOPSIS
/usr/ucb/ps [-acglnrSuUvwx] [-tterm] [num]

DESCRIPTION
The ps command displays information about processes. Normally, only those processes that are running with your effective user ID and are attached to a controlling terminal (see termio(4)) are shown. Additional categories of processes can be added to the display using various options. In particular, the -a option allows you to include processes that are not owned by you (that do not have your user ID), and the -x option allows you to include processes without control terminals. When you specify both -a and -x, you get processes owned by anyone, with or without a control terminal. The -r option restricts the list of processes printed to running and runnable processes.

ps displays the process ID, under PID; the control terminal (if any), under TT; the cpu time used by the process so far, including both user and system time, under TIME; the state of the process, under S; and finally, an indication of the COMMAND that is running.

The state is given by a single letter from the following:

O Process is running on a processor.
S Sleeping. Process is waiting for an event to complete.
R Runnable. Process is on run queue.
I Idle. Process is being created.
Z Zombie state. Process terminated and parent not waiting.
T Traced. Process stopped by a signal because parent is tracing it.
X SXBRK state. Process is waiting for more primary memory.

The following options must all be combined to form the first argument:

-a Include information about processes owned by others.
-c Display the command name, as stored internally in the system for purposes of accounting, rather than the command arguments, which are kept in the process’ address space. This is more reliable, if less informative, since the process is free to destroy the latter information.
-g Display all processes. Without this option, ps only prints interesting processes. Processes are deemed to be uninteresting if they are process group leaders. This normally eliminates top-level command interpreters and processes waiting for users to login on free terminals.
-l Display a long listing, with fields F, PPID, CP, PRI, NI, SZ, RSS and WCHAN as described below.
-n Produce numerical output for some fields. In a user listing, the USER field is replaced by a UID field.
-r Restrict output to running and runnable processes.
Display accumulated CPU time used by this process and all of its reaped children.

Display user-oriented output. This includes fields USER, SZ, RSS and START as described below.

Update a private database where ps keeps system information.

Display a version of the output containing virtual memory. This includes fields SIZE and RSS, described below.

Use a wide output format (132 columns rather than 80); if repeated, that is, -ww, use arbitrarily wide output. This information is used to decide how much of long commands to print.

Include processes with no controlling terminal.

List only process data associated with the terminal, term. Terminal identifiers may be specified in one of two forms: the device's file name (for example, tty04 or term/14) or, if the device's file name starts with tty, just the digit identifier (for example, 04).

A process number may be given, in which case the output is restricted to that process. This option must be supplied last.

DISPLAY FORMATS
Fields that are not common to all output formats:

USER Name of the owner of the process.

NI Process scheduling increment [see getpriority(3) and nice(3C)].

SIZE The combined size of the data and stack segments (in kilobyte units)

SZ Real memory (resident set) size of the process (in kilobyte units).

UID Numerical user-ID of process owner.

PPID Numerical ID of parent of process.

CP Short-term CPU utilization factor (used in scheduling).

PRI The priority of the process (higher numbers mean lower priority).

START The starting time of the process, given in hours, minutes, and seconds. A process begun more than 24 hours before the ps inquiry is executed is given in months and days.

WCHAN The address of an event for which the process is sleeping, or in SXBRK state (if blank, the process is running).

F Flags (hexadecimal and additive) associated with the process:

00 Process has terminated. Process table now available.

01 A system process, always in primary memory.

02 Parent is tracing process.

04 Tracing parent's signal has stopped process. Parent is waiting, see ptrace(2).
Process is currently in primary memory.
Process currently in primary memory, locked until an event is completed.

A process that has exited and has a parent, but has not yet been waited for by the parent is marked \texttt{<defunct>}; otherwise, \texttt{ps} tries to determine the command name and arguments given when the process was created by examining the user block.

FILES

- `/dev`
- `/dev/sxt/*`
- `/dev/tty*`
- `/dev/xt/*` terminal (tty) names searcher files
- `/dev/kmem` kernel virtual memory
- `/dev/swap` default swap device
- `/dev/mem` memory
- `/etc/passwd` UID information supplier
- `/etc/ps_data` internal data structure

SEE ALSO

- `getpriority(3)`, `nice(3C)`
- `kill(1)` in the \textit{User’s Reference Manual}
- `whodo(1)` in the \textit{System Administrator’s Reference Manual}
- `lseek(2)` in the \textit{Programmer’s Reference Manual}

NOTES

Things can change while \texttt{ps} is running; the picture it gives is only a close approximation to the current state. Some data printed for defunct processes is irrelevant.

If no \texttt{term} or \texttt{num} is specified, \texttt{ps} checks the standard input, the standard output, and the standard error in that order, looking for the controlling terminal and will attempt to report on processes associated with the controlling terminal. In this situation, if the standard input, the standard output, and the standard error are all redirected, \texttt{ps} will not find a controlling terminal, so there will be no report.

On a heavily loaded system, \texttt{ps} may report an \texttt{lseek(2)} error and exit. \texttt{ps} may seek to an invalid user area address, having obtained the address of process’ user area, \texttt{ps} may not be able to seek to that address before the process exits and the address becomes invalid.
NAME
putdev - edits device table

SYNOPSIS
putdev -a alias [attribute=value [...]]
putdev -m device attribute=value [attribute=value [...]]
putdev -d device [attribute [...]]

DESCRIPTION
putdev can add a new device to the device table, modify an existing device
description or remove a device entry from the table. The first synopsis is used to
add a device. The second synopsis is used to modify existing entries by adding
or changing attributes. If a specified attribute is not defined, this option adds
that attribute to the device definition. If it is already defined, it modifies the attri-
bute definition. The third synopsis is used to delete either an entire device entry
or, if the attribute argument is used, to delete an attribute assignment for a
device.

The options and arguments for this command are:
-a Adds a device to the device table using the specified attributes. The
device must be referenced by its alias.
-m Modifies a device entry in the device table. If an entry already
exists, it adds any specified attributes that are not defined. It also
modifies any attributes which already have a value with the value
specified with this command.
-d Removes a device from the device table, when executed without the
attributes argument. Used with the attribute argument, it deletes the
given attribute specification for device from the table.
alias Designates the alias of the device to be added.
device Designates the pathname or alias of the device whose attribute is to
be added, modified, or removed.
attribute Designates a device attribute to be added or modified. Can be any
of the device attributes described under NOTES except alias. This
prevents an accidental modification or deletion of a device’s alias
from the table.
value Designates the value to be assigned to a device’s attribute.

NOTES
The following list shows all of the attributes which can be defined for a device:
alias The unique name by which a device is known. No two devices in
the database may share the same alias name. The name is limited in
length to 14 characters and should contain only alphanumeric charac-
ters and also the following special characters if they are escaped
with a backslash: underscore (_), dollar sign ($), hyphen (-), and
period (.)
bdevice The pathname to the block special device node associated with the device, if any. The associated major/minor combination should be unique within the database and should match that associated with the cdevice field, if any. (It is the administrator’s responsibility to ensure that these major/minor numbers are unique in the database.)
capacity The capacity of the device or of the typical volume, if removable.
cdevice The pathname to the character special device node associated with the device, if any. The associated major/minor combination should be unique within the database and should match that associated with the bdevice field, if any. (It is the administrator’s responsibility to ensure that these major/minor numbers are unique in the database.)
cyl Used by the command specified in the mkfscmd attribute.
desc A description of any instance of a volume associated with this device (such as floppy diskette).
dpartlist The list of disk partitions associated with this device. Used only if type=disk. The list should contain device aliases, each of which must have type=dpart.
dparttype The type of disk partition represented by this device. Used only if type=dpart. It should be either fs (for filesystem) or dp (for data partition).
erasecmd The command string that, when executed, erases the device.
fmtcmd The command string that, when executed, formats the device.
fsname The filesystem name on the file system administered on this partition, as supplied to the /usr/sbin/labelit command. This attribute is specified only if type=dpart and dparttype=fs.
gap Used by the command specified in the mkfscmd attribute.
mkfscmd The command string that, when executed, places a file system on a previously formatted device.
mountpt The default mount point to use for the device. Used only if the device is mountable. For disk partitions where type=dpart and dparttype=fs, this attribute should specify the location where the partition is normally mounted.
nblocks The number of blocks in the filesystem administered on this partition. Used only if type=dpart and dparttype=fs.
ninodes The number of inodes in the filesystem administered on this partition. Used only if type=dpart and dparttype=fs.
norewind The name of the character special device node that allows access to the serial device without rewinding when the device is closed.
pathname Defines the pathname to an i-node describing the device (used for non-block or character device pathnames, such as directories).
type A token that represents inherent qualities of the device. Standard
types include: 9-track, ctape, disk, directory, diskette, dpart, and
qtape.

volname The volume name on the filesystem administered on this partition,
as supplied to the /sbin/labelit command. Used only if
type=dpart and dparttype=fs.

volume A text string used to describe any instance of a volume associated
with this device. This attribute should not be defined for devices
which are not removable.

ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table could not be opened for reading or new device table could not
be created.
3 = if executed with the -a option, indicates that an entry in the device table
with the alias alias already exits. If executed with the -m or -d options, indi­
cates that no entry exists for device device.
4 = indicates that -d was requested and one or more of the specified attributes
were not defined for the device.

FILES
/etc/device.tab

SEE ALSO
devattr(1), putdgrp(1M)
NAME
putdgrp - edits device group table

SYNOPSIS
putdgrp [-d] dgroup [device [...]]

DESCRIPTION
putdgrp modifies the device group table. It performs two kinds of modification. It can modify the table by creating a new device group or removing a device group. It can also change group definitions by adding or removing a device from the group definition.

When the command is invoked with only a dgroup specification, the command adds the specified group name to the device group table if it does not already exist. If the -d option is also used with only the dgroup specification, the command deletes the group from the table.

When the command is invoked with both a dgroup and a device specification, it adds the given device name (or names) to the group definition. When invoked with both arguments and the -d option, the command deletes the device name (or names) from the group definition.

When the command is invoked with both a dgroup and a device specification and the device group does not exist, it creates the group and adds the specified devices to that new group.

The options and arguments for this command are:
- -d Deletes the group or, if used with device, the device from a group definition.
- dgroup Specifies a device group name.
- device Specifies the pathname or alias of the device that is to added to or deleted from the device group.

ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device group table could not be opened for reading or a new device group table could not be created.
3 = if executed with the -d option, indicates that an entry in the device group table for the device group dgroup does not exist and so cannot be deleted. Otherwise, indicates that the device group dgroup already exists and cannot be added.
4 = if executed with the -d option, indicates that the device group dgroup does not have as members one or more of the specified devices. Otherwise, indicates that the device group dgroup already has one or more of the specified devices as members.
EXAMPLE
To add a new device group:
 putdgrp floppies
To add a device to a device group:
 putdgrp floppies diskette2
To delete a device group:
 putdgrp -d floppies
To delete a device from a device group:
 putdgrp -d floppies diskette2

FILES
/etc/dgroup.tab

SEE ALSO
 listdgrp(1), putdev(1M)
NAME
pwck, grpck – password/group file checkers

SYNOPSIS
/usr/sbin/pwck [file]
/usr/sbin/grpck [file]

DESCRIPTION
pwck scans the password file and notes any inconsistencies. The checks include validation of the number of fields, login name, user ID, group ID, and whether the login directory and the program-to-use-as-shell exist. The default password file is /etc/passwd.

grpck verifies all entries in the group file. This verification includes a check of the number of fields, group name, group ID, whether any login names belong to more than NGROUPS_MAX groups and that all login names appear in the password file. The default group file is /etc/group.

FILES
/etc/group
/etc/passwd

SEE ALSO
group(4), passwd(4)

DIAGNOSTICS
Group entries in /etc/group with no login names are flagged.
NAME
pwck – check password database entries

SYNOPSIS
/usr/ucb/pwck [filename]

DESCRIPTION
pwck checks a password file for errors. If specified, filename is checked, otherwise
/etc/passwd is checked.

This command differs from /usr/sbin/pwck in its ability to correctly parse YP
entries in /etc/passwd.

DIAGNOSTICS
Too many/few fields
An entry in the password file does not have the proper number of fields.

No login name
The login name field of an entry is empty.

Bad character(s) in login name
The login name in an entry contains characters other than lower-case
letters and digits.

First char in login name not lower case alpha
The login name in an entry does not begin with a lower-case letter.

Login name too long
The login name in an entry has more than 8 characters.

Invalid UID
The user ID field in an entry is not numeric or is greater than 65535.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

No login directory
The login directory field in an entry is empty.

Login directory not found
The login directory field in an entry refers to a directory that does not
exist.

Optional shell file not found.
The login shell field in an entry refers to a program or shell script that
does not exist.

No netgroup name
The entry is a Yellow Pages entry referring to a netgroup, but no netgroup
is present.

Bad character(s) in netgroup name
The netgroup name in a Yellow Pages entry contains characters other than
lower-case letters and digits.

First char in netgroup name not lower case alpha
The netgroup name in a Yellow pages entry does not begin with a lower-

case letter.
pwck(1M) (BSD Compatibility Package) pwck(1M)

FILES
 /etc/passwd

SEE ALSO
NAME
pwconv - install and update /etc/shadow with information from /etc/passwd

SYNOPSIS
pwconv

DESCRIPTION
The pwconv command creates and updates /etc/shadow with information from /etc/passwd.
If the /etc/shadow file does not exist, pwconv creates /etc/shadow with information from /etc/passwd. The command populates /etc/shadow with the user's login name, password, and password aging information. If password aging information does not exist in /etc/passwd for a given user, none is added to /etc/shadow. However, the last changed information is always updated.
If the /etc/shadow file does exist, the following tasks are performed:

- Entries that are in the /etc/passwd file and not in the /etc/shadow file are added to the /etc/shadow file.
- Entries that are in the /etc/shadow file and not in the /etc/passwd file are removed from /etc/shadow.
- Password attributes (for example, password and aging information) in an /etc/passwd entry are moved to the corresponding entry in /etc/shadow.

The pwconv program is a privileged system command that cannot be executed by ordinary users.

FILES
/etc/passwd, /etc/shadow, /etc/opasswd, /etc/oshadow

SEE ALSO
passwd(1), passmgmt(1M)

DIAGNOSTICS
The pwconv command exits with one of the following values:
0 Success.
1 Permission denied.
2 Invalid command syntax.
3 Unexpected failure. Conversion not done.
4 Unexpected failure. Password file(s) missing.
5 Password file(s) busy. Try again later.
NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1)

DIAGNOSTICS
"Cannot open .." and "Read error in .." indicate possible file system trouble and should be referred to a UNIX system administrator.

NOTES
If you move the current directory or one above it, pwd may not give the correct response. Use the cd(1) command with a full path name to correct this situation.
NAME
quot - summarize file system ownership

SYNOPSIS
quot [-acfhnv] [filesystem]

DESCRIPTION
quot displays the number of blocks (1024 bytes) in the named filesystem currently owned by each user. There is a limit of 2048 blocks. Files larger than this will be counted as a 2048 block file, but the total blocks count will be correct.

The options are:
- Generate a report for all mounted file systems.
- Display three columns giving a file size in blocks, the number of files of that size, and a cumulative total of blocks containing files of that size or a smaller size. Files exceeding 499 blocks are listed as 499 blocks. The last line always lists 499 blocks, even if there are no files of that size.
- Display count of number of files as well as space owned by each user. This option is incompatible with the -c and -v options.
- Estimate the number of blocks in the file — this does not account for files with holes in them.
- Attach names to the list of files read from standard input. quot -n cannot be used alone, because it expects data from standard input. For example, the pipeline
 ncheck filesystem | sort +0n | quot -n filesystem
will produce a list of all files and their owners. This option is incompatible with all other options.
- In addition to the default output, display three columns containing the number of blocks not accessed in the last 30, 60, and 90 days.

NOTES
This command may only be used by a privileged user.

FILES
/etc/nmttab mounted file systems
/etc/passwd to get user names

SEE ALSO
du(1M)
NAME
quota – display a user's disk quota and usage

SYNOPSIS
quota [-v] [username]

DESCRIPTION
quota displays users' disk usage and limits. Only a privileged user may use the optional username argument to view the limits of other users.

quota without options displays only warnings about mounted file systems where usage is over quota. Remotely mounted file systems which do not have quotas turned on are ignored.

username can be numeric, corresponding to the uid of a user.
The -v option displays user's quotas on all mounted file systems where quotas exist.

FILES
/etc/mnttab list of currently mounted filesystems

SEE ALSO
edquota(1M), quotaon(1M)
NAME
quotacheck – file system quota consistency checker

SYNOPSIS
quotacheck [-apv]

DESCRIPTION
quotacheck examines each file system, builds a table of current disk usage, and
compares this table against that stored in the disk quota file for the file system. If
any inconsistencies are detected, both the quota file and the current system copy
of the incorrect quotas are updated (the latter only occurs if an active file system
is checked).

quotacheck expects each file system to be checked to have a quota file named
quotas in the root directory. If none is present, quotacheck will ignore the file
system.

quotacheck accesses the character special device in calculating the actual disk
usage for each user. Thus, the file systems checked should be quiescent while
quotacheck is running.

The options are:
-v Indicate the calculated disk quotas for each user on a particular file sys-
tem. quotacheck normally reports only those quotas modified.
-a Check the file systems indicated in /etc/mnttab to be read-write with
disk quotas. Only those file systems that have "rq" in the mntopts field of
the /etc/vfstab file are checked.
-p Run parallel passes on the required file systems.

FILES
/etc/mnttab mounted file systems
/etc/vfstab list of default parameters for each file system

SEE ALSO
quotaon(1M)
NAME
quotaon, quotaoff – turn file system quotas on and off

SYNOPSIS
quotaon [-v] filesystem ...
quotaoff [-v] filesystem ...

DESCRIPTION
quotaon announces to the system that disk quotas should be enabled on one or more file systems. The file systems specified must be mounted at the time. The file system quota files must be present in the root directory of the specified file system and be named quotas.

quotaoff announces to the system that file systems specified should have any disk quotas turned off.

The option for quotaon:
-v Displays a message for each file system where quotas are turned on.

The option for quotaoff:
-v Displays a message for each file system affected.

These commands update the status field of devices located in /etc/mnttab to indicate when quotas are on or off for each file system.

FILES
/etc/mnttab mounted file systems
/etc/vfstab list of default parameters for each file system

SEE ALSO
mnttab(4), vfstab(4)
NAME
random – generate a random number

SYNOPSIS
random [-s] [scale]

DESCRIPTION
random generates a random number on the standard output, and returns the
number as its exit value. By default, this number is either 0 or 1. If scale is given
a value between 1 and 255, then the range of the random value is from 0 to scale.
If scale is greater than 255, an error message is printed.

When the -s (silent) option is given, then the random number is returned as an
exit value, but is not printed on the standard output. If an error occurs, random
returns an exit value of zero.

SEE ALSO
rand(3C)

NOTES
This command does not perform any floating point computations. random uses
the time of day as a seed.
NAME

rarpd – DARPA Reverse Address Resolution Protocol server

SYNOPSIS

rarpd interface [hostname]
/usr/sbin/rarpd -a

DESCRIPTION

rarpd starts a daemon that responds to Reverse Address Resolution Protocol (RARP) requests. The daemon forks a copy of itself that runs in background. It must be run as root.

RARP is used by machines at boot time to discover their Internet Protocol (IP) address. The booting machine provides its Ethernet Address in a RARP request message. Using the ethers and hosts databases, rarpd maps this Ethernet Address into the corresponding IP address which it returns to the booting machine in an RARP reply message. The booting machine must be listed in both databases for rarpd to locate its IP address. rarpd issues no reply when it fails to locate an IP address.

In the first synopsis, the interface parameter names the network interface upon which rarpd is to listen for requests. The interface parameter takes the “name unit” form used by ifconfig(1M). The second argument, hostname, is used to obtain the IP address of that interface. An IP address in “decimal dot” notation may be used for hostname. If hostname is omitted, the address of the interface will be obtained from the kernel. When the first form of the command is used, rarpd must be run separately for each interface on which RARP service is to be supported. A machine that is a router may invoke rarpd multiple times, for example:

/usr/sbin/rarpd emdl host
/usr/sbin/rarpd emd2 host-backbone

In the second synopsis, rarpd locates all of the network interfaces present on the system and starts a daemon process for each one that supports RARP.

FILES

/etc/ethers
/etc/hosts

SEE ALSO

boot(1M), ifconfig(1M), ethers(4), hosts(4), netconfig(4)

Finlayson, Ross, Timothy Mann, Jeffrey Mogul, and Marvin Theimer, A Reverse Address Resolution Protocol, RFC 903, Network Information Center, SRI International, Menlo Park, Calif., June 1984
NAME
c0 – run commands performed to stop the operating system

SYNOPSIS
/sbin/rc0

DESCRIPTION
This file is executed at each system state change that needs to have the system in an inactive state. It is responsible for those actions that bring the system to a quiescent state, traditionally called “shutdown”.

There are three system states that require this procedure. They are state 0 (the system halt state), state 5 (the firmware state), and state 6 (the reboot state). Whenever a change to one of these states occurs, the rc0 procedure is run. The entry in /etc/inittab, which may vary slightly on different machine types, might read:

r0:056:wait:/sbin/rc0 >/dev/sysmsg 2>&1 </dev/console

Some of the actions performed by rc0 are carried out by files beginning with K in /etc/rc0.d. These files are executed in ASCII order (see FILES below for more information), terminating some system service. The combination of commands in rc0 and files in /etc/rc0.d determines how the system is shut down.

The recommended sequence for rc0 is:

Stop System Services and Daemons.
Various system services (such as a Local Area Network or LP Spooler) are gracefully terminated.
When new services are added that should be terminated when the system is shut down, the appropriate files are installed in and /etc/rc0.d.

Terminate Processes
SIGTERM signals are sent to all running processes by killall(1M). Processes stop themselves cleanly if sent SIGTERM.

Kill Processes
SIGKILL signals are sent to all remaining processes; no process can resist SIGKILL.
At this point the only processes left are those associated with rc0 and processes 0 and 1, which are special to the operating system.

Unmount All File Systems
Only the root file system (/) remains mounted.

Depending on which system state the systems end up in (0, 5, or 6), the entries in /etc/inittab will direct what happens next. If the /etc/inittab has not defined any other actions to be performed as in the case of system state 0, then the operating system will have nothing to do. It should not be possible to get the system’s attention. The only thing that can be done is to turn off the power or possibly get the attention of a firmware monitor. The command can be used only by a privileged user.
FILES

The execution by /usr/bin/sh of any files in /etc/rc0.d occurs in ASCII sort-sequence order. See rc2(1M) for more information.

SEE ALSO
killall(1M), rc2(1M), shutdown(1M).
NAME
 rc2 – run commands performed for multi-user environment

SYNOPSIS
 /sbin/rc2

DESCRIPTION
 This file is executed via an entry in /etc/inittab and is responsible for those
 initializations that bring the system to a ready-to-use state, traditionally state 2,
 called the "multi-user" state.

 The actions performed by rc2 are found in files in the directory /etc/rc.d and
 files beginning with S in /etc/rc2.d. These files are executed by /usr/bin/sh
 in ASCII sort-sequence order (see FILES for more information). When functions
 are added that need to be initialized when the system goes multi-user, an
 appropriate file should be added in /etc/rc2.d.

 The functions done by the rc2 command and associated /etc/rc2.d files
 include:

 Setting and exporting the TIMEZONE variable.
 Setting-up and mounting the user (/usr) file system.
 Cleaning up (remaking) the /tmp and /var/tmp directories.
 Loading the network interface and ports cards with program data and
 starting the associated processes.
 Starting the cron daemon by executing /usr/sbin/cron.
 Cleaning up (deleting) uucp locks status, and temporary files in the
 /var/spool/uucp directory.

 Other functions can be added, as required, to support the addition of hardware
 and software features.

EXAMPLES
 The following are prototypical files found in /etc/rc2.d. These files are
 prefixed by an S and a number indicating the execution order of the files.

MOUNTFILESYS
 # Set up and mount file systems
 cd /
 /sbin/mountall /etc/fstab

RMTMPFILES
 # clean up /tmp
 rm -rf /tmp
 mkdir /tmp
 chmod 777 /tmp
 chgrp sys /tmp
 chown sys /tmp

 uucp
 # clean-up uucp locks, status, and temporary files
 rm -rf /var/spool/locks/*
The file /etc/TIMEZONE is included early in rc2, thus establishing the default time zone for all commands that follow.

FILES
Here are some hints about files in /etc/rc.d:
The order in which files are executed is important. Since they are executed in ASCII sort-sequence order, using the first character of the file name as a sequence indicator will help keep the proper order. Thus, files starting with the following characters would be:

- [0-9]. very early
- [A-Z]. early
- [a-n]. later
- [o-z]. last

Files in /etc/rc.d that begin with a dot (.) will not be executed. This feature can be used to hide files that are not to be executed for the time being without removing them. The command can be used only by a privileged user.

Files in /etc/rc2.d must begin with an S or a K followed by a number and the rest of the file name. Upon entering run level 2, files beginning with S are executed with the start option; files beginning with K, are executed with the stop option. Files beginning with other characters are ignored.

SEE ALSO
shutdown(1M).
NAME
rc6 - run commands performed to stop and reboot the operating system

SYNOPSIS
/sbin/rc6

DESCRIPTION
The shell script rc6 is run whenever a transition to run state 6 is requested either through init 6 or shutdown -i6.

The sequence of events in rc6 is as follows:
- Check to see if a new bootable operating system (/stand/unix) needs to be built; if so, build one by running the buildsys command.
- Unmount all file systems.

Then init executes the initdefault entry in the /etc/inittab file to bring the system to the operating state defined by that entry.

Note that if an error occurs while buildsys is building a new bootable operating system, a shell is spawned that will exit only to firmware state; [see buildsys(1M)].

SEE ALSO
buildsys(1M), cunix(1M), init(1M), rc0(1M), rc2(1M), shutdown(1M), inittab(4)

System Administrator’s Guide
NAME
 rcp – remote file copy

SYNOPSIS
 rcp [-p] filename1 filename2
 rcp [-pr] filename..directory

DESCRIPTION
 The rcp command copies files between machines. Each filename or directory argument is either a remote file name of the form:

 hostname:path

 or a local file name (containing no : characters, or a / before any : characters).

 If a filename is not a full path name, it is interpreted relative to your home directory on hostname. A path on a remote host may be quoted (using \, " , or ') so that the metacharacters are interpreted remotely.

 rcp does not prompt for passwords; your current local user name must exist on hostname and allow remote command execution by rsh(1).

 rcp handles third party copies, where neither source nor target files are on the current machine. Hostnames may also take the form

 username@hostname:filename

 to use username rather than your current local user name as the user name on the remote host. rcp also supports Internet domain addressing of the remote host, so that:

 username@host.domain:filename

 specifies the username to be used, the hostname, and the domain in which that host resides. Filenames that are not full path names will be interpreted relative to the home directory of the user named username, on the remote host.

 The destination hostname may also take the form hostname.username:filename to support destination machines that are running older versions of rcp.

 The following options are available:

 -p Attempt to give each copy the same modification times, access times, and modes as the original file.

 -r Copy each subtree rooted at filename; in this case the destination must be a directory.

SEE ALSO
 ftp(1), rlogin(1), rsh(1), hosts.equiv(4)
NOTES

rcp is meant to copy between different hosts; attempting to rcp a file onto itself, as with:

 rcp tmp/file myhost:/tmp/file

results in a severely corrupted file.

rcp does not detect all cases where the target of a copy might be a file in cases where only a directory should be legal.

rcp requires that the source host have permission to execute commands on the remote host when doing third-party copies.

If you forget to quote metacharacters intended for the remote host you get an incomprehensible error message.
NAME
 \texttt{rdate} – set system date from a remote host

SYNOPSIS
 \texttt{rdate \textit{hostname}}

DESCRIPTION
 \texttt{rdate} sets the local date and time from the \textit{hostname} given as an argument. You must be super-user on the local system. Typically \texttt{rdate} can be inserted as part of a startup script.
NAME
readfile, longline – reads file, gets longest line

SYNOPSIS
readfile file
longline [file]

DESCRIPTION
The readfile function reads file and copies it to stdout. No translation of NEWLINE is done. It keeps track of the longest line it reads and if there is a subsequent call to longline, the length of that line, including the NEWLINE character, is returned.

The longline function returns the length, including the NEWLINE character, of the longest line in file. If file is not specified, it uses the file named in the last call to readfile.

EXAMPLES
Here is a typical use of readfile and longline in a text frame definition file:

```
.. 
.. 

  text=`\readfile myfile`
  columns=`\longline`
.. 
```

DIAGNOSTICS
If file does not exist, readfile will return FALSE (that is, the expression will have an error return).

longline returns 0 if a readfile has not previously been issued.

NOTES
More than one descriptor can call readfile in the same frame definition file. In text frames, if one of those calls is made from the text descriptor, then a subsequent use of longline will always get the longest line of the file read by the readfile associated with the text descriptor, even if it was not the most recent use of readfile.

SEE ALSO
cat(1)
reboot(1M) (BSD Compatibility Package) reboot(1M)

NAME
 reboot – restart the operating system

SYNOPSIS
 /usr/ucb/reboot [-dnq] [boot arguments]

DESCRIPTION
 reboot restarts the kernel. The kernel is loaded into memory by the PROM moni­
tor, which transfers control to it.

 Although reboot can be run by the privileged user at any time, shutdown(1M) is
 normally used first to warn all users logged in of the impending loss of service.
 See shutdown(1M) for details.

 reboot performs a sync(1) operation on the disks, and then a multiuser reboot is
 initiated. See init(1M) for details.

 reboot normally logs the reboot to the system log daemon, syslogd(1M), and
 places a shutdown record in the login accounting file /var/adm/wtmp. These
 actions are inhibited if the -n or -q options are present.

The following options are available:

 -d Dump system core before rebooting. This option is provided for compati­
 bility, but is not supported by the underlying reboot(3) call.

 -n Avoid the sync(1). It can be used if a disk or the processor is on fire.

 -q Quick. Reboots quickly and ungracefully, without first shutting down
 running processes.

 boot arguments
 These arguments are accepted for compatibility, but are ignored by
 reboot. See boot(1M) for details.

Power Fail and Crash Recovery
 Normally, the system will reboot itself at power-up or after crashes.

FILES
 /var/adm/wtmp login accounting file

SEE ALSO
 halt(1M), syslogd(1M), reboot(3)
 boot(1M), crash(1M), fsck(1M), init(1M), shutdown(1M), sync(1M), in the Sys­
 tem Administrator’s Reference Manual
NAME
refer – expand and insert references from a bibliographic database

SYNOPSIS

DESCRIPTION
refer is a preprocessor for nroff(1), or troff(1), that finds and formats references. The input files (standard input by default) are copied to the standard output, except for lines between ‘.’ and ‘.’ command lines. Such lines are assumed to contain keywords as for lookbib(1), and are replaced by information from a bibliographic data base. The user can avoid the search, override fields from it, or add new fields. The reference data, from whatever source, is assigned to a set of troff strings. Macro packages such as ms(7) print the finished reference text from these strings. A flag is placed in the text at the point of reference. By default, the references are indicated by numbers.

When refer is used with eqn(1), neqn, or tbl(1), refer should be used first in the sequence, to minimize the volume of data passed through pipes.

The following options are available:

-\b Bare mode — do not put any flags in text (neither numbers or labels).
-\e Accumulate references instead of leaving the references where encountered, until a sequence of the form:

 . [$\$LIST$] .

is encountered, and then write out all references collected so far. Collapse references to the same source.

-\n Do not search the default file.
-\ar Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is omitted, all author names are reversed.

-\cstring Capitalize (with SMALL CAPS) the fields whose key-letters are in string.

-\kx Instead of numbering references, use key labels as specified in a reference data line beginning with the characters %\x; By default, %\x is %L.

-\1m,n Instead of numbering references, use labels from the senior author’s last name and the year of publication. Only the first m letters of the last name and the last n digits of the date are used. If either of m or n is omitted, the entire name or date, respectively, is used.

-\p filename Take the next argument as a file of references to be searched. The default file is searched last.
-s keys Sort references by fields whose key-letters are in the keys string, and permute reference numbers in the text accordingly. Using this option implies the -e option. The key-letters in keys may be followed by a number indicating how many such fields are used, with a + sign taken as a very large number. The default is AD, which sorts on the senior author and date. To sort on all authors and then the date, for instance, use the options ‘-s A+ T’.

FILES
/usr/ucblib/reftools/papers default publication lists and indexes
/usr/ucblib/reftools programs

SEE ALSO
addbib(1), eqn(1), indxbib(1), lookbib(1), nroff(1), roffbib(1), sortbib(1), tbl(1), troff(1)
NAME
regcmp – regular expression compile

SYNOPSIS
regcmp [-] file ...

DESCRIPTION
The regcmp command performs a function similar to regcmp and, in most cases, precludes the need for calling regcmp from C programs. Bypassing regcmp saves on both execution time and program size. The command regcmp compiles the regular expressions in file and places the output in file.i. If the - option is used, the output is placed in file.c. The format of entries in file is a name (C variable) followed by one or more blanks followed by one or more regular expressions enclosed in double quotes. The output of regcmp is C source code. Compiled regular expressions are represented as extern char vectors. file.i files may thus be #included in C programs, or file.c files may be compiled and later loaded. In the C program that uses the regcmp output, regex(abc,line) applies the regular expression named abc to line. Diagnostics are self-explanatory.

EXAMPLES
name "([A-Za-z][A-Za-z0-9_]*$0"
telno "\(({0,1}{(2-9)[01][1-9]}$0\){0,1} *"
"([2-9][0-9]{2})$1[-]{0,1}""([0-9]{4})$2"

The three arguments to telno shown above must all be entered on one line.
In the C program that uses the regcmp output,
regex(telno, line, area, exch, rest)
applies the regular expression named telno to line.

SEE ALSO
regcmp(3G)
NAME
regex – match patterns against a string

SYNOPSIS
regex [-e] [-v "string"] [pattern template] ... pattern [template]

DESCRIPTION
The regex command takes a string from stdin, and a list of pattern/template pairs, and runs regex(3X) to compare the string against each pattern until there is a match. When a match occurs, regex writes the corresponding template to stdout and returns TRUE. The last (or only) pattern does not need a template. If that is the pattern that matches the string, the function simply returns TRUE. If no match is found, regex returns FALSE.

-e means regex will evaluate the corresponding template and write the result to stdout.

-v "string" If -v is specified, string will be used instead of stdin to match against patterns.

The argument pattern is a regular expression of the form described in regex(3X). In most cases pattern should be enclosed in single quotes to turn off special meanings of characters. Note that only the final pattern in the list may lack a template.

The argument template may contain the strings $m0 through $m9, which will be expanded to the part of pattern enclosed in (•••)$0 through (•••)$9 constructs (see examples below). Note that if you use this feature, you must be sure to enclose template in single quotes so that FMLI doesn’t expand $m0 through $m9 at parse time. This feature gives regex much of the power of cut(l), paste(l), and grep(l), and some of the capabilities of sed(l). If there is no template, the default is "$m0$m1$m2$m3$m4$m5$m6$m7$m8$m9".

EXAMPLES
To cut the 4th through 8th letters out of a string (this example will output string and return TRUE):

`regex -v "my string is nice" '^.\{3\}\{.\{5\}\}0' 'm0'``

In a form, to validate input to field 5 as an integer:

`valid=` \`regex -v "$F5" '^[0-9]+$'``

In a form, to translate an environment variable which contains one of the numbers 1, 2, 3, 4, 5 to the letters a, b, c, d, e:

`value=` \`regex -v "$VAR1" 1 a 2 b 3 c 4 d 5 e' .\.* Error``

Note the use of the pattern ‘.\.*’ to mean “anything else.”

In the example below, all three lines constitute a single backquoted expression. This expression, by itself, could be put in a menu definition file. Since backquoted expressions are expanded as they are parsed, and output from a backquoted expression (the cat command, in this example) becomes part of the definition file being parsed, this expression would read /etc/passwd and make a dynamic menu of all the login ids on the system.
regex(1F) (Form and Menu Language Interpreter Utilities) regex(1F)

`cat /etc/passwd | regex '^[[:^:*]]*[^[:^:*]]+$0.*$'`
name=$m0
action=`message "$m0 is a user"``

DIAGNOSTICS
If none of the patterns matches, regex returns FALSE, otherwise TRUE.

NOTES
Patterns and templates must often be enclosed in single quotes to turn off the special meanings of characters. Especially if you use the $m0 through $m9 variables in the template, since FMLI will expand the variables (usually to "") before regex even sees them.

Single characters in character classes (inside []) must be listed before character ranges, otherwise they will not be recognized. For example, [a-zA-Z_1_] will not find underscores (_) or slashes (|), but [/_a-zA-Z] will.

The regular expressions accepted by regcmp differ slightly from other utilities (that is, sed, grep, awk, ed, and so on).

regex with the -e option forces subsequent commands to be ignored. In other words if a backquoted statement appears as follows:
`regex -e ...; command1; command2`

command1 and command2 would never be executed. However, dividing the expression into two:
`regex -e ...``command1; command2`
would yield the desired result.

SEE ALSO
awk(1), cut(1), grep(1), paste(1), sed(1) in the UNIX System V User's Reference Manual
NAME
reinit – runs an initialization file

SYNOPSIS
reinit file

DESCRIPTION
The reinit command is used to change the values of descriptors defined in the initialization file that was named when fmli was invoked and/or define additional descriptors. FMLI will parse and evaluate the descriptors in file, and then continue running the current application. The argument file must be the name of a valid FMLI initialization file.

The reinit command does not re-display the introductory frame or change the layout of screen labels for function keys.
NAME
relogin – rename login entry to show current layer

SYNOPSIS
/usr/lib/layersys/relogin [-s] [line]

DESCRIPTION
The relogin command changes the terminal line field of a user’s utmp entry to
the name of the windowing terminal layer attached to standard input. write
messages sent to this user are directed to this layer. In addition, the who com-
mand will show the user associated with this layer. relogin may only be
invoked under layers.

relogin is invoked automatically by layers to set the utmp entry to the terminal
line of the first layer created upon startup, and to reset the utmp entry to the real
line on termination. It may be invoked by a user to designate a different layer to
receive write messages.

-s Suppress error messages.

line Specifies which utmp entry to change. The utmp file is searched for an
entry with the specified line field. That field is changed to the line asso-
ciated with the standard input. (To learn what lines are associated with
a given user, say jdoe, type ps -f -u jdoe and note the values shown
in the TTY field [see ps(1)]).

FILES
/var/adm/utmp database of users versus terminals

SEE ALSO
utmp(4)

DIAGNOSTICS
Returns 0 upon successful completion, 1 otherwise.

NOTES
relogin will fail, if line does not belong to the user issuing the relogin com-
mand or standard input is not associated with a terminal.
removef(1M) (Essential Utilities) removef(1M)

NAME
removef – remove a file from software database

SYNOPSIS
removef pkginst path1 [path2 ...]
removef -f pkginst

DESCRIPTION
removef informs the system that the user, or software, intends to remove a path¬
name. Output from removef is the list of input pathnames that may be safely
removed (no other packages have a dependency on them).
After all files have been processed, removef should be invoked with the -f
option to indicate that the removal phase is complete.

EXAMPLE
The following shows the use of removef in an optional pre-install script:

 echo "The following files are no longer part of this package
 and are being removed."
 removef $PKGINST /dev/xt[0-9][0-9] [0-9] |
 while read pathname
 do
 echo "$pathname"
 rm -f $pathname
 done
 removef -f $PKGINST || exit 2

SEE ALSO
installf(1M), pkgadd(1M), pkgask(1M), pkgchk(1), pkginfo(1), pkgmk(1),
pkgproto(1), pkgtrans(1), pkgparam(3X)
rename(1)

NAME
rename – change the name of a file

SYNOPSIS
rename old new

DESCRIPTION
rename renames a file. old is the pathname of the file or directory to be renamed. new is the new pathname of the file or directory. Both old and new must be of the same type (either both files, or both directories) and must reside on the same file system.

If new already exists, it is removed. Thus, if new names an existing directory, the directory must not have any entries other than, possibly, ".." and ".". When renaming directories, the new pathname must not name a descendant of old. The implementation of rename ensures that upon successful completion a link named new will always exist.

If the final component of old is a symbolic link, the symbolic link is renamed, not the file or directory to which it points.

Write permission is required for both the directory containing old and the directory containing new.

NOTES
The system can deadlock if there is a loop in the file system graph. Such a loop takes the form of an entry in directory a, say a/foo, being a hard link to directory b, and an entry in directory b, say b/bar, being a hard link to directory a. When such a loop exists and two separate processes attempt to perform rename a/foo b/bar and rename b/bar a/foo, respectively, the system may deadlock attempting to lock both directories for modification. The system administrator should replace hard links to directories by symbolic links.

SEE ALSO
link(2), rename(2), unlink(2) in the Programmer’s Reference Manual
NAME
renice – alter priority of running processes

SYNOPSIS
/usr/ucb/renice priority pid ...
/usr/ucb/renice priority [-p pid ...] [-g pgrp ...] [-u username ...]

DESCRIPTION
The renice command alters the scheduling priority of one or more running processes. By default, the processes to be affected are specified by their process IDs. priority is the new priority value.

The following options are available:
-p pid ... Specify a list of process IDs.
-g pgrp ... Specify a list of process group IDs. The processes in the specified process groups have their scheduling priority altered.
-u user ... Specify a list of user IDs or usernames. All processes owned by each user have their scheduling altered.

Users other than the privileged user may only alter the priority of processes they own, and can only monotonically increase their nice value within the range 0 to 20. This prevents overriding administrative fiats. The privileged user may alter the priority of any process and set the priority to any value in the range -20 to 20. Useful priorities are: 19 (the affected processes will run only when nothing else in the system wants to), 0 (the base scheduling priority) and any negative value (to make things go very fast).

If only the priority is specified, the current process (alternatively, process group or user) is used.

FILES
/etc/passwd map user names to user ID's

SEE ALSO
priocntl(1) in the User’s Reference Manual

NOTES
If you make the priority very negative, then the process cannot be interrupted. To regain control you must make the priority greater than zero.

Users other than the privileged user cannot increase scheduling priorities of their own processes, even if they were the ones that decreased the priorities in the first place.

The priocntl command subsumes the function of renice.
repquota(1M) (UFS) repquota(1M)

NAME
repquota – summarize quotas for a file system

SYNOPSIS
repquota [-v] filesystem ...
repquota [-av]

DESCRIPTION
repquota prints a summary of the disk usage and quotas for the specified file
systems. For each user the current number of files and amount of space (in kilo-
bytes) is printed, along with any quotas created with edquota.

The options are:
-a Report on all file systems that have "rq" in the mntopts field of the
/etc/vfstab file.
-v Report all quotas, even if there is no usage.

Only privileged users may view quotas which are not their own.

SEE ALSO
edquota(1M), quota(1M), quotacheck(1M), quotaon(1M)
NAME
reset - reset the current form field to its default values

SYNOPSIS
reset

DESCRIPTION
The reset function causes the value descriptor of the current field to be re-evaluated, restoring the default value of the field if the current value is different. The descriptor is re-evaluated even if it has been modified by const.
NAME

restore – initiate restores of filesystems, data partitions, or disks

SYNOPSIS

restore [-o target] [-d date] [-m] [-s|v] -P partdev
restore [-o target] [-d date] [-m] [-s|v] -S odevice
restore [-o target] [-d date] [-m] [-s|v] -A partdev

DESCRIPTION

restore posts requests for the restore of a data partition, a filesystem partition, or a disk from system-maintained archives. If the appropriate archive containing the required partition is online, the partition is restored immediately. If not, a request to restore the specified archive of the partition is posted to a restore status table. The restore status table is /etc/bkup/rsstatus.tab. The restore request is assigned a restore jobid that can be used to monitor the progress of the restore or to cancel it. A restore request that has been posted must later be resolved by an operator (see rsoper(1M)).

restore may be executed only by a privileged user.

If restore -A partdev is issued, the fdisk(1M) (full disk recovery) method is used to repartition and repopulate disk partdev. partdev is the name of the device that refers to the entire disk. For example, the name might be /dev/rdsk/*, where the value of * is machine specific.

Options

-`-d date` Restores the partition as of date. This may or may not be the latest archive. See getdate(1M) for valid date formats.

-`-m` If the restore cannot be carried out immediately, this option notifies the invoking user (via mail(1M)) when the request has been completed.

-`-n` Displays a list of all archived versions of the object contained in the backup history log, but does not attempt to restore the object.

-`-o target` Instead of restoring directly to the specified object (partdev or fsdev), this option restores the archive to target. target is of the form:

```
[oname][:odev]
```

where oname is the name of the filesystem to be restored to (for -S archives) and odev is the name of the partition to be restored to (for -P and -A archives).

-`-s` While a restore operation is occurring, displays a "." for each 100 (512-byte) blocks transferred from the destination device.

-`-v` Displays the name of each object as it is restored. Only those archiving methods that restore named directories and files (incfile, ffile) support this option.

-`-A partdev` Initiates restore of the entire disk partdev.
restore (1M) (System Administration Utilities) restore (1M)

-P partdev Initiates restore of the data partition partdev.
-S odevice Initiates restore of the filesystem partition odevice.

DIAGNOSTICS
The exit codes for restore are the following:
0 = the task completed successfully
1 = one or more parameters to restore are invalid
2 = an error has occurred, causing restore to fail to complete all portions of its task

EXAMPLES
Example 1:

 restore -m -S /usr

posts a request to restore the most current archived version of /usr. If the restore cannot be carried out immediately, notify the invoking user when the request has been completed.

Example 2:

 restore -o /dev/rdsk/* -P /dev/rdsk/y

posts a request that the archived data partition /dev/rdsk/y be restored to the target device partition /dev/rdsk/*, where the value of * and y are machine specific.

Example 3:

 restore -d "december 1, 1987" -A /dev/rdsk/*

posts a request for the restore of the entire disk /dev/rdsk/*, where the value of * is machine specific. The restore should be made as of December 1, 1987.

Example 4:

 restore -n -P /dev/rdsk/*

requests the system to display the backup date and an ls -1 listing from the backup history log of all archived versions of the data partition /dev/rdsk/*, where the value of * is machine specific. The data partition is not restored.

FILES
/etc/bkup/bkhist.tab lists the labels of all volumes that have been used for backup operations
/etc/bkup/rsstatus.tab lists the status of all restore requests from users
/etc/bkup/rsnotify.tab lists the email address of the operator to be notified whenever restore requests require operator intervention

SEE ALSO
fdisk(1M), mail(1M), rsnotify(1M), rsoper(1M), rsstatus(1M),
urestore(1M), ursstatus(1M).
getdate(3C) in the Programmer's Reference Manual.
NAME
restore - restore file to original directory

SYNOPSIS
restore [-c] [-i] [-o] [-t] [-d device] | [pattern [pattern]. . .]

DESCRIPTION
-c complete restore. All files on the tape are restored.
-i gets the index file off of the medium. This only works when the archive was created using backup. The output is a list of all the files on the medium. No files are actually restored.
-o overwrite existing files. If the file being restored already exists it will not be restored unless this option is specified.
-t indicates that the tape device is to be used. Must be used with the -d option when restoring from tape.

-d device is the raw device to be used. It defaults to dev/SA/diskette

When doing a restore, one or more patterns can be specified. These patterns are matched against the files on the tape. When a match is found, the file is restored. Since backups are done using full pathnames, the file is restored to its original directory. Metacharacters can be used to match multiple files. The patterns should be in quotes to prevent the characters from being expanded before they are passed to the command. If no patterns are specified, it defaults to restoring all files. If a pattern does not match any file on the tape, a message is printed.

When end of medium is reached, the user is prompted for the next media. The user can exit at this point by typing q. (This may cause files to be corrupted if a file happens to span a medium.) In general, quitting in the middle is not a good idea.

If the file already exists and an attempt is made to restore it without the -o option, the file name will be printed on the screen followed by a question mark. This file will not be retored.

In order for multi-volume restores to work correctly, the raw device must be used.

SEE ALSO
sh(1)
rexecd(1M) (Internet Utilities) rexecd(1M)

NAME
rexecd – remote execution server

SYNOPSIS
in.reexec host.port

DESCRIPTION
rexecd is the server for the rexec(3N) routine. The server provides remote execution facilities with authentication based on user names and encrypted passwords. It is invoked automatically as needed by inetd(1M), and then executes the following protocol:

1) The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary stream to be used for the stderr. A second connection is then created to the specified port on the client’s machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial socket.

4) A null terminated, encrypted, password of at most 16 characters is retrieved on the initial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is limited by the upper bound on the size of the system’s argument list.

6) rexecd then validates the user as is done at login time and, if the authentication was successful, changes to the user’s home directory, and establishes the user and group protections of the user. If any of these steps fail the connection is aborted with a diagnostic message returned.

7) A null byte is returned on the connection associated with the stderr and the command line is passed to the normal login shell of the user. The shell inherits the network connections established by rexecd.

SEE ALSO
inetd(1M)

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with the stderr, after which any network connections are closed. An error is indicated by a leading byte with a value of 1 (0 is returned in step 7 above upon successful completion of all the steps prior to the command execution).

username too long
The name is longer than 16 characters.

password too long
The password is longer than 16 characters.

command too long
The command line passed exceeds the size of the argument list (as configured into the system).
Login incorrect.
 No password file entry for the user name existed.

Password incorrect.
 The wrong password was supplied.

No remote directory.
 The chdir command to the home directory failed.

Try again.
 A fork by the server failed.

/usr/bin/sh: ...
 The user’s login shell could not be started.

NOTES
Indicating Login incorrect as opposed to Password incorrect is a security breach which allows people to probe a system for users with null passwords.

A facility to allow all data exchanges to be encrypted should be present.
NAME
rfadmin – Remote File Sharing domain administration

SYNOPSIS
rfadmin
rfadmin -a hostname
rfadmin -r hostname
rfadmin -p [-t transport1,transport2, ...]
rfadmin -q
rfadmin -o option

DESCRIPTION
rfadmin is used to add and remove hosts, and their associated authentication information, from a domain/passwd file on a Remote File Sharing primary domain name server. It is also used to transfer domain name server responsibilities from one machine to another. Used with no options, rfadmin returns the hostname of the current domain name server for the local domain on each of the transport providers that span the domain.

rfadmin can only be used to modify domain files on the primary domain name server (-a and -r options). If domain name server responsibilities are temporarily passed to a secondary domain name server, that computer can use the -p option to pass domain name server responsibility back to the primary. The command can be directed to a specific set of transport providers by using the -t option with a comma-separated list of transport providers. Any host can use rfadmin with no options to print information about the domain. The user must have root permissions to use this command, except in the case when the -q option is used.

-a hostname Add a host to a domain that is served by this domain name server. hostname must be of the form domain.nodename. It creates an entry for hostname in the domain/passwd file and prompts for an initial authentication password; the password prompting process conforms with that of passwd(1).

-r hostname Remove a host, hostname, from its domain by removing it from the domain/passwd file.

-p Used to pass the domain name server responsibilities back to a primary or to a secondary name server.

-t transport1, transport2 ... Select transport provider(s). The -t option is used only with the -p option.

-q Tells if RFS is running.

-o option Sets RFS system option. option is one of the following:

 loopback Enable loop back facility. This allows a resource advertised by a computer to be mounted by the same computer. loopback is off by default.
rfadmin (1M) (Remote File Sharing Utilities) rfadmin (1M)

noloopback Turn off the loop back facility. noloopback is the default.

loopmode Check if the loop back facility is on or off.

ERRORS
When used with the -a option, if hostname is not unique in the domain, an error message will be sent to standard error.

When used with the -r option, if (1) hostname does not exist in the domain, (2) hostname is defined as a domain name server, or (3) there are resources advertised by hostname, an error message will be sent to standard error.

When used with the -p option to change the domain name server, if there are no backup name servers defined for domain, an error message will be sent to standard error.

FILES
/etc/rfs/auth.info/domain/passwd
For each domain, this file is created on the primary, copied to all secondaries, and copied to all hosts that want to do password verification of hosts in the domain.

SEE ALSO
passwd(1), dname(1M), rfstart(1M), rfstop(1M), umount(1M)
rfpasswd (1M) (Remote File Sharing Utilities) rfpasswd (1M)

NAME

rfpasswd – change Remote File Sharing host password

SYNOPSIS

rfpasswd

DESCRIPTION

rfpasswd updates the Remote File Sharing authentication password for a host; processing of the new password follows the same criteria as passwd(1). The updated password is registered at the domain name server (/etc/dfs/rfs/auth.info/domain/passwd) and replaces the password stored at the local host (/etc/dfs/rfs/loc.passwd file).

This command is restricted to the super-user.

NOTE: If you change your host password, make sure that hosts that validate your password are notified of this change. To receive the new password, hosts must obtain a copy of the domain/passwd file from the domain’s primary name server. If this is not done, attempts to mount remote resources may fail!

ERRORS

If (1) the old password entered from this command does not match the existing password for this machine, (2) the two new passwords entered from this command do not match, (3) the new password does not satisfy the security criteria in passwd(1), (4) the domain name server does not know about this machine, or (5) the command is not run with super-user privileges, an error message will be sent to standard error. Also, Remote File Sharing must be running on your host and your domain’s primary name server. A new password cannot be logged if a secondary is acting as the domain name server.

FILES

/etc/dfs/rfs/auth.info/domain/passwd
/etc/dfs/rfs/loc.passwd

SEE ALSO

rfstart(1M), rfadmin(1M)
passwd(1) in the User’s Reference Manual
NAME
rfstart – start Remote File Sharing

SYNOPSIS
rfstart [-v] [-p primary_addr]

DESCRIPTION
rfstart starts Remote File Sharing and defines an authentication level for incoming requests. [This command can only be used after the domain name server is set up and your computer’s domain name and network specification have been defined using dname(1M).]

-v Specifies that verification of all clients is required in response to initial incoming mount requests; any host not in the file /etc/rfs/auth.info/domain/passwd for the domain they belong to, will not be allowed to mount resources from your host. If -v is not specified, hosts named in domain/passwd will be verified. Other hosts will be allowed to connect without verification.

-p primary_addr
Indicates the primary domain name server for your domain. primary_addr can specify any of the following: the network address of the primary name server for a domain (addr); a list of address tuples when RFS is used over multiple transport providers (transport1:addr1,transport2:addr2, ...). An example of each type of specification follows:

-p addr
-p transport1:addr1,transport2:addr2, ...

If the -p option is not specified, the address of the domain name server is taken from the associated rfmaster files. The -p addr specification is valid only when one transport provider is being used. See the rfmaster(1M) manual page for a description of the valid address syntax.

If the host password has not been set, rfstart will prompt for a password. The password prompting process must match the password entered for your machine at the primary domain name server [see rfadmin(1M)]. If you remove the loc.passwd file or change domains, you will also have to reenter the password.

Also, when rfstart is run on a domain name server, entries in the rfmaster(4) file are syntactically validated.

This command is restricted to the super-user.

ERRORS
If syntax errors are found when validating an rfmaster(4) file, a warning describing each error will be sent to standard error.

An error message will be sent to standard error if any of the following conditions are true:

1. remote file sharing is already running
2. there is no communications network
3. a domain name server cannot be found
4. a domain name server does not recognize the machine
rfstart (1M) (Remote File Sharing Utilities) rfstart (1M)

5. the command is run without super-user privileges

Remote file sharing will not start if a host password in
/etc/rfs/<transport>/loc.passwd is corrupted. If you suspect this has hap­
pened, remove the file and run rfstart again to reenter your password.

Note: rfstart will not fail if your host password does not match the password
on the domain name server. You will simply receive a warning message. How­
ever, if you try to mount a resource from the primary, or any other host that vali­
dates your password, the mount will fail if your password does not match the
one that the host has listed for your machine.

FILES
/etc/rfs/<transport>/rfmaster
/etc/rfs/<transport>/loc.passwd

SEE ALSO
share(1M), dname(1M), idload(1M), mount(1M), rfadmin(1M), rfstop(1M),
unshare(1M)
rfmaster(4) in the Programmer's Reference Manual

NOTES
You must run idload(1M) to put any non-default user and group mappings into
place.
NAME
rfstop – stop the Remote File Sharing environment

SYNOPSIS
rfstop

DESCRIPTION
rfstop disconnects a host from the Remote File Sharing environment until another rfstart(1M) is executed.

When executed on the domain name server, the domain name server responsibility is moved to a secondary name server as designated in the rfmaster(4) file. If there is no designated secondary name server rfstop will issue a warning message, Remote File Sharing will be stopped, and name service will no longer be available to the domain.

This command is restricted to the super-user.

ERRORS
If (1) there are resources currently advertised by this host, (2) resources from this machine are still remotely mounted by other hosts, (3) there are still remotely mounted resources in the local file system tree, (4) rfstart(1M) had not previously been executed, or (5) the command is not run with super-user privileges, an error message will be sent to standard error and Remote File Sharing will not be stopped.

SEE ALSO
adv(1M), mount(1M), rfadmin(1M), rfstart(1M), unadv(1M), rfmaster(4)
NAME
rfuadmin – Remote File Sharing notification shell script

SYNOPSIS
/etc/rfs/rfuadmin message remote_resource [seconds]

DESCRIPTION
The rfuadmin administrative shell script responds to unexpected Remote File Sharing events, such as broken network connections and forced unmounts, picked up by the rfudaemon process. This command is not intended to be run directly from the shell.

The response to messages received by rfudaemon can be tailored to suit the particular system by editing the rfuadmin script. The following paragraphs describe the arguments passed to rfuadmin and the responses.

disconnect remote_resource
A link to a remote resource has been cut. rfudaemon executes rfuadmin, passing it the message disconnect and the name of the disconnected resource. rfuadmin sends this message to all terminals using wall(1):

Remote resource has been disconnected from the system.

Then it executes fuser(1M) to kill all processes using the resource, unmounts the resource [umount(1M)] to clean up the kernel, and starts rmount to try to remount the resource.

fumount remote_resource
A remote server machine has forced an unmount of a resource a local machine has mounted. The processing is similar to processing for a disconnect.

fuwarn remote_resource seconds
This message notifies rfuadmin that a resource is about to be unmounted. rfudaemon sends this script the fuwarn message, the resource name, and the number of seconds in which the forced unmount will occur. rfuadmin sends this message to all terminals:

Remote resource is being removed from the system in # seconds.

SEE ALSO
fumount(1M), rmount(1M), rfudaemon(1M), rfstart(1M)
wall(1) in the User's Reference Manual

NOTES
The console must be on when Remote File Sharing is running. If it’s not, rfuadmin will hang when it tries to write to the console (wall) and recovery from disconnected resources will not complete.
rfudaemon (1M) (RFS) rfudaemon (1M)

NAME
rfudaemon – Remote File Sharing daemon process

SYNOPSIS
/etc/rfs/rfudaemon

DESCRIPTION
The rfudaemon command is started automatically by rfstart(1M) and runs as a
daemon process as long as Remote File Sharing is active. Its function is to listen
for unexpected events, such as broken network connections and forced unmounts,
and execute appropriate administrative procedures.

When such an event occurs, rfudaemon executes the administrative shell script
rfuadmin, with arguments that identify the event. This command is not intended
to be run from the shell. Here are the events:

DISCONNECT A link to a remote resource has been cut. rfudaemon executes
rfuadmin, with two arguments: disconnect and the name of the
disconnected resource.

FUMOUNT A remote server machine has forced an unmount of a resource a
local machine has mounted. rfudaemon executes rfuadmin, with
two arguments: fumount and the name of the disconnected
resource.

GETUMSG A remote user-level program has sent a message to the local rfua-
demon. Currently the only message sent is fuwarn, which notifies
rfuadmin that a resource is about to be unmounted. It sends
rfuadmin the fuwarn, the resource name, and the number of
seconds in which the forced unmount will occur.

LASTUMSG The local machine wants to stop the rfudaemon [rfstop(1M)].
This causes rfudaemon to exit.

SEE ALSO
rfstart(1M), rfuadmin(1M)
NAME
rlogin - remote login

SYNOPSIS
rlogin [-L] [-8] [-e c] [-l username] hostname

DESCRIPTION
rlogin establishes a remote login session from your terminal to the remote
machine named hostname.

Hostnames are listed in the hosts database, which may be contained in the
/etc/hosts file, the Internet domain name server, or in both. Each host has one
official name (the first name in the database entry), and optionally one or more
nicknames. Either official hostnames or nicknames may be specified in hostname.

Each remote machine may have a file named /etc/hosts.equiv containing a list
of trusted hostnames with which it shares usernames. Users with the same user­
name on both the local and remote machine may rlogin from the machines list­
ed in the remote machine's /etc/hosts.equiv file without supplying a pass­
word. Individual users may set up a similar private equivalence list with the file
.rhosts in their home directories. Each line in this file contains two names: a
hostname and a username separated by a space. An entry in a remote user's
.rhosts file permits the user named username who is logged into hostname to log
in to the remote machine as the remote user without supplying a password. If
the name of the local host is not found in the /etc/hosts.equiv file on the re­
 mote machine, and the local username and hostname are not found in the remote
user's .rhosts file, then the remote machine will prompt for a password. Host­
names listed in /etc/hosts.equiv and .rhosts files must be the official host­
names listed in the hosts database; nicknames may not be used in either of these
files.

To counter security problems, the .rhosts file must be owned by either the re­
 mote user or by root.

The remote terminal type is the same as your local terminal type (as given in
your environment TERM variable). The terminal or window size is also copied to
the remote system if the server supports the option, and changes in size are
reflected as well. All echoing takes place at the remote site, so that (except for
delays) the remote login is transparent. Flow control using CTRL-S and CTRL-Q
and flushing of input and output on interrupts are handled properly.

The following options are available:

-L Allow the rlogin session to be run in litout mode.
-8 Pass eight-bit data across the net instead of seven-bit data.
-e c Specify a different escape character, c, for the line used to disconnect from
 the remote host.
-l username
 Specify a different username for the remote login. If you do not use this
 option, the remote username used is the same as your local username.
Escape Sequences

Lines that you type which start with the tilde character are escape sequences (the escape character can be changed using the `-e` options):

- `~` Disconnect from the remote host — this is not the same as a logout, because the local host breaks the connection with no warning to the remote end.

- `susp` Suspend the login session (only if you are using a shell with Job Control). `susp` is your suspend character, usually see `tty(1)`.

FILES

/etc/passwd
/usr/hosts/* for hostname version of the command
/etc/hosts.equiv list of trusted hostnames with shared usernames
$HOME/.rhosts private list of trusted hostname/username combinations

SEE ALSO

`rsh(1), stty(1), tty(1), named(1M), hosts(4), hosts.equiv(4)`

NOTES

When a system is listed in `hosts.equiv`, its security must be as good as local security. One insecure system listed in `hosts.equiv` can compromise the security of the entire system.

When a line of the form `hostname username` appears in `hosts.equiv`, the user named may log in as anyone in the local password file by using the command

```
rlogin -l username hostname
```

where `username` is any valid username in the `passwd` file.

If you use a windowing terminal and you intend to run `layers(1)` on the remote system, then you must invoke `rlogin` with the `-8` option.

This implementation can only use the TCP network service.
NAME
 rlogind – remote login server

SYNOPSIS
 in.rlogind

DESCRIPTION
 rlogind is the server for the rlogin(1) program. The server provides a remote
 login facility with authentication based on privileged port numbers.

 rlogind is invoked by inetd(1M) when a remote login connection is established,
 and executes the following protocol:

 1) The server checks the remote client’s source port. If the port is not in the
 range 0-1023, the server aborts the connection.

 2) The server checks the remote client’s source address. If an entry for the
 client exists in both /etc/hosts and /etc/hosts.equiv, a user logging
 in from the client is not prompted for a password. If the address is asso­
 ciated with a host for which no corresponding entry exists in /etc/hosts,
 the user is prompted for a password, regardless of whether or not an
 entry for the remote client is present in /etc/hosts.equiv [see hosts(4)
 and hosts.equiv(4)].

 Once the source port and address have been checked, rlogind allocates a
 pseudo-terminal and manipulates file descriptors so that the slave half of the
 pseudo-terminal becomes the stdin, stdout, and stderr for a login process.

 The login process is an instance of the in.login program, which is based on
 login(1). The login process is invoked with the -r option to indicate that it is
 originated by rlogind. The login process proceeds with the authentication pro­
 cess as described in rshd(1M), but if automatic authentication fails, it reprompts
 the user to login as one finds on a standard terminal line.

 rlogind manipulates the master side of the pseudo-terminal, operating as an
 intermediary between the login process and the remote client’s rlogin program.
 In normal operation, a packet protocol is invoked to provide Ctrl-S / Ctrl-Q
 type facilities and propagate interrupt signals to the remote programs. The login
 process propagates the client terminal’s baud rate and terminal type, as found in
 the environment variable, TERM; see environ(4).

SEE ALSO
 inetd(1M), hosts(4), hosts.equiv(4)

DIAGNOSTICS
 All diagnostic messages are returned on the connection associated with the
 stderr, after which any network connections are closed. An error is indicated by
 a leading byte with a value of 1.

 Hostname for your address unknown.
 No entry in the host name database existed for the client’s machine.

 Try again.
 A fork by the server failed.
/usr/bin/sh: ...
The user's login shell could not be started.

NOTES
The authentication procedure used here assumes the integrity of each client machine and the connecting medium. This is insecure, but is useful in an "open" environment.
A facility to allow all data exchanges to be encrypted should be present.
NAME
rm, rmdir – remove files or directories

SYNOPSIS
rm [-f] [-i] file ...
rm -r [-f] [-i] dirname ...[file ...]
rmdir [-p] [-s] dirname ...

DESCRIPTION
rm removes the entries for one or more files from a directory. If a file has no
write permission and the standard input is a terminal, the full set of permissions
(in octal) for the file are printed followed by a question mark. This is a prompt
for confirmation. If the answer begins with y (for yes), the file is deleted, other­
wise the file remains.

If file is a symbolic link, the link will be removed, but the file or directory to
which it refers will not be deleted. A user does not need write permission on a
symbolic link to remove it, provided they have write permissions in the directory.

Note that if the standard input is not a terminal, the command will operate as if
the -f option is in effect.

Three options apply to rm:

-f This option causes the removal of all files (whether write-protected or not)
in a directory without prompting the user. In a write-protected directory,
however, files are never removed (whatever their permissions are), but no
messages are displayed. If the removal of a write-protected directory is
attempted, this option will not suppress an error message.

-r This option causes the recursive removal of any directories and subdirec­
tories in the argument list. The directory will be emptied of files and
removed. Note that the user is normally prompted for removal of any
write-protected files which the directory contains. The write-protected files
are removed without prompting, however, if the -f option is used, or if the
standard input is not a terminal and the -i option is not used.

Symbolic links that are encountered with this option will not be traversed.

If the removal of a non-empty, write-protected directory is attempted, the
command will always fail (even if the -f option is used), resulting in an
error message.

-i With this option, confirmation of removal of any write-protected file occurs
interactively. It overrides the -f option and remains in effect even if the
standard input is not a terminal.

Two options apply to rmdir:

-p This option allows users to remove the directory dirname and its parent
directories which become empty. A message is printed on standard output
about whether the whole path is removed or part of the path remains for
some reason.
This option is used to suppress the message printed on standard error when `-p` is in effect.

DIAGNOSTICS

All messages are generally self-explanatory.

It is forbidden to remove the files "." and ".." in order to avoid the consequences of inadvertently doing something like the following:

```
rm -r .*
```

Both `rm` and `rmdir` return exit codes of 0 if all the specified directories are removed successfully. Otherwise, they return a non-zero exit code.

SEE ALSO

`unlink(2), rmdir(2)` in the *Programmer's Reference Manual*

NOTES

A `--` permits the user to mark explicitly the end of any command line options, allowing `rm` to recognize filename arguments that begin with a `-`. As an aid to BSD migration, `rm` will accept `-` as a synonym for `--`. This migration aid may disappear in a future release. If a `--` and a `-` both appear on the same command line, the second will be interpreted as a filename.
NAME
 rmdel - remove a delta from an SCCS file

SYNOPSIS
 rmdel -r SId files

DESCRIPTION
 rmdel removes the delta specified by the SId (SCCS identification string) from
 each named SCCS file. The delta to be removed must be the newest (most recent)
 delta in its branch in the delta chain of each named SCCS file. In addition, the
delta specified must not be that of a version being edited for the purpose of mak-
ing a delta; that is, if a p-file exists for the named SCCS file [see get(1)], the delta
specified must not appear in any entry of the p-file.

 The -r option specifies the SId level of the delta to be removed.

 If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an SCCS file to be processed; non-SCCS files and unre-
readable files are silently ignored.

 The rules governing the removal of a delta are as follows: if you make a delta
and have appropriate file permissions, you can remove it; if you own the file and
directory in which a new delta file resides, you can remove the delta.

FILES
 x.file [See delta(1)]
 z.file [See delta(1)]

SEE ALSO
 delta(1), get(1), help(1), prs(1), sccsfile(4)

DIAGNOSTICS
 Use help(1) for explanations.
NAME
rmntstat - display mounted resource information

SYNOPSIS
rmntstat [-h] [resource]

DESCRIPTION
When used with no options, rmntstat displays a list of all local Remote File Sharing resources that are remotely mounted, the local path name, and the corresponding clients. rmntstat returns the remote mount data regardless of whether a resource is currently advertised; this ensures that resources that have been unadvertised but are still remotely mounted are included in the report. When a resource is specified, rmntstat displays the remote mount information only for that resource. The -h option causes header information to be omitted from the display.

EXIT STATUS
If no local resources are remotely mounted, rmntstat will return a successful exit status.

ERRORS
If resource (1) does not physically reside on the local machine or (2) is an invalid resource name, an error message will be sent to standard error.

SEE ALSO
mount(1M), fumount(1M), unadv(1M).
rmnttry(1M) (Remote File Sharing Utilities) rmnttry(1M)

NAME
rmnttry – attempt to mount queued remote resources

SYNOPSIS
/etc/rfs/rmnttry [resource ...]

DESCRIPTION
rmnttry sequences through the pending mount requests stored in
/etc/rfs/rmnttab, trying to mount each resource. If a mount succeeds, the
resource entry is removed from the /etc/rfs/rmnttab file.

If one or more resource names are supplied, mounts are attempted only for those
resources, rather than for all pending mounts. Mounts are not attempted for
resources not present in the /etc/rfs/rmnttab file (see rmount(1M)). If a mount
invoked from rmnttry takes over 3 minutes to complete, rmnttry aborts the
mount and issues a warning message.

rmnttry is typically invoked from a cron entry in
/var/spool/cron/crontabs/root to attempt mounting queued resources at
periodic intervals. The default strategy is to attempt mounts at 15 minute interval,
The cron entry for this is:

10,25,40,55 * * * * /etc/rfs/rmnttry > /dev/null

FILES
/etc/rfs/rmnttab pending mount requests

SEE ALSO
mount(1M), rmount(1M), rumount(1M), mnttab(4)
crontab(1) in the User’s Reference Manual

DIAGNOSTICS
An exit code of 0 is returned if all requested mounts succeeded, 1 is returned if
one or more mounts failed, and 2 is returned for bad usage.
NAME
rmount – queue remote resource mounts

SYNOPSIS
/usr/sbin/rmount [-d[r] resource directory]

DESCRIPTION
rmount queues a remote resource for mounting. The command enters the
resource request into /etc/rfs/rmnttab, which is formatted identically to
mnttab(4). rmnttry(1M) is used to poll entries in this file.

When used without arguments, rmount prints a list of resources with pending
mounts along with their destined directories, modes, and date of request. The
resources are listed chronologically, with the oldest resource request appearing
first.

The following options are available:
-d indicates that the resource is a remote resource to be mounted on
directory.
-r indicates that the resource is to be mounted read-only. If the resource is
write-protected, this flag must be used.

FILES
/etc/rfs/rmnttab pending mount requests

SEE ALSO
mount(1M), rmnttry(1M), rumount(1M), rmountall(1M), mnttab(4)

DIAGNOSTICS
An exit code of 0 is returned upon successful completion of rmount. Otherwise,
a non-zero value is returned.
NAME
rmountall, rumountall — mount, unmount Remote File Sharing resources

SYNOPSIS
/usr/sbin/rmountall [-] "file-system-table" [...]
/usr/sbin/rumountall [-k]

DESCRIPTION
rmountall is a Remote File Sharing command used to mount remote resources according to a file-system-table. (/etc/vfstab is the recommended file-system-table.) rmountall also invokes the rmnttry command, which attempts to mount queued resources. The special file name "-_" reads from the standard input.

rumountall causes all mounted remote resources to be unmounted and deletes all resources that were queued from mount. The -k option sends a SIGKILL signal, via fuser, to processes that have files open.

Only a privileged user can execute these commands.

The format of the file-system-table is as follows:

column 1	block special file name of file system
column 2	file system name for fsck (ignored)
column 3	mount-point directory
column 4	file system type (must be rfs)
column 5	file system check option (ignored)
column 6	automount option (must be yes)
column 7	mount flags (ro for read-only, rw for read-write, - for read-write)

Columns are separated by white space. Lines beginning with a pound sign (#) are comments. Empty lines are ignored.

SEE ALSO
fuser(1M), mount(1M), rfstart(1M), rmnttry(1M), rmount(1M)

sysadm(1) in the User's Reference Manual
signal(2) in the Programmer's Reference Manual

DIAGNOSTICS
No messages are printed if the remote resources are mounted successfully.
Error and warning messages come from mount(1M).
NAME
 roffbib - format and print a bibliographic database

SYNOPSIS
 /usr/ucb/roffbib [-e] [-h] [-Q] [-x] [-m filename] [-np] [-olist]
 [-raN] [-sN] [-term] [filename] . . .

DESCRIPTION
 The roffbib command prints out all records in a bibliographic database, in
 bibliography format rather than as footnotes or endnotes. Generally it is used in
 conjunction with sortbib(1):

 example% sortbib database | roffbib

 If abstracts or comments are entered following the %X field key, roffbib will for­
 mat them into paragraphs for an annotated bibliography. Several %X fields may
 be given if several annotation paragraphs are desired.

 roffbib accepts all options understood by nroff(1) except -i and -q, as well as
 those listed below:

 -e Produce equally-spaced words in adjusted lines using full terminal
 resolution.
 -h Use output tabs during horizontal spacing to speed output and
 reduce output character count. TAB settings are assumed to be
 every 8 nominal character widths.
 -Q Queue output for the phototypesetter. Page offset is set to 1 inch.
 -x Suppress printing of abstracts.
 -m filename Prepend the macro file /usr/ucb/lib/doctools/tmac/tmac.name to
 the input files. There should be a space between the -m and the
 macro filename. This set of macros will replace the ones defined in
 /usr/ucb/lib/doctools/tmac/tmac.bib.
 -np Number first generated page p.
 -olist Print only page numbers that appear in the comma-separated list of
 numbers and ranges. A range N-M means pages N through M; an
 initial -N means from the beginning to page N; a final N- means
 from page N to end.
 -raN Set register a (one-character) to N. The command-line argument
 -rN1 will number the references starting at 1.

 Four command-line registers control formatting style of the bibliog­
 raphy, much like the number registers of ms(7). The flag -rv2 will
double space the bibliography, while -rv1 will double space refer­
ences but single space annotation paragraphs. The line length can
be changed from the default 6.5 inches to 6 inches with the -rL6i
argument, and the page offset can be set from the default of 0 to one
inch by specifying -rOi (capital O, not zero).
roffbib(1)

(BSD Compatibility Package)

roffbib(1)

-sN Halt prior to every N pages for paper loading or changing (default N =1). To resume, enter NEWLINE or RETURN.

-Tterm Specify term as the terminal type.

FILES

/usr/uclib/doctools/tmac/tmac.bib file of macros used by nroff/troff

SEE ALSO

addbib(1), indxbib(1), lookbib(1), nroff(1) refer(1), sortbib(1), troff(1)

NOTES

Users have to rewrite macros to create customized formats.
NAME
route – manually manipulate the routing tables

SYNOPSIS
route [-fn] { add | delete } { destination | default } [host | net] [gateway
[metric]]

DESCRIPTION
route manually manipulates the network routing tables normally maintained by
the system routing daemon, routed(1M), or through default routes and redirect
messages from routers. route allows the super-user to operate directly on the
routing table for the specific host or network indicated by destination. default is
available for gateways to use after all other routes have been attempted. The
gateway argument, if present, indicates the network gateway to which packets
should be addressed. The metric argument indicates the number of hops to the
destination. The metric is required for add commands; it must be zero if the desti-
nation is on a directly-attached network, and nonzero if the route utilizes one or
more gateways.

The add command instructs route to add a route to destination. delete deletes a
route.

Routes to a particular host must be distinguished from those to a network. The
optional keywords net and host force the destination to be interpreted as a net-
work or a host, respectively. Otherwise, if the destination has a local address
part of INADDR_ANY, then the route is assumed to be to a network; otherwise, it is
presumed to be a route to a host. If the route is to a destination connected by a
gateway, the metric parameter should be greater than 0. If adding a route with
metric 0, the gateway given is the address of this host on the common network,
indicating the interface to be used directly for transmission. All symbolic names
specified for a destination (except default) or gateway are looked up in the hosts
database using gethostbyname(3N). If this lookup fails, then the name is looked
up in the networks database using getnetbyname(3N).

OPTIONS
-f Flush the routing tables of all gateway entries. If this is used in conjunc-
tion with one of the commands described above, route flushes the gate-
ways before performing the command.
-n Prevents attempts to print host and network names symbolically when
reporting actions. This is useful, for example, when all name servers are
down on your local net, so you need a route before you can contact the
name server.

FILES
/etc/hosts
/etc/networks

SEE ALSO
ioctl(2), gethostbyname(3N), getnetbyname(3N), routing(4N), routed(1M)
DIAGNOSTICS

add [host | net] destination:gateway

The specified route is being added to the tables. The values printed are from the routing table entry supplied in the `ioctl(2)` call.

delete [host | net] destination:gateway

The specified route is being deleted.

destination done

When the `-f` flag is specified, each routing table entry deleted is indicated with a message of this form.

Network is unreachable

An attempt to add a route failed because the gateway listed was not on a directly-connected network. Give the next-hop gateway instead.

not in table

A delete operation was attempted for an entry that is not in the table.

routing table overflow

An add operation was attempted, but the system was unable to allocate memory to create the new entry.
NAME
 routed - network routing daemon

SYNOPSIS
 in.routed [-qstv] [logfile]

DESCRIPTION
 routed is invoked at boot time to manage the network routing tables. The routing daemon uses a variant of the Xerox NS Routing Information Protocol in maintaining up to date kernel routing table entries.

In normal operation routed listens on udp(4P) socket 520 (decimal) for routing information packets. If the host is an internetwork router, it periodically supplies copies of its routing tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl(2) to find those directly connected interfaces configured into the system and marked up (the software loopback interface is ignored). If multiple interfaces are present, it is assumed the host will forward packets between networks. routed then transmits a request packet on each interface (using a broadcast packet if the interface supports it) and enters a loop, listening for request and response packets from other hosts.

When a request packet is received, routed formulates a reply based on the information maintained in its internal tables. The response packet generated contains a list of known routes, each marked with a hop count metric (a count of 16, or greater, is considered infinite). The metric associated with each route returned provides a metric relative to the sender.

request packets received by routed are used to update the routing tables if one of the following conditions is satisfied:

1. No routing table entry exists for the destination network or host, and the metric indicates the destination is reachable (that is, the hop count is not infinite).
2. The source host of the packet is the same as the router in the existing routing table entry. That is, updated information is being received from the very internetwork router through which packets for the destination are being routed.
3. The existing entry in the routing table has not been updated for some time (defined to be 90 seconds) and the route is at least as cost effective as the current route.
4. The new route describes a shorter route to the destination than the one currently stored in the routing tables; the metric of the new route is compared against the one stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and generates a response packet to all directly connected hosts and networks. routed waits a short period of time (no more than 30 seconds) before modifying the kernel's routing tables to allow possible unstable situations to settle.
In addition to processing incoming packets, `routed` also periodically checks the routing table entries. If an entry has not been updated for 3 minutes, the entry's metric is set to infinity and marked for deletion. Deletions are delayed an additional 60 seconds to insure the invalidation is propagated throughout the internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to all directly connected hosts and networks.

Supplying the `-s` option forces `routed` to supply routing information whether it is acting as an internetwork router or not. The `-q` option is the opposite of the `-s` option. If the `-t` option is specified, all packets sent or received are printed on the standard output. In addition, `routed` will not divorce itself from the controlling terminal so that interrupts from the keyboard will kill the process. Any other argument supplied is interpreted as the name of file in which `routed`'s actions should be logged. This log contains information about any changes to the routing tables and a history of recent messages sent and received which are related to the changed route. The `-v` option allows a logfile to be created showing the changes made to the routing tables with a timestamp.

In addition to the facilities described above, `routed` supports the notion of distant `passive` and `active` gateways. When `routed` is started up, it reads the file `gateways` to find gateways which may not be identified using the `SIOGIFCONF` ioctl. Gateways specified in this manner should be marked passive if they are not expected to exchange routing information, while gateways marked active should be willing to exchange routing information (that is, they should have a `routed` process running on the machine). Passive gateways are maintained in the routing tables forever and information regarding their existence is included in any routing information transmitted. Active gateways are treated equally to network interfaces. Routing information is distributed to the gateway and if no routing information is received for a period of the time, the associated route is deleted.

The `gateways` is comprised of a series of lines, each in the following format:

```
< net | host > filename1 gateway filename2 metric value < passive | active >
```

The `net` or `host` keyword indicates if the route is to a network or specific host. `filename1` is the name of the destination network or host. This may be a symbolic name located in `networks` or `hosts`, or an Internet address specified in dot notation; see `inet(3N)`.

`filename2` is the name or address of the gateway to which messages should be forwarded.

`value` is a metric indicating the hop count to the destination host or network.

The keyword `passive` or `active` indicates if the gateway should be treated as passive or active (as described above).
routed (1M) (Internet Utilities) routed (1M)

FILES
/etc/gateways for distant gateways
/etc/networks
/etc/hosts

SEE ALSO
ioctl(2), inet(7), udp(7)

NOTES
The kernel’s routing tables may not correspond to those of routed for short periods of time while processes utilizing existing routes exit; the only remedy for this is to place the routing process in the kernel.

routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as ICMP, to gather more information.
NAME

rpcbind – universal addresses to RPC program number mapper

SYNOPSIS

rpcbind

DESCRIPTION

rpcbind is a server that converts RPC program numbers into universal addresses. It must be running to make RPC calls.

When an RPC service is started, it will tell rpcbind at what address it is listening, and what RPC program numbers it is prepared to serve. When a client wishes to make an RPC call to a given program number, it will first contact rpcbind on the server machine to determine the address where RPC packets should be sent.

Normally, standard RPC servers are started by port monitors, so rpcbind must be started before port monitors are invoked.

rpcbind is restricted to users with appropriate privileges.

NOTES

If rpcbind crashes, all RPC servers must be restarted.

SEE ALSO

rpcinfo(1M)
NAME
rpcgen – an RPC protocol compiler

SYNOPSIS
rpcgen infile
rpcgen [-Dname [=value]] [-T] [-K secs] infile
rpcgen -c [-h] [-l] [-m] [-t] [-o outfile] infile
rpcgen -s nettype [-o outfile] infile
rpcgen -n netid [-o outfile] infile

DESCRIPTION
rpcgen is a tool that generates C code to implement an RPC protocol. The input to rpcgen is a language similar to C known as RPC Language (Remote Procedure Call Language).

rpcgen is normally used as in the first synopsis where it takes an input file and generates up to four output files. If the infile is named proto.x, then rpcgen will generate a header file in proto.h, XDR routines in proto_xdr.c, server-side stubs in proto_svc.c, and client-side stubs in proto_clnt.c. With the -T option, it will also generate the RPC dispatch table in proto_tbl.

The server created can be started both by the port monitors (for example, inetd or listen) or by itself. When it is started by a port monitor, it creates servers only for the transport for which the file descriptor 0 was passed. The name of the transport must be specified by setting up the environment variable PM_TRANSPORT. When the server generated by rpcgen is executed, it creates server handles for all the transports specified in NETPATH environment variable, or if it is not set, it creates server handles for all the visible transports from /etc/netconfig file. Note: the transports are chosen at run time and not at compile time. When the server is self-started, it backgrounds itself by default. A special symbol, RPC_SVC_FG, can be defined at compilation time to make the server process run in foreground.

The second synopsis provides special features which allow for the creation of more sophisticated RPC servers. These features include support for user provided #defines and RPC dispatch tables. The entries in the RPC dispatch table contain:

• pointers to the service routine corresponding to that procedure,
• a pointer to the input and output arguments
• the size of these routines

A server can use the dispatch table to check authorization and then to execute the service routine; a client library may use it to deal with the details of storage management and XDR data conversion.

The other three synopses shown above are used when one does not want to generate all the output files, but only a particular one. Some examples of their usage is described in the EXAMPLE section below. When rpcgen is executed with the -s option, it creates servers for that particular class of transports. When executed with the -n option, it creates a server for the transport specified by netid. If infile is not specified, rpcgen accepts the standard input.
The C preprocessor, `cc -E` [see `cc(1)`], is run on the input file before it is actually interpreted by `rpcgen`. For each type of output file, `rpcgen` defines a special preprocessor symbol for use by the `rpcgen` programmer:

- **RPC_HDR** defined when compiling into header files
- **RPC_XDR** defined when compiling into XDR routines
- **RPC_SVC** defined when compiling into server-side stubs
- **RPC_CLNT** defined when compiling into client-side stubs
- **RPC_TBL** defined when compiling into RPC dispatch tables

Any line beginning with '%' is passed directly into the output file, uninterpreted by `rpcgen`.

For every data type referred to in `inflle`, `rpcgen` assumes that there exists a routine with the string `xdr_` prepended to the name of the data type. If this routine does not exist in the RPC/XDR library, it must be provided. Providing an undefined data type allows customization of XDR routines.

The following options are available:

- `-c` Compile into XDR routines.
- `-Dname [=value]` Define a symbol `name`. Equivalent to the `#define` directive in the source. If no `value` is given, `value` is defined as `1`. This option may be specified more than once.
- `-h` Compile into C data-definitions (a header file). `-T` option can be used in conjunction to produce a header file which supports RPC dispatch tables.
- `-K secs` By default, services created using `rpcgen` wait 120 seconds after servicing a request before exiting. That interval can be changed using the `-K` flag. To create a server that exits immediately upon servicing a request, `-K 0` can be used. To create a server that never exits, the appropriate argument is `-K -1`.

When monitoring for a server, some portmonitors, like `listen(1M)`, always spawn a new process in response to a service request. If it is known that a server will be used with such a monitor, the server should exit immediately on completion. For such servers, `rpcgen` should be used with `-K -1`.

- `-l` Compile into client-side stubs.
- `-m` Compile into server-side stubs, but do not generate a main routine. This option is useful for doing callback-routines and for users who need to write their own main routine to do initialization.
- `-n netid` Compile into server-side stubs for the transport specified by `netid`. There should be an entry for `netid` in the netconfig database. This option may be specified more than once, so as to compile a server that serves multiple transports.
-o outfile

Specify the name of the output file. If none is specified, standard output is used (-c, -h, -l, -m, -n, -s and -t modes only).

-s nettype

Compile into server-side stubs for all the transports belonging to the class nettype. The supported classes are netpath, visible, circuit_n, circuit_v, datagram_n, datagram_v, tcp, and udp [see rpc(3N) for the meanings associated with these classes]. This option may be specified more than once. Note: the transports are chosen at run time and not at compile time.

-t Compile into RPC dispatch table.

- T Generate the code to support RPC dispatch tables.

The options -c, -h, -l, -m, -s and -t are used exclusively to generate a particular type of file, while the options -D and -T are global and can be used with the other options.

NOTES

The RPC Language does not support nesting of structures. As a work-around, structures can be declared at the top-level, and their name used inside other structures in order to achieve the same effect.

Name clashes can occur when using program definitions, since the apparent scoping does not really apply. Most of these can be avoided by giving unique names for programs, versions, procedures and types.

The server code generated with -n option refers to the transport indicated by netid and hence is very site specific.

EXAMPLE

The following example:

$ rpcgen -T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c and prot_tbl.i.

The following example sends the C data-definitions (header file) to the standard output.

$ rpcgen -h prot.x

To send the test version of the -DTEST, server side stubs for all the transport belonging to the class datagram_n to standard output, use:

$ rpcgen -s datagram_n -DTEST prot.x

To create the server side stubs for the transport indicated by netid tcp, use:

$ rpcgen -n tcp -o prot_svc.c prot.x

SEE ALSO

cc(l)
NAME
rpcinfo - report RPC information

SYNOPSIS
rpcinfo [host]
rpcinfo -p [host]
rpcinfo -T transport host program version
rpcinfo [-n portnum] -u host program version
rpcinfo [-n portnum] -t host program version
rpcinfo -a serv_address -T transport program [version]
rpcinfo -b [-T transport] program version
rpcinfo -d [-T transport] program version

DESCRIPTION
rpcinfo makes an RPC call to an RPC server and reports what it finds.
In the first synopsis, it lists all the registered RPC services with rpcbind on host. If host is not specified, it defaults to the local host.
In the second synopsis, it lists all the RPC services registered with portmap. Also note that the format of the information is different in the first and the second synopsis; this is because in the first case, rpcbind (version 3) is contacted, while in the second case portmap (version 2) is contacted for information.
The third synopsis makes an RPC call to procedure 0 of program and version on the specified host and reports whether a response was received. transport is the transport which has to be used for contacting the given service. The remote address of the service is obtained by making a call to remote rpcbind.
The other ways of using rpcinfo are described below. See EXAMPLES.
The following options are available:

-T transport Specify the transport on which the service is required. If this option is not specified, rpcinfo uses the transport specified in the NETPATH environment variable, or if that is unset or null, in the netconfig database. This is a generic option, and can be used in conjunction with any other option, except the -b option.

-a serv_address Use serv_address as the (universal) address for the service on transport, to ping procedure 0 of the specified program and report whether a response was received. The use of -T option is required with -a option.

If version number is not specified, rpcinfo tries to ping all the available version numbers for that program number. This option avoids calls to remote rpcbind to find the address of the service. The serv_address is specified in universal address format of the given transport.

-b Make an RPC broadcast to procedure 0 of the specified program and version and report all hosts that respond. If transport is specified, it broadcasts its request only on the transport specified through transport. If broadcasting is not supported by any transport, an error message is printed. Only UDP transports support broadcasting.
Delete registration for the RPC service of the specified program and version. If transport is specified, unregister the service on only that transport, otherwise unregister the services on all the transports on which it was registered. This option can be exercised only by the privileged user.

Use portnum as the port number for the -t and -u options instead of the port number given by the portmapper. Use of this option avoids a call to the remote portmapper to find out the address of the service.

Probe the portmapper on host, and print a list of all registered RPC programs. If host is not specified, it defaults to the local host.

Make an RPC call to procedure 0 of program on the specified host using TCP, and report whether a response was received.

Make an RPC call to procedure 0 of program on the specified host using UDP, and report whether a response was received.

The program argument is a number.

If a version is specified, rpcinfo attempts to call that version of the specified program. Otherwise, rpcinfo attempts to find all the registered version numbers for the specified program by calling version 0, which is presumed not to exist; if it does exist, rpcinfo attempts to obtain this information by calling an extremely high version number instead, and attempts to call each registered version. Note: the version number is required for -b and -d options.

EXAMPLES
To show all of the RPC services registered on the local machine use:

```
$ rpcinfo
```

To show all of the RPC services registered with rpcbind on the machine named klaxon use:

```
$ rpcinfo klaxon
```

To show if the RPC service with program number prog_no and version vers is registered on the machine named klaxon for the transport tcp use:

```
$ rpcinfo -T tcp klaxon prog_no vers
```

To show all of the RPC services registered with the portmapper on the local machine use:

```
$ rpcinfo -p
```

To ping version 2 of rpcbind (program number 100000) on host sparky:

```
$ rpcinfo -t sparky 100000 2
```
To delete the registration for version 1 of the `walld` (program number 100008) service for all transports use:

```
# rpcinfo -d 100008 1
```

SEE ALSO

`rpcbind(1M), rpc(4)`
NAME
rsh - remote shell

SYNOPSIS
rsh [-n] [-l username] hostname command
rsh hostname [-n] [-l username] command

DESCRIPTION
rsh connects to the specified hostname and executes the specified command. rsh copies its standard input to the remote command, the standard output of the remote command to its standard output, and the standard error of the remote command to its standard error. Interrupt, quit and terminate signals are propagated to the remote command; rsh normally terminates when the remote command does.

If you omit command, instead of executing a single command, rsh logs you in on the remote host using rlogin(1). Shell metacharacters which are not quoted are interpreted on the local machine, while quoted metacharacters are interpreted on the remote machine. See EXAMPLES.

Hostnames are given in the hosts database, which may be contained in the /etc/hosts file, the Internet domain name database, or both. Each host has one official name (the first name in the database entry) and optionally one or more nicknames. Official hostnames or nicknames may be given as hostname.

If the name of the file from which rsh is executed is anything other than rsh, rsh takes this name as its hostname argument. This allows you to create a symbolic link to rsh in the name of a host which, when executed, will invoke a remote shell on that host. By creating a directory and populating it with symbolic links in the names of commonly used hosts, then including the directory in your shell’s search path, you can run rsh by typing hostname to your shell.

Each remote machine may have a file named /etc/hosts.equiv containing a list of trusted hostnames with which it shares usernames. Users with the same username on both the local and remote machine may rsh from the machines listed in the remote machine’s /etc/hosts file. Individual users may set up a similar private equivalence list with the file .rhosts in their home directories. Each line in this file contains two names: a hostname and a username separated by a space. The entry permits the user named username who is logged into hostname to use rsh to access the remote machine as the remote user. If the name of the local host is not found in the /etc/hosts.equiv file on the remote machine, and the local username and hostname are not found in the remote user’s .rhosts file, then the access is denied. The hostnames listed in the /etc/hosts.equiv and .rhosts files must be the official hostnames listed in the hosts database; nicknames may not be used in either of these files.

rsh will not prompt for a password if access is denied on the remote machine unless the command argument is omitted.
OPTIONS

-1 username

Use username as the remote username instead of your local username. In the absence of this option, the remote username is the same as your local username.

-n Redirect the input of rsh to /dev/null. You sometimes need this option to avoid unfortunate interactions between rsh and the shell which invokes it. For example, if you are running rsh and invoke a rsh in the background without redirecting its input away from the terminal, it will block even if no reads are posted by the remote command. The -n option will prevent this.

The type of remote shell (sh, the restricted shell—/usr/lib/rsh, or other) is determined by the user's entry in the file /etc/passwd on the remote system.

EXAMPLES

The command:

 rsh lizard cat lizard.file >> example.file

appends the remote file lizard.file from the machine called "lizard" to the file called example.file on the local machine, while the command:

 rsh lizard cat lizard.file ">>" lizard.file2

appends the file lizard.file on the machine called "lizard" to the file lizard.file2 which also resides on the machine called "lizard."

FILES

/etc/hosts
/etc/passwd

SEE ALSO

rlogin(1), vi(1), named(1M), hosts(4), hosts.equiv(4)

NOTES

When a system is listed in hosts.equiv, its security must be as good as local security. One insecure system listed in hosts.equiv can compromise the security of the entire system.

You cannot run an interactive command [such as vi(1)]; use rlogin if you want to do so.

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for reasons too complicated to explain here.

The current local environment is not passed to the remote shell.

Sometimes the -n option is needed for reasons that are less than obvious. For example, the command:

 rsh somehost dd if=/dev/nrmt0 bs=20b | tar xvpBf -

will put your shell into a strange state. Evidently, what happens is that the tar terminates before the rsh. The rsh then tries to write into the "broken pipe" and, instead of terminating neatly, proceeds to compete with your shell for its standard input. Invoking rsh with the -n option avoids such incidents.
This bug occurs only when `rsh` is at the beginning of a pipeline and is not reading standard input. Do not use the `-n` if `rsh` actually needs to read standard input. For example,

```
tar cf - . | rsh sundial dd of=/dev/rmt0 obs=20b
```

does not produce the bug. If you were to use the `-n` in a case like this, `rsh` would incorrectly read from `/dev/null` instead of from the pipe.

Prior to Release 4, the `rsh` command invoked the restricted shell. This restricted shell command is `/usr/lib/rsh` and can be executed by using the full pathname.
NAME
rshd - remote shell server

SYNOPSIS
in.rshd host:port

DESCRIPTION
rshd is the server for the rsh(1) program. The server provides remote execution facilities with authentication based on privileged port numbers.

rshd is invoked by inetd(1M) each time a shell service is requested, and executes the following protocol:

1) The server checks the client's source port. If the port is not in the range 0-1023, the server aborts the connection. The client's host address (in hex) and port number (in decimal) are the argument passed to rshd.

2) The server reads characters from the socket up to a null (\0) byte. The resultant string is interpreted as an ASCII number, base 10.

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a secondary stream to be used for the stderr. A second connection is then created to the specified port on the client's machine. The source port of this second connection is also in the range 0-1023.

4) The server checks the client's source address. If the address is associated with a host for which no corresponding entry exists in the host name data base [see hosts(4)], the server aborts the connection.

5) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user name is interpreted as a user identity to use on the server's machine.

6) A null terminated user name of at most 16 characters is retrieved on the initial socket. This user name is interpreted as the user identity on the client's machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket. The length of the command is limited by the upper bound on the size of the system's argument list.

8) rshd then validates the user according to the following steps. The remote user name is looked up in the password file and a chdir is performed to the user's home directory. If the lookup or fails, the connection is terminated. If the chdir fails, it does a chdir to / (root). If the user is not the super-user, (user ID 0), the file /etc/hosts.equiv is consulted for a list of hosts considered equivalent. If the client's host name is present in this file, the authentication is considered successful. If the lookup fails, or the user is the super-user, then the file .rhosts in the home directory of the remote user is checked for the machine name and identity of the user on the client's machine. If this lookup fails, the connection is terminated.

9) A null byte is returned on the connection associated with the stderr and the command line is passed to the normal login shell of the user. The shell inherits the network connections established by rshd.
FILES
 /etc/hosts.equiv

SEE ALSO
 rsh(1)

DIAGNOSTICS
 The following diagnostic messages are returned on the connection associated with
 the stderr, after which any network connections are closed. An error is indicated by
 a leading byte with a value of 1 (0 is returned in step 9 above upon successful
 completion of all the steps prior to the command execution).

locuser too long
 The name of the user on the client’s machine is longer than 16 characters.

remuser too long
 The name of the user on the remote machine is longer than 16 characters.

command too long
 The command line passed exceeds the size of the argument list (as
 configured into the system).

Hostname for your address unknown.
 No entry in the host name database existed for the client’s machine.

Login incorrect.
 No password file entry for the user name existed.

Permission denied.
 The authentication procedure described above failed.

Can’t make pipe.
 The pipe needed for the stderr was not created.

Try again.
 A fork by the server failed.

NOTES
 The authentication procedure used here assumes the integrity of each client
 machine and the connecting medium. This is insecure, but is useful in an open
 environment.

 A facility to allow all data exchanges to be encrypted should be present.
NAME
rsoper – service pending restore requests and service media insertion prompts

SYNOPSIS
rsoper -d ddev [-j jobids] [-u user] [-m method] [-n] [-s | v] [-t]
[-o oname [vdevice]]
rsofar -r jobid
rsoper -c jobid

DESCRIPTION
rsoper -d identifies media containing backup archives of file systems and data
partitions, and allows an operator to complete pending restore(1M) and
urestore(1M) requests. rsoper takes information about the archive entered on
the command line and matches it against pending restore or urestore requests
in the restore status table. rsoper then invokes the proper archiving method to
read the archive and extract requested files, directories, and data partitions. As
subsequent archive volumes are needed, the operator is requested to insert or
mount the appropriate archive volumes. See getvol(1M).

Depending on the information available in bkhist.tab and the volume labeling
technique (internal or external), all options and arguments listed below may not
be required. If required fields are omitted, rsoper issues an error message indic­
ing the information that is needed. The command can then be reissued with
the appropriate fields specified.

rsoper may be executed only by a user with superuser privileges.

rsoper -r removes a pending restore job from the restore status table (see
rsstatus(1M) and
ursstatus(1M)) and notifies the requesting user that the job
has been marked complete.

rsoper -c removes a pending restore job from the restore status table (see
rsstatus(1M) and
ursstatus(1M)) and notifies the requesting user that the job
has been canceled.

Options
-c jobid Cancels a pending restore request and notifies the originating user that
the request has been canceled.
-d ddev Describes the device that will be used to read the archive containing
the required file system or data partition. ddev is of the form:
ddev[; [dchar][; [dmnames]]]
ddev is the device name for the device; see device.tab(4). dchar describes characteristics associated with the device. dchar is of the form:
[density=density] [blk_fac=blockingfactor] [mntpt=dir]
If mntpt=dir is specified, ddev is assumed to be a file system parti­
tion and dir is the place in the UNIX directory structure where ddev
will be mounted. This is valid only for fimage(1M) archives. dmnames is a list of volume labels, separated by either commas or
blanks. If the list is blank separated, the entire ddev argument must be
surrounded by quotes.
-j jobids Limits the scope of the request to the jobs specified. jobids is a list of restore job IDs (either comma separated or blank separated and surrounded by quotes).

-m method Assumes the archive on the first volume in the destination device was created by the method archiving operation. Valid methods are: incfile, ffile, fimage, fdp, fdisk, and any customized methods in the /etc/bkup/method directory. This option is required if the backup history log is not available, if the log does not include information about the specified archive or if rsoper cannot determine the format of the archive.

-n Displays attributes of the specified destination device but does not attempt to service pending restore requests.

-o oname[:odevice] Specifies the originating file system partition or data partition to be restored. oname is the name of the the originating file system. It may be null. odevice is the device name of the originating file system or data partition. This option is required if the backup history log is not available or does not include information about the specified archive.

-r jobid Removes the restore request for the specified job.

-s While a restore operation is occurring, this option displays a period (.) for each 100 (512-byte) blocks transferred from the destination device.

-t Assumes that the volume inserted in the destination device contains a table of contents for an archive. This option is required if the backup history log is not available, if the log does not include information about the specified archive, or if rsoper cannot determine the format of the volume.

-u user Restricts restores to those requested by the user specified.

-v Displays the name of each object as it is restored. Only those archiving methods that restore named directories and files (incfile and ffile) support this option.

DIAGNOSTICS
The exit codes for rsoper are the following:
0 = the task completed successfully
1 = one or more parameters to rsoper are invalid
2 = an error has occurred, causing rsoper to fail to complete all portions of its task
If a method reports that no part of a restore request was completed, rsoper reports this fact to the user.
EXAMPLES

Example 1:

```
rsoper -d /dev/tape/c4d0s2
```

asks the restore service to read the archive volume that has been inserted into the device `/dev/tape/c4d0s2`. The service will attempt to resolve any restore requests that can be satisfied by the archive volume.

Example 2:

The following example assumes that the backup history table contains a record of backups performed and that the restore status table contains a record of the restore requests. The command line

```
rsoper -d /dev/ctape:density=1600:USRLBL1 -v -u clerk1
```

instructs the restore service to perform only pending restore requests from the `rsstatus.tab` table issued by `clerk1`. The restore procedures are to be done from the cartridge tape labeled USRLBL1, with a density of 1600 bps. The restore service will display on the operator terminal the names of the files and directories as they are successfully restored.

Example 3:

The following example assumes that the backup history table no longer contains a log of the requested backup operations. With that assumption:

```
rsoper -d /dev/diskette2:blk_fac=2400:arc.dec79 -m incfile -o /usr2
```

instructs the restore service to perform a restore of the `/usr2` file system using the incremental restore method. The `/usr2` file system is to be restored from archived diskettes with a blocking factor of 2400. The diskettes containing the archive are labeled “arc.dec79.a,” “arc.dec79.b,” and “arc.dec79.c.”

Example 4:

```
rsoper -c rest-737b
```

cancels the restore request with the job ID `rest-737b`.

FILES

```
/etc/bkup/bkhist.tab
/etc/bkup/rsstatus.tab
/etc/bkup/rsnotify.tab
/etc/bkup/method
```

- lists the labels of all volumes that have been used for backup operations
- lists the status of all restore requests from users
- lists the electronic mail address of the operator to be notified whenever restore requests require operator intervention
- a directory that contains the programs used for various backup methods

SEE ALSO

`fdisk(1M), fdp(1M), ffile(1M), fimage(1M), getvol(1M), incfile(1M), restore(1M), rsnotify(1M), rsstatus(1M), urestore(1M), ursstatus(1M)`

mail(1) in the `User's Reference Manual`

`getdate(3C), device.tab(4)` in the `Programmer's Reference Manual`
NAME

rumount - cancel queued remote resource request

SYNOPSIS

/etc/rfs/rumount resource ...

DESCRIPTION

rumount cancels a request for one or more resources that are queued for mount. The entries for the resources are deleted from /etc/rfs/rmttab.

FILES

/etc/rfs/rmttab — pending mount requests

SEE ALSO

mount(1M), rmnttry(1M), rmount(1M), rumountall(1M), mnttab(4)

DIAGNOSTICS

An exit code of 0 is returned if rumount completes successfully. A 1 is returned if the resource requested for dequeuing is not in /etc/rfs/rmttab. A 2 is returned for bad usage or an error in reading or writing /etc/rfs/rmttab.
NAME
run – run an executable

SYNOPSIS
run [-s] [-e] [-n] [-t string] program

DESCRIPTION
The run function runs program, using the PATH variable to find it. By default, when program has completed, the user is prompted (Press ENTER to continue!), before being returned to FMLI. The argument program is a UNIX system executable followed by its options (if any).

-e If -e is specified the user will be prompted before returning to FMLI only if there is an error condition

-n If -n is specified the user will never be prompted before returning to FMLI (useful for programs like vi, in which the user must do some specific action to exit in the first place).

-s The -s option means "silent", implying that the screen will not have to be repainted when program has completed. NOTE: The -s option should only be used when program does not write to the terminal. In addition, when -s is used, program cannot be interrupted, even if it recognizes interrupts.

-t string If -t is specified, string is the name this process will have in the pop-up menu generated by the fn-list command. This feature requires the executable facesuspend, (currently only available with the FACE product), to suspend the UNIX system process and return to the FMLI application.

EXAMPLE
Here is a menu that uses run:

```bash
menu="Edit special System files"
name="Password file"
action=`run -e vi /etc/passwd`
name="Group file"
action=`run -e vi /etc/group`
name="My .profile"
action=`run -n vi $HOME/.profile`
```
NAME
runacct – run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION
runacct is the main daily accounting shell procedure. It is normally initiated via
cron. runacct processes connect, fee, disk, and process accounting files. It also
prepares summary files for prdaily or billing purposes. runacct is distributed
only to source code licensees.

runacct takes care not to damage active accounting files or summary files in the
event of errors. It records its progress by writing descriptive diagnostic messages
into active. When an error is detected, a message is written to /dev/console,
mail [see mail(l)] is sent to root and adm, and runacct terminates. runacct
uses a series of lock files to protect against re-invocation. The files lock and
lockl are used to prevent simultaneous invocation, and lastdate is used to
prevent more than one invocation per day.

runacct breaks its processing into separate, restartable states using statefile to
remember the last state completed. It accomplishes this by writing the state name
into statefile. runacct then looks in statefile to see what it has done and to deter­
mine what to process next. states are executed in the following order:

SETUP Move active accounting files into working files.
WTMPFIX Verify integrity of wtmp file, correcting date changes if necessary.
CONNECT Produce connect session records in tacct.h format.
PROCESS Convert process accounting records into tacct.h format.
MERGE Merge the connect and process accounting records.
FEES Convert output of chargefee into tacct.h format and merge with
 connect and process accounting records.
DISK Merge disk accounting records with connect, process, and fee
 accounting records.
MERGETACCT Merge the daily total accounting records in daytacct with the sum­
 mary total accounting records in /var/adm/acct/sum/tacct.
CMS Produce command summaries.
USEREXIT Any installation dependent accounting programs can be included
 here.
CLEANUP Clean up temporary files and exit.

To restart runacct after a failure, first check the active file for diagnostics, then
fix any corrupted data files, such as pacct or wtmp. The lock, lockl, and last­
date files must be removed before runacct can be restarted. The argument
mmdd is necessary if runacct is being restarted, and specifies the month and day
for which runacct will rerun the accounting. The entry point for processing is
based on the contents of statefile; to override this, include the desired state on the
command line to designate where processing should begin.
EXAMPLES

To start runacct:
 nohup runacct 2> /var/adm/acct/nite/fd21og &

To restart runacct:
 nohup runacct 0601 2>> /var/adm/acct/nite/fd21og &

To restart runacct at a specific state:
 nohup runacct 0601 MERGE 2>> /var/adm/acct/nite/fd21og &

FILES

/var/adm/wtmp
/var/adm/pacctincr
/usr/src/cmd/acct/tacct.h
/usr/src/cmd/acct/ctmp.h
/var/adm/acct/nite/active
/var/adm/acct/nite/daytacct
/var/adm/acct/nite/lock
/var/adm/acct/nite/lock1
/var/adm/acct/nite/lastdate
/var/adm/acct/nite/statefile

SEE ALSO

acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M),
aacctsh(1M), cron(1M), ftmp(1M), acct(4), utmp(4)
aacctcom(1), mail(1) in the User's Reference Manual
acct(2) in the Programmer's Reference Manual

NOTES

Normally it is not a good idea to restart runacct in the SETUP state. Run SETUP
manually and restart via:

 runacct mmdm WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because it will
not be complete.
ruptime(1) (Internet Utilities) runtime(1)

NAME
 runtime – show host status of local machines

SYNOPSIS
 runtime [-a | -l | -r | -t | -u]

DESCRIPTION
 runtime gives a status line like uptime for each machine on the local network; these are formed from packets broadcast by each host on the network once a minute.

 Machines for which no status report has been received for 5 minutes are shown as being down.

 Normally, the listing is sorted by host name, but this order can be changed by specifying one of the options listed below.

 The following options are available:
 -a Count even those users who have been idle for an hour or more.
 -l Sort the display by load average.
 -r Reverse the sorting order.
 -t Sort the display by up time.
 -u Sort the display by number of users.

FILES
 /var/spool/rwho/whod.* data files

SEE ALSO
 rwho(1), rwhod(1M)
NAME

 rusers - who's logged in on local machines

SYNOPSIS

 rusers [-ahilu] host ...

DESCRIPTION

 The rusers command produces output similar to who(1), but for remote
 machines. The listing is in the order that responses are received, but this order
 can be changed by specifying one of the options listed below.

 The default is to print out the names of the users logged in. When the -l flag is
 given, additional information is printed for each user, including idle time, when
 user logged in, and tty.

 A remote host will only respond if it is running the rusersd(1M) daemon, which
 may be started up from inetd(1M) or listen(1M).

 The following options are available:

 -a Give a report for a machine even if no users are logged on.
 -h Sort alphabetically by host name.
 -i Sort by idle time.
 -l Give a longer listing in the style of who(1).
 -u Sort by number of users.

SEE ALSO

 inetd(1M), listen(1M), pmadm(1M), rusersd(1M), sacadm(1M), who(1)
NAME
rpc.rusersd – network username server

SYNOPSIS
/usr/lib/netsvc/rusers/rpc.rusersd

DESCRIPTION
rusersd is a server that returns a list of users on the host. The rusersd daemon may be started by inetd(1M) or listen(1M).

SEE ALSO
inetd(1M), listen(1M), pmadm(1M), sacadm(1M)
NAME
rwall — write to all users over a network

SYNOPSIS
/usr/sbin/rwall hostname ...

DESCRIPTION
rwall reads a message from standard input until EOF. It then sends this mes-
sage, preceded by the line:

Broadcast Message ...

to all users logged in on the specified host machines.
A machine can only receive such a message if it is running rwalld(1M), which
may be started by inetd(1M) or listen(1M).

NOTES
The timeout is fairly short to allow transmission to a large group of machines
(some of which may be down) in a reasonable amount of time. Thus the message
may not get through to a heavily loaded machine.

SEE ALSO
inetd(1M), listen(1M), pmadm(1M), rwalld(1M), sacadm(1M), wall(1)
NAME
rpc.rwalld – network rwall server

SYNOPSIS
/usr/lib/netsvc/rwall/rpc.rwalld

DESCRIPTION
rwalld is a server that handles rwall(1M) requests. It is implemented by calling
wall(1M) on all the appropriate network machines. The rwalld daemon may be
started by inetd(1M) or listen(1M).

SEE ALSO
inetd(1M), listen(1M), rwall(1M), wall(1M)
NAME

rwho – who’s logged in on local machines

SYNOPSIS

rwho [-a]

DESCRIPTION

The rwho command produces output similar to who(1), but for all machines on
your network. If no report has been received from a machine for 5 minutes, rwho
assumes the machine is down, and does not report users last known to be logged
into that machine.

If a user has not typed to the system for a minute or more, rwho reports this idle
time. If a user has not typed to the system for an hour or more, the user is omit­
ted from the output of rwho unless the -a flag is given.

The -a option reports all users whether or not they have typed to the system in
the past hour.

FILES

/var/spool/rwho/whod.* information about other machines

SEE ALSO

finger(1), ruptime(1), who(1), rwhod(1M)

NOTES

Does not work through gateways.

This is unwieldy when the number of machines on the local net is large.

The rwho service daemon, rwhod(1M), must be enabled for this command to
return useful results.
rwhod(1M) (Internet Utilities) rwhod(1M)

NAME
rwhod, in.rwhod – system status server

SYNOPSIS
in.rwhod

DESCRIPTION
rwhod is the server which maintains the database used by the rwho(1) and runtime(1) programs. Its operation is predicated on the ability to broadcast messages on a network.

rwhod operates as both a producer and consumer of status information. As a producer of information it periodically queries the state of the system and constructs status messages which are broadcast on a network. As a consumer of information, it listens for other rwhod servers’ status messages, validating them, then recording them in a collection of files located in the directory /var/spool/rwho.

The rwho server transmits and receives messages at the port indicated in the rwho service specification, see services(4). The messages sent and received, are of the form:

```c
struct outmp {
    char out_line[8]; /* tty name */
    char out_name[8]; /* user id */
    long out_time; /* time on */
};

struct whod {
    char wd_vers;
    char wd_type;
    char wd_fill[2];
    int wd_sendtime;
    int wd_recvtime;
    char wd_hostname[32];
    int wd_loadav[3];
    int wd_boottime;
    struct whoent { /* additional data */
        struct outmp we_utmp;
        int we_idle;
    } wd_we[1024 / sizeof (struct whoent)];
};
```

All fields are converted to network byte order prior to transmission. The load averages are as calculated by the w(1) program, and represent load averages over the 5, 10, and 15 minute intervals prior to a server’s transmission. The host name included is that returned by the gethostname(2) system call. The array at the end of the message contains information about the users logged in to the sending machine. This information includes the contents of the utmp(4) entry for each non-idle terminal line and a value indicating the time since a character was last received on the terminal line.
Messages received by the rwho server are discarded unless they originated at a rwho server’s port. In addition, if the host’s name, as specified in the message, contains any unprintable ASCII characters, the message is discarded. Valid messages received by rwhod are placed in files named whod.hostname in the directory /var/spool/rwho. These files contain only the most recent message, in the format described above.

Status messages are generated approximately once every 60 seconds. rwhod performs an nlist(3) on /stand/unix every 10 minutes to guard against the possibility that this file is not the system image currently operating.

FILES
/var/spool/rwho

SEE ALSO
rwho(1), runtime(1), w(1), gethostname(3), nlist(3), utmp(4)

NOTES
This service takes up progressively more network bandwidth as the number of hosts on the local net increases. For large networks, the cost becomes prohibitive.

rwhod should relay status information between networks. People often interpret the server dying as a machine going down.

For rwho to work properly, the directory /var/spool/rwho must exist on the system.
NAME
 sac – service access controller

SYNOPSIS
 sac -t sanity_interval

DESCRIPTION
The Service Access Controller (SAC) is the overseer of the server machine. It is
started when the server machine enters multiuser mode. The SAC performs
several important functions as explained below.

Customizing the SAC environment. When sac is invoked, it first looks for the per­
system configuration script /etc/saf/_sysconfig. sac interprets _sysconfig
to customize its own environment. The modifications made to the SAC environ­
ment by _sysconfig are inherited by all the children of the SAC. This inherited
environment may be modified by the children.

Starting port monitors. After it has interpreted the _sysconfig file, the sac reads
its administrative file /etc/saf/_sactab. _sactab specifies which port monitors
are to be started. For each port monitor to be started, sac forks a child [fork(2)]
and creates a utmp entry with the type field set to LOGIN_PROCESS. Each child
then interprets its per-port monitor configuration script
/etc/saf/pmtag/_config, if the file exists. These modifications to the environ­
ment affect the port monitor and will be inherited by all its children. Finally, the
child process execs the port monitor, using the command found in the _sactab
entry. (See sacadm; this is the command given with the -c option when the port
monitor is added to the system.)

Polling port monitors to detect failure. The -t option sets the frequency with which
sac polls the port monitors on the system. This time may also be thought of as
half of the maximum latency required to detect that a port monitor has failed and
that recovery action is necessary.

Administrative functions. The Service Access Controller represents the administra­
tive point of control for port monitors. Its administrative tasks are explained
below.

When queried (sacadm with either -1 or -L), the Service Access Controller
returns the status of the port monitors specified, which sacadm prints on the stan­
dard output. A port monitor may be in one of six states:

ENABLED The port monitor is currently running and is accepting connec­
tions. See sacadm(1M) with the -e option.

DISABLED The port monitor is currently running and is not accepting con­
connections. See sacadm with the -d option, and see NOTRUNNING,
below.

STARTING The port monitor is in the process of starting up. STARTING is
an intermediate state on the way to ENABLED or DISABLED.

FAILED The port monitor was unable to start and remain running.
STOPPING The port monitor has been manually terminated but has not completed its shutdown procedure. STOPPING is an intermediate state on the way to NOTRUNNING.

NOTRUNNING The port monitor is not currently running. (See sacadm with -k.) This is the normal “not running” state. When a port monitor is killed, all ports it was monitoring are inaccessible. It is not possible for an external user to tell whether a port is not being monitored or the system is down. If the port monitor is not killed but is in the DISABLED state, it may be possible (depending on the port monitor being used) to write a message on the inaccessible port telling the user who is trying to access the port that it is disabled. This is the advantage of having a DISABLED state as well as the NOTRUNNING state.

When a port monitor terminates, the SAC removes the utmp entry for that port monitor.

The SAC receives all requests to enable, disable, start, or stop port monitors and takes the appropriate action.

The SAC is responsible for restarting port monitors that terminate. Whether or not the SAC will restart a given port monitor depends on two things:

- the restart count specified for the port monitor when the port monitor was added by sacadm; this information is included in /etc/saf/pmtag/_sactab
- the number of times the port monitor has already been restarted

SEE ALSO

sacadm(1M), pmadm(1M).

FILES

/etc/saf/_sactab
/etc/saf/_sysconfig
/var/adm/utmp
/var/saf/_log
NAME

sacadm – service access controller administration

SYNOPSIS

sacadm -a -p pmtag -t type -c cmd -v ver [-f dx] [-n count] \
[-y comment] [-z script]
sacadm -r -p pmtag
sacadm -s -p pmtag
sacadm -k -p pmtag
sacadm -e -p pmtag
sacadm -d -p pmtag
sacadm -l [-p pmtag | -t type]
sacadm -L [-p pmtag | -t type]
sacadm -g -p pmtag [-z script]
sacadm -G [-z script]
sacadm -x [-p pmtag]

DESCRIPTION

sacadm is the administrative command for the upper level of the Service Access Facility hierarchy, that is, for port monitor administration. sacadm performs the following functions:

- adds or removes a port monitor
- starts or stops a port monitor
- enables or disables a port monitor
- installs or replaces a per-system configuration script
- installs or replaces a per-port monitor configuration script
- prints requested port monitor information

Requests about the status of port monitors (-l and -L) and requests to print per-port monitor and per-system configuration scripts (-g and -G without the -z option) may be executed by any user on the system. Other sacadm commands may be executed only by a privileged user.

The options have the following meanings:

-a Add a port monitor. When adding a port monitor, sacadm creates the supporting directory structure in /etc/saf and /var/saf and adds an entry for the new port monitor to /etc/saf/_sactab. The file _sactab already exists on the delivered system. Initially, it is empty except for a single line, which contains the version number of the Service Access Controller.

Unless the command line that adds the new port monitor includes a -f option with the argument x, the new port monitor will be started. Because of the complexity of the options and arguments that follow the -a option, it may be convenient to use a command script or the menu
system to add port monitors. If you use the menu system, enter `sysadm ports` and then choose the `port_monitors` option.

- **c cmd** Execute the command string `cmd` to start a port monitor. The `-c` option may be used only with a `-a`. A `-a` option requires a `-c`.

- **d** Disable the port monitor `pmtag`.

- **e** Enable the port monitor `pmtag`.

- **f dx** The `-f` option specifies one or both of the following two flags which are then included in the flags field of the `_sactab` entry for the new port monitor. If the `-f` option is not included on the command line, no flags are set and the default conditions prevail. By default, a port monitor is started. A `-f` option with no following argument is illegal.

 - `d` Do not enable the new port monitor.
 - `x` Do not start the new port monitor.

- **g** The `-g` option is used to request output or to install or replace the per-port monitor configuration script `/etc/saf/pmtag/_config`. `-g` requires a `-p` option. The `-g` option with only a `-p` option prints the per-port monitor configuration script for port monitor `pmtag`. The `-g` option with a `-p` option and a `-z` option installs the file `script` as the per-port monitor configuration script for port monitor `pmtag`. Other combinations of options with `-g` are invalid.

- **G** The `-G` option is used to request output or to install or replace the per-system configuration script `/etc/saf/_sysconfig`. The `-G` option by itself prints the per-system configuration script. The `-G` option in combination with a `-z` option installs the file `script` as the per-system configuration script. Other combinations of options with a `-G` option are invalid.

- **k** Stop port monitor `pmtag`.

- **l** The `-l` option is used to request port monitor information. The `-l` by itself lists all port monitors on the system. The `-l` option in combination with the `-p` option lists only the port monitor specified by `pmtag`. A `-l` in combination with the `-t` option lists all port monitors of type `type`. Any other combination of options with the `-l` option is invalid.

- **L** The `-L` option is identical to the `-l` option except that the output appears in a condensed format.

- **n count** Set the restart count to `count`. If a restart count is not specified, count is set to 0. A count of 0 indicates that the port monitor is not to be restarted if it fails.

- **p pmtag** Specifies the tag associated with a port monitor.
sacadm(1M) (Essential Utilities) sacadm(1M)

-\(r\) Remove port monitor \textit{pmtag}. \texttt{sacadm} removes the port monitor entry from ./\texttt{etc/saf/_sactab}. If the removed port monitor is not running, then no further action is taken. If the removed port monitor is running, the Service Access Controller (SAC) sends it \texttt{SIGTERM} to indicate that it should shut down. Note that the port monitor’s directory structure remains intact.

-\(s\) Start a port monitor. The SAC starts the port monitor \textit{pmtag}.

-\(t\) \texttt{type} Specifies the port monitor type.

-\(v\) \texttt{ver} Specifies the version number of the port monitor. This version number may be given as

\[-v \ `pmspec \ -v`\]

where \texttt{pmspec} is the special administrative command for port monitor \texttt{pmtag}. This special command is \texttt{ttyadm} for \texttt{ttymon} and \texttt{nlsadmin} for \texttt{listen}. The version stamp of the port monitor is known by the command and is returned when \texttt{pmspec} is invoked with a \texttt{-v} option.

-\(x\) The \texttt{-x} option by itself tells the SAC to read its database file (_\texttt{sactab}). The \texttt{-x} option with the \texttt{-p} option tells port monitor \texttt{pmtag} to read its administrative file.

-\(y\) \texttt{comment} Include \texttt{comment} in the _\texttt{sactab} entry for port monitor \texttt{pmtag}.

-\(z\) \texttt{script} Used with the \texttt{-g} and \texttt{-G} options to specify the name of a file that contains a configuration script. With the \texttt{-g} option, \texttt{script} is a per-port monitor configuration script; with \texttt{-G} it is a per-system configuration script. Modifying a configuration script is a three-step procedure. First a copy of the existing script is made (\texttt{-g} or \texttt{-G}). Then the copy is edited. Finally, the copy is put in place over the existing script (\texttt{-g} or \texttt{-G} with \texttt{-z}).

\textbf{OUTPUT}

If successful, \texttt{sacadm} will exit with a status of 0. If \texttt{sacadm} fails for any reason, it will exit with a nonzero status. Options that request information will write the information on the standard output. In the condensed format (\texttt{-L}), port monitor information is printed as a sequence of colon-separated fields; empty fields are indicated by two successive colons. The standard format (\texttt{-1}) prints a header identifying the columns, and port monitor information is aligned under the appropriate headings. In this format, an empty field is indicated by a hyphen. The comment character is #.

\textbf{EXAMPLES}

The following command line adds a port monitor. The port monitor tag is \texttt{npack}; its type is \texttt{listen}; if necessary, it will restart three times before failing; its administrative command is \texttt{nlsadmin}; and the configuration script to be read is in the file \texttt{script}:

\texttt{sacadm \-a \-p npack \-t listen \-c \textasciitilde/usr/lib/saf/listen npack \-v \ `nlsadmin \-V` \-n 3 \-z script}
Remove a port monitor whose tag is `pmtag`:
```
sacadm -r -p pmtag
```
Start the port monitor whose tag is `pmtag`:
```
sacadm -s -p pmtag
```
Stop the port monitor whose tag is `pmtag`:
```
sacadm -k -p pmtag
```
Enable the port monitor whose tag is `pmtag`:
```
sacadm -e -p pmtag
```
Disable the port monitor whose tag is `pmtag`:
```
sacadm -d -p pmtag
```
List status information for all port monitors:
```
sacadm -l
```
List status information for the port monitor whose tag is `pmtag`:
```
sacadm -l -p pmtag
```
List the same information in condensed format:
```
sacadm -L -p pmtag
```
List status information for all port monitors whose type is `listen`:
```
sacadm -l -t listen
```
Replace the per-port monitor configuration script associated with the port monitor whose tag is `pmtag` with the contents of the file `file.config`:
```
sacadm -g -p pmtag -z file.config
```

SEE ALSO
`doconfig(3N), pmadm(1M), sac(1M)`

FILES
`/etc/saf/_sactab`
`/etc/saf/_sysconfig`
`/etc/saf/pmtag/_config`
NAME
 sact – print current SCCS file editing activity

SYNOPSIS
 sact files

DESCRIPTION
 sact informs the user of any impending deltas to a named SCCS file. This situation occurs when get with the -e option has been previously executed without a subsequent execution of delta. If a directory is named on the command line, sact behaves as though each file in the directory were specified as a named file, except that non-SCCS files and unreadable files are silently ignored. If a name of - is given, the standard input is read with each line being taken as the name of an SCCS file to be processed.

 The output for each named file consists of five fields separated by spaces.

 Field 1 specifies the SID of a delta that currently exists in the SCCS file to which changes will be made to make the new delta.

 Field 2 specifies the SID for the new delta to be created.

 Field 3 contains the logname of the user who will make the delta (that is, executed a get for editing).

 Field 4 contains the date that get -e was executed.

 Field 5 contains the time that get -e was executed.

SEE ALSO
 delta(1), diff(1), get(1), help(1), unget(1)

DIAGNOSTICS
 Use help(1) for explanations.
NAME
sadc, sal, sa2 – system activity report package

SYNOPSIS
/usr/lib/sa/sadc [t n] [ofile]
/usr/lib/sa/sal [t n]
/usr/lib/sa/sa2 [-ubdycaqvmgkxDSAC] [-s time] [-e time] [-i sec]

DESCRIPTION
System activity data can be accessed at the special request of a user [see sar(1M)]
and automatically, on a routine basis, as described here. The operating system
contains several counters that are incremented as various system actions occur.
These include counters for CPU utilization, buffer usage, disk and tape I/O
activity, TTY device activity, switching and system-call activity, file-access, queue
activity, inter-process communications, paging, and Remote File Sharing.
sadc and two shell procedures, sal and sa2, are used to sample, save, and pro­
cess this data.
sadc, the data collector, samples system data n times, with an interval of t
seconds between samples, and writes in binary format to ofile or to standard out­
put. The sampling interval t should be greater than 5 seconds; otherwise, the
activity of sadc itself may affect the sample. If t and n are omitted, a special
record is written. This facility is used at system boot time, when booting to a
multiuser state, to mark the time at which the counters restart from zero. For
example, the /etc/init.d/perf file writes the restart mark to the daily data by
the command entry:

```bash
su sys -c "$TFADMIN /usr/lib/sa/sadc /var/adm/sa/sa`date +%d`"
```

The shell script sal, a variant of sadc, is used to collect and store data in the
binary file /var/adm/sa/sadd, where dd is the current day. The arguments t and
n cause records to be written n times at an interval of t seconds, or once if omit­
ted. The following entries in /var/spool/cron/crontabs/sys produce records
every 20 minutes during working hours and hourly otherwise:

```
0 * * * 0-6 $TFADMIN /usr/lib/sa/sal
20,40 8-17 * * 1-5 $TFADMIN /usr/lib/sa/sal
```

See crontab(1) for details.

The shell script sa2, a variant of sar, writes a daily report in the file
/var/adm/sa/sardd. The options are explained in sar(1M). The following entry
in /var/spool/cron/crontabs/sys reports important activities hourly during
the working day:

```
5 18 * * 1-5 $TFADMIN /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A
```

FILES
/var/adm/sa/sadd daily data file
/var/adm/sa/sardd daily report file
/tmp/sa.adrf1 address file
SEE ALSO
 crontab(1), sag(1M), sar(1M), timex(1).
sadc(1M) (Multiprocessing) sadc(1M)

NAME
sadc sa1, sa2 – system activity report package

SYNOPSIS
/usr/lib/sa/sadc [t n] [ofile]
/usr/lib/sa/sal [t n]

DESCRIPTION
System activity data can be accessed at the special request of a user (see sar(1M)) and automatically on a routine basis. The operating system contains several counters that are incremented as various system actions occur. These include counters for processor utilization, buffer usage, disk and tape I/O activity, TTY device activity, switching and system-call activity, file-access, queue activity, inter-process communications, paging and Remote File Sharing.

Some of these counters (those in the si member of the binary activity record produced by sadc) are maintained separately for each processor that is or has been online in the system. For each separately maintained counter, the system also maintains a corresponding aggregate counter. The per-processor counters are a measure of the actions performed by each processor in the system. The corresponding aggregate counters represent a measure of the same actions performed by the system as a whole.

sadc and shell procedures, sal and sa2, are used to sample, save, and process this data.

sadc, the data collector, samples system data n times, with an interval of t seconds between samples. The sampling interval t should be greater than 5 seconds; otherwise, the activity of sadc itself may affect the sample. If t and n are omitted, a special record is written. This facility is used at system boot time, when booting to a multiuser state, to mark the time at which the counters restart from zero. For example, the /etc/init.d/perf file writes the restart mark to the daily data by the command entry:

```
    su sys -c "/usr/lib/sa/sadc /var/adm/sa/sadate +%d"
```

sadc writes system activity records in binary format. If ofile is not specified, sadc writes records that pertain to the system as a whole to standard output.

If ofile is specified, sadc writes records that pertain to the system as a whole to ofile. In addition, for each processor online in the system, sadc writes system activity records to ofile.cpuprocessor. Each such system activity record contains the counters maintained for the processor in question instead of the aggregate counters.

If the -P option is used, sa2 reports system activity information that applies to the processor specified by processor-id to standard output.
The shell script sa1, a variant of sadc, is used to collect and store data in binary file /var/adm/sa/sadd where \(dd \) is the current day. The arguments \(t \) and \(n \) cause records to be written \(n \) times at an interval of \(t \) seconds, or once if omitted. The following entries in \(/var/spool/cron/crontabs/sys \) will produce records every 20 minutes during working hours and hourly otherwise:

\[
\begin{align*}
0 & : * : * : 0-6 & /usr/lib/sa/sa1 \\
20,40 & : 8-17 : * : 1-5 & /usr/lib/sa/sa1
\end{align*}
\]

See crontab(1) for details.

EXAMPLE

The shell script sa2, a variant of sar, writes a daily report in the file /var/adm/sa/sardd. The options are explained in sar(1). The following entry in \(/var/spool/cron/crontabs/sys \) will report important activities hourly during the working day:

\[
5 & : 18 & * : 1-5 & /usr/lib/sa/sa2 \quad -s 8:00 \quad -e 18:01 \quad -i 1200 \quad -A
\]

FILES

- /var/adm/sa/sadd
 - daily data file for system as a whole
- /var/adm/sa/sadd.processor-id
 - daily data file for each online processor
- /var/adm/sa/sardd
 - daily report file
- /tmp/sa.adrfl
 - address file

SEE ALSO

sadc(1M)

sar(1M) and crontab(1) and timex(1) in the User’s Reference Manual
NAME

sag – system activity graph

SYNOPSIS

sag [options]

DESCRIPTION

sag graphically displays the system activity data stored in a binary data file by a
previous sar(1M) run. Any of the sar data items may be plotted singly, or in
combination; as cross plots, or versus time. Simple arithmetic combinations of
data may be specified. sag invokes sar and finds the desired data by string-
matching the data column header (run sar to see what is available). These
options are passed through to sar:

- s time Select data later than time in the form hh[:mm]. The default is 08:00.
- e time Select data up to time. The default is 18:00.
- l sec Select data at intervals as close as possible to sec seconds.
- f file Use file as the data source for sar. The default value is the current
daily data file (/usr/adm/sa/sadd).

Other options:

- T term Produce output suitable for terminal term. The default value is $TERM.
The following known terminals are available:

 300 DASI 300.
 300S DASI 300s.
 450 DASI 450.
 4014 Tektronix 4014.

- x spec x axis specification with spec in the form:

 "name[op name] . . . [lo hi]"

- y spec y axis specification with spec in the same form as above.

Name is either a string that will match a column header in the sar report, with an
optional device name in square brackets, (such as r+w/s[dsk-1], or an integer
value. Op is one of four characters ("+", "-", "*", or "/"), surrounded by
blanks. (Parentheses are not recognized.) Up to five names may be specified.
Contrary to custom, + and - have precedence over * and "/". Evaluation
is done from left to right. Thus A / A + B * 100 is evaluated (A/(A+B))*100,
and A + B / C + D is (A+B)/(C+D). Lo and hi are optional numeric scale lim-
its. If unspecified, they are deduced from the data.

A single spec is permitted for the x axis; if unspecified, time is used. For the y
axis, specify up to five specs, separated by semi-colons (;). If you specify more
than one argument to -x or -y, and leave one or more blank spaces between list
items, enclose the list in double quotes ("*"). The default value for the -y option
is

- y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"
EXAMPLES

For a report on today’s CPU utilization:

 sag

For a report on the activity of all disk drives over a 15-minute period:

 TS=date +%H:%M
 sar -o tempfile 60 15
 TE=date +%H:%M
 sag -f tempfile -s $TS -e $TE -y "r+w/s[dsk]"

FILES

/usr/adm/sa/sadd daily data file for day $dd

SEE ALSO

 sar(1M)
NAME
sar - system activity reporter

SYNOPSIS
sar [-ubdycaqwmpgrkxDSAC] [-o file] t [n]
sar [-ubdycaqwmpgrkxDSAC] [-s time] [-e time] [-i sec] [-f file]

DESCRIPTION
In the first instance, sar samples cumulative activity counters in the operating
system at n intervals of t seconds, where t should be 5 or greater. If t is specified
with more than one option, all headers are printed together and the output may
be difficult to read. (If the sampling interval is less than 5, the activity of sar
itself may affect the sample.) If the -o option is specified, it saves the samples in
file in binary format. The default value of n is 1. In the second instance, with no
sampling interval specified, sar extracts data from a previously recorded file,
either the one specified by the -f option or, by default, the standard system
activity daily data file /var/adm/sa/sadd for the current day dd. The starting
and ending times of the report can be bounded via the -s and -e time arguments
of the form hh[:mm[:ss]]. The -i option selects records at sec second intervals.
Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running
in system mode, idle with some process waiting for block I/O, and other­
wise idle. When used with -D, %sys is split into percent of time servicing
requests from remote machines (%sys remote) and all other system time
(%sys local). If you are using an AT&T 3B2 Computer with a co-processor,
the CPU utilization (default) report will contain the following fields:
%usr, %sys, %idle, scall/s - where scalls/s is the number of system
calls, of all types, encountered on the co-processor per second.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers
and disk or other block devices;
Iread/s, lwrit/s - accesses of system buffers;
%rcache, %wcache - cache hit ratios, that is, (l-bread/lread) as a percen­
tage;
pread/s, pwrit/s - transfers via raw (physical) device mechanism. When
used with -D, buffer caching is reported for locally-mounted remote
resources.

-d Report activity for each block device, for example, disk or tape drive, with
the exception of XDC disks and tape drives. When data is displayed, the
device specification dsk– is generally used to represent a disk drive. The
device specification used to represent a tape drive is machine dependent.
The activity data reported is:
%busy, avque - portion of time device was busy servicing a transfer
request, ratio of total time for all requests to complete to total time device
was busy servicing these requests.
F+D/s, blks/s - number of data transfers from or to device, number of
bytes transferred in 512-byte units;

avwait, avserv – average time in milliseconds that transfer requests wait idly on queue, and average time to be serviced (which for disks includes seek, rotational latency and data transfer times).

-y Report TTY device activity:

```
rawch/s, canch/s, outch/s – input character rate, input character rate processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s – receive, transmit and modem interrupt rates.
```

-c Report system calls:

```
scall/s – system calls of all types;
sread/s, swrit/s, fork/s, exec/s – specific system calls;
rchar/s, wchar/s – characters transferred by read and write system calls. When used with -D, the system calls are split into incoming, outgoing, and strictly local calls. No incoming or outgoing fork or exec calls are reported.
```

-w Report system swapping and switching activity:

```
swpin/s, swpot/s, pswin/s, pswot/s – number of transfers and number of 512-byte units transferred for swapins and swapouts (including initial loading of some programs);
pswch/s – process switches.
```

-a Report use of file access system routines:

```
iget/s, namei/s, dirblk/s.
```

-q Report average queue length while occupied, and % of time occupied:

```
runj-sz, %runocc – run queue of processes in memory and runnable;
swpq-sz, %swpocc – these are no longer reported by sar.
```

-v Report status of process, i-node, file tables:

```
proc-sz, inod-sz, file-sz, lock-sz – entries/size for each table, evaluated once at sampling point;
%ov – overflows that occur between sampling points for each table.
```

-m Report message and semaphore activities:

```
msg/s, sema/s – primitives per second.
```

-p Report paging activities:

```
atch/s – page faults per second that are satisfied by reclaiming a page currently in memory (attaches per second);
pgin/s – page-in requests per second;
ppgin/s – pages paged-in per second;
pflt/s – page faults from protection errors per second (illegal access to page) or “copy-on-writes”
vflt/s – address translation page faults per second (valid page not in memory);
slock/s – faults per second caused by software lock requests requiring physical I/O.
```

-g Report paging activities:

```
pgout/s – page-out requests per second;
ppgout/s – pages paged-out per second;
pgfree/s – pages per second placed on the free list by the page stealing daemon;
```
pgscan/s – pages per second scanned by the page stealing daemon.
%S/Sipf – the percentage of S5 inodes taken off the freelist by iget which had reusable pages associated with them. These pages are flushed and cannot be reclaimed by processes. Thus this is the percentage of igets with page flushes.

-r Report unused memory pages and disk blocks:
freemem – average pages available to user processes;
freeswap – disk blocks available for page swapping.

-k Report kernel memory allocation (KMA) activities:
sml_mem, alloc, fail – information about the memory pool reserving and allocating space for small requests: the amount of memory in bytes KMA has for the small pool, the number of bytes allocated to satisfy requests for small amounts of memory, and the number of requests for small amounts of memory that were not satisfied (failed);
lg_mem, alloc, fail – information for the large memory pool (analogous to the information for the small memory pool);
oversz_alloc, fail – the amount of memory allocated for oversize requests and the number of oversize requests which could not be satisfied (because oversized memory is allocated dynamically, there is not a pool).

-x Report remote file sharing (RFS) operations:
open/s, create/s, lookup/s, readdir/s, getpage/s, putpage/s, other/s – The number of open, create, lookup, readdir, getpage, putpage, and other operations made per second by clients (incoming) and by the server (outgoing).

-D Report Remote File Sharing activity:
When used in combination with -u, -b or -c, it causes sar to produce the remote file sharing version of the corresponding report. -Du is assumed when only -D is specified.

-s Report server and request queue status:
serv/lo-hi – average number of Remote File Sharing servers on the system (lo and hi are the minimum and maximum number of servers respectively.)
request %busy – % of time receive descriptors are on the request queue
request avg lgth – average number of receive descriptors waiting for service when queue is occupied
server %avail – % of time there are idle servers
server avg avail – average number of idle servers when idle ones exist

-A Report all data. Equivalent to -udqbcayvmpgrkxSdc.

-C Report Remote File Sharing data caching overhead:
snd-inv/s – number of invalidation messages per second sent by your machine as a server.
snd-msg/s – total outgoing RFS messages sent per second.
rcv-inv/s – number of invalidation messages received from the remote server.
rcv-msg/s – total number of incoming RFS messages received per second.
dis-bread/s – number of read messages that would be eligible for caching
if caching had not been turned off because of an invalidation message. (Indicates the penalty incurred because of the invalidation message.)

blk-inv/s – number of pages removed from the client cache in response to cache invalidation messages.

EXAMPLES

To see today’s CPU activity so far:
```
sar
```

To watch CPU activity evolve for ten minutes and save data:
```
sar -o temp 60 10
```

To later review disk and tape activity from that period:
```
sar -d -f temp
```

FILES

```
/var/adm/sa/sadd
```

Daily data file, where **dd** are digits representing the day of the month.

SEE ALSO

`sag(1M), sadc(1M)`
NAME
sar – system activity reporter

SYNOPSIS
sar [-ubdycwaqvmpgrkxDBAC] [-P processor-id] [-0 file] t [n]
sar [-ubdycwaqvmpgrkxDBAC] [-P processor-id] [-s time] [-e time]
[-i sec] [-f file]

DESCRIPTION
In the first synopsis line, sar samples cumulative activity counters in the operating system at n intervals of t seconds, where t should be 5 or greater and the default value of n is 1. (Note that if the sampling interval is less than 5, the activity of sar itself may affect the sample.) If the -o option is specified, sar saves the samples in file in binary format. The type of command shown in the first synopsis line immediately sends the output for every option specified to standard output, without organizing it into a rational format; data for different options appears in an undifferentiated jumble and is difficult to read. Therefore, when running sar in the format of the first synopsis line, we recommend (a) specifying only one option, and (b) avoiding the -A option (which is equivalent to specifying all options).

When the -P option is specified, sar reports activity that applies only to processor-id specifically; command line options that request information not specific to processor-id are silently ignored. Options that are effective with -P are -abcgmuwyD.

In the second synopsis line, with no sampling interval specified, sar extracts data from a previously recorded file, either the one specified by the -f option or, by default, the standard system activity daily data file /var/adm/sa/sadd for the current day dd. The starting and ending times of the report can be bounded using the -s and -e time arguments of the form hh[:mm[:ss]]. The -i option selects records at sec second intervals. Otherwise, all intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:
- Report processor utilization (the default):
 %usr portion of time running in user mode
 %sys portion of time running in system mode
 %wio portion of time idle with some process waiting for block I/O
 %idle portion of time otherwise idle
 When used with -D, %sys is split into percentage of time servicing requests from remote machines via RFS (%sys remote) and all other system time (%sys local).
- Report buffer activity:
 bread/s, bwrit/s transfers per second of data between system buffers and disk or other block devices.
lread/s, lwrit/s accesses per second of system buffers.
%rcache, %wcache cache hit ratios, such as (1 - bread/lread) as a percentage.
pread/s, pwrit/s transfers per second by means of raw (physical) device mechanism.

When used with -D, buffer caching is reported for locally-mounted RFS remote resources.

-d Report activity for hard disks. When data is displayed, the device specification disk is generally used to represent a disk drive. The data reported is:
%busy percentage of time disk was busy servicing a transfer request.
avgue The average number of requests outstanding during the monitored period (the number of requests being serviced). This number is the ratio of total time for all requests to complete to total time disk was busy servicing these requests minus 1.
r+w/s number of data transfers to or from disk per second.
blks/s number of 512-byte blocks transferred to or from the disk per second.
avwait average time in milliseconds that transfer requests wait idly on queue.
avserv average time in milliseconds for a transfer request to be completed by the disk (including seek, rotational latency, and data transfer times).

-y Report TTY device activity (per second):
rawch/s input characters.
canch/s input characters processed by canon.
outch/s output characters.
rvin/s receiver hardware interrupts.
xmtin/s transmitter hardware interrupts.
mdmin/s modem interrupts.

-c Report system calls (per second):
scall/s system calls of all types.
sread/s, swrit/s, fork/s, exec/s specific system calls (read, write, fork, and exec).
reachar/s characters (bytes) transferred by read system calls.
wchar/s characters (bytes) transferred by write system calls.

When used with -D, the system calls are split into RFS incoming, RFS outgoing, and local calls. No RFS incoming or outgoing fork and exec calls are reported.
sar(1M) (Multiprocessing) sar(1M)

-w Report system swapping and switching activity (per second):
swpin/s, swpot/s
number of transfers to and from memory
pswin/s, pswot/s
number of 512-byte blocks transferred for swapins and
swapouts.
pswch/s process switches.

-a Report use of file access system routines (per second):
iget/s number of S5 and UFS files located by inode entry.
namei/s number of file system path searches.
dirblk/s number of S5 directory block reads issued.

-q Report average queue length while occupied, and percentage of time occupied:
runq-sz run queue of processes in memory and runnable.
%runocc percentage of time run queue is occupied.
swpq-sz The average number of processes in the swap queue when
there were processes in the queue. If there were no processes in
the swap queue, this field is blank.
%swpocc The percent of time during the sample that there were
processes in the swap queue. If there were no processes in
the swap queue, this field is blank.

-v Report status of process, i-node, file, and file and record locking tables:
proc-sz, inod-sz, file-sz, lock-sz
entries/size for each table, evaluated once at sampling point.
ov overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s primitives per second.

-p Report paging activities:
atch/s page faults per second that are satisfied by reclaiming a page
currently in memory (attaches per second).
pgin/s page-in requests per second.
ppgin/s pages paged-in per second.
pflt/s page faults from protection errors per second (invalid access
to page or "copy-on-writes").
vflt/s address translation page faults per second (valid page not in
memory).
sar(1M) (Multiprocessing) sar(1M)

slock/s faults per second caused by software lock requests requiring physical I/O.

-g Report paging activities:
- pgout/s page-out requests per second.
- ppout/s pages paged-out per second.
- pgfree/s pages per second placed on the freelist by the page stealing daemon.
- pgscan/s pages per second scanned by the page stealing daemon.
- %s5ipf the percentage of S5 inodes taken off the freelist by iget that had reusable pages associated with them. These pages are flushed and cannot be reclaimed by processes. Thus, this is the percentage of igets with page flushes.

-r Report unused memory pages and disk blocks:
- freemem average pages available to user processes.
- freeswap disk blocks available for page swapping.

-k Report kernel memory allocation (KMA) activities:
Information about the memory pool reserving and allocating space for small requests (less than 256 bytes):
- sml_mem the amount of memory in bytes KMA has for the small pool.
- alloc the number of bytes allocated to satisfy requests for small amounts of memory.
- fail the number of requests for small amounts of memory that were not satisfied (failed).

Information for the large memory pool:
- lg_mem, alloc, fail (analogous to the information for the small memory pool.)

Information for oversized requests (because oversized memory is allocated dynamically, there is not a pool):
- ovsz_alloc the amount of memory allocated for oversize requests.
- fail the number of oversize requests that could not be satisfied.

-x Report remote file sharing (RFS) operations:
- open/s the number of open operations made per second by clients (incoming) and by the server (outgoing).
- create/s the number of create operations made per second by clients (incoming) and by the server (outgoing).
- lookup/s the number of lookup operations made per second by clients (incoming) and by the server (outgoing).
readdir/s the number of readdir operations made per second by clients (incoming) and by the server (outgoing).

getpage/s the number of getpage operations made per second by clients (incoming) and by the server (outgoing).

putpage/s the number of putpage operations made per second by clients (incoming) and by the server (outgoing).

other/s the number of other operations made per second by clients (incoming) and the server (outgoing).

-D Report Remote File Sharing activity:
When used in combination with -u, -b, or -c, it causes sar to produce the remote file sharing version of the corresponding report. -Du is assumed when only -D is specified.

-S Report server and request queue status:

serv/lo-hi average number of Remote File Sharing servers on the system (lo and hi are the minimum and maximum number of servers respectively).

request %busy percentage of time receive descriptors are on the request queue.

request avg lqth average number of receive descriptors waiting for service when queue is occupied.

server %avail percentage of time there are idle servers.

server avg avail average number of idle servers when idle ones exist.

-A Without the -P option, this option reports all data (that is, it's equivalent to -udgbwcmgprkxcSD). When run with -P, this option is equivalent to -ubwcmgD.

-C Report Remote File Sharing data caching overhead:

snd-inv/s number of invalidation messages per second sent by your machine as a server.

snd-msg/s total outgoing RFS messages sent per second.

rcv-inv/s number of invalidation messages received from the remote server.

rcv-msg/s total number of incoming RFS messages received per second.

dis-bread/s number of read messages that would be eligible for caching if caching had not been turned off because of an invalidation message. (Indicates the penalty incurred because of the invalidation message).
blk-inv/s number of pages removed from the client cache in response to cache invalidation messages.

EXAMPLES
To see today’s processor activity so far:
```
sar
```
To see the system call activity so far for processor 0:
```
sar -c -p0
```
To watch processor activity evolve for ten minutes and save data:
```
sar -o temp 60 10
```
To later review disk activity from that period:
```
sar -d -f temp
```

FILES
```
/var/adm/sa/sadd daily data file, where *dd* are digits representing the day of the month
```

SEE ALSO
sadc(1M) and sag(1M) in the *System Administrator’s Reference Manual*
NAME

sccs - front end for the Source Code Control System (SCCS)

SYNOPSIS

/usr/ucb/sccs [-r] [-dprefixpath] [-pfinalpath] command

[SCCS-flags . . .] [filename . . .]

DESCRIPTION

The sccs command is a front end to the utility programs of the Source Code Control System (SCCS).

sccs normally prefixes each filename, or the last component of each filename, with the string ‘SCCS/s.’, because you normally keep your SCCS database files in a directory called SCCS, and each database file starts with an ‘s.’ prefix. If the environment variable PROJECTDIR is set, and is an absolute pathname (that is, begins with a slash) sccs will search for SCCS files in the directory given by that variable. If it is a relative pathname (that is, does not begin with a slash), it is treated as the name of a user, and sccs will search in that user’s home directory for a directory named src or source. If that directory is found, sccs will search for SCCS files in the directory given by that variable.

sccs program options must appear before the command argument. Flags to be passed to the actual SCCS command (utility program) must appear after the command argument. These flags are specific to the command being used.

sccs also includes the capability to run “set user ID” to another user to provide additional protection. Certain commands (such as admin(1)) cannot be run “set user ID” by all users, since this would allow anyone to change the authorizations. Such commands are always run as the real user.

OPTIONS

-r Run sccs as the real user rather than as whatever effective user sccs is “set user ID” to.

-dprefixpath

Define the prefix portion of the pathname for the SCCS database files. The default prefix portion of the pathname is the current directory. prefixpath is prefixed to the entire pathname. See EXAMPLE.

This flag overrides any directory specified by the PROJECTDIR environment variable.

-pfinalpath

Define the name of a lower directory in which the SCCS files will be found; SCCS is the default. finalpath is appended before the final component of the pathname. See EXAMPLE.

USAGE

Additional sccs Commands

Several “pseudo-commands” are available in addition to the usual SCCS commands. These are:

create create is used when creating new s. files. For example, given a C source language file called ‘obscure.c’, create would perform the following actions: (1) create the ‘s.’ file called ‘s.obscure.c’ in the SCCS directory; (2) rename the original source file to ‘,obscure.c’;
(3) do an `sccs get` on `obscure.c`. Compared to the SCCS admin command, create does more of the startup work for you and should be used in preference to admin.

enter

`enter` is just like create, except that it does not do the final `sccs get`. It is usually used if an `sccs edit` is to be performed immediately after the `enter`.

edit

Get a file for editing.

delget

Perform a delta on the named files and then get new versions. The new versions have ID keywords expanded, and so cannot be edited.

deledit

Same as delget, but produces new versions suitable for editing. deledit is useful for making a "checkpoint" of your current editing phase.

fix

Remove the named delta, but leaves you with a copy of the delta with the changes that were in it. fix must be followed by a `-r` flag. fix is useful for fixing small compiler bugs, etc. Since fix does not leave audit trails, use it carefully.

clean

Remove everything from the current directory that can be recreated from SCCS files. clean checks for and does not remove any files being edited. If `clean` `-b` is used, branches are not checked to see if they are currently being edited. Note: `-b` is dangerous if you are keeping the branches in the same directory.

unedit

"Undo" the last edit or `get -e` and return a file to its previous condition. If you unedit a file being edited, all changes made since the beginning of the editing session are lost.

info

Display a list of all files being edited. If the `-b` flag is given, branches (that is, SID's with two or fewer components) are ignored. If the `-u` flag is given (with an optional argument), only files being edited by you (or the named user) are listed.

check

Check for files currently being edited, like info, but returns an exit code rather than a listing: nothing is printed if nothing is being edited, and a non-zero exit status is returned if anything is being edited. check may thus be included in an "install" entry in a makefile, to ensure that everything is included in an SCCS file before a version is installed.

tell

Display a list of files being edited on the standard output. Filenames are separated by NEWLINE characters. Take the `-b` and `-u` flags like info and check.

diffs

Compare (in diff-like format) the current version of the program you have out for editing and the versions in SCCS format. diffs accepts the same arguments as diff, except that the `-c` flag must be specified as `-C` instead, because the `-c` flag is taken as a flag to get indicating which version is to be compared with the current version.
print

Print verbose information about the named files. print does an
'sccs prs -e' followed by an 'sccs get -p -m' on each file.

EXAMPLE

The command:

 sccs -d/usr/include get sys/inode.h

converts to:

 get /usr/include/sys/SCCS/s.inode.h

The intent here is to create aliases such as:

 alias syssccs sccs -d/usr/src

which will be used as:

 syssccs get cmd/who.c

The command:

 sccs -pprivate get usr/include/stdio.h

converts to:

 get usr/include/private/s.stdio.h

To put a file called myprogram.c into SCCS format for the first time, assuming
also that there is no SCCS directory already existing:

 $ mkdir SCCS
 $ sccs create myprogram.c
 $ myprogram.c:
 1.1
 14 lines
 after you have verified that everything is all right
 you remove the version of the file that starts with a comma:
 $ rm myprogram.c
 $

To get a copy of myprogram.c for editing, edit that file, then place it back in the
SCCS database:

 $ sccs edit myprogram.c
 1.1
 new delta 1.2
 14 lines
 $ vi myprogram.c
 your editing session
 $ sccs delget myprogram.c
 comments? Added abusive responses for compatibility
 1.2
 7 inserted
 7 deleted
 7 unchanged
 1.2
 14 lines
 $
To get a file from another directory:

```
sccs -p/usr/src/sccs/ get cc.c
```
or:

```
sccs get /usr/src/sccs/cc.c
```

To make a delta of a large number of files in the current directory:

```
sccs delta *.c
```

To get a list of files being edited that are not on branches:

```
sccs info -b
```

To delta everything that you are editing:

```
$ sccs delta `sccs tell -u`
```

In a makefile, to get source files from an SCCS file if it does not already exist:

```
SRCS = <list of source files>
$(SRCS):
  sccs get $(REL) $@
```

Regular sccs Commands

The "regular" SCCS commands are described very briefly below. It is unlikely that you ever need to use these commands because the user interface is so complicated, and the

```
sccs
```
front end command does 99.9% of the interesting tasks for you.

- **admin**: Create new SCCS files and changes parameters of existing SCCS files. You can use `sccs create` to create new SCCS files, or use `sccs admin` to do other things.

- **cdc**: Change the commentary material in an SCCS delta.

- **comb**: Combine SCCS deltas and reconstructs the SCCS files.

- **delta**: Permanently introduces changes that were made to a file previously retrieved using `sccs get`. You can use `sccs delget` as the more useful version of this command since `sccs delget` does all of the useful work and more.

- **get**: Extract a file from the SCCS database, either for compilation, or for editing when the `-e` option is used. Use `sccs get` if you really need it, but `sccs delget` will normally have done this job for you. Use `sccs edit` instead of `get` with the `-e` option.

- **help**: Supposed to help you interpret SCCS error messages.

- **prs**: Display information about what is happening in an SCCS file.

- **rmdel**: Remove a delta from an SCCS file.

- **sccsdiff**: Compare two versions of an SCCS file and generates the differences between the two versions.
val Determine if a given SCCS file meets specified criteria. If you use the `sccs` command, you should not need to use `val`, because its user interface is unbelievable.

what Display SCCS identification information.

FILES
/usr/sccs/*

SEE ALSO

NOTES
The `help` command usually just parrots SCCS error messages and is generally not considered very helpful.
NAME
sccsdiff – compare two versions of an SCCS file

SYNOPSIS
sccsdiff -rSID1 -rSID2 [-p] [-sn] files

DESCRIPTION
sccsdiff compares two versions of an SCCS file and generates the differences between the two versions. Any number of SCCS files may be specified, but arguments apply to all files.

-\(rSID1\) -\(rSID2\) \(SID1\) and \(SID2\) specify the deltas of an SCCS file that are to be compared. Versions are passed to \(bdiff\) in the order given.

-p \(n\) is the file segment size that \(bdiff\) will pass to \(diff\). This option is useful when \(diff\) fails due to a high system load.

FILES
/var/tmp/get?????? temporary files

SEE ALSO
get(1), help(1)
diff(1), bdiff(1), pr(1) in the User's Reference Manual
NAME
scompat - set up compatibility environment for console applications

SYNOPSIS
scompat [-r interpretnumber] [UNIX System command line]

DESCRIPTION
COFF- or ELF-based applications developed for SCO UNIX System V/386 3.2 (or later releases) that use graphics may not work correctly on the system VGA/EGA/CGA console or Fiber Optic Workstations, which are now STREAMS-based in UNIX System V/386 Release 4.

The scompat command sets up the workstation environment so that these applications may function correctly. While the environment is in effect, access to the workstation as a STREAMS device will not work correctly unless the -r option is used with the argument 4 (see below).

OPTIONS
For COFF or ELF executables, scompat may be invoked with no arguments to give you XENIX ioctl interpretation [see ioctl(2) in the Programmer's Reference Manual]. In this case, a sub-shell is created. For the lifetime of the shell, the compatibility environment is in effect on the workstation.

scompat may also be invoked with the -r interpretnumber option, where interpretnumber is:

3 UNIX System V/386 Release 3.2 ioctl interpretation for XENIX applications
4 STREAMS ioctl interpretation for COFF executables or XENIX applications

scompat also accepts as arguments a shell command line (that is, scompat ls -l). This results in the command line being executed with the compatibility environment in effect. When the command completes execution, the compatibility environment is restored to its previous state.

NOTES
For computers based on Intel microprocessors, if SCOMPAT is set to 3.2, uname -a gives a value of 3.2 for release and a value of 2 for version.

To set SCOMPAT to any other version, use the syntax

 SCOMPAT=release:version

To return to the beginning state, unset SCOMPAT.

In all cases, when SCOMPAT is set, it must be exported [see sh(1) in the User's Reference Manual].

SEE ALSO
ioctl(2) in the Programmer's Reference Manual
sh(1) and uname(1) in the User's Reference Manual
NAME
script – make typescript of a terminal session

SYNOPSIS
script [-a] [filename]

DESCRIPTION
script makes a typescript of everything printed on your terminal. The
typescript is written to filename, or appended to filename if the -a option is given.
If no file name is given, the typescript is saved in the file typescript.
The script ends when the forked shell exits or when ctrl-D is typed.

NOTES
script places everything that appears on the screen in the log file, including
prompts.
NAME
sdb – symbolic debugger

SYNOPSIS
sdb [-e] [-s signo] [-v] [-w] [objfile [corfile [directory-list]]]

DESCRIPTION
sdb is the symbolic debugger for C and assembly programs. sdb may be used to examine executable program files and core files. It may also be used to examine live processes in a controlled execution environment.

The objfile argument is the name of an executable program file. To take full advantage of the symbolic capabilities of sdb, this file should be compiled with the -g (debug) option. If it has not been compiled with the -g option, the symbolic capabilities of sdb will be limited, but the file can still be examined and the program debugged. objfile may also be a path name in the /proc directory, in which case the currently executing process denoted by that path name is controlled by sdb.

The corfile argument is the name of a core image file. A core image file is produced by the abnormal termination of objfile or by the use of gcore. A core image file contains a copy of the segments of a program. The default for corfile is core. A core image file need not be present to use sdb. Using a hyphen (-) instead of corfile forces sdb to ignore an existing core image file.

The directory-list argument is a colon-separated list of directories that is used by sdb to locate source files used to build objfile. If no directory list is specified, sdb will look in the current directory.

The following options are recognized by sdb:

-e Ignore symbolic information and treat nonsymbolic addresses as file offsets.

-s signo
Where signo is a decimal number that corresponds to a signal number [see signal(2)], do not stop live processes under control of sdb that receive the signal. This option may be used more than once on the sdb command line.

-v Print version information. If no objfile argument is specified on the command line, sdb will exit after printing the version information.

-w Suppress warnings about corfile being older than objfile or about source files that are older than objfile.

-w Allow user to write to objfile or corfile.

sdb recognizes a current line and a current file. When sdb is examining an executable program file without a core file, the current line and current file are initially set to the line and file containing the first line of main. If corfile exists, then current line and current file are initially set to the line and file containing the source statement where the process terminated. The current line and current file change automatically as a live process executes. They may also be changed with the source file examination commands.
Names of variables are written as in C. Variables local to a procedure may be accessed using the form `procedure:variable`. If no procedure name is given, the procedure containing the current line is used by default.

Structure members may be referred to as `variable.member`, pointers to structure members as `variable->member`, and array elements as `variable[number]`. Pointers may also be dereferenced by using the form `pointer[number]`. Combinations of these forms may also be used. The form `number->member` may be used where `number` is the address of a pointer, and `number.member` where `number` is interpreted as the address of a structure instance. The template of the structure type used in this case will be the last structure type referenced. When `sdb` displays the value of a structure, it does so by displaying the value of all elements of the structure. The address of a structure is displayed by displaying the address of the structure instance rather than the addresses of individual elements.

Elements of a multidimensional array may be referred to as `variable [number] [number]...`, or as `variable [number,number,...]`. In place of `number`, the form `number;number` may be used to indicate a range of values, `*` may be used to indicate all legitimate values for that subscript, or subscripts may be omitted entirely if they are the last subscripts and the full range of values is desired. If no subscripts are specified, `sdb` will display the value of all elements of the array.

A particular instance of a variable on the stack is referred to as `procedure:variable,number`. The `number` is the occurrence of the specified procedure on the stack, with the topmost occurrence being 1. The default procedure is the one containing the current line.

Addresses may be used in `sdb` commands as well. Addresses are specified by decimal, octal, or hexadecimal numbers.

Line numbers in the source program are specified by the form `filename: number` or `procedure: number`. In either case, the `number` is relative to the beginning of the file and corresponds to the line number used by text editors or the output of `pr`. A number used by itself implies a line in the current file.

While a live process is running under `sdb`, all addresses and identifiers refer to the live process. When `sdb` is not examining a live process, the addresses and identifiers refer to `objfile` or `corefile`.

Commands

The commands for examining data in the program are:

- `t` Prints a stack trace of the terminated or halted program. The function invoked most recently is at the top of the stack. For C programs, the stack ends with `_start`, which is the startup routine that invokes `main`.

- `T` Prints the top line of the stack trace.

- `variable/elm` Print the value of `variable` according to length `l` and format `m`. The numeric count `c` indicates that a region of memory, beginning at the address implied by `variable`, is to be displayed. The length specifiers are:
b one byte
h two bytes (half word)
l four bytes (long word)

Legal values for m are:
c character
d signed decimal
u unsigned decimal
o octal
x hexadecimal
f 32-bit single precision floating point
g 64-bit double precision floating point
s Assumes that variable is a string pointer and prints characters starting at the address pointed to by the variable.
a Prints characters starting at the variable’s address. Do not use this with register variables.
p pointer to procedure
i Disassembles machine-language instruction with addresses printed numerically and symbolically.
I Disassembles machine-language instruction with addresses printed numerically only.

Length specifiers are effective with formats c, d, u, o, x. The length specifier determines the output length of the value to be displayed. This value may be truncated. The count specifier c displays that many units of memory, starting at the address of the variable. The number of bytes in the unit of memory is determined by l or by the size associated with the variable. If the specifiers c, l, and m are omitted, sdb uses defaults. If a count specifier is used with the s or a command, then that many characters are printed. Otherwise, successive characters are printed until either a null byte is reached or 128 characters are printed. The last variable may be redisplayed with the ./ command.

For a limited form of pattern matching, use the sh metacharacters * and ? within procedure and variable names. (sdb does not accept these metacharacters in file names, as the function name in a line number when setting a breakpoint, in the function call command, or as the argument to the e command.) If no procedure name is supplied, sdb matches both local and global variables. If the procedure name is specified, then sdb matches only local variables. To match global variables only, use :pattern. To print all variables, use *:*.
linenumber?lm
variable:?lm

Prints the value at the address from the executable or text space given by
linenumber or variable (procedure name), according to the format lm. The
default format is i.

variable=lm
linenumber=lm
number=lm

Prints the address of variable or linenumber, or the value of number. l
specifies length and m specifies the format. If no format is specified, then
sdb uses lx (four-byte hex). m allows you to convert between decimal,
octal, and hexadecimal.

variable=value

Sets variable to the given value. The value may be a number, a character
constant, or a variable. The value must be well-defined; structures are
allowed only if assigning to another structure variable of the same type.
Character constants are denoted 'character. Numbers are viewed as integers
unless a decimal point or exponent is used. In this case, they are treated as
having the type double. Registers, except the floating point registers, are
viewed as integers. Register names are identical to those used by the
assembler (for example, %regname where regname is the name of a register).
If the address of a variable is given, it is regarded as the address of a vari-
able of type int. C conventions are used in any type conversions necessary
to perform the indicated assignment.

x

Prints the machine registers and the current machine-language instruction.

X

Prints the current machine-language instruction.

The commands for examining source files are:

e

procedure
e.filename
e.directory/

e, without arguments, prints the name of the current file. The second form
sets the current file to the file containing the procedure. The third form sets
the current file to filename. The current line is set to the first line in the
named procedure or file. Source files are assumed to be in the directories in
the directory list. The fourth form adds directory to the end of the directory
list.

/regular expression/

Searches forward from the current line for a line containing a string match-
ing regular expression, as in ed. The trailing / may be omitted, except when
associated with a breakpoint.

?regular expression?

Searches backward from the current line for a line containing a string
matching regular expression, as in ed. The trailing ? may be omitted, except
when associated with a breakpoint.
p Prints the current line.
z Prints the current line and the following nine lines. Sets the current line to the last line printed.
w Prints the 10 lines (the window) around the current line.
number
 Specifies the current line. Prints the new current line.
count+
 Advances the current line by count lines. Prints the new current line.
count--
 Resets the current line by count lines back. Prints the new current line.

The commands for controlling the execution of the source program are:
count r args
count R
 Runs the program with the given arguments. The r command with no arguments reuses the previous arguments to the program. The R command runs the program with no arguments. An argument beginning with < or > redirects the standard input or output, respectively. Full sh syntax is accepted. If count is given, it specifies the number of breakpoints to be ignored.

linenumber c count
linenumber C count
 Continues execution. sdb stops when it encounters count breakpoints. The signal that stopped the program is reactivated with the C command and ignored with the c command. If a line number is specified, then a temporary breakpoint is placed at the line and execution continues. The breakpoint is deleted when the command finishes.

linenumber g count
 Continues with execution resumed at the given line. If count is given, it specifies the number of breakpoints to be ignored.

s count
S count
 s single steps the program through count lines or if no count is given, then the program runs for one line. s will step from one function into a called function. S also steps a program, but it will not step into a called function. It steps over the function called.

i count
I count
 Single steps by count machine-language instructions. The signal that caused the program to stop is reactivated with the I command and ignored with the i command.
variable\$m count
address\$m count

Single steps (as with \$) until the specified location is modified with a new value. If \$count is omitted, it is, in effect, infinity. Variable must be accessible from the current procedure. This command can be very slow.

level \v
Toggles verbose mode. This is for use when single stepping with \$, \s, or \m. If level is omitted, then just the current source file and/or function name is printed when either changes. If level is 1 or greater, each C source line is printed before it executes. If level is 2 or greater, each assembler statement is also printed. A \v turns verbose mode off.

k Kills the program being debugged.

procedure (arg1, arg2,...)
procedure (arg1, arg2,...) /m

Executes the named procedure with the given arguments. Arguments can be register names, integer, character, or string constants, or names of variables accessible from the current procedure. The second form causes the value returned by the procedure to be printed according to format \$m. If no format is given, it defaults to \d.

linenumber \b commands
Sets a breakpoint at the given line. If a procedure name without a line number is given (for example, proc1), a breakpoint is placed at the first line in the procedure even if it was not compiled with the \-g option. If no \linenumber is given, a breakpoint is placed at the current line. If no \commands are given, execution stops at the breakpoint and control is returned to \sdb. Otherwise the \commands are executed when the breakpoint is encountered. Multiple commands are specified by separating them with semicolons. Nested associated commands are not permitted; setting breakpoints within the associated environments is permitted.

B Prints a list of the currently active breakpoints.

linenumber \d
Deletes a breakpoint at the given line. If no \linenumber is given, then the breakpoints are deleted interactively. Each breakpoint location is printed and a line is read from the standard input. If the line begins with a \y or \d, then the breakpoint is deleted.

D Deletes all breakpoints.

1 Prints the last executed line.

linenumber \a
Announces a line number. If \linenumber is of the form proc:number, the command effectively does a linenumber:b 1;c. If \linenumber is of the form proc:, the command effectively does a proc:b T;c.
Miscellaneous commands:

`#rest-of-line`
The rest-of-line represents comments that are ignored by `sdb`.

`!command`
The command is interpreted by `sh`.

`new-line`
If the previous command printed a source line, then advance the current line by one line and print the new current line. If the previous command displayed a memory location, then display the next memory location. If the previous command disassembled an instruction, then disassemble the next instruction.

`end-of-file character`
Scrolls the next 10 lines of instructions, source, or data depending on which was printed last. The end-of-file character is usually `control-d`.

`< filename`
Read commands from `filename` until the end of file is reached, and then continue to accept commands from standard input. Commands are echoed, preceded by two asterisks, just before being executed. This command may not be nested; `<` may not appear as a command in a file.

`M`
Prints the address maps.

`" string "`
Prints the given string. The C escape sequences of the form `\character`, `\octaldigits`, or `\xhexdigits` are recognized, where `character` is a nonnumeric character. The trailing quote may be omitted.

`q`
Exits the debugger.

`v`
Prints version stamping information.

SEE ALSO
`cc(1), signal(2), a.out(4), core(4), syms(4)`
The "sdb" chapter in the Programmer's Guide: ANSI C and Programming Support Tools

NOTES
If `objfile` is a dynamically linked executable, variables, function names, and so on that are defined in shared objects may not be referenced until the shared object in which the variable, and so on, is defined is attached to the process. For shared objects attached at startup (for example, `libc.so.1`, the default C library), this implies that such variables may not be accessed until `main` is called.

The `objfile` argument is accessed directly for debugging information while the process is created via the `PATH` variable.
NAME
sdiff – print file differences side-by-side

SYNOPSIS
sdiff [options] file1 file2

DESCRIPTION
sdiff uses the output of the diff command to produce a side-by-side listing of
two files indicating lines that are different. Lines of the two files are printed with
a blank gutter between them if the lines are identical, a < in the gutter if the line
appears only in file1, a > in the gutter if the line appears only in file2, and a | for
lines that are different. For example:
x | y
a a
b <
c <
d d
 > c

Valid options are:
-w n Use the argument n as the width of the output line. The default line
length is 130 characters.
-l Print only the left side of any lines that are identical.
-s Do not print identical lines.
-o output Use the argument output as the name of a third file that is created as
a user-controlled merge of file1 and file2. Identical lines of file1 and
file2 are copied to output. Sets of differences, as produced by diff,
are printed; where a set of differences share a common gutter charac-
ter. After printing each set of differences, sdiff prompts the user
with a % and waits for one of the following user-typed commands:
l Append the left column to the output file.
r Append the right column to the output file.
s Turn on silent mode; do not print identical lines.
v Turn off silent mode.
e l Call the editor with the left column.
e r Call the editor with the right column.
e b Call the editor with the concatenation of left and right.
e Call the editor with a zero length file.
q Exit from the program.

On exit from the editor, the resulting file is concatenated to the end
of the output file.

SEE ALSO
diff(1), ed(1)
NAME
 sed – stream editor

SYNOPSIS
 sed [−n] [−e script] [−f sfile] [file ...]

DESCRIPTION
 sed copies the named file (standard input default) to the standard output, edited according to a script of commands. The −f option causes the script to be taken from file sfile; these options accumulate. If there is just one −e option and no −f options, the flag −e may be omitted. The −n option suppresses the default output. A script consists of editing commands, one per line, of the following form:

 [address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern space (unless there is something left after a D command), applies in sequence all commands whose addresses select that pattern space, and at the end of the script copies the pattern space to the standard output (except under −n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern space for subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across files, a $ that addresses the last line of input, or a context address, i.e., a /regular expression/ in the style of ed(1) modified thus:

In a context address, the construction \?regular expression?, where ? is any character, is identical to /regular expression/. Note that in the context address /xabc\xdefx, the second x stands for itself, so that the regular expression is abc\def.

The escape sequence \n matches a new-line embedded in the pattern space.

A period (.) matches any character except the terminal new-line of the pattern space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that matches the first address through the next pattern space that matches the second address. (If the second address is a number less than or equal to the line number selected by the first address, only the line corresponding to the first address is selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation function ! (below).

In the following list of functions the maximum number of permissible addresses for each function is indicated in parentheses.
The text argument consists of one or more lines, all but the last of which end with \ to hide the new-line. Backslashes in text are treated like backslashes in the replacement string of an s command, and may be used to protect initial blanks and tabs against the stripping that is done on every script line. The rfile or wfile argument must terminate the command line and must be preceded by exactly one blank. Each wfile is created before processing begins. There can be at most 10 distinct wfile arguments.

(1) a\
 text Append. Place text on the output before reading the next input line.

(2) b label Branch to the : command bearing the label. If label is empty, branch to the end of the script.

(2) c\
 text Change. Delete the pattern space. Place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) D Delete the initial segment of the pattern space through the first new-line. Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold space.

(2) G Append the contents of the hold space to the pattern space.

(2) h Replace the contents of the hold space by the contents of the pattern space.

(2) H Append the contents of the pattern space to the hold space.

(1) i\
 text Insert. Place text on the standard output.

(2) I List the pattern space on the standard output in an unambiguous form. Non-printable characters are displayed in octal notation and long lines are folded.

(2) n Copy the pattern space to the standard output. Replace the pattern space with the next line of input.

(2) N Append the next line of input to the pattern space with an embedded new-line. (The current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first new-line to the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rfile Read the contents of rfile. Place them on the output before reading the next input line.

(2) s/regular expression/replacement/flags
 Substitute the replacement string for instances of the regular expression in the pattern space. Any character may be used instead of /. For a fuller description see ed(1). flags is zero or more of:
sed(1) (Essential Utilities) sed(1)

n n= 1 - 512. Substitute for just the n-th occurrence of the regular expression.

g Global. Substitute for all nonoverlapping instances of the regular expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wfile Write. Append the pattern space to wfile if a replacement was made.

(2)t label Test. Branch to the : command bearing the label if any substitutions have been made since the most recent reading of an input line or execution of a t. If label is empty, branch to the end of the script.

(2)w wfile Write. Append the pattern space to wfile. The first occurrence of w will cause wfile to be cleared. Subsequent invocations of w will append. Each time the sed command is used, wfile is overwritten.

(2)x Exchange the contents of the pattern and hold spaces.

(2)y /string1/ /string2/ Transform. Replace all occurrences of characters in string1 with the corresponding characters in string2. string1 and string2 must have the same number of characters.

(2)! function Don't. Apply the function (or group, if function is { }) only to lines not selected by the address(es).

(0): label This command does nothing; it bears a label for b and t commands to branch to.

(1)= Place the current line number on the standard output as a line.

(2){ Execute the following commands through a matching } only when the pattern space is selected.

(0) An empty command is ignored.

(0)# If a # appears as the first character on a line of a script file, then that entire line is treated as a comment, with one exception: if a # appears on the first line and the character after the # is an n, then the default output will be suppressed. The rest of the line after #n is also ignored. A script file must contain at least one non-comment line.

SEE ALSO
awk(1), ed(1), grep(1)
NAME

sendmail – send mail over the internet

SYNOPSIS

DESCRIPTION

sendmail sends a message to one or more people, routing the message over whatever networks are necessary. sendmail does internetwork forwarding as necessary to deliver the message to the correct place.

sendmail is not intended as a user interface routine; other programs provide user-friendly front ends; sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an EOF, or a line with a single dot and sends a copy of the letter found there to all of the addresses listed. It determines the network to use based on the syntax and contents of the addresses.

Local addresses are looked up in the local aliases(4) file, or by using the YP name service, and aliased appropriately. In addition, if there is a .forward file in a recipient's home directory, sendmail forwards a copy of each message to the list of recipients that file contains. Aliasing can be prevented by preceding the address with a backslash. Normally the sender is not included in alias expansions, for example, if 'john' sends to 'group', and 'group' includes 'john' in the expansion, then the letter will not be delivered to 'john'.

sendmail will also route mail directly to other known hosts in a local network. The list of hosts to which mail is directly sent is maintained in the file /usr/lib/mail hosts.

The following options are available:

- -ba Go into ARPANET mode. All input lines must end with a CR-LF, and all messages will be generated with a CR-LF at the end. Also, the 'From:' and "Sender:" fields are examined for the name of the sender.

- -bd Run as a daemon, waiting for incoming SMTP connections.

- -bi Initialize the alias database.

- -bm Deliver mail in the usual way (default).

- -bp Print a summary of the mail queue.

- -bs Use the SMTP protocol as described in RFC 821. This flag implies all the operations of the -ba flag that are compatible with SMTP.

- -bt Run in address test mode. This mode reads addresses and shows the steps in parsing; it is used for debugging configuration tables.
-bv
 Verify names only — do not try to collect or deliver a message. Verify mode is normally used for validating users or mailing lists.

-bz
 Create the configuration freeze file.

-cfile
 Use alternate configuration file.

-dX
 Set debugging value to X.

-ffullname
 Set the full name of the sender.

-fname
 Sets the name of the “from” person (that is, the sender of the mail). -f can only be used by “trusted” users (who are listed in the config file).

-hN
 Set the hop count to N. The hop count is incremented every time the mail is processed. When it reaches a limit, the mail is returned with an error message, the victim of an aliasing loop.

-Mid
 Attempt to deliver the queued message with message-id id.

-n
 Do not do aliasing.

-ox value
 Set option x to the specified value. Options are described below.

-q[time]
 Processed saved messages in the queue at given intervals. If time is omitted, process the queue once. Time is given as a tagged number, with s being seconds, m being minutes, h being hours, d being days, and w being weeks. For example, -q1h30m or -q90m would both set the timeout to one hour thirty minutes.

-oxname
 An alternate and obsolete form of the -f flag.

-Rstring
 Go through the queue of pending mail and attempt to deliver any message with a recipient containing the specified string. This is useful for clearing out mail directed to a machine which has been down for awhile.

-t
 Read message for recipients. “To:”, “Cc:”, and “Bcc:” lines will be scanned for people to send to. The “Bcc:” line will be deleted before transmission. Any addresses in the argument list will be suppressed.

-v
 Go into verbose mode. Alias expansions will be announced, and so on.

PROCESSING OPTIONS

There are also a number of processing options that may be set. Normally these will only be used by a system administrator. Options may be set either on the command line using the -o flag or in the configuration file. The options are:

Afile
 Use alternate alias file.

c
 On mailers that are considered “expensive” to connect to, do not initiate immediate connection. This requires queuing.

dx
 Set the delivery mode to x. Delivery modes are i for interactive (synchronous) delivery, b for background (asynchronous) delivery, and q for queue only — that is, actual delivery is done the next time the queue is run.
Run `newaliases(1M)` to automatically rebuild the alias database, if necessary.

Set error processing to mode `x`. Valid modes are `m` to mail back the error message, `w` to "write" back the error message (or mail it back if the sender is not logged in), `p` to print the errors on the terminal (default), 'q' to throw away error messages (only exit status is returned), and 'e' to do special processing for the BerkNet. If the text of the message is not mailed back by modes `m` or `w` and if the sender is local to this machine, a copy of the message is appended to the file `dead.letter` in the sender's home directory.

The mode to use when creating temporary files.

Save UNIX-system-style "From" lines at the front of messages.

The default group ID to use when calling mailers.

The SMTP help file.

Do not take dots on a line by themselves as a message terminator.

The log level.

Send to "me" (the sender) also if I am in an alias expansion.

If set, this message may have old style headers. If not set, this message is guaranteed to have new style headers (that is, commas instead of spaces between addresses). If set, an adaptive algorithm is used that will correctly determine the header format in most cases.

Select the directory in which to queue messages.

The timeout on reads; if none is set, `sendmail` will wait forever for a mailer.

Save statistics in the named file.

Always instantiate the queue file, even under circumstances where it is not strictly necessary.

Set the timeout on messages in the queue to the specified time. After sitting in the queue for this amount of time, they will be returned to the sender. The default is three days.

Set the name of the time zone.

Set the default user id for mailers.

If the first character of the user name is a vertical bar, the rest of the user name is used as the name of a program to pipe the mail to. It may be necessary to quote the name of the user to keep `sendmail` from suppressing the blanks from between arguments.

`sendmail` returns an exit status describing what it did. The codes are defined in `sysexits.h`.
sendmail(1M) (BSD Compatibility Package) sendmail(1M)

EX_OK
Successful completion on all addresses.

EX_NOUSER
User name not recognized.

EX_UNAVAILABLE
Catchall meaning necessary resources were not available.

EX_SYNTAX
Syntax error in address.

EX_SOFTWARE
Internal software error, including bad arguments.

EX_OSERR
Temporary operating system error, such as cannot fork.

EX_NOHOST
Host name not recognized.

EX_TEMPFAIL
Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail rebuilds the alias database. If invoked as mailq, sendmail prints the contents of the mail queue.

FILES
Except for /etc/sendmail.cf, these pathnames are all specified in
/etc/sendmail.cf. Thus, these values are only approximations.

/usr/bin/uux to deliver uucp mail
/usr/bin/mail to deliver local mail
/var/spool/mqueue/* temp files and queued mail
~/.forward list of recipients for forwarding messages

SEE ALSO
biff(1), mail(1), mailstat(1), newaliases(1), mconnect(1M), aliases(4)

NOTES
Do not use the -bz option if you plan to run sendmail as a daemon, that is, with the -bd option.

If the frozen configuration file, /usr/ucblib/sendmail.fc, was created with the -bz option, running sendmail as a daemon (with the -bd option) fails with a core dump.
NAME
set, unset – set and unset local or global environment variables

SYNOPSIS
unset -l variable . . .
unset -f file variable . . .

DESCRIPTION
The set command sets variable in the environment, or adds variable=value to file. If variable is not equated it to a value, set expects the value to be on standard input. The unset command removes variable. Note that the FMLI predefined, read-only variables (such as ARG1), may not be set or unset.

FMLI inherits the UNIX environment when invoked:
-l sets or unsets the specified variable in the local environment. Variables set with -l will not be inherited by processes invoked from FMLI.
-e sets the specified variable in the UNIX environment. Variables set with -e will be inherited by any processes started from FMLI. Note that these variables cannot be unset.
-f file sets or unsets the specified variable in the global environment. The argument file is the name, or pathname, of a file containing lines of the form variable=value. file will be created if it does not already exist. Note that no space intervenes between -f and file.

Note that at least one of the above options must be used for each variable being set or unset. If you set a variable with the -ffilename option, you must thereafter include filename in references to that variable. For example, ${<file) VARIABLE}.

EXAMPLE
Storing a selection made in a menu:

name=Selection 2
action=` set -l SELECTION=2 ` close

NOTES
Variables set to be available to the UNIX environment (those set using the -e option) can only be set for the current fml process and the processes it calls.

When using the -f option, unless file is unique to the process, other users of FMLI on the same machine will be able to expand these variables, depending on the read/write permissions on file.

A variable set in one frame may be referenced or unset in any other frame. This includes local variables.

SEE ALSO
eenv(1), sh(1) in the UNIX System V User’s Reference Manual
NAME
setclk - set system time from hardware clock

SYNOPSIS
/sbin/setclk

DESCRIPTION
setclk is used to set the internal system time from the hardware time-of-day clock. The command can be used only by the super-user. It is normally executed by an entry in the /etc/inittab file when the system is initialized at boot time. Note that setclk checks the Nonvolatile Random Access Memory (NVRAM) only for the date. If the date is set, setclk runs silently. If the date is not set, setclk prompts the user to use sysadm datetime [see sysadm(1)] for the proper setting of the hardware clock.

SEE ALSO
NAME

setcolor, setcolour - set screen color

SYNOPSIS

setcolor [-nbrgopc] argument [argument]
setcolour [-nbrgopc] argument [argument]

DESCRIPTION

setcolor and setcolour allow the user to set the screen to a specific color. Both foreground and background colors can be set independently in a range of 16 colors. setcolor can also set the reverse video and graphics character colors. setcolor with no arguments produces a usage message that displays all available colors, then resets the screen to its previous state.

For example, the following strings are possible colors:

<table>
<thead>
<tr>
<th>Blue</th>
<th>Magenta</th>
<th>Brown</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt_blue</td>
<td>lt_magenta</td>
<td>yellow</td>
<td>gray</td>
</tr>
<tr>
<td>Cyan</td>
<td>White</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>lt_cyan</td>
<td>hi_white</td>
<td>lt_green</td>
<td>lt_red</td>
</tr>
</tbody>
</table>

OPTIONS

The following options are available for setcolor and setcolour. In the arguments below, color is taken from the above list.

- \(\text{-n} \) [color] Sets the screen to normal white characters on black background.
- \(\text{-b} \) color Sets the foreground to the first color. Sets background to second color if a second color choice is specified.
- \(\text{-r} \) color color Set the foreground reverse video characters to the first color. Set reverse video characters' background to second color.
- \(\text{-g} \) color color Set the foreground graphics characters to the first color. Set graphics characters' background to second color.
- \(\text{-o} \) color Sets the color of the screen border (over scan region). To reset border color, use \(\text{-o black} \).
- \(\text{-p} \) pitch duration Set the pitch and duration of the bell. Pitch is the period in microseconds, and duration is measured in fifths of a second. When using this option, a control-G (bell) must be echoed to the screen for the command to work. For example:

```
setcolor -p 2500 2
```
```
echo "^G"
```
- \(\text{-cfirst last} \) Set the first and last scan lines of the cursor.

NOTES

The ability of setcolor to set any of these described functions is ultimately dependent on the ability of devices to support them. For example, the \(\text{-o} \) option does not work on the Color Graphics Adapter (CGA).
setcolor(1)

setcolor emits an escape sequence that may or may not have an effect on monochrome devices.
Occasionally changing the screen color can help prolong the life of your monitor.
NAME

setcolor – redefine or create a color

SYNOPSIS

```
setcolor color red_level green_level blue_level
```

DESCRIPTION

The `setcolor` command takes four arguments: `color`, which must be a string naming the color; and the arguments `red_level`, `green_level`, and `blue_level`, which must be integer values defining, respectively, the intensity of the red, green, and blue components of `color`. Intensities must be in the range of 0 to 1000. If you are redefining an existing color, you must use its current name (default color names are: `black`, `blue`, `green`, `cyan`, `red`, `magenta`, `yellow`, and `white`). `setcolor` returns the color’s name string.

EXAMPLE

```
`setcolor blue 100 24 300`
```
NAME

setkey -- assigns the function keys

SYNOPSIS

setkey keynum string

DESCRIPTION

The setkey command assigns the given ANSI string to be the output of the computer function key given by keynum. For example, the command:

 setkey 1 date

assigns the string date as the output of function key 1. The string can contain control characters, such as a newline character, and should be quoted to protect it from processing by the shell. For example, the command:

 setkey 2 "pwd ; lc\n"

assigns the command sequence pwd ; lc to function key 2. Notice how the newline character is embedded in the quoted string. This causes the commands to be carried out when function key 2 is pressed. Otherwise, the Enter key would have to be pressed after pressing the function key, as in the previous example.

setkey translates ^ into ^\, which, when passed to the screen driver, is interpreted as a right angle bracket (>), or greater than key.

NOTES

setkey works only on the console keyboard.

The string mapping table is where the function keys are defined. It is an array of 512 bytes (typedef strmap_t) where null terminated strings can be put to redefine the function keys. The first null terminated string is assigned to the first string key, the second to the second string key, and so on. There is one string mapping table per multiscreen.

Although the size of the setkey string mapping table is 512 bytes, there is a limit of 30 characters that can be assigned to any individual function key.

Assigning more than 512 characters to the string mapping table causes the function key buffer to overflow. When this happens, the sequences sent by the arrow keys are overwritten, effectively disabling them. Once the function key buffer overflows, the only way to enable the arrow keys is to reboot the system.

The table below lists the keynum values for the function keys:
setkey(1)

<table>
<thead>
<tr>
<th>Function key</th>
<th>keynum</th>
<th>Function key</th>
<th>keynum</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1</td>
<td>Ctrl-F10</td>
<td>34</td>
</tr>
<tr>
<td>F2</td>
<td>2</td>
<td>Ctrl-F11</td>
<td>35</td>
</tr>
<tr>
<td>F3</td>
<td>3</td>
<td>Ctrl-F12</td>
<td>36</td>
</tr>
<tr>
<td>F4</td>
<td>4</td>
<td>Ctrl-Shift-F1</td>
<td>37</td>
</tr>
<tr>
<td>F5</td>
<td>5</td>
<td>Ctrl-Shift-F2</td>
<td>38</td>
</tr>
<tr>
<td>F6</td>
<td>6</td>
<td>Ctrl-Shift-F3</td>
<td>39</td>
</tr>
<tr>
<td>F7</td>
<td>7</td>
<td>Ctrl-Shift-F4</td>
<td>40</td>
</tr>
<tr>
<td>F8</td>
<td>8</td>
<td>Ctrl-Shift-F5</td>
<td>41</td>
</tr>
<tr>
<td>F9</td>
<td>9</td>
<td>Ctrl-Shift-F6</td>
<td>42</td>
</tr>
<tr>
<td>F10</td>
<td>10</td>
<td>Ctrl-Shift-F7</td>
<td>43</td>
</tr>
<tr>
<td>F11</td>
<td>11</td>
<td>Ctrl-Shift-F8</td>
<td>44</td>
</tr>
<tr>
<td>F12</td>
<td>12</td>
<td>Ctrl-Shift-F9</td>
<td>45</td>
</tr>
<tr>
<td>Shift-F1</td>
<td>13</td>
<td>Ctrl-Shift-F10</td>
<td>46</td>
</tr>
<tr>
<td>Shift-F2</td>
<td>14</td>
<td>Ctrl-Shift-F11</td>
<td>47</td>
</tr>
<tr>
<td>Shift-F3</td>
<td>15</td>
<td>Ctrl-Shift-F12</td>
<td>48</td>
</tr>
<tr>
<td>Shift-F4</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift-F5</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift-F6</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift-F7</td>
<td>19</td>
<td>7</td>
<td>49</td>
</tr>
<tr>
<td>Shift-F8</td>
<td>20</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Shift-F9</td>
<td>21</td>
<td>9</td>
<td>51</td>
</tr>
<tr>
<td>Shift-F10</td>
<td>22</td>
<td>-</td>
<td>52</td>
</tr>
<tr>
<td>Shift-F11</td>
<td>23</td>
<td>4</td>
<td>53</td>
</tr>
<tr>
<td>Shift-F12</td>
<td>24</td>
<td>5</td>
<td>54</td>
</tr>
<tr>
<td>Ctrl-F1</td>
<td>25</td>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td>Ctrl-F2</td>
<td>26</td>
<td>+</td>
<td>56</td>
</tr>
<tr>
<td>Ctrl-F3</td>
<td>27</td>
<td>1</td>
<td>57</td>
</tr>
<tr>
<td>Ctrl-F4</td>
<td>28</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>Ctrl-F5</td>
<td>29</td>
<td>3</td>
<td>59</td>
</tr>
<tr>
<td>Ctrl-F6</td>
<td>30</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Ctrl-F7</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl-F8</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl-F9</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For a table of the escape sequences, see `keyboard(7)` in the *System Administrator's Guide*.

FILES

/bin/setkey

SEE ALSO

`keyboard(7)`
NAME
 setmnt – establish mount table

SYNOPSIS
 /sbin/setmnt

DESCRIPTION
 setmnt creates the /etc/mnttab table which is needed for both the mount and
 umount commands. setmnt reads standard input and creates a mnttab entry for
 each line. Input lines have the format:

 filesys node

 where filesys is the name of the file system’s “special file” (such as
 /dev/dsk/c?d?s?) and node is the root name of that file system. Thus filesys
 and node become the first two strings in the mount table entry.

FILES
 /etc/mnttab

SEE ALSO
 mount(1M)

NOTES
 Problems may occur if filesys or node are longer than 32 characters.
 setmnt silently enforces an upper limit on the maximum number of mnttab
 entries.
NAME

`settime` - change the access and modification dates of files

SYNOPSIS

```
settime mmddhhmm[yy] [-f fname] name... 
```

DESCRIPTION

`settime` sets the access and modification dates for one or more files. The dates are set to the specified date, or to the access and modification dates of the file specified via `-f`. Exactly one of these methods must be used to specify the new date(s). The first `mm` is the month number; `dd` is the day number in the month; `hh` is the hour number (24 hour system); the second `mm` is the minute number; `yy` is the last two digits of the year and is optional. For example:

```
settime 1008004583 ralph pete
```

sets the access and modification dates of files `ralph` and `pete` to Oct. 8, 12:45 AM, 1983. Another example:

```
settime -f ralph john
```

This sets the access and modification dates of the file `john` to those of the file `ralph`.

NOTES

Use of `touch` in place of `settime` is encouraged.
setuname(1M)

(Essential Utilities)

setuname(1M)

NAME

setuname – changes machine information

SYNOPSIS

setuname [-s name] [-n node] [-t]

DESCRIPTION

setuname changes the parameter value for the system name and node name. Each parameter can be changed using setuname and the appropriate option.

The options and arguments for this command are:

- **-s** Changes the system name. name specifies new system name and can consist of alphanumeric characters and the special characters dash, underbar, and dollar sign.

- **-n** Changes the node name. node specifies the new network node name and can consist of alphanumeric characters and the special characters dash, underbar, and dollar sign.

- **-t** Temporary change. No attempt will be made to create a permanent change.

Either or both the **-s** and **-n** options must be given when invoking setuname.

The system architecture may place requirements on the size of the system and network node name. The command will issue a fatal warning message and an error message if the name entered is incompatible with the system requirements.

NOTES

setuname attempts to change the parameter values in two places: the running kernel and, as necessary per implementation, to cross system reboots. A temporary change changes only the running kernel.
NAME
setup – initialize system for first user

SYNOPSIS
setup

DESCRIPTION
The setup command, which is also accessible as a login by the same name, allows the first user to be established as the "owner" of the machine.

The user can then set the date, time and time zone of the machine.

The user can then set the node name of the machine.

The user can then protect the system from unauthorized modification of the machine configuration and software by giving passwords to the administrative and maintenance functions. Normally, the first user of the machine enters this command through the setup login, which initially has no password, and then gives passwords to the various functions in the system. Any that the user leaves without password protection can be exercised by anyone.

The user can then give passwords to system logins such as "root", "bin", etc. (provided they do not already have passwords). Once given a password, each login can only be changed by that login or "root".

Finally, the user is permitted to add the first logins to the system, usually starting with his or her own.

SEE ALSO
passwd(1)

DIAGNOSTICS
The passwd(1) command complains if the password provided does not meet its standards.

NOTES
If the setup login is not under password control, anyone can put passwords on the other functions.
NAME

sh, jsh, rsh – command interpreters: standard shell, job control shell, restricted shell

SYNOPSIS

sh [-acefhiknprstuvx] [args]

jsh [-acefhiknprstuvx] [args]

/usr/lib/rsh [-acefhiknprstuvx] [args]

DESCRIPTION

sh is a command programming language that executes commands read from a terminal or a file. The command jsh is an interface to the shell which provides all of the functionality of sh and enables Job Control (see “Job Control,” below).

/usr/lib/rsh is a restricted version of the standard command interpreter sh; It is used to restrict logins to execution environments whose capabilities are more controlled than those of the standard shell. See “Invocation,” below for the meaning of arguments to the shell.

Definitions

A blank is a tab or a space. A name is a sequence of ASCII letters, digits, or underscores, beginning with a letter or an underscore. A parameter is a name, a digit, or any of the following characters: *, @, #, ?, -, $, and !

Commands

A simple-command is a sequence of non-blank words separated by blanks. The first word specifies the name of the command to be executed. Except as specified below, the remaining words are passed as arguments to the invoked command. The command name is passed as argument 0 [see exec(2)]. The value of a simple-command is its exit status if it terminates normally, or (octal) 200+status if it terminates abnormally; see signal(5) for a list of status values.

A pipeline is a sequence of one or more commands separated by |. The standard output of each command but the last is connected by a pipe(2) to the standard input of the next command. Each command is run as a separate process; the shell waits for the last command to terminate. The exit status of a pipeline is the exit status of the last command in the pipeline.

A list is a sequence of one or more pipelines separated by ;, & & , or ||, and optionally terminated by ; or &. Of these four symbols, ; and & have equal precedence, which is lower than that of && and ||. The symbols && and || also have equal precedence. A semicolon (;) causes sequential execution of the preceding pipeline (that is, the shell waits for the pipeline to finish before executing any commands following the semicolon); an ampersand (&) causes asynchronous execution of the preceding pipeline (that is, the shell does not wait for that pipeline to finish). The symbol && (||) causes the list following it to be executed only if the preceding pipeline returns a zero (non-zero) exit status. An arbitrary number of newlines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise stated, the value returned by a command is that of the last simple-command executed in the command.
for name [in word ...] do list done

Each time a for command is executed, name is set to the next word taken from the in word list. If in word ... is omitted, then the for command executes the do list once for each positional parameter that is set (see "Parameter Substitution," below). Execution ends when there are no more words in the list.

case word in [pattern [| pattern]...] list ;;] ... esac

A case command executes the list associated with the first pattern that matches word. The form of the patterns is the same as that used for filename generation (see "Filename Generation") except that a slash, a leading dot, or a dot immediately following a slash need not be matched explicitly.

if list then list [elif list then list]... [else list] fi

The list following if is executed and, if it returns a zero exit status, the list following the first then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list following the next then is executed. Failing that, the else list is executed. If no else list or then list is executed, then the if command returns a zero exit status.

while list do list done

A while command repeatedly executes the while list and, if the exit status of the last command in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do list are executed, then the while command returns a zero exit status; until may be used in place of while to negate the loop termination test.

{ list }

Execute list in a sub-shell.

{ list ;}

list is executed in the current (that is, parent) shell. The { must be followed by a space.

name () { list ;}

Define a function that is referenced by name. The body of the function is the list of commands between { and }. The list may appear on the same line as the { . If it does, the { and list must be separated by a space. The } may not be on the same line as list ; it must be on a newline. Execution of functions is described below (see "Execution"). The { and } are unnecessary if the body of the function is a command as defined above, under "Commands."

The following words are recognized only as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following characters up to a newline to be ignored.
Command Substitution

The shell reads commands from the string between two back quotes (``) and the standard output from these commands may be used as all or part of a word. Trailing newlines from the standard output are removed.

No interpretation is done on the string before the string is read, except to remove backslashes (\) used to escape other characters. Backslashes may be used to escape a back quote (\) or another backslash (\) and are removed before the command string is read. Escaping back quotes allows nested command substitution. If the command substitution lies within a pair of double quotes ("... "), a backslash used to escape a double quote (\") will be removed; otherwise, it will be left intact.

If a backslash is used to escape a newline character (\newline), both the backslash and the newline are removed (see the later section on “Quoting”). In addition, backslashes used to escape dollar signs (\$) are removed. Because no parameter substitution is done on the command string before it is read, inserting a backslash to escape a dollar sign has no effect. Backslashes that precede characters other than \, " , newline, and $ are left intact when the command string is read.

Parameter Substitution

The character $ is used to introduce substitutable parameters. There are two types of parameters, positional and keyword. If parameter is a digit, it is a positional parameter. Positional parameters may be assigned values by set. Keyword parameters (also known as variables) may be assigned values by writing:

```
name=value [ name=value ] ...
```

Pattern-matching is not performed on value. There cannot be a function and a variable with the same name.

```
${parameter}
```

The value, if any, of the parameter is substituted. The braces are required only when parameter is followed by a letter, digit, or underscore that is not to be interpreted as part of its name. If parameter is * or @, all the positional parameters, starting with $1, are substituted (separated by spaces). Parameter $0 is set from argument zero when the shell is invoked.

```
${parameter: -word}
```

If parameter is set and is non-null, substitute its value; otherwise substitute word.

```
${parameter:=word}
```

If parameter is not set or is null set it to word; the value of the parameter is substituted. Positional parameters may not be assigned in this way.

```
${parameter:?word}
```

If parameter is set and is non-null, substitute its value; otherwise, print word and exit from the shell. If word is omitted, the message “parameter null or not set” is printed.

```
${parameter:+word}
```

If parameter is set and is non-null, substitute word; otherwise substitute nothing.
In the above, *word* is not evaluated unless it is to be used as the substituted string, so that, in the following example, *pwd* is executed only if *d* is not set or is null:

```
echo ${d:-'pwd'}
```

If the colon (:) is omitted from the above expressions, the shell only checks whether *parameter* is set or not.

The following parameters are automatically set by the shell.

* Expands to the positional parameters, beginning with 1.
@ Expands to the positional parameters, beginning with 1, except when expanded within double quotes, in which case each positional parameter expands as a separate field.
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the `set` command.
? The decimal value returned by the last synchronously executed command.
$ The process number of this shell. $ reports the process ID of the parent shell in all shell constructs, including pipelines, and in parenthesized sub-shells.
! The process number of the last background command invoked.

The following parameters are used by the shell. The parameters in this section are also referred to as environment variables.

HOME The default argument (home directory) for the `cd` command, set to the user's login directory by `login(1)` from the password file [see `passwd(4)`].

PATH The search path for commands (see "Execution," below). The user may not change **PATH** if executing under `/usr/lib/rsh`.

CDPATH The search path for the `cd` command.

MAIL If this parameter is set to the name of a mail file and the **MAILPATH** parameter is not set, the shell informs the user of the arrival of mail in the specified file.

MAILCHECK This parameter specifies how often (in seconds) the shell will check for the arrival of mail in the files specified by the **MAILPATH** or **MAIL** parameters. The default value is 600 seconds (10 minutes). If set to 0, the shell will check before each prompt.

MAILPATH A colon (:) separated list of filenames. If this parameter is set, the shell informs the user of the arrival of mail in any of the specified files. Each filename can be followed by % and a message that will be printed when the modification time changes. The default message is `you have mail`.
PS1 Primary prompt string, by default "$".
PS2 Secondary prompt string, by default ">".
IFS Internal field separators, normally space, tab, and newline (see "Blank Interpretation"). The user can modify IFS to allow additional field separators, but space, tab and newline are always included in the list of field separators.
LANG If this parameter is set, the shell will use it to determine the current locale; see environ(5), setlocale(3C).
SHACCT If this parameter is set to the name of a file writable by the user, the shell will write an accounting record in the file for each shell procedure executed.
SHELL When the shell is invoked, it scans the environment (see "Environment," below) for this name. If it is found and rsh is the filename part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, and IFS. HOME and MAIL are set by login(1).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned for internal field separator characters (those found in IFS) and split into distinct arguments where such characters are found. Explicit null arguments ("" or ".") are retained. Implicit null arguments (those resulting from parameters that have no values) are removed. The original whitespace characters (space, tab, and newline) are always considered internal field separators.

Input/Output
A command's input and output may be redirected using a special notation interpreted by the shell. The following may appear anywhere in a simple-command or may precede or follow a command and are not passed on as arguments to the invoked command. Note that parameter and command substitution occurs before word or digit is used.

<word Use file word as standard input (file descriptor 0).
>word Use file word as standard output (file descriptor 1). If the file does not exist, it is created; otherwise, it is truncated to zero length.
>>word Use file word as standard output. If the file exists, output is appended to it (by first seeking to the end-of-file); otherwise, the file is created.
<<[-]word After parameter and command substitution is done on word, the shell input is read up to the first line that literally matches the resulting word, or to an end-of-file. If, however, - is appended to <<:
 1) leading tabs are stripped from word before the shell input is read (but after parameter and command substitution is done on word),
2) leading tabs are stripped from the shell input as it is read and
before each line is compared with word, and
3) shell input is read up to the first line that literally matches the
resulting word, or to an end-of-file.

If any character of word is quoted (see “Quoting,” later), no additional processing is done to the shell input. If no characters of
word are quoted:
1) parameter and command substitution occurs,
2) (escaped) \newlines are removed, and
3) \ must be used to quote the characters \, $, and \.
The resulting document becomes the standard input.

<&digit Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&digit.
<&- The standard input is closed. Similarly for the standard output
using >&-.

If any of the above is preceded by a digit, the file descriptor which will be associated with the file is that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1
associates file descriptor 2 with the file currently associated with file descriptor 1.
The order in which redirections are specified is significant. The shell evaluates
 redirections left-to-right. For example:

... 1>xxx 2>&1
first associates file descriptor 1 with file xxx. It associates file descriptor 2 with
the file associated with file descriptor 1 (that is, xxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the terminal (assuming
file descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

Using the terminology introduced on the first page, under “Commands,” if a
command is composed of several simple commands, redirection will be evaluated
for the entire command before it is evaluated for each simple command. That is, the
shell evaluates redirection for the entire list, then each pipeline within the list, then
each command within each pipeline, then each list within each command.

If a command is followed by & the default standard input for the command is the
empty file /dev/null. Otherwise, the environment for the execution of a command
contains the file descriptors of the invoking shell as modified by
input/output specifications.

Redirection of output is not allowed in the restricted shell.

Filename Generation
Before a command is executed, each command word is scanned for the characters
*, ?, and [. If one of these characters appears the word is regarded as a pattern.
The word is replaced with alphabetically sorted filenames that match the pattern.
If no filename is found that matches the pattern, the word is left unchanged. The
character . at the start of a filename or immediately following a /, as well as the
character / itself, must be matched explicitly.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of characters
 separated by - matches any character lexically between the pair,
 inclusive. If the first character following the opening [is a !, any
 character not enclosed is matched.

Note that all quoted characters (see below) must be matched explicitly in a
filename.

Quoting

The following characters have a special meaning to the shell and cause termina-
tion of a word unless quoted:

; & () | ^ < > newline space tab

A character may be quoted (that is, made to stand for itself) by preceding it with a
backslash (\) or inserting it between a pair of quote marks (" " or ""). During
processing, the shell may quote certain characters to prevent them from taking on
a special meaning. Backslashes used to quote a single character are removed
from the word before the command is executed. The pair \newline is removed
from a word before command and parameter substitution.

All characters enclosed between a pair of single quote marks (' '), except a sin-
gle quote, are quoted by the shell. Backslashes has no special meaning inside a pair
of single quotes. A single quote may be quoted inside a pair of double quote
marks (for example, " "), but a single quote can not be quoted inside a pair of
single quotes.

Inside a pair of double quote marks (" "), parameter and command substitution
occurs and the shell quotes the results to avoid blank interpretation and filename
 generation. If $* is within a pair of double quotes, the positional parameters are
substituted and quoted, separated by quoted spaces ("$1 $2 ... "); however, if
$@ is within a pair of double quotes, the positional parameters are substituted
and quoted, separated by unquoted spaces ("$1" "$2" . . .). \quotes the
characters \, ^, "", and $. The pair \newline is removed before parameter and
command substitution. If a backslash precedes characters other than \, ^, ", ",
and newline, then the backslash itself is quoted by the shell.

Prompting

When used interactively, the shell prompts with the value of PS1 before reading a
command. If at any time a newline is typed and further input is needed to com-
plete a command, the secondary prompt (that is, the value of PS2) is issued.

Environment

The environment [see environ(5)] is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The shell interacts
with the environment in several ways. On invocation, the shell scans the envi-
ronment and creates a parameter for each name found, giving it the corresponding
value. If the user modifies the value of any of these parameters or creates new
parameters, none of these affects the environment unless the export command is
used to bind the shell’s parameter to the environment (see also set -a). A
parameter may be removed from the environment with the unset command.
The environment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, minus any pairs
removed by unset, plus any modifications or additions, all of which must be
noted in export commands.
The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. Thus:

```
TERM=450 cmd
(export TERM; TERM=450; cmd)
```

are equivalent as far as the execution of cmd is concerned if cmd is not a Special
Command. If cmd is a Special Command, then

```
TERM=450 cmd
```

will modify the TERM variable in the current shell.
If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. The following first prints a=b c and c:

```
echo a=b c
set -k
echo a=b c
```

Signals
When a command is run in the background (cmd &) under sh, it can receive
INTERRUPT and QUIT signals but ignores them by default. [A background pro­
cess can override this default behavior via trap or signal. For details, see the
description of trap, below, or signal(2).] When a command is run in the back­
ground under jsh, however, it does not receive INTERRUPT or QUIT signals.
Otherwise signals have the values inherited by the shell from its parent, with the
exception of three signals: 11 (SIGSEV), 14 (SIGALARM), and 18 (SIGCHILD).

Execution
Each time a command is executed, the command substitution, parameter substitu­
tion, blank interpretation, input/output redirection, and filename generation
listed above are carried out. If the command name matches the name of a
defined function, the function is executed in the shell process (note how this
diffs from the execution of shell procedures). If the command name does not
match the name of a defined function, but matches one of the Special Commands
listed below, it is executed in the shell process. The positional parameters $1, $2,
... are set to the arguments of the function. If the command name matches nei­
ther a Special Command nor the name of a defined function, a new process is
created and an attempt is made to execute the command via exec(2).
The shell parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default
path is /usr/bin. The current directory is specified by a null path name, which
can appear immediately after the equal sign, between two colon delimiters any­
where in the path list, or at the end of the path list. If the command name con­
tains a / the search path is not used; such commands will not be executed by the
restricted shell. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission but is not an a.out file, it is assumed to be a file containing shell commands (that is, a shell script). A sub-shell is spawned to read it. A parenthesized command is also executed in a sub-shell.

For shell script files, in order for the "set user ID on execution" and/or the "set group ID on execution" mode to be effective, the first line of the file must be

```bash
#!/sbin/sh
```

The location in the search path where a command was found is remembered by the shell (to help avoid unnecessary execs later). If the command was found in a relative directory, its location must be re-determined whenever the current directory changes. The shell forgets all remembered locations whenever the PATH variable is changed or the hash -r command is executed (see below).

Special Commands

Input/output redirection is now permitted for these commands. File descriptor 1 is the default output location. When Job Control is enabled, additional Special Commands are added to the shell’s environment (see ‘Job Control’).

- **:**
 No effect; the command does nothing. A zero exit code is returned.

- **file**
 Read and execute commands from file and return. The search path specified by PATH is used to find the directory containing file.

- **break [n]**
 Exit from the enclosing for or while loop, if any. If n is specified, break n levels.

- **continue [n]**
 Resume the next iteration of the enclosing for or while loop. If n is specified, resume at the n-th enclosing loop.

- **cd [arg]**
 Change the current directory to arg. The shell parameter HOME is the default arg. The shell parameter CDPATH defines the search path for the directory containing arg. Alternative directory names are separated by a colon (;). The default path is <null> (specifying the current directory). Note that the current directory is specified by a null path name, which can appear immediately after the equal sign or between the colon delimiters anywhere else in the path list. If arg begins with a / the search path is not used. Otherwise, each directory in the path is searched for arg. The cd command may not be executed by /usr/lib/rsh.

- **echo [arg ...]**
 Echo arguments. See echo(1) for usage and description.

- **eval [arg ...]**
 The arguments are read as input to the shell and the resulting command(s) executed.

- **exec [arg ...]**
 The command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and, if no other arguments are given, cause the shell input/output to be modified.
exit [n]
Causes a shell to exit with the exit status specified by n. If n is omitted
the exit status is that of the last command executed (an end-of-file will
also cause the shell to exit.)

export [name . . .]
The given names are marked for automatic export to the environment of
subsequently executed commands. If no arguments are given, variable
names that have been marked for export during the current shell’s execution
are listed. (Variable names exported from a parent shell are listed
only if they have been exported again during the current shell’s execution.) Function names are not exported.

g Sans
Use in shell scripts to support command syntax standards [see intro(1)];
it parses positional parameters and checks for legal options. See
g Sans(1) for usage and description.

hash [-r] [name . . .]
For each name, the location in the search path of the command specified
by name is determined and remembered by the shell. The -r option
causes the shell to forget all remembered locations. If no arguments are
given, information about remembered commands is presented. Hits is the
number of times a command has been invoked by the shell process. Cost
is a measure of the work required to locate a command in the search path.
If a command is found in a "relative" directory in the search path, after
changing to that directory, the stored location of that command is recalculated. Commands for which this will be done are indicated by an asterisk
(∗) adjacent to the hits information. Cost will be incremented when the
recalculation is done.

ten syr [arg]
Equivalent to exec newgrp arg. See newgrp(1M) for usage and description.
pwd
Print the current working directory. See pwd(1) for usage and description.
read name . . .
One line is read from the standard input and, using the internal field
separator, IFS (normally space or tab), to delimit word boundaries, the
first word is assigned to the first name, the second word to the second
name, and so on, with leftover words assigned to the last name. Lines can
be continued using \ newline. Characters other than newline can be
quoted by preceding them with a backslash. These backslashes are
removed before words are assigned to names, and no interpretation is
done on the character that follows the backslash. The return code is 0,
unless an end-of-file is encountered.

readonly [name . . .]
The given names are marked readonly and the values of the these names
may not be changed by subsequent assignment. If no arguments are
given, a list of all readonly names is printed.
return [n]
Causes a function to exit with the return value specified by \(n \). If \(n \) is omitted, the return status is that of the last command executed.

set [--aefhkntuvx [arg . . .]]
- `a` Mark variables which are modified or created for export.
- `e` Exit immediately if a command exits with a non-zero exit status.
- `f` Disable filename generation
- `h` Locate and remember function commands as functions are defined (function commands are normally located when the function is executed).
- `k` All keyword arguments are placed in the environment for a command, not just those that precede the command name.
- `n` Read commands but do not execute them.
- `t` Exit after reading and executing one command.
- `u` Treat unset variables as an error when substituting.
- `v` Print shell input lines as they are read.
- `x` Print commands and their arguments as they are executed.
- `--` Do not change any of the flags; useful in setting $1 to `-`.

Using + rather than - causes these flags to be turned off. These flags can also be used upon invocation of the shell. The current set of flags may be found in $-$. The remaining arguments are positional parameters and are assigned, in order, to $1, 2, . . .$. If no arguments are given the values of all names are printed.

shift [n]
The positional parameters from $n+1 . . .$ are renamed $1 . . .$. If \(n \) is not given, it is assumed to be 1.

test
Evaluate conditional expressions. See `test(1)` for usage and description.

times
Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] . . .
The command `arg` is to be read and executed when the shell receives numeric or symbolic signal(s) \((n) \). (Note that `arg` is scanned once when the trap is set and once when the trap is taken.) Trap commands are executed in order of signal number or corresponding symbolic names. Any attempt to set a trap on a signal that was ignored on entry to the current shell is ineffective. An error results when an attempt is made to trap on any of the following three signals: (1) signal 11 (`SIGSEV`—segmentation fault); (2) signal 14 (`SIGALRM`—alarm clock); and (3) signal 18 (`SIGCHLD`—child status changed). If `arg` is absent all trap(s) \(n \) are reset to their original values. If `arg` is the null string this signal is ignored by the shell and by the commands it invokes. If \(n \) is 0 the command `arg` is executed on exit from the shell. The `trap` command with no arguments prints a list of commands associated with each signal number.
type [name ...]
For each name, indicate how it would be interpreted if used as a command name.

ulimit [-[HS][a cdfnstv]]
ulimit [-[HS][c d f n s t v]] limit
ulimit prints or sets hard or soft resource limits. These limits are described in getrlimit(2).
If limit is not present, ulimit prints the specified limits. Any number of limits may be printed at one time. The -a option prints all limits.
If limit is present, ulimit sets the specified limit to limit. The string unlimited requests the largest valid limit. Limits may be set for only one resource at a time. Any user may set a soft limit to any value below the hard limit. Any user may lower a hard limit. Only a super-user may raise a hard limit; see su(1).
The -H option specifies a hard limit. The -S option specifies a soft limit. If neither option is specified, ulimit will set both limits and print the soft limit.
The following options specify the resource whose limits are to be printed or set. If no option is specified, the file size limit is printed or set.
- c maximum core file size (in 512-byte blocks)
- d maximum size of data segment or heap (in kbytes)
- f maximum file size (in 512-byte blocks)
- n maximum file descriptor plus 1
- s maximum size of stack segment (in kbytes)
- t maximum CPU time (in seconds)
- v maximum size of virtual memory (in kbytes)

umask [nnn]
The user file-creation mask is set to nnn [see umask(1)]. If nnn is omitted, the current value of the mask is printed.

unset [name ...]
For each name, remove the corresponding variable or function value. The variables PATH, PS1, PS2, MAILCHECK, and IFS cannot be unset.

wait [n]
Wait for your background process whose process id is n and report its termination status. If n is omitted, all your shell’s currently active background processes are waited for and the return code will be zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero is -, commands are initially read from /etc/profile and from $HOME/.profile, if such files exist. Thereafter, commands are read as described below, which is also the case when the shell is invoked as /usr/bin/sh. The flags below are interpreted by the shell on invocation only. Note that unless the -c or -s flag is specified, the first argument is assumed to be the name of a file containing commands, and the remaining arguments are passed as positional parameters to that command file:
-c string If the -c flag is present commands are read from string.
-i If the -i flag is present or if the shell input and output are attached to
a terminal, this shell is interactive. In this case TERMINATE is ignored
(so that kill 0 does not kill an interactive shell) and INTERRUPT is
captured and ignored (so that wait is interruptible). In all cases, QUIT is
ignored by the shell.
-p If the -p flag is present, the shell will not set the effective user and
group IDs to the real user and group IDs.
-r If the -r flag is present the shell is a restricted shell.
-s If the -s flag is present or if no arguments remain, commands are read
from the standard input. Any remaining arguments specify the positional
parameters. Shell output (except for Special Commands) is writ­
ten to file descriptor 2.

The remaining flags and arguments are described under the set command above.

Job Control (jsh)

When the shell is invoked as jsh, Job Control is enabled in addition to all of the
functionality described previously for sh. Typically Job Control is enabled for the
interactive shell only. Non-interactive shells typically do not benefit from the
added functionality of Job Control.

With Job Control enabled every command or pipeline the user enters at the terminal
is called a job. All jobs exist in one of the following states: foreground, back­
ground or stopped. These terms are defined as follows: 1) a job in the fore­
ground has read and write access to the controlling terminal; 2) a job in the back­
ground is denied read access and has conditional write access to the controlling
terminal [see stty(1)]; 3) a stopped job is a job that has been placed in a
suspended state, usually as a result of a SIGTSTP signal [see signal(5)]. Jobs in
the foreground can be stopped by INTERRUPT or QUIT signals from the key­
board; background jobs cannot be stopped by these signals.

Every job that the shell starts is assigned a positive integer, called a job number
which is tracked by the shell and will be used as an identifier to indicate a
specific job. Additionally the shell keeps track of the current and previous jobs.
The current job is the most recent job to be started or restarted. The previous job is
the first non-current job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where, jobid may be specified in any of the following formats:
% or + for the current job
- for the previous job
?<string> specify the job for which the command line uniquely contains
string.
n for job number n, where n is a job number

pref where pref is a unique prefix of the command name (for example, if the command `ls -1 foo` were running in the background, it could be referred to as `%ls`); pref cannot contain blanks unless it is quoted.

When Job Control is enabled, the following commands are added to the user’s environment to manipulate jobs:

`bg [%jobid ...]`
Resumes the execution of a stopped job in the background. If `%jobid` is omitted the current job is assumed.

`fg [%jobid ...]`
Resumes the execution of a stopped job in the foreground, also moves an executing background job into the foreground. If `%jobid` is omitted the current job is assumed.

`jobs [-p|-l] [%jobid ...]`
`jobs -x` command [arguments]
Reports all jobs that are stopped or executing in the background. If `%jobid` is omitted, all jobs that are stopped or running in the background will be reported. The following options will modify/enhance the output of `jobs`:

- `-l` Report the process group ID and working directory of the jobs.
- `-p` Report only the process group ID of the jobs.
- `-x` Replace any `$jobid$` found in `command` or `arguments` with the corresponding process group ID, and then execute `command` passing it `arguments`.

`kill [-signal] %jobid`
Builtin version of `kill` to provide the functionality of the `kill` command for processes identified with a `$jobid$`.

`stop %jobid ...`
Stops the execution of a background job(s).

`suspend`
Stops the execution of the current shell (but not if it is the login shell).

`wait [%jobid ...]`
`wait` builtin accepts a job identifier. If `%jobid` is omitted `wait` behaves as described above under Special Commands.

Restricted Shell (/usr/lib/rsh) Only

`/usr/lib/rsh` is used to set up login names and execution environments whose capabilities are more controlled than those of the standard shell. The actions of `/usr/lib/rsh` are identical to those of `sh`, except that the following are disallowed:

- changing directory [see `cd(1)`],
- setting the value of `$PATH$",
- specifying path or command names containing `/`,
- redirecting output (`>` and `>>`).
The restrictions above are enforced after `.profile` is interpreted. A restricted shell can be invoked in one of the following ways: (1) rsh is the filename part of the last entry in the `/etc/passwd` file [see passwd(4)]; (2) the environment variable `SHELL` exists and rsh is the filename part of its value; (3) the shell is invoked and rsh is the filename part of argument 0; (4) the shell is invoked with the `-r` option.

When a command to be executed is found to be a shell procedure, `/usr/lib/rsh` invokes sh to execute it. Thus, it is possible to provide to the end-user shell procedures that have access to the full power of the standard shell, while imposing a limited menu of commands; this scheme assumes that the end-user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the `.profile` [see profile(4)] has complete control over user actions by performing guaranteed setup actions and leaving the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is, `/usr/rbin`) that can be safely invoked by a restricted shell. Some systems also provide a restricted editor, `red`.

EXIT STATUS

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. If the shell is being used non-interactively execution of the shell file is abandoned. Otherwise, the shell returns the exit status of the last command executed (see also the `exit` command above).

jsh Only

If the shell is invoked as `jsh` and an attempt is made to exit the shell while there are stopped jobs, the shell issues one warning:

```
There are stopped jobs.
```

This is the only message. If another exit attempt is made, and there are still stopped jobs they will be sent a `SIGHUP` signal from the kernel and the shell is exited.

FILES

```
/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null
```

SEE ALSO

cd(1), csh(1), echo(1), getopts(1), intro(1), ksh(1), login(1), pwd(1), stty(1),
test(1), umask(1), wait(1)
dup(2), exec(2), fork(2), getrlimit(2), pipe(2), ulimit(2), setlocale(3C) in the
ewgrp(1M), profile(4), environ(5), signal(5) in the System Administrator's
Reference Manual
rsh(1) in the Network User's and Administrator's Guide
NOTES

Words used for filenames in input/output redirection are not interpreted for filename generation (see “Filename Generation,” above). For example, `cat file1 >a*` will create a filename `a*`.

Because commands in pipelines are run as separate processes, variables set in a pipeline have no effect on the parent shell.

If you get the error message

```
cannot fork, too many processes
```

try using the `wait(1)` command to clean up your background processes. If this doesn't help, the system process table is probably full or you have too many active foreground processes. (There is a limit to the number of process ids associated with your login, and to the number the system can keep track of.)

Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a directory in the search path before the directory where the original command was found, the shell will continue to `exec` the original command. Use the `hash` command to correct this situation.

Prior to Release 4, the `rsh` command invoked the restricted shell. This restricted shell command is `/usr/lib/rsh` and it can be executed by using the full pathname. Beginning with Release 4, the `rsh` command is the remote shell. See `rsh(1)` in the `Network User's and Administrator's Guide`.
NAME
share – make local resource available for mounting by remote systems

SYNOPSIS
share [-F fstype] [-o specific_options] [-d description] [pathname [resourcename]]

DESCRIPTION
The share command makes a resource available for mounting through a remote file system of type fstype. If the option -F fstype is omitted, the first file system type listed in file /etc/dfs/fstypes will be used as the default. Specific options as well as the semantics of resourcename are specific to particular distributed file systems. When invoked with only a file system type, share displays all resources shared by the given file system to the local system. When invoked with no arguments, share displays all resources shared by the local system.

The access_spec is used to control access of the shared resource. It may be one of the following:

rw pathname is shared read/write to all clients. This is also the default behavior.

rw=client[:client] pathname is shared read/write only to the listed clients. No other systems can access resourcename.

ro pathname is shared read-only to all clients.

ro=client[:client] pathname is shared read-only only to the listed clients. No other systems can access pathname.

The -d flag may be used to provide a description of the resource being shared.

FILES
/etc/dfs/dfstab
/etc/dfs/sharetab
/etc/dfs/fstypes

SEE ALSO
unshare(1M)
NAME

share – make local NFS resource available for mounting by remote systems

SYNOPSIS

share [-F nfs] [-o specific_options] [-d description] pathname

DESCRIPTION

The `share` command makes local resources available for mounting by remote systems.

If no argument is specified, then `share` displays all resources currently shared, including NFS resources and resources shared through other distributed file system packages.

The following options are recognized:

- `-o specific_options` Specify options in a comma-separated list of keywords and attribute-value-assertions for interpretation by the file-system-type-specific command.

 `specific_options` can be any combination of the following:

 - `rw` Sharing will be read-write to all clients.
 - `rw=client[:client]` Sharing will be read-write to the listed clients; overrides the `ro` suboption for the clients specified.
 - `ro` Sharing will be read-only to all clients.
 - `ro=client[:client]` Sharing will be read-only to the listed clients; overrides the `rw` suboption for the clients specified.
 - `anon=uid` Set `uid` to be the effective user ID of unauthenticated users if AUTH DES authentication is used, or to be root if AUTH_UNIX authentication is used. By default, unknown users are given the effective user ID `UID_NOBODY`. If `uid` is set to `-1`, access is denied.
 - `root=host[:host]` Only root users from the specified hosts will have root access. By default, no host has root access.
 - `secure` Clients must use the AUTH DES authentication of RPC. AUTH_UNIX authentication is the default.

If `specific_options` is not specified, then by default sharing will be read-write to all clients.

- `-d description` Provide a comment that describes the resource to be shared.

 `pathname` Specify the pathname of the resource to be shared.
The command will fail if both `ro` and `rw` are specified. If the same client name exists in both the `ro=` and `rw=` lists, the `rw` will override the `ro`, giving read/write access to the client specified.

`ro=`, `rw=`, and `root=` are guaranteed to work over UDP but may not work over other transport providers.

If a resource is shared with a `ro=` list and a `root=` list, any host that is on the `root=` list will be given only read-only access, regardless of whether that host is specified in the `ro=` list, unless `rw` is declared as the default, or the host is mentioned in a `rw=` list. The same is true if the resource is shared with `ro` as the default. For example, the following `share` commands will give read-only permissions to `hostb`:

```
share -F nfs -oro=hosta,root=hostb /var
share -F nfs -oro,root=hostb /var
```

While the following will give read/write permissions to `hostb`:

```
share -F nfs -oro=hosta,rw=hostb,root=hostb /var
share -F nfs -oroot=hostb /var
```
NAME
share – make local RFS resource available for mounting by remote systems

SYNOPSIS
share [-F rfs] [-o access_spec] [-d description] [pathname resourcename]

DESCRIPTION
The share command makes a resource available for mounting through Remote File Sharing. The -F flag may be omitted if rfs is the first file system type listed in the file /etc/dfs/fstypes. When invoked with only a file system type (or no arguments), share displays all local resources shared through Remote File Sharing.

The access_spec is used to control client access of the shared resource. Clients may be specified in any of the following forms:

domain.
domain.system
system

The access_spec can be one of the following:

rw resource name is shared read/write to all clients. This is also the default behavior.

rw=client[:client]... resource name is shared read/write only to the listed clients. No other systems can access resource name.

ro resource name is shared read-only to all clients.

ro=client[:client]... resource name is shared read-only only to the listed clients. No other systems can access resource name.

The -d flag may be used to provide a description of the resource being shared.

ERRORS
If the network is not up and running or pathname is not a full path, an error message will be sent to standard error. If pathname isn’t on a file system mounted locally or the client is specified but syntactically incorrect, an error message will be sent to standard error. If the same resource name in the network over the same transport provider is to be shared more than once, an error message will be sent to standard error.

FILES
/etc/dfs/dfstab
/etc/dfs/sharetab
/etc/dfs/fstypes

SEE ALSO
unshare(1M)
NAME

shareall, unshareall – share, unshare multiple resources

SYNOPSIS

shareall [-F fstype[fstype...]] [- | file]
unshareall [-F fstype[fstype...]]

DESCRIPTION

When used with no arguments, shareall shares all resources from file, which contains a list of share command lines. If the operand is a hyphen ("-"), then the share command lines are obtained from the standard input. Otherwise, if neither a file nor a hyphen is specified, then the file /etc/dfs/dfstab is used as the default.

Resources may be shared to specific file systems by specifying the file systems in a comma-separated list as an argument to -F.

unshareall unshares all currently shared resources. Without a -F flag, it unshares resources for all distributed file system types.

FILES

/etc/dfs/dfstab

SEE ALSO

share(1M), unshare(1M).
NAME

shell – run a command using shell

SYNOPSIS

shell command [command] ...

DESCRIPTION

The shell function concatenates its arguments, separating each by a space, and
passes this string to the UNIX system shell ($SHELL if set, otherwise
/usr/bin/sh).

EXAMPLES

Since the Form and Menu Language does not directly support background pro­
cessing, the shell function can be used instead.

'shell "build prog > /dev/null &"'

If you want the user to continue to be able to interact with the application while
the background job is running, the output of an executable run by shell in the
background must be redirected: to a file if you want to save the output, or to
/dev/null if you don’t want to save it (or if there is no output), otherwise your
application may appear to be hung until the background job finishes processing.

shell can also be used to execute a command that has the same name as an
FMLI built-in function.

NOTES

The arguments to shell will be concatenated using spaces, which may or may
not do what is expected. The variables set in local environments will not be
expanded by the shell because “local” means “local to the current process.”

SEE ALSO

sh(1)
NAME
shl – shell layer manager

SYNOPSIS
shl

DESCRIPTION
shl allows a user to interact with more than one shell from a single terminal. The user controls these shells, known as layers, using the commands described below.

The current layer is the layer which can receive input from the keyboard. Other layers attempting to read from the keyboard are blocked. Output from multiple layers is multiplexed onto the terminal. To have the output of a layer blocked when it is not current, the stty option loblk may be set within the layer.

The stty character switch (set to ‘Z if NUL) is used to switch control to shl from a layer. shl has its own prompt, >>>, to help distinguish it from a layer.

A layer is a shell which has been bound to a virtual tty device (/dev/sxt???). The virtual device can be manipulated like a real tty device using stty(1) and ioctl(2). Each layer has its own process group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line. Only the first eight characters are significant. The names (1) through (7) cannot be used when creating a layer. They are used by shl when no name is supplied. They may be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any unique prefix is accepted.

create [name]
Create a layer called name and make it the current layer. If no argument is given, a layer will be created with a name of the form (#) where # is the last digit of the virtual device bound to the layer. The shell prompt variable PSI is set to the name of the layer followed by a space. A maximum of seven layers can be created.

block name [name . . .]
For each name, block the output of the corresponding layer when it is not the current layer. This is equivalent to setting the stty option loblk within the layer.

delete name [name . . .]
For each name, delete the corresponding layer. All processes in the process group of the layer are sent the SIGHUP signal (see signal(2)).

help (or ?)
Print the syntax of the shl commands.

layers [-1] [name . . .]
For each name, list the layer name and its process group. The -1 option produces a ps(1)-like listing. If no arguments are given, information is presented for all existing layers.
resume [name]
Make the layer referenced by name the current layer. If no argument is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer.

unblock name [name ...]
For each name, do not block the output of the corresponding layer when it is not the current layer. This is equivalent to setting the stty option -loblk within the layer.

quit
Exit shl. All layers are sent the SIGHUP signal.

name
Make the layer referenced by name the current layer.

FILES
/dev/sxt???
Virtual tty devices

$SHELL
Variable containing path name of the shell to use (default is /bin/sh).

SEE ALSO
sh(1), stty(1)
ioct1(2), signal(2) in the Programmer’s Reference Manual
sxt(7) in the System Administrator’s Reference Manual

NOTES
To avoid disabling the suspend character when in the job control environment, the switch character must be redefined.
NAME
shutdown – shut down system, change system state

SYNOPSIS
shutdown [-y] [-g grace_period] [-i init_state]

DESCRIPTION
This command is executed by the super-user to change the state of the machine. In most cases, it is used to change from the multi-user state (state 2) to another state (see below).

By default, it brings the system to a state where only the console has access to the UNIX system. This state is called single-user (see below).

The command sends a warning message and a final message before it starts actual shutdown activities. By default, the command asks for confirmation before it starts shutting down daemons and killing processes. The options are used as follows:

-`y` pre-answers the confirmation question so the command can be run without user intervention. A default of 60 seconds is allowed between the warning message and the final message. Another 60 seconds is allowed between the final message and the confirmation.

-`-g grace_period` allows the super-user to change the number of seconds from the 60-second default.

-`-i init_state` specifies the state that `init` is to be put in following the warnings, if any. By default, system state “s” is used.

Other recommended system state definitions are:

state 0 Shut the machine down so it is safe to remove the power. Have the machine remove power if it can. The rc0 procedure is called to do this work.

state 1 State 1 is referred to as the administrative state. In state 1 filesystems required for multi-user operations are mounted, and logins requiring access to multi-user filesystems can be used. When the system comes up from firmware mode into state 1, only the console is active and other multi-user (state 2) services are unavailable. Note that not all user processes are stopped when transitioning from multi-user state to state 1.

state s, S State s (or S) is referred to as the single-user state. All user processes are stopped on transitions to this state. In the single-user state, filesystems required for multi-user logins are unmounted and the system can only be accessed through the console. Logins requiring access to multi-user file systems cannot be used.

state 5 Stop the UNIX system and go to firmware mode.
state 6 Stop the UNIX system and reboot to the state defined by the `initdefault` entry in `/etc/inittab`; configure a new bootable operating system, if necessary, before the reboot. The `rc6` procedure is called to do this work.

NOTES
`shutdown(1M)` behaves differently depending on the number of users logged in. If several users are logged in, three messages are displayed, warning, final and confirmation, with grace period between each message. If only the user issuing `shutdown(1M)` is logged in, two messages are displayed, the final and confirmation message, with grace period between them.

SEE ALSO
`init(1M), rc0(1M), rc2(1M), rc6(1M), inittab(4)`.
shutdown(1M) (BSD Compatibility Package) shutdown(1M)

NAME
shutdown – close down the system at a given time

SYNOPSIS
/usr/ucb/shutdown [-fhknr] time [warning-message ...]

DESCRIPTION
shutdown provides an automated procedure to notify users when the system is to be shut down. time specifies when shutdown will bring the system down; it may be the word now (indicating an immediate shutdown), or it may specify a future time in one of two formats: +number and hour:min. The first form brings the system down in number minutes, and the second brings the system down at the time of day indicated in 24-hour notation.

At intervals that get closer as the apocalypse approaches, warning messages are displayed at terminals of all logged-in users, and of users who have remote mounts on that machine. Five minutes before shutdown, or immediately if shutdown is in less than 5 minutes, logins are disabled by creating /etc/nologin and writing a message there. If this file exists when a user attempts to log in, login(1M) prints its contents and exits. The file is removed just before shutdown exits.

At shutdown time a message is written to the system log daemon, syslogd(1M), containing the time of shutdown, the instigator of the shutdown, and the reason. Then a terminate signal is sent to init, which brings the system down to single-user mode.

The time of the shutdown and the warning message are placed in /etc/nologin, which should be used to inform the users as to when the system will be back up, and why it is going down (or anything else).

OPTIONS
As an alternative to the above procedure, these options can be specified:

- f Arrange, in the manner of fastboot(1M), that when the system is rebooted, the file systems will not be checked.
- h Execute halt(1M).
- k Simulate shutdown of the system. Do not actually shut down the system.
- n Prevent the normal sync(2) before stopping.
- r Execute reboot(1M).

FILES
/etc/nologin tells login not to let anyone log in
/etc/xtab list of remote hosts that have mounted this host

SEE ALSO
fastboot(1M), halt(1M), reboot(1M), syslogd(1M)

login(1) in the User's Reference Manual
sync(2) in the Programmer's Reference Manual

3/91
NOTES

Only allows you to bring the system down between now and 23:59 if you use the absolute time for shutdown.
NAME
size -- print section sizes in bytes of object files

SYNOPSIS
size [-F -f -n -o -V -x] files

DESCRIPTION
The size command produces segment or section size information in bytes for each loaded section in ELF or COFF object files. size prints out the size of the text, data, and bss (uninitialized data) segments (or sections) and their total.

size processes ELF and COFF object files entered on the command line. If an archive file is input to the size command, the information for each object file in the archive is displayed.

When calculating segment information, the size command prints out the total file size of the non-writable segments, the total file size of the writable segments, and the total memory size of the writable segments minus the total file size of the writable segments.

If it cannot calculate segment information, size calculates section information. When calculating section information, it prints out the total size of sections that are allocatable, non-writable, and not NOBITS, the total size of the sections that are allocatable, writable, and not NOBITS, and the total size of the writable sections of type NOBITS. (NOBITS sections do not actually take up space in the file.)

If size cannot calculate either segment or section information, it prints an error message and stops processing the file.

-F Prints out the size of each loadable segment, the permission flags of the segment, then the total of the loadable segment sizes. If there is no segment data, size prints an error message and stops processing the file.

-f Prints out the size of each allocatable section, the name of the section, and the total of the section sizes. If there is no section data, size prints out an error message and stops processing the file.

-n Prints out non-loadable segment or non-allocatable section sizes. If segment data exists, size prints out the memory size of each loadable segment or file size of each non-loadable segment, the permission flags, and the total size of the segments. If there is no segment data, size prints out, for each allocatable and non-allocatable section, the memory size, the section name, and the total size of the sections. If there is no segment or section data, size prints an error message and stops processing.

-o Prints numbers in octal, not decimal.

-V Prints the version information for the size command on the standard error output.

-x Prints numbers in hexadecimal; not decimal.
EXAMPLES

The examples below are typical size output.

- `size file` 2724 + 88 + 0 = 2812
- `size -f file` 26(.text) + 5(.init) + 5(.fini) = 36
- `size -F file` 2724(r-x) + 88(rwx) + 0(rwx) = 2812

SEE ALSO

as(1), cc(1), ld(1), a.out(4), ar(4)

NOTES

Since the size of bss sections is not known until link-edit time, the size command does not give the true total size of pre-linked objects.
NAME
 sleep – suspend execution for an interval

SYNOPSIS
 sleep time

DESCRIPTION
 sleep suspends execution for time seconds. It is used to execute a command
 after a certain amount of time, as in:
 (sleep 105; command)&
 or to execute a command every so often, as in:
 while true
 do
 command
 sleep 37
 done

SEE ALSO
 alarm(2), sleep(3C) in the Programmer’s Reference Manual.
NAME
slink - streams linker

SYNOPSIS
slink [-v] [-p] [-u] [-f] [-c file] [func [arg1 arg2 . . .]]

DESCRIPTION
slink is a STREAMS configuration utility which is used to link together the various STREAMS modules and drivers required for STREAMS TCP/IP. Input to slink is in the form of a script specifying the STREAMS operations to be performed. Input is normally taken from the file /etc/strcf.

The following options may be specified on the slink command line:

- c file Use file instead of /etc/strcf.
- v Verbose mode (each operation is logged to stderr).
- p Don’t use persistent links (i.e., slink will remain in the background).
- f Don’t use persistent links and don’t fork (i.e., slink will remain in foreground).
- u Unlink persistent links (i.e., shut down network).

The configuration file contains a list of functions, each of which is composed of a list of commands. Each command is a call to one of the functions defined in the configuration file or to one of a set of built-in functions. Among the built-in functions are the basic STREAMS operations open, link, and push, along with several TCP/IP-specific functions.

slink processing consists of parsing the input file, then calling the user-defined function boot, which is normally used to set up the standard configuration at boot time. If a function is specified on the slink command line, that function will be called instead of boot.

By default, slink establishes streams with persistent links (I_PLINK) and exits following the execution of the specified function. If the -p flag is specified, slink establishes streams with regular links (I_LINK) and remains idle in the background, holding open whatever file descriptors have been opened by the configuration commands. If the -f flag is specified, slink establishes streams with regular links (I_LINK) and remains in the foreground, holding open whatever file descriptors have been opened by the configuration commands.

A function definition has the following form:

 function-name {
 command1
 command2
 ...
 }

The syntax for commands is:

 function arg1 arg2 arg3 . . .

or

 var = function arg1 arg2 arg3 . . .
The placement of newlines is important: a newline must follow the left and right braces and every command. Extra newlines are allowed, i.e. where one newline is required, more than one may be used. A backslash (\) followed immediately by a newline is considered equivalent to a space, i.e. may be used to continue a command on a new line. The use of other white space characters (spaces and tabs) is at the discretion of the user, except that there must be white space separating the function name and the arguments of a command.

Comments are delimited by # and newline, and are considered equivalent to a newline.

Function and variable names may be any string of characters taken from A-Z, a-z, 0-9, and _ except that the first character cannot be a digit. Function names and variable names occupy separate name spaces. All functions are global and may be forward referenced. All variables are local to the functions in which they occur.

Variables are defined when they appear to the left of an equals (=) on a command line; for example,

```bash
tcp = open /dev/tcp
```

The variable acquires the value returned by the command. In the above example, the value of the variable `tcp` will be the file descriptor returned by the `open` call.

Arguments to a command may be either variables, parameters, or strings.

A variable that appears as an argument must have been assigned a value on a previous command line in that function.

Parameters take the form of a dollar sign ($) followed by one or two decimal digits, and are replaced with the corresponding argument from the function call. If a given parameter was not specified in the function call, an error results (e.g. if a command references $3 and only two arguments were passed to the function, an execution error will occur).

Strings are sequences of characters optionally enclosed in double quotes ("). Quotes may be used to prevent a string from being interpreted as a variable name or a parameter, and to allow the inclusion of spaces, tabs, and the special characters {, }, =, and #. The backslash (\) may also be used to quote the characters {, }, =, #, " , and \ individually.

The following built-in functions are provided by `slink`:

- **open path**
 - Open the device specified by pathname `path`. Returns a file descriptor referencing the open stream.

- **link fd1 fd2**
 - Link the stream referenced by `fd2` beneath the stream referenced by `fd1`. Returns the link identifier associated with the link. Unless the `-f` or `-p` flag is specified on the command line, the streams will be linked with persistent links. Note: `fd2` cannot be used after this operation.

- **push fd module**
 - Push the module `module` onto the stream referenced by `fd`.
slink(1M) (Internet Utilities) slink(1M)

sifname fd link name
Send a SIOCSIIFNAME (set interface name) ioctl down the stream referenced by fd for the link associated with link identifier link specifying the name name.

unitsel fd unit
Send a IF_UNITSEL (unit select) ioctl down the stream referenced by fd specifying unit unit.

dlattach fd unit
Send a DL_ATTACH_REQ message down the stream referenced by fd specifying unit unit.

initqp path qname lowat hiwat ...
Send an INITQPARMS (initialize queue parameters) ioctl to the driver corresponding to pathname path. qname specifies the queue for which the low and high water marks will be set, and must be one of:

- hd stream head
- rq read queue
- wq write queue
- muxrq multiplexor read queue
- muxwq multiplexor write queue

lowat and hiwat specify the new low and high water marks for the queue. Both lowat and hiwat must be present. To change only one of these parameters, the other may be replaced with a dash (-). Up to five qname lowat hiwat triplets may be present.

strcat str1 str2
Concatenate strings str1 and str2 and return the resulting string.

return val
Set the return value for the current function to val.
Note: executing a return command does not terminate execution of the current function.

FILES
/ etc/strcf

SEE ALSO
strcf(4)
NAME
smtp – send SMTP mail to a remote host using Simple Mail Transfer Protocol

SYNOPSIS
smtp [-D] [-d domain] [-H helohost] [-N] sender host recip ...

DESCRIPTION
smtp sends a message to a remote host host using the Simple Mail Transfer Protocol (SMTP). The message is read from standard input. sender is used to identify the sender of the message and the recips are used as the recipients.

When establishing a connection, smtp will use the first transport for which netdir_getbyname(3) returns an address, based on hostname, transport [returned from getnetpath(3)], and service smtp. Normally, this will be the “tcp” transport.

The options to smtp and their meanings are as follows:
- -D This option turns on debugging. Debugging information is printed on standard error.
- -H helohost This option can be used to set the hostname used in SMTP HELO message (this defaults to the system’s name).
- -d domain This option can be used to set the domain name to be used for this host.
- -N This option disables the sending of MX records. It should not be used on systems that run the Domain Name Server.

smtp is normally run by the smtpsched process to deliver mail queued in /var/spool/smtpq.

FILES
/var/spool/smtpq where messages are queued

SEE ALSO
named(1M) smtpsched(1M)
RFC821 – Simple Mail Transfer Protocol
smtpd (1M)

NAME
smtpd – receive incoming SMTP messages

SYNOPSIS

DESCRIPTION
smtpd is a daemon that normally runs while in multi-user mode, waiting for requests from remote hosts to send mail. smtpd listens for these requests on any TLI-based network for which the SMTP service is defined (to netdir_getbyname(3)). Normally, this will only be the "tcp" network. As requests are received, smtpd will fork off child smtpd processes to handle each individual SMTP transaction.

The options to smtpd and their meanings are as follows:

-n Do not create smtpsched processes to process the incoming mail. Rely on the hourly cron(1) invocation of smtpsched instead.

-H helohost This option can be used to specify the name to be used for the host in the initial SMTP HELO message. If it is not specified, the name used in the HELO message defaults to the system node name.

-h thishost Specify the network name to be prepended onto the sender path in the From line of the message. This option is passed through to the fromsmtp program.

-L loadlim Specify the maximum load at which smtpd will create children. If this option is not specified, there is no limit to the load at which children may run. The load is determined by reading the kernel variable avenrun.

-l maxprocs This option is used to specify the maximum number of children of smtpd that can be running at once. Each child handles one SMTP conversation. If this option is not specified, there is no limit to the number of children that may run.

Mail that is successfully received is piped to the fromsmtp command, which in turn delivers the mail by piping it to rmail. A log of all smtpd’s activities is kept in the file /var/spool/smtpq/LOG.

FILES
/dev/kmem To get the current machine load (avenrun)
/etc/services List of TCP/UDP services (SMTP should be 25/tcp)
/etc/net/*/services List of other TLI networks’ services
/usr/lib/mail/surrcmd/fromsmtp Where incoming mail is piped to
/var/spool/smtpq/LOG Log of smtpd transactions

SEE ALSO
cron(1M), fromsmtp(1M), smtp(1M)
smtpqer (1M)

NAME
smtpqer – queue mail for delivery by SMTP

SYNOPSIS
smtpqer [-nu] [-a toaddr] [-d domain] [-H helohost] sender host recip ...

DESCRIPTION
smtpqer queues the mail message it reads from standard input for eventual
delivery by smtp. The message is queued for delivery to the host specified in the
to address.

smtpqer should normally be invoked by the mail command by placing the fol­
lowing line in /etc/mail/mailsurr:
```
'.+' '([^!@]+)!([^!@]+)' '< /usr/lib/mail/surrcmd/smtpqer %R \1 \2'
```
smtpqer will check the host name in the to address. If it is one that can be
reached (i.e., if netdir_getbyname(3) can find it on at least one TLI network), the
message will be queued, and smtpqer will exit with a return code of 0 (which
means the mail was successfully queued). Otherwise, it will return with an exit
code of 1, and the message will not be queued.

Messages that are queued are stored in a file under the SMTP queue directory
(/var/spool/smtpq). If the -u option is not used, they are first converted to
RFC822 format, by filtering them through the program tosmtp. Finally, smtpqer
invokes the smtpsched program to deliver the mail.

The -H option is used to specify the host name that should be used in the SMTP
HELO message. This option is passed to both the tosmtp and smtp programs.

The -d option is used to specify the domain name that should be used for your
host. This option is passed to the tosmtp program. If this option is not used,
and a domain has been specified in the mail configuration file mailcnfg, that
domain will be used instead.

The -a option is used to specify the “to address” that is passed to the smtp pro­
gram. Finally, the -n option is used to prevent smtpqer from starting an
smtpsched process to deliver the mail.

FILES
/usr/bin/rmail where mail originates from
/etc/hosts database of remote hosts (for TCP/IP)
/etc/mail/mailcnfg mail configuration file
/etc/net/*/*/hosts database of remote hosts (for other TLI networks)
/etc/mail/mailsurr control file containing rule to invoke smtpqer
/usr/lib/mail/surrcmd/smtpsched program to process message queues
/usr/lib/mail/surrcmd/smtp program that passes message to remote host
smtpqer(1M)

/usr/lib/mail/surcmd/tosmtp
 filter to convert to RFC822 format
/var/spool/smtpq
 where messages are queued

SEE ALSO
 rmail(1M), smtpsched(1M), smtp(1M), tosmtp(1M)
RFC822 – Standard for the Format of ARPA Internet Text Messages
NAME
smtpsched – process messages queued in the SMTP mail queue

SYNOPSIS
smtpsched [-c] [-v] [-t] [-s scheds] [-r days] [-w days] [qnames]

DESCRIPTION
smtpsched is used to process the messages queued up in the SMTP mail queue
/var/spool/smtpq. It is invoked automatically by the SMTP mail surrogate
smtpqer, whenever mail is queued for SMTP delivery to a remote host, and by
smtpd whenever incoming mail arrives. It should also be run once per hour
(from cron) to attempt delivery of any mail that cannot be delivered immedi­
ately.

smtpsched will normally attempt to send all messages queued under all subdirec­
tories of /var/spool/smtpq. However, if qnames are specified, only those listed
subdirectories of /var/spool/smtpq will be searched for messages to deliver.
The subdirectories each refer to a different remote host.

The options to smtpsched are as follows:
-c Causes empty queue directories to be removed.
-v Causes verbose logging to occur.
-t Test mode. The actions smtpsched would take are logged but not
performed.
-s scheds Specifies the maximum number of concurrent smtpscheds that may
be running at once. If more than this number is running, smtpsched will exit.
-r days Causes mail older than days days to be returned.
-w days Any mail older than days days will trigger a warning message,
which is sent to the originator.

FILES
/usr/lib/mail/surrcmd/smt delivers the mail
/usr/lib/mail/surrcmd/smtpqer queues the mail
/var/spool/smtpq queued mail messages
/var/spool/smtpq/LOG* log files
/var/spool/smtpq/host mail messages queued for host

SEE ALSO
cron(1M), smtp(1M), smtpqer(1M)
NAME
soelim - resolve and eliminate .so requests from nroff or troff input

SYNOPSIS
/usr/ucb/soelim [filename ...]

DESCRIPTION
The soelim command reads the specified files or the standard input and per­
forms the textual inclusion implied by the nroff(1) directives of the form
.so somefile

when they appear at the beginning of input lines. This is useful since programs
such as tbl(1) do not normally do this; it allows the placement of individual
tables in separate files to be run as a part of a large document.

An argument consisting of ‘--’ is taken to be a file name corresponding to the
standard input.

Note: inclusion can be suppressed by using ‘’’ instead of ‘.’, that is,

 ' so /usr/ucblib/doctools/tmac/tmac.s

EXAMPLE
A sample usage of soelim would be

 soelim exum?.n | tbl | nroff -ms | col | lpr

SEE ALSO
nroff(1), tbl(1)
more(1) in the User’s Reference Manual
NAME

sort - sort and/or merge files

SYNOPSIS

DESCRIPTION

The sort command sorts lines of all the named files together and writes the result on the standard output. The standard input is read if - is used as a file name or no input files are named.

Comparisons are based on one or more sort keys extracted from each line of input. By default, there is one sort key, the entire input line, and ordering is lexicographic by bytes in machine collating sequence.

The following options alter the default behavior:

- `c` Check that the input file is sorted according to the ordering rules; give no output unless the file is out of sort.
- `m` Merge only, the input files are already sorted.
- `u` Unique: suppress all but one in each set of lines having equal keys.
- `-ooutput` The argument given is the name of an output file to use instead of the standard output. This file may be the same as one of the inputs. There may be optional blanks between `-o` and `output`.
- `-ymem` The amount of main memory used by sort has a large impact on its performance. Sorting a small file in a large amount of memory is a waste. If this option is omitted, sort begins using a system default memory size, and continues to use more space as needed. If this option is presented with a value, `ymem`, sort will start using that number of kilobytes of memory, unless the administrative minimum or maximum is violated, in which case the corresponding extremum will be used. Thus, `-y0` is guaranteed to start with minimum memory. By convention, `-y` (with no argument) starts with maximum memory.
- `-zrecsz` The size of the longest line read is recorded in the sort phase so buffers can be allocated during the merge phase. If the sort phase is omitted via the `-c` or `-m` options, a popular system default size will be used. Lines longer than the buffer size will cause sort to terminate abnormally. Supplying the actual number of bytes in the longest line to be merged (or some larger value) will prevent abnormal termination.

The following options override the default ordering rules.

- `d` "Dictionary" order: only letters, digits, and blanks (spaces and tabs) are significant in comparisons.
- `f` Fold lower-case letters into upper case.
-i Ignore non-printable characters.

-M Compare as months. The first three non-blank characters of the field are folded to upper case and compared. For example, in English the sorting order is "JAN" < "FEB" < . . . < "DEC". Invalid fields compare low to "JAN". The -M option implies the -b option (see below).

-n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or more digits with optional decimal point, is sorted by arithmetic value. The -n option implies the -b option (see below). Note that the -b option is only effective when restricted sort key specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the requested ordering rules are applied globally to all sort keys. When attached to a specific sort key (described below), the specified ordering options override all global ordering options for that key.

The notation +pos1 -pos2 restricts a sort key to one beginning at pos1 and ending just before pos2. The characters at position pos1 and just before pos2 are included in the sort key (provided that pos2 does not precede pos1). A missing -pos2 means the end of the line.

Specifying pos1 and pos2 involves the notion of a field, a minimal sequence of characters followed by a field separator or a new-line. By default, the first blank (space or tab) of a sequence of blanks acts as the field separator. All blanks in a sequence of blanks are considered to be part of the next field; for example, all blanks at the beginning of a line are considered to be part of the first field. The treatment of field separators can be altered using the options:

-b Ignore leading blanks when determining the starting and ending positions of a restricted sort key. If the -b option is specified before the first +pos1 argument, it will be applied to all +pos1 arguments. Otherwise, the b flag may be attached independently to each +pos1 or -pos2 argument (see below).

-tx Use x as the field separator character; x is not considered to be part of a field (although it may be included in a sort key). Each occurrence of x is significant (for example, xx delimits an empty field).

pos1 and pos2 each have the form m.n optionally followed by one or more of the flags bdfimnr. A starting position specified by +m.n is interpreted to mean the n+1st character in the m+1st field. A missing .n means .0, indicating the first character of the m+1st field. If the b flag is in effect n is counted from the first non-blank in the m+1st field; +m.0b refers to the first non-blank character in the m+1st field.

A last position specified by -m.n is interpreted to mean the nth character (including separators) after the last character of the m th field. A missing .n means .0, indicating the last character of the mth field. If the b flag is in effect n is counted from the last leading blank in the m+1st field; -m.1b refers to the first non-blank in the m+1st field.
When there are multiple sort keys, later keys are compared only after all earlier keys compare equal. Lines that otherwise compare equal are ordered with all bytes significant.

EXAMPLES
Sort the contents of infile with the second field as the sort key:

```
sort +1 -2 infile
```

Sort, in reverse order, the contents of infile1 and infile2, placing the output in outfile and using the first character of the second field as the sort key:

```
sort -r -o outfile +1.0 -1.2 infile1 infile2
```

Sort, in reverse order, the contents of infile1 and infile2 using the first non-blank character of the second field as the sort key:

```
sort -r +1.0b -1.1b infile1 infile2
```

Print the password file [passwd(4)] sorted by the numeric user ID (the third colon-separated field):

```
sort -t: +2n -3 /etc/passwd
```

Sort the contents of the password file using the group ID (third field) as the primary sort key and the user ID (second field) as the secondary sort key:

```
sort -t: +3 -4 +2 -3 /etc/passwd
```

Print the lines of the already sorted file infile, suppressing all but the first occurrence of lines having the same third field (the options -um with just one input file make the choice of a unique representative from a set of equal lines predictable):

```
sort -um +2 -3 infile
```

FILES
/var/tmp/stm???

SEE ALSO
comm(1), join(1), uniq(1)

NOTES
Comments and exits with non-zero status for various trouble conditions (for example, when input lines are too long), and for disorder discovered under the -c option.

When the last line of an input file is missing a new-line character, sort appends one, prints a warning message, and continues.

sort does not guarantee preservation of relative line ordering on equal keys.
NAME

sortbib - sort a bibliographic database

SYNOPSIS

/usr/ucb/sortbib [-skey-letters] database ...

DESCRIPTION

The sortbib command sorts files of records containing refer key-letters by
user-specified keys. Records may be separated by blank lines, or by ‘.’, ‘[‘ and ‘].’
delimiters, but the two styles may not be mixed together. This program reads
through each database and pulls out key fields, which are sorted separately. The
sorted key fields contain the file pointer, byte offset, and length of corresponding
records. These records are delivered using disk seeks and reads, so sortbib may
not be used in a pipeline to read standard input.

By default, sortbib alphabetizes by the first %A and the %D fields, which contain
the senior author and date. The -s option is used to specify new key-letters. See
addbib for a list of the most common key letters. For instance, -sATD will sort
by author, title, and date, while -sA+D will sort by all authors, and date. Sort
keys past the fourth are not meaningful. No more than 16 databases may be
sorted together at one time. Records longer than 4096 characters will be trun-
cated.

sortbib sorts on the last word on the %A line, which is assumed to be the
author's last name. A word in the final position, such as ‘jr.’ or ‘ed.’, will be
ignored if the name beforehand ends with a comma. Authors with two-word last
names or unusual constructions can be sorted correctly by using the nroff con-
vention ‘\0’ in place of a blank. A %Q field is considered to be the same as %A,
except sorting begins with the first, not the last, word. sortbib sorts on the last
word of the %D line, usually the year. It also ignores leading articles (like ‘A’ or
‘The’) when sorting by titles in the %T or %J fields; it will ignore articles of any
modern European language. If a sort-significant field is absent from a record,
sortbib places that record before other records containing that field.

SEE ALSO

addbib(1), indexbib(1), lookbib(1), refer(1), roffbib(1)

NOTES

Records with missing author fields should probably be sorted by title.
NAME
spell, hashmake, spellin, hashcheck, compress – find spelling errors

SYNOPSIS
spell [-v] [-b] [-x] [-l] [+local_file] [files]
/usr/lib/spell/hashmake
/usr/lib/spell/spellin
/usr/lib/spell/hashcheck spelling_list
/usr/lib/spell/compress

DESCRIPTION
spell collects words from the named files and looks them up in a spelling list. Words that neither occur among nor are derivable (by applying certain inflections, prefixes, and/or suffixes) from words in the spelling list are printed on the standard output. If no files are named, words are collected from the standard input.

spell ignores most troff(1), tbl(1), and eqn(1) constructions.

- v
All words not literally in the spelling list are printed, and plausible derivations from the words in the spelling list are indicated.

- b
British spelling is checked. Besides preferring centre, colour, programme, speciality, travelled, etc., this option insists upon - ise in words like standardise, Fowler and the OED (Oxford English Dictionary) to the contrary notwithstanding.

- x
Every plausible stem is displayed, one per line, with = preceding each word.

- l
Follow the chains of all included files. By default, spell (like der­off(1)) follows chains of included files (.so and .nx troff(1) requests), unless the names of such included files begin with /usr/lib.

+local_file
Words found in local_file are removed from spell’s output. local_file is the name of a user-provided file that contains a sorted list of words, one per line. The list must be sorted with the ordering used by sort(1) (e.g., upper case preceding lower case). If this ordering is not followed, some entries in local_file may be ignored. With this option, the user can specify a set of words that are correct spellings (in addition to spell’s own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an ordinary dictionary, is also more effective with respect to proper names and popular technical words. Coverage of the specialized vocabularies of biology, medicine, and chemistry is light.

Alternate auxiliary files (spelling lists, stop list, history file) may be specified on the command line by using environment variables. These variables and their default settings are shown in the FILES section. Copies of all misspellings and entries that specify the login, tty, and time of each invocation of spell are accumulated in the history file. The stop list filters out misspellings (e.g., thier=thy-y+ier) that would otherwise pass.
Three routines help maintain and check the hash lists used by spell:

hasbmake
Reads a list of words from the standard input and writes the corresponding nine-digit hash code on the standard output. This is the first step in creating a new spelling list or adding words to an existing list; it must be used prior to using spellin.

spellin
Reads \(n \) hash codes (created by hasbmake) from the standard input and writes a compressed spelling list on the standard output. Use spellin to add words to an existing spelling list or create a new spelling list.

hashcheck
Reads a compressed spelling list and recreates the nine-digit hash codes for all the words in it; it writes these codes on the standard output. It takes as input an existing spelling list (hlista or hlistb) or a list created or modified by spellin. By using hashcheck on an existing compressed spelling list and hasbmake on a file of selected words, you can compare the two output files to determine if the selected words are present in the existing spelling list.

compress
When spell is executed, the misspelled words are added to a file called spellhist. This file may contain identical entries since the same word may be misspelled during different executions of spell. The compress program deletes redundant misspelled words in the spellhist file, thereby reducing the size of the file, making it easier to analyze.

FILES

```
D_SPELL=/usr/share/lib/spell/hlist[ab]  hashed spelling lists, American & British
S_SPELL=/usr/share/lib/spell/hstop      hashed stop list
H_SPELL=/var/adm/spellhist             history file
/usr/lib/spell/spellprog              program
```

SEE ALSO

deroff(1), sed(1), sort(1), tee(1)
eqn(1), tbl(1), troff(1) in the DOCUMENTER'S WORKBENCH Software Technical Discussion and Reference Manual

NOTES
The spelling list's coverage is uneven; new installations will probably wish to monitor the output for several months to gather local additions; typically, these are kept in a separate local file that is added to the hashed spelling list via spellin.
NAME
split – split a file into pieces

SYNOPSIS
split [-n] [file [name]]

DESCRIPTION
split reads file and writes it in n-line pieces (default 1000 lines) onto a set of output files. The name of the first output file is name with aa appended, and so on lexicographically, up to zz (a maximum of 676 files). The maximum length of name is 2 characters less than the maximum filename length allowed by the filesystem. See statvfs(2). If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is used.

SEE ALSO
bfs(1), csplit(1)
statvfs(2) in the Programmer’s Reference Manual
NAME
spray – spray packets

SYNOPSIS
/usr/sbin/spray [-c count] [-d delay] [-l length] [-t nettype host]

DESCRIPTION
spray sends a one-way stream of packets to host using RPC, and reports how
many were received, as well as the the transfer rate. The host argument can be
either a name or an Internet address.
The following options are available:

- c count Specify how many packets to send. The default value of count is
the number of packets required to make the total stream size 100000 bytes.

- d delay Specify how many microseconds to pause between sending each
packet. The default is 0.

- l length The length parameter is the numbers of bytes in the Ethernet
packet that holds the RPC call message. Since the data is
encoded using XDR, and XDR only deals with 32 bit quantities,
not all values of length are possible, and spray rounds up to the
nearest possible value. When length is greater than 1514, then the
RPC call can no longer be encapsulated in one Ethernet packet, so
the length field no longer has a simple correspondence to Ether­
net packet size. The default value of length is 86 bytes (the size
of the RPC and UDP headers).

- t nettype Specify class of transports. Defaults to netpath. See rpc(3N)
for a description of supported classes.

SEE ALSO
sprayd(1M), rpc(3N)
NAME
 rpc.sprayd – spray server

SYNOPSIS
 /usr/lib/netsvc/spray/rpc.sprayd

DESCRIPTION
 rpc.sprayd is a server which records the packets sent by spray(1M). The
 rpc.sprayd daemon may be started by inetd(1M) or listen(1M).

SEE ALSO
 inetd(1M) listen(1M), pmadm(1M), sacadm(1M), spray(1M)
NAME
srchtxt -- display contents of, or search for a text string in, message data bases

SYNOPSIS
srchtxt [-s] [-l locale] [-m msgfile, ...] [text]

DESCRIPTION
The srchtxt utility is used to display all the text strings in message data bases, or to search for a text string in message data bases (see mkmsgs(1)). These data bases are files in the directory /usr/lib/locale/locale/LC_MESSAGES (see setlocale(3C)), unless a file name given with the -m option contains a /. The directory locale can be viewed as the name of the language in which the text strings are written. If the -l option is not specified, the files accessed will be determined by the value of the environment variable LC_MESSAGES. If LC_MESSAGES is not set, the files accessed will be determined by the value of the environment variable LANG. If LANG is not set, the files accessed will be in the directory /usr/lib/locale/C/LC_MESSAGES, which contains default strings.

If no text argument is present, then all the text strings in the files accessed will be displayed.

The meanings of the options are as follows:

- suppress printing of the message sequence numbers of the messages being displayed
- locale access files in the directory /usr/lib/locale/locale/LC_MESSAGES. If -m msgfile is also supplied, locale is ignored for msgfiles containing a /.
- msgfile access file(s) specified by one or more msgfiles. If msgfile contains a / character, then msgfile is interpreted as a pathname; otherwise, it will be assumed to be in the directory determined as described above. To specify more than one msgfile, separate the file names using commas.

- text search for the text string specified by text and display each one that matches. text can take the form of a regular expression (see ed(1)).

If the -s option is not specified, the displayed text is prefixed by message sequence numbers. The message sequence numbers are enclosed in angle brackets: <msgfile: msgnum>.

msgfile name of the file where the displayed text occurred
msgnum sequence number in msgfile where the displayed text occurred

This display is in the format used by gettext(1) and gettext(3C).

EXAMPLES
The following examples show uses of srchtxt.

Example 1:
If message files have been installed in a locale named french by using mkmsgs(1), then you could display the entire set of text strings in the french locale (/usr/lib/locale/french/LC_MESSAGES/*) by typing:
Example 2:

If a set of error messages associated with the UNIX operating system have been installed in the file UX in the french locale (/usr/lib/locale/french/LC_MESSAGES/UX), then, using the value of the LANG environment variable to determine the locale to be searched, you could search that file in that locale for all error messages dealing with files by typing:

```
LANG=french; export LANG
srchtxt -m UX "\[Ff\]ichier"
```

If /usr/lib/locale/french/LC_MESSAGES/UX contained the following strings:

```
Erreur E/S
Liste d'arguments trop longue
Fichier inexistant
Argument invalide
Trop de fichiers ouverts
Fichier trop long
Trop de liens
Argument hors du domaine
Identificateur supprim
Etreinte fatale
```

then the following strings would be displayed:

```
<UX:3>Fichier inexistant
<UX:5>Trop de fichiers ouverts
<UX:6>Fichier trop long
```

Example 3:

If a set of error messages associated with the UNIX operating system have been installed in the file UX and a set of error messages associated with the INGRESS data base product have been installed in the file ingress, both in the german locale, then you could search for the pattern [Dd]atei in both the files UX and ingress in the german locale by typing:

```
srchtxt -l german -m UX,ingress "[Dd]atei"
```

FILES

/usr/lib/locale/C/LC_MESSAGES/*
/usr/lib/locale/locale/LC_MESSAGES/*

SEE ALSO

ed(1), exstr(1), gettext(1), mkmsgs(1)
gettext(3C), setlocale(3C) in the Programmer's Reference Manual
The error messages produced by `srchtxt` are intended to be self-explanatory. They indicate an error in the command line or errors encountered while searching for a particular locale and/or message file.
NAME
statd – network status monitor

SYNOPSIS
/usr/lib/nfs/statd

DESCRIPTION
statd is an intermediate version of the status monitor. It interacts with
lockd(1M) to provide the crash and recovery functions for the locking services on
NFS.

FILES
/etc/sm
/etc/sm.bak
/etc/state

SEE ALSO
lockd(1M)

NOTES
The crash of a site is only detected upon its recovery.
strace(1M) (Networking Support Utilities) strace(1M)

NAME
strace – print STREAMS trace messages

SYNOPSIS
strace [mid sid level] . . .

DESCRIPTION
strace without arguments writes all STREAMS event trace messages from all
drivers and modules to its standard output. These messages are obtained from
the STREAMS log driver [log(7)]. If arguments are provided they must be in tri­
plets of the form mid, sid, level, where mid is a STREAMS module ID number, sid is
a sub-ID number, and level is a tracing priority level. Each triplet indicates that
tracing messages are to be received from the given module/driver, sub-ID (usu­
ally indicating minor device), and priority level equal to or less than the given
level. The token all may be used for any member to indicate no restriction for
that attribute.

The format of each trace message output is:
<seq> <time> <ticks> <level> <flags> <mid> <sid> <text>
<seq> trace sequence number
<time> time of message in hh:mm:ss
<ticks> time of message in machine ticks since boot
<level> tracing priority level
<flags> E : message is also in the error log
 F : indicates a fatal error
 N : mail was sent to the system administrator
<mid> module ID number of source
(sid) sub-ID number of source
<text> formatted text of the trace message

Once initiated, strace will continue to execute until terminated by the user.

EXAMPLES
Output all trace messages from the module or driver whose module ID is 41:
 strace 41 all all

Output those trace messages from driver/module ID 41 with sub-IDs 0, 1, or 2:
 strace 41 0 1 41 1 1 41 2 0

Messages from sub-IDs 0 and 1 must have a tracing level less than or equal to 1.
Those from sub-ID 2 must have a tracing level of 0.

SEE ALSO
 log(7)
 Programmer’s Guide: STREAMS

NOTES
Due to performance considerations, only one strace process is permitted to open
the STREAMS log driver at a time. The log driver has a list of the triplets
specified in the command invocation, and compares each potential trace message

3/91
against this list to decide if it should be formatted and sent up to the `strace` process. Hence, long lists of triplets will have a greater impact on overall STREAMS performance. Running `strace` will have the most impact on the timing of the modules and drivers generating the trace messages that are sent to the `strace` process. If trace messages are generated faster than the `strace` process can handle them, then some of the messages will be lost. This last case can be determined by examining the sequence numbers on the trace messages output.
NAME

strchg, strconf – change or query stream configuration

SYNOPSIS

strchg -h module1[,module2 ...]
strchg -p [-a | -u module]
strchg -f file
strconf [-t | -m module]

DESCRIPTION

These commands are used to alter or query the configuration of the stream associated with the user's standard input. The strchg command pushes modules on and/or pops modules off the stream. The strconf command queries the configuration of the stream. Only the super-user or owner of a STREAMS device may alter the configuration of that stream.

With the -h option, strchg pushes modules onto a stream; it takes as arguments the names of one or more pushable streams modules. These modules are pushed in order; that is, module1 is pushed first, module2 is pushed second, etc.

The -p option pops modules off the stream. With the -p option alone, strchg pops the topmost module from the stream. With the -p and -a options, all the modules above the topmost driver are popped. When the -p option is followed by -u module, then all modules above but not including module are popped off the stream. The -a and -u options are mutually exclusive.

With the -f option, the user can specify a file that contains a list of modules representing the desired configuration of the stream. Each module name must appear on a separate line where the first name represents the topmost module and the last name represents the module that should be closest to the driver. The strchg command will determine the current configuration of the stream and pop and push the necessary modules in order to end up with the desired configuration.

The -h, -f and -p options are mutually exclusive.

Invoked without any arguments, strconf prints a list of all the modules in the stream as well as the topmost driver. The list is printed with one name per line where the first name represents the topmost module and the last item printed is the name of the driver. With the -t option, only the topmost module (if one exists) is printed. The -m option determines if the named module is present on a stream. If it is, strconf prints the message yes and returns zero. If not, strconf prints the message no and returns a non-zero value. The -t and -m options are mutually exclusive.

EXAMPLES

The following command pushes the module ldterm on the stream associated with the user's standard input:

strchg -h ldterm
The following command pops the topmost module from the stream associated with /dev/term/24. The user must be the owner of this device or the super-user.

 strchg -p < /dev/term/24

If the file fileconf contains the following:

 compat
 ldterm
 ptem

then the command

 strchg -f fileconf

will configure the user's standard input stream so that the module ptem is pushed over the driver, followed by ldterm and compat closest to the stream head.

The strconf command with no arguments lists the modules and topmost driver on the stream; for a stream that has only the module ldterm pushed above the ports driver, it would produce the following output:

 ldterm
 ports

The following command asks if ldterm is on the stream

 strconf -m ldterm

and produces the following output while returning an exit status of 0:

 yes

SEE ALSO
streamio(7) in the Programmer's Guide: STREAMS

DIAGNOSTICS
strchg returns zero on success. It prints an error message and returns non-zero status for various error conditions, including usage error, bad module name, too many modules to push, failure of an ioctl on the stream, or failure to open file from the -f option.

strconf returns zero on success (for the -m or -t option, "success" means the named or topmost module is present). It returns a non-zero status if invoked with the -m or -t option and the module is not present. It prints an error message and returns non-zero status for various error conditions, including usage error or failure of an ioctl on the stream.

NOTES
If the user is neither the owner of the stream nor the super-user, the strchg command will fail. If the user does not have read permissions on the stream and is not the super-user, the strconf command will fail.

If modules are pushed in the wrong order, one could end up with a stream that does not function as expected. For ttys, if the line discipline module is not pushed in the correct place, one could have a terminal that does not respond to any commands.
NAME
strclean – STREAMS error logger cleanup program

SYNOPSIS
strclean [-d logdir] [-a age]

DESCRIPTION
strclean is used to clean up the STREAMS error logger directory on a regular
basis (for example, by using cron). By default, all files with names matching
error.* in /var/adm/streams that have not been modified in the last three days
are removed. A directory other than /var/adm/streams can be specified using
the -d option. The maximum age in days for a log file can be changed using the
-a option.

EXAMPLE
strclean -d /var/adm/streams -a 3
has the same result as running strclean with no arguments.

FILES
/var/adm/streams/error.*

SEE ALSO
cron(1M), strerr(1M)
Programmer’s Guide: STREAMS

NOTES
strclean is typically run from cron on a daily or weekly basis.
strerr(1M) (Networking Support Utilities) strerr(1M)

NAME
strerr – STREAMS error logger daemon

SYNOPSIS
strerr

DESCRIPTION
strerr receives error log messages from the STREAMS log driver [log(7)] and
appends them to a log file. The error log files produced reside in the directory
/var/adm/streams, and are named error.mm-dd, where mm is the month and
dd is the day of the messages contained in each log file.

The format of an error log message is:
<seq> <time> <ticks> <flags> <mid> <sid> <text>
 <seq> error sequence number
 <time> time of message in hh:mm:ss
 <ticks> time of message in machine ticks since boot priority level
 <flags> T: the message was also sent to a tracing process
 F: indicates a fatal error
 N: send mail to the system administrator
 <mid> module ID number of source
 <sid> sub-ID number of source
 <text> formatted text of the error message

Messages that appear in the error log are intended to report exceptional condi­
tions that require the attention of the system administrator. Those messages
which indicate the total failure of a STREAMS driver or module should have the F
flag set. Those messages requiring the immediate attention of the administrator
will have the N flag set, which causes the error logger to send the message to the
system administrator via mail. The priority level usually has no meaning in the
error log but will have meaning if the message is also sent to a tracer process.

Once initiated, strerr continues to execute until terminated by the user. It is
commonly executed asynchronously.

FILES
/var/adm/streams/error.mm-dd

SEE ALSO
log(7)
Programmer’s Guide: STREAMS

NOTES
Only one strerr process at a time is permitted to open the STREAMS log driver.
If a module or driver is generating a large number of error messages, running the
error logger will cause a degradation in STREAMS performance. If a large burst of
messages are generated in a short time, the log driver may not be able to deliver
some of the messages. This situation is indicated by gaps in the sequence
numbering of the messages in the log files.
NAME
strains – find printable strings in an object file or binary

SYNOPSIS
strings [-a] [-o] [-n number | -number] filename ...

DESCRIPTION
The strains command looks for ASCII strings in a binary file. A string is any sequence of 4 or more printing characters ending with a newline or a null character.

strings is useful for identifying random object files and many other things.

The following options are available:

-a Look everywhere in the file for strings. If this flag is omitted, strains only looks in the initialized data space of object files.

-o Precede each string by its offset in the file.

-n number Use number as the minimum string length rather than 4.

SEE ALSO
od(1)

NOTES
The algorithm for identifying strings is extremely primitive.

For backwards compatibility, -number can be used in place of -n number. Similarly, the -a and a - option are interchangeable. The - and the -number variations are obsolescent.
NAME
 strip – strip symbol table, debugging and line number information from an object file.

SYNOPSIS
 strip [-blrVx] file ...

DESCRIPTION
 The strip command strips the symbol table, debugging information, and line number information from ELF object files; COFF object files can no longer be stripped. Once this stripping process has been done, no symbolic debugging access will be available for that file; therefore, this command is normally run only on production modules that have been debugged and tested.

 If strip is executed on a common archive file [see ar(4)] in addition to processing the members, strip will remove the archive symbol table. The archive symbol table must be restored by executing the ar(1) command with the -s option before the archive can be linked by the ld(1) command. strip will produce appropriate warning messages when this situation arises.

 The amount of information stripped from the ELF object file can be controlled by using any of the following options:

 -b Same effect as the default behavior. This option is obsolete and will be removed in the next release.
 -l Strip line number information only; do not strip the symbol table or debugging information.
 -r Same effect as the default behavior. This option is obsolete and will be removed in the next release.
 -v Print, on standard error, the version number of strip.
 -x Do not strip the symbol table; debugging and line number information may be stripped.

 strip is used to reduce the file storage overhead taken by the object file.

FILES
 TMPDIR/strp* temporary files
 TMPDIR usually /var/tmp but can be redefined by setting the environment variable TMPDIR [see tmpnam(3S)].

SEE ALSO
 ar(1), as(1), cc(1), ld(1), tmpnam(3S), a.out(4), ar(4)

NOTES
 The symbol table section will not be removed if it is contained within a segment, or the file is either a relocatable or dynamic shared object.

 The line number and debugging sections will not be removed if they are contained within a segment, or their associated relocation section is contained within a segment.
NAME

stty — set the options for a terminal

SYNOPSIS

stty [-a] [-g] [options]

DESCRIPTION

stty sets certain terminal I/O options for the device that is the current standard input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret (^), then the value of that option is the corresponding control character (e.g., "^h" is CTRL-h; in this case, recall that CTRL-h is the same as the "back-space" key.) The sequence "^~" means that an option has a null value.

- a reports all of the option settings;
- g reports current settings in a form that can be used as an argument to another stty command.

For detailed information about the modes listed from Control Modes through Local Modes, below, see termio(7). For detailed information about the modes listed under Hardware Flow Control Modes and Clock Modes, below, see termiox(7). Options described in the Combination Modes section are implemented using options in the earlier sections. Note that many combinations of options make no sense, but no sanity checking is performed. Hardware flow control and clock modes options may not be supported by all hardware interfaces. The options are selected from the following:

Control Modes

parenb (-pareDb) enable (disable) parity generation and detection.
parext (-parext) enable (disable) extended parity generation and detection for mark and space parity.
parodd (-parodd) select odd (even) parity, or mark (space) parity if parext is enabled.
cs5 cs6 cs7 cs8 select character size [see termio(7)].
o
hang up line immediately.

110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal baud rate to the number given, if possible. (All speeds are not supported by all hardware interfaces.)

ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal input baud rate to the number given, if possible. (Not all hardware supports split baud rates.) If the input baud rate is set to zero, the input baud rate will be specified by the value of the output baud rate.

ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 38400
Set terminal output baud rate to the number given, if possible. (Not all hardware supports split baud rates.) If the output baud rate is set to zero, the line will be hung up immediately.
hupcl (-hupcl) hang up (do not hang up) connection on last close.
hup (-hup) same as hupcl (-hupcl).
cstopb (-cstopb) use two (one) stop bits per character.
cread (-cread) enable (disable) the receiver.
clocal (-clocal) n assume a line without (with) modem control.
loblk (-loblk) block (do not block) output from a non-current layer.

Input Modes
ignbrk (-ignbrk) ignore (do not ignore) break on input.
brkint (-brkint) signal (do not signal) INTR on break.
ignpar (-ignpar) ignore (do not ignore) parity errors.
parmrk (-parmrk) mark (do not mark) parity errors [see termio(7)].
inpck (-inpck) enable (disable) input parity checking.
istrip (-istrip) strip (do not strip) input characters to seven bits.
inlcr (-inlcr) map (do not map) NL to CR on input.
igncr (-igncr) ignore (do not ignore) CR on input.
icrnl (-icrnl) map (do not map) CR to NL on input.
iuclc (-iuclc) map (do not map) upper-case alphabets to lower case on input.
ixon (-ixon) enable (disable) START/STOP output control. Output is stopped by sending STOP control character and started by sending the START control character.
ixany (-ixany) allow any character (only DC1) to restart output.
ixoff (-ixoff) request that the system send (not send) START/STOP characters when the input queue is nearly empty/full.
imaxbel (-imaxbel) echo (do not echo) BEL when the input line is too long.

KB_ENABLE performs a TIOCKBON which allows extended characters to be transmitted to the user's program. Extended characters are transmitted as a null byte followed by a second byte containing the character's extended code. [see keyboard(7)].

DB_DISABLE performs a TIOCKBON which disables the transmission of extended characters. This is the default. [see keyboard]

Output Modes
opost (-opost) post-process output (do not post-process output; ignore all other output modes).

stty(1) (Essential Utilities) stty(1)

olcuc (-olcuc) map (do not map) lower-case alphabets to upper case on output.
onlcr (-onlcr) map (do not map) NL to CR-NL on output.
ocrnl (-ocrnl) map (do not map) CR to NL on output.
onocr (-onocr) do not (do) output CRs at column zero.
onlret (-onlret) on the terminal NL performs (does not perform) the CR function.
ofill (-ofill) use fill characters (use timing) for delays.
ofdel (-ofdel) fill characters are DELs (NULs).
cr0 cr1 cr2 cr3 select style of delay for carriage returns [see termio(7)].
nl0 nl1 select style of delay for line-feeds [see termio(7)].
tab0 tab1 tab2 tab3 select style of delay for horizontal tabs [see termio(7)].
bs0 bs1 select style of delay for backspaces [see termio(7)].
ff0 ff1 select style of delay for form-feeds [see termio(7)].
vt0 vt1 select style of delay for vertical tabs [see termio(7)].

Local Modes

isig (-isig) enable (disable) the checking of characters against the special control characters INTR, QUIT, and SWTCH.
icanon (-icanon) enable (disable) canonical input (ERASE and KILL processing).
xcase (-xcase) canonical (unprocessed) upper/lower-case presentation.
echo (-echo) echo back (do not echo back) every character typed.
echoe (-echoe) echo (do not echo) ERASE character as a backspace-space-backspace string. Note: this mode will erase the ERASEed character on many CRT terminals; however, it does not keep track of column position and, as a result, may be confusing on escaped characters, tabs, and backspaces.
ehchok (-echok) echo (do not echo) NL after KILL character.
lfkc (-lfkc) the same as echok (-echok); obsolete.
echonl (-echonl) echo (do not echo) NL.
noflush (-noflush) disable (enable) flush after INTR, QUIT, or SWTCH.
stwrap (-stwrap) disable (enable) truncation of lines longer than 79 characters on a synchronous line. (Does not apply to the 3B2.)
tostop (-tostop) send (do not send) SIGTTOU when background processes write to the terminal.
stty (-stty)

echoct1 (-echoct1)

Echo (do not echo) control characters as `char`, delete as “?”.

echopr1 (-echopr1)

Echo (do not echo) erase character as character is “erased”.

echo (-echo)

BS-SP-BS erase (do not BS-SP-BS erase) entire line on line kill.

flusho (-flusho)

Output is (is not) being flushed.

pendin (-pendin)

Retype (do not retype) pending input at next read or input character.

iexten (-iexten)

Enable (disable) extended (implementation-defined) functions for input data.

stflush (-stflush)

Enable (disable) flush on a synchronous line after every write(2).

stappl (-stappl)

Use application mode (use line mode) on a synchronous line.

Hardware Flow Control Modes

- **rtsxoff (-rtsxoff)**

 Enable (disable) RTS hardware flow control on input.

- **ctsxon (-ctsxon)**

 Enable (disable) CTS hardware flow control on output.

- **dtrxoff (-dtrxoff)**

 Enable (disable) DTR hardware flow control on input.

- **cdxon (-cdxon)**

 Enable (disable) CD hardware flow control on output.

- **isxoff (-isxoff)**

 Enable (disable) isochronous hardware flow control on input.

Clock Modes

- **xclbrg**

 Get transmit clock from internal baud rate generator.

- **xctset**

 Get the transmit clock from transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

- **xcrset**

 Get transmit clock from receiver signal element timing (DCE source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

- **rcibrg**

 Get receive clock from internal baud rate generator.

- **rctset**

 Get receive clock from transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

- **rcrset**

 Get receive clock from receiver signal element timing (DCE source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

- **tsetcoff**

 Transmitter signal element timing clock not provided.
Control Assignments

Set the value of min or time to number. min and time are used in Non-Canonical mode input processing (~icanon).

Combination Modes

Enable parenb and cs7.
Enable parenb, cs7, and parodd.
stty(1) (Essential Utilities) stty(1)

spacep enable parenb, cs7, and parext.
markp enable parenb, cs7, parodd, and parext.
-parity, or -evenp disable parenb, and set cs8.
-oddp disable parenb and parodd, and set cs8.
-spacep disable parenb and parext, and set cs8.
-markp disable parenb, parodd, and parext, and set cs8.
raw (-raw or cooked) enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, SWITH, EOT, or output post processing).

nl (-nl) unset (set) icrnl, onlcr. In addition -nl unsets inlcr, igncr, orcr1, and onlret.

lcase (-lcase) set (unset) xcase, iuc1c, and olcuc.

LCASE (-LCASE) same as lcase (-lcase).

tabs (-tabs or tab3) preserve (expand to spaces) tabs when printing.
ek reset ERASE and KILL characters back to normal # and @.
sane resets all modes to some reasonable values.
term set all modes suitable for the terminal type term, where term is one of tty33, tty37, vt05, tn300, ti700, or tek.
async set normal asynchronous communications where clock settings are xcibrg, rcbibrg, tsetcoff and rsetcoff.

Window Size

rows n set window size to n rows.
columns n set window size to n columns.
ypixels n set vertical window size to n pixels.
xpixels n set horizontal window size to n pixels.

Control Modes for the Video Monitor

mono Selects the monochrome display as the output device for the console screen. This mode is valid if a standard monochrome adapter is present or if a standard enhanced graphics adapter (EGA) is present and the EGA is currently in one of the monochrome display modes.

color Selects a standard regular color display as the output device for the console screen. This mode is valid if a color graphics adapter is present or if a standard EGA is present and is currently in one of the color graphics compatibility modes.

enhanced Selects the enhanced color display as the output device for the console screen. This mode is valid if an EGA is present and is currently in a non-monochrome display mode.
pro Selects the professional graphics adapter as the output device for the system console. This mode is valid if a VGA is present.

Control Modes for the Attached Display Devices
The stty command supports mode changes for the monochrome display adapter (MDA), color graphics adapter (CGA), and enhanced graphics adapter (EGA). Support for the video graphics array (VGA) is not provided by the stty command.

B40x25 Selects 40x25 (40 columns x 25 rows) black and white text display mode.
C40x25 Selects 40x25 color text display mode.
B80x25 Selects 80x25 black and white text display mode.
C80x25 Selects 80x25 color display text mode.
BG320 Selects 320x200 black and white graphics display mode.
CG320 Selects 320x200 color graphics display mode.
BG640 Selects 640x200 black and white graphics display mode.

The keyboard and display control modes above are valid for the following configurations: standard color graphics adapter (CGA) attached to a standard regular color display; standard enhanced graphics adapter (EGA) (modes 0-6) attached to a standard regular color display or standard enhanced color display.

CG320_D Selects EGA support for 320x200 graphics display mode (EGA mode D).
CG640_E Selects EGA support for 640x200 graphics display mode (EGA mode E).

The two options above are only valid when an EGA is attached to a standard regular color display or an enhanced color display.

EGAMONO80x25 Selects EGA Mode 7 as the display mode. Emulates the support provided by the standard monochrome display adapter.

EGAMONOAPA Selects EGA support for 640x350 graphics display mode (EGA mode F).
ENHMONOAPA2 Selects EGA mode F*.

The three options above are only valid when a standard EGA is attached to an IBM monochrome display.

ENH_B40x25 Selects enhanced EGA support for 40x25 black and white text display mode (EGA mode 0*).
ENH_C40x25 Selects enhanced EGA support for 40x25 color text display mode (EGA mode 1*).
ENH_B80x25
Selects enhanced EGA support for 80x25 black and white text display mode (EGA mode 2*).

ENH_C80x25
Selects enhanced EGA support for 80x25 color text display mode (EGA mode 3*).

ENH_B80x43
Selects enhanced EGA support for 80x43 black and white text display mode.

ENH_C80x43
Selects enhanced EGA support for 80x43 color text display mode.

CG640x350
Selects EGA support for 640x350 graphics display mode (EGA mode 10).

ENH_CG640
Selects EGA mode 10*.

The options above are only valid when a standard EGA is attached to a standard enhanced color display.

MCAMODE
Reinitializes the monochrome graphics adapter.

ENH_CGA
Selects CGA hardware emulation, when an AT&T Super-Vu video controller is attached.

SEE ALSO
`tabs(1)` in the *User's Reference Manual*.
`ioctl(2)`.
`termio(7), termios(7)` in the *System Administrator's Reference Manual*.
NAME

stty – set the options for a terminal

SYNOPSIS

/usr/ucb/stty [-a] [-g] [-h] [options]

DESCRIPTION

stty sets certain terminal I/O options for the device that is the current standard input; without arguments, it reports the settings of certain options.

In this report, if a character is preceded by a caret (^), then the value of that option is the corresponding CTRL character (for example, "^h" is CTRL-h; in this case, recall that CTRL-h is the same as the ‘back-space’ key.) The sequence "^" means that an option has a null value.

-a reports all of the option settings;

-g reports current settings in a form that can be used as an argument to another stty command.

-h reports all the option settings with the control characters in an easy to read column format.

Options in the last group are implemented using options in the previous groups. Note that many combinations of options make no sense, but no sanity checking is performed. Hardware flow control and clock modes options may not be supported by all hardware interfaces. The options are selected from the following:

Special Requests

all Reports the same option settings as stty without arguments, but with the control characters in column format.

everything Everything stty knows about is printed. Same as -h option.

speed The terminal speed alone is reported on the standard output.

size The terminal (window) sizes are printed on the standard output, first rows and then columns. This option is only appropriate if currently running a window system. size and speed always report on the settings of /dev/tty, and always report the settings to the standard output.

Control Modes

parenb (-parenb) enable (disable) parity generation and detection.

parext (-parext) enable (disable) extended parity generation and detection for mark and space parity.

parodd (-parodd) select odd (even) parity, or mark (space) parity if parext is enabled.

cs5 cs6 cs7 cs8 select character size [see termio(7)].
stty(1)

(BSD Compatibility Package) stty(1)

0 hang up line immediately.
110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb
 Set terminal baud rate to the number given, if possible.
 (All speeds are not supported by all hardware interfaces.)

ispeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb
 Set terminal input baud rate to the number given, if possible.
 (Not all hardware supports split baud rates.) If the
 input baud rate is set to zero, the input baud rate will
 be specified by the value of the output baud rate.

ospeed 0 110 300 600 1200 1800 2400 4800 9600 19200 exta 38400 extb
 Set terminal output baud rate to the number given, if possible.
 (Not all hardware supports split baud rates.) If the
 baud rate is set to zero, the line will be hung up immedi-
 ately.

hupcl (-hupcl) hang up (do not hang up) connection on last close.
hup (-hup) same as hupcl (-hupcl).
cstopb (-cstopb) use two (one) stop bits per character.
cread (-cread) enable (disable) the receiver.
clocal (-clocal) assume a line without (with) modem control.
loblk (-loblk) block (do not block) output from a non-current layer.

Input Modes
ignbrk (-ignbrk) ignore (do not ignore) break on input.
brkint (-brkint) signal (do not signal) INTR on break.
ingpar (-ignpar) ignore (do not ignore) parity errors.
parmrk (-parmrk) mark (do not mark) parity errors [see termio(7)].
inpck (-inpck) enable (disable) input parity checking.
istrip (-istrip) strip (do not strip) input characters to seven bits.
inlcr (-inlcr) map (do not map) NL to CR on input.
ingcr (-igncr) ignore (do not ignore) CR on input.
icrnl (-icrnl) map (do not map) CR to NL on input.
iucloc (-iucloc) map (do not map) upper-case alphabetics to lower case on
 input.
ixon (-ixon) enable (disable) START/STOP output control. Output is
 stopped by sending an STOP and started by sending an
 START.
ixany (-ixany) allow any character (only START) to restart output.
decctlq (-decctlq) Same as -ixany.
ixoff (-ixoff) request that the system send (not send) START/STOP characters when the input queue is nearly empty/full.

tandem (-tandem) Same as ixoff.
imaxbel (-imaxbel) echo (do not echo) BEL when the input line is too long.
iexten (-iexten) enable (disable) extended (implementation-defined) functions for input data.

Output Modes

opost (-opost) post-process output (do not post-process output; ignore all other output modes).

olcuc (-olcuc) map (do not map) lower-case alphabetics to upper case on output.
onlcr (-onlcr) map (do not map) NL to CR-NL on output.
ocrn1 (-ocrn1) map (do not map) CR to NL on output.
onocr (-onocr) do not (do) output CRs at column zero.
onlret (-onlret) on the terminal NL performs (does not perform) the CR function.
ofill (-ofill) use fill characters (use timing) for delays.
ofdel (-ofdel) fill characters are DELs (NULs).
cr0 cr1 cr2 cr3 select style of delay for carriage returns [see termio(7)].
n10 nl1 select style of delay for line-feeds [see termio(7)].
tab0 tab1 tab2 tab3 select style of delay for horizontal tabs [see termio(7)].
bs0 bs1 select style of delay for backspaces [see termio(7)].
ff0 ff1 select style of delay for form-feeds [see termio(7)].
vt0 vt1 select style of delay for vertical tabs [see termio(7)].

Local Modes

isig (-isig) enable (disable) the checking of characters against the special control characters INTR, QUIT, and SWITCH.
icanon (-icanon) enable (disable) canonical input (ERASE and KILL processing).
cbreak (-cbreak) Same as -icanon.
xcase (-xcase) canonical (unprocessed) upper/lower-case presentation.
echo (-echo) echo back (do not echo back) every character typed.
echoe (-echoe) echo (do not echo) ERASE character as a backspace-space-spacebackspace string. Note: this mode will erase the ERASEed character on many CRT terminals; however, it does not keep track of column position and, as a result, may be confusing on escaped characters, tabs, and backspaces.
crterase (-crterase)
Same as echoe.

echok (-echok)
echo (do not echo) NL after KILL character.

1fkc (-1fkc)
the same as echok (-echok); obsolete.
echonl (-echonl)
echo (do not echo) NL.
noflash (-noflash)
disable (enable) flush after INTR, QUIT, or SWTCH.
stwrap (-stwrap)
disable (enable) truncation of lines longer than 79 characters on a synchronous line. (Does not apply to the 3B2.)
tostop (-tostop)
send (do not send) SIGTTOU for background processes.
echoctl (-echoctl)
echo (do not echo) control characters as "char, delete as "? n
ctlecho (-ctlecho)
Same as echoctl.
echoprt (-echoprt)
echo (do not echo) erase character as character is "erased".

prterase (-prterase)
Same as echoprt.
echoke (-echoke)
BS-SP-BS erase (do not BS-SP-BS erase) entire line on line kill.
crtoke (-crtoke)
Same as echoke.
flusho (-flusho)
output is (is not) being flushed.
pendin (-pendin)
retype (do not retype) pending input at next read or input character.
stflush (-stflush)
enable (disable) flush on a synchronous line after every write(2). (Does not apply to the 3B2.)
stappl (-stappl)
use application mode (use line mode) on a synchronous line. (Does not apply to the 3B2.)

Hardware Flow Control Modes

rtsxoff (-rtsxoff)
enable (disable) RTS hardware flow control on input.
ctsxon (-ctsxon)
enable (disable) CTS hardware flow control on output.
dterxoff (-dterxoff)
enable (disable) DTER hardware flow control on input.
rlsdxon (-rlsdxon)
enable (disable) RLSD hardware flow control on output.
isxoff (-isxoff)
enable (disable) isochronous hardware flow control on input.
Clock Modes

xcibr
get transmit clock from internal baud rate generator.

xctset
get the transmit clock from transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

xcrset
get transmit clock from receiver signal element timing (DCE source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

rcibr
get receive clock from internal baud rate generator.

rcrset
get receive clock from transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 114, EIA-232-D pin 15.

rcrset
get receive clock from receiver signal element timing (DCE source) lead, CCITT V.24 circuit 115, EIA-232-D pin 17.

tsetcoff
transmitter signal element timing clock not provided.

tsetcrc
output receive clock on transmitter signal element timing (DCE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24, clock source.

tsetcxc
output transmit clock on transmitter signal element timing (DTE source) lead, CCITT V.24 circuit 113, EIA-232-D pin 24, clock source.

rsetcoff
receiver signal element timing clock not provided.

rsetcrc
output receive clock on receiver signal element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin, clock source.

rsetcxc
output transmit clock on receiver signal element timing (DTE source) lead, CCITT V.24 circuit 128, no EIA-232-D pin, clock source.

Control Assignments

control-character c
set control-character to c, where control-character is intr, quit, erase, kill, eof, eol, eol2, swtch, start, stop, susp, dsusp, rprnt, flush, werase, lnext min, ctab, time, or brk) [ctab is used with -stappl; min and time are used with -icanon; see termio(7)]. If c is preceded by an (escaped from the shell) caret (^), then the value used is the corresponding CTRL character (for example, "^d" is a CTRL-d); "^?" is interpreted as DEL and "^~" is interpreted as undefined.

line i
set line discipline to i \((0 < i < 127)\).
Combination Modes

- **evenp or parity** enable `parenb` and `cs7`.
- **-evenp**, or **-parity** disable `parenb`, and set `cs8`.
- **even** (**-even**) Same as **evenp** (**-evenp**).
- **oddp** enable `parenb`, `cs7`, and `parext`.
- **-oddp** disable `parenb` and `parext`, and set `cs8`.
- **odd** (**-odd**) Same as **oddp** (**-oddp**).
- **spacep** enable `parenb`, `cs7`, and `parext`.
- **-spacep** disable `parenb` and `parext`, and set `cs8`.
- **markp** enable `parenb`, `cs7`, `parext`, and set `cs8`.
- **-markp** disable `parenb`, `parext`, and set `cs8`.
- **raw** (**-raw or cooked**) enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, SWITCH, EOT, or output post processing).
- **nl** (**-nl**) unset (set) `icrnl`, `onlcr`. In addition **-nl** unsets `inlcr`, `igncr`, `ocrnl`, and `onlret`.
- **lcase** (**-lcase**) set (unset) `xcase`, `iuc1c`, and `olcuc`.
- **LCASE** (**-LCASE**) same as **lcase** (**-lcase**).
- **tabs** (**-tabs or tab3**) preserve (expand to spaces) tabs when printing.
- **ek** reset ERASE and KILL characters back to normal # and @.
- **sane** resets all modes to some reasonable values.
- **term** set all modes suitable for the terminal type `term`, where `term` is one of tty33, tty37, vt05, tn300, ti700, or tek.
- **async** set normal asynchronous communications where clock settings are `xcbgr`, `rcbgr`, `tsetcoff` and `rsetcoff`.
- **litout** (**-litout**) Disable (enable) `parenb`, `istrip`, and `opost`, and set `cs8` (cs7).
- **pass8** (**-pass8**) Disable (enable) `parenb` and `istrip`, and set `cs8` (cs7).
- **crt** Set options for a CRT (echoe, echocl, and, if >= 1200 baud, echok).
- **dec** Set all modes suitable for Digital Equipment Corp. operating systems users (ERASE, KILL, and INTR characters to ^?, \^U, and ^C, decctlq, and crt.)
Window Size
rows n set window size to n rows.
columns n set window size to n columns.
cols n An alias for columns n.
ypixels n set vertical window size to n pixels.
xpixels n set horizontal window size to n pixels.

SEE ALSO
tabs(1)
ioctl(2) in the Programmer's Reference Manual
termio(7), termios(7) in the System Administrator's Reference Manual
NAME

sttydefs – maintain line settings and hunt sequences for TTY ports

SYNOPSIS

/usr/sbin/sttydefs -a ttylabel [-b] [-n nextlabel] [-i initial-flags] [-f final-flags]
/usr/sbin/sttydefs -l [ttylabel]
/usr/sbin/sttydefs -r ttylabel

DESCRIPTION

sttydefs is an administrative command that maintains the line settings and hunt sequences for the system’s TTY ports by making entries in and deleting entries from the /etc/ttydefs file.

sttydefs with a -a or -r option may be invoked only by a privileged user. sttydefs with -l may be invoked by any user on the system.

The options have the following meanings:

-1 If a ttylabel is specified, sttydefs will display the record from /etc/ttydefs whose TTY label matches the specified ttylabel. If no ttylabel is specified, sttydefs will display the entire contents of /etc/ttydefs. sttydefs will verify that each entry it displays is correct and that the entry’s nextlabel field references an existing ttylabel.

-a ttylabel Adds a record to the ttydefs file, using ttylabel as its label. The following describes the effect of the -b, -n, -i, or -f options when used in conjunction with the -a option:

-b Specifies that autobaud should be enabled. Autobaud allows the system to set the line speed of a given TTY port to the line speed of the device connected to the port without the user’s intervention.

-n nextlabel Specifies the value to be used in the nextlabel field in /etc/ttydefs. If this option is not specified, sttydefs will set nextlabel equal to ttylabel.

-i initial-flags Specifies the value to be used in the initial-flags field in /etc/ttydefs. initial-flags must be in a format recognized by the stty command. These flags are used by ttymon when searching for the correct baud rate. They are set prior to writing the prompt. If this option is not specified, sttydefs will set initial-flags equal to the termio(7) flag 9600.

-f final-flags Specifies the value to be used in the final-flags field in /etc/ttydefs. final-flags must be in a format recognized by the stty command. final-flags are the termio(7) settings used by ttymon after receiving a successful connection request and immediately before invoking the service on the port. If this option is not specified, sttydefs will set final-flags equal to the termio(7) flags 9600 and sane.
sttydefs (1M)

-rttylabelRemoves any record in thettydefsfile that hasttylabelas its label.

OUTPUT
If successful, sttydefs will exit with a status of 0. sttydefs -l will generate the requested information and send it to the standard output.

EXAMPLES
The following command will list all the entries in thettydefsfile and print an error message for each invalid entry that is detected.

 sttydefs -l

The following shows a command that requests information for a single label and its output:

 # sttydefs -l 9600

--
9600:9600 hupcl erase ^h:9600 sane ixany tab3 hupcl erase ^h::4800
--

 ttylabel: 9600
 initial flags: 9600 hupcl erase ^h
 final flags: 9600 sane ixany tab3 hupcl erase ^h
 autobaud: no
 nextlabel: 4800

The following sequence of commands will add the labels 1200, 2400, 4800, and 9600 and put them in a circular list:

 sttydefs -a 1200 -n 2400 -i 1200 -f "1200 sane"
 sttydefs -a 2400 -n 4800 -i 2400 -f "2400 sane"
 sttydefs -a 4800 -n 9600 -i 4800 -f "4800 sane"
 sttydefs -a 9600 -n 1200 -i 9600 -f "9600 sane"

FILES
/etc/ttydefs

SEE ALSO
NAME

su – become super-user or another user

SYNOPSIS

su [-] [name [arg ...]]

DESCRIPTION

su allows one to become another user without logging off. The default user name
is root (that is, super-user).

To use su, the appropriate password must be supplied (unless one is already
root). If the password is correct, su will execute a new shell with the real and
effective user and group IDs and supplementary group list set to that of the
specified user. The new shell will be the optional program named in the shell
field of the specified user’s password file entry [see passwd(4)] or /usr/bin/sh if
none is specified [see sh(1)]. To restore normal user ID privileges, type an EOF
character (CTRL-d) to the new shell.

Any additional arguments given on the command line are passed to the program
invoked as the shell. When using programs such as sh, an arg of the form -e
string executes string via the shell and an arg of -r gives the user a restricted
shell.

The following statements are true only if the optional program named in the shell
field of the specified user’s password file entry is like sh. If the first argument to
su is a -, the environment will be changed to what would be expected if the user
actually logged in as the specified user. This is done by invoking the program
used as the shell with an arg0 value whose first character is -, thus causing first
the system’s profile (/etc/profile) and then the specified user’s profile (.pro-
file in the new HOME directory) to be executed. Otherwise, the environment is
passed along with the possible exception of $PATH, which is set to
/sbin:/usr/sbin:/usr/bin:/etc for root. Note that if the optional program
used as the shell is /usr/bin/sh, the user’s .profile can check arg0 for -sh or
-su to determine if it was invoked by login or su, respectively. If the user’s
program is other than /usr/bin/sh, then .profile is invoked with an arg0 of
-program by both login and su.

All attempts to become another user using su are logged in the log file
/var/adm/sulog.

EXAMPLES

To become user bin while retaining your previously exported environment, execute:

 su bin

To become user bin but change the environment to what would be expected if
bin had originally logged in, execute:

 su - bin

To execute command with the temporary environment and permissions of user
bin, type:

 su - bin -c "command args"
su(1M) (Essential Utilities) su(1M)

FILES
/etc/passwd system’s password file
/etc/profile system’s profile
$HOME/.profile user’s profile
/var/adm/sulog log file
/etc/default/su the default parameters that live here are:

SULOG: If defined, all attempts to su to another user are logged in the indicated file.

CONSOLE: If defined, all attempts to suroot are logged on the console.

PATH: Default path.
SUPATH: Default path for a user invoking suroot.

SEE ALSO
NAME
 sulogin – access single-user mode

SYNOPSIS
 sulogin

DESCRIPTION
 sulogin is automatically invoked by init when the system is first started. It
 prompts the user to type the root password to enter system maintenance mode
 (single-user mode) or to type EOF (typically CTRL-d) for normal startup (multi-
 user mode). sulogin should never be directly invoked by the user.

FILES
 /sbin/sulogin

SEE ALSO
NAME
sum – print checksum and block count of a file

SYNOPSIS
sum [-r] file

DESCRIPTION
sum calculates and prints a 16-bit checksum for the named file, and also prints the number of 512 byte blocks in the file. It is typically used to look for bad spots, or to validate a file communicated over some transmission line. The option -r causes an alternate algorithm to be used in computing the checksum.

SEE ALSO
wc(1).

DIAGNOSTICS
"Read error" is indistinguishable from end of file on most devices; check the block count.
NAME

`sum` – calculate a checksum for a file

SYNOPSIS

```
/usr/ucb/sum filename
```

DESCRIPTION

`sum` calculates and displays a 16-bit checksum for the named file, and also displays the size of the file in kilobytes. It is typically used to look for bad spots, or to validate a file communicated over some transmission line. The checksum is calculated by an algorithm which may yield different results on machines with 16-bit `ints` and machines with 32-bit `ints`, so it cannot always be used to validate that a file has been transferred between machines with different-sized `ints`.

SEE ALSO

`wc(1), sum(1)` in the *User’s Reference Manual*

DIAGNOSTICS

- **Read error** is indistinguishable from **EOF** on most devices; check the block count.

NOTES

Obsolescent.
NAME
swap – swap administrative interface

SYNOPSIS
/usr/sbin/swap -a swapname swaplow swaplen
/usr/sbin/swap -d swapname swaplow
/usr/sbin/swap -l [-s]
/usr/sbin/swap -s

DESCRIPTION
swap provides a method of adding, deleting, and monitoring the system swap
areas used by the memory manager. The following options are recognized:

-a Add the specified swap area. swapname is the name of the block special par-
tition, e.g., /dev/dsk/*, where the value of * is machine dependent, or a
regular file. swaplow is the offset in 512-byte blocks into the partition where
the swap area should begin. swaplen is the length of the swap area in 512-
byte blocks. This option can only be used by the super-user. If additional
swap areas are added, it is normally done by a system start up routine in
/etc/rc2.d when going into multi-user mode.

-d Delete the specified swap area. swapname is the name of block special parti-
tion, e.g., /dev/dsk/c1d0s1 or a regular file. swaplow is the offset in 512-
byte blocks into the the swap area to be deleted. Using this option marks
the swap area as "INDEL" (in the process of being deleted). The system will
not allocate any new blocks from the area, and will try to free swap blocks
from it. The area will remain in use until all blocks from it are freed. This
option can be used only by the super-user.

-l List the status of all the swap areas. The output has five columns:

<table>
<thead>
<tr>
<th>path</th>
<th>The path name for the swap area.</th>
</tr>
</thead>
</table>
| dev | The major/minor device number in decimal if it is a block special
device; zeros otherwise. |
| swaplo | The swaplow value for the area in 512-byte blocks. |
| blocks | The swaplen value for the area in 512-byte blocks. |
| free | The number of free 512-byte blocks in the area. If the swap area is
being deleted, the word INDEL will be printed to the right of this
number. |

-s Print the following information about total swap space usage:

| allocated | The amount of swap space (in 512-byte blocks) allocated to
private pages. |
| reserved | The number of swap space (in 512-bytes blocks) not currently
allocated, but claimed by memory mappings that have not yet
created private pages. |
| used | The total amount of swap space, in 512-byte blocks, that is
either allocated or reserved. |
available The total swap space, in 512-byte blocks, that is currently available for future reservation and allocation.

WARNINGS
No check is done to see if a swap area being added overlaps with an existing file system.
NAME
 sync - update the super block

SYNOPSIS
 sync

DESCRIPTION
 sync executes the sync system primitive. If the system is to be stopped, sync must be called to insure file system integrity. It will flush all previously unwritten system buffers out to disk, thus assuring that all file modifications up to that point will be saved. See sync(2) for details.

NOTE
 If you have done a write to a file on a remote machine in a Remote File Sharing environment, you cannot use sync to force buffers to be written out to disk on the remote machine. sync will only write local buffers to local disks.

SEE ALSO
 sync(2) in the Programmer's Reference Manual
NAME
sysadm – visual interface to perform system administration

SYNOPSIS
sysadm [menu name | task name]

DESCRIPTION
This command, when invoked without an argument, presents a set of menus that help you do administrative work. If you specify a menu or task on the command line, one of two things happens: if the requested menu or task is unique, it is immediately displayed; if the menu or task is not unique, a menu of choices is displayed.

The sysadm command may be given a password. To assign a password, use the password task under the system_setup menu. To change a password after it is assigned, use the password command.

When you invoke sysadm on a computer running UNIX System V Release 4, the main menu (a collection of twelve menus) appears as follows:

UNIX System V Administration
backup_service - Backup Scheduling, Setup, and Control
diagnostics - Diagnosing System Errors
file_systems - File System Creation, Checking and Mounting
machine - Machine Configuration, Display and Powerdown
network_services - Network Services Administration
ports - Port Access Services and Monitors
printers - Printer Configuration and Services
restore_service - Restore From Backup Data
software - Software Installation and Removal
storage_devices - Storage Device Operations and Definitions
system_setup - System Name, Date/Time and Initial Password Setup
users - User Login and Group Administration

If you install software packages other than those delivered with UNIX System V Release 4, you will also see a menu entry called Administration for Available Applications (or applications) under which those packages are found.

All menu items for pre-Release 4 optional add-on packages other than those listed on the main menu under packagmgmt now appear under old_sysadm on the main menu. (The entry old_sysadm will appear on the main menu only if pre-Release 4 packages have been installed.)
The rest of this section describes each menu listed on the main menu.

Backup Service Management

This menu lists seven areas of administrative support for the backup services.

backup (Start Backup Jobs)

This task starts the backup scheduled for the current day based on the default backup control table or the specified backup control table.

history (Backup History Management)

This task lets you display reports of backup operations that have completed successfully.

reminder (Schedule Backup Reminder)

This menu lets you schedule messages that will be sent to you to remind you to perform backups.

respond (Respond to Backup Job Prompts)

This task lets you reply to operator prompts from backup jobs.

schedule (Schedule Automatic Backups)

This menu lets you schedule backups so that they will run automatically. Because the backups are scheduled to run automatically and are not associated with a terminal, you must choose to run them in either automatic or background mode.

setup (Backup Control Table Management)

This menu lets you modify or display backup registers.

status (Backup Status Management)

This menu lets you manage backup requests that are in progress.

Manage File Systems

This menu provides eleven tasks that are part of file system management. These tasks include checking for and repairing errors on a specific file system, monitoring disk usage for all file systems, tracking files based on age or size, listing all file systems currently mounted on your system, creating a new file system, and mounting and unmounting file systems.

check (Check a File System)

This task lets you check a file system for errors and fix them, either interactively or automatically.

defaults (Manage Defaults)

This task identifies the percentage of hard disks currently occupied by files.

diskuse (Display Disk Usage)

This task identifies the percentage of hard disks currently occupied by files. The information is presented as a list, organized by file system name.
display (Display Installed Types)
This task displays a list of the file system types installed on your system.

fileage (List Files by Age)
This task lets you print the names of old files in the directory you specify. If you do not specify an age, files older than 90 days are listed.

filesize (List Files by Size)
This task lets you print the names of the largest files in a specific directory. If you do not request a particular number of files, the ten largest files are listed.

identify (Identify File System Type)
This task tries to determine the type of any unmounted file system without damaging the data or the medium of the file system.

list (List Mounted File Systems)
This task lets you list all file systems mounted on your computer.

make (Create a File System)
This task lets you create a new file system on a removable medium which can then store data you do not want to keep on hard disk. When mounted, the file system has all the properties of a file kept on hard disk.

mount (Mount a File System)
This task lets you mount a file system located on a removable medium and make it available to users on your system. The file system may be unmounted using the unmount task.

WARNING: (1) mount does not prevent you from mounting a file system on a directory that's not empty. (2) Do not remove the medium while the file system is still mounted.

unmount (Unmount a File System)
This task lets you unmount a file system and thus lets you remove the medium on which it resides. Both / and /usr are excluded because unmounting these file systems would cause a system crash. Once a file system has been unmounted, you may remove the medium on which it resided.

Machine Configuration Display and Powerdown
This menu provides seven tasks for functions such as turning off the computer, rebooting it, and changing to firmware mode.

configuration (System Configuration Display)
This task allows you to check the current configuration of the system.

shutdown (Stops All Running Programs and Turns Off Machine)
This task lets you stop all running programs, close any open files, write out information (such as directory information) to disk, and then bring the system down.
reboot (Stops All Running Programs and Reboots Machine)
This task lets you reboot the computer after all running programs have been stopped, any open files have been closed, and any necessary information (such as directory information) has been written out to disk. This procedure can be used to resolve some types of system trouble, such as a process that cannot be killed.

whos on (Displays List of Users Logged onto Machine)
This task prints the login ID, terminal device number, and sign-on time of all users who are currently using the computer.

Network Services Management
This menu provides four functions for managing networks.

- **basic_networking (Basic Networking Utilities Management)**
 This menu allows you to set up administrative files for UUCP utilities.

- **remote_files (Distributed File System Management)**
 This menu allows you to set up administrative files for the Remote File Sharing (RFS) Utilities or the Network File Sharing (NFS) Utilities.

- **selection (Network Selection Management)**
 This menu allows you to set up administrative files for Network Selection; that is, for dynamically selecting a transport protocol.

- **name_to_address (Machine and Service Address Management)**
 This menu allows you to define machine addresses and service port information for the protocols that exist on the machine.

Peripheral Setup
This menu allows you to setup peripherals that were supported in pre-SVR4.0

Service Access Management
This menu provides functions for managing service access to the system.

- **port_monitors (Port Monitor Management)**
 This menu provides functions for managing port monitors under the Service Access Facility. Specifically, it allows you to add, disable, enable, list, modify, remove, start, and stop port monitors.

- **port_services (Port Service Management)**
 This menu provides functions for managing port services provides by port monitors. Specifically, it allows you to add, disable, enable, list, modify, and remove port services.

quick-terminal
(Quick terminal Setup) This menu allows a user to easily setup a terminal and its speed.
tty_settings (Terminal Line Setting Management)
This menu provides functions for managing tty line settings. Specifically, it allows you to create new tty settings and hunt sequences, and to display (on your screen) and remove those settings. To modify an existing tty line setting, remove the entry for it and then recreate it, including the modifications.

Line Printer Services Configuration and Operation
This menu provides functions for managing the printers and print services you can make available to your users through the LP print service. Specifically, this menu can help you do the following: set up and control the LP print service; start and stop the print service, check the status of the print service and, if necessary, stop and start it; add new printers to your system, and change the configuration of existing printers; add, change, and mount forms, add, change, and change filters, and monitor users' print requests.

classes (Manage Classes of Related Printers)
This menu allows you to add new classes and to display a list of the current classes.

filters (Manage Filters for Special Processing)
This menu allows you to manage filters for special processing.

forms (Manage Pre-Printed Forms)
This menu allows you to manage pre-printed forms.

operations (Perform Daily Printer Service Operations)
This menu allows you to perform daily printer operations such as enabling printers, starting the print service, and mounting forms.

printers (Configure Printers for the Printer Service)
This menu allows you to configure printers for the LP print service.

priorities (Assign Print Queue Priorities to Users)
This menu allows you to assign priority in the queue for print requests.

requests (Manage Active Print Requests)
This menu allows you to hold and release pending print requests, to move print requests to new destinations, and to cancel print requests.

status (Display Status of Printer Service)
This menu allows you to display the current status of the LP print service.

systems (Configure Connections to Remote Systems)
This menu allows you to configure the connections between your LP print service system and any other LP print service.

Restore Service Management
This menu provides tasks for restoring directories, files, file systems, and data partitions from archive volumes.
operator (Set/Display the Restore Operator)
 This task lets you set up and display the restore operator.

respond (Respond to Restore Job Prompts)
 This task lets you respond to restore job prompts.

restore (Restore from Backup Archives)
 This task lets you request the restoration of files, directories, file
 systems, and data partitions from an archived version.

status (Modify/Report Pending Restore Request Status)
 This menu lets you display and change the status of pending
 restore requests.

Schedule Automatic Task
 This menu permits users to modify the cron file. The cron file allows
 users to request jobs to be run at specific times.

 add Allows a user to add a cron job.

 change Allows a user to change an existing cron job.

 delete Allows a user to delete cron job.

 display Allows a user to display cron jobs.

Software Installation and Information Management
 The tasks in this menu provide functions for software package installation,
 removal, and management of information pertaining to software packages.
 They include the ability to install and remove packages, and to check the
 accuracy of package installation. In addition, they include the ability to
 set installation defaults, store interactions with a particular package, store
 a package without actually installing it, and to list all installed packages.

 check (Checks Accuracy of Installation)
 This task lets you check installed software packages for consis­
 tency, correct for inconsistencies, check for hidden files, and
 check the contents of files which are likely to have changed.

 defaults (Sets Installation Defaults)
 This task allows you to decide, ahead of time, the way that the sys­
 tem should respond to an installation problem.

 install (Installs Software Packages)
 This task lets you install software packages onto a spool, a hard
 disk, or a floppy diskette, and select the method that the system
 will use to respond to installation problems.

 interact (Stores Interactions with Package)
 This task allows you to interact with the software installation pro­
list (Displays Information about Packages)
 This task shows you the software packages that are installed on your system and tells you the name, location, and category of each.

read_in (Stores Packages Without Installing)
 This task lets you read in software packages without installing them.

remove (Removes Packages)
 This task lets you remove installed software packages.

Storage Device Operations and Definitions
 This menu contains tasks for getting descriptions of device aliases and attributes and for assigning device groups.

descriptions (Device Alias and Attribute Management)
 This menu contains tasks for listing, adding, removing, and modifying device descriptions and attributes. This menu also provides access to device reservation services.

groups (Device Group Management)
 This menu provides access to tasks that let you list and administer device groups and their membership lists.

System Name, Date Time and Initial Password Setup
 This menu lets you set up your machine. The tasks in this menu include setting the system date and time, setting the node name of your system, doing initial system setup, and assigning passwords to administrative logins on the system.

datetime (System Date and Time Information)
 This task lets you tell the computer the date, time, time zone, and whether you observe Daylight Savings Time (DST). It is normally run once when the machine is first set up. If you observe DST, the computer automatically starts to observe it in the spring and returns to standard time in the fall. The machine must be turned off and turned back on again to guarantee that ALL times are reported correctly. Most times are correct the next time a user logs in.

nodename (System Name and Network Node Name of the Machine)
 This task lets you change the node name and system name of this machine. These names are used by various communications networks to identify this machine.

password (Assigns Administrative Login Passwords)
 This task lets you assign passwords to administrative logins.

setup (Sets up System Information for First Time)
 This task lets you define the first login, set the initial passwords on administration logins, and set the time zone for your location.
User Login and Group Administration

This menu lets you manage the user IDs and groups on your machine. Tasks include the ability to add, modify, and delete users or groups defined on your machine. You can place users in groups so that they can share access to files belonging to members of the group but protect these files from access by members of other groups. In addition, you can set defaults that are used for subsequent user definitions on your machine, and you can define or redefine user password information.

add (Adds Users or Groups)
This task lets you define either a new user or a new group on your system.

defaults (Defines Defaults for Adding Users)
This task lets you change some of the default values used when the add user task creates a new login. Changing the default values does not affect any existing logins; it affects only those added subsequently.

list (Lists Users or Groups)
This task lets you examine the attributes of the users and groups on your system.

modify (Modifies Attributes of Users or Groups)
This task lets you modify either a user definition or a group definition on your system.

password ((Re-)defines User Password Information)
This task lets you define or change a user’s password.

remove (Removes Users or Groups)
This task lets you remove a user from your system.

DIAGNOSTICS
The sysadm command exits with one of the following values:

0 Normal exit.
1 Invalid command syntax. Usage message of the sysadm command is displayed.
4 The menu or task name given as an argument does not exist.
5 The menu name given as an argument is an empty placeholder menu, and therefore not available for use.
7 The sysadm command is not available because it cannot invoke fmli. (The FMLI package may be corrupt or it may not have been installed.)

EXAMPLES
sysadm nodename

NOTES
The Release 3 version of the sysadm command scrolled menus down the terminal screen. The Release 4 version of sysadm, however, displays menus in “pop-up” windows.
Pre-Release 4 add-on packages other than those listed under `packagmgmt` are listed under `old.sysadm`.

SEE ALSO
`checkfsys(1M), delsysadm(1M), edsysadm(1M), makefsys(1M), mountfsys(1M), powerdown(1M), setup(1M), umountfsys(1M)`
NAME
syslogd – log system messages

SYNOPSIS
/usr/sbin/syslogd [-d] [-f configfile] [-m interval]

DESCRIPTION
syslogd reads and forwards system messages to the appropriate log files and/or users, depending upon the priority of a message and the system facility from which it originates. The configuration file /etc/syslog.conf [see syslog.conf(5)] controls where messages are forwarded. syslogd logs a mark (timestamp) message every interval minutes (default 20) at priority LOG_INFO to the facility whose name is given as mark in the syslog.conf file.

A system message consists of a single line of text, which may be prefixed with a priority code number enclosed in angle-brackets «»; priorities are defined in sys/syslog.h.

syslogd reads from the STREAMS log driver, /dev/log, from any transport provider specified in /etc/netconfig, /etc/net/transport/hosts, and /etc/net/transport/services, and from the special device /dev/klog (for kernel messages).

syslogd reads the configuration file when it starts up, and again whenever it receives a HUP signal, at which time it also closes all files it has open, re-reads its configuration file, and then opens only the log files that are listed in that file. syslogd exits when it receives a TERM signal.

As it starts up, syslogd creates the file /etc/syslog.pid, if possible, containing its process ID (PID).

The following options are available:
-d Turn on debugging.
-f configfile Specify an alternate configuration file.
-m interval Specify an interval, in minutes, between mark messages.

FILES
/etc/syslog.conf configuration file
/etc/syslog.pid process ID
/dev/log STREAMS log driver
/etc/netconfig specifies the transport providers available on the system
/etc/net/transport/hosts network hosts for each transport
/etc/net/transport/services network services for each transport

SEE ALSO
logger(1), syslog(3), syslog.conf(4)
log(7) in the System Administrator's Reference Manual
NAME
tabs - set tabs on a terminal

SYNOPSIS
tabs [tabspec] [-Ttype] [+mn]

DESCRIPTION
tabs sets the tab stops on the user's terminal according to the tab specification
tabspec, after clearing any previous settings. The user's terminal must have
remotely settable hardware tabs.

tabspec Four types of tab specification are accepted for tabspec. They are
described below: canned (-code), repetitive (-n), arbitrary (n1,n2, . . .),
and file (--file). If no tabspec is given, the default value is -8, that is,
UNIX system "standard" tabs. The lowest column number is 1. Note
that for tabs, column 1 always refers to the leftmost column on a tenni­

code Use one of the codes listed below to select a canned set of tabs. The legal
codes and their meanings are as follows:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code,
the first typed character corresponds to card column 7, one
space gets you to column 8, and a tab reaches column 12. Files
using this tab setup should include a format specification as fol­

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL
A repetitive specification requests tabs at columns 1+n, 1+2*n, etc. Of particular importance is the value 8: this represents the UNIX system "standard" tab setting, and is the most likely tab setting to be found at a terminal. Another special case is the value 0, implying no tabs at all.

The arbitrary format permits the user to type any chosen set of numbers, separated by commas, in ascending order. Up to 40 numbers are allowed. If any number (except the first one) is preceded by a plus sign, it is taken as an increment to be added to the previous value. Thus, the formats 1,10,20,30, and 1,10,+10,+10 are considered identical.

If the name of a file is given, tabs reads the first line of the file, searching for a format specification [see fspec(4)]. If it finds one there, it sets the tab stops according to it, otherwise it sets them as -8. This type of specification may be used to make sure that a tabbed file is printed with correct tab settings, and would be used with the pr command:

```
tabs --file; pr file
```

Any of the following also may be used; if a given flag occurs more than once, the last value given takes effect:

```
-T type  tabs usually needs to know the type of terminal in order to set tabs and always needs to know the type to set margins. type is a name listed in term(5). If no -T flag is supplied, tabs uses the value of the environment variable TERM. If TERM is not defined in the environment [see environ(5)], tabs tries a sequence that will work for many terminals.

+m n  The margin argument may be used for some terminals. It causes all tabs to be moved over n columns by making column n+1 the left margin. If +m is given without a value of n, the value assumed is 10. For a TermiNet, the first value in the tab list should be 1, or the margin will move even further to the right. The normal (leftmost) margin on most terminals is obtained by +m0. The margin for most terminals is reset only when the +m flag is given explicitly.

Tab and margin setting is performed via the standard output.
```

EXAMPLES

tabs -a example using -code (canned specification) to set tabs to the settings required by the IBM assembler: columns 1, 10, 16, 36, 72.

tabs -8 example of using -n (repetitive specification), where n is 8, causes tabs to be set every eighth position: 1+(1*8), 1+(2*8), . . . which evaluate to columns 9, 17, . . .

tabs 1,8,36 example of using n1, n2, . . . (arbitrary specification) to set tabs at columns 1, 8, and 36.
tabs --$HOME/fspec.list/att4425
example of using --file (file specification) to indicate that tabs
should be set according to the first line of
$HOME/fspec.list/att4425 [see fspec(4)].

DIAGNOSTICS
illegal tabs when arbitrary tabs are ordered incorrectly
illegal increment when a zero or missing increment is found in an arbitrary
specification
unknown tab code when a canned code cannot be found
can't open if --file option used, and file can't be opened
file indirection if --file option used and the specification in that file points
to yet another file. Indirection of this form is not permitted

SEE ALSO
newform(1), pr(1), tput(1)
fspec(4), terminfo(4), environ(5), term(5) in the System Administrator's Reference
Manual

NOTES
There is no consistency among different terminals regarding ways of clearing tabs
and setting the left margin.
tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to
set 64.
The tabspec used with the tabs command is different from the one used with the
newform command. For example, tabs -8 sets every eighth position; whereas
newform -i-8 indicates that tabs are set every eighth position.
NAME
tail – deliver the last part of a file

SYNOPSIS
tail [± number lbcfr] [file]
tail [-lbcfr] [file]
tail [± number lbcfr] [file]
tail [-lbcfr] [file]

DESCRIPTION
tail copies the named file to the standard output beginning at a designated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end of the input (if number is null, the value 10 is assumed). Number is counted in units of lines, blocks, or characters, according to the appended option l, b, or c. When no units are specified, counting is by lines.

With the -f (follow) option, if the input file is not a pipe, the program will not terminate after the line of the input file has been copied, but will enter an endless loop, wherein it sleeps for a second and then attempts to read and copy further records from the input file. Thus it may be used to monitor the growth of a file that is being written by some other process. For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are appended to fred between the time tail is initiated and killed. As another example, the command:

tail -15cf fred

will print the last 15 characters of the file fred, followed by any lines that are appended to fred between the time tail is initiated and killed.

The r option copies lines from the specified starting point in the file in reverse order. The default for r is to print the entire file in reverse order.

The r and f options are mutually exclusive.

SEE ALSO
cat(1), head(1), more(1), pg(1), tail(1).

NOTES
Tails relative to the end of the file are stored in a buffer, and thus are limited in length. Various kinds of anomalous behavior may happen with character special files.

The tail command will only tail the last 4096 bytes of a file regardless of its line count.
NAME
 talk – talk to another user

SYNOPSIS
 talk username [ttyname]

DESCRIPTION
 talk is a visual communication program that copies lines from your terminal to
 that of a user on the same or on another host. username is that user's login name.
 The program is architecture dependent; it works only between machines of the
 same architecture.
 If you want to talk to a user who is logged in more than once, the ttyname
 argument may be used to indicate the appropriate terminal name.
 When first called, talk sends the message:

 Message from TalkDaemon@ her_machine at time ...
 talk: connection requested by your_name@your_machine
 talk: respond with: talk your_name@your_machine

 to the user you want to talk to. At this point, the recipient of the message should
 reply by typing:

 talk your_name@your_machine

 It does not matter from which machine the recipient replies, as long as the login
 name is the same. Once communication is established, the two parties may type
 simultaneously, with their output appearing in separate windows. Typing
 CTRL-I redraws the screen, while your erase, kill, and word kill characters will
 work in talk as normal. To exit, just type your interrupt character; talk then
 moves the cursor to the bottom of the screen and restores the terminal.
 Permission to talk may be denied or granted by use of the msg(1) command. At
 the outset talking is allowed. Certain commands, such as pr(1), disallow mes-
 sages in order to prevent messy output.

FILES
 /etc/hosts to find the recipient's machine
 /var/adm/utmp to find the recipient's tty

SEE ALSO
 mail(1), msg(1), pr(1), who(1), write(1), talkd(1M)
NAME

talkd, in.talkd – server for talk program

SYNOPSIS

in.talkd

DESCRIPTION

talkd is a server used by the talk(1) program. It listens at the UDP port indicated in the “talk” service description; see services(4). The actual conversation takes place on a TCP connection that is established by negotiation between the two machines involved.

SEE ALSO

talk(1), inetd(1M), services(4)

NOTES

The protocol is architecture dependent.
NAME
tape – magnetic tape maintenance

SYNOPSIS
tape [-csf8i] [-a arg] command [device]

DESCRIPTION
tape sends commands to and receives status from the tape subsystem. tape can communicate with QIC-24/QIC-02 cartridge tape drives and SCSI tape drives.
tape reads /etc/default/tape to find the default device name for sending commands and receiving status. For example, the following line in /etc/default/tape will cause tape to communicate with the QIC-24/QIC-02 cartridge tape device:

device = /dev/rmt/c0s0

If a device name is specified on the command line, it overrides the default device. tape queries the device to determine its device type. If the device does not respond to the query, for example if the cartridge tape driver is from an earlier release, tape will print a warning message and assume the device is a QIC-24/QIC-02 cartridge tape.

OPTIONS
You can explicitly specify the type of the device by using the device type flags, as follows:

- c QIC-24/QIC-02 cartridge tape
- s SCSI tape

COMMANDS
The following commands can be used with the various tape drivers supported under UNIX. The letters following each description indicate which drivers support each command:

A All drivers
C QIC-24/QIC-02 cartridge tape driver
S SCSI tape driver

erase Erase and retension the tape cartridge. (C,S)
reset Reset tape controller and tape drive. Clears error conditions and returns tape subsystem to power-up state. (C,S)
reten Retension tape cartridge. Should be used periodically to remedy slack tape problems. Tape slack can cause an unusually large number of tape errors. (A)
rewind Rewind to beginning of tape. (A)
rfm Wind tape forward to the next file mark. (C,S)
FILES

Devices:

/dev/rmt/c0s0
/dev/rmt/c0s0n
/dev/rmt/c0s0r
/dev/rmt/c0s0nr
/dev/rmt/c0t3d0s0
/etc/default/tape

Include files:

/usr/include/sys/tape.h

SEE ALSO

cpio(1), dd(1), tar(1)
backup(1M), qt(7) restore(1M), xrestore(1M) in the System Administrator’s Reference Manual

NOTES

The reset command can be used while the tape is busy with other operations. All other commands wait until the currently executing command has been completed before proceeding.

When you are using the non-rewinding tape device or the tape command rfm, the tape drive light remains on after the command has been completed, indicating that more operations may be performed on the tape. The tape rewind command may be used to clear this condition.
NAME
tapectl – tape control for tape device

SYNOPSIS
tapectl [-bluetrwv] [-f arg] [-p arg] [special]

DESCRIPTION
tapectl will send the optioned commands to the tape device driver sub-device
/dev/rmt/c0s0 for all options except the -e option (position), which will use
sub-device /dev/rmt/c0s0n using the ioctl command function. Sub-device
/dev/rmt/c0s0 provides a rewind on close capability, while /dev/rmt/c0s0n
allows for closing of the device without rewind. Error messages will be written
to standard error. special is the tape device, and it defaults to /dev/rmt/c0s0n
if not specified.

Not all options are supported by all tape devices and tape device drivers.

The meaning of the options are:

- **b** block length limits
 Reads block length limits from the tape device and displays them.

- **l** load tape
 Loads the tape media to the tape device and positions the tape at
 BOT.

- **u** unload tape
 Unloads the tape media from the tape device. Depending on the
device, unloading may include ejecting the cartridge.

- **e** erase tape
 Erasing the tape causes the erase bar to be activated while moving
 the tape from end to end, causing all data tracks to be erased in a
 single pass over the tape.

- **t** retension tape
 Retensioning the tape causes the tape to be moved from end to
 end, thereby repacking the tape with the proper tension across its
 length.

- **r** reset tape device
 Reset of the tape device initializes the tape controller registers and
 positions the tape at the beginning of the tape mark (BOT).

- **w** rewind tape
 Rewinding the tape will move the tape to the BOT.

- **v** set variable length block mode
 Sets the tape device to read and write variable length blocks.

- **f** set fixed length block mode
 sets the tape device to read and write in fixed length blocks of n
 bytes.
-p[n] position tape to "end of file" mark – n
Positioning the tape command requires an integer argument. Positioning the tape will move the tape forward relative to its current position to the end of the specified file mark. The positioning option used with an argument of zero will be ignored. Illegal or out-of-range value arguments to the positioning command will leave the tape positioned at the end of the last valid file mark.

Options may be used individually or strung together with selected options being executed sequentially from left to right in the command line.

FILES
/usr/lib/tape/tapecntl
/sbin/tapecntl
/dev/rmt/c0s0n
/dev/rmt/c0s0

NOTES
Exit codes and their meanings are as follows:
exit (1) device function could not initiate properly due to misconnected cables or poorly inserted tape cartridge.
exit (2) device function failed to complete properly due to unrecoverable error condition, either in the command setup or due to mechanical failure.
exit (3) device function failed due to the cartridge being write protected or to the lack of written data on the tape.
exit (4) device /dev/rmt/c0s0n or /dev/rmt/c0s0 failed to open properly due to already being opened or claimed by another process.
NAME
tar - tape file archiver

SYNOPSIS

```
/usr/sbin/tar -c[vwfbLkPhienAC[#s]] device block files tapesize incfile ...
/usr/sbin/tar -c[vwfbLkXhienAC[#s]] device block files tapesize excfile ...
/usr/sbin/tar -r[vwfbLkPhienAC[#s]] device block files tapesize incfile ...
/usr/sbin/tar -r[vwfbLkXhienAC[#s]] device block files tapesize excfile ...
/usr/sbin/tar -t[vfLXien[#s]] device [files ..] excfile
/usr/sbin/tar -u[vwfbLkXhienAC[#s]] device block files tapesize excfile ...
/usr/sbin/tar -u[vwfbLkPhienAC[#s]] device block files tapesize incfile ...
/usr/sbin/tar -x[lmovwflXpIenAC[#s]] device [files .]
```

DESCRIPTION
tar saves and restores files on magnetic tape. Its actions are controlled by a
string of characters containing one option (c, r, t, u, or x), and possibly followed
by one or more modifiers (v, w, f, b, L, k, F, X, h, i, e, n, A, l, m, o, p, and #s).
Other arguments to the command are files (or directory names) specifying which
files are to be dumped or restored. In all cases, appearance of a directory name
refers to the files and (recursively) subdirectories of that directory.

The options are as follows:

- `-c` Create a new tape; writing begins at the beginning of the tape, instead of
 after the last file. The `-c` option implies the `-r` option.

- `-r` Replace. The named files are written on the end of the tape. The `-c` and
 `-u` options imply the `-r` option.

- `-t` Table. The names and other information for the specified files are listed
each time that they occur on the tape. The listing is similar to the format
produced by the `ls -1` command [see `ls(1)`]. If no files argument is given,
all the names on the tape are listed.

- `-u` Update. The named files are added to the tape if they are not already
 there, or have been modified since last written on that tape. The `-u`
 option implies the `-r` option.

- `-x` Extract. The named files are extracted from the tape. If a named file
 matches a directory whose contents had been written onto the tape, this
directory is (recursively) extracted. Use the file or directory's relative
path when appropriate, or `tar` will not find a match. The owner,
modification time, and mode are restored (if possible). If no files argument is
given, the entire contents of the tape is extracted. Note that if
several files with the same name are on the tape, the last one overwrites
all earlier ones.

The modifiers below may be used in the order shown in the synopsis.

- `#s` This modifier determines the drive on which the tape is mounted
 (replace # with the drive number) and the speed of the drive (replace s
 with l, m, or h for low, medium or high). The modifier tells `tar` to use a
drive other than the default drive, or the drive specified with the `-f`
modifier. The defaults are listed in `/etc/default/tar`.

3/91
Verbose. Normally, `tar` does its work silently. The `v` (verbose) modifier causes it to print the name of each file it treats, preceded by the option. With the `-t` option, `v` gives more information about the tape entries than just the name.

What. This modifier causes `tar` to print the action to be taken, followed by the name of the file, and then wait for your confirmation. If a word beginning with `y` is given, the action is performed. Any other input means no. This is not valid with the `-t` option.

File. This causes `tar` to use the `device` argument as the name of the archive instead of the default. If the name of the file is `-`, `tar` writes to the standard output or reads from the standard input, whichever is appropriate. Thus, `tar` can be used as the head or tail of a pipeline. `tar` can also be used to move hierarchies with the command:

```
    cd fromdir; tar cf - . | (cd todir; tar xf -)
```

Blocking Factor. This modifier causes `tar` to use the `block` argument as the blocking factor for tape records. The default is 20. This modifier should not be supplied when operating on regular archives or block special devices. It is mandatory however, when reading archives on raw magnetic tape archives (see `f` above). The block size is determined automatically when reading tapes created on block special devices (options `x` and `t`).

Link. This modifier causes `tar` to complain if it cannot resolve all of the links to the files being dumped. If the `l` modifier is not specified, no error messages are printed.

Modify. This modifier causes `tar` to not restore the modification times. The modification time of the file will be the time of extraction.

Ownership. This modifier causes extracted files to take on the user and group identifier of the user running the program, rather than those on tape. This is only valid with the `-x` option.

Follow symbolic links. This modifier causes symbolic links to be followed. By default, symbolic links are not followed.

This modifier uses the `tapesize` argument as the size in bytes per volume for non-tape devices (such as a floppy drive). A value of 0 for `tapesize` causes multi-volume mode to be disabled (interpreted as an infinite volume size). This modifier may be used with the `-c`, `-r`, and `-u` options.

This modifier uses the `incfile` argument as a file containing a list of named files (or directories) to be included on the tape. This modifier may only be used with the `-c`, `-r`, and `-u` options. This modifier may not be used with the `X` modifier.

This modifier uses the `excfile` argument as a file containing a list of named files (or directories) to be excluded. This modifier may not be used with the `F` modifier.
This modifier causes `tar` to follow symbolic links as if they were normal files or directories. Normally `tar` does not follow symbolic links. The `h` modifier may be used with the `-c`, `-r`, and `-u` options.

This modifier restores the named file arguments to their original modes, ignoring the present value returned by `umask` [see `umask(2)` in the Programmer's Reference Manual]. `setuid` and sticky bit information are also restored if the effective user ID is root. This modifier may only be used with the `-x` option.

This modifier causes `tar` to ignore directory checksum errors.

This modifier causes `tar` to quit when certain minor errors are encountered. Otherwise `tar` will continue when minor errors are encountered.

This modifier must be used when the `device` argument is for a non-tape device (for example, a floppy drive).

This modifier causes absolute pathnames for files to be suppressed, and may be used with the `-r`, `-c`, `-u`, and `-x` options. This causes all pathnames to be interpreted as relative to the current working directory.

This modifier, on output, sets a flag indicating that all regular files are compressed. On input, this modifier sets a flag to decompress all regular files.

```
FILES
/etc/default/tar
/tmp/tar*
/usr/lib/locale/locale/LC_MESSAGES/uxcore

SEE ALSO
ar(1), cpio(1), ls(1).

DIAGNOSTICS
Complains about tape read/write errors.
Complains if insufficient memory is available to hold the link tables.

NOTES
There is no way to ask for the n-th occurrence of a file.

The `-b` modifier should not be used with archives that are going to be updated. The current magnetic tape driver cannot backspace raw magnetic tape. If the archive is on a disk file, the `-b` modifier should not be used at all, because updating an archive stored on disk can destroy it.

The current limit on file name length is 100 characters.

You cannot restore a multi-level archive created with UNIX System V Release 4 `tar` on a pre-Release 4 system. A false warning message that file permissions have changed will be issued.
NAME
tbl – format tables for nroff or troff

SYNOPSIS
/usr/ucb/tbl [-me] [-ms] [-mm] [-TX] [filename] ...

DESCRIPTION
The tbl command is a preprocessor for formatting tables for nroff or troff.
The input filenames are copied to the standard output, except that lines between .TS and .TE command lines are assumed to describe tables and are reformatted.

If no arguments are given, tbl reads the standard input, so tbl may be used as a filter. When tbl is used with eqn or neqn the tbl command should be first, to minimize the volume of data passed through pipes.

The -me option copies the -me macro package to the front of the output file.

The -ms option copies the -ms macro package to the front of the output file.

The -mm option copies the -mm macro package to the front of the output file.

The -TX option produces output that does not have fractional line motions in it.

EXAMPLE
As an example, letting \t represent a TAB (which should be typed as a genuine TAB) the input

```
.TS
 c s s
c c c
c c c
l n n.
Household|Population
Town|Households
|Number|Size
Bedminster|789|3.26
Bernards Twp.|3087|3.74
Bernardsville|2018|3.30
.TE
```
yields

```
<table>
<thead>
<tr>
<th>Household Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>Bedminster</td>
</tr>
<tr>
<td>Bernards Twp.</td>
</tr>
<tr>
<td>Bernardsville</td>
</tr>
</tbody>
</table>
```

SEE ALSO
eqn(1), nroff(1), troff(1)
NAME
tcopy – copy a magnetic tape

SYNOPSIS
/usr/ucb/tcopy source [ destination ]

DESCRIPTION
tcopy copies the magnetic tape mounted on the tape drive specified by the source argument. The only assumption made about the contents of a tape is that there are two tape marks at the end.

When only a source drive is specified, tcopy scans the tape, and displays information about the sizes of records and tape files. If a destination is specified, tcopy makes a copies the source tape onto the destination tape, with blocking preserved. As it copies, tcopy produces the same output as it does when only scanning a tape.

SEE ALSO
mt(1)
ioc1(2) in the Programmer’s Reference Manual

NOTES
tcopy will only run on systems supporting an associated set of ioc1(2) requests.
NAME
tee – pipe fitting

SYNOPSIS
tee [-i] [-a] [file] ...

DESCRIPTION
tee transcribes the standard input to the standard output and makes copies in the files. The
-i ignore interrupts;
-a causes the output to be appended to the files rather than overwriting them.
NAME
telnet – user interface to a remote system using the TELNET protocol

SYNOPSIS
telnet [host [port]]

DESCRIPTION
telnet communicates with another host using the TELNET protocol. If telnet is invoked without arguments, it enters command mode, indicated by its prompt telnet>. In this mode, it accepts and executes the commands listed below. If it is invoked with arguments, it performs an open command (see “Telnet Commands” below) with those arguments.

Once a connection has been opened, telnet enters input mode. In this mode, text typed is sent to the remote host. The input mode entered will be either character at a time or line by line depending on what the remote system supports.

In character at a time mode, most text typed is immediately sent to the remote host for processing.

In line by line mode, all text is echoed locally, and (normally) only completed lines are sent to the remote host. The local echo character (initially ^E) may be used to turn off and on the local echo (this would mostly be used to enter passwords without the password being echoed).

In either mode, if the localchars toggle is TRUE (the default in line mode; see below), the user’s quit, intr, and flush characters are trapped locally, and sent as TELNET protocol sequences to the remote side. There are options (see toggle, autoflush, and toggle, autosynch) which cause this action to flush subsequent output to the terminal (until the remote host acknowledges the TELNET sequence) and flush previous terminal input (in the case of quit and intr).

While connected to a remote host, telnet command mode may be entered by typing the telnet escape character (initially ^I). When in command mode, the normal terminal editing conventions are available.

USAGE
Telnet Commands
The following commands are available. Only enough of each command to uniquely identify it need be typed (this is also true for arguments to the mode, set, toggle, and display commands).

open host [port]
Open a connection to the named host. If no port number is specified, telnet will attempt to contact a TELNET server at the default port. The host specification may be either a host name [see hosts(4)] or an Internet address specified in the dot notation [see inet(7)].

close Close any open TELNET session and exit telnet. An EOF (in command mode) will also close a session and exit.

quit Same as close, above.
z Suspend \texttt{telnet}. This command only works when the user is using a shell that supports job control, such as \texttt{sh(1)}.

\textbf{mode} \textit{type}

\textit{type} is either \texttt{line} (for line by line mode) or \texttt{character} (for character at a time mode). The remote host is asked for permission to go into the requested mode. If the remote host is capable of entering that mode, the requested mode will be entered.

\textbf{status}

Show the current status of \texttt{telnet}. This includes the peer one is connected to, as well as the current mode.

\textbf{display} [\textit{argument} \ldots]

Display all, or some, of the \texttt{set} and \texttt{toggle} values (see \texttt{toggle, arguments}).

\textbf{? [ \textit{command} ]}

Get help. With no arguments, \texttt{telnet} print a help summary. If a command is specified, \texttt{telnet} will print the help information for just that command.

\textbf{send} \textit{arguments}

Send one or more special character sequences to the remote host. The following are the arguments which may be specified (more than one argument may be specified at a time):

\textbf{escape}

Send the current \texttt{telnet} escape character (initially ^I).

\textbf{synch}

Send the TELNET SYNCH sequence. This sequence discards all previously typed (but not yet read) input on the remote system. This sequence is sent as TCP urgent data (and may not work if the remote system is a 4.2 BSD system — if it does not work, a lower case \texttt{r} may be echoed on the terminal).

\textbf{brk}

Send the TELNET BRK (Break) sequence, which may have significance to the remote system.

\textbf{ip}

Send the TELNET IP (Interrupt Process) sequence, which aborts the currently running process on the remote system.

\textbf{ao}

Sends the TELNET AO (Abort Output) sequence, which flushes all output from the remote system to the user’s terminal.

\textbf{ayt}

Sends the TELNET AYT (Are You There) sequence, to which the remote system may or may not choose to respond.

\textbf{ec}

Sends the TELNET EC (Erase Character) sequence, which erases the last character entered.

\textbf{el}

Sends the TELNET EL (Erase Line) sequence, which should cause the remote system to erase the line currently being entered.

\textbf{ga}

Sends the TELNET GA (Go Ahead) sequence, which likely has no significance to the remote system.
nop   Sends the TELNET NOP (No Operation) sequence.

?   Prints out help information for the send command.

### set argument value
Set any one of a number of telnet variables to a specific value. The special value off turns off the function associated with the variable. The values of variables may be interrogated with the display command. The variables which may be specified are:

**echo**  This is the value (initially ^E) which, when in line by line mode, toggles between doing local echoing of entered characters (for normal processing), and suppressing echoing of entered characters (for example, entering a password).

**escape**  This is the telnet escape character (initially ^J) which enters telnet command mode (when connected to a remote system).

**interrupt**  If telnet is in localchars mode (see toggle localchars) and the interrupt character is typed, a TELNET IP sequence (see send and ip) is sent to the remote host. The initial value for the interrupt character is taken to be the terminal’s intr character.

**quit**  If telnet is in localchars mode (see toggle localchars) and the quit character is typed, a TELNET BRK sequence (see send, brk) is sent to the remote host. The initial value for the quit character is taken to be the terminal’s quit character.

**flushoutput**  If telnet is in localchars mode (see toggle localchars) and the flushoutput character is typed, a TELNET AO sequence (see send, ao) is sent to the remote host. The initial value for the flush character is taken to be the terminal’s flush character.

**erase**  If telnet is in localchars mode (see toggle localchars), and if telnet is operating in character at a time mode, then when this character is typed, a TELNET EC sequence (see send, ec) is sent to the remote system. The initial value for the erase character is taken to be the terminal’s erase character.

**kill**  If telnet is in localchars mode (see toggle localchars), and if telnet is operating in character at a time mode, then when this character is typed, a TELNET EL sequence (see send, el) is sent to the remote system. The initial value for the kill character is taken to be the terminal’s kill character.

**eof**  If telnet is operating in line by line mode, entering this character as the first character on a line sends this character to the remote system. The initial value of the eof character is taken to be the terminal’s eof character.
toggle arguments...

Toggle (between TRUE and FALSE) various flags that control how telnet responds to events. More than one argument may be specified. The state of these flags may be interrogated with the display command. Valid arguments are:

autoflush
If autoflush and localchars are both TRUE, then when the ao, intr, or quit characters are recognized (and transformed into TELNET sequences; see set for details), telnet refuses to display any data on the user's terminal until the remote system acknowledges (using a TELNET Timing Mark option) that it has processed those TELNET sequences. The initial value for this toggle is TRUE if the terminal user had not done an stty noflsh, otherwise FALSE [see stty(1)].

autosynch
If autosynch and localchars are both TRUE, then when either the intr or quit characters are typed (see set for descriptions of the intr and quit characters), the resulting TELNET sequence sent is followed by the TELNET SYNCH sequence. This procedure should cause the remote system to begin throwing away all previously typed input until both of the TELNET sequences have been read and acted upon. The initial value of this toggle is FALSE.

crmod
Toggle RETURN mode. When this mode is enabled, most RETURN characters received from the remote host will be mapped into a RETURN followed by a line feed. This mode does not affect those characters typed by the user, only those received from the remote host. This mode is not very useful unless the remote host only sends RETURN, but never LINEFEED. The initial value for this toggle is FALSE.

debug
Toggle socket level debugging (useful only to the super-user). The initial value for this toggle is FALSE.

localchars
If this is TRUE, then the flush, interrupt, quit, erase, and kill characters (see set) are recognized locally, and transformed into appropriate TELNET control sequences (respectively ao, ip, brk, ec, and el; see send). The initial value for this toggle is TRUE in line by line mode, and FALSE in character at a time mode.

netdata
Toggle the display of all network data (in hexadecimal format). The initial value for this toggle is FALSE.

options
Toggle the display of some internal telnet protocol processing
(having to do with TELNET options). The initial value for this toggle is FALSE.

? Display the legal toggle commands.

SEE ALSO
rlogin(1), sh(1), stty(1), hosts(4), inet(7)

NOTES
Do not attempt to run layers(1) while using telnet.
There is no adequate way for dealing with flow control.
On some remote systems, echo has to be turned off manually when in line by line mode.
There is enough settable state to justify a .telnetrc file.
In line by line mode, the terminal's EOF character is only recognized (and sent to the remote system) when it is the first character on a line.
NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
in.telnetd

DESCRIPTION
telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol. telnetd is invoked by the internet server [see inetd(1M)], normally for requests to connect to the TELNET port as indicated by the /etc/services file [see services(4)].

telnetd operates by allocating a pseudo-terminal device for a client, then creating a login process which has the slave side of the pseudo-terminal as its standard input, output, and error. The login process is an instance of the in.login program, which is based on login(1). It is invoked with the -h option to indicate that it is originated by telnetd. telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET protocol and passing characters between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side indicating a willingness to do remote echo of characters, to suppress go ahead, and to receive terminal type information from the remote client. If the remote client is willing, the remote terminal type is propagated in the environment of the created login process. The pseudo-terminal allocated to the client is configured to operate in cooked mode, and with XTABS, ICRNL, and ONLCR enabled [see termio(4)].

telnetd is willing to do: echo, binary, suppress go ahead, and timing mark.
telnetd is willing to have the remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO
telnet(1)


NOTES
Some TELNET commands are only partially implemented.
The TELNET protocol allows for the exchange of the number of lines and columns on the user’s terminal, but telnetd doesn’t make use of them.
Binary mode has no common interpretation except between similar operating systems
The terminal type name received from the remote client is converted to lower case.
The packet interface to the pseudo-terminal should be used for more intelligent flushing of input and output queues.
`telnetd` never sends TELNET `go ahead` commands.
`telnetd` can only support 64 pseudo-terminals.
NAME
  test – condition evaluation command

SYNOPSIS
  test expr
      [ expr ]

DESCRIPTION
  test evaluates the expression expr and, if its value is true, sets a zero (true) exit
  status; otherwise, a non-zero (false) exit status is set; test also sets a non-zero
  exit status if there are no arguments. When permissions are tested, the effective
  user ID of the process is used.

  All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS
  line) must be separate arguments to the test command; normally these items are
  separated by spaces.

  The following primitives are used to construct expr:

  -r file         true if file exists and is readable.
  -w file         true if file exists and is writable.
  -x file         true if file exists and is executable.
  -f file         true if file exists and is a regular file. Alternatively, if /usr/sh
                   users specify /usr/ucb before /usr/bin in their PATH environment vari-
                   able, then test will return true if file exists and is
                   (not-a-directory). This is also the default for /usr/bin/csh
                   users.
  -d file         true if file exists and is a directory.
  -h file         true if file exists and is a symbolic link. With all other primitives the
                   symbolic links are followed by default.
  -c file         true if file exists and is a character special file.
  -b file         true if file exists and is a block special file.
  -p file         true if file exists and is a named pipe (fifo).
  -u file         true if file exists and its set-user-ID bit is set.
  -g file         true if file exists and its set-group-ID bit is set.
  -k file         true if file exists and its sticky bit is set.
  -s file         true if file exists and has a size greater than zero.
  -t [ fildes ]   true if the open file whose file descriptor number is fildes (1 by
                   default) is associated with a terminal device.
  -z s1           true if the length of string s1 is zero.
  -n s1           true if the length of the string s1 is non-zero.
  s1 == s2        true if strings s1 and s2 are identical.
test(1)  

(Essential Utilities)  

test(1)  

s1 1= s2 true if strings s1 and s2 are not identical.  
s1  

true if s1 is not the null string.  

n1 -eq n2 true if the integers n1 and n2 are algebraically equal. Any of the comparisons -ne, -gt, -ge, -lt, and -le may be used in place of -eq.  

These primaries may be combined with the following operators:  

! unary negation operator.  

-a binary and operator.  

-o binary or operator (~a has higher precedence than ~o).  

(expr) parentheses for grouping. Notice also that parentheses are meaningful to the shell and, therefore, must be quoted.  

SEE ALSO  

find(1), sh(1).  

NOTES  

The not-a-directory alternative to the -f option is a transition aid for BSD applications and may not be supported in future releases.  

If you test a file you own (the -r, -w, or -x tests), but the permission tested does not have the owner bit set, a non-zero (false) exit status will be returned even though the file may have the group or other bit set for that permission. The correct exit status will be set if you are super-user.  

The = and != operators have a higher precedence than the -r through -n operators, and = and != always expect arguments; therefore, = and != cannot be used with the -r through -n operators.  

If more than one argument follows the -r through -n operators, only the first argument is examined; the others are ignored, unless a -a or a -o is the second argument.
NAME

test – condition evaluation command

SYNOPSIS

test expr
  [expr]

DESCRIPTION

test evaluates the expression expr and if its value is true, sets a zero (TRUE) exit status; otherwise, a non-zero (FALSE) exit status is set; test also sets a non-zero exit status if there are no arguments. When permissions are tested, the effective user ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS line) must be separate arguments to test. Normally these items are separated by spaces.

The following primitives are used to construct expr:

- true if file exists and is readable.
- true if file exists and is writable.
- true if file exists and is executable.
- true if file exists and is a regular file.
- true if file exists and is a directory.
- true if file exists and is a character special file.
- true if file exists and is a block special file.
- true if file exists and is a named pipe (fifo).
- true if file exists and its set-user-ID bit is set.
- true if file exists and its set-group-ID bit is set.
- true if file exists and its sticky bit is set.
- true if file exists and has a size greater than zero.
- true if the open file whose file descriptor number is fildes (1 by default) is associated with a terminal device.
- true if the length of string s1 is zero.
- true if the length of the string s1 is non-zero.
- true if strings s1 and s2 are identical.
- true if strings s1 and s2 are not identical.
- true if s1 is not the null string.
- true if the integers n1 and n2 are algebraically equal. Any of the comparisons -ne, -gt, -ge, -lt, and -le may be used in place of -eq.
These primaries may be combined with the following operators:

- `!` unary negation operator.
- `-a` binary and operator.
- `-o` binary or operator (`-a` has higher precedence than `-o`).
- `'( expr )'` parentheses for grouping. Notice also that parentheses are meaningful to the shell and, therefore, must be quoted.

NOTES

If you test a file you own (the `-r`, `-w`, or `-x` tests), but the permission tested does not have the owner bit set, a non-zero (false) exit status will be returned even though the file may have the group or other bit set for that permission. The correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators, and = and != always expect arguments; therefore, = and != cannot be used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first argument is examined; the others are ignored, unless a -a or a -o is the second argument.

SEE ALSO

NAME
test – condition evaluation command

SYNOPSIS
/usr/ucb/test expr
[ expr ]

DESCRIPTION
test evaluates the expression expr and, if its value is true, sets a zero (true) exit
status; otherwise, a non-zero (false) exit status is set; test also sets a non-zero exit
status if there are no arguments. When permissions are tested, the effective user
ID of the process is used.

All operators, flags, and brackets (brackets used as shown in the second SYNOPSIS
line) must be separate arguments to the test command; normally these items are
separated by spaces.

The following primitives are used to construct expr:
-r file true if file exists and is readable.
-w file true if file exists and is writable.
-x file true if file exists and is executable.
-f file true if file exists and is a regular file. Alternatively, if /usr/sh users
specify /usr/ucb before /usr/bin in their PATH environment vari­
able, then test will return true if file exists and is
(not-a-directory). This is also the default for /usr/bin/csh
users.
-d file true if file exists and is a directory.
-c file true if file exists and is a character special file.
-b file true if file exists and is a block special file.
-p file true if file exists and is a named pipe (fifo).
-u file true if file exists and its set-user-ID bit is set.
-g file true if file exists and its set-group-ID bit is set.
-k file true if file exists and its sticky bit is set.
-s file true if file exists and has a size greater than zero.
-t [ fildes ] true if the open file whose file descriptor number is fildes (1 by
default) is associated with a terminal device.
-z s1 true if the length of string s1 is zero.
-n s1 true if the length of the string s1 is non-zero.
s1 = s2 true if strings s1 and s2 are identical.
s1 != s2 true if strings s1 and s2 are not identical.
s1 true if s1 is not the null string.
n1 -eq n2  true if the integers n1 and n2 are algebraically equal. Any of the comparisons -ne, -gt, -ge, -lt, and -le may be used in place of -eq.

-L file  true if file exists and is a symbolic link. With all other primitives, the symbolic links are followed by default.

These primaries may be combined with the following operators:

!  unary negation operator.
-a  binary and operator.
-o  binary or operator (-a has higher precedence than -o).
(expr )  parentheses for grouping. Notice also that parentheses are meaningful to the shell and, therefore, must be quoted.

SEE ALSO
find(1), sh(1) in the User's Reference Manual

NOTES
The 'not-a-directory' alternative to the -f option is a transition aid for BSD applications and may not be supported in future releases.

The -L option is a migration aid for users of other shells which have similar options and may not be supported in future releases.

If you test a file you own (the -r, -w, or -x tests), but the permission tested does not have the owner bit set, a non-zero (false) exit status will be returned even though the file may have the group or other bit set for that permission. The correct exit status will be set if you are super-user.

The = and != operators have a higher precedence than the -r through -n operators, and = and != always expect arguments; therefore, = and != cannot be used with the -r through -n operators.

If more than one argument follows the -r through -n operators, only the first argument is examined; the others are ignored, unless a -a or a -o is the second argument.
NAME

tftp - trivial file transfer program

SYNOPSIS

tftp [ host ]

DESCRIPTION

tftp is the user interface to the Internet TFTP (Trivial File Transfer Protocol),
which allows users to transfer files to and from a remote machine. The remote
host may be specified on the command line, in which case tftp uses host as the
default host for future transfers (see the connect command below).

USAGE

Commands

Once tftp is running, it issues the prompt tftp> and recognizes the following
commands:

connect host-name [ port ]
Set the host (and optionally port) for transfers. The TFTP protocol,
unlike the FTP protocol, does not maintain connections between
transfers; thus, the connect command does not actually create a con­
nection, but merely remembers what host is to be used for transfers.
You do not have to use the connect command; the remote host can be
specified as part of the get or put commands.

mode transfer-mode
Set the mode for transfers; transfer-mode may be one of ascii or
binary. The default is ascii.

put filename
put localfile remotefile
put filename1 filename2 ... filenameN remotedirectory
Transfer a file, or a set of files, to the specified remote file or directory.
The destination can be in one of two forms: a filename on the remote
host if the host has already been specified, or a string of the form

    host:filename

to specify both a host and filename at the same time. If the latter form
is used, the specified host becomes the default for future transfers. If
the remote-directory form is used, the remote host is assumed to be
running the UNIX system.

get filename
get remotename localname
get filename1 filename2 filename3 ... filenameN
Get a file or set of files (three or more) from the specified remote
sources. source can be in one of two forms: a filename on the remote
host if the host has already been specified, or a string of the form

    host:filename

to specify both a host and filename at the same time. If the latter form
is used, the last host specified becomes the default for future transfers.
quit  Exit tftp. An EOF also exits.
verbose  Toggle verbose mode.
trace  Toggle packet tracing.
status  Show current status.
rexit  retransmission-timeout
  Set the per-packet retransmission timeout, in seconds.
timeout  total-transmission-timeout
  Set the total transmission timeout, in seconds.
ascii  Shorthand for mode ascii.
binary  Shorthand for mode binary.
? [ command-name ... ]
  Print help information.

NOTES

Because there is no user-login or validation within the TFTP protocol, many remote sites restrict file access in various ways. Approved methods for file access are specific to each site, and therefore cannot be documented here.

When using the get command to transfer multiple files from a remote host, three or more files must be specified. The command returns an error message if only two files are specified.
NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
in.tftpd [-s] [ homedir ]

DESCRIPTION
tftpd is a server that supports the DARPA Trivial File Transfer Protocol (TFTP). This server is normally started by inetd(1M) and operates at the port indicated in the tftp Internet service description in the /etc/inetd.conf file. By default, the entry for tftpd in etc/inetd.conf is commented out. To make tftpd operational, the comment character(s) must be deleted from the tftpd entry. See inetd.conf(4) for details.

Before responding to a request, the server attempts to change its current directory to homedir; the default value is /tftpboot.

OPTIONS
-s Secure. When specified, the directory change must succeed; and the daemon also changes its root directory to homedir.

The use of tftp does not require an account or password on the remote system. Due to the lack of authentication information, tftp will allow only publicly readable files to be accessed. Files may be written only if they already exist and are publicly writable. Note that this extends the concept of public to include all users on all hosts that can be reached through the network; this may not be appropriate on all systems, and its implications should be considered before enabling this service.

tftpd runs with the user ID and group ID set to [GU]ID_NOBODY. -2, under the assumption that no files exist with that owner or group. However, nothing checks this assumption or enforces this restriction.

SEE ALSO
tftp(1), inetd(1M), ipallocd(1M), netconfig(4)
NAME
tic – terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION
The command tic translates a terminfo file from the source format into the
compiled format. The results are placed in the directory
/usr/share/lib/terminfo. The compiled format is necessary for use with the
library routines in curses(3X).

-vn specifies that (verbose) output be written to standard error trace infor­
mation showing tic’s progress. The optional integer n is a number from
1 to 10, inclusive, indicating the desired level of detail of information. If
n is omitted, the default level is 1. If n is specified and greater than 1,
the level of detail is increased.

-c specifies to check only file for errors. Errors in use= links are not
detected.

file contains one or more terminfo terminal descriptions in source format
[see terminfo(4)]. Each description in the file describes the capabilities
of a particular terminal. When a use=entry-name field is discovered in a
terminal entry currently being compiled, tic reads in the binary from
/usr/share/lib/terminfo to complete the entry. (Entries created from
file will be used first. If the environment variable TERMINFO is set, that
directory is searched instead of /usr/share/lib/terminfo.) tic dupli­
cates the capabilities in entry-name for the current entry, with the excep­
tion of those capabilities that explicitly are defined in the current entry.

If the environment variable TERMINFO is set, the compiled results are placed there
instead of /usr/share/lib/terminfo.

Total compiled entries cannot exceed 4096 bytes. The name field cannot exceed
128 bytes. Terminal names exceeding 14 characters will be truncated to 14 char­
acters and a warning message will be printed.

FILES
/usr/share/lib/terminfo/?/* Compiled terminal description database.

NOTES
When an entry, e.g., entry_name_1, contains a use=entry_name_2 field, any can­
celed capabilities in entry_name_2 must also appear in entry_name_1 before use=
for these capabilities to be canceled in entry_name_1.

SEE ALSO
curses(3X), captinfo(1M), infocmp(1M), terminfo(4).
NAME
time – time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time during
the command, the time spent in the system, and the time spent in execution of
the command. Times are reported in seconds.
The times are printed on standard error.

SEE ALSO
timex(1)
time(2) in the Programmer's Reference Manual
NAME
timex – time a command; report process data and system activity

SYNOPSIS
timex [ options ] command

DESCRIPTION
The given command is executed; the elapsed time, user time and system time spent in execution are reported in seconds. Optionally, process accounting data for the command and all its children can be listed or summarized, and total system activity during the execution interval can be reported.

The output of timex is written on standard error. timex returns an exit status of 1 if it is used incorrectly, if it is unable to fork, or if it cannot execute command. Otherwise, timex returns the exit status of command.

The options are:
-p List process accounting records for command and all its children. This option works only if the process accounting software is installed. Suboptions f, h, k, m, r, and t modify the data items reported. The options are as follows:
-f Print the fork(2)/exec(2) flag and system exit status columns in the output.
-h Instead of mean memory size, show the fraction of total available CPU time consumed by the process during its execution. This "hog factor" is computed as (total CPU time)/(elapsed time).
-k Instead of memory size, show total kcore-minutes.
-m Show mean core size (the default).
-r Show CPU factor (user time/(system-time + user-time)).
-t Show separate system and user CPU times. The number of blocks read or written and the number of characters transferred are always reported.
-o Report the total number of blocks read or written and total characters transferred by command and all its children. This option works only if the process accounting software is installed.
-s Report total system activity (not just that due to command) that occurred during the execution interval of command. All the data items listed in sar(1) are reported.

SEE ALSO
time(1), sar(1)
times(2) in the Programmer’s Reference Manual

NOTES
Process records associated with command are selected from the accounting file /var/adm/pacct by inference, since process genealogy is not available. Background processes having the same user ID, terminal ID, and execution time window will be spuriously included.
EXAMPLES

A simple example:

    timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

    timex -opskmt sh
      session commands

    EOT
tnamed(1M) (Internet Utilities) tnamed(1M)

NAME
tnamed, in.tnamed – DARPA trivial name server

SYNOPSIS

in.tnamed [ -v ]

DESCRIPTION
tnamed is a server that supports the DARPA Name Server Protocol. The name server operates at the port indicated in the name service description [see services(4)], and is invoked by inetd(1M) when a request is made to the name server.

OPTIONS

-v Invoke the daemon in verbose mode.

SEE ALSO

uucp(1C), inetd(1M), services(4)

Postel, Jon, Internet Name Server, IEN 116, SRI International, Menlo Park, California, August 1979

NOTES

The protocol implemented by this program is obsolete. Its use should be phased out in favor of the Internet Domain Name Service (DNS) protocol. See named(1M).
NAME
tosmtp – send mail to SMTP

SYNOPSIS
tosmtp [ -f ] [ -n ] [ -u ] [ -d domain ] [ -H helohost ] sender host recip ...

DESCRIPTION
tosmtp translates a UNIX System mail message (read from standard input), into
an RFC822 mail message, which can then be delivered with SMTP. tosmtp is nor-
mally invoked by smtpqer as part of the process of queuing mail for delivery.

The options to tosmtp and their meanings are as follows:

- \( -d \) domain Pass the specified domain directly to the smtp program.
- \( -f \) Act as a filter. The RFC822 message is sent to the standard output.
- \( -H \) helohost This option can be used to specify the name to be used for the host
  in the initial SMTP HELO message. This option is also passed to the
  smtp program.
- \( -n \) Do not place a To: line in the resulting RFC822 header.
- \( -u \) Do no conversion. The standard input is sent directly to the stan-
dard output.

FILES
/usr/lib/mail/surrcmd/smtp Where the message is piped to

SEE ALSO
smtp(1M), smtpqer(1M)
RFC822 – Standard for the Format of ARPA Internet Text Messages
NAME
touch - update access and modification times of a file

SYNOPSIS
touch [ -amc ] [ mmdhhmm[yy] ] files

DESCRIPTION
touch causes the access and modification times of each argument to be updated. The file name is created if it does not exist. If no time is specified [see date(1)] the current time is used. The -a and -m options cause touch to update only the access or modification times respectively (default is -am). The -c option silently prevents touch from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not be successfully modified (including files that did not exist and were not created).

SEE ALSO
date(1)
utime(2) in the Programmer's Reference Manual

NOTES
Users familiar with the BSD environment will find that the -f option is accepted, but ignored. The -f option is unnecessary since touch will succeed for all files owned by the user regardless of the permissions on the files.

touch assumes that an all numeric entry is a date and so will not update the times for a file when an all numeric filename is specified.
NAME
tput - initialize a terminal or query terminfo database

SYNOPSIS
tput [-Ttype] capname [parms ...]
tput [-Ttype] init
tput [-Ttype] reset
tput [-Ttype] longname
tput -S <<

DESCRIPTION
tput uses the terminfo database to make the values of terminal-dependent capa-
bilities and information available to the shell (see sh(1)), to initialize or reset the
terminal, or return the long name of the requested terminal type. tput outputs a
string if the attribute (capability name) is of type string, or an integer if the attri-
bute is of type integer. If the attribute is of type boolean, tput simply sets the
exit code (0 for TRUE if the terminal has the capability, 1 for FALSE if it does not),
and produces no output. Before using a value returned on standard output, the
user should test the exit code [$?, see sh(1)] to be sure it is 0. (See the EXIT
CODES and DIAGNOSTICS sections.) For a complete list of capabilities and the
capname associated with each, see terminfo(4).

-Ttype indicates the type of terminal. Normally this option is unnecessary,
because the default is taken from the environment variable TERM. If
-T is specified, then the shell variables LINES and COLUMNS and the
layer size [see layers(1)] will not be referenced.

capname indicates the attribute from the terminfo database.

parms If the attribute is a string that takes parameters, the arguments parms
will be instantiated into the string. An all numeric argument will be
passed to the attribute as a number.

-S allows more than one capability per invocation of tput. The capabili-
ties must be passed to tput from the standard input instead of from
the command line (see example). Only one capname is allowed per
line. The -S option changes the meaning of the 0 and 1 boolean and
string exit codes (see the EXIT CODES section).

init If the terminfo database is present and an entry for the user’s termi-
nal exists (see -Ttype, above), the following will occur: (1) if present,
the terminal’s initialization strings will be output (is1, is2, is3, if,
iprog), (2) any delays (for example, newline) specified in the entry
will be set in the tty driver, (3) tabs expansion will be turned on or
off according to the specification in the entry, and (4) if tabs are not
expanded, standard tabs will be set (every 8 spaces). If an entry does
not contain the information needed for any of the four above activi-
ties, that activity will silently be skipped.
reset
Instead of putting out initialization strings, the terminal’s reset strings
will be output if present (rs1, rs2, rs3, rf). If the reset strings are
not present, but initialization strings are, the initialization strings will
be output. Otherwise, reset acts identically to init.

longname
If the terminfo database is present and an entry for the user’s termi
nal exists (see -Ttype above), then the long name of the terminal will
be put out. The long name is the last name in the first line of the
terminal’s description in the terminfo database [see term(5)].

EXAMPLES

tput init
Initialize the terminal according to the type of terminal in the
environmental variable TERM. This command should be
included in everyone’s .profile after the environmental vari
able TERM has been exported, as illustrated on the profile(4)
manual page.

tput -T5620 reset
Reset an AT&T 5620 terminal, overriding the type of terminal
in the environmental variable TERM.

tput cup 0 0
Send the sequence to move the cursor to row 0, column 0 (the
upper left corner of the screen, usually known as the "home"
cursor position).

tput clear
Echo the clear-screen sequence for the current terminal.

tput cols
Print the number of columns for the current terminal.

tput -T450 cols
Print the number of columns for the 450 terminal.

bold='tput smso'
offbold='tput rmso'
Set the shell variables bold, to begin stand-out mode
sequence, and offbold, to end standout mode sequence, for
the current terminal. This might be followed by a prompt:
echo "$(bold)Please type in your name: $(offbold)\c"

Set exit code to indicate if the current terminal is a hardcopy
terminal.

tput cup 23 4
Send the sequence to move the cursor to row 23, column 4.

Print the long name from the terminfo database for the type
of terminal specified in the environmental variable TERM.

This example shows tput processing several capabilities in
one invocation. This example clears the screen, moves the
cursor to position 10, 10 and turns on bold (extra bright)
mode. The list is terminated by an exclamation mark (!) on
a line by itself.
FILES

/usr/share/lib/terminfo/* compiled terminal description database
/usr/include/curses.h curses(3X) header file
/usr/include/term.h terminfo header file
/usr/lib/tabset/* tab settings for some terminals, in a format appropriate to be output to the terminal (escape sequences that set margins and tabs); for more information, see the "Tabs and Initialization" section of terminfo(4)

SEE ALSO
clear(1), stty(1), tabs(1)

EXIT CODES

If capname is of type boolean, a value of 0 is set for TRUE and 1 for FALSE unless the -S option is used.

If capname is of type string, a value of 0 is set if the capname is defined for this terminal type (the value of capname is returned on standard output); a value of 1 is set if capname is not defined for this terminal type (a null value is returned on standard output).

If capname is of type boolean or string and the -S option is used, a value of 0 is returned to indicate that all lines were successful. No indication of which line failed can be given so exit code 1 will never appear. Exit codes 2, 3, and 4 retain their usual interpretation.

If capname is of type integer, a value of 0 is always set, whether or not capname is defined for this terminal type. To determine if capname is defined for this terminal type, the user must test the value of standard output. A value of -1 means that capname is not defined for this terminal type.

Any other exit code indicates an error; see the DIAGNOSTICS section.

DIAGNOSTICS
tput prints the following error messages and sets the corresponding exit codes.

<table>
<thead>
<tr>
<th>Exit Code</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1 (capname is a numeric variable that is not specified in the terminfo(4) database for this terminal type, for example tput -T450 lines and tput -T2621 xmc)</td>
</tr>
<tr>
<td>1</td>
<td>no error message is printed, see the EXIT CODES section.</td>
</tr>
<tr>
<td>2</td>
<td>usage error</td>
</tr>
<tr>
<td>3</td>
<td>unknown terminal type or no terminfo database</td>
</tr>
<tr>
<td>4</td>
<td>unknown terminfo capability capname</td>
</tr>
</tbody>
</table>
NAME

tr – translate characters

SYNOPSIS

tr [ -cds ] [ string1 [ string2 ] ]

DESCRIPTION

tr copies the standard input to the standard output with substitution or deletion of selected characters. Input characters found in string1 are mapped into the corresponding characters of string2. Any combination of the options -cds may be used:

-c Complements the set of characters in string1 with respect to the universe of characters whose ASCII codes are 001 through 377 octal.
-d Deletes all input characters in string1.
-s Squeezes all strings of repeated output characters that are in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from character a to character z, inclusive.
[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, n is taken to be decimal. A zero or missing n is taken to be huge; this facility is useful for padding string2.

The escape character \ may be used as in the shell to remove special meaning from any character in a string. In addition, \ followed by 1, 2, or 3 octal digits stands for the character whose ASCII code is given by those digits.

EXAMPLE

The following example creates a list of all the words in file1 one per line in file2, where a word is taken to be a maximal string of alphabetics. The strings are quoted to protect the special characters from interpretation by the shell; 012 is the ASCII code for newline.

    tr -cs "[A-Z][a-z]" "[\012*]" <file1>file2

SEE ALSO

ed(1), sh(1)
ascii(5) in the System Administrator’s Reference Manual

NOTES

Will not handle ASCII NUL in string1 or string2; always deletes NUL from input.
NAME
   `tr` - translate characters

SYNOPSIS
   `/usr/ucb/tr [ -cds ] [ string1 [ string2 ] ]`

DESCRIPTION
   `tr` copies the standard input to the standard output with substitution or deletion of selected characters. The arguments `string1` and `string2` are considered sets of characters. Any input character found in `string1` is mapped into the character in the corresponding position within `string2`. When `string2` is short, it is padded to the length of `string1` by duplicating its last character.

   In either string the notation:
   
   `a-b`

   denotes a range of characters from `a` to `b` in increasing ASCII order. The character `\`, followed by 1, 2 or 3 octal digits stands for the character whose ASCII code is given by those digits. As with the shell, the escape character `\`, followed by any other character, escapes any special meaning for that character.

OPTIONS
   Any combination of the options `-c`, `-d`, or `-s` may be used:
   
   `-c` Complement the set of characters in `string1` with respect to the universe of characters whose ASCII codes are 01 through 0377 octal.
   
   `-d` Delete all input characters in `string1`.
   
   `-s` Squeeze all strings of repeated output characters that are in `string2` to single characters.

EXAMPLE
   The following example creates a list of all the words in `filename1` one per line in `filename2`, where a word is taken to be a maximal string of alphabatics. The second string is quoted to protect `\` from the shell. 012 is the ASCII code for NEWLINE.
   
   `tr -cs A-Za-z `\012` `<filename1>`filename2`

SEE ALSO
   `ascii(5)` in the System Administrator's Reference Manual

NOTES
   Will not handle ASCII NUL in `string1` or `string2`. `tr` always deletes NUL from input.
NAME
trchan – translate character sets

SYNOPSIS
trchan [-ciko] mapfile

DESCRIPTION
trchan performs mapping as a filter, using the same format of mapfile as mapchan [see mapchan(4) for mapfile format]. This allows a file consisting of one internal character set to be translated to another internal character set.

trchan reads standard input, maps it, and writes to standard output. A mapfile must be given on the command line. Errors cause trchan to stop processing unless -c is specified.

The following options can be used with trchan:
- c causes errors to be echoed on stderr, and processing is continued.
- i specifies that the input section of the mapfile is used when translating data.
- k specifies that the dead and compose sections of the mapfile are used when translating data.
- o specifies that the output section of the mapfile is used when translating data.

The -i, -k and -o options can be specified in any combination; if none are specified, trchan uses the entire mapfile, as if all three were specified together.

FILES
/usr/lib/mapchan/*

SEE ALSO
ascii(5), mapchan(4), mapchan(1M)

NOTES
trchan currently ignores the control sections of the mapfile.
troff (1) (BSD Compatibility Package) troff (1)

NAME
troff – typeset or format documents

SYNOPSIS
[-Tdest] [-uN] [filename] ...

DESCRIPTION
troff formats text in the filenames. Input to troff is expected to consist of text interspersed with formatting requests and macros. If no filename argument is present, troff reads standard input. A - as a filename argument indicates that standard input is to be read at that point in the list of input files; troff reads the files named ahead of the - in the arguments list, then text from the standard input, and then text from the files named after the -.

The following options may appear in any order, but they all must appear before the first filename:
- a Send a printable approximation of the formatted output to the standard output file.
- f Do not print a trailer after the final page of output or cause the postprocessor to relinquish control of the device.
- i Read the standard input after the input files are exhausted.
- z Suppress formatted output. Only diagnostic messages and messages output using the .tm request are output.
- Fdir Search the directory dir for font width tables instead of the system-dependent default directory.
- mname Prepend the macro file /usr/lib/tmac/tmac.name to the input filenames. Note: most references to macro packages include the leading m as part of the name; for example, the man macro package resides in /usr/lib/tmac/tmac.an.
- nN Number first generated page N.
- olist Print only pages whose page numbers appear in the comma-separated list of numbers and ranges. A range N-M means pages N through M; an initial -N means from the beginning to page N; and a final N- means from N to the end.
- raN Set register a (one-character) to N.
- sN Stop the phototypesetter every N pages. On some devices, troff produces a trailer so you can change cassettes; resume by pressing the typesetter's start button.
- Tdest Prepare output for typesetter dest. The following values can be supplied for dest:
  202 Mergenthaler Linotron 202. This is the default value.
cat Graphics Systems C/A/T.
aps Autologic APS-5.
-uN Set the emboldening factor for the font mounted in position 3 to \( N \). If \( N \) is missing, then set the emboldening factor to 0.

FILES

/tmp/trtmp temporary file
/usr/ucblib/doctools/tmac/tmac.* standard macro files
/usr/ucblib/doctools/font/* font width tables for alternate mounted troff fonts

SEE ALSO

checknr(1), chmod(1), eqn(1), lpd(1M), lpr(1), nroff(1), tbl(1), man(7), ms(7), s(7)

chmod(1), col(1) in the User’s Reference Manual
NAME

trpt - transliterate protocol trace

SYNOPSIS

trpt [ -afjst ] [ -p hex-address ] [ system [ core ] ]

DESCRIPTION

trpt interrogates the buffer of TCP trace records created when a socket is marked
for debugging [see getsockopt(3N)], and prints a readable description of these
records. When no options are supplied, trpt prints all the trace records found in
the system grouped according to TCP connection protocol control block (PCB).
The following options may be used to alter this behavior.

OPTIONS

-a In addition to the normal output, print the values of the source and desti­
tination addresses for each packet recorded.

-f Follow the trace as it occurs, waiting a short time for additional records
each time the end of the log is reached.

-j Just give a list of the protocol control block addresses for which there are
trace records.

-s In addition to the normal output, print a detailed description of the packet
sequencing information.

-t In addition to the normal output, print the values for all timers at each
point in the trace.

-p hex-address
 Show only trace records associated with the protocol control block, the
address of which follows.

The recommended use of trpt is as follows. Isolate the problem and enable
debugging on the socket(s) involved in the connection. Find the address of the
protocol control blocks associated with the sockets using the -A option to
netstat(1M). Then run trpt with the -p option, supplying the associated proto­
col control block addresses. The -f option can be used to follow the trace log
once the trace is located. If there are many sockets using the debugging option,
the -j option may be useful in checking to see if any trace records are present for
the socket in question.

If debugging is being performed on a system or core file other than the default,
the last two arguments may be used to supplant the defaults.

FILES

/stand/unix
/dev/kmem

SEE ALSO

netstat(1M), getsockopt(3N)

DIAGNOSTICS

no namelist
 When the system image does not contain the proper symbols to find the
trace buffer; others which should be self explanatory.
NOTES

Should also print the data for each input or output, but this is not saved in the trace record.

The output format is inscrutable and should be described here.
NAME
  true, false – provide truth values

SYNOPSIS
  true
  false

DESCRIPTION
  true does nothing, successfully. false does nothing, unsuccessfully. They are typically used in input to sh such as:

  while true
  do
    command
  done

SEE ALSO
  sh(1)

DIAGNOSTICS
  true has exit status zero, false nonzero.
NAME
truss – trace system calls and signals

SYNOPSIS

DESCRIPTION
truss executes the specified command and produces a trace of the system calls it performs, the signals it receives, and the machine faults it incurs. Each line of the trace output reports either the fault or signal name or the system call name with its arguments and return value(s). System call arguments are displayed symbolically when possible using defines from relevant system header files; for any pathname pointer argument, the pointed-to string is displayed. Error returns are reported using the error code names described in intro(2).

The following options are recognized. For those options which take a list argument, the name all can be used as a shorthand to specify all possible members of the list. If the list begins with a !, the meaning of the option is negated (for example, exclude rather than trace). Multiple occurrences of the same option may be specified. For the same name in a list, subsequent options (those to the right) override previous ones (those to the left).

-p
Interpret the arguments to truss as a list of process-ids for existing processes (see ps(1)) rather than as a command to be executed. truss takes control of each process and begins tracing it provided that the userid and groupid of the process match those of the user or that the user is a privileged user. Processes may also be specified by their names in the /proc directory, for example, /proc/1234; this works for remotely-mounted /proc directories as well.

-f
Follow all children created by fork and include their signals, faults, and system calls in the trace output. Normally, only the first-level command or process is traced. When -f is specified, the process-id is included with each line of trace output to show which process executed the system call or received the signal.

-c
Count traced system calls, faults, and signals rather than displaying the trace line-by-line. A summary report is produced after the traced command terminates or when truss is interrupted. If -f is also specified, the counts include all traced system calls, faults, and signals for child processes.

-a
Show the argument strings which are passed in each exec system call.

-e
Show the environment strings which are passed in each exec system call.

-i
Don’t display interruptible sleeping system calls. Certain system calls, such as open and read on terminal devices or pipes can sleep for indefinite periods and are interruptible. Normally, truss reports such sleeping system calls if they
remain asleep for more than one second. The system call is reported again a second time when it completes. The \(-i\) option causes such system calls to be reported only once, when they complete.

\(-t \[!\] syscall, ..\) System calls to trace or exclude. Those system calls specified in the comma-separated list are traced. If the list begins with a '!', the specified system calls are excluded from the trace output. Default is \(-t\)all.

\(-v \[!\] syscall, ..\) Verbose. Display the contents of any structures passed by address to the specified system calls (if traced). Input values as well as values returned by the operating system are shown. For any field used as both input and output, only the output value is shown. Default is \(-v\)all.

\(-x \[!\] syscall, ..\) Display the arguments to the specified system calls (if traced) in raw form, usually hexadecimal, rather than symbolically. This is for unredeemed hackers who must see the raw bits to be happy. Default is \(-x\)all.

\(-s \[!\] signal, ..\) Signals to trace or exclude. Those signals specified in the comma-separated list are traced. The trace output reports the receipt of each specified signal, even if the signal is being ignored (not blocked) by the process. (Blocked signals are not received until the process releases them.) Signals may be specified by name or number (see \(\text{sys/signal.h}\)). If the list begins with a '!', the specified signals are excluded from the trace output. Default is \(-s\)all.

\(-m \[!\] fault, ..\) Machine faults to trace or exclude. Those machine faults specified in the comma-separated list are traced. Faults may be specified by name or number (see \(\text{sys/fault.h}\)). If the list begins with a '!', the specified faults are excluded from the trace output. Default is \(-m\)all.

\(-r \[!\] fd, ..\) Show the full contents of the I/O buffer for each \texttt{read} on any of the specified file descriptors. The output is formatted 32 bytes per line and shows each byte as an ascii character (preceded by one blank) or as a two-character C language escape sequence for control characters such as horizontal tab (\(\backslash t\)) and newline (\(\backslash n\)). If ascii interpretation is not possible, the byte is shown in two-character hexadecimal representation. (The first 16 bytes of the I/O buffer for each traced \texttt{read} are shown even in the absence of \(-x\).) Default is \(-r\)all.

\(-w \[!\] fd, ..\) Show the contents of the I/O buffer for each \texttt{write} on any of the specified file descriptors (see \(-r\)). Default is \(-w\)all.

\(-o outfile\) File to be used for the trace output. By default, the output goes to standard error.
See Section 2 of the *Programmer’s Reference Manual* for *syscall* names accepted by the \(-t, -v,\) and \(-x\) options. System call numbers are also accepted.

If *truss* is used to initiate and trace a specified command and if the \(-o\) option is used or if standard error is redirected to a non-terminal file, then *truss* runs with hangup, interrupt, and quit signals ignored. This facilitates tracing of interactive programs which catch interrupt and quit signals from the terminal.

If the trace output remains directed to the terminal, or if existing processes are traced (the \(-p\) option), then *truss* responds to hangup, interrupt, and quit signals by releasing all traced processes and exiting. This enables the user to terminate excessive trace output and to release previously-existing processes. Released processes continue normally, as though they had never been touched.

**EXAMPLES**

This example produces a trace of the *find*(1) command on the terminal:

```
truss find . -print >find.out
```

Or, to see only a trace of the open, close, read, and write system calls:

```
truss -t open,close,read,write find . -print >find.out
```

This produces a trace of the *spell*(1) command on the file truss.out:

```
truss -f -o truss.out spell document
```

*spell* is a shell script, so the \(-f\) flag is needed to trace not only the shell but also the processes created by the shell. (The spell script runs a pipeline of eight concurrent processes.)

A particularly boring example is:

```
truss nroff -mm document >nroff.out
```

because 97\% of the output reports *lseek*, *read*, and *write* system calls. To abbreviate it:

```
truss -t !lseek,read,write nroff -mm document >nroff.out
```

This example verbosely traces the activity of process #1, *init*(1M) (provided you are a privileged user):

```
truss -p -v all 1
```

Interrupting *truss* returns *init* to normal operation.

**FILES**

```
/proc/nnnnn process files
```

**NOTES**

Some of the system calls described in Section 2 of the *Programmer’s Reference Manual* differ from the actual operating system interfaces. Do not be surprised by minor deviations of the trace output from the descriptions in Section 2.

Every machine fault (except a page fault) results in the posting of a signal to the process which incurred the fault. A report of a received signal will immediately follow each report of a machine fault (except a page fault) unless that signal is being blocked by the process.
The operating system enforces certain security restrictions on the tracing of processes. In particular, any command whose object file (a.out) cannot be read by a user cannot be traced by that user; set-uid and set-gid commands can be traced only by a privileged user. Unless it is run by a privileged user, truss loses control of any process which performs an exec(2) of a set-id or unreadable object file; such processes continue normally, though independently of truss, from the point of the exec.

To avoid collisions with other controlling processes, truss will not trace a process which it detects is being controlled by another process via the /proc interface. This allows truss to be applied to proc(4)-based debuggers as well as to another instance of itself.

The trace output contains tab characters under the assumption that standard tab stops are set (every eight positions).

The trace output for multiple processes is not produced in strict time order. For example, a read on a pipe may be reported before the corresponding write. For any one process, the output is strictly time-ordered.

The system may run out of per-user process slots when tracing of children is requested. When tracing more than one process, truss runs as one controlling process for each process being traced. For the example of the spell command shown above, spell itself uses nine process slots, one for the shell and eight for the eight-member pipeline, while truss adds another nine processes, for a total of 18. This is perilously close to the usual system-imposed limit of 25 processes per user.

truss uses shared memory and semaphores when dealing with more than one process (-f option or -p with more than one pid). It issues a warning message and proceeds when these are needed but not configured in the system. However, the trace output may become garbled in this case and the output of the -c option reports only the top-level command or first pid and no children are counted.

Not all possible structures passed in all possible system calls are displayed under the -v option.

SEE ALSO
intro(2), proc(4)
NAME
tset - provide information to set terminal modes

SYNOPSIS
tset [options] [type]

DESCRIPTION
tset allows the user to set a terminal's ERASE and KILL characters, and define
the terminal's type and capabilities by creating values for the TERM environment
variable. tset initializes or resets the terminal with tput [see tput(1)]. If a type
is given with the -s option, tset creates information for a terminal of the
specified type. The type may be any type given in the terminfo database. If the
type is not specified with the -s option, tset creates information for a terminal of
the type defined by the value of the TERM environment variable, unless the -h or
-s option is given. If the TERM variable is defined, tset uses the terminfo data­
dbase entry. If these options are used, tset searches the /etc/ttytype file for
the terminal type corresponding to the current serial port; it then creates informa­
tion for a terminal based on this type. If the serial port is not found in
/etc/ttytype, the terminal type is set to unknown.

tset displays the created information on the standard output. The information is
in a form that can be used to set the current environment variables. The exact
form depends on the login shell from which tset was invoked. The examples
below illustrate how to use this information to change the variables.

The options are:
-e[c] Sets the ERASE character to c on all terminals. The default setting is the
BACKSPACE, or CTRL-h.
-E[c] Identical to the -e command except that it only operates on terminals that
can BACKSPACE.
-k[c] Sets the KILL character to c, defaulting to CTRL-u.
-s Prints the terminal type on the standard output.
-s Outputs the "setenv" commands [for csh(1)], or "export" and assignment
commands [for sh(1)]. The type of commands are determined by the
user's login shell.
-h Forces tset to search /etc/ttytype for information and to overlook the
TERM environment variable,
-s Only outputs the strings to be placed in the environment variables,
without the shell commands printed for -S.
-r Prints the terminal type on the diagnostic output.
-Q Suppresses the printing of the Erase set to and Kill set to messages.
-i Suppresses printing of the terminal initialization strings, for example,
spawns tput reset instead of tput init.
-m[ident][test baudrate]:type
Allows a user to specify how a given serial port is is to be mapped to an
actual terminal type. The option applies to any serial port in
/etc/ttytype whose type is indeterminate (for example, dialup,
plugboard, and so on). The type specifies the terminal type to be used, and ident identifies the name of the indeterminate type to be matched. If no ident is given, all indeterminate types are matched. The test baudrate defines a test to be performed on the serial port before the type is assigned. The baudrate must be as defined in stty [see stty(1)]. The test may be any combination of: >, =, <, @, and !. If the type begins with a question mark, the user is asked if he really wants that type. A null response means to use that type; otherwise, another type can be entered which will be used instead. The question mark must be escaped to prevent filename expansion by the shell. If more than one -m option is given, the first correct mapping prevails.

tset is most useful when included in the .login [for csh(1)] or .profile [for sh(1)] file executed automatically at login, with -m mapping used to specify the terminal type you most frequently dial in on.

EXAMPLES

tset gt42
tset -mdialup\>300:adm3a -mdialup\:dw2 -Qr -e#
tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -k^U
To use the information created by the -s option for the Bourne shell, (sh), repeat these commands:

tset -s ... > /tmp/tset$$
/tmp/tset$$
rm /tmp/tset$$
To use the information created for csh, use:

set noglob
set term=('tset -S ....')
setenv TERM $term[1]
unset term
unset noglob

FILES
/etc/ttytype Port name to terminal type map database
/usr/lib/terminfo/* Terminal capability database

SEE ALSO
stty(1), tput(1), tty(1)
termio(7) in the System Administrator's Reference Manual
terminfo(4) in the Programmer's Reference Manual

NOTES
This utility was developed at the University of California at Berkeley and is used with permission.
NAME
tset, reset – establish or restore terminal characteristics

SYNOPSIS
tset [-InQrs] [-ec] [-kc] [-m (port -ID [baudrate ] : type] ... ] [type]
[-m (indent) [test baudrate ] : type] ... [type]

DESCRIPTION
tset sets up your terminal, typically when you first log in. It does terminal
dependent processing such as setting erase and kill characters, setting or resetting
delays, sending any sequences needed to properly initialized the terminal, and the
like. tset first determines the type of terminal involved, and then does necessary
initializations and mode settings. If a port is not wired permanently to a specific
terminal (not hardwired) it is given an appropriate generic identifier such as
dialup.

reset clears the terminal settings by turning off CBREAK and RAW modes, output
delays and parity checking, turns on NEWLINE translation, echo and TAB expan­
sion, and restores undefined special characters to their default state. It then sets
the modes as usual, based on the terminal type (which will probably override
some of the above). See stty(1) for more information. All arguments to tset
may be used with reset. reset also uses rs= and rf= to reset the initialization
string and file. This is useful after a program dies and leaves the terminal in a
funny state. Often in this situation, characters will not echo as you type them.
You may have to type ‘<LINEFEED>reset<LINEFEED>’ since ‘<RETURN>’
may not
work.

When no arguments are specified, tset reads the terminal type from the TERM
environment variable and re-initializes the terminal, and performs initialization of
mode, environment and other options at login time to determine the terminal
type and set up terminal modes.

When used in a startup script (.profile for sh(1) users or .login for csh(1)
users) it is desirable to give information about the type of terminal you will usu­
ally use on ports that are not hardwired. Any of the alternate generic names
given in /etc/termcap may be used for the identifier. Refer to the -m option
below for more information. If no mapping applies and a final type option, not
preceded by a -m, is given on the command line then that type is used.

It is usually desirable to return the terminal type, as finally determined by tset,
and information about the terminal’s capabilities, to a shell’s environment. This
can be done using the -s, -s, or -S options.

For the Bourne shell, put this command in your .profile file:

```
eval `tset -s options ...
```
or using the C shell, put this command in your .login file:

```
eval `tset -s options ...
```
With the C shell, it is also convenient to make an alias in your .cshrc file:

```
alias tset 'eval `tset -s \!*`'
```

This also allows the command:

```
tset 2621
```

to be invoked at any time to set the terminal and environment. It is not possible
to get this aliasing effect with a Bourne shell script, because shell scripts cannot
set the environment of their parent. If a process could set its parent’s environ-
ment, none of this nonsense would be necessary in the first place.

Once the terminal type is known, `tset` sets the terminal driver mode. This nor-
mally involves sending an initialization sequence to the terminal, setting the sin-
gle character erase (and optionally the line-kill (full line erase)) characters, and
setting special character delays. TAB and NEWLINE expansion are turned off dur-
ing transmission of the terminal initialization sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the
erase character is `#`, the erase character is changed as if `-e` had been used.

The following options are available with `tset`:

- The name of the terminal finally decided upon is output on the standard
  output. This is intended to be captured by the shell and placed in the
  `TERM` environment variable.

-ec Set the erase character to be the named character `c` on all terminals.
  Default is the BACKSPACE key on the keyboard, usually `^H` (CTRL-H). The
  character `c` can either be typed directly, or entered using the circumflex-
  character notation used here.

-ic Set the interrupt character to be the named character `c` on all terminals.
  Default is `^C` (CTRL-C). The character `c` can either be typed directly, or
  entered using the circumflex-character notation used here.

-I Suppress transmitting terminal-initialization strings.

-kc Set the line kill character to be the named character `c` on all terminals.
  Default is `^U` (CTRL-U). The kill character is left alone if `-k` is not
  specified. Control characters can be specified by prefixing the alphabetical
  character with a circumflex (as in CTRL-U) instead of entering the actual
  control key itself. This allows you to specify control keys that are
  currently assigned.

-n Specify that the new tty driver modes should be initialized for this terminal.
  Probably useless since `stty new` is the default.

-Q Suppress printing the `Erase set to` and `Kill set to` messages.

-r In addition to other actions, reports the terminal type.

-s Output commands to set and export `TERM`. This can be used with

```
set noglob
eval `tset -s ...
unset noglob
```
to bring the terminal information into the environment. Doing so makes programs such as vi(1) start up faster. If the SHELL environment variable ends with $Csh, C shell commands are output, otherwise Bourne shell commands are output.

\[-m \text{[port-ID][baudrate]:type}] \ldots\]

Specify (map) a terminal type when connected to a generic port (such as dialup or plugboard) identified by \textit{port-ID}. The \textit{baudrate} argument can be used to check the baudrate of the port and set the terminal type accordingly. The target rate is prefixed by any combination of the following operators to specify the conditions under which the mapping is made:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&gt;</td>
<td>Greater than</td>
</tr>
<tr>
<td>@</td>
<td>Equals or “at”</td>
</tr>
<tr>
<td>&lt;</td>
<td>Less than</td>
</tr>
<tr>
<td>!</td>
<td>It is not the case that (negates the above operators)</td>
</tr>
<tr>
<td>?</td>
<td>Prompt for the terminal type. If no response is given, then \textit{type} is selected by default.</td>
</tr>
</tbody>
</table>

In the following example, the terminal type is set to \texttt{adm3a} if the port is a dialup with a speed of greater than 300 or to \texttt{dw2} if the port is a dialup at 300 baud or less. In the third case, the question mark preceding the terminal type indicates that the user is to verify the type desired. A NULL response indicates that the named type is correct. Otherwise, the user’s response is taken to be the type desired.

\[
\texttt{tset -m 'dialup>300:adm3a' -m 'dialup:dw2' -m \ '/plugboard:?adm3a'}
\]

To prevent interpretation as metacharacters, the entire argument to \textit{-m} should be enclosed in single quotes. When using the C shell, exclamation points should be preceded by a backslash (\).

\textbf{EXAMPLES}

These examples all use the ‘-’ option. A typical use of \texttt{tset} in a \texttt{.profile} or \texttt{.login} will also use the \texttt{-e} and \texttt{-k} options, and often the \texttt{-n} or \texttt{-Q} options as well. These options have been omitted here to keep the examples short.

To select a 2621, you might put the following sequence of commands in your \texttt{.login} file (or \texttt{.profile} for Bourne shell users).

\[
\texttt{set noglob}
\texttt{eval `tset -s 2621`}
\texttt{unset noglob}
\]

If you have a switch which connects to various ports (making it impractical to identify which port you may be connected to), and use various terminals from time to time, you can select from among those terminals according to the speed or baud rate. In the example below, \texttt{tset} will prompt you for a terminal type if the baud rate is greater than 1200 (say, 9600 for a terminal connected by an RS-232 line), and use a Wyse® 50 by default. If the baud rate is less than or equal to 1200, it will select a 2621. Note the placement of the question mark, and the quotes to protect the \texttt{>} and \texttt{?} from interpretation by the shell.
The following entry is appropriate if you always dial up, always at the same baud rate, on many different kinds of terminals, and the terminal you use most often is an adm3a.

```
set noglob
eval `tset -s ~ >1200:wy' 2621```
unset noglob
```
If you want to make the selection based only on the baud rate, you might use the following:

```
set noglob
eval `tset -s >1200:wy' 2621```
unset noglob
```

The following example quietly sets the erase character to BACKSPACE, and kill to CTRL-U. If the port is switched, it selects a Concept™ 100 for speeds less than or equal to 1200, and asks for the terminal type otherwise (the default in this case is a Wyse 50). If the port is a direct dialup, it selects Concept 100 as the terminal type. If logging in over the ARPANET, the terminal type selected is a Datamedia® 2500 terminal or emulator. Note the backslash escaping the NEWLINE at the end of the first line in the example.

```
set noglob
eval `tset -e -k^U -Q -s ~ >1200:concept100' -m `switch:~>1200:concept100' -m arpanet:dm2500```
unset noglob
```

The following entry is appropriate if you always dial up, always at the same baud rate, on many different kinds of terminals, and the terminal you use most often is an adm3a.

```
set noglob
eval `tset -s ~ >1200:wy' 2621```
unset noglob
```

If you want to make the selection based only on the baud rate, you might use the following:

```
set noglob
eval `tset -s >1200:wy' 2621```
unset noglob
```

The following example quietly sets the erase character to BACKSPACE, and kill to CTRL-U. If the port is switched, it selects a Concept™ 100 for speeds less than or equal to 1200, and asks for the terminal type otherwise (the default in this case is a Wyse 50). If the port is a direct dialup, it selects Concept 100 as the terminal type. If logging in over the ARPANET, the terminal type selected is a Datamedia® 2500 terminal or emulator. Note the backslash escaping the NEWLINE at the end of the first line in the example.

```
set noglob
eval `tset -e -k^U -Q -s ~ >1200:concept100' -m `switch:~>1200:concept100' -m arpanet:dm2500```
unset noglob
```

FILES

.login
.profile

SEE ALSO
csh(1), sh(1), vi(1), stty(1) in the User's Reference Manual

NOTES

The tset command is one of the first commands a user must master when getting started on a UNIX system. Unfortunately, it is one of the most complex, largely because of the extra effort the user must go through to get the environment of the login shell set. Something needs to be done to make all this simpler, either the login program should do this stuff, or a default shell alias should be made, or a way to set the environment of the parent should exist.

This program cannot intuit personal choices for erase, interrupt and line kill characters, so it leaves these set to the local system standards.

It could well be argued that the shell should be responsible for ensuring that the terminal remains in a sane state; this would eliminate the need for the reset program.
NAME
tset – provide information for setting terminal modes

SYNOPSIS
tset [options] [type]

DESCRIPTION
tset allows the user to set a terminal’s ERASE and KILL characters, and define the
terminal’s type and capabilities by creating values for the TERM and TERMCAP
environment variables. If a type is given with the -s option, tset creates informa-
tion for a terminal of the specified type. The type may be any type given in
/usr/share/lib/termcap. If the type is not specified with the -s option, tset
creates information for a terminal of the type defined by the value of the environ-
ment variable, TERM unless the -h or -m option is given. If the TERM variable is
undefined, tset looks in /usr/share/lib/termcap for the appropriate informa-
tion. If these options are used, tset searches the /etc/ttytype file for the ter-
minal type corresponding to the current serial port; it then creates information for
a terminal based on this type. If the serial port is not found in /etc/ttytype,
the terminal type is set to dumb.

tset displays the created information on the standard output. The information is
in a form that can be used to set the current environment variables. The exact
form depends on the login shell from which tset was invoked. The examples
below illustrate how to use this information to change the variables.

The following options are valid:

- e[c]  Sets the ERASE character to [c] on all terminals. The default setting is
        BACKSPACE, or CTRL-H.

- E[c]  Identical to the -e option except that it only operates on terminals that
can backspace.

- k[c]  Sets the KILL character to c, defaulting to CTRL-U.

-  Prints the terminal type on the standard output.

- s     Outputs the "setenv" commands [for csh(1)], or "export" and assign-
        ment commands [for sh(1)]. The type of commands are determined by
        the user’s login shell.

- S     Only outputs the strings to be placed in the environment variables.

- r     Prints the terminal type on the diagnostic output.

- Q     Suppresses the printing of the "Erase set to" and "Kill set to"
        messages.

- I     Suppresses printing of the terminal initialization strings.

tset is most useful when included in the .login [for csh] or .profile [for sh]
file executed automatically at login, with -m option is given, the first correct map-
ing prevails.

EXAMPLES

tset gt42

tset - mdialup>300:adm3a-mdialup:dw2-Qr-e#

tset -mdial:ti733-mplug:?hp2621-munknown:?--e-k^U
To use the information created by the `-s` option for the Bourne shell, (`sh`), repeat these commands:

```bash
tset -s...>/tmp/tset$
/tmp/tset$
rm/tmp/tset$
```

To use the information for `csh`, use:

```bash
set noglob
set term=('tset-S...
setenv TERM$term[1]
setenv TERMCP"$term[2]"
unset term
unset noglob
```

**FILES**

```bash
/usr/share/lib/termcap
```

Terminal capability database.

**SEE ALSO**

`stty(1), termcap(1), tty(1)`
NAME
tsort – topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
The tsort command produces on the standard output a totally ordered list of items consistent with a partial ordering of items mentioned in the input file. If no file is specified, the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: there is an odd number of fields in the input file.
NAME
  tty – get the name of the terminal

SYNOPSIS
  tty [-l] [-s]

DESCRIPTION
  tty prints the path name of the user’s terminal.
  -l prints the synchronous line number to which the user’s terminal is connected, if it is on an active synchronous line.
  -s inhibits printing of the terminal path name, allowing one to test just the exit code.

  EXIT CODES
  2 if invalid options were specified,
  0 if standard input is a terminal,
  1 otherwise.

DIAGNOSTICS
  ‘‘not on an active synchronous line’’ if the standard input is not a synchronous terminal and -l is specified.
  ‘‘not a tty’’ if the standard input is not a terminal and -s is not specified.
NAME

ttyadm - format and output port monitor-specific information

SYNOPSIS

/usr/sbin/ttyadm [ -b ] [ -c ] [ -r count ] [ -h ] [ -i msg ] [-m modules ]
   -p prompt ] [ -t timeout ] -d device -l ttylabel -s service

/usr/sbin/ttyadm -V

DESCRIPTION

The ttyadm command is an administrative command that formats ttymon-specific
information and writes it to the standard output. The Service Access Facility
(SAF) requires each port monitor to provide such a command. Note that the port
monitor administrative file is updated by the Service Access Controller’s adminis-
trative commands, sacadm and pmadm. ttyadm provides a means of presenting
formatted port monitor-specific (that is, ttymon-specific) data to these commands.

-b Sets the "bidirectional port" flag. When this flag is set, the line
   can be used in both directions. ttymon will allow users to con-
   nect to the service associated with the port, but if the port is free,
   uucico, cu, or ct can use it for dialing out.

-c Sets the connect-on-carrier flag for the port. If the -c flag is set,
   ttymon will invoke the port’s associated service immediately
   when a connect indication is received (that is, no prompt is
   printed and no baud-rate searching is done).

-d device device is the full pathname of the device file for the TTY port.

-h Sets the hangup flag for the port. If the -h flag is not set, ttymon
   will force a hangup on the line by setting the speed to zero before
   setting the speed to the default or specified value.

-i message Specifies the inactive (disabled) response message. This message
   will be sent to the TTY port if the port is disabled or the ttymon
   monitoring the port is disabled.

-l ttylabel Specifies which ttylabel in the /etc/ttydefs file to use as the
   starting point when searching for the proper baud rate.

-m modules Specifies a list of pushable STREAMS modules. The modules will
   be pushed, in the order in which they are specified, before the ser-
   vice is invoked. modules must be a comma-separated list of
   modules, with no white space included. Any modules currently
   on the stream will be popped before these modules are pushed.

-r count When the -r option is invoked, ttymon will wait until it receives
   data from the port before it displays a prompt. If count is equal to
   zero, ttymon will wait until it receives any character. If count is
   greater than zero, ttymon will wait until count newlines have been
   received.

-p prompt Specifies the prompt message, for example, "login:"
ttyadm(1M)  (Essential Utilities)  ttyadm(1M)

-sservice  service is the full pathname of the service to be invoked when a connection request is received. If arguments are required, the command and its arguments must be enclosed in double quotes.

-ttimeout  Specifies that ttymon should close a port if the open on the port succeeds and no input data is received in timeout seconds.

-v  Displays the version number of the current /usr/lib/saf/ttymon command.

OUTPUT
If successful, ttyadm will generate the requested information, write it on the standard output, and exit with a status of 0. If ttyadm is invoked with an invalid number of arguments or invalid arguments, or if an incomplete option is specified, an error message will be written to the standard error and ttymon will exit with a non-zero status.

FILES
/etc/ttydefs

SEE ALSO
pmadm(1M), sacadm(1M), ttymon(1M)
NAME
ttymon – port monitor for terminal ports

SYNOPSIS
/usr/lib/saf/ttymon
/usr/lib/saf/ttymon -g [ -h ] [ -d device ] [ -l ttylabel ] [ -t timeout ] \ 
[ -p prompt ] [ -m modules ]

DESCRIPTION
ttymon is a STREAMS-based TTY port monitor. Its function is to monitor ports, to set terminal modes, baud rates, and line disciplines for the ports, and to connect users or applications to services associated with the ports. Normally, ttymon is configured to run under the Service Access Controller, sac, as part of the Service Access Facility (SAF). It is configured using the sacadm command. Each instance of ttymon can monitor multiple ports. The ports monitored by an instance of ttymon are specified in the port monitor’s administrative file. The administrative file is configured using the pmadm and ttyadm commands. When an instance of ttymon is invoked by the sac command, it starts to monitor its ports. For each port, ttymon first initializes the line disciplines, if they are specified, and the speed and terminal settings. The values used for initialization are taken from the appropriate entry in the TTY settings file. This file is maintained by the sttydefs command. Default line disciplines on ports are usually set up by the autopush command of the Autopush Facility.

ttymon then writes the prompt and waits for user input. If the user indicates that the speed is inappropriate by pressing the BREAK key, ttymon tries the next speed and writes the prompt again. When valid input is received, ttymon interprets the per-service configuration file for the port, if one exists, creates a utmp entry if required, establishes the service environment, and then invokes the service associated with the port. Valid input consists of a string of at least one nonnewline character, terminated by a carriage return. After the service terminates, ttymon cleans up the utmp entry, if one exists, and returns the port to its initial state.

If autobaud is enabled for a port, ttymon will try to determine the baud rate on the port automatically. Users must enter a carriage return before ttymon can recognize the baud rate and print the prompt. Currently, the baud rates that can be determined by autobaud are 110, 1200, 2400, 4800, and 9600.

If a port is configured as a bidirectional port, ttymon will allow users to connect to a service, and, if the port is free, will allow uucico, cu or ct to use it for dialing out. If a port is bidirectional, ttymon will wait to read a character before it prints a prompt.

If the connect-on-carrier flag is set for a port, ttymon will immediately invoke the port’s associated service when a connection request is received. The prompt message will not be sent.

If a port is disabled, ttymon will not start any service on that port. If a disabled message is specified, ttymon will send out the disabled message when a connection request is received. If ttymon is disabled, all ports under that instance of ttymon will also be disabled.
SERVICE INVOCATION

The service `ttymon` invokes for a port is specified in the `ttymon` administrative file. `ttymon` will scan the character string giving the service to be invoked for this port, looking for a `%d` or a `%%` two-character sequence. If `%d` is found, `ttymon` will modify the service command to be executed by replacing those two characters by the full path name of this port (the device name). If `%%` is found, they will be replaced by a single `%`.

When the service is invoked, file descriptor 0, 1, and 2 are opened to the port device for reading and writing. The service is invoked with the user ID, group ID and current home directory set to that of the user name under which the service was registered with `ttymon`. Two environment variables, HOME and TTYPROMPT, are added to the service’s environment by `ttymon`. HOME is set to the HOME directory of the user name under which the service is invoked. TTYPROMPT is set to the prompt string configured for the service on the port. This is provided so that a service invoked by `ttymon` has a means of determining if a prompt was actually issued by `ttymon` and, if so, what that prompt actually was.

See `ttyadm(1M)` for options that can be set for ports monitored by `ttymon` under the Service Access Controller.

INVOKING A STAND-ALONE `ttymon` PROCESS

A special invocation of `ttymon` is provided with the `-g` option. This form of the command should only be called by applications that need to set the correct baud rate and terminal settings on a port and then connect to login service, but that cannot be pre-configured under the SAC. The following combinations of options can be used with `-g`:

- `-d device`  
  `device` is the full path name of the port to which `ttymon` is to attach. If this option is not specified, file descriptor 0 must be set up by the invoking process to a TTY port.

- `-h`  
  If the `-h` flag is not set, `ttymon` will force a hangup on the line by setting the speed to zero before setting the speed to the default or specified speed.

- `-t timeout`  
  Specifies that `ttymon` should exit if no one types anything in `timeout` seconds after the prompt is sent.

- `-l ttylabel`  
  `ttylabel` is a link to a speed and TTY definition in the `ttydefs` file. This definition tells `ttymon` at what speed to run initially, what the initial TTY settings are, and what speed to try next if the user indicates that the speed is inappropriate by pressing the BREAK key. The default speed is 9600 baud.

- `-p prompt`  
  Allows the user to specify a prompt string. The default prompt is "Login: ".

- `-m modules`  
  When initializing the port, `ttymon` will pop all modules on the port, and then push modules in the order specified. `modules` is a comma-separated list of pushable modules. Default modules on the ports are usually set up by the Autopush Facility.
SEE ALSO

pmadm(1M), sac(1M), sacadm(1M), ttyadm(1M)


NOTES

If a port is monitored by more than one ttymon, it is possible for the ttymons to send out prompt messages in such a way that they compete for input.
NAME

tunefs - tune up an existing file system

SYNOPSIS

tunefs [-a maxcontig] [-d rotdelay] [-e maxbpg] [-m minfree] [-o [s | space | t |
| time]] special | filesystem

DESCRIPTION

tunefs is designed to change the dynamic parameters of a file system which
affect the layout policies. The file system must be unmounted before using
tunefs. The parameters which are to be changed are indicated by the options
given below:

The options are:

- **-a maxcontig** Specify the maximum number of contiguous blocks that will be
laid out before forcing a rotational delay (see -d below). The
default value is one, since most device drivers require an interrupt
per disk transfer. Device drivers that can chain several buffers
together in a single transfer should set this to the maximum chain
length.

- **-d rotdelay** Specify the expected time (in milliseconds) to service a transfer
completion interrupt and initiate a new transfer on the same disk.
It is used to decide how much rotational spacing to place between
successive blocks in a file.

- **-e maxbpg** Indicate the maximum number of blocks any single file can allo-
cate out of a cylinder group before it is forced to begin allocating
blocks from another cylinder group. Typically this value is set to
approximately one quarter of the total blocks in a cylinder group.
The intent is to prevent any single file from using up all the blocks
in a single cylinder group, thus degrading access times for all files
subsequently allocated in that cylinder group. The effect of this
limit is to cause big files to do long seeks more frequently than if
they were allowed to allocate all the blocks in a cylinder group
before seeking elsewhere. For file systems with exclusively large
files, this parameter should be set higher.

- **-m minfree** Specify the percentage of space held back from normal users; the
minimum free space threshold. The default value used is 10%.
This value can be set to zero, however up to a factor of three in
throughput will be lost over the performance obtained at a 10% threshold. Note: if the value is raised above the current usage
level, users will be unable to allocate files until enough files have
been deleted to get under the higher threshold.

- **-o [s | space | t | time]**
Change optimization strategy for the file system. s and space are
interchangeable, and t and time are interchangeable.

  s or space - conserve space.
  t or time - attempt to organize file layout to minimize access time.
Generally one should optimize for time unless the file system is over 90% full.

SEE ALSO
mkfs(1M)
NAME
  uadmin – administrative control

SYNOPSIS
  /sbin/uadmin cmd fcn

DESCRIPTION
  The uadmin command provides control for basic administrative functions. This
  command is tightly coupled to the System Administration procedures and is not
  intended for general use. It may be invoked only by the super-user.
  The arguments cmd (command) and fcn (function) are converted to integers and
  passed to the uadmin system call.

SEE ALSO
  uadmin(2) in the Programmer’s Reference Manual
ufsdump(1M) (UFS) ufsdump(1M)

NAME
ufsdump - incremental file system dump

SYNOPSIS
ufsdump [options [arguments]] filesystem

DESCRIPTION
ufsdump backs up all files in filesystem, where filesystem represents a special
device, or files changed after a certain date, to magnetic tape; options is a string
that specifies ufsdump options, as shown below. Any arguments supplied for
specific options are given as subsequent words on the command line, in the same
order as that of the options listed.

If no options are given, the default is 9u.

The options are:

0-9 The dump level. All files in the filesystem that have been modified since
the last ufsdump at a lower dump level are copied to the volume. For
instance, if you did a level 2 dump on Monday, followed by a level 4
dump on Tuesday, a subsequent level 3 dump on Wednesday would con­
tain all files modified or added since the level 2 (Monday) backup. A
level 0 dump copies the entire filesystem to the dump volume.

b factor
Blocking factor. Specify the blocking factor for tape writes. The default is
20 blocks per write. Note: the blocking factor is specified in terms of 512
bytes blocks, for compatibility with tar. The default blocking factor for
tapes of density 6250BPI and greater is 64. The default blocking factor for
cartridge tapes (c option specified) is 126. The highest blocking factor
available with most tape drives is 126.

c Cartridge. Use a cartridge instead of the standard half-inch reel. This sets
the density to 1000BPI and the blocking factor to 126. The length is set to
425 feet. This option is incompatible with the d option, unless you specify
a density of 1000BPI with that option.

d bpi
Tape density. The density of the tape, expressed in BPI, is taken from bpi.
This is used to keep a running tab on the amount of tape used per reel.
The default density is 1600 except for cartridge tape. Unless a higher den­
sity is specified explicitly, ufsdump uses its default density — even if the
tape drive is capable of higher-density operation (for instance, 6250BPI).
Note: the density specified should correspond to the density of the tape
device being used, or ufsdump will not be able to handle end-of-tape
properly.

f dump-file
Dump file. Use dump-file as the file to dump to, instead of /dev/rmt8. If
dump-file is specified as -, dump to the standard output.

n Notify all operators in the operator group that ufsdump requires attention
by sending messages to their terminals, in a manner similar to that used
by the wall command.
ufsdump(1M)  (UFS)  ufsdump(1M)

s size  Specify the size of the volume being dumped to. When the specified size
is reached, ufsdump waits for you to change the volume. ufsdump interprets the specified size as the length in feet for tapes and cartridges, and as the number of 1024-byte blocks for diskettes. The following are defaults:

- cartridge: 425 feet
- diskette: 1422 blocks (Corresponds to a 1.44 Mb diskette, with one cylinder reserved for bad block information.)

t tracks  Specify the number of tracks for a cartridge tape. The default is 9 tracks. The t option is not compatible with the D option.

u  Update the dump record. Add an entry to the file /etc/dumpdates, for each filesystem successfully dumped that includes the filesystem name, date, and dump level. This file can be edited by the super-user.

w  List the file systems that need backing up. This information is gleaned from the files /etc/dumpdates and /etc/vfstab. When the w option is used, all other options are ignored. After reporting, ufsdump exits immediately.

W  Similar to the w option, except that the W option includes all file systems that appear in /etc/dumpdates, along with information about their most recent dump dates and levels. Filesystems that need backing up are highlighted.

NOTES
Fewer than 32 read errors on the filesystem are ignored.
Each reel requires a new process, so parent processes for reels already written just hang around until the entire tape is written.
It is recommended that incremental dumps also be performed with the system running in single-user mode.

FILES
/dev/rmt8  default unit to dump to
/etc/dumpdates  dump date record
/etc/group  to find group operator
/etc/hosts

SEE ALSO
df(1M), shutdown(1M), ufsrestore(1M), wall(1M).
NAME
ufsrestore – incremental file system restore

SYNOPSIS
ufsrestore options [arguments] [filename . . .]

DESCRIPTION
ufsrestore restores files from backup tapes created with the ufsdump command. options is a string of at least one of the options listed below, along with any modifiers and arguments you supply. Any arguments supplied for specific options are given as subsequent words on the command line, in the same order as that of the options listed. Remaining arguments to ufsrestore are the names of files (or directories whose files) are to be restored to disk. Unless the h modifier is in effect, a directory name refers to the files it contains, and (recursively) its subdirectories and the files they contain.

The options are:

i Interactive. After reading in the directory information from the tape, ufsrestore invokes an interactive interface that allows you to browse through the dump tape's directory hierarchy and select individual files to be extracted. See Interactive Commands, below, for a description of available commands.

r Restore the entire tape. Load the tape's full contents into the current directory. This option should be used only to restore a complete dump tape onto a clear filesystem, or to restore an incremental dump tape after a full level 0 restore.

R Resume restoring. ufsrestore requests a particular tape of a multivolume set from which to resume a full restore (see the r option above). This allows ufsrestore to start from a checkpoint when it is interrupted in the middle of a full restore.

t Table of contents. List each filename that appears on the tape. If no filename argument is given, the root directory is listed. This results in a list of all files on the tape, unless the h modifier is in effect.

x Extract the named files from the tape. If a named file matches a directory whose contents were written onto the tape, and the h modifier is not in effect, the directory is recursively extracted. The owner, modification time, and mode are restored (if possible). If no filename argument is given, the root directory is extracted. This results in the entire tape being extracted unless the h modifier is in effect.

Some of the following modifiers take arguments that are given as separate words on the command line. When more than one such modifier appears within options, the arguments must appear in the same order as the modifiers that they apply to.

c Convert the contents of the dump tape to the new filesystem format.

d Debug. Turn on debugging output.
ufsrestore (1M) (UFS) ufsrestore (1M)

**h** Extract the actual directory, rather than the files that it references. This prevents hierarchical restoration of complete subtrees from the tape.

**m** Extract by inode numbers rather than by filename to avoid regenerating complete pathnames. This is useful if only a few files are being extracted.

**v** Verbose. `ufsrestore` displays the name of each file it restores, preceded by its file type.

**y** Do not ask whether to abort the restore in the event of tape errors. `ufsrestore` tries to skip over the bad tape block(s) and continue as best it can.

**b** *factor*

Blocking factor. Specify the blocking factor for tape reads. By default, `ufsrestore` will attempt to figure out the block size of the tape. Note: a tape block is 512 bytes.

**f** *dump-file*

Use `dump-file` instead of `/dev/rmt?` as the file to restore from. If `dump-file` is specified as `-'`, `ufsrestore` reads from the standard input. This allows, `ufsdump(1M)` and `ufsrestore` to be used in a pipeline to dump and restore a file system, as shown in the example below. (The device names on your system may differ from those shown in the example.)

```
ufsdump 0f - /dev/rxy0g | (cd /mnt; ufsrestore xf -)
```

If the name of the file is of the form `machine:device` the restore is done from the specified machine over the network using `rmt(1M)`. Since `ufsrestore` is normally run by root, the name of the local machine must appear in the `.rhosts` file of the remote machine. If the file is specified as `user!machine:device`, `ufsrestore` will attempt to execute as the specified user on the remote machine. The specified user must have a `.rhosts` file on the remote machine that allows root from the local machine. If `ufsrestore` is called as `ufsrestore`, the tape defaults to `dumphost:/dev/rmt8`. To direct the input from a desired remote machine, set up an alias for `dumphost` in the file `/etc/hosts`.

**s n** Skip to the n'th file when there are multiple dump files on the same tape, as shown in the example below. (The device names on your system may differ from those shown in the example.)

```
ufsrestore xfs /dev/nrar0 5
```

would position you at the fifth file on the tape.

`ufsrestore` enters interactive mode when invoked with the `i` option. Interactive commands are reminiscent of the shell. For those commands that accept an argument, the default is the current directory.

**ls [directory]** List files in `directory` or the current directory, represented by a `.` (period). Directories are appended with a `/` (backslash). Entries marked for extraction are prefixed with a `*` (asterisk).

If the verbose option is in effect, inode numbers are also listed.
cd directory  Change to directory directory (within the dump-tape).

pwd          Print the full pathname of the current working directory.

add [filename]  Add the current directory, or the named file or directory directory to the list of files to extract. If a directory is specified, add that directory and its files (recursively) to the extraction list (unless the h modifier is in effect).

delete [filename]  Delete the current directory, or the named file or directory from the list of files to extract. If a directory is specified, delete that directory and all its descendents from the extraction list (unless the h modifier is in effect). The most expedient way to extract a majority of files from a directory is to add that directory to the extraction list, and then delete specific files to omit.

extract       Extract all files on the extraction list from the dump tape. ufsrestore asks which volume the user wishes to mount. The fastest way to extract a small number of files is to start with the last tape volume and work toward the first.

verbose      Toggle the status of the v modifier. While v is in effect, the ls command lists the inode numbers of all entries, and ufsrestore displays information about each file as it is extracted.

help         Display a summary of the available commands.

quit         ufsrestore exits immediately, even if the extraction list is not empty.

NOTES

ufsrestore can get confused when doing incremental restores from dump tapes that were made on active file systems.

A level 0 dump must be done after a full restore. Because ufsrestore runs in user mode, it has no control over inode allocation; this means that ufsrestore repositions the files, although it does not change their contents. Thus, a full dump must be done to get a new set of directories reflecting the new file positions, so that later incremental dumps will be correct.

DIAGNOSTICS

ufsrestore complains about bad option characters.

Read errors result in complaints. If y has been specified, or the user responds y, ufsrestore will attempt to continue.

If the dump extends over more than one tape, ufsrestore asks the user to change tapes. If the x or i option has been specified, ufsrestore also asks which volume the user wishes to mount.

There are numerous consistency checks that can be listed by ufsrestore. Most checks are self-explanatory or can never happen. Common errors are given below.
**Converting to new file system format.**
A dump tape created from the old file system has been loaded. It is automatically converted to the new file system format.

**filename: not found on tape**
The specified file name was listed in the tape directory, but was not found on the tape. This is caused by tape read errors while looking for the file, and from using a dump tape created on an active file system.

**expected next file inumber, got inumber**
A file that was not listed in the directory showed up. This can occur when using a dump tape created on an active file system.

**Incremental tape too low**
When doing an incremental restore, a tape that was written before the previous incremental tape, or that has too low an incremental level has been loaded.

**Incremental tape too high**
When doing incremental restore, a tape that does not begin its coverage where the previous incremental tape left off, or one that has too high an incremental level has been loaded.

**Tape read error while restoring filename**
A tape read error has occurred.
If a file name is specified, then its contents are probably partially wrong. If an inode is being skipped or the tape is trying to resynchronize, then no extracted files have been corrupted, though files may not be found on the tape.

**resync ufsrestore, skipped num**
After a tape read error, ufsrestore may have to resynchronize itself. This message lists the number of blocks that were skipped over.

**FILES**
- `/dev/rmt8` the default tape drive
- `dumphost:/dev/rmt8` the default tape drive if called as `ufsresstore`
- `/tmp/rstdir*` file containing directories on the tape
- `/tmp/rstmode*` owner, mode, and timestamps for directories
- `./restoresymtable` information passed between incremental restores

**SEE ALSO**
- `ufsdump(1M)`, `mkfs(1M)`, `mount(1M)`
NAME
ul – underline

SYNOPSIS
/usr/ucb/ul [ -i ] [ -t terminal ] [ filename . . . ]

DESCRIPTION
The ul command reads the named filenames (or the standard input if none are given) and translates occurrences of underscores to the sequence which indicates underlining for the terminal in use, as specified by the environment variable TERM. ul uses the /usr/share/lib/termcap file to determine the appropriate sequences for underlining. If the terminal is incapable of underlining, but is capable of a standout mode then that is used instead. If the terminal can overstrike, or handles underlining automatically, ul degenerates to cat. If the terminal cannot underline, underlining is ignored.

The following options are available:
- -t terminal Override the terminal kind specified in the environment. If the terminal cannot underline, underlining is ignored.
- -i Indicate underlining by a separate line containing appropriate dashes --; this is useful when you want to look at the underlining which is present in an nroff output stream on a CRT-terminal.

SEE ALSO
man(1), nroff(1)
cat(1) in the User's Reference Manual
NAME
umask – set file-creation mode mask

SYNOPSIS
umask [ 0oo ]

DESCRIPTION
The user file-creation mode mask is set to 000. The three octal digits refer to read/write/execute permissions for owner, group, and others, respectively (see chmod(2) and umask(2)). The value of each specified digit is subtracted from the corresponding “digit” specified by the system for the creation of a file (see creat(2)). For example, umask 022 removes group and others write permission (files normally created with mode 777 become mode 755; files created with mode 666 become mode 644).

If 000 is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell.

umask can be included in the user’s .profile (see profile(4)) and invoked at login to automatically set the user’s permissions on files or directories created.

SEE ALSO
chmod(1), sh(1).
NAME
uname – print name of current UNIX system

SYNOPSIS
uname [ -anmprsv ]
uname [ -S nodename ]

DESCRIPTION
uname prints the current system name of the UNIX system to standard output. It
is mainly useful to determine which system one is using. The options cause
selected information returned by uname(2) and/or sysinfo(2) to be printed:

-a  Print all information. Output will in the following order:
    systemname nodename release version machine hostprocessor

-m  Print the machine hardware name (machine).

-n  Print the nodename (the nodename is the name by which the system is
    known to a communications network).

-p  Print the current host’s processor type (hostprocessor).

-r  Print the operating system release (release).

-s  Print the name of the operating system (systemname) (for example, UNIX
    System V). This is the default.

-v  Print the operating system version (version).

-S  Change nodename (see -n option above). nodename is restricted to
    SYS_NMLN characters. SYS_NMLN is an implementation specific value
    defined in sys/utsname.h. Only a privileged user is allowed this capabili-
    ty.

    For computers based on Intel microprocessors, using the -S option also
    changes the name of the operating system (systemname).

NOTES
The output of uname is affected by the environment variable SCOMPAT. SCOMPAT
is part of the application compatibility features provided to support UNIX appli-
cations other than UNIX System V Release 4.

SEE ALSO
sysinfo(2), uname(2) in the Programmer’s Reference Manual
scompt(1) in the Migration and Compatibility Guide
setuname(1M) in the System Administrator’s Reference Manual
unget(1) (Enhanced Programming Utilities) unget(1)

NAME
unget – undo a previous get of an SCCS file

SYNOPSIS
unget [-rSID] [-s] [-n] files

DESCRIPTION
unget undoes the effect of a get -e done prior to creating the intended new delta. If a directory is named, unget behaves as though each file in the directory were specified as a named file, except that non-SCCS files and unreadable files are silently ignored. If a name of - is given, the standard input is read with each line being taken as the name of an SCCS file to be processed.

Keyletter arguments apply independently to each named file.

- rSID Uniquely identifies which delta is no longer intended. (This would have been specified by get as the "new delta"). The use of this keyletter is necessary only if two or more outstanding gets for editing on the same SCCS file were done by the same person (login name). A diagnostic results if the specified SID is ambiguous, or if it is necessary and omitted on the command line.

- s Suppresses the printout, on the standard output, of the intended delta’s SID.

- n Causes the retention of the gotten file, which would normally be removed from the current directory.

unget must be performed by the same user who performed the original get -e.

FILES
p-file [see delta(1)]
q-file [see delta(1)]
z-file [see delta(1)]

SEE ALSO
delta(1), get(1), help(1), sact(1)

DIAGNOSTICS
Use help(1) for explanations.
NAME

unifdef - resolve and remove ifdef'ed lines from C program source

SYNOPSIS

/usr/ucb/unifdef [-clt] [-Dname] [-Uname] [-iDname] [-iUname] 
... [filename]

DESCRIPTION

unifdef removes ifdefed lines from a file while otherwise leaving the file alone. It
is smart enough to deal with the nested ifdefs, comments, single and double
quotes of C syntax, but it does not do any including or interpretation of macros.
Neither does it strip out comments, though it recognizes and ignores them. You
specify which symbols you want defined with -D options, and which you want
undefined with -U options. Lines within those ifdefs will be copied to the output,
or removed, as appropriate. Any ifdef, ifndef, else, and endif lines
associated with filename will also be removed.

ifdefs involving symbols you do not specify are untouched and copied out
along with their associated ifdef, else, and endif lines.

If an ifdefX occurs nested inside another ifdefX, then the inside ifdef is
treated as if it were an unrecognized symbol. If the same symbol appears in
more than one argument, only the first occurrence is significant.

unifdef copies its output to the standard output and will take its input from the
standard input if no filename argument is given.

The following options are available:

-c Complement the normal operation. Lines that would have been
removed or blanked are retained, and vice versa.

-l Replace “lines removed” lines with blank lines.

-t Plain text option. unifdef refrains from attempting to recognize com-
ments and single and double quotes.

-iDname Ignore, but print out, lines associated with the defined symbol name.
   If you use ifdef to delimit non-C lines, such as comments or code
   which is under construction, then you must tell unifdef which sym-
   bols are used for that purpose so that it will not try to parse for
   quotes and comments within them.

-iUname Ignore, but print out, lines associated with the undefined symbol name.

SEE ALSO

cc(1)
cc(1) in the Programmer’s Reference Manual
diff(1) in the User’s Reference Manual

DIAGNOSTICS

Premature EOF Inappropriate else or endif.

Exit status is 0 if output is exact copy of input, 1 if not, 2 if unifdef encounters
problems.
uniq(1)  (Directory and File Management Utilities)  uniq(1)

NAME
    uniq – report repeated lines in a file

SYNOPSIS
    uniq [ -ude [ +n ] [ -n ] ] [ input [ output ] ]

DESCRIPTION
    uniq reads the input file comparing adjacent lines. In the normal case, the
    second and succeeding copies of repeated lines are removed; the remainder is
    written on the output file. Input and output should always be different. Note
    that repeated lines must be adjacent in order to be found; see sort(1). If the -u
    flag is used, just the lines that are not repeated in the original file are output.
    The -d option specifies that one copy of just the repeated lines is to be written.
    The normal mode output is the union of the -u and -d mode outputs.

    The -e option supersedes -u and -d and generates an output report in default
    style but with each line preceded by a count of the number of times it occurred.

    The n arguments specify skipping an initial portion of each line in the com­
    parison:
    -n      The first n fields together with any blanks before each are ignored. A
            field is defined as a string of non-space, non-tab characters separated by
            tabs and spaces from its neighbors.
    +n      The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
    comm(1), sort(1).
NAME
units - conversion program

SYNOPSIS
units

DESCRIPTION
units converts quantities expressed in various standard scales to their equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: cm

* 2.540000e+00
/ 3.937008e+00

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 lbs force/in2
You want: atm

* 1.020689e+00
/ 9.797299e+00

units only does multiplicative scale changes; thus it can convert Kelvin to Rankine, but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized, together with a generous leavening of exotica and a few constants of nature including:

\[ \pi \] ratio of circumference to diameter,
\[ c \] speed of light,
\[ e \] charge on an electron,
\[ g \] acceleration of gravity,
force same as \( g \),
mole Avogadro's number,
water pressure head per unit height of water,
astronomical unit.

Pound is not recognized as a unit of mass; lb is. Compound names are run together, (for example, lightyear). British units that differ from their U.S. counterparts are prefixed thus: brgallon. For a complete list of units, type:

cat /usr/share/lib/unittab

FILES
/usr/share/lib/unittab
NAME
unshare — make local resource unavailable for mounting by remote systems

SYNOPSIS
unshare [-F fstype] [-o specific_options] [pathname | resourcename]

DESCRIPTION
The unshare command makes a shared local resource unavailable to file system
type fstype. If the option -F fstype is omitted, then the first file system type listed
in file /etc/dfs/fstypes will be used as the default. Specific_options, as well as
the semantics of resourcename, are specific to particular distributed file systems.

FILES
/etc/dfs/fstypes
/etc/dfs/sharetab

SEE ALSO
share(1M), shareall(1M).

NOTES
If pathname or resourcename is not found in the shared information, an error mes-
sage will be sent to standard error.
unshare(1M) (NFS) unshare(1M)

NAME
unshare – make local NFS resource unavailable for mounting by remote systems

SYNOPSIS
unshare [ -F nfs ] pathname

DESCRIPTION
The unshare command makes local resources unavailable for mounting by remote systems. The shared resource must correspond to a line with NFS as the fstype in the file /etc/dfs/sharetab. The -F option may be omitted if NFS is the first file system type listed in the files /etc/dfs/fstypes.

FILES
/etc/dfs/fstypes
/etc/dfs/sharetab

SEE ALSO
share(1M)
NAME
unshare – make local RFS resource unavailable for mounting by remote systems

SYNOPSIS
unshare [-F rfs] {pathname | resourcename}

DESCRIPTION
The unshare command makes a shared resource unavailable through Remote File Sharing. The shared resource must correspond to a line with rfs as the fstype in the file /etc/dfs/sharetab. The -F flag may be omitted if RFS is the first file system type listed in the file /etc/dfs/fstypes.

FILES
/etc/dfs/dfstab
/etc/dfs/fstypes
/etc/dfs/sharetab

SEE ALSO
unshare(1M), share(1M)
NAME
uptime – show how long the system has been up

SYNOPSIS
/usr/ucb/uptime

DESCRIPTION
The uptime command prints the current time, the length of time the system has been up. It is the first line of a w(1) command.

EXAMPLE
Below is an example of the output uptime provides:

    uptime
    6:47am up 6 days, 16:38, 1 users

SEE ALSO
w(1)
whodo(1) in the System Administrator's Reference Manual

NOTES
who -b gives the time the system was last booted.
urestore(1M) (System Administration Utilities) urestore(1M)

NAME
urestore – request restore of files and directories

SYNOPSIS
urestore -c jobid

DESCRIPTION
urestore posts requests for files or directories to be restored from system­
maintained archives. If the appropriate archive containing the requested files or
directories is on-line, the files or directories are restored immediately. If not, a
restore of the specified files or directories is posted to a restore status
listing, /etc/bkup/rstatus.tab. A restore request that has been posted must
later be resolved by an operator (see rsoper(1M)). Each file or directory to be
restored is assigned a restore job ID that can be used to monitor the progress of
the restore (see ursstatus(1M)) or to cancel it.

The user must have write permission for the current directory and any subdirec­
tories to be traversed in storing the restored files or directories. Requests for
restores may be made only by the user who owned the files or directories at the
time the archive containing the files or directories was made, or by a user with
superuser privileges.

Options
-c jobid  Cancels a previously issued restore request.
-d date  Restores the filesystem or directory as of date. (This may or may not
be the latest archive.) See getdate(3C) for valid date formats.
-m If the restore cannot be carried out immediately, this option notifies
the invoking user (via mail) when the request has been completed.
-n Displays a list of all archived versions of the filesystem or directory
contained in the backup history log but does not attempt to restore the
filesystem or directory.
-o target Instead of restoring directly to the specified file or directory, this
option replaces the file or directory target with the archive of the
specified file or directory.
-s While a restore operation is occurring, displays a ‘.’ for each 100
(512-byte) blocks transferred from the destination device.
-v Displays the name of each object as it is restored. Only those archiv­
ing methods that restore named directories and files (incfile,
ffile) support this option.
-D Initiates a restore operation for directories.
-F Initiates a restore operation for files.

DIAGNOSTICS
The exit codes for urestore are the following:
urestore(1M)  (System Administration Utilities)  urestore(1M)

0 = the task completed successfully
1 = one or more parameters to urestore are invalid
2 = an error has occurred, causing urestore to fail to complete all portions of its task.

EXAMPLES
Example 1:
   urestore -m -F bigfile
posts a request to restore the most current archived version of the file bigfile. If the restore operation cannot be carried out immediately, it notifies the invoking user when the request has been completed.

Example 2:
   urestore -c rest-256a,rest-256b
cancels restore requests with job ID numbers rest-256a and rest-256b.

Example 3:
   urestore -o /testfiles/myfile.b -F /testfiles/myfile.a
posts a request for the archived file /testfiles/myfile.a to be restored as /testfiles/myfile.b

Example 4:
   urestore -d "december 1, 1987" -D /user1 -v
posts a request for the archived directory structure /user1, with all its files and subdirectories, to be restored as of December 1, 1987. If the restore is done immediately from an on-line archive, the name of each file will be displayed on standard output while the restore is underway.

Example 5:
   urestore -n -D /pr3/reports
requests the system to display the backup dates and an ls -1 listing from the backup history log of all archived versions of the directory /pr3/reports. The directory is not restored.

FILES
/etc/bkup/bkhist.tab  - contains the labels of all volumes that have been used for backup operations
/etc/bkup/rsstatus.tab  - contains status information about all restore requests from users
/etc/bkup/rsnotify.tab  - contains the electronic mail address of the operator to be notified whenever restore requests require operator intervention

SEE ALSO
restore(1M), ursstatus(1M)
mail(1) in the User's Reference Manual
getdate(3C) in the Programmer's Reference Manual
useradd (1M)  (Essential Utilities)  useradd (1M)

NAME
useradd – administer a new user login on the system

SYNOPSIS
useradd [-u uid [-o]] [-g group] [-G group[,group...] [-d dir] [-s shell]
       [-c comment] [-m [-k skel_dir]] [-f inactive] [-e expire] login
useradd -D [-g group] [-b base_dir] [-f inactive] [-e expire]

DESCRIPTION
Invoking useradd without the -D option adds a new user entry to the
/etc/passwd and /etc/shadow files. It also creates supplementary group
memberships for the user (-G option) and creates the home directory (-m option)
for the user if requested. The new login remains locked until the passwd(1M)
command is executed.

Invoking useradd -D with no additional options displays the default values for
group, base_dir, shell, shell, inactive, and expire. The values for group, base_dir,
inactive, expire, and shell are used for invocations without the -D option.

Invoking useradd -D with -g, -b, -f, or -e (or any combination of these) sets
the default values for the respective fields. [As installed, the default group is
other (group ID of 1) and the default value of base_dir is /home]. Subsequent
invocations of useradd without the -D option use these arguments.

The system file entries created with this command have a limit of 512 characters
per line. Specifying long arguments to several options may exceed this limit.

The following options are available:

- u uid    The UID of the new user. This UID must be a non-negative decimal
           integer below MAXUID as defined in <param.h>. The UID defaults to
           the next available (unique) number above the highest number currently
           assigned. For example, if UIDs 100, 105, and 200 are assigned, the next
           default UID number will be 201. (UIDs from 0-99 are reserved.)

- o        This option allows a UID to be duplicated (non-unique).

- g group  An existing group’s integer ID or character-string name. Without the
           -D option, it defines the new user’s primary group membership and
           defaults to the default group. You can reset this default value by
           invoking useradd -D -g group.

- G group  An existing group’s integer ID or character-string name. It defines the
           new user’s supplementary group membership. Duplicates between
           group with the -g and -G options are ignored. No more than
           NGROUPS_MAX groups may be specified.

- d dir    The home directory of the new user. It defaults to base_dir/login, where
           base_dir is the base directory for new login home directories and login
           is the new login.

- s shell  Full pathname of the program used as the user’s shell on login. It
           defaults to an empty field causing the system to use /sbin/sh as the
           default. The value of shell must be a valid executable file.
useradd(1M) (Essential Utilities) useradd(1M)

- c comment
  Any text string. It is generally a short description of the login, and is currently used as the field for the user's full name. This information is stored in the user's /etc/passwd entry.

- m
  Create the new user's home directory if it doesn't already exist. If the directory already exists, it must have read, write, and execute permissions by group, where group is the user's primary group.

- k skel_dir
  A directory that contains skeleton information (such as .profile) that can be copied into a new user's home directory. This directory must exist. The system provides a "skel" directory (/etc/skel) that can be used for this purpose.

- e expire
  The date on which a login can no longer be used; after this date, no user will be able to access this login. (This option is useful for creating temporary logins.) You may type the value of the argument expire (which is a date) in any format you like (except a Julian date). For example, you may enter 10/6/90 or October 6, 1990. A value of ' ' defeats the status of the expired date.

- f inactive
  The maximum number of days allowed between uses of a login ID before that login ID is declared valid. Normal values are positive integers. A value of -1 defeats the status.

login
  A string of printable characters that specifies the new login name of the user. It may not contain a colon (:) or a newline (\n).

-b base_dir
  The default base directory for the system. If -d dir is not specified base_dir is concatenated with the user's login to define the home directory. base_dir must exist.

FILES
/etc/passwd
/etc/shadow
/etc/group
/etc/skel

SEE ALSO
  groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), passwd(1), passwd(1M), userdel(1M), usermod(1M), users(1).
DIAGNOSTICS

The `useradd` command exits with one of the following values:

0    The command was executed successfully.
2    The command line syntax was invalid. A usage message for the `useradd` command is displayed.
3    An invalid argument was provided with an option.
4    The `uid` specified with the `-u` option is already in use.
6    The `group` specified with the `-g` option does not exist.
9    The specified `login` is not unique.
10   Cannot update `/etc/group`. The login was added to the `/etc/passwd` file but not to the `/etc/group` file.
12   Unable to create the home directory (with the `-m` option) or unable to complete the copy of `skel_dir` to the home directory.
NAME
userdel - delete a user's login from the system

SYNOPSIS
userdel [-r] login

DESCRIPTION
The userdel command deletes a user's login from the system and makes the appropriate login-related changes to the system file and file system.
The following options are available:
-r  Remove the user's home directory from the system. This directory must exist. The files and directories under the home directory will no longer be accessible following successful execution of the command.
login  A string of printable characters that specifies an existing login on the system. It may not contain a colon (:), or a newline (\n).

FILES
/etc/passwd
/etc/shadow
/etc/group

SEE ALSO
groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), passwd(1),
passwd(1M), useradd(1M), usermod(1M), users(1).

DIAGNOSTICS
The userdel command exits with one of the following values:
0  Success.
2  Invalid command syntax. A usage message for the userdel command is displayed.
6  The login to be removed does not exist.
8  The login to be removed is in use.
10 Cannot update the /etc/group file but the login is removed from the /etc/passwd file.
12 Cannot remove or otherwise modify the home directory.
NAME
usermod – modify a user’s login information on the system

SYNOPSIS
usermod [-u uid [-o]] [-g group] [-G group[, group ...] [-d dir [-m]] [-s shell]
[-c comment] [-l new logname] [-f inactive] [-e expire] login

DESCRIPTION
The usermod command modifies a user’s login definition on the system. It changes
the definition of the specified login and makes the appropriate login-related system file and file system changes.

The system file entries created with this command have a limit of 512 characters per line. Specifying long arguments to several options may exceed this limit.

The following options are available:
- \( u \) \( \text{uid} \) New UID for the user. It must be a non-negative decimal integer below
\( \text{MAXUID} \) as defined in <param.h>.
- \( \text{-o} \) This option allows the specified UID to be duplicated (non-unique).
- \( \text{-g group} \) An existing group’s integer ID or character-string name. It redefines the
user’s primary group membership.
- \( \text{-G group} \) An existing group’s integer "ID" "," or character string name. It redefines
the user’s supplementary group membership. Duplicates between \( \text{group} \) with the \( \text{-g} \) and \( \text{-G} \) options are ignored. No more than \( \text{NGROUPS_UMAX} \) groups may be specified as defined in <param.h>.
- \( \text{-d dir} \) The new home directory of the user. It defaults to \( \text{base_dir/login} \), where
\( \text{base_dir} \) is the base directory for new login home directories, and \( \text{login} \) is
the new login.
- \( \text{-m} \) Move the user’s home directory to the new directory specified with the \( \text{-d} \) option. If the directory already exists, it must have permissions
read/write/execute by \( \text{group} \), where \( \text{group} \) is the user’s primary group.
- \( \text{-s shell} \) Full pathname of the program that is used as the user’s shell on login.
The value of \( \text{shell} \) must be a valid executable file.
- \( \text{-c comment} \) Any text string. It is generally a short description of the login, and is
currently used as the field for the user’s full name. This information is
stored in the user’s /etc/passwd entry.
- \( \text{-l new logname} \) A string of printable characters that specifies the new login name for the
user. It may not contain a colon (:) or a newline (\n).
- \( \text{-e expire} \) The date on which a login can no longer be used; after this date, no user
will be able to access this login. (This option is useful for creating tem-
porary logins.) You may type the value of the argument \( \text{expire} \) (which is a
date) in any format you like (except a Julian date). For example, you may
usermod (1M) (Essential Utilities) usermod (1M)

enter 10/6/90 or October 6, 1990. A value of '' defeats the status of the expired date.

-\(f\) inactive
   The maximum number of days allowed between uses of a login ID before that login ID is declared valid. Normal values are positive integers. A value of \(-1\) defeats the status.

login A string of printable characters that specifies the existing login name of the user. It must exist and may not contain a colon (:) or a newline (\n).

FILES
/etc/passwd, /etc/shadow, /etc/group

SEE ALSO
   groupadd(1M), groupdel(1M), groupmod(1M), logins(1M), passwd(1), passwd(1M), useradd(1M), userdel(1M), users(1).

DIAGNOSTICS
   The usermod command exits with one of the following values:
0   The command was executed successfully.
2   The command syntax was invalid. A usage message for the usermod command is displayed.
3   An invalid argument was provided to an option.
4   The uid given with the -u option is already in use.
6   The login to be modified does not exist or group does not exist.
8   The login to be modified is in use.
9   The new logname is already in use.
10  Cannot update the /etc/group file. Other update requests will be implemented.
11  Insufficient space to move the home directory (-m option). Other update requests will be implemented.
12  Unable to complete the move of the home directory to the new home directory.
NAME
users – display a compact list of users logged in

SYNOPSIS
/usr/ucb/users [ file ]

DESCRIPTION
users lists the login names of the users currently on the system in a compact,
one-line format.

Specifying file, tells users where to find its information; by default it checks
/var/adm/utmp.

Typing users is equivalent to typing who -q.

EXAMPLE
users
paul george ringo

FILES
/var/adm/utmp

SEE ALSO
**NAME**

uucheck – check the uucp directories and permissions file

**SYNOPSIS**

/usr/lib/uucp/uucheck [options]

**DESCRIPTION**

uucheck checks for the presence of the uucp system required files and directories. uucheck also does error checking of the Permissions file (/etc/uucp/Permissions). uucheck has the following options:

- `-v` Give a detailed (verbose) explanation of how the uucp programs will interpret the Permissions file.

- `-xdebug_level` 
  `debug level` is a number from 0 to 9. Higher numbers give more detailed debugging information.

uucheck is executed during package installation. Note that uucheck can only be used by the super-user or uucp.

**FILES**

/etc/uucp/Systems
/etc/uucp/Permissions
/etc/uucp/Devices
/etc/uucp/Limits
/var/spool/uucp/*
/var/spool/locks/*
/var/spool/uucppublic/*

**SEE ALSO**

uucico(1M), uusched(1M).

uucp(1C), uustat(1C), uux(1C) in the *User's Reference Manual*.

**NOTES**

The program does not check file/directory modes or some errors in the Permissions file such as duplicate login or machine name.
NAME
uucico – file transport program for the uucp system

SYNOPSIS
/usr/lib/uucp/uucico [options]

DESCRIPTION
uucico is the file transport program for uucp work file transfers. The following options are available.

-ctype The first field in the Devices file is the "Type" field. The -c option forces uucico to only use entries in the "Type" field that match the user specified type. The specified type is usually the name of a local area network.

-dspool_directory This option specifies the directory spool directory that contains the uucp work files to be transferred. The default spool directory is /var/spool/uucp.

-f This option is used to "force execution" of uucico by ignoring the limit on the maximum number of uucicos defined in the /etc/uucp/Limits file.

-interface This option defines the interface used with uucico. The interface only affects slave mode. Known interfaces are UNIX (default), TLI (basic Transport Layer Interface), and TLIS (Transport Layer Interface with Streams modules, read/write).

-role_number The role_number 1 is used for master mode. role_number 0 is used for slave mode (default). When uucico is started by a program or cron, role_number 1 should be used for master mode.

-system_name The -s option defines the remote system (system_name) that uucico will try to contact. It is required when the role is master; system_name must be defined in the Systems file.

-debug_level Both uux and uucp queue jobs that will be transferred by uucico. These jobs are normally started by the uusched scheduler, for debugging purposes, and can be started manually. For example, the shell utry starts uucico with debugging turned on. The debug_level is a number between 0 and 9. Higher numbers give more detailed debugging information.

FILES
/etc/uucp/Systems
/etc/uucp/Permissions
/etc/uucp/Devices
/etc/uucp/Devconfig
/etc/uucp/Sysfiles
/etc/uucp/Limits
/var/spool/uucp/*
/var/spool/locks/*
/var/spool/uucppublic/*
SEE ALSO

cron(1M), uusched(1M), uutry(1M)
uucp(1C), uustat(1C), uux(1C) in the User's Reference Manual
NAME
uucleanup - uucp spool directory clean-up

SYNOPSIS
/usr/lib/uucp/uucleanup [options]

DESCRIPTION
uucleanup will scan the spool directories for old files and take appropriate action to remove them in a useful way:

Inform the requester of send/receive requests for systems that can not be reached.

Return undeliverable mail to the sender.

Deliver rnews files addressed to the local system.

Remove all other files.

In addition, there is a provision to warn users of requests that have been waiting for a given number of days (default 1). Note that uucleanup will process as if all option *times* were specified to the default values unless *time* is specifically set.

The following options are available.

- **-ctime** Any C. files greater or equal to *time* days old will be removed with appropriate information to the requester. (default 7 days)

- **-Dtime** Any D. files greater or equal to *time* days old will be removed. An attempt will be made to deliver mail messages and execute rnews when appropriate. (default 7 days)

- **-wtime** Any C. files equal to *time* days old will cause a mail message to be sent to the requester warning about the delay in contacting the remote. The message includes the JOBID, and in the case of mail, the mail message. The administrator may include a message line telling whom to call to check the problem (-m option). (default 1 day)

- **-xtime** Any X. files greater or equal to *time* days old will be removed. The D. files are probably not present (if they were, the X. could get executed). But if there are D. files, they will be taken care of by D. processing. (default 2 days)

- **-mstring** Include *string* in the warning message generated by the -w option.

- **-otime** Other files whose age is more than *time* days will be deleted. (default 2 days) The default line is "See your local administrator to locate the problem".

- **-ssystem** Execute for system spool directory only.

- **-xdebug_level** The -x debug level is a single digit between 0 and 9; higher numbers give more detailed debugging information. (This option may not be available on all systems.)
This program is typically started by the shell `uudemon.cleanup`, which should be started by `cron(1M)`.

**FILES**

- `/usr/lib/uucp` directory with commands used by `uucleanup` internally
- `/var/spool/uucp` spool directory

**SEE ALSO**

- `cron(1M)`
- `uucp(1C), uux(1C)` in the *User's Reference Manual*
NAME

uucp, uulog, uuname - UNIX-to-UNIX system copy

SYNOPSIS

uucp [ options ] source-files destination-file
uulog [ options ] system
uuname [ options ]

DESCRIPTION

uucp

uucp copies files named by the source-file arguments to the destination-file argument. A source file name may be a pathname on your machine or may have the form:

    system-name\pathname

where system-name is taken from a list of system names that uucp knows about. The destination system-name may also include a list of system names such as

    system-name\system-name\...\system-name\pathname

In this case, an attempt is made to send the file, via the specified route, to the destination. Care should be taken to ensure that intermediate nodes in the route are willing to forward information (see NOTES below for restrictions). The shell metacharacters ?, *, and [...] appearing in pathname will be expanded on the appropriate system.

These utilities process supplementary code set characters according to the locale specified in the LC_CTYPE environment variable [see LANG on environ(5)], except that system-dependent names (for example, user names) and the grade given to the uucp -g option (see below) must be specified in ASCII characters. When shell metacharacters are used, the target system must also be able to process supplementary code set characters.

Pathnames may be one of:

1. a full pathname;
2. a pathname preceded by ~user where user is a login name on the specified system and is replaced by that user's login directory;
3. a pathname preceded by ~/destination where destination is appended to /var/spool/uucppublic; (NOTE: This destination will be treated as a file name unless more than one file is being transferred by this request or the destination is already a directory. To ensure that it is a directory, follow the destination with a '/'. For example ~/dan/ as the destination will make the directory /var/spool/uucppublic/dan if it does not exist and put the requested file(s) in that directory).
4. anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system, the copy will fail.

If the destination-file is a directory, the last part of the source-file name is used.

uucp removes execute permissions across the transmission and gives 0666 read and write permissions (see chmod(2)).

3/91
The following options are interpreted by **uucp**:

- **-c**  Do not copy local file to the spool directory for transfer to the remote machine (default).

- **-C**  Force the copy of local files to the spool directory for transfer.

- **-d**  Make all necessary directories for the file copy (default).

- **-f**  Do not make intermediate directories for the file copy.

- **-g grade**
  grade can be either a single ASCII letter/number or a string of ASCII alphanumeric characters defining a service grade. The **uuglist** command can determine whether it is appropriate to use the single letter/number or a string of alphanumeric characters as a service grade. The output from the uuglist command will be a list of service grades that are available or a message that says to use a single letter/number as a grade of service.

- **-j**  Output the uucp job identification string on the standard output. This job identification can be used by **uustat** to obtain the status of a uucp job or to terminate a uucp job. It is valid as long as the job remains queued on the local system.

- **-m**  Send mail to the requester when the copy is completed.

- **-n user**  Notify user on the remote system that a file was sent.

- **-r**  Do not start the file transfer, just queue the job.

- **-s file**  Report status of the transfer to file. This option overrides the **-m** option.

- **-w**
  If a file exists in the target directory with the same name as the file being transferred, do not overwrite the existing file. Instead, try to create a new file. If the file is named file, create file.N where N is a two-digit number. The number appended to the file name will begin with 00 and will increase by 1 for each subsequent file of the same name to a maximum of 99. If another version of the file cannot be created, the user is notified by mail.

  If the length of the file name is equal to the maximum for the system, no new version is created. If the length of the file name is less than the maximum for the system but the file name and the suffix are greater than the maximum, the suffix will be truncated. It is therefore possible for files whose names are one or two characters shorter than the maximum system file name length to be overwritten.

- **-xdebug_level**
  Produce debugging output on standard output. *debug_level* is a number between 0 and 9; as it increases to 9, more detailed debugging information is given. This option may not be available on all systems.

**uulog**

**uulog** queries a log file of **uucp** or **uuxqt** transactions in file
uucp(1C)  (Basic Networking Utilities)  uucp(1C)

/var/uucp/.Log/uuco/system or /var/uucp/.Log/uuxt/system.
These options cause uulog to print logging information:
-ssys  Print information about file transfer work involving system sys.
-fsystem Does a "tail -f" of the file transfer log for system. (You must hit
BREAK to exit this function.)

Other options used in conjunction with the above options are:
-x  Look in the uuxt log file for the given system.
-number Indicates that a "tail" command of number lines should be executed.

uuname

uuname lists the names of systems known to uucp. uuname recognizes the following options:
-c  Returns the names of systems known to cu. (The two lists are the
same, unless your machine is using different Systems files for cu and
uucp. See the Sysfiles file.)

-1  Return the local system name.

FILES

/var/spool/uucp   spool directories
/var/spool/uucppublic/* public directory for receiving and
        sending
/usr/lib/uucp/*   other program files
/etc/uucp/*      other data files

SEE ALSO
mail(1), uuglist(1C), uustat(1C), uux(1C), uuxqt(1M)
chmod(2) in the Programmer's Reference Manual

NOTES

For security reasons, the domain of remotely accessible files may be severely re­stricted. You will very likely not be able to access files by pathname; ask a responsible person on the remote system to send them to you. For the same re­asons you will probably not be able to send files to arbitrary pathnames. As dis­tributed, the remotely accessible files are those whose names begin
/var/spool/uucppublic (equivalent to ~/).
All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. Receiving multiple files specified by special shell characters ? * [ ] will not activate
the -m option.
The forwarding of files through other systems may not be compatible with the previous version of uucp. If forwarding is used, all systems in the route must have compatible versions of uucp.
Protected files and files that are in protected directories that are owned by the requester can be sent by uucp. However, if the requester is root, and the directory is not searchable by "other" or the file is not readable by "other," the request will fail.
uuencode(1C)  (Basic Networking Utilities)  uuencode(1C)

NAME
uuencode, uudecode – encode a binary file, or decode its ASCII representation

SYNOPSIS
uuencode [ source-file ] file-label
uudecode [ encoded-file ]

DESCRIPTION
uuencode converts a binary file into an ASCII-encoded representation that can be
sent using mail(1). It encodes the contents of source-file, or the standard input if
no source-file argument is given. The file-label argument is required. It is included
in the encoded file's header as the name of the file into which uudecode is to
place the binary (decoded) data. uuencode also includes the ownership and per­
mission modes of source-file, so that file-label is recreated with those same owner­
ship and permission modes.

uudecode reads an encoded-file, strips off any leading and trailing lines added by
mailer programs, and recreates the original binary data with the filename and the
mode and owner specified in the header.

The encoded file is an ordinary ASCII text file; it can be edited by any text editor.
But it is best only to change the mode or file-label in the header to avoid corrupt­
ing the decoded binary.

SEE ALSO
mail(1), uucp(1C), uux(1C)
uuencode(5) in the System Administrator's Reference Manual

NOTES
The encoded file's size is expanded by 35% (3 bytes become 4, plus control infor­
mation), causing it to take longer to transmit than the equivalent binary.

The user on the remote system who is invoking uudecode (typically uucp) must
have write permission on the file specified in the file-label.

Since both uuencode and uudecode run with user ID set to uucp, uudecode can
fail with permission denied when attempted in a directory that does not have
write permission allowed for other.
uugetty - set terminal type, modes, speed, and line discipline

SYNOPSIS
/usr/lib/uucp/uugetty [-t timeout] [-r] line [speed [type [linedisc]]]
/usr/lib/uucp/uugetty -c file

DESCRIPTION
uugetty is identical to getty(1M) but changes have been made to support using
the line for uucico, cu, and ct; that is, the line can be used in both directions.
The uugetty allows users to login, but if the line is free, uucico, cu, or ct can
use it for dialing out. The implementation depends on the fact that uucico, cu,
and ct create lock files when devices are used. When the open returns (or the
first character is read when -r option is used), the status of the lock file indicates
whether the line is being used by uucico, cu, ct, or someone trying to login.
Note that in the -r case, several RETURN characters may be required before the
login message is output. uucico trying to login will have to be told by using the
following login script:

"" \r\d\r\d\r\d\r in:--in:...

where the "..." is whatever would normally be used for the login sequence.
If there is a uugetty on one end of a direct line, there must be a uugetty on the
other end as well. Here is an /etc/inittab entry using uugetty on an intelligent
modem or direct line:

30:2:respawn:/usr/lib/uucp/uugetty -r -t 60 tty12 1200

The meanings of the available options are

-t timeout
 Specifies that uugetty should exit if the open on the line succeeds and
there is no response to the login prompt in timeout seconds. timeout is
replaced by an integer.

-r Causes uugetty to wait to read a character before it puts out the login
message, thus preventing two uugetties from looping. An entry for an
intelligent modem or direct line that has a uugetty on each end must use
this option.

line Defines the name of the line to which uugetty will attach itself. The line
name will point to an entry in the /dev directory. For example,
/dev/tty03.

speed Defines the entry to use from the /usr/lib/saf/ttymondefs file. The
entry defines the line speed, the login message, the initial tty setting, and
the next speed to try if the user says the speed is inappropriate (by send-
ing a break character). The default speed is 300.

type Defines the type of terminal connected to the line. The default terminal is
none, representing a normal terminal unknown to the system.

linedisc Sets the line discipline to use on the line. The default is LDISCO, which is
the only one currently compiled into the operating system.
-c file  Checks the speed and tty definitions in file and sends the results to standard output. Unrecognized modes and improperly constructed entries are reported. For correct entries, flag values are printed. file is replaced by /usr/lib/saf/ttymondefs or a similarly structured file.

FILES
/usr/lib/saf/ttymondefs
/etc/issue

SEE ALSO
uucico(1M), getty(1M), init(1M), gettydefs(4), init(4), tty(7).
ct(1C), cu(1C), login(1) in the User’s Reference Manual.

NOTES
ct does not work when uugetty is used with an intelligent modem such as Penril or Ventel.
NAME

uuglist – list service grades available on this UNIX system

SYNOPSIS

uuglist [-u] [-x debug_level]

DESCRIPTION

uuglist prints the list of service grades that are available on the system to use with the -g option of uucp(1C) and uux(1C). The following options are available:

- List the names of the service grades that the user is allowed to use with the -g option of the uucp and uux commands.
- Produce debugging output. debug_level is a single digit between 0 and 9; higher numbers give more detailed debugging information.

FILES

/usr/lib/uucp/Grades list of service grades

SEE ALSO

uucp(1C), uux(1C)
NAME
uusched – the scheduler for the uucp file transport program

SYNOPSIS
/usr/lib/uucp/uusched [options]

DESCRIPTION
uusched is the uucp(1C) file transport scheduler. It is usually started by the daemon uu­
demon.hour that is started by cron(1M) from an entry in
/var/spool/cron/crontab:

41,11 * * * * /usr/bin/su uucp -c "/usr/lib/uucp/uudemon.hour >
/dev/null"

The options are for debugging purposes only. debug_level are numbers between 0 and 9. Higher numbers give more detailed debugging information:

-u debug_level The -u debug_level option is passed to uucico(1M) as -x debug_level.

-x debug_level Outputs debugging messages from uusched(1M).

FILES
/etc/uucp/Systems
/etc/uucp/Permissions
/etc/uucp/Devices
/var/spool/uucp/*
/var/spool/locks/*
/var/spool/uucppublic/*

SEE ALSO
cron(1M), uucico(1M)
uucp(1C), uustat(1C), uux(1C) in the User’s Reference Manual
NAME
uustat - uucp status inquiry and job control

SYNOPSIS
uustat [-q] or [-m] or [-kjobid [-n]] or [-rjobid [-n]] or [-p]
uustat [-a [-j]] [-user] [-Sqric]
uustat [-asystem [-j]] [-user] [-Ssqric]
uustat -tsystem [-dnumber] [-c]

DESCRIPTION
uustat functions in the following three areas: displays the general status of, or
cancels, previously specified uucp commands; provides remote system perfor­
mance information, in terms of average transfer rates or average queue times;
provides general remote system-specific and user-specific status of uucp connec­
tions to other systems.

Here are the options that obtain general status of, or cancel, previously specified
uucp commands; uustat allows only one of these options to appear on each uus­
tat command line execution:

- a List all jobs in queue.
- j List the total number of jobs displayed. The - j option can only be
  used in conjunction with the - a or the - s option.
- kjobid Kill the uucp request whose job identification is jobid. The killed uucp
  request must belong to the person issuing the uustat command unless
  one is the super-user or uucp administrator. If the job is killed by the
  super-user or uucp administrator, electronic mail is sent to the user.
- m Report the status of accessibility of all machines.
- n Suppress all standard out output, but not standard error. The - n
  option is used in conjunction with the - k and - r options.
- p Execute the command ps -flp for all the process-ids that are in the
  lock files.
- q List the jobs queued for each machine. If a status file exists for the
  machine, its date, time and status information are reported. In addi­
tion, if a number appears in parentheses next to the number of C or X
  files, it is the age in days of the oldest C./X. file for that system. The
  Retry field represents the number of hours until the next possible call.
The Count is the number of failure attempts. NOTE: for systems with
a moderate number of outstanding jobs, this could take 30 seconds or
more of real-time to execute. Here is an example of the output pro­
duced by the - q option:
eagle 3C 04/07-11:07 NO DEVICES AVAILABLE
mb3bs3 2C 07/07-10:42 SUCCESSFUL

The above output tells how many command files are waiting for each
system. Each command file may have zero or more files to be sent
(zero means to call the system and see if work is to be done). The
date and time refer to the previous interaction with the system fol­
lowed by the status of the interaction.
-rjobid  Rejuvenate jobid. The files associated with jobid are touched so that their modification time is set to the current time. This prevents the cleanup daemon from deleting the job until the jobs’ modification time reaches the limit imposed by the daemon.

Here are the options that provide remote system performance information, in terms of average transfer rates or average queue times; the -c and -d options can only be used in conjunction with the -t option:

-tsystem  Report the average transfer rate or average queue time for the past 60 minutes for the remote system. The following parameters can only be used with this option:

-dnumber  number is specified in minutes. Used to override the 60 minute default used for calculations. These calculations are based on information contained in the optional performance log and therefore may not be available. Calculations can only be made from the time that the performance log was last cleaned up.

-c  Average queue time is calculated when the -c parameter is specified and average transfer rate when -c is not specified. For example, the command

    uustat -teagle -d50 -c

produces output in the following format:

    average queue time to eagle for last 50 minutes: 5 seconds

The same command without the -c parameter produces output in the following format:

    average transfer rate with eagle for last 50 minutes: 2000.88 bytes/sec

Here are the options that provide general remote system-specific and user-specific status of uucp connections to other systems. Either or both of the following options can be specified with uustat. The -j option can only be used in conjunction with the -s or -a option to list the total number of jobs displayed:

-ssystem  Report the status of all uucp requests for remote system system.

-uuser  Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

    eagleN1bd7 4/07-11:07 S eagle dan 522 /home/dan/A
    eagleC1bd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924
    4/07-11:07 S eagle dan rmail mike

With the above two options, the first field is the jobid of the job. This is followed by the date/time. The next field is an S if the job is sending a file or an R if the job is requesting a file. The next field is the machine where the file is to be transferred. This is followed by the user-id of the user who queued the job. The next field contains the size of the file, or in the case of a remote execution (rmail is the command used for remote mail), the name of the command. When the size appears in this field, the file name is also given. This can either be the name given by the user or an internal name (for example, D.3b2al2ce4924) that is created for
data files associated with remote executions (rmail in this example).

\textit{-Sqric} Report the job state: \texttt{q} for queued jobs, \texttt{r} for running jobs, \texttt{i} for interrupted jobs, and \texttt{c} for completed jobs.

A job is queued if the transfer has not started. A job is running when the transfer has begun. A job is interrupted if the transfer began but was terminated before the file was completely transferred. A completed job, of course, is a job that successfully transferred. The completed state information is maintained in the accounting log, which is optional and therefore may be unavailable. The parameters can be used in any combination, but at least one parameter must be specified. The \texttt{-S} option can also be used with \texttt{-s} and \texttt{-u} options. The output for this option is exactly like the output for \texttt{-s} and \texttt{-u} except that the job states are appended as the last output word. Output for a completed job has the following format:

\texttt{eagleClbd3 completed}

When no options are given, \texttt{uustat} outputs the status of all \texttt{uucp} requests issued by the current user.

\textbf{FILES}

\begin{itemize}
  \item \texttt{/var/spool/uucp/*} spool directories
  \item \texttt{/var/uucp/.Admin/account} accounting log
  \item \texttt{/var/uucp/.Admin/perflog} performance log
\end{itemize}

\textbf{SEE ALSO}

\texttt{uucp(1C)}

\textbf{DIAGNOSTICS}

The \texttt{-t} option produces no message when the data needed for the calculations is not being recorded.

\textbf{NOTES}

After the user has issued the \texttt{uucp} request, if the file to be transferred is moved or deleted or was not copied to the spool directory with the \texttt{-C} option when the \texttt{uucp} request was made, \texttt{uustat} reports a file size of \texttt{-99999}. This job will eventually fail because the file(s) to be transferred can not be found.
NAME
uuto, uupick - public UNIX-to-UNIX system file copy

SYNOPSIS
uuto [ options ] source-files destination
uupick [ -s system ]

DESCRIPTION
uuto sends source-files to destination. uuto uses the uucp(1C) facility to send files, while it allows the local system to control the file access. A source-file name is a path name on your machine. Destination has the form:

```
 system[!system]...!user
```

where system is taken from a list of system names that uucp knows about [see uuname(1C)]. user is the login name of someone on the specified system.

Two options are available:

- `-p` Copy the source file into the spool directory before transmission.
- `-m` Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where PUBDIR is a public directory defined in the uucp source. By default, this directory is /var/spool/uucppublic. Specifically the files are sent to

```
PUBDIR/receive/user/mysystem/files.
```

The destined recipient is notified by mail(1) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifically, uupick searches PUBDIR for files destined for the user. For each entry (file or directory) found, the following message is printed on the standard output:

```
 from system sysname: [file file-name] [dir dirname] ?
```

uupick then reads a line from the standard input to determine the disposition of the file:

- `<new-line>` Go on to next entry.
- `d` Delete the entry.
- `m [ dir ]` Move the entry to named directory dir. If dir is not specified as a complete path name (in which $HOME is legitimate), a destination relative to the current directory is assumed. If no destination is given, the default is the current directory.
- `a [ dir ]` Same as `m` except moving all the files sent from system.
- `p` Print the content of the file.
- `q` Stop.
- EOT (CTRL-d) Same as `q`.
- `!command` Escape to the shell to do command.
- `*` Print a command summary.
uupick invoked with the -s system option will only search the PUBDIR for files sent from system.

**FILES**

PUBDIR /var/spool/uucppublic public directory

**SEE ALSO**

mail(1), uucp(1C), uustat(1C), uux(1C)
uucleanup(1M) in the System Administrator’s Reference Manual

**NOTES**

In order to send files that begin with a dot (for example, .profile), the files must be qualified with a dot. For example, the following files are correct:

- .profile
- .prof*
- .profil?

The following files are incorrect:

*prof*

?profile
Uutry(1M) (Basic Networking Utilities) Uutry(1M)

NAME
Uutry – try to contact remote system with debugging on

SYNOPSIS
/usr/lib/uucp/Uutry [options] system_name

DESCRIPTION
Uutry is a shell that is used to invoke uucico to call a remote site. Debugging is initially turned on and is set to the default value of 5. The debugging output is put in file /tmp/system_name. Here are the options:

-ctype The first field in the Devices file is the "Type" field. The -c option forces uucico to only use entries in the "Type" field that match the user specified type. The specified type is usually the name of a local area network.

-r This option overrides the retry time that is set in file /var/uucp/.status/system_name.

-xdebug_level debug_level is a number from 0 to 9. Higher numbers give more detailed debugging information.

FILES
/etc/uucp/Systems
/etc/uucp/Permissions
/etc/uucp/Devices
/etc/uucp/Limits
/var/spool/uucp/*
/var/spool/locks/*
/var/spool/uucppublic/*
/tmp/system_name

SEE ALSO
uucico(1M)
uucp(1C), uux(1C) in the User's Reference Manual
NAME
  uux - UNIX-to-UNIX system command execution

SYNOPSIS
  uux [ options ] command-string

DESCRIPTION
  uux will gather zero or more files from various systems, execute a command on a
  specified system and then send standard output to a file on a specified system.

NOTE: For security reasons, most installations limit the list of commands executable on behalf of an incoming request from uux, permitting only the receipt of mail [see mail(1)]. (Remote execution permissions are defined in /etc/uucp/Permissions.)

The command-string is made up of one or more arguments that look like a shell command line, except that the command and file names may be prefixed by system-name1. A null system-name is interpreted as the local system.

File names may be one of:
  (1) a full pathname;
  (2) a pathname preceded by ~xxx, where xxx is a login name on the
      specified system and is replaced by that user's login directory;
  (3) anything else is prefixed by the current directory.

As an example, the command
  uux "!diff sys1!/~home/dan/file1 sys2!/a4/dan/file2 > !~/dan/file.diff"
will get the file1 and file2 files from the "sys1" and "sys2" machines, execute a diff(l) command and put the results in file.diff in the local PUBDIR/dan/ directory. PUBDIR is a public directory defined in the uucp source. By default, this directory is /var/spool/uucppublic.

Any special shell characters such as <, >, ;, | should be quoted either by quoting the entire command-string, or quoting the special characters as individual arguments.

uux will attempt to get all appropriate files to the specified system where they will be processed. For files that are output files, the file name must be escaped using parentheses. For example, the command:
  uux "a!cut -f1 b!/usr/file > c!/usr/file"
gets "/usr/file" from system "b" and sends it to system "a", performs a cut command on that file and sends the result of the cut command to system "c".

uux will notify you if the requested command on the remote system was disallowed. This notification can be turned off by the -n option. The response comes by remote mail from the remote machine.

The following options are interpreted by uux:
The standard input to uux is made the standard input to the command-string.

-aname Use name as the user job identification replacing the initiator user-id. (Notification will be returned to user-id name.)

-b Return whatever standard input was provided to the uux command if the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer to the remote machine (default).

-c Force the copy of local files to the spool directory for transfer.

-ggrade grade can be either a single letter, number, or a string of alphanumeric characters defining a service grade. The uuglist(1C) command determines whether it is appropriate to use the single letter, number, or a string of alphanumeric characters as a service grade. The output from the uuglist command will be a list of service grades that are available or a message that says to use a single letter or number as a grade of service.

-j Output the jobid string on the standard output which is the job identification. This job identification can be used by uustat(1C) to obtain the status or terminate a job.

-n Do not notify the user if the command fails.

-p Same as -: The standard input to uux is made the standard input to the command-string.

-r Do not start the file transfer, just queue the job.


-xdebug_level Produce debugging output on the standard output. debug_level is a number between 0 and 9; as it increases to 9, more detailed debugging information is given.

-z Send success notification to the user.

FILES
/var/spool/uucp spool directories
/etc/uucp/Permissions remote execution permissions
/usr/lib/uucp/* other programs
/etc/uucp/* other data and programs

NOTES
Only the first command of a shell pipeline may have a system-name1. All other commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do. The shell tokens << and >> are not implemented.
The execution of commands on remote systems takes place in an execution directory known to the uucp system. All files required for the execution will be put into this directory unless they already reside on that machine. Therefore, the
simple file name (without path or machine reference) must be unique within the
uux request. The following command will NOT work:

```
uux "a!diff b!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"
```

but the command

```
uux "a!diff a!/home/dan/xyz c!/home/dan/xyz > !xyz.diff"
```

will work. (If `diff` is a permitted command.)

Protected files and files that are in protected directories that are owned by the
requester can be sent in commands using `uux`. However, if the requester is root,
and the directory is not searchable by "other", the request will fail.

**SEE ALSO**

cut(1), mail(1), uuglist(1C), uucp(1C), uustat(1C)
NAME
uuxqt – execute remote command requests

SYNOPSIS
/usr/lib/uucp/uuxqt [options]

DESCRIPTION
uuxqt is the program that executes remote job requests from remote systems generated by the use of the uux command. (mail uses uux for remote mail requests). uuxqt searches the spool directories looking for execution requests. For each request, uuxqt checks to see if all the required data files are available, accessible, and the requested commands are permitted for the requesting system. The Permissions file is used to validate file accessibility and command execution permission.

There are two environment variables that are set before the uuxqt command is executed:
UU_MACHINE is the machine that sent the job (the previous one).
UU_USER is the user that sent the job.

These can be used in writing commands that remote systems can execute to provide information, auditing, or restrictions. uuxqt has the following options:
-s system Specifies the remote system name.
-x debug_level debug_level is a number from 0 to 9. Higher numbers give more detailed debugging information.

FILES
/etc/uucp/Permissions
/etc/uucp/Limits
/var/spool/uucp/*
/var/spool/locks/*

SEE ALSO
uucico(1M)
uucp(1C), uustat(1C), uux(1C), mail(1) in the User's Reference Manual
NAME
vacation – automatically respond to incoming mail messages

SYNOPSIS
vacation [-l logfile] [-m mailfile] [-M canned_msg_file] [-F failsafe]

DESCRIPTION
When a new mail message arrives, the mail command first checks if the
recipient’s mailbox indicates that the message is to be forwarded elsewhere (to
some other recipient or as the input to some command). vacation is used to set
up forwarding on the user’s mailbox so that the new message is saved into an
alternative mailbox and a canned response is sent to the message’s originator.

Command-line options are:

-1 logfile File to keep track of which originators have already seen the canned
response. If not specified, it defaults to $HOME/.maillog.

-m mailfile Alternate mailbox to save new messages into. If not specified, it
defaults to $HOME/.mailfile.

-M canned_msg_file File to send back as the canned response. If canned_msg_file is not
specified, it defaults to /usr/lib/mail/std_vac_msg, which con­
tains:

    Subject: AUTOANSWERED!!!

    I am on vacation. I will read (and answer if necessary)
your e-mail message when I return.

    This message was generated automatically and you will
receive it only once, although all messages you send
me while I am away WILL be saved.

-F failsafe If mail has troubles delivering to the mailfile specified, it may
optionally be forwarded to another login id (failsafe) instead of being
returned to the sender.

-d The log file will have the day’s date appended.

To remove the vacation functionality, use

    mail -F ""

FILES
/tmp/notif* temporary file
/usr/share/lib/mail/std_vac_msg default canned response
/var/mail/* users’ standard mailboxes
/usr/lib/mail/vacation2 program that actually sends back the canned
response

SEE ALSO
mail(1)
User’s Guide.
Because `vacation` uses the "Forward to command" facility of `mail` to implement notifications, `/var/mail/username` should **not** be specified as the place to put newly arrived messages via the `-m` invocation option. The `mail` command uses `/var/mail/username` to hold either mail messages, **or** indications of mail forwarding, but not both simultaneously.
NAME
vacation – reply to mail automatically

SYNOPSIS
/usr/ucb/vacation [-I]
/usr/ucb/vacation [-j] [-alias] [-tN] username

DESCRIPTION
vacation automatically replies to incoming mail. The reply is contained in the
file .vacation.msg, that you create in your home directory.
This file should include a header with at least a 'Subject:' line (it should not
include a 'From:' or a 'To:' line). For example:

    Subject: I am on vacation
    I am on vacation until July 22. If you have something urgent,
    please contact Joe Jones (jones@f40).
    --John

If the string $SUBJECT appears in the .vacation.msg file, it is replaced with the
subject of the original message when the reply is sent; thus, a .vacation.msg file
such as

    Subject: I am on vacation
    I am on vacation until July 22.
    Your mail regarding "$SUBJECT" will be read when I return.
    If you have something urgent, please contact
    Joe Jones (jones@f40).
    --John

will include the subject of the message in the reply.
No message is sent if the 'To:' or the 'Cc:' line does not list the user to whom
the original message was sent or one of a number of aliases for them, if the initial
From line includes the string -REQUEST, or if a 'Precedence: bulk' or 'Pre-
cedence: junk' line is included in the header.
The following options are available:

-I Initialize the .vacation.pag and .vacation.dir files and start
/usr/ucb/vacation.
If the -I flag is not specified, and a user argument is given, /usr/ucb/vacation
reads the first line from the standard input (for a 'From:' line, no colon). If
absent, it produces an error message. The following options may be specified:

-alias Indicate that alias is one of the valid aliases for the user running
/usr/ucb/vacation, so that mail addressed to that alias generates a
reply.
-j Do not check whether the recipient appears in the 'To:' or the 'Cc:'
line.
-tN Change the interval between repeat replies to the same sender. The
default is 1 week. A trailing s, m, h, d, or w scales N to seconds, minutes,
hours, days, or weeks respectively.
USAGE
To start /usr/ucb/vacation, create a .forward file in your home directory containing a line of the form:

```
\username, "/usr/ucb/vacation username"
```

where username is your login name.
Then type in the command:

```
/usr/ucb/vacation -I
```

To stop /usr/ucb/vacation, remove the .forward file, or move it to a new name.

If /usr/ucb/vacation is run with no arguments, it will permit you to interactively turn /usr/ucb/vacation on or off. It will create a .vacation.msg file for you, or edit an existing one, using the editor specified by the VISUAL or EDITOR environment variable, or vi(1) if neither of those environment variables are set. If a .forward file is present in your home directory, it will ask whether you want to remove it and turn off /usr/ucb/vacation. If it is not present in your home directory, it creates it for you, and automatically performs a '/usr/ucb/vacation -I' function, turning on /usr/ucb/vacation.

FILES
-/.forward
-/.vacation.msg

A list of senders is kept in the files .vacation.pag and .vacation.dir in your home directory.

SEE ALSO
sendmail(1M)
vi(1) in the User’s Reference Manual
NAME
val – validate an SCCS file

SYNOPSIS
val
val [-s] [-rSID] [-mname] [-ytype] files

DESCRIPTION
val determines if the specified file is an SCCS file meeting the characteristics specified by the optional argument list. Arguments to val may appear in any order. The arguments consist of keyletter arguments, which begin with a -, and named files.

val has a special argument, -, which causes reading of the standard input until an end-of-file condition is detected. Each line read is independently processed as if it were a command line argument list.

val generates diagnostic messages on the standard output for each command line and file processed, and also returns a single 8-bit code on exit as described below.

The keyletter arguments are defined as follows. The effects of any keyletter argument apply independently to each named file on the command line.

-s The presence of this argument silences the diagnostic message normally generated on the standard output for any error that is detected while processing each named file on a given command line.

-rSID The argument value SID (SCCS identification string) is an SCCS delta number. A check is made to determine if the SID is ambiguous (for example, -r1 is ambiguous because it physically does not exist but implies 1.1, 1.2, and so on, which may exist) or invalid (for example, r1.0 or r1.1.0 are invalid because neither can exist as a valid delta number). If the SID is valid and not ambiguous, a check is made to determine if it actually exists.

-mname The argument value name is compared with the SCCS %M% keyword in file.

-ytype The argument value type is compared with the SCCS %Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors; it can be interpreted as a bit string where (moving from left to right) set bits are interpreted as follows:

bit 0 = missing file argument
bit 1 = unknown or duplicate keyletter argument
bit 2 = corrupted SCCS file
bit 3 = cannot open file or file not SCCS
bit 4 = SID is invalid or ambiguous
bit 5 = SID does not exist
bit 6 = %Y%, -y mismatch
bit 7 = %M%, -m mismatch
val(1) (Enhanced Programming Utilities) val(1)

val can process two or more files on a given command line and in turn can process multiple command lines (when reading the standard input). In these cases an aggregate code is returned: a logical OR of the codes generated for each command line and file processed.

SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1)

DIAGNOSTICS
Use help(1) for explanations.

NOTES
val can process up to 50 files on a single command line.
vc(1) (Source Code Control System Utilities) vc(1)

NAME
vc – version control

SYNOPSIS
vc [-a] [-t] [-cchar] [-s] [keyword=value ... keyword=value]

DESCRIPTION
This command is obsolete and will be removed in the next release.
The vc command copies lines from the standard input to the standard output
under control of its arguments and of “control statements” encountered in the
standard input. In the process of performing the copy operation, user-declared
keywords may be replaced by their string value when they appear in plain text
and/or control statements.
The copying of lines from the standard input to the standard output is condi­
tional, based on tests (in control statements) of keyword values specified in con­
trol statements or as vc command arguments.
A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon
(:), except as modified by the -c keyletter (see below). Input lines beginning
with a backslash (\) followed by a control character are not control lines and are
copied to the standard output with the backslash removed. Lines beginning with
a backslash followed by a non-control character are copied in their entirety.
A keyword is composed of 9 or less alphanumerics; the first must be alphabetic.
A value is any ASCII string that can be created with ed; a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.
Replacement of keywords by values is done whenever a keyword surrounded by
control characters is encountered on a version control statement. The -a keyletter
(see below) forces replacement of keywords in all lines of text. An uninterpreted
control character may be included in a value by preceding it with \. If a literal \ is
desired, then it too must be preceded by \.
The following options are valid:
-a Forces replacement of keywords surrounded by control characters
with their assigned value in all text lines and not just in vc state­
ments.
-t All characters from the beginning of a line up to and including the
first tab character are ignored for the purpose of detecting a control
statement. If a control statement is found, all characters up to and
including the tab are discarded.
-cchar Specifies a control character to be used in place of the “:” default.
-s Silences warning messages (not error) that are normally printed on
the diagnostic output.
vc recognizes the following version control statements:
:dcl keyword[, ..., keyword]
Declare keywords. All keywords must be declared.
:asg keyword=value
Assign values to keywords. An asg statement overrides the assignment for the corresponding keyword on the vc command line and all previous asg statements for that keyword. Keywords that are declared but are not assigned values have null values.

:if condition
...
:end
Skip lines of the standard input. If the condition is true, all lines between the if statement and the matching end statement are copied to the standard output. If the condition is false, all intervening lines are discarded, including control statements. Note that intervening if statements and matching end statements are recognized solely for the purpose of maintaining the proper if-end matching.

The syntax of a condition is:

<cond> ::= [ "not" ] <or>  
<or> ::= <and> | <and> "|" <or>  
<and> ::= <exp> | <exp> "&" <and>  
<exp> ::= "(" <or> ")" | <value> <op> <value>  
<op> ::= "=" | "!=" | "<" | "<="  
<value> ::= <arbitrary ASCII string> | <numeric string>  

The available operators and their meanings are:

= equal
! = not equal
& and
| or
> greater than
< less than
( ) used for logical groupings

not may only occur immediately after the if, and when present, inverts the value of the entire condition

The > and < operate only on unsigned integer values (for example, : 012 > 12 is false). All other operators take strings as arguments (for example, : 012 != 12 is true).

The precedence of the operators (from highest to lowest) is:

= ! = > < all of equal precedence
&
|

Parentheses may be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one blank or tab.
Replace keywords on lines that are copied to the standard output. The two leading control characters are removed, and keywords surrounded by control characters in text are replaced by their value before the line is copied to the output file. This action is independent of the -a keyletter.

: on
: off Turn on or off keyword replacement on all lines.
: ctl char
  Change the control character to char.
: msg message
  Print message on the diagnostic output.
: err message
  Print message followed by:
    ERROR: err statement on line ... (915)
  on the diagnostic output. vc halts execution, and returns an exit code of 1.

SEE ALSO
  help(1)
ed(1) in the User’s Reference Manual
vi (visual) is a display-oriented text editor based on an underlying line editor ex. It is possible to use the command mode of ex from within vi and vice-versa. The visual commands are described on this manual page; how to set options (like automatically numbering lines and automatically starting a new output line when you type carriage return) and all ex line editor commands are described on the ex(l) manual page.

When using vi, changes you make to the file are reflected in what you see on your terminal screen. The position of the cursor on the screen indicates the position within the file.

Invocation Options
The following invocation options are interpreted by vi (previously documented options are discussed in the NOTES section of this manual page):

- **-t tag** Edit the file containing the tag and position the editor at its definition.

- **-r file** Edit file after an editor or system crash. (Recovers the version of file that was in the buffer when the crash occurred.)

- **-l** Set up for editing LISP programs.

- **-L** List the name of all files saved as the result of an editor or system crash.

- **-wn** Set the default window size to n. This is useful when using the editor over a slow speed line.

- **-R** Readonly mode; the readonly flag is set, preventing accidental overwriting of the file.

- **-x** Encryption option; when used, vi simulates the X command of ex and prompts the user for a key. This key is used to encrypt and decrypt text using the algorithm of the crypt command. The X command makes an educated guess to determine whether text read in is encrypted or not. The temporary buffer file is encrypted also, using a transformed version of the key typed in for the -x option. See crypt(1). Also, see the WARNING section at the end of this manual page.

- **-C** Encryption option; same as the -x option, except that vi simulates the C command of ex. The C command is like the X command of ex, except that all text read in is assumed to have been encrypted.
-c command Begin editing by executing the specified editor command (usually a search or positioning command).

The file argument indicates one or more files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

The vedit invocation is intended for beginners. It is the same as vi except that the report flag is set to 1, the showmode and novice flags are set, and magic is turned off. These defaults make it easier to learn how to use vi.

vi Modes

Command Normal and initial mode. Other modes return to command mode upon completion. ESC (escape) is used to cancel a partial command.

Input Entered by setting any of the following options: a A i I o O c C s s r . Arbitrary text may then be entered. Input mode is normally terminated with ESC character, or, abnormally, with an interrupt.

Last line Reading input for : / ? or !; terminate by typing a carriage return; an interrupt cancels termination.

COMMAND SUMMARY

In the descriptions, CR stands for carriage return and ESC stands for the escape key.

Sample commands

← ↓ ↑ → arrow keys move the cursor
h j k l same as arrow keys
i text ESC insert text
c w new ESC change word to new
e a s ESC pluralize word (end of word; append $;
    escape from input state)
x delete a character
dw delete a word
dd delete a line
3 dd delete 3 lines
u undo previous change
Z Z exit vi, saving changes
: q ! CR quit, discarding changes
/ text CR search for text
^ U ^ D scroll up or down
: cmd CR any ex or ed command

Counts before vi commands

Numbers may be typed as a prefix to some commands. They are interpreted in one of these ways.
vi (1) (Editing Utilities) vi (1)

line/column number  \( z \quad G \quad l \)
scroll amount  \( ^D \quad ^U \)
repeat effect  most of the rest

Interrupting, canceling
ESC  end insert or incomplete cmd
DEL  (delete or rubout) interrupts

File manipulation
\( ZZ \)  if file modified, write and exit; otherwise, exit
:wCR  write back changes
:w ! CR  forced write, if permission originally not valid
:qCR  quit
:q ! CR  quit, discard changes
:e  nameCR  edit file name
:e ! CR  reedit, discard changes
:e + nameCR  edit, starting at end
:e +nCR  edit starting at line n
:e #CR  edit alternate file
:e ! #CR  edit alternate file, discard changes
:w nameCR  write file name
:w ! nameCR  overwrite file name
:shCR  run shell, then return
: ! cmdCR  run cmd, then return
:nCR  edit next file in arglist
:n argsCR  specify new arglist
^G  show current file and line
:ta tagCR  position cursor to tag

In general, any \texttt{ex} or \texttt{ed} command (such as \texttt{substitute} or \texttt{global}) may be typed, preceded by a colon and followed by a carriage return.

Positioning within file
\( ^F \)  forward screen
\( ^B \)  backward screen
\( ^D \)  scroll down half screen
\( ^U \)  scroll up half screen
\( nG \)  go to the beginning of the specified line
(end default), where \( n \) is a line number
\( /pat \)  next line matching \( pat \)
\(?pat\)  previous line matching \( pat \)
n  repeat last / or ? command
N  reverse last / or ? command
\( /pat/+n \)  nth line after \( pat \)
\(?pat?\/-n \)  nth line before \( pat \)
\]  next section/function
[  previous section/function
(  beginning of sentence
)  end of sentence
(Editing Utilities)

{ beginning of paragraph
}
end of paragraph
%
find matching ( ) { or }

Adjusting the screen

^L clear and redraw window
^R clear and redraw window if ^L is → key
zCR redraw screen with current line at top of window
z-CR redraw screen with current line at bottom of window
z .CR redraw screen with current line at center of window
/pat/z-CR move pat line to bottom of window
zn .CR use n-line window
^E scroll window down 1 line
^Y scroll window up 1 line

Marking and returning

`` move cursor to previous context
`` move cursor to first non-white space in line
mx mark current position with the ASCII lower-case letter x
\x move cursor to mark x
\x move cursor to first non-white space in line marked by x

Line positioning

H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white
- previous line, at first non-white
CR return, same as +
↓ or ↓ next line, same column
↑ or ↑ previous line, same column

Character positioning

^ first non white-space character
0 beginning of line
$ end of line
h or → forward
l or ← backward
^H same as ←(backspace)
space same as →(space bar)
fx find next x
Fx find previous x
tx move to character prior to next x
Tx move to character following previous x
\ repeat last f F t or T
, repeat inverse of last f F t or T
n| move to column n
% find matching ( ) { or }

Page 4
Words, sentences, paragraphs

w  forward a word
b  back a word
e  end of word
)  to next sentence
}  to next paragraph
(  back a sentence
{  back a paragraph
W  forward a blank-delimited word
B  back a blank-delimited word
E  end of a blank-delimited word

 Corrections during insert

^H  erase last character (backspace)
^W  erase last word
erase  your erase character, same as ^H (backspace)
kill  your kill character, erase this line of input
\  quotes your erase and kill characters
ESC  ends insertion, back to command mode
DEL  interrupt, terminates insert mode
^D  backtab one character; reset left margin
     of autoindent
^^D  caret (\) followed by control-d (^D);
     backtab to beginning of line;
     do not reset left margin of autoindent
O^D  backtab to beginning of line;
     reset left margin of autoindent
^V  quote non-printable character

Insert and replace

a  append after cursor
A  append at end of line
i  insert before cursor
I  insert before first non-blank
o  open line below
O  open above
rx  replace single char with x
R\textasciitilde{esc}  replace characters

Operators

Operators are followed by a cursor motion, and affect all text that would have
been moved over. For example, since w moves over a word, dw deletes the word
that would be moved over. Double the operator, for example, dd to affect whole
lines.
vi (1) (Editing Utilities) vi (1)

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>delete</td>
</tr>
<tr>
<td>c</td>
<td>change</td>
</tr>
<tr>
<td>y</td>
<td>yank lines to buffer</td>
</tr>
<tr>
<td>&lt;</td>
<td>left shift</td>
</tr>
<tr>
<td>&gt;</td>
<td>right shift</td>
</tr>
<tr>
<td>l</td>
<td>filter through command</td>
</tr>
</tbody>
</table>

**Miscellaneous Operations**

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>change rest of line (c$)</td>
</tr>
<tr>
<td>D</td>
<td>delete rest of line (d$)</td>
</tr>
<tr>
<td>s</td>
<td>substitute chars (c1)</td>
</tr>
<tr>
<td>S</td>
<td>substitute lines (cc)</td>
</tr>
<tr>
<td>J</td>
<td>join lines</td>
</tr>
<tr>
<td>x</td>
<td>delete characters (d1)</td>
</tr>
<tr>
<td>X</td>
<td>delete characters before cursor (dh)</td>
</tr>
<tr>
<td>Y</td>
<td>yank lines (yy)</td>
</tr>
</tbody>
</table>

**Yank and Put**

Put inserts the text most recently deleted or yanked; however, if a buffer is named (using the ASCII lower-case letters a - z), the text in that buffer is put instead.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3yy</td>
<td>yank 3 lines</td>
</tr>
<tr>
<td>3yl</td>
<td>yank 3 characters</td>
</tr>
<tr>
<td>p</td>
<td>put back text after cursor</td>
</tr>
<tr>
<td>P</td>
<td>put back text before cursor</td>
</tr>
<tr>
<td>&quot;xp</td>
<td>put from buffer x</td>
</tr>
<tr>
<td>&quot;xy</td>
<td>yank to buffer x</td>
</tr>
<tr>
<td>&quot;xd</td>
<td>delete into buffer x</td>
</tr>
</tbody>
</table>

**Undo, Redo, Retrieve**

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>undo last change</td>
</tr>
<tr>
<td>U</td>
<td>restore current line</td>
</tr>
<tr>
<td>.</td>
<td>repeat last change</td>
</tr>
<tr>
<td>&quot;d p</td>
<td>retrieve d’th last delete</td>
</tr>
</tbody>
</table>

**AUTHOR**

vi and ex were developed by The University of California, Berkeley California, Computer Science Division, Department of Electrical Engineering and Computer Science.

**FILES**

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/tmp</td>
<td>default directory where temporary work files are placed; it can be changed using the directory option [see the ex(1) set command]</td>
</tr>
<tr>
<td>/usr/share/lib/terminfo/*</td>
<td>compiled terminal description database</td>
</tr>
<tr>
<td>/usr/lib/.coreterm/*</td>
<td>subset of compiled terminal description database</td>
</tr>
</tbody>
</table>
NOTES

Two options, although they continue to be supported, have been replaced in the documentation by options that follow the Command Syntax Standard [see intro(1)]. A \texttt{-r} option that is not followed with an option-argument has been replaced by \texttt{-L} and \texttt{+command} has been replaced by \texttt{-c \textit{command}}.

The encryption options are provided with the Security Administration Utilities package, which is available only in the United States.

Tampering with entries in \texttt{/usr/share/lib/terminfo/*} or \texttt{/usr/share/lib/tenninfo/*} (for example, changing or removing an entry) can affect programs such as \texttt{vi} that expect the entry to be present and correct. In particular, removing the "dumb" terminal may cause unexpected problems.

Software tabs using \texttt{^T} work only immediately after the \textit{autoindent}.

Left and right shifts on intelligent terminals do not make use of insert and delete character operations in the terminal.

SEE ALSO

\texttt{ed(1), edit(1), ex(1)}

\textit{User's Guide}

\textit{Editing Guide}

curses/terminfo chapter of the \textit{Programmer's Guide}
NAME
vidi – sets the font and video mode for a video device

SYNOPSIS
vidi [-d] [-f fontfile] font
vidi mode

DESCRIPTION
vidi has two functions: it loads/extracts a font or sets the video mode for the current standard input device. Without arguments, it lists all of the valid video mode and font commands.

Font Options
Some video cards support changeable character fonts. Available fonts are font8x8, font8x14, and font8x16. The font options are used as follows:

   vidi font loads font from /usr/lib/vidi/font.
   vidi -d font writes font to the standard output.
   vidi -d -f fontfile writes font to fontfile.
   vidi -f fontfile font loads font from fontfile instead of default directory.

Mode Options
vidi also sets the mode of the video adapter connected to the standard input. The modes are:

mono move current screen to the monochrome adapter.
cga move current screen to the Color Graphics adapter.
ega move current screen to the Enhanced Graphics adapter.
vga move current screen to the Video Graphics adapter.

Text and Graphics Modes
The following tables list the available modes.

Text Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Cols</th>
<th>Rows</th>
<th>Font</th>
<th>Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>c40x25</td>
<td>40</td>
<td>25</td>
<td>8x8</td>
<td>CGA (EGA VGA)</td>
</tr>
<tr>
<td>e40x25</td>
<td>40</td>
<td>25</td>
<td>8x14</td>
<td>EGA (VGA)</td>
</tr>
<tr>
<td>v40x25</td>
<td>40</td>
<td>25</td>
<td>8x16</td>
<td>VGA</td>
</tr>
<tr>
<td>m80x25</td>
<td>80</td>
<td>25</td>
<td>8x14</td>
<td>MONO (EGA_MONO VGA_MONO)</td>
</tr>
<tr>
<td>c80x25</td>
<td>80</td>
<td>25</td>
<td>8x8</td>
<td>CGA (EGA VGA)</td>
</tr>
<tr>
<td>em80x25</td>
<td>80</td>
<td>25</td>
<td>8x14</td>
<td>EGA_MONO (VGA_MONO)</td>
</tr>
<tr>
<td>e80x25</td>
<td>80</td>
<td>25</td>
<td>8x14</td>
<td>EGA (VGA)</td>
</tr>
<tr>
<td>vm80x25</td>
<td>80</td>
<td>25</td>
<td>8x16</td>
<td>VGA_MONO</td>
</tr>
<tr>
<td>v80x25</td>
<td>80</td>
<td>25</td>
<td>8x16</td>
<td>VGA</td>
</tr>
<tr>
<td>e80x43</td>
<td>80</td>
<td>43</td>
<td>8x14</td>
<td>EGA (VGA)</td>
</tr>
</tbody>
</table>
## Graphics Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Pixel Resolution</th>
<th>Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode5</td>
<td>320x200</td>
<td>4</td>
</tr>
<tr>
<td>mode6</td>
<td>640x200</td>
<td>2</td>
</tr>
<tr>
<td>modeD</td>
<td>320x200</td>
<td>16</td>
</tr>
<tr>
<td>modeE</td>
<td>640x200</td>
<td>16</td>
</tr>
<tr>
<td>modeF</td>
<td>640x350</td>
<td>2 (mono)</td>
</tr>
<tr>
<td>mode10</td>
<td>640x350</td>
<td>16</td>
</tr>
<tr>
<td>mode11</td>
<td>640x480</td>
<td>2</td>
</tr>
<tr>
<td>mode12</td>
<td>640x480</td>
<td>16</td>
</tr>
<tr>
<td>mode13</td>
<td>320x200</td>
<td>256</td>
</tr>
<tr>
<td>att640</td>
<td>640x400</td>
<td>16</td>
</tr>
<tr>
<td>att800x600</td>
<td>800x600</td>
<td>16</td>
</tr>
<tr>
<td>att640x400</td>
<td>640x400</td>
<td>256</td>
</tr>
</tbody>
</table>
NAME
volcopy (generic) – make literal copy of file system

SYNOPSIS
volcopy [-F FSType] [-v] [current_options] [-o specific_options] operands

DESCRIPTION
volcopy makes a literal copy of the file system.

current_options are options supported by the s5-specific module of volcopy. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

operands generally include the device and volume names and are file system specific. A detailed description of the operands can be found on the FSType-specific man pages of volcopy.

The options are:

- F Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the operands with an entry in the table.

- V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

- o Specify FSType-specific options.

NOTE
This command may not be supported for all FSTypes.

FILES
/etc/vfstab list of default parameters for each file system

SEE ALSO
vfstab(4)
Manual pages for the FSType-specific modules of volcopy
volcopy (1M)  (s5)  volcopy (1M)

NAME
volcopy (s5) – make a literal copy of an s5 file system

SYNOPSIS
volcopy [-F s5] [generic_options] [current_options] fsname srcdevice volname1
destdevice volname2

DESCRIPTION
generic_options are options supported by the generic volcopy command.
volcopy makes a literal copy of the s5 file system using a blocksize matched to
the device.

The options are:
- F s5 Specify the s5-FSType.
- a Invoke a verification sequence requiring a positive operator response
  instead of the standard 10-second delay before the copy is made.
- y Assume a yes response to all questions.

Other options are used only with 9-track magnetic tapes:
- bpdensity bits per inch
- feetsize size of reel in feet
- reelnun beginning reel number for a restarted copy
- buf use double buffered I/O
- e process until the end of tape, then ask for the next tape in sequence.

If the -e option is not selected, the program requests length and density information
if this is not given on the command line, or if it is not recorded on an input
tape label. If the file system is too large to fit on one reel, volcopy prompts for
additional reels. Labels of all reels are checked. Tapes may be mounted alternately on two or more drives. If volcopy is interrupted, it asks if the user wants to quit or escape to the command interpreter. In the latter case, the user can perform other operations (such as labelit) and return to volcopy by exiting the command interpreter. Note that the -e and -feet options are mutually exclusive.

The fsname argument represents the mounted name (for example, root, usr, and so on) of the file system being copied.

The srcdevice or destdevice should be the disk partition or tape. For example,
/dev/rdsk/* or /dev/rmt/*, where the value of * is machine specific.

The volname is the physical volume name. Such label names contain up to six
characters. volname may be "-" to use the existing volume name.

srcdevice and volname1 are the device and volume from which the copy of the file
system is being extracted. destdevice and volname2 are the target device and
volume.
`volcopy(1M)`

NOTE

`volcopy` does not support tape-to-tape copying. Use `dd(1M)` for tape-to-tape copying.

FILES

```
/var/adm/filesave.log a record of file systems/volumes copied
```

SEE ALSO

`dd(1M), labelit(1M), generic volcopy(1M); cpio(1) and sh(1) in the User's Reference Manual; and cpio(4) and fs(4), in the Programmer's Reference Manual`
NAME

volcopy (ufs) – make a literal copy of a ufs file system

SYNOPSIS

volcopy [-F ufs] [generic_options] [current_options] fsname srcdevice volname1 destdevice volname2

DESCRIPTION

generic_options are options supported by the generic volcopy command.
current_options are options supported by the s5-specific module of volcopy.

volcopy makes a literal copy of the ufs file system using a blocksize matched to the device.

The options are:

-F ufs Specify the ufs-FSType.

-a Invoke a verification sequence requiring a positive operator response instead of the standard 10-second delay before the copy is made.

-y Assume a yes response to all questions.

Other options are used only with 9-track magnetic tapes:

-bpidensity bits per inch

-feetsize size of reel in feet

-reelnum beginning reel number for a restarted copy

-buf use double buffered I/O

-e process until the end of tape, then ask for the next tape in sequence.

If the -e option is not selected, the program requests length and density information if this is not given on the command line or if it is not recorded on an input tape label. If the file system is too large to fit on one reel, volcopy prompts for additional reels. Labels of all reels are checked. Tapes may be mounted alternately on two or more drives. If volcopy is interrupted, it asks if the user wants to quit or wants to escape to the command interpreter. In the latter case, the user can perform other operations (such as labelit) and return to volcopy by exiting the command interpreter. Note that the -e and -feet options are mutually exclusive.

The fsname argument represents the mounted name (for example, root, usr, and so on) of the file system being copied.

The srcdevice or destdevice should be the disk partition or tape. For example /dev/rdsk/* or /dev/rmt/*, where the value of * is machine specific.

The volname is the physical volume name. Such label names contain up to six characters. volname may be "-" to use the existing volume name.

srcdevice and volname1 are the device and volume from which the copy of the file system is being extracted. destdevice and volname2 are the target device and volume.
fsname and volname are recorded in the superblock.

NOTE
volcopy does not support tape-to-tape copying. Use dd(1M) for tape-to-tape copying.

FILES
/var/adm/filesave.log a record of file systems/volumes copied

SEE ALSO
dd(1M), labelit(1M), generic volcopy(1M); cpio(1) in the User’s Reference Manual; and cpio(4) and ufs(4) in the Programmer’s Reference Manual
NAME
vsig - synchronize a co-process with the controlling FMLI application

SYNOPSIS
vsig

DESCRIPTION
The vsig executable sends a SIGUSR2 signal to the controlling FMLI process. This signal/alarm causes FMLI to execute the FMLI built-in command checkworld (see Chapter 2 in the Character User Interface Programmer's Guide), which causes all posted objects with a reread descriptor evaluating to TRUE to be reread. vsig takes no arguments.

EXAMPLES
The following is a segment of a shell program:

    echo "Sending this string to an FMLI process"
    vsig

The vsig executable flushes the output buffer before it sends the SIGUSR2 signal to make sure the string is actually in the pipe created by the cocreate function.

NOTES
Because vsig synchronizes with FMLI, it should be used rather than kill to send a SIGUSR2 signal to FMLI.

SEE ALSO
coproc(1F)
NAME
vtgetty – sets terminal type, modes, speed, and line discipline.

SYNOPSIS
/etc/vtgetty [-h] [-t timeout] line [ [speed[type linedisc]]]

DESCRIPTION
The vtgetty command is a program invoked by init(1M). It is the second process in the series (init-vtgetty-getty-login-shell) that passes its arguments and executes /etc/getty. The /etc/getty process will ultimately connect a user with the UNIX system. vtgetty can be executed only by the super-user (a process with the user-ID of root).

The command options are identical to those of getty(1M).
Initially, vtgetty opens the device and determines if any virtual terminals (vts) are open for that device. If there are active vts, the user will be prompted to determine if the vts should be closed automatically or manually when the user logs out.
If the automatic option is selected, vtgetty will send the signals, SIGHUP and SIGTERM, to each open vt.
It will then wait 3 seconds and send a SIGKILL signal to the vts to ensure that all the vts are terminated.
If the manual closure option is selected, the highest numbered vt will be activated and the user can manually close the vt. This will be repeated until all open vts are manually closed.

DIAGNOSTICS
vtgetty will fail under the following conditions:

If there is no memory available.
If it cannot open the device it was given.
If it cannot convert from a file descriptor to a file pointer.
If it cannot get the file status [stat(2)] of the device it was given.
If an ioctl(2) call fails.

FILES
/etc/gettydefs

SEE ALSO
getty(1M), init(1M), kill(1M), tty(1M), ioctl(2), stat(2), gettydefs(4), inittab(4) in the Programmer’s Reference Manual.
vtlmgr(1) (Essential Utilities) vtlmgr(1)

NAME
vtlmgr – monitors and opens virtual terminals.

SYNOPSIS
vtlmgr [-k]

DESCRIPTION
When you invoke the vtlmgr command (usually from within your .profile), it places itself in the background and monitors /dev/vtmon for signals from the keyboard/display driver to open new virtual terminals.

Option:
-k The -k option sends a SIGHUP signal to all open virtual terminals when you log off (by entering CTRL-d from your home virtual terminal). This automatically closes, if possible, existing virtual terminals. For virtual terminals that cannot be automatically closed, you are asked if you want to close them manually.

After running vtlmgr, you open new virtual terminals and then switch between them by entering a hot-key sequence, specifically:

ALT - SYS-REQ key

where key is either a function key whose number corresponds to the number of the virtual terminal to switch to, for example, pressing F1 switches you to /dev/vt01 (virtual terminal 01), pressing F2 switches you to /dev/vt02 (virtual terminal 02), and so forth, or one of the letters in the following table:

<table>
<thead>
<tr>
<th>key</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>home virtual terminal (/dev/vt00)</td>
</tr>
<tr>
<td>n</td>
<td>next virtual terminal</td>
</tr>
<tr>
<td>p</td>
<td>previous virtual terminal</td>
</tr>
<tr>
<td>f</td>
<td>force a switch to a virtual terminal</td>
</tr>
</tbody>
</table>

Use the f key only when the current virtual terminal is essentially locked up or stuck in graphics mode. This will cause the virtual terminal to be reset to a sane text state and all processes associated with the virtual terminal will be killed.

When the hot-key sequence is entered, the executable program pointed to by the $SHELL variable is executed in the new virtual terminal. If $SHELL is NULL or pointing to a program which is not executable, /bin/sh is executed. The newly opened virtual terminal inherits the environment in effect when the vtlmgr command is invoked.

You may perform setup on each new virtual terminal as it is created by vtlmgr through the .vtlrc file. This file should be in your home directory. Its contents are a shell script that will be run by /bin/sh before the shell prompt is displayed. In this way it is similar to your .profile file. However, you may not set and export environment variables to the shell for the virtual terminal because a different shell runs the .vtlrc shell script.

The system administrator can control how many virtual terminals are available by setting a parameter in the file /etc/default/workstations. Virtual terminals 0 - 8 are configured by default and the default keyboard map makes up to 13 virtual terminals available (i.e., an additional 4 virtual terminals can readily be
defined within the default settings). The default virtual terminals are the home terminal and one corresponding to each function key. An application can make two more available to the end-user (by reprogramming the keyboard map), or can reserve the last two for programmatic use only, making 15 virtual terminals available in all.

Note that processes that are no longer visible may still be continuing. Standard output is directed to the current virtual terminal’s screen. For example, you can issue a `cat` command on one virtual terminal, switch to another virtual terminal to start an application, and then switch to another to do an edit. The `cat` output will be lost if the virtual terminal scrolls the data off the screen unless you initially redirect the output to a file.

**DIAGNOSTICS**

The `vtlmgr` command will fail under the following conditions:

- If an illegal option is specified.
- If the device cannot be opened.
- If the command is invoked from a remote terminal.
- If `/dev/vtmon` cannot be opened.
- If `$SHELL` is set and is not executable.
- If `$SHELL` is not set and `/bin/sh` cannot be invoked.

**SEE ALSO**

`newvt(1M)`

`vtgetty(1M), keyboard(7)` in the *System Administrator’s Reference Manual*
NAME

\texttt{w} – who is logged in, and what are they doing

SYNOPSIS

\texttt{/usr/ucb/w \ [-hls] \ [\ user]}\n
DESCRIPTION

The \texttt{w} command displays a summary of the current activity on the system, including what each user is doing. The heading line shows the current time of day, how long the system has been up, and the number of users logged into the system.

The fields displayed are: the users login name, the name of the tty the user is on, the time of day the user logged on (in \textit{hours:minutes}), the idle time—that is, the number of minutes since the user last typed anything (in \textit{hours:minutes}), the CPU time used by all processes and their children on that terminal (in \textit{minutes:seconds}), the CPU time used by the currently active processes (in \textit{minutes:seconds}), the name and arguments of the current process.

If a \texttt{user} name is included, output is restricted to that user.

The following options are available:

\texttt{-h} \quad \text{Suppress the heading.}

\texttt{-l} \quad \text{Produce a long form of output, which is the default.}

\texttt{-s} \quad \text{Produce a short form of output. In the short form, the tty is abbreviated, the login time and CPU times are left off, as are the arguments to commands.}

EXAMPLE

\texttt{w}

\begin{verbatim}
7:36am up 6 days, 16:45, 1 users
User tty login@ idle JCPU PCPU what
ralph console 7:10am 1 10:05 4:31 w
\end{verbatim}

FILES

\texttt{/var/adm/u~}

\texttt{/dev/kmem}

\texttt{/dev/drum}

SEE ALSO

\texttt{ps(1), who(1)} in the \textit{User's Reference Manual}

\texttt{utmp(4), whodo(1M)} in the \textit{System Administrator's Reference Manual}

NOTES

The notion of the "current process" is muddy. The current algorithm is 'the highest numbered process on the terminal that is not ignoring interrupts, or, if there is none, the highest numbered process on the terminal'. This fails, for example, in critical sections of programs like the shell and editor, or when faulty programs running in the background fork and fail to ignore interrupts. In cases where no process can be found, \texttt{w} prints \texttt{-}.
The CPU time is only an estimate, in particular, if someone leaves a background process running after logging out, the person currently on that terminal is "charged" with the time.

Background processes are not shown, even though they account for much of the load on the system.

Sometimes processes, typically those in the background, are printed with null or garbaged arguments. In these cases, the name of the command is printed in parentheses.

w does not know about the conventions for detecting background jobs. It will sometimes find a background job instead of the right one.
NAME
   wait – await completion of process

SYNOPSIS
   wait [ n ]

DESCRIPTION
   Wait for your background process whose process id is n and report its termination status. If n is omitted, all your shell’s currently active background processes are waited for and the return code will be zero.

   The shell itself executes wait, without creating a new process.

SEE ALSO
   sh(1)

NOTES
   If you get the error message cannot fork, too many processes, try using the wait command to clean up your background processes. If this doesn’t help, the system process table is probably full or you have too many active foreground processes. (There is a limit to the number of process ids associated with your login, and to the number the system can keep track of.)

   Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus cannot be waited for.

   If n is not an active process id, all your shell’s currently active background processes are waited for and the return code will be zero.
NAME
   wall – write to all users

SYNOPSIS
   wall [-g group] [filename]

DESCRIPTION
   wall reads the named file, or if no filename appears, it reads the standard input until an end-of-file. It then sends this message to all currently logged-in users preceded by:
      Broadcast Message from ...

   It is used to warn all users, typically prior to shutting down the system. If the -g option is given, the message is only sent to the members of the specified group, instead of all users.

   The sender must be super-user to override any protections the users may have invoked [see mesg(1)].

   wall runs setgid [see setuid(2)] to the group ID tty, in order to have write permissions on other user’s terminals.

   wall will detect non-printable characters before sending them to the user’s terminal. Control characters will appear as a ‘^’ followed by the appropriate ASCII character; characters with the high-order bit set will appear in meta notation. For example, '\003' is displayed as ‘^C’ and ‘\372’ as ‘M-z’.

FILES
   /dev/term/*

SEE ALSO
   mesg(1), write(1).

NOTES
   “Cannot send to ...” when the open on a user’s tty file fails.
NAME
wc – word count

SYNOPSIS
wc [-lwc] [filename ...]

DESCRIPTION
wc counts lines, words, and characters in the named files, or in the standard input if no filename appears. It also keeps a total count for all named files. A word is a maximal string of characters delimited by spaces, tabs, or new-lines.

The options l, w, and c may be used in any combination to specify that a subset of lines, words, and characters are to be reported. The default is -1wc.

When a filename is specified on the command line, it will be printed along with the counts.
NAME
what – print identification strings

SYNOPSIS
what [-s] files

DESCRIPTION
what searches the given files for all occurrences of the pattern that the get command substitutes for %Z% (this is @(#) at this printing) and prints out what follows until the first ",", >, new-line, \, or null character. For example, if the C program in file f.c contains

```c
#include "@(#)identification information"
```
and f.c is compiled to yield f.o and a.out, then the command

```
what f.c f.o a.out
```

prints

```c
f.c:
 identification information
f.o:
 identification information
a.out:
 identification information
```

what is intended to be used in conjunction with the get command, which automatically inserts identifying information, but it can also be used where the information is inserted manually. Only one option exists:

```
-s Quit after finding the first occurrence of pattern in each file.
```

SEE ALSO
get(1), help(1), mcs(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, otherwise 1. See help(1) for explanations.
whatls(1) (BSD Compatibility Package) whatls(1)

NAME
whatls - display a one-line summary about a keyword

SYNOPSIS
/usr/ucb/whatls command ...

DESCRIPTION
whatls looks up a given command and displays the header line from the manual
section. You can then run the man(1) command to get more information. If the
line starts 'name(section) ...' you can do 'man section name' to get the documenta-
tion for it. Try 'whatls ed' and then you should do 'man 1 ed' to get the
manual page for ed(1).
whatls is actually just the -f option to the man command.

FILES
/usr/share/man/whatls data base

SEE ALSO
man(1), catman(1M)
NAME
which – locate a command; display its pathname or alias

SYNOPSIS
/usr/ucb/which [ filename ]

DESCRIPTION
which takes a list of names and looks for the files which would be executed had these names been given as commands. Each argument is expanded if it is aliased, and searched for along the user’s path. Both aliases and path are taken from the user’s .cshrc file.

FILES
~/.cshrc source of aliases and path values

SEE ALSO

DIAGNOSTICS
A diagnostic is given for names which are aliased to more than a single word, or if an executable file with the argument name was not found in the path.

NOTES
Only aliases and paths from ~/.cshrc are used; importing from the current environment is not attempted.

which must be executed by csh(1), since only csh knows about aliases. If you are using sh instead of csh, whence -v provides similar functionality.

To compensate for ~/.cshrc files in which aliases depend upon the prompt variable being set, which sets this variable. If the ~/.cshrc produces output or prompts for input when prompt is set, which may produce some strange results.
who(1)  (Essential Utilities)  who(1)

NAME
who – who is on the system

SYNOPSIS
who [-uTlHqdpdbrtas] [file ]
who -qn x [file ]
who am i
who am I

DESCRIPTION
who can list the user's name, terminal line, login time, elapsed time since activity occurred on the line, and the process-ID of the command interpreter (shell) for each current UNIX system user. It examines the /var/adm/utmp file to obtain its information. If file is given, that file (which must be in utmp(4) format) is examined. Usually, file will be /var/adm/wtmp, which contains a history of all the logins since the file was last created.

who with the am i or am I option identifies the invoking user.

The general format for output is:

    name [state] line time [idle] [pid] [comment] [exit]

The name, line, and time information is produced by all options except -q; the state information is produced only by -T; the idle and pid information is produced only by -u and -l; and the comment and exit information is produced only by -a. The information produced for -p, -d, and -r is explained during the discussion of each option, below.

With options, who can list logins, logoffs, reboots, and changes to the system clock, as well as other processes spawned by the init process. These options are:

- -u This option lists only those users who are currently logged in. The name is the user's login name. The line is the name of the line as found in the directory /dev. The time is the time that the user logged in. The idle column contains the number of hours and minutes since activity last occurred on that particular line. A dot (.) indicates that the terminal has seen activity in the last minute and is therefore “current”. If more than twenty-four hours have elapsed or the line has not been used since boot time, the entry is marked old. This field is useful when trying to determine whether a person is working at the terminal or not. The pid is the process-ID of the user's shell. The comment is the comment field associated with this line as found in /etc/inittab [see inittab(4)]. This can contain information about where the terminal is located, the telephone number of the dataset, type of terminal if hard-wired, etc.

- -T This option is the same as the -s option, except that the state of the terminal line is printed. The state describes whether someone else can write to that terminal. A + appears if the terminal is writable by anyone; a - appears if it is not. root can write to all lines having a + or a - in the state field. If a bad line is encountered, a ? is printed.
who(1)  (Essential Utilities)  who(1)

-1  This option lists only those lines on which the system is waiting for someone to login. The *name* field is *LOGIN* in such cases. Other fields are the same as for user entries except that the *state* field does not exist.

-H  This option will print column headings above the regular output.

-q  This is a quick who, displaying only the names and the number of users currently logged on. When this option is used, all other options are ignored.

-p  This option lists any other process which is currently active and has been previously spawned by *init*. The *name* field is the name of the program executed by *init* as found in */etc/inittab*. The *state*, *line*, and *idle* fields have no meaning. The *comment* field shows the *id* field of the line from */etc/inittab* that spawned this process. See *inittab*(4).

-d  This option displays all processes that have expired and not been respawned by *init*. The *exit* field appears for dead processes and contains the termination and exit values [as returned by *wait*(2)], of the dead process. This can be useful in determining why a process terminated.

-b  This option indicates the time and date of the last reboot.

-r  This option indicates the current *run-level* of the *init* process. In addition, it produces the process termination status, process id, and process exit status [see *utmp*(4)] under the *idle*, *pid*, and *comment* headings, respectively.

-t  This option indicates the last change to the system clock (via the *date* command) by *root*. See *su*(1M).

-a  This option processes */var/adm/utmp* or the named *file* with all options turned on.

-s  This option is the default and lists only the *name*, *line*, and *time* fields.

-n  This option takes a numeric argument, *x*, which specifies the number of users to display per line. *x* must be at least 1. The *-n* option must be used with *-q*.

Note to the super-user: after a shutdown to the single-user state, *who* returns a prompt; the reason is that since */var/adm/utmp* is updated at login time and there is no login in single-user state, *who* cannot report accurately on this state. *who am i*, however, returns the correct information.

**FILES**

* /var/adm/utmp
  * /var/adm/wtmp
  * /etc/inittab

**SEE ALSO**

* date(1), login(1), mesg(1), su(1M)
  * init(1M), inittab(4), utmp(4) in the *System Administrator's Reference Manual*
  * wait(2) in the *Programmer's Reference Manual*
NAME
whoami – display the effective current username

SYNOPSIS
/usr/ucb/whoami

DESCRIPTION
whoami displays the login name corresponding to the current effective user ID. If
you have used su to temporarily adopt another user, whoami will report the login
name associated with that user ID. whoami gets its information from the geteuid
and getpwuid library routines (see geteuid and getpwent, respectively).

FILES
/etc/passwd username data base

SEE ALSO
su(1), who(1) in the User’s Reference Manual
geteuid(2), getpwent(3) in the Programmer’s Reference Manual
whodo(1M) (System Administration Utilities) whodo(1M)

NAME
whodo – who is doing what

SYNOPSIS
/usr/sbin/whodo [-h] [-l] [user]

DESCRIPTION
whodo produces formatted and dated output from information in the /var/adm/utmp, /etc/ps_data, and /proc/pid files.

The display is headed by the date, time, and machine name. For each user logged in, device name, user-ID and login time is shown, followed by a list of active processes associated with the user-ID. The list includes the device name, process-ID, CPU minutes and seconds used, and process name.

If user is specified, output is restricted to all sessions pertaining to that user.

The following options are available:
-h Suppress the heading.
-l Produce a long form of output. The fields displayed are: the user's login name, the name of the tty the user is on, the time of day the user logged in (in hours:minutes), the idle time — that is, the time since the user last typed anything (in hours:minutes), the CPU time used by all processes and their children on that terminal (in minutes:seconds), the CPU time used by the currently active processes (in minutes:seconds), and the name and arguments of the current process.

EXAMPLE
The command:
whodo
produces a display like this:
Tue Mar 12 15:48:03 1985
bailey

          term/09  mcn    8:51
          term/09  28158  0:29 sh

          term/52  bdr    15:23
          term/52  21688  0:05 sh
          term/52  22788  0:01 whodo
          term/52  22017  0:03 vi
          term/52  22549  0:01 sh

     xt/162  lee    10:20
     term/08  6748  0:01 layers
     xt/162  6751  0:01 sh
     xt/163  6761  0:05 sh
     term/08  6536  0:05 sh

3/91 Page 1
whodo(1M)          (System Administration Utilities)          whodo(1M)

FILES

/etc/passwd
/etc/ps_data
/var/adm/utmp
/proc/pid

DIAGNOSTICS

If the PROC driver is not installed or configured or if /proc is not mounted, a
message to that effect is issued and whodo will fail.

The exit status is zero on success, non-zero on failure.

SEE ALSO

NAME
whois – Internet user name directory service

SYNOPSIS
whois [ -h host ] identifier

DESCRIPTION
whois searches for an Internet directory entry for an identifier which is either a name (such as “Smith”) or a handle (such as “SRI-NIC”). To force a name-only search, precede the name with a period; to force a handle-only search, precede the handle with an exclamation point.

To search for a group or organization entry, precede the argument with * (an asterisk). The entire membership list of the group will be displayed with the record.

You may of course use an exclamation point and asterisk, or a period and asterisk together.

EXAMPLES
The command
   whois Smith
looks for the name or handle SMITH.

The command
   whois !SRI-NIC
looks for the handle SRI-NIC only.

The command
   whois .Smith, John
looks for the name JOHN SMITH only.

Adding . . . to the name or handle argument will match anything from that point; that is, zu . . . will match ZUL, ZUM, and so on.
NAME
write – write to another user

SYNOPSIS
write user [line]

DESCRIPTION
write copies lines from your terminal to that of another user. When first called, it sends the message:

Message from your name (term/??) [date]...

to the person you want to talk to. When it has successfully completed the connection, it also sends two bells to your own terminal to indicate that what you are typing is being sent.

The recipient of the message should write back at this point. Communication continues until an end of file is read from the terminal, an interrupt is sent, or the recipient has executed "mesg n". At that point write writes EOT on the other terminal and exits.

If you want to write to a user who is logged in more than once, the line argument may be used to indicate which line or terminal to send to (for example, term/12); otherwise, the first writable instance of the user found in /var/adm/utmp is assumed and the following message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg command. Writing to others is normally allowed by default. Certain commands, such as the pr command, disallow messages in order to prevent interference with their output. However, if the user has super-user permissions, messages can be forced onto a write-inhibited terminal.

If the character ! is found at the beginning of a line, write calls the shell to execute the rest of the line as a command.

write runs setgid() [see setuid(2)] to the group ID tty, in order to have write permissions on other user's terminals.

write will detect non-printable characters before sending them to the user's terminal. Control characters will appear as 'A' followed by the appropriate ASCII character; characters with the high-order bit set will appear in meta notation. For example, \003 is displayed as 'C' and \372 as 'M-z'.

The following protocol is suggested for using write: when you first write to another user, wait for them to write back before starting to send. Each person should end a message with a distinctive signal (that is, (o) for "over") so that the other person knows when to reply. The signal (oo) (for "over and out") is suggested when conversation is to be terminated.
write(1)  (Essential Utilities)  write(1)

FILES
/var/adm/utmp to find user
/usr/bin/sh to execute!

SEE ALSO
mail(1), msg(1), pr(1), sh(1), who(1), setuid(2)

DIAGNOSTICS
user is not logged on
  Permission denied
Warning: cannot respond, set msg -y
Can no longer write to user

if the person you are trying to write to is not logged on.
if the person you are trying to write to denies that permission (with msg).
if your terminal is set to msg n and the recipient cannot respond to you.
if the recipient has denied permission (msg n) after you had started writing.
NAME
wtinit – object downloader for the 5620 DMD terminal

SYNOPSIS
/usr/lib/layersys/wtinit [-d] [-p] file

DESCRIPTION
The wtinit utility downloads the named file for execution in the AT&T 5620
DMD terminal connected to its standard output. file must be a DMD object file.
wtinit performs all necessary bootstrap and protocol procedures.
There are two options.
-d Prints out the sizes of the text, data, and bss portions of the downloaded
file on standard error.
-p Prints the down-loading protocol statistics and a trace on standard error.
The environment variable JPATH is the analog of the shell’s PATH variable to
define a set of directories in which to search for file.
If the environment variable DMDLOAD has the value hex, wtinit will use a hexa-
decimal download protocol that uses only printable characters.
Terminal Feature Packages for specific versions of AT&T windowing terminals
will include terminal-specific versions of wtinit under those installation sub-
directories. /usr/lib/layersys/wtinit is used for layers(1) initialization only
when no Terminal Feature Package is in use (i.e., the $DMD shell variable is not
set).

DIAGNOSTICS
Returns 0 upon successful completion, 1 otherwise.

NOTES
Standard error should be redirected when using the -d or -p options.

SEE ALSO
layers(1) in the User’s Reference Manual
NAME

x286emul – emulate XENIX 80286

SYNOPSIS

x286emul [arg ...] prog286

DESCRIPTION

x286emul is an emulator that allows programs from XENIX System V/286 Release 2.3 or SCO’s XENIX System V/286 Release 2.3.2 on the Intel 80286 to run on the Intel 80386 processor under UNIX System V.

The UNIX system recognizes an attempt to exec(2) a 286 program, and automatically exec’s the 286 emulator with the 286 program name as an additional argument. It is not necessary to specify the x286emul emulator on the command line. The 286 programs can be invoked using the same command format as on the XENIX System V/286.

x286emul reads the 286 program’s text and data into memory and maps them through the LDT [via sysi86(2)] as 286 text and data segments. It also fills in the jam area, which is used by XENIX programs to do system calls and signal returns. x286emul starts the 286 program by jumping to its entry point.

When the 286 program attempts to do a system call, x286emul takes control. It does any conversions needed between the 286 system call and the equivalent 386 system call, and performs the 386 system call. The results are converted to the form the 286 program expects, and the 286 program is resumed.

The following are some of the differences between a program running on a 286 and a 286 program using x286emul on a 386:

- Attempts to unlink or write on the 286 program will fail on the 286 with ETXTBSY. Under x286emul, they will not fail.
- ptrace(2) is not supported under x286emul.

The 286 program must be readable for the emulator to read it.

The emulator must have this name and be in /bin if it is to be automatically invoked when exec(2) is used on a 286 program.
NAME
xargs – construct argument list(s) and execute command

SYNOPSIS
xargs [ flags ] [ command [ initial-arguments ] ]

DESCRIPTION
xargs combines the fixed initial-arguments with arguments read from standard input to execute the specified command one or more times. The number of arguments read for each command invocation and the manner in which they are combined are determined by the flags specified.

command, which may be a shell file, is searched for, using one’s $PATH. If command is omitted, /usr/bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of characters delimited by one or more blanks, tabs, or new-lines; empty lines are always discarded. Blanks and tabs may be embedded as part of an argument if escaped or quoted. Characters enclosed in quotes (single or double) are taken literally, and the delimiting quotes are removed. Outside of quoted strings a backslash (\) escapes the next character.

Each argument list is constructed starting with the initial-arguments, followed by some number of arguments read from standard input (Exception: see -i flag). Flags -i, -1, and -n determine how arguments are selected for each command invocation. When none of these flags are coded, the initial-arguments are followed by arguments read continuously from standard input until an internal buffer is full, and then command is executed with the accumulated args. This process is repeated until there are no more args. When there are flag conflicts (for example, -i vs. -n), the last flag has precedence. Valid flags are:

-1number command is executed for each non-empty number lines of arguments from standard input. The last invocation of command will be with fewer lines of arguments if fewer than number remain. A line is considered to end with the first new-line unless the last character of the line is a blank or a tab; a trailing blank/tab signals continuation through the next non-empty line. If number is omitted, 1 is assumed. Option -x is forced.

-i replstr Insert mode: command is executed for each line from standard input, taking the entire line as a single arg, inserting it in initial-arguments for each occurrence of replstr. A maximum of five arguments in initial-arguments may each contain one or more instances of replstr. Blanks and tabs at the beginning of each line are thrown away. Constructed arguments may not grow larger than 255 characters, and option -x is also forced. {} is assumed for replstr if not specified.

-nnumber Execute command using as many standard input arguments as possible, up to number arguments maximum. Fewer arguments are used if their total size is greater than size characters, and for the last invocation if there are fewer than number arguments remaining. If option -x is also coded, each number arguments must fit in the size limitation, else xargs terminates execution.
xargs(1)  (User Environment Utilities)  xargs(1)

-t  Trace mode: The command and each constructed argument list are echoed to file descriptor 2 just prior to their execution.

-p  Prompt mode: The user is asked whether to execute command each invocation. Trace mode (-t) is turned on to print the command instance to be executed, followed by a ? . . . prompt. A reply of y (optionally followed by anything) executes the command; anything else, including just a carriage return, skips that particular invocation of command.

-x  Causes xargs to terminate if any argument list would be greater than size characters; -x is forced by the options -i and -l. When neither of the options -i, -l, or -n are coded, the total length of all arguments must be within the size limit.

 ssize  The maximum total size of each argument list is set to size characters; size must be a positive integer less than or equal to 470. If -s is not coded, 470 is taken as the default. Note that the character count for size includes one extra character for each argument and the count of characters in the command name.

eeofstr  eofstr is taken as the logical end-of-file string. Underbar (_) is assumed for the logical EOF string if -e is not coded. The value -e with no eofstr coded turns off the logical EOF string capability (underbar is taken literally). xargs reads standard input until either end-of-file or the logical EOF string is encountered.

-xargs terminates if either it receives a return code of -1 from, or if it cannot execute, command. When command is a shell program, it should explicitly exit (see sh(1)) with an appropriate value to avoid accidentally returning with -1.

EXAMPLES

The following examples moves all files from directory $1 to directory $2, and echo each move command just before doing it:

  ls $1 | xargs -i -t mv $1/{} $2/{}

The following example combines the output of the parenthesized commands onto one line, which is then echoed to the end of file log:

  (logname; date; echo $0 $*) | xargs >> log

The user is asked which files in the current directory are to be archived and archives them into arch (1.) one at a time, or (2.) many at a time.

  1. ls | xargs -p -l ar r arch
  2. ls | xargs -p -l | xargs ar r arch

The following example executes diff(1) with successive pairs of arguments originally typed as shell arguments:

  echo $* | xargs -n2 diff

SEE ALSO

  sh(1)
NAME
xfsck – check and repair XENIX filesystems

SYNOPSIS
/bin/xfsck [options] [filesystem]...

DESCRIPTION
The xfsck command audits and interactively repairs inconsistent conditions for
XENIX System V filesystems. If the filesystem is consistent, then xfsck reports
number of files, number of blocks used, and number of blocks free. If the filesys-
tem is inconsistent, the user is prompted whether or not xfsck should proceed
with each correction. It should be noted that most corrective actions result in
some loss of data. The amount and severity of the loss can be determined from
the diagnostic output. If the user does not have write permission, xfsck defaults
to the action of the -n option.
The xfsck options are:
-\y Assumes a response to all questions asked by xfsck.
-\n Assumes a response to all questions asked by xfsck. This option does
not open the filesystem for writing.
-\s b:c Ignores the actual free list and unconditionally reconstructs a new one
by rewriting the super-block of the filesystem. The filesystem must be
unmounted while this is done.
This option allows for creating an optimal free-list organization. The fol-
lowing forms are supported:
-\s
-\sBlocks-per-cylinder:Blocks-to-skip (filesystem interleave)
If b:c is not given, then the values that were used when the filesystem
was created are used again. If these values were not specified, then the
default value is used.
-\s Conditionally reconstructs the free list. This option is similar to -\s b:c
above, except that the free list is rebuilt only if there are no discrepancies
discovered in the filesystem. The -\s option forces a “no” response to all
questions asked by xfsck. This option is useful for forcing free-list reor-
ganization on uncontaminated filesystems.
-\t Causes xfsck to use the next argument as the scratch file, if needed. A
scratch file is used if xfsck cannot obtain enough memory to keep its
tables. Without the -\t flag, xfsck prompts the user for the name of the
scratch file. The file chosen should not be on the filesystem being
checked. In addition, if the scratch file is not a special file or did not
already exist, it is removed when xfsck completes. Note that if the sys-
tem has a large hard disk, there may not be enough space on another
filesystem for the scratch file. In such cases, if the system has a floppy
disk drive, use a blank, formatted floppy disk in the floppy disk drive
with (for example) /dev/fd0 specified as the scratch file.
xfsck(1M) (Base System) xfsck(1M)

-q  Causes xfsck to perform a quiet check. Does not print size-check messages in Phase 1. Unreferenced fifo5 files are selectively removed. If xfsck requires it, counts in the superblock are automatically fixed and the free list salvaged.

-D  Checks directories for bad blocks. Use this option after the system crashes.

-f  Causes xfsck to perform a fast check. xfsck checks block and sizes (Phase 1) and checks the free list (Phase 5). The free list is reconstructed (Phase 6), if necessary.

-rr  Recovers the root filesystem. The required filesystem argument must refer to the root filesystem, and preferably to the block device (normally /dev/root). This switch implies -y (yes) and overrides -n (no). If any modifications to the filesystem are required, the system will be automatically shutdown to ensure the integrity of the filesystem.

-c  Causes any supported filesystem to be converted to the current filesystem type. The user is prompted to verify the conversion of each filesystem, unless the -y option is specified. It is recommended that every filesystem be checked with this option while unmounted if it is to be used with the current version of XENIX. To update the active root filesystem, check it with the following command line:

    xfsck -c -rr /dev/root

If no filesystems are specified, xfsck reads a list of default filesystems from the /etc/checklist file.

The following are some of the inconsistencies xfsck checks for:

- Blocks claimed by more than one inode or the free list
- Blocks claimed by an inode or the free list outside the range of the filesystem
- Incorrect link counts
- Size checks:
  - Incorrect number of blocks
  - Directory size not 16-byte aligned
- Bad inode format
- Blocks not accounted for anywhere
- Directory checks:
  - File pointing to unallocated inode
  - Inode number out of range
- Super block checks:
  - More than 65536 inodes
  - More blocks for inodes than there are in the filesystem
FILES

/etc/checklist  Contains default list of filesystems to check
/etc/default/boot  Contains flags for automatic boot control

SEE ALSO

fsck(1M)

NOTES

xfsck will not run on a mounted non-raw filesystem, unless the filesystem is the root filesystem, or the -n option is specified and no writing out of the filesystem will take place. If any such attempt is made, xfsck displays a warning and no further processing of the filesystem is done for the specified device.

xfsck does not support filesystems created under XENIX-86 version 3.0 because the word order in type long variables has changed. However, xfsck is capable of auditing and repairing XENIX version 3.0 filesystems if the word ordering is correct.

Run xfsck -rr /dev/root for the root filesystem. Run xfsck /dev/?? on the unmounted block device for all other filesystems.

It is not recommended that users use xfsck on raw devices. Although checking a raw device is almost always faster, there is no way to tell if the filesystem is mounted. If the filesystem is mounted, cleaning it will almost certainly result in an inconsistent superblock.
NAME
xinstall – XENIX installation shell script

SYNOPSIS
/etc/xinstall [ device ]

DESCRIPTION
/etc/xinstall is the sh (1) script used to install XENIX distribution (or application program) floppies. It performs the following tasks:

- prompts for insertion of floppies
- extracts files using the tar(1) utility
- executes /once/init.* programs on each floppy after they have been extracted
- removes any /once/init.* programs when the installation is finished

The optional argument to the command specifies the device used. The default device is /dev/rfd0.

FILES
/etc/xinstall
/once/init.*

SEE ALSO
custom(1M), fixperm(1M), installpkg(1).

NOTES
xinstall is provided for use with any existing XENIX packages you may have that you wish to install on the UNIX operating system. xinstall does not work with UNIX system applications [use installpkg(1) to install UNIX system applications].
NAME
xinstall – install commands

SYNOPSIS

DESCRIPTION
xinstall is a command most commonly used in "makefiles" [see make(CP)] to xinstall a file (updated target file) in a specific place within a file system. Each file is installed by copying it into the appropriate directory, thereby retaining the mode and owner of the original command file. The program prints messages telling you exactly what files it is replacing or creating and where they are going.

If no options or directories (dirz . . .) are given, xinstall will search [using find(C)] a set of default directories (/usr/bin/usr/usr/bin, /etc, /usr/lib, and /usr/usr/lib, in that order) for a file with the same name as file. When the first occurrence is found, xinstall issues a message saying that it is overwriting that file with file, and proceeds to do so. If the file is not found, the program states this and exits without further action.

If one or more directories (dirz . . .) are specified after file, those directories will be searched before the directories specified in the default list.

The meanings of the options are:

- -c dira
  Installs a new command file in the directory specified in dira. Looks for file in dira and xinstalls it there if it is not found. If it is found, xinstall issues a message saying that the file already exists, and exits without overwriting it. May be used alone or with the -s option.

- -f dirb
  Forces file to be installed in given directory, whether or not one already exists. If the file being installed does not already exist, the mode and owner of the new file will be set to 755 and bin, respectively. If the file exists, the mode and owner will be that of the existing file. May be used alone or with the -o or -s options.

- -l
  Ignores default directory list, searching only through the given directories (dirz . . .). May be used alone or with any other options except -c and -f.

- -n dire
  If file is not found in any of the searched directories, it is put in the directory specified in dire. The mode and owner of the new file will be set to 755 and bin, respectively. May be used alone or with any other options except -c and -f.

- -o
  If file is found, this option saves the "found" file by copying it to oldfile in the directory in which is was found. May be used alone or with any other options except -c.

- -s
  Suppresses printing of messages other than error messages. May be used alone or with any other options.

SEE ALSO
find(1), make(1)
NAME
xrestore, xrestor – invoke XENIX incremental filesystem restorer

SYNOPSIS
xrestore key [ arguments ]

xrestor key [ arguments ]

DESCRIPTION
xrestore is used to read archive media backed up with the XENIX backup(C)
command. The key specifies what is to be done. Key is one of the characters
rRxt, optionally combined with f. xrestor is an alternate spelling for the same
command.

f Uses the first argument as the name of the archive instead of the default.

F num Specifies the file number of the first volume to be restored.

k vsize Specifies the size of the volume to be restored.

r, R The archive is read and loaded into the filesystem specified in argument.
This should not be done lightly (see below). If the key is R, xrestore
asks which archive of a multivolume set to start on. This allows xre­
store to be interrupted and then restarted (an fsck must be done
before the restart).

x Each file on the archive named by an argument is extracted. The
filename has all “mount” prefixes removed; for example, if /usr is a
mounted filesystem, /usr/bin/lpr is named /bin/lpr on the archive.
The extracted file is placed in a file with a numeric name supplied by
xrestore (actually the inode number). In order to keep the amount of
archive read to a minimum, the following procedure is recommended:
1. Mount volume 1 of the set of backup archives.
2. Type the xrestore command.
3. xrestore will announce whether or not it found the files, give the
numeric name that it will assign to the file, and in the case of a tape,
rewind to the start of the archive.
4. It then asks you to “mount the desired tape volume”. Type the
number of the volume you choose. On a multivolume backup the
recommended procedure is to mount the volumes, last through first.
restore checks to see if any of the requested files are on the
mounted archive (or a later archive–thus the reverse order). If the
requested files are not there, xrestore doesn’t read through the
tape. If you are working with a single-volume backup or if the
number of files being restored is large, respond to the query with 1 ,
and xrestore will read the archives in sequential order.

x files Puts files in the directory specified by arguments.

t Prints the date the archive was written and the date the filesystem was
backed up.
This causes `xrestore` to behave like `dumpdir` (C) except that it doesn’t list directories.

The `r` option should only be used to restore a complete backup archive onto a clear filesystem, or to restore an incremental backup archive onto a filesystem so created. Thus:

```
/etc/mkfs /dev/dsk/0s3 10000
xrestore r /dev/dsk/0s3
```

is a typical sequence to restore a complete backup. Another `xrestore` can be done to get an incremental backup in on top of this.

A `backup` followed by a `mkfs` and a `xrestore` is used to change the size of a filesystem.

**FILES**

```
rst* Temporary files
/etc/default/xrestore Name of default archive device
```

The default archive unit varies with installation.

**NOTES**

`xrestore` is for XENIX compatibility and should only be used to restore filesystems that were backed up under XENIX.

It is not possible to successfully restore an entire active root filesystem.

**DIAGNOSTICS**

There are various diagnostics involved with reading the archive and writing the disk. There are also diagnostics if the i-list or the free list of the filesystem is not large enough to hold the dump.

If the dump extends over more than one disk or tape, it may ask you to change disks or tapes. Reply with a NEWLINE when the next unit has been mounted.
NAME
xts – extract and print xt driver statistics

SYNOPSIS
xts [-f]

DESCRIPTION
The xts command is a debugging tool for the xt(7) driver. It performs an
XTIOCSTATS ioctl(2) call on its standard input file to extract the accumulated
statistics for the attached group of channels. This call will fail if the standard
input is not attached to an active xt(7) channel. The statistics are printed one
item per line on the standard output.

-f Causes a “formfeed” character to be put out at the end of the output, for
the benefit of page-display programs.

DIAGNOSTICS
Returns 0 upon successful completion, 1 otherwise.

SEE ALSO
layers(1) in the User’s Reference Manual
xtt(1M), ioctl(2), xtproto(5)
xt(7) in the Programmer’s Guide: STREAMS
NAME
  xtt - extract and print xt driver packet traces

SYNOPSIS
  xtt [-f] [-o]

DESCRIPTION
  The xtt command is a debugging tool for the xt(7) driver. It performs an
  XTIOTRACE ioctl(2) call on its standard input file to turn on tracing and extract
  the circular packet trace buffer for the attached group of channels. This call will
  fail if the standard input is not attached to an active xt(7) channel. The packets
  are printed on the standard output.

  The optional flags are:
        -f    Causes a "formfeed" character to be put out at the end of the output, for
              the benefit of page-display programs.
        -o    Turns off further driver tracing.

DIAGNOSTICS
  Returns 0 upon successful completion, 1 otherwise.

NOTES
  If driver tracing has not been turned on for the terminal session by invoking
  layers(1) with the -t option, xtt will not generate any output the first time it is
  executed.

SEE ALSO
  layers(1) in the User's Reference Manual
  xta(1M), ioctl(2), xtproto(5)
  xt(7) in the Programmer's Guide: STREAMS
NAME
yacc – yet another compiler-compiler

SYNOPSIS
yacc [-vVdl] [-Q[y|n]] file

DESCRIPTION
The yacc command converts a context-free grammar into a set of tables for a
simple automaton that executes an LALR(1) parsing algorithm. The grammar may
be ambiguous; specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro­
gram yyparse. This program must be loaded with the lexical analyzer program,
yylex, as well as main and yyerror, an error handling routine. These routines
must be supplied by the user; the lex(1) command is useful for creating lexical
analyzers usable by yacc.

-v Prepares the file y.output, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the gram­
mar.

-d Generates the file y.tab.h with the #define statements that associate
the yacc-assigned “token codes” with the user-declared “token names.”
This association allows source files other than y.tab.c to access the
token codes.

-l Specifies that the code produced in y.tab.c will not contain any #line
constructs. This option should only be used after the grammar and the
associated actions are fully debugged.

-Q[y|n]
The -Qy option puts the version stamping information in y.tab.c.
This allows you to know what version of yacc built the file. The -Qn
option (the default) writes no version information.

-t Compiles runtime debugging code by default. Runtime debugging
code is always generated in y.tab.c under conditional compilation
control. By default, this code is not included when y.tab.c is com­
piled. Whether or not the -t option is used, the runtime debugging
code is under the control of YYDEBUG, a preprocessor symbol. If YYDE­
BUG has a non-zero value, then the debugging code is included. If its
value is zero, then the code will not be included. The size and execu­
tion time of a program produced without the runtime debugging code
will be smaller and slightly faster.

-v Prints on the standard error output the version information for yacc.

FILES
y.output
y.tab.c
y.tab.h
eyacc.tmp, defines for token names
SEE ALSO


DIAGNOSTICS

The number of reduce-reduce and shift-reduce conflicts is reported on the standard error output; a more detailed report is found in the y.output file. %Similarly, if some rules are not reachable from the start symbol, this instance is also reported.

NOTES

Because file names are fixed, at most one yacc process can be active in a given directory at a given time.
NAME

yes – print string repeatedly

SYNOPSIS

yes [string]

DESCRIPTION

yes repeatedly outputs “y”, or if a single string argument is given, string is output repeatedly. The command continues indefinitely unless aborted. yes is useful in pipes to commands that prompt for input and require a “y” response for a yes. In this case, yes terminates when the command that it pipes to terminates so that no infinite loop occurs.
ypcat(1)

NAME
  ypcat – print values in a NIS data base

SYNOPSIS
  ypcat [ -k ] [ -d ypdomain ] mname

DESCRIPTION
  The ypcat command prints out values in the NIS name service map specified by
  mname, which may be either a map name or a map nickname. Since ypcat uses
  the NIS network services, no NIS server is specified.

  Refer to ypfiles(4) and ypserv(1M) for an overview of the NIS name service.

  The following options are available:

    -d ypdomain          Specify a domain other that the default domain.
    -k                   Display the keys for those maps in which the values are null or
                         the key is not part of the value. None of the maps derived
                         from files that have an ASCII version in /etc fall into this class.

SEE ALSO
  ypmatch(1), ypserv(1M), ypfiles(4)
NAME
ypinit - build and install YP database

SYNOPSIS
/usr/sbin/ypinit -c
/usr/sbin/ypinit -m
/usr/sbin/ypinit -s master-name

DESCRIPTION
ypinit sets up a YP name service database on a YP server. It can be used to set
up a master or a slave server, or a client system. You must be the privileged user
to run it. It asks a few self-explanatory questions, and reports success or failure
to the terminal.

It sets up a master server using the simple model in which that server is master
to all maps in the database. This is the way to bootstrap the YP system; later if
you want you can change the association of maps to masters.

All databases are built from scratch, either from information available to the pro­
gram at runtime, or from the ASCII data base files in /etc. These files should be
in their traditional form, rather than the abbreviated form used on client
machines.

A YP database on a slave server is set up by copying an existing database from a
running server. The master-name argument should be the hostname of a YP server
(either the master server for all the maps, or a server on which the data base is
up-to-date and stable).

To set up a client, ypinit prompts for a list of YP servers to bind the client to,
this list should be ordered from closest to farthest server.

Read ypfiles(4) and ypserv(1M) for an overview of the YP name service.

The following options are available:
-c Set up a client system.
-m Indicate that the local host is to be the YP master.
-s master-name Set up a slave database.

SEE ALSO
makedbm(1M), ypmake(1M), yppush(1M), ypserv(1M), ypxfr(1M), ypfiles(4)

FILES
/var/yp/binding/domainname/ypservers
NAME
ypmake – rebuild YP database

SYNOPSIS
   cd /var/yp ; make [ map ]

DESCRIPTION
   The file called Makefile in /var/yp is used by make to build the YP name service database. With no arguments, make creates dbm databases for any YP maps that are out-of-date, and then executes yppush(1M) to notify slave databases that there has been a change.

   If map is supplied on the command line, make will update that map only.

   There are three special variables used by make: DIR, which gives the directory of the source files; NOPUSH, which when non-null inhibits doing a yppush of the new database files; and DOM, used to construct a domain other than the master's default domain. The default for DIR is /etc, and the default for NOPUSH is the null string.

   ypmake also creates an entry in /var/yp/aliases.

   Refer to ypfiles(4) and ypserv(1M) for an overview of the YP.

FILES
   /var/yp

SEE ALSO
   make(1), makedbm(1M), yppush(1M), ypserv(1M), ypfiles(4)
NAME

ypmatch - print the value of one or more keys from the NIS map

SYNOPSIS

ypmatch [ -d ypdomain ] [ -k ] key... mname

DESCRIPTION

ypmatch prints the values associated with one or more keys from the NIS name services map specified by mname, which may be either a mapname or an map nickname.

Multiple keys can be specified; the same map will be searched for all keys. The keys must be exact values insofar as capitalization and length are concerned. No pattern matching is available. If a key is not matched, a diagnostic message is produced.

The following options are available:

- -d ypdomain Specify a domain other than the default domain.
- -k Before printing the value of a key, print the key itself, followed by a colon (":"). This is useful only if the keys are not duplicated in the values, or so many keys were specified that the output could be confusing.

SEE ALSO

ypcat(1), ypfiles(4)
NAME
yppoll - return current version of the map at the NIS server host

SYNOPSIS
/usr/sbin/yppoll [ -d ypdomain ] [ -h host ] mapname

DESCRIPTION
The yppoll command asks a ypserv(1M) process what the order number is, and
which host is the master NIS server for the named map.

The following options are available:
- d ypdomain Use ypdomain instead of the default domain.
- h host Ask the ypserv process at host about the map parameters. If
host is not specified, the NIS server for the local host is used.
That is, the default host is the one returned by ypwhich(1).

SEE ALSO
ypserv(1M), ypwhich(1), ypfiles(4)
NAME

yppush – force propagation of a changed NIS map

SYNOPSIS

/usr/sbin/yppush [ -v ] [ -d ypdomain ] mapname

DESCRIPTION

yppush copies a new version of the NIS name service map from the master NIS server to the slave NIS servers. It is normally run only on the master NIS server by the Makefile in /var/yp after the master databases are changed. It first constructs a list of NIS server hosts by reading the NIS map ypservers within the ypdomain, or if the map is not set up, the local file is used. Keys within the map ypservers are the ASCII names of the machines on which the NIS servers run.

A transfer map request is sent to the NIS server at each host, along with the information needed by the transfer agent (the program that actually moves the map) to call back the yppush. When the attempt has completed (successfully or not), and the transfer agent has sent yppush a status message, the results may be printed to stdout. Messages are also printed when a transfer is not possible; for instance when the request message is undeliverable, or when the timeout period on responses has expired.

Refer to ypfiles(4) and ypserv(1M) for an overview of the NIS name service.

The following options are available:

- v

   Verbose. Print messages when each server is called, and for each response. If this flag is omitted, only error messages are printed.

- d ypdomain

   Specify a ypdomain other than the default domain.

FILES

/var/yp/ypdomain/ypservers.{dir,pag}  local file
/var/yp

SEE ALSO

ypserv(1M), ypxfr(1M), ypfiles(4)
NAME
ypserv, ypbind – NIS server and binder processes

SYNOPSIS
/usr/lib/netsvc/yp/ypserv
/usr/lib/netsvc/yp/ypbind [ -ypset | -ypsetme ]

DESCRIPTION
The NIS provides a simple network lookup service consisting of databases and processes. The databases are dbm(3) files in a directory tree rooted at /var/yp. These files are described in ypfles(4). The processes are /usr/lib/netsvc/yp/ypserv, the NIS database lookup server, and /usr/lib/netsvc/yp/ypbind, the NIS binder. The programmatic interface to NIS is described in ypclnt(3N). Administrative tools are described in yppush(1M), ypxfr(1M), yppoll(1M), ypwhich(1), and ypset(1M). Tools to see the contents of NIS maps are described in ypcat(1), and ypmatch(1). Database generation and maintenance tools are described in yppinit(1M), yppmake(1M), and makedbm(1M).

Both ypserv and ypbind are daemon processes typically activated at system startup time. ypserv runs only on NIS server machines with a complete NIS database. ypbind runs on all machines using NIS services, both NIS servers and clients.

The ypserv daemon’s primary function is to look up information in its local database of NIS maps. Communication to and from ypserv is by means of RPC calls. Lookup functions are described in ypclnt(3N), and are supplied as C-callable functions in the NIS library. There are four lookup functions, all of which are performed on a specified map within some NIS domain: Match, "Get first", "Get next", and "Get all". The Match operation takes a key, and returns the associated value. The "Get first" operation returns the first key-value pair from the map, and "Get next" can be used to enumerate the remainder. "Get all" ships the entire map to the requester as the response to a single RPC request.

Two other functions supply information about the map, rather than map entries: "Get order number", and "Get master name". In fact, both order number and master name exist in the map as key-value pairs, but the server will not return either through the normal lookup functions. If you examine the map with makedbm(1M), however, they will be visible.

The function of ypbind is to remember information that lets client processes on a single node communicate with some ypserv process. ypbind must run on every machine which has NIS client processes; ypserv may or may not be running on the same node, but must be running somewhere on the network.

The information ypbind remembers is called a binding—the association of a domain name with a NIS server.

The process of binding is driven by client requests. As a request for an unbound domain comes in, the ypbind process steps through the ypservers list (last entry first) trying to find a ypserv process that serves maps within that domain. There must be a ypserv process on at least one of the hosts in the ypservers file. Once a domain is bound by a particular ypbind, that same binding is given to every client process on the node. The ypbind process on the local node or a
remote node may be queried for the binding of a particular domain by using the ypwhich(1) command.

If ypbind is unable to speak to the ypserv process it is bound to, it marks the domain as unbound, tells the client process that the domain is unbound, and tries to bind the domain once again. Requests received for an unbound domain will wait until the domain requested is bound. In general, a bound domain is marked as unbound when the node running ypserv crashes or gets overloaded. In such a case, ypbind will try to bind to another NIS server listed in /var/yp/binding/domainname/ypservers.

ypbind also accepts requests to set its binding for a particular domain. The request is usually generated by the NIS subsystem itself. ypset(1M) is a command to access the "Set Domain" facility. Note: the Set Domain procedure only accepts requests from processes with appropriate privileges, and the -ypset or -ypsetme flags must have been set for ypbind.

The following options are available for the ypbind command only:

-ypset Allow any user to call ypset(1M). By default, no one can call ypset(1M).
-ypsetme Only allow root on local machines to call ypset(1M). By default, no one can call ypset(1M).

FILES
If the file /var/yp/ypserv.log exists when ypserv starts up, log information will be written to this file when error conditions arise.
/var/yp
/var/yp/binding/ypdomain/ypservers

SEE ALSO
makedbm(1M), ypcat(1), ypinit(1M), ypmake(1M), ypmatch(1), yppoll(1M), yppush(1M), ypset(1M), ypwhich(1), yppxr(1M), dbm(3X), ypclnt(3N), ypfiles(4)

NOTES
Both ypbind and ypserv support multiple domains. The ypserv process determines the domains it serves by looking for directories of the same name in the directory /var/yp. Additionally, the ypbind process can maintain bindings to several domains and their servers.
NAME

ypset – point ypbind at a particular server

SYNOPSIS

/usr/sbin/ypset [ -d ypdomain ] [ -h host ] server

DESCRIPTION

In order to run ypset, ypbind must be initiated with the -ypset or -ypsetme options. See yperv(1M). ypset tells ypbind to get NIS services for the specified ypdomain from the ypserv process running on server. If server is down, or is not running ypserv, this is not discovered until the NIS client process tries to get a binding for the domain. At this point, the binding set by ypset will be tested by ypbind. If the binding is invalid, ypbind will attempt to rebind for the same domain.

ypset is useful for binding a client node which is not on a broadcast net, or is on a broadcast net which is not running the NIS server host. It also is useful for debugging NIS client applications, for instance where the NIS map only exists at a single NIS server host.

In cases where several hosts on the local net are supplying NIS services, it is possible for ypbind to rebind to another host even while you attempt to find out if the ypset operation succeeded. For example, you can type:

```
ypset host1
ypwhich
host2
```

which can be confusing. This is a function of the NIS subsystem's attempt to load-balance among the available NIS servers, and occurs when host1 does not respond to ypbind because it is not running ypserv (or is overloaded), and host2, running ypserv, gets the binding.

server indicates the NIS server to bind to, and must be specified as a name. This will work only if the node has a current valid binding for the domain in question, and ypbind has been set to allow use of ypset. In most cases, server should be specified as an IP address.

ypset tries to bind ypbind over a datagram transport first. Datagram Transports are recommended for higher performance. The NIS library calls, yp_enum(), yp_all(), yp_next(), and yp_first() use circuit transports regardless of the main transport being used.

Refer to ypfiles(4) and yperv(1M) for an overview of the NIS name service.

The following options are available:

- **-h host**
  Set ypbind's binding on host, instead of locally. host must be specified as a name.

- **-d ypdomain**
  Use ypdomain, instead of the default domain.

SEE ALSO

yperv(1M), ypwhich(1), ypfiles(4)
NAME
ypupdated – server for changing NIS information

SYNOPSIS
/usr/lib/netsvc/yp/ypupdated [-is ]

DESCRIPTION
ypupdated is a daemon that updates information in the NIS name service, nor-
mally started up by inetd(1M). ypupdated consults the file updaters(4) in the
directory /var/yp to determine which NIS maps should be updated and how to
change them.

By default, the daemon requires the most secure method of authentication avail-
able to it, either DES (secure) or UNIX (insecure).

The following options are available:

- i Accept RPC calls with the insecure AUTH_UNIX credentials. This allows
programmatic updating of NIS maps in all networks.

- s Only accept calls authenticated using the secure RPC mechanism
(AUTH_DES authentication). This disables programmatic updating of NIS
maps unless the network supports these calls.

FILES
/var/yp/updaters

SEE ALSO
inetd(1M), keyserv(1M), updaters(4)
ypwhich(1)

NAME

ypwhich – return name of NIS server or map master

SYNOPSIS

ypwhich [ -d [ ypdomain ] ] [ hostname ]
ypwhich [ -d ypdomain ] -m [ mname ]

DESCRIPTION

ypwhich tells which NIS server supplies the NIS name services to the NIS client, or which is the master for a map. If invoked without arguments, it gives the NIS server for the local machine. If hostname is specified, that machine is queried to find out which NIS master it is using.

Refer to ypfiles(4) and ypserv(1M) for an overview of the NIS name services.

The following options are available:

- -d [ ypdomain ]
  Use ypdomain instead of the default domain.

- -m mname
  Find the master NIS server for a map. No hostname can be specified with -m. mname can be a mapname, or a nickname for a map. When mname is omitted, produce a list available maps.

SEE ALSO

ypserv(1M), ypset(1M), ypfiles(4)
ypxfr(1M) ypxfr(1M)

NAME

ypxfr - transfer YP map from a YP server to host

SYNOPSIS

/usr/sbin/ypxfr [ -c ] [ -f ] [ -d ypdomain ] [ -h host ] [ -s ypdomain ]
[ -C tid prog server ] mapname

DESCRIPTION

The ypxfr command moves a YP map in the default domain for the local host to
the local host by making use of normal YP services. It creates a temporary map
in the directory /var/yp/ypdomain (this directory must already exist; ypdomain is
the default domain for the local host), fills it by enumerating the map’s entries,
fetches the map parameters (master and order number), and loads them. It then
deletes any old versions of the map and moves the temporary map to the real
mapname.

If run interactively, ypxfr writes its output to the terminal. However, if it is
started without a controlling terminal, and if the log file /var/yp/ypxfr.log
exists, it appends all its output to that file. Since ypxfr is most often run from the
privileged user’s crontab file, or by ypserv, the log file can be used to retain a
record of what was attempted, and what the results were.

For consistency between servers, ypxfr should be run periodically for every map
in the YP data base. Different maps change at different rates: a map may not
change for months at a time, for instance, and may therefore be checked only
once a day. Some maps may change several times per day. In such a case, you
may want to check hourly for updates. A crontab(1) entry can be used to per­
form periodic updates automatically. Rather than having a separate crontab
entry for each map, you can group commands to update several maps in a shell
script. Examples (mnemonically named) are in /usr/sbin/yp: ypxfr_lperday,
and ypxfr_lperhour. They can serve as reasonable first cuts.

Refer to ypfiles(4) and ypserv(1M) for an overview of the YP name service.

The following options are available:

- c  Do not send a Clear current map request to the local ypserv
      process. Use this flag if ypserv is not running locally at the
time you are running ypxfr. Otherwise, ypxfr complains that
      it cannot talk to the local ypserv, and the transfer fails.

- f  Force the transfer to occur even if the version at the master is
      not more recent than the local version.

- C tid prog server  This option is only for use by ypserv. When ypserv starts
                   ypxfr, it specifies that ypxfr should call back a yppush process
                   at the host server, registered as program number prog, and wait­
                   ing for a response to transaction tid.

- d ypdomain  Specify a domain other than the default domain.

- h host  Get the map from host, regardless of what the map says the
               master is. If host is not specified, ypxfr asks the YP service for
               the name of the master, and try to get the map from there. host
               must be a name.
-s ypdomain  Specify a source domain from which to transfer a map that should be the same across domains.

FILES
/var/yp/ypxfr.log  log file
/usr/sbin/yp/ypxfr_1perday  cron(1M) script to run one transfer per day
/usr/sbin/yp/ypxfr_1perhour  script for hourly transfers of volatile maps
/var/yp/ypdomain  YP domain
/usr/spool/cron/crontabs/root  privileged user’s crontab file

SEE ALSO
  cron(1M), crontab(1), ypserv(1M), yppush(1M), ypfiles(4)
NAME
zdump – time zone dumper

SYNOPSIS
zdump [ -v ] [ -c cutoffyear ] [ zonename ... ]

DESCRIPTION
The zdump command prints the current time in each zonename named on the command line.

The following options are available:
-v For each zonename on the command line, print the current time, the time at the lowest possible time value, the time one day after the lowest possible time value, the times both one second before and exactly at each time at which the rules for computing local time change, the time at the highest possible time value, and the time at one day less than the highest possible time value. Each line ends with isdst=1 if the given time is Daylight Saving Time or isdst=0 otherwise.

-c cutoffyear Cut off the verbose output near the start of the year cutoffyear.

FILES
/usr/lib/locale/TZ standard zone information directory

SEE ALSO
zic(1M), ctime(3C)
NAME
zic - time zone compiler

SYNOPSIS
zic [ -v ] [ -d directory ] [ -l localtime ] [ filename ... ]

DESCRIPTION
zic reads text from the file(s) named on the command line and creates the time conversion information files specified in this input. If a filename is '-', the standard input is read.

Input lines are made up of fields. Fields are separated by any number of white space characters. Leading and trailing white space on input lines is ignored. A pound sign (#) in the input introduces a comment which extends to the end of the line the pound sign appears on. White space characters and pound signs may be enclosed in double quotes (") if they’re to be used as part of a field. Any line that is blank (after comment stripping) is ignored. Non-blank lines are expected to be of one of three types: rule lines, zone lines, and link lines.

A rule line has the form

    Rule   NAME   FROM   TO   TYPE   IN   ON   AT   SAVE   LETTER/S

For example:

    Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D

The fields that make up a rule line are:

NAME
Gives the (arbitrary) name of the set of rules this rule is part of.

FROM
Gives the first year in which the rule applies. The word minimum (or an abbreviation) means the minimum year with a representable time value. The word maximum (or an abbreviation) means the maximum year with a representable time value.

TO
Gives the final year in which the rule applies. In addition to minimum and maximum (as above), the word only (or an abbreviation) may be used to repeat the value of the FROM field.

TYPE
Gives the type of year in which the rule applies. If TYPE is '-' then the rule applies in all years between FROM and TO inclusive; if TYPE is uspres, the rule applies in U.S. Presidential election years; if TYPE is nonpres, the rule applies in years other than U.S. Presidential election years. If TYPE is something else, then zic executes the command

    yearistype year type

to check the type of a year: an exit status of zero is taken to mean that the year is of the given type; an exit status of one is taken to mean that the year is not of the given type.

IN
Names the month in which the rule takes effect. Month names may be abbreviated.
ON Gives the day on which the rule takes effect. Recognized forms include:

5 the fifth of the month
lastSun the last Sunday in the month
lastMon the last Monday in the month

Sun>=8 first Sunday on or after the eighth
Sun<=25 last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full. Note: there must be no spaces within the ON field.

AT Gives the time of day at which the rule takes effect. Recognized forms include:

2 time in hours
2:00 time in hours and minutes
15:00 24-hour format time (for times after noon)
1:28:14 time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is local “wall clock” time or s if the given time is local “standard” time; in the absence of w or s, wall clock time is assumed.

SAVE Gives the amount of time to be added to local standard time when the rule is in effect. This field has the same format as the AT field (although, of course, the w and s suffixes are not used).

LETTERS/S

Gives the “variable part” (for example, the “S” or “D” in “EST” or “EDT”) of time zone abbreviations to be used when this rule is in effect. If this field is ‘-’, the variable part is null.

A zone line has the form

Zone NAME GMTOFF RULES/SAVE FORMAT [UNTIL]

For example:

Zone Australia/South-west GMTOFF RULES/SAVE FORMAT

The fields that make up a zone line are:

NAME The name of the time zone. This is the name used in creating the time conversion information file for the zone.

GMTOFF The amount of time to add to GMT to get standard time in this zone. This field has the same format as the AT and SAVE fields of rule lines; begin the field with a minus sign if time must be subtracted from GMT.

RULES/SAVE The name of the rule(s) that apply in the time zone or, alternately, an amount of time to add to local standard time. If this field is ‘-’ then standard time always applies in the time zone.
**FORMAT**
The format for time zone abbreviations in this time zone. The pair of characters %s is used to show where the “variable part” of the time zone abbreviation goes. **UNTIL** The time at which the GMT offset or the rule(s) change for a location. It is specified as a year, a month, a day, and a time of day. If this is specified, the time zone information is generated from the given GMT offset and rule change until the time specified.

The next line must be a “continuation” line; this has the same form as a zone line except that the string “Zone” and the name are omitted, as the continuation line will place information starting at the time specified as the UNTIL field in the previous line in the file used by the previous line. Continuation lines may contain an UNTIL field, just as zone lines do, indicating that the next line is a further continuation.

A link line has the form

```
Link LINK-FROM LINK-TO
```

For example:

```
Link US/Eastern EST5EDT
```

The LINK-FROM field should appear as the NAME field in some zone line; the LINK-TO field is used as an alternate name for that zone.

Except for continuation lines, lines may appear in any order in the input.

**OPTIONS**

- **-v** Complain if a year that appears in a data file is outside the range of years representable by system time values (0:00:00 AM GMT, January 1, 1970, to 3:14:07 AM GMT, January 19, 2038).

- **-d directory**
  Create time conversion information files in the directory directory rather than in the standard directory /usr/share/lib/zoneinfo.

- **-l timezone**
  Use the time zone timezone as local time. zic will act as if the file contained a link line of the form

```
Link timezone localtime
```

**FILES**

- /usr/share/lib/zoneinfo standard directory used for created files

**SEE ALSO**

time(1), ctime(3)

**NOTE**

For areas with more than two types of local time, you may need to use local standard time in the AT field of the earliest transition time’s rule to ensure that the earliest transition time recorded in the compiled file is correct.
Section 4 – File Formats

intro(4) ..................................................................................................... introduction to file formats
a.out(4) .......................................................... ELF (Executable and Linking Format) files
acct(4) .................................................................................................... per-process accounting file format
admin(4) ..................................................................................................... installation defaults file
aliases, addresses, forward(4) ................................................................ addresses and aliases for sendmail
ar(4) ........................................................................................................................ archive file format
archives(4) ................................................................................................... device header file
binarsys(4) ........................................................................................ remote system information for the ckbinsys command
boot(4) ........................................................................................................ boot
compver(4) .................................................................................................. compatible versions file
copyright(4) ............................................................................................ copyright information file
core(4) ......................................................................................................... core image file
cron(4) ........................................................................................................ cron
depend(4) .................................................................................................. software dependencies files
dfstab(4) ..................................................................................................... file containing commands for sharing resources
dir (s5)(4) ........................................................................................ format of s5 directories
dir (ufs)(4) ................................................................................................ format of ufs directories
dirent(4) .................................................................................................... file system independent directory entry
dump(4) ....................................................................................................... dump
ethers(4) ................................................................................................. Ethernet address to hostname database or domain
/dev/fd(4) .................................................................................................. file descriptor files
filehdr(4) .................................................................................................... file header for common object files
fs (bfs)(4) .................................................................................................. format of the bfs file system volume
fs (s5)(4) .................................................................................................... format of s5 file system volume
fs (ufs)(4) ................................................................................................ format of ufs file system volume
fspec(4) ...................................................................................................... format specification in text files
fstypes(4) ................................................................................................. file that registers distributed file system packages
group(4) .................................................................................................... group file
hosts(4) ..................................................................................................... host name data base
hosts.equiv, .rhosts(4) ................................................................................ trusted hosts by system and by user
inetd.conf(4) ............................................................................................ Internet servers database
inittab(4) .................................................................................................... script for init
inode (bfs)(4) ........................................................................................ format of a bfs i-node
inode (s5)(4) ........................................................................................ format of an s5 i-node
inode (ufs)(4) ........................................................................................ format of a ufs inode
issue(4) ..................................................................................................... issue identification file
limits(4) ................................................................................................. header file for implementation-specific constants
login(4) .................................................................................................... login default file
loginlog(4) ............................................................................................. log of failed login attempts
Section 4 – File Formats

mailcnfg(4) ................................................................. initialization information for mail and rmail
mailsurr(4) ........................................................ surrogate commands for routing and transport of mail
mapchan(4) ................................................................. Format of tty device mapping files
mdevice (4) ............................................................... file format
mfsys (4) ................................................................. file format
mnttab(4) ................................................................. mounted file system table
mtune(4) ................................................................. file format
netconfig(4) ......................................................... network configuration database
netmasks(4) ........................................................... network mask data base
netrc(4) ................................................................. file for ftp remote login data
networks(4) .............................................................. network name data base
passwd(4) ................................................................. password file
pathalias(4) ............................................................ alias file for FACE
pkginfo(4) ................................................................. package characteristics file
pkgmap(4) ................................................................. package contents description file
pnch(4) ................................................................. file format for card images
/proc(4) ................................................................. process file system
profile(4) .............................................................. setting up an environment at login time
protocols(4) ............................................................ protocol name data base
prototype (4) ............................................................. package information file
publickey(4) ............................................................ public key database
resolv.conf(4) ......................................................... configuration file for name server routines
rfmaster(4) ............................................................... Remote File Sharing name server master file
routing(4) ............................................................... system supporting for packet network routines
rpc(4) ................................................................. rpc program number data base
rt_dptbl(4) .............................................................. real-time dispatcher parameter table
sccsfile(4) ............................................................. format of SCCS file
sdevice (4) .............................................................. file format
services(4) .............................................................. Internet services and aliases
sfsys (4) ................................................................. file format
shadow (4) ............................................................. shadow password file
sharetab(4) ............................................................ shared file system table
space(4) ................................................................. disk space requirement file
stat(4) ................................................................. data returned by stat system call
strcf(4) ................................................................. STREAMS Configuration File for STREAMS TCP/IP
strftime(4) ............................................................. language specific strings
stune (4) ................................................................. file format
su(4) ................................................................. su
syslog.conf(4) ........................................................ configuration file for syslogd system log daemon
term(4) ......................................................... format of compiled term file
terminfo(4) ..................................................... terminal capability data base
timezone(4) ................................................. set default system time zone
ts_dptbl(4) ..................................................... time-sharing dispatcher parameter table
ttydefs(4) ..................................................... file contains terminal line settings information for ttymon
ttysrch(4) ..................................................... directory search list for ttymon
unistd(4) ........................................................ header file for symbolic constants
updaters(4) .................................................. configuration file for Network Information Service (NIS) updating
utmp, wtmp(4) ............................................... utmp and wtmp entry formats
utmpx, wtmpx(4) .......................................... utmpx and wtmpx entry formats
vfstab(4) ...................................................... table of file system defaults
ypfiles(4) .................................................... the Network Information Service (NIS) database and directory structure
Where To Find Section 4 Manual Pages

NOTE

The Section 4 manual pages have been moved to another manual in this reference set. They are now located in the System Files and Devices Reference Manual.
Section 5 – Miscellaneous Facilities

intro(5) ................................................................. introduction to miscellany
ascii(5) ............................................................. map of ASCII character set
environ(5) ......................................................... user environment
eqnchar(5) ......................................................... special character definitions for eqn
fcntl(5) ............................................................. file control options
iconv(5) ............................................................. code set conversion tables
jagent(5) ......................................................... host control of windowing terminal
langinfo(5) ..................................................... language information constants
layers(5) ......................................................... protocol used between host and windowing terminal under layers(1)
math(5) ............................................................. math functions and constants
man(5) .............................................................. macros to format Reference Manual pages
me(5) ............................................................... macros for formatting papers
ms(5) ................................................................. text formatting macros
ntypes(5) ......................................................... native language data types
prof(5) .............................................................. profile within a function
regexp: compile, step, advance(5) .............. regular expression compile and match routines
signfo(5) ............................................................. signal generation information
signal(5) ............................................................ base signals
stat(5) ............................................................. data returned by stat system call
stdarg(5) .......................................................... handle variable argument list
term(5) ............................................................ conventional names for terminals
types(5) .......................................................... primitive system data types
ucontext(5) ..................................................... user context
values(5) ........................................................ machine-dependent values
varargs(5) ......................................................... handle variable argument list
wstat(5) ............................................................. wait status
xtproto(5) ...................................................... multiplexed channels protocol used by xt driver
Where To Find Section 5 Manual Pages

NOTE

The Section 5 manual pages have been moved to another manual in this reference set. They are now located in the *System Files and Devices Reference Manual.*
Section 7 – Special Files

intro(7) .......................................................................................................................... introduction to special files
ARP(7) .................................................................................................................................. Address Resolution Protocol
asy(7) ................................................................................................................................. asynchronous serial port
cclone(7) ..................................................................................................................... open any major/minor device pair on a STREAMS driver
connld(7) .................................................................................................................... line discipline for unique stream connections
console(7) ..................................................................................................................... STREAMS-based console interface
cram(7) ............................................................................................................................. CMOS RAM interface
disk(7) ............................................................................................................................... random access bulk storage medium
display(7) ........................................................................................................................ system console display
fd(7) ................................................................................................................................. diskette (floppy disk)
filesystem(7) .................................................................................................................. file system organization
hd(7) .................................................................................................................................... hard (fixed) disk
ICMP(7) ......................................................................................................................... Internet Control Message Protocol
ie6(7) ................................................................................................................................... 3C503 3Com Ethernet Driver
if(7) .................................................................................................................................... general properties of Internet Protocol network interfaces
inet(7) ............................................................................................................................... Internet protocol family
IP(7) ..................................................................................................................................... Internet Protocol
keyboard(7) ....................................................................................................................... system console keyboard
lterm(7) ............................................................................................................................. standard STREAMS terminal line discipline module
lo(7) ...................................................................................................................................... software loopback network interface
log(7) ................................................................................................................................. interface to STREAMS error logging and event tracing
lp(7) ..................................................................................................................................... parallel port interface
mem, kmem(7) .................................................................................................................. core memory
mouse(7) ............................................................................................................................ mouse device driver supporting bus, serial, and PS/2 compatible mouse devices
null(7) .................................................................................................................................. the null file
pckt(7) .............................................................................................................................. STREAMS Packet Mode module
ports(7) ................................................................................................................................ five-line asynchronous communications interface STREAMS driver
prf(7) .................................................................................................................................... operating system profiler
ptem(7) ............................................................................................................................. STREAMS Pseudo Terminal Emulation module
qt(7) ..................................................................................................................................... QIC cartridge magnetic tape streamer interface
rtc(7) ..................................................................................................................................... real time clock interface
SA(7) ..................................................................................................................................... devices administered by System Administration
sad(7) .................................................................................................................................... STREAMS Administrative Driver
scsi_adaptec(7) ............................................................................................................ Adaptec 1542A SCSI host adapter subsystem
scsi_cdrom(7) ................................................................................................................ CD-ROM Target Driver
scsi_disk(7) ....................................................................................................................... sd01 SCSI disk driver
scsi_dpt(7) ........................................................................................................................ SCSI host adapter subsystem
scsi_tape(7) ...................................................................................................................... st01 SCSI tape driver
scsi_wd7000(7) ............................................................................................................... WD7000 FASST2 host adapter subsystem

Section 7 – Special Files
Section 7 – Special Files

scsi_worm(7) ......................................................... sw01 SCSI WORM Target Driver
sockio(7) ............................................................. ioctls that operate directly on sockets
streamio(7) .......................................................... STREAMS ioctl commands
sxt(7) ................................................................. pseudo-device driver
TCP(7) ................................................................... Internet Transmission Control Protocol
termio(7) ............................................................. general terminal interface
termiox(7) ............................................................ extended general terminal interface
ticients, ticots, ticotsord(7) ........................................ loopback transport providers
timod(7) ............................................................. Transport Interface cooperating STREAMS module
tirdwr(7) ............................................................ Transport Interface read/write interface STREAMS module
ttcompat(7) ......................................................... V7, 4BSD and XENIX STREAMS compatibility module
tty(7) ................................................................. controlling terminal interface
UDP(7) ................................................................. Internet User Datagram Protocol
wd(7) ................................................................. Western Digital 8003 Adapter Board
xt(7) ................................................................. STREAMS-based multiplexed tty driver for AT&T windowing terminals
zero(7) .............................................................. source of zeroes
Where To Find Section 7 Manual Pages

The Section 7 manual pages have been moved to another manual in this reference set. They are now located in the *System Files and Devices Reference Manual.*
## Permuted Index

<table>
<thead>
<tr>
<th>call SCO UNIX System V/386 Release</th>
<th>3.2-compatible libnsl /to</th>
<th>fixshlib(1M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>diff3</td>
<td>3-way differential file comparison</td>
<td>diff3(1)</td>
</tr>
<tr>
<td>format maplocale convert Release</td>
<td>4 locale information to different</td>
<td>maplocale(1M)</td>
</tr>
<tr>
<td>PostScript translator for tektronix</td>
<td>4014 files posttek</td>
<td>posttek(1)</td>
</tr>
<tr>
<td>wtmpinit object downloader for the</td>
<td>5620 DMD terminal</td>
<td>wtmpinit(1)</td>
</tr>
<tr>
<td>PostScript translator for Diablo</td>
<td>630 files postdaisy</td>
<td>postdaisy(1)</td>
</tr>
<tr>
<td>x286emul emulate XENIX</td>
<td>80286</td>
<td>x286emul(1)</td>
</tr>
<tr>
<td>determine whether remote system can accept binary messages ckbinarsys accept binary messages cknbinarsys(1M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>accept, reject print requests</td>
<td>accept or reject print requests</td>
<td>accept(1M)</td>
</tr>
<tr>
<td>access and manipulate DOS files</td>
<td>accept, reject accept or reject</td>
<td>accept(1M)</td>
</tr>
<tr>
<td>access and modification dates of</td>
<td>access and modification times of</td>
<td>touch(1)</td>
</tr>
<tr>
<td>face executable for the Framed</td>
<td>Access Command Environment/</td>
<td>face(1)</td>
</tr>
<tr>
<td>sacadm service</td>
<td>access controller administration</td>
<td>sacadm(1M)</td>
</tr>
<tr>
<td>sac service</td>
<td>access controller</td>
<td>sac(1M)</td>
</tr>
<tr>
<td>fusage disk</td>
<td>access profiler</td>
<td>fuseage(1M)</td>
</tr>
<tr>
<td>suodin</td>
<td>access single-user mode</td>
<td>suodin(1M)</td>
</tr>
<tr>
<td>copy file systems for optimal</td>
<td>access time dcopy (generic)</td>
<td>dcopy(1M)</td>
</tr>
<tr>
<td>copy s5 file systems for optimal</td>
<td>access time dcopy (s5)</td>
<td>dcopy(1M)</td>
</tr>
<tr>
<td>getvol verifies device</td>
<td>accessibility</td>
<td>getvol(1M)</td>
</tr>
<tr>
<td>accton1, accton2 connect-time</td>
<td>accounting accton,</td>
<td>accton(1M)</td>
</tr>
<tr>
<td>acctprc, acctprc1, acctprc2 process</td>
<td>accounting</td>
<td>acctprc(1M)</td>
</tr>
<tr>
<td>/closewtmp, utmp2wtmp overview of</td>
<td>accounting and miscellaneous/</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>of accounting and miscellaneous</td>
<td>accounting</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>diskusg generate disk</td>
<td>accounting commands /overview</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>acctcom search and print process</td>
<td>accounting data by user ID</td>
<td>diskusg(1M)</td>
</tr>
<tr>
<td>acctmerg merge or add total</td>
<td>accounting file(s)</td>
<td>acctcom(1)</td>
</tr>
<tr>
<td>command summary from per-process</td>
<td>accounting files</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>ftmp, wtmpfix manipulate connect</td>
<td>accounting records acctcms</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>runacct run daily</td>
<td>accounting records</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>acctwtmp closewtmp, utmp2wtmp/</td>
<td>accounting records</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>per-process accounting records</td>
<td>runacct(1M)</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>accounting file(s)</td>
<td>acct: acctdisk, acctdusg, accton, acct(1M)</td>
<td></td>
</tr>
<tr>
<td>connect-time accounting</td>
<td>acctcms command summary from</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>accounting accton, accton, accton1,</td>
<td>acctcom search and print process</td>
<td>acctcom(1)</td>
</tr>
<tr>
<td>acctprc, acctprc1, acctprc2 process</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>acctwtmp closewtmp,/ acct:</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>closewtmp,/ acct: acct: acctdisk,</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>accounting files</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>acct: acctdisk, acctdusg, accton,</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>accounting acctprc, acctprc, acctprc1,</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>acct: acctdisk, acctdusg, accton,</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>pkgchk check</td>
<td>acct</td>
<td>acct(1M)</td>
</tr>
<tr>
<td>pkgchk check</td>
<td>accuracy of installation</td>
<td>pkgchk(1M)</td>
</tr>
</tbody>
</table>
killall kill all
partsize returns the size of the
sag system
sadc, sal, sa2 system
sar system
sar system
print current SCCS file editing
report process data and system
installation database installf
on the system groupadd
driver configuration/ idinstall
logger
acctmerg merge or
bibliographic database
control arp
rarpd DARPA Reverse
mapper rpcbind universal
files
system useradd
print service lpfilter
print service lpforms
admin create and dispadmin process scheduler
mouseadmin mouse
nlsadmin network listener service
pmadm port monitor
rfadmin Remote File Sharing domain
sacadm service access controller
visual interface to perform system
uadmin
swap swap
fumount forced unmount of
dumpplot, gigiplot, hpplot, / plot,
/design application specific
mailalias translate mail
a command; display its pathname or
rebuild the data base for the mail
renice
System V/386 Release/ fixshlib
fsba file system block
sort sort
/design application specific alarms
prompt; verify and return a string
pkgask stores
intro introduction to commands and
the “working”/ indicator display
active processes killall(1M)
active UNIX System partition partsize(1M)
activity graph sag(1M)
activity report package sadc(1M)
activity reporter sar(1M)
activity reporter sar(1M)
activity sact sact(1)
activity timex time a command; timex(1)
add a file to the software installf(1M)
add (create) a new group definition groupadd(1M)
add, delete, update, or get device idinstall(1M)
add entries to the system log logger(1)
add symbols to kernel debugger dbsym(1M)
add total accounting files acctmerg(1M)
addbib create or extend a addbib(1)
Address Resolution Protocol server rarpd(1M)
deploy to RPC program number rpcbind(1M)
admin create and administer SCCS admin(1)
administer a new user login on the useradd(1M)
administer filters used with the LP lpfilter(1M)
administer forms used with the LP lpforms(1M)
administer SCCS files admin(1)
administration dispadmin(1M)
administration mouseadmin(1M)
administration nlsadmin(1M)
administration pmadm(1M)
administration rfadmin(1M)
administration sacadm(1M)
administration sysadm sysadm(1M)
administrative control uadmin(1M)
administrative interface swap(1M)
advertising resources fumount(1M)
aedplot, atoplot, bgplot, ctoplot, plot(1G)
alarms and/or the “working”/ indicator(1F)
alias names mailalias(1)
alias which locate which(1)
alias files newaliases newaliases(1M)
alter priority of running processes renice(1M)
alters executables to call SCO UNIX fixshlib(1M)
analyzer fsba(1M)
and/or merge files sort(1)
and/or the “working” indicator indicator(1F)
answer ckstr display a ckstr(1)
answers to a request script pkgask(1M)
application programs intro(1)
application specific alarms and/or indicator(1F)
with the controlling FMLI
environment for console
lookup
library
language bc
the current host
arch display the
or restore from, a full file system
or restore from, a full file system
convert
another migration move an
restore an incremental filesystem
fimage create, restore an image
ar maintain portable
tar tape file
command xargs construct
expr evaluate
fmlexpr evaluate
echo echo
echo echo
message put
bc arbitrary-precision
control
notify notify user of the
encode a binary file, or decode its
or SCCS commands help
as
setkey
later time
gigaplot, hpplot, plot, aedplot,
at specified times
batch
resources rmttry
parameter idtune
devattr lists device
change login password and password
systems automount
autopush configure lists of
mail messages vacation
vacation reply to mail
file systems
automatically pushed STREAMS/
share make local NFS resource
systems share make local resource
share make local RFS resource
systems dfshares list
application /a co-process ........................................ vsig(1F)
applications /set up compatibility ................................. scompat(1)
apropos locate commands by keyword .......................... apropos(1)
ar maintain portable archive or .................................. ar(1)
arbitrary-precision arithmetic ....................................... bc(1)
arch display the architecture of .................................... arch(1)
architecture of the current host .................................... arch(1)
archive fdp create, .................................................. fdp(1M)
archive ffile create, .................................................. ffile(1M)
archive files to common formats .................................. convert(1)
archive from one set of volumes to ............................... migration(1M)
archive incfile create, .............................................. incfile(1M)
archive of a filesystem ............................................. fimage(1M)
archive or library ...................................................... ar(1)
archiver ................................................................. tar(1)
archives in and out .................................................. cpio(1)
arg list(s) and execute ............................................. xargs(1)
arguments as an expression ....................................... expr(1)
arguments as an expression ......................................... fmlexpr(1F)
arguments .............................................................. echo(1)
arguments .............................................................. echo(1)
arguments on FMLI message line.............................. message(1F)
arithmetic language .................................................... bc(1)
arp address resolution display and ............................ arp(1M)
arrival of new mail .................................................. notify(1)
ASCII representation /uudecode ............................... uuencode(1C)
ask for help with message numbers ............................ help(1)
assembler ...................................................................... as(1)
assigns the function keys .......................................... setkey(1)
at, batch execute commands at a ................................ at(1)
atoplot, bplot, cplot, dplot, dumbplot, ........................ pplot(1G)
atq display the jobs queued to run .............................. atq(1)
atrm remove jobs spoiled by at or .............................. atrm(1)
attempt to mount queued remote ............................... rmttry(1M)
attmpts to set value of a tunable ............................... idtune(1M)
attributes .................................................................... devattr(1M)
attributes passwd ...................................................... passwd(1)
automatically mount NFS file ................................. automount(1M)
automatically pushed STREAMS/ .............................. autopush(1M)
automatically respond to incoming ............................ vacation(1)
automatically .......................................................... vacation(1)
automount automatically mount NFS ..................... automount(1M)
autopush configure lists of ................................. autopush(1M)
available for mounting by remote/ ......................... share(1M)
available for mounting by remote ......................... share(1M)
available for mounting by remote/ ......................... share(1M)
available NFS resources from remote ...................... dfshares(1M)
Index

uuuglist list service grades
local systems dfshares list
systems dfshares list
wait
language
backup perform
backup session
bkhistory report on completed
bkstatus display the status of
insertion/ bkoper interact with
change or display the contents of a
ckbupscd check file system
backup initiate or control a system
an exception list for incremental
newaliases rebuild the data
a text string from a message data
ypcat print values in a NIS data
getdev lists devices
(visual) display editor
of path names
pathnames
for a text string in, message data
atrm remove jobs spooled by at or
time at,
language
procedures brc,
cb C program
su
systems fsck
mkfs
fsck (bfs) check and repair
mount (bfs) mount
mount
gigiplot,/ plot, aedplot, atoplot,
addbib create or extend a
create an inverted index to a
lookbib find references in a
expand and insert references from a
roffbib format and print a
sortbib sort a
messages
comsat, in.comsat
bdiff
available on this UNIX system ...................................... uuuglist(1C)
available resources from remote or ................................ dfshares(1M)
available RFS resources from remote ............................. dfshares(1M)
await completion of process ........................................... wait(1)
awk pattern scanning and processing ............................... awk(1)
backup functions ......................................................... backup(1)
backup initiate or control a system .................................. backup(1M)
backup operations ....................................................... bkstatus(1M)
backup register bkreg .................................................. bkreg(1M)
backup schedule ......................................................... ckbupscd(1M)
backup session ......................................................... backup(1M)
backupups bkexcept change or display ............................. bkexcept(1M)
banner make posters ................................................... banner(1)
base for the mail aliases file .......................................... newaliases(1M)
base gettxt retrieve ..................................................... gettxt(1)
base ................................................................. ypcat(1)
based on criteria ..................................................... getdev(1M)
based on ex vi screen-oriented ................................. vi(1)
basename, dirname deliver portions ................................ basename(1)
basename display portions ......................................... basename(1)
bases /contents of, or search ..................................... srchtxt(1)
batch execute commands at a later ............................... atm(1)
batch execute commands at a later ................................ at(1)
bc arbitrary-precision arithmetic ................................... bc(1)
bccheckrc system initialization .................................. brc(1M)
bdiff big diff .................................................... bdiff(1)
beautifier ..................................................................... cb(1)
become super-user or another user ................................. su(1)
big file scanner ......................................................... bfs(1)
(bfs) check and repair bfs file ..................................... fsck(1M)
(bfs) construct a boot file system ................................ mkfs(1M)
(bfs) file systems ................................................... fsck(1M)
(bfs) file systems ................................................... mount(1M)
(bfs) mount bfs file systems ...................................... mount(1M)
bpplot, crtplot, dumbplot, ............................................. plot(1G)
biblraphic database ................................................... addbib(1)
bibliographic database indicebib .................................... indxbib(1)
bibliographic database ................................................ lookbib(1)
bibliographic database refer ....................................... refer(1)
bibliographic database ................................................ roffbib(1)
bibliographic database .............................................. sortbib(1)
biff give notice of incoming mail ................................... biff(1)
biff server ..................................................................... comsat(1M)
big diff ...................................................... bdiff(1)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bfs</td>
<td>big file scanner</td>
</tr>
<tr>
<td>uuencode, uudecode</td>
<td>encode a binary file, or decode its ASCII/</td>
</tr>
<tr>
<td>bind</td>
<td>determine whether remote system can accept strings in an object file or</td>
</tr>
<tr>
<td>pbind</td>
<td>bind a process to a processor</td>
</tr>
<tr>
<td>pexbind</td>
<td>bind processes to a processor</td>
</tr>
<tr>
<td>ypserv</td>
<td>bind block processes to a processor</td>
</tr>
<tr>
<td>ypbind</td>
<td>bind yP processes</td>
</tr>
<tr>
<td>PostScript</td>
<td>translator for DMD</td>
</tr>
<tr>
<td>exception</td>
<td>list for incremental/</td>
</tr>
<tr>
<td>backup</td>
<td>operations operations to service media/</td>
</tr>
<tr>
<td>contents</td>
<td>of a backup register</td>
</tr>
<tr>
<td>backup</td>
<td>operations backup operations</td>
</tr>
<tr>
<td>fsba</td>
<td>file system</td>
</tr>
<tr>
<td>sum</td>
<td>print checksum and sync update the super</td>
</tr>
<tr>
<td>dfspace</td>
<td>report number of free disk</td>
</tr>
<tr>
<td>df (s5)</td>
<td>report number of free disk</td>
</tr>
<tr>
<td>du</td>
<td>display the number of disk</td>
</tr>
<tr>
<td>mkfs (bfs)</td>
<td>construct a bootfile</td>
</tr>
<tr>
<td>bootparamd</td>
<td>boot UNIX system</td>
</tr>
<tr>
<td>boot</td>
<td>UNIX system boot program</td>
</tr>
<tr>
<td>procedures</td>
<td>procedures</td>
</tr>
<tr>
<td>online</td>
<td>bring a processor online</td>
</tr>
<tr>
<td>more, page</td>
<td>browse or page through a text file</td>
</tr>
<tr>
<td>a menu item</td>
<td>build a menu; prompt for and return</td>
</tr>
<tr>
<td>ckitem</td>
<td>build and install YP database</td>
</tr>
<tr>
<td>ypinit</td>
<td>build new UNIX System kernel</td>
</tr>
<tr>
<td>idbuild</td>
<td>build new UNIX System kernel</td>
</tr>
<tr>
<td>idmkunix</td>
<td>build new UNIX System kernel</td>
</tr>
<tr>
<td>size</td>
<td>print section sizes in</td>
</tr>
<tr>
<td>cc</td>
<td>C compiler</td>
</tr>
<tr>
<td>cflow</td>
<td>generate C flowgraph</td>
</tr>
<tr>
<td>cb</td>
<td>program beautifier</td>
</tr>
<tr>
<td>lint</td>
<td>program checker</td>
</tr>
<tr>
<td>cxref</td>
<td>generate C program cross-reference</td>
</tr>
<tr>
<td>cscope</td>
<td>interactively examine a</td>
</tr>
<tr>
<td>ctrace</td>
<td>and remove ifdef'ed lines from</td>
</tr>
<tr>
<td>sum</td>
<td>calculate a checksum for a file</td>
</tr>
<tr>
<td>dc desk</td>
<td>calculator</td>
</tr>
<tr>
<td>cal print</td>
<td>calendar</td>
</tr>
<tr>
<td>calendar</td>
<td>reminder service</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>cu</td>
<td>call another UNIX system</td>
</tr>
<tr>
<td>fixshlib</td>
<td>call SCO UNIX System V/386 Release</td>
</tr>
<tr>
<td>truss</td>
<td>calls and signals</td>
</tr>
<tr>
<td>request</td>
<td>cancel queued remote resource</td>
</tr>
<tr>
<td>mount</td>
<td>cancel send/cancel requests to an</td>
</tr>
<tr>
<td>lp</td>
<td>captoinfo convert a termcap</td>
</tr>
<tr>
<td>description</td>
<td>casual users)</td>
</tr>
<tr>
<td>into a terminfo/</td>
<td>cat concatenate and print files</td>
</tr>
<tr>
<td>edit text editor (variant of ex for)</td>
<td>cat files for the manual</td>
</tr>
<tr>
<td>catman create the</td>
<td>catalogue</td>
</tr>
<tr>
<td>gencat generate a formatted message manual</td>
<td>captoinfo(1M)</td>
</tr>
<tr>
<td>gencc create a front-end to the</td>
<td>catman(1M)</td>
</tr>
<tr>
<td>moment</td>
<td>customize install specific portions of</td>
</tr>
<tr>
<td>confs</td>
<td>certain UNIX or XENIX packages</td>
</tr>
<tr>
<td>chmod</td>
<td>cfow generate C flowgraph</td>
</tr>
<tr>
<td>chown</td>
<td>change and display console flags</td>
</tr>
<tr>
<td></td>
<td>change file mode</td>
</tr>
<tr>
<td></td>
<td>change file owner</td>
</tr>
<tr>
<td></td>
<td>change file owner</td>
</tr>
<tr>
<td></td>
<td>cd</td>
</tr>
<tr>
<td></td>
<td>change or display an exception list</td>
</tr>
<tr>
<td></td>
<td>change or display the contents of a</td>
</tr>
<tr>
<td></td>
<td>change or query stream</td>
</tr>
<tr>
<td></td>
<td>change Remote File Sharing host</td>
</tr>
<tr>
<td></td>
<td>change root directory for a command</td>
</tr>
<tr>
<td></td>
<td>change system state</td>
</tr>
<tr>
<td></td>
<td>change the access and modification</td>
</tr>
<tr>
<td></td>
<td>change the delta comment of an</td>
</tr>
<tr>
<td></td>
<td>change the format of a text file</td>
</tr>
<tr>
<td></td>
<td>change the group ownership of a</td>
</tr>
<tr>
<td></td>
<td>change the name of a file</td>
</tr>
<tr>
<td></td>
<td>(change) to an SCSS file</td>
</tr>
<tr>
<td></td>
<td>change user encryption key</td>
</tr>
<tr>
<td></td>
<td>change working directory</td>
</tr>
<tr>
<td></td>
<td>chroot</td>
</tr>
<tr>
<td></td>
<td>shutdown shut down system</td>
</tr>
<tr>
<td></td>
<td>dates of files</td>
</tr>
<tr>
<td></td>
<td>delta</td>
</tr>
<tr>
<td></td>
<td>newform</td>
</tr>
<tr>
<td></td>
<td>file</td>
</tr>
<tr>
<td></td>
<td>chgrp</td>
</tr>
<tr>
<td></td>
<td>rename</td>
</tr>
<tr>
<td></td>
<td>delta</td>
</tr>
<tr>
<td></td>
<td>make a delta</td>
</tr>
<tr>
<td></td>
<td>(change) to an SCSS file</td>
</tr>
<tr>
<td></td>
<td>chkey</td>
</tr>
<tr>
<td></td>
<td>cd</td>
</tr>
<tr>
<td></td>
<td>yapush force propagation of a</td>
</tr>
<tr>
<td></td>
<td>setname</td>
</tr>
<tr>
<td></td>
<td>yppedated server for conversion tables</td>
</tr>
<tr>
<td></td>
<td>chrbl generate</td>
</tr>
<tr>
<td></td>
<td>trchan translate</td>
</tr>
<tr>
<td></td>
<td>fgrep search a file for a</td>
</tr>
<tr>
<td></td>
<td>reset establish or restore terminal</td>
</tr>
<tr>
<td></td>
<td>tr translate</td>
</tr>
<tr>
<td></td>
<td>tr translate</td>
</tr>
</tbody>
</table>
chargefee, ckpacct, dodisk, ........................................... chargefee(1M)
check a file system ...................................................... checkfsys(1M)
check accuracy of installation ....................................... pkgchk(1M)
check and interactive repair ................................................ fsck(lM)
check and repair bfs file systems ................................................................. fsck(lM)
check and repair file systems ................................................................. fsck(lM)
check and repair s5 file systems ................................................................. fsck(lM)
check and repair XENIX filesystems ................................................................. fsck(lM)
check file system backup schedule ................................................................. ckbupscd(1M)
check group database entries ................................................................. grpck(1M)
check nroff and troff input files; .............................................. checknr(1)
check password database entries ................................................................. pwck(1M)
check the uucp directories and ................................... uucheck(1M)
checkeq typeset mathematics ......................................................... eqn(1)
check ' ................................................................. lint(1)
file system quota consistency
pwck, grpck password/group file
reboot/halt the system without files; report possible errors
sum print
sum calculate a a file
chkgrp change the group ownership of ........................................... chgrp(1)
chkey change user encryption key ........................................... chkey(1)
chmod change file mode .................................................... chmod(l)
chown change file owner ................................................... chown(l)
chown change file owner ................................................... chown(l)
chkroot change root directory for a ........................................... chkroot(1M)
chrtbl generate character ................................................................. chrtbl(1M)
ckbinarsys determine whether remote ........................................... ckbinarsys(1M)
ckbupscd check file system backup ................................................................. ckbupscd(1M)
ckdate, errdate, helpdate, valdate ........................................... ckdate(l)
ckgid, errgid, helpgid, valgid .............................................. ckgid(l)
ckint display a prompt; verify and ..................................... ckint(l)
ckitem build a menu; prompt for and ............................. ckitem(l)
ckkeywd prompt for and validate ........................................... ckkeywd(1)
ckpacct, dodisk, lastlogin, ........................................... chargefee(1M)
ckpath display a prompt; verify and ......................................... ckpath(1)
ckrange prompt for and validate an ........................................... ckrange(1)
ckstr display a prompt; verify and ......................................... ckstr(1)
cktime display a prompt; verify and ......................................... cctime(1)
ckuid prompt for and validate ............................................... cckuid(1)
ckyom prompt for and validate ....................................... cckyom(1)
command
classification and conversion/
system can accept binary messages
schedule
prompt for and validate a date
prompt for and validate a group ID
return an integer value
return a menu item
keyword
monacct, nulladm,/ chargefee,
return a pathname
integer
return a string answer
return a time of day
user ID
yes/no
tables chrtbl generate character
strclean STREAMS error logger
uucleanup uucp spool directory
clear clear the terminal screen ........................................... clear(1)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>clear the terminal screen</td>
</tr>
<tr>
<td>shell command interpreter with a C-like syntax</td>
<td>csh</td>
</tr>
<tr>
<td>cron</td>
<td>clock daemon</td>
</tr>
<tr>
<td>set system time from hardware</td>
<td>clock setclk</td>
</tr>
<tr>
<td>time</td>
<td>close down the system at a given time</td>
</tr>
<tr>
<td>/acctdusg, accton, acctwtmp</td>
<td>closewtmp, utmp2wtmp overview of</td>
</tr>
<tr>
<td>communicate with/ cocreate, cosend, coreceive, codestroy communicate/ /cosend, cocheck, coreceive, translation</td>
<td>cocheck, coreceive, codestroy</td>
</tr>
<tr>
<td>gcc</td>
<td>cof2elf COFF to ELF object file</td>
</tr>
<tr>
<td>gencc create a front-end to the cc</td>
<td>COFF to ELF object file translation</td>
</tr>
<tr>
<td>col filter reverse line-feeds</td>
<td>col(1)</td>
</tr>
<tr>
<td>collbl create</td>
<td>collation database</td>
</tr>
<tr>
<td>mailstats print statistics</td>
<td>collected by sendmail</td>
</tr>
<tr>
<td>setcolor, setcolour set screen</td>
<td>collbl create collation database</td>
</tr>
<tr>
<td>setcolor redefine or create a color</td>
<td>color redefine or create a color</td>
</tr>
<tr>
<td>comb</td>
<td>comb combine SCCS deltas</td>
</tr>
<tr>
<td>to two sorted files</td>
<td>combine SCCS deltas</td>
</tr>
<tr>
<td>kernel executable file dbcmd load</td>
<td>comm select or reject lines common</td>
</tr>
<tr>
<td>/KornShell, a standard/restricted shell command interpreters: standard</td>
<td>command and macro files into a command and programming language</td>
</tr>
<tr>
<td>chroot change root directory for a command</td>
<td>command at low priority</td>
</tr>
<tr>
<td>alias which locate a command</td>
<td>chroot</td>
</tr>
<tr>
<td>executable for the Framed Access</td>
<td>Command Environment Interface face</td>
</tr>
<tr>
<td>env set environment for command execution</td>
<td>command execution</td>
</tr>
<tr>
<td>uux UNIX-to-UNIX system</td>
<td>command execution</td>
</tr>
<tr>
<td>mail_pipe invoke recipient</td>
<td>command for incoming mail</td>
</tr>
<tr>
<td>gencc create a front-end to the cc</td>
<td>command</td>
</tr>
<tr>
<td>nohup run a command immune to hangups and quits</td>
<td>nohup</td>
</tr>
<tr>
<td>syntax csh shell command interpreter with a C-like</td>
<td>command interpreter with a C-like</td>
</tr>
<tr>
<td>shell, job control/ sh, jsh, rsh command interpreters: standard</td>
<td>sh</td>
</tr>
<tr>
<td>getopt parse command options</td>
<td>getopt</td>
</tr>
<tr>
<td>getopts, getoptcvt parse command options</td>
<td>getopts</td>
</tr>
<tr>
<td>system activity time command; report process data and</td>
<td>time</td>
</tr>
<tr>
<td>a uuxqt execute remote command requests</td>
<td>uuxqt(1M)</td>
</tr>
<tr>
<td>accounting records acccmsg command summary from per-process</td>
<td>acccmsg(1M)</td>
</tr>
<tr>
<td>test condition evaluation command</td>
<td>command summary from per-process</td>
</tr>
<tr>
<td>test condition evaluation command</td>
<td>command</td>
</tr>
<tr>
<td>test condition evaluation command</td>
<td>command</td>
</tr>
<tr>
<td>time time a command</td>
<td>command</td>
</tr>
<tr>
<td>shell run a command using shell</td>
<td>shell</td>
</tr>
<tr>
<td>argument list(s) and execute command xargs construct</td>
<td>xargs</td>
</tr>
<tr>
<td>and miscellaneous accounting commands /overview of accounting</td>
<td>acct</td>
</tr>
<tr>
<td>intro introduction to commands and application programs</td>
<td>intro</td>
</tr>
</tbody>
</table>
at, batch execute
apropos locate
lastcomm show the last
help with message numbers or SCCS
install install
environment rc2 run
reboot the operating/ rc6 run
operating system rc0 run
xinstall install
cdc change the delta
mcs manipulate the
prt display the delta and
convert convert archive files to
comm select or reject lines
cocheck, coreceive, codestroy
ipcs report inter-process
users display a
diff differential file
descriptions info cmp
file scsdiff
diff3 3-way differential file
dircmp directory
console/ scompat set up
regcmp regular expression
cc C
cc C
rpcgen an RPC protocol
tic terminfo
zic time zone
yacc yet another
bkhistory report on
wait await
pack, pcat, unpack
compress, uncompress, zcat
/hashmake, spellin, hashcheck,
data for storage, uncompress and/
for storage, uncompress and display
commands at a later time ........................................... at(l)
commands by keyword lookup ..................................... apropos(l)
commands executed, in reverse order ....................... lastcomm(l)
commands help ask for ............................................. help(l)
commands .............................................................. install(lM)
commands performed for multi-user ......................... rc2(lM)
commands performed to stop and ......................... rc6(lM)
commands performed to stop the ......................... rc0(lM)
commands .............................................................. xinstall(lM)
comment of an SCCS delta ....................................... cdc(l)
comment section of an object file ............................ mcs(l)
commentary history of an SCCS file ........................ prtl)
common formats ...................................................... convert(l)
common to two sorted files ...................................... comm(l)
communicate with a process / cosend, ..................... ccreate(lF)
communication facilities status ................................ ipcs(l)
compact list of users logged in ................................. users(l)
comparator ............................................................ diff(l)
compare or print out terminfo ................................. info cmp(lM)
compare two files .................................................... cmp(l)
compare two versions of an SCCS ......................... scsdiff(l)
comparison .......................................................... diff3(l)
compatibility environment for ................................. scompat(l)
compile ................................................................. regcmp(l)
compiler .............................................................. cc(l)
cc C compiler ........................................................... cc(l)
compiler .............................................................. rpcgen(l)
compiler .............................................................. tic(lM)
compiler .............................................................. zic(lM)
compiler-compiler .................................................... yacc(l)
completed backup operations ................................. bkhistory(lM)
completion of process ............................................. wait(l)
compress and expand files ........................................ pack(l)
compress data for storage,/ ................................. compress(l)
compress find spelling errors ................................. spell(l)
compress, uncompress, zcat compress ................. compress(l)
compressed files /compress data ......................... compress(l)
comsat, in.comsat biff server .............................. comsat(lM)
cat concatenate and print files ................................ cat(l)
test condition evaluation command ......................... test(l)
test condition evaluation command ......................... test(l)
test condition evaluation command ......................... test(lF)
configuration data /add, delete, ......................... idinstall(lM)
configuration ......................................................... idconfig(lM)
configuration strcgh ................................................. strcgh(l)
configure lists of automatically ......................... autopush(lM)
mapkey, mapscrn, mapstr
parameters ifconfig
lpadmin
mapchan
flags
fwtmp, wttmpfix manipulate
mconnect
acctcon, acctcon1, acctcon2
repair fsck (ufs) file system
quotacheck file system quota
up compatibility environment for
configs change and display
a message on stderr or system
mkfs (bfs)
mkfs (generic)
mkfs (ufs)
mkfs (s5)
execute command xargs
remove nroff, troff, tbl and eqn
remove nroff/troff, tbl, and eqn
debugging on Uutry try to
getdgrp lists device groups which
idmkinits reads files
edvtoc VTOC (Volume Table of
bkreg change or display the
ls list the
ls, lc list
ls list
string in, message/ srchtxt display
csplit
backup initiate or
arp address resolution display and
tapecntl tape
init, telininit process
mt magnetic tape
priocntl process scheduler
lpc line printer
/interpreters: standard shell, job
scs front end for the Source Code
uadmin administrative
uustat uucp status inquiry and job
vc version
sacadm service access
sac service access
synchronize a co-process with the
units
character classification and
configure monitor screen mapping mapkey(1M)
configure network interface ifconfig(1M)
configure the LP print service lpadmin(1M)
Configure tty device mapping mapchan(1M)
cfgs change and display console confgs(1M)
connect accounting records fwtmp(1M)
connect to SMTP mail server socket mconnect(1M)
connect-time accounting acctcon(1M)
consistency check and interactive fsck(1M)
consistency checker quotacheck(1M)
console applications scompat set scompat(1)
console flags confgs(1M)
console fmtmsg display fmtmsg(1)
construct a boot file system mkfs(1M)
construct a file system mkfs(1M)
construct a ufs file system mkfs(1M)
construct an s5 file system mkfs(1M)
construct argument list(s) and xargs(1)
constructs deroff deroff(1)
constructs deroff deroff(1)
contact remote system with Uutry(1M)
contain devices that match criteria getdgrp(1M)
containing specifications idmkinits(1M)
Contents editing utility edvtoc(1M)
contents of a backup register bkreg(1M)
contents of a directory ls(1)
contents of directory ls(1)
contents of directory ls(1)
contents of, or search for a text srchtxt(1)
context split csplit(1)
control a system backup session backup(1M)
control arp(1M)
control for tape device tapecntl(1)
control initialization init(1M)
control mt(1)
control priocntl(1)
control program lpc(1M)
control shell, restricted shell sh(1)
Control System (SCCS) sccs(1)
control uadmin(1M)
control uustat(1C)
controller administration sacadm(1M)
controller sac(1M)
controlling FMLI application vsig vsig(1F)
conversion program units(1)
conversion tables chrtbl generate chrtbl(1M)
Permuted Index

iconv code set
convert a termcap description into ........................................... iconv(1M)
a terminfo description captoinfo
correct and copy a file .......................................................... dd(1M)
common formats convert
convert archive files to common .......................................... convert(1M)
table htable
correct or initialize file ....................................................... fixperm(1)
ELF cvtomflib
convert DoD Internet format host ........................................... htable(1M)
maplocale
convert OMF (XENIX) libraries to ........................................... cvtomflib(1M)
FMLI/ vsig synchronize a
convert Release 4 locale ................................................... maplocale(1M)
dd convert and
correct or initialize XENIX file ............................................. fixperm(1)
tcopy
copy a file ............................................................................ dd(1M)
copy a magnetic tape ............................................................... tcopy(1)
access time dcopy (generic)
copy file systems for optimal ................................................. dcopy(1M)
cp
copy files ................................................................................ cp(1)
cpio
copy groups of files ............................................................... copy(1)
volcopy (ufs) make a literal
volcopy (s5) make a literal ...................................................... volcopy(1M)
copy of an s5 file system ......................................................... volcopy(1M)
volcopy (generic) make literal
copy of a file system .............................................................. volcopy(1M)
rcp remote file
copy s5 file systems for optimal ............................................. dcopy(1M)
access time dcopy (s5)
copy uucp, .............................................................................. uuto(1C)
public UNIX-to-UNIX system file
core images of running processes .......................................... gcore(1)
gcore get
create and administer sees files ............................................. admin(1)
with a/ cocreate, cosend, cocheck,
coreceive, codestroy communicate ....................................... cocreate(1F)
permissions and ownership fixperm
correct or initialize file ....................................................... fixperm(1)
permissions and ownership fixperm
correct or initialize XENIX file ............................................. fixperm(1M)
codestroy communicate/ cocreate,
cosend, cocheck, coreceive, .............................................. cocreate(1F)
sum print checksum and block
count of a file ........................................................................ sum(1)
display line-by-line execution
count profile data lprof ......................................................... lprof(1)
wc word
create a file system ............................................................. makesys(1M)
setcolor redefine or
create a new group definition on ........................................... groupadd(1M)
create a front-end to the cc ............................................... gencc(1M)
the system groupadd add
create a new key in the publickey ........................................ newkey(1M)
tags
create a tags file for use with vi ........................................... tags(1)
manipulib bibliographic database indxbib
create an inverted index to a ............................................. indxbib(1)
admin
create and administer SCCS files ....................................... admin(1)
colltbl
create collation database ...................................................... colltbl(1M)
gettxt mkmsgs
create message files for use by ....................................... mkmsgs(1)
montbl
create monetary database ................................................. montbl(1M)
database adddb
create or extend a bibliographic ....................................... adddb(1)
partition table fdisk
create or modify hard disk ............................................. fdisk(1M)
Permuted Index

file system archive  fdp
file system archive  file
a filesystem  image
filesystem archive incfile
catman
pathconv search FMLI
getdev lists devices based on which contain devices that match

crontab user
cxlabel generate C program
plot, aedplot, atoplot, bgplot,
pg file perusal filter for

values reset reset the
getfrm returns the
display the architecture of the
print the numeric identifier of the
display the processor type of the
hostname set or print name of
relogin rename login entry to show
ps display the status of
sact print
domainname get/set name of
uname print name of
whoami display the effective
NIS server host yppoll return
getitems return a list of
display environment variables
a UNIX package
certain UNIX or XENIX packages
line of a file
line of a file cut
line of a file fmlcut
libraries to ELF
cross-reference
cxlabel generate C program
d Biol NPS
cron clock
inetd Internet services
creat, or restore from, a full ................................. fdp(1M)
creat, or restore from, a full ................................. file(1M)
creat, or restore an image archive of ........................ image(1M)
creat, restore an incremental .............................. incfile(1M)
creat the cat files for the manual ........................ catman(1M)
criteria for filename ........................................... pathconv(1F)
criteria ......................................................... getdev(1M)
criteria /lists device groups ............................... getdgrp(1M)
cron clock daemon ......................................... cron(1M)
crontab file ..................................................... crontab(1)
crontab user crontab file ................................. crontab(1)
crypt encode/decode ............................................. crypt(1)
cscope interactively examine a C .......................... cscope(1)
csh shell command interpreter with ........................ csh(1)
ct spawn login to a remote terminal ........................ ct(1C)
ctags create a tags file for use ............................. ctags(1)
ctrace C program debugger .................................. ctrace(1)
cu call another UNIX system ............................... cu(1C)
current form field to its default .......................... reset(1F)
current host arch ............................................. arch(1)
current host hostid ............................................ hostid(1)
current host mach ............................................. mach(1)
current host system ......................................... hostname(1)
current layer ................................................... relogin(1M)
current processes ............................................. ps(1)
current SCCS file editing activity .......................... sact(1)
current secure RPC domain ................................. domainname(1M)
current UNIX system ......................................... uname(1)
current username ............................................ whoami(1)
current version of the map at the ........................ yppoll(1M)
currently marked menu items ............................. getitems(1F)
currently set printenv ................................. printenv(1)
custom install specific portions of ........................ custom(1M)
custom install specific portions of ........................ custom(1M)
cut out selected fields of each .......................... cut(1)
cvtomflib convert OMF (XENIX) ........................... cvtomflib(1)
cxlabel generate C program ............................... cxref(1)
dbian NPS ....................................................... biod(1M)
daemon ......................................................... biod(1M)
daemon ......................................................... cron(1M)
daemon ......................................................... inetd(1M)
listened network listener
demon process remote file sharing
rfudaemon Remote File Sharing
routed network routing
sterr STREAMS error logger
runacct run
Protocol server rarpd
telnetd
Protocol server tftp
tnamed, in.tnamed
time a command; report process
newaliases rebuild the
a text string from a message
ypcat print values in a NIS
for a text string in, message
diskusg generate disk accounting
compress, uncompress, gzip compress
or get device driver configuration
execution count profile
initiate restores of filesystems,
prof display profile
create or extend a bibliographic
colltbl create collation
gpck check group
pwck check password
inverted index to a bibliographic
a file to the software installation
find references in a bibliographic
montbl create monetary
create a new key in the public key
join relational
references from a bibliographic
removef remove a file from software
format and print a bibliographic
sortbib sort a bibliography
a terminal or query terminfo
ypinit build and install YP
ypmake rebuild YP
validate prompt for and validate a
date print and set the
rdate set system
change the access and modification
into a kernel executable file
a Network Information Service (NIS)
demon .............................................................. listen(lM)
demon .............................................................. lockd(lM)
demon .............................................................. nfsd(lM)
demon process .............................................. rfudaemon(lM)
demon .............................................................. routed(lM)
demon .............................................................. sterr(lM)
demon .............................................................. runacct(lM)
DARPA Reverse Address Resolution ............... rarpd(lM)
DARPA TELNET protocol server ...................... telnetd(lM)
DARPA Trivial File Transfer ........................... tftp(lM)
DARPA Trivial Name server ............................ tnamed(lM)
data and system activity ...................... timex(1)
data base for the mail aliases file ..................... newaliases(1M)
data base gettxt retriever .............................. gettxt(1)
data base ..................................................... ypcat(1)
data bases /contents of, or search ..................... srchtxt(1)
data by user ID .............................................. diskusg(1M)
data for storage, uncompress and/ ................ compress(1)
data /add, delete, update, ............................. idinstall(1M)
data lprof display line-by-line ........................... lprof(1)
data partitions, or disks restore ..................... restore(1M)
data ............................................................. prof(1)
data database adddbib ...................................... adddbib(1)
data database colltbl ......................................... colltbl(1M)
data database gpck ........................................... gpck(1M)
data database pwck .......................................... pwck(1M)
data database indxib create an ....................... indxib(1)
data database installf add ......................... installf(1M)
data database lookib ........................................ lookib(1)
data database montbl ......................................... montbl(1M)
data database newkey ....................................... newkey(1M)
data database operator ..................................... join(1)
data database refer expand and insert ................ refer(1)
data database removef ................................. removef(1M)
data database roffib ......................................... roffib(1)
data database sortib .......................................... sortib(1)
data database tput initialize ............................. tput(1)
data database ypinit ......................................... ypinit(1M)
data database ypmake ................................. ypmake(1M)
data date ckd, date, errdate, helpdate, ............. ckd(1)
data date ..................................................... date(1)
data date from a remote host ......................... rdate(1M)
data date print and set the ............................. date(1)
data dates of files settestime ......................... settime(1)
dbcmd load command and macro files ................ dbcmd(1M)
 dbm file makedbm make .............................. makedbm(1M)
dbsym add symbols to kernel ........................... dbsym(1M)
for optimal access time
optimal access time
ctrace C program
dbsym add symbols to kernel
fsdb (generic) file system
fsdb (s5) s5 file system
fsdb (ufs) ufs file system
kdb kernel
kdb multiprocessor kernel
sdb symbolic
strip strip symbol table,
try to contact remote system with
/uudecode encode a binary file, or

keylogin
kill terminate a process by
reset the current form field to its
grouppdel delete a group
groupadd add (create) a new group
groupmod modify a group
system grouppdel
system userdel
driver/ idinstall add,
basename, dirname
tail
smtpqer queue mail for
task removal tool
SCCS file  prt display the
change the delta comment of an SCCS
delta make a
cdc change the
rmrmdel remove a
SCCS file
comb combine SCCS
mesg permit or
lde list dynamic
eqn constructs
eqn constructs
termscap description into a terminfo
captoinfo convert a terminfo
compare or print out terminfo

a name from a STREAMS-based file
dc
file descriptor fdetach
fstyp (generic) file
dc desk calculator .................................................. dc(1)
dcopy (generic) copy file systems .......................... dcopy(1M)
dcopy (s5) copy s5 file systems for ......................... dcopy(1M)

dd convert and copy a file .................................... dd(1M)
debugger ............................................................... dbsym(1M)
debugger ............................................................... fsdb(1M)
debugger ............................................................... fsdb(1M)
debugger ............................................................... fsdb(1M)
debugger ............................................................... kdb(1M)
debugger ............................................................... sdb(1M)
debugging and line number/ ................................... strip(1)
decode its ASCII representation .......................... uuencode(1C)
decrypt and store secret key ............................... keylogin(1)
default ................................................................. kill(1)
definition from the system .................................... groupdel(1M)
definition on the system ....................................... groupadd(1M)
definition on the system ....................................... groupmod(1M)
delete a group definition from the ...................... grouppdel(1M)
delete a user's login from the ............................ userdel(1M)
deliver portions of path names ............................. basename(1)
deliver the last part of a file .................................. tail(1)
delivery by SMTP ...................................................... smtpqer(1M)
delsysadm sysadm interface menu or ................. delsysadm(1M)
delta and commentary history of an .................... prt(1)
delta cdc .............................................................. cdc(1)
delta (change) to an SCCS file ............................. delta(1)
delta comment of an SCCS delta ......................... cdc(1)
delta from an SCCS file ........................................... rmdel(1)
delta make a delta (change) to an ....................... delta(1)
deltas ........................................................................ comb(1)
deny messages ...................................................... mesg(1)
dependencies ...................................................... ldd(1)
deroff remove nroff, troff, tbl and .................... deroff(1)
deroff remove nroff/troff, tbl, and ..................... deroff(1)
descriptions captinfo convert a ...................... captinfo(1M)
description into a termcap ..................... captinfo(1M)
descriptions inofcmp .......................................... inofcmp(1M)
descriptions inofcmp .......................................... inofcmp(1M)
descriptions inofcmp .......................................... inofcmp(1M)
description captinfo convert a ...................... captinfo(1M)
description into a termcap ..................... captinfo(1M)
descriptions inofcmp .......................................... inofcmp(1M)
accept binary messages  ckbinarsys
exclusive use
getvol verifies
deattr lists
/add, delete, update, or get
listdgrp lists members of a
putdgrp edits
that match criteria  getdgrp lists
mapchan Configure tty
devnm
putdev edits
tapecntl tape control for tape
the font and video mode for a video
getdev lists
devreserv reserve
devfree release
/lists device groups which contain
exclusive use
of free disk blocks and files/free/
systems
blocks and i-nodes for s5 file/
ufs file systems
resource information
information
resources from remote systems
from remote or local systems
resources from remote systems
blocks and / df (generic),
postdaisy PostScript translator for
list look find words in the system
bdiff big
comparison
troff input file  diffmk mark
sdiff print file
Release 4 locale information to
diff
diff3 3-way versions of a troff input file
uucheck check the uucp
unlink link and unlink files and
mkdir make
rm, rmdir remove files or
determine whether remote system can ... ckbinarsys(1M)
deattr lists device attributes ....................................... devattr(1M)
devfree release devices from ....................................... devfree(1M)
device accessibility ....................................................... getvol(1M)
device attributes ......................................................... devattr(1M)
device driver configuration data .................................... idinstall(1M)
device group ............................................................... listdgrp(1M)
device group table ....................................................... putdgrp(1M)
device groups which contain devices ................................ getdgrp(1M)
device mapping ........................................................... mapchan(1M)
device name ............................................................... devnm(1M)
device table .................................................................. putdev(1M)
device ............................................................... tapecntl(1)
device vidi sets ........................................................... vidi(1)
devices based on criteria ............................................. getdev(1M)
devices for exclusive use ............................................ devreserv(1M)
devices from exclusive use .......................................... devfree(1M)
devices that match criteria .......................................... getdgrp(1M)
devnm device name .................................................... devnm(1M)
devreserv reserve devices for ..................................... devreserv(1M)
df (generic), dfspace report number ......................... df(1M)
df report free disk space on file ................................. df(1M)
df (s5) report number of free disk .............................. df(1M)
df (ufs) report free disk space on ............................... df(1M)
dfmounts display mounted NFS ................................. dfmounts(1M)
dfmounts display mounted resource ........................... dfmounts(1M)
dfmounts display mounted RFS ................................. dfmounts(1M)
dfshares list available NFS .......................................... dfshares(1M)
dfshares list available resources .............................. dfshares(1M)
dfshares list available RFS ......................................... dfshares(1M)
dfspace report number of free disk ........................... df(1M)
Diablo 630 files ........................................................ postdaisy(1)
dictionary or lines in a sorted .................................... look(1)
diff ............................................................... bdiff(1)
diff differential file comparator .................................. diff(1)
diff3 3-way differential file ........................................ diff3(1)
differences between versions of a ............................ diffmk(1)
differences side-by-side ............................................. sdiff(1)
different format maplocale convert ......................... maplocale(1M)
differential file comparator ........................................ diff(1)
differential file comparison ....................................... diff3(1)
diffmk mark differences between ............................. diffmk(1)
dircmp directory comparison ................................... dircmp(1)
directories and permissions file ............................... uucheck(1M)
directories link ....................................................... link(1M)
directories ............................................................ mkdir(1)
directories ............................................................ rm(1)
request restore of files and
directories urestore ................................. urestore(1M)
cd change working ................................. cd(1)
directory .................................................. cd(1)
ucleanup uucp spool ................................. uucleanup(1M)
directory clean-up .................................... uucleanup(1M)
dircmp ..................................................... dircmp(1)
directory comparison ............................... dircmp(1)
chroot change root ................................. chroot(1M)
directory for a command ............................ chroot(1M)
ls, lc list contents of ............................. ls(1)
directory .................................................. ls(1)
ls list contents of ..................................... ls(1)
directory .................................................. ls(1)
ls list the contents of a ............................ ls(1)
directory .................................................. ls(1)
mvdir move a ................................. mvdir(1M)
directory name ........................................... mvdir(1M)
pwd working ........................................... pwd(1)
directory or file  du display ........................ du(1M)
directory ..................................................... du(1M)
directory service ................................. whois(1)
directory ..................................................... whois(1)
dirname deliver portions of path ................. basename(1)
disk access profiler ................................. basename(1)
disable enable/disable LP printers ................. enable(1)
dis able enable/disable LP printers ................. enable(1)
dis object code disassembler ........................ dis(1)
dis object code disassembler ........................ dis(1)
type, modes, speed, and line ........................ dis(1)
discipline get set terminal ........................... getty(1M)
type, modes, speed, and line ........................ dis(1)
discipline uug etty set terminal ................... uug etty(1M)
type, modes, speed, and line ........................ dis(1)
discipline vtgetty sets terminal .................. vtgetty(1M)
fusage ..................................................... vtgetty(1M)
disk accounting data by user ID ....................... diskusg(1M)
disk blocks and files/free disk/ ..................... df(1M)
disk blocks and i-nodes for s5 file/ .................. df(1M)
disk blocks used per directory or ........................ du(1M)
disk maintenance utility ............................. prtvtoc(1M)
disk information display utility ...................... prtvtoc(1M)
disk quota and usage ................................. diskquota(1M)
disk set up utility ..................................... disksetup(1M)
disk set up utility ..................................... disksetup(1M)
disk space /dfsparse report number .................. df(1M)
disk space on file systems ........................... df(1M)
disk space on ufs file systems ....................... df(1M)
disk tracks ............................................. format(1M)
disk usage .............................................. du(1M)
diskadd disk set up utility .......................... diskadd(1M)
diskettes ldsysdump ................................. ldsysdump(1M)
disks /fasthalt reboot/halt .......................... fastboot(1M)
disks restore initiate restores ....................... restore(1M)
disksetup disk set up utility ........................ disksetup(1M)
diskusg generate disk accounting .................... diskusg(1M)
dispadmin generate disk accounting ............... diskusg(1M)
dispadmin generate disk accounting ............... diskusg(1M)
dispadmin process scheduler ........................ dispadmin(1M)
dispadmin process scheduler ........................ dispadmin(1M)
dispgid displays a list of all ........................ dispgid(1)
dispgid displays a list of all ........................ dispgid(1)
display a compact list of users ........................ users(1)
display a message on stderr or ........................ fntmsg(1)
display a one-line summary about a ...................... whatis(1)
a pathname ckpath
a string answer ckstr
a time of day cktime
an integer value ckint
usage quota
groups
incremental/ bkexcept change or
arp address resolution
and/or the “working”/ indicator
data for storage, uncompress and
conflgs change and
a text string in, message/ srchtxt
vi screen-oriented (visual)
currently set printenv
hd
head
ff (s5)
remote users finger
which locate a command;
count profile data lprof
information dfmounts
information dfmounts
information rmntstat
information dfmounts
nroff format documents for
basename
prof
printers postmd matrix
find reference pages by/ man
information pkginfo
current host arch
register bkreg change or
history of an SCCS file prt
username whoami
specified times atq
used per directory or file du
current host mach
lpq
memory pagesize
operations bkstatus
processes ps
prtvtoc disk information
names dispgid
names dispuid
pkgparam
valid user names
postdmd PostScript translator for
display a prompt; verify and return ckpath(1)
display a prompt; verify and return ckstr(1)
display a prompt; verify and return cktime(1)
display a prompt; verify and return ckint(1)
display a user’s disk quota and quota(1M)
display a user’s group memberships groups(1M)
display an exception list for bkexcept(1M)
display and control arp(1M)
display application specific alarms indicator(1F)
display compressed files /compress compress(1)
display console flags conflgs(1M)
display contents of, or search for srchtxt(1)
display editor based on ex vi(1)
display environment variables printenv(1)
display files in hexadecimal format nroff(1)
display first few lines of files head(1)
display i-list information ff(1M)
display information about local and finger(1)
display its pathname or alias which(1)
display line-by-line execution lprof(1)
display mounted NFS resource dfmounts(1M)
display mounted resource dfmounts(1M)
display mounted resource rmntstat(1M)
display mounted RFS resource dfmounts(1M)
display or line-printer nroff(1)
display portions of pathnames basename(1)
display profile data prof(1)
display program for PostScript postmd(1)
display reference manual pages; man(1)
display software package pkginfo(1)
display the architecture of the arch(1)
display the contents of a backup bkreg(1M)
display the delta and commentary prt(1)
display the effective current whoami(1)
display the jobs queued to run at atq(1)
display the number of disk blocks du(1M)
display the processor type of the mach(1)
display the queue of printer jobs lpq(1)
display the size of a page of pagesize(1)
display the status of backup bkstatus(1M)
display the status of current ps(1)
display utility prtvtoc(1M)
displays a list of all valid group dispgid(1)
displays a list of all valid user dispuid(1)
displays package parameter values pkgparam(1)
dispuid displays a list of all dispuid(1)
DMD bitmap files postdmd(1)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>doscp, dosdir, dosformat, dosmkdir, dosrmdir</td>
<td>access and manipulate blocks used per directory or file</td>
</tr>
<tr>
<td>dname print Remote File Sharing</td>
<td>print Remote File Sharing domain and network names</td>
</tr>
<tr>
<td>troff typeset or format</td>
<td>documents for display or troff(1)</td>
</tr>
<tr>
<td>a host gettable get htable convert</td>
<td>documents dosformat, dosmkdir, dosls, dosrm,</td>
</tr>
<tr>
<td>nulladm, chargefee, cpacct, who is logged in, and what are they doing</td>
<td>Dname print/Remote File Sharing dname(1M)</td>
</tr>
<tr>
<td>rfdadmin Remote File Sharing</td>
<td>domain administration rfdadmin(1M)</td>
</tr>
<tr>
<td>dname print Remote File Sharing</td>
<td>domain and network names dname(1M)</td>
</tr>
<tr>
<td>get/set name of current secure RPC named, in.named Internet secure RPC domain</td>
<td>domain domainname domainname(1M)</td>
</tr>
<tr>
<td>dosformat, dosmkdir, dosls, dosrm, /dosrmdir access and manipulate doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
<td>DMD terminal wtinit wtinit(1M)</td>
</tr>
<tr>
<td>dosmkdir, dosls, dosrm, /dosrmdir access and manipulate doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
<td>DMD terminal wtinit wtinit(1M)</td>
</tr>
<tr>
<td>host resident PostScript fonts terminal wtinit object</td>
<td>DMD terminal wtinit wtinit(1M)</td>
</tr>
<tr>
<td>PostScript printers</td>
<td>DMD terminal wtinit wtinit(1M)</td>
</tr>
<tr>
<td>/add, delete, update, or get device</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>Extended VGA keyboard/display</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>xtt extract and print xt xts extract and print xt</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>blocks used per directory or file</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>/aedplot, atoplot, bgplot, ctpplot, crtpplot, object file</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>ldsysdump load system od octal file dump</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>ufsdump incremental file system dump time zone ldd list</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>lld list</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>lld link editor, echo</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>echo</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>echo arguments</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>echo arguments</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
<tr>
<td>echo arguments</td>
<td>Dos files /dosmkdir, dosls, dosrm, doscp, dosdir, dosformat, dosmkdir,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls,  doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /doscp, dosdir, dosformat, dosmkdir, /doscp, dosdir, dosformat, dosmkdir, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, font down loader</td>
</tr>
</tbody>
</table>
echo put string on virtual output ................................ echo(1F)
ECHO_REQUEST packets to network ................................ ping(1M)
ed, red text editor ............................................................... ed(1)
ed text editor (variant of ex for casual) .............................. edit(1)
edit user quotas ........................................................................ edquota(1M)
editting activity ........................................................................ sed(1)
edquota edit user quotas ............................................................ edquota(1M)
edvoc VTOC (Volume Table of Contents) ............................... edvoc(1M)
edvoc TOC (Volume Table of Contents) ............................... edvoc(1M)
effective current username ...................................................... whoami(1)
egrep search a file for a pattern .............................................. egrep(1)
elF cvtomflib ............................................................................ cvtomflib(1)
elF object file translation .......................................................... cof2elf(1)
elP object file translation .......................................................... ed(1)
emulate XENIX 80286 ............................................................ x286emul(1)
enable, disable enable/disable LP ............................................ enable(1)
enable/disable LP printers ...................................................... enable(1)
encode a binary file, or decode its uuencode(1C)
encode/decode ........................................................................... crypt(1)
end for the Source Code Control ............................................. sccs(1)
entries .................................................................................... grck(1M)
entries .................................................................................... grck(1M)
entries to the system log ....................................................... logger(1)
entry to show current layer .................................................... relgin(1M)
environ set environment for command .................................... env(1)
environ for command execution ............................................. env(1)
environ for console/ ............................................................... scompat(1)
Environment Interface /executable .......................................... face(1)
environment rc2 run ............................................................. rc2(1M)
environment ............................................................................. rstop(1M)
environment variables currently set .................................... printenv(1)
environment variables set ................................................... set(1F)
eqp constructs ............................................................................ deroft(1F)
deroff remove nroff/troff, tbl, and
eqn, neqn, checkeq typeset
mathematics
cscope interactively
ex for and validate a date   cxdate,
and validate a group ID   ckgid,
eexpr
fmlexpr
test condition
test condition
test condition
exvi screen-oriented
vi
expr evaluate arguments as an expression
deroff(1)
eqn(1)
eqn(1)
eqn(1)
eqn(1)
eqn(1)
eqn(1)
eqn(1)
eqn(1)
eqn(1)
for and validate a date   cxdate,
and validate a group ID   ckgid,
eexpr
fmlexpr
test condition
test condition
test condition
exvi screen-oriented
vi
expr evaluate arguments as an expression
cscope interactively
ex for and validate a date   cxdate,
and validate a group ID   ckgid,
eexpr
fmlexpr
test condition
test condition
test condition
exvi screen-oriented
vi
expr evaluate arguments as an expression
exvi screen-oriented
vi
expr evaluate arguments as an expression
for and validate a date   cxdate,
and validate a group ID   ckgid,
detach a name from a STREAMS-based uupick public UNIX-to-UNIX system
Permuted report inter-process communication
system without checking the disks
make a delta (change) to an SCCS
file descriptor
Access Command Environment/ report inter-process communication
a number
system without checking the disks
without checking the/ fastboot,
STREAMS-based file descriptor
partition table
file system archive
head display first
statistics for a file system
statistics for a ufs file system
full file system archive
string
reset reset the current form
cut cut out selected
fmlcut cut out selected
mkfifo make
tar tape
cpio copy
pwck, grpck password/group
change the group ownership of a
diff differential
diff3 3-way differential
rcp remote
uupick public UNIX-to-UNIX system
cron tab user crontab
selected fields of each line of a
files into a kernel executable
dd convert and copy a
make a delta (change) to an SCCS
detach a name from a STREAMS-based
sdiff print
between versions of a troff input
disk blocks used per directory or
dump selected parts of an object

evaluation arguments as an
for a pattern using full regular
files
addbib create or
driver initialization evgainit
traces xts
statistics xts
extract strings from source
extend a bibliographic database
Extended VGA keyboard/display evgainit(1M)
extract and print xt driver packet
extract and print xt driver
extract strings from source files
face executable for the Framed
facetrue
facetrue
facetrue
factor obtain the prime factors of
false provide truth values
fastboot, fasthalt reboot/halt the
fastboot, fasthalt reboot/halt the system
fdetach detach a name from a
fdisk create or modify hard disk
fdp create, or restore from, a full
few lines of files
ff (generic) list file names and
ff (s5) display i-list information
ff (ufs) list file names and
ffile create, or restore from, a
fgrep search a file for a character
field to its default values
fields of each line of a file
fields of each line of a file
FIFO special file
file archiver
file archives in and out
file checkers
file changers
file chgrp
file comparator
file comparison
file copy
file copy uuto,
file dbe cmd load command and macro
file dd
file delta
file descriptor fdetach
file determine file type
file differences side-by-side
file diffmk
file du
file dump

expression
expressions
extr
diff1
extr
extra
script  rfuadmin Remote
rumountall mount, unmount Remote
rfrstart start Remote
idload Remote
number information from an object
identify processes using a file or
sum calculate a checksum for a
print checksum and block count of a
fdp create, or restore from, a full
create, or restore from, a full
ckbupscd check
fsba
checkfsys check a
interactive repair fsck (ufs)
fsdb (generic)
fsdb (s5) s5
fsdb (ufs) ufs
ufsdump incremental
file names and statistics for a
file names and statistics for a ufs
makefsys create a
mkfs (bfs) construct a boot
mkfs (generic) construct a
mkfs (s5) construct an s5
mkfs (ufs) construct a ufs
mount (s5) mount an s5
umountfsys mount, unmount a
quot summarize
checker quotacheck
quotaon, quotaoff turn
reppquota summarize quotas for a
ufsrestore incremental
nfsstat Network
tunefs tune up an existing
fstyp (generic) determine
(generic) make literal copy of
(s5) make a literal copy of an s5
(ufs) make a literal copy of a ufs
.umount (generic) mount or unmount
automount automatically mount NFS
df report free disk space on
free disk blocks and i-nodes for s5
(ufs) report free disk space on ufs
ctime dcopy (generic) copy
time dcopy (s5) copy s5
fsck (bfs) check and repair bfs
fsck (generic) check and repair
File Sharing notification shell ........................................... rfuadmin(1M)
File Sharing resources rumountall, ................................ rumountall(1M)
File Sharing................................................................. rfrstart(1M)
File Sharing user and group mapping ............................ idload(1M)
file /table, debugging and line ....................................... strip(1)
file structure fuser ....................................................... fuser(1M)
file ................................................................. sum(1)
file system archive ............................................... fsdb(1M)
file system archive file ........................................ fsdb(1M)
file system backup schedule .................................. ckbupscd(1M)
file system block analyzer ........................................... fsdb(1M)
file system ............................................................ checkfsys(1M)
file system consistency check and ................................ fsck(1M)
file system debugger ................................................... fsdb(1M)
file system debugger ................................................. fsdb(1M)
file system debugger ................................................... fsdb(1M)
file system dump ...................................................... ufsdump(1M)
file system ff (generic) list ........................................... ff(1M)
file system ff (ufs) list ............................................. ff(1M)
file system .......................................................... makefsys(1M)
file system .......................................................... mkfs(1M)
file system ......................................................... ufsrestore(1M)
file system ......................................................... ufsrestore(1M)
file System statistics ............................................. nfsstat(1M)
file system .......................................................... tunefs(1M)
file system .......................................................... tunefs(1M)
file system type ....................................................... fsdb(1M)
file system volcopy ................................................... volcopy(1M)
file systems and remote resources ............................ mount(1M)
file systems ......................................................... automount(1M)
file systems ......................................................... automount(1M)
file systems ........................................................ df(1)
file systems /s5) report number of .......................... df(1M)
file systems df ...................................................... df(1M)
file systems ....................................................... dcopy(1M)
file systems ....................................................... dcopy(1M)
file systems ....................................................... dcopy(1M)
file systems ....................................................... fsck(1M)
file systems ....................................................... fsck(1M)

Permutated Index
<table>
<thead>
<tr>
<th>Command</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosrmdir</td>
<td>file systems</td>
</tr>
<tr>
<td>access and manipulate DOS</td>
<td>file systems</td>
</tr>
<tr>
<td>labelit</td>
<td>file systems</td>
</tr>
<tr>
<td>(s5) check and repair s5</td>
<td>file systems</td>
</tr>
<tr>
<td>(generic) provide labels for s5</td>
<td>file systems</td>
</tr>
<tr>
<td>labelit (s5) provide labels for s5</td>
<td>file systems</td>
</tr>
<tr>
<td>mount (ufs) mount bfs</td>
<td>file systems</td>
</tr>
<tr>
<td>mount (bfs) mount bfs</td>
<td>file systems</td>
</tr>
<tr>
<td>umountall</td>
<td>file systems</td>
</tr>
<tr>
<td>mount, unmount multiple</td>
<td>file systems</td>
</tr>
<tr>
<td>path names versus i-numbers for s5</td>
<td>file systems</td>
</tr>
<tr>
<td>tail deliver the last part of a file to original directory</td>
<td>file systems</td>
</tr>
<tr>
<td>restore</td>
<td>file systems</td>
</tr>
<tr>
<td>database installf add a</td>
<td>file systems</td>
</tr>
<tr>
<td>access and modification times of a file touch update</td>
<td>file systems</td>
</tr>
<tr>
<td>ftp</td>
<td>file systems</td>
</tr>
<tr>
<td>tftp</td>
<td>file systems</td>
</tr>
<tr>
<td>tftp</td>
<td>file systems</td>
</tr>
<tr>
<td>tftpd DARPA Trivial</td>
<td>file systems</td>
</tr>
<tr>
<td>system uucico</td>
<td>file systems</td>
</tr>
<tr>
<td>uusched the scheduler for the uucp</td>
<td>file systems</td>
</tr>
<tr>
<td>file determine</td>
<td>file systems</td>
</tr>
<tr>
<td>undo a previous get of an SCCS file type</td>
<td>file systems</td>
</tr>
<tr>
<td>uniq report repeated lines in a file unget</td>
<td>file systems</td>
</tr>
<tr>
<td>uucp directories and permissions file uniq</td>
<td>file systems</td>
</tr>
<tr>
<td>val validate an SCCS</td>
<td>file systems</td>
</tr>
<tr>
<td>umask set</td>
<td>file systems</td>
</tr>
<tr>
<td>pathconv search FMLI criteria for file-creation mode mask</td>
<td>file systems</td>
</tr>
<tr>
<td>search and print process accounting</td>
<td>file systems</td>
</tr>
<tr>
<td>merge or add total accounting</td>
<td>file systems</td>
</tr>
<tr>
<td>admin create and administer SCCS</td>
<td>file systems</td>
</tr>
<tr>
<td>link, unlink link and unlink</td>
<td>file systems</td>
</tr>
<tr>
<td>urestore request restore of cat concatenate and print</td>
<td>file systems</td>
</tr>
<tr>
<td>cmp compare two</td>
<td>file systems</td>
</tr>
<tr>
<td>reject lines common to two sorted files comm select or</td>
<td>file systems</td>
</tr>
<tr>
<td>uncompressed and display compressed files /compress data for storage,</td>
<td>file systems</td>
</tr>
<tr>
<td>idmknit reads</td>
<td>file systems</td>
</tr>
<tr>
<td>copy copy groups of</td>
<td>file systems</td>
</tr>
<tr>
<td>cp copy</td>
<td>file systems</td>
</tr>
<tr>
<td>dosrmdir access and manipulate DOS files /dosmkdir, dosls, dosrm,</td>
<td>file systems</td>
</tr>
<tr>
<td>extr extract strings from source files</td>
<td>file systems</td>
</tr>
<tr>
<td>find find</td>
<td>file systems</td>
</tr>
<tr>
<td>catman create the cat</td>
<td>file systems</td>
</tr>
<tr>
<td>mkmgs create message</td>
<td>file systems</td>
</tr>
<tr>
<td>head display first few lines of files for the manual</td>
<td>file systems</td>
</tr>
<tr>
<td>hd display</td>
<td>file systems</td>
</tr>
<tr>
<td>install install</td>
<td>file systems</td>
</tr>
</tbody>
</table>
man display reference manual pages;
paste merge same lines of several
pcat, unpack compress and expand
translator for Diablo 630
translator for DMD bitmap
translator for plot graphics
PostScript translator for text
translator for tektronix 4014
pr print
cHECKNR check nroff and troff input
access and modification dates of
section sizes in bytes of object
sort sort and/or merge
convert convert archive
number of free disk blocks and
create, restore an incremental
restore an image archive of a
xrestore invoke XENIX incremental
disks restore initiate restores of
xfsck check and repair XENIX
pg file perusal
nl line numbering
col
t300s, t4013, t450, tek graphics
service lpfilter administer
archive of a filesystem
find
object library lorder
file or binary strings
man display reference manual pages;
database lookbib
spellin, hashcheck, compress
or lines in a sorted list look
local and remote users
information server
tee pipe
permissions and ownership
file permissions and ownership
SCO UNIX System V/386 Release/
conflgs change and display console
files into a kernel executable file .................................. dbcmd(1M)
files ............................................................................ ld(1)
files .............................................................................. ln(1)
files .............................................................................. ln(1)
files management ........................................... passmgmt(1M)
files .............................................................................. mv(1)
files or directories ................................................. rm(1)
files or subsequent lines of one/ ....................... paste(1)
files pack, .............................................................. pack(1)
files postdaisy PostScript .................................. postdaisy(1)
files postdmd PostScript .................................. postdmd(1)
files postplot PostScript .................................. postplot(1)
files postprint .................................................... postprint(1)
files posttek PostScript .................................. posttek(1)
files ................................................................. pr(1)
files; report possible errors .................................. checknr(1)
files settime change the ........................................ settime(1)
files size print .................................................. size(1)
files ................................................................. sort(1)
files to common formats ........................................ convert(1)
files/free disk space /report ......................... df(1M)
filesystem archive incfile ......................... incfile(1M)
filesystem fimage create, .............................. fimage(1M)
filesystem restorer xrestore, ...................... xrestore(1M)
filesystems, data partitions, or .................... restore(1M)
filesystems ....................................................... xfsck(1M)
filter for CRTs ................................................. pg(1)
filter .............................................................. nl(1)
filter reverse line-feeds ..................................... col(1)
filters for various plotters /t300, ..................... plot(1G)
filters used with the LP print ......................... lpfilter(1M)
fimage create, restore an image ...................... fimage(1M)
find files ...................................................... find(1)
find find files .................................................. find(1)
find ordering relation for an ........................... lorder(1)
find printable strings in an object ..................... strings(1)
find reference pages by keyword ...................... man(1)
find references in a bibliographic ................... lookbib(1)
find spelling errors /hashmake, ....................... spell(1)
find words in the system dictionary ................ look(1)
finger display information about .................... finger(1)
fingerd, in.fingerd remote user ....................... fingerd(1M)
fitting .......................................................... tee(1)
fixperm correct or initialize file ...................... fixperm(1)
fixperm correct or initialize XENIX ............... fixperm(1M)
fixshlib alters executables to call .................. fixshlib(1M)
flags ........................................................... configs(1M)
Permuted Index

format format
ldsysdump load system dump from
fmlcvt cut out selected fields of
fmlinv invoke FMLI
message put arguments on
or system console

fold
device vidi sets the
download host resident PostScript
map yppush
resources fumount
reset reset the current
monitor-specific/ ttyadm
database roffbib
line-printer nroff
roff typeset or
format

hd display files in hexadecimal
getable get DoD Internet
htable convert DoD Internet
4 locale information to different
newform change the
pkgtrans translate package

tbl
convert archive files to common
gencat generate a
printf print
fmt simple text
service lpforms administer
Interface face executable for the
getfrm the current
(generic), dspace report number of
file/ df (s5) report number of
df report
df (ufs) report
idspace investigates
fdp create, or restore
fput create, or restore
floppy disk tracks ........................................ format(1M)
floppy diskettes ................................................. ldsysdump(1M)
flowgraph ........................................................... cflow(1)
fmlcvt cut out selected fields of ........................... fmlcvt(1F)
fmlinv invoke FMLI ................................................ fmlinv(1F)
FMLI message line .............................................. FMLI(1)
fmt simple text formatters .................................. fmt(1)
fmtmsg display a message on stderr ..................... fmtmsg(1)
fold fold long lines .............................................. fold(1)
fold long lines ..................................................... fold(1)
font and video mode for a video ............................. vidi(1)
font downloader .................................................... download(1)
force propagation of a changed NIS ....................... yppush(1M)
forced umount of advertised ................................. fumount(1M)
format field to its default values ........................... reset(1F)
format and output port ......................................... ttyadm(1M)
format and print a bibliographic ............................ roffbib(1)
format documents for display or ........................... roff(1)
format documents ................................................ troff(1)
format floppy disk tracks ..................................... format(1M)
format format floppy disk tracks ............................ format(1M)
format ............................................................... hd(1)
format host table from a host ............................... gettable(1M)
format host table ................................................ htable(1M)
format maplocale convert Release .......................... maplocale(1M)
format of a text file ............................................. newform(1)
format ............................................................... pkgttrans(1)
format tables for nroff or troff ............................. tbl(1)
formats convert ................................................... convert(1)
formatted message catalogue ................................ gencat(1)
formatted output ................................................ printf(1)
formatters ......................................................... fmt(1)
forms used with the LP print ............................... lpforms(1M)
frameID number .................................................. getfrm(1F)
Framed Access Command Environment .................... face(1)
frameID number .................................................. getfrm(1F)
free disk blocks and files/free/ df ........................ df(1M)
free disk blocks and i-nodes for s5 ......................... df(1M)
free disk space on file systems ............................ df(1M)
free disk space on ufs file systems ....................... df(1M)
free space ........................................................ idspac(1M)
from, a full file system archive ............................. fdp(1M)
from, a full file system archive ............................. ffile(1M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP</td>
<td>fromsmtp receive RFC822 mail from</td>
</tr>
<tr>
<td>Control System (SCCS) sccs</td>
<td>front end for the Source Code</td>
</tr>
<tr>
<td>gencc create a</td>
<td>front-end to the cc command</td>
</tr>
<tr>
<td>file systems</td>
<td>fsba file system block analyzer</td>
</tr>
<tr>
<td>file systems</td>
<td>fsck (bfs) check and repair bfs</td>
</tr>
<tr>
<td>systems</td>
<td>fsck (generic) check and repair</td>
</tr>
<tr>
<td>check and interactive repair</td>
<td>fsck (s5) check and repair s5 file</td>
</tr>
<tr>
<td>generation numbers</td>
<td>fsck (ufs) file system consistency</td>
</tr>
<tr>
<td>system type</td>
<td>fsck (ufs) ufs file system debugger</td>
</tr>
<tr>
<td>fdp create, or restore from,</td>
<td>full file system archive</td>
</tr>
<tr>
<td>file create, or restore from,</td>
<td>full file system archive</td>
</tr>
<tr>
<td>search a file for a pattern using</td>
<td>full regular expressions egrep</td>
</tr>
<tr>
<td>advertised resources</td>
<td>function keys</td>
</tr>
<tr>
<td>setkey assigns the</td>
<td>setkey</td>
</tr>
<tr>
<td>backup perform backup</td>
<td>function keys</td>
</tr>
<tr>
<td>file or file structure</td>
<td>fuser</td>
</tr>
<tr>
<td>accounting records</td>
<td>fusage disk access profiler</td>
</tr>
<tr>
<td>processes</td>
<td>gcore</td>
</tr>
<tr>
<td>catalogue</td>
<td>gencat</td>
</tr>
<tr>
<td>command</td>
<td>gencat create a front-end to the cc</td>
</tr>
<tr>
<td>catalogue gencat</td>
<td>generate a formatted message</td>
</tr>
<tr>
<td>i-numbers ncheck (generic)</td>
<td>generate a list of path names vs</td>
</tr>
<tr>
<td>pkgproto</td>
<td>generate a prototype file</td>
</tr>
<tr>
<td>random</td>
<td>generate a random number</td>
</tr>
<tr>
<td>cflow</td>
<td>generate C flowgraph</td>
</tr>
<tr>
<td>cxref</td>
<td>generate C program cross-reference</td>
</tr>
<tr>
<td>and conversion tables</td>
<td>generate character classification</td>
</tr>
<tr>
<td>chrtbl</td>
<td>generate disk accounting data by</td>
</tr>
<tr>
<td>user ID diskusg</td>
<td>generate encryption key</td>
</tr>
<tr>
<td>makekey</td>
<td>generate lineprinter ripple pattern</td>
</tr>
<tr>
<td>lptest</td>
<td>generate path names versus</td>
</tr>
<tr>
<td>i-numbers for s5 file/</td>
<td>generate pathnames versus i-numbers</td>
</tr>
<tr>
<td>ncheck (s5) for ufs file systems</td>
<td>generate programs for simple</td>
</tr>
<tr>
<td>lexical tasks lex</td>
<td>generation numbers</td>
</tr>
<tr>
<td>fsirand install random inode</td>
<td>fsirand</td>
</tr>
<tr>
<td>systems fsck</td>
<td>(generic) check and repair file</td>
</tr>
<tr>
<td>mksfs</td>
<td>(generic) construct a file system</td>
</tr>
<tr>
<td>optimal access time dcopy</td>
<td>(generic) copy file systems for</td>
</tr>
<tr>
<td>type fstyp</td>
<td>(generic) determine file system</td>
</tr>
<tr>
<td>free disk blocks and files/free/ df fsdb</td>
<td>(generic) file system debugger</td>
</tr>
<tr>
<td>Command/Operation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| maintain, update, | maintain, update, and regenerate user
| match/ getdgrp | match/ getdgrp lists device
| pwck, | pwck, | |
| nohup run a | nohup run a command immune to errors spell, hashmake, spellin, compress find spelling/ spell, format files numbers or SCCS commands commands help ask for validate a date ckdte, errdate, validate a group ID ckgid, errgid, hd display files in display the delta and commentary the architecture of the current Internet format host table from a numeric identifier of the current the processor type of the current remote file sharing | nohup run a command immune to errors spell, hashmake, spellin, compress find spelling/ spell, format files numbers or SCCS commands commands help ask for validate a date ckdte, errdate, validate a group ID ckgid, errgid, hd display files in display the delta and commentary the architecture of the current Internet format host table from a numeric identifier of the current the processor type of the current remote file sharing |
| rfpasswd | rfpasswd change Remote File Sharing |
| setclck set system time from errors spell, hashmake, spellin, compress find spelling/ spell, format files numbers or SCCS commands commands help ask for validate a date ckdte, errdate, validate a group ID ckgid, errgid, hd display files in display the delta and commentary the architecture of the current Internet format host table from a numeric identifier of the current the processor type of the current remote file sharing | setclck set system time from errors spell, hashmake, spellin, compress find spelling/ spell, format files numbers or SCCS commands commands help ask for validate a date ckdte, errdate, validate a group ID ckgid, errgid, hd display files in display the delta and commentary the architecture of the current Internet format host table from a numeric identifier of the current the processor type of the current remote file sharing |
| smtp send SMTP mail to a remote of the map at the NIS server transfer YP map from a YP server to of the current host current host system | smtp send SMTP mail to a remote of the map at the NIS server transfer YP map from a YP server to of the current host current host system |
| ECHO_REQUEST | ECHO_REQUEST packets to network/ crtplot, dumbplot, gigiplot, host table sttydefs maintain line settings and network hosts ping send |
| id print the user name and prompt for and validate a group prompt for and validate a user disk accounting data by user name and ID, and group name and group of programs make | id print the user name and prompt for and validate a group prompt for and validate a user disk accounting data by user name and ID, and group name and group of programs make |
Permuted Index

semaphore set, or shared memory ................................................................. idpcrml(1)
group name and ID kernel information configuration what print hostid print the numeric semaphore

fimage create, restore an image archive of a filesystem.......................... fimage(1)
crash examine system kcrash examine system gcore get core

nohup run a command

ff (s5) display

image archive of a filesystem fimage(1)
images

images images of running processes gcore(1)

immune to hangups and quits nohup(1)

implot, plottoa, t300, t300s, in, and what are they doing w(1)
in, message data bases /contents srchtxt(1)

incfile create, restore an incfile(1)

incoming mail mail_pipe mail_pipe(1M)
incoming mail messages biff(1)
incoming mail messages vacation(1)
incoming SMTP messages smtpd(1M)
in.comsat biff server comsat(1M)

incremental backups /change bkecept(1M)
incremental file system dump ufsdump(1M)
incremental file system restore ufsrestore(1M)
incremental filesystem archive incfile(1M)
incremental filesystem restorer xrestore(1M)

index to a bibliographic database indxbib(1)

indicate last user or terminal last(1)

indicator display application indicator(1F)
indicator /application specific indicator(1F)
indxbib create an inverted index to indxbib(1)
inetd Internet services daemon inetd(1M)
in.fingerd remote user information fingerd(1M)
infocomp compare or print out infocomp(1M)
information about local and remote finger(1)
information about processors pinfo(1M)
Permuted Index

LP print service  lpstat print
display mounted NFS resource
dfmounts display mounted resource
display mounted RFS resource
prvtotoc disk
ff (s5) display i-list
modes tset provide
/table, debugging and line number
/install and update /etc/shadow with
idcheck returns selected
listusers list user login
usermod modify a user’s login
pkginfo display software package
rmntstat display mounted resource
rpctinfo report RPC
fingerd, in.fingerd remote user
makedbm make a Network
setname changes machine
maplocale convert Release 4 locale
tset provide
and output port monitor-specific
ypupdated server for changing NIS
initialization
VGA keyboard/display driver
reinit runs an
init, telinit process control
brc, bcheckrc system
termino database tput
ownership fixperm correct or
setup
and ownership fixperm correct or
session backup
data partitions, or disks restore
server named,
fsirand install random
number of free disk blocks and
between versions of a troff
checknr check nroff and troff
.so requests from nroff or troff
uustat uucp status
rwhod,
bibliographic/ refer expand and
backup operations to service media
restore requests and service media
information from/ pwconv
install
information about the status of the .............................................. lpstat(1)
information dfmounts .......................................................... dfmounts(1M)
information .......................................................... dfmounts(1M)
information dfmounts .......................................................... dfmounts(1M)
information display utility ................................................. prvtotoc(1M)
information for setting terminal ............................................ tset(1)
information from an object file ............................................ strip(1)
information from /etc/passwd ............................................ pwconv(1M)
information .......................................................... idcheck(1M)
information .......................................................... listusers(1)
information on the system ............................................ usermod(1M)
information .......................................................... pkginfo(1)
information .......................................................... rmntstat(1M)
information .......................................................... rpctinfo(1M)
information server ......................................................... fingerd(1M)
Information Service (NIS) dbm file ........................................ makedbm(1M)
information .......................................................... setname(1M)
information to different format ....................................... maplocale(1M)
information to set terminal modes ..................................... tset(1)
information ttyadm format ................................................ ttyadm(1M)
information .......................................................... ypupdated(1M)
init, telinit process control ............................................ init(1M)
initialization evgainit Extended ........................................ evgainit(1M)
initalization file .......................................................... reinit(1F)
initalization .......................................................... init(1M)
initalization procedures .................................................. brc(1M)
initialize a terminal or query ........................................ tput(1)
initialize file permissions and ...................................... fixperm(1)
initialize system for first user ....................................... setup(1M)
initialize XENIX file permissions .................................... fixperm(1M)
initiate or control a system backup ................................ backup(1M)
initiate restores of filesystems, ....................................... restore(1M)
in.named Internet domain name ........................................ name(1M)
inode generation numbers .............................................. fsirand(1)
i-nodes for s5 file systems ............................................. diff(1M)
input file diffmk mark differences ................................... diffmk(1)
input files; report possible errors ..................................... checknr(1)
input soelim resolve and eliminate .................................. soelim(1)
inquiry and job control .................................................. uustat(1C)
in.rwhod system status server .......................................... rwhod(1M)
insert references from a ................................................ refer(1)
insertion prompts /interact with .................................... bckoper(1M)
insertion prompts /service pending ................................... rsoper(1M)
install and update /etc/shadow with ................................ pwconv(1M)
install commands ....................................................... install(1M)
Framed Access Command Environment  

32

Permuted Index

install commands .................................................. xinstall(1M)
install files .......................................................... install(1)
install install commands ............................................. install(1M)
install install files .................................................. install(1)
install random inode generation ................................. fsirand(1)
install specific portions of a UNIX ......................... custom(1M)
install specific portions of ........................................ custom(1)
install YP database .................................................. ypinit(1M)
installable package .................................................. pkgmk(1)
installation database ................................................. installf(1M)
installation ............................................................. pkgchk(1M)
installation shell script ............................................. xinstall(1M)
installf add a file to the software ......................... installf(1M)
in.telnet server for talk program ............................ talkd(1M)
crange prompt for and validate an a prompt; verify and return an service media insertion/ bkoper
interact with backup operations to .............. .................. bkoper(1M)
interactive message processing ................................ mailx(1)
interactive repair fsck (ufs) ...................................... fsck(1M)
interactively examine a C program ...................... . cscope(1)
interactively .................................................. . nslookup(1M)
interface editing tool ................................................. edsysadm(1M)
interface face executable for the .............................. face(1)
interface for PostScript printers ............................ postio(1)
interface menu or task removal tool .............. . delsysadm(1M)
interface parameters ................................................. ifconfig(1M)
interface ............................................................. swap(1M)
telnet(1)
interface to perform system ...................................... sysadm(1M)
Internet domain name server .................................... named(1M)
Internet format host table from a .................. gettable(1M)
Internet format host table ........................................ htable(1M)
Internet services daemon ......................................... inetd(1M)
Internet user name directory ..................................... whois(1)
interpreter with a C-like syntax ......................... . csh(1)
interpreters: standard shell, job ............................. sh(1)
inter-process communication ..................................... ipcs(1)
timeout ........................................................................ sleep(1)
in.telnet DARPA trivial name server ...................... tnamed(1M)
in.named DARPA trivial name server ...................... named(1M)
in.named ............................................................. named(1M)
in.named ............................................................. named(1M)
in.named ............................................................. named(1M)
in.named DARPA trivial name server ...................... tnamed(1M)
in.named DARPA trivial name server ...................... named(1M)
inPLATFORM shell command

control/ sh, jsh, rsh command

facilities status ipcs report

sleep suspend execution for an named, application programs

application programs intro

/(s5) generate path names versus

/ (ufs) generate pathnames versus
generate a list of path names vs database indxbib create an idspace

Permuted Index

fmli
incoming mail mail_pipeline
restorer xrestore, xrestor
semaphore set, or shared memory ID
communication facilities status
menu; prompt for and return a menu
a list of currently marked menu
news print news
/interpreters: standard shell,
uustat uucp status inquiry and
lpr send a
lpqm remove
lpq display the queue of printer
times atq display the
atrm remove

standard shell, job control/ sh, terminal

idconfig produce a new
dbsym add symbols to
kdb
kdb multiprocessor
load command and macro files into a
idbuild build new UNIX System
idmkunix build new UNIX System
chkey change user encryption
newkey create a new
keylogin decrypt and store secret
makekey generate encryption
evgainit Extended VGA
key
print the value of one or more
for storing public and private
setkey assigns the function
and private keys
ckkeywd prompt for and validate a
apropos locate commands by
pages; find reference pages by
display a one-line summary about a
killall

invoke FMLI ................................................................. fmli(1)
invoke recipient command for ................................ mail_pipeline(1M)
invoke XENIX incremental filesystem ....................... xrestore(1M)
ipcrm remove a message queue, ................................ ipcrm(1)
ips report inter-process ....................................................... ips(1)
ismpx return windowing terminal ................................ ismpx(1)
item ckitem build a ......................................................... ckitem(1)
itemet getitems return .................................................... getitems(1F)
items ............................................................... news(1)
job control shell, restricted shell ...................... sh(1)
job control .............................................................. uustat(1C)
job to the printer .............................................. lpqm(1)
jobs from the printer queue ...................................... lpqm(1)
jobs ............................................................... lpq(1)
jobs queued to run at specified ......................... atq(1)
jobs spooled by at or batch ................................ atrm(1)
join relational database operator ......................... join(1)
login, rsh command interpreters: ................................ sh(1)
jterm reset layer of windowing ................................. jterm(1)
jwin print size of layer .............................................. jwin(1)
kcrash examine system images ................................. kcrash(1M)
ld kernel debugger .................................................. kdb(1M)
ld kernel debugger for multiprocessor kernel debugger ........ kdb(1M)
kernel configuration ................................................ idconfig(1M)
kernel debugger ..................................................... kdb(1M)
kernel debugger for multiprocessor kernel debugger ........ kdb(1M)
kernel executable file dbcmd ........................................ dbcmd(1M)
kernel ............................................................... idbuild(1M)
key ................................................................. chkey(1)
key in the publickey database .......................... newkey(1M)
key ................................................................. keylogin(1)
key ................................................................. makekey(1)
keyboard/display driver/........................................... evgainit(1M)
keylogin decrypt and store secret ....................... keylogin(1)
keys from the NIS map ypmatch ................................ ypmatch(1)
keys keyserv server ............................................ keyserv(1M)
keys .......................................................... setkey(1)
keyserv server for storing public ......................... keyserv(1M)
keyword .......................................................... ckkeywd(1)
keyword lookup .................................................. apropos(1)
keyword /display reference manual ....................... man(1)
keyword whatis .................................................. whatis(1)
kilall kill all active processes ............................... killall(1M)
kilall terminate a process by default ................... kill(1)
kilall kill all active processes ......................... killall(1M)
command and programming/ ksh, rksh
standard/restricted command and/
  for file systems
  file systems
  ufs file systems
labelit (generic) provide
labelit (s5) provide
labelit (ufs) provide
awk pattern scanning and processing
bc arbitrary-precision arithmetic
command and programming
pattern scanning and processing
executed, in reverse order
chargefee, rpacct, dodisk,
at, batch execute commands at a
  jwin print size of
  shl shell
terminals layers
jterm reset
rename login entry to show current
windowing terminals
floppy diskettes
lexical tasks
lex generate programs for simple
System V/386 Release 3.2-compatible
cvtomflib convert OMF (XENIX)
ar maintain portable archive or
ordering relation for an object
terminal type, modes, speed, and
terminal type, modes, speed, and
terminal type, modes, speed, and
  line settings and hunt sequences
  line read one
put arguments on FMLI message
/strip symbol table, debugging and
nl
cut cut out selected fields of each
cut out selected fields of each
lpc
longline reads file, gets longest
for TTY ports stydefs maintain
profile data lprof display
col filter reverse
KornShell, a standard/restricted ........................................ ksh(1)
ksh, rksh KornShell, a ..................................................... ksh(1)
labelit (generic) provide labels .................................. labelit(1M)
labelit (s5) provide labels for s5 ................................. labelit(1M)
labelit (ufs) provide labels for .................................. labelit(1M)
label for file systems .................................................. labelit(1M)
labels for file systems .................................................. labelit(1M)
labels for s5 file systems ............................................ labelit(1M)
labels for ufs file systems ........................................... labelit(1M)
language ................................................................................. awk(1)
language /a standard/restricted .................................... ksh(1)
language awk ................................................................. awk(1)
language nawk ............................................................... awk(1)
lastcomm show the last commands .............................. lastcomm(1)
lastlogin, monacct, nulladm,/ ................................... chargefee(1M)
later time ........................................................................... at(1)
layer ...................................................................................... jwin(1)
layer manager ................................................................. jwin(1)
layer multiplexor for windowing ................................... layers(1)
layer of windowing terminal ....................................... jterm(1)
layer relogin ................................................................. relogin(1M)
layers layer multiplexor for ....................................... layers(1)
lc list contents of directory ............................................ ls(1)
lklink editor, dynamic link editor ................................. ld(1)
lklink editor for object files ........................................... ld(1)
lklist dynamic dependencies ......................................... ld(1)
ldysdump load system dump from .............................. ldysdump(1M)
lex generate programs for simple ............................. lex(1)
lex generate programs for simple ....................... lex(1)
lexical tasks ........................................................................ lex(1)
link editor, dynamic link editor ........................................ fixshlib(1M)
link editor for object files ............................................. fixshlib(1M)
libraries to ELF ............................................................. cvtomflib(1)
library ................................................................. cvtomflib(1)
library lorder find ...................................................... lorder(1)
line discipline get set ............................................... getty(1M)
line discipline uuget set ........................................... uuget(1M)
line discipline vtgetty sets ...................................... vtgetty(1M)
line .................................................................................. line(1)
line message ............................................................... message(1F)
line number information from an/ ............................ strip(1)
line number information from an/ ............................ strip(1)
line numbering filter ..................................................... nl(1)
line of a file ................................................................. cut(1)
line of a file fmlcut ...................................................... fmlcut(1F)
line printer control program ...................................... lpc(1M)
line read one line ....................................................... lpc(1M)
line read one line ....................................................... lpc(1M)
line readable .............................................................. readable(1F)
line settings and hunt sequences ............................... stydefs(1M)
line-by-line execution count ...................................... lprof(1)
line-feeds ..................................................................... col(1)
Permuted Index

format documents for display or line-printer nroff ........................................ nroff(1)
lptest generate lineprinter ripple pattern .............................................. lptest(1)
comm select or reject lines common to two sorted files ............................ comm(1)
fold fold long lines ............................................................................... fold(1)
unifdef resolve and remove ifdef'ed lines in a file .................................... unifdef(1)
uniq report repeated lines in a sorted list look find ................................... look(1)
words in the system dictionary or lines of files ........................................ head(1)
head display first few of several files or subsequent lines/ paste merge same
subsequent lines/ paste merge same
directories link, unlink
ld link editor, dynamic
ln and directories
slink streams
In make hard or symbolic
remote systems dfshares
remote or local systems dfshares
remote systems dfshares
ls
ls, lc
lدد
a file system ff (generic)
a ufs file system ff (ufs)
/change or display an exception
list available NFS resources from dfshares
list available resources from dfshares
list available RFS resources from dfshares
list contents of directory ls
list contents of directory ls
list dynamic dependencies lدد
list file names and statistics for ff
list file names and statistics for ff
list for incremental backups bkexcept
list look find words in the system look
list of all valid group names dispgid
list of all valid user names dispuid
list of an object file nm
list of currently marked menu items getitems
list of path names vs i-numbers ncheck
list of users logged in users
list service grades available on uuglist
list the contents of a directory ls
list user and system login logins
list user login information listusers
listdgrp lists members of a device listdgrp
listen network listener daemon listen
listener daemon listener
listener service administration nlsadmin
list(s) and execute command xargs
list devices attributes devattr
list devices which contain getdgrp
list devices based on criteria getdev

Permuted Index 35
listdgrp
STREAMS modules autopush configure
information
volcopy (ufs) make a
volcopy (s5) make a
volcopy (generic) make

files
kernel executable file dbcmd
diskettes ldsysdump
finger display information about
rusage show host status of
rusers who’s logged in on
rwho who’s logged in on
mounting by remote/ share make
mounting by remote/ unshare make
variables set, unset set and unset
mounting by remote/ share make
mounting by remote/ unshare make
mounting by remote/ share make
mounting by remote/ unshare make
available resources from remote or
format maplocale convert Release 4
pathname or alias which
apropos
lockd network

newgrp
logger add entries to the system
syslogd
w who is
rusage who’s
rwho who’s
display a compact list of users
log
strclean STREAMS error
strerr STREAMS error
rellog log name
rellog rename
userdel delete a user’s
listusers list user
logins list user and system
rusermod modify a user’s
rlogname get
useradd administer a new user
attributes passwd change
rlogin remote
rlogind remote

lists members of a device group listdgrp(1M)
lists of automatically pushed autopush(1M)
listusers list user login listusers(1M)
literal copy of a ufs file system volcopy(1M)
literal copy of an s5 file system volcopy(1M)
literal copy of file system volcopy(1M)
ln link files ln(1)
ln make hard or symbolic links to ln(1)
load command and macro files into a dbcmd(1M)
load system dump from floppy ldsysdump(1M)
local and remote users finger(1)
local machines runtime(1)
local machines rusers(1)
local machines rw(1)
local NFS resource available for share(1M)
local NFS resource unavailable for unshare(1M)
local or global environment set(1F)
local resource available for share(1M)
local resource unavailable for unshare(1M)
local RFS resource available for share(1M)
local RFS resource unavailable for unshare(1M)
local systems dfshares list dfshares(1M)
locale information to different maplocale(1M)
locate a command; display its which(1)
locate commands by keyword lookup apropos(1)
lock daemon lockd(1M)
lockd network lock daemon lockd(1M)
log in to a new group newgrp(1M)
log log(1)
log system messages syslogd(1M)
logged in, and what are they doing w(1)
logged in on local machines rusers(1)
logged in on local machines rw(1)
logged in users users(1)
logger add entries to the system logger(1)
logger cleanup program strclean(1M)
logger daemon strerr(1M)
login entry to show current layer relogin(1M)
login from the system userdel(1M)
login information listusers(1M)
login information login(1M)
login information on the system usermod(1M)
login name logname(1)
login on the system useradd(1M)
login password and password passwd(1)
login rlogin(1)
login server rlogind(1M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mt</td>
<td>magnetic tape control</td>
</tr>
<tr>
<td>tape</td>
<td>magnetic tape maintenance</td>
</tr>
<tr>
<td>tcopy</td>
<td>magnetic tape</td>
</tr>
<tr>
<td>mailalias translate</td>
<td>mail alias names</td>
</tr>
<tr>
<td>rebuild the data base for the</td>
<td>mail aliases file newaliases</td>
</tr>
<tr>
<td>vacation reply to</td>
<td>mail automatically</td>
</tr>
<tr>
<td>smtpqer queue</td>
<td>mail for delivery by SMTP</td>
</tr>
<tr>
<td>fromsmtp receive RFC822</td>
<td>mail from SMTP</td>
</tr>
<tr>
<td>recipient command for incoming</td>
<td>mail mail_pipe invoke</td>
</tr>
<tr>
<td>biff give notice of incoming</td>
<td>mail messages</td>
</tr>
<tr>
<td>automatically respond to incoming</td>
<td>mail messages vacation</td>
</tr>
<tr>
<td>notify user of the arrival of new mail, rmail read</td>
<td>mail notify</td>
</tr>
<tr>
<td>sendmail send</td>
<td>mail or send mail to users</td>
</tr>
<tr>
<td>process messages queued in the SMTP to users</td>
<td>mail over the internet</td>
</tr>
<tr>
<td>mconnect connect to SMTP</td>
<td>mail queue smtpsched</td>
</tr>
<tr>
<td>Mail Transfer/ smtp send SMTP tosmtp send</td>
<td>mail, rmail read mail or send mail</td>
</tr>
<tr>
<td>mail, rmail read mail or send</td>
<td>mail server socket</td>
</tr>
<tr>
<td>mail to a remote host using Simple names for incoming mail collected by sendmail processing system sequences for TTY ports sttydefs library ar groups of programs make tape magnetic tape mkpart disk Service (NIS) dbm file</td>
<td>mail to SMTP</td>
</tr>
<tr>
<td>mailalias translate</td>
<td>mail alias translate mail alias</td>
</tr>
<tr>
<td>mailpipe invoke recipient command</td>
<td>mailPipe invoke recipient command</td>
</tr>
<tr>
<td>mailstats print statistics</td>
<td>mailx interactive message</td>
</tr>
<tr>
<td>mail to users</td>
<td>maintain line settings and hunt</td>
</tr>
<tr>
<td>mailserver socket</td>
<td>maintain portable archive or</td>
</tr>
<tr>
<td>maintenance, update, and regenerate</td>
<td>manipulate connect accounting</td>
</tr>
<tr>
<td>maintenance utility</td>
<td>manipulate DOS files dosMKdir,</td>
</tr>
<tr>
<td>makedb make a Network Information</td>
<td>manipulate the comment section of</td>
</tr>
<tr>
<td>makefsys create a file system</td>
<td>manipulate the routing tables</td>
</tr>
<tr>
<td>makekey generate encryption key</td>
<td>manual</td>
</tr>
<tr>
<td>management</td>
<td>passmgmt management</td>
</tr>
<tr>
<td>mailx shell layer</td>
<td>passmgmt password files</td>
</tr>
<tr>
<td>records fwtmp, wttmpfix</td>
<td>passmgmt password files</td>
</tr>
<tr>
<td>dosls, dosrm, dosrmdir access and an object file mcs route manually catman create the cat files for the by keyword man display reference tables route return current version of the ypxfr transfer YP return name of NIS server or of one or more keys from the NIS force propagation of a changed NIS</td>
<td>passmgmt password files</td>
</tr>
<tr>
<td>magnetic tape</td>
<td>mt(1)</td>
</tr>
<tr>
<td>magnetic tape maintenance</td>
<td>tape(1)</td>
</tr>
<tr>
<td>magnetic tape</td>
<td>tcopy(1)</td>
</tr>
<tr>
<td>mail alias names</td>
<td>mailalias(1)</td>
</tr>
<tr>
<td>mail aliases file newaliases</td>
<td>newaliases(1M)</td>
</tr>
<tr>
<td>mail automatically</td>
<td>vacation(1)</td>
</tr>
<tr>
<td>mail for delivery by SMTP</td>
<td>smtpqer(1M)</td>
</tr>
<tr>
<td>mail from SMTP</td>
<td>fromsmtp(1M)</td>
</tr>
<tr>
<td>mail mail_pipe invoke</td>
<td>mail_pipe(1M)</td>
</tr>
<tr>
<td>mail messages</td>
<td>biff(1)</td>
</tr>
<tr>
<td>mail messages vacation</td>
<td>vacation(1)</td>
</tr>
<tr>
<td>mail notify</td>
<td>notify(1)</td>
</tr>
<tr>
<td>mail or send mail to users</td>
<td>mail(1)</td>
</tr>
<tr>
<td>mail over the internet</td>
<td>sendmail(1M)</td>
</tr>
<tr>
<td>mail queue smtpsched</td>
<td>smtpsched(1M)</td>
</tr>
<tr>
<td>mail, rmail read mail or send mail</td>
<td>mail(1)</td>
</tr>
<tr>
<td>mail server socket</td>
<td>mconnect(1M)</td>
</tr>
<tr>
<td>mail to a remote host using Simple names</td>
<td>smtp(1M)</td>
</tr>
<tr>
<td>mail to SMTP</td>
<td>tosmtp(1M)</td>
</tr>
<tr>
<td>mail to users</td>
<td>mail(1)</td>
</tr>
<tr>
<td>Mail Transfer Protocol /send SMTP</td>
<td>smtp(1M)</td>
</tr>
<tr>
<td>mailalias translate mail alias</td>
<td>mailalias(1)</td>
</tr>
<tr>
<td>mailPipe invoke recipient command</td>
<td>mail_pipe(1M)</td>
</tr>
<tr>
<td>mailstats print statistics</td>
<td>mailstats(1M)</td>
</tr>
<tr>
<td>mailx interactive message</td>
<td>mailx(1M)</td>
</tr>
<tr>
<td>maintain line settings and hunt</td>
<td>sttydefs(1M)</td>
</tr>
<tr>
<td>maintain portable archive or</td>
<td>ar(1)</td>
</tr>
<tr>
<td>maintain, update, and regenerate</td>
<td>make(1)</td>
</tr>
<tr>
<td>maintenance</td>
<td>tape(1)</td>
</tr>
<tr>
<td>maintenance utility</td>
<td>mkpart(1M)</td>
</tr>
<tr>
<td>makedb make a Network Information</td>
<td>makedbm(1M)</td>
</tr>
<tr>
<td>makefsys create a file system</td>
<td>makefsys(1M)</td>
</tr>
<tr>
<td>makekey generate encryption key</td>
<td>makekey(1)</td>
</tr>
<tr>
<td>management</td>
<td>passmgmt(1M)</td>
</tr>
<tr>
<td>mailx shell layer</td>
<td>shl(1)</td>
</tr>
<tr>
<td>records fwtmp, wttmpfix</td>
<td>fwtmp(1M)</td>
</tr>
<tr>
<td>dosls, dosrm, dosrmdir access and an object file mcs route manually catman create the cat files for the by keyword man display reference tables route return current version of the ypxfr transfer YP return name of NIS server or of one or more keys from the NIS force propagation of a changed NIS</td>
<td>dos(1)</td>
</tr>
<tr>
<td>manipulate connect accounting</td>
<td>fcwtmp(1M)</td>
</tr>
<tr>
<td>manipulate DOS files dosMKdir,</td>
<td>dosMKdir(1M)</td>
</tr>
<tr>
<td>manipulate the comment section of</td>
<td>mcs(1)</td>
</tr>
<tr>
<td>manipulate the routing tables</td>
<td>route(1M)</td>
</tr>
<tr>
<td>manual</td>
<td>catman(1M)</td>
</tr>
<tr>
<td>manual pages; find reference pages</td>
<td>man(1)</td>
</tr>
<tr>
<td>manually manipulate the routing</td>
<td>route(1M)</td>
</tr>
<tr>
<td>map at the NIS server host yppoll</td>
<td>yppoll(1M)</td>
</tr>
<tr>
<td>map from a YP server to host</td>
<td>ypxfr(1M)</td>
</tr>
<tr>
<td>map master yppwhch</td>
<td>yppwhch(1)</td>
</tr>
<tr>
<td>map yppmatch print the value</td>
<td>yppmatch(1)</td>
</tr>
<tr>
<td>map yppush</td>
<td>ypppush(1M)</td>
</tr>
</tbody>
</table>
queue smtpsched process
smtpd receive incoming SMTP
strace print STREAMS trace
syslogd log system
respond to incoming mail
set of volumes to another
/overview of accounting and
messages queued in the SMTP mail smtpsched(1M)
messages queued in SMTP messages smtpd(1M)
messages smtplib(1M)
messages syslogd(1M)
messages vacation automatically vacation(l)
miscellaneous accounting commands acct(lM)
mkdir make directories mkdir(l)
mkfifo make FIFO special file mkfifo(lM)
mkfs (bfs) construct a boot file mkfs(lM)
mkfs (generic) construct a file mkfs(lM)
mkfs (s5) construct an s5 file mkfs(lM)
mkfs (ufs) construct an ufs file mkfs(lM)
mmms create message files for use mmmsgs(l)
mmkfs make a special file mmknod(lM)
mmkpart disk maintenance utility mmkpart(lM)
mode chmod(1)
mode for a video device vidi(1)
mode mask umask(l)
mode sulogin(lM)
modes, speed, and line discipline getty(lM)
modes, speed, and line discipline uugetty(lM)
modes, speed, and line discipline vtgetty(lM)
modes tset tset(l)
modes tset tset(l)
modify a group definition on the groupmod(lM)
modify a user's login information usermod(lM)
modify hard disk partition table fdisk(lM)
modules autopush configure lists autopush(lM)
omacct, nulladm, pcrtpm, prdaily, chargefee(lM)
monetary database montbl(lM)
monitor administration pmadm(lM)
monitor for terminal ports ttyadm(lM)
monitor screen mapping mapkey(lM)
monitor stadm(lM)
monitors and opens virtual vtyadm(lM)
monitor-specific information ttypmgr(1)
mount an s5 file system mount(lM)
mount bfs file systems mount(lM)
mount mount remote NFS resources mount(lM)
mount mount remote resources mount(lM)
automount automatically mount, unmount (generic) remote/ mount, unmount (generic) rmnttry attempt to mount mount mountd NFS setmnt establish mount (ufs) unmount file systems and remote/ mountfsys, umountfsys systems mountall, umountall resources rmountall, rumountall multiple file systems

dfmounts display dfmounts display rmntstat display dfmounts display
unmount a file system local NFS resource available for make local resource available for local RFS resource available for local NFS resource unavailable for make local resource unavailable for local RFS resource unavailable for rmount queue remote resource

mouseadmin mvdir volumes to another migration mv
start/stop the LP print service and mountall, umountall mount, unmount shareall, unshareall share, unshare layers layer kdb rc2 run commands performed for

id print the user the user name and ID, and group devnm device whois Internet user descriptor fdetach detach a

mount NFS file systems ................................................. automount(1M)
mount or unmount file systems and .................................. mount(1M)
mount queued remote resources ..................................... rmnttry(1M)
mount remote NFS resources .......................................... mount(1M)
mount remote resources ............................................. mount(1M)
mount request server ................................................... mountd(1M)
mount (s5) mount an s5 file system .............................. mount(1M)
mount table .................................................. setmnt(1M)
mount ufs file systems ............................................ mount(1M)
mount (ufs) mount ufs file systems .............................. mount(1M)
mount, unmount (generic) mount or .............................. mount(1M)
mount, unmount a file system .................................. mountfsys(1M)
mount, unmount multiple file .................................. mountall(1M)
mount, unmount Remote File Sharing .................. rmountall(1M)
mountall, umountall mount, unmount ................ mountall(1M)
mounted NFS mount request server ...................... mountd(1M)
mounted NFS resource information ................ dfmounts(1M)
mounted resource information ........................ dfmounts(1M)
mounted resource information ........................ dfmounts(1M)
mounted NFS resource information ................ dfmounts(1M)
mounted RFS resource information ................ dfmounts(1M)
mountfsys, umountfsys mount, ................................ mountfsys(1M)
mounting by remote systems /make .................. share(1M)
mounting by remote systems share ................ share(1M)
mounting by remote systems /make ................ share(1M)
mounting by remote systems /unshare ................ unshare(1M)
mounting by remote systems unshare ................ unshare(1M)
mounting by remote systems /make ................ unshare(1M)
mounts .................................................. mountall(1M)
multiple file systems .............................. mountall(1M)
multiple resources .................................. shareall(1M)
multiplexor for windowing terminals ........ layers(1)
multiprocessor kernel debugger .................. kdb(1M)
multi-user environment .................................. rc2(1M)
mv move files ........................................... mv(1)
mvdir move a directory .............................. mvdir(1M)
mt magnetic tape control .................. mt(1)
mvdir move a directory .............................. mvdir(1M)
move requests /lpshut, lpmove ................ lpsched(1M)
migrate(1M)
mv move files ........................................... mv(1)
mv move a directory .............................. mvdir(1M)
name and ID, and group name and ID ............ id(1M)
name and ID id print ................................ id(1M)
name ............................................... devnm(1M)
name directory service ................................... whois(1)
name from a STREAMS-based file ..................... fdetach(1M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nm print</td>
<td>name list of an object file</td>
</tr>
<tr>
<td>logname get login</td>
<td>name ................................................................................... logname(l)</td>
</tr>
<tr>
<td>rename change the hostname</td>
<td>name ................................................................................... rename(l)</td>
</tr>
<tr>
<td>hostname set or print</td>
<td>name of current host system ................................................................</td>
</tr>
<tr>
<td>domainname get/set</td>
<td>name of current secure RPC domain ................................................................</td>
</tr>
<tr>
<td>uname print</td>
<td>name of current UNIX system ................................................................</td>
</tr>
<tr>
<td>ypwhich return</td>
<td>name of NIS server or map master ................................................................</td>
</tr>
<tr>
<td>tty get the tty</td>
<td>name .......................................................................................... tty(l)</td>
</tr>
<tr>
<td>named, in.named DARPA trivial</td>
<td>name ................................................................................... named(lM)</td>
</tr>
<tr>
<td>nsquery Remote File Sharing</td>
<td>name server query ............................................................................. nsquery(lM)</td>
</tr>
<tr>
<td>tnamed, in.tnamed DARPA trivial</td>
<td>name server ............................................................................. tnamed(lM)</td>
</tr>
<tr>
<td>nslookup query</td>
<td>name servers interactively ..................................................................... nslookup(lM)</td>
</tr>
<tr>
<td>name server</td>
<td>name ................................................................................... named(lM)</td>
</tr>
<tr>
<td>system ff (generic) list file</td>
<td>names and statistics for a file ......................................................... ff(lM)</td>
</tr>
<tr>
<td>system ff (ufs) list file</td>
<td>names and statistics for a ufs file ..................................................... ff(lM)</td>
</tr>
<tr>
<td>dirname deliver portions of path</td>
<td>names basename, ......................................................................... basename(l)</td>
</tr>
<tr>
<td>displays a list of all valid group</td>
<td>names dispgid ...................................................................... dispgid(l)</td>
</tr>
<tr>
<td>displays a list of all valid user</td>
<td>names dispuid ...................................................................... dispuid(l)</td>
</tr>
<tr>
<td>File Sharing domain and network</td>
<td>names dname print Remote ................................................................... dname(lM)</td>
</tr>
<tr>
<td>mailalas translate mail alias</td>
<td>names ................................................................................... mailalas(l)</td>
</tr>
<tr>
<td>systems ncheck (s5) generate path</td>
<td>names versus i-numbers for s5 file ............................................ ncheck(lM)</td>
</tr>
<tr>
<td>(generic) generate a list of path</td>
<td>names vs i-numbers ncheck ................................................................ ncheck(lM)</td>
</tr>
<tr>
<td>processing language</td>
<td>awk pattern scanning and ........................................................................ awk(l)</td>
</tr>
<tr>
<td>path names vs i-numbers</td>
<td>ncheck (generic) generate a list of ................................................. ncheck(lM)</td>
</tr>
<tr>
<td>versus i-numbers for s5 file/</td>
<td>ncheck (s5) generate path names .................................................... ncheck(lM)</td>
</tr>
<tr>
<td>eqn,</td>
<td>ncheck (ufs) generate pathnames ................................................................ ncheck(lM)</td>
</tr>
<tr>
<td>nfsstat</td>
<td>neqn, checkeq typeset mathematics ................................................................ eqn(l)</td>
</tr>
<tr>
<td>send ICMP ECHO_REQUEST packets to</td>
<td>netstat show network status ................................................................ netstat(lM)</td>
</tr>
<tr>
<td>dbm file makedbm make a</td>
<td>Network File System statistics ................................................................ nfsstat(lM)</td>
</tr>
<tr>
<td>ifconfig configure</td>
<td>network hosts ping ........................................................................... ping(lM)</td>
</tr>
<tr>
<td>listen</td>
<td>Network Information Service (NIS) ................................................................ makedbm(lM)</td>
</tr>
<tr>
<td>administration nlsadmin</td>
<td>network interface parameters ................................................................... ifconfig(lM)</td>
</tr>
<tr>
<td>lockd</td>
<td>network listener daemon ........................................................................ listen(lM)</td>
</tr>
<tr>
<td>Remote File Sharing domain and network</td>
<td>network listener service ................................................................ nlsadmin(lM)</td>
</tr>
<tr>
<td>routed</td>
<td>network lock daemon ............................................................................ lockd(lM)</td>
</tr>
<tr>
<td>rpc.rwalld</td>
<td>network names dname print .................................................................... dname(lM)</td>
</tr>
<tr>
<td>rwall write to all users over a</td>
<td>network routing daemon .................................................................... routed(lM)</td>
</tr>
<tr>
<td>statd</td>
<td>network rwall server ........................................................................ rpc.rwalld(lM)</td>
</tr>
<tr>
<td>netstat show</td>
<td>network status .................................................................................. netstat(lM)</td>
</tr>
<tr>
<td>rpc.rusersd</td>
<td>network username server ....................................................................... rpc.rusersd(lM)</td>
</tr>
<tr>
<td>for the mail aliases file</td>
<td>newaliases rebuild the data base ................................................................ newaliases(lM)</td>
</tr>
<tr>
<td>publickey database</td>
<td>newform change the format of a text ..................................................... newform(l)</td>
</tr>
<tr>
<td>newgrp log in to a new group</td>
<td>newgrp log in to a new group .................................................................. newgrp(lM)</td>
</tr>
<tr>
<td>for the mail aliases file</td>
<td>newkey create a new key in the .................................................................. newkey(lM)</td>
</tr>
<tr>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>i-nodes for s5 file/ df (s5) report</td>
<td>44</td>
</tr>
<tr>
<td>random generate a random nline</td>
<td>44</td>
</tr>
<tr>
<td>install random inode generation</td>
<td>44</td>
</tr>
<tr>
<td>help ask for help with message host hostid print the dis terminal wtinit</td>
<td>44</td>
</tr>
<tr>
<td>dump dump selected parts of an file</td>
<td>44</td>
</tr>
<tr>
<td>the comment section of an index file</td>
<td>44</td>
</tr>
<tr>
<td>find printable strings in an file</td>
<td>44</td>
</tr>
<tr>
<td>and line number information from an</td>
<td>44</td>
</tr>
<tr>
<td>cof2elf COFF to ELF id link editor for print section sizes in bytes of</td>
<td>44</td>
</tr>
<tr>
<td>find ordering relation for an number factor od</td>
<td>44</td>
</tr>
<tr>
<td>message/ srchtxt display contents offline take a processor</td>
<td>44</td>
</tr>
<tr>
<td>cvtomflib convert whatis display</td>
<td>44</td>
</tr>
<tr>
<td>online bring a processor newvt vtlmgr monitors and run commands</td>
<td>44</td>
</tr>
<tr>
<td>performed to stop the performed to stop and reboot the</td>
<td>44</td>
</tr>
<tr>
<td>reboot restart the report on completed backup display the status of backup</td>
<td>44</td>
</tr>
<tr>
<td>bkoper interact with backup join relational database (generic) copy file systems for dcopy (s5) copy s5 file systems for sitty set the sitty set the</td>
<td>44</td>
</tr>
<tr>
<td>getopt parse command getopt, getoptcvt parse command postreverse reverse the page last commands executed, in reverse library lorder find restore restore file to echo put string on virtual</td>
<td>44</td>
</tr>
<tr>
<td>number of free disk blocks and df (1M)</td>
<td>44</td>
</tr>
<tr>
<td>random (1M)</td>
<td>44</td>
</tr>
<tr>
<td>nl (1M)</td>
<td>44</td>
</tr>
<tr>
<td>numbers fsirand (1M)</td>
<td>44</td>
</tr>
<tr>
<td>numbers or SCCS commands help (1M)</td>
<td>44</td>
</tr>
<tr>
<td>numeric identifier of the current hostid (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object code disassembler dis (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object downloader for the 5620 DMD wtinit (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object file (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object file mcs manipulate mcs (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object file (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object file or binary strings strings (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object file /table, debugging strip (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object file translation cof2elf (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object files (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object files size size (1M)</td>
<td>44</td>
</tr>
<tr>
<td>object library lorder lorder (1M)</td>
<td>44</td>
</tr>
<tr>
<td>obtain the prime factors of a factor (1M)</td>
<td>44</td>
</tr>
<tr>
<td>octal dump octal dump od (1M)</td>
<td>44</td>
</tr>
<tr>
<td>od octal dump od (1M)</td>
<td>44</td>
</tr>
<tr>
<td>of, or search for a text string in srchtxt (1M)</td>
<td>44</td>
</tr>
<tr>
<td>offline offline (1M)</td>
<td>44</td>
</tr>
<tr>
<td>offline take a processor offline offline (1M)</td>
<td>44</td>
</tr>
<tr>
<td>OMF (XENIX) libraries to ELF cvtomflib (1M)</td>
<td>44</td>
</tr>
<tr>
<td>one-line summary about a keyword whatis (1M)</td>
<td>44</td>
</tr>
<tr>
<td>online bring a processor online online (1M)</td>
<td>44</td>
</tr>
<tr>
<td>online (1M)</td>
<td>44</td>
</tr>
<tr>
<td>opens virtual terminals newvt (1M)</td>
<td>44</td>
</tr>
<tr>
<td>opens virtual terminals vtlmgr (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operating system rc0 rc0 (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operating system rc6 run commands rc6 (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operating system (1M) reboopt (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operations bkhistory bkhistory (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operations bkstatus bkstatus (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operations to service media/ loper bkoper (1M)</td>
<td>44</td>
</tr>
<tr>
<td>operator (1M)</td>
<td>44</td>
</tr>
<tr>
<td>optimal access time dcopy dcopy (1M)</td>
<td>44</td>
</tr>
<tr>
<td>optimal access time dcopy (1M)</td>
<td>44</td>
</tr>
<tr>
<td>options for a terminal stty (1M)</td>
<td>44</td>
</tr>
<tr>
<td>options for a terminal stty (1M)</td>
<td>44</td>
</tr>
<tr>
<td>options (1M)</td>
<td>44</td>
</tr>
<tr>
<td>options getopts (1M)</td>
<td>44</td>
</tr>
<tr>
<td>order in a PostScript file postreverse (1M)</td>
<td>44</td>
</tr>
<tr>
<td>order lastcomm show the lastcomm (1M)</td>
<td>44</td>
</tr>
<tr>
<td>ordering relation for an object lorder (1M)</td>
<td>44</td>
</tr>
<tr>
<td>original directory restore (1M)</td>
<td>44</td>
</tr>
<tr>
<td>output (1F)</td>
<td>44</td>
</tr>
</tbody>
</table>
Permuted Index

information ttyadm format and
printf print formatted
acctwtmp closewtmp, utmp2wtmp
chown change file
chown change file
or initialize file permissions and
XENIX file permissions and
chgrp change the group
quot summarize file system
expand files
install specific portions of a UNIX
pkgtrans translate
pkgrm removes a
pkginfo display software
pkgparam displays
pkgmk produce an installable
sa1, sa2 system activity report
pkgadd transfer software
portions of certain UNIX or XENIX
xtt extract and print xt driver
spray spray
ping send ICMP ECHO_REQUEST
file more,
pagesize display the size of a
postreverse reverse the
more, page browse or
manual pages; find reference
man display reference manual
of memory
attempts to set value of a tunable
bootparam boot
pkgparam displays package
configure network interface
getopt
getopt, getoptctv
tail deliver the last
ypset point ypbind at a
the size of the active UNIX System
fdisk create or modify hard disk
restores of filesystems, data
dump dump selected
active UNIX System partition
password attributes
passwd change login
passwd change login password and
pwck check
output port monitor-specific ......................... ttymadm(1M)
output .................................................. printf(1)
overview of accounting and/ /accton, .................. acct(1M)
owner .................................................. chown(1)
owner .................................................. chown(1)
ownership fixperm correct .......................... fixperm(1M)
ownership /correct or initialize ...................... fixperm(1M)
ownership of a file .................................... chgrp(1)
ownership ............................................. quot(1M)
pack, pcat, unpack compress and .................... pack(1)
package custom ...................................... custom(1M)
package format ...................................... pkgrm(1M)
package from the system ............................. pkgrm(1M)
package information .................................. pkginfo(1)
package parameter values ............................ pkgparam(1)
package ............................................... pkgmk(1)
packet traces ........................................... xtt(1M)
packets .................................................. spray(1M)
packets to network hosts .............................. ping(1M)
page browse or page through a text ................ more(1)
page of memory ...................................... pagesize(1)
page order in a PostScript file ....................... postreverse(1)
page through a text file .............................. more(1)
pages by keyword /display reference .............. man(1)
pages; find reference pages by/ ..................... man(1)
pagesize display the size of a page ................ pagesize(1)
parameter idtune ..................................... idtune(1M)
parameter server ..................................... bootparamd(1M)
parameter values .................................... pkgparam(1)
parameters ifconfig .................................. ifconfig(1M)
parse command options .............................. getopt(1)
parse command options .............................. getoptctv(1)
part of a file ........................................ tail(1)
particular server .................................... ypset(1M)
partition partsize returns .......................... partsize(1M)
partition table ..................................... fdisk(1M)
partitions, or disks /initiate ......................... restore(1M)
parts of an object file ............................. dump(1)
partsize returns the size of the .................... partsize(1M)
passmgmt password files management .............. passmgmt(1M)
passwd change login password and ................. passwd(1)
password and password attributes .................. passwd(1)
password attributes .................................. passwd(1)
password database entries .......................... pwck(1M)
permuted Index

passmgmt password files management ................................................. passmgmt(1M)
password password rpassword ......................................................... rpassword(1M)
password/group file checkers ....................................................... pwck(1M)
paste paste merge same lines of several ........................................ paste(1)
path names path names basesname ................................................. basename(1)
path names versus i-numbers for s5 .............................................. ncheck(1M)
path names vs i-numbers ............................................................ ncheck(1M)
pathconv search FMLI criteria for ............................................... pathconv(1F)
pathname pathname ckpath display .............................................. ckpath(1)
pathname or alias pathnames ....................................................... which(1)
pathnames pathnames versus i-numbers for ufs ................................ ncheck(1M)
pattern pattern ................................................................. grep(1)
pattern pattern lpptest generate lineprinter ripple ......................... lpptest(1)
pattern scanning and processing ................................................. awk(1)
pattern scanning and processing ................................................. awk(1)
pattern using full regular/ ...................................................... egrep(1)
pbprint bind a process to a processor .......................................... pbprint(1)
pcat, unpack compress and expand .............................................. pack(1)
pending restore requests and ..................................................... rsoper(1M)
per directory or file du display ................................................. du(1M)
perform backup functions ........................................................... backup(1)
perform system administration ................................................. sysadm(1M)
performed for multi-user ...................................................... rc2(1M)
performed to stop and reboot the ................................................. rc6(1M)
perform to stop the operating ............................................... rc0(1M)
permissions and ownership ....................................................... fixperm(1)
permissions and ownership fixperm .............................................. fixperm(1M)
permissions file uuchec .......................... uucheck(1M)
permit or deny messages ........................................................... mesg(1)
per-process accounting records ................................................. acctcms(1M)
perusal filter for CRTs .............................................................. pg(1)
pg file perusal filter for CRTs .................................................... pg(1)
pkg bind exclusively bind processes ............................................ pxbind(1M)
pkg file perusal filter for CRTs .................................................... pg(1)
pieces ......................................................... split(1)
pifinfo get information about ..................................................... pinfo(1M)
ping send ICMP ECHO REQUEST packets ....................................... ping(1M)
pipe fitting ................................................................. tee(1)
the system pkgadd transfer software package to ................................ pkgadd(1M)
script pkgask stores answers to a request ...................................... pkgask(1M)
 installation pkgchk check accuracy of ........................................... pkgchk(1M)
information pkginfo display software package ................................ pkginfo(1)
package pkgmk produce an installable ............................................ pkgmk(1M)
values pkgparam displays package parameter .................................... pkgparam(1)
pkqproto generate a prototype file ............................................. pkgproto(1)
Permuted Index

system

pkgrm removes a package from the ................................ pkgrm(1M)

pkgtrans translate package format ................................ pkgtrans(1)

plot, aedplot, atoplot, bgplot, ......................................... plot(1G)

plot graphics files ......................................................... postplot(1)

ploters /t300, t300s, t4013, t450, ......................................... plot(1G)

plottoa, t300, t300s, t4013, t450/ ......................................... plot(1G)

pmdm port monitor administration ................................ pmdm(1M)

point ypbind at a particular server .............................. ypset(1M)

port monitor administration ......................................... pmdm(1M)

port monitor for terminal ports ................................... ttymon(1M)

port monitor-specific information ................................... ttyadm(1M)

portable archive or library ........................................ ar(1)

portions of a UNIX package ........................................ custom(1M)

portions of certain UNIX or XENIX .............................. custom(1)

portions of path names ............................................... basename(1)

portions of pathnames ............................................. basename(1)

ports ttyadm format and output .................................... ttymon(1M)

ar maintain
custom install specific packages custom install specific basename, dirname deliver basename display
settings and hunt sequences for TTY

ttymon port monitor for terminal

nroff and troff input files; report Diablo 630 files

DMD bitmap files

banner make

PostScript printers

PostScript printers

postscript

plot graphics files

text files

printers dpost troff in a PostScript file reverse the page order in a
download host resident dpost troff postprocessor for
postscript serial interface for

postmd matrix display program for 630 files

postdaisy bitmap files

postmdm graphics files

postplot files

4014 files

postek files

postprint tektronix 4014 files

/lastlogin, monacct, nulladm, /monacct, nulladm, prctmp,
unget undo a

profiler profiler: prfld, prfstat, prfprof UNIX system prfd, prfsnap, prfpr UNIX system prfpr UNIX system/ profiler: prfpr UNIX system/ profiler:
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/prfld, prfstat, prfsnap, prfpr UNIX system profiler</td>
<td>print a bibliographic database</td>
</tr>
<tr>
<td>/prfld, prfstat, prfsnap, prfpr UNIX system profiler</td>
<td>print an SCCS file</td>
</tr>
<tr>
<td>profiler: prfld, prfstat, prfsnap, prfpr UNIX system profiler</td>
<td>print calendar</td>
</tr>
<tr>
<td>system profiler profiler: prfld, prfstat, prfsnap, prfpr UNIX system profiler</td>
<td>print checksum and block count of a</td>
</tr>
<tr>
<td>factor obtain the roffbib format and prs</td>
<td>print file differences side-by-side</td>
</tr>
<tr>
<td>file sum activity sact cat</td>
<td>print files</td>
</tr>
<tr>
<td>sum cal cat</td>
<td>print formatted output</td>
</tr>
<tr>
<td>activity sact sdiff cat</td>
<td>print files</td>
</tr>
<tr>
<td>cat concatenate and pr</td>
<td>print files</td>
</tr>
<tr>
<td>pr</td>
<td>print files</td>
</tr>
<tr>
<td>pr</td>
<td>print file summation of user groups</td>
</tr>
<tr>
<td>what</td>
<td>print identification strings</td>
</tr>
<tr>
<td>of the LP print service lpstat</td>
<td>print information about the status</td>
</tr>
<tr>
<td>nm</td>
<td>print name list of an object file</td>
</tr>
<tr>
<td>hostname set or</td>
<td>print name of current host system</td>
</tr>
<tr>
<td>uname</td>
<td>print name of current UNIX system</td>
</tr>
<tr>
<td>news</td>
<td>print news items</td>
</tr>
<tr>
<td>infocmp compare or acctcom search and</td>
<td>print out terminfo descriptions</td>
</tr>
<tr>
<td>and network names dname</td>
<td>print process accounting file(s)</td>
</tr>
<tr>
<td>accept, reject accept or reject</td>
<td>print user name and numeric identifier of the host</td>
</tr>
<tr>
<td>of the host hostid</td>
<td>print Remote File Sharing domain</td>
</tr>
<tr>
<td>object files size</td>
<td>print section sizes in bytes of</td>
</tr>
<tr>
<td>/lpshut, lpmove start/stop the LP</td>
<td>print service and move requests</td>
</tr>
<tr>
<td>send/cancel requests to an LP</td>
<td>print service</td>
</tr>
<tr>
<td>lpadmin configure the LP #lpadmin(1M)</td>
<td>print service</td>
</tr>
<tr>
<td>administrator filters used with the LP #lpfilter(1M)</td>
<td>print service</td>
</tr>
<tr>
<td>administrator forms used with the LP #lpforms(1M)</td>
<td>print service</td>
</tr>
<tr>
<td>about the status of the LP #lpstat(1M)</td>
<td>print service</td>
</tr>
<tr>
<td>register remote systems with the jwin</td>
<td>print service and print information</td>
</tr>
<tr>
<td>print Remote File Sharing domain</td>
<td>print service</td>
</tr>
<tr>
<td>print statistics collected by mailstats(1M)</td>
<td>print service</td>
</tr>
<tr>
<td>print STREAMS trace messages strace(1M)</td>
<td>print string repeated</td>
</tr>
<tr>
<td>print string repeated yes(1)</td>
<td>print the numeric identifier of the hostid(1)</td>
</tr>
<tr>
<td>print the user name and ID, and id(1M)</td>
<td>print the value of one or more keys ypmatch(1)</td>
</tr>
<tr>
<td>print values in a NIS data base ypcat(1)</td>
<td>print xt driver packet traces xt(1M)</td>
</tr>
<tr>
<td>print xt driver statistics xts(1M)</td>
<td>print printable strings in an object file strings(1)</td>
</tr>
</tbody>
</table>
variables currently set
lp line
lpq display the queue of
lpr send a job to the
lprm remove jobs from the
troff postprocessor for PostScript
enable, disable enable/disable
serial interface for PostScript
display program for PostScript
lpusers set

nice run a command at low
renice alter
server for storing public and
brc, bcheckrc system initialization
shutacct, startup, turnacct shell
actprc, actprc1, actprc2
actcom search and print
kill terminate a
codestroy communicate with a
init, telinit
timex time a command; report
mail queue smtpsched
Remote File Sharing daemon
dispadmin
priocntl
ps report
ps report
pbind bind a
wait await completion of
gcore get core images of running
killall kill all active
ps display the status of current
renice alter priority of running
pexbind exclusively bind
structure fuser identify
ypbind NIS server and binder
awk pattern scanning and
awk pattern scanning and
mailx interactive message
halt stop the
m4 macro
offline take a
online bring a
pbind bind a process to a

printenv display environment ....................................... printenv(1)
printer control program ................................................. lpc(1M)
printer jobs ........................................................................ lpq(1)
printer ................................................................. lpr(1)
printer queue ............................................................... lprm(1)
printers dpost ........................................................... dpost(1)
printers ................................................................. enable(1)
printers postio ........................................................... postio(1)
printers postmd matrix ............................................... postmd(1)
printf print formatted output ............................................ printf(1)
printing queue priorities ............................................... lpusers(1M)
priocntl process scheduler control ................................... priocntl(1)
priorities ................................................................. lpusers(1M)
priority ................................................................. nice(1)
priority of running processes ........................................ renice(1M)
private keys keyserv ..................................................... keyserv(1M)
procedures ........................................................................ brc(1M)
procedures for accounting /runacct, .......... chargefee(1M)
process accounting ........................................................... acctprc(1M)
process accounting file(s) .............................................. acctcom(1)
process by default ......................................................... kill(1)
process /cocheck, coreceive, ....................................... cocreate(1F)
process control initialization ......................................... init(1M)
process data and system activity .................................... timex(1)
process messages queued in the SMTP ......................... smtpsched(1M)
process rfudaemon .................................................... rfudaemon(1M)
process scheduler administration ......................... dispadmin(1M)
process scheduler control .................................... priocntl(1)
process status ............................................................... ps(1)
process status ............................................................... ps(1)
process to a processor ..................................................... pbind(1M)
process ................................................................. wait(1)
processes ........................................................................ gcore(1)
processes ................................................................. killall(1M)
processes ................................................................. ps(1)
processes ................................................................. renice(1M)
processes to a processor ..................................................... pexbind(1M)
processes using a file or file .......................................... fuser(1M)
processes ypserv, ....................................................... ypserv(1M)
processing language ......................................................... awk(1)
processing language ......................................................... awk(1)
processing system ....................................................... mailx(1)
processor ................................................................. hal(1M)
processor ................................................................. m4(1)
processor offline ....................................................... offline(1M)
processor online ....................................................... online(1M)
processor ................................................................. pbind(1M)
exclusively bind processes to a
mach display the
machid get
pinfo get information about
idconfig
pkgmk
line-by-line execution count
prof display
time disk access
prfsnap, prfpr UNIX system/
prfpr UNIX system/
prfdc, prfsnap, prfpr UNIX system
prfdc, prfsnap, prfpr UNIX system
cb C
boot UNIX system boot
lint a C
cxref generate C
cscope interactively examine a C
ctrace C
postmd matrix display
uccico file transport
tftp file transfer
lpresolve line printer control
rpcbind universal addresses to RPC
and remove ifdef'ed lines from C
STREAMS error logger cleanup
talkd, in.talkd server for talk
tftp trivial file transfer
units conversion
for the uucp file transport
a standard/restricted command and
lex generate
to commands and application
update, and regenerate groups of
ckitem build a menu;
ckdate, errdate, helpdate, validate
ckgid, errgid, helpgid, valgid
cckkeywd
cuuid
crange
cckyorn
pathname ckpath display a
answer cksstr display a
day cktime display a
integer value ckint display a
to service media insertion

processor pexbind ................................................. pexbind(1M)
processor type of the current host ................................ mach(1)
processor type truth value ........................................ machid(1)
processors ............................................................. pinfo(1M)
produce a new kernel configuration ................................ idconfig(1M)
produce an installable package ..................................... pkgmk(1)
prof display profile data .............................................. prof(1)
profile data lpprof display .......................................... lprof(1)
profile data ............................................................. prof(1)
profiler ................................................................. fusage(1M)
profiler: prfld, prfstat, prfdc, .................................. profiler(1M)
profiler: prfld, prfstat, prfdc, .................................. profiler(1M)
profiler: prfld, prfstat, ........................................... profiler(1M)
profiler profile: prfld, prfstat, .................................. profiler(1M)
profiler profile: prfld, prfstat, .................................. profiler(1M)
program beautifier .................................................... cb(1)
program ............................................................... boot(1M)
program checker ........................................................ lint(1)
program cross-reference .......................................... cxref(1)
program ............................................................... cscope(1)
program debugger ..................................................... ctrace(1)
program for PostScript printers .................................. postmd(1)
program for the uucp system ...................................... uuccico(1)
program ............................................................... ftp(1)
program ............................................................... ftp(1)
program ............................................................... lp(1M)
program number mapper ........................................... rpcbind(1M)
program source unifdef resolve .................................. unifdef(1)
program strclean unifdef resolve .............................. strclean(1M)
program talkd ........................................................ talkd(1M)
program ............................................................... tftp(1)
program ............................................................... units(1)
program uusched the scheduler .................................. uusched(1M)
program ............................................................... tftp(1)
program for the uucp system ...................................... uuccico(1)
program ............................................................... tftp(1)
program ............................................................... units(1)
program uusched the scheduler .................................. uusched(1M)
programming language /KornShell, ............................. ksh(1)
programs for simple lexical tasks ............................... lex(1)
programs intro introduction ..................................... intro(1)
programs make maintain, ........................................... make(1)
prompt for and return a menu item .............................. ckitem(1)
prompt for and return a menu item .............................. ckitem(1)
prompt for and validate a date ................................... ckdate(1)
prompt for and validate a date ................................... ckdate(1)
prompt for and validate a group ID ............................. ckgid(1)
prompt for and validate a group ID ............................. ckgid(1)
prompt for and validate a keyword ............................. ckkeywd(1)
prompt for and validate a keyword ............................. ckkeywd(1)
prompt for and validate a user ID ................................ ckuid(1)
prompt for and validate a user ID ................................ ckuid(1)
prompt for validate an integer .................................... ckrange(1)
prompt for validate an integer .................................... ckrange(1)
prompt for and validate yes/no ................................... cckyorn(1)
prompt; verify and return a ....................................... ckpath(1)
prompt; verify and return a ....................................... ckstr(1)
prompt; verify and return a ....................................... ckstr(1)
prompt; verify and return a time of .............................. cktime(1)
prompt; verify and return a time of .............................. cktime(1)
prompt; verify and return an ..................................... ckint(1)
prompt; verify and return an ..................................... ckint(1)
prompts /with backup operations .............................. bkoper(1M)
and service media insertion

yppush force
rpcgen an RPC
ftpd file transfer

DARPA Reverse Address Resolution
telnetd DARPA TELNET
tftpd DARPA Trivial File Transfer
to a remote system using the TELNET

trpt transliterate
pkgproto generate a
terminal modes tset
modes tset
labelit (generic)
labelit (sS)
labelit (ufs)
labelit (ufs)
true, false

commentary history of an SCCS file

/etc/shadow with information from/

nslookup

Remote File Sharing name server
strch, strconf change or
tput initialize a terminal or
lprm remove jobs from the printer
smtpqer
lpq display the
lpusers set printing

memory ID ipcrm remove a message
messages queued in the SMTP mail

prompts /pending restore requests ...................... rsoper(1M)
propagation of a changed NIS map ...................... yppush(1M)
protocol compiler ......................................... rpcgen(1)
protocol server ............................................. ftpd(1M)

protocol server rarpd ................................... rarpd(1M)
protocol server ............................................. telnetd(1M)
Protocol server ............................................. tftpd(1M)
Protocol /SMTP mail to a remote ....................... smtp(1M)
protocol telnet user interface ......................... telnet(1)
protocol trace .............................................. trpt(1M)
prototype file ............................................. pkgproto(1)
provide information for setting ....................... tset(1)
provide information to set terminal .................. tset(1)
provide labels for file systems ...................... labelit(1M)
provide labels for s5 file systems ................. labelit(1M)
provide labels for ufs file systems ................. labelit(1M)
provide truth values ................................... true(1)
prs print an SCCS file .................................... prs(1)
prt display the delta and .............................. prt(1)
prtacct, runacct, shutacct,/ ......................... chargefees(1M)
prvtoc disk information display ..................... prvtoc(1M)
ps display the status of current .................... ps(1)
ps report process status .............................. ps(1)
ps report process status .............................. ps(1)
publin and private keys .............................. keyserv(1M)
public UNIX-to-UNIX system file ................... uuto(1C)
publickey database ................................. newkey(1M)
pushed STREAMS modules autopush .................. autopush(1M)
put arguments on FMLI message line ............... message(1F)
put string on virtual output .......................... echo(1F)
putdev edits device table ........................... putdev(1)
putdgrp edits device group table .................. putdgrp(1)
pwck check password database ................... pwck(1M)
pwck, grpck password/group file ............... pwck(1M)
pwconv install and update ......................... pwconv(1M)
pwd working directory name ......................... pwd(1)
query name servers interactively .................. nslookup(1M)
query nsquery ........................................... nsquery(1M)
query stream configuration ......................... strchg(1)
query terminfo database ........................... tput(1)
queue ....................................................... lprm(1)
queue mail for delivery by SMTP ................. smtpqer(1M)
queue of printer jobs ................................ lq(1)
queue priorities ....................................... lpusers(1M)
queue remote resource mounts .................... rmount(1M)
queue, semaphore set, or shared ................... ipcrm(1)
queue smtpsched process ......................... smtpsched(1M)
make maintain, update, and
or display the contents of a backup
print service lpsystem
regcmp

requests accept,
files comm select or
accept, reject accept or
lorder find ordering
join
/to call SCO UNIX System V/386
different format maplocale convert
devfree
current layer
uuxqt execute
reexec
rcp
rfudaemon
administration rfadmin
network names dname print
rfstop stop the
rfpasswd change
query nsquery
shell script rfuadmin
/rumountall mount, unmount
rfstart start
mapping idload
rdate set system date from a
Transfer/ smtp send SMTP mail to a
rlogin
rlogind
mount mount
list available resources from
rmount queue
rumount cancel queued
remote resource request
remote resources
remote resources /umount (generic)
remote resources /umount (generic)
remote shell
remote shell server
ckbinarsys determine whether
telnet user interface to a
Uutry try to contact

regcmp regular expression compile ................................ regcmp(1)
regenerate groups of programs ........................................... make(1)
regex match patterns against a ........................................... regexex(1F)
register bkreg change ..................................................... bkreg(1M)
register remote systems with the ................................ lpsystem(1M)
regular expression compile ........................................... regcmp(1)
regular expressions egrep search ....................................... egrep(1)
reinit runs an initialization file ....................................... reinit(1F)
reject accept or reject print ............................................ accept(1M)
reject lines common to two sorted .................................... comm(1)
reject print requests ..................................................... accept(1M)
relation for an object library .......................................... lorder(1)
relational database operator ............................................. join(1)
Release 3.2-compatible libnsl .......................................... fixshlib(1M)
Release 4 locale information to ....................................... maplocale(1M)
release devices from exclusive use .................................... devfree(1M)
relogin rename login entry to show .................................. relogin(1M)
reminder service ......................................................... calendar(1)
remote command requests .............................................. uuxqt(1M)
remote execution server ............................................... reexecd(1M)
remote file copy ......................................................... rcp(1)
Remote File Sharing daemon process .............................. rfudaemon(1M)
Remote File Sharing domain .......................................... rfadmin(1M)
Remote File Sharing domain and .................................. dname(1M)
Remote File Sharing environment ................................... rfstop(1)
Remote File Sharing host password ................................ rfpasswd(1M)
Remote File Sharing name server ................................... nsquery(1M)
Remote File Sharing notification ..................................... rfadmin(1M)
Remote File Sharing resources ........................................ rmountall(1M)
Remote File Sharing trees ............................................. rmountall(1M)
Remote File Sharing user and group ................................ idload(1M)
Remote host .............................................................. rdate(1M)
remote host using Simple Mail ....................................... smtp(1M)
remote host login ....................................................... rlogin(1)
remote login server .................................................... rlogind(1)
remote NFS resources ................................................. mount(1M)
remote or local systems dfshares ................................. dfshares(1M)
remote resource mounts .............................................. rmount(1M)
remote resource request .............................................. rumount(1M)
remote resources ....................................................... mount(1M)
remote resources /umount (generic) ............................... mount(1M)
remote resources /umount (generic) ............................... mount(1M)
remote shell ............................................................. rsh(1)
remote shell server .................................................... rshd(1M)
remote system can accept binary/ ................................. ckbinarsys(1M)
remote system using the TELNET/ ................................ telnet(1)
remote system with debugging on .................................. Uutry(1M)
remote systems dfshares ........................................... dfshares(1M)
remote systems dfshares ........................................... dfshares(1M)
remote systems /make local NFS ......................... share(1M)
remote systems /make local NFS ......................... share(1M)
remote systems /make local NFS ......................... share(1M)
remote systems /local NFS resource .................. unshare(1M)
remote systems /make local resource ............... unshare(1M)
remote systems /make local resource ............... unshare(1M)
remote systems /local NFS resource ................ unshare(1M)
remote systems with the print ....................... lpsystem(1M)
remote terminal ................................................. ct(1C)
remote user information server ....................... fingerd(1M)
remote users finger ........................................... finger(1)
removal tool delsysadm ................................. delsysadm(1M)
remove a file from software ......................... removef(1M)
remove a file from software ......................... removef(1M)
remove files or directories ................................. rm(1)
remove ifdef'ed lines from C .................. unifdef(1)
remove jobs from the printer queue ................... lprm(1)
remove jobs spoofed by at or batch .................. atrm(1)
remove nroff, troff, tbl and eqn .................. deroff(1)
remove nroff/troff, tbl, and eqn .................. deroff(1)
remove a file from software ......................... removef(1M)
remove a file from software ......................... removef(1M)
pkgmgr .......................................................... pkgrm(1M)
removes a package from the system ................. pkgrm(1M)
removes nodes and reads ............................... idmknod(1M)
rename change the name of a file .................... rename(1M)
rename login entry to show current ............. rellogin(1M)
renice alter priority of running .................... renice(1M)
repair bfs file systems ....................................... fsck(1M)
repair file systems ......................................... fsck(1M)
repair fsck (ufs) file system ......................... fsck(1M)
repair s5 file systems ....................................... fsck(1M)
repair XENIX filesystems ................................. xfscck(1M)
repeated lines in a file ..................................... uniq(1)
repeatedly ......................................................... yes(1)
reply to mail automatically ......................... vacation(1)
report free disk space on file .................. df(1M)
report free disk space on ufs file ............... df(1M)
report free disk space on ufs file ............... df(1M)
report free disk space on ufs file ............... df(1M)
report free disk space on ufile ................. df(1M)
report free disk space on ufile ................. df(1M)
report free disk space on file ................. df(1M)
report inter-process communication ................ ipcs(1)
report inter-process communication ................ ipcs(1)
report number of free disk blocks ............ df(1M)
report number of free disk blocks ............ df(1M)
report number of free disk blocks ............ df(1M)
report on completed backup ..................... bkhistory(1M)
report package .............................................. sadc(1M)
report possible errors checknr .................... checknr(1)
report possible errors checknr .................... checknr(1)
report process data and system ................... timex(1)
report process status ...................................... ps(1)
permuted Index

uniq
rpcinfo
sar system activity
sar system activity
file system
a binary file, or decode its ASCII
directories urestore
cancel queued remote resource
pkgask stores answers to a
mountd NFS mount
reject accept or reject print
rsoper resolve and eliminate .so
the LP print service and move
lp, cancel send/cancel
uuxqt execute remote command
devreserv
characteristics tset,
	jterm
to its default values
default values reset
download host
arp address
rarpd DARPA Reverse Address
from nroff or troff input soelim
from C program source unifdef
remote systems share make local
remote/ share make local NFS
dfmounts display mounted
dfmounts display mounted NFS
dfmounts display mounted RFS
rmntstat display mounted
mount queue remote
rmount cancel queued remote
by remote/ unshare make local
by remote/ unshare make local NFS
by remote/ unshare make local RFS
by remote/ unshare make local RFS systems

dfshares list available

dfshares list available NFS
dfshares list available RFS
forced unmount of advertised
mount mount remote
mount mount remote NFS
or unmount file systems and remote
attempt to mount queued remote
mount, unmount Remote File Sharing

report repeated lines in a file ................................ uniq(1)
report RPC information ...................................... rpcinfo(1M)
sar system activity ........................................ sar(1M)
sar system activity ........................................ sar(1M)
representation /uudecode encode ................................ uuencode(1C)
request restore of files and ................................ urestore(1M)
request rumount ........................................ rumount(1M)
request script .............................................. pkgask(1M)
request server .............................................. mountd(1M)
requests accept, ............................................ accept(1M)
requests and service media/ ................................ rsoper(1M)
requests from nroff or troff input ..................... soelim(1)
requests /lpshut, lmove start/stop ................. lpshut(1M)
requests to an LP print service ....................... lp(1)
requests ...................................................... uuxqt(1M)
reserve devices for exclusive use .................... devreserv(1M)
reset establish or restore terminal .................... tset(1)
reset layer of windowing terminal .................... jterm(1)
reset reset the current form field ....................... reset(1)
reset the current form field to its ................. reset(1)
resident PostScript font downloader ................. download(1)
resolution display and control ....................... arp(1M)
Resolution Protocol server ............................ rarpd(1M)
resolve and eliminate .so requests .................. soelim(1)
resolve and remove ifdef'ed lines .................... unifdef(1)
resource available for mounting by ................ share(1M)
resource available for mounting by ................ share(1M)
resource available for mounting by ................ share(1M)
resource information .................................... dfmounts(1M)
resource information .................................... dfmounts(1M)
resource information .................................... dfmounts(1M)
resource information .................................... dfmounts(1M)
resource information .................................... rmntstat(1M)
resource mounts .......................................... rmount(1M)
resource request ......................................... rmount(1M)
resource unavailable for mounting .................. unshare(1M)
resource unavailable for mounting .................. unshare(1M)
resource unavailable for mounting .................. unshare(1M)
resource available for mounting by ................ share(1M)
resource available for mounting by ................ share(1M)
resources from remote or local ....................... dfshares(1M)
resources from remote systems ...................... dfshares(1M)
resources from remote systems ...................... dfshares(1M)
resources fumount ....................................... fumount(1M)
resources ................................................... mount(1M)
resources ................................................... mount(1M)
resources ................................................... mount(1M)
resources /umount (generic) mount .................. mount(1M)
resources rmnttry ........................................ rmnttry(1M)
resources rmountall, rumountall ..................... rmountall(1M)
unshareall share, unshare multiple
vacation automatically
reboot
filesystem fimage create,
archive incfile create,
restore
archive fdp create, or
archive file create, or
filesystems, data partitions, or/
urestore request
insertion/ rsoper service pending
directory
tset, reset establish or
ufrestore incremental file system
invoke XENIX incremental filesystem
partitions, or/ restore initiate
standard shell, job control shell,
message data base gettxt
menu items getitems
ckitem build a menu; prompt for and
ckpath display a prompt; verify and
ckstr display a prompt; verify and
cftime display a prompt; verify and
at the NIS server host yppoll
master ypwhich
ismpx
idcheck
getfrm
System partition partsize
server rarpd DARPA
col filter
show the last commands executed, in
PostScript file postreverse
administration
fromsmtp receive
host password
by remote systems share make local
dfmounts display mounted
mounting by/ unshare make local
dfshares list available
environment
notification shell script
daemon process
lptest generate lineprinter

resources shareall, .................................................. shareall(1M)
respond to incoming mail messages ......................... vacation(1)
restart the operating system .................................. reboot(1M)
restore an image archive of a .............................. fimage(1M)
restore an incremental filesystem ......................... incfile(1M)
restore file to directory ........................................ restore(1)
restore from, a full file system ................................ fdp(1M)
restore from, a full file system ................................ file(1)
restore initiate restores of .................................. restore(1)
restore of files and directories .......................... urestore(1M)
restore requests and service media ........................ rsoper(1M)
restore restore file to original ................................ restore(1)
restore terminal characteristics ........................ tset(1)
restore ............................................................. ufsrestore(1M)
restore xrestore, xrestor ..................................... xrestore(1M)
restores of filesystems, data .............................. restore(1)
restored shell /interpreters: ..................................... sh(1)
retrieve a text string from a ............................. gettxt(1)
return a list of currently marked .......................... getitems(1F)
return a menu item ............................................... ckitem(1)
return a pathname .............................................. ckpath(1)
return a string answer ........................................ ckstr(1)
return a time of day ........................................... cktime(1)
return an integer value ....................................... ckint(1)
return current version of the map ......................... yppoll(1M)
return name of NIS server or map ......................... ypwhich(1)
return windowing terminal state ................................ ismpx(1)
returns selected information .................................. idcheck(1M)
returns the current frameID number ......................... getfrm(1F)
returns the size of the active UNIX ......................... partsize(1M)
Reverse Address Resolution Protocol ..................... rarpd(1M)
reverse line-feeds ........................................... col(1)
reverse order lastcomm .................................... lastcomm(1)
reverse the page order in a ................................ postreverse(1)
rexecd remote execution server ........................... rexecd(1M)
rfsadmin Remote File Sharing domain ................... rfsadmin(1M)
rfsadmin Remote File Sharing ............................ rfsadmin(1M)
rfsadmin Remote File Sharing ......................... rfsadmin(1M)
rfsdaemon Remote File Sharing ......................... rfsdaemon(1M)
rfsdaemon Remote File Sharing ......................... rfsdaemon(1M)
RFS resource available for mounting ...................... share(1M)
RFS resource for mounting ................................... dfmounts(1M)
RFS resources unavailable for ......................... unshare(1M)
RFS resources from remote systems ...................... dfshares(1M)
rfsstart start Remote File Sharing ...................... rfsstart(1M)
rfsstop stop the Remote File Sharing .................. rfsstop(1M)
ripple pattern .................................................... lptest(1)
reinit
machines
rpc.rwalld network
network
machines
server
systems fsck
mkfs
optimal access time dcopy
ff
mkfs (s5) construct an
mount (s5) mount an
(s5) make a literal copy of an
of free disk blocks and i-nodes for
time dcopy (s5) copy
fsck (s5) check and repair
labelit (s5) provide labels for
path names versus i-numbers for
i-numbers for s5 file/ ncheck
file system volcopy
mount
systems labelit
blocks and i-nodes for s5 file/ df
fsdb
package sadc, sadc, sal,
administration
editing activity
report package

bfs big file
awk pattern
nawk pattern
for help with message numbers or
cdc change the delta comment of an
comb combine
delta make a delta (change) to an
sact print current
get get a version of an
prs print an
delta and commentary history of an
rmdel remove a delta from an

runs an initialization file ........................................... reinit(1F)
runtime show host status of local ................................ runtime(1)
rusers who's logged in on local ................................... rusers(1)
rwall server .............................................................. rpc.rwalld(1M)
rwall write to all users over a ...................................... rwall(1M)
rwho's who's logged in on local ...................................... rwho(1)
rwhod, in.rwhod system status ...................................... rwhod(1M)
(s5) check and repair s5 file ......................................... fsck(1M)
(s5) construct an s5 file system ..................................... mkfs(1M)
(s5) copy s5 file systems for ........................................ dcopy(1M)
(s5) display i-list information ....................................... ff(1M)
s5 file system volcopy ................................................ volcopy(1M)
s5 file systems /(s5) report number ......................... df(1M)
s5 file systems for optimal access .......................... dcopy(1M)
s5 file systems ......................................................... fsck(1M)
s5 file systems /(s5) generate ...................................... ncheck(1M)
s5 file systems /(s5) generate path names versus .......... ncheck(1M)
s5 file systems /(s5) make a literal copy of an s5 .......... volcopy(1M)
s5 file systems ......................................................... mount(1M)
s5 file system ........................................................... mount(1M)
s5 file system debugger ............................................. fsdb(1M)
sd service access controller .................................... sac(1M)
sacd, sal, sa2 system activity ...................................... sadc(1M)
sacd, sa1, sal, sa2 system activity ................................ sadc(1M)
sact print current SCCS file ..................................... sact(1)
sact print current SCCS file ..................................... sact(1)
sag system activity graph ........................................ sag(1M)
sar system activity reporter ...................................... sar(1M)
sar system activity reporter ...................................... sar(1M)
sar service access controller .................................... sar(1M)
sccs commands help ask .......................................... help(1)
sccs delta ............................................................... cdc(1)
sccs deltas ............................................................. comb(1)
sccs file ................................................................. delta(1)
sccs file editing activity ........................................... sact(1)
sccs file ................................................................. get(1)
sccs file ................................................................. prs(1)
sccs file ................................................................. prs(1)
sccs file ................................................................. prs(1)
sccs file ................................................................. prs(1)
Reverse Address Resolution Protocol

permuted

/index

/service

lp, cancel

print statistics collected by

internet

maintain line settings and hunt

printers postio

ypserv, ypbind NIS

bootparamd boot parameter

comsat, in.comsat biff

in.fingerd remote user information

ypupdated

private keys keyserv

talkd, in.talkd

ftpd file transfer protocol

version of the map at the NIS

mountd NFS mount request

in.named Internet domain name

ypwhich return name of NIS

nsquery Remote File Sharing name

Reverse Address Resolution Protocol

rexecd remote execution

rlogind remote login

rpc.rusersd network username

rpc.rwalld network rwall

rpc.sprayd spray

rshd remote shell

rwhod, in.rwhod system status

mconnect connect to SMTP mail

telnetd DARPA TELNET protocol

Trivial File Transfer Protocol

in.named DARPA trivial name

ypxfr transfer YP map from a YP

ypset point ypbind at a particular

nslookup query name

administration sacadm

 sac

nsadmin network listener

lpmove start/stop the LP print

calendar reminder

UNIX system uuglist list

send/cancel requests to an LP print

lpadmin configure the LP print

filters used with the LP print

forms used with the LP print

about the status of the LP print

remote systems with the print

/interact with backup operations to

/pending restore requests and

send/cancel requests to an LP print ................................... lp(1)

sendmail mailstats .................................................. mailstats(1M)

sendmail send mail over the ........................................ sendmail(1M)

sequences for TTY ports sttydefs .................................... sttydefs(1M)

serial interface for PostScript .................................... postio(1)

server and binder processes ........................................ ypserv(1M)

server .......................................................... bootparamd(1M)

server .................................................... comsat(1M)

server fingerd ................................................... fingerd(1M)

server for changing NIS information ypserv(1M)

server for storing public and private keys keyserv(1M)

server for talk program ........................................... talkd(1M)

server host yppoll return current yppoll(1M)

server ................................................... mountd(1M)

server named .................................................. named(1M)

server or map master ............................................. ypwhich(1)

server query ..................................................... nsquery(1M)

server rarpd DARPA .............................................. rarpd(1M)

server ................................................... rlogind(1M)

server .................................................. rpc.rusersd(1M)

server ..................................................... rpc.swall(1M)

server ..................................................... rpc.sprayd(1M)

server ..................................................... rshd(1M)

server ................................................... rwhod(1M)

server socket .................................................... mconnect(1M)

server .................................................. telnetd(1M)

server .................................................. tftpd(1M)

server .................................................. tnamed(1M)

server to host .................................................. ypserv(1M)

server ..................................................... ypset(1M)

servers interactively ............................................ nslookup(1M)

service access controller ........................................ sacadm(1M)

service access controller ......................................... sac(1M)

service administration .......................................... nsadmin(1M)

service and move requests /lpshut, ................................ lpsched(1M)

service .......................................................... calendar(1)

service grades available on this ................................... uuglist(1C)

service lp, cancel ................................................ lp(1)

service .................................................. lpadmin(1M)

service lpfilter administer .......................................... lpfilter(1M)

service lpforms administer ......................................... lpforms(1M)

service lpstat print information ................................... lpstat(1)

service lpst LN register ........................................... lpsystem(1M)

service media insertion prompts ................................... rsoper(1M)
makedbm make a Network Information
and service media insertion/ rsoper
whois Internet user name directory
inetd Internet
initiate or control a system backup
make typescript of a terminal
environment variables set, unset
iconv code
execution env
umask
migration move an archive from one
system hostname
remove a message queue, semaphore
environment variables currently
lpusers
setcolor, setcolour
rdate
set time
tabs
tset provide information to
and line discipline getty
and line discipline uugetty
date print and
stty
stty
global environment variables
for console applications scompat
diskadd disk
disksetup disk
idtune attempts to
hardware clock
color
setcolor,

and line discipline vtgetty
video device vidi
trchan translate character
modification dates of files
tset provide information for
ports sttydefs maintain line
information
user
of one/
paste merge same lines of
standard shell, job control shell/
available for mounting by remote/

Service (NIS) dbm file ........................................ makedbm(1M)
service pending restore requests .................... rsoper(1M)
service ..................................................... whois(1)
services daemon ........................................... inetd(1M)
session backup ......................................... backup(1M)
session script .......................................... script(1)
set and unset local or global ....................... set(1F)
set conversion utility ................................ env(1)
set environment for command ...................... env(1)
set file-creation mode mask ....................... umask(1)
system hostname ....................................... hostname(1)
set, or shared memory ID ipcrm .................. ipcrm(1)
system hostname ....................................... hostname(1)
session backup .......... ... ... ................. ... ... ........................ backup(1M)
services daemon .... ........ ....... ................... ......................... ... inetd(1M)
service ..................................................................................... whois(l)
services daemon ........................................... inetd(1M)
session script .......................................... script(1)
set and unset local or global ....................... set(1F)
set conversion utility ................................ env(1)
set environment for command ...................... env(1)
set file-creation mode mask ....................... umask(1)
service pending restore requests .................... rsoper(1M)
service ..................................................... whois(1)
services daemon ........................................... inetd(1M)
session backup ......................................... backup(1M)
session script .......................................... script(1)
set and unset local or global ....................... set(1F)
set conversion utility ................................ env(1)
set environment for command ...................... env(1)
set file-creation mode mask ....................... umask(1)
for mounting by remote systems available for mounting by remote/
shareall, unshareall multiple resources
a message queue, semaphore set, or
rfudaemon Remote File
rfadmin Remote File
dname print Remote File
rfstop stop the Remote File
rfpasswd change Remote File
nsquery Remote File
rfuadmin Remote File
mount, unmount Remote File
rfstart start Remote File
idload Remote File
C-like syntax csh
rsh command interpreters: standard
/shl
/relogin rename login entry to rupture
/up uptime
/netstat
/reverse order lastcomm
/state shutdown
/prctmp, prdaily, prtaclt, runacct, given time
/system state
/sdiff print file differences
/login
/truss trace system calls and
/lex generate programs for
/SMTP mail to a remote host using
/fmt
/sulogin access
/pagesize display the jwin print
/partition partsize returns the
/share make local resource available
/share make local RFS resource
/share, unshare multiple resources
/shareall, unshareall share, unshare
/shared memory ID ipcrm remove
/sharing daemons administration
/sharing domain administration
/sharing host password
/sharing name server query
/sharing notification shell script
/sharing resources /rump ALL
/sharing resources
/shell
/show current layer
/show host status of local machines
/show how long the system has been
/show network status
/show the last commands executed, in
/shut down system, change system
/shut down close down the system at a
/shutdown close down system, change
/size-by-side
/sign on
/signals
/simple lexical tasks
/simple Mail Transfer Protocol /send
/simple text formatters
/single-user mode
/size of a page of memory
/size of layer
/size of the active UNIX System
of object files ......................................................... size(1)
size print section sizes in bytes ..................................... size(1)
sizes in bytes of object files ......................................... size(1)
sleep suspend execution for an ....................................... sleep(1)
slink streams linker ...................................................... symlink(1M)
SMTP ........................................................................... fromsmtp(1M)
SMTP mail queue smtqer ................................................ smtpqer(1M)
SMTP mail server socket ................................................. mconnect(1M)
SMTP mail to a remote host using .................................... smtp(1M)
SMTP messages .............................................................. smtp(1M)
smt send SMTP mail to a remote ...................................... smtp(1M)
SMTP ................................................................. smtp(1M)
smtpqer queue mail for delivery by ................................... smtpqer(1M)
smt send receiving SMTP ................................................ smtp(1M)
smtpqer queue mail for delivery by ................................... smtpqer(1M)
smtpcched process messages queued ................................. smtpcched(1M)
.so requests from nroff or troff ....................................... soelim(1)
socket mconnect .......................................................... mconnect(1M)
soelim resolve and eliminate .so ....................................... soelim(1)
software database ......................................................... remove(1M)
software installation database ......................................... install(1M)
software package information ......................................... pkgadd(1M)
software package to the system ......................................... pkgadd(1M)
sort a bibliographic database .......................................... sortbib(1)
sort and/or merge files ................................................... sort(1)
sORT sort and/or merge files ............................................. sort(1)
sort sort and/or merge files .............................................. sort(1)
sort ................................................................. sort(1)
sortbib sort a bibliographic database ................................... sortbib(1)
sorted files comm select ................................................ comm(1)
sorted list look find words in .......................................... look(1)
space / report number of free ........................................... df(1M)
space ................................................................. space(1)
space on file systems ..................................................... df(1)
space on ufs file systems ................................................ df(1M)
spawn login to a remote terminal ...................................... ct(1C)
special file ............................................................... mkfifo(1M)
special file ............................................................... mknod(1M)
special file ............................................................... mknod(1M)
specific alarms and/or the/ ............................................ indicator(1F)
specific portions of a UNIX package ................................. custom(1M)
specific portions of certain UNIX ..................................... custom(1)
specifications ............................................................. idmkinit(1M)
specifications of nodes ................................................... idmknod(1M)
specified times atq ....................................................... atq(1)
speed, and line discipline ................................................ getty(1M)
speed, and line discipline ................................................ uugetty(1M)
spell, hashmake, spellin, ................................................ spell(1)
Index

- spell, hashmake, spelling errors
- spellin, hashcheck, compress find
- split
- csplit context
- uucleanup uucp
- atm remove jobs
- spray
- rpc.sprayd
- search for a text string in, sh, jsh, rsh command interpreters:
- programming, ksh, rksh KornShell, a
- move/ lpsched, lpshut, lpmove
- for/ /prtacct, runacct, shutacct,
- mailstats print
- ff (generic) list file names and
- ff (ufs) list file names and
- nfsstat Network File System
- xts extract and print xt driver
- uustat uucp
- communication facilities
- statd network
- netstat show network
- bkstatus display the
- ps display the
- ruptime show host
- lpstat print information about the
- ps report process
- ps report process
- rwhod, in.rwhod system
- fmtmsg display a message on
- rc6 run commands performed to
- rc0 run commands performed to
- halt
- environment rfstop
- /uncompress, zcat compress data for
- keylogin decrypt and
- pkgask
- keyserv server for
- stream configuration
- cleanup program
- configuration strchg, strchg, strconf change or query
- spellin, hashcheck, compress find
- spelling errors spell, hashmake
- split a file into pieces
- csplit context
- uucleanup uucp
- atm remove jobs
- spray
- rpc.sprayd
- search for a text string in, sh, jsh, rsh command interpreters:
- programming, ksh, rksh KornShell, a
- move/ lpsched, lpshut, lpmove
- for/ /prtacct, runacct, shutacct,
- mailstats print
- ff (generic) list file names and
- ff (ufs) list file names and
- nfsstat Network File System
- xts extract and print xt driver
- uustat uucp
- communication facilities
- statd network
- netstat show network
- bkstatus display the
- ps display the
- ruptime show host
- lpstat print information about the
- ps report process
- ps report process
- rwhod, in.rwhod system
- fmtmsg display a message on
- rc6 run commands performed to
- rc0 run commands performed to
- halt
- environment rfstop
- /uncompress, zcat compress data for
- keylogin decrypt and
- pkgask
- keyserv server for
- stream configuration
- cleanup program
- configuration strchg, strchg, strconf change or query
- spellin, hashcheck, compress find
- spelling errors spell, hashmake
- split a file into pieces
- csplit context
- uucleanup uucp
- atm remove jobs
- spray
- rpc.sprayd
- search for a text string in, sh, jsh, rsh command interpreters:
- programming, ksh, rksh KornShell, a
- move/ lpsched, lpshut, lpmove
- for/ /prtacct, runacct, shutacct,
- mailstats print
- ff (generic) list file names and
- ff (ufs) list file names and
- nfsstat Network File System
- xts extract and print xt driver
- uustat uucp
- communication facilities
- statd network
- netstat show network
- bkstatus display the
- ps display the
- ruptime show host
- lpstat print information about the
- ps report process
- ps report process
- rwhod, in.rwhod system
- fmtmsg display a message on
- rc6 run commands performed to
- rc0 run commands performed to
- halt
- environment rfstop
- /uncompress, zcat compress data for
- keylogin decrypt and
- pkgask
- keyserv server for
- stream configuration
- cleanup program
- configuration strchg, strchg, strconf change or query
- spellin, hashcheck, compress find
- spelling errors spell, hashmake
- split a file into pieces
- csplit context
- uucleanup uucp
- atm remove jobs
- spray
- rpc.sprayd
- search for a text string in, sh, jsh, rsh command interpreters:
- programming, ksh, rksh KornShell, a
- move/ lpsched, lpshut, lpmove
- for/ /prtacct, runacct, shutacct,
stream editor .............................................................. sed(1)
STREAMS error logger cleanup .................................... strclean(1M)
STREAMS error logger daemon ..................................... strerr(1M)
streams linker ............................................................. slink(1M)
STREAMS modules autopush configure ...................... autopush(1M)
STREAMS trace messages .......................................... strace(1M)
STREAMS-based file descriptor .................................. fdetach(1M)
stream answer ckstr display ....................................... ckstr(1)
string ................................................................. regex(1F)
string from a message data base ............................... fgrep(1)
string in, message data bases .................................... srchxtxt(1)
string on virtual output .............................................. echo(1F)
string repeatedly ...................................................... yes(1)
strings find printable strings in ................................... strings(1)
strings from source files .......................................... exstr(1)
strings in an object file or binary .............................. strings(1)
strings ................................................................. what(1)
strip strip symbol table, debugging ................. strip(1)
strip symbol table, debugging and ......................... strip(1)
structure fuser identify ............................................. fuser(1M)
syt set the options for a terminal ............................ syt(1)
syt set the options for a terminal ...................... syt(1)
sytdefines maintain line settings and .................... sytdefines(1M)
su become super-user or another ......................... su(1M)
su login access single-user mode ....................... sulogin(1M)
su login access single-user mode ....................... sulogin(1M)
sum calculate a checksum for a file ..................... sum(1)
sum print checksum and block count .................. sum(1)
summarize disk usage ........................................... du(1M)
summarize file system ownership ....................... quot(1M)
summarize quotas for a file system ..................... repquota(1M)
summary about a keyword ...................................... whatis(1)
summary from per-process accounting .................. acctcms(1M)
sync update the super block ............................... sync(1M)
super-user or another user ................................. su(1M)
suspend execution for an interval ..................... sleep(1)
swap swap administrative interface .................. swap(1M)
swap swap administrative interface .................. swap(1M)
symbol table, debugging and line ......................... strip(1)
symbolic debugger ............................................... sdb(1)
symbolic links to files .......................................... ln(1)
symbols to kernel debugger .............................. dbsym(1M)
sync update the super block ............................... sync(1M)
synchronize a co-process with the ..................... vsig(1F)
syntax csh shell ................................................ csh(1)
ckbinarsys determine whether remote
system administration
system activity graph
sag
sadc, sa1, sa2
system activity report package
sar
system activity reporter
sar
system activity reporter
a command; report process data and
sysadm visual interface to perform
or restore from, a full file
or restore from, a full file
shutdown close down the
ckbupscd check file
backup initiate or control a
fsba file
boot UNIX
fsdb (generic) file
fsdb (s5) s5 file
fsdb (ufs) ufs file
sorted list look find words in the
ldsysdump load
ufsdump incremental file
names and statistics for a file
names and statistics for a ufs file
uuto, uupick public UNIX-to-UNIX
setup initialize
a new group definition on the
delete a group definition from the
modify a group definition on the
uptime show how long the
set or print name of current host
kcrash examine
brc, bcheckrc
idbuild build new UNIX
idmkunix build new UNIX
edsysadm
removal tool delsysadm
sysadm interface editing tool
sysadm interface menu or task
delsysadm(1M)
sysadm visual interface to perform
delsysadm(1M)
sysadm visual interface to perform
sysadm(1M)
syslogd log system messages
syslogd(1M)
system activity graph
sag(1M)
system activity report package
sadc(1M)
system activity reporter
sar(1M)
system activity reporter
sar(1M)
system activity timex time
timex(1)
system administration
sysadm(1M)
system archive fdp create,
fsdb(1M)
system archive filerecreate,
filere(1M)
system at a given time
shutdown(1M)
system backup schedule
ckbupscd(1M)
system backup session
backup(1M)
system block analyzer
fsba(1M)
system boot program
boot(1M)
system calls and signals
truss(1)
system can accept binary messages
ckbinarsys(1M)
system, change system state
shutdown(1M)
system command execution
uxx(1C)
system consistency check and
fsck(1M)
system console fmtmsg
fmtmsg(1)
system copy
uucp(1C)
system date from a remote host
rdate(1M)
system debugger
fsdb(1M)
system debugger
fsdb(1M)
system debugger
fsdb(1M)
system dictionary or lines in a
look(1)
system dump from floppy diskettes
ldsysdump(1M)
system dump
ufsdump(1M)
system ff (generic) list file
ff(1M)
system ff (ufs) list file
ff(1M)
system file copy
uuto(1C)
system file copy
uuto(1C)
system for first user
setup(1M)
system groupadd add (create)
groupadd(1M)
system groupdel
groupdel(1M)
system groupmod
groupmod(1M)
system host name
hostname(1)
system images
kcrash(1M)
system images
kcrash(1M)
system initialization procedures
brc(1M)
System kernel
idbuild(1M)
System kernel
idmkunix(1M)
logger add entries to the logins list user and
interactive message processing
makefsys create a file
syslogd log
mkfs (bfs) construct a boot file
mkfs (generic) construct a file
mkfs (s5) construct an s5 file
mkfs (ufs) construct a ufs file
mount (s5) mount an s5 file
umountfsys mount, unmount a file
quot summarizer
returns the size of the active UNIX transfer software package to the
pkgrm removes a package from the
prfstat, prfcd, prfsnap, prfpr UNIX
prfstat, prfcd, prfsnap, prfpr UNIX
quotacheck file
quotao, quotaof turn file performed to stop the operating
to stop and reboot the operating reboot restart the operating
summarize quotas for a file
ufsrestore incremental file end for the Source Code Control
shutdown shut down system, change
nfsstat Network File
rwhod, in.rwhod
setclk set
tunefs tune up an existing file
typ (generic) determine file
uname print name of current UNIX administer a new user login on the
delete a user's login from the a user's login information on the
telnet user interface to a remote file transport program for the uucp files available on this UNIX /alters executables to call SCO UNIX (generic) make literal copy of file
make a literal copy of an s5 file
make a literal copy of a ufs file
who is on the
Uutry try to contact remote fastboot, fasthalt reboot/halt the /
generic) mount or umount file automatically mount NFS file

system log .......................................................... logger(1)
system login information ...................................... logins(1M)
system mailx ...................................................... mailx(1)
system .............................................................. makefsys(1M)
system messages ................................................... syslogd(1M)
system .............................................................. mkfs(1M)
system .............................................................. mount(1M)
system .............................................................. partsize(1M)
system .............................................................. pkgadd(1M)
system .............................................................. pkgrm(1M)
system .............................................................. profiler(1M)
system .............................................................. profiler(1M)
system .............................................................. quot(1M)
system .............................................................. quotacheck(1M)
system .............................................................. quotaon(1M)
system .............................................................. rc0(1M)
system .............................................................. rc6(1M)
system .............................................................. reboot(1M)
system .............................................................. repquota(1M)
system .............................................................. ufsrestore(1M)
system .............................................................. sccs(1)
system .............................................................. shutdown(1M)
system .............................................................. nfsstat(1M)
system .............................................................. rwld(1M)
system .............................................................. setclk(1M)
system .............................................................. tunefs(1M)
system .............................................................. ftyp(1M)
system .............................................................. uname(1)
system .............................................................. useradd(1M)
system .............................................................. userdel(1M)
system .............................................................. usermod(1M)
system .............................................................. uucico(1M)
system .............................................................. uuglist(1C)
system .............................................................. fixshlib(1M)
system .............................................................. volcopy(1M)
system .............................................................. volcopy(1M)
system .............................................................. volcopy(1M)
system .............................................................. volcopy(1M)
system .............................................................. who(1)
system .............................................................. uucico(1M)
system .............................................................. uucico(1M)
system .............................................................. uuglist(1C)
system .............................................................. uucico(1M)
system .............................................................. uucico(1M)

Permutated Index
available NFS resources from remote resources from remote or local available RFS resources from remote
dcopy (generic) copy file
dcopy (s5) copy s5 file
(bfs) check and repair bfs file
generic) check and repair file
fsck (s5) check and repair s5 file
(generic) provide labels for file
(s5) provide labels for s5 file
(ufs) provide labels for ufs file
mount (bfs) mount bfs file
mount (ufs) mount ufs file
mount, unmount multiple file names versus i-numbers for s5 file
versus i-numbers for ufs file
available for mounting by remote
unavailable for mounting by remote
unavailable for mounting by remote
lsystem register remote
/gigiplot, hplot, implot, plottoa,
/hplot, implot, plottoa, t300,
for/ /implot, plottoa, t300, t300s,
/plotoa, t300, t300s, t4013,
information/ strip strip symbol
or modify hard disk partition
get DoD Internet format host
convert DoD Internet format host
edvtoc VTOC (Volume
putdev edits device
putdgrp edits device group
setmnt establish mount
classification and conversion
tbl format
manually manipulate the routing
tabs set
ctags create a file
talkd, in.talkd server for

systems ................................................................. df(1)
systems /(s5) report number of free ......................... df(1M)
systems df (ufs) ................................................... df(1M)
systems dfshares list ............................................ dfshares(1M)
systems dfshares list available .............................. dfshares(1M)
systems dfshares list unavailable .......................... dfshares(1M)
systems dfshares list for optimal access time ........ dcopy(1M)
systems for optimal access time ............................ dcopy(1M)
systems fsck ......................................................... fsck(1M)
systems fsck ......................................................... fsck(1M)
systems ................................................................. fsck(1M)
systems labelit .................................................... labelit(1M)
systems labelit .................................................... labelit(1M)
systems labelit .................................................... labelit(1M)
systems ................................................................. mount(1M)
systems ................................................................. mount(1M)
systems mountall, umountall ................................. mountall(1M)
systems ncheck (s5) generate path ......................... ncheck(1M)
systems /(ufs) generate pathnames ......................... ncheck(1M)
systems /make local NFS resource ......................... share(1M)
systems share make local resource ........................ share(1M)
systems /make local RFS resource ......................... share(1M)
systems /make local NFS resource ......................... share(1M)
systems /make local resource ............................... unshare(1M)
systems /make local RFS resource ......................... unshare(1M)
systems /make local NFS resource ......................... unshare(1M)
systems /make local NFS resource ......................... unshare(1M)
systems with the print service ............................... lpsystem(1M)
t300, t300s, t4013, t450, tek/ .................................... plot(lG)
t300s, t4013, t450, tek graphics/ ............................ plot(lG)
t4013, t450, tek graphics filters ............................. plot(lG)
t450, tek graphics filters for/ ................................ plot(lG)
table, debugging and line number ......................... strip(l)
table fdisk create ................................................. fdisk(lM)
table from a host gettable ................................. gettable(lM)
table htable ......................................................... htable(lM)
Table of Contents) editing utility ....................... edvtoc(lM)
table ............................................................... putdev(1)
table ............................................................... putdgrp(1)
table ............................................................... setmnt(1M)
tables chrtbl generate character ......................... chrtbl(1M)
tables for nroff or troff .................................... tbl(1)
tables route ....................................................... route(1M)
tabs on a terminal .............................................. tabs(1)
tabs set tabs on a terminal .................................. tabs(1)
tags file for use with vi ..................................... ctags(1)
tail deliver the last part of a ............................. tail(1)
talk program ..................................................... talkd(1M)
talk talk to another user ..................................... talk(1)
Permutted Index

talk program tapecntl mt magnetic tapecntl tape control for tape device tape device tape file archiver tape magnetic tape maintenance tape maintenance tape tape device tapectl tape control for tape tar tape file archiver tar task removal tool delsysadm delsysadm interface menu or programs for simple lexical deroff remove nroff, troff, deroff remove nroff/troff, troff

delsysadm sysadm interface menu or programs for simple lexical deroff remove nroff, troff, deroff remove nroff/troff, troff

/plotoa, t300, t300s, t4013, t450, posttek PostScript translator for initialization init, telned DARPA to a remote system using the system using the TELNET protocol server description captoinfo convert a tset, reset establish or restore ct spawn login to a remote jterm reset layer of windowing last indicate last user or provide information for setting tset provide information to set tput initialize a ttymon port monitor for clear clear the script make typescript of a ismpx return windowing stty set the options for a stty set the options for a tabs set tabs on a tty get the name of the line discipline getty set line discipline ugetty set line discipline vtgetty sets object downloader for the 5620 DMD layer multiplexor for windowing newvt opens virtual talk to another user talkd, in.talkd server for talk telnet user interface to a remote telnet TELNET protocol server TELNET protocol /user interface telnetd DARPA TELNET protocol telnet user interface to a remote telnetd DARPA TELNET protocol termcap description into a terminfo captoinfo(tM) terminal characteristics tset(1) terminal ct(1C) terminal jterm(1) terminal last(1) terminal modes tset(1) terminal modes tset(1) terminal modes tset(1) terminal or query terminfo database tput(1) terminal ports ttymon(1M) terminal screen clear(1) terminal session script(1) terminal state ismpx(1) terminal stty(1) terminal stty(1) terminal tabs(1) terminal tty(1) terminal type, modes, speed, and getty(1M) terminal type, modes, speed, and ugetty(1M) terminal type, modes, speed, and vtgetty(1M) terminal wtinit wtinit(1M) terminals layers layers(1) terminals newvt(1)
more, page browse or page through a
terminals .......................................................................................... vtlmgr(1)
term monotory a process by default .................................................. kill(l)
terminfo compiler ............................................................................. tic(1M)
terminal database ................................................................................ tput(1)
terminfo description /convert ......................................................... captoinfo(1M)
terminfo descriptions ......................................................................... info(1M)
test condition evaluation command ................................................. test(1)
test condition evaluation command ................................................. test(1F)
test condition evaluation command ................................................. test(1F)
text editor ............................................................................................ ex(l)
text editor (variant of ex for ................................................................ edit(l)
text file ............................................................................................... more(l)
text file ............................................................................................... newform(l)
text files ............................................................................................. postprint(1)
text string from a message data ....................................................... gettxt(1)
text string in, message data bases .................................................... srchtxt(l)
tftp trivial file transfer program ....................................................... tftp(l)
tftp DARPAD Trivial File Transfer .................................................... tftp(1M)
tic terminfo compiler ......................................................................... tic(1M)
times atq display ................................................................................ atq(l)
times of a file touch .......................................................................... touch(l)
timex time a command; report ......................................................... timex(l)
tnmed, in.named DARPA trivial ....................................................... tnmed(1M)
tool delsysadm sysadm ..................................................................... delsysadm(1M)
tool terminfo description / convert ................................................. captoinfo(1M)
toplogical sort .................................................................................... tsort(1)
tosmtp send mail to SMTP ................................................................ tosmtp(1M)
touch update access and modification .............................................. touch(l)
tput initialize a terminal or query ..................................................... tput(l)
tr translate characters ......................................................................... tr(l)
tr translate characters ......................................................................... tr(l)
ttrace messages ................................................................................... strace(lM)
trace system calls and signals ............................................................. truss(1)
trace ..................................................................................................... truss(lM)
tracks .................................................................................................... form(lM)
transfer program ................................................................................ ftp(l)
transfer program ................................................................................ ftp(l)
transfer protocol server ....................................................................... ftpd(1M)
Transfer Protocol server ...................................................................... ftpd(1M)
Transfer Protocol /send SMTP mail .................................................... smtp(1M)
transfer software package to the ....................................................... pkgadd(1M)
trchan translate character sets ............................................................ trchan(1)
Permuted Index

tr
tr
mailalias
pkgtrans
cof2elf COFF to ELF object file
postdaisy PostScript
postdmd PostScript
postplot PostScript
posttek PostScript
postprint PostScript
trpt
system uucico file
the scheduler for the uucp file
tr
server tftp
DNS, in.tnamed DARPA
differences between versions of a
ers errors checknr check nroff and
.s0 requests from nroff or
.printers dpost
deroff remove nroff,
tbl format tables for nroff or

translate characters ......................................................... tr(1)
translate characters ......................................................... tr(1)
translate mail alias names .............................................. mailalias(1)
translate package format .............................................. pkgtrans(1)
translation ................................................................. cof2elf(1)
translator for Diablo 630 files ...................................... postdaisy(1)
translator for DMD bitmap files ................................... postdmd(1)
translator for plot graphics files ................................... postplot(1)
translator for tektronix 4014 files ............................... posttek(1)
translator for text files ................................................ postprint(1)
transliterate protocol trace ......................................... trpt(1M)
transport program for the uucp .................................. uucico(1M)
transport program usched ........................................... usched(1M)
trchan translate character sets ...................................... trchan(1)
trivial file transfer program .......................................... tftp(1)

Trivial File Transfer Protocol ...................................... tftp(1M)
trivial name server ....................................................... in.tnamed(1M)

troff input file diffmk mark ....................................... diffmk(1)
troff input files; report possible .............................. checknr(1)
troff input / resolve and eliminate ......................... soelim(1)
troff postprocessor for PostScript .............................. dpost(1)
troff, tbl and eqn constructs ..................................... deroff(1)
troff ................................................................. tbl(1)
troff typeset or format documents ............................. troff(1)
trpt transliterate protocol trace .................................. trpt(1M)
true, false provide truth values ..................................... true(1)

truss trace system calls and ......................................... truss(1)

machid get processor type ........................................ machid(1)
truth values ............................................................ true(1)
try to contact remote system with .............................. Uutry(1M)
tset provide information for ..................................... tset(1)
tset provide information to set ..................................... tset(1)
tset, reset establish or restore .................................... tset(1)
tsort topological sort ................................................ tsort(1)
tty device mapping .................................................... mapchan(1M)
tty get the name of the terminal .................................... tty(1)

TTY ports sttydefs maintain line .............................. sttydefs(1M)
ttyadm format and output port .................................. ttyadm(1M)
ttyadm port monitor for terminal ............................. ttyadm(1M)
tunable parameter ..................................................... idtune(1M)
tune up an existing file system ................................. tunefs(1M)
tunes system tune up an existing file ........................... tunefs(1M)
turn file system quotas on and off .............................. quotaon(1M)
turnacct shell procedures for/ .................................. chargefee(1M)
type ................................................................. file(1)
type fstyp ......................................................... fstyp(1M)
type, modes, speed, and line .................................... getty(1M)

71
discipline uugetty set terminal
  discipline vtgetty sets terminal
  mach display the processor
  machid get processor
  script make
eqn, neqn, checkeq
  troff
mkfs
  and interactive repair fsck
  fsdb (ufs)
  file names and statistics for a
  mkfs (ufs) construct a
    (ufs) make a literal copy of a
df (ufs) report free disk space on
  labelit (ufs) provide labels for
  mount (ufs) mount
  pathnames versus i-numbers for
  i-numbers for ufs file/ nccheck
    (ufs) make a literal copy of a ufs
    (ufs) provide labels for ufs file
    (ufs) report free disk space on ufs
    fsdb
    dump
    restore
    ul underline
    umask set file-creation mode mask
    umount (generic) mount or unmount
    umountall mount, unmount multiple
    umountfsys mount, unmount a file
    uname print name of current UNIX
    unavailable for mounting by remote/
    unavailable for mounting by remote/
    uncompressed and/ compress,
    ul
    unget
    unifdef resolve and remove ifdef'ed
    uniq report repeated lines in a
    units conversion program
SCCS file
  lines from C program source
  file
  number mapper rpcbind
  specific portions of certain
  install specific portions of a
  type, modes, speed, and line
  type, modes, speed, and line
  type of the current host
  type truth value
  typescript of a terminal session
  typeset mathematics
  typeset or format documents
  uadmin administrative control
    (ufs) construct a ufs file system
    (ufs) file system consistency check
    ufs file system debugger
    (ufs) generate pathnames versus
    (ufs) list file names and
    (ufs) make a literal copy of a ufs
    (ufs) mount ufs file systems
    fsdb file system debugger
    ufsdump incremental file system
    ufsrestore incremental file system
    ul underline
    umask set file-creation mode mask
    umount (generic) mount or unmount
    umountall mount, unmount multiple
    umountfsys mount, unmount a file
    uname print name of current UNIX
    unavailable for mounting by remote/
    unavailable for mounting by remote/
    uncompressed and/ compress,
    ul
    unget
    unifdef resolve and remove ifdef'ed
    uniq report repeated lines in a
    units conversion program
    universal addresses to RPC program
    UNIX or XENIX packages /install
    UNIX package custom
Permuted Index

boot
cu call another
idbuild build new
idmkunix build new
returns the size of the active
prfstat, prfdc, prfsnap, prfpr
prfstat, prfdc, prfsnap, prfpr
uname print name of current
service grades available on this
alters executables to call sea
execution uux
uucp, uulog, uuname
uuto, uupick public
link, unlink link and
directories link,
mountfsys, umountfsys mount,
mount, umount (generic) mount or
mountall, umountall mount,
fumount forced
rmountall, rumountall mount,
pack, pcat,
variables set, unset set and
environment variables set,
unavailable for mounting by remote/
unavailable for mounting by remote/
unavailable for mounting by remote/
shareall, unshareall share,
resources share all,
times of a file touch
programs make maintain,
from/ pwconv install and
idinstall add, delete,
sync
been up
and directories
du summarize disk
display a user's disk quota and
mkmsgs create message files for
release devices from exclusive
reserve devices for exclusive
ctags create a tags file for
idload Remote File Sharing
logins list
crontab
chkey change
groups print group membership of
ckuid prompt for and validate a

Permuted Index

UNIX system boot program .............................................. boot(lM)
UNIX system ............................................................................. cu(lC)
UNIX System kernel ....................................................... idbuild(lM)
UNIX System kernel .................................................. idmkunix(lM)
UNIX System partition partsize ........................ ... ..... partsize(lM)
UNIX system profiler /prfld, ..................................... profiler(lM)
UNIX system profiler /prfld, ..................................... profiler(lM)
UNIX system ........................................................................ uname(l)
UNIX system uuglist list ............................................... uuglist(lC)
UNIX System V /386 Release/ fixshlib ..................... fixshlib(lM)
UNIX-to-UNIX system command ....................................... uux(lC)
UNIX-to-UNIX system copy .............................................. uucp(lC)
UNIX~to-UNIX system fife copy ........................................ uuto(lC)
unlink files and directories ..................................... ............ link(lM)
unlink link and unlink files and ....................... ..... ............ link(lM)
unmount a file system .............................................. mountfsys(lM)
unmount file systems and remote/ .............................. mount(lM)
unmount multiple file systems .................................. mountall(lM)
unmount of advertised resources .......................... .... fumount(lM)
unmount Remote File Sharing/ .............................. rmountall(lM)
unpack compress and expand files ...................................... pack(l)
unset local or global environment ...................... ................... set(1F)
unset set and unset local or global....................................... set(lF)
unshare make local NFS resource .............................. unshare(lM)
unshare make local resource ....................................... unshare(lM)
unshare make local RFS resource .......................... ..... unshare(lM)
unshare multiple resources .......................................... shareall(lM)
unshareall share, unshare multiple ............................. shareall(lM)
update access and modification .......................................... touch(l)
update, and regenerate groups of ...................................... make(l)
update fete/shadow with information ..................... pwconv(lM)
update, or get device driver/ ..................................... idinstall(lM)
update the super block ................................................. ...... sync(lM)
uptime show how long the system has .......................... uptime(l)
urestore request restore of files .................................. urestore(lM)
usage ......................................................................................... du(lM)
usage quota ....................................................................... quota(lM)
use by gettxt ...................................................................... mkmsgs(l)
use devfree ..................................................................... devfree(lM)
use devreserv .......................................................... ... devreserv(lM)
use with vi ............................................................................... ctags(l)
user and group mapping ................................................ idload(lM)
user and system login information ........... ,.................... logins(lM)
user crontab file .................................................................. crontab(l)
user encryption key .............................................................. chkey(l)
user ........................................................................................ groups(l)
user ID ..................................................................................... ckuid(l)

73


generate disk accounting data by
finger, in.fingerd remote
using the TELNET protocol telnet
useradd administer a new
and ID id print the
whois Internet
displays a list of all valid
notify notify
last indicate last
edquota edit
setup initialize system for first
su become super-user or another
talk talk to another
write write to another
on the system
the system
information on the system
crpc.rusersd network
display the effective current
quota display a
users logged in
editor (variant of ex for casual
information about local and remote
groups display a
users display a compact list of
userdel delete a
system usermod modify a
rmail read mail or send mail to
rwall write to all
wall write to all
fuser identify processes
egrep search a file for a pattern
shell run a command
/send SMTP mail to a remote host
user interface to a remote system
diskadd disk set up
disksetup disk set up
(Volume Table of Contents) editing
iconv code set conversion
mkpart disk maintenance
prtvtoc disk information display
and/ /accton, acctwtmp closewtmp,
and permissions file
the uucp system
clean-up
file uuchek check the
user ID diskusg .............................. diskusg(1M)
user information server ........................... fingerd(1M)
user interface to a remote system .................... telnet(1)
user login information ............................. listusers(1)
user login on the system ............................ useradd(1M)
user name and ID, and group name ................... id(1M)
user name directory service ......................... whois(1)
user names dispuid ................................ dispuid(1)
user of the arrival of new mail ..................... notify(1)
user or terminal logins ............................. last(1)
user quotas ........................................... edquota(1M)
user ....................................................... setup(1M)
user ....................................................... su(1M)
user ....................................................... talk(1)
user ....................................................... write(1)
useradd administer a new user login ............... useradd(1M)
userdel delete a user's login from .................. userdel(1M)
usermod modify a user's login ........................ usermod(1M)
username server ...................................... rpc.rusersd(1M)
username whoami ..................................... rpc.whoami(1)
user's disk quota and usage .......................... quota(1M)
users display a compact list of ...................... users(1)
users) edit text ....................................... edit(1)
users finger display ................................... finger(1)
user's group memberships ........................... groups(1)
users logged in ....................................... users(1)
user's login from the system ........................ userdel(1M)
user's login information on the ...................... usermod(1M)
users mail, ............................................ mail(1)
users over a network .................................. rwall(1M)
users ..................................................... wall(1M)
using a file or file structure ....................... fuser(1M)
using full regular expressions ........................ egrep(1)
using shell ............................................. shell(1F)
using Simple Mail Transfer Protocol ................ smtp(1M)
using the TELNET protocol telnet .................... telnet(1)
utility ................................................... diskadd(1M)
utility ................................................... disksetup(1M)
utility edvtoc VTOC .............................. edvtoc(1M)
utility ................................................... iconv(1)
utility ................................................... mkpart(1M)
utility ................................................... prtvtoc(1M)
utilp2wtmp overview of accounting ................ acct(1M)
ucheck check the uucp directories ................. ucheck(1M)
uucico file transport program for .................. uucico(1M)
uucleanup uucp spool directory .................... uucleanup(1M)
uucp directories and permissions .................. ucheck(1M)
uusched the scheduler for the
uucleanup
uustat
file transport program for the
system copy
deencode its ASCII/ uuencode,
file, or decode its ASCII/ speed, and line discipline
available on this UNIX system
copy uucp,
uucp, uulog,
file copy uuto,
file transport program
copy
system file copy
with debugging on
execution
requests
/executables to call SCO UNIX System
incoming mail messages
automatically

date ckdate, errdate, helpdate,
group ID ckgid, errgid, helpgid,
dispgid displays a list of all
dispuid displays a list of all
helpdate, validate prompt for and
helpgid, valgid prompt for and
ckeywd prompt for and
cckuid prompt for and
cckrange prompt for and
val
ckyorn prompt for and
verify and return an integer
machid get processor type truth
idtune attempts to set
NIS map ypmatch print the
ypcat print
pkgparam displays package parameter
current form field to its default
true, false provide truth
printenv display environment
unset local or global environment
edit text editor
t450, tek graphics filters for
getvol

uucp file transport program ................................. uusched(1M)
uucp spool directory clean-up ............................... uucleanup(1M)
uucp status inquiry and job control ....................... uustat(1C)
uucp system uucico .............................................. uucico(1M)
uucp, uulog, uuname UNIX-to-UNIX ........................... uucp(1C)
uudecode encode a binary file, or ...................... uuencode(1C)
uudecode, uudecode encode a binary .................. uuencode(1C)
uugetty set terminal type, modes, ...................... uugetty(1M)
uuglist list service grades ...................................... uuglist(1C)
uulog, uuname UNIX-to-UNIX system ...................... uucp(1C)
uuname UNIX-to-UNIX system copy ....................... uucp(1C)
uupick public UNIX-to-UNIX system ..................... uuto(1C)
uusched the scheduler for the uucp ..................... uusched(1M)
uustat uucp status inquiry and job .................... uustat(1C)
uuto, uupick public UNIX-to-UNIX ....................... uuto(1C)
Uutry try to contact remote system .................. Uutry(1M)
uux UNIX-to-UNIX system command .................. uux(1C)
uuxqt execute remote command ......................... uuxqt(1M)
V/386 Release 3.2-compatible libnsll ................. fixshlib(1M)
vacation automatically respond to ..................... vacation(1)
vacation reply to mail ........................................... vacation(1)
val validate an SCCS file .................................... val(1)
validate prompt for and validate a ................... ckdate(1)
valid group names ................................................. dispgid(1)
valid user names .................................................. dispuid(1)
validate a date ckdate, errdate, ......................... ckdate(1)
validate a group ID ckgid, errgid, ..................... ckgid(1)
validate a keyword ckeywd ..................................... ckeywd(1)
validate a user ID cckuid ....................................... cckuid(1)
validate an integer cckrange .................................. cckrange(1)
validate an SCCS file ......................................... val(1)
validate yes/no .................................................. ckyorn(1)
value ckint display a prompt; ......................... ckint(1)
value ......................................................... machid(1)
value of a tunable parameter ......................... idtune(1M)
value of one or more keys from the .................... ypmatch(1)
values in a NIS data base ................................. ypcat(1M)
values ....................................................... pkgparam(1)
values reset reset the ...................................... reset(1F)
values ......................................................... true(1)
variables currently set ...................................... printenv(1)
variables set, unset set and ............................ set(1F)
(variant of ex for casual users) ......................... edit(1)
various plotters /t300s, t4013, ......................... plot(1G)
vc version control ............................................. vc(1)
verifies device accessibility ............................ getvol(1M)
ckpath display a prompt;  
ckstr display a prompt;  
cktime display a prompt;  
ckint display a prompt;  
vc

server host  yppoll return current

diffmk mark differences between

scsdiff compare two

nccheck (s5) generate path names

nccheck (ufs) generate pathnames

initialization  evgainit Extended

create a tags file for use with

editor based on ex

ssets the font and video mode for a

vidi sets the font and

for a video device

echo put string on

newvt opens

vtlmgr monitors and opens

vi screen-oriented (visual) display

administration  sysadm

of file system

an s5 file system

of a ufs file system

utility  edvtoc VTOC

move an archive from one set of

generate a list of path names

the controlling FMLI application

speed, and line discipline

terminals

editing utility edvtoc

they doing

about a keyword

binary/ ckbinarsys determine

current username

service

rusers

rwho

jterm reset layer of

ismpx return

layers layer multiplexor for

/fasthalt reboot/halt the system

verify and return a pathname ........................................... ckpath(l)

verify and return a string answer ........................................ ckstr(l)

verify and return a time of day ........................................... cktime(l)

verify and return an integer value ...................................... ckint(l)

version control ................................................................. vc(l)

version of an SCCS file ................................................... get(l)

version of the map at the NIS ........................................... yppoll(lM)

versions of a troff input file ........................................... diffmk(l)

versions of an SCCS file ................................................. scsdiff(l)

versus i-numbers for s5 file/ ........................................... nccheck(lM)

versus i-numbers for ufs file/ ......................................... nccheck(lM)

VGA keyboard/display driver ........................................... evgainit(lM)

data a tags file for use with

vi ctags ................................................................. ctags(l)

vi screen-oriented (visual) display ...................................... vi(l)

video device vidi ........................................................... vidi(l)

video mode for a video device ......................................... vidi(l)

vidi sets the font and video mode .................................... vidi(l)

virtual output ............................................................... echo(l)

virtual terminals ............................................................ newvt(l)

virtual terminals ............................................................ vtlmgr(l)

(visual) display editor based on ex .................................... vi(l)

visual interface to perform system ..................................... sysadm(lM)

volcopy (generic) make literal copy ................................... volcopy(lM)

volcopy (s5) make a literal copy of .................................... volcopy(lM)

volcopy (ufs) make a literal copy of .................................... volcopy(lM)

(Volume Table of Contents) editing ................................ edvtoc(lM)

volumes to another migration .......................................... migration(lM)

tsig synchronize a co-process with .................................. vsig(l)

vtgetty sets terminal type, modes, .................................. vtgetty(lM)

vtlmgr monitors and opens virtual .................................. vtlmgr(l)

VTOC (Volume Table of Contents) ....................................... edvtoc(lM)

w who is logged in, and what are ................................... w(l)

wait wait completion of process ....................................... wait(l)

wall write to all users ..................................................... wall(lM)

wc word count .............................................................. wc(l)

whatis display a one-line summary ................................... whatis(l)

whether remote system can accept ................................... ckbinarsys(lM)

whoami display the effective ........................................... whoami(l)

who is doing what .......................................................... whodo(lM)

whose Internet user name directory ................................ whois(l)

who’s logged in on local machines ................................. rusers(l)

who’s logged in on local machines ................................. rwho(l)

windowing terminal ...................................................... jterm(l)

windowing terminal state ................................................ ismpx(l)

windowing terminals ...................................................... layers(l)

without checking the disks .......................................... fastboot(lM)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wc</td>
<td>word count</td>
</tr>
<tr>
<td>lines in a sorted list</td>
<td>look find</td>
</tr>
<tr>
<td>cd</td>
<td>working directory</td>
</tr>
<tr>
<td>change</td>
<td>working directory name</td>
</tr>
<tr>
<td>pwd</td>
<td>“working” indicator / application</td>
</tr>
<tr>
<td>specific alarms and/or the</td>
<td>rwall</td>
</tr>
<tr>
<td>rwall</td>
<td>write to all users over a network</td>
</tr>
<tr>
<td>wall</td>
<td>write to all users</td>
</tr>
<tr>
<td>write</td>
<td>write to another user</td>
</tr>
<tr>
<td></td>
<td>write write to another user</td>
</tr>
<tr>
<td></td>
<td>wtinit object downloader for the</td>
</tr>
<tr>
<td></td>
<td>wtmpfix manipulate connect</td>
</tr>
<tr>
<td></td>
<td>x286emul emulate XENIX 80286</td>
</tr>
<tr>
<td></td>
<td>xargs construct argument list(s)</td>
</tr>
<tr>
<td></td>
<td>XENIX 80286</td>
</tr>
<tr>
<td></td>
<td>XENIX file permissions and/ or the</td>
</tr>
<tr>
<td></td>
<td>XENIX incremental filesystem</td>
</tr>
<tr>
<td></td>
<td>XENIX installation shell script</td>
</tr>
<tr>
<td></td>
<td>(XENIX) libraries to ELF</td>
</tr>
<tr>
<td></td>
<td>XENIX packages / install specific</td>
</tr>
<tr>
<td></td>
<td>XENIX check and repair XENIX</td>
</tr>
<tr>
<td></td>
<td>XENIX install commands</td>
</tr>
<tr>
<td></td>
<td>XENIX installation shell</td>
</tr>
<tr>
<td></td>
<td>xrestore, xrestor invoke XENIX incremental</td>
</tr>
<tr>
<td></td>
<td>xrestore, xrestor invoke XENIX</td>
</tr>
<tr>
<td></td>
<td>xt driver packet traces</td>
</tr>
<tr>
<td></td>
<td>xt driver statistics</td>
</tr>
<tr>
<td></td>
<td>xts extract and print xt driver</td>
</tr>
<tr>
<td></td>
<td>xtt extract and print xt driver</td>
</tr>
<tr>
<td></td>
<td>yacc yet another compiler-compiler</td>
</tr>
<tr>
<td></td>
<td>yes print string repeatedly</td>
</tr>
<tr>
<td></td>
<td>yes/no</td>
</tr>
<tr>
<td></td>
<td>ypinit build and install YP database</td>
</tr>
<tr>
<td></td>
<td>ypdatabase rebuild YP database</td>
</tr>
<tr>
<td></td>
<td>ypdatabase rebuild YP database</td>
</tr>
<tr>
<td></td>
<td>ypfr transfer YP map from a process</td>
</tr>
<tr>
<td></td>
<td>ypfr transfer YP map from a process</td>
</tr>
<tr>
<td></td>
<td>ypfr transfer YP map from a process</td>
</tr>
<tr>
<td></td>
<td>ypfr transfer YP map from a process</td>
</tr>
<tr>
<td></td>
<td>ypmatch print the value of one or</td>
</tr>
<tr>
<td></td>
<td>ypold return current version of</td>
</tr>
<tr>
<td></td>
<td>yppush force propagation of a</td>
</tr>
<tr>
<td></td>
<td>ypserv, ypbind NIS server and binder</td>
</tr>
<tr>
<td></td>
<td>ypserv, ypbind NIS server and binder</td>
</tr>
<tr>
<td></td>
<td>ypserv point ypbind at a particular</td>
</tr>
</tbody>
</table>
Permuted Index

- ypupdated server for changing NIS .................. ypupdated(1M)
- ypwhich return name of NIS server .................... ypwhich(1)
- ypxfr transfer YP map from a YP ....................... ypxfr(1M)
- zcat compress data for storage, ....................... compress(1)
- zdump time zone dumper ................................. zdump(1M)
- zic time zone compiler ................................. zic(1M)
- zic time zone compiler ................................. zic(1M)
- zone compiler ............................................ zic(1M)
- zone dumper ............................................ zdump(1M)
The reference manual set for UNIX® System V Release 4 for Intel Processors is the definitive source for complete and detailed specifications for all System V interfaces. Newly reorganized, this edition makes finding the manual page you need easy and fast.

The new organization groups manual pages in the way most users need to use them:

- The System Files and Devices Reference Manual describes file formats, special files (devices), and miscellaneous system facilities.
- The Device Driver Interface/Driver-Kernel Interface Reference Manual describes functions used by device driver software. Editions of this manual are available for both uniprocessor and multiprocessor versions of the operating system.
- The Product Overview and Master Index provides an overview of the system and comprehensive indices for the documentation set.