
(Command a-l)

Intel Processors
ORDERING INFORMATION

UNIX® SYSTEM V RELEASE 4 DOCUMENTATION

To order single copies of UNIX® SYSTEM V Release 4 documentation, please call (201) 767-5937.

ATTENTION DOCUMENTATION MANAGERS AND TRAINING DIRECTORS:

For bulk purchases in excess of 30 copies, please write to:

Corporate Sales
Prentice Hall
Englewood Cliffs, N.J. 07632

Or call: (201) 461-8441.

ATTENTION GOVERNMENT CUSTOMERS:

For GSA and other pricing information, please call (201) 767-5994.
UNIX System V Reference Manuals describe the interfaces and execution behavior of each System V component. The components of UNIX System V include the graphical user interface (GUI), Shell command line interface, application program interface (API) and Device Driver Interface / Driver Kernel Interface (DDI/DKI), as well as device special files, header files and other system files. The following table summarizes the general categories of manual pages:

Table 1: Manual Page Categories

<table>
<thead>
<tr>
<th>Description</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Shell & Command Line Interface</td>
<td></td>
</tr>
<tr>
<td>— General Purpose Utilities</td>
<td>1</td>
</tr>
<tr>
<td>— Maintenance Utilities</td>
<td>1M</td>
</tr>
<tr>
<td>□ Application Program Interface (API)</td>
<td></td>
</tr>
<tr>
<td>— UNIX System Calls</td>
<td>2</td>
</tr>
<tr>
<td>— C Language Libraries</td>
<td>3</td>
</tr>
<tr>
<td>□ System Files & Devices</td>
<td></td>
</tr>
<tr>
<td>— System File Formats</td>
<td>4</td>
</tr>
<tr>
<td>— Miscellaneous Facilities</td>
<td>5</td>
</tr>
<tr>
<td>— Special Files (Devices)</td>
<td>7</td>
</tr>
<tr>
<td>□ Device Driver Interface/Driver Kernel Interface (DDI/DKI)</td>
<td></td>
</tr>
<tr>
<td>— DDI/DKI Driver Data Definitions</td>
<td>D1</td>
</tr>
<tr>
<td>— DDI/DKI Driver Entry Point Routines</td>
<td>D2</td>
</tr>
<tr>
<td>— DDI/DKI Kernel Utility Routines</td>
<td>D3</td>
</tr>
<tr>
<td>— DDI/DKI Kernel Data Structures</td>
<td>D4</td>
</tr>
<tr>
<td>— DDI/DKI Kernel Defines</td>
<td>D5</td>
</tr>
</tbody>
</table>

Reference Manuals supply technical reference information that describes the source-code interfaces and run-time behavior of each component of System V on a component by component basis. As concise reference material, manual pages assume some familiarity with the information.
Organization of the Reference Manuals

Each section in a Reference Manual consists of a number of independent entries called "manual pages." A "Table of Contents" precedes each manual page section. Within each section, manual pages are arranged in alphabetical order based on the name of the component described by that manual page. Some manual pages may describe several commands, functions, or other type of system facility. In such cases, the manual page appears only once in a table of contents, alphabetized under its "primary" name, the name that appears at the upper corners of each manual page. For each Reference Manual, a "Permuted Index" of all manual pages for that manual is provided at the back of the book.

This latest edition of the UNIX System V Release 4 Reference Manuals has reorganized the reference manuals to make it easier to identify which manual contains a given manual page, and to locate the manual page within that manual. The new organization of the UNIX System V Reference Manuals

- includes all reference manual pages found in various Programmer's Guides in the Reference Manuals
- makes each manual page unique, rather than repeating it in different Reference Manuals
- sorts each section together, rather than breaking it out by subsection, for example, all of Section 1, including subsections 1C, 1F, 1M, and 1N
- precedes each section with its own table of contents

The set of UNIX System V Reference Manuals organizes the manual pages into volumes aligned with the different types of interfaces that make up UNIX System V Release 4. Manual pages for the same type of components are found in the same volume, and components of different types are found in separate volumes. For example, you will no longer find programming commands (cc, make, and so on) in the Programmer's Reference Manual. Those commands have been moved to join Section 1 commands in the User's Reference Manual/System Administrator's Reference Manual. At the same time, all Section 4, 5 and 7 manual pages, which describe various system files and special files (devices) and were previously located in the Programmer's Reference Manual or the System Administrator's Reference Manual, have been consolidated in a new, separate volume entitled System Files and Devices Reference Manual. The table on the following page lists the contents of the new complete set of Reference Manuals:
Table 2: The UNIX System V Release 4 Reference Manual Set

<table>
<thead>
<tr>
<th>Reference Manual</th>
<th>Description</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>**User's Reference Manual/</td>
<td>General-Purpose User Commands</td>
<td>1</td>
</tr>
<tr>
<td>System Administrator's Reference Manual</td>
<td>Basic Networking Commands</td>
<td>1C</td>
</tr>
<tr>
<td>(Commands a – I and m – z)</td>
<td>Form and Menu Language Interpreter</td>
<td>1F</td>
</tr>
<tr>
<td></td>
<td>System Maintenance Commands</td>
<td>1M</td>
</tr>
<tr>
<td></td>
<td>Enhanced Networking Commands</td>
<td>1N</td>
</tr>
<tr>
<td>Programmer's Reference Manual: Operating System API</td>
<td>System Calls</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>BSD System Compatibility Library</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Standard C Library</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>Executable and Linking Format Library</td>
<td>3E</td>
</tr>
<tr>
<td></td>
<td>General-Purpose Library</td>
<td>3G</td>
</tr>
<tr>
<td></td>
<td>Math Library</td>
<td>3M</td>
</tr>
<tr>
<td></td>
<td>Networking Library</td>
<td>3N</td>
</tr>
<tr>
<td></td>
<td>Standard I/O Library</td>
<td>3S</td>
</tr>
<tr>
<td></td>
<td>Specialized Library</td>
<td>3X</td>
</tr>
<tr>
<td></td>
<td>X Window System Toolkit</td>
<td>3Xt</td>
</tr>
<tr>
<td></td>
<td>OPEN LOOK Intrinsics Toolkit</td>
<td>3W</td>
</tr>
<tr>
<td>System Files and Devices Reference Manual</td>
<td>System File Formats</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Facilities</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Special Files (Devices)</td>
<td>7</td>
</tr>
<tr>
<td>Device Driver Interface/Driver Kernel Interface Reference Manual</td>
<td>DDI/DKI Driver Data Definitions</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Driver Entry Point Routines</td>
<td>D2</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Kernel Utility Routines</td>
<td>D3</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Kernel Data Structures</td>
<td>D4</td>
</tr>
<tr>
<td></td>
<td>DDI/DKI Kernel Defines</td>
<td>D5</td>
</tr>
</tbody>
</table>
Reference Manual Index

A "Permuted Index" for this reference manual is provided at the back. The Permuted Index is a list of keywords, alphabetized in the second of three columns, together with the context in which each keyword is found. The manual page that produced an entry is listed in the right column.

Entries are identified with their section numbers shown in parentheses. This is important because there is considerable duplication of names among the sections, arising principally from commands and functions that exist only to exercise a particular system call.

The index is produced by rotating the NAME section of each manual page to alphabetize each keyword in it. Words that cannot fit in the middle column are rotated into the left column. If the entry is still too long, some words are omitted, and their omission is indicated with a slash ("/").

Here is an example of some of the entries produced for the manual pages rand(3C), sleep(1), sleep(3), and sleep(3C):

Figure 1: Sample of a Permuted Index

<table>
<thead>
<tr>
<th>generator rand, srand simple random number</th>
<th>rand(3C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>srand simple random number generator rand,</td>
<td>rand(3C)</td>
</tr>
<tr>
<td>rand, srand simple random number generator</td>
<td>rand(3C)</td>
</tr>
<tr>
<td>interval sleep suspend execution for an</td>
<td>sleep(1)</td>
</tr>
<tr>
<td>interval sleep suspend execution for an</td>
<td>sleep(3)</td>
</tr>
<tr>
<td>interval sleep suspend execution for an</td>
<td>sleep(3C)</td>
</tr>
<tr>
<td>generator rand, srand simple random number</td>
<td>rand(3C)</td>
</tr>
</tbody>
</table>
Table of Contents

Section 1 – Commands a – I

intro(1) .. introduction to commands and application programs
accept, reject(1M) .. accept or reject print requests
acct: acctdisk, acctdusg, accton, acctwtmp closewtmp, utmp2wtmp(1M)

.............................. overview of accounting and miscellaneous accounting commands
acctcmts(1M) ... command summary from per-process accounting records
acctcon(1) .. search and print process accounting file(s)
acctcon1, acctcon2(1M) .. connect-time accounting
acctmerg(1M) .. merge or add total accounting files
acctprc, acctprc1, acctprc2(1M) .. process accounting

runacct, kpaacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, prtacct,

addbib(1) .. create or extend a bibliographic database
admin(1) .. create and administer SCCS files
apropos(1) ... locate commands by keyword lookup
ar(1) ... maintain portable archive or library
arch(1) .. display the architecture of the current host
arp(1M) .. address resolution display and control
as(1) ... assembler
at, batch(1) .. execute commands at a later time
atq(1) .. display the jobs queued to run at specified times
atrm(1) .. remove jobs spooled by at or batch
automount(1M) ... automatically mount NFS file systems
autopush(1M) ... configure lists of automatically pushed STREAMS modules
awk(1) ... pattern scanning and processing language
backup(1M) .. perform backup functions
backup(1) .. perform backup functions
banner(1) .. make posters
basename, dirname(1) .. deliver portions of path names
basename(1) .. display portions of pathnames
bc(1) ... arbitrary-precision arithmetic language
bdiff(1) .. big diff
bfs(1) .. big file scanner
biff(1) ... give notice of incoming mail messages
biod(1M) ... NFS daemon
bkexcept(1M) change or display an exception list for incremental backups
bkhistory(1M) .. report on completed backup operations
bkoper(1M) .. interact with backup operations to service media insertion prompts
bkreg(1M) .. change or display the contents of a backup register
bkstatus(1M) .. display the status of backup operations
boot(1M) .. UNIX system boot program
bootparamd(1M) .. boot parameter server
brc, bcheckrc(1M) ... system initialization procedures
cal(1) .. print calendar
calendar(1) .. reminder service
captoinfo(1M) convert a termcap description into a terminfo description
cat(1) .. concatenate and print files
catman(1M) .. create the cat files for the manual
cb(1) .. C program beautifier
cc(1) .. C compiler
cd(1) .. change working directory
cdc(1) .. change the delta comment of an SCCS delta
cflow(1) .. generate C flowgraph
checkfsys(1M) .. check a file system
checknr(1) .. check nroff and troff input files; report possible errors
chgrp(1) .. change the group ownership of a file
chkey(1) .. change user encryption key
chmod(1) .. change file mode
chown(1) .. change file owner
chown(1) .. change file owner
chroot(1M) .. change root directory for a command
chrtbl(1M) .. generate character classification and conversion tables
ckbinarsys(1M) .. determine whether remote system can accept binary messages
ckbupscd(1M) .. check file system backup schedule
ckdate, errdate, helpdate, valdate(1) prompt for and validate a date
ckgid, errgid, helpgid, valgid(1) prompt for and validate a group ID
ckint(1) .. display a prompt; verify and return an integer value
ckitem(1) .. build a menu; prompt for and return a menu item
ckkeywd(1) .. prompt for and validate a keyword
ckpath(1) .. display a prompt; verify and return a pathname
ckrange(1) .. prompt for and validate an integer
ckstr(1) .. display a prompt; verify and return a string answer
cktime(1) .. display a prompt; verify and return a time of day
ckuid(1) .. prompt for and validate a user ID
ckyorn(1) ... prompt for and validate yes/no
clear(1) .. clear the terminal screen
cmp(1) .. compare two files
cof2elf(1) .. COFF to ELF object file translation
col(1) ... filter reverse line-feeds
colltbl(1M) .. create collation database
comb(1) ... combine SCCS deltas
comm(1) ... select or reject lines common to two sorted files
compress, uncompress, zcat(1) .. compress data for storage, uncompress and display compressed files
comsat, in.comsat(1M) .. biff server
configs(1M) ... change and display console flags
convert(1) ... convert archive files to common formats
cocreate, cosend, coreceive, codedestroy(1F) .. communicate with a process
copy(1) .. copy groups of files
cp(1) ... copy files
cpio(1) .. copy file archives in and out
crash(1M) ... examine system images
cron(1M) .. clock daemon
crontab(1) .. user crontab file
crypt(1) .. encode/decode
cscope(1) .. interactively examine a C program
csh(1) ... shell command interpreter with a C-like syntax
csplit(1) .. context split
cf(1C) .. spawn login to a remote terminal
ctags(1) .. create a tags file for use with vi
ctrace(1) .. C program debugger
cu(1C) ... call another UNIX system
custom(1M) .. install specific portions of a UNIX package
custom(1) .. install specific portions of certain UNIX or XENIX packages
cut(1) .. cut out selected fields of each line of a file
cvtomflib(1) ... convert OMF (XENIX) libraries to ELF
cxref(1) ... generate C program cross-reference
date(1) ... print and set the date
dbcmd(1M) .. load command and macro files into a kernel executable file
dbsym(1M) .. add symbols to kernel debugger
dc(1) .. desk calculator
dcopy (generic)(1M) .. copy file systems for optimal access time
dcopy (s5)(1M) .. copy s5 file systems for optimal access time
dd(1M) .. convert and copy a file
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delsysadm(1M)</td>
<td>sysadm interface menu or task removal tool</td>
</tr>
<tr>
<td>delta(1)</td>
<td>make a delta (change) to an SCCS file</td>
</tr>
<tr>
<td>deroff(1)</td>
<td>remove nroff/troff, tbl, and eqn constructs</td>
</tr>
<tr>
<td>devattr(1M)</td>
<td>lists device attributes</td>
</tr>
<tr>
<td>devfree(1M)</td>
<td>release devices from exclusive use</td>
</tr>
<tr>
<td>devnm(1M)</td>
<td>device name</td>
</tr>
<tr>
<td>devreserv(1M)</td>
<td>reserve devices for exclusive use</td>
</tr>
<tr>
<td>df (generic), dfspace(1M)</td>
<td>report number of free disk blocks and files/free disk space</td>
</tr>
<tr>
<td>df (s5)(1M)</td>
<td>report number of free disk blocks and i-nodes for s5 file systems</td>
</tr>
<tr>
<td>df (ufs) (1M)</td>
<td>report free disk space on ufs file systems</td>
</tr>
<tr>
<td>df(1)</td>
<td>report free disk space on file systems</td>
</tr>
<tr>
<td>dfmounts(1M)</td>
<td>display mounted resource information</td>
</tr>
<tr>
<td>dfmounts(1M)</td>
<td>display mounted NFS resource information</td>
</tr>
<tr>
<td>dfmounts(1M)</td>
<td>display mounted RFS resource information</td>
</tr>
<tr>
<td>dfshares(1M)</td>
<td>list available resources from remote or local systems</td>
</tr>
<tr>
<td>dfshares(1M)</td>
<td>list available NFS resources from remote systems</td>
</tr>
<tr>
<td>dfshares(1M)</td>
<td>list available RFS resources from remote systems</td>
</tr>
<tr>
<td>diff(1)</td>
<td>differential file comparator</td>
</tr>
<tr>
<td>diff3(1)</td>
<td>3-way differential file comparison</td>
</tr>
<tr>
<td>diffmk(1)</td>
<td>mark differences between versions of a troff input file</td>
</tr>
<tr>
<td>dircmp(1)</td>
<td>directory comparison</td>
</tr>
<tr>
<td>dis(1)</td>
<td>object code disassembler</td>
</tr>
<tr>
<td>diskadd(1M)</td>
<td>disk set up utility</td>
</tr>
<tr>
<td>disksetup(1M)</td>
<td>disk set up utility</td>
</tr>
<tr>
<td>diskusg(1M)</td>
<td>generate disk accounting data by user ID</td>
</tr>
<tr>
<td>dispadmin(1M)</td>
<td>process scheduler administration</td>
</tr>
<tr>
<td>dispgid(1)</td>
<td>displays a list of all valid group names</td>
</tr>
<tr>
<td>dispuid(1)</td>
<td>displays a list of all valid user names</td>
</tr>
<tr>
<td>dname(1M)</td>
<td>print Remote File Sharing domain and network names</td>
</tr>
<tr>
<td>domainname(1M)</td>
<td>get/set name of current secure RPC domain</td>
</tr>
<tr>
<td>dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosls, dosrm, dosrmdir(1)</td>
<td>access and manipulate DOS files</td>
</tr>
<tr>
<td>download(1)</td>
<td>host resident PostScript font downloader</td>
</tr>
<tr>
<td>dpost(1)</td>
<td>troff postprocessor for PostScript printers</td>
</tr>
<tr>
<td>du(1M)</td>
<td>summarize disk usage</td>
</tr>
<tr>
<td>du(1M)</td>
<td>display the number of disk blocks used per directory or file</td>
</tr>
<tr>
<td>dump(1)</td>
<td>dump selected parts of an object file</td>
</tr>
<tr>
<td>echo(1)</td>
<td>echo arguments</td>
</tr>
<tr>
<td>echo(1F)</td>
<td>put string on virtual output</td>
</tr>
</tbody>
</table>
Table of Contents

- echo (1) .. echo arguments
- ed, red(1) ... text editor
- edit(1) .. text editor (variant of ex for casual users)
- edquota(IM) .. edit user quotas
- edsysadm(IM) .. sysadm interface editing tool
- edvtoc(IM) .. VTOC (Volume Table of Contents) editing utility
- egrep(1) ... search a file for a pattern using full regular expressions
- enable, disable(1) .. enable/disable LP printers
- env(1) ... set environment for command execution
- eqn, neqn, cheeq(1) ... typeset mathematics
- evgainit(IM) ... Extended VGA keyboard/display driver initialization
- ex(IM) ... text editor
- expr(1) ... evaluate arguments as an expression
- exstr(IM) .. extract strings from source files
- face(IM) .. executable for the Framed Access Command Environment Interface
- factor(IM) ... obtain the prime factors of a number
- fastboot, fasthalt(IM) ... reboot/halt the system without checking the disks
- fddetach(IM) .. detach a name from a STREAMS-based file descriptor
- fdisk(IM) .. create or modify hard disk partition table
- fdp(IM) .. create, or restore from, a full file system archive
- ff(generic)(IM) .. list file names and statistics for a file system
- ff(ufs)(IM) .. display i-list information
- ffile(IM) ... create, or restore from, a full file system archive
- fgrep(IM) .. search a file for a character string
- file(IM) .. determine file type
- fimage(IM) ... create, restore an image archive of a filesystem
- find(IM) ... find files
- finger(IM) .. display information about local and remote users
- fingerd, in.fingerd(IM) ... remote user information server
- fixperm(IM) ... correct or initialize XENIX file permissions and ownership
- fixshlib(IM) .. correct or initialize file permissions and ownership
- fmlcut(IF) .. cut out selected fields of each line of a file
- fmlexpr(IF) ... evaluate arguments as an expression
- fmlgrep(IF) ... search a file for a pattern
- fhli(IM) .. invoke FMLI
- fmt(IM) .. simple text formatters
- fntmsg(IM) ... display a message on stderr or system console
Table of Contents

fold(1) .. fold long lines
format(1M) .. format floppy disk tracks
fromsmtp(1M) ... receive RFC822 mail from SMTP
fsba(1M) ... file system block analyzer
fsck (generic)(1M) ... check and repair file systems
fsck (bfs)(1M) .. check and repair bfs file systems
fsck (s5)(1M) .. check and repair s5 file systems
fsck (ufs)(1M) ... file system consistency check and interactive repair
fsdb (generic)(1M) .. file system debugger
fsdb (s5)(1M) .. s5 file system debugger
fsdb (ufs)(1M) .. ufs file system debugger
fsirand(1) .. install random inode generation numbers
fstyp (generic)(1M) ... determine file system type
ftp(1) ... file transfer program
ftpd(1M) .. file transfer protocol server
fumount(1M) ... forced unmount of advertised resources
fusage (1M) .. disk access profiler
fuser(1M) ... identify processes using a file or file structure
fwtmp, wtmpfix(1M) ... manipulate connect accounting records
gcore(1) .. get core images of running processes
gencc(1) .. generate a formatted message catalogue
gencc(1M) .. create a front-end to the cc command
get(1) ... get a version of an SCCS file
getdev(1M) .. lists devices based on criteria
getdgrp(1M) ... lists device groups which contain devices that match criteria
getfrm(1F) .. current frameID number
getitems(1F) .. return a list of currently marked menu items
getopt(1) .. parse command options
getopts, getoptcvt(1) .. parse command options
gettable (1M) .. get DoD Internet format host table from a host
gettxt(1) .. retrieve a text string from a message data base
getty (1M) .. set terminal type, modes, speed, and line discipline
getvol(1M) .. verifies device accessibility
grep(1) ... search a file for a pattern
groupadd(1M) .. add (create) a new group definition on the system
groupdel(1M) .. delete a group definition from the system
groupmod (1M) ... modify a group definition on the system
groups(1) .. print group membership of user
groups(1) .. display a user's group memberships
grpck(1M) .. check group database entries
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>halt(1M)</td>
<td>stop the processor</td>
</tr>
<tr>
<td>hd(1)</td>
<td>display files in hexadecimal format</td>
</tr>
<tr>
<td>head(1)</td>
<td>display first few lines of files</td>
</tr>
<tr>
<td>help(1)</td>
<td>ask for help with message numbers or SCCS commands</td>
</tr>
<tr>
<td>hostid(1)</td>
<td>print the numeric identifier of the current host</td>
</tr>
<tr>
<td>hostname(1)</td>
<td>set or print name of current host system</td>
</tr>
<tr>
<td>htable(1M)</td>
<td>convert DoD Internet format host table</td>
</tr>
<tr>
<td>iconv(1)</td>
<td>code set conversion utility</td>
</tr>
<tr>
<td>id(1M)</td>
<td>print the user name and ID, and group name and ID</td>
</tr>
<tr>
<td>idbuild(1M)</td>
<td>build new UNIX System kernel</td>
</tr>
<tr>
<td>idcheck(1M)</td>
<td>returns selected information</td>
</tr>
<tr>
<td>idconfig(1M)</td>
<td>produce a new kernel configuration</td>
</tr>
<tr>
<td>idinstall(1M)</td>
<td>add, delete, update, or get device driver configuration data</td>
</tr>
<tr>
<td>idload(1M)</td>
<td>Remote File Sharing user and group mapping</td>
</tr>
<tr>
<td>idmknod(1M)</td>
<td>removes nodes and reads specifications of nodes</td>
</tr>
<tr>
<td>idmkunix(1M)</td>
<td>build new UNIX System kernel</td>
</tr>
<tr>
<td>idspace(1M)</td>
<td>investigates free space</td>
</tr>
<tr>
<td>idtune(1M)</td>
<td>attempts to set value of a tunable parameter</td>
</tr>
<tr>
<td>ifconfig(1M)</td>
<td>configure network interface parameters</td>
</tr>
<tr>
<td>incfile(1M)</td>
<td>create, restore an incremental filesystem archive</td>
</tr>
<tr>
<td>indicator(1F)</td>
<td>display application specific alarms and/or the “working” indicator</td>
</tr>
<tr>
<td>indxbib(1)</td>
<td>create an inverted index to a bibliographic database</td>
</tr>
<tr>
<td>inetd(1M)</td>
<td>Internet services daemon</td>
</tr>
<tr>
<td>infocmp(1M)</td>
<td>compare or print out terminfo descriptions</td>
</tr>
<tr>
<td>init, telinit(1M)</td>
<td>process control initialization</td>
</tr>
<tr>
<td>install(1M)</td>
<td>install commands</td>
</tr>
<tr>
<td>installf(1M)</td>
<td>add a file to the software installation database</td>
</tr>
<tr>
<td>ipcrm(1)</td>
<td>remove a message queue, semaphore set, or shared memory ID</td>
</tr>
<tr>
<td>ipcs(1)</td>
<td>report inter-process communication facilities status</td>
</tr>
<tr>
<td>ismpx(1)</td>
<td>return windowing terminal state</td>
</tr>
<tr>
<td>join(1)</td>
<td>relational database operator</td>
</tr>
<tr>
<td>jterm(1)</td>
<td>reset layer of windowing terminal</td>
</tr>
<tr>
<td>jwin(1)</td>
<td>print size of layer</td>
</tr>
<tr>
<td>kcrash(1M)</td>
<td>examine system images</td>
</tr>
<tr>
<td>kdb(1M)</td>
<td>multiprocessor kernel debugger</td>
</tr>
<tr>
<td>keylogin(1)</td>
<td>decrypt and store secret key</td>
</tr>
<tr>
<td>keyserv(1M)</td>
<td>server for storing public and private keys</td>
</tr>
</tbody>
</table>
Table of Contents

kill(1) ... terminate a process by default
killall(1M) ... kill all active processes
ksh, rksh(1) KornShell, a standard/restricted command and programming language
labelit (generic)(1M) ... provide labels for file systems
labelit (s5)(1M) ... provide labels for s5 file systems
labelit (ufs)(1M) ... provide labels for ufs file systems
last(1) ... show the last commands executed, in reverse order
layers(1) ... layer multiplexor for windowing terminals
ld(1) ... link editor for object files
ld(1) ... link editor, dynamic link editor
ldd(1) ... list dynamic dependencies
ldsysdump(1M) ... load system dump from floppy diskettes
lex(1) ... generate programs for simple lexical tasks
line(1) ... read one line
link, unlink(1M) .. link and unlink files and directories
lint(1) ... a C program checker
listdgrp(1M) ... lists members of a device group
listen(1M) .. network listener daemon
listusers(1) .. list user login information
ln(1) ... link files
ln(1) ... make hard or symbolic links to files
lockd(1M) .. network lock daemon
logger(1) .. add entries to the system log
login(1) ... sign on
logins(1M) .. list user and system login information
logname(1) .. get login name
look(1) ... find words in the system dictionary or lines in a sorted list
lookbib(1) .. find references in a bibliographic database
lorder(1) ... find ordering relation for an object library
lp, cancel(1) .. send/cancel requests to an LP print service
lpadmin(1M) ... configure the LP print service
lpct(1M) ... line printer control program
lpfilter(1M) .. administer filters used with the LP print service
lpforms(1M) .. administer forms used with the LP print service
lpq(1) ... display the queue of printer jobs
lpr(1) ... send a job to the printer
lprm(1) .. remove jobs from the printer queue
lprof(1) .. display line-by-line execution count profile data
lpsched, lpshut, lpmove(1M) ... start/stop the LP print service and move requests
Section 1 – Commands m – z

m4(1) ... macro processor
mach(1) .. display the processor type of the current host
machid(1) ... get processor type truth value
mail, rmail(1) ... read mail or send mail to users
mail_pipe(1M) ... invoke recipient command for incoming mail
mailalias(1) ... translate mail alias names
mailstats(1M) .. print statistics collected by sendmail
mailx(1) .. interactive message processing system
make(1) ... maintain, update, and regenerate groups of programs
makedbm(1M) .. make a Network Information Service (NIS) dbm file
makefsys(1M) ... create a file system
makekey(1) .. generate encryption key
man(1) ... display reference manual pages; find reference pages by keyword
mapchan(1M) .. Configure tty device mapping
mapkey, mapscrn, mapstr(1M) configure monitor screen mapping
maplocale(1M) ... convert Release 4 locale information to different format
mconnect(1M) .. connect to SMTP mail server socket
mcs(1) .. manipulate the comment section of an object file
mesg(1) .. permit or deny messages
message(1F) .. put arguments on FMLI message line
migration(1M) ... move an archive from one set of volumes to another
mkdir(1) .. make directories
mkfifo(1M) .. make FIFO special file
mkfs (generic)(1M) ... construct a file system
mkfs (bfs)(1M) ... construct a boot file system
mkfs (s5)(1M) .. construct an s5 file system
mkfs (ufs)(1M) .. construct a ufs file system
mkmsgs(1) ... create message files for use by gettext
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mknod(1M)</td>
<td>make a special file</td>
</tr>
<tr>
<td>mknod(1M)</td>
<td>make a special file</td>
</tr>
<tr>
<td>mkpart(1M)</td>
<td>disk maintenance utility</td>
</tr>
<tr>
<td>montbl(1M)</td>
<td>create monetary database</td>
</tr>
<tr>
<td>more, page(1)</td>
<td>browse or page through a text file</td>
</tr>
<tr>
<td>mount, umount (generic)(1M)</td>
<td>mount or unmount file systems and remote resources</td>
</tr>
<tr>
<td>mount(bfs)(1M)</td>
<td>mount bfs file systems</td>
</tr>
<tr>
<td>mount(1M)</td>
<td>mount remote NFS resources</td>
</tr>
<tr>
<td>mount(1M)</td>
<td>mount remote resources</td>
</tr>
<tr>
<td>mount(s5)(1M)</td>
<td>mount an s5 file system</td>
</tr>
<tr>
<td>mount(ufs)(1M)</td>
<td>mount ufs file systems</td>
</tr>
<tr>
<td>mountall, umountall(1M)</td>
<td>mount, unmount multiple file systems</td>
</tr>
<tr>
<td>mountd(1M)</td>
<td>NFS mount request server</td>
</tr>
<tr>
<td>mountfsys, umountfsys(1M)</td>
<td>mount, unmount a file system</td>
</tr>
<tr>
<td>mouseadmin(1)</td>
<td>mouse administration</td>
</tr>
<tr>
<td>mt(1)</td>
<td>magnetic tape control</td>
</tr>
<tr>
<td>mv(1)</td>
<td>move files</td>
</tr>
<tr>
<td>mvdir(1M)</td>
<td>move a directory</td>
</tr>
<tr>
<td>named, in.named(1M)</td>
<td>Internet domain name server</td>
</tr>
<tr>
<td>nawk(1)</td>
<td>pattern scanning and processing language</td>
</tr>
<tr>
<td>ncheck(generic)(1M)</td>
<td>generate a list of path names vs i-numbers</td>
</tr>
<tr>
<td>ncheck(s5)(1M)</td>
<td>generate path names versus i-numbers for s5 file systems</td>
</tr>
<tr>
<td>ncheck(ufs)(1M)</td>
<td>generate pathnames versus i-numbers for ufs file systems</td>
</tr>
<tr>
<td>netstat(1M)</td>
<td>show network status</td>
</tr>
<tr>
<td>newaliases(1M)</td>
<td>rebuild the data base for the mail aliases file</td>
</tr>
<tr>
<td>newform(1)</td>
<td>change the format of a text file</td>
</tr>
<tr>
<td>newgrp(1M)</td>
<td>log in to a new group</td>
</tr>
<tr>
<td>newkey(1M)</td>
<td>create a new key in the publickey database</td>
</tr>
<tr>
<td>news(1)</td>
<td>print news items</td>
</tr>
<tr>
<td>newvt(1)</td>
<td>opens virtual terminals</td>
</tr>
<tr>
<td>nfsd(1M)</td>
<td>NFS daemon</td>
</tr>
<tr>
<td>nfsstat(1M)</td>
<td>Network File System statistics</td>
</tr>
<tr>
<td>nice(1)</td>
<td>run a command at low priority</td>
</tr>
<tr>
<td>nl(1)</td>
<td>line numbering filter</td>
</tr>
<tr>
<td>nladmin(1M)</td>
<td>network listener service administration</td>
</tr>
<tr>
<td>nm(1)</td>
<td>print name list of an object file</td>
</tr>
<tr>
<td>nohup(1)</td>
<td>run a command immune to hangups and quits</td>
</tr>
<tr>
<td>notify(1)</td>
<td>notify user of the arrival of new mail</td>
</tr>
<tr>
<td>nroff(1)</td>
<td>format documents for display or line-printer</td>
</tr>
<tr>
<td>nslookup(1M)</td>
<td>query name servers interactively</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>nsquery(1M)</td>
<td>Remote File Sharing name server query</td>
</tr>
<tr>
<td>od(1)</td>
<td>octal dump</td>
</tr>
<tr>
<td>offline(1M)</td>
<td>take a processor offline</td>
</tr>
<tr>
<td>online(1M)</td>
<td>bring a processor online</td>
</tr>
<tr>
<td>pack, pcat, unpack(1)</td>
<td>compress and expand files</td>
</tr>
<tr>
<td>pagesize(1)</td>
<td>display the size of a page of memory</td>
</tr>
<tr>
<td>partsize(1M)</td>
<td>returns the size of the active UNIX System partition</td>
</tr>
<tr>
<td>passwd(1)</td>
<td>change login password and password attributes</td>
</tr>
<tr>
<td>paste(1)</td>
<td>merge same lines of several files or subsequent lines of one file</td>
</tr>
<tr>
<td>pathconv(1F)</td>
<td>search FMLI criteria for filename</td>
</tr>
<tr>
<td>pbind(1M)</td>
<td>bind a process to a processor</td>
</tr>
<tr>
<td>pexbind(1M)</td>
<td>exclusively bind processes to a processor</td>
</tr>
<tr>
<td>pg(1)</td>
<td>file perusal filter for CRTs</td>
</tr>
<tr>
<td>pinfo(1M)</td>
<td>get information about processors</td>
</tr>
<tr>
<td>ping(1M)</td>
<td>send ICMP ECHO_REQUEST packets to network hosts</td>
</tr>
<tr>
<td>pkgadd(1M)</td>
<td>transfer software package to the system</td>
</tr>
<tr>
<td>pkgask(1M)</td>
<td>stores answers to a request script</td>
</tr>
<tr>
<td>pkgchk(1M)</td>
<td>check accuracy of installation</td>
</tr>
<tr>
<td>pkginfo(1)</td>
<td>display software package information</td>
</tr>
<tr>
<td>pkgmk(1)</td>
<td>produce an installable package</td>
</tr>
<tr>
<td>pkgparam(1)</td>
<td>displays package parameter values</td>
</tr>
<tr>
<td>pkgproto(1)</td>
<td>generate a prototype file</td>
</tr>
<tr>
<td>pkgrm(1M)</td>
<td>removes a package from the system</td>
</tr>
<tr>
<td>pkgtrans(1)</td>
<td>translate package format</td>
</tr>
<tr>
<td>plot, aedplot, atoplot, bgplot, crtplot, dumbplot, gigiplot, hpplot, implot, plottoa, t300, t300s, t4013, t450, tek(1G)</td>
<td>graphics filters for various plotters</td>
</tr>
<tr>
<td>pmadm(1M)</td>
<td>port monitor administration</td>
</tr>
<tr>
<td>postdaisy(1)</td>
<td>PostScript translator for Diablo 630 files</td>
</tr>
<tr>
<td>postdmd(1)</td>
<td>PostScript translator for DMD bitmap files</td>
</tr>
<tr>
<td>postio(1)</td>
<td>serial interface for PostScript printers</td>
</tr>
<tr>
<td>postmd(1)</td>
<td>matrix display program for PostScript printers</td>
</tr>
<tr>
<td>postplot(1)</td>
<td>PostScript translator for plot graphics files</td>
</tr>
<tr>
<td>postprint(1)</td>
<td>PostScript translator for text files</td>
</tr>
<tr>
<td>postreverse(1)</td>
<td>reverse the page order in a PostScript file</td>
</tr>
<tr>
<td>posttek(1)</td>
<td>PostScript translator for tektronix 4014 files</td>
</tr>
<tr>
<td>pr(1)</td>
<td>print files</td>
</tr>
<tr>
<td>printenv(1)</td>
<td>display environment variables currently set</td>
</tr>
<tr>
<td>printf(1)</td>
<td>print formatted output</td>
</tr>
<tr>
<td>priocntl(1)</td>
<td>process scheduler control</td>
</tr>
</tbody>
</table>
Table of Contents

- **prof(1)** ... display profile data
- **profiler: prfld, prfstat, prfnc, prfsnap, prfpr(1M)** UNIX system profiler
- **profiler: prfld, prfstat, prfnc, prfsnap, prfpr(1M)** UNIX system profiler
- **prs(1)** ... print an SCCS file
- **prtvtoc(1M)** ... disk information display utility
- **ps(1)** .. report process status
- **ps(1)** .. report process status
- **ps(1)** .. display the status of current processes
- **putdev(1)** .. edits device table
- **putdgrp(1)** .. edits device group table
- **pwck, grpck(1M)** ... password/group file checkers
- **pwck(1M)** ... check password database entries
- **pwconv(1M)** ... install and update /etc/shadow with information from /etc/passwd
- **pwd(1)** ... working directory name
- **quot(1M)** ... summarize file system ownership
- **quota(1M)** .. display a user's disk quota and usage
- **quotacheck(1M)** .. file system quota consistency checker
- **quotaon, quotaoff(1M)** .. turn file system quotas on and off
- **random(1)** ... generate a random number
- **rarpd(1M)** .. DARPA Reverse Address Resolution Protocol server
- **rc0(1M)** .. run commands performed to stop the operating system
- **rc2(1M)** .. run commands performed for multi-user environment
- **rc6(1M)** .. run commands performed to stop and reboot the operating system
- **rcp(1)** ... remote file copy
- **rdate(1M)** ... set system date from a remote host
- **readfile, longline(1F)** .. reads file, gets longest line
- **reboot(1M)** ... restart the operating system
- **refer(1)** ... expand and insert references from a bibliographic database
- **regcmp(1)** ... regular expression compile
- **regex(1F)** ... match patterns against a string
- **reinit(1F)** ... runs an initialization file
- **relogin(1M)** .. rename login entry to show current layer
- **removef(1M)** ... remove a file from software database
- **rename(1)** ... change the name of a file
- **renice(1M)** ... alter priority of running processes
- **repquota(1M)** ... summarize quotas for a file system
- **reset(1F)** ... reset the current form field to its default values
- **restore(1M)** .. initiate restores of filesystems, data partitions, or disks
- **restore(1)** ... restore file to original directory
rexecd (1M) ... remote execution server
rfadmin (1M) ... Remote File Sharing domain administration
rfpasswd (1M) ... change Remote File Sharing host password
rfstart (1M) ... start Remote File Sharing
rfstop (1M) ... stop the Remote File Sharing environment
rfuadmin (1M) ... Remote File Sharing notification shell script
rfudaemon (1M) .. Remote File Sharing daemon process
rlogin (1) .. remote login
rlogind (1M) ... remote login server
rm, rmdir (1) ... remove files or directories
rmdel (1) ... remove a delta from an SCCS file
rmntstat (1M) ... display mounted resource information
rmrtrty (1M) ... attempt to mount queued remote resources
rmount (1M) ... queue remote resource mounts
rmountall, rumountall (1M) ... mount, unmount Remote File Sharing resources
roffbib (1) ... format and print a bibliographic database
route (1M) ... manually manipulate the routing tables
routed (1M) ... network routing daemon
rpcbind (1M) .. universal addresses to RPC program number mapper
rpcgen (1) ... an RPC protocol compiler
rpcinfo (1M) ... report RPC information
rsh (1) .. remote shell
rsqd (1M) ... remote shell server
rsoper (1M) ... service pending restore requests and service media insertion prompts
rsumount (1M) .. cancel queued remote resource request
run (1F) ... run an executable
runacct (1M) ... run daily accounting
rusage (1) ... show host status of local machines
rusers (1) ... who’s logged in on local machines
rpc.rusersd (1M) .. network username server
rwall (1M) ... write to all users over a network
rpc.rwallld (1M) .. network rwall server
rwho (1) ... who’s logged in on local machines
rwhod, in.rwhod (1M) .. system status server
sac (1M) ... service access controller administration
sacadm (1M) ... service access controller administration
sact (1) ... print current SCCS file editing activity
sadc, sa1, sa2 (1M) .. system activity report package
sag (1M) ... system activity graph
sar (1M) ... system activity reporter
sar(1M) ... system activity reporter
sccs(1) ... front end for the Source Code Control System (SCCS)
sccsdiff(1) .. compare two versions of an SCCS file
scompt(1) .. set up compatibility environment for console applications
script(1) ... make typescript of a terminal session
sd(1) ... symbolic debugger
sdiff(1) ... print file differences side-by-side
sed(1) ... stream editor
sendmail(1M) .. send mail over the internet
set, unset(1F) .. set and unset local or global environment variables
setckl(1M) ... set system time from hardware clock
setcolor, setcolour(1) .. set screen color
setcolor(1F) .. redefine or create a color
setkey(1) ... assigns the function keys
setmnt(1M) ... establish mount table
settime(1) ... change the access and modification dates of files
setuname(1M) .. changes machine information
setup(1M) ... initialize system for first user
sh, jsr, rsh(1) ... command interpreters: standard shell, job control shell, restricted shell
share(1M) ... make local resource available for mounting by remote systems
share(1M) ... make local NFS resource available for mounting by remote systems
shareall, unshareall(1M) .. share, unshare multiple resources
shell(1F) ... run a command using shell
shl(1) .. shell layer manager
shutdown(1M) ... shut down system, change system state
shutdown(1M) ... close down the system at a given time
size(1) ... print section sizes in bytes of object files
sleep(1) ... suspend execution for an interval
slink(1M) ... streams linker
smtp(1M) .. send SMTP mail to a remote host using Simple Mail Transfer Protocol
smtpd(1M) ... receive incoming SMTP messages
smtpqer(1M) .. queue mail for delivery by SMTP
smtpsched(1M) ... process messages queued in the SMTP mail queue
soelim(1) ... resolve and eliminate .so requests from nroff or troff input
sort(1) ... sort and/or merge files
sortbib(1) .. sort a bibliographic database
spell, hashmake, spellin, hashcheck, compress(1) .. find spelling errors
split(1) .. split a file into pieces
spray(1M) .. spray packets
rpc.sprayd(1M) ... spray server
srchtxt(1) ... display contents of, or search for a text string in, message data bases
stated(1M) .. network status monitor
strace(1M) .. print STREAMS trace messages
strchgs, strconf(1) .. change or query stream configuration
strclean(1M) ... STREAMS error logger cleanup program
stcerr(1M) ... STREAMS error logger daemon
strings(1) ... find printable strings in an object file or binary
strip(1) ... strip symbol table, debugging and line number information from an object file
stty(1) ... set the options for a terminal
stty(1) ... set the options for a terminal
sttydefs(1M) ... maintain line settings and hunt sequences for TTY ports
su(1M) .. become super-user or another user
sulogin(1M) .. access single-user mode
sum(1) ... print checksum and block count of a file
sum(1) ... calculate a checksum for a file
swap(1M) ... swap administrative interface
sync(1M) ... update the super block
sysadm(1M) ... visual interface to perform system administration
syslogd(1M) .. log system messages
tabs(1) ... set tabs on a terminal
tail(1) ... deliver the last part of a file
talk(1) ... talk to another user
talkd, intalkd(1M) ... server for talk program
tape(1) ... magnetic tape maintenance
tapecntl(1) ... tape control for tape device
tar(1) ... tape file archiver
tbl(1) ... format tables for nroff or troff
tcopy(1) ... copy a magnetic tape
tee(1) ... pipe fitting
telnet(1) ... user interface to a remote system using the TELNET protocol
telnentd(1M) ... DARPA TELNET protocol server
test(1) ... condition evaluation command
test(IF) ... condition evaluation command
test(1) ... condition evaluation command	ftp(1) ... trivial file transfer program
tftpd(1M) ... DARPA Trivial File Transfer Protocol server	tic(1M) ... terminfo compiler	time(1) ... time a command; report process data and system activity
Table of Contents

tnamed, in.tnamed (1M) ... DARPA trivial name server
tosmtp (1M) .. send mail to SMTP
touch(1) ... update access and modification times of a file
tput(1) ... initialize a terminal or query terminfo database
tr(1) ... translate characters
tr(1) ... translate characters
trchan(1) ... translate character sets
troff(1) ... typeset or format documents
trpt(1M) ... transliterate protocol trace
true, false(1) .. provide truth values
truss(1) ... trace system calls and signals
tset(1) ... provide information to set terminal modes
tset, reset(1) .. establish or restore terminal characteristics
tset(1) ... provide information for setting terminal modes
tsort(1) ... topological sort
tty(1) .. get the name of the terminal
ttyadm(1M) .. format and output port monitor-specific information
tymon(1M) .. port monitor for terminal ports
tunefs (1M) .. tune up an existing file system
uadmin(1M) .. administrative control
ufsdump(1M) ... incremental file system dump
ufsrestore(1M) .. incremental file system restore
ul(1) ... underline
umask(1) .. set file-creation mode mask
uname(1) ... print name of current UNIX system
unget(1) .. undo a previous get of an SCCS file
unifdef(1) .. resolve and remove ifdef'ed lines from C program source
uniq(1) .. report repeated lines in a file
units(1) .. conversion program
unshare(1M) .. make local resource unavailable for mounting by remote systems
unshare(1M) .. make local NFS resource unavailable for mounting by remote systems
unshare(1M) .. make local RFS resource unavailable for mounting by remote systems
uptime(1) ... show how long the system has been up
urestore(1M) ... request restore of files and directories
useradd(1M) .. administer a new user login on the system
userdel(1M) .. delete a user’s login from the system
usermod(1M) .. modify a user’s login information on the system
users(1) ... display a compact list of users logged in
uucheck(1M) ... check the uucp directories and permissions file
uucico(1M) .. file transport program for the uucp system
Table of Contents

uucleanup(1M) ... uucp spool directory clean-up
uucp, uulog, uuname(1C) .. UNIX-to-UNIX system copy
uuencode, uudecode(1C) .. encode a binary file, or decode its ASCII representation
uugetty(1M) .. set terminal type, modes, speed, and line discipline
uuglist(1C) .. list service grades available on this UNIX system
uusched(1M) ... the scheduler for the uucp file transport program
uustat(1C) ... uucp status inquiry and job control
uuto, uupick(1C) .. public UNIX-to-UNIX system file copy
Uutry(1M) ... try to contact remote system with debugging on
uux(1C) ... UNIX-to-UNIX system command execution
uuxqt(1M) .. execute remote command requests
vacation(1) .. automatically respond to incoming mail messages
vacation(1) .. reply to mail automatically
val(1) .. validate an SCCS file
vc(1) .. version control
vi(1) ... screen-oriented (visual) display editor based on ex
vidi(1) .. sets the font and video mode for a video device
volcopy (generic)(1M) .. make literal copy of file system
volcopy (s5)(1M) .. make a literal copy of an s5 file system
volcopy (ufs)(1M) ... make a literal copy of a ufs file system
vsig(1F) .. synchronize a co-process with the controlling FMLI application
vtgetty(1M) .. sets terminal type, modes, speed, and line discipline
vtlmgr(1) .. monitors and opens virtual terminals
w(1) ... who is logged in, and what are they doing
wait(1) .. await completion of process
wall(1M) .. write to all users
wc(1) .. word count
what(1) ... print identification strings
whatis(1) .. display a one-line summary about a keyword
which(1) .. locate a command; display its pathname or alias
who(1) ... who is on the system
whoami(1) .. display the effective current username
whodo(1M) ... who is doing what
whois(1) .. Internet user name directory service
write(1) .. write to another user
wtinit(1M) ... object downloader for the 5620 DMD terminal
x286emul(1) .. emulate XENIX 80286
xargs(1) .. construct argument list(s) and execute command
xfsck(1M) .. check and repair XENIX filesystems
xinstall(1M) .. XENIX installation shell script
Table of Contents

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xinstall(1M)</code></td>
<td>Install commands</td>
</tr>
<tr>
<td><code>xrestore, xrestor(1M)</code></td>
<td>Invoke XENIX incremental filesystem restorer</td>
</tr>
<tr>
<td><code>xts(1M)</code></td>
<td>Extract and print xt driver statistics</td>
</tr>
<tr>
<td><code>xtt(1M)</code></td>
<td>Extract and print xt driver packet traces</td>
</tr>
<tr>
<td><code>yacc(1)</code></td>
<td>Yet another compiler-compiler</td>
</tr>
<tr>
<td><code>yes(1)</code></td>
<td>Print string repeatedly</td>
</tr>
<tr>
<td><code>ypcat(1)</code></td>
<td>Print values in a NIS data base</td>
</tr>
<tr>
<td><code>ypinit(1M)</code></td>
<td>Build and install YP database</td>
</tr>
<tr>
<td><code>ypmake(1M)</code></td>
<td>Rebuild YP database</td>
</tr>
<tr>
<td><code>ypmatch(1)</code></td>
<td>Print the value of one or more keys from the NIS map</td>
</tr>
<tr>
<td><code>yppoll(1M)</code></td>
<td>Return current version of the map at the NIS server host</td>
</tr>
<tr>
<td><code>yppush(1M)</code></td>
<td>Force propagation of a changed NIS map</td>
</tr>
<tr>
<td><code>ypserv, ypbind(1M)</code></td>
<td>NIS server and binder processes</td>
</tr>
<tr>
<td><code>ypset(1M)</code></td>
<td>Point ypbind at a particular server</td>
</tr>
<tr>
<td><code>ypupdated(1M)</code></td>
<td>Server for changing NIS information</td>
</tr>
<tr>
<td><code>ypwhich(1)</code></td>
<td>Return name of NIS server or map master</td>
</tr>
<tr>
<td><code>ypxfr(1M)</code></td>
<td>Transfer YP map from a YP server to host</td>
</tr>
<tr>
<td><code>zdump(1M)</code></td>
<td>Time zone dumper</td>
</tr>
<tr>
<td><code>zic(1M)</code></td>
<td>Time zone compiler</td>
</tr>
</tbody>
</table>

Section 4 – File Formats

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>intro(4)</code></td>
<td>Introduction to file formats</td>
</tr>
<tr>
<td><code>a.out(4)</code></td>
<td>ELF (Executable and Linking Format) files</td>
</tr>
<tr>
<td><code>acct(4)</code></td>
<td>Per-process accounting file format</td>
</tr>
<tr>
<td><code>admin(4)</code></td>
<td>Installation defaults file</td>
</tr>
<tr>
<td><code>aliases, addresses, forward(4)</code></td>
<td>Addresses and aliases for sendmail</td>
</tr>
<tr>
<td><code>ar(4)</code></td>
<td>Archive file format</td>
</tr>
<tr>
<td><code>archives(4)</code></td>
<td>Device header file</td>
</tr>
<tr>
<td><code>binarsys(4)</code></td>
<td>Remote system information for the ckbinarsys command</td>
</tr>
<tr>
<td><code>boot(4)</code></td>
<td>Boot file</td>
</tr>
<tr>
<td><code>compver(4)</code></td>
<td>Compatible versions file</td>
</tr>
<tr>
<td><code>copyright(4)</code></td>
<td>Copyright information file</td>
</tr>
<tr>
<td><code>core(4)</code></td>
<td>Core image file</td>
</tr>
<tr>
<td><code>cron(4)</code></td>
<td>Cron file</td>
</tr>
<tr>
<td><code>depend(4)</code></td>
<td>Software dependencies files</td>
</tr>
<tr>
<td><code>dfstab(4)</code></td>
<td>File containing commands for sharing resources</td>
</tr>
<tr>
<td><code>dir (s5)(4)</code></td>
<td>Format of s5 directories</td>
</tr>
<tr>
<td>File Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>dir (ufs)(4)</td>
<td>format of ufs directories</td>
</tr>
<tr>
<td>dirent(4)</td>
<td>file system independent directory entry</td>
</tr>
<tr>
<td>dump(4)</td>
<td>dump</td>
</tr>
<tr>
<td>ethers(4)</td>
<td>Ethernet address to hostname database or domain</td>
</tr>
<tr>
<td>/dev/fd(4)</td>
<td>file descriptor files</td>
</tr>
<tr>
<td>filehdr(4)</td>
<td>file header for common object files</td>
</tr>
<tr>
<td>fs (bfs)(4)</td>
<td>format of the bfs file system volume</td>
</tr>
<tr>
<td>fs (s5)(4)</td>
<td>format of s5 file system volume</td>
</tr>
<tr>
<td>fs (ufs)(4)</td>
<td>format of ufs file system volume</td>
</tr>
<tr>
<td>fspec(4)</td>
<td>format specification in text files</td>
</tr>
<tr>
<td>fstypes(4)</td>
<td>file that registers distributed file system packages</td>
</tr>
<tr>
<td>group(4)</td>
<td>group file</td>
</tr>
<tr>
<td>hosts(4)</td>
<td>host name data base</td>
</tr>
<tr>
<td>hosts.equiv, .rhosts(4)</td>
<td>trusted hosts by system and by user</td>
</tr>
<tr>
<td>inetd.conf(4)</td>
<td>Internet servers database</td>
</tr>
<tr>
<td>init(4)</td>
<td>script for init</td>
</tr>
<tr>
<td>inittab(4)</td>
<td>log of failed login attempts</td>
</tr>
<tr>
<td>issue(4)</td>
<td>header file for implementation-specific constants</td>
</tr>
<tr>
<td>limits(4)</td>
<td>login default file</td>
</tr>
<tr>
<td>login(4)</td>
<td>login default file</td>
</tr>
<tr>
<td>mailcnfg(4)</td>
<td>initialization information for mail and rmail</td>
</tr>
<tr>
<td>mailsurr(4)</td>
<td>surrogate commands for routing and transport of mail</td>
</tr>
<tr>
<td>mapchan(4)</td>
<td>Format of tty device mapping files</td>
</tr>
<tr>
<td>mdev(4)</td>
<td>file format</td>
</tr>
<tr>
<td>mdevice (4)</td>
<td>file format</td>
</tr>
<tr>
<td>mdevice (4)</td>
<td>file format</td>
</tr>
<tr>
<td>mfsys (4)</td>
<td>file format</td>
</tr>
<tr>
<td>mnttab(4)</td>
<td>mounted file system table</td>
</tr>
<tr>
<td>mtune(4)</td>
<td>file format</td>
</tr>
<tr>
<td>netconfig(4)</td>
<td>network configuration database</td>
</tr>
<tr>
<td>netmasks(4)</td>
<td>network mask data base</td>
</tr>
<tr>
<td>netrc(4)</td>
<td>file for ftp remote login data</td>
</tr>
<tr>
<td>networks(4)</td>
<td>network name data base</td>
</tr>
<tr>
<td>passwd(4)</td>
<td>password file</td>
</tr>
<tr>
<td>pathalias(4)</td>
<td>alias file for FACE</td>
</tr>
<tr>
<td>pkginfo(4)</td>
<td>package characteristics file</td>
</tr>
<tr>
<td>pkgmap(4)</td>
<td>package contents description file</td>
</tr>
<tr>
<td>pnch(4)</td>
<td>file format for card images</td>
</tr>
</tbody>
</table>

Table of Contents
Table of Contents

/proc(4) ... process file system
profile(4) .. setting up an environment at login time
protocols(4) .. protocol name data base
prototype(4) .. package information file
publickey(4) .. public key database
resolv.conf(4) .. configuration file for name server routines
rhosts(4) ... Remote File Sharing name server master file
routing(4) .. system supporting for packet network routing
rpc(4) ... rpc program number data base
rt_dptbl(4) .. real-time dispatcher parameter table
sccsfile(4) .. format of SCCS file
sdevice(4) ... file format
services(4) .. Internet services and aliases
sfsys(4) ... file format
shadow(4) ... shadow password file
sharetab(4) ... shared file system table
space(4) ... disk space requirement file
stat(4) .. data returned by stat system call
strcf(4) ... STREAMS Configuration File for STREAMS TCP/IP
strftime(4) ... language specific strings
stune(4) .. file format
su(4) ... su
syslog.conf(4) .. configuration file for syslogd system log daemon
term(4) ... format of compiled term file
terminfo(4) ... terminal capability data base
timezone(4) ... set default system time zone
tsdptbl(4) ... time-sharing dispatcher parameter table
ttydefs(4) .. file contains terminal line settings information for ttymon
ttydefs(4) .. file contains terminal line settings information for ttymon
ttydefs(4) .. file contains terminal line settings information for ttymon
ttydefs(4) .. file contains terminal line settings information for ttymon
unisid(4) ... header file for symbolic constants
updaters(4) .. configuration file for Network Information Service (NIS) updating
utmp, wtmp(4) .. utmp and wtmp entry formats
utmpx, wtmpx(4) .. utmpx and wtmpx entry formats
vfstab(4) ... table of file system defaults
ypfiles(4) ... the Network Information Service (NIS) database and directory structure
Section 5 – Miscellaneous Facilities

- **intro(5)**: introduction to miscellany
- **ascii(5)**: map of ASCII character set
- **environ(5)**: user environment
- **eqnchar(5)**: special character definitions for eqn
- **fcntl(5)**: file control options
- **iconv(5)**: code set conversion tables
- **jagent(5)**: host control of windowing terminal
- **langinfo(5)**: language information constants
- **layers(5)**: protocol used between host and windowing terminal under layers(1)
- **math(5)**: math functions and constants
- **man(5)**: macros to format Reference Manual pages
- **me(5)**: macros for formatting papers
- **ms(5)**: text formatting macros
- **nl_types(5)**: native language data types
- **prof(5)**: profile within a function
- **regexp: compile, step, advance(5)**: regular expression compile and match routines
- **siginfo(5)**: signal generation information
- **signal(5)**: base signals
- **stat(5)**: data returned by stat system call
- **stdarg(5)**: handle variable argument list
- **term(5)**: conventional names for terminals
- **types(5)**: primitive system data types
- **ucontext(5)**: user context
- **values(5)**: machine-dependent values
- **varargs(5)**: handle variable argument list
- **wstat(5)**: wait status
- **xtproto(5)**: multiplexed channels protocol used by xt driver
Section 7 – Special Files

intro(7) .. introduction to special files
ARP(7) ... Address Resolution Protocol
asy(7) ... asynchronous serial port
clon(7) .. open any major/minor device pair on a STREAMS driver
connld(7) .. line discipline for unique stream connections
console(7) ... STREAMS-based console interface
cram(7) ... CMOS RAM interface
disk(7) .. random access bulk storage medium
display(7) .. system console display
fd(7) ... diskette (floppy disk)
filesystem(7) ... file system organization
hd(7) ... hard (fixed) disk
ICMP(7) ... Internet Control Message Protocol
ie6(7) ... 3C503 3Com Ethernet Driver
if(7) ... general properties of Internet Protocol network interfaces
inet(7) ... Internet protocol family
IP(7) ... Internet Protocol
keyboard(7) .. system console keyboard
ldterm(7) ... standard STREAMS terminal line discipline module
lo(7) ... software loopback network interface
log(7) ... interface to STREAMS error logging and event tracing
lp(7) ... parallel port interface
mem, kmem(7) .. core memory
mouse(7) ... mouse device driver supporting bus, serial, and PS/2 compatible mouse devices
null(7) ... the null file
pckt(7) ... STREAMS Packet Mode module
ports(7) ... five-line asynchronous communications interface STREAMS driver
prf(7) ... operating system profiler
ptem(7) .. STREAMS Pseudo Terminal Emulation module
qt(7) .. QIC cartridge magnetic tape streamer interface
rtc(7) .. real time clock interface
SA(7) .. devices administered by System Administration
sad(7) ... STREAMS Administrative Driver
scsi_adaptec(7) .. Adaptec 1542A SCSI host adapter subsystem
scsi_cdrom(7) .. CD-ROM Target Driver
scsi_disk(7) .. sd01 SCSI disk driver
scsi_dpt(7) ... SCSI host adapter subsystem
<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scsi_tape(7)</td>
<td>st01 SCSI tape driver</td>
</tr>
<tr>
<td>scsi_wd7000(7)</td>
<td>WD7000 FASST2 host adapter subsystem</td>
</tr>
<tr>
<td>scsi_worm(7)</td>
<td>sw01 SCSI WORM Target Driver</td>
</tr>
<tr>
<td>sockio(7)</td>
<td>ioctls that operate directly on sockets</td>
</tr>
<tr>
<td>streamio(7)</td>
<td>STREAMS ioctl commands</td>
</tr>
<tr>
<td>sxt(7)</td>
<td>pseudo-device driver</td>
</tr>
<tr>
<td>TCP(7)</td>
<td>Internet Transmission Control Protocol</td>
</tr>
<tr>
<td>termio(7)</td>
<td>general terminal interface</td>
</tr>
<tr>
<td>termiox(7)</td>
<td>extended general terminal interface</td>
</tr>
<tr>
<td>tictls, ticots, ticotsord(7)</td>
<td>loopback transport providers</td>
</tr>
<tr>
<td>timod(7)</td>
<td>Transport Interface cooperating STREAMS module</td>
</tr>
<tr>
<td>tirdwr(7)</td>
<td>Transport Interface read/write interface STREAMS module</td>
</tr>
<tr>
<td>ttcompat(7)</td>
<td>V7, 4BSD and XENIX STREAMS compatibility module</td>
</tr>
<tr>
<td>tty(7)</td>
<td>controlling terminal interface</td>
</tr>
<tr>
<td>UDP(7)</td>
<td>Internet User Datagram Protocol</td>
</tr>
<tr>
<td>wd(7)</td>
<td>Western Digital 8003 Adapter Board</td>
</tr>
<tr>
<td>xt(7)</td>
<td>STREAMS-based multiplexed tty driver for AT&T windowing terminals</td>
</tr>
<tr>
<td>zero(7)</td>
<td>source of zeroes</td>
</tr>
</tbody>
</table>

Permuted Index
Introduction

This reference manual describes the commands of the UNIX system. It contains individual manual pages that describe user and administrative commands. (For a general overview of the UNIX system, see the Product Overview.)

Note that not all commands described in this manual are available in every UNIX system. Some of the features require additional utilities that may not exist on your system.

Organization of this Reference Manual

This manual contains the following sections (sorted together, alphabetically):

<table>
<thead>
<tr>
<th>Section</th>
<th>Component Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commands (User)</td>
</tr>
<tr>
<td>1C</td>
<td>Commands (Basic Networking)</td>
</tr>
<tr>
<td>1F</td>
<td>Commands (Form & Menu Language Interpreter (FMLI))</td>
</tr>
<tr>
<td>1M</td>
<td>Commands (Administration)</td>
</tr>
<tr>
<td>1N</td>
<td>Commands (Enhanced Networking)</td>
</tr>
</tbody>
</table>

Section 1 (Commands, user) describes programs intended to be invoked directly by the user or by command language procedures, as opposed to subroutines that are called by the user’s programs. Commands usually are in the /usr/bin and /usr/sbin directories. In addition, some commands are in /sbin. These directories are searched automatically by the command interpreter called the shell. Also, UNIX systems often have a directory called /usr/lbin that contains local commands.

Section 1C (Commands, basic networking) contains commands that are used when files are exchanged with another computer system.

Section 1F (Commands, forms and menus) contains commands and programs that are used by the Form & Menu Interpreter (FMLI).

Section 1M (Commands, system maintenance) contains commands and programs that are used in administering a UNIX system.

Section 1N (Commands, enhanced networking) contains commands and programs that are used for enhanced networking.
Manual Page Format

All manual page entries use a common format, not all of whose parts always appear:

- The NAME section gives the name(s) of the entry and briefly states its purpose.
- The SYNOPSIS section summarizes the use of the command, program or function. A few conventions are used:
 - Constant width typeface strings are literals and are to be typed just as they appear.
 - Italic strings usually represent substitutable argument prototypes and functions.
 - Square brackets [] around an argument prototype indicate that the argument is optional. When an argument prototype is given as name or file, it typically refers to a file name.
 - Ellipses . . . are used to show that the previous argument prototype may be repeated.
 - For commands, an argument beginning with a minus – or plus + sign is often taken to be a flag argument, even if it appears in a position where a file name could appear. Therefore, it is unwise to have files whose names begin with – or +.

- The DESCRIPTION section describes the utility.
- The EXAMPLE section gives example(s) of usage, where appropriate.
- The FILES section gives the file names that are built into the program.
- The SEE ALSO section gives pointers to related information. Reference to manual pages with section numbers other than those in this book can be found in other reference manuals, as listed above.
- The DIAGNOSTICS section discusses the diagnostic indications that may be produced. Messages that are intended to be self-explanatory are not listed.
• The NOTES section gives generally helpful hints about the use of the utility.

How to Get Started

This discussion provides the basic information you need to get started on the UNIX system: how to log in and log out, how to communicate through your terminal, and how to run a program. (See the User's Guide for a more complete introduction to the system.)

Logging In

You must connect to the UNIX system from a full-duplex ASCII terminal or the console monitor (on a PC). You must also have a valid login ID, which may be obtained (together with how to access your UNIX system) from the administrator of your system. Common terminal speeds are 1200, 2400, 4800 and 9600 baud. Some UNIX systems have different ways of accessing each available terminal speed, while other systems offer several speeds through a common access method. In the latter case, there is one “preferred” speed; if you access it from a terminal set to a different speed, you will be greeted by a string of meaningless characters. Keep hitting the BREAK, INTERRUPT, or ATTENTION key until the login: prompt appears.

Most terminals have a speed switch that should be set to the appropriate speed and a half-/full-duplex switch that should be set to full-duplex. When a connection has been established, the system displays login:. You respond by typing your login ID followed by the RETURN key. If you have a password, the system asks for it but will not print, or “echo,” it on the screen. After you have logged in, the ENTER, RETURN, NEW-LINE, and LINE-FEED keys all have equivalent meanings.

Make sure you type your login name in lower-case letters. Typing upper-case letters causes the UNIX system to assume that your terminal can generate only upper-case letters, and it will treat all letters as upper-case for the remainder of your login session. The shell will print a $ on your screen when you have logged in successfully.
Introduction

When you log in, a message-of-the-day may greet you before you receive your prompt. For more information, consult the `login(1)` manual page, which discusses the login sequence in more detail, and the `stty(1)` manual page, which tells you how to describe your terminal to the system. The `profile(4)` manual page explains how to accomplish this last task automatically every time you log in.

Logging Out

To log out of your system type an end-of-file indication (ASCII EOT character, usually typed as CTRL-d) to the shell. The shell will terminate, and the `login:` message will appear again.

How to Communicate Through Your Terminal

When you type on your keyboard, your individual characters are being gathered and temporarily saved. Although they are echoed back to you (displayed on the screen), these characters will not be "seen" by a program until you press ENTER (or RETURN or NEW-LINE) as described above in "Logging In."

UNIX system terminal input/output is full duplex. It has full read-ahead, which means that you can type at any time, even while a program is displaying characters on the screen. Of course, if you type during output, your input characters will have output characters interspersed among them. In any case, whatever you type will be saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead, but it is not likely to be exceeded.

The character @ cancels all the characters typed before it on a line, effectively deleting the line. (@ is called the "line kill" character.) The character # erases the last character typed. Successive uses of # will erase characters back to, but not beyond, the beginning of the line; @ and # can be typed as themselves by preceding them with \ (thus, to erase a \, you need two #s). These default erase and line kill characters can be changed; see the `stty(1)` manual page.

CTRL-s (also known as the ASCII DC3 character) is entered by pressing the CONTROL key and the alphabetic s simultaneously; it is used to stop temporarily screen output. It is useful with CRT terminals to prevent output from disappearing before it can be read. Output is resumed when a CTRL-q (also known as DC1) is pressed. Thus, if you had typed `cat yourfile` and the contents of yourfile were passing by on the screen more rapidly than you could read it, you would enter CTRL-s to freeze the output. Entering CTRL-q would allow the output to resume. The CTRL-s and CTRL-q characters are not passed to any
other program when used in this manner. Also, there may be a scroll lock key on your keyboard that can be used to stop temporarily screen output.

The ASCII DEL (also called "rubout") character is not passed to programs but instead generates an interrupt signal, just like the BREAK, INTERRUPT, or ATTENTION signal. This signal generally causes whatever program you are running to terminate. It is typically used to stop a long printout to the screen that you do not want. Programs, however, can arrange either to ignore this signal altogether or to be notified and take a specific action when it happens (instead of being terminated). The editor ed(1), for example, catches interrupts and stops what it's doing, instead of terminating, so an interrupt can be used to halt an editor printout without losing the file being edited.

Besides adapting to the speed of the terminal, the UNIX system tries to be intelligent about whether you have a terminal with the NEW-LINE function, or whether it must be simulated with a CARRIAGE-RETURN and LINE-FEED pair. In the latter case, all input CARRIAGE-RETURN characters are changed to LINE-FEED characters (the standard line delimiter), and a CARRIAGE-RETURN and LINE-FEED pair is echoed to the terminal. If you get into the wrong mode, the stty(1) command will rescue you.

Tab characters are used freely in UNIX system source programs. If your terminal does not have the tab function, you can arrange to have tab characters changed into spaces during output, and echoed as spaces during input. Again, the stty(1) command will set or reset this mode. The system assumes that tabs are set every eight character positions. The tabs(1) command will set tab stops on your terminal, if that is possible.

How to Run a Program

When you have successfully logged into the UNIX system, a program called the shell is communicating with your terminal. The shell reads each line you type, splits the line into a command name and its arguments, and executes the command. A command is simply an executable program. Normally, the shell looks first in your current directory (see "The Current Directory" below) for the named program and, if none is there, then in system directories, such as /usr/bin. There is nothing special about system-provided commands except that they are kept in directories where the shell can find them. You can also keep commands in your own directories and instruct the shell to find them there. See the manual entry for sh(1), under the sub-heading "Parameter
Substitution," for the discussion of the **PATH** shell environmental variable.

The command name is the first word on an input line to the shell; the command and its arguments are separated from one another by space or tab characters.

When a program terminates, the shell will ordinarily regain control and give you back your prompt to show that it is ready for another command. The shell has many other capabilities, which are described in detail on the **sh(1)** manual page.

The Current Directory

The UNIX system has a file system arranged in a hierarchy of directories. When you received your login ID, the system administrator also created a directory for you (ordinarily with the same name as your login ID, and known as your login or home directory). When you log in, that directory becomes your current or working directory, and any file name you type is, by default, assumed to be in that directory. Because you are the owner of this directory, you have full permissions to read, write, alter, or remove its contents. Permissions to enter or change other directories and files will have been granted or denied to you by their respective owners or by the system administrator. To change the current directory, use the **cd** command (see the **cd(1)** manual page.

Pathnames

To refer to files or directories not in the current directory, you must use a pathname. Full pathnames begin with `/`, which is the name of the root directory of the whole file system. After the slash comes the name of each directory containing the next subdirectory (followed by a `/`), until finally the file or directory name is reached (for example, `/usr/ae/filex` refers to file *filex* in directory *ae*, while *ae* is itself a subdirectory of *usr*, and *usr* is a subdirectory of the root directory). Use the **pwd** command (see the **pwd(1)** manual page) to print the full pathname of the directory you are working in. See the introduction to section 2 in the *Programmer's Reference Manual: Operating System API* for a formal definition of *pathname*.
If your current directory contains subdirectories, the pathnames of their respective files begin with the name of the corresponding subdirectory (without a prefixed /). A pathname may be used anywhere a file name is required.

Important commands that affect files are `cp`, `mv`, and `rm`, which respectively copy, move (that is, rename), and remove files (see the `cp(1)`, `mv(1)` and `rm(1)` manual pages). To find out the status of files or directories, use `ls` (see the `ls(1)` manual page). Use `mkdir` for making directories and `rmdir` for removing them (see the `mkdir(1)` and `rm(1)` manual pages).

Text Entry and Display

Almost all text is entered through an editor. Common examples of UNIX system editors are `ed(1)` and `vi(1)`. The commands most often used to print text on a terminal are `cat`, `pr`, and `pg` (see the `cat(1)`, `pr(1)` and `pg(1)` manual pages). The `cat` command displays the contents of ASCII text files on the screen, with no processing at all. The `pr` command paginates the text, supplies headings, and has a facility for multi-column output. The `pg` command displays text in successive portions no larger than your screen.

Writing a Program

Once you have entered the text of your program into a file with an editor, you are ready to give the file to the appropriate language processor. The processor will accept only files observing the correct naming conventions: all C programs must end with the suffix `.c`, and Fortran programs must end with `.f`. The output of the language processor will be left in a file named `a.out` in the current directory, unless you have invoked an option to save it in another file. (Use `mv` to rename `a.out`.) If the program is written in assembly language, you will probably need to load library subroutines with it (see the `ld(1)` manual page).

When you have completed this process without provoking any diagnostics, you may run the program by giving its name to the shell in response to the `$` prompt. Your programs can receive arguments from the command line just as system programs do; see the `exec(2)` manual page. For more information on writing and running programs, see the *Programmer's Guide: ANSI C and Programming Support Tools*.
Communicating with Others

Certain commands provide inter-user communication. Even if you do not plan to use them, it's helpful to learn something about them because someone else may try to contact you. `mail` or `mailx` (see the `mail(1)` and `mailx(1)` manual pages) will leave a message whose presence will be announced to another user when they next log in and at periodic intervals during the session. To communicate with another user currently logged in, use `write` (see the `write(1)` manual page). The corresponding entries in this manual also suggest how to respond to these commands if you are their target.

See the tutorials in the *User’s Guide* for more information on communicating with others.
Section 1 – Commands a – I

intro(1) ... introduction to commands and application programs
accept, reject(1M) .. accept or reject print requests
acct: acctdisk, acctdusg, accton, acctwtmp, utmp2wtmp(1M)
.. overview of accounting and miscellaneous accounting commands
acctcmsg(1M) command summary from per-process accounting records
acctcom(1) .. search and print process accounting file(s)
aacctcon, acctcon1, accton1(1M) ... connect-time accounting
acctmerge(1M) merge or add total accounting files
acctprc, acctprc1, acctprc2(1M) ... process accounting
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily, pracct,
runacct, shutacct, startup, turnacct(1M) shell procedures for accounting
addbib(1) ... create or extend a bibliographic database
admin(1) .. create and administer SCCS files
apropos(1) .. locate commands by keyword lookup
ar(1) .. maintain portable archive or library
arch(1) .. display the architecture of the current host
arp(1M) ... address resolution display and control
as(1) ... assembler
at, batch(1) ... execute commands at a later time
atq(1) .. display the jobs queued to run at specified times
atrm(1) .. remove jobs spooled by at or batch
automount(1M) automatically mount NFS file systems
autopush(1M) configure lists of automatically pushed STREAMS modules
awk(1) ... pattern scanning and processing language
backup(1M) ... initiate or control a system backup session
backup(1) .. perform backup functions
banner(1) .. make posters
basename, dirname(1) deliver portions of path names
basename(1) .. display portions of pathnames
bc(1) ... arbitrary-precision arithmetic language
bdiff(1) ... big diff
bfs(1) .. big file scanner
biff(1) ... give notice of incoming mail messages
biod(1M) .. NFS daemon
bkexcept(1M) change or display an exception list for incremental backups
bkhistory(1M) report on completed backup operations
bkoper(1M) .. interact with backup operations to service media insertion prompts
bkreg(1M) .. change or display the contents of a backup register
bkstatus(1M) display the status of backup operations
Section 1 – Commands a – i

boot(1M) .. UNIX system boot program
bootparamd(1M) ... boot parameter server
brc, bcheckrc(1M) .. system initialization procedures
cal(1) .. print calendar
calendar(1) ... reminder service
captioninfo(1M) ... convert a termcap description into a terminfo description
cat(1) ... concatenate and print files
catman(1M) .. create the cat files for the manual
cb(1) .. C program beautifier
cc(1) ... C compiler
cc(1) ... C compiler
cd(1) ... change working directory
cdc(1) .. change the delta comment of an SCCS delta
cflow(1) .. generate flowgraph
checkfsys(1M) .. check a file system
checknr(1) .. check nroff and troff input files; report possible errors
chgrp(1) .. change the group ownership of a file
chkey(1) .. change user encryption key
chmod(1) .. change file mode
chown(1) .. change file owner
chroot(1M) .. change root directory for a command
chrtbl(1M) .. generate character classification and conversion tables
ckbinarsys(1M) .. determine whether remote system can accept binary messages
ckbupscd(1M) ... check file system backup schedule
ckdate, errdate, helpdate, valdate(1) .. prompt for and validate a date
ckgid, errgid, helpgid, valgid(1) .. prompt for and validate a group ID
ckint(1) .. display a prompt; verify and return an integer value
ckitem(1) .. build a menu; prompt for and return a menu item
ckkeywd(1) .. prompt for and validate a keyword
ckpath(1) .. display a prompt; verify and return a pathname
ckrange(1) .. prompt for and validate an integer
ckstr(1) .. display a prompt; verify and return a string answer
cktime(1) .. display a prompt; verify and return a time of day
ckuid(1) .. prompt for and validate a user ID
ckyorn(1) .. prompt for and validate yes/no
clear(1) ... clear the terminal screen
cmp(1) ... compare two files
cof2elf(1) .. COFF to ELF object file translation
col(1) .. filter reverse line-feeds
Section 1 – Commands

a -

colltbl(1M) .. create collation database
comb(1) ... combine SCCS deltas
comm(1) .. select or reject lines common to two sorted files
compress, uncompress, zcat(1)
comsat, in.comsat(1M) ... biff server
conflgs(1M) ... change and display console flags
convert(1) .. convert archive files to common formats
cocreate, cosend, cocheck, coreceive, codestroy(1F) ... communicate with a process
copy(1) ... copy groups of files
cp(1) ... copy files
cpio(1) ... copy file archives in and out
crash(1M) .. examine system images
cron(1M) .. clock daemon
crontab(1) ... user crontab file
crypt(1) .. encode/decode
cscope(1) .. interactively examine a C program
csh(1) ... shell command interpreter with a C-like syntax
csplit(1) ... context split
c(1C) ... spawn login to a remote terminal
ctags(1) ... create a tags file for use with vi
ctrace(1) ... C program debugger
cu(1C) ... call another UNIX system
custom(1M) .. install specific portions of a UNIX package
custom(1) ... install specific portions of certain UNIX or XENIX packages
cut(1) ... cut out selected fields of each line of a file
cvtomflib(1) .. convert OMF (XENIX) libraries to ELF
cxref(1) ... generate C program cross-reference
date(1) ... print and set the date
dbcmd(1M) .. load command and macro files into a kernel executable file
dbsym(1M) ... add symbols to kernel debugger
dc(1) .. desk calculator
dcopy (generic)(1M) .. copy file systems for optimal access time
dcopy (s5)(1M) .. copy s5 file systems for optimal access time
dd(1M) ... convert and copy a file
delsysadm(1M) .. systematic interface to menu or task removal tool
delta(1) ... make a delta (change) to an SCCS file
deroff(1) ... remove nroff/troff, tbl, and eqn constructs
deroff(1) ... remove nroff, troff, tbl and eqn constructs
devattr(1M) ... lists device attributes
Section 1 – Commands a – I

devfree(1M) .. release devices from exclusive use
devnm(1M) .. device name
devreserv(1M) ... reserve devices for exclusive use
df (generic), dfspace(1M) ... report number of free disk blocks and files/free disk space
df (s5)(1M) ... report number of free disk blocks and i-nodes for s5 file systems
df (ufs)(1M) ... report free disk space on ufs file systems
df(1) .. report free disk space on file systems
dfmounts(1M) .. display mounted resource information
dfmounts(1M) ... display mounted NFS resource information
dfmounts(1M) ... display mounted RFS resource information
dfshares(1M) .. list available resources from remote or local systems
dfshares(1M) .. list available NFS resources from remote systems
dfshares(1M) .. list available RFS resources from remote systems
diff(1) .. differential file comparator
diff3(1) .. 3-way differential file comparison
diffmk(1) .. mark differences between versions of a troff input file
dircmp(1) .. directory comparison
dis(1) ... object code disassembler
diskadd(1M) .. disk set up utility
disksetup(1M) .. disk set up utility
diskusg(1M) .. generate disk accounting data by user ID
dispadmin(1M) .. process scheduler administration
dispgid(1) .. displays a list of all valid group names
dispuid(1) .. displays a list of all valid user names
dname(1M) .. print Remote File Sharing domain and network names
domainname(1M) ... get/set name of current secure RPC domain
dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosls, dosrm, dosrmdir(1) .. access and manipulate DOS files
download(1) .. host resident PostScript font downloader
dpost(1) .. troff postprocessor for PostScript printers
du(1M) ... summarize disk usage
du(1M) ... display the number of disk blocks used per directory or file
dump(1) .. dump selected parts of an object file
echo(1) .. echo arguments
echo(1F) .. put string on virtual output
echo(1) .. echo arguments
ed, red(1) ... text editor
ed(1) ... text editor (variant of ex for casual users)
edquota(1M) .. edit user quotas
edsysadm(1M) .. sysadm interface editing tool
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edvtoc(1M)</td>
<td>VTOC (Volume Table of Contents) editing utility</td>
</tr>
<tr>
<td>egrep(1)</td>
<td>search a file for a pattern using full regular expressions</td>
</tr>
<tr>
<td>enable, disable(1)</td>
<td>enable/disable LP printers</td>
</tr>
<tr>
<td>env(1)</td>
<td>set environment for command execution</td>
</tr>
<tr>
<td>eqn, neqn, checkeq(1)</td>
<td>typeset mathematics</td>
</tr>
<tr>
<td>ex(1)</td>
<td>text editor</td>
</tr>
<tr>
<td>expr(1)</td>
<td>evaluate arguments as an expression</td>
</tr>
<tr>
<td>exstr(1)</td>
<td>extract strings from source files</td>
</tr>
<tr>
<td>face(1)</td>
<td>executable for the Framed Access Command Environment Interface</td>
</tr>
<tr>
<td>factor(1)</td>
<td>obtain the prime factors of a number</td>
</tr>
<tr>
<td>fastboot, fasthalt(1M)</td>
<td>reboot/halt the system without checking the disks</td>
</tr>
<tr>
<td>fdetach(1M)</td>
<td>detach a name from a STREAMS-based file descriptor</td>
</tr>
<tr>
<td>fdisk(1M)</td>
<td>create or modify hard disk partition table</td>
</tr>
<tr>
<td>ff(generic)(1M)</td>
<td>list file names and statistics for a file system</td>
</tr>
<tr>
<td>ff(s5)(1M)</td>
<td>display i-list information</td>
</tr>
<tr>
<td>ff(ufs)(1M)</td>
<td>list file names and statistics for a ufs file system</td>
</tr>
<tr>
<td>ffile(1M)</td>
<td>create, restore from a full file system archive</td>
</tr>
<tr>
<td>fgrep(1)</td>
<td>search a file for a character string</td>
</tr>
<tr>
<td>file(1)</td>
<td>determine file type</td>
</tr>
<tr>
<td>fimage(1M)</td>
<td>create, restore an image archive of a filesystem</td>
</tr>
<tr>
<td>find(1)</td>
<td>find files</td>
</tr>
<tr>
<td>finger(1)</td>
<td>display information about local and remote users</td>
</tr>
<tr>
<td>fingerd, in.fingerd(1M)</td>
<td>remote user information server</td>
</tr>
<tr>
<td>fixperm(1M)</td>
<td>correct or initialize XENIX file permissions and ownership</td>
</tr>
<tr>
<td>fixshlib(1M)</td>
<td>alters executables to call SCO UNIX System V/386 Release 3.2-compatible libnsl</td>
</tr>
<tr>
<td>fm1cut(1F)</td>
<td>cut out selected fields of each line of a file</td>
</tr>
<tr>
<td>fm1expr(1F)</td>
<td>evaluate arguments as an expression</td>
</tr>
<tr>
<td>fm1grep(1F)</td>
<td>search a file for a pattern</td>
</tr>
<tr>
<td>fm1li(1)</td>
<td>invoke FMLI</td>
</tr>
<tr>
<td>fmt(1)</td>
<td>simple text formatters</td>
</tr>
<tr>
<td>fmtmsg(1)</td>
<td>display a message on stderr or system console</td>
</tr>
<tr>
<td>fold(1)</td>
<td>fold long lines</td>
</tr>
<tr>
<td>format(1M)</td>
<td>format floppy disk tracks</td>
</tr>
<tr>
<td>fromsmtp(1M)</td>
<td>receive RFC822 mail from SMTP</td>
</tr>
<tr>
<td>fsba(1M)</td>
<td>file system block analyzer</td>
</tr>
<tr>
<td>fsck(generic)(1M)</td>
<td>check and repair file systems</td>
</tr>
</tbody>
</table>
Section 1 – Commands a – I

fsck (bfs)(1M) ... check and repair bfs file systems
fsck (s5)(1M) ... check and repair s5 file systems
fsck (ufs)(1M) ... file system consistency check and interactive repair
fsdb (generic)(1M) .. file system debugger
fsdb (s5)(1M) ... s5 file system debugger
fsdb (ufs)(1M) ... ufs file system debugger
fsirand(1) .. install random inode generation numbers
fstyp (generic)(1M) ... determine file system type
ftp(1) .. file transfer program
ftpd(1M) ... file transfer protocol server
fumount(1M) .. forced unmount of advertised resources
fusage(1M) ... disk access profiler
fuser(1M) ... identify processes using a file or file structure
fwtmp, wtmpfix(1M) .. manipulate connect accounting records
gcore(1) ... get core images of running processes
gencc(1M) .. create a front-end to the cc command
get(1) ... get a version of an SCCS file
getdev(1M) ... lists devices based on criteria
getdgrp (1M) .. lists device groups which contain devices that match criteria
getfrm(1F) ... returns the current frameID number
getitems(1F) .. return a list of currently marked menu items
getopt(1) ... parse command options
getopt, getoptcv(1) .. parse command options
gettable (1M) ... get DoD Internet format host table from a host
gettxt(1) ... retrieve a text string from a message data base
getty(1M) .. set terminal type, modes, speed, and line discipline
getvol(1M) ... verifies device accessibility
grep(1) ... search a file for a pattern
groupadd(1M) ... add (create) a new group definition on the system
groupdel(1M) ... delete a group definition from the system
groupmod (1M) .. modify a group definition on the system
groups(1) .. print group membership of user
groups(1) .. display a user's group memberships
grpck(1M) .. check group database entries
halt(1M) ... stop the processor
hd(1) ... display files in hexadecimal format
head(1) ... display first few lines of files
help(1) .. ask for help with message numbers or SCCS commands
hostid(1) ... print the numeric identifier of the current host
hostname(1) ... set or print name of current host system
htable(lM) .. convert DoD Internet format host table
iconv(l) ... code set conversion utility
id(1M) .. print the user name and ID, and group name and ID
idbuild(lM) ... build new UNIX System kernel
idcheck(lM) ... returns selected information
idconfig(lM) ... produce a new kernel configuration
idinstall(lM) .. add, delete, update, or get device driver configuration data
idload(lM) .. Remote File Sharing user and group mapping
idmkninit(lM) .. reads files containing specifications
idmknod(lM) .. removes nodes and reads specifications of nodes
idmkunix(lM) ... build new UNIX System kernel
idspace(lM) .. investigates free space
idtune(lM) .. attempts to set value of a tunable parameter
ifconfig(lM) .. configure network interface parameters
incfile(lM) .. create, restore an incremental filesystem archive
indtune(lM) ... display application specific alarms and/or the “working” indicator
indxbib(l) ... create an inverted index to a bibliographic database
inetd(lM) .. Internet services daemon
infocmp(lM) ... compare or print out terminfo descriptions
init, telinit(lM) .. process control initialization
install(1M) ... install commands
install(l) .. add files to the software installation database
ipcrm(l) .. remove a message queue, semaphore set, or shared memory ID
ipcs(l) ... report inter-process communication facilities status
ismpx(l) ... return windowing terminal state
join(1) ... relational database operator
jterm(l) ... reset layer of windowing terminal
jwin(l) ... print size of layer
kcrash(lM) .. examine system images
kdb(lM) .. kernel debugger
kdb(lM) .. multiprocessor kernel debugger
keylogin(l) ... decrypt and store secret key
eksserv(1M) .. server for storing public and private keys
kill(1) .. terminate a process by default
killall(lM) .. kill all active processes
ksh, rksh(l) .. KornShell, a standard/restricted command and programming language
labelit (generic)(lM) .. provide labels for file systems
labelit (s5)(lM) .. provide labels for s5 file systems
Section 1 – Commands a – l

labelit (ufs)(1M) .. provide labels for ufs file systems
last(1) ... indicate last user or terminal logins
lastcomm(1) ... show the last commands executed, in reverse order
layers(1) ... layer multiplexor for windowing terminals
ld(1) .. link editor for object files
ldd(1) .. link editor, dynamic link editor
lddsysdump(1M) .. load system dump from floppy diskettes
lex(1) .. generate programs for simple lexical tasks
line(1) ... read one line
link, unlink(1M) .. link and unlink files and directories
lint(1) .. a C program checker
listdgrp(1M) ... lists members of a device group
listen(1M) .. network listener daemon
listusers(1) ... list user login information
ln(1) ... link files
ln(1) .. make hard or symbolic links to files
lockd(1M) ... network lock daemon
logger(1) .. add entries to the system log
login(1) ... sign on
logins(1M) ... list user and system login information
logname(1) .. get login name
look(1) .. find words in the system dictionary or lines in a sorted list
lookbib(1) ... find references in a bibliographic database
lorder(1) .. find ordering relation for an object library
lp, cancel(1) ... send/cancel requests to an LP print service
lpadmin(1M) ... configure the LP print service
lp(1M) .. line printer control program
lpfilter(1M) ... administer filters used with the LP print service
lpforms(1M) ... administer forms used with the LP print service
lpq(1) ... display the queue of printer jobs
lprm(1) ... remove jobs from the printer queue
lprof(1) ... display line-by-line execution count profile data
lpshut, lpmove(1M) .. start/stop the LP print service and move requests
lpstat(1) ... print information about the status of the LP print service
lpsystem(1M) ... register remote systems with the print service
lpusers(1M) ... generate lineprinter ripple pattern
ls(1) ... list contents of directory
ls(1) ... list the contents of a directory
ls, lc(1) .. list contents of directory
NAME
intro – introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, commands, including user commands, programming commands and commands used chiefly for maintenance and administration (1M commands).

Because of command restructuring for the Virtual File System architecture, there are several instances of multiple manual pages with the same name. For example, there are four manual pages called mount(1M). In each such case the first of the multiple pages describes the syntax and options of the generic command, that is, those options applicable to all FSTypes (file system types). The succeeding pages describe the functionality of the FSTYPE-specific modules of the command. These pages all display the name of the FSTYPE to which they pertain centered and in parentheses at the top of the page. Note that the administrator should not attempt to call these modules directly. The generic command provides a common interface to all of them. Thus the FSTYPE-specific manual pages should not be viewed as describing distinct commands, but rather as detailing those aspects of a command that are specific to a particular FSTYPE.

Manual Page Command Syntax
Unless otherwise noted, commands described in the SYNOPSIS section of a manual page accept options and other arguments according to the following syntax and should be interpreted as explained below.

name [-option...] [cmdarg...]
where:

[] Surround an option or cmdarg that is not required.
...
Indicates multiple occurrences of the option or cmdarg.
name The name of an executable file.
option (Always preceded by a "-".)
noargletter... or,
argletter optarg[, ...]

noargletter A single letter representing an option without an option-argument. Note that more than one noargletter option can be grouped after one "-" (Rule 5, below).

argletter A single letter representing an option requiring an option-argument.

optarg An option-argument (character string) satisfying a preceding argletter. Note that groups of optargs following an argletter must be separated by commas, or separated by white space and quoted (Rule 8, below).

cmdarg Path name (or other command argument) not beginning with "-", or "-" by itself indicating the standard input.
Command Syntax Standard: Rules

These command syntax rules are not followed by all current commands, but all new commands will obey them. `getopts(1)` should be used by all shell procedures to parse positional parameters and to check for legal options. It supports Rules 3-10 below. The enforcement of the other rules must be done by the command itself.

1. Command names (name above) must be between two and nine characters long.
2. Command names must include only lower-case letters and digits.
3. Option names (option above) must be one character long.
4. All options must be preceded by "-".
5. Options with no arguments may be grouped after a single "-".
6. The first option-argument (optarg above) following an option must be preceded by white space.
7. Option-arguments cannot be optional.
8. Groups of option-arguments following an option must either be separated by commas or separated by white space and quoted (e.g., `-o xxx,zyy` or `-o "xxx z yy"`).
9. All options must precede operands (cmdarg above) on the command line.
10. "--" may be used to indicate the end of the options.
11. The order of the options relative to one another should not matter.
12. The relative order of the operands (cmdarg above) may affect their significance in ways determined by the command with which they appear.
13. "-" preceded and followed by white space should only be used to mean standard input.

SEE ALSO

`getopts(1)`

`exit(2), wait(2), getopt(3C)` in the Programmer's Reference Manual

`How to Get Started` in the “Introduction” to this document

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the system and giving the cause for termination, and (in the case of “normal” termination) one supplied by the program [see `wait(2)` and `exit(2)`]. The former byte is 0 for normal termination; the latter is customarily 0 for successful execution and non-zero to indicate troubles such as erroneous parameters, or bad or inaccessible data. It is called variously “exit code”, “exit status”, or “return code”, and is described only where special conventions are involved.
NOTES

Throughout the manual pages there are references to `TMPDIR`, `BINDIR`, `INCDIR`, and `LIBDIR`. These represent directory names whose value is specified on each manual page as necessary. For example, `TMPDIR` might refer to `/var/tmp`. These are not environment variables and cannot be set. [There is an environment variable called `TMPDIR` which can be set. See `tmpnam(3S)`.] There are also references to `LIBPATH`, the default search path of the link editor and other tools.

Some commands produce unexpected results when processing files containing null characters. These commands often treat text input lines as strings and therefore become confused upon encountering a null character (the string terminator) within a line.
NAME
accept, reject – accept or reject print requests

SYNOPSIS
accept destinations
reject [-r reason] destinations

DESCRIPTION
accept allows the queueing of print requests for the named destinations. A destination can be either a printer or a class of printers. Run lpstat -a to find the status of destinations.

reject prevents queueing of print requests for the named destinations. A destination can be either a printer or a class of printers. (Run lpstat -a to find the status of destinations.) The following option is useful with reject.

-r reason Assign a reason for rejection of requests. This reason applies to all destinations specified. Reason is reported by lpstat -a. It must be enclosed in quotes if it contains blanks. The default reason is unknown reason for existing destinations, and new destination for destinations just added to the system but not yet accepting requests.

FILES
/var/spool/Ip/*

SEE ALSO
lpadmin(1M), lp sched(1M)
enable(1), lp(1), lpstat(1) in the User’s Reference Manual
NAME
acct: acctdisk, acctdusg, accton, acctwtmp closewtmp, utmp2wtmp – overview of accounting and miscellaneous accounting commands

SYNOPSIS
/usr/lib/acct/acctdisk
/usr/lib/acct/acctdusg [-u file] [-p file]
/usr/lib/acct/accton [file]
/usr/lib/acct/acctwtmp "reason"
/usr/lib/acct/closewtmp
/usr/lib/acct/utmp2wtmp

DESCRIPTION
Accounting software is structured as a set of tools (consisting of both C programs and shell procedures) that can be used to build accounting systems. acctsh(1M) describes the set of shell procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into /var/adm/wtmp, as described in utmp(4). The programs described in acctcon(1M) convert this file into session and charging records, which are then summarized by acctmerg(1M).

Process accounting is performed by the UNIX system kernel. Upon termination of a process, one record per process is written to a file (normally /var/adm/pacct). The programs in acctprc(1M) summarize this data for charging purposes; acctcms(1M) is used to summarize command usage. Current process data may be examined using acctcan(1).

Process accounting and connect time accounting (or any accounting records in the tacct format described in acct(4)) can be merged and summarized into total accounting records by acctmerg (see tacct format in acct(4)). prtacct (see acctsh(1M)) is used to format any or all accounting records.

acctdisk reads lines that contain user ID, login name, and number of disk blocks and converts them to total accounting records that can be merged with other accounting records.

acctdusg reads its standard input (usually from find / -print) and computes disk resource consumption (including indirect blocks) by login. If -u is given, records consisting of those filenames for which acctdusg charges no one are placed in file (a potential source for finding users trying to avoid disk charges). If -p is given, file is the name of the password file. This option is not needed if the password file is /etc/passwd. (See diskusg(1M) for more details.)

accton alone turns process accounting off. If file is given, it must be the name of an existing file, to which the kernel appends process accounting records (see acct(2) and acct(4)).

acctwtmp writes a utmp(4) record to its standard output. The record contains the current time and a string of characters that describe the reason. A record type of ACCOUNTING is assigned (see utmp(4)). reason must be a string of 11 or fewer characters, numbers, $, or spaces. For example, the following are suggestions for use in reboot and shutdown procedures, respectively:
acct(1M) (Job Accounting Utilities) acct(1M)

acctwtmp "acctg on" >> /var/adm/wtmp
acctwtmp "acctg off" >> /var/adm/wtmp

For each user currently logged on, closewtmp puts a false DEAD_PROCESS record in the /var/adm/wtmp file. runacct (see runacct(1M)) uses this false DEAD_PROCESS record so that the connect accounting procedures can track the time used by users logged on before runacct was invoked.

For each user currently logged on, runacct uses utmp2wtmp to create an entry in the file /var/adm/wtmp, created by runacct. Entries in /var/adm/wtmp enable subsequent invocations of runacct to account for connect times of users currently logged in.

FILES
/etc/passwd used for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in sub-class 1M of this manual
/var/adm/pacct current process accounting file
/var/adm/wtmp login/logoff history file

SEE ALSO
acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M),
diskusg(1M), ftmp(1M), runacct(1M), acct(4), utmp(4)
acctcom(1) in the User's Reference Manual
acct(2) in the Programmer's Reference Manual
acctcms (1M) (Accounting Utilities) acctcms (1M)

NAME
acctcms – command summary from per-process accounting records

SYNOPSIS

DESCRIPTION
acctcms reads one or more files, normally in the form described in acct(4). It
adds all records for processes that executed identically-named commands, sorts
them, and writes them to the standard output, normally using an internal sum-
mary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The
output includes command name, number of times executed, total kcore-
minutes, total CPU minutes, total real minutes, mean size (in K), mean CPU
minutes per invocation, "hog factor", characters transferred, and blocks
read and written, as in acctcom(1). Output is normally sorted by total
kcore-minutes.
-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "***other".
-n Sort by number of command invocations.
-s Any filenames encountered hereafter are already in internal summary for-
mat.
-t Process all records as total accounting records. The default internal sum-
mary format splits each field into prime and non-prime time parts. This
option combines the prime and non-prime time parts into a single field
that is the total of both, and provides upward compatibility with old (that
is, pre-UNIX System V Release 4.0) style acctcms internal summary for-
mat records.

The following options may be used only with the -a option.
-p Output a prime-time-only command summary.
-o Output a non-prime (offshift) time only command summary.

When -p and -o are used together, a combination prime and non-prime time
report is produced. All the output summaries will be total usage except number
of times executed, CPU minutes, and real minutes, which will be split into prime
and non-prime.

A typical sequence for performing daily command accounting and for maintain-
ing a running total is:

 acctcms file ... > today
 cp total previous total
 acctcms -s today previous total > total
 acctcms -a -s today

SEE ALSO
acct(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M),
runacct(1M), acct(4), utmp(4)
acctcom(1) in the User's Reference Manual
acct(2) in the Programmer's Reference Manual
NOTES

Unpredictable output results if `-t` is used on new style internal summary format files, or if it is not used with old style internal summary format files.
NAME
acctcom – search and print process accounting file(s)

SYNOPSIS
acctcom [options] [file ...]

DESCRIPTION
acctcom reads file, the standard input, or /var/adm/pacct, in the form described by acct(4) and writes selected records to the standard output. Each record represents the execution of one process. The output shows the COMMAND NAME, USER, TTYPNAME, START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN SIZE (K), and optionally, F (the fork/exec flag: 1 for fork without exec), STAT (the system exit status), HOG FACTOR, KORE MIN, CPU FACTOR, CHARs TRNSFD, and BLOCKS READ (total blocks read and written).

A # is prepended to the command name if the command was executed with superuser privileges. If a process is not associated with a known terminal, a ? is printed in the TTYPNAME field.

If no files are specified, and if the standard input is associated with a terminal or /dev/null (as is the case when using & in the shell), /var/adm/pacct is read; otherwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file is normally read forward, i.e., in chronological order by process completion time. The file /var/adm/pacct is usually the current file to be examined; a busy system may need several such files of which all but the current file are found in /var/adm/pacctincr.

The options are:

-Show some average statistics about the processes selected. The statistics will be printed after the output records.
-a
-b Read backwards, showing latest commands first. This option has no effect when the standard input is read.
-c Print the fork/exec flag and system exit status columns in the output. The numeric output for this option will be in octal.
-d Instead of mean memory size, show the fraction of total available CPU time consumed by the process during its execution. This “hog factor” is computed as (total CPU time)/(elapsed time).
-e Print columns containing the I/O counts in the output.
-f Instead of memory size, show total kcore-minutes.
-i Show mean core size (the default).
-j Show CPU factor (user-time/(system-time + user-time)).
-k Show separate system and user CPU times.
-l line Exclude column headings from the output.
-o Show only processes belonging to terminal /dev/term/line.
-p user Show only processes belonging to user that may be specified by: a user ID, a login name that is then converted to a user ID, a #, which designates only those processes executed with superuser privileges, or ?, which designates only those processes associated with unknown user IDs.
acctcom(1) (Accounting Utilities) acctcom(1)

-g group Show only processes belonging to group. The group may be designated by either the group ID or group name.
-s time Select processes existing at or after time, given in the format hr [:min [:sec]].
-e time Select processes existing at or before time.
-S time Select processes starting at or after time.
-E time Select processes ending at or before time. Using the same time for both -S and -E shows the processes that existed at time.
-n pattern Show only commands matching pattern that may be a regular expression as in regcmp(3G), except + means one or more occurrences.
-q Do not print any output records, just print the average statistics as with the -a option.
-o ofile Copy selected process records in the input data format to ofile; suppress printing to standard output.
-H factor Show only processes that exceed factor, where factor is the "hog factor" as explained in option -h above.
-o sec Show only processes with CPU system time exceeding sec seconds.
-C sec Show only processes with total CPU time (system-time + user-time) exceeding sec seconds.
-I chars Show only processes transferring more characters than the cutoff number given by chars.

FILES
/etc/passwd
/var/adm/pacctincr
/etc/group

SEE ALSO
ps(1), su(1)
acct(2), regcmp(3G) in the Programmer's Reference Manual
acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctproc(1M),
aacctsh(1M), fwtmp(1M), runacct(1M), acct(4), utmp(4) in the System Administrator's Reference Manual

NOTES
acctcom reports only on processes that have terminated; use ps(1) for active processes.

If time exceeds the present time, then time is interpreted as occurring on the previous day.
NAME
acctcon, acctcon1, acctcon2 – connect-time accounting

SYNOPSIS
/usr/lib/acct/acctcon [options]
/usr/lib/acct/acctcon1 [options]
/usr/lib/acct/acctcon2

DESCRIPTION
acctcon converts a sequence of login/logoff records to total accounting records (see the tacct format in acct(4)). login/logoff records are read from standard input. The file /var/adm/wtmp is usually the source of the login/logoff records, however, because it may contain corrupted records or system date changes, it should first be fixed using wtmpfix. The fixed version of file /var/adm/wtmp can then be redirected to acctcon. The tacct records are written to standard output. Here are the options for acctcon:

-1 file file is created to contain a summary of line usage showing line name, number of minutes used, percentage of total elapsed time used, number of sessions charged, number of logins, and number of logoffs. This file helps track line usage, identify bad lines, and find software and hardware oddities. Hangup, termination of login(1) and termination of the login shell each generate logoff records, so that the number of logoffs is often three to four times the number of sessions. See init(1M) and utIm(4).

-o file file is filled with an overall record for the accounting period, giving starting time, ending time, number of reboots, and number of date changes.

acctcon is a combination of the programs acctcon1 and acctcon2. acctcon1 converts login/logoff records, taken from the fixed /var/adm/wtmp file, to ASCII output. acctcon2 reads the ASCII records produced by acctcon1 and converts them to tacct records. acctcon1 can be used with the -1 and -o options, described above, as well as with the following options:

-p Print input only, showing line name, login name, and time (in both numeric and date/time formats).

-t acctcon1 maintains a list of lines on which users are logged in. When it reaches the end of its input, it emits a session record for each line that still appears to be active. It normally assumes that its input is a current file, so that it uses the current time as the ending time for each session still in progress. The -t flag causes it to use, instead, the last time found in its input, thus assuring reasonable and repeatable numbers for non-current files.

EXAMPLES
The acctcon command is typically used as follows:

acctcon -1 lineuse -o reboots < tmpwtmp > ctacct

The acctcon1 and acctcon2 commands are typically used as follows:

acctcon1 -1 lineuse -o reboots < tmpwtmp | sort -1n +2 > ctmp
acctcon2 < ctmp > ctacct
FILES
/var/adm/wtmp

SEE ALSO
acct(1M), acctms(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M),
init(1M), runacct(1M), acct(4), utmp(4)
acctcom(1), login(1) in the User's Reference Manual
acct(2) in the Programmer's Reference Manual

NOTES
The line usage report is confused by date changes. Use wtmpfix (see fwtmp(1M)),
with the /var/adm/wtmp file as an argument, to correct this situation.
NAME
acctmerg – merge or add total accounting files

SYNOPSIS

DESCRIPTION
acctmerg reads its standard input and up to nine additional files, all in the
tacct format (see acct(4)) or an ASCII version thereof. It merges these inputs by
adding records whose keys (normally user ID and name) are identical, and
expects the inputs to be sorted on those keys. Options are:
-a Produce output in ASCII version of tacct.
-i Input files are in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user ID, rather than user ID and name.
-v Produce output in verbose ASCII format, with more precise notation for
floating-point numbers.

EXAMPLES
The following sequence is useful for making "repairs" to any file kept in this for-
mat:
acctmerg -v <file1 > file2
Edit file2 as desired . . .
acctmerg -i <file2 > file1

SEE ALSO
acct(1M), acctcms(1M), acctcon(1M), acctprc(1M), acctsh(1M), fwtmp(1M),
runacct(1M), acct(4), utmp(4)
acctcom(1) in the User's Reference Manual
acct(2) in the Programmer's Reference Manual
NAME
acctprc, acctprcl, acctprc2 – process accounting

SYNOPSIS
/usr/lib/acct/acctprc
/usr/lib/acct/acctprcl [ctmp]
/usr/lib/acct/acctprc2

DESCRIPTION
acctprc reads standard input, in the form described by acct(4), and converts it
to total accounting records (see the tacct record in acct(4)). acctprc divides
CPU time into prime time and non-prime time and determines mean memory size
(in memory segment units). acctprc then summarizes the tacct records,
according to user IDs, and adds login names corresponding to the user IDs. The
summarized records are then written to standard output. acctprcl reads input
in the form described by acct(4), adds login names corresponding to user IDs,
then writes for each process an ASCII line giving user ID, login name, prime
CPU time (tics), non-prime CPU time (tics), and mean memory size (in memory seg­
ment units). If ctmp is given, it is expected to contain a list of login sessions
sorted by user ID and login name. If this file is not supplied, it obtains login
names from the password file, just as acctprc does. The information in ctmp
helps it distinguish between different login names sharing the same user ID.

From standard input, acctprc2 reads records in the form written by acctprcl,
summarizes them according to user ID and name, then writes the sorted sum­
maries to the standard output as total accounting records.

EXAMPLES
The acctprc command is typically used as shown below:
 acctprc < /var/adm/pacct > ptacct

The acctprcl and acctprc2 commands are typically used as shown below:
 acctprcl ctmp < /var/adm/pacct | acctprc2 > ptacct

FILES
/etc/passwd

SEE ALSO
acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctsh(1M), cron(1M),
fwtmp(1M), runacct(1M), acct(4), utmp(4)
acctcom(1) in the User’s Reference Manual
acct(2) in the Programmer’s Reference Manual

NOTES
Although it is possible for acctprcl to distinguish among login names that share
user IDs for commands run normally, it is difficult to do this for those commands
run from cron(1M), for example. A more precise conversion can be done using
the acctwtmp program in acct(1M). acctprc does not distinguish between users
with identical user IDs.

A memory segment of the mean memory size is a unit of measure for the number
of bytes in a logical memory segment on a particular processor.
NAME
 chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp, prdaily,
 prtacct, runacct, shutacct, startup, turnacct — shell procedures for
 accounting

SYNOPSIS
 /usr/lib/acct/chargefee login-name number
 /usr/lib/acct/ckpacct [blocks]
 /usr/lib/acct/dodisk [-o] [files ...]
 /usr/lib/acct/lastlogin
 /usr/lib/acct/monacct number
 /usr/lib/acct/nulladm file
 /usr/lib/acct/prctmp
 /usr/lib/acct/prdaily [-l] [-c] [mmdd]
 /usr/lib/acct/prtacct file ["heading"]
 /usr/lib/acct/runacct [mmdd] [mmdd state]
 /usr/lib/acct/shutacct ["reason"]
 /usr/lib/acct/startup
 /usr/lib/acct/turnacct on | off | switch

DESCRIPTION
 chargefee can be invoked to charge a number of units to login-name. A record is
 written to /var/adm/fee, to be merged with other accounting records by
 runacct.

 ckpacct should be initiated via cron(1M) to periodically check the size of
 /var/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct will be
 invoked with argument switch. If the number of free disk blocks in the /var file
 system falls below 500, ckpacct will automatically turn off the collection of pro­
 cess accounting records via the off argument to turnacct. When at least 500
 blocks are restored, the accounting will be activated again on the next invocation
 of ckpacct. This feature is sensitive to the frequency at which ckpacct is exe­
 cuted, usually by cron.

 dodisk should be invoked by cron to perform the disk accounting functions. By
 default, it will use diskusg (see diskusg(1M)) to do disk accounting on the s5
 file system in /etc/vfstab and acctdusg [see acct(1M)] on non-s5 file sys­
 tems. If the -o flag is used, it will use acctdusg (see acct(1M)) to do a slower
 version of disk accounting by login directory for all file systems. files specifies the
 one or more filesystem names where disk accounting will be done. If files are
 used, disk accounting will be done on these filesystems only. If the -o flag is
 used, files should be mount points of mounted filesystems. If the -o option is
 omitted, files should be the special file names of mountable filesystems.
lastlogin is invoked by runacct to update /var/adm/acct/sum/loginlog, which shows the last date on which each person logged in.

monacct should be invoked once each month or each accounting period. number indicates which month or period it is. If number is not given, it defaults to the current month (01–12). This default is useful if monacct is to executed via cron(1M) on the first day of each month. monacct creates summary files in /var/adm/acct/fiscal and restarts the summary files in /var/adm/acct/sum.

nulladm creates file with mode 664 and ensures that owner and group are adm. It is called by various accounting shell procedures.

prctmp can be used to print the session record file (normally /var/adm/acct/nite/ct.lll created by acctconl (see acct(1M)).

prdaily is invoked by runacct to format a report of the previous day’s accounting data. The report resides in /var/adm/acct/sum/rprt/mmdd where mmdd is the month and day of the report. The current daily accounting reports may be printed by typing prdaily. Previous days’ accounting reports can be printed by using the mmdd option and specifying the exact report date desired. The -1 flag prints a report of exceptional usage by login id for the specified date. Previous daily reports are cleaned up and therefore inaccessible after each invocation of monacct. The -c flag prints a report of exceptional resource usage by command, and may be used on current day’s accounting data only.

prtacct can be used to format and print any total accounting (tacct) file.

runacct performs the accumulation of connect, process, fee, and disk accounting on a daily basis. It also creates summaries of command usage. For more information, see runacct(1M).

shutacct is invoked during a system shutdown to turn process accounting off and append a “reason” record to /var/adm/wtmp.

startup can be invoked when the system is brought to a multi-user state to turn process accounting on.

turnacct is an interface to accton (see acct(1M)) to turn process accounting on or off. The switch argument moves the current /var/adm/pacct to the next free name in /var/adm/pacctincr (where incr is a number starting with 1 and incrementing by one for each additional pacct file), then turns accounting back on again. This procedure is called by ckpacct and thus can be taken care of by the cron and used to keep pacct to a reasonable size. shutacct uses turnacct to stop process accounting. startup uses turnacct to start process accounting.

FILES
/var/adm/fee accumulator for fees
/var/adm/pacct current file for per-process accounting
/var/adm/pacctincr used if pacct gets large and during execution of daily accounting procedure
/var/adm/wtmp login/logoff summary
acctsh(1M) (Job Accounting Utilities) acctsh(1M)

/usr/lib/acct/ptelus.awk contains the limits for exceptional usage by login ID
/usr/lib/acct/ptecms.awk contains the limits for exceptional usage by command name
/var/adm/acct/nite working directory
/usr/lib/acct holds all accounting commands listed in section 1M of this manual
/var/adm/acct/sum summary directory contains information for monacct

var/adm/acct/fiscal fiscal reports directory

SEE ALSO acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), cron(1M),
diskusg(1M), fwtmp(1M), runacct(1M), acct(4), utmp(4)
acctcom(1) in the User's Reference Manual
acct(2) in the Programmer's Reference Manual
NAME
addbib - create or extend a bibliographic database

SYNOPSIS
/usr/ucb/addbib [-a] [-p promptfile] database

DESCRIPTION
When addbib starts up, answering y to the initial Instructions? prompt yields
directions; typing n or RETURN skips them. addbib then prompts for various
bibliographic fields, reads responses from the terminal, and sends output records
to database. A null response (RETURN) means to leave out that field. A ‘-’ (minus
sign) means to go back to the previous field. A trailing backslash allows a field
to be continued on the next line. The repeating Continue? prompt allows the
user either to resume by typing y or RETURN, to quit the current session by typ­ing
n or q, or to edit database with any system editor (vi, ex, ed).

The following options are available:

-a Suppress prompting for an abstract; asking for an abstract is the default.
Abstracts are ended with a CTRL-D.

-p promptfile
Use a new prompting skeleton, defined in promptfile. This file should con­tain
prompt strings, a TAB, and the key-letters to be written to the data­base.

USAGE
Bibliography Key Letters
The most common key-letters and their meanings are given below. addbib insu­lates you from these key-letters, since it gives you prompts in English, but if you
edit the bibliography file later on, you will need to know this information.

%A Author’s name
%B Book containing article referenced
%C City (place of publication)
%D Date of publication
%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer(1))
%G Government order number
%H Header commentary, printed before reference
%I Issuer (publisher)
%J Journal containing article
%K Keywords to use in locating reference
%L Label field used by -k option of refer(1)
%M Bell Labs Memorandum (undefined)
addbib(1) (BSD Compatibility Package) addbib(1)

%N Number within volume
%O Other commentary, printed at end of reference
%P Page number(s)
%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)
%S Series title
%T Title of article or book
%V Volume number
%X Abstract — used by roffbib, not by refer
%Y,Z Ignored by refer

SEE ALSO
indexbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1)
NAME
admin – create and administer SCCS files

SYNOPSIS
admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-val]] [-dflag[flag-val]] [-aflag[flag-val]]
[-elogin] [-m[mrlist]] [-y[comment]] [-b] [-z] files

DESCRIPTION
admin is used to create new SCCS files and change parameters of existing ones. Arguments to admin, which may appear in any order, consist of keyletter arguments (that begin with –) and named files (note that SCCS file names must begin with the characters s.). If a named file does not exist, it is created and its parameters are initialized according to the specified keyletter arguments. Parameters not initialized by a keyletter argument are assigned a default value. If a named file does exist, parameters corresponding to specified keyletter arguments are changed, and other parameters are left unchanged.

If a directory is named, admin behaves as though each file in the directory were specified as a named file, except that non-SCCS files (last component of the path name does not begin with s.) and unreadable files are silently ignored. If a name of – is given, the standard input is read; each line of the standard input is taken to be the name of an SCCS file to be processed. Again, non-SCCS files and unreadable files are silently ignored.

The keyletter arguments are listed below. Each argument is explained as if only one named file were to be processed because the effect of each argument applies independently to each named file.

-n
This keyletter indicates that a new SCCS file is to be created.

-i[name]
The name of a file from which the text for a new SCCS file is to be taken. The text constitutes the first delta of the file (see –r keyletter for delta numbering scheme). If the –i keyletter is used, but the file name is omitted, the text is obtained by reading the standard input until an end-of-file is encountered. If this keyletter is omitted, then the SCCS file is created empty. Only one SCCS file may be created by an admin command on which the i keyletter is supplied. Using a single admin to create two or more SCCS files requires that they be created empty (no –i keyletter). Note that the –i keyletter implies the –n keyletter.

-rrel
The release into which the initial delta is inserted. This keyletter may be used only if the –i keyletter is also used. If the –r keyletter is not used, the initial delta is inserted into release 1. The level of the initial delta is always 1 (by default initial deltas are named 1.1).

-t[name]
The name of a file from which descriptive text for the SCCS file is to be taken. If the –t keyletter is used and admin is creating a new SCCS file (the –n and/or –i keyletters also used), the descriptive text file name must also be supplied. In the case of existing SCCS files: (1) a –t keyletter without a file name causes removal of the descriptive text (if any) that is currently in the SCCS file, and (2) a –t keyletter with a file name causes text (if any) in the named file to replace the descriptive text (if any) that is currently in the SCCS file.
-f

This keyletter specifies a flag, and, possibly, a value for the flag, to be placed in the SCCS file. Several -f keyletters may be supplied on a single admin command line. The allowable flags and their values are:

b Allows use of the -b keyletter on a get command to create branch deltas.

cceil The highest release (that is, ceiling): a number greater than 0 but less than or equal to 9999 that may be retrieved by a get command for editing. The default value for an unspecified c flag is 9999.

ffloor The lowest release (that is, floor): a number greater than 0 but less than 9999 that may be retrieved by a get command for editing. The default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get command.

1[str] Causes the No id keywords (ge6) message issued by get or delta to be treated as a fatal error. In the absence of this flag, the message is only a warning. The message is issued if no SCCS identification keywords [see get(1)] are found in the text retrieved or stored in the SCCS file. If a value is supplied, the keywords must exactly match the given string. The string must contain a keyword, and no embedded newlines.

j Allows concurrent get commands for editing on the same SID of an SCCS file. This flag allows multiple concurrent updates to the same version of the SCCS file.

1list A list of releases to which deltas can no longer be made (get -e against one of these "locked" releases fails). The list has the following syntax:

\[<list> ::= <range> | <list>, <range>\]
\[<range> ::= RELEASE NUMBER | a\]

The character a in the list is equivalent to specifying all releases for the named SCCS file.

n Causes delta to create a null delta in each of those releases (if any) being skipped when a delta is made in a new release (for example, in making delta 5.1 after delta 2.7, releases 3 and 4 are skipped). These null deltas serve as anchor points so that branch deltas may later be created from them. The absence of this flag causes skipped releases to be non-existent in the SCCS file, preventing branch deltas from being created from them in the future.

qtext User-definable text substituted for all occurrences of the %Q% keyword in SCCS file text retrieved by get.
mnod module name of the SCCS file substituted for all occurrences of the %M% keyword in SCCS file text retrieved by get. If the m flag is not specified, the value assigned is the name of the SCCS file with the leading s removed.

ttype type of module in the SCCS file substituted for all occurrences of %Y% keyword in SCCS file text retrieved by get.

v[pgm] Causes delta to prompt for Modification Request (MR) numbers as the reason for creating a delta. The optional value specifies the name of an MR number validity checking program [see delta(1)]. This program will receive as arguments the module name, the value of the type flag (see ttype above), and the mrlst. (If this flag is set when creating an SCCS file, the m keyletter must also be used even if its value is null).

-dflag Causes removal (deletion) of the specified flag from an SCCS file. The -d keyletter may be specified only when processing existing SCCS files. Several -d keyletters may be supplied in a single admin command. See the -f keyletter for allowable flag names.

(1list used with -d indicates a list of releases to be unlocked. See the -f keyletter for a description of the 1 flag and the syntax of a list.)

-algin A login name, or numerical UNIX System group ID, to be added to the list of users who may make deltas (changes) to the SCCS file. A group ID is equivalent to specifying all login names common to that group ID. Several a keyletters may be used on a single admin command line. As many logins or numerical group IDs as desired may be on the list simultaneously. If the list of users is empty, then anyone may add deltas. If login or group ID is preceded by a ! they are to be denied permission to make deltas.

-e login A login name, or numerical group ID, to be erased from the list of users allowed to make deltas (changes) to the SCCS file. Specifying a group ID is equivalent to specifying all login names common to that group ID. Several -e keyletters may be used on a single admin command line.

-m[mrlst] The list of Modification Requests (MR) numbers is inserted into the SCCS file as the reason for creating the initial delta in a manner identical to delta. The v flag must be set and the MR numbers are validated if the v flag has a value (the name of an MR number validation program). Diagnostics will occur if the v flag is not set or MR validation fails.

-y[comment] The comment text is inserted into the SCCS file as a comment for the initial delta in a manner identical to that of delta. Omission of the -y keyletter results in a default comment line being inserted.
The `-y` keyletter is valid only if the `-i` and/or `-n` keyletters are specified (that is, a new SCCS file is being created).

-`h` Causes `admin` to check the structure of the SCCS file [see `sccsfile(4)`], and to compare a newly computed check-sum (the sum of all the characters in the SCCS file except those in the first line) with the check-sum that is stored in the first line of the SCCS file. Appropriate error diagnostics are produced. This keyletter inhibits writing to the file, nullifying the effect of any other keyletters supplied; therefore, it is only meaningful when processing existing files.

-`z` The SCCS file check-sum is recomputed and stored in the first line of the SCCS file (see `-h`, above). Note that use of this keyletter on a truly corrupted file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form `s.file`. New SCCS files are given mode 444 [see `chmod(1)`]. Write permission in the pertinent directory is, of course, required to create a file. All writing done by `admin` is to a temporary x-file, called `x.file`, [see `get(1)`], created with mode 444 if the `admin` command is creating a new SCCS file, or with the same mode as the SCCS file if it exists. After successful execution of `admin`, the SCCS file is removed (if it exists), and the x-file is renamed with the name of the SCCS file. This renaming process ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files be mode 755 and that SCCS files themselves be mode 444. The mode of the directories allows only the owner to modify SCCS files contained in the directories. The mode of the SCCS files prevents any modification at all except by SCCS commands.

`admin` also makes use of a transient lock file (called `z.file`), which is used to prevent simultaneous updates to the SCCS file by different users. See `get(1)` for further information.

FILES

`x-file` [see `delta(1)`]
`z-file` [see `delta(1)`]
`bdiff` Program to compute differences between the "gotten" file and the g-file [see `get(1)`].

SEE ALSO

`bdiff(1), ed(1), delta(1), get(1), help(1), prs(1), what(1), sccsfile(4)`

DIAGNOSTICS

Use the `help` command for explanations.

NOTES

If it is necessary to patch an SCCS file for any reason, the mode may be changed to 644 by the owner allowing use of a text editor. You must run `admin -h` on the edited file to check for corruption followed by an `admin -z` to generate a proper check-sum. Another `admin -h` is recommended to ensure the SCCS file is valid.
NAME
 apropos – locate commands by keyword lookup

SYNOPSIS
 /usr/ucb/apropos keyword ...

DESCRIPTION
 apropos shows which manual sections contain instances of any of the given key-
 words in their title. Each word is considered separately and the case of letters is
 ignored. Words which are part of other words are considered; thus, when look­
 ing for ‘compile’, apropos will find all instances of ‘compiler’ also.

 Try
 apropos password
 and
 apropos editor

 If the line starts ‘filename(section) . . .’ you can do ‘man section filename’ to get the
 documentation for it. Try
 apropos format
 and then
 man 3s printf
 to get the manual page on the subroutine printf.

 apropos is actually just the -k option to the man(1) command.

FILES
 /usr/share/man/whatis data base

SEE ALSO
 man(1), whatis(1), catman(1M)
NAME
ar – maintain portable archive or library

SYNOPSIS
ar [-v] - key [arg] [posname] afile [name . . .]

DESCRIPTION
The ar command maintains groups of files combined into a single archive file. Its main use is to create and update library files. However, it can be used for any similar purpose. The magic string and the file headers used by ar consist of printable ASCII characters. If an archive is composed of printable files, the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across all machines. The portable archive format and structure are described in detail in ar(4). The archive symbol table [described in ar(4)] is used by the link editor ld to effect multiple passes over libraries of object files in an efficient manner. An archive symbol table is only created and maintained by ar when there is at least one object file in the archive. The archive symbol table is in a specially named file that is always the first file in the archive. This file is never mentioned or accessible to the user. Whenever the ar command is used to create or update the contents of such an archive, the symbol table is rebuilt. The s option described below will force the symbol table to be rebuilt.

The -v option causes ar to print its version number on standard error.

Unlike command options, the key is a required part of the ar command line. The key is formed with one of the following letters: drqtpmx. Arguments to the key, alternatively, are made with one or more of the following set: vuaihcls. posname is an archive member name used as a reference point in positioning other files in the archive. afile is the archive file. The names are constituent files in the archive file. The meanings of the key characters are as follows:

- **d** Delete the named files from the archive file.
- **r** Replace the named files in the archive file. If the optional character u is used with r, then only those files with dates of modification later than the archive files are replaced. If an optional positioning character from the set ab is used, then the posname argument must be present and specifies that new files are to be placed after (a) or before (b or i) posname. Otherwise new files are placed at the end.
- **q** Quickly append the named files to the end of the archive file. Optional positioning characters are invalid. The command does not check whether the added members are already in the archive. This option is useful to avoid quadratic behavior when creating a large archive piece-by-piece.
- **t** Print a table of contents of the archive file. If no names are given, all files in the archive are listed. If names are given, only those files are listed.
- **p** Print the named files in the archive.
- **m** Move the named files to the end of the archive. If a positioning character is present, then the posname argument must be present and, as in r, specifies where the files are to be moved.
x Extract the named files. If no names are given, all files in the archive are extracted. In neither case does x alter the archive file.

The meanings of the other key arguments are as follows:

v Give a verbose file-by-file description of the making of a new archive file from the old archive and the constituent files. When used with t, give a long listing of all information about the files. When used with x, print the filename preceding each extraction.

c Suppress the message that is produced by default when afile is created.

l This option is obsolete. It is recognized, but ignored, and will be removed in the next release.

s Force the regeneration of the archive symbol table even if ar(1) is not invoked with a command which will modify the archive contents. This command is useful to restore the archive symbol table after the strip(1) command has been used on the archive.

SEE ALSO
ld(1), lorder(1), strip(1), a.out(4), ar(4)

NOTES
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

Since the archiver no longer uses temporary files, the -l option is obsolete and will be removed in the next release.

By convention, archives are suffixed with the characters .a.
NAME
arch – display the architecture of the current host

SYNOPSIS
/usr/ucb/arch

DESCRIPTION
The arch command displays the architecture of the current host system.

SEE ALSO
mach(1)
uname(1) in the User's Reference Manual
NAME
arp - address resolution display and control

SYNOPSIS
arp hostname
arp -a [unix [kmem]]
arp -d hostname
arp -s hostname ether_address [temp] [pub] [trail]
arp -f filename

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables used by the address resolution protocol \[arp(7)\].

With no flags, the program displays the current ARP entry for hostname. The host may be specified by name or by number, using Internet dot notation.

The following options are available:

-\(a\) Display all of the current ARP entries by reading the table from the file kmem (default /dev/kmem) based on the kernel file unix (default /stand/unix).
-\(d\) Delete an entry for the host called hostname. This option may only be used by the super-user.
-\(s\) Create an ARP entry for the host called hostname with the Ethernet address ether_address. The Ethernet address is given as six hexadecimal bytes separated by colons. The entry will be permanent unless the word temp is given in the command. If the word pub is given, the entry will be published, for instance, this system will respond to ARP requests for hostname even though the hostname is not its own. The word trail indicates that trailer encapsulations may be sent to this host.
-\(f\) Read the file named filename and set multiple entries in the ARP tables. Entries in the file should be of the form

 hostname ether_address [temp] [pub] [trail]

with argument meanings as given above.

SEE ALSO
ifconfig(1M), arp(7)
NAME
 as – assembler

SYNOPSIS
 as [options] file

DESCRIPTION
 The as command creates object files from assembly language source files. The following flags may be specified in any order:

 -o objfile Put the output of the assembly in objfile. By default, the output file name is formed by removing the .s suffix, if there is one, from the input file name and appending a .o suffix.

 -n Turn off long/short address optimization. By default, address optimization takes place.

 -m Run the m4 macro processor on the input to the assembler.

 -R Remove (unlink) the input file after assembly is completed.

 -d1 Obsolete. Assembler issues a warning saying that it is ignoring the -d1 option.

 -T Accept obsolete assembler directives.

 -v Write the version number of the assembler being run on the standard error output.

 -Q{y|n} If -Qy is specified, place the version number of the assembler being run in the object file. The default is -Qn.

 -y [md],dir Find the m4 preprocessor (m) and/or the file of predefined macros (d) in directory dir instead of in the customary place.

FILES
 By default, as creates its temporary files in /var/tmp. This location can be changed by setting the environment variable TMPDIR [see tempnam in tmpnam(3S)].

SEE ALSO
 cc(1), ld(1), m4(1), nm(1), strip(1), tmpnam(3S), a.out(4)

NOTES
 If the -m (m4 macro processor invocation) option is used, keywords for m4 [see m4(1)] cannot be used as symbols (variables, functions, labels) in the input file since m4 cannot determine which keywords are assembler symbols and which keywords are real m4 macros.

 The .align assembler directive may not work in the .text section when long/short address optimization is performed.

 Arithmetic expressions may only have one forward referenced symbol per expression.

 Whenever possible, you should access the assembler through a compilation system interface program such as cc.

3/91
NAME
at, batch – execute commands at a later time

SYNOPSIS
at [-f script] [-m] time [date] [+ increment]
at -1 [job ...]
at -r job ...
batch

DESCRIPTION
at and batch read commands from standard input to be executed at a later time. at allows you to specify when the commands should be executed, while jobs queued with batch will execute when system load level permits. at may be used with the following options:

-f script Reads commands to be executed from the named script file.
-1 [job] Reports all jobs scheduled for the invoking user, or just the jobs specified.
-m Sends mail to the user after the job has been completed, indicating that the job is finished, even if the job produces no output. Mail is sent only if the job has not already generated a mail message.
-r job Removes specified jobs previously scheduled using at.

Standard output and standard error output are mailed to the user unless they are redirected elsewhere. The shell environment variables, current directory, umask, and ulimit are retained when the commands are executed. Open file descriptors, traps, and priority are lost.

Users are permitted to use at if their name appears in the file /usr/sbin/cron.d/at.allow. If that file does not exist, the file /usr/sbin/cron.d/at.deny is checked to determine if the user should be denied access to at. If neither file exists, only root is allowed to submit a job. If only at.deny exists and is empty, global usage is permitted. The allow/deny files consist of one user name per line. These files can only be modified by the privileged user.

If the DATEMSK environment variable is set, it points to a template file that at will use to determine the valid time and date values instead of the values described below. For more information about using DATEMSK, see the last paragraph of the DESCRIPTION section.

time may be specified as follows, where h is hours and m is minutes: h, hh, hhmm, h:mm, h:mm, hh:m, hh:mm. A 24-hour clock is assumed, unless am or pm is appended to time. If zulu is appended to time, it means Greenwich Mean Time (GMT). time can also take on the values: noon, midnight, and now. at now responds with the error message too late; use now with the increment argument, such as: at now + 1 minute.

An optional date may be specified as either a month name followed by a day number (and possibly a year number preceded by a comma) or a day of the week. (Both the month name and the day of the week may be spelled out or abbreviated to three characters.) Two special "days", today and tomorrow are
recognized. If no date is given, today is assumed if the given hour is greater than the current hour and tomorrow is assumed if it is less. If the given month is less than the current month (and no year is given), next year is assumed.

The optional increment is simply a number suffixed by one of the following: minutes, hours, days, weeks, months, or years. (The singular form is also accepted.) The modifier next may precede the increment; it means "+ 1."

Thus valid commands include:

```
at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at now next day
at 5 pm Friday
```

at and batch write the job number and schedule time to standard error.

at -r removes jobs previously scheduled by at or batch. The job number is the number returned to you previously by the at or batch command. You can also get job numbers by typing at -1. You can only remove your own jobs unless you are the privileged user.

If the environment variable DATEMSK is set, at will use its value as the full path name of a template file containing format strings. The strings consist of field descriptors and text characters and are used to provide a richer set of allowable date formats in different languages by appropriate settings of the environment variable LANG or LC_TIME (see environ(5)). (See getdate(3C) for the allowable list of field descriptors; this list is a subset of the descriptors allowed by calendar(1) that are listed on the date(1) manual page.) The formats described above for the time and date arguments, the special names noon, midnight, now, next, today, tomorrow, and the increment argument are not recognized when DATEMSK is set.

EXAMPLES

The at and batch commands read from standard input the commands to be executed at a later time. sh(1) provides different ways of specifying standard input. Within your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:

```
bash
batch
sort filename > outfile
CTRL-d (hold down ‘control’ and depress ‘d’)
```

This sequence, which shows redirecting standard error to a pipe, is useful in a shell procedure (the sequence of output redirection specifications is significant):

```
bash
batch <<!
sort filename 2>&1 > outfile | mail loginid
!
```

To have a job reschedule itself, invoke at from within the shell procedure, by including code similar to the following within the shell file:
The following example shows the possible contents of a template file AT.TEMP in /var/tmp.

%I %p, the %est of %B of the year %Y run the following job
%I %p, the %end of %B of the year %Y run the following job
%I %p, the %erd of %B of the year %Y run the following job
%I %p, the %eth of %B of the year %Y run the following job
%d/%m/%y
%H:%M:%S
%I:%M%p

The following are examples of valid invocations if the environment variable DATEMSK is set to /var/tmp/AT.TEMP.

at 2 PM, the 3rd of July of the year 2000 run the following job
at 3/4/99
at 10:30:30
at 2:30PM

FILES
/usr/sbin/cron.d main cron directory
/usr/sbin/cron.d/at.allow list of allowed users
/usr/sbin/cron.d/at.deny list of denied users
/usr/sbin/cron.d/queuedefs scheduling information
/var/spool/cron/atjobs spool area

SEE ALSO
atq(1), atrm(1), calendar(1), crontab(1), date(1), kill(1), mail(1), nice(1),
ps(1), sh(1), sort(1)
cron(1M), environ(5), in the System Administrator’s Reference Manual
getdate(3C) in the Programmer’s Reference Manual

DIAGNOSTICS
Complains about various syntax errors and times out of range.
NAME
atq – display the jobs queued to run at specified times

SYNOPSIS
atq [-c] [-n] [username…]

DESCRIPTION
atq displays the current user’s queue of jobs submitted with at to be run at a later date. If invoked by the privileged user, atq will display all jobs in the queue.

If no options are given, the jobs are displayed in chronological order of execution.

When a privileged user invokes atq without specifying username, the entire queue is displayed; when a username is specified, only those jobs belonging to the named user are displayed.

The atq command can be used with the following options:
-c Display the queued jobs in the order they were created (that is, the time that the at command was given).
-n Display only the total number of jobs currently in the queue.

FILES
/var/spool/cron spool area

SEE ALSO
at(1), atrm(1)
cron(1M) in the System Administrator’s Reference Manual
NAME
 atrm – remove jobs spooled by at or batch

SYNOPSIS
 atrm [-a f i] arg . . .

DESCRIPTION
 atrm removes delayed-execution jobs that were created with the at(1) command, but not yet executed. The list of these jobs and associated job numbers can be displayed by using atq(1).

 arg a user name or job-number. atrm removes each job-number you specify, and/or all jobs belonging to the user you specify, provided that you own the indicated jobs.

 Jobs belonging to other users can only be removed by the privileged user.

 The atrm command can be used with the following options:

 -a All. Remove all unexecuted jobs that were created by the current user. If invoked by the privileged user, the entire queue will be flushed.

 -f Force. All information regarding the removal of the specified jobs is suppressed.

 -i Interactive. atrm asks if a job should be removed. If you respond with a y, the job will be removed.

FILES
 /var/spool/cron spool area

SEE ALSO
 at(1), atq(1).
NAME

automount – automatically mount NFS file systems

SYNOPSIS

automount [-mD] [-D name=value] [-M mount-directory] [-f master-file]
[-t sub-options] [directory map [-mount-options]] . . .

DESCRIPTION

automount is a daemon that automatically and transparently mounts an NFS file system as needed. It monitors attempts to access directories that are associated with an automount map, along with any directories or files that reside under them. When a file is to be accessed, the daemon mounts the appropriate NFS file system. You can assign a map to a directory using an entry in a direct automount map, or by specifying an indirect map on the command line. The automount daemon resides in /usr/lib/nfs directory.

automount uses a map to locate an appropriate NFS file server, exported file system, and mount options. It then mounts the file system in a temporary location, and replaces the file system entry for the directory or subdirectory with a symbolic link to the temporary location. If the file system is not accessed within an appropriate interval (five minutes by default), the daemon unmounts the file system and removes the symbolic link. If the indicated directory has not already been created, the daemon creates it, and then removes it upon exiting.

Since the name-to-location binding is dynamic, updates to an automount map are transparent to the user. This obviates the need to pre-mount shared file systems for applications that have hard coded references to files.

If you specify the dummy directory /-, automount treats the map argument that follows as the name of a direct map. In a direct map, each entry associates the full pathname of a mount point with a remote file system to mount.

If the directory argument is a pathname, the map argument points to a file called an indirect map. An indirect map contains a list of the subdirectories contained within the indicated directory. With an indirect map, it is these subdirectories that are mounted automatically. The map argument must be a full pathname.

The -mount-options argument, when supplied, is a comma-separated list of mount(1M) options, preceded by a hyphen (-). If mount options are specified in the indicated map, however, those in the map take precedence.

Only a privileged user can execute this command.

The following options are available:

-automount [-mD] [-D name=value] [-M mount-directory] [-f master-file]
[-t sub-options] [directory map [-mount-options]] . . .

-automount [-n] Disable dynamic mounts. With this option, references through the automount daemon only succeed when the target file system has been previously mounted. This can be used to prevent NFS servers from cross-mounting each other.

NFS
automount (1M) (NFS) automount (1M)

- T Trace. Expand each NFS call and display it on the standard output.
- v Verbose. Log status messages to the console.
- D name=value
 Assign value to the indicated automount (environment) variable.
- f master-file
 Specify all arguments in master-file and instruct the daemon to look in it for instructions.
- M mount-directory
 Mount temporary file systems in the named directory, instead of /tmp_mnt.
- t sub-options
 Specify sub-options as a comma-separated list that contains any combination of the following:

 1 duration
 Specify a duration, in seconds, that a file system is to remain mounted when not in use. The default is 5 minutes.

 m interval
 Specify an interval, in seconds, between attempts to mount a file system. The default is 30 seconds.

 w interval
 Specify an interval, in seconds, between attempts to unmount file systems that have exceeded their cached times. The default is 1 minute.

ENVIRONMENT

Environment variables can be used within an automount map. For instance, if $HOME appeared within a map, automount would expand it to its current value for the HOME variable.

If a reference needs to be protected from affixed characters, enclose the variable name within braces.

USAGE

Direct/Indirect Map Entry Format

A simple map entry (mapping) takes the form:

directory [-mount-options] location ...

where directory is the full pathname of the directory to mount when used in a direct map, or the basename of a subdirectory in an indirect map. mount-options is a comma-separated list of mount options, and location specifies a remote file system from which the directory may be mounted. In the simple case, location takes the form:

 host:pathname

Multiple location fields can be specified, in which case automount sends multiple mount requests; automount mounts the file system from the first host that replies to the mount request. This request is first made to the local net or subnet. If there is no response, any connected server may respond.
If location is specified in the form:

```
host:path:subdir
```

host is the name of the host from which to mount the file system, path is the pathname of the directory to mount, and subdir, when supplied, is the name of a subdirectory to which the symbolic link is made. This can be used to prevent duplicate mounts when multiple directories in the same remote file system may be accessed. With a map for /home such as:

```
able homebody:/home/homebody:able
baker homebody:/home/homebody:baker
```

and a user attempting to access a file in /home/able, automount mounts homebody:/home/homebody, but creates a symbolic link called /home/able to the able subdirectory in the temporarily mounted file system. If a user immediately tries to access a file in /home/baker, automount needs only to create a symbolic link that points to the baker subdirectory; /home/homebody is already mounted. With the following map:

```
able homebody:/home/homebody/able
baker homebody:/home/homebody/baker
```

automount would have to mount the file system twice.

A mapping can be continued across input lines by escaping the NEWLINE with a backslash. Comments begin with a # and end at the subsequent NEWLINE.

Directory Pattern Matching

The & character is expanded to the value of the directory field for the entry in which it occurs. In this case:

```
able homebody:/home/homebody:&
```

the & expands to able.

The * character, when supplied as the directory field, is recognized as the catch-all entry. Such an entry resolves to any entry not previously matched. For instance, if the following entry appeared in the indirect map for /home:

```
* &:/:home/&
```

this would allow automatic mounts in /home of any remote file system whose location could be specified as:

```
hostname:/home/hostname
```

Hierarchical Mappings

A hierarchical mapping takes the form:

```
directory [/ [subdirectory]] [−mount-options] location. . .
    [ / [subdirectory] [−mount-options] location. . . ] . . .
```

The initial /[subdirectory] is optional for the first location list and mandatory for all subsequent lists. The optional subdirectory is taken as a filename relative to the directory. If subdirectory is omitted in the first occurrence, the / refers to the directory itself.
Given the direct map entry:

```
/ARCH/SRC  \  /ARCH/SRC  \
/  -ro,intr arch:/ARCH/SRC  alt:/ARCH/SRC  \  /ARCH/SRC/1.0 -ro,intr arch:/ARCH/SRC/1.0  \
/ARCH/SRC/1.0/man -ro,intr arch:/ARCH/SRC/1.0/man  alt:/ARCH/SRC/1.0/man
```

automount would automatically mount /ARCH/SRC, /ARCH/SRC/1.0 and /ARCH/SRC/1.0/man, as needed, from either arch or alt, whichever host responded first.

Direct Maps
A direct map contains mappings for any number of directories. Each directory listed in the map is automatically mounted as needed. The direct map as a whole is not associated with any single directory.

Indirect Maps
An indirect map allows you to specify mappings for the subdirectories you wish to mount under the directory indicated on the command line. It also obscures local subdirectories for which no mapping is specified. In an indirect map, each directory field consists of the basename of a subdirectory to be mounted as needed.

Included Maps
The contents of another map can be included within a map with an entry of the form

```
+mapname
```

where mapname is a filename.

Special Maps
The -null map is the only special map currently available. The -null map, when indicated on the command line, cancels a previous map for the directory indicated.

FILES
```
/tmp_mnt
```
parent directory for dynamically mounted file systems

SEE ALSO
df(1M), mount(1M), passwd(4)

NOTES
Mount points used by automount are not recorded in /etc/mnttab. mount(1M) on such mount points will fail, saying mount point busy, although the mount point is not in /etc/mnttab.

Shell filename expansion does not apply to objects not currently mounted.

Since automount is single-threaded, any request that is delayed by a slow or non-responding NFS server will delay all subsequent automatic mount requests until it completes.
NAME

autopush – configure lists of automatically pushed STREAMS modules

SYNOPSIS

autopush -f file
autopush -r -M major -m minor
autopush -g -M major -m minor

DESCRIPTION

This command allows one to configure the list of modules to be automatically pushed onto the stream when a device is opened. It can also be used to remove a previous setting or get information on a setting.

The following options apply to autopush:

- **-f**: This option sets up the autopush configuration for each driver according to the information stored in the specified file. An autopush file consists of lines of at least four fields each where the fields are separated by a space as shown below:

 maj_ min_ last_min_ mod1 mod2 ... modn

The first three fields are integers that specify the major device number, minor device number, and last minor device number. The fields following represent the names of modules. If min_ is -1, then all minor devices of a major driver specified by maj_ are configured and the value for last_min_ is ignored. If last_min_ is 0, then only a single minor device is configured. To configure a range of minor devices for a particular major, min_ must be less than last_min_.

The last fields of a line in the autopush file represent the list of module names where each is separated by a space. The maximum number of modules that can be automatically pushed on a stream is defined to be eight. The modules are pushed in the order they are specified. Comment lines start with a # sign.

- **-r**: This option removes the previous configuration setting of the particular major and minor device number specified with the -M and -m options respectively. If the values of major and minor correspond to a setting of a range of minor devices, where minor matches the first minor device number in the range, the configuration would be removed for the entire range.

- **-g**: This option gets the current configuration setting of a particular major and minor device number specified with the -M and -m options respectively. It will also return the starting minor device number if the request corresponds to a setting of a range (as described with the -f option).

SEE ALSO

streamio(7)

Programmer’s Guide: STREAMS
awk(1) (Directory and File Management Utilities) awk(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc] [prog] [parameters] [files]

DESCRIPTION
awk scans each input file for lines that match any of a set of patterns specified in prog. With each pattern in prog there can be an associated action that will be performed when a line of a file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as -f file. The prog string should be enclosed in single quotes (') to protect it from the shell.

Parameters, in the form x=... y=... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file name - means the standard input. Each line is matched against the pattern portion of every pattern-action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by using FS; see below). The fields are denoted $1, $2, ...; $0 refers to the entire line.

A pattern-action statement has the form:

 pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a sequence of statements. A statement can be one of the following:

 if (conditional) statement [else statement]
 while (conditional) statement
 for (expression ; conditional4; expression) statement
 break
 continue
 { [statement] ... }
 variable = expression
 print [expression-list] [>expression]
 printf format [, expression-list] [>expression]
 next # skip remaining patterns on this input line
 exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list stands for the whole line. Expressions take on string or numeric values as appropriate, and are built using the operators +, -, *, /, %, and concatenation (indicated by a blank). The C operators ++, --, +=, -=, *=, /=, and %= are also available in expressions. Variables may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null string. Array subscripts may be any string, not necessarily numeric; this allows for a form of associative memory. String constants are quoted (").
The `print` statement prints its arguments on the standard output (or on a file if `>$expr` is present), separated by the current output field separator, and terminated by the output record separator. The `printf` statement formats its expression list according to the format [see printf(3S) in the Programmer’s Reference Manual].

The built-in function `length` returns the length of its argument taken as a string, or of the whole line if no argument. There are also built-in functions `exp`, `log`, `sqrt`, and `int`. The last truncates its argument to an integer; `substr(s, m, n)` returns the `n`-character substring of `s` that begins at position `m`. The function `sprintf(fmt, expr, expr, ...)` formats the expressions according to the `printf(3S)` format given by `fmt` and returns the resulting string.

Patterns are arbitrary Boolean combinations (`, `, `, `, `&, and parentheses) of regular expressions and relational expressions. Regular expressions must be surrounded by slashes and are as in `egrep(1)`. Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also occur in relational expressions. A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all lines between an occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

```
expression matchop regular-expression
expression relop expression
```

where a relop is any of the six relational operators in C, and a matchop is either `~` (for contains) or `!~` (for does not contain). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is read and after the last. BEGIN must be the first pattern, END the last.

A single character `c` may be used to separate the fields by starting the program with:

```
BEGIN { FS = c }
```
or by using the `-Fc` option.

Other variable names with special meanings include `NF`, the number of fields in the current record; `NR`, the ordinal number of the current record; `FILENAME`, the name of the current input file; `OFS`, the output field separator (default blank); `ORS`, the output record separator (default new-line); and `OFMT`, the output format for numbers (default `% .6g`).

EXAMPLES

Print lines longer than 72 characters:

```
length > 72
```

Print first two fields in opposite order:

```
{ print $2, $1 }
```
Add up first column, print sum and average:

```
{ s += $1 }
END { print "sum is", s, " average is", s/NR }
```

Print fields in reverse order:

```
{ for (i = NF; i > 0; --i) print $i }
```

Print all lines between start/stop pairs:

```
/start/, /stop/
```

Print all lines whose first field is different from previous one:

```
$1 != prev { print; prev = $1 }
```

Print file, filling in page numbers starting at 5:

```
/Page/ { $2 = n++; }
{ print }
```

command line: `awk -f program n=5 input`

SEE ALSO

grep(1), nawk(1), sed(1)
lex(1), printf(3S) in the Programmer’s Reference Manual

NOTES

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate the null string ("") to it.
Backup Command

NAME
backup – initiate or control a system backup session

SYNOPSIS
backup -i [-t table] [-o name] [-m user] [-ne] [-s | -v] [-c week:day | demand]
backup [-t table] [-o name] [-m user] [-ne] [-c week:day] [demand]
backup -S | -R | -C [-u user | -A | -j jobid]

DESCRIPTION
Without options, the `backup` command performs all backup operations specified for the current day and week of the backup rotation in the backup register. This set of backup operations is considered a single job and is assigned a backup job ID which can be used to control the progress of the session. As backup operations are processed, their status is tracked [See `bkstatus(1M)`]. As backup operations are completed, they are recorded in the backup history log.

`backup` may only be executed by a privileged user.

A backup job can be controlled in three ways. It can be canceled, suspended or resumed (after being suspended).

Modes of Operator Intervention
Backup operations may require operator intervention to perform such tasks as inserting volumes into devices or confirming proper volume labels. `backup` provides three modes of operator interaction.

`backup` with no options assumes that an operator is present, but not at the terminal where the `backup` command was issued. This mode sends a mail message to the operator. The mail identifies the device requiring service and the volume required. The operator reads the mail message, invokes the `bkoper` command, responds to the prompts, and the backup operation continues.

`backup -i` establishes interactive mode, which assumes that an operator is present at the terminal where the `backup` command was issued. In this mode, `bkoper` is automatically invoked at the terminal where the `backup` command was entered. The operator responds to the prompts as they arrive.

Register Validations
A number of backup service databases must be consistent before the backups listed in a backup register can be performed. These consistencies can only be validated at the time `backup` is initiated. If any of them fail, `backup` will terminate. Invoking `backup -ne` performs the validation checks in addition to displaying the set of backup operations to be performed. The validations are:

1. The backup method must be a default method or be an executable file in `/bkup/method`.
2. The dependencies for an entry are all defined in the register. Circular dependencies (e.g., entry `abc` depends on entry `def`; entry `def` depends on entry `abc`) are allowed.
3. The device group for a destination must be defined in the device group table, `/etc/dgroup.tab` (For more information, see the section on devices in the System Administrator’s Guide.)
Options

-\c \text{week:day} | \text{demand}
 Selects from the backup register only those backup operations for the
 specified week and day of the backup rotation, instead of the current
day and week of the rotation. If \text{demand} is specified, selects only those
backup operations scheduled to be performed on demand.

-\e
 This option displays an estimate of the number of volumes required to
perform each backup operation.

-\i
 Selects interactive operation

-\j \text{jobid}
 Controls only the backup job identified by \text{jobid}. \text{jobid} is a \text{backup} job
 ID.

-\m \text{user}
 Sends mail to the named \text{user} when all backup operations for the
backup job are complete.

-\n
 Displays the set of backup operations that would be performed but
does not actually perform the backup operations. The display is
ordered according to the dependencies and priorities specified in the
backup register.

-\o \text{name}
 Initiates backup operations only on the named originating object.
\text{name} may be a device name or the name of a file system beginning
with a slash (/).

-\s
 Displays a "." for each 100 (512-byte) blocks transferred to the destina-
tion device. The dots are displayed while each backup operation is
progressing.

-\t \text{table}
 Initiates backup operations described in the specified backup register
instead of the default register, \text{/etc/bkup/bkreg.tab}. \text{table} is a backup
register.

-\u \text{user}
 Controls backup jobs started by the named \text{user} instead of those
started by the user invoking the command. \text{user} is a valid login ID.

-\v
 While each backup operation is progressing, display the name of each
file or directory as soon as it has been transferred to the destination
device.

-\A
 Controls backup jobs for all users instead of those started by the user
invoking the command.

-\C
 Cancels backup jobs.

-\R
 Resumes suspended backup jobs.

-\S
 Suspends backup jobs.

DIAGNOSTICS

The exit codes for the \text{backup} command are the following:

0 = successful completion of the task
1 = one or more parameters to \text{backup} are invalid.
2 = an error has occurred which caused \text{backup} to fail to
 complete all portions of its task.
EXAMPLES

Example 1:

```
backup -i -v -c 2:1 -m admin3
```

initiates those backups scheduled for Monday of the second week in the rotation period instead of backups for the current day and week. Performs the backup in interactive mode and displays on standard output the name of each file, directory, file system partition, or data partition as soon as it is transferred to the destination device. When all backups are completed, sends mail notification to the user with login ID admin3.

Example 2:

```
backup -o /usr
```

initiates only those backups from the usr file system.

Example 3:

```
backup -S
```

Suspends the backup jobs requested by the invoking user.

Example 4:

```
backup -R -j back-359
```

resumes the backup operations included in backup job ID back-359.

FILES

```
/etc/bkup/method/*
/etc/bkup/bkreg.tab
/etc/device.tab
/etc/dgroup.tab
```

SEE ALSO

bkhistory(1M), bkoper(1M), bkreg(1M), bkstatus(1M)
NAME
backup – perform backup functions

SYNOPSIS
backup [-t] [-p | -c | -f <files> | -u "<user1> [user2]"] -d <device>

DESCRIPTION
-h produces a history of backups. Tells the user when the last complete and incremental/partial backups were done.

-c complete backup. All files changed since the system was installed are backed up. If an incremental/partial backup was done, all files modified since that time are backed up, otherwise all files modified since the last complete backup are backed up. A complete backup must be done before a partial backup.

-f backup files specified by the <files> argument. File names may contain characters to be expanded (that is, *, .) by the shell. The argument must be in quotes.

-u backup a user’s home directory. All files in the user’s home directory will be backed up. At least one user must be specified but it can be more. The argument must be in quotes if more than one user is specified. If the user name is "all", then all the user’s home directories will be backed up.

-d used to specify the device to be used. It defaults to /dev/SA/diskette.

-t used when the device is a tape. This option must be used with the -d option when the tape device is specified.

A complete backup must be done before a partial backup can be done. Raw devices rather than block devices should always be used. The program can handle multi-volume backups. The program will prompt the user when it is ready for the next medium. The program will give you an estimated number of floppies/tapes that will be needed to do the backup. Floppies must be formatted before the backup is done. Tapes do not need to be formatted. If backup is done to tape, the tape must be rewound.
NAME
 banner – make posters

SYNOPSIS
 banner strings

DESCRIPTION
 banner prints its arguments (each up to 10 characters long) in large letters on the standard output.

SEE ALSO
 echo(1)
NAME
basename, dirname – deliver portions of path names

SYNOPSIS
basename string [suffix]
dirname string

DESCRIPTION
basename deletes any prefix ending in / and the suffix (if present in string) from string, and prints the result on the standard output. It is normally used inside substitution marks (~ ~) within shell procedures. The suffix is a pattern as defined on the ed(l) manual page.

dirname delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument /home/sms/personal/mail sets the environment variable NAME to the file named mail and the environment variable MYMAILPATH to the string /home/sms/personal.

NAME=`basename $HOME/personal/mail`
MYMAILPATH=`dirname $HOME/personal/mail`

This shell procedure, invoked with the argument /usr/src/bin/cat.c, compiles the named file and moves the output to cat in the current directory:

cc $1
mv a.out `basename $1 .c`

SEE ALSO
ed(l), sh(l)
NAME

basename – display portions of pathnames

SYNOPSIS

/usr/ucb/basename string [suffix]

DESCRIPTION

basename deletes any prefix ending in ‘/’ and the suffix, if present in string. It directs the result to the standard output, and is normally used inside substitution marks (` `) within shell procedures. The suffix is a pattern as defined on the ed(1) manual page.

EXAMPLE

This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named file and moves the output to cat in the current directory:

```
cc $1
mv a.out `basename $1 .c`
```

SEE ALSO

ed(1), sh(1) in the User’s Reference Manual
NAME
bc - arbitrary-precision arithmetic language

SYNOPSIS
bc [-c] [-l] [file ...]

DESCRIPTION
bc is an interactive processor for a language that resembles C but provides unlimited precision arithmetic. It takes input from any files given, then reads the standard input. bc is actually a preprocessor for the desk calculator program dc, which it invokes automatically unless the -c option is present. In this case the dc input is sent to the standard output instead. The options are as follows:

-c Compile only. The output is sent to the standard output.
-l Argument stands for the name of an arbitrary precision math library.

The syntax for bc programs is as follows: L means letter a-z, E means expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]
the words ibase, obase, and scale

Other operands
arbitrarily long numbers with optional sign and decimal point
(E)

sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L (E, ..., E)

Operators
+ - * / % ^
(% is remainder; ^ is power)
++ -- (prefix and postfix; apply to names)
eq <= >= != < >
= += -= *= /= %= ^=

Statements
E
{ S ; ... ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit
Function definitions

```c
define L (L, ..., L) {
    auto L, ..., L
    "S"; ... S
    return (E)
}
```

Functions in -l math library

- `s(x)` sine
- `c(x)` cosine
- `e(x)` exponential
- `l(x)` log
- `a(x)` arctangent
- `j(n,x)` Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assignment. Either semicolons or new-lines may separate statements. Assignment to `scale` influences the number of digits to be retained on arithmetic operations in the manner of `dc`. Assignments to `ibase` or `obase` set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All variables are global to the program. `auto` variables are pushed down during function calls. When using arrays as function arguments or defining them as automatic variables, empty square brackets must follow the array name.

EXAMPLE

```c
scale = 20
define e(x){
    auto a, b, c, i, s
    a = 1
    b = 1
    s = 1
    for(i=1; i<=10; i++)
        a = a*x
        b = b*i
        c = a/b
        if(c == 0) return(s)
        s = s+c
}
```

defines a function to compute an approximate value of the exponential function and

```c
for(i=1; i<=10; i++) e(i)
```

prints approximate values of the exponential function of the first ten integers.
FILES

/usr/lib/lib.b mathematical library
/usr/bin/dc desk calculator proper

SEE ALSO

dc(1)

NOTES

The `bc` command does not recognize the logical operators `&&` and `||`.
The `for` statement must have all three expressions (`E’s`).
The `quit` statement is interpreted when read, not when executed.
NAME

bdiff – big diff

SYNOPSIS

bdiff file1 file2 [n] [-s]

DESCRIPTION

bdiff is used in a manner analogous to diff to find which lines in file1 and file2 must be changed to bring the files into agreement. Its purpose is to allow processing of files too large for diff. If file1 (file2) is -, the standard input is read.

Valid options to bdiff are:

n The number of line segments. The value of n is 3500 by default. If the optional third argument is given and it is numeric, it is used as the value for n. This is useful in those cases in which 3500-line segments are too large for diff, causing it to fail.

-s Specifies that no diagnostics are to be printed by bdiff (silent option). Note, however, that this does not suppress possible diagnostic messages from diff, which bdiff calls.

bdiff ignores lines common to the beginning of both files, splits the remainder of each file into n-line segments, and invokes diff on corresponding segments. If both optional arguments are specified, they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the segmenting of the files (that is, to make it look as if the files had been processed whole). Note that because of the segmenting of the files, bdiff does not necessarily find a smallest sufficient set of file differences.

FILES

/tmp/bd?????

SEE ALSO

diff(1)
NAME
bfs – big file scanner

SYNOPSIS
bfs [-] file

DESCRIPTION
The bfs command is similar to ed except that it is read-only and processes much larger files. Files can be up to 1024K bytes and 32K lines, with up to 512 characters, including new-line, per line (255 for 16-bit machines). bfs is usually more efficient than ed for scanning a file, since the file is not copied to a buffer. It is most useful for identifying sections of a large file where the csplit command can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written with the w command. The optional - suppresses printing of sizes. Input is prompted with * if P and a carriage return are typed, as in ed. Prompting can be turned off again by inputting another P and carriage return. Messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular expressions may be surrounded with two symbols besides / and ?. > indicates downward search without wrap-around, and < indicates upward search without wrap-around. There is a slight difference in mark names: only the letters a through z may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described under ed. Commands such as -- , +++-, ++++, -12, and +4p are accepted. Note that 1,10p and 1,10 both print the first ten lines. The f command only prints the name of the file being scanned; there is no remembered file name. The w command is independent of output diversion, truncation, or crunching (see the xo, xt, and xc commands, below). The following additional commands are available:

 xf file
 Further commands are taken from the named file. When an end-of-file is reached, an interrupt signal is received or an error occurs, reading resumes with the file containing the xf. The xf commands may be nested to a depth of 10.

 xn List the marks currently in use (marks are set by the k command).

 xo [file]
 Further output from the p and null commands is diverted to the named file, which, if necessary, is created mode 666 (readable and writable by everyone), unless your umask setting dictates otherwise; see umask(1). If file is missing, output is diverted to the standard output. Note that each diversion causes truncation or creation of the file.

 : label
 This positions a label in a command file. The label is terminated by new-line, and blanks between the : and the start of the label are ignored. This command may also be used to insert comments into a command file, since labels need not be referenced.
A jump (either upward or downward) is made to label if the command succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the specified range, including the first and last lines.

On success, . is set to the line matched and a jump is made to label. This command is the only one that does not issue an error message on bad addresses, so it may be used to test whether addresses are bad before other commands are executed. Note that the command

\[\text{xb}/^{/ label\]

is an unconditional jump.

The \text{xb} command is allowed only if it is read from someplace other than a terminal. If it is read from a pipe only a downward jump is possible.

\text{xt number}

Output from the \text{p} and null commands is truncated to at most number characters. The initial number is 255.

\text{xv}[digit][spaces][value]

The variable name is the specified digit following the \text{xv}. The commands \text{xv5100} or \text{xv5 100} both assign the value 100 to the variable 5. The command \text{xv61,100p} assigns the value 1,100p to the variable 6. To reference a variable, put a \% in front of the variable name. For example, using the above assignments for variables 5 and 6:

\[1,\%5p\]
\[1,\%5\]
\[%6\]

all print the first 100 lines.

\text{g/\%5/p}

globally searches for the characters 100 and prints each line containing a match. To escape the special meaning of \%, a \ must precede it.

\text{g/"\.*\%[cds]/p}

could be used to match and list lines containing a \text{printf} of characters, decimal integers, or strings.

Another feature of the \text{xv} command is that the first line of output from a UNIX system command can be stored into a variable. The only requirement is that the first character of value be an \. For example:
bfs(1) (Directory and File Management Utilities) bfs(1)

.w junk
.xv5!cat junk
!rm junk
!echo "%5"
.xv6!expr %6 + 1

puts the current line into variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning of ! as the first
character of value, precede it with a \.

.xv7\!date
stores the value !date into variable 7.

xbz label

xbn label

These two commands test the last saved return code from the execution
of a UNIX system command (!command) or nonzero value,
respectively, to the specified label. The two examples below both
search for the next five lines containing the string size.

.xv55
: l
/size/
.xv5!expr %5 - 1
!if 0%5 != 0 exit 2
.xbn l
.xv45
: l
/size/
.xv4!expr %4 - 1
!if 0%4 == 0 exit 2
.xbz l

xc [switch]

If switch is 1, output from the p and null commands is crunched; if
switch is 0 it is not. Without an argument, xc reverses switch. Initially
switch is set for no crunching. Crunched output has strings of
tabs and blanks reduced to one blank and blank lines suppressed.

SEE ALSO
csplit(1), ed(1), umask(1)

DIAGNOSTICS

? for errors in commands, if prompting is turned off. Self-explanatory error
messages when prompting is on.
NAME

biff – give notice of incoming mail messages

SYNOPSIS
 /usr/ucb/biff [y | n]

DESCRIPTION
 biff turns mail notification on or off for the terminal session. With no argu-
 ments, biff displays the current notification status for the terminal.

The y option allows mail notification for the terminal. The n option disables
 notification for the terminal.

If notification is allowed, the terminal rings the bell and displays the header and
 the first few lines of each arriving mail message. biff operates asynchronously.
For synchronized notices, use the MAIL variable of sh(1) or the mail variable of
 csh(1).

A 'biff y' command can be included in your ~/.login or ~/.profile file for
 execution when you log in.

FILES
 ~/.login
 ~/.profile

SEE ALSO
 csh(1), mail(1), sh(1) in the User's Reference Manual
NAME

biod – NFS daemon

SYNOPSIS

biod [nservers]

DESCRIPTION

biod starts nservers asynchronous block I/O daemons. This command is used on an NFS client to buffer read-ahead and write-behind. Four is the usual number for nservers.

The biod daemons are automatically invoked in run level 3.

SEE ALSO

mountd(1M), nfsd(1M), sharetab(4)
NAME

bkexcept – change or display an exception list for incremental backups

SYNOPSIS

bkexcept [-t file] [-d patterns]
bkexcept [-t file] -a -r patterns
bkexcept -C [files]

DESCRIPTION

The bkexcept command displays a list of patterns describing files that are to be excluded when backup operations occur using incfile. The list is known as the “exception list.”

bkexcept may be executed only by a user with superuser privilege.

bkexcept -a adds patterns to the list.

bkexcept -d displays patterns from the list.

bkexcept -r removes patterns from the list.

Patterns

Patterns describe individual pathnames or sets of pathnames. Patterns must conform to pathname naming conventions specified under DEFINITIONS on the intro(2) page. A pattern is taken as a filename and is interpreted in the manner of cpio. A pattern can include the shell special characters *, ?, and []). Asterisk (*) and question mark (?) will match period (.) and slash(/). Because these are shell special characters, they must be escaped on the command line.

There are three general methods of specifying entries to the exception list:

- To specify all files under a particular directory, specify the directory name (and any desired subdirectories) followed by an asterisk:

 /directory/subdirectories/*

- To specify all instances of a filename regardless of its location, specify the filename preceded by an asterisk:

 */filename

- To specify one instance of a particular file, specify the entire pathname to the file:

 /directory/subdirectories/filename

If pattern is a dash (-), standard input is read for a list of patterns (one per line until EOF) to be added or deleted.

Compatibility

Prior versions of the backup service created exception lists using ed syntax. bkexcept -C provides a translation facility for exception lists created by ed. The translation is not perfect; not all ed patterns have equivalents in cpio. For those patterns that have no automatic translation, an attempt at translation is made, and the translated version is flagged with the word QUESTIONABLE. The exception list translation is directed to standard output. Redirect the standard output to a translation file, review the contents of the translation file (correcting entries that were not translated properly and deleting the QUESTIONABLE flags), and then
use the resulting file as input to a subsequent `bkexcept -a`. For example, if the translated file was named `checkfile` the `-a` option would appear as follows:

```
bkexcept -a - < checkfile
```

Options

- `-t file` The filename used in place of the default file.
- `-a pattern` Adds `pattern` to the exception list where `pattern` is one or more patterns (comma-separated or blank-separated and enclosed in quotes) describing sets of paths.
- `-d pattern` Displays entries in the exception list. If `pattern` begins with a slash (/), `-d` displays all entries whose names begin with `pattern`. If `pattern` does not begin with a slash, `-d` displays all entries that include `pattern` anywhere in the entry. If `pattern` is a dash (`-`), input is taken from standard input. `pattern` is not a pattern -- it matches patterns. `pattern a*b` matches `/a*b` but does not match `/adb`. For files containing a carriage return, a null exception list is returned. For files of zero length (no characters), an error is returned (search of table failed).

The entries are displayed in ASCII collating sequence order (special characters, numbers, then alphabetical order).

- `-r pattern` Removes `pattern` from the exception list. `pattern` is one or a list of patterns (comma-separated or blank-separated and enclosed in quotes) describing sets of paths. `pattern` must be an exact match of an entry in the exception list for `pattern` to be removed. Patterns that are removed are echoed to standard output, stdout.

- `-c [files]` Displays on standard output the translation of each `file` (a prior version’s exception list) to the new syntax. Each `file` contains ed patterns, one per line.

If `file` is omitted, the default UNIX exception list, `/etc/save.d/except`, is translated. If `file` is a dash (`-`), input is taken from standard input, one per line.

DIAGNOSTICS

The exit codes for the `bkexcept` command are the following:

- `0` = the task completed successfully
- `1` = one or more parameters to `bkexcept` are invalid
- `2` = an error has occurred, causing `bkexcept` to fail to complete all portions of its task

EXAMPLES

Example 1:

```
bkexcept -a /tmp/*,/var/tmp/*,/usr/rje/*,*/trash,
```

adds the four sets of files to the exception list, (all files under `/tmp`, all files under `/var/tmp`, all files under `/usr/rje`, and any file on the system named `trash`).
Example 2:

```
bkexcept -d /tmp
```

displays the following patterns from those added to the exception list in Example 1.

```
/tmp/*.  
bkexcept -d tmp
```

displays the following patterns from those added to the exception list in Example 1.

```
/tmp/*, /var/tmp/*
```
displays one per line, with a heading.

Example 3:

```
bkexcept -r /var/tmp/*,/usr/rje/*
```

removes the two patterns from the exception list.

Example 4:

```
bkexcept -C /save.d/old.except > trans.except
```

translates the file /save.d/old.except from its ed format to cpio format and sends the translations to the file trans.except. The translations of /save.d/old.except may be added to the current exception list by using bkexcept -a as follows:

```
bkexcept -a - < trans.except
```

FILES

- `/etc/bkup/bkexcept.tab` the default exception list for UNIX System V Release 4.
- `/etc/save.d/except` the default exception list for pre-UNIX System V Release 4.

SEE ALSO

backup(1M), incfile(1M)
cpio(1), ed(1), sh(1) in the User’s Reference Manual
intro(2) in the Programmer’s Reference Manual
“The Backup Service” chapter in the System Administrator’s Guide
NAME

bkhistory - report on completed backup operations

SYNOPSIS

bkhistory [-hl] [-f field_separator] [-d dates] [-o names] [-t tags]
bkhistory -p period

DESCRIPTION

bkhistory without options reports a summary of the contents of the backup history log, bkhist.tab. Backup operations are sorted alphabetically by tag. For each tag, operations are listed from most to least recent. backup(1M) updates this log after each successful backup operation.

bkhistory may be executed only by a user with the superuser privilege.

bkhistory -p assigns a rotation period (in weeks) for the history log; all entries older than the specified number of weeks are deleted from the log. The default rotation period is one (1) week.

Options

-d dates
Restricts the report to backup operations performed on the specified dates. dates are in the date format. day, hour, minute, and year, are optional and will be ignored. The list of dates is either comma-separated or blank-separated and surrounded by quotes.

-f field_separator
Suppresses field wrap on the display and specifies an output field separator to be used. The value of c is the character that will appear as the field separator on the display output. For clarity of output, do not use a separator character that is likely to occur in a field. For example, do not use the colon as a field separator character if the display will contain dates that use a colon to separate hours from minutes. To use the default field separator (tab), specify the null character (\") for c.

-h Suppresses header for the reports.

-l Displays a long form of the report. This produces an ls -1 listing of the files included in the backup archive (if backup tables of contents are available on-line).

-o names
Restricts the report to the specified originating objects (file systems or data partitions). names is a list of onames and/or odevices. [See bkreg(1M)].
The list of names is either comma-separated or blank-separated and surrounded by quotes.

-p period
Sets the number of weeks of information that will be saved in the backup history table. The minimum value of period is 1, which is also the default value. the size of int. By default, period is 1.
bkhistory (1M) (System Administration Utilities) bkhistory (1M)

-t tags
Restricts the report to backups with the specified tags. tags is a list of tag values as specified in the backup register. The list of tags is either comma-separated or blank-separated and surrounded by quotes.

DIAGNOSTICS
The exit codes for the bkhistory command are the following:

 0 = the task completed successfully
 1 = one or more parameters to bkhistory are invalid
 2 = an error has occurred, causing bkhistory to fail to complete all portions of its task

EXAMPLES
Example 1:

 bkhistory -p 3

sets the rotation period for the history log to three weeks. Entries older than three weeks are deleted from the log.

Example 2:

 bkhistory -t SpoolDai,UsrDaily,TPubsWed

displays a report of completed backup operations for the three tags listed.

Example 3:

 bkhistory -l -o /usr

Displays an ls -l listing of the files that were backed up from /usr (the originating object) if there is a table of contents.

FILES

/etc/bkup/bkhist.tab the backup history log that contains information about successfully completed backup operations

/etc/bkup/bkreg.tab description of the backup policy established by the administrator

/var/sadm/bkup/toc list of directories with on-line tables of contents

SEE ALSO

backup(1M), bkreg(1M)
date(1), ls(1) in the User's Reference Manual
NAME
bkoper – interact with backup operations to service media insertion prompts

SYNOPSIS
bkoper [-u users]

DESCRIPTION
Backup operations may require an operator to insert media and to confirm proper volume labels. The bkoper command provides a mailx-like interface for these operator interactions. It begins by printing a list of headers. Each header describes a backup operation requiring interaction, the device requiring attention including the media type and label of the volume to be inserted (see EXAMPLE). The system displays prompts and the operator issues commands to resolve the backup operation. Typing a carriage return invokes the current header. If no headers have been serviced, the current header is the first header on the list. If a header has been selected and serviced, the current header is the next one following.

bkoper may be executed only by a user with superuser privilege. By default, the operator may interact only with backup operations that were started by the same user ID.

If the -u users option is given, the operator interacts only with backup operations started by the specified user(s).

Commands
1shell-command
 Escapes to the shell. The remainder of the line after the ! is sent to the UNIX system shell (sh) to be interpreted as a command.

= Prints the current backup operation number.
?
[plt] [n] Both the p and t options operate in the same way. Either option will interact with the backup operation described by the n’th header. n defaults to the current header number.

h Prints the list of backup operations.
q Quits from bkoper.

DIAGNOSTICS
The exit codes for bkoper are the following:
0 = successful completion of the task
1 = one or more parameters to bkoper are invalid.
2 = an error has occurred which caused bkoper to fail to complete all portions of its task.

EXAMPLE
A sample header is shown below. Items appearing in the header are listed in the following order: header number, job-ID, tag, originating device, destination group, destination device, destination volume labels. [See bkreg(1M) for descriptions of items.] Not every header contains values for all these fields; if a destination group is not specified in /etc/bkup/bkreg.tab, then no value for “destination group” appears in the header.
1 back-111 usrsun /dev/dsk/c1d0s1 disk /dev/dsk/c2dls9 usrsave
2 back-112 fs2daily /dev/dsk/c1d0s8 ctape /dev/ctape/c4d0s2 -

Backup headers are numbered on the basis of arrival; the oldest header has the lowest number. If the destination device does not have a volume label, a dash is displayed in the header.

SEE ALSO
bkreg(1M), bkstatus(1M), getvol(1M), mailx(1)
NAME

bkreg – change or display the contents of a backup register

SYNOPSIS

bkreg

DESCRIPTION

A backup register is a file containing descriptions of backup operations to be performed on a UNIX system. The default backup register is located in /etc/bkup/bkreg.tab. Other backup registers may be created.

The bkreg command may be executed only by a user with superuser privilege.

Each entry in a backup register describes backup operations to be performed on a given disk object (called the originating object) for some set of days and weeks during a rotation period. There may be several register entries for an object, but only one entry may specify backup operations for an object on a specific day and week of the rotation period. The entry describes the object, the backup method to be used to archive the object, and the destination volumes to be used to store the archive. Each entry has a unique tag that identifies it. Tags must conform to file naming conventions.

Rotation Period

Backups are performed in a rotation period specified in weeks. When the end of a rotation period is reached, a new period begins. Rotation periods begin on Sundays. The default rotation period is one week.

Originating Objects

An originating object is either a raw data partition or a filesystem. An originating object is described by its originating object name, its device name, and optional volume labels.

Several backup operations for different originating objects may be active concurrently by specifying priorities and dependencies. During a backup session, higher priority backup operations are attempted before lower priority backup operations. All backup operations of a given priority may proceed concurrently unless dependencies are specified. If one backup is declared to be dependent on others, it will not be started until all of its antecedents have completed successfully.

Destination Devices

Each backup archive is written to a set of storage volumes inserted into a destination device. A destination device can have destination device group, a destination device name, media characteristics, and volume labels. Default characteris-
tics for a medium (as specified in the device table) may be overridden (see the “Device Management” chapter in the System Administrator’s Guide).

Backup Methods
An originating object is backed up to a destination device archive using a method. The method determines the amount of information backed up and the representation of that information. Different methods may be used for a given originating object on different days of the rotation. Each method accepts a set of options that are specific to the method.

Several default methods are provided with the Backup service. Others methods may be added by a UNIX system site. For descriptions of the default methods, see incfile(1M), ffile(1M), fdisk(1M), fimage(1M), and fdp(1M).

A backup archive may be migrated to a different destination by specifying migration as the backup method. The device name of the originating object for a migration must have been the destination device for a previously successful backup operation. This form of backup does not re-archive the originating object. It copies an archive from one destination to another, updating the backup service’s databases so that restores can still be done automatically.

Register Validations
There are items in a single backup register entry and items across register entries that must be consistent for the backup service to conduct a backup session correctly. Some of these consistencies are checked at the time the backup register is created or changed. Others can be checked only at the time the backup register is used by backup(1M). See backup(1M) for a complete list of validations.

Modes
The bkreg command has two modes: changing the contents of a backup register and displaying the contents of a backup register.

Changing Contents
bkreg -p changes the rotation period for a backup register. The default rotation period is one week.
bkreg -a adds an entry to a backup register. This option requires other options to be specified. These are listed below under Options.
bkreg -e edits an existing entry in a backup register.
bkreg -r removes an existing entry from a backup register.

Displaying Contents
bkreg -C produces a customized display of the contents of a backup register.

Options
-a Adds a new entry to the default backup register. Options required with -a are: tag, originating device, weeks:days, destination device, and method. If other options are not specified, the following defaults are used: the default backup register is used, no method options are specified, the priority is 0, and no dependencies exist between entries.
Each backup method supports a specific set of options that modify its behavior. *options* is specified as a list of options that are blank-separated and enclosed in quotes. The argument string provided here is passed to the method exactly as entered, without modification. For lists of valid options, see “The Backup Service” chapter in the *System Administrator’s Guide* and the following entries in this book: *fdisk*(1M), *fdp*(1M), *ffile*(1M), *fimage*(1M), and *incfile*(1M).

```
-b moptions
```

Sets the week(s) and day(s) of the rotation period during which a backup entry should be performed or for which a display should be generated. *weeks* is a set of numbers including 1 and 52. The value of *weeks* cannot be greater than the value of *-pperiod*. *weeks* is specified as a combination of lists or ranges (either comma-separated or blank-separated and enclosed in quotes). An example set of weeks is

```
''1 3-10,13''
```

indicating the first week, each of the third through tenth weeks, and the thirteenth week of the rotation period.

days is a set of numbers between 0 (Sunday) and 6 (Saturday). In addition, *days* are specified as a combination of lists or ranges (either comma-separated or blank-separated and enclosed in quotes).

demand indicates that an entry is used only when explicitly requested by

```
backup -c demand
```

```
-d ddev
```

Specifies *ddev* as the destination device for the backup operation. *ddev* is of the form:

```
[dgroup][::ddevice][::dchar][::dmname]
```

where either *dgroup* or *ddevice* must be specified and *dchar* and *dmname* are optional. (Both *dgroup* and *ddev* may be specified together.) Colons delinate field boundaries and must be included as indicated above.

dgroup is the device group for the destination device. [See *devgroup.tab*(4).] If omitted, *ddevice* must be specified.

ddevice is the device name of a specific destination device. [See *device.tab*(4).] If omitted, *dgroup* must be specified and any available device in *dgroup* may be used.

dchar describes media characteristics. If specified, they override the default characteristics for the device and group. *dchar* is of the form:

```
keyword=value
```

where *keyword* is a valid device characteristic keyword (as it appears in the device table.) *dchar* entries may be separated by commas or blanks. If separated by blanks, the entire string of arguments to *ddev* must be enclosed in quotes.
dlabels is a list of volume names of the destination volumes. The list of dlabels must be either comma-separated or blank-separated. If blank-separated, the entire ddev argument must be surrounded by quotes. Each dlabel corresponds to a volumename specified on the labelit command. If dlabels is omitted, backup and restore do not validate the volume labels on this entry.

-e Edits an existing entry. If any of the options -b, -c, -d, -m, -o, -D, or -P are present, they replace the current settings for the specified entry in the register.

-f c Overrides the default output field separator. c is the character that will appear as the field separator on the display output. The default output field separator is colon (:).

-h Suppresses headers when generating displays.

-m method migration
Perform the backup using the specified method. Default methods are: incfile, ffile, fdisk, fimage, and fdp. If the method to be used is not a default method, it must appear as the executable file in the standard method directory /etc/bkup/method. migration indicates that the value of orig (following the -o option) matches the value of ddev during a prior backup operation. The originating object is not rearchived; it is simply copied to the location specified by ddev (following the -d option). The backup history (if any) and tables of contents (if any) are updated to reflect the changed destination for the original archive.

-o orig
Specifies orig as the originating object for the backup operation. orig is specified in the following format:

\[oname:odevice [:omname]\]

where oname is the name of an originating object. For file system partitions, it is the nodename on which the file system is usually mounted, mount. For data partitions, it is any valid path name. This value is provided to the backup method and validated by backup. The default data partition backup methods, fdp and fdisk, do not validate this name.

odevice is the device name for the originating object. In all cases, it is a raw disk partition device name. For AT&T 3B2 computers, this name is specified in the following format: /dev/rdsk/c?d?s?.

olabel is the volume label for the originating object. For file system partitions, it corresponds to the volumename displayed by the labelit command. A data partition may have an associated volume name that appears nowhere except on the outside of the volume (where it is taped); getvol may be used to have an operator validate the name.

On AT&T 3B2 computers, the special data partition /dev/rdsk/c?d?s6 names an entire disk and is used when disk formatting or repartitioning is done to reference the disk's volume table of contents (VTOC). [See fmfhard(IM) and prtvtoc(IM).] backup validates this special full disk partition with the disk volume name specified when the disk was
partitioned. [See **fmithard**(1M).] If the disk volume name is omitted, **backup** does not validate the volume labels for this originating object.

- **p** **period**
 Sets the rotation period (in weeks) for the backup register to **period**. The minimum value is 1; the maximum value is 52. By default the current week of the rotation is set to 1.

- **r**
 Removes the specified entries from the register.

- **s**
 Suppresses wrap-around behavior when generating displays. Normal behavior is to wrap long values within each field.

- **t** **table**
 Uses **table** instead of the default register, **bkreg.tab**.

- **v**
 Generates displays using (vertical) columns instead of (horizontal) rows. This allows more information to be displayed without encountering problems displaying long lines.

- **w** **cweek**
 Overrides the default behavior by setting the current week of the rotation period to **cweek**. **cweek** is an integer between 1 and the value of **period**. The default is 1.

- **A**
 Displays a report describing all fields in the register. The display produced by this option is best suited as input to a filter, since in horizontal mode it produces extremely long lines.

- **C** **fields**
 Generates a display of the contents of a backup register, limiting the display to the specified fields. The output is a set of lines, one per register entry. Each line consists of the desired fields, separated by a field separator character. **fields** is a list of field names (either comma-separated or blank-separated and enclosed in quotes) for the fields desired. The valid field names are **period**, **cweek**, **tag**, **oname**, **oddevice**, **olabel**, **weeks**, **days**, **method**, **moptions**, **prio**, **depend**, **dgroup**, **ddevice**, **dchar**, and **dlabel**.

- **D** **depend**
 Specifies a set of backup operations that must be completed successfully before this operation may begin. **depend** is a list of **tag(s)** (either comma-separated or blank-separated and enclosed in quotes) naming the antecedent backup operations.

- **f** **c**
 Overrides the default output field separator. **c** is the character that will appear as the field separator on the display output. The default output field separator is colon ("":").

- **O**
 Displays a summary of all originating objects with entries in the register.

- **P** **prio**
 Sets a priority of **prio** for this backup operation. The default priority is 0; the highest priority is 100. All backup operations with the same priority may run simultaneously, unless the priority is 0. All backups with priority 0 run sequentially in an unspecified order.
bkreg (-R) Displays a summary of all destination devices with entries in the register.

DIAGNOSTICS
The exit codes for bkreg are the following:

0 = the task completed successfully
1 = one or more parameters to bkreg are invalid
2 = an error has occurred, causing bkreg to fail to complete all portions of its task

Errors are reported on standard error if any of the following occurs:

1. The tag specified in bkreg -e or bkreg -r does not exist in the backup register.
2. The tag specified in bkreg -a already exists in the register.

EXAMPLES
Example 1:

 bkreg -p 15 -w 3

establishes a 15-week rotation period in the default backup register and sets the current week to the 3rd week of the rotation period.

Example 2:

 bkreg -a acct5 -t wklybu.tab \
 -o /usr:/dev/rdsk/c1d0s2:usr -c "2 4-6 8 10:0,2,5" \
 -m incfile -b -txR \
 -d diskette:capacity=1404:acctwkly1,acctwkly2,acctwkly3 \\n
adds an entry named acct5 to the backup register named wklybu.tab. If wklybu.tab does not already exist, it will be created. The originating object to be backed up is the /usr file system on the /dev/rdsk/c1d0s2 device which is known as usr. The backup will be performed each Sunday, Tuesday, and Friday of the second, fourth through sixth, eighth, and tenth weeks of the rotation period using the incfile (incremental file) method. The method options specify that a table of contents will be created on additional media instead of in the backup history log, the exception list is to be ignored, and an estimate of the number of volumes for the archive is to be provided before performing the backup. The backup will be done to the next available diskette device using the three diskette volumes acctwkly1, acctwkly2, and acctwkly3. These volumes have a capacity of 1404 blocks each.

Example 3:

 bkreg -e services2 -t wklybu.tab \
 -o /back:/dev/rdsk/c1d0s8:back -m migration \
 -c demand -d ctape:/dev/rdsk/c4d0s3 \\

changes the specifications for the backup operation named services2 on the backup table wklybu.tab so that whenever the command backup -c demand is executed, the backup that was performed to the destination device back:dev/rdsk/c1d0s2:back will be migrated from that device (now serving as the originating device) to a cartridge tape.
Example 4:

```
bkreg -e pubsfri -P 10 -D develfri,marketfri,acctfri
```

changes the priority level for the backup operation named `pubsfri` to 10 and makes this backup operation dependent on the three backup operations `develfri`, `marketfri`, and `acctfri`. The `pubsfri` operation will be done only after all backup operations with priorities greater than 10 have begun and after the `develfri`, `marketfri`, and `acctfri` operations have been completed successfully.

Example 5:

```
bkreg -c 1-8:0-6
```

provides the default display of the contents of the default backup register, for all weekdays for the first through eighth weeks of the rotation period. The information in the register will be displayed in the following format:

```
Rotation Period = 10       Current Week = 4

Originating Device: / /dev/root
Tag    Weeks  Days  Method  Options   Pri  Dgroup
--------  ------  -----  ---------  ------
rootdai   1-8    1-6  incfile  diskette
rootsp    1-8    0     ffile   -bxt   20  ctape

Originating Device: /usr /dev/dsk/c1d0s2
Tag    Weeks  Days  Method  Options   Pri  Dgroup
--------  ------  -----  ---------  ------
usrdai   1-8    1-5  incfile  diskette
usrsp    1-8    0     ffile   -bxt   15  ctape
```

FILES

- `/etc/bkup/method/*` describes the backup policy established by the administrator
- `/etc/bkup/bkreg.tab` lists logical groupings of devices as determined by the administrator
- `/etc/dgroup.tab` describes specific devices and their attributes

SEE ALSO

`backup(1M), fdisk(1M), fdp(1M), incfile(1M), ffile(1M), fimage(1M), fmthard(1M), getvol(1M), labelit(1M), mkfs(1M), mount(1M), prtvtoc(1M), restore(1M)`
NAME
 bkstatus – display the status of backup operations

SYNOPSIS
 bkstatus [-h] [-f field_separator] [-j jobids] [-s states | -a] [-u users]
 bkstatus -p period

DESCRIPTION
 Without options, the bkstatus command displays the status of backup operations that are in progress: either active, pending, waiting or suspended. When used with the -a option, the backup command includes failed and completed backup operations in the display.

 bkstatus -p defines the amount of status information that is saved for display.

 bkstatus may only be executed by a user with superuser privilege.

 Each backup operation goes through a number of states as described below. The keyletters listed in parentheses after each state are used with the -s option and also appear on the display.

 pending(p)
 backup has been invoked and the operations in the backup register for the specified day are scheduled to occur.

 active(a)
 The backup operation has been assigned a destination device and archiving is currently underway; or a suspended backup has been resumed.

 waiting(w)
 The backup operation is waiting for operator interaction, such as inserting the correct volume.

 suspended(s)
 The backup operation has been suspended by an invocation of backup -s.

 failed(f)
 The backup operation failed or has been cancelled.

 completed(c)
 The backup operation has completed successfully.

 The -a and -s options are mutually exclusive.

Options
 -a
 Include failed and completed backup operations in the display. All backup operations that have occurred within the rotation period are displayed.

 -f field_separator
 Suppresses field wrap on the display and specifies an output field separator to be used. The value of c is the character that will appear as the field separator on the display output. For clarity of output, do not use a separator character that is likely to occur in a field. For example, do not use the colon as a field separator character if the
display will contain dates that use a colon to separate hours from minutes. To use the default field separator (tab), specify the null character ("\n") for c.

-h Suppress header on the display.

-j jobids Restrict the display to the specified list of backup job ids (either comma-separated or blank-separated and enclosed in quotes). [See backup(1M)].

-p period Define the amount of backup status information that is saved and made available for display as period. period is the number of weeks that information is saved in /bkup/bkstatus.tab. Status information that is older than the number of weeks specified in period is deleted from the status table. The minimum valid entry is 1. The maximum valid entry is 52. The default is 1 week.

-s states Restrict the report to backup operations with the specified states. states is a list of state key-letters (concatenated, comma-separated or blank-separated and surrounded by quotes). For example,

 apf
 a,p,f
 "a p f"

all specify that the report should only include backup operations that are active, pending or failed.

-u users Restrict the display to backup operations started by the specified list of users (either comma-separated or blank-separated and enclosed in quotes). users must be in the passwd file.

DIAGNOSTICS
The exit codes for the bkstatus command are the following:
0 = successful completion of the task
1 = one or more parameters to bkstatus are invalid.
2 = an error has occurred which caused bkstatus to fail to complete all portions of its task.

EXAMPLES
Example 1:

 bkstatus -p 4

specifies that backup status information is to be saved for four weeks. Any status information older than four weeks is deleted from the system.

Example 2:

 bkstatus -a -j back-459,back-395

produces a display that shows status for the two backup jobs specified, even if they have completed or failed.
Example 3:

```
bkstatus -s a,c -u "oper3 oper4"
```

produces a display that shows only those backup jobs issued by users `oper3` and `oper4` that have a status of either `active` or `completed`.

FILES

- `/etc/bkup/bkstatus.tab` lists the current status of backups that have occurred or are still in progress
- `/etc/bkup/bkreg.tab` describes the backup policy decided on by the System Administrator

SEE ALSO

`backup(1M), bkhist(1M), bkreg(1M)`
NAME

boot – UNIX system boot program

DESCRIPTION

The boot program interactively loads and executes stand-alone UNIX programs. While boot is used primarily for loading and executing the UNIX system kernel, it can load and execute any other programs that are linked for stand-alone execution. The boot program is a required part of the UNIX Base Operating System software set and must be present in the root file system to ensure successful loading of the UNIX System kernel. Note that during installation of the UNIX operating system, a custom masterboot is placed on the hard disk. The masterboot program resides on sector 0 of the hard disk and is the default boot program for hard-disk boot procedures.

The system invokes the boot program each time the computer is started. It tries to locate the boot program on the floppy disk drive first; if the floppy disk drive is empty, the system invokes the hard-disk boot procedure. The boot procedure depends on whether you are booting from a floppy disk or hard disk, as described below.

The floppy-disk boot procedure has two stages:

1. The boot block in sector 0 of the file system loads boot.
2. boot executes and prompts the user.

The hard-disk boot procedure has three stages:

1. The ROMs load in the masterboot block from sector 0 on the hard disk.
2. The masterboot boot block then loads the partition boot block from sector 0 of the active partition [see fdisk(1M)].
3. The remainder of boot is loaded from the next 29 sectors of the hard disk.

When first invoked, boot displays the following status message:

Booting the UNIX System...

To instruct boot to use the default kernel and values specified in the boot default file, /stand/boot, press RETURN. If you press any key other than RETURN, boot pauses and prompts you for custom information. If you have just loaded the boot program from the distribution diskette, press RETURN so boot will use the default values.

To load a program that is not the default program, press any key to interrupt boot. The boot program pauses and prompts you with the following message for the name of the program you want to load:

Enter the name of a kernel to boot:

The system waits at this point for you to type the name of the program you want to load and press RETURN. The length of the pause is the number of seconds specified with the TIMEOUT option in /stand/boot (see “boot Options”). If you have not typed something after the specified number of seconds and AUTOBOOT is set to YES in /stand/boot, boot times out and behaves as though you pressed
RETURN. The boot program proceeds through the boot process, and init(1M) is passed an -a flag with no prompt argument.

If you are booting from a program other than the boot program on the distribution diskette, you must specify the location of the program by providing a filename (if the program you want to load is on the default boot device). The filename must include the full pathname of the file containing the stand-alone program. To indicate a program other than the boot program on the distribution diskette, use the following format:

filename

where filename is the standard UNIX system pathname. If filename is the only argument typed at the boot prompt, boot looks for the filename on the default boot device and tries to boot from it.

boot Options

Options for the boot program can be set or changed with keywords in /stand/boot. The following keywords are recognized by boot:

- **AUTOBOOT=YES or NO**

 Indicates whether or not boot starts loading the kernel immediately or displays a boot prompt first.

- **BOOTMSG=string**

 The default boot message is changed to string.

- **BOOTPROMPT=string**

 The default boot prompt is changed to string.

- **DEFBOOTSTR=bootstring**

 Sets default bootstring to bootstring. This is the string used by boot when the user presses RETURN only to the boot prompt or when boot times out.

- **INITPROG=path**

 Specifies an initialization program to be loaded and run before boot sizes memory.

- **MEMRANGE=range[,range...]**

 Tells boot where to look when sizing memory. A range is a pair of decimal addresses, separated by a dash (such as 1M–4M), followed by a one-byte set of flags. This set of flags should be encoded as an integer in the range of 0–255. Use a colon (:) to separate addresses from flags. Note that only two values are currently defined: 0 (indicates no special properties) and 1 (indicates memory for which DMA is not allowed). All other flags are currently undefined and reserved for future use. Both upward (such as 15M–16M) and downward (such as 16M–15M) address ranges are supported. The first address in the pair is inclusive; the last address is exclusive.

- **MEMREQ=size**

 Tells boot to enforce a minimum memory size of size. If boot doesn’t find at least size bytes of
boot (1M) (Base System) boot (1M)

memory, it will print a message and halt. size is given in the same format as addresses for MEMRANGE.

MREQMSG1=string

This sets the message printed when the MEMREQ memory requirement is not met.

MREQMSG2=string

Specifies an optional second line for the MREQMSG1 message.

TIMEOUT=number

If boot is waiting for a boot line from the user and TIMEOUT is set, boot will wait for number seconds, then use the default boot line defined by DEFBOOTSTR.

Customizing the Boot Process

You can set the boot process up to be automatic. To set up boot to run automatically, using the default configuration information in the /stand/boot file, set AUTOBOOT to YES in the /stand/boot file. This causes boot to display the default boot message and load the program. If an error occurs or a key is pressed during this automatic boot process, boot returns to the boot prompt and tries to load the program again. The boot program on the UNIX operating system installation diskette performs this automatic boot procedure.

If AUTOBOOT is set to NO in the /stand/boot file, boot gives you an opportunity to type a bootstring before boot begins loading the program. If you do not type a bootstring at the prompt, boot assumes the user wants the default configuration. At this point, boot behaves as though AUTOBOOT is set to YES in the /stand/boot file. The boot program reads the configuration in the /stand/boot file then displays the default boot message (BOOTMSG) and begins loading the program.

the filesystem type of the root file system can also be specified, as follows:

 rootfstype=fstype

where fstype is the filesystem type, probably either s5 or ufs.

Kernel Configuration

The boot program passes any boot string typed at the boot prompt to the kernel except for the prompt string. The kernel reads the boot string to determine which peripherals are the root, pipe, swap, and dump devices. If no devices are specified in either the /stand/boot description or on the command line, the default devices compiled into the kernel are used. Additional arguments in the boot string can override the default. These additional arguments have the following form:

 dev=xx(m,o)

where

- dev is the desired system device (root[dev], pipe[dev], swap[dev], or dump[dev]).
- \(xx \) is the device name ("hd" for the hard disk or "fd" for floppy diskette device).
- \(m \) is the minor device number.
- \(o \) is the offset in the partition (usually 0).

If any combination of \(\text{root} \), \(\text{pipe} \), \(\text{swap} \), or \(\text{dumpdev} \) is specified, those system devices will reside on that device with the unspecified system devices using the defaults compiled in the kernel. Setting one device does not affect the default values for the other system devices.

FILES

/stand/boot

SEE ALSO

fdisk(1M), init(1M), fd(7), hd(7)

DIAGNOSTICS

The `masterboot` and `boot` programs have different error messages. The `masterboot` program displays an error message and locks the system. The following is a list of the most common `masterboot` messages and their meanings:

- **IO ERR**
 An error occurred when trying to read in the partition boot of the active operating system.

- **BAD TBL**
 The bootable partition indicator of at least one of the operating systems in the fdisk table contains an unrecognizable code.

- **NO OS**
 There was an unrecoverable error after trying to execute the active operating system's partition boot.

The `boot` program displays an error message, then returns to its prompt. Some `boot` messages indicate fatal errors that cause the system to halt and require rebooting. Other `boot` messages are not fatal but indicate that the `boot` program is not running properly.

The following four messages indicate fatal errors. When one of these messages occurs, you will need to correct the problem described in the message and reboot the system:

- **Error reading bootstrap**
 The `boot` program could not locate the bootstrap, or the bootstrap is not readable. Make sure that the bootstrap is properly located on the specified boot device and is compatible with the kernel you are booting. Then reboot the system.

- **No active partition on hard disk**
 There is currently no active partition from which to run the `boot` program. Activate an appropriate partition and reboot the system.

- **No file system to boot**
 The `boot` program could not locate a `/stand` or root file system on the specified boot device. Make sure the boot device has a `/stand` or root file system and reboot the system.
The following list describes boot warning messages. When one of these messages occurs, you will need to correct the problem described in the message and restart the boot program:

Cannot load initprog
The boot program cannot locate the initialization program specified with the INITPROG option, or the initialization program is not set up properly for execution. Make sure that the path argument to INITPROG is a valid path and the file is executable. Then restart boot.

Cannot open defaults file
The boot program cannot locate the /stand/boot file on the boot device, or the file is not readable. Make sure that the /stand/boot file exists on the boot device and that the file is readable. Then restart boot.

command argument missing or incorrect
The boot program received a command with no argument or with an invalid argument. Make sure that command in /stand/boot has the correct number of arguments and that all the arguments are valid, then restart boot.

Cannot load file; file not opened
The boot program cannot locate file on the specified device, or file is not set up properly for execution. Check that file exists on the specified device and restart boot.

Cannot load file; cannot read COFF header
The specified Common Object File Format (COFF) file contains no file header, or the file header is not readable. Make sure that file contains a readable file header, then restart boot.

Cannot load file; not an 80386 ELF or COFF binary
The specified file is not an 80386 ELF or COFF binary. Check that the file you want to load is a valid COFF binary that is compatible with 80386 systems and restart boot.

Cannot load file; cannot read segment/sections
The specified file does not contain a section header, or the section header is not readable. Check that file contains a readable section header and restart boot.

Cannot load file; cannot read BKI section
The specified file does not include the bootstrap-kernel interface (BKI) section, or the BKI section is not readable. Make sure the BKI section of file is accurate for your version of the kernel and bootstrap, then restart boot.

Cannot load file; BKI too old
The BKI of the current bootstrap is not compatible with the BKI of the program (file) you are loading. Make sure that the BKI of the bootstrap and file are compatible and restart boot.

Cannot load file; BKI too new
The BKI of the current bootstrap is not compatible with the BKI of the program (file) you are loading. Make sure that the BKI of the bootstrap and file are compatible and restart boot.
Cannot load file; missing text or data segment
The specified file does not contain a necessary text or data segment. Check that file contains the proper text and data segments, then restart boot.

Cannot load file; missing BKI segment
The specified file does not contain the BKI segment. Make sure that the BKI segment in file exists and is compatible with the BKI of the bootstrap.

Cannot load file
The amount of memory available for the kernel is not present or is inadequate. Make sure you have allocated enough memory for the kernel you want to load, then restart boot.

Too many lines in defaults file; extra lines ignored
The file/stand/boot contains too many lines. All extra lines will be ignored.

NOTES
The computer always tries to boot from any diskette in the floppy diskette drive first. If the diskette does not contain a valid bootstrap program, errors occur.

The boot program cannot be used to load programs that have not been linked for standalone execution. To create stand-alone programs, use the option of the UNIX system linker [ld (1)] and special stand-alone libraries.

Although stand-alone programs can operate in real or protected mode, they must not be large or huge model programs. Programs in real mode can use the input/output routines of the computer’s startup ROM.
NAME

bootparamd – boot parameter server

SYNOPSIS

bootparamd [-d]

DESCRIPTION

bootparamd is a server process that provides information to diskless clients necessary for booting. It obtains its information from the /etc/bootparams file.

bootparamd can be invoked either by inetd(1M) or by the user.

The -d option displays the debugging information.

FILES

/etc/bootparams

SEE ALSO

inetd(1M)
NAME
brc, bcheckrc – system initialization procedures

SYNOPSIS
/sbin/brc
/sbin/bcheckrc

DESCRIPTION
These shell procedures are executed via entries in /etc/inittab by init whenever the system is booted.

First, the bcheckrc procedure checks the status of the root file system. If the root file system is found to be bad, bcheckrc repairs it.

Then, bcheckrc mounts the /stand, /proc, and /var (if it exists) file systems (/var may exist as a directory in the root file system, or as a separate file system).

The brc script performs administrative tasks related to file sharing.

After these two procedures have executed, init checks for the initdefault value in /etc/inittab. This tells init in which run level to place the system. If, for example, initdefault is set to 2, the system will be placed in the multi-user state via the rc2 procedure.

Note that bcheckrc should always be executed before brc. Also, these shell procedures may be used for several run-level states.

SEE ALSO
fsck(1M), init(1M), rc2(1M), shutdown(1M), inittab(4), mnttab(4)
NAME
cal – print calendar

SYNOPSIS
cal [[month] year]

DESCRIPTION
cal prints a calendar for the specified year. If a month is also specified, a calendar just for that month is printed. If neither is specified, a calendar for the present month is printed. The month is a number between 1 and 12. The year can be between 1 and 9999. The calendar produced is that for England and the United States.

NOTES
An unusual calendar is printed for September 1752. That is the month 11 days were skipped to make up for lack of leap year adjustments. To see this calendar, type: cal 9 1752

The command cal 83 refers to the year 83, not 1983.
The year is always considered to start in January even though this is historically naive.
NAME
calendar – reminder service

SYNOPSIS
calendar [-]

DESCRIPTION
calendar consults the file calendar in the current directory and prints out lines that contain today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as Aug. 24, august 24, 8/24, and so on, are recognized, but not 24 August or 24/8. On weekends “tomorrow” extends through Monday. calendar can be invoked regularly by using the crontab(1) or at(1) commands.

When an argument is present, calendar does its job for every user who has a file calendar in his or her login directory and sends them any positive results by mail(1). Normally this is done daily by facilities in the UNIX operating system (see cron(1M)).

If the environment variable DATEMSK is set, calendar will use its value as the full path name of a template file containing format strings. The strings consist of field descriptors and text characters and are used to provide a richer set of allowable date formats in different languages by appropriate settings of the environment variable LANG or LC_TIME (see environ(5)). (See date(1) for the allowable list of field descriptors.)

EXAMPLES
The following example shows the possible contents of a template:

```
%B %eth of the year %Y
```

%B represents the full month name, %e the day of month and %Y the year (4 digits).

If DATEMSK is set to this template, the following calendar file would be valid:

```
March 7th of the year 1989 < Reminder>
```

FILES
/usr/lib/calprog program used to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal*

SEE ALSO
at(1), date(1), crontab(1), mail(1), cron(1M), environ(5) in the System Administrator’s Reference Manual

NOTES
Appropriate lines beginning with white space will not be printed.
Your calendar must be public information for you to get reminder service.
calendar’s extended idea of “tomorrow” does not account for holidays.
NAME
captoinfo — convert a termcap description into a terminfo description

SYNOPSIS
captoinfo [-v ...] [-v] [-1] [-w width] file ...

DESCRIPTION
captoinfo looks in file for termcap descriptions. For each one found, an
equivalent terminfo description is written to standard output, along with any
comments found. A description which is expressed as relative to another descrip­
tion (as specified in the termcap tc = field) will be reduced to the minimum
superset before being output.

If no file is given, then the environment variable TERMCAP is used for the filename
or entry. If TERMCAP is a full pathname to a file, only the terminal whose name is
specified in the environment variable TERM is extracted from that file. If the
environment variable TERMCAP is not set, then the file /usr/share/lib/termcap
is read.

-v print out tracing information on standard error as the program runs.
Specifying additional -v options will cause more detailed information to
be printed.

-V print out the version of the program in use on standard error and exit.

-l cause the fields to print out one to a line. Otherwise, the fields will be
printed several to a line to a maximum width of 60 characters.

-w change the output to width characters.

FILES
/usr/share/lib/terminfo/??/* Compiled terminal description database.

NOTES
captoinfo should be used to convert termcap entries to terminfo entries
because the termcap database (from earlier versions of UNIX System V) may not
be supplied in future releases.

SEE ALSO
curses(3X), infocmp(1M), terminfo(4)
NAME
cat – concatenate and print files

SYNOPSIS
cat [-u] [-s] [-v [-t] [-e]] file...

DESCRIPTION
cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints file on your terminal, and:

cat file1 file2 >file3

concatenates file1 and file2, and writes the results in file3.

If no input file is given, or if the argument – is encountered, cat reads from the standard input file.

The following options apply to cat:

-u The output is not buffered. (The default is buffered output.)
-s cat is silent about non-existent files.
-v Causes non-printing characters (with the exception of tabs, new-lines and form-feeds) to be printed visibly. ASCII control characters (octal 000 – 037) are printed as ^n, where n is the corresponding ASCII character in the range octal 100 – 137 (@, A, B, C, . . . , X, Y, Z, [, \,], ^, and _); the DEL character (octal 0177) is printed ^?. Other non-printable characters are printed as M-x, where x is the ASCII character specified by the low-order seven bits.

When used with the -v option, the following options may be used:

-t Causes tabs to be printed as ^I’s and formfeeds to be printed as ^L’s.
-e Causes a $ character to be printed at the end of each line (prior to the new-line).

The -t and -e options are ignored if the -v option is not specified.

SEE ALSO
cp(1), pg(1), pr(1)

NOTES
Redirecting the output of cat onto one of the files being read will cause the loss of the data originally in the file being read. For example,

 cat file1 file2 >file1

causes the original data in file1 to be lost.
NAME
catman – create the cat files for the manual

SYNOPSIS
/usr/ucb/catman [-nptw] [-M directory] [-T tmac.an] [sections]

DESCRIPTION
The catman commands creates the preformatted versions of the on-line manual
from the nroff(l) input files. Each manual page is examined and those whose
preformatted versions are missing or out of date are recreated. If any changes
are made, catman recreates the whatis database.

If there is one parameter not starting with a ‘-‘, it is taken to be a list of manual
sections to look in. For example

 catman 123

only updates manual sections 1, 2, and 3.

The following options are available:

- n Do not (re)create the whatis database.
- p Print what would be done instead of doing it.
- t Create troffed entries in the appropriate fmt subdirectories instead of
 nroffing into the cat subdirectories.
- w Only create the whatis database. No manual reformating is done.
- M Update manual pages located in the specified directory
 (/usr/share/man by default).
- T Use tmac.an in place of the standard manual page macros.

ENVIRONMENT
TROFF The name of the formatter to use when the -t flag is given. If not set,
‘troff’ is used.

FILES
/usr/share/man default manual directory location
/usr/share/man/man?/*.* raw (nroff input) manual sections
/usr/share/man/cat?/*.* preformatted nroffed manual pages
/usr/share/man/fmt?/*.* preformatted troffed manual pages
/usr/share/man/whatis whatis database location
/usr/ucblib/makewhatis command script to make whatis database

SEE ALSO
man(1), nroff(1), troff(1), whatis(1)

DIAGNOSTICS
man?/xxx.? (.so‘ed from man?/yyy.?): No such file or directory
The file outside the parentheses is missing, and is referred to by the file
inside them.

target of .so in man?/xxx.? must be relative to /usr/man
catman only allows references to filenames that are relative to the direc-
tory /usr/share/man.
opendir: No such file or directory
 A harmless warning message indicating that one of the directories catman
 normally looks for is missing.

.*.*: No such file or directory
 A harmless warning message indicating catman came across an empty
directory.
NAME
 cb – C program beautifier

SYNOPSIS
 cb [-s] [-j] [-l leng] [-V] [file . . .]

DESCRIPTION
 The cb command reads syntactically correct C programs either from its arguments or from the standard input, and writes them on the standard output with spacing and indentation that display the structure of the C code. By default, cb preserves all user new-lines. cb accepts the following options.

 -s Write the code in the style of Kernighan and Ritchie found in The C Programming Language.
 -j Put split lines back together.
 -l leng Split lines that are longer than leng.
 -V Print on standard error output the version of cb invoked.

NOTES
 cb treats asm as a keyword.
 The format of structure initializations is unchanged by cb.
 Punctuation that is hidden in preprocessing directives causes indentation errors.

SEE ALSO
 cc(1)
NAME
 cc - C compiler

SYNOPSIS
 cc [options] file . . .

DESCRIPTION
 cc is the interface to the C compilation system. The compilation tools conceptually consist of a preprocessor, compiler, optimizer, basic block analyzer, assembler, and link editor. cc processes the supplied options and then executes the various tools with the proper arguments. cc accepts several types of files as arguments.

Files whose names end with .c are taken to be C source files and may be preprocessed, compiled, optimized, instrumented for profiling, assembled, and link edited. The compilation process may be stopped after the completion of any pass if the appropriate options are supplied. If the compilation process runs through the assembler, then an object file is produced whose name is that of the source with .o substituted for .c. However, the .o file is normally deleted if a single C file is compiled and then immediately link edited. In the same way, files whose names end in .s are taken to be assembly source files; they may be assembled and link edited. Files whose names end in .i are taken to be preprocessed C source files, and they may be compiled, optimized, instrumented for profiling, assembled, and link edited. Files whose names do not end in .c, .s, or .i are handed to the link editor, which produces a dynamically linked executable whose name by default is a.out.

Since cc usually creates files in the current directory during the compilation process, it is necessary to run cc in a directory in which a file can be created.

The following options are interpreted by cc:

- A name[(tokens)]
 Associates name as a predicate with the specified tokens as if by a #assert preprocessing directive.
 Preassertions:
 system(unix)
 cpu(i386)
 machine(i386)

- A - Causes all predefined macros (other than those that begin with __) and predefined assertions to be forgotten.

- B c c can be either dynamic or static. -B dynamic causes the link editor to look for files named libx.so and then for files named libx.a when given the -lx option. -B static causes the link editor to look only for files named libx.a. This option may be specified multiple times on the command line as a toggle. This option and its argument are passed to ld.

- C Cause the preprocessing phase to pass along all comments other than those on preprocessing directive lines.

- c Suppress the link editing phase of the compilation and do not remove any produced object files.
-D name [=tokens]
Associates name with the specified tokens as if by a \#define preprocessing directive. If no =tokens is specified, the token 1 is supplied.
Predefinitions:
 i386
 unix

-d c
c can be either y or n. -dy specifies dynamic linking, which is the default, in the link editor. -dn specifies static linking in the link editor. This option and its argument are passed to ld.

-E
Only preprocess the named C files and send the result to the standard output. The output will contain preprocessing directives for use by the next pass of the compilation system.

-f
This option is obsolete and will be ignored.

-G
Used to direct the link editor to produce a shared object rather than a dynamically linked executable. This option is passed to ld. It cannot be used with the -dn option.

-g
Cause the compiler to generate additional information needed for the use of sdb. Use of sdb on a program compiled with both the -g and -O options is not recommended unless the user understands the behavior of optimization.

-H
Print, one per line, the path name of each file included during the current compilation on the standard error output.

-I dir
Alter the search for included files whose names do not begin with / to look in dir prior to the usual directories. The directories for multiple -I options are searched in the order specified.

-K [PIC, minabi]
-K PIC causes position-independent code (PIC) to be generated. -K minabi directs the compilation system to use a version of the C library that minimizes dynamic linking, without changing the application's ABI conformance (or non-conformance, as the case may be). Applications that use the Network Services Library or the X library may not use -K minabi.

-L dir
Add dir to the list of directories searched for libraries by ld. This option and its argument are passed to ld.

-1 name
Search the library libname.so or libname.a. Its placement on the command line is significant as a library is searched at a point in time relative to the placement of other libraries and object files on the command line. This option and its argument are passed to ld.

-O
Arrange for compilation phase optimization. This option has no effect on .s files.

-o pathname
Produce an output object file pathname, instead of the default a.out. This option and its argument are passed to ld.
-P Only preprocess the named C files and leave the result in corresponding files suffixed .i. The output will not contain any preprocessing directives, unlike -E.

-p Arrange for the compiler to produce code that counts the number of times each routine is called; also, if link editing takes place, profiled versions of libc.a and libm.a (with the -lm option) are linked if the -dn option is used. A mon.out file will then be produced at normal termination of execution of the object program. An execution profile can then be generated by use of prof.

-Q c c can be either y or n. If c is y, identification information about each invoked compilation tool will be added to the output files (the default behavior). This can be useful for software administration. Giving n for c suppresses this information.

-q c c can be either 1 or p. -ql causes the invocation of the basic block analyzer and arranges for the production of code that counts the number of times each source line is executed. A listing of these counts can be generated by use of lprof. -qp is a synonym for -p.

-s Compile, optimize (if -O is present), and do not assemble or link edit the named C files. The assembler-language output is left in corresponding files suffixed .s.

-U name

Causes any definition of name to be forgotten, as if by a #undef preprocessing directive. If the same name is specified for both -D and -U, name is not defined, regardless of the order of the options.

-v Cause each invoked tool to print its version information on the standard error output.

-v Cause the compiler to perform more and stricter semantic checks, and to enable certain lint-like checks on the named C files.

-W tool, arg_1[, arg_2 ...]

Hand off the argument(s) arg_j each as a separate argument to tool. Each argument must be separated from the preceding by only a comma. (A comma can be part of an argument by escaping it by an immediately preceding backslash (\) character; the backslash is removed from the resulting argument.) tool can be one of the following:

0 A synonym for 0
1 compiler
2 optimizer
b basic block analyzer
a assembler
l link editor

For example, -Wa,-o,objcfile passes -o and objcfile to the assembler, in that order; also -Wl,-i,name causes the linking phase to override the default name of the dynamic linker, /usr/lib/libc.so.1.
The order in which the argument(s) are passed to a tool with respect to the other specified command line options may change.

\(-X\, c\) Specify the degree of conformance to the ANSI C standard. \(c\) can be one of the following:

\(t\) (transition)
The compiled language includes all new features compatible with older (pre-ANSI) C (the default behavior). The compiler warns about all language constructs that have differing behavior between the new and old versions and uses the pre-ANSI C interpretation. This includes, for example, warning about the use of trigraphs the new escape sequence \(\text{"\\a"}\), and the changes to the integral promotion rules.

\(a\) (ANSI)
The compiled language includes all new features of ANSI C and uses the new interpretation of constructs with differing behavior. The compiler continues to warn about the integral promotion rule changes, but does not warn about trigraph replacements or new escape sequences.

\(c\) (conformance)
The compiled language and associated header files are ANSI C conforming, but include all conforming extensions of \(-Xa\).WARNings will be produced about some of these. Also, only ANSI defined identifiers are visible in the standard header files.

The predefined macro _STDC_ has the value \(0\) for \(-Xt\) and \(-Xa\), and \(1\) for \(-Xc\). All warning messages about differing behavior can be eliminated in \(-Xa\) through appropriate coding; for example, use of casts can eliminate the integral promotion change warnings.

\(-Y\) item, dir
Specify a new directory \(dir\) for the location of \(item\). \(item\) can consist of any of the characters representing tools listed under the \(-w\) option or the following characters representing directories containing special files:

\(F\) obsolete. Use \(-YP\) instead. For this release, \(-YP\) will be simulated using \(-YP\). \(-YP\) will be removed in the next release.

\(I\) directory searched last for include files: \(INCDIR\) (see \(-I\))

\(S\) directory containing the start-up object files: \(LIBDIR\)

\(L\) obsolete. Use \(-YP\) instead. For this release, \(-YL\) will be simulated using \(-YP\). \(-YL\) will be removed in the next release.

\(U\) obsolete. Use \(-YP\) instead. For this release, \(-YU\) will be simulated using \(-YP\). \(-YU\) will be removed in the next release.

\(P\) Change the default directories used for finding libraries. \(dir\) is a colon-separated path list.

If the location of a tool is being specified, then the new path name for the tool will be \(dir/tool\). If more than one \(-Y\) option is applied to any one item, then the last occurrence holds.
cc recognizes -a, -B, -e, -h -m, -o, -r, -s, -t, -u, and -z and passes these options and their arguments to ld. cc also passes any unrecognized options to ld without any diagnostic.

When cc is put in a file prefixcc, the prefix will be recognized and used to prefix the names of each tool executed. For example, OLDcc will execute OLDAcomp, OLDOptim, OLDbasicblk, OLDas, and OLDld, and will link the object file(s) with OLDcrt1.o. Therefore, be careful when moving cc around. The prefix applies to the compiler, optimizer, basic block analyzer, assembler, link editor, and the start-up routines.

FILES

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>file.c</td>
<td>C source file</td>
</tr>
<tr>
<td>file.i</td>
<td>preprocessed C source file</td>
</tr>
<tr>
<td>file.o</td>
<td>object file</td>
</tr>
<tr>
<td>file.s</td>
<td>assembly language file</td>
</tr>
<tr>
<td>a.out</td>
<td>link-edited output</td>
</tr>
<tr>
<td>LIBDIR/*crti.o</td>
<td>startup initialization code</td>
</tr>
<tr>
<td>LIBDIR/*crt1.o</td>
<td>startup routine</td>
</tr>
<tr>
<td>LIBDIR/*crtn.o</td>
<td>last startup routine</td>
</tr>
<tr>
<td>TMPDIR/*</td>
<td>temporary files</td>
</tr>
<tr>
<td>LIBDIR/acomp</td>
<td>preprocessor and compiler</td>
</tr>
<tr>
<td>LIBDIR/optim</td>
<td>optimizer</td>
</tr>
<tr>
<td>LIBDIR/basicblk</td>
<td>basic block analyzer</td>
</tr>
<tr>
<td>BINDIR/as</td>
<td>assembler</td>
</tr>
<tr>
<td>BINDIR/ld</td>
<td>link editor</td>
</tr>
<tr>
<td>LIBDIR/libc.so</td>
<td>shared standard C library</td>
</tr>
<tr>
<td>LIBDIR/libc.a</td>
<td>archive standard C library</td>
</tr>
</tbody>
</table>

INCDIR usually /usr/include
LIBDIR usually /usr/ccs/lib
BINDIR usually /usr/ccs/bin
TMPDIR usually /var/tmp but can be redefined by setting the environment variable TMPDIR (see tempnam in tempnam(3S)).

SEE ALSO

as(l), ld(l), lint(l), lprof(l), prof(l), sdb(l), monitor(3C), tmpnam(3S)

NOTES

Obsolescent but still recognized cc options include -f, -F, -YF, -YL, and -YU. The -q1 and -o options do not work together; -o will be ignored.
NAME
cc - C compiler

SYNOPSIS
/usr/ucb/cc [options]

DESCRIPTION
/usr/ucb/cc is the C compiler for the BSD Compatibility Package. /usr/ucb/cc
is identical to /usr/bin/cc (see cc(1)) except that BSD header files are used BSD
libraries are linked before System V libraries.

/usr/ucb/cc accepts the same options as /usr/bin/cc, with the following
exceptions:

-I dir Search dir for included files whose names do not begin with a ‘/’,
prior to the usual directories. The directories fro multiple -I options
are searched in the order specified. The preprocessor first searches
for #include files in the directory containing sourcefile, and then in
directories named with -I options (if any), then /usr/ucbinclude,
and finally, in /usr/include.

-L dir Add dir to the list of directories searched for libraries by
/usr/bin/cc. This option is passed to /usr/bin/ld. Directories
specified with this option are searched before /usr/ucb/lib and
/usr/lib.

-Y LU, dir Change the default directory used for finding libraries.

FILES
/usr/ucb/lib
/usr/lib/ld
/usr/ucb/lib/libucb.a
/usr/lib/libucb.a

NOTES
The -Y LU, dir option may have unexpected results, and should not be used. This
option is not in the UNIX System V base.

SEE ALSO
ld(1)
as(1), ar(1), cc(1), ld(1), lorder(1), ranlib(1), strip(1),
NAME
 cd – change working directory

SYNOPSIS
 cd [directory]

DESCRIPTION
 If directory is not specified, the value of shell parameter $HOME is used as the new
 working directory. If directory specifies a complete path starting with /, ., or . . ,
 directory becomes the new working directory. If neither case applies, cd tries to
 find the designated directory relative to one of the paths specified by the $CDPATH
 shell variable. $CDPATH has the same syntax as, and similar semantics to, the
 $PATH shell variable. cd must have execute (search) permission in directory.

 Because a new process is created to execute each command, cd would be ineffectual
 if it were written as a normal command; therefore, it is recognized by and is
 internal to the shell.

SEE ALSO
 pwd(1), sh(1)
 chdir(2) in the Programmer’s Reference Manual
NAME
cdc – change the delta comment of an SCCS delta

SYNOPSIS
cdc -r SID [-m{mrlist}] [-y{comment}] file ...

DESCRIPTION
cdc changes the delta comment, for the SID (SCCS identification string) specified by the -r keyletter, of each named SCCS file.

The delta comment is the Modification Request (MR) and comment information normally specified via the -m and -y keyletters of the delta command.

If file is a directory, cdc behaves as though each file in the directory were specified as a named file, except that non-SCCS files (last component of the path name does not begin with s.) and unreadable files are silently ignored. If a name of - is given, the standard input is read (see the NOTES section) and each line of the standard input is taken to be the name of an SCCS file to be processed.

Arguments to cdc, which may appear in any order, consist of keyletter arguments and file names.

All the described keyletter arguments apply independently to each named file:

- rSID Used to specify the SCCS IDentification (SID) string of a delta for which the delta comment is to be changed.

- mv{mrlist} If the SCCS file has the v flag set [see admin(1)] then a list of MR numbers to be added and/or deleted in the delta comment of the SID specified by the -r keyletter may be supplied. A null MR list has no effect.

mrlist entries are added to the list of MRs in the same manner as that of delta. In order to delete an MR, precede the MR number with the character ! (see the EXAMPLES section). If the MR to be deleted is currently in the list of MRs, it is removed and changed into a comment line. A list of all deleted MRs is placed in the comment section of the delta comment and preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRS? is issued on the standard output before the standard input is read; if the standard input is not a terminal, no prompt is issued. The MRS? prompt always precedes the comments? prompt (see -y keyletter).

mrlist entries in a list are separated by blanks and/or tab characters. An unescaped new-line character terminates the MR list.

Note that if the v flag has a value [see admin(1)], it is taken to be the name of a program (or shell procedure) that validates the correctness of the MR numbers. If a non-zero exit status is returned from the MR number validation program, cdc terminates and the delta comment remains unchanged.
Arbitrary text used to replace the `comment(s)` already existing for the delta specified by the `-r` keyletter. The previous comments are kept and preceded by a comment line stating that they were changed. A null `comment` has no effect.

If `-y` is not specified and the standard input is a terminal, the prompt `comments?` is issued on the standard output before the standard input is read; if the standard input is not a terminal, no prompt is issued. An unescaped new-line character terminates the `comment` text.

If you made the delta and have the appropriate file permissions, you can change its delta comment. If you own the file and directory you can modify the delta comment.

EXAMPLES

```
cdc -r1.6 -m"bl88-12345 !bl87-54321 b189-00001" -ytrouble s.file
```

adds bl88-12345 and bl89-00001 to the MR list, removes bl87-54321 from the MR list, and adds the comment trouble to delta 1.6 of s.file.

Entering:
```
cdc -r1.6 s.file
MRs? !bl87-54321 bl88-12345 bl89-00001
comments? trouble
```

produces the same result.

FILES

- `x-file` [see delta(1)]
- `z-file` [see delta(1)]

SEE ALSO

admin(1), delta(1), get(1), help(1), prs(1), sccsfile(4)

DIAGNOSTICS

Use `help` for explanations.

NOTES

If SCCS file names are supplied to the `cdc` command via the standard input (`-` on the command line), then the `-m` and `-y` keyletters must also be used.
NAME
cflow – generate C flowgraph

SYNOPSIS
cflow [-r] [-ix] [-i_] [-dnum] files

DESCRIPTION
The cflow command analyzes a collection of C, yacc, lex, assembler, and object files and builds a graph charting the external function references. Files suffixed with .y, .l, and .c are processed by yacc, lex, and the C compiler as appropriate. The results of the preprocessed files, and files suffixed with .i, are then run through the first pass of lint. Files suffixed with .s are assembled. Assembled files, and files suffixed with .o, have information extracted from their symbol tables. The results are collected and turned into a graph of external references that is written on the standard output.

Each line of output begins with a reference number, followed by a suitable number of tabs indicating the level, then the name of the global symbol followed by a colon and its definition. Normally only function names that do not begin with an underscore are listed (see the -i options below). For information extracted from C source, the definition consists of an abstract type declaration (e.g., char *), and, delimited by angle brackets, the name of the source file and the line number where the definition was found. Definitions extracted from object files indicate the file name and location counter under which the symbol appeared (e.g., text). Leading underscores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name contain only the reference number of the line where the definition may be found. For undefined references, only <> is printed.

As an example, suppose the following code is in file.c:

```c
int i;
main()
{
    f();
    g();
    f();
}
f()
{
    i = h();
}
```

The command

cflow -ix file.c

produces the output

```
1   main: int(), <file.c 4>
2       f: int(), <file.c 11>
3           h: <>
4       i: int, <file.c 1>
5       g: <>
```
When the nesting level becomes too deep, the output of `cflow` can be piped to
the `pr` command, using the `-e` option, to compress the tab expansion to some­
thing less than every eight spaces.

In addition to the `-D`, `-I`, and `-U` options [which are interpreted just as they are
by `cc`], the following options are interpreted by `cflow`:

- `r` Reverse the “caller:callee” relationship producing an inverted listing
 showing the callers of each function. The listing is also sorted in lexicograph­i­
 ical order by callee.

- `ix` Include external and static data symbols. The default is to include only
 functions in the flowgraph.

- `i_` Include names that begin with an underscore. The default is to exclude
 these functions (and data if `-ix` is used).

- `dnum` The `num` decimal integer indicates the depth at which the flowgraph is
 cut off. By default this number is very large. Attempts to set the cutoff
 depth to a nonpositive integer will be ignored.

SEE ALSO

`as(1), cc(1), lex(1), lint(1), nm(1), yacc(1)`

DIAGNOSTICS

Complains about multiple definitions and only believes the first.

NOTES

Files produced by `lex` and `yacc` cause the reordering of line number declarations,
which can confuse `cflow`. To get proper results, feed `cflow` the `yacc` or `lex`
input.
checkfsys(1M) (Essential Utilities) checkfsys(1M)

NAME
checkfsys – check a file system

SYNOPSIS
checkfsys

DESCRIPTION
The checkfsys command allows you to check for and optionally repair a dam­
aged file system. The command invokes a visual interface (the check task avail­
able through the sysadm command). The initial prompt allows you to select the
device that contains the filesystem. Then you are asked to specify the type of
checking. The following choices are available:

check only
 Check the file system. No repairs are attempted.

interactive fix
 Repair the file system interactively. You are informed about each instance
 of damage and asked if it should be repaired.

automatic fix
 Repair the file system automatically. The program applies a standard
 repair to each instance of damage.

The identical function is available under the sysadm menu:

 sysadm check

NOTES
While automatic and interactive checks are generally successful, they can occa­
sionally lose a file or a file’s name. Files with content but without names are put
in the file-system/lost+found directory.

If it is important not to lose data, check the file system first to see if it appears to
be damaged. If it does, use one of the repair options of the task.

DIAGNOSTICS
The checkfsys command exits with one of the following values:
0 Normal exit.
2 Invalid command syntax. A usage message is displayed.
7 The visual interface for this command is not available because it cannot
 invoke.fml1. (The FMLI package is not installed or is corrupted.)

SEE ALSO
 fsck(1M), makefsys(1M), mountfsys(1M), sysadm(1M)
NAME
checknr - check nroff and troff input files; report possible errors

SYNOPSIS
/usr/ucb/checknr [-fs] [-a .xl .yl .x2 .y2xn .yn] [-c .xl .x2 .x3xn] [filename ...]

DESCRIPTION
The checknr command checks a list of nroff or troff input files for certain kinds of errors involving mismatched opening and closing delimiters and unknown commands. If no files are specified, checknr checks the standard input. Delimiters checked are:

 Font changes using \fx ... \fP.
 Size changes using \sx ... \sO.

 Macros that come in open ... close forms, for example, the .TS and .TE macros which must always come in pairs.

checknr knows about the ms and me macro packages.

checknr is intended to be used on documents that are prepared with checknr in mind. It expects a certain document writing style for \f and \s commands, in that each \fx must be terminated with \fP and each \sx must be terminated with \sO. While it will work to directly go into the next font or explicitly specify the original font or point size, and many existing documents actually do this, such a practice will produce complaints from checknr. Since it is probably better to use the \fP and \sO forms anyway, you should think of this as a contribution to your document preparation style.

The following options are available:
-f Ignore \f font changes.
-s Ignore \s size changes.
-a .xl .yl ...
 Add pairs of macros to the list. The pairs of macros are assumed to be those (such as .DS and .DE) that should be checked for balance. The -a option must be followed by groups of six characters, each group defining a pair of macros. The six characters are a period, the first macro name, another period, and the second macro name. For example, to define a pair .BS and .ES, use -a.BS.ES
-c .xl ...
 Define commands which checknr would otherwise complain about as undefined.

SEE ALSO
eqn(1), nroff(1), troff(1), me(7), ms(7)

NOTES
There is no way to define a one-character macro name using the -a option.
chgrp(1)

NAME
chgrp – change the group ownership of a file

SYNOPSIS
chgrp [-R] [-h] group file . . .

DESCRIPTION
chgrp changes the group ID of the files given as arguments to group. The group may be either a decimal group ID or a group name found in the group ID file, /etc/group.

You must be the owner of the file, or be the super-user to use this command.

The operating system has a configuration option {_POSIX_CHOWN_RESTRICTED}, to restrict ownership changes. When this option is in effect, the owner of the file may change the group of the file only to a group to which the owner belongs. Only the super-user can arbitrarily change owner IDs whether this option is in effect or not.

chgrp has one option:

-R Recursive. chgrp descends through the directory, and any subdirectories, setting the specified group ID as it proceeds. When symbolic links are encountered, they are traversed.

-h If the file is a symbolic link, change the group of the symbolic link. Without this option, the group of the file referenced by the symbolic link is changed.

FILES
/etc/group

SEE ALSO
chmod(1), chown(1), id(1M)

NOTES
In a Remote File Sharing environment, you may not have the permissions that the output of the ls -1 command leads you to believe. For more information see the Network User’s and Administrator’s Guide.
NAME
 chkey – change user encryption key

SYNOPSIS
 chkey

DESCRIPTION
 The chkey command prompts for a password and uses it to encrypt a new user
 encryption key. The encrypted key is stored in the publickey(4) database.

SEE ALSO
 keylogin(1), keylogout(1), publickey(4), keyserv(1M), newkey(1)
NAME
chmod – change file mode

SYNOPSIS
chmod [-R] mode file . . .
chmod [ugoa]{ + | - | = }[rwxlstugo] file . . .

DESCRIPTION
chmod changes or assigns the mode of a file. The mode of a file specifies its permissions and other attributes. The mode may be absolute or symbolic.

An absolute mode is specified using octal numbers:

 chmod nnnn file . . .

where \(n \) is a number from 0 to 7. An absolute mode is constructed from the OR of any of the following modes:

- \(4000 \) Set user ID on execution.
- \(20#0 \) Set group ID on execution if \# is 7, 5, 3, or 1.
- Enable mandatory locking if \# is 6, 4, 2, or 0.
- This bit is ignored if the file is a directory; it may be set or cleared only using the symbolic mode.
- \(1000 \) Turn on sticky bit [(see chmod(2)].
- \(0400 \) Allow read by owner.
- \(0200 \) Allow write by owner.
- \(0100 \) Allow execute (search in directory) by owner.
- \(0070 \) Allow read, write, and execute (search) by group.
- \(0007 \) Allow read, write, and execute (search) by others.

Upon execution, the setuid and setgid modes affect interpreter scripts only if the first line of those scripts is

 #! pathname [arg]

where \(\text{pathname} \) is the path of a command interpreter, such as sh. [See exec(2).]

A symbolic mode is specified in the following format:

 chmod [who] operator [permission(s)] file . . .

\(\text{who} \) is zero or more of the characters \(u, g, o, \) and \(a \) specifying whose permissions are to be changed or assigned:

- \(u \) user’s permissions
- \(g \) group’s permissions
- \(o \) others’ permissions
- \(a \) all permissions (user, group, and other)

If \(\text{who} \) is omitted, it defaults to \(a \).

\(\text{operator} \) is one of +, -, or =, signifying how permissions are to be changed:

- \(+ \) Add permissions.
- \(- \) Take away permissions.
- \(= \) Assign permissions absolutely.
Unlike other symbolic operations, = has an absolute effect in that it resets all other bits. Omitting permission(s) is useful only with = to take away all permissions.

permission(s) is any compatible combination of the following letters:

- r read permission
- w write permission
- x execute permission
- s user or group set-ID
- t sticky bit
- l mandatory locking
- u, g, o indicate that permission is to be taken from the current user, group or other mode respectively.

Permissions to a file may vary depending on your user identification number (UID) or group identification number (GID). Permissions are described in three sequences each having three characters:

<table>
<thead>
<tr>
<th>User</th>
<th>Group</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>rwx</td>
<td>rwx</td>
<td>rwx</td>
</tr>
</tbody>
</table>

This example (user, group, and others all have permission to read, write, and execute a given file) demonstrates two categories for granting permissions: the access class and the permissions themselves.

Multiple symbolic modes separated by commas may be given, though no spaces may intervene between these modes. Operations are performed in the order given. Multiple symbolic letters following a single operator cause the corresponding operations to be performed simultaneously.

The letter s is only meaningful with u or g, and t only works with u.

Mandatory file and record locking (1) refers to a file's ability to have its reading or writing permissions locked while a program is accessing that file. When locking is requested, the group ID of the user must be the same as the group ID of the file. It is not possible to permit group execution and enable a file to be locked on execution at the same time. In addition, it is not possible to turn on the set-group-ID bit and enable a file to be locked on execution at the same time. The following examples, therefore, are invalid and elicit error messages:

\[\text{chmod g+x, +1 file} \]
\[\text{chmod g+s, +1 file} \]

Only the owner of a file or directory (or the super-user) may change that file's or directory's mode. Only the super-user may set the sticky bit on a non-directory file. If you are not super-user, \text{chmod} will mask the sticky-bit but will not return an error. In order to turn on a file's set-group-ID bit, your own group ID must correspond to the file's and group execution must be set.

The \(-R\) option recursively descends through directory arguments, setting the mode for each file as described above.
EXAMPLES

Deny execute permission to everyone:

```bash
chmod a-x file
```

Allow read permission to everyone:

```bash
chmod 444 file
```

Make a file readable and writable by the group and others:

```bash
chmod go+rw file
chmod 066 file
```

Cause a file to be locked during access:

```bash
chmod +1 file
```

Allow everyone to read, write, and execute the file and turn on the set group-ID.

```bash
chmod =rwx,g+s file
chmod 2777 file
```

Absolute changes don’t work for the set-group-ID bit of a directory. You must use `g+s` or `g-s`.

SEE ALSO

`ls(1)`.

`chmod(2)` in the *Programmer’s Reference Manual*

NOTES

`chmod` permits you to produce useless modes so long as they are not illegal (for example, making a text file executable). `chmod` does not check the file type to see if mandatory locking is available.
NAME
chown – change file owner

SYNOPSIS
chown [-R] [-h] owner file ...

DESCRIPTION
chown changes the owner of the files to owner. The owner may be either a decimal user ID or a login name found in /etc/passwd file.

If chown is invoked by other than the super-user, the set-user-ID bit of the file mode, 04000, is cleared.

Only the owner of a file (or the super-user) may change the owner of that file.

Valid options to chown are:

- RRecursive. chown descends through the directory, and any subdirectories, setting the ownership ID as it proceeds. When symbolic links are encountered, they are traversed.

- hIf the file is a symbolic link, change the owner of the symbolic link. Without this option, the owner of the file referenced by the symbolic link is changed.

The operating system has a configuration option _POSIX_CHOWN_RESTRICTED, to restrict ownership changes. When this option is in effect the owner of the file is prevented from changing the owner ID of the file. Only the super-user can arbitrarily change owner IDs whether this option is in effect or not.

FILES
/etc/passwd

SEE ALSO
chgrp(1), chmod(1)
chown(2) in the Programmer’s Reference Manual

NOTES
In a Remote File Sharing environment, you may not have the permissions that the output of the ls –1 command leads you to believe. For more information see the “Mapping Remote Users” section of the “RFS sysadm Interface” chapter of the Network User’s and Administrator’s Guide.
NAME
cown — change file owner

SYNOPSIS
/usr/ucb/chown [-fhR] owner[.group] file ...

DESCRIPTION
cown changes the owner of the files to owner. The owner may be either a decimal user ID or a login name found in /etc/passwd file. The optional .group suffix may be used to change the group at the same time.

If chown is invoked by other than the super-user, the set-user-ID bit of the file mode, 04000, is cleared.

Only the super-user may change the owner of a file.

Valid options to chown are:
-f Suppress error reporting
-h If the file is a symbolic link, change the owner of the symbolic link. Without this option, the owner of the file referenced by the symbolic link is changed.
-R Descend recursively through directories setting the ownership ID of all files in each directory entered.

FILES
/etc/group
/etc/passwd

NOTES
In a Remote File Sharing environment, you may not have the permissions that the output of the ls -l command leads you to believe. For more information see the "Mapping Remote Users" section of the Remote File Sharing chapter of the System Administrator's Guide.

SEE ALSO
cgrp(1), chmod(1) in the User’s Reference Manual
cown(2) in the Programmer’s Reference Manual
passwd(4) in the System Administrator’s Reference Manual
NAME
chroot - change root directory for a command

SYNOPSIS
/usr/sbin/chroot newroot command

DESCRIPTION
chroot causes the given command to be executed relative to the new root. The
meaning of any initial slashes (/) in the path names is changed for the command
and any of its child processes to newroot. Furthermore, upon execution, the ini­
tial working directory is newroot.

Notice, however, that if you redirect the output of the command to a file:

 chroot newroot command >x

will create the file x relative to the original root of the command, not the new
one.

The new root path name is always relative to the current root: even if a chroot is
currently in effect, the newroot argument is relative to the current root of the run­
ning process.

This command can be run only by the super-user.

SEE ALSO

NOTES
One should exercise extreme caution when referencing device files in the new
root file system.

When using chroot, do not exec a command that uses shared libraries. This will
result in killing your process.
NAME
chrtbl – generate character classification and conversion tables

SYNOPSIS
chrtbl [file]

DESCRIPTION
The chrtbl command creates two tables containing information on character
classification, upper/lower-case conversion, character-set width, and numeric for­
matting. One table is an array of (257*2) + 7 bytes that is encoded so a table
lookup can be used to determine the character classification of a character, con­
vert a character [see ctype(3C)], and find the byte and screen width of a charac­
ter in one of the supplementary code sets. The other table contains information
about the format of non-monetary numeric quantities: the first byte specifies the
decimal delimiter; the second byte specifies the thousands delimiter; and the
remaining bytes comprise a null terminated string indicating the grouping (each
element of the string is taken as an integer that indicates the number of digits
that comprise the current group in a formatted non-monetary numeric quantity).

chrtbl reads the user-defined character classification and conversion information
from file and creates three output files in the current directory. To construct file,
use the file supplied in /usr/lib/locale/C/chrtbl_C as a starting point. You
may add entries, but do not change the original values supplied with the system.
For example, for other locales you may wish to add eight-bit entries to the ASCII
definitions provided in this file.

One output file, ctype.c (a C-language source file), contains a (257*2)+7-byte
array generated from processing the information from file. You should review
the content of ctype.c to verify that the array is set up as you had planned. (In
addition, an application program could use ctype.c.) The first 257 bytes of the
array in ctype.c are used for character classification. The characters used for ini­
itializing these bytes of the array represent character classifications that are
defined in /usr/include/ctype.h; for example, _L means a character is lower
case and _S|_B means the character is both a spacing character and a blank. The
second 257 bytes of the array are used for character conversion. These bytes of
the array are initialized so that characters for which you do not provide conver­
sion information will be converted to themselves. When you do provide conver­
sion information, the first value of the pair is stored where the second one would
be stored normally, and vice versa; for example, if you provide <0x41 0x61>,
then 0x61 is stored where 0x41 would be stored normally, and 0x61 is stored
where 0x41 would be stored normally. The last 7 bytes are used for character
width information for up to three supplementary code sets.

The second output file (a data file) contains the same information, but is struc­
tured for efficient use by the character classification and conversion routines (see
ctype(3C)). The name of this output file is the value you assign to the keyword
LC_CTYPE read in from file. Before this file can be used by the character
classification and conversion routines, it must be installed in the
/usr/lib/locale/locale directory with the name LC_CTYPE by someone who is
super-user or a member of group bin. This file must be readable by user, group,
and other; no other permissions should be set. To use the character classification
and conversion tables in this file, set the `LC_CTYPE` environment variable appropriately (see environ(5) or setlocale(3C)).

The third output file (a data file) is created only if numeric formatting information is specified in the input file. The name of this output file is the value you assign to the keyword `LC_NUMERIC` read in from `file`. Before this file can be used, it must be installed in the `/usr/lib/locale/locale` directory with the name `LC_NUMERIC` by someone who is super-user or a member of group `bin`. This file must be readable by user, group, and other; no other permissions should be set. To use the numeric formatting information in this file, set the `LC_NUMERIC` environment variable appropriately (see environ(5) or setlocale(3C)).

The name of the locale where you install the files `LC_CTYPE` and `LC_NUMERIC` should correspond to the conventions defined in `file`. For example, if French conventions were defined, and the name for the French locale on your system is `french`, then you should install the files in `/usr/lib/locale/french`.

If no input file is given, or if the argument "-" is encountered, `chrtbl` reads from standard input.

The syntax of `file` allows the user to define the names of the data files created by `chrtbl`, the assignment of characters to character classifications, the relationship between upper and lower-case letters, byte and screen widths for up to three supplementary code sets, and three items of numeric formatting information: the decimal delimiter, the thousands delimiter and the grouping. The keywords recognized by `chrtbl` are:

- `LC_CTYPE` name of the data file created by `chrtbl` to contain character classification, conversion, and width information
- `isupper` character codes to be classified as upper-case letters
- `islower` character codes to be classified as lower-case letters
- `isdigit` character codes to be classified as numeric
- `isspace` character codes to be classified as spacing (delimiter) characters
- `ispunct` character codes to be classified as punctuation characters
- `iscntrl` character codes to be classified as control characters
- `isblank` character code for the blank (space) character
- `isxdigit` character codes to be classified as hexadecimal digits
- `ul` relationship between upper- and lower-case characters
- `cswidth` byte and screen width information (by default, each is one character wide)
- `LC_NUMERIC` name of the data file created by `chrtbl` to contain numeric formatting information
- `decimal_point` decimal delimiter
- `thousands_sep` thousands delimiter
chrtbl(1M) (System Administration Utilities) **chrtbl(1M)**

grouping string in which each element is taken as an integer that indicates the number of digits that comprise the current group in a formatted non-monetary numeric quantity.

Any lines with the number sign (#) in the first column are treated as comments and are ignored. Blank lines are also ignored.

Characters for `isupper`, `islower`, `isdigit`, `isspace`, `ispunct`, `iscntrl`, `isblank`, `isxdigit`, and `ul` can be represented as a hexadecimal or octal constant (for example, the letter a can be represented as `0x61` in hexadecimal or `0141` in octal). Hexadecimal and octal constants may be separated by one or more space and/or tab characters.

The dash character (--) may be used to indicate a range of consecutive numbers. Zero or more space characters may be used for separating the dash character from the numbers.

The backslash character (\) is used for line continuation. Only a carriage return is permitted after the backslash character.

The relationship between upper- and lower-case letters (ul) is expressed as ordered pairs of octal or hexadecimal constants: `<upper-case_character lower-case_character>`. These two constants may be separated by one or more space characters. Zero or more space characters may be used for separating the angle brackets (< >) from the numbers.

The following is the format of an input specification for `cswidth`:

```
n1:s1,n2:s2,n3:s3
```

where,

- `n1` byte width for supplementary code set 1, required `s1` screen width for supplementary code set 1
- `n2` byte width for supplementary code set 2 `s2` screen width for supplementary code set 2
- `n3` byte width for supplementary code set 3 `s3` screen width for supplementary code set 3

`decimal_point` and `thousands_sep` are specified by a single character that gives the delimiter. `grouping` is specified by a quoted string in which each member may be in octal or hex representation. For example, `\3` or `\x3` could be used to set the value of a member of the string to 3.

EXAMPLE

The following is an example of an input file used to create the USA-ENGLISH code set definition table in a file named `usa` and the non-monetary numeric formatting information in a file name `num-usa`.

```
LC_CTYPE usa
isupper 0x41 - 0x5a
islower 0x61 - 0x7a
isdigit 0x30 - 0x39
isspace 0x20 0x9 - 0xd
ispunct 0x21 - 0x2f 0x3a - 0x40 0x5b - 0x60 0x7b - 0x7e
iscntrl 0x0 - 0x1f 0x7f
isblank 0x20
```

3/91
FILE
/usr/lib/locale/locale/LC_CTYPE
data files containing character classification, conversion, and
character-set width information created by chrtbl
/usr/lib/locale/locale/LC_NUMERIC
data files containing numeric formatting information created by
chrtbl
/usr/include/ctype.h
header file containing information used by character
classification and conversion routines
/usr/lib/locale/C/chrtbl_C
input file used to construct LC_CTYPE and LC_NUMERIC in the
default locale.

SEE ALSO
environ(5)
cctype(3C), setlocale(3C) in the Programmer's Reference Manual

DIAGNOSTICS
The error messages produced by chrtbl are intended to be self-explanatory.
They indicate errors in the command line or syntactic errors encountered within
the input file.

NOTES
Changing the files in /usr/lib/locale/C will cause the system to behave
unpredictably.
NAME
ckbinarsys – determine whether remote system can accept binary messages

SYNOPSIS
ckbinarsys [-S] -s remote_system_name -t content_type

DESCRIPTION
Because rmail can transport binary data, it may be important to determine whether a particular remote system (typically the next hop) can handle binary data via the chosen transport layer agent (uux, SMTP, and so on)

ckbinarsys consults the file /etc/mail/binarsys for information on a specific remote system. ckbinarsys returns its results via an appropriate exit code. An exit code of zero implies that it is OK to send a message with the indicated content type to the system specified. An exit code other than zero indicates that the remote system cannot properly handle messages with binary content.

The absence of the binarsys file will cause ckbinarsys to exit with a non-zero exit code.

Command-line arguments are:

-\(s\) remote_system_name
 Name of remote system to look up in /etc/mail/binarsys

-\(t\) content_type
 Content type of message to be sent. When invoked by rmail, this will be one of two strings: text or binary, as determined by mail independent of any Content-Type: header lines that may be present within the message header. All other arguments are treated as equivalent to binary.

-\(S\)
 Normally, ckbinarsys will print a message (if the binary mail is rejected) which would be suitable for rmail to return in the negative acknowledgement mail. When -\(S\) is specified, no message will be printed.

FILES
/etc/mail/binarsys
/usr/lib/mail/surcmd/ckbinarsys

SEE ALSO
mailsurr(4), binarsys(4)
mail(1), uux(1) in the User's Reference Manual
ckbupscd (1M) (Essential Utilities) ckbupscd (1M)

NAME
ckbupscd – check file system backup schedule

SYNOPSIS
ckbupscd [-m]

DESCRIPTION
ckbupscd consults the file /etc/bupsched and prints the file system lists from lines with date and time specifications matching the current time. If the -m flag is present, an introductory message in the output is suppressed so that only the file system lists are printed. Entries in the bupsched file are printed under the control of cron.

The file bupsched should contain lines of four or more fields, separated by spaces or tabs. The first three fields (the schedule fields) specify a range of dates and times. The rest of the fields constitute a list of names of file systems to be printed if ckbupscd is run at some time within the range given by the schedule fields. The general format is:

\[time[,time] day[,day] month[,month] fsyslist \]

where:

- **time** Specifies an hour of the day (0 through 23), matching any time within that hour, or an exact time of day (0:00 through 23:59).
- **day** Specifies a day of the week (sun through sat) or day of the month (1 through 31).
- **month** Specifies the month in which the time and day fields are valid. Legal values are the month numbers (1 through 12).
- **fsyslist** The rest of the line is taken to be a file system list to print.

Multiple time, day, and month specifications may be separated by commas, in which case they are evaluated left to right.

An asterisk (*) always matches the current value for the field in which it appears.

A line beginning with a sharp sign (#) is interpreted as a comment and ignored.

The longest line allowed (including continuations) is 1024 characters.

EXAMPLES
The following are examples of lines which could appear in the /etc/bupsched file.

```
06:00-09:00 fri 1,2,3,4,5,6,7,8,9,10,11 /applic
Prints the file system name /applic if ckbupscd is run between 6:00 A.M. and 9:00 A.M. any Friday during any month except December.

00:00-06:00,16:00-23:59 1,2,3,4,5,6,7 1,8 /
Prints a reminder to backup the root (/) file system if ckbupscd is run between the times of 4:00 P.M. and 6:00 A.M. during the first week of August or January.
```
ckbupscd (1M) (Essential Utilities) ckbupscd (1M)

FILES

/etc/bupsched specification file containing times and file system to back up

SEE ALSO

 cron(1M)
 echo(1), sh(1), in the User’s Reference Manual

NOTES

ckbupscd will report file systems due for backup if invoked any time in the window. It does not know that backups may have just been done.
NAME
ckdate, errdate, helpdate, valdate – prompt for and validate a date

SYNOPSIS
ckdate [-Q] [-w width] [-f format] [-d default] [-h help] [-e error]
[-p prompt] [-k pid] [-s signal]
errdate [-w width] [-e error] [-f format]
helpdate [-w width] [-h help] [-f format]
valdate [-f format] input

DESCRIPTION
ckdate prompts a user and validates the response. It defines, among other things, a prompt message whose response should be a date, text for help and error messages, and a default value (which is returned if the user responds with a RETURN). The user response must match the defined format for a date.

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -w option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text is inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) is displayed.

Three visual tool modules are linked to the ckdate command. They are errdate (which formats and displays an error message), helpdate (which formats and displays a help message), and valdate (which validates a response). These modules should be used in conjunction with FMLI objects. In this instance, the FMLI object defines the prompt. When format is defined in the errdate and helpdate modules, the messages describe the expected format.

The options and arguments for this command are:

- Q Do not allow quit as a valid response.
- w Use width as the line length for prompt, help, and error messages.
- f Verify input using format. Possible formats and their definitions are:
 %b = abbreviated month name
 %B = full month name
 %d = day of month (01 – 31)
 %D = date as %m/%d/%y (the default format)
 %e = day of month (1 – 31; single digits are preceded by a blank)
 %h = abbreviated month name (for example, jan, feb, mar)
 %m = month number (01 – 12)
 %y = year within century (for example, 91)
 %Y = year as CCYY (for example, 1991)
- d The default value is default. The default is not validated and so does not have to meet any criteria.
-h The help message is help.
-e The error message is error.
-p The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.
-s When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

input Input to be verified against format criteria.

EXIT CODES
 0 = Successful execution
 1 = EOF on input
 2 = Usage error
 3 = User termination (quit)
 4 = Garbled format argument

NOTES
The default prompt for ckdate is:
Enter the date [?,q]
The default error message is:
ERROR - Please enter a date. Format is format.
The default help message is:
Please enter a date. Format is format.
When the quit option is chosen (and allowed), q is returned along with the return code 3. The valdate module does not produce any output. It returns zero for success and non-zero for failure.
NAME
ckgid, errgid, helpgid, valgid - prompt for and validate a group ID

SYNOPSIS
ckgid [-Q] [-w width] [-m] [-d default] [-h help] [-e error] [-p prompt]
[-k pid] [-s signal]
errgid [-w width] [-e error]
helpgid [-w width] [-m] [-h help]
valgid input

DESCRIPTION
ckgid prompts a user and validates the response. It defines, among other things, a prompt message whose response should be an existing group ID, text for help and error messages, and a default value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -w option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text is inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) is displayed.

Three visual tool modules are linked to the ckgid command. They are errgid (which formats and displays an error message), helpgid (which formats and displays a help message), and valgid (which validates a response). These modules should be used in conjunction with FML objects. In this instance, the FML object defines the prompt.

The options and arguments for this command are:
- Q Do not allow quit as a valid response.
- W Use width as the line length for prompt, help, and error messages.
- m Display a list of all groups when help is requested or when the user makes an error.
- d The default value is default. The default is not validated and so does not have to meet any criteria.
- h The help message is help.
- e The error message is error.
- p The prompt message is prompt.
- k Send process ID pid a signal if the user chooses to abort.
- s When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

input Input to be verified against /etc/group
EXIT CODES

0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES

The default prompt for ckgid is:

Enter the name of an existing group [?,q]

The default error message is:

ERROR - Please enter the name of an existing group.
(if the -m option of ckgid is used, a list of valid groups is displayed here)

The default help message is:

Please enter an existing group name.
(if the -m option of ckgid is used, a list of valid groups is displayed here)

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valgid module does not produce any output. It returns zero for success and non-zero for failure.
NAME
cint – display a prompt; verify and return an integer value

SYNOPSIS
ckint [-Q] [-w width] [-b base] [-d default] [-h help] [-e error]
[-p prompt] [-k pid] [-s signal]
errint [-w width] [-b base] [-e error]
helpint [-w width] [-b base] [-h help]
valint [-b base] input

DESCRIPTION
ckint prompts a user, then validates the response. It defines, among other
things, a prompt message whose response should be an integer, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

All messages are limited in length to 70 characters and are formatted automatically.
Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text is inserted at that point,
allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) is displayed.

Three visual tool modules are linked to the ckint command. They are errint
(which formats and displays an error message), helpint (which formats and
displays a help message), and valint (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the
FML object defines the prompt. When base is defined in the errint and helpint
modules, the messages includes the expected base of the input.

The options and arguments for this command are:
- -Q Do not allow quit as a valid response.
- -w Use width as the line length for prompt, help, and error messages.
- -b The base for input is base. Must be 2 to 36, default is 10.
- -d The default value is default. The default is not validated and so does not
have to meet any criteria.
- -h The help message is help.
- -e The error message is error.
- -p The prompt message is prompt.
- -k Send process ID pid a signal if the user chooses to abort.
- -s When quit is chosen, send signal to the process whose pid is specified by
the -k option. If no signal is specified, use SIGTERM.
input Input to be verified against base criterion.
EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES
The default base 10 prompt for ckint is:
 Enter an integer [?,q]
The default base 10 error message is:
 ERROR - Please enter an integer.
The default base 10 help message is:
 Please enter an integer.
The messages are changed from "integer" to "base base integer" if the base is set to a number other than 10.
When the quit option is chosen (and allowed), q is returned along with the return code 3. The valint module does not produce any output. It returns zero for success and non-zero for failure.
NAME
ckitem – build a menu; prompt for and return a menu item

SYNOPSIS
ckitem [-Q] [-w width] [-uno] [-f file] [-l label]
[[-i invis] [-i invis] . . .] [-m max] [-d default] [-h help] [-e error]
[-p prompt] [-k pid] [-s signal]] [choice1 choice2 . . .]
erritem [-w width] [-e error] [choice1 choice2 . . .]
helpitem [-w width] [-h help] [choice1 choice2 . . .]

DESCRIPTION
ckitem builds a menu and prompts the user to choose one item from a menu of
items. It then verifies the response. Options for this command define, among
other things, a prompt message whose response is a menu item, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN).

By default, the menu is formatted so that each item is prepended by a number
and is printed in columns across the terminal. Column length is determined by
the longest choice. Items are alphabetized.

All messages are limited in length to 70 characters and are formatted automati-
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text is inserted at that point,
allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) is displayed.

Two visual tool modules are linked to the cakitem command. They are erritem
(which formats and displays an error message) and helpitem (which formats and
displays a help message). These modules should be used in conjunction with
FML objects. In this instance, the FML object defines the prompt. When choice is
defined in these modules, the messages describe the available menu choice (or
choices).

The options and arguments for this command are:
- -Q Do not allow quit as a valid response.
- -w Use width as the line length for prompt, help, and error messages.
- -u Display menu items as an unnumbered list.
- -n Do not display menu items in alphabetical order.
- -o Return only one menu token.
- -f file contains a list of menu items to be displayed. [The format of this file
is: token<tab>description. Lines beginning with a pound sign ("#") are com-
ments and are ignored.]
- -l Print label above the menu.
invis specifies invisible menu choices (choices not to be printed in the menu). For example, "all" used as an invisible choice would mean it is a valid option but does not appear in the menu. Any number of invisible choices may be defined. Invisible choices should be made known to a user either in the prompt or in a help message.

The maximum number of menu choices allowed is m.

The default value is $default$. The default is not validated and so does not have to meet any criteria.

The help message is $help$.

The error message is $error$.

The prompt message is $prompt$.

Send process ID pid a signal if the user chooses to abort.

When quit is chosen, send $signal$ to the process whose pid is specified by the $-k$ option. If no signal is specified, use $SIGTERM$.

choice Defines menu items. Items should be separated by white space or newline.

EXIT CODES

0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No choices from which to choose

NOTES

The user may input the number of the menu item if choices are numbered or as much of the string required for a unique identification of the item. Long menus are paged with 10 items per page.

When menu entries are defined both in a file (by using the $-f$ option) and also on the command line, they are usually combined alphabetically. However, if the $-n$ option is used to suppress alphabetical ordering, then the entries defined in the file are shown first, followed by the options defined on the command line.

The default prompt for ckitem is:

```
Enter selection [?,??,q]:
```

One question mark gives a help message and then redisplays the prompt. Two question marks gives a help message and then redisplays the menu label, the menu and the prompt.

The default error message is:

```
ERROR - Does not match an available menu selection.
Enter one of the following:
- the number of the menu item you wish to select
- the token associated with the menu item,
- partial string which uniquely identifies the token
  for the menu item
- ?? to reprint the menu
```
The default help message is:

Enter one of the following:
- the number of the menu item you wish to select
- the token associated with the menu item,
- partial string which uniquely identifies the token
 for the menu item
- ?? to reprint the menu

When the quit option is chosen (and allowed), q is returned along with the return code 3.
NAME
ckkeywd – prompt for and validate a keyword

SYNOPSIS
ckkeywd [-Q] [-w width] [-d default] [-h help] [-e error] [-p prompt]
[-k pid [-s signal]] [keyword . . .]

DESCRIPTION
ckkeywd prompts a user and validates the response. It defines, among other things, a prompt message whose response should be one of a list of keywords, text for help and error messages, and a default value (which is returned if the user responds with a RETURN). The answer returned from this command must match one of the defined list of keywords.

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -w option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text is inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) is displayed.

- Q Do not allow quit as a valid response.
- w Use width as the line length for prompt, help, and error messages.
- d The default value is default. The default is not validated and so does not have to meet any criteria.
- h The help message is help.
- e The error message is error.
- p The prompt message is prompt.
- k Send process ID pid a signal if the user chooses to abort.
- s When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

keyword The keyword, or list of keywords, against which the answer is to be verified is keyword.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = No keywords from which to choose

NOTES
The default prompt for ckkeywd is:
 Enter appropriate value [keyword[, . . .],?,q]
The default error message is:

```
ERROR - Please enter one of the following keywords:
keyword[, . . .]
```

The default help message is:

```
Please enter one of the following keywords:
keyword[, . . .]
```

When the quit option is chosen (and allowed), q is returned along with the return code 3.
ckpath (1) (Essential Utilities) ckpath (1)

NAME
ckpath – display a prompt; verify and return a pathname

SYNOPSIS
ckpath [-Q] [-W width] [-a| 1] [file_options] [-rtwx] [-d default]
 [-h help] [-e error] [-p prompt] [-k pid] [-s signal]
errpath [-W width] [-a| 1] [file_options] [-rtwx] [-e error]
he1ppath [-W width] [-a| 1] [file_options] [-rtwx] [-h help]
valpath [-a| 1] [file_options] [-rtwx] input

DESCRIPTION
ckpath prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a pathname, text for help
and error messages, and a default value (which is returned if the user responds
with a RETURN).

The pathname must obey the criteria specified by the first group of options. If no
criteria are defined, the pathname must be for a normal file that does not yet
exist. If neither -a (absolute) or -1 (relative) is given, then either is assumed to
be valid.

All messages are limited in length to 70 characters and are formatted automatic­
ally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text is inserted at that point,
allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) is displayed.

Three visual tool modules are linked to the ckpath command. They are errpath
(which formats and displays an error message), he1ppath (which formats and
displays a help message), and valpath (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-a Pathname must be an absolute path.
-l Pathname must be a relative path.
-r Pathname must be readable.
-t Pathname must be creatable (touchable). Pathname is created if it does
not already exist.
-x Pathname must be writable.

ckpath(1) (Essential Utilities) ckpath(1)

-\(d\) The default value is \textit{default}. The default is not validated and so does not have to meet any criteria.
-\(h\) The help message is \textit{help}.
-\(e\) The error message is \textit{error}.
-\(p\) The prompt message is \textit{prompt}.
-\(k\) Send process ID \textit{pid} a signal if the user chooses to abort.
-\(s\) When quit is chosen, send \textit{signal} to the process whose \textit{pid} is specified by the \(-k\) option. If no signal is specified, use \texttt{SIGTERM}.

\textit{input} Input to be verified against validation options.

\textit{file_options} are:
-\(b\) Pathname must be a block special file.
-\(c\) Pathname must be a character special file.
-\(f\) Pathname must be a regular file.
-\(y\) Pathname must be a directory.
-\(n\) Pathname must not exist (must be new).
-\(o\) Pathname must exist (must be old).
-\(z\) Pathname must be a file with the size greater than 0 bytes.

The following \textit{file_options} are mutually exclusive: \(-bfy, -no, -nz, -bz, -cz\).

\textbf{EXIT CODES}
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Mutually exclusive options

\textbf{NOTES}
The text of the default messages for \texttt{ckpath} depends upon the criteria options that have been used. An example default prompt for \texttt{ckpath} (using the \(-a\) option) is:

\begin{quote}
Enter an absolute pathname [?, q]
\end{quote}

An example default error message (using the \(-a\) option) is:

\begin{quote}
ERROR - Pathname must begin with a slash (/).
\end{quote}

An example default help message is:

\begin{quote}
A pathname is a filename, optionally preceded by parent directories. The pathname you enter:
- must contain 1 to \texttt{NAME_MAX} characters
- must not contain a spaces or special characters
\end{quote}

\texttt{NAME_MAX} is a system variable is defined in \texttt{limits.h}.

Page 2 3/91
When the quit option is chosen (and allowed), \texttt{q} is returned along with the return code 3. The \texttt{valpath} module does not produce any output. It returns zero for success and non-zero for failure.
NAME
ckrange – prompt for and validate an integer

SYNOPSIS
ckrange [-Q] [-w width] [-l lower] [-u upper] [-b base] [-d default]
[-h help] [-e error] [-p prompt] [-k pid] [-s signal]
errange [-w width] [-l lower] [-u upper] [-e error] [-b base]
helprange [-w width] [-l lower] [-u upper] [-h help] [-b base]
valrange [-l lower] [-u upper] [-b base] input

DESCRIPTION
ckrange prompts a user and validates the response. It defines, among other things, a prompt message whose response should be an integer in the range specified, text for help and error messages, and a default value (which is returned if the user responds with a RETURN).

This command also defines a range for valid input. If either the lower or upper limit is left undefined, then the range is bounded on only one end.

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -w option cancels the automatic formatting. When a tilde is placed at the beginning or end of a message definition, the default text is inserted at that point, allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) is displayed.

Three visual tool modules are linked to the ckrange command. They are errange (which formats and displays an error message), helprange (which formats and displays a help message), and valrange (which validates a response). These modules should be used in conjunction with FACE objects. In this instance, the FACE object defines the prompt.

The options and arguments for this command are:
- Q Do not allow quit as a valid response.
- w Use width as the line length for prompt, help, and error messages.
- l The lower limit of the range is lower. Default is the machine’s largest negative integer or long.
- u The upper limit of the range is upper. Default is the machine’s largest positive integer or long.
- b The base for input is base. Must be 2 to 36, default is 10.
- d The default value is default. The default is not validated and so does not have to meet any criteria. If default is non-numeric, ckrange returns 0 and not the alphabetic string.
- h The help message is help.
The error message is error.

The prompt message is prompt.

Send process ID pid a signal if the user chooses to abort.

When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

Input to be verified against upper and lower limits and base.

EXIT CODES

0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES

The default base 10 prompt for ckrange is:

```
Enter an integer between lower and upper [lower-upper,q,?]```

The default base 10 error message is:

```
ERROR - Please enter an integer between lower and upper.
```

The default base 10 help message is:

```
Please enter an integer between lower and upper.
```

The messages are changed from “integer” to “base base integer” if the base is set to a number other than 10.

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valrange module does not produce any output. It returns zero for success and non-zero for failure.
NAME
ckstr – display a prompt; verify and return a string answer

SYNOPSIS
ckstr [-Q] [-w width] [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length ]
        [ -d default ] [ -h help ] [ -e error ] [ -p prompt ] [ -k pid ] [ -s signal ]
errstr [ -w width ] [ -e error ] [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length ]
helpstr [ -w width ] [ -h help ] [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length ]
valstr input [ [ -r regexp ] [ -r regexp ] ... ] [ -1 length ]

DESCRIPTION
ckstr prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be a string, text for help and error
messages, and a default value (which is returned if the user responds with a
RETURN).

The answer returned from this command must match the defined regular expres­
sion and be no longer than the length specified. If no regular expression is given,
valid input must be a string with a length less than or equal to the length defined
with no internal, leading or trailing white space. If no length is defined, the
length is not checked. Either a regular expression or a length must be given with
the command.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text is inserted at that point,
allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) is displayed.

Three visual tool modules are linked to the ckstr command. They are errstr
(which formats and displays an error message), helpstr (which formats and
displays a help message), and valstr (which validates a response). These
modules should be used in conjunction with FACE objects. In this instance, the
FACE object defines the prompt.

The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-w Use width as the line length for prompt, help, and error messages.
-r Validate the input against regular expression regex. May include white
space. If multiple expressions are defined, the answer need match only
one of them.
-1 The maximum length of the input is length.
-d The default value is default. The default is not validated and so does not
have to meet any criteria.
-h The help message is help.
-e The error message is error.
-p The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.
-s When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

input Input to be verified against format length and/or regular expression criteria.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES
The default prompt for ckstr is:

Enter an appropriate value [?,q]

The default error message is dependent upon the type of validation involved. The user is told either that the length or the pattern matching failed.

The default help message is also dependent upon the type of validation involved. If a regular expression has been defined, the message is:

Please enter a string which matches the following pattern:
regexp

Other messages define the length requirement and the definition of a string.

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valstr module does not produce any output. It returns zero for success and non-zero for failure.

Unless a “q” for “quit” is disabled by the -Q option, a single “q” to the following

ckstr -rq

is treated as a “quit” and not as a pattern match.
NAME
cctime – display a prompt; verify and return a time of day

SYNOPSIS
[-p prompt] [-k pid] [-s signal]
errtime [-W width] [-e error] [-f format]
helptime [-W width] [-h help] [-f format]
valtime [-f format] input

DESCRIPTION
cctime prompts a user and validates the response. It defines, among other
things, a prompt message whose response should be a time, text for help and
error messages, and a default value (which is returned if the user responds with a
RETURN). The user response must match the defined format for the time of day.

All messages are limited in length to 70 characters and are formatted automati­
cally. Any white space used in the definition (including newline) is stripped.
The -W option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text is inserted at that point,
allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) is displayed.

Three visual tool modules are linked to the cctime command. They are errtime
(which formats and displays an error message), helptime (which formats and
displays a help message), and valtime (which validates a response). These
modules should be used in conjunction with FMLI objects. In this instance, the
FMLI object defines the prompt. When format is defined in the errtime and
helptime modules, the messages describe the expected format.

The options and arguments for this command are:
-Q Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-f Verify the input against format. Possible formats and their definitions are:
   %H = hour (00 – 23)
   %I = hour (00 – 12)
   %M = minute (00 – 59)
   %p = ante meridian or post meridian
   %r = time as %I:%M:%S %p
   %R = time as %H:%M (the default format)
   %S = seconds (00 – 59)
   %T = time as %H:%M:%S
-d The default value is default. The default is not validated and so does not
    have to meet any criteria.
cktime(1) (Essential Utilities) cktime(1)

- h  The help message is help.
- e  The error message is error.
- p  The prompt message is prompt.
- k pid Send process ID pid a signal if the user chooses to abort.
- s signal When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

input  Input to be verified against format criteria.

EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)
4 = Garbled format argument

NOTES
The default prompt for cktime is:

Enter a time of day [?,q]

The default error message is:

ERROR - Please enter the time of day. Format is format.

The default help message is:

Please enter the time of day. Format is format.

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valtime module does not produce any output. It returns zero for success and non-zero for failure.
NAME
cuid – prompt for and validate a user ID

SYNOPSIS
    [-k pid] [-s signal]]
erruid [-w width] [-e error]
helpuid [-w width] [-m] [-h help]
valuid input

DESCRIPTION
cuid prompts a user and validates the response. It defines, among other things,
a prompt message whose response should be an existing user ID, text for help
and error messages, and a default value (which is returned if the user responds
with a RETURN).

All messages are limited in length to 70 characters and are formatted automati-
cally. Any white space used in the definition (including newline) is stripped.
The -w option cancels the automatic formatting. When a tilde is placed at the
beginning or end of a message definition, the default text is inserted at that point,
allowing both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as
defined under NOTES) is displayed.

Three visual tool modules are linked to the cuid command. They are erruid
(which formats and displays an error message), helpuid (which formats and
displays a help message), and valuid (which validates a response). These
modules should be used in conjunction with FML objects. In this instance, the
FML object defines the prompt.

The options and arguments for this command are:

- Q  Do not allow quit as a valid response.
- w  Use width as the line length for prompt, help, and error messages.
- m  Display a list of all logins when help is requested or when the user makes
    an error.
- d  The default value is default. The default is not validated and so does not
    have to meet any criteria.
- h  The help message is help.
- e  The error message is error.
- p  The prompt message is prompt.
- k  Send process ID pid a signal if the user chooses to abort.
- s  When quit is chosen, send signal to the process whose pid is specified by
    the -k option. If no signal is specified, use SIGTERM.
input Input to be verified against /etc/passwd.
EXIT CODES
0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES
The default prompt for ckuid is:

Enter the login name of an existing user [?,q]

The default error message is:

ERROR - Please enter the login name of an existing user.
(If the -m option of ckuid is used, a list of valid users is also displayed.)

The default help message is:

Please enter the login name of an existing user.
(If the -m option of ckuid is used, a list of valid users is also displayed.)

When the quit option is chosen (and allowed), q is returned along with the return code 3. The valuid module does not produce any output. It returns zero for success and non-zero for failure.
ckyorn(1) (Essential Utilities) ckyorn(1)

NAME
ckyorn – prompt for and validate yes/no

SYNOPSIS
       [-k pid] [-s signal]
erryorn [-W width] [-e error]
helpyorn [-W width] [-h help]
valyorn input

DESCRIPTION
ckyorn prompts a user and validates the response. It defines, among other things, a prompt message for a yes or no answer, text for help and error messages, and a default value (which is returned if the user responds with a RETURN).

All messages are limited in length to 70 characters and are formatted automatically. Any white space used in the definition (including newline) is stripped. The -W option cancels the automatic formatting. For the -h and -e options, placing a tilde at the beginning or end of a message definition causes the default text to be inserted at that point. This allows both custom text and the default text to be displayed.

If the prompt, help or error message is not defined, the default message (as defined under NOTES) is displayed.

Three visual tool modules are linked to the ckyorn command. They are erryorn (which formats and displays an error message), helpyorn (which formats and displays a help message), and valyorn (which validates a response). These modules should be used in conjunction with FACE objects. In this instance, the FACE object defines the prompt.

The options and arguments for this command are:

-Do not allow quit as a valid response.
-W Use width as the line length for prompt, help, and error messages.
-d The default value is default. The default is not validated and so does not have to meet any criteria.
-h The help message is help.
-e The error message is error.
-p The prompt message is prompt.
-k Send process ID pid a signal if the user chooses to abort.
-s When quit is chosen, send signal to the process whose pid is specified by the -k option. If no signal is specified, use SIGTERM.

Input to be verified as y, yes, Y, Yes, YES or n, no, N, No, NO.
EXIT CODES

0 = Successful execution
1 = EOF on input
2 = Usage error
3 = User termination (quit)

NOTES

The default prompt for ckyorn is:

   Yes or No [y,n,?,q]

The default error message is:

   ERROR - Please enter yes or no.

The default help message is:

   Enter y or yes if your answer is yes;
   or no if your answer is no.

When the quit option is chosen (and allowed), q is returned along with the return
code 3. The valyorn module does not produce any output. It returns zero for
success and non-zero for failure.
NAME
clear – clear the terminal screen

SYNOPSIS
clear

DESCRIPTION
clear clears your screen if this is possible. It looks in the environment for the terminal type and then in the terminfo database to figure out how to clear the screen.

SEE ALSO
tput(1), terminfo(4)
NAME

cmp – compare two files

SYNOPSIS

cmp [ -1 ] [ -s ] file1 file2

DESCRIPTION

The two files are compared. (If file1 is -, the standard input is used.) Under default options, cmp makes no comment if the files are the same; if they differ, it announces the byte and line number at which the difference occurred. If one file is an initial subsequence of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each difference.

-s Print nothing for differing files; return codes only.

SEE ALSO

comm(1), diff(1)

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing argument.
NAME
cof2elf – COFF to ELF object file translation

SYNOPSIS
cof2elf [-iqV] [-Q{yn}] [-s directory] files

DESCRIPTION
cof2elf converts one or more COFF object files to ELF. This translation occurs in place, meaning the original file contents are modified. If an input file is an archive, each member will be translated as necessary, and the archive will be rebuilt with its members in the original order. cof2elf does not change input files that are not COFF.

Options have the following meanings.

-1 Normally, the files are modified only when full translation occurs. Unrecognized data, such as unknown relocation types, are treated as errors and prevent translation. Giving the -i flag ignores these partial translation conditions and modifies the file anyway.

-q Normally, cof2elf prints a message for each file it examines, telling whether the file was translated, ignored, etc. The -q flag (for quiet) suppresses these messages.

-Qarg If arg is y, identification information about cof2elf will be added to the output files. This can be useful for software administration. Giving n for arg explicitly asks for no such information, which is the default behavior.

-s directory As mentioned above, cof2elf modifies the input files. This option saves a copy of the original files in the specified directory, which must exist. cof2elf does not save files it does not modify.

-v This flag tells cof2elf to print a version message on standard error.

SEE ALSO
ld(1), elf(3E), a.out(4), ar(4)

NOTES
Some debugging information is discarded. Although this does not affect the behavior of a running program, it may affect the information available for symbolic debugging.

cof2elf translates only COFF relocatable files. It does not translate executable or static shared library files for two main reasons. First, the operating system supports executable files and static shared libraries, making translation unnecessary. Second, those files have specific address and alignment constraints determined by the file format. Matching the constraints with a different object file format is problematic.

When possible, programmers should recompile their source code to build new object files. cof2elf is provided for those times when source code is unavailable.
NAME
col - filter reverse line-feeds

SYNOPSIS
col [-b] [-f] [-x] [-p]

DESCRIPTION
col reads from the standard input and writes onto the standard output. It performs the line overlays implied by reverse line feeds (ASCII code ESC-7), and by forward and reverse half-line-feeds (ESC-9 and ESC-a). col is particularly useful for filtering multicolumn output made with the .rt command of nroff and output resulting from use of the tbl(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable of backspacing. In this case, if two or more characters are to appear in the same place, only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit them on output. Instead, text that would appear between lines is moved to the next lower full-line boundary. This treatment can be suppressed by the -f (fine) option; in this case, the output from col may contain forward half-line-feeds (ESC-9), but will still never contain either kind of reverse line motion.

Unless the -x option is given, col will convert white space to tabs on output wherever possible to shorten printing time.

The ASCII control characters SO ('017) and SI ('016) are assumed by col to start and end text in an alternate character set. The character set to which each input character belongs is remembered, and on output SI and SO characters are generated as appropriate to ensure that each character is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI, SO, VT (013), and ESC followed by 7, 8, or 9. The VT character is an alternate form of full reverse line-feed, included for compatibility with some earlier programs of this type. All other non-printing characters are ignored.

Normally, col will ignore any escape sequences unknown to it that are found in its input; the -p option may be used to cause col to output these sequences as regular characters, subject to overprinting from reverse line motions. The use of this option is highly discouraged unless the user is fully aware of the textual position of the escape sequences.

SEE ALSO
ascii(5)

NOTES
The input format accepted by col matches the output produced by nroff with either the -T37 or -TiP options. Use -T37 (and the -f option of col) if the ultimate disposition of the output of col will be a device that can interpret half-line motions, and -TiP otherwise.
col cannot back up more than 128 lines or handle more than 800 characters per line.

Local vertical motions that would result in backing up over the first line of the document are ignored. As a result, the first line must not have any superscripts.
NAME
colltbl – create collation database

SYNOPSIS
colltbl [ file ]

description
The colltbl command takes as input a specification file, file, that describes the
collating sequence for a particular language and creates a database that can be
read by strxfrm(3C) and strcoll(3C). strxfrm(3C) transforms its first argu­
ment and places the result in its second argument. The transformed string is such
that it can be correctly ordered with other transformed strings by using
strcmp(3C), strncmp(3C) or memcmp(3C). strcoll(3C) transforms its arguments
and does a comparison.

If no input file is supplied, stdin is read.

The output file produced contains the database with collating sequence informa­
tion in a form usable by system commands and routines. The name of this out­
put file is the value you assign to the keyword codeset read in from file. Before
this file can be used, it must be installed in the /usr/lib/locale/locale
directory with the name LC_COLLATE by someone who is super-user or a member of group
bin. locale corresponds to the language area whose collation sequence is
described in file. This file must be readable by user, group, and other; no other
permissions should be set. To use the collating sequence information in this file,
set the LC_COLLATE environment variable appropriately (see environ(5) or
setlocale(3C)).

The colltbl command can support languages whose collating sequence can be
completely described by the following cases:

Ordering of single characters within the codeset. For example, in Swedish,
v is sorted after u, before x and with w (v and w are considered identi­
cal as far as sorting is concerned).

Ordering of "double characters" in the collation sequence. For example, in
Spanish, ch and ll are collated after c and l, respectively.

Ordering of a single character as if it consists of two characters. For
example, in German, the "sharp s", ß, is sorted as ss. This is a special
instance of the next case below.

Substitution of one character string with another character string. In the
example above, the string ß is replaced with ss during sorting.

Ignoring certain characters in the codeset during collation. For example, if
ä were ignored during collation, then the strings re-locate and relo­
cate would be equal.

Secondary ordering between characters. In the case where two characters
are sorted together in the collation sequence, (i.e., they have the same "pri­
mary" ordering), there is sometimes a secondary ordering that is used if
two strings are identical except for characters that have the same primary
ordering. For example, in French, the letters é and è have the same pri­
mary ordering but é comes before è in the secondary ordering. Thus the
word `lever` would be ordered before `le\textbackslash ver`, but `le\textbackslash ver` would be sorted before `levitate`. (Note that if `e` came before `è` in the primary ordering, then `le\textbackslash ver` would be sorted after `levitate`.)

The specification file consists of three types of statements:

1. **codeset** filename  
   *filename* is the name of the output file to be created by *colltbl*.

2. **order is** order list  
   *order list* is a list of symbols, separated by semicolons, that defines the collating sequence. The special symbol, `...`, specifies symbols that are lexically sequential in a short-hand form. For example,
   
   ```
 order is a;b;c;d;...;x;y;z
   ```

   would specify the list of lower case letters. Of course, this could be further compressed to just `a;...;z`.

   A symbol can be up to two bytes in length and can be represented in any one of the following ways:
   
   - the symbol itself (for example, `a` for the lower-case letter `a`),
   - in octal representation (for example, `\141` or `0141` for the letter `a`), or
   - in hexadecimal representation (for example, `\x61` or `0x61` for the letter `a`).

   Any combination of these may be used as well.

   The backslash character, `\`, is used for continuation. No characters are permitted after the backslash character.

   Symbols enclosed in parenthesis are assigned the same primary ordering but different secondary ordering. Symbols enclosed in curly brackets are assigned only the same primary ordering. For example,
   
   ```
 order is a;b;c;ch;d;(e;è);f;...;z;\{l;...;9\};A;...;Z
   ```

   In the above example, `e` and `è` are assigned the same primary ordering and different secondary ordering, digits 1 through 9 are assigned the same primary ordering and no secondary ordering. Only primary ordering is assigned to the remaining symbols. Notice how double letters can be specified in the collating sequence (letter `ch` comes between `c` and `d`).

   If a character is not included in the *order is* statement it is excluded from the ordering and will be ignored during sorting.

3. **substitute** string with repl  
   The *substitute* statement substitutes the string *string* with the string *repl*. This can be used, for example, to provide rules to sort the abbreviated month names numerically:
substitute "Jan" with "01"  
substitute "Feb" with "02"  

...  

substitute "Dec" with "12"

A simpler use of the substitute statement that was mentioned above was to substitute a single character with two characters, as with the substitution of β with ss in German.

The substitute statement is optional. The order is and codeset statements must appear in the specification file.

Any lines in the specification file with a # in the first column are treated as comments and are ignored. Empty lines are also ignored.

EXAMPLE

The following example shows the collation specification required to support a hypothetical telephone book sorting sequence.

The sorting sequence is defined by the following rules:

a. Upper and lower case letters must be sorted together, but upper case letters have precedence over lower case letters.

b. All special characters and punctuation should be ignored.

c. Digits must be sorted as their alphabetic counterparts (for example, 0 as zero, 1 as one).

d. The Ch, ch, CH combinations must be collated between C and D.

e. V and W, v and w must be collated together.

The input specification file to colltbl will contain:

codeset telephone

<table>
<thead>
<tr>
<th>codeset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>order is</td>
<td>A;a;B;b;C;c;CH;Ch;D;d;E;e;F;f;\</td>
</tr>
<tr>
<td></td>
<td>G;g;H;h;I;i;J;j;K;k;L;l;M;m;N;n;O;o;P;p;\</td>
</tr>
<tr>
<td></td>
<td>Q;q;R;r;S;s;T;t;U;u;{V;W};{v;w};X;x;Y;y;Z;z</td>
</tr>
</tbody>
</table>

substitute "0" with "zero"  
substitute "1" with "one"  
substitute "2" with "two"  
substitute "3" with "three"  
substitute "4" with "four"  
substitute "5" with "five"  
substitute "6" with "six"  
substitute "7" with "seven"  
substitute "8" with "eight"  
substitute "9" with "nine"
FILE
/lib/locale/locale/LC_COLLATE
   LC_COLLATE database for locale
/usr/lib/locale/C/colltbl_C
   input file used to construct LC_COLLATE in the default locale.

SEE ALSO
memory(3C), setlocale(3C), strcoll(3C), string(3C), strxfrm(3C), environ(5)
in the Programmer's Reference Manual
comb(1) (Enhanced Programming Utilities) comb(1)

NAME
comb – combine SCCS deltas

SYNOPSIS
comb [-o] [-s] [-pSID] [-clist] files

DESCRIPTION
comb generates a shell procedure [see sh(l)] that, when run, reconstructs the
given SCCS files. The reconstructed files are typically smaller than the original
files. The arguments may be specified in any order, but all keyletter arguments
apply to all named SCCS files. If a directory is named, comb behaves as though
each file in the directory were specified as a named file, except that non-SCCS files
(last component of the path name does not begin with s.) and unreadable files
are silently ignored. If a name of - is given, the standard input is read; each line
of the input is taken to be the name of an SCCS file to be processed; non-SCCS
files and unreadable files are silently ignored. The generated shell procedure is
written on the standard output.

The keyletter arguments are as follows. Each argument is explained as if only
one named file is to be processed, but the effects of any keyletter argument apply
independently to each named file.

-o For each get -e, this argument causes the reconstructed file to be
accessed at the release of the delta to be created, otherwise the recon-
structed file would be accessed at the most recent ancestor. Use of the -o
keyletter may decrease the size of the reconstructed SCCS file. It may also
alter the shape of the delta tree of the original file.

-s This argument causes comb to generate a shell procedure that, when run,
produces a report that gives for each file: the file name, size (in blocks)
after combining, original size (also in blocks), and percentage change com-
puted by:

\[ \frac{100 \times (\text{original} - \text{combined})}{\text{original}} \]

It is recommended that before any SCCS files are actually combined, one
should use this option to determine exactly how much space is saved by
the combining process.

-pSID The SCCS identification string (SID) of the oldest delta to be preserved. All
older deltas are discarded in the reconstructed file.

-clist A list of deltas to be preserved. All other deltas are discarded. See get(l)
for the syntax of a list.

If no keyletter arguments are specified, comb preserves only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

FILES
.s.COMB the reconstructed SCCS file
comb???? temporary file

SEE ALSO
admin(l), delta(l), get(l), help(l), prs(l), sccsfile(4)
sh(1) in the User's Reference Manual
DIAGNOSTICS
   Use help(1) for explanations.

NOTES
   `comb` may rearrange the shape of the tree of deltas.
   `comb` may not save any space; in fact, it is possible for the reconstructed file to be larger than the original.
NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [ - [ 123 ] ] file1 file2

DESCRIPTION
comm reads file1 and file2, which should be ordered in ASCII collating sequence [see sort(1)], and produces a three-column output: lines only in file1; lines only in file2; and lines in both files. The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the lines common to the two files; comm -23 prints only lines in the first file but not in the second; comm -123 prints nothing.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1)
compress(1)

NAME
compress, uncompress, zcat – compress data for storage, uncompress and display compressed files

SYNOPSIS
compress [-dfPqc] [-b bits] file
uncompress [-fqc] file
zcat file

DESCRIPTION
compress takes a file and compresses it to the smallest possible size, creates a compressed output file, and removes the original file unless the -c option is present. Compression is achieved by encoding common strings within the file. uncompress restores a previously compressed file to its uncompressed state and removes the compressed version. zcat uncompresses and displays a file on the standard output.

If no file is specified on the command line, input is taken from the standard input and the output is directed to the standard output. Output defaults to a file with the same filename as the input file with the suffix .Z or it can be directed through the standard output. The output files have the same permissions and ownership as the corresponding input files or the user's standard permissions if output is directed through the standard output.

If no space is saved by compression, the output file is not written unless the -F flag is present on the command line.

OPTIONS
The following options are available from the command line:
-d Decompresses a compressed file.
-c Writes output on the standard output and does not remove original file.
-b bits Specifies the maximum number of bits to use in encoding.
-f Overwrites previous output file.
-F Writes output file even if compression saves no space.
-q Generates no output except error messages, if any.
-v Prints the name of the file being compressed, the percentage of compression achieved. With uncompress, the name of of the uncompressed file is printed.

SEE ALSO
pack(1), ar(1), tar(1), cat(1)
NAME
comsat, in.comsat - biff server

SYNOPSIS
in.comsat

DESCRIPTION
comsat is the server process which listens for reports of incoming mail and notifies users who have requested to be told when mail arrives. It is invoked as needed by inetd(1M), and times out if inactive for a few minutes.

comsat listens on a datagram port associated with the biff service specification [see services(4)] for one line messages of the form

user@mailbox-offset

If the user specified is logged in to the system and the associated terminal has the owner execute bit turned on (by a biff y), the offset is used as a seek offset into the appropriate mailbox file and the first 7 lines or 560 characters of the message are printed on the user's terminal. Lines which appear to be part of the message header other than the From, To, Date, or Subject lines are not printed when displaying the message.

FILES
/var/utmp who's logged on and on what terminals

SEE ALSO
services(4), inetd(1M)

NOTES
The message header filtering is prone to error.
NAME

conflgs - change and display console flags

SYNOPSIS

/etc/conflgs [-a \(0|1\)] [-c \(0|1\)] [-m \(0|1\)] [-r \(0|1\)] [-b baud] or
/etc/conflgs [-c \(0|1\)] [-m \(0|1\)]

DESCRIPTION

conflgs allows the remote console and console flags to be set and displayed. It can be used to enable or disable the remote console capability. conflgs allows console redirection (diagnostics and bootstrap input/output) to the second serial port to be enabled or disabled. Note that conflgs does not control what device is used as console — this is determined by whether or not the system is equipped with an integral console and by the COM2CONS tunable parameter. The console message flag and remote console message flag, which determine whether or not system error messages are directed to the console or remote console, can also be temporarily changed with conflgs.

-\(a\) \(0|1\) disable (0) or enable (1) diagnostics and bootstrap redirection to the second serial port. If enabled and the second serial port is used as the console, the baud rate specified with the \(-b\) option determines the baud rate used for the console. If the second serial port is used as the console but console redirection to the second serial port is disabled, the console baud rate is 9600.

-\(r\) \(0|1\) disable (0) or enable (1) the remote console feature. This controls console redirection to the first serial port and sets the remote console enable flag (RCEF). The baud rate specified with the \(-b\) option determines the baud rate used for the remote console.

-\(c\) \(0|1\) disable (0) or enable (1) sending system error messages to the console. This change only lasts until the system is rebooted. To permanently have system error messages directed to the console, change the CMF tunable parameter.

-\(m\) \(0|1\) disable (0) or enable (1) sending system error messages to the remote console. This change only lasts until the system is rebooted. The RCEF must be turned on before this flag for console messages to be seen on the remote console. On some systems, the RCEF is considered on and the remote console baud rate is fixed at 1200. To permanently have system error messages directed to the remote console, change the RCMF tunable parameter.

If the \(-a\) and/or \(-r\) option is used, the \(-b\) \texttt{baud} option can be used to set the baud rate of the first or second serial port to \texttt{baud}. \texttt{baud} can be 1200 or 9600. If the \(-b\) option is not specified when enabling console redirection to the first or second serial port a default baud rate of 1200 is used. The baud rate specifies the baud rate to be used during diagnostics, bootstrap, and system initialization — until the multi-user state is reached. It does not take effect until the next system reboot or \texttt{init 5}.
The -a, -x, and -b options may or may not be provided on all 386 machines. The values of all the console flags are always displayed after the requested changes are made. Note that the BIOS setup utility can also be used to change the whether or not console redirection to the first or second serial ports is enabled and their baud rates.

SEE ALSO
idtune(1M), init(1M)
NAME
convert – convert archive files to common formats

SYNOPSIS
convert [–x] infile outfile

DESCRIPTION
The convert command transforms input infile to output outfile. infile must be a
UNIX System V Release 1.0 archive file and outfile will be the equivalent UNIX
System V Release 2.0 archive file. All other types of input to the convert com-
mand will be passed unmodified from the input file to the output file (along with
appropriate warning messages).

The –x option is required to convert a XENIX archive. (XENIX is a registered
trademark of Microsoft Corporation.) Using this option will convert the general
archive but leave archive members unmodified.

infile must be different from outfile.

FILES
TMPDIR/conv* temporary files

TMPDIR is usually /usr/tmp but can be redefined by setting the environment
variable TMPDIR [see tempnam() in tmpnam(3S)].

SEE ALSO
ar(1), tmpnam(3S), a.out(4), ar(4)
NAME
cocreate, cosend, cocheck, coreceive, codestroy -- communicate with a process

SYNOPSIS

cocreate [-r rpath] [-w wpath] [-i id] [-R refname] [-s send_string] [-e expect_string] command

cosend [-n] proc_id string

cocheck proc_id

coreceive proc_id

codestroy [-R refname] proc_id [string]

DESCRIPTION

These co-processing functions provide a flexible means of interaction between FMLI and an independent process; especially, they enable FMLI to be responsive to asynchronous activity.

The cocreate function starts command as a co-process and initializes communications by setting up pipes between FMLI and the standard input and standard output of command. The argument command must be an executable and its arguments (if any). This means that command expects strings on its input (supplied by cosend) and sends information on its output that can be handled in various ways by FMLI. The following options can be used with cocreate.

- **r rpath** If -r is specified, rpath is the pathname from which FMLI reads information. This option is usually used to set up communications with processes that naturally write to a certain path. If -r is not specified, cocreate will choose a unique path in /var/tmp.

- **w wpath** If -w is specified, wpath is the pathname to which cosend writes information. This option is usually used so that one process can talk to many different FMLI processes through the same pipe. If -w is not specified, cocreate will choose a unique path in /var/tmp.

- **i id** If -i is specified, id is an alternative name for the co-process initialized by this cocreate. If -i is not specified, id defaults to command. The argument id can later be used with the other co-processing functions rather than command. This option is typically used, since it facilitates the creation of two or more co-processes generated from the same command. (For example, cocreate -i ID1 program args and cocreate -i ID2 program different_args.)

- **R refname** If -R is specified, refname is a local name for the co-process. Since the cocreate function can be issued more than once, a refname is useful when the same co-process is referenced a second or subsequent time. With the -R option, if the co-process already exists a new one will not be created: the same pipes will be shared. Then, refname can be used as an argument to the -R option to codestroy when you want to end a
particular connection to a co-process and leave other connections undisturbed. (The co-process is only killed after `codesstroy -R` has been called as many times as `cocreate -R` was called.)

`-s send_string`  The `-s` option specifies `send_string` as a string that will be appended to all output sent to the co-process using `cosend`. This option allows a co-process to know when input from FMLI has completed. The default `send_string` is a newline if `-s` is not specified.

`-e expect_string`  The `-e` option specifies `expect_string` as a string that identifies the end of all output returned by the co-process. (Note: `expect_string` need only be the initial part of a line, and there must be a newline at the end of the co-process output). This option allows FMLI to know when output from the co-process has completed. The default `expect_string` is a newline if `-e` is not specified.

The `cosend` function sends `string` to the co-process identified by `proc_id` via the pipe set up by `cocreate` (optionally `wpath`), where `proc_id` can be either the `command` or `id` specified in `cocreate`. By default, `cosend` blocks, waiting for a response from the co-process. Also by default, FMLI does not send a `send_string` and does not expect an `expect_string` (except a newline). That is, it reads only one line of output from the co-process. If `-e expect_string` was not defined when the pipe was created, then the output of the co-process is any single string followed by a newline: any other lines of output remain on the pipe. If the `-e` option was specified when the pipe was created, `cosend` reads lines from the pipe until it reads a line starting with `expect_string`. All lines except the line starting with `expect_string` become the output of `cosend`. The following option can be used with `cosend`:

`-n`  If the `-n` option is specified, `cosend` will not wait for a response from the co-process. It simply returns, providing no output. If the `-n` option is not used, a co-process that does not answer will cause FMLI to permanently hang, waiting for input from the co-process.

The `cocheck` function determines if input is available from the process identified by `proc_id`, where `proc_id` can be either the `command` or `id` specified in `cocreate`. It returns a Boolean value, which makes `cocheck` useful in `if` statements and in other backquoted expressions in Boolean descriptors. `cocheck` receives no input from the co-process; it simply indicates if input is available from the co-process. You must use `coreceive` to actually accept the input. The `cocheck` function can be called from a `reread` descriptor to force a frame to update when new data is available. This is useful when the default value of a field in a form includes `coreceive`.

The `coreceive` function is used to read input from the co-process identified by `proc_id`, where `proc_id` can be either the `command` or `id` specified in `cocreate`. It should only be used when it has been determined, using `cocheck`, that input is actually available. If the `-e` option was used when the co-process was created, `coreceive` will continue to return lines of input until `expect_string` is read. At this point, `coreceive` will terminate. The output of `coreceive` is all the lines
that were read excluding the line starting with `expect_string`. If the `-e` option was not used in the `cocreate`, each invocation of `coreceive` will return exactly one line from the co-process. If no input is available when `coreceive` is invoked, it will simply terminate without producing output.

The `codestroy` function terminates the read/write pipes to `proc-id`, where `proc_id` can be either the `command` or `id` specified in `cocreate`. It generates a SIGPIPE signal to the (child) co-process. This kills the co-process, unless the co-process ignores the SIGPIPE signal. If the co-process ignores the SIGPIPE, it will not die, even after the FMLI process terminates (the parent process id of the co-process will be 1).

The optional argument `string` is sent to the co-process before the co-process dies. If `string` is not supplied, a NULL string is passed, followed by the normal `send_string` (newline by default). That is, `codestroy` will call `cosend proc_id string`; this implies that `codestroy` will write any output generated by the co-process to `stdout`. For example, if an interactive co-process is written to expect a "quit" string when the communication is over, the `close` descriptor could be defined;

```
close=`codestroy ID 'quit' | message`
```
and any output generated by the co-process when the string `quit` is sent to it via `codestroy` (using `cosend`) would be redirected to the message line.

The `codestroy` function should usually be given the `-R` option, since you may have more than one process with the same name, and you do not want to kill the wrong one. `codestroy` keeps track of the number of `refnames` you have assigned to a process with `cocreate`, and when the last instance is killed, it kills the process (id) for you. `codestroy` is typically called as part of a `close` descriptor because `close` is evaluated when a frame is closed. This is important because the co-process will continue to run if `codestroy` is not issued.

When writing programs to use as co-processes, the following tips may be useful. If the co-process program is written in C language, be sure to flush output after writing to the pipe. (Currently, `awk(1)` and `sed(1)` cannot be used in a co-process program because they do not flush after lines of output.) Shell scripts are well-mannered, but slow. C language is recommended. If possible, use the default `send_string`, `rpath` and `wpath`. In most cases, `expect_string` will have to be specified. This, of course, depends on the co-process.

In the case where asynchronous communication from a co-process is desired, a co-process program should use `vsig` to force strings into the pipe and then signal FMLI that output from the co-process is available. This causes the `reread` descriptor of all frames to be evaluated immediately.

**EXAMPLE**

```
init='cocreate -i BIGPROCESS initialize'
close='codestroy BIGPROCESS'
```


Co-processes for trusted FMLI applications should use named pipes created by the application with the appropriate permissions; the default pipes created by FMLI are readable and writable by everyone. Handshaking can also be used to enhance security.

If `cosend` is used without the `-n` option, a co-process that does not answer will cause FMLI to permanently hang.

The use of non-alphabetic characters in input and output strings to a co-process should be avoided because they may not get transferred correctly.

**SEE ALSO**

`vsig(1F)`  
NAME

copy - copy groups of files

SYNOPSIS

copy [option] . . source . . dest

DESCRIPTION

The copy command copies the contents of directories to another directory. It is possible to copy whole file systems since directories are made when needed. If files, directories, or special files do not exist at the destination, then they are created with the same modes and flags as the source. In addition, the super-user may set the user and group ID. The owner and mode are not changed if the destination file exists. Note that there may be more than one source directory. If so, the effect is the same as if the copy command had been issued for each source directory with the same destination directory for each copy.

All of the options must be given as separate arguments, and they may appear in any order even after the other arguments. The arguments are:

-a Asks the user before attempting a copy. If the response does not begin with a "y", then a copy is not done. This option also sets the ad option.

-l Uses links instead whenever they can be used. Otherwise a copy is done. Note that links are never done for special files or directories.

-n Requires the destination file to be new. If not, then the copy command does not change the destination file. The -n flag is meaningless for directories. For special files an -n flag is assumed (that is, the destination of a special file must not exist).

-o If set then every file copied has its owner and group set to those of source. If not set, then the file’s owner is the user who invoked the program.

-m If set, then every file copied has its modification time and access time set to that of the source. If not set, then the modification time is set to the time of the copy.

-r If set, then every directory is recursively examined as it is encountered. If not set, then any directories that are found are ignored.

-ad Asks the user whether an -r flag applies when a directory is discovered. If the answer does not begin with a "y", then the directory is ignored.

-v If the verbose option is set, messages are printed that reveal what the program is doing.

source This may be a file, directory or special file. It must exist. If it is not a directory, then the results of the command are the same as for the cp command.
The destination must be either a file or directory that is different from the source. If source and destination are anything but directories, then copy acts just like a cp command. If both are directories, then copy copies each file into the destination directory according to the flags that have been set.

NOTES

Special device files can be copied. When they are copied, any data associated with the specified device is not copied.
NAME
cp – copy files

SYNOPSIS
cp [ -i ] [ -p ] [ -r ] file1 [ file2 ... ] target

DESCRIPTION
The cp command copies filen to target. filen and target may not have the same
name. (Care must be taken when using sh(1) metacharacters.) If target is not a
directory, only one file may be specified before it; if it is a directory, more than
one file may be specified. If target does not exist, cp creates a file named target.
If target exists and is not a directory, its contents are overwritten. If target is a
directory, the file(s) are copied to that directory.

The following options are recognized:

-1 cp will prompt for confirmation whenever the copy would overwrite an
existing target. A y answer means that the copy should proceed. Any
other answer prevents cp from overwriting target.

-p cp will duplicate not only the contents of filen, but also preserves the
modification time and permission modes.

-r If filen is a directory, cp will copy the directory and all its files, including
any subdirectories and their files; target must be a directory.

If filen is a directory, target must be a directory in the same physical file system.
target and filen do not have to share the same parent directory.

If filen is a file and target is a link to another file with links, the other links remain
and target becomes a new file.

If target does not exist, cp creates a new file named target which has the same
mode as filen except that the sticky bit is not set unless the user is a privileged
user; the owner and group of target are those of the user.

If target is a file, its contents are overwritten, but the mode, owner, and group
associated with it are not changed. The last modification time of target and the
last access time of filen are set to the time the copy was made.

If target is a directory, then for each file named, a new file with the same mode is
created in the target directory; the owner and the group are those of the user
making the copy.

NOTES
A -- permits the user to mark the end of any command line options explicitly,
thus allowing cp to recognize filename arguments that begin with a - . If a --
and a – both appear on the same command line, the second will be interpreted as
a filename.

SEE ALSO
chmod(1), cpio(1), ln(1), mv(1), rm(1)
NAME
cpio - copy file archives in and out

SYNOPSIS
[-M message]] [-R ID] [pattern ... ]
cpio -o [aABcIlVVK] [-C bufsize] [-H hdr] [-O file [-m message]]
cpio -p [aABcIlmuvVKT] [-R ID] directory

DESCRIPTION
The -i, -o, and -p options select the action to be performed. The following list
describes each of the actions (which are mutually exclusive).

cpio -i (copy in) extracts files from the standard input, which is assumed to be
the product of a previous cpio -o. Only files with names that match patterns are
selected. patterns are regular expressions given in the filename-generating nota-
tion of sh(1). In patterns, meta-characters ?, *, and [ ... ] match the slash (/)
character, and backslash (\) is an escape character. A ! meta-character means not.
(For example, the !abe* pattern would exclude all files that begin with abc.)
Multiple patterns may be specified and if no patterns are specified, the default for
patterns is * (that is, select all files). Each pattern must be enclosed in double
quotes; otherwise, the name of a file in the current directory might be used.
Extracted files are conditionally created and copied into the current directory tree
based on the options described below. The permissions of the files will be those
of the previous cpio -o. Owner and group permissions will be the same as the
current user unless the current user is super-user. If this is true, owner and
group permissions will be the same as those resulting from the previous cpio -o.
NOTE: If cpio -i tries to create a file that already exists and the existing file is
the same age or younger (newer), cpio will output a warning message and not
replace the file. (The -u option can be used to overwrite, unconditionally, the
existing file.) If file names are given as absolute pathnames to cpio -o, then
when the files are restored via cpio -i, they will be written to their original
directories regardless of the current directory. This behavior can be circumvented
by using the -r option.

cpio -o (copy out) reads the standard input to obtain a list of path names and
copies those files onto the standard output together with path name and status
information.

cpio -p (pass) reads the standard input to obtain a list of path names of files
that are conditionally created and copied into the destination directory tree based
on the options described below.

The meanings of the available options are

-a Reset access times of input files after they have been copied. Access times
are not reset for linked files when cpio -pla is specified (mutually
exclusive with -m).

-A Append files to an archive. The -A option requires the -O option. Valid
only with archives that are files, or that are on floppy diskettes or hard
disk partitions.
-b Reverse the order of the bytes within each word. (Use only with the -i option.)

-B Input/output is to be blocked 5,120 bytes to the record. The default buffer size is device dependent when this and the -c options are not used.

-c Read or write header information in ASCII character form for portability. Always use this option (or the -H option) when the origin and the destination machines are different types (mutually exclusive with -H and -6). (The -c option implies expanded device numbers.)

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where bufsize is replaced by a positive integer. The default buffer size is device dependent when this and -B options are not used.

-d Directories are to be created as needed.

-E file Specify an input file (file) that contains a list of filenames to be extracted from the archive (one filename per line).

-f Copy in all files except those in patterns. (See the paragraph on cpio -i for a description of patterns.)

-H hdr Read or write header information in hdr format. Always use this option or the -c option when the origin and the destination machines are different types (mutually exclusive with -c and -6). Valid values for hdr are:
  crc or CRC ASCII header with expanded device numbers and an additional per-file checksum
  ustar or USTAR IEEE/Pl003 Data Interchange Standard header and format
  tar or TAR tar header and format
  odc ASCII header with small device numbers

-I file Read the contents of file as an input archive. If file is a character special device, and the current medium has been completely read, replace the medium and press RETURN to continue to the next medium. This option is used only with the -i option.

-k Attempt to skip corrupted file headers and I/O errors that may be encountered. If you want to copy files from a medium that is corrupted or out of sequence, this option lets you read only those files with good headers. (For cpio archives that contain other cpio archives, if an error is encountered cpio may terminate prematurely. cpio will find the next good header, which may be one for a smaller archive, and terminate when the smaller archive's trailer is encountered.) Used only with the -i option.

-l Whenever possible, link files rather than copying them. (Usable only with the -p option.)
Follow symbolic links. The default is not to follow symbolic links.

Retain previous file modification time. This option is ineffective on directories that are being copied (mutually exclusive with -a).

Define a message to use when switching media. When you use the -o or -I options and specify a character special device, you can use this option to define the message that is printed when you reach the end of the medium. One %d can be placed in message to print the sequence number of the next medium needed to continue.

Direct the output of cpio to file. If file is a character special device and the current medium is full, replace the medium and press RETURN to continue to the next medium. Use only with the -o option.

Interactively rename files. If the user presses the RETURN key alone, the file is skipped. If the user types a "." the original pathname will be retained. (Not available with cpio -p.)

Reassign ownership and group information for each file to user ID (ID must be a valid user ID from /etc/passwd). This option is valid only for the super-user.

Swap bytes within each half word.

Swap halfwords within each word.

Print a table of contents of the input. No files are created (mutually exclusive with -v).

Copy unconditionally (normally, an older file will not replace a newer file with the same name).

Verbose: causes a list of file names to be printed. When used with the -t option, the table of contents looks like the output of an ls -1 command [see 1s(1)].

Special Verbose: print a dot for each file read or written. Useful to assure the user that cpio is working without printing out all file names.

1K Blocks: force the blocking size to be a multiple of 1K.

Truncate long file names to 14 characters.

Process a UNIX System Sixth Edition archive format file. Use only with the -i option (mutually exclusive with -c and -H)).

NOTE: cpio assumes four-byte words.

If, when writing to a character device (-o) or reading from a character device (-i), cpio reaches the end of a medium (such as the end of a diskette), and the -o and -I options aren't used, cpio will print the following message:

If you want to go on, type device/file name when ready.

To continue, you must replace the medium and type the character special device name (/dev/rdsk/f0 for example) and press RETURN. You may want to continue by directing cpio to use a different device. For example, if you have two floppy drives you may want to switch between them so cpio can proceed while
you are changing the floppies. (Simply pressing RETURN causes the cpio process to exit.)

EXAMPLES

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -o, it groups the files so they can be directed (>) to a single file (.../newfile). The -c option insures that the file will be portable to other machines (as would the -H option). Instead of ls(1), you could use find(1), echo(1), cat(1), and so on, to pipe a list of names to cpio. You could direct the output to a device instead of a file.

```
ls | cpio -oc > .../newfile
```

cpio -i uses the output file of cpio -o (directed through a pipe with cat in the example below), extracts those files that match the patterns (memo/al, memo/b*), creates directories below the current directory as needed (-d option), and places the files in the appropriate directories. The -c option is used if the input file was created with a portable header. If no patterns were given, all files from newfile would be placed in the directory.

```
cat newfile | cpio -icd "memo/al" "memo/b*"
```

cpio -p takes the file names piped to it and copies or links (-l option) those files to another directory (newdir in the example below). The -d option says to create directories as needed. The -m option says retain the modification time. (It is important to use the -depth option of find(1) to generate path names for cpio. This eliminates problems cpio could have trying to create files under read-only directories.) The destination directory, newdir, must exist.

```
find . -depth -print | cpio -pdlmv newdir
```

Note that when you use cpio in conjunction with find, if you use the -L option with cpio then you must use the -follow option with find and vice versa. Otherwise there will be undesirable results.

SEE ALSO

ar(1), cat(1), echo(1), find(1), ls(1), tar(1)
archives(4) in the System Administrator's Reference Manual

NOTES

An archive created with the -c option on a System V Release 4 system cannot be read on System V Release 3.2 systems, or earlier. Use the -H odc option, which is equivalent to the header created by the -c option in earlier System V releases, if the cpio image will be read on a pre-System V Release 4 system.

System V Releases prior to Release 4 do not recognize symbolic links. The result of copying in a symbolic link on an older release will be a regular file that contains the pathname of the referenced file.

Path names are restricted to 256 characters for the binary (the default) and -H odc header formats. Otherwise, path names are restricted to 1024 characters. Only the super-user can copy special files.
Blocks are reported in 512-byte quantities.
If a file has 000 permissions, contains more than 0 characters of data, and the user is not root, the file will not be saved or restored.

When attempting to redirect stdin or stdout from or to a character or block special device (for example, /dev/diskette), an error message "Cannot read from device" or "Cannot write to device," does not necessarily indicate that a true I/O error has occurred. More likely, the user does not have access to that device, and should request that the system administrator allocate that device for the user [see admalloc(1M)].

Prior to Release 4, the default buffer size was 512 bytes. Beginning with Release 4, the default buffer size is optimized for the device and using the -C option to specify a different block size may cause cpio to fail. Therefore, care must be taken when choosing the block size. For example, for floppy disks, bufsiz e must be a multiple of 512 (one floppy sector). To avoid wasting space on streaming tape drives, use the -C option with an appropriate block size.
NAME

`crash` - examine system images

SYNOPSIS

```
/usr/sbin/crash [-d dumpfile] [-n namelist] [-w outputfile]
```

DESCRIPTION

The `crash` command is used to examine the system memory image of a running or a crashed system by formatting and printing control structures, tables, and other information. Command line arguments to `crash` are `dumpfile`, `namelist`, and `outputfile`.

`dumpfile` is the file containing the system memory image. The default `dumpfile` is `/dev/mem`.

The text file `namelist` contains the symbol table information needed for symbolic access to the system memory image to be examined. The default `namelist` is `/stand/unix`. If a system image from another machine is to be examined, the corresponding text file must be copied from that machine.

When the `crash` command is invoked, a session is initiated. The output from a `crash` session is directed to `outputfile`. The default `outputfile` is the standard output.

Input during a `crash` session is of the form:

```
function [argument...]
```

where `function` is one of the `crash` functions described in the "FUNCTIONS" subsection of this manual page, and `arguments` are qualifying data that indicate which items of the system image are to be printed.

The default for process-related items is the current process for a running system or the process that was running at the time of the crash for a crashed system. If the contents of a table are being dumped, the default is all active table entries.

The following function options are available to `crash` functions wherever they are semantically valid.

- `-e` Display every entry in a table.
- `-f` Display the full structure.
- `-p` Interpret all address arguments in the command line as physical addresses. If they are not physical addresses, results are inconsistent.
- `-s process` Specify a process slot other than the default.
- `-w file` Redirect the output of a function to `file`.

The functions `mode`, `defproc`, and `redirect` correspond to the function options `-p`, `-s`, and `-w`. The `mode` function may be used to set the address translation mode to physical or virtual for all subsequently entered functions; `defproc` sets the value of the process slot argument for subsequent functions; and `redirect` redirects all subsequent output.
Output from crash functions may be piped to another program in the following way:

function [ argument . . . ] ! shell_command

For example,

mount ! grep rw

writes all mount table entries with an rw flag to the standard output. The redirection option (-w) cannot be used with this feature.

Depending on the context of the function, numeric arguments are assumed to be in a specific radix. Counts are assumed to be decimal. Addresses are always hexadecimal. Table slot arguments larger than the size of the function will not be interpreted correctly. Use the findslot command to translate from an address to a table slot number. Default bases on all arguments may be overridden. The C conventions for designating the bases of numbers are recognized. A number that is usually interpreted as decimal is interpreted as hexadecimal if it is preceded by 0x and as octal if it is preceded by 0. Decimal override is designated by 0d, and binary by 0b.

Aliases for functions may be any uniquely identifiable initial substring of the function name. Traditional aliases of one letter, such as p for proc, remain valid.

Many functions accept different forms of entry for the same argument. Requests for table information will accept a table entry number or a range. A range of slot numbers may be specified in the form a-b where a and b are decimal numbers. An expression consists of two operands and an operator. An operand may be an address, a symbol, or a number; the operator may be +, -, *, /, & or |. An operand that is a number should be preceded by a radix prefix if it is not a decimal number (0 for octal, 0x for hexadecimal, 0b for binary). The expression must be enclosed in parentheses. Other functions accept any of these argument forms that are meaningful.

Two abbreviated arguments to crash functions are used throughout. Both accept data entered in several forms. They may be expanded into the following:

\[
\text{table_entry} = \text{address} \mid \text{slot} \mid \text{range} \\
\text{start_addr} = \text{address} \mid \text{symbol} \mid \text{expression}
\]

FUNCTIONS
? [-w file]
List available functions.

!command
Escape to the shell and execute command.

as [-e] [-f] [-w file] [proc . . .]
Print information on process segments.

base [-w file] number . . .
Print number in binary, octal, decimal, and hexadecimal. A number in a radix other than decimal should be preceded by a prefix that indicates its radix as follows: 0x, hexadecimal; 0, octal; and 0b, binary.
buffer [-w file] [-format] bufferslot
buffer [-w file] [-format] [-p] start_addr
   Alias: b.
   Print the contents of a buffer in the designated format. The following format designations are recognized: -b, byte; -c, character; -d, decimal; -x, hexadecimal; -o, octal; and, -i, inode. If no format is given, the previous format is used. The default format at the beginning of a crash session is hexadecimal.

bufhdr [-f] [-w file] [[-p]table_entry...]
   Alias: buf.
   Print system buffer headers. The -f option produces different output depending on whether the buffer is local or remote (contains RFS data).

callout [-w file]
   Alias: c.
   Print the callout table.

class [-w file] [table_entry...]
   Print information about process scheduler classes.

dbfree [-w file] [class...]
   Print free streams data block headers. If a class is entered, only data block headers for the class specified is printed.

dblock [-e] [-w file] [-c class...]

dblock [-e] [-w file] [[-p] table_entry...]
   Print allocated streams data block headers. If the class option (-c) is used, only data block headers for the class specified is printed.

defproc [-w file] [-c]

defproc [-w file] [slot]
   Set the value of the default process slot argument. The default process slot argument may be set to the current slot number (-c) or the slot number may be specified. If no argument is entered, the value of the previously set slot number is printed. At the start of a crash session, the process slot is set to the current process.

dis [-w file] [-a] start_addr [count]

dis [-w file] [-a] -c [count]
   Disassemble count instructions starting at start_addr. The default count is 1. The absolute option (-a) specifies a non-symbolic disassembly. The -c option can be used in place of start_addr to continue disassembly at the address at which a previous disassembly ended.

dispq [-w file] [table_entry...]
   Print the dispatcher (scheduler) queues.

ds [-w file] virtual_address...
   Print the data symbol whose address is closest to, but not greater than, the address entered.
file [-e] [-w file] [table_entry...]
   Alias: f.
   Print the file table.
findaddr [-w file] table slot
   Print the address of slot in table. Only tables available to the size function are available to findaddr.
findslot [-w file] virtual_address...
   Print the table, entry slot number, and offset for the address entered. Only tables available to the size function are available to findslot.
fs [-w file] [table_entry...]
   Print the file system information table.
gdp [-e] [-f] [-w file] [table_entry...]
   Print the gift descriptor protocol table.
gdt [-e] [-w file] [slot[count]]
   table_entry... Print the global descriptor table.
help [-w file] function...
   Print a description of the named function, including syntax and aliases.
idt [-e] [-w file] [slot[count]]
   Print the interrupt descriptor table.
inode [-e] [-f] [-w file] [table_entry...]
   Alias: i.
   Print the inode table, including file system switch information.
kfp [-w file] [value...]
   Print the kernel frame pointer (kfp) for the start of a kernel stack trace. If the value argument is supplied, the p is set to that value. If no argument is entered, the current value of the kfp is printed.
kmastat [-w file]
   Print kernel memory allocator statistics.
lck [-e] [-w file] [table_entry...]
   Alias: l.
   Print record locking information. If the -e option is used or table address arguments are given, the record lock list is printed. If no argument is entered, information on locks relative to inodes is printed.
ldt [-e] [-w file] [process[slot[count]]]
   Print the local descriptor table for the given process, for the current process if none is given.
linkblk [-e] [-w file] [table_entry...]
   Print the linkblk table.
map [-w file] mapname...
   Print the map structure of the given mapname.
mbfree [-w file]
Print free streams message block headers.

mblock [-e] [-w file] [[-p]table_entry . . .]
Print allocated streams message block headers.

mode [-w file] [ mode]
Set address translation of arguments to virtual (v) or physical (p) mode. If no mode argument is given, the current mode is printed. At the start of a crash session, the mode is virtual.

Print information about mounted file systems.

nm [-w file] symbol . . .
Print value and type for the given symbol.

Print count values starting at start_addr in one of the following formats: character (-c), decimal (-d), hexadecimal (-x), octal (-o), ASCII (-a), or hexadecimal/character (-h), and one of the following modes: long (-l), short (-t), or byte (-b). The default mode for character and ASCII formats is byte; the default mode for decimal, hexadecimal, and octal formats is long. The format -h prints both hexadecimal and character representations of the addresses dumped; no mode needs to be specified. When format or mode is omitted, the previous value is used. At the start of a crash session, the format is hexadecimal and the mode is long. If no count is entered, 1 is assumed.

panic Print the latest system notices, warnings, and panic messages from the limited circular buffer kept in memory.

Print information about pages.

pcb [-w file] [ process]
Print the process control block (TSS). If no arguments are given, the active TSS for the current process is printed.

prnode [-e] [-w file] [[-p] table_entry . . .]
Print information about the private data of processes being traced.

Alias: p.
Print the process table. Process table information may be specified in two ways. First, any mixture of table entries and process IDs may be entered. Each process ID must be preceded by a #. Alternatively, process table information for runnable processes may be specified with the runnable option (-f). The full option (-f) details most of the information in the process table as well as the region for that process.
Print information on page descriptor tables.

Print the pseudo ttys presently configured. The -l, -h and -h options
give information about the STREAMS modules ldterm, ptem and pckt, respectively.

qrun [-w file]
Print the list of scheduled streams queues.

queue [-e] [-w file] [[-p] table_entry . .]
Print streams queues.

quit Alias: q.
Terminate the crash session.

Print the receive descriptor table.

Print the receive descriptor user table.

redirect [-w file] [-c]
redirect [-w file] [newfile]
Used with a file name, redirects output of a crash session to newfile. If no
argument is given, the file name to which output is being redirected is
printed. Alternatively, the close option (-c) closes the previously set file
and redirects output to the standard output.

resource [-e] [-w file] [[-p] table_entry . .]
Print the advertise table.

rtdptbl [-w file] [table_entry . .]
Print the real-time scheduler parameter table. See rt_dptbl(4).

tproc [-w file]
Print information about processes in the real-time scheduler class.

search [-p] [-w file] [-m mask] [-s process] pattern start_addr length
Print the long words in memory that match pattern, beginning at the
start_addr for length long words. The mask is ANDed (&) with each
memory word and the result compared against the pattern. The mask
defaults to 0xffffffff.

size [-w file] [-x] [structure_name . .]
Print the size of the designated structure. The (-x) option prints the size
in hexadecimal. If no argument is given, a list of the structure names for
which sizes are available is printed.

Print the send descriptor table.

Print information about open special files.
srmount [-e] [-w file] [[-p]table_entry...]  
Print the server mount table.

stack [-w file] [process]  
Alias: s.  
Dump the stack. If no arguments are entered, the kernel stack for the current process is printed. The interrupt stack and the stack for the current process are not available on a running system.

stat [-w file]  
Print system statistics.

stream [-e] [-f] [-w file] [[-p]table_entry...]  
Print the streams table.

strstat [-w file]  
Print streams statistics.

trace [-w file] [-r] [process]  
Alias: t.  
Print stack trace. The kfp value is used with the -r option; the kfp function prints or sets the kfp (kernel frame pointer) value.

ts [-w file] virtual_address...  
Print text symbol closest to the designated address.

tsdptbl [-w file] [table_entry...]  
Print the time-sharing scheduler parameter table. See ts_dptbl(4).

tsym [w file]  
Print information about processes in the time-sharing scheduler class.

Valid types: kd, asy, console, comports.  
Print the tty table. If no arguments are given, the tty table for both tty types is printed. If the -t option is used, the table for the single tty type specified is printed. If no argument follows the type option, all entries in the table are printed. A single tty entry may be specified using start_addr. The -l option prints the line discipline information.

uinode [-e] [-f] [-w file] [[-p]table_entry...]  
Alias: ui.  
Print the ufs inode table.

user [-f] [-w file] [process]  
Alias: u.  
Print the ublock for the designated process.

var [-w file]  
Alias: v.  
Print the tunable system parameters.

vfs [-e] [-w file] [[-p]table_entry...]  
Alias: mount, m.  
Print information about mounted file systems.
vfssw \([- w \text{ file}] [[-p] \text{ table\_entry} . . .]\)
Print information about configured file system types.

vnode \([- w \text{ file}] [[-p] \text{ vnode\_addr} . . .]\)
Print information about vnodes.

vtop \([- w \text{ file}] [\text{-s} \text{ process}] \text{ start\_addr} . . .\)
Print the physical address translation of the virtual address \text{ start\_addr}.
NAME

cron – clock daemon

SYNOPSIS

/usr/sbin/cron

DESCRIPTION

The cron command starts a process that executes commands at specified dates and times. Regularly scheduled commands can be specified according to instructions found in crontab files in the directory /var/spool/cron/crontabs. Users can submit their own crontab file via the crontab command. Commands which are to be executed only once may be submitted via the at command.

cron only examines crontab files and at command files during process initialization and when a file changes via the crontab or at commands. This reduces the overhead of checking for new or changed files at regularly scheduled intervals.

Since cron never exits, it should be executed only once. This is done routinely through /sbin/rc2.d/S75cron at system boot time. /etc/cron.d/FIFO is used as a lock file to prevent the execution of more than one cron.

To keep a log of all actions taken by cron, CRONLOG=YES (by default) must be specified in the /etc/default/cron file. If CRONLOG=NO is specified, no logging is done. Keeping the log is a user configurable option since cron usually creates huge log files.

FILES

/usr/sbin/cron.d main cron directory
/etc/default/cron used to maintain a log
/etc/cron.d/FIFO used as a lock file
/var/cron/log accounting information
/var/spool/cron spool area

SEE ALSO

at(1), crontab(1), sh(1) in the User’s Reference Manual

DIAGNOSTICS

A history of all actions taken by cron are recorded in /var/cron/log.
NAME

`crontab` - user crontab file

SYNOPSIS

```
crontab [file]
crontab -e [-u username]
crontab -r [-u username]
crontab -l [-u username]
```

DESCRIPTION

`crontab` copies the specified file, or standard input if no file is specified, into a directory that holds all users' `crontabs`. The `-e` option edits a copy of the current user's `crontab` file, or creates an empty file to edit if `crontab` does not exist. When editing is complete, the file is installed as the user's `crontab` file. If `-u username` is given, the specified user's `crontab` file is edited, rather than the current user's `crontab` file; this may only be done by a privileged user. The `-e` option invokes the editor specified by the `VISUAL` environment variable, and if that is null, it looks at the `EDITOR` environment variable, and if that is null, it invokes `ed` [see `ed(1)`]. The `-r` option removes a user's `crontab` from the `crontab` directory. `crontab -l` will list the `crontab` file for the invoking user. Only a privileged user can use `-u username` following the `-r` or `-l` options to remove or list the `crontab` file of the specified user.

Note, the `-u` before the `username` only needs to be specified on Intel processor based computers. Others can specify `username` without the `-u`.

Users are permitted to use `crontab` if their names appear in the file `/etc/cron.d/cron.allow`. If that file does not exist, the file `/etc/cron.d/cron.deny` is checked to determine if the user should be denied access to `crontab`. If neither file exists, only root is allowed to submit a job. If `cron.allow` does not exist and `cron.deny` exists but is empty, global usage is permitted. The allow/deny files consist of one user name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces or tabs. The first five are integer patterns that specify the following:

- minute (0–59),
- hour (0–23),
- day of the month (1–31),
- month of the year (1–12),
- day of the week (0–6 with 0=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list of elements separated by commas. An element is either a number or two numbers separated by a minus sign (meaning an inclusive range). Note that the specification of days may be made by two fields (day of the month and day of the week). If both are specified as a list of elements, both are adhered to. For example, `0 0 1,15 * 1` would run a command on the first and fifteenth of each month, as well as on every Monday. To specify days by only one field, the other field should be set to * (for example, `0 0 * * 1` would run a command only on Mondays).
The sixth field of a line in a crontab file is a string that is executed by the shell at the specified times. A percent character in this field (unless escaped by \) is translated to a new-line character. Only the first line (up to a % or end of line) of the command field is executed by the shell. The other lines are made available to the command as standard input.

Any line beginning with a # is a comment and will be ignored.

The shell is invoked from your $HOME directory with an arg0 of sh. Users who desire to have their .profile executed must explicitly do so in the crontab file. cron supplies a default environment for every shell, defining HOME, LOGNAME, SHELL(=/bin/sh), and PATH(=/bin:/usr/bin:/usr/lbin).

If you do not redirect the standard output and standard error of your commands, any generated output or errors will be mailed to you.

FILES

/usr/sbin/cron.d main cron directory
/var/spool/cron/crontabs spool area
/var/cron/log accounting information
/etc/cron.d/cron.allow list of allowed users
/etc/cron.d/cron.deny list of denied users

NOTES

If you inadvertently enter the crontab command with no argument(s), do not attempt to get out with a CTRL-D. This will cause all entries in your crontab file to be removed. Instead, exit with a DEL.

If a privileged user modifies another user’s crontab file, resulting behavior may be unpredictable. Instead, the privileged user should first su(1M) to the other user’s login before making any changes to the crontab file.

SEE ALSO

atq(1), atrm(1), ed(1), sh(1), su(1)
cron(1M) in the System Administrator’s Reference Manual
crypt(1)  (Encryption Utilities)  crypt(1)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]
crypt [-k]

DESCRIPTION
crypt reads from the standard input and writes on the standard output. The password is a key that selects a particular transformation. If no argument is given, crypt demands a key from the terminal and turns off printing while the key is being typed in. If the -k option is used, crypt will use the key assigned to the environment variable CRYPTKEY. crypt encrypts and decrypts with the same key:

    crypt key <clear >cypher
    crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the editors ed(1), edit(1), ex(1), and vi(1) in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard to solve; direct search of the key space must be infeasible; "sneak paths" by which keys or clear text can become visible must be minimized.

crypt implements a one-rotor machine designed along the lines of the German Enigma, but with a 256-element rotor. Methods of attack on such machines are known, but not widely; moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to be expensive, that is, to take a substantial fraction of a second to compute. However, if keys are restricted to (say) three lower-case letters, then encrypted files can be read by expending only a substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visible to users executing ps(1) or a derivative. The choice of keys and key security are the most vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(1), edit(1), ex(1), makeskey(1), nroff(1), pg(1), ps(1), stty(1), vi(1)

NOTES
This command is provided with the Encryption Utilities, which is only available in the United States. If two or more files encrypted with the same key are concatenated and an attempt is made to decrypt the result, only the contents of the first of the original files will be decrypted correctly.

If output is piped to nroff and the encryption key is not given on the command line then do not pipe crypt through pg(1) or any other program that changes the tty settings. Doing so may cause crypt to leave terminal modes in a strange state [see stty(1)].
cscope(1) (Enhanced Programming Utilities) cscope(1)

NAME
cscope – interactively examine a C program

SYNOPSIS
   cscope [options] files .

DESCRIPTION
cscope is an interactive screen-oriented tool that allows the user to browse through C source files for specified elements of code.

By default, cscope examines the C (.c and .h), lex (.l), and yacc (.y) source files in the current directory. cscope may also be invoked for source files named on the command line. In either case, cscope searches the standard directories for #include files that it does not find in the current directory. cscope uses a symbol cross-reference, cscope.out by default, to locate functions, function calls, macros, variables, and preprocessor symbols in the files.

cscope builds the symbol cross-reference the first time it is used on the source files for the program being browsed. On a subsequent invocation, cscope rebuilds the cross-reference only if a source file has changed or the list of source files is different. When the cross-reference is rebuilt, the data for the unchanged files are copied from the old cross-reference, which makes rebuilding faster than the initial build.

The following options can appear in any combination:

-b       Build the cross-reference only.
-c       Ignore letter case when searching.
-c       Use only ASCII characters in the cross-reference file, that is, do not compress the data.
-d       Do not update the cross-reference.
-e       Suppress the *e command prompt between files.
-f reffile Use reffile as the cross-reference file name instead of the default cscope.out.
-I incdir Look in incdir (before looking in INCDIR, the standard place for header files, normally /usr/include) for any #include files whose names do not begin with / and that are not specified on the command line or in namefile below. (The #include files may be specified with either double quotes or angle brackets.) The incdir directory is searched in addition to the current directory (which is searched first) and the standard list (which is searched last). If more than one occurrence of -I appears, the directories are searched in the order they appear on the command line.
-i namefile Browse through all source files whose names are listed in namefile (file names separated by spaces, tabs, or new-lines) instead of the default (cscope.files). If this option is specified, cscope ignores any files appearing on the command line.
cscope(1)  (Enhanced Programming Utilities)  cscope(1)

-\(L\)  Do a single search with line-oriented output when used with the
-\(num\) pattern option.

-\(l\)  Line-oriented interface (see "Line-Oriented Interface" below).

-\(num\) pattern  Go to input field \(num\) (counting from 0) and find pattern.

-\(p\) path  Prepend path to relative file names in a pre-built cross-reference
file so you do not have to change to the directory where the
cross-reference file was built. This option is only valid with the
-\(d\) option.

-\(p\) \(n\)  Display the last \(n\) file path components instead of the default (1).
Use 0 to not display the file name at all.

-\(s\) dir  Look in dir for additional source files. This option is ignored if
source files are given on the command line.

-\(T\)  Use only the first eight characters to match against C symbols. A
regular expression containing special characters other than a
period (.) will not match any symbol if its minimum length is
greater than eight characters.

-\(U\)  Do not check file time stamps (assume that no files have
changed).

-\(u\)  Unconditionally build the cross-reference file (assume that all
files have changed).

-\(v\)  Print on the first line of screen the version number of cscope.

The -\(l\), -\(p\), and -\(T\) options can also be in the cscope.files file.

Requesting the Initial Search
After the cross-reference is ready, cscope will display this menu:

Find this C symbol:
Find this function definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Press the TAB key repeatedly to move to the desired input field, type the text to
search for, and then press the RETURN key.

Issuing Subsequent Requests
If the search is successful, any of these single-character commands can be used:

1-9  Edit the file referenced by the given line number.
SPACE  Display next set of matching lines.
+  Display next set of matching lines.
Display previous set of matching lines.
^e Edit displayed files in order.
> Append the displayed list of lines to a file.
l Pipe all lines to a shell command.

At any time these single-character commands can also be used:

TAB Move to next input field.
RETURN Move to next input field.
^n Move to next input field.
^p Move to previous input field.
^y Search with the last text typed.
^b Move to previous input field and search pattern.
^f Move to next input field and search pattern.
^c Toggle ignore/use letter case when searching. (When ignoring letter case, search for FILE will match File and file.)
^r Rebuild the cross-reference.
! Start an interactive shell (type ^d to return to cscope).
^1 Redraw the screen.
? Give help information about cscope commands.
^d Exit cscope.

Note: If the first character of the text to be searched for matches one of the above commands, escape it by typing a \ (backslash) first.

Substituting New Text for Old Text
After the text to be changed has been typed, cscope will prompt for the new text, and then it will display the lines containing the old text. Select the lines to be changed with these single-character commands:

1-9 Mark or unmark the line to be changed.
* Mark or unmark all displayed lines to be changed.
SPACE Display next set of lines.
+ Display next set of lines.
- Display previous set of lines.
a Mark all lines to be changed.
^d Change the marked lines and exit.
ESCAPE Exit without changing the marked lines.
! Start an interactive shell (type ^d to return to cscope).
^1 Redraw the screen.
? Give help information about cscope commands.

Special Keys
If your terminal has arrow keys that work in vi(1), you can use them to move around the input fields. The up-arrow key is useful to move to the previous input field instead of using the TAB key repeatedly. If you have CLEAR, NEXT, or PREV keys they will act as the ^1, +, and - commands, respectively.

Line-Oriented Interface
The -1 option lets you use cscope where a screen-oriented interface would not be useful, for example, from another screen-oriented program.
cscope(1) (Enhanced Programming Utilities) cscope(1)

cscope will prompt with `>>` when it is ready for an input line starting with the
field number (counting from 0) immediately followed by the search pattern, for
example, `lmain` finds the definition of the `main` function.

If you just want a single search, instead of the `-l` option use the `-L` and `-num
pattern` options, and you won’t get the `>>` prompt.

For `-l`, cscope outputs the number of reference lines

```
cscope: 2 lines
```

For each reference found, cscope outputs a line consisting of the file name, func­
tion name, line number, and line text, separated by spaces, for example,

```
main.c main 161 main(argc, argv)
```

Note that the editor is not called to display a single reference, unlike the screen­
oriented interface.

You can use the `r` command to rebuild the database.

cscope will quit when it detects end-of-file, or when the first character of an
input line is `^D` or `q`.

**ENVIRONMENT VARIABLES**

- **EDITOR** Preferred editor, which defaults to `vi(1)`.
- **INCLUDEDIRS** Colon-separated list of directories to search for `#include` files.
- **HOME** Home directory, which is automatically set at login.
- **SHELL** Preferred shell, which defaults to `sh(1)`.
- **SOURCEDIRS** Colon-separated list of directories to search for additional source
  files.
- **TERM** Terminal type, which must be a screen terminal.
- **TERMINFO** Terminal information directory full path name. If your terminal
  is not in the standard `terminfo` directory, see `curses(3X)` and `terminfo(4)`
  for how to make your own terminal description.
- **TMPDIR** Temporary file directory, which defaults to `/var/tmp`.
- **VIEWER** Preferred file display program [such as `pg`], which overrides `EDI­
  TOR` (see above).
- **VPATH** A colon-separated list of directories, each of which has the same
directory structure below it. If `VPATH` is set, `cscope` searches for
source files in the directories specified; if it is not set, `cscope`
searches only in the current directory.

**FILES**

- **cscope.files** Default files containing `-I`, `-p`, and `-T` options and the list of
  source files (overridden by the `-i` option).
- **cscope.out** Symbol cross-reference file, which is put in the home directory if
  it cannot be created in the current directory.
- **ncscope.out** Temporary file containing new cross-reference before it replaces
  the old cross-reference.
- **INCDIR** Standard directory for `#include` files (usually `/usr/include`).
SEE ALSO

curses and terminfo in the Programmer’s Guide: Character User Interface (FMLI and ETI)

NOTES

cscope recognizes function definitions of the form:

```
fname blank (args) white arg_decs white {
```

where:

- `fname` is the function name
- `blank` is zero or more spaces or tabs, not including newlines
- `args` is any string that does not contain a " or a newline
- `white` is zero or more spaces, tabs, or newlines
- `arg_decs` are zero or more argument declarations (arg_decs may include comments and white space)

It is not necessary for a function declaration to start at the beginning of a line. The return type may precede the function name; cscope will still recognize the declaration. Function definitions that deviate from this form will not be recognized by cscope.

The Function column of the search output for the menu option Find functions called by this function: input field will only display the first function called in the line, that is, for this function

```
e() {
 return (f() + g());
}
```

the display would be

```
Functions called by this function: e
```

File Function Line
a.c f 3 return(f() + g());

Occasionally, a function definition or call may not be recognized because of braces inside #if statements. Similarly, the use of a variable may be incorrectly recognized as a definition.

A typedef name preceding a preprocessor statement will be incorrectly recognized as a global definition, for example,

```
LDFILE *
#if AR16WR
```

Preprocessor statements can also prevent the recognition of a global definition, for example,
A function declaration inside a function is incorrectly recognized as a function call, for example,

```c
f()
{
 void g();
}
```

is incorrectly recognized as a call to `g()`.

cscope recognizes C++ classes by looking for the class keyword, but doesn’t recognize that a struct is also a class, so it doesn’t recognize inline member function definitions in a structure. It also doesn’t expect the class keyword in a typedef, so it incorrectly recognizes

```c
typedef class X * Y;
```

It also doesn’t recognize operator function definitions

```c
Bool Feature::operator==(const Feature & other)
{
 ...
}
```
csh(1)  (User Environment Utilities)  csh(1)

NAME
csh – shell command interpreter with a C-like syntax

SYNOPSIS
csh [ -bcefinstvVX ] [ argument . . . ]

DESCRIPTION
csh, the C shell, is a command interpreter with a syntax reminiscent of the C
language. It provides a number of convenient features for interactive use that are
not available with the standard (Bourne) shell, including filename completion,
command aliasing, history substitution, job control, and a number of built-in com­
mands. As with the standard shell, the C shell provides variable, command and
filename substitution.

Initialization and Termination
When first started, the C shell normally performs commands from the .cshrc file
in your home directory, provided that it is readable and you either own it or
your real group ID matches its group ID. If the shell is invoked with a name that
starts with ‘-’, as when started by login(l), the shell runs as a login shell. In
this case, after executing commands from the .cshrc file, the shell executes com­
mmands from the .login file in your home directory; the same permission checks
as those for .cshrc are applied to this file. Typically, the .login file contains
commands to specify the terminal type and environment.

As a login shell terminates, it performs commands from the .logout file in your
home directory; the same permission checks as those for .cshrc are applied to
this file.

Interactive Operation
After startup processing is complete, an interactive C shell begins reading com­
mmands from the terminal, prompting with hostname% (or hostname# for the
privileged user). The shell then repeatedly performs the following actions: a line
of command input is read and broken into words. This sequence of words is
placed on the history list and then parsed, as described under USAGE, below.
Finally, the shell executes each command in the current line.

Noninteractive Operation
When running noninteractively, the shell does not prompt for input from the ter­
minal. A noninteractive C shell can execute a command supplied as an argument
on its command line, or interpret commands from a script.

The following options are available:
-b Force a break from option processing. Subsequent command-line argu­
ments are not interpreted as C shell options. This allows the passing of
options to a script without confusion. The shell does not run a set-user-ID
script unless this option is present.
-c Read commands from the first filename argument (which must be present).
Remaining arguments are placed in argv, the argument-list variable.
-e Exit if a command terminates abnormally or yields a nonzero exit status.
csh(1) (User Environment Utilities) csh(1)

-\f Fast start. Read neither the .cshrc file, nor the .login file (if a login shell) upon startup.
-\i Forced interactive. Prompt for command-line input, even if the standard input does not appear to be a terminal (character-special device).
-\n Parse (interpret), but do not execute commands. This option can be used to check C shell scripts for syntax errors.
-\s Take commands from the standard input.
-\t Read and execute a single command line. A \"\ (backslash) can be used to escape each newline for continuation of the command line onto subsequent input lines.
-\v Verbose. Set the \texttt{verbose} predefined variable; command input is echoed after history substitution (but before other substitutions) and before execution.
-\v Set \texttt{verbose} before reading .cshrc.
-\x Echo. Set the \texttt{echo} variable; echo commands after all substitutions and just before execution.
-\x Set \texttt{echo} before reading .cshrc.

Except with the options -\c, -\i, -\s or -\t, the first nonoption argument is taken to be the name of a command or script. It is passed as argument zero, and subsequent arguments are added to the argument list for that command or script.

\textbf{Usage}

\textbf{Filename Completion}

When enabled by setting the variable filec, an interactive C shell can complete a partially typed filename or user name. When an unambiguous partial filename is followed by an ESC character on the terminal input line, the shell fills in the remaining characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as CTRL-d), the shell lists all filenames that match. It then prompts once again, supplying the incomplete command line typed in so far.

When the last (partial) word begins with a tilde (-), the shell attempts completion with a user name, rather than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by setting the variable nobeep. You can exclude files with certain suffixes by listing those suffixes in the variable fignore. If, however, the only possible completion includes a suffix in the list, it is not ignored. fignore does not affect the listing of filenames by the EOF character.

\textbf{Lexical Structure}

The shell splits input lines into words at space and tab characters, except as noted below. The characters \&, I, \i, \<, \>, (, and ) form separate words; if paired, the pairs form single words. These shell metacharacters can be made part of other words, and their special meaning can be suppressed by preceding them with a \"\ (backslash). A newline preceded by a \ \ is equivalent to a space character.
In addition, a string enclosed in matched pairs of single-quotes ('), double-quotes ("), or backquotes (`), forms a partial word; metacharacters in such a string, including any space or tab characters, do not form separate words. Within pairs of backquote (`) or double-quote (") characters, a newline preceded by a \ (backslash) gives a true newline character. Additional functions of each type of quote are described, below, under Variable Substitution, Command Substitution, and Filename Substitution.

When the shell's input is not a terminal, the character # introduces a comment that continues to the end of the input line. Its special meaning is suppressed when preceded by a \ or enclosed in matching quotes.

Command Line Parsing
A simple command is composed of a sequence of words. The first word (that is not part of an I/O redirection) specifies the command to be executed. A simple command, or a set of simple commands separated by | or | & characters, forms a pipeline. With |, the standard output of the preceding command is redirected to the standard input of the command that follows. With | & or | & , both the standard error and the standard output are redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed sequentially. Pipelines that are separated by & & or | | form conditional sequences in which the execution of pipelines on the right depends upon the success or failure, respectively, of the pipeline on the left.

A pipeline or sequence can be enclosed within parentheses ‘‘ to form a simple command that can be a component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously, or in the background by appending an ‘&’; rather than waiting for the sequence to finish before issuing a prompt, the shell displays the job number (see Job Control, below) and associated process IDs, and prompts immediately.

History Substitution
History substitution allows you to use words from previous command lines in the command line you are typing. This simplifies spelling corrections and the repetition of complicated commands or arguments. Command lines are saved in the history list, the size of which is controlled by the history variable. The most recent command is retained in any case. A history substitution begins with a ! (although you can change this with the histchars variable) and may occur anywhere on the command line; history substitutions do not nest. The ! can be escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being expanded, but before any other substitutions take place or the command gets executed.

Event Designators
An event designator is a reference to a command-line entry in the history list.

\ -------- Start a history substitution, except when followed by a space character, tab, newline, = or .
!! Refer to the previous command. By itself, this substitution repeats the previous command.
!n Refer to command-line n.
!\-n Refer to the current command-line minus n.
!str Refer to the most recent command starting with str.
!\?str[?] Refer to the most recent command containing str.
!{...} Insulate a history reference from adjacent characters (if necessary).

Word Designators
A ‘:’ (colon) separates the event specification from the word designator. It can be omitted if the word designator begins with a ^, $, *, - or %. If the word is to be selected from the previous command, the second ! character can be omitted from the event specification. For instance, !!1 and 1: both refer to the first word of the previous command, while !!$ and !$ both refer to the last word in the previous command. Word designators include:

# The entire command line typed so far.
0 The first input word (command).
 n The n’th argument.
^ The first argument, that is, 1.
$ The last argument.
% The word matched by (the most recent) ?s search.
x-y A range of words; -y abbreviates 0-y.
* All the arguments, or a null value if there is just one word in the event.
x* Abbreviates x-$.
x- Like x* but omitting word $.

Modifiers
After the optional word designator, you can add a sequence of one or more of the following modifiers, each preceded by a :.

h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form ‘.xxx’, leaving the basename.
e Remove all but the suffix.
s/l/r[/] Substitute r for l.
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change to the first occurrence of a match in each word, by prefixing the above (for example, g&).
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that matches l; an error results if no string matches.
The left-hand side of substitutions are not regular expressions, but character strings. Any character can be used as the delimiter in place of `/`. A backslash quotes the delimiter character. The character `&`, in the right hand side, is replaced by the text from the left-hand-side. The `&` can be quoted with a backslash. A null `l` uses the previous string either from a `l` or from a contextual scan string `s` from `?s`. You can omit the rightmost delimiter if a newline immediately follows `r`; the rightmost `?` in a context scan can similarly be omitted.

Without an event specification, a history reference refers either to the previous command, or to a previous history reference on the command line (if any).

**Quick Substitution**

`^l^r[^]`  This is equivalent to the history substitution: `!s^l^r[^]`.

**Aliases**

The C shell maintains a list of aliases that you can create, display, and modify using the `alias` and `unalias` commands. The shell checks the first word in each command to see if it matches the name of an existing alias. If it does, the command is reprocessed with the alias definition replacing its name; the history substitution mechanism is made available as though that command were the previous input line. This allows history substitutions, escaped with a backslash in the definition, to be replaced with actual command-line arguments when the alias is used. If no history substitution is called for, the arguments remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias. Nested aliases are expanded before any history substitutions is applied. This is useful in pipelines such as

```
alias ln 'ls -l \!* | more'
```

which when called, pipes the output of `ls(1)` through `more(1)`.

Except for the first word, the name of the alias may not appear in its definition, nor in any alias referred to by its definition. Such loops are detected, and cause an error message.

**I/O Redirection**

The following metacharacters indicate that the subsequent word is the name of a file to which the command’s standard input, standard output, or standard error is redirected; this word is variable, command, and filename expanded separately from the rest of the command.

- `<`  Redirect the standard input.
- `<< word`  Read the standard input, up to a line that is identical with `word`, and place the resulting lines in a temporary file. Unless `word` is escaped or quoted, variable and command substitutions are performed on these lines. Then, invoke the pipeline with the temporary file as its standard input. `word` is not subjected to variable, filename, or command substitution, and each line is compared to it before any substitutions are performed by the shell.
Redirect the standard output to a file. If the file does not exist, it is created. If it does exist, it is overwritten; its previous contents are lost.

When set, the variable noclobber prevents destruction of existing files. It also prevents redirection to terminals and /dev/null, unless one of the ! forms is used. The & forms redirect both standard output and the standard error (diagnostic output) to the file.

Append the standard output. Like >, but places output at the end of the file rather than overwriting it. If noclobber is set, it is an error for the file not to exist, unless one of the ! forms is used. The & forms append both the standard error and standard output to the file.

Variable Substitution
The C shell maintains a set of variables, each of which is composed of a name and a value. A variable name consists of up to 20 letters and digits, and starts with a letter (the underscore is considered a letter). A variable's value is a space-separated list of zero or more words.

To refer to a variable's value, precede its name with a `$`. Certain references (described below) can be used to select specific words from the value, or to display other information about the variable. Braces can be used to insulate the reference from other characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are resolved, and I/O redirections are applied. Exceptions to this are variable references in I/O redirections (substituted at the time the redirection is made), and backquoted strings (see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within double-quotes where it always occurs. Variable substitution is suppressed inside of single-quotes. A $ is escaped if followed by a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset commands. Some variables are maintained or used by the shell. For instance, the argv variable contains an image of the shell's argument list. Of the variables used by the shell, a number are toggles; the shell does not care what their value is, only whether they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in). With numeric operations, an empty value is considered to be zero; the second and subsequent words of multiword values are ignored. For instance, when the verbose variable is set to any value (including an empty value), command input is echoed on the terminal.

Command and filename substitution is subsequently applied to the words that result from the variable substitution, except when suppressed by double-quotes, when noglob is set (suppressing filename substitution), or when the reference is quoted with the :q modifier. Within double-quotes, a reference is expanded to
form (a portion of) a quoted string; multiword values are expanded to a string
with embedded space characters. When the :q modifier is applied to the refer-
ence, it is expanded to a list of space-separated words, each of which is quoted to
prevent subsequent command or filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

$var
${var}
These are replaced by words from the value of var, each
separated by a space character. If var is an environment variable,
its value is returned (but ‘:’ modifiers and the other forms given
below are not available).

$var[index]
${var[index]}
These select only the indicated words from the value of var.
Variable substitution is applied to index, which may consist of (or
result in) a either single number, two numbers separated by a ‘-‘,
or an asterisk. Words are indexed starting from 1; a ‘*’ selects
all words. If the first number of a range is omitted (as with
$argv[-2]), it defaults to 1. If the last number of a range is
omitted (as with $argv[1-1]), it defaults to $#var (the word
count). It is not an error for a range to be empty if the second
argument is omitted (or within range).

#$name
${#name}
These give the number of words in the variable.

$0
This substitutes the name of the file from which command input
is being read. An error occurs if the name is not known.

$n
${n}
Equivalent to $argv[n].

*$
Equivalent to $argv[*].

The modifiers :e, :h, :q, :r, :t and :x can be applied (see History Substitu-
tion), as can :gh, :gt and :gr. If {} (braces) are used, then the modifiers must
appear within the braces. The current implementation allows only one such
modifier per expansion.

The following references may not be modified with : modifiers.

$?var
${?var}
Substitutes the string 1 if var is set or 0 if it is not set.

$?0
Substitutes 1 if the current input filename is known, or 0 if it is not.

$$
Substitute the process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpreta-
tion thereafter. It can be used to read from the keyboard in a C shell
script.

Command and Filename Substitutions
Command and filename substitutions are applied selectively to the arguments of
built-in commands. Portions of expressions that are not evaluated are not
expanded. For non-built-in commands, filename expansion of the command
name is done separately from that of the argument list; expansion occurs in a subshell, after I/O redirection is performed.

**Command Substitution**

A command enclosed by backquotes (``...``) is performed by a subshell. Its standard output is broken into separate words at each space character, tab and newline; null words are discarded. This text replaces the backquotted string on the current command line. Within double-quotes, only newline characters force new words; space and tab characters are preserved. However, a final newline is ignored. It is therefore possible for a command substitution to yield a partial word.

**Filename Substitution**

Unquoted words containing any of the characters *, ?, [ or {, or that begin with ~, are expanded (also known as *globbing*) to an alphabetically sorted list of filenames, as follows:

* Match any (zero or more) characters.
? Match any single character.
[ ... ] Match any single character in the enclosed list(s) or range(s). A list is a string of characters. A range is two characters separated by a minus-sign (~), and includes all the characters in between in the ASCII collating sequence [see ascii(7)].

{ str, str, ... } Expand to each string (or filename-matching pattern) in the comma-separated list. Unlike the pattern-matching expressions above, the expansion of this construct is not sorted. For instance, {b,a} expands to 'b' 'a', (not 'a' 'b'). As special cases, the characters { and }, along with the string {}, are passed undisturbed.

~[ user ] Your home directory, as indicated by the value of the variable `home`, or that of `user`, as indicated by the password entry for `user`.

Only the patterns *, ?, and [...] imply pattern matching; an error results if no filename matches a pattern that contains them. The '.' (dot character), when it is the first character in a filename or pathname component, must be matched explicitly. The / (slash) must also be matched explicitly.

**Expressions and Operators**

A number of C shell built-in commands accept expressions, in which the operators are similar to those of C and have the same precedence. These expressions typically appear in the @, exit, if, set and while commands, and are often used to regulate the flow of control for executing commands. Components of an expression are separated by white space.

Null or missing values are considered 0. The result of all expressions are strings, which may represent decimal numbers.

The following C shell operators are grouped in order of precedence:
csh(1) (User Environment Utilities)  csh(1)

( ... )  grouping
~  one's complement
!  logical negation
* / %  multiplication, division, remainder (These are right associative, which can lead to unexpected results. Group combinations explicitly with parentheses.)
+ -  addition, subtraction (also right associative)
<< >>>  bit wise shift left, bitwise shift right
< > <= >=  less than, greater than, less than or equal to, greater than or equal to
== != =~  equal to, not equal to, filename-substitution pattern match (described below), filename-substitution pattern mismatch
&  bitwise AND
^  bitwise XOR (exclusive or)
|  bitwise inclusive OR
&&  logical AND
||  logical OR

The operators: ==, !=, =~, and !~ compare their arguments as strings; other operators use numbers. The operators =~ and !~ each check whether or not a string to the left matches a filename substitution pattern on the right. This reduces the need for switch statements when pattern-matching between strings is all that is required.

Also available are file inquiries:
- -x filename  Return true, or 1 if the user has read access. Otherwise it returns false, or 0.
- -w filename  True if the user has write access.
- -x filename  True if the user has execute permission (or search permission on a directory).
- -e filename  True if file exists.
- -o filename  True if the user owns file.
- -z filename  True if file is of zero length (empty).
- -f filename  True if file is a plain file.
- -d filename  True if file is a directory.

If file does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:

{ command }  If command runs successfully, the expression evaluates to true, 1. Otherwise it evaluates to false 0. (Note that, conversely, command itself typically returns 0 when it runs successfully, or some other value if it encounters a problem. If you want to get at the status directly, use the value of the status variable rather than this expression).
Control Flow
The shell contains a number of commands to regulate the flow of control in
scripts, and within limits, from the terminal. These commands operate by forcing
the shell either to reread input (to loop), or to skip input under certain conditions
(to branch).

Each occurrence of a foreach, switch, while, if...then and else built-in must
appear as the first word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered.
The shell performs seeks within the internal buffer to accomplish the rereading
implied by the loop. (To the extent that this allows, backward goto commands
will succeed on nonseekable inputs.)

Command Execution
If the command is a C shell built-in, the shell executes it directly. Otherwise, the
shell searches for a file by that name with execute access. If the command-name
contains a /, the shell takes it as a pathname, and searches for it. If the
command-name does not contain a /, the shell attempts to resolve it to a path­
name, searching each directory in the path variable for the command. To speed
the search, the shell uses its hash table (see the rehash built-in) to eliminate
directories that have no applicable files. This hashing can be disabled with the -c
or -t, options, or the unhash built-in.

As a special case, if there is no / in the name of the script and there is an alias for
the word shell, the expansion of the shell alias is prepended (without modification), to the command line. The system attempts to execute the first word
of this special (late-occurring) alias, which should be a full pathname. Remaining
words of the alias’s definition, along with the text of the input line, are treated as
arguments.

When a pathname is found that has proper execute permissions, the shell forks a
new process and passes it, along with its arguments to the kernel (using the
execve(2) system call). The kernel then attempts to overlay the new process with
the desired program. If the file is an executable binary (in a.out(4) format) the
kernel succeeds, and begins executing the new process. If the file is a text file,
and the first line begins with #!, the next word is taken to be the path­name of a
shell (or command) to interpret that script. Subsequent words on the first line
are taken as options for that shell. The kernel invokes (overlays) the indicated
shell, using the name of the script as an argument.

If neither of the above conditions holds, the kernel cannot overlay the file (the
execve(2) call fails); the C shell then attempts to execute the file by spawning a
new shell, as follows:

• If the first character of the file is a #, a C shell is invoked.
• Otherwise, a standard (Bourne) shell is invoked.

Signal Handling
The shell normally ignores QUIT signals. Background jobs are immune to signals
generated from the keyboard, including hangups (HUP). Other signals have the
values that the C shell inherited from its environment. The shell's handling of
interrupt and terminate signals within scripts can be controlled by the onintr
built-in. Login shells catch the TERM signal; otherwise this signal is passed on to child processes. In no case are interrupts allowed when a login shell is reading the .logout file.

Job Control
The shell associates a numbered job with each command sequence, to keep track of those commands that are running in the background or have been stopped with TSTP signals (typically CTRL-z). When a command, or command sequence (semicolon separated list), is started in the background using the & metacharacter, the shell displays a line with the job number in brackets, and a list of associated process numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently stopped (or put into the background if none are stopped) is referred to as the current job, and is indicated with a ‘+’. The previous job is indicated with a ‘−’; when the current job is terminated or moved to the foreground, this job takes its place (becomes the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop and % built-ins.

A reference to a job begins with a ‘%’. By itself, the percent-sign refers to the current job.

% %+ %% The current job.
%− The previous job.
%j Refer to job j as in: ‘kill −9 %j’. j can be a job number, or a string that uniquely specifies the command-line by which it was started; ‘fg %vi’ might bring a stopped vi job to the foreground, for instance.
%?string Specify the job for which the command-line uniquely contains string.

A job running in the background stops when it attempts to read from the terminal. Background jobs can normally produce output, but this can be suppressed using the ‘stty tostop’ command.

Status Reporting
While running interactively, the shell tracks the status of each job and reports whenever a finishes or becomes blocked. It normally displays a message to this effect as it issues a prompt, so as to avoid disturbing the appearance of your input. When set, the notify variable indicates that the shell is to report status changes immediately. By default, the notify command marks the current process; after starting a background job, type notify to mark it.

Built-In Commands
Built-in commands are executed within the C shell. If a built-in command occurs as any component of a pipeline except the last, it is executed in a subshell.

: Null command. This command is interpreted, but performs no action.
alias [ name [ def ] ]
Assign def to the alias name. def is a list of words that may contain escaped history-substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted, the alias name is displayed along with its current definition. If both name and def are omitted, all aliases are displayed.

bg [ %job ] ...
Run the current or specified jobs in the background.

break
Resume execution after the end of the nearest enclosing foreach or while loop. The remaining commands on the current line are executed. This allows multilevel breaks to be written as a list of break commands, all on one line.

breaksw
Break from a switch, resuming after the endsw.

case label:
A label in a switch statement.

cd [ dir ]
chdir [ dir ]
Change the shell’s working directory to directory dir. If no argument is given, change to the home directory of the user. If dir is a relative pathname not found in the current directory, check for it in those directories listed in the cdpath variable. If dir is the name of a shell variable whose value starts with a /, change to the directory named by that value.

continue
Continue execution of the nearest enclosing while or foreach.

default:
Labels the default case in a switch statement. The default should come after all case labels. Any remaining commands on the command line are first executed.

dirs [ -1 ]
Print the directory stack, most recent to the left; the first directory shown is the current directory. With the -1 argument, produce an unabbreviated printout; use of the - notation is suppressed.

echo [ -n ] list
The words in list are written to the shell’s standard output, separated by space characters. The output is terminated with a newline unless the -n option is used.

eval argument ...
Reads the arguments as input to the shell, and executes the resulting command(s). This is usually used to execute commands generated as the result of command or variable substitution, since parsing occurs before these substitutions. See tset(1) for an example of how to use eval.

exec command
Execute command in place of the current shell, which terminates.
exit [ (expr) ]
The shell exits, either with the value of the STATUS variable, or with
the value of the specified by the expression expr.

fg % [ job ]
Bring the current or specified job into the foreground.

foreach var (wordlist)
...
The variable var is successively set to each member of wordlist. The
sequence of commands between this command and the matching end
is executed for each new value of var. (Both foreach and end must
appear alone on separate lines.)

The built-in command continue may be used to continue the loop
prematurely and the built-in command break to terminate it premi-
ately. When this command is read from the terminal, the loop is read
up once prompting with ? before any statements in the loop are exe-
cuted.

glob wordlist
Perform filename expansion on wordlist. Like echo, but no \ escapes
are recognized. Words are delimited by NULL characters in the output.

goto label
The specified label is filename and command expanded to yield a label.
The shell rewinds its input as much as possible and searches for a line
of the form label: possibly preceded by space or tab characters. Execu-
tion continues after the indicated line. It is an error to jump to a label
that occurs between a while or for built-in, and its corresponding
end.

hashstat
Print a statistics line indicating how effective the internal hash table
has been at locating commands (and avoiding execs). An exec is
attempted for each component of the path where the hash function
indicates a possible hit, and in each component that does not begin
with a '/'.

history [ -hr ] [ n ]
Display the history list; if n is given, display only the n most recent
events.

-r Reverse the order of printout to be most recent first rather than
oldest first.

-h Display the history list without leading numbers. This is used
to produce files suitable for sourcing using the -h option to
source.

if (expr) command
If the specified expression evaluates to true, the single command with
arguments is executed. Variable substitution on command happens
early, at the same time it does for the rest of the if command. com-
mand must be a simple command, not a pipeline, a command list, or a
parenthesized command list. Note: I/O redirection occurs even if
expr is false, when command is not executed (this is a bug).
if (expr) then
...
else if (expr2) then
...
else
...
endif

If expr is true, commands up to the first else are executed. Otherwise, if expr2 is true, the commands between the else if and the second else are executed. Otherwise, commands between the else and the endif are executed. Any number of else if pairs are allowed, but only one else. Only one endif is needed, but it is required. The words else and endif must be the first nonwhite characters on a line. The if must appear alone on its input line or after an else.

jobs[ -l ]
List the active jobs under job control.

-1 List process IDs, in addition to the normal information.

kill [ -sig ] [ pid ] [ %job ] ...
kill -l Send the TERM (terminate) signal, by default, or the signal specified, to the specified process ID, the job indicated, or the current job. Signals are either given by number or by name. There is no default. Typing kill does not send a signal to the current job. If the signal being sent is TERM (terminate) or HUP (hangup), then the job or process is sent a CONT (continue) signal as well.

-1 List the signal names that can be sent.

limit [ -h ] [ resource [ max-use ] ]
Limit the consumption by the current process or any process it spawns, each not to exceed max-use on the specified resource. If max-use is omitted, print the current limit; if resource is omitted, display all limits.

-1 Use hard limits instead of the current limits. Hard limits impose a ceiling on the values of the current limits. Only the privileged user may raise the hard limits.

resource is one of:

cputime Maximum CPU seconds per process.
filesize Largest single file allowed.
datasize Maximum data size (including stack) for the process.
stacksize Maximum stack size for the process.
coredumpsize Maximum size of a core dump (file).

max-use is a number, with an optional scaling factor, as follows:
login [username | -p]
Terminate a login shell and invoke login(1). The .logout file is not
processed. If username is omitted, login prompts for the name of a
user.

-p Preserve the current environment (variables).

logout
Terminate a login shell.

nice [+n | -n] [command]
Increment the process priority value for the shell or for command by n.
The higher the priority value, the lower the priority of a process, and
the slower it runs. When given, command is always run in a subshell,
and the restrictions placed on commands in simple if commands apply. If command is omitted, nice increments the value for the
current shell. If no increment is specified, nice sets the process prior­
ity value to 4. The range of process priority values is from –20 to 20.
Values of n outside this range set the value to the lower, or to the
higher boundary, respectively.

+n Increment the process priority value by n.

-n Decrement by n. This argument can be used only by the
privileged user.

nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs
throughout the remainder of a script. When given, command is always
run in a subshell, and the restrictions placed on commands in simple if commands apply. All processes detached with & are effectively
nohup’d.

notify [%job] ...
Notify the user asynchronously when the status of the current, or of
specified jobs, changes.

onintr [– | label]
Control the action of the shell on interrupts. With no arguments,
onintr restores the default action of the shell on interrupts. (The shell
terminates shell scripts and returns to the terminal command input
level). With the – argument, the shell ignores all interrupts. With a label argument, the shell executes a goto label when an interrupt is
received or a child process terminates because it was interrupted.

popd [+n] Pop the directory stack, and cd to the new top directory. The elements
of the directory stack are numbered from 0 starting at the top.

+n Discard the n’reth entry in the stack.
pushd [+n | dir]
Push a directory onto the directory stack. With no arguments, exchange the top two elements.

+ n  Rotate the n’th entry to the top of the stack and cd to it.

dir  Push the current working directory onto the stack and change to dir.

rehash  Recompute the internal hash table of the contents of directories listed in the path variable to account for new commands added.

repeat count command
Repeat command count times. command is subject to the same restrictions as with the one-line if statement.

set [var [ = value ] ]
set var[n] = word
With no arguments, set displays the values of all shell variables. Multiword values are displayed as a parenthesized list. With the var argument alone, set assigns an empty (null) value to the variable var. With arguments of the form var = value set assigns value to var, where value is one of:

word          A single word (or quoted string).
(wordlist)    A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set var[n] = word replaces the n’th word in a multiword value with word.

setenv [ VAR [ word ] ]
With no arguments, setenv displays all environment variables. With the VAR argument sets the environment variable VAR to have an empty (null) value. (By convention, environment variables are normally given upper-case names.) With both VAR and word arguments setenv sets the environment variable NAME to the value word, which must be either a single word or a quoted string. The most commonly used environment variables, USER, TERM, and PATH, are automatically imported to and exported from the csh variables user, term, and path; there is no need to use setenv for these. In addition, the shell sets the PWD environment variable from the csh variable cwd whenever the latter changes.

shift [ variable ]
The components of argv, or variable, if supplied, are shifted to the left, discarding the first component. It is an error for the variable not to be set, or to have a null value.
source [-h] name
Reads commands from name. source commands may be nested, but if they are nested too deeply the shell may run out of file descriptors. An error in a sourced file at any level terminates all nested source commands.

-h Place commands from the file name on the history list without executing them.

stop [ %job ] ...
Stop the current or specified background job.

suspend
Stop the shell in its tracks, much as if it had been sent a stop signal with ^Z. This is most often used to stop shells started by su.

switch (string)
case label:
...
breaksw
...
default:
...
breaksw
endsw
Each label is successively matched, against the specified string, which is first command and filename expanded. The file metacharacters *, ?, and [...] may be used in the case labels, which are variable expanded. If none of the labels match before a default label is found, execution begins after the default label. Each case statement and the default statement must appear at the beginning of a line. The command breaksw continues execution after the endsw. Otherwise control falls through subsequent case and default statements as with C. If no label matches and there is no default, execution continues after the endsw.

time [ command ]
With no argument, print a summary of time used by this C shell and its children. With an optional command, execute command and print a summary of the time it uses.

umask [ value ]
Display the file creation mask. With value set the file creation mask. value is given in octal, and is XORed with the permissions of 666 for files and 777 for directories to arrive at the permissions for new files. Common values include 002, giving complete access to the group, and read (and directory search) access to others, or 022, giving read (and directory search) but not write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are removed by unalias *.
unhash
Disables the internal hash table.

unlimit [-h] [resource]
Remove a limitation on resource. If no resource is specified, then all
resource limitations are removed. See the description of the limit
command for the list of resource names.

-h Remove corresponding hard limits. Only the privileged user
may do this.

unset pattern
Remove variables whose names match (filename substitution) pattern.
All variables are removed by ‘unset *’; this has noticeably distasteful
side-effects.

unsetenv variable
Remove variable from the environment. Pattern matching, as with
unset is not performed.

wait
Wait for background jobs to finish (or for an interrupt) before prompting.

while (expr)
...
end
While expr is true (evaluates to non-zero), repeat commands between
the while and the matching end statement. break and continue may
be used to terminate or continue the loop prematurely. The while
and end must appear alone on their input lines. If the shell’s input is
a terminal, it prompts for commands with a question-mark until the
end command is entered and then performs the commands in the
loop.

% [job] [&]
Bring the current or indicated job to the foreground. With the amper-
sand, continue running job in the background.

@ [ var = expr ]
@ [ var [n] = expr ]
With no arguments, display the values for all shell variables. With
arguments, the variable var, or the n’th word in the value of var , to
the value that expr evaluates to. (If [n] is supplied, both var and its
n’th component must already exist.)

If the expression contains the characters >, <, & or I, then at least this
part of expr must be placed within parentheses.

The operators *=, +=, etc., are available as in C. The space separating
the name from the assignment operator is optional. Spaces are, how-
ever, mandatory in separating components of expr that would other-
wise be single words.

Special postfix operators, ++ and -- increment or decrement name,
respectively.
Environment Variables and Predefined Shell Variables

Unlike the standard shell, the C shell maintains a distinction between environment variables, which are automatically exported to processes it invokes, and shell variables, which are not. Both types of variables are treated similarly under variable substitution. The shell sets the variables `argv`, `cwd`, `home`, `path`, `prompt`, `shell`, and `status` upon initialization. The shell copies the environment variable `USER` into the shell variable `user`, `TERM` into `term`, and `HOME` into `home`, and copies each back into the respective environment variable whenever the shell variables are reset. `PATH` and `path` are similarly handled. You need only set `path` once in the `.cshrc` or `.login` file. The environment variable `PWD` is set from `cwd` whenever the latter changes. The following shell variables have predefined meanings:

`argv` 
Argument list. Contains the list of command line arguments supplied to the current invocation of the shell. This variable determines the value of the positional parameters `$1`, `$2`, and so on.

`cdpath` 
Contains a list of directories to be searched by the `cd`, `chdir`, and `popd` commands, if the directory argument each accepts is not a subdirectory of the current directory.

`cwd` 
The full pathname of the current directory.

`echo` 
Echo commands (after substitutions), just before execution.

`fignore` 
A list of filename suffixes to ignore when attempting filename completion. Typically the single word `.`.

`filec` 
Enable filename completion, in which case the CTRL-d character (CTRL-d) and the ESC character have special significance when typed in at the end of a terminal input line:

- **EOT** Print a list of all filenames that start with the preceding string.
- **ESC** Replace the preceding string with the longest unambiguous extension.

`hardpaths` 
If set, pathnames in the directory stack are resolved to contain no symbolic-link components.

`histchars` 
A two-character string. The first character replaces `!` as the history-substitution character. The second replaces the carat (`^`) for quick substitutions.

`history` 
The number of lines saved in the history list. A very large number may use up all of the C shell’s memory. If not set, the C shell saves only the most recent command.

`home` 
The user’s home directory. The filename expansion of ~ refers to the value of this variable.

`ignoreeof` 
If set, the shell ignores EOF from terminals. This protects against accidentally killing a C shell by typing a CTRL-d.

`mail` 
A list of files where the C shell checks for mail. If the first word of the value is a number, it specifies a mail checking interval in seconds (default 5 minutes).
nobeep Suppress the bell during command completion when asking the C shell to extend an ambiguous filename.

clobber Restrict output redirection so that existing files are not destroyed by accident. > redirections can only be made to new files. >> redirections can only be made to existing files.

noglob Inhibit filename substitution. This is most useful in shell scripts once filenames (if any) are obtained and no further expansion is desired.

nonomatch Returns the filename substitution pattern, rather than an error, if the pattern is not matched. Malformed patterns still result in errors.

notify If set, the shell notifies you immediately as jobs are completed, rather than waiting until just before issuing a prompt.

path The list of directories in which to search for commands. path is initialized from the environment variable PATH, which the C shell updates whenever path changes. A null word specifies the current directory. The default is typically: (. /usr/ucb /usr/bin). If path becomes unset only full pathnames will execute. An interactive C shell will normally hash the contents of the directories listed after reading .cshrc, and whenever path is reset. If new commands are added, use the rehash command to update the table.

prompt The string an interactive C shell prompts with. Noninteractive shells leave the prompt variable unset. Aliases and other commands in the .cshrc file that are only useful interactively, can be placed after the following test: 'if ($?prompt == 0) exit'; to reduce startup time for noninteractive shells. A 1 in the prompt string is replaced by the current event number. The default prompt is hostname% for mere mortals, or hostname# for the privileged user.

savehist The number of lines from the history list that are saved in ~/.history when the user logs out. Large values for savehist slow down the C shell during startup.

shell The file in which the C shell resides. This is used in forking shells to interpret files that have execute bits set, but that are not executable by the system.

status The status returned by the most recent command. If that command terminated abnormally, 0200 is added to the status. Built-in commands that fail return exit status 1, all other built-in commands set status to 0.

time Control automatic timing of commands. Can be supplied with one or two values. The first is the reporting threshold in CPU seconds. The second is a string of tags and text indicating which resources to report on. A tag is a percent sign (%) followed by a single upper-case letter (unrecognized tags print as text):
**csh(1)**

**(User Environment Utilities)**

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%D</td>
<td>Average amount of unshared data space used in Kilobytes.</td>
</tr>
<tr>
<td>%E</td>
<td>Elapsed (wallclock) time for the command.</td>
</tr>
<tr>
<td>%F</td>
<td>Page faults.</td>
</tr>
<tr>
<td>%I</td>
<td>Number of block input operations.</td>
</tr>
<tr>
<td>%K</td>
<td>Average amount of unshared stack space used in Kilobytes.</td>
</tr>
<tr>
<td>%M</td>
<td>Maximum real memory used during execution of the process.</td>
</tr>
<tr>
<td>%O</td>
<td>Number of block output operations.</td>
</tr>
<tr>
<td>%P</td>
<td>Total CPU time — U (user) plus S (system) — as a percentage of E (elapsed) time.</td>
</tr>
<tr>
<td>%S</td>
<td>Number of seconds of CPU time consumed by the kernel on behalf of the user’s process.</td>
</tr>
<tr>
<td>%U</td>
<td>Number of seconds of CPU time devoted to the user’s process.</td>
</tr>
<tr>
<td>%W</td>
<td>Number of swaps.</td>
</tr>
<tr>
<td>%X</td>
<td>Average amount of shared memory used in Kilobytes.</td>
</tr>
</tbody>
</table>

The default summary display outputs from the %U, %S, %E, %P, %X, %D, %I, %O, %F and %W tags, in that order.

**FILES**

- `~/.cshrc` Read at beginning of execution by each shell.
- `~/.login` Read by login shells after `.cshrc` at login.
- `~/.logout` Read by login shells at logout.
- `~/.history` Saved history for use at next login.
- `/usr/bin/sh` Standard shell, for shell scripts not starting with a ‘#’.
- `/tmp/sh*` Temporary file for ‘<<’.
- `/etc/passwd` Source of home directories for ‘-name’.

**SEE ALSO**

`login(1), sh(1)`

`access(2), exec(2), fork(2), pipe(2)` in the *Programmer’s Reference Manual*

`a.out(4), environ(4), termio(4), ascii(5)` in the *System Administrator’s Reference Manual*

**DIAGNOSTICS**

You have stopped jobs.

You attempted to exit the C shell with stopped jobs under job control. An immediate second attempt to exit will succeed, terminating the stopped jobs.

**NOTES**

Words can be no longer than 1024 characters. The system limits argument lists to 1,048,576 characters. However, the maximum number of arguments to a command for which filename expansion applies is 1706. Command substitutions may expand to no more characters than are allowed in the argument list. To detect looping, the shell restricts the number of alias substitutions on a single line to 20.
When a command is restarted from a stop, the shell prints the directory it started in if this is different from the current directory; this can be misleading (that is, wrong) as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form \texttt{a ; b ; c} are also not handled gracefully when stopping is attempted. If you suspend \texttt{b}, the shell never executes \texttt{c}. This is especially noticeable if the expansion results from an alias. It can be avoided by placing the sequence in parentheses to force it into a subshell.

Control over terminal output after processes are started is primitive; use the Sun Window system if you need better output control.

Multiline shell procedures should be provided, as they are with the standard (Bourne) shell.

Commands within loops, prompted for by \texttt{?}, are not placed in the \texttt{history} list.

Control structures should be parsed rather than being recognized as built-in commands. This would allow control commands to be placed anywhere, to be combined with \texttt{!}, and to be used with \texttt{&} and \texttt{;} metasyntax.

It should be possible to use the \texttt{:} modifiers on the output of command substitutions. There are two problems with \texttt{:} modifier usage on variable substitutions: not all of the modifiers are available, and only one modifier per substitution is allowed.

The \texttt{g} (global) flag in history substitutions applies only to the first match in each word, rather than all matches in all words. The the standard text editors consistently do the latter when given the \texttt{g} flag in a substitution command.

Quoting conventions are confusing. Overriding the escape character to force variable substitutions within double quotes is counterintuitive and inconsistent with the Bourne shell.

Symbolic links can fool the shell. Setting the \texttt{hardpaths} variable alleviates this.

\texttt{'set path'} should remove duplicate pathnames from the pathname list. These often occur because a shell script or a \texttt{.cshrc} file does something like \texttt{'set path=/usr/local /usr/hosts $path'} to ensure that the named directories are in the pathname list.

The only way to direct the standard output and standard error separately is by invoking a subshell, as follows:

\begin{verbatim}
example% (command > outfile) >& errorfile
\end{verbatim}

Although robust enough for general use, adventures into the esoteric periphery of the C shell may reveal unexpected quirks.
NAME
csplit – context split

SYNOPSIS

csplit [-s] [-k] [-f prefix] file arg1 [... argn]

DESCRIPTION
csplit reads file and separates it into n+1 sections, defined by the arguments
arg1...argn. By default the sections are placed in xx00...xxn (n may not be
greater than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by
    arg1.
01: From the line referenced by arg1 up to the line referenced by arg2.
...
 n: From the line referenced by argn to the end of file.

If the file argument is a -, then standard input is used.

The options to csplit are:

-s csplit normally prints the character counts for each file created. If
the -s option is present, csplit suppresses the printing of all char-
acter counts.

-k csplit normally removes created files if an error occurs. If the -k
option is present, csplit leaves previously created files intact.

-f prefix If the -f option is used, the created files are named
prefix00...prefixn. The default is xx00...xxn.

The arguments (arg1...argn) to csplit can be a combination of the following:

/rexp/ A file is to be created for the section from the current line up to (but
not including) the line containing the regular expression rexp. The cur-
tent line becomes the line containing rexp. This argument may
be followed by an optional + or - some number of lines (e.g.,
/Page/-5). See ed(1) for a description of how to specify a regular
expression.

%rexp% This argument is the same as /rexp/, except that no file is created
for the section.

lno A file is to be created from the current line up to (but not including)
lno. The current line becomes lno.

{num} Repeat argument. This argument may follow any of the above argu-
ments. If it follows a rexp type argument, that argument is applied
num more times. If it follows lno, the file will be split every lno
lines (num times) from that point.

Enclose all rexp type arguments that contain blanks or other characters meaning-
ful to the shell in the appropriate quotes. Regular expressions may not contain
embedded new-lines. csplit does not affect the original file; it is the user's
responsibility to remove it if it is no longer wanted.
EXAMPLES

csplit -f cobol file '/procedure division/' /par5./ /par16./

This example creates four files, cobol00...cobol03. After editing the “split” files, they can be recombined as follows:

    cat cobol0[0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example splits the file at every 100 lines, up to 10,000 lines. The -k option causes the created files to be retained if there are less than 10,000 lines; however, an error message would still be printed.

    csplit -k prog.c '%main%' '/^/+1' {20}

If prog.c follows the normal C coding convention (the last line of a routine consists only of a } in the first character position), this example creates a file for each separate C routine (up to 21) in prog.c.

SEE ALSO
ed(1), sh(1).

DIAGNOSTICS
Self-explanatory except for:

    arg - out of range

which means that the given argument did not reference a line between the current position and the end of the file.
NAME
ct – spawn login to a remote terminal

SYNOPSIS
ct [options] telno . . .

DESCRIPTION
ct dials the telephone number of a modem that is attached to a terminal and
spawns a login process to that terminal. Telno is a telephone number, with
equal signs for secondary dial tones and minus signs for delays at appropriate
places. (The set of legal characters for telno is 0 through 9, -, =, **, and #. The
maximum length of telno is 31 characters). If more than one telephone number is
specified, ct tries each in succession until one answers; this is useful for specify­
ing alternate dialing paths.

cT tries each line listed in the file /etc/uucp/Devices until it finds an available
line with appropriate attributes, or runs out of entries. ct uses the following
options:

- h
   Normally, ct hangs up the current line so it can be used to answer
   the incoming call. The - h option prevents this action. The - h
   option also waits for the termination of the specified ct process
   before returning control to the user’s terminal.

- s speed
   The data rate may be set with the - s option. speed is expressed in
   baud rates. The default baud rate is 1200.

- v
   If the -v (verbose) option is used, ct sends a running narrative to
   the standard error output stream.

- w n
   If there are no free lines ct asks if it should wait for one, and if so,
   for how many minutes it should wait before it gives up. ct con­tin­
   ues to try to open the dialers at one-minute intervals until the
   specified limit is exceeded. This dialogue may be overridden by
   specifying the - w n option where n is the maximum number of
   minutes that ct is to wait for a line.

- x n
   This option is used for debugging; it produces a detailed output of
   the program execution on standard error. n is a single number
   between 0 and 9. As n increases to 9, more detailed debugging
   information is given.

After the user on the destination terminal logs out, there are two things that
could occur, depending on what type of port monitor is monitoring the port. In
the case of no port monitor, ct prompts: Reconnect? If the response begins with
the letter n, the line is dropped; otherwise, ttymon is started again and the
login: prompt is printed. In the second case, where a port monitor is monitor­
ing the port, the port monitor reissues the login: prompt.

The user should log out properly before disconnecting.

FILES
/etc/uucp/Devices
/var/adm/ctlog
SEE ALSO

cu(1C), login(1), uucp(1C)
ttymon(1M) in the System Administrator's Reference Manual

NOTES

The ct program will not work with a DATAKIT Multiplex interface.
For a shared port, one used for both dial-in and dial-out, the ttymon program running on the line must have the -r and -b options specified [see ttymon(1M)].
ctags(1)  (Editing Utilities)  ctags(1)

NAME
  ctags – create a tags file for use with vi

SYNOPSIS
  ctags [ -aBFuvwx ] [ -f tagsfile ] filename . . .

DESCRIPTION
  ctags makes a tags file for ex(1) from the specified C, Pascal, FORTRAN, YACC,
  and LEX sources. A tags file gives the locations of specified objects (in this case
  functions and typedefs) in a group of files. Each line of the tags file contains the
  object name, the file in which it is defined, and an address specification for the
  object definition. Functions are searched with a pattern, typedefs with a line
  number. Specifiers are given in separate fields on the line, separated by SPACE or
  TAB characters. Using the tags file, ex can quickly find these objects definitions.

  Normally ctags places the tag descriptions in a file called tags; this may be
  overridden with the -f option.

  Files with names ending in .c or .h are assumed to be C source files and are
  searched for C routine and macro definitions. Files with names ending in .y are
  assumed to be YACC source files. Files with names ending in .1 are assumed to
  be LEX files. Others are first examined to see if they contain any Pascal or FOR­
  TRAN routine definitions; if not, they are processed again looking for C
  definitions.

  The tag main is treated specially in C programs. The tag formed is created by
  prepending M to filename, with a trailing .c removed, if any, and leading path­
  name components also removed. This makes use of ctags practical in directories
  with more than one program.

  The following options are available:

  -a   Append output to an existing tags file.
  -B   Use backward searching patterns (?...?).
  -F   Use forward searching patterns (/.../) (default).
  -t   Create tags for typedefs.
  -u   Update the specified files in tags, that is, all references to them are
       deleted, and the new values are appended to the file. Beware: this option
       is implemented in a way which is rather slow; it is usually faster to sim­
       ply rebuild the tags file.
  -v   Produce on the standard output an index listing the function name, file
       name, and page number (assuming 64 line pages). Since the output will
       be sorted into lexicographic order, it may be desired to run the output
       through sort -f.
  -w   Suppress warning diagnostics.
  -x   Produce a list of object names, the line number and file name on which
       each is defined, as well as the text of that line and prints this on the stan­
       dard output. This is a simple index which can be printed out as an off­
       line readable function index.
FILES

  tags output tags file

USAGE

The -v option is mainly used with vgrind which will be part of the optional BSD Compatibility Package.

SEE ALSO

ex(1), vgrind(1), vi(1)

NOTES

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done in a very simpleminded way. No attempt is made to deal with block structure; if you have two Pascal procedures in different blocks with the same name you lose.

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.

ctags does not know about #ifdefs.

ctags should know about Pascal types. Relies on the input being well formed to detect typedefs. Use of -tx shows only the last line of typedefs.
NAME
ctrace – C program debugger

SYNOPSIS
ctrace [options] [file]

DESCRIPTION
The ctrace command allows the user to monitor the sequential execution of a C
program as each program statement executes. The effect is similar to executing a
shell procedure with the -x option. ctrace reads the C program in file (or from
standard input if the user does not specify file), inserts statements to print the text
of each executable statement and the values of all variables referenced or
modified, and writes the modified program to the standard output. The output
of ctrace must be placed into a temporary file because the cc(1) command does
not allow the use of a pipe. This file can then be compiled and executed.

As each statement in the program executes, it will be listed at the terminal, fol­
lowed by the name and value of any variables referenced or modified in the
statement; these variable names and values will be followed by any output from
the statement. Loops in the trace output are detected and tracing is stopped until
the loop is exited or a different sequence of statements within the loop is exe­
cuted. A warning message is printed after each 1000 loop cycles to help the user
detect infinite loops. The trace output goes to the standard output so the user
can put it into a file for examination with an editor or the bfs(1) or tail(1) com­
mands.

The options commonly used are:
-
f functions Trace only these functions.
-v functions Trace all but these functions.

The user may want to add to the default formats for printing variables. Long
and pointer variables are always printed as signed integers. Pointers to character
arrays are also printed as strings if appropriate. char, short, and int variables
are also printed as signed integers and, if appropriate, as characters. double
variables are printed as floating point numbers in scientific notation. The user
can request that variables be printed in additional formats, if appropriate, with
these options:
-o Octal
-x Hexadecimal
-u Unsigned
-e Floating point

These options are used only in special circumstances:
-1 n Check n consecutively executed statements for looping trace output,
instead of the default of 20. Use 0 to get all the trace output from loops.
-s Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of
the = operator in place of the == operator.
-t n Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The diagnostics section explains when to use this option.
Preprocess the input before tracing it. The user can also use the -D, -I, and -U cc(1) options.

-p string
Change the trace print function from the default of printf. For example, fprintf(stderr, would send the trace to the standard error output.

-r f
Use file f in place of the runtime.c trace function package. This replacement lets the user change the entire print function, instead of just the name and leading arguments (see the -p option).

-v
Prints version information on the standard error.

-Q arg
If arg is y, identification information about ctrace will be added to the output files. This can be useful for software administration. Giving n for arg explicitly asks for no such information, which is the default behavior.

EXAMPLE
If the file lc.c contains this C program:

```c
#include <stdio.h>
main() /* count lines in input */
{
 int c, nl;
 nl = 0;
 while ((c = getchar()) != EOF)
 if (c = '\n')
 ++nl;
 printf("%d\n", nl);
}
```
these commands and test data are entered:

```
cc lc.c
a.out
1
cntl-d
```
the program will be compiled and executed. The output of the program will be the number 2, which is incorrect because there is only one line in the test data. The error in this program is common, but subtle. If the user invokes ctrace with these commands:

```
ctrace lc.c >temp.c
cce temp.c
a.out
```
the output will be:

```c
2 main()
6 nl = 0;
 /* nl == 0 */
7 while ((c = getchar()) != EOF)
```

The program is now waiting for input. If the user enters the same test data as before, the output will be:

```c
/* c == 49 or '1' */
8
 if (c == '\n')
 /* c == 10 or '\n' */
9
 ++nl;
/* nl == 1 */
7 while ((c = getchar()) != EOF)
/* c == 10 or '\n' */
8
 if (c == '\n')
 /* c == 10 or '\n' */
9
 ++nl;
/* nl == 2 */
7 while ((c = getchar()) != EOF)
```

If an end-of-file character (cntl-d) is entered, the final output will be:

```c
/* c == -1 */
10 printf("%d\n", nl);
/* nl == 2 */
return
```

Note the information printed out at the end of the trace line for the nl variable following line 10. Also note the return comment added by ctrace at the end of the trace output. This shows the implicit return at the terminating brace in the function.

The trace output shows that variable c is assigned the value '1' in line 7, but in line 8 it has the value '\n'. Once user attention is drawn to this if statement, he or she will probably realize that the assignment operator (=) was used in place of the equality operator (==). This error can easily be missed during code reading.

**EXECUTION-TIME TRACE CONTROL**

The default operation for ctrace is to trace the entire program file, unless the -f or -v options are used to trace specific functions. The default operation does not give the user statement-by-statement control of the tracing, nor does it let the user turn the tracing off and on when executing the traced program.

The user can do both of these by adding ctroff() and ctrom() function calls to the program to turn the tracing off and on, respectively, at execution time. Thus, complex criteria can be arbitrarily coded for trace control with if statements, and this code can even be conditionally included because ctrace defines the CTRACE preprocessor variable. For example:

```c
#ifdef CTRACE
 if (c == '!') && i > 1000)
 ctrom();
#endif
```

These functions can also be called from sdb(1) if they are compiled with the -g option. For example, to trace all but lines 7 to 10 in the main function, enter:
The trace can be turned off and on by setting static variable `tr_ct_` to 0 and 1, respectively. This on/off option is useful if a user is using a debugger that cannot call these functions directly.

**FILES**

```
/usr/ccs/lib/ctrace/runtime.c run-time trace package
```

**SEE ALSO**

`sdb(1), ctype(3C), fclose(3S), printf(3S), string(3C)
bfs(1), tail(1)` in the *User's Reference Manual*

**DIAGNOSTICS**

This section contains diagnostic messages from both `ctrace` and `cc(1)`, since the traced code often gets some `cc` warning messages. The user can get `cc` error messages in some rare cases, all of which can be avoided.

**ctrace Diagnostics**

- **warning: some variables are not traced in this statement**
  Only 10 variables are traced in a statement to prevent the C compiler "out of tree space; simplify expression" error. Use the `-t` option to increase this number.

- **warning: statement too long to trace**
  This statement is over 400 characters long. Make sure that tabs are used to indent the code, not spaces.

- **cannot handle preprocessor code, use -P option**
  This is usually caused by `#ifdef/#endif` preprocessor statements in the middle of a C statement, or by a semicolon at the end of a `#define` preprocessor statement.

- **'if ... else if' sequence too long**
  Split the sequence by removing an `else` from the middle.

- **possible syntax error, try -P option**
  Use the `-P` option to preprocess the `ctrace` input, along with any appropriate `-D`, `-I`, and `-U` preprocessor options.

**NOTES**

Defining a function with the same name as a system function may cause a syntax error if the number of arguments is changed. Just use a different name.

`ctrace` assumes that `BADMAG` is a preprocessor macro, and that `EOF` and `NULL` are #defined constants. Declaring any of these to be variables, e.g., "`int EOF;`", will cause a syntax error.

Pointer values are always treated as pointers to character strings.
ctrace does not know about the components of aggregates like structures, unions, and arrays. It cannot choose a format to print all the components of an aggregate when an assignment is made to the entire aggregate. ctrace may choose to print the address of an aggregate or use the wrong format (e.g., 3.149050e-311 for a structure with two integer members) when printing the value of an aggregate.

The loop trace output elimination is done separately for each file of a multi-file program. Separate output elimination can result in functions called from a loop still being traced, or the elimination of trace output from one function in a file until another in the same file is called.
NAME

cu – call another UNIX system

SYNOPSIS

cu [ options ] [ destination ]

DESCRIPTION

cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It manages an interactive conversation with possible transfers of files. It is convenient to think of cu as operating in two phases. The first phase is the connection phase in which the connection is established. cu then enters the conversation phase. The -d option is the only one that applies to both phases.

-d
Causes diagnostic traces to be printed.

The cu command sets the input and output conversion mode to on or off, as appropriate, to avoid a character conversion on the local system when accessing the remote system.

On the remote system, the input and output conversion should be set manually, as cu cannot know whether input conversion is required or not. In most cases, remote systems can be used with input conversion on; however, when transferring files, this should be set to off before invoking the file transfer command in order to avoid unexpected conversion of the file contents.

Connection Phase

cu uses the same mechanism that uucp does to establish a connection. This means that it will use the uucp control files /etc/uucp/Devices and /etc/uucp/Systems. This gives cu the ability to choose from several different media to establish the connection. The possible media include telephone lines, direct connections, and local area networks (LANs). The Devices file contains a list of media that are available on your system. The Systems file contains information for connecting to remote systems, but it is not generally readable.

The destination parameter from the command line is used to tell cu what system you wish to connect to. The destination can be blank, a telephone number, a system name, or a LAN-specific address. A telephone number is a string consisting of the tone dial characters (the digits 0 through 9, *, and #) plus the special characters = and -. The equal sign designates a secondary dial tone and the minus sign creates a 4 second delay. A system name is the name of any computer that uucp can call; the uname command prints a list of these names. The documentation for your LAN will show the form of the LAN-specific address.

If cu's default behavior is invoked (not using the -c or -l options), cu will use destination to determine which medium to use. If destination is a telephone number, cu will assume that you wish to use a telephone line and it will select an automatic call unit (ACU). If the destination is not a telephone number, then cu will assume that it is a system name. cu will follow the uucp calling mechanism and use the Systems and Devices files to obtain the best available connection. Since cu will choose a speed that is appropriate for the medium that it selects, you may not use the -s option when destination is a system name.
The `-c` and `-l` options modify this default behavior. `-c` is most often used to select a LAN by specifying a Type field from the `Devices` file. Here, `destination` is assumed to be a system name. If the connection attempt to `system name` fails, a connection will be attempted using `destination` as a LAN-specific address. The `-l` option is used to specify a device associated with a direct connection. If the connection is truly a direct connection to the remote machine, then there is no need to specify a `destination`. This is the only case where a blank `destination` is allowed. On the other hand, there may be cases in which the specified device connects to a dialer, so it is valid to specify a telephone number as a `destination`. The `-c` and `-l` options should not be specified on the same command line.

`cu` accepts many options. The `-c`, `-l`, and `-s` options play a part in selecting the medium; the remaining options are used in configuring the line.

- `-sspeed` Specifies the transmission speed (300, 1200, 2400, 4800, 9600). The default value is "Any" speed which will depend on the order of the lines in the `/etc/uucp/Devices` file. Most modems are either 300, 1200, or 2400 baud. Directly connected lines may be set to a speed higher than 2400 baud.

- `-ctype` The first field in the `Devices` file is the "Type" field. The `-c` option forces `cu` to only use entries in the "Type" field that match the user specified `type`. The specified `type` is usually the name of a local area network.

- `-lline` Specifies a device name to use as the communication line. This can be used to override the search that would otherwise take place for the first available line having the right speed. When the `-l` option is used without the `-s` option, the speed of a line is taken from the `Devices` file record in which `line` matches the second field (the Line field). When the `-l` and `-s` options are both used together, `cu` will search the `Devices` file to check if the requested speed for the requested line is available. If so, the connection will be made at the requested speed, otherwise, an error message will be printed and the call will not be made. In the general case where a specified device is a directly connected asynchronous line (e.g., `/dev/term/ab`), a telephone number (`telno`) is not required. The specified device need not be in the `/dev` directory. If the specified device is associated with an auto dialer, a telephone number must be provided. If `destination` is used with this option, it must be a telephone number.

- `-bn` Forces `n` to be the number of bits processed on the line. `n` is either 7 or 8. This allows connection between systems with different character sizes. By default, the character size of the line is set to the same as the current local terminal.

- `-e` Set an EVEN data parity. This option designates that EVEN parity is to be generated for data sent to the remote system.

- `-h` Set communication mode to half-duplex. This option emulates the local `echo(1)` command in order to support calls to other computer systems that expect terminals to be set to half-duplex mode.
-n Request user prompt for telephone number. For added security, this option will prompt the user to provide the telephone number to be dialed, rather than taking it from the command line.

-o Set an ODD data parity. This option designates that ODD parity is to be generated for data sent to the remote system.

-t Used to dial a terminal which has been set to auto answer. Appropriate mapping of carriage-return to carriage-return-line-feed pairs is set.

Conversation Phase
After making the connection, cu runs as two processes: the transmit process reads data from the standard input and, except for lines beginning with ~, passes it to the remote system; the receive process accepts data from the remote system and, except for lines beginning with ~, passes it to the standard output. Normally, an automatic DC3/DC1 protocol is used to control input from the remote so the buffer is not overrun. Lines beginning with ~ have special meanings.

The transmit process interprets the following user-initiated commands:

- . terminate the conversation.
- ! escape to an interactive shell on the local system.
- !cmd... run cmd on the local system (via sh -c).
- $cmd... run cmd locally and send its output to the remote system.
- %cd change the directory on the local system. Note: ~!cd will cause the command to be run by a sub-shell, probably not what was intended.
- %take from [ to ] copy file from (on the remote system) to file to on the local system. If to is omitted, the from argument is used in both places.
- %put from [ to ] copy file from (on local system) to file to on remote system. If to is omitted, the from argument is used in both places.
- ~ line send the line ~ line to the remote system.
- %break transmit a BREAK to the remote system (which can also be specified as ~%b).
- %debug toggles the -d debugging option on or off (which can also be specified as ~%d).
- t prints the values of the termio structure variables for the user's terminal (useful for debugging).
- l prints the values of the termio structure variables for the remote communication line (useful for debugging).
- %ifc toggles between DC3/DC1 input control protocol and no input control. This is useful when the remote system does not respond properly to the DC3 and DC1 characters. (can also be specified as ~%mostop).
cu(1C) (Basic Networking Utilities) cu(1C)

-`%ofc` toggles the output flow control setting. When enabled, outgoing data flow may be controlled by the remote host (can also be specified as -`%noostop`).

-`%divert` allow/disallow unsolicited diversions. That is, diversions not specified by -`%take`.

-`%old` allow/disallow old style syntax for received diversions.

The `receive` process normally copies data from the remote system to the standard output of the local system. It may also direct the output to local files.

The use of -`%put` requires `stty(1)` and `cat(1)` on the remote side. It also requires that the current control characters on the remote system be identical to the current control characters on the local system. Backslashes are inserted at appropriate places for these control characters.

The use of -`%take` requires the existence of `echo(1)` and `cat(1)` on the remote system. Also, `tabs` mode [see `stty(1)`] should be set on the remote system if tabs are to be copied without expansion to spaces.

When `cu` is used on system X to connect to system Y and subsequently used on system Y to connect to system Z, commands on system Y can be executed by using `--`. Executing a tilde command reminds the user of the local system `uname`. For example, `uname` can be executed on Z, X, and Y as follows:

```
uname
Z
-[X]!uname
X
--[Y]!uname
Y
```

In general, ~ causes the command to be executed on the original machine. ~~ causes the command to be executed on the next machine in the chain.

**EXAMPLES**

To dial a system whose telephone number is 9 1 201 555 1234 using 1200 baud (where dialtone is expected after the 9):
```
cu -s1200 9=12015551234
```

If the speed is not specified, "Any" is the default value.

To log on a system that is on a Datakit VCS local area network, but which has not been defined by your administrator [i.e., is not entered in the `/etc/uucp/Systems` file(s)]:
```
cu -c DK address
```

`DK` is the name of the Datakit local area network, and `address` is the Datakit address which is of the form, `/area/exchange/machine`.

To log on a system connected by a direct line:
```
cu -l /dev/term/XX
```
or
```
cu -l term/XX
```
To dial a system with a specific line and speed:

```
uc -s1200 -l term/XX
```

To dial a system using a specific line associated with an auto dialer:

```
uc -l cu1XX 9=12015551234
```

To use a system name:

```
uc systemname
```

**FILES**

```
/etc/uucp/Sysfiles
/etc/uucp/Systems
/etc/uucp/Devices
/var/spool/locks/*
```

**SEE ALSO**

```
cat(1), ct(1C), echo(1), stty(1), uucp(1C), uname(1), uuname(1)
```

**DIAGNOSTICS**

Exit code is zero for normal exit, otherwise, one.

**NOTES**

The `uc` command does not do any integrity checking on data it transfers. Data fields with special `uc` characters may not be transmitted properly. Depending on the interconnection hardware, it may be necessary to use a `~.` to terminate the conversion, even if `stty 0` has been used. Non-printing characters are not dependably transmitted using either the `~%put` or `~%take` commands. `uc`, between an IMBR1 and a PENRIL modem, will not return a login prompt immediately upon connection. A carriage return will return the prompt.

`~%put` and `~%take` cannot be used over multiple links. Files must be moved one link at a time.

There is an artificial slowing of transmission by `uc` during the `~%put` operation so that loss of data is unlikely. Files transferred using `~%take` or `~%put` must contain a trailing newline, otherwise, the operation will hang. Entering a CTRL-d command usually clears the hang condition.
NAME

custom - install specific portions of a UNIX package

SYNOPSIS

custom [-ir] [package ] [-m device ] [-f [file ]]

DESCRIPTION

custom allows the super-user to create a custom installation by selectively install­
ing or deleting portions of the UNIX packages to or from the 386 operating sys­
tem. It can be used interactively or it can be invoked from the command line with applicable command options.

Files are extracted or deleted in packages. A package is a collection of individual files that are grouped together in sets.

When in interactive mode, custom prompts you for volume 1 of the new product distribution and extracts the product information necessary to support it. The following menu provides support for adding or removing a package:

1. Install one or more packages
2. Remove one or more packages
3. List the files in a package
4. Install a single file
5. Select a new set to customize
6. Display current disk usage
7. Help

When you enter a menu option, you are prompted for further information. The following describes what actions are necessary for each menu option:

1. Install

Prompts for one or more package names

Calculates which installation volumes (distribution media) are needed and then prompts the user for the correct volume numbers. If multiple packages are specified, the names should be separated by spaces on the command line.

This option, as well as "2" and "3," displays a list of available packages in the selected set. Each line describes the package name, whether the package is fully installed, not installed or partially installed, the size of the package (in 512 byte blocks), and a one line description of the package contents.

2. Remove

Prompts for one or more package names.

Deletes the correct files in the specified package. If multiple packages are specified, the names should be separated by spaces on the command line.

Displays available packages (see option "1").

3. List files in a package

Lists all files in the specified package
Prompts for one or more package names. Enter the name of the desired package(s).
Displays available packages (see option "1").
4. Install a single file
Retrieves the specified file from the distribution set
Filename should be a full pathname relative to the root directory "/".
5. Select a new set
Allows the user to work from a different set
6. Display current disk usage
Tells current disk usage.
7. Help
Prints a page of instructions to help you use custom.
  -s A set identifier
  -i Install the specified package(s)
  -r Remove the specified package(s)
  -l List the files in the specified package(s)
  -f Install the specified file
The -m flag specifies the media device. The default is /dev/install (which is always the 0 device, as in /dev/fd0). This is very useful if the system has a 5.25-inch drive on /dev/fd0 and a 3.5-inch floppy on /dev/fd1 and it is necessary to install 3.5-inch media. For example:

```
custom -m /dev/rfd196ds9
```
This will override the default device and use the one supplied with the -m flag.
If any information is missing from the command line, custom prompts for the missing data.

**NOTES**
When installing some XENIX applications, error messages such as "bad gid" or "bad uid" may be printed. These messages occur because XENIX and UNIX assign UID and GID numbers differently. If necessary, the file and/or directory permissions can be altered with "chmod(1)" after installation.

**FILES**
/etc/perms/*

**SEE ALSO**
fixperm(1M), df(1M), du(1M), install(1M)
NAME
custom – install specific portions of certain UNIX or XENIX packages

SYNOPSIS
custom [-s set] [-ilr] [package] [-f [file]] [-m device]

DESCRIPTION
custom allows the super-user to create a custom installation by selectively installing or deleting portions of UNIX or XENIX packages to or from the 386 operating system. It can be used interactively or it can be invoked from the command line with applicable command options.

Files are extracted or deleted in packages. A package is a collection of individual files that are grouped together in sets.

When in interactive mode, custom prompts you for volume 1 of the new product distribution and extracts the product information necessary to support it. The following menu provides support for adding or removing a package:

1. Install one or more packages
2. Remove one or more packages
3. List available packages
4. List the files in a package
5. Install a single file
6. Select a new set to customize
7. Display current disk usage
8. Help

When you enter a menu option, you are prompted for further information. The following describes what actions are necessary for each menu option:

1. Install one or more packages
   
   Prompts for one or more package names. Enter the name of the desired package(s).

   Calculates which installation volumes (distribution media) are needed and then prompts the user for the correct volume numbers. If multiple packages are specified, the names should be separated by spaces on the command line.

   This option, as well as options 2 and 3, displays a list of available packages in the selected set. Each line describes the package name, whether the package is fully installed, not installed or partially installed, the size of the package (in 512 byte blocks), and a one line description of the package contents.

2. Remove one or more packages
   
   Prompts for one or more package names. Enter the name of the desired package(s).

   Deletes the correct files in the specified package. If multiple packages are specified, the names should be separated by spaces on the command line.
3. List available packages
   Prompts for one or more package names. Enter the name of the desired package(s).
   Displays available packages (see option 1).

4. List the files in a package
   Lists all files in the specified package.
   Prompts for one or more package names. Enter the name of the desired package(s).

5. Install a single file
   Retrieves the specified file from the distribution set.
   Filename should be a full pathname relative to the root directory (/).

6. Select a new set to customize
   Allows the user to work from a different set.

7. Display current disk usage
   Tells current disk usage.

8. Help
   Prints a page of instructions to help you use custom.

Options
- A set identifier
- Install the specified package(s)
- Remove the specified package(s)
- List the files in the specified package(s)
- Install the specified file
- Install from device (device must be /dev/install for floppy drive 0 or /dev/install1 for floppy drive 1)

FILES
/etc/perms/*

SEE ALSO
df(1M), du(1M), fixperm(1M), install(1M)
NAME
cut – cut out selected fields of each line of a file

SYNOPSIS
cut -c list [file ...]
cut -f list [-dchar] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each line of a file; in database parlance, it implements the projection of a relation. The fields as specified by list can be fixed length, i.e., character positions as on a punched card (-c option) or the length can vary from line to line and be marked with a field delimiter character like tab (-f option). cut can be used as a filter; if no files are given, the standard input is used. In addition, a file name of "-" explicitly refers to standard input.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order), with optional – to indicate ranges [e.g., 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3– (short for third through last field)].

-c list The list following -c (no space) specifies character positions (e.g., -c1-72 would pass the first 72 characters of each line).

-f list The list following -f is a list of fields assumed to be separated in the file by a delimiter character (see -d); e.g., -f1,7 copies the first and seventh field only. Lines with no field delimiters will be passed through intact (useful for table subheadings), unless -s is specified.

-dchar The character following -d is the field delimiter (-f option only). Default is tab. Space or other characters with special meaning to the shell must be quoted.

-s Suppresses lines with no delimiter characters in case of -f option. Unless specified, lines with no delimiters will be passed through untouched.

Either the -c or -f option must be specified.

Use grep(1) to make horizontal “cuts” (by context) through a file, or paste(1) to put files together column-wise (i.e., horizontally). To reorder columns in a table, use cut and paste.

EXAMPLES
cut -d: -f1,5 /etc/passwd mapping of user IDs to names
name=`who am i | cut -f1 -d" "` to set name to current login name.

DIAGNOSTICS
I "ERROR: line too long"
A line can have no more than 1023 characters or fields, or there is no new-line character.

"ERROR: bad list for c/f option"
Missing -c or -f option or incorrectly specified list. No error occurs if a line has fewer fields than the list calls for.
"ERROR: no fields"
   The list is empty.

"ERROR: no delimiter"
   Missing char on -d option.

"ERROR: cannot handle multiple adjacent backspaces"
   Adjacent backspaces cannot be processed correctly.

"WARNING: cannot open <filename>"
   Either filename cannot be read or does not exist. If multiple
   filenames are present, processing continues.

SEE ALSO
   grep(1), paste(1)
NAME
cvtomflib - convert OMF (XENIX) libraries to ELF

SYNOPSIS
cvtomflib [-v] [-o outfile] library [library ..]

DESCRIPTION
cvtomflib converts libraries of OMF objects to libraries of ELF objects. It is intended for use with application packages that provide only OMF libraries that could not otherwise be used with the Standard C Development Environment.

The options have the following meanings.
- v Verbose output is produced for each converted object. Without this option, cvtomflib does its work silently.
- o This option allows the user to specify a new name, outfile, for the converted library without changing the original. This option is only available when a single library is being converted.

NOTES
The original order of objects within the library is retained.
Each library is converted in the directory in which it's located. Without the - o option, the converted library will overwrite the original; therefore, you may want to copy the original library before conversion.
NAME
cxref – generate C program cross-reference

SYNOPSIS

cxref [options] files

DESCRIPTION

The cxref command analyzes a collection of C files and builds a cross-reference table. cxref uses a special version of cc to include #define'd information in its symbol table. It generates a list of all symbols (auto, static, and global) in each individual file, or, with the -c option, in combination. The table includes four fields: NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the LINE field also show reference marks as appropriate. The reference marks include:

- assignment =
- declaration –
- definition *

If no reference marks appear, you can assume a general reference.

OPTIONS

cxref interprets the -D, -I, -U options in the same manner that cc does. In addition, cxref interprets the following options:

- -c Combine the source files into a single report. Without the -c option, cxref generates a separate report for each file on the command line.
- -d Disables printing declarations, making the report easier to read.
- -l Does not print local variables. Prints only global and file scope statistics.
- -o file Direct output to file.
- -s Operates silently; does not print input file names.
- -t Format listing for 80-column width.
- -wnum Width option that formats output no wider than num (decimal) columns. This option will default to 80 if num is not specified or is less than 51.
- -C Runs only the first pass of cxref, creating a .cx file that can later be passed to cxref. This is similar to the -c option of cc or lint.
- -F Prints the full path of the referenced file names.
- -Lcols Modifies the number of columns in the LINE field. If you do not specify a number, cxref defaults to five columns.
- -V Prints version information on the standard error.
Changes the default width of at least one field. The default widths are:

<table>
<thead>
<tr>
<th>Field</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>15</td>
</tr>
<tr>
<td>FILE</td>
<td>13</td>
</tr>
<tr>
<td>FUNCTION</td>
<td>15</td>
</tr>
<tr>
<td>LINE</td>
<td>20 (4 per column)</td>
</tr>
</tbody>
</table>

**FILES**

- `TMPDIR/tx.*` temporary files
- `TMPDIR/cx.*` temporary files
- `LIBDIR/xref` accessed by cxref
- `LIBDIR` usually `/usr/ccs/lib`
- `TMPDIR` usually `/var/tmp` but can be redefined by setting the environment variable `TMPDIR` [see `tempnam` in `tmpnam(3S)`].

**EXAMPLE**

```c
a.c

1 main()
2 {
3 int i;
4 extern char c;
5
6 i=65;
7 c=(char)i;
8 }
```

Resulting cross-reference table:

<table>
<thead>
<tr>
<th>NAME</th>
<th>FILE</th>
<th>FUNCTION</th>
<th>LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>a.c</td>
<td>---</td>
<td>4-7</td>
</tr>
<tr>
<td>i</td>
<td>a.c</td>
<td>main</td>
<td>3*6</td>
</tr>
<tr>
<td>main</td>
<td>a.c</td>
<td>---</td>
<td>2*</td>
</tr>
<tr>
<td>u3b2</td>
<td>predefined</td>
<td>---</td>
<td>0*</td>
</tr>
<tr>
<td>unix</td>
<td>predefined</td>
<td>---</td>
<td>0*</td>
</tr>
</tbody>
</table>

**SEE ALSO**

`cc(1), lint(1)`

**DIAGNOSTICS**

Error messages usually mean you cannot compile the files.
NAME

date – print and set the date

SYNOPSIS

date [ -u ] [ + format ]
date [ -a [ - |] sss.fff ] [ -u ] [ [ mmd ] HHMM | mmdHHMM [ cc ] yy ]

DESCRIPTION

If no argument is given, or if the argument begins with +, the current date and
time are printed. Otherwise, the current date is set (only by super-user).

-a [ - ] sss.fff

Slowly adjust the time by sss.fff seconds (fff represents fractions of a
second). This adjustment can be positive or negative. The system’s
clock will be sped up or slowed down until it has drifted by the
number of seconds specified.

-u

Display (or set) the date in Greenwich Mean Time (GMT—universal
time), bypassing the normal conversion to (or from) local time.

mm is the month number

dd is the day number in the month

HH is the hour number (24 hour system)

MM is the minute number

cc is the century minus one

yy is the last 2 digits of the year number

The month, day, year, and century may be omitted; the current
values are supplied as defaults. For example:

    date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default
because no year is supplied. The system operates in GMT. date
takes care of the conversion to and from local standard and daylight
time. Only the super-user may change the date. After successfully
setting the date and time, date displays the new date according to
the default format. The date command uses TZ to determine the
correct time zone information [see environ(5)].

+ format

If the argument begins with +, the output of date is under the con-
trol of the user. Each Field Descriptor, described below, is preceded
by % and is replaced in the output by its corresponding value. A
single % is encoded by %%. All other characters are copied to the
output without change. The string is always terminated with a
new-line character. If the argument contains embedded blanks it
must be quoted (see the EXAMPLE section).

Specifications of native language translations of month and weekday names are
supported. The month and weekday names used for a language are based on the
locale specified by the environment variables LC_TIME and LANG (see environ(5)).
The month and weekday names used for a language are taken from a file whose format is specified in strftime(4). This file also defines country-specific date and time formats such as %c, which specifies the default date format. The following form is the default for %c:

```
%a %b %e %T %2 %Y
```

Example: Fri Dec 23 10:10:42 EST 1988

Field Descriptors (must be preceded by a %):
- a: abbreviated weekday name
- A: full weekday name
- b: abbreviated month name
- B: full month name
- c: country-specific date and time format
- d: day of month – 01 to 31
- D: date as %m/%d/%y
- e: day of month – 1 to 31 (single digits are preceded by a blank)
- h: abbreviated month name (alias for %b)
- H: hour – 00 to 23
- I: hour – 01 to 12
- j: day of year – 001 to 366
- m: month of year – 01 to 12
- M: minute – 00 to 59
- n: insert a new-line character
- p: string containing ante-meridian or post-meridian indicator (by default, AM or PM)
- r: time as %I:%M:%S %p
- R: time as %H:%M
- S: second – 00 to 61, allows for leap seconds
- t: insert a tab character
- T: time as %H:%M:%S
- U: week number of year (Sunday as the first day of the week) – 00 to 53
- w: day of week – Sunday = 0
- W: week number of year (Monday as the first day of the week) – 00 to 53
- x: Country-specific date format
- X: Country-specific time format
- y: year within century – 00 to 99
- Y: year as ccyy (4 digits)
- z: timezone name

Example:
The command
```
date '+DATE: %m/%d/%y
TIME: %H:%M:%S'
```

generates as output:
```
DATE: 08/01/76
TIME: 14:45:05
```
DIAGNOSTICS

No permission You are not the super-user and you try to change the date.
bad conversion The date set is syntactically incorrect.

NOTES

Should you need to change the date while the system is running multi-user, use the datetime command of sysadm(1M).

If you attempt to set the current date to one of the dates that the standard and alternate time zones change (for example, the date that daylight time is starting or ending), and you attempt to set the time to a time in the interval between the end of standard time and the beginning of the alternate time (or the end of the alternate time and the beginning of standard time), the results are unpredictable.

SEE ALSO

sysadm(1M), strftime(4), environ(5) in the System Administrator's Reference Manual
NAME
dbcmd - load command and macro files into a kernel executable file

SYNOPSIS
dbcmd file macro

DESCRIPTION
dbcmd loads the contents of the specified macros into the kernel executable file. The next time the kernel is rebooted with file, the loaded commands are part of the kernel debugger.

SEE ALSO
kdb(1M), dbsym(1M), kcrash(1M)
NAME
dbsym – add symbols to kernel debugger

SYNOPSIS
dbsym [-v] file1 file2

DESCRIPTION
dbsym extracts the symbolic names and addresses from the kernel executable file, file1, and enters the data into file2. When the system is rebooted with file2, the symbolic information can now be used by the kernel debugger. Note that file1 and file2 can be the same.

-v The verbose option, -v, displays various symbol information.

SEE ALSO
kdb(1M), dbcmd(1M), kcrash(1M)
NAME
dc – desk calculator

SYNOPSIS
dc [ file ]

DESCRIPTION
dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but one may specify an input base, output base, and a number of fractional digits to be maintained. [bc is a preprocessor for dc that provides infix notation and a C-like syntax that implements functions. bc also provides reasonable control structures for programs. See bc(1).] The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is taken from that file until its end, then from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken string of the digits 0–9. It may be preceded by an underscore (_) to input a negative number. Numbers may contain decimal points.

+-/*%^+
The top two values on the stack are added (+), subtracted (-), multiplied (*), divided (/), remaindered (%), or exponentiated (^). The two entries are popped off the stack; the result is pushed on the stack in their place. Any fractional part of an exponent is ignored.

sx The top of the stack is popped and stored into a register named x, where x may be any character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

lx The value in register x is pushed on the stack. The register x is not altered. All registers start with zero value. If the 1 is capitalized, register x is treated as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.
p Interprets the top of the stack as an ASCII string, removes it, and prints it.
f All values on the stack are printed.
q Exits the program. If executing a string, the recursion level is popped by two.
Q Exits the program. The top value on the stack is popped and the string execution level is popped by that value.

x Treats the top element of the stack as a character string and executes it as a string of dc commands.
X Replaces the number on the top of the stack with its scale factor.
[ . . . ] Puts the bracketed ASCII string onto the top of the stack.
The top two elements of the stack are popped and compared. Register \( x \) is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any existing fractional part of the argument is taken into account, but otherwise the scale factor is ignored.

Interprets the rest of the line as a UNIX system command.

All values on the stack are popped.

The top value on the stack is popped and used as the number radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-negative scale factor: the appropriate number of places are printed on output, and maintained during multiplication, division, and exponentiation. The interaction of scale factor, input base, and output base will be reasonable if all are changed together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and executed.

are used by \( \texttt{bc(1)} \) for array operations.

This example prints the first ten values of \( n! \):

\[
[lal+dsa*pla10>y]sy
\]

\[
0sal
\]

\[
lyx
\]

DIAGNOSTICS

\( x \) is unimplemented: \( x \) is an octal number.

stack empty: not enough elements on the stack to do what was asked.

Out of space: the free list is exhausted (too many digits).

Out of headers: too many numbers being kept around.

Out of pushdown: too many items on the stack.

Nesting Depth: too many levels of nested execution.
dcopy (1M)

NAME
dcopy (generic) — copy file systems for optimal access time

SYNOPSIS
dcopy [-F FSType] [-v] [current_options] [-o specific_options] inputfs outputfs

DESCRIPTION
dcopy copies file system inputfs to outputfs. inputfs is the device file for the existing file system; outputfs is the device file to hold the reorganized result. For the most effective optimization inputfs should be the raw device and outputfs should be the block device. Both inputfs and outputfs should be unmounted file systems.

current_options are options supported by the s5-specific module of dcopy. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

The options are:

- F Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the inputfs (device) with an entry in the table.

- v Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

- o Specify FSType-specific options.

NOTE
This command may not be supported for all FSTypes.

FILES
/etc/vfstab list of default parameters for each file system

SEE ALSO
vfstab(4)
Manual pages for the FSType-specific modules of dcopy
NAME
dcopy (s5) – copy s5 file systems for optimal access time

SYNOPSIS
dcopy [-F s5] [generic_options] [-sX] [-an] [-d] [-v] [-fsize[:isize]] inputfs outputfs

DESCRIPTION

generic_options are options supported by the generic dcopy command.
With no options, dcopy copies files from inputfs compressing directories by removing vacant entries, and spacing consecutive blocks in a file by the optimal rotational gap.
The options are:

-F s5 Specifies the s5-FSType. Need not be supplied if the information may be obtained from /etc/vfstab by matching the inputfs device with an entry in the file.

-sX Supply device information for creating an optimal organization of blocks in a file. X must be of the form cylinder size:gap size.

-an Place the files not accessed in n days after the free blocks of the destination file system If no n is specified then no movement occurs.

-d Leave order of directory entries as is. The default is to move subdirectories to the beginning of directories.

-v Reports how many files were processed and how big the source and destination freelists are.

-f fsize[:isize] Specify the outputfs file system (fsize) and inode list (isize) sizes in logical blocks. If the suboption (or :isize) is not given, the values from inputfs are used.

dcopy catches interrupts and quits and reports on its progress. To terminate dcopy, send a quit signal followed by an interrupt or quit.

NOTES

fsck should be run on the new file system created by dcopy before it is mounted.

FILES

/etc/mnttab list of file systems currently mounted

SEE ALSO
generic dcopy(1M), fsck(1M), mkfs(1M)
NAME

dd – convert and copy a file

SYNOPSIS

dd [option=value] ...

DESCRIPTION

dd copies the specified input file to the specified output with possible conversions. The standard input
and output are used by default. The input and output block sizes may be specified to take advantage of raw
physical I/O.

option values
if=file input file name; standard input is default
of=file output file name; standard output is default
ibs=n input block size n bytes (default 512)
obs=n output block size n bytes (default 512)
bs=n set both input and output block size, superseding ibs and obs; also, if no conversion is specified, preserve
the input block size instead of packing short blocks into the output buffer (this is particularly efficient since no in-core copy
need be done)
cbs=n conversion buffer size (logical record length)
files=n copy and concatenate n input files before terminating (makes sense only where input is a magnetic tape or similar device)
skip=n skip n input blocks before starting copy (appropriate for magnetic tape, where isseek is undefined)
isseek=n seek n blocks from beginning of input file before copying (appropriate for disk files, where skip can be incredibly slow)
oseek=n seek n blocks from beginning of output file before copying identical to oseek, retained for backward compatibility
seek=n copy only n input blocks
count=n several comma-separated conversions
conv=ascii convert EBCDIC to ASCII
    ebcdic convert ASCII to EBCDIC
    ibm slightly different map of ASCII to EBCDIC
    block convert new-line terminated ASCII records to fixed length
    unblock convert fixed length ASCII records to new-line terminated records
    lcase map alphabetics to lower case
    ucase map alphabetics to upper case
    swab swap every pair of bytes
    noerror do not stop processing on an error (limit of 5 consecutive
    errors)
sync pad every input block to ibs

Where sizes are specified, a number of bytes is expected. A number may end with k, b, or w to specify
multiplication by 1024, 512, or 2, respectively; a pair of numbers may be separated by x to indicate multiplication.
dds is used only if ascii, unblock, ebcic, ibm, or block conversion is specified. In the first two cases, cbs characters are copied into the conversion buffer, any specified character mapping is done, trailing blanks are trimmed and a new-line is added before sending the line to the output. In the latter three cases, characters are read into the conversion buffer and blanks are added to make up an output record of size cbs. If cbs is unspecified or zero, the ascii, ebcic, and ibm options convert the character set without changing the block structure of the input file; the unblock and block options become a simple file copy.

After completion, dd reports the number of whole and partial input and output blocks.

EXAMPLE
This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images per tape block into the ASCII file x:

```
 dd if=/dev/rmt/Oh of=x ibs=800 obs=8k cbs=80 conv=asciilcase
```

Note the use of raw magnetic tape. dd is especially suited to I/O on the raw physical devices because it allows reading and writing in arbitrary block sizes.

SEE ALSO
    cp(1)

NOTES
Do not use dd to copy files between filesystems having different block sizes.

Using a blocked device to copy a file will result in extra nulls being added to the file to pad the final block to the block boundary.

DIAGNOSTICS

    f+p records in(out) numbers of full and partial blocks read(written)
NAME
delsysadm — sysadm interface menu or task removal tool

SYNOPSIS
delsysadm task | [-r] menu

DESCRIPTION
The delsysadm command deletes a task or menu from the sysadm interface and modifies the interface directory structure on the target machine.

The logical name and location of the menu or task within the interface menu hierarchy. Begin with the top menu main and proceed to where the menu or the task resides, separating each name with colons. See EXAMPLES.

If the -r option is used, this command will recursively remove all sub-menus and tasks for this menu. If the -r option is not used, the menu must be empty.

delsysadm should only be used to remove items added as "on-line" changes with the edsysadm command. Such an addition will have a package instance tag of ONLINE. If the task or menu (and its sub-menus and tasks) have any package instance tags other than ONLINE, you are asked whether to continue with the removal or to exit. Under these circumstances, you probably do not want to continue and you should rely on the package involved to take the necessary actions to delete this type of entry.

The command exits successfully or provides the error code within an error message.

EXAMPLES
To remove the nformat task, execute:

delsysadm main:applications:ndevices:nformat.

DIAGNOSTICS
0 Successful execution
2 Invalid syntax
3 Menu or task does not exist
4 Menu not empty
5 Unable to update interface menu structure

NOTES
Any menu that was originally a placeholder menu (one that only appears if sub-menus exist under it) will be returned to placeholder status when a deletion leaves it empty.

When the -r option is used, delsysadm checks for dependencies before removing any subentries. (A dependency exists if the menu being removed contains an entry placed there by an application package). If a dependency is found, the user is shown a list of packages that depend on the menu being deleted and asked whether or not to continue. If the answer is yes, the menu and all of its menus and tasks are removed (even those shown to have dependencies). If the answer is no, the menu is not deleted.
delsysadm should only be used to remove menu or task entries that have been added to the interface with edsysadm.

SEE ALSO
edsysadm(1M), sysadm(1M)
NAME

\texttt{delta} – make a delta (change) to an SCCS file

SYNOPSIS

\texttt{delta [-rSID] [-s] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files}

DESCRIPTION

\texttt{delta} is used to permanently introduce into the named SCCS file changes that were made to the file retrieved by \texttt{get -e} (called the g-file or generated file).

\texttt{delta} makes a delta to each named SCCS file. If a directory is named, \texttt{delta} behaves as though each file in the directory were specified as a named file, except that non-SCCS files (last component of the path name does not begin with \texttt{s}.) and unreadable files are silently ignored. If a name of - is given, the standard input is read (see the NOTES section); each line of the standard input is taken to be the name of an SCCS file to be processed.

\texttt{delta} may issue prompts on the standard output depending on certain keyletters specified and flags [see \texttt{admin(1)}] that may be present in the SCCS file (see \texttt{-m} and \texttt{-y} keyletters below).

Keyletter arguments apply independently to each named file.

\texttt{-rSID}

Uniquely identifies which delta is to be made to the SCCS file. The use of this keyletter is necessary only if two or more outstanding \texttt{gets} for editing (\texttt{get -e}) on the same SCCS file were done by the same person (login name). The SID value specified with the \texttt{-r} keyletter can be either the SID specified on the \texttt{get} command line or the SID to be made as reported by the \texttt{get} command [see \texttt{get(1)}]. A diagnostic results if the specified SID is ambiguous, or, if necessary and omitted on the command line.

\texttt{-s}

Suppresses the issue, on the standard output, of the created delta’s SID, as well as the number of lines inserted, deleted and unchanged in the SCCS file.

\texttt{-n}

Specifies retention of the edited g-file (normally removed at completion of delta processing).

\texttt{-glist}

Specify a \texttt{list} [see \texttt{get(1)} for the definition of \texttt{list}] of deltas that are to be ignored when the file is accessed at the change level (SID) created by this delta.

\texttt{-m[mrlist]}

If the SCCS file has the \texttt{v} flag set [see \texttt{admin(1)}] then a Modification Request (MR) number must be supplied as the reason for creating the new delta. If \texttt{-m} is not used and the standard input is a terminal, the prompt \texttt{MRs?} is issued on the standard output before the standard input is read; if the standard input is not a terminal, no prompt is issued. The \texttt{MRs?} prompt always precedes the \texttt{comments?} prompt (see \texttt{-y} keyletter). MRs in a list are separated by blanks and/or tab characters. An unescaped new-line character terminates the MR list. Note that if the \texttt{v} flag has a value [see \texttt{admin(1)}], it is taken to be the name of a program (or shell...
procedure) that will validate the correctness of the MR
numbers. If a non-zero exit status is returned from the MR
number validation program, delta terminates. (It is
assumed that the MR numbers were not all valid.)

-\texttt{y}[comment]\enspace Arbitrary text used to describe the reason for making the
delta. A null string is considered a valid comment. If -\texttt{y} is
not specified and the standard input is a terminal, the
prompt \texttt{comments?} is issued on the standard output before
the standard input is read; if the standard input is not a ter-
minal, no prompt is issued. An unescaped new-line charac-
ter terminates the comment text.

-\texttt{p}\enspace Causes \texttt{delta} to print (on the standard output) the SCCS
file differences before and after the delta is applied in a
diff(1) format.

\textbf{FILES}
\begin{itemize}
\item \texttt{g-file}\enspace Existed before the execution of \texttt{delta}; removed after comple-
tion of \texttt{delta}.
\item \texttt{p-file}\enspace Existed before the execution of \texttt{delta}; may exist after comple-
tion of \texttt{delta}.
\item \texttt{q-file}\enspace Created during the execution of \texttt{delta}; removed after complet-
ton of \texttt{delta}.
\item \texttt{x-file}\enspace Created during the execution of \texttt{delta}; renamed to SCCS file
after completion of \texttt{delta}.
\item \texttt{z-file}\enspace Created during the execution of \texttt{delta}; removed during the
execution of \texttt{delta}.
\item \texttt{d-file}\enspace Created during the execution of \texttt{delta}; removed after complet-
on of \texttt{delta}.
\item \texttt{bdiff}\enspace Program to compute differences between the “gotten” file and
the g-file.
\end{itemize}

\textbf{SEE ALSO}
\begin{itemize}
\item admin(1), cdc(1), get(1), help(1), prs(1), rmdel(1), sccsfile(4)
\item bdiff(1) in the User’s Reference Manual
\end{itemize}

\textbf{DIAGNOSTICS}\enspace Use \texttt{help(1)} for explanations.

\textbf{NOTES}
A \texttt{get} of many SCCS files, followed by a \texttt{delta} of those files, should be avoided
when the \texttt{get} generates a large amount of data. Instead, multiple \texttt{get/delta}
sequences should be used.

If the standard input (-) is specified on the \texttt{delta} command line, the -\texttt{m} (if neces-
sary) and -\texttt{y} keyletters must also be present. Omission of these keyletters causes
an error.

Comments are limited to text strings of at most 1024 characters. Line lengths
greater than 1000 characters cause undefined results.
NAME
deroff — remove \texttt{nroff/troff, tbl, and eqn} constructs

SYNOPSIS
deroff [ -m \(x\) ] [ -w ] [ file ... ]

DESCRIPTION
deroff reads each of the files in sequence and removes all \texttt{troff(1)} requests, macro calls, backslash constructs, \texttt{eqn(1)} constructs (between \texttt{.EQ} and \texttt{.EN} lines, and between delimiters), and \texttt{tbl(1)} descriptions, perhaps replacing them with white space (blanks and blank lines), and writes the remainder of the file on the standard output. \texttt{deroff} follows chains of included files (\texttt{.so} and \texttt{.IlX troff} commands); if a file has already been included, a \texttt{.so} naming that file is ignored and a \texttt{.nx} naming that file terminates execution. If no input file is given, \texttt{deroff} reads the standard input.

The \texttt{-m} option may be followed by an \(m, s, \text{ or } 1\). The \texttt{-mm} option causes the macros to be interpreted so that only running text (that is, no text from macro lines) is output. The \texttt{-ml} option forces the \texttt{-mm} option and also causes deletion of lists associated with the \texttt{mm} macros.

If the \texttt{-w} option is given, the output is a word list, one "word" per line, with all other characters deleted. Otherwise, the output follows the original, with the deletions mentioned above. In text, a "word" is any string that contains at least two letters and is composed of letters, digits, ampersands (\&), and apostrophes ('); in a macro call, however, a "word" is a string that begins with at least two letters and contains a total of at least three letters. Delimiters are any characters other than letters, digits, apostrophes, and ampersands. Trailing apostrophes and ampersands are removed from "words."

SEE ALSO
eqn(1), nroff(1), tbl(1), troff(1) in the \textit{DOCUMENTER'S WORKBENCH Software Technical Discussion and Reference Manual}

NOTES
deroff is not a complete \texttt{troff} interpreter, so it can be confused by subtle constructs. Most such errors result in too much rather than too little output.

The \texttt{-ml} option does not handle nested lists correctly.
troff(1), nroff(1), and eqn(1) are not part of this UNIX system release.
NAME
deroff - remove nroff, troff, tbl and eqn constructs

SYNOPSIS
lusr /ucb/ deroff [ -w ] filename ... 

DESCRIPTION
The deroff command reads each file in sequence and removes all nroff and
troff command lines, backslash constructions, macro definitions, eqn constructs
(between .EQ and .EN lines or between delimiters), and table descriptions and
writes the remainder on the standard output. deroff follows chains of included
files (.so and .nx commands); if a file has already been included, a .so is
ignored and a .nx terminates execution. If no input file is given, deroff reads
from the standard input file.

OPTIONS
-w Generate a word list, one word per line. A ‘word’ is a string of letters,
digits, and apostrophes, beginning with a letter; apostrophes are removed.
All other characters are ignored.

SEE ALSO
eqn(1), nroff(1), tbl(1), troff(1)

NOTES
deroff is not a complete troff interpreter, so it can be confused by subtle con­
structs. Most errors result in too much rather than too little output.
deroff does not work well with files that use .so to source in the standard
macro package files.
NAME
devattr – lists device attributes

SYNOPSIS
devattr [-v] device [attribute [. . .]]

DESCRIPTION
devattr displays the values for a device's attributes. The display can be
presented in two formats. Used without the -v option, only the attribute values
are shown. Used with the -v option, the attributes are shown in an
attribute=value format. When no attributes are given on the command line, all
attributes for the specified device are displayed in alphabetical order by attribute
name. If attributes are given on the command line, only those are shown and
they are displayed in command line order.

The options and arguments for this command are:
- v Specifies verbose format. Attribute values are displayed in an
  attribute=value format.
device Defines the device whose attributes should be displayed. Can be
  the pathname of the device or the device alias.
attribute Defines which attribute, or attributes, should be shown. Default is
to show all attributes for a device. See the putdev(1M) manual
page for a complete listing and description of available attributes.

ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table could not be opened for reading.
3 = requested device could not be found in the device table.
4 = requested attribute not defined for specified device.

FILES
/etc/device.tab

SEE ALSO
putdev(1M).
devattr(3X), listdev(3X) in the Programmer's Reference Manual
NAME
devfree - release devices from exclusive use

SYNOPSIS
devfree key [device [. . .]]

DESCRIPTION
devfree releases devices from exclusive use. Exclusive use is requested with the command devreserv.

When devfree is invoked with only the key argument, it releases all devices that have been reserved for that key. When called with key and device arguments, devfree releases the specified devices that have been reserved with that key.

The arguments for this command are:
key Designates the unique key on which the device was reserved.

device Defines device that this command will release from exclusive use. Can be the pathname of the device or the device alias.

ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table or device reservation table could not be opened for reading.
3 = reservation release could not be completely fulfilled because one or more of the devices was not reserved or was not reserved on the specified key.

FILES
/etc/device.tab
/etc/devlkfile

NOTES
The commands devreserv and devfree are used to manage the availability of devices on a system. These commands do not place any constraints on the access to the device. They serve only as a centralized bookkeeping point for those who wish to use them. Processes that do not use devreserv may concurrently use a device with a process that has reserved that device.

SEE ALSO
devfree(3X), devreserv(1), devreserv(3X), reservdev(3X)
NAME
devnm – device name

SYNOPSIS
/usr/sbin/devnm[nname...]  

DESCRIPTION
The devnm command identifies the special file associated with the mounted file system where the argument name resides. One or more names can be specified. This command is most commonly used by the brc command to construct a mount table entry for the root device.

EXAMPLE
The command:

    /usr/sbin/devnm /usr  

produces:

    /dev/dsk/c1d0s2 /usr  

if /usr is mounted on /dev/dsk/c1d0s2.

FILES
/dev/dsk/*
/etc/mttab

SEE ALSO
brc(1M), mnttab(4)
NAME
devreserv – reserve devices for exclusive use

SYNOPSIS
devreserv [key [devicelist ...]]

DESCRIPTION
devreserv reserves devices for exclusive use. When the device is no longer required, use devfree to release it.

devreserv reserves at most one device per devicelist. Each list is searched in linear order until the first available device is found. If a device cannot be reserved from each list, the entire reservation fails.

When devreserv is invoked without arguments, it lists the devices that are currently reserved and the keys to which they are reserved. When devreserv is invoked with only the key argument, it lists the devices currently reserved to that key.

The arguments for this command are:
key Designates a unique key on which the device will be reserved. The key must be a positive integer.

devicelist Defines a list of devices that devreserv will search to find an available device. (The list must be formatted as a single argument to the shell.)

EXAMPLE
To reserve a floppy disk and a cartridge tape:

$ key=$$
$ echo "The current Process ID is equal to: $key"
The Current Process ID is equal to: 10658
$ devreserv $key diskette1,ctape1

To list all devices currently reserved:

$ devreserv
disk1 2423
diskette1 10658
ctape1 10658

To list all devices currently reserved to a particular key:

$ devreserv $key
diskette1
ctape1
ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table or device reservation table could not be opened for reading.
3 = device reservation request could not be fulfilled.

FILES
/etc/device.tab
/etc/devlkfile

NOTES
The commands `devreserv` and `devfree` are used to manage the availability of devices on a system. Their use is on a participatory basis and they do not place any constraints on the actual access to the device. They provide a centralized bookkeeping point for those who wish to use them. To summarize, devices which have been reserved cannot be used by processes which utilize the device reservation functions until the reservation has been canceled. However, processes that do not use device reservation may use a device that has been reserved since such a process would not have checked for its reservation status.

SEE ALSO
`devfree(1M)`
NAME

\texttt{df} (generic), \texttt{dfspace} – report number of free disk blocks and files/free disk space

SYNOPSIS

\begin{verbatim}
\texttt{df} \([-F\ FSTYPE]\ [-bfgiklntv]\ [\textit{current\_options}]\ [-o\ \textit{specific\_options}]\ [\textit{directory} \mid \textit{special} \mid \textit{resource}. . .]
\end{verbatim}

\texttt{dfspace} \([-F\ FSTYPE]\)

DESCRIPTION

The \texttt{df} command prints the allocation portions of the generic superblock for mounted or unmounted file systems, directories or mounted resources. \textit{directory} represents a valid directory name. If \textit{directory} is specified, \texttt{df} reports on the device that contains the \textit{directory}. \textit{special} represents a special device (for example, /dev/dsk/Osl). \textit{resource} is an RFS/NFS resource name. If arguments to \texttt{df} are pathnames, \texttt{df} produces a report on the file system containing the named file.

The \texttt{df} command reports sizes in 512 byte blocks. It will report 2 blocks less free space, rather than 1 block, since the file uses one system block of 1-24 bytes.

The directory /etc/fscmd.d/TYPE contains programs for each filesystem type; \texttt{df} invokes the appropriate binary. /etc/fscmd.d is linked to /etc/fs.

\textit{current\_options} are options supported by the s5-specific module of \texttt{df}. Other FSTypes do not necessarily support these options. \textit{specific\_options} indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the \textit{FSTYPE}-specific module of the command.

The generic options are:

\begin{itemize}
  \item \texttt{\(-F\)} Specify the \textit{FSTYPE} on which to operate. This is only needed if the file system is unmounted. The \textit{FSTYPE} should be specified here or are determined from /etc/vfstab by matching the \textit{mount\_point}, \textit{special}, or \textit{resource} with an entry in the table.
  \item \texttt{\(-b\)} Print only the number of kilobytes free.
  \item \texttt{\(-e\)} Print only the number of files free.
  \item \texttt{\(-f\)} Reports only an actual count of the blocks in the free list (free inodes are not reported). With this option, \texttt{df} reports on raw devices.
  \item \texttt{\(-g\)} Print the entire \texttt{statvfs} structure. Used only for mounted file systems. Cannot be used with \textit{current\_options} or with the \texttt{\(-o\)} option. This option will override the \texttt{\(-b\)}, \texttt{\(-e\)}, \texttt{\(-k\)}, \texttt{\(-n\)}, and \texttt{\(-t\)} options.
  \item \texttt{\(-i\)} Display the total number of inodes, the number of free inodes, the number of used inodes, and the percentage of inodes in use.
  \item \texttt{\(-k\)} Print allocation in kilobytes. This option should be invoked by itself because its output format is different from that of the other options.
  \item \texttt{\(-l\)} Report on local file systems only. Used only for mounted file systems. Can not be used with \textit{current\_options} or with the \texttt{\(-o\)} option.
\end{itemize}
df(1M)  (386 Computer Only)  df(1M)

-\n Print only the FSType name. Invoked with no arguments this option
prints a list of mounted file system types. Used only for mounted
file systems. Can not be used with current_options or with the -o
option.

-t Causes total allocated block figures to be reported as well as number
of free blocks.

-v Echo the complete command line, but do not execute the command.
The command line is generated by using the options and arguments
provided by the user and adding to them information derived from
/etc/mnttab or /etc/vfstab. This option should be used to verify
and validate the command line.

-o Specify FSType-specific options.

-v Reports percent of blocks used as well as the number of blocks used
and free. The -v option cannot be used with other options.

If no arguments or options are specified, the free space on all local and remotely
mounted file systems is printed.

df\space is a shell script that uses the df\ command. df\ reports the available disk space for all mounted file systems with the exception of pseudo file
systems such as /proc. df\ reports the free disk space in mega bytes and
also as a percentage of total disk space.

Without arguments, df\ reports the free disk space on all file systems.
The option for df\ is:

-\ FSType find free disk space on FSType file system.

NOTES

The -F option is intended for use with unmounted file systems.
This command may not be supported for all FSTypes.

If options -g or -n are used when there are remotely mounted resources, df will
try to determine the remote resource's file system type. If it can be determined, df will print the file system type; otherwise, it will print unknown.

FILES

/dev/dsk/*
/etc/mnttab list of filesystems currently mounted
/etc/vfstab list of default parameters for each file system

SEE ALSO

mount(1M), mnttab(4), vfstab(4)
statvfs(2) in the Programmer's Reference Manual
NAME
\texttt{df} (s5) – report number of free disk blocks and i-nodes for s5 file systems

SYNOPSIS
\texttt{df} \ [-F \ s5] [generic\_options] [-f] [directory... | special...]

DESCRIPTION
\texttt{generic\_options} are options supported by the generic \texttt{df} command.

The \texttt{df} command prints out the number of free blocks and free i-nodes in s5 file systems or directories by examining the counts kept in the super-blocks. The special device name (e.g., \texttt{/dev/dsk/*}, where the value of * is machine-dependent) or mount point directory name (e.g., \texttt{/usr}) must be specified. If directory is specified, the report presents information for the device that contains the directory.

The options are:
- \texttt{-F \ s5} Specifies the s5-FSType.
- \texttt{-f} An actual count of the blocks in the free list is made, rather than taking the figure from the super-block.

NOTE
The \texttt{-f} option can be used with the \texttt{-c}, \texttt{-b}, and \texttt{-e} options. The \texttt{-k} option overrides the \texttt{-f} option.

FILES
\texttt{/dev/dsk/*}

SEE ALSO
generic \texttt{df}(1M).
NAME
df (ufs) – report free disk space on ufs file systems

SYNOPSIS
df [-F ufs] [ generic_options ] [ -o i ] [ directory | special ]

DESCRIPTION

generic_options are options supported by the generic df command.

df displays the amount of disk space occupied by ufs file systems, the amount of
used and available space, and how much of the file system's total capacity has
been used.

Note that the amount of space reported as used and available is less than the
amount of space in the file system; this is because the system reserves a fraction
of the space in the file system to allow its file system allocation routines to work
well. The amount reserved is typically about 10%; this may be adjusted using
tunefs(1M). When all the space on the file system except for this reserve is in
use, only the super-user can allocate new files and data blocks to existing files.
When the file system is overallocated in this way, df may report that the file sys­
tem is more than 100% utilized.

The options are:

-F ufs
   Specifies the ufs-FSType.

-o
   Specify ufs file system specific options. The available option is:
   i
   Report the number of used and free inodes. May not be used with
generic_options.

NOTES

df calculates its results differently for mounted and unmounted file systems. For
mounted systems the 10% reserved space mentioned above is included in the
number of kilobytes used. For unmounted systems the 10% reservation is not
included in the number of kilobytes used.

The -b and -e options override the -t option.

FILES

/etc/mnttab       list of file systems currently mounted

SEE ALSO

generic df(1M), du(1M), quot(1M), tunefs(1M), mnttab(4)
NAME
df – report free disk space on file systems

SYNOPSIS
df [-a] [-i] [-t type] [filesystem . . . ] [filename . . . ]

DESCRIPTION
df displays the amount of disk space occupied by currently mounted file systems, the amount of used and available space, and how much of the file system’s total capacity has been used. Used without arguments, df reports on all mounted file systems, producing something like:

Filesystem  kbytes  used  avail  capacity  Mounted on
/dev/root  7445  4714  1986  70%  /
/dev/Os10  5148  3279  1868  64%  /stand

Note that used+avail is less than the amount of space in the file system (kbytes); this is because the system reserves a fraction of the space in the file system to allow its file system allocation routines to work well. The amount reserved is typically about 10%; this may be adjusted using tunefs(1M). When all the space on a file system except for this reserve is in use, only the super-user can allocate new files and data blocks to existing files. When a file system is overallocated in this way, df may report that the file system is more than 100% utilized.

If arguments to df are disk partitions (for example, /dev/root or pathnames, df produces a report on the file system containing the named file. Thus df shows the amount of space on the file system containing the current directory.

Options
The options for df are as follows:

- a Reports on all filesystems including the uninteresting ones which have zero total blocks. (For example, automounter)
- i Report the number of used and free inodes.
- t type Report on filesystems of a given type (for example, nfs or 4.2).

FILES
/etc/mtab List of filesystems currently mounted.

SEE ALSO
du(1M), quot(1M), and tunefs(1M) in the System Administrator’s Reference Manual
NAME
dfmounts – display mounted resource information

SYNOPSIS
dfmounts [-F fstype] [-h] [-o specific_options] [restriction . . . ]

DESCRIPTION
dfmounts shows the local resources shared through a distributed file system
fstype along with a list of clients that have the resource mounted. If restriction is
not specified, dfmounts displays remote resources mounted on the local system.
Specific_options as well as the availability and semantics of restriction are specific to
particular distributed file system types.
If dfmounts is entered without arguments, all remote resources currently
mounted on the local system are displayed, regardless of file system type.
The output of dfmounts consists of an optional header line (suppressed with the
-h flag) followed by a list of lines containing whitespace-separated fields. For
each resource, the fields are:

resource server pathname clients

where

resource Specifies the resource name that must be given to the
mount(1M) command.
server Specifies the system from which the resource was mounted.
pathname Specifies the pathname that must be given to the
share(1M) command.
clients Lists the systems, comma-separated, by which the resource
was mounted. Clients are listed in the form domain.,
domain.system, or system, depending on the file system type.

A field may be null. Each null field is indicated by a hyphen (–) unless the
remainder of the fields on the line are also null. In this case, it may be omitted.
Fields with whitespace are enclosed in quotation marks (" ").

NOTES
dfmounts may not indicate the correct state if you mount a single resource on
more than one directory.

FILES
/etc/dfs/fstypes

SEE ALSO
dfshares(1M), mount(1M), share(1M), unshare(1M)
NAME
dfmounts – display mounted NFS resource information

SYNOPSIS
dfmounts [-F nfs] [-h] [server . . .]

DESCRIPTION
dfmounts shows the local resources shared through Network File System, along with a list of clients that have mounted the resource. The -F flag may be omitted if NFS is the only file system type listed in the file /etc/dfs/fstypes.

The server option displays information about the resources mounted from each server, where server can be any system on the network. If no server is specified, then server is assumed to be the local system.

dfmounts without options displays all remote resources mounted on the local system, regardless of file system type.

The output of dfmounts consists of an optional header line (suppressed with the -h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

    resource server pathname clients . . .

where

resource Specifies the resource name that must be given to the mount(1M) command.

server Specifies the system from which the resource was mounted.

pathname Specifies the pathname that must be given to the share(1M) command.

clients A comma-separated list of systems that have mounted the resource.

FILES
/etc/dfs/fstypes

SEE ALSO
mount(1M), share(1M), unshare(1M).
dfmounts(1M) (RFS) dfmounts(1M)

NAME
dfmounts – display mounted RFS resource information

SYNOPSIS
dfmounts [-F rfs] [-h] [resource_name . . .]

DESCRIPTION
dfmounts shows the local resources shared through Remote File Sharing, along
with a list of clients that have mounted the resource. The -F flag may be omitted
if rfs is the first file system type listed in the file /etc/dfs/fstypes.

The output of dfmounts consists of an optional header line (suppressed with the
-h flag) followed by a list of lines containing whitespace-separated fields. For
each resource, the fields are:

    resource server path clients . . .

where

    resource Specifies the resource name that must be given to the
                mount(1M) command.
    server    Specifies the system from which the resource was mounted.
    path      Specifies the full pathname that must be given to the
                share(1M) command.
    clients   A comma-separated list of systems that have mounted the
                resource.

A field may be null. Each null field is indicated by a hyphen (-) unless the
remainder of the fields on the line are also null. In this case, it may be omitted.

Only a privileged user can execute this command.

FILES
    /etc/dfs/fstypes

SEE ALSO
dfmounts(1M), share(1M), unshare(1M), fumount(1M), mount(1M)
NAME
dfshares – list available resources from remote or local systems

SYNOPSIS
dfshares [-F fstype] [-h] [-o specific_options] [server ..]

DESCRIPTION
dfshares provides information about resources available to the host through a
distributed file system of type fstype. Specific_options as well as the semantics of
server are specific to particular distributed file systems.

If dfshares is entered without arguments, all resources currently shared on the
local system are displayed, regardless of file system type.

The output of dfshares consists of an optional header line (suppressed with the
-h flag) followed by a list of lines containing whitespace-separated fields. For
each resource, the fields are:

resource server access transport description ...

where

resource Specifies the resource name that must be given to the
        mount(1M) command.

server Specifies the name of the system that is making the
        resource available.

access Specifies the access permissions granted to the client sys-
        tems, either ro (for read-only) or rw (for read/write). If
dfshares cannot determine access permissions, a hyphen
        (-) is displayed.

transport Specifies the transport provider over which the resource is
        shared.

description Describes the resource.

A field may be null. Each null field is indicated by a hyphen (-) unless the
remainder of the fields on the line are also null. In this case, it may be omitted.

FILES
/etc/dfs/fstypes

SEE ALSO
dfmounts(1M), mount(1M), share(1M), unshare(1M)
dfshares (1M) dfshares (1M) dfshares (1M)

NAME
dfshares – list available NFS resources from remote systems

SYNOPSIS
dfshares [-F nfs] [-h] [server . . .]

DESCRIPTION

dfshares provides information about resources available to the host through
Network File System. The -F flag may be omitted if NFS is the first file system
type listed in the file /etc/dfs/fstypes.

The query may be restricted to the output of resources available from one or
more servers.

The server option displays information about the resources shared by each server,
where server can be any system on the network. If no server is specified, then
server is assumed to be the local system.

dfshares without arguments displays all resources shared on the local system,
regardless of file system type.

The output of dfshares consists of an optional header line (suppressed with the
-h flag) followed by a list of lines containing whitespace-separated fields. For
each resource, the fields are:

resource server access transport

where

resource Specifies the resource name that must be given to the
mount(1M) command.
server Specifies the system that is making the resource available.
access Specifies the access permissions granted to the client sys-
tems; however, dfshares cannot determine this information
for an NFS resource and populates the field with a hyphen
(-).
transport Specifies the transport provider over which the resource is
shared; however, dfshares cannot determine this informa-
tion for an NFS resource and populates the field with a
hyphen (-).

FILES

/etc/dfs/fstypes

SEE ALSO

share(1M), unshare(1M), mount(1M)
NAME
dfshares – list available RFS resources from remote systems

SYNOPSIS
dfshares [-F rfs] [-h] [server . . .]

DESCRIPTION
dfshares provides information about resources available to the host through Remote File Sharing. The -F flag may be omitted if rfs is the first file system type listed in the file /etc/dfs/fstypes.

The query may be restricted to the output of resources available from one or more servers. If no server is specified, all resources in the host’s domain are displayed. A server may be given in the following form:

   system       Specifies a system in the host’s domain.
   domain.      Specifies all systems in domain.
   domain.system Specifies system in domain.

The output of dfshares consists of an optional header line (suppressed with the -h flag) followed by a list of lines containing whitespace-separated fields. For each resource, the fields are:

   resource server access transport description

where

   resource specifies the resource name that must be given to the mount(1M) command.
   server specifies the system that is making the resource available.
   access specifies the access permissions granted to the client systems, either ro (for read-only) or rw (for read and write).
   transport specifies the transport provider over which the resource is shared.
   description describes the resource.

A field may be null. Each null field is indicated by a hyphen (-) unless the remainder of the fields on the line are also null. In this case, it may be omitted.

ERRORS
If your host machine cannot contact the domain name server, or the argument specified is syntactically incorrect, an error message is sent to standard error.

FILES
/etc/dfs/fstypes

SEE ALSO
share(1M), unshare(1M), mount(1M)
NAME
diff – differential file comparator

SYNOPSIS
diff [-bitw] [-C number] filename1 filename2
diff [-bitw] [-D string] filename1 filename2

DESCRIPTION
diff tells what lines must be changed in two files to bring them into agreement. If
filename1 (filename2) is -, the standard input is used. If filename1 (filename2) is a
directory, then a file in that directory with the name filename2 (filename1) is used.
The normal output contains lines of these forms:
   nl a n3,n4
   nl,n2 d n3
   nl,n2 c n3,n4

These lines resemble ed commands to convert filename1 into filename2. The
numbers after the letters pertain to filename2. In fact, by exchanging a for d and
reading backward one may ascertain equally how to convert filename2 into
filename1. As in ed, identical pairs, where nl = n2 or n3 = n4, are abbreviated as
a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by >.

-b  Ignores trailing blanks (spaces and tabs) and treats other strings of blanks
     as equivalent.
-i  Ignores the case of letters; for example, ‘A’ will compare equal to ‘a’.
-t  Expands TAB characters in output lines. Normal or -c output adds
     character(s) to the front of each line that may adversely affect the indenta-
     tion of the original source lines and make the output lines difficult to
     interpret. This option will preserve the original source’s indentation.
-w  Ignores all blanks (SPACE and TAB characters) and treats all other strings
     of blanks as equivalent; for example, ‘if ( a == b )’ will compare equal
     to ‘if(a==b)’.

The following options are mutually exclusive:
-c  Produces a listing of differences with three lines of context. With this
     option output format is modified slightly: output begins with
     identification of the files involved and their creation dates, then each
     change is separated by a line with a dozen *’s. The lines removed from
     filename1 are marked with ‘—’; those added to filename2 are marked ‘+’.
     Lines that are changed from one file to the other are marked in both files
     with ‘!’. 
-c number
   Produces a listing of differences identical to that produced by -c with number lines of context.

-e Produces a script of a, c, and d commands for the editor ed, which will recreate filename2 from filename1. In connection with -e, the following shell program may help maintain multiple versions of a file. Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3,...) made by diff need be on hand. A “latest version” appears on the standard output.

(shift; cat $*; echo '1,$p') | ed - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

-f Produces a similar script, not useful with ed, in the opposite order.

-h Does a fast, half-hearted job. It works only when changed stretches are short and well separated, but does work on files of unlimited length. Options -e and -f are unavailable with -h.

-n Produces a script similar to -e, but in the opposite order and with a count of changed lines on each insert or delete command.

-D string
   Creates a merged version of filename1 and filename2 with C preprocessor controls included so that a compilation of the result without defining string is equivalent to compiling filename1, while defining string will yield filename2.

The following options are used for comparing directories:

-l Produce output in long format. Before the diff, each text file is piped through pr(1) to paginate it. Other differences are remembered and summarized after all text file differences are reported.

-r Applies diff recursively to common subdirectories encountered.

-s Reports files that are the identical; these would not otherwise be mentioned.

-S name
   Starts a directory diff in the middle, beginning with the file name.

FILES
/tmp/d?????
/usr/lib/diffh for -h
/usr/bin/pr

SEE ALSO
bdiff(1), cmp(1), comm(1), ed(1), pr(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some differences, 2 for trouble.
Editing scripts produced under the -e or -f option are naive about creating lines consisting of a single period (.)

**Missing newline at end of file X**
indicates that the last line of file X did not have a new-line. If the lines are different, they will be flagged and output; although the output will seem to indicate they are the same.
diff3(1)  (Directory and File Management Utilities)  diff3(1)

NAME
diff3 – 3-way differential file comparison

SYNOPSIS
diff3 [ -exEX3 ] file1 file2 file3

DESCRIPTION
diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with these codes:

==== all three files differ
====1 file1 is different
====2 file2 is different
====3 file3 is different

The type of change suffered in converting a given range of a given file to some other is indicated in one of these ways:

f : n1 a Text is to be appended after line number n1 in file f, where f = 1, 2, or 3.

f : n1 , n2 c Text is to be changed in the range line n1 to line n2. If n1 = n2, the range may be abbreviated to n1.

The original contents of the range follows immediately after a c indication. When the contents of two files are identical, the contents of the lower-numbered file is suppressed.

-e Produce a script for the editor ed(1) that will incorporate into file1 all changes between file2 and file3, that is, the changes that normally would be flagged ==== and ====3.

-x Produce a script to incorporate only changes flagged ====.

-s Produce a script to incorporate only changes flagged ====3.

-E Produce a script that will incorporate all changes between file2 and file3, but treat overlapping changes (that is, changes that would be flagged with ==== in the normal listing) differently. The overlapping lines from both files will be inserted by the edit script, bracketed by <<<<<<< and >>>>>>> lines.

-X Produce a script that will incorporate only changes flagged ====, but treat these changes in the manner of the -E option.

The following command will apply the resulting script to file1.

(cat script; echo '1,$p') | ed – file1

FILES
/tmp/d3*
/usr/lib/diff3prog

SEE ALSO
diff(1)
NOTES
Text lines that consist of a single . will defeat \texttt{-e}.
Files longer than 64K bytes will not work.
diffmk - mark differences between versions of a troff input file

The diffmk command compares two versions of a file and creates a third version that includes "change mark" (.mc) commands for nroff and troff. oldfile and newfile are the old and new versions of the file. diffmk generates markedfile, which, contains the text from newfile with troff(1) "change mark" requests (.mc) inserted where newfile differs from oldfile. When markedfile is formatted, changed or inserted text is shown by a | at the right margin of each line. The position of deleted text is shown by a single *.

diffmk can also be used in conjunction with the proper troff requests to produce program listings with marked changes. In the following command line:

diffmk old.c new.c marked.c ; nroff reqs marked.c | pr

the file reqs contains the following troff requests:

```
.pl 1
.lf 77
.nf
.eo
.nh
```

which eliminate page breaks, adjust the line length, set no-fill mode, ignore escape characters, and turn off hyphenation, respectively.

If the characters | and * are inappropriate, you might run markedfile through sed to globally change them.

SEE ALSO

nroff(1), troff(1)

diff(1), sed(1) in the User's Reference Manual

NOTES

Aesthetic considerations may dictate manual adjustment of some output. File differences involving only formatting requests may produce undesirable output, that is, replacing .sp by .sp 2 will produce a "change mark" on the preceding or following line of output.
NAME
dircmp – directory comparison

SYNOPSIS
dircmp [-d] [-s] [-wn] dir1 dir2

DESCRIPTION
dircmp examines dir1 and dir2 and generates various tabulated information about the contents of the directories. Listings of files that are unique to each directory are generated for all the options. If no option is entered, a list is output indicating whether the file names common to both directories have the same contents.

-d Compare the contents of files with the same name in both directories and output a list telling what must be changed in the two files to bring them into agreement. The list format is described in diff(1).

-s Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width is 72.

SEE ALSO
cmp(1), diff(1)
NAME

dis – object code disassembler

SYNOPSIS


DESCRIPTION

The dis command produces an assembly language listing of file, which may be an object file or an archive of object files. The listing includes assembly statements and an octal or hexadecimal representation of the binary that produced those statements.

The following options are interpreted by the disassembler and may be specified in any order.

-\(d\) \(sec\) Disassemble the named section as data, printing the offset of the data from the beginning of the section.

-\(D\) \(sec\) Disassemble the named section as data, printing the actual address of the data.

-\(F\) \(function\) Disassemble only the named function in each object file specified on the command line. The -\(F\) option may be specified multiple times on the command line.

-\(L\) Lookup source labels for subsequent printing. This option works only if the file was compiled with additional debugging information (for example, the -\(g\) option of \(cc\)).

-\(l\) \(string\) Disassemble the archive file specified by \(string\). For example, one would issue the command dis -l x -l z to disassemble libx.a and libz.a, which are assumed to be in \(LIBDIR\).

-\(o\) Print numbers in octal. The default is hexadecimal.

-\(s\) Perform symbolic disassembly where possible. Symbolic disassembly output will appear on the line following the instruction. Symbol names will be printed using C syntax.

-\(t\) \(sec\) Disassemble the named section as text.

-\(v\) Print, on standard error, the version number of the disassembler being executed.

If the -\(d\), -\(D\) or -\(t\) options are specified, only those named sections from each user-supplied file name will be disassembled. Otherwise, all sections containing text will be disassembled.

On output, a number enclosed in brackets at the beginning of a line, such as [5], indicates that the break-pointable line number starts with the following instruction. These line numbers will be printed only if the file was compiled with additional debugging information [for example, the -\(g\) option of \(cc\)]. An expression such as \(<40\>\) in the operand field or in the symbolic disassembly, following a relative displacement for control transfer instructions, is the computed address within the section to which control will be transferred. A function name will appear in the first column, followed by () if the object file contains a symbol table.
FILES
LIBDIR usually /usr/ccs/lib

SEE ALSO
as(1), cc(1), ld(1), a.out(4)

DIAGNOSTICS
The self-explanatory diagnostics indicate errors in the command line or problems encountered with the specified files.

NOTES
Since the -da option did not adhere to the command syntax rules, it has been replaced by -D.

At this time, symbolic disassembly does not take advantage of additional information available if the file is compiled with the -g option.
NAME
diskadd – disk set up utility

SYNOPSIS
diskadd [disk_number]

DESCRIPTION
The initial system disk is set up during system installation. Additional disks
must be set up using diskadd. diskadd is an interactive command which
prompts the user for information about the setup of the disk.

The optional argument disk_number is used to represent the SCSI disk device to be
added to the system. If no argument or a 1 is supplied, diskadd will be executed
for the second integral disk. The format of the disk_number argument is:

cxtydz

x = controller number, (0 - 2)
y = Target controller SCSI ID, (0 - 6)
z = Logical Unit ID number, (0 - 3).

The tasks which are required for the setup of disks include the following steps.
First the fdisk(1M) command is invoked to partition the disk. This step breaks
up the disk into logical portions for the UNIX Operating system and for the DOS
Operating system. The disksetup(1M) command is invoked next for surface
analysis, creating/writing the pdinfo, VTOC and alternates info (for non-SCSI
drives) to the disk, issuing the needed mkfs calls, and mounting filesystems. The
surface analysis is done to catch any detectable defects and remap them. On
SCSI disks, the formatting of the disk will remap any detectable defects, so the
surface analysis is optional, but recommended. The creation of the VTOC divides
the UNIX system partition into slices. Slices are created to contain a filesystem or
act as a raw device (e.g., the swap or dump device). The execution of the
mkfs(1M) command for the needed filesystems handles the creation of a specific
type of filesystem on a slice. If automatic mounting was requested, directories
are created in the root filesystem to hold the new filesystems, they are mounted,
and /etc/vfstab is updated to remount them on subsequent bootups of the sys­
tem.

The device files will be present prior to running diskadd. The device files for an
second integral disk /dev/rdsk/ls* and /dev/dsk/ls*, are always present.

If swap/paging space is added on the new drive, it must be made available for
system use with the swap(1M) program.

NOTES
Due to compatibility considerations, when you set-up a UFS filesystem greater
than 128 MB, it will hold only 64k inodes. To create more than 64k inodes, either
recreate the filesystem using mkfs or use the UFS filesystem debugger to allocate
more inodes.

FILES
/dev/dsk/ls?
/dev/dsk/c?t?d?s?
/dev/rdsk/ls*
diskadd(1M) (Base System) diskadd(1M)

/dev/rdsk/c?t?d?s0
/etc/vfstab

SEE ALSO
fdisk(1M), mkdir(1M) mkfs(1M), swap(1M)
NAME
disksetup – disk set up utility

SYNOPSIS
/etc/disksetup -I -B [-d defaults-file] -b boot-file raw-device (Install primary disk)
/etc/disksetup -I [-d defaults-file] raw-device (Install additional disk)
/etc/disksetup -b boot-file raw-device (write boot code to the disk)

DESCRIPTION
-I will cause the raw-device to be installed (surface analysis, creation/writing
the pdinfo, VTOC, and alternates tables (for non-SCSI drives).
-B is flag to designate that the raw-device will be the system boot device.
-d defaults-file
is used to pass in a default layout for the raw-device. The information
from the defaults file will be used to generate the default slices for the
UNIX System partition. The layout of the file is explained in one of the
following sections.
-b boot-file
will cause the disksetup to write the boot code found the boot file into
the boot slice of the UNIX System partition. The boot code can be in
either ELF or COFF format. Only the required sections/segments will be
loaded. The boot file provided with the system is /etc/boot.
raw-device
the required raw-device argument is the character special device for the
disk drive to be accessed. It should the slice 0 device to represent the
entire device (for example, /dev/rdsk/0s0 or /dev/rdsk/c0t0d0s0).

disksetup handles the low level activities required to install the primary drive or
additional drives. The tasks which are required for the setup of disks include
surface analysis, assisting a user create the layout of slices (either through a set of
defaults or by querying them), writing the pdinfo, VTOC and alternates tables out
to the drive, issuing need mkfs calls, creating mount points, mounting filesystems
and updating the /etc/vfstab file. program.

In regards to disksetup’s method for assisting a user define the layout of slices,
if no defaults-file is provided, a user is queried first on which slices they wish to
create, and then are queried on the sizes for those slices. (The user must ultimately
confirm their choices and can repeat the above steps if they are unsatisfied
with their choices.) If a defaults-file is provided, a default layout of slices will be
created based on the defaults-file. If the user selects the default layout a VTOC
representing the default layout is written to the drive. If the user does not select
the default layout they will be allowed to specify the sizes for slices defined in
the defaults-file.
The layout for the defaults-file is as follows:

<table>
<thead>
<tr>
<th>slice #</th>
<th>slice name</th>
<th>FStype</th>
<th>slice size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>s5</td>
<td>35M</td>
</tr>
<tr>
<td>2</td>
<td>/dev/swap</td>
<td>-</td>
<td>2m</td>
</tr>
<tr>
<td>3</td>
<td>/usr</td>
<td>ufs</td>
<td>60W</td>
</tr>
<tr>
<td>4</td>
<td>/home</td>
<td>ufs</td>
<td>40W</td>
</tr>
<tr>
<td>10</td>
<td>/stand</td>
<td>bfs</td>
<td>5M</td>
</tr>
</tbody>
</table>

The slice number is the entry in VTOC where the slice will be located. Slice name is mount point if the slice is a filesystem or descriptive name if no file system will be created. FStype is the file system type for the slice where s5, ufs and bfs mean that type of mkfs is to be issued, an - means issue no mkfs for this slice. Slice size is an integer value followed by size specifier character. The M size specifier character means megabytes (MB), so 35M means 35 MB slice size. The m size specifier means times the size of memory, so assuming 4 MB of memory 2m means 8 MB slice size. The W size specifier character means weighted proportion. To calculate a weighted proportion of xW, x is divided by the sum of the W requests and then that value is multiplied with the remaining disk space (after M and m type requests were handled) to give the slice size. Assuming a 100 MB disk with 4 MB of memory, the above defaults file would yield:

- slice 1 35M = 35 MB size
- slice 2 2m = (2 * 4MB) = 8 MB size
- slice 3 60W = (60/100 * 52 MB) = 31 MB size
- slice 4 40W = (40/100 * 52 MB) = 21 MB size
- slice 5 5M = 5 MB size

FILES

/dev/dsk/1s?
/dev/dsk/c?t?d?s?
/dev/rdsk/1s*
/dev/rdsk/c?t?d?s0
/etc/vfstab

SEE ALSO

fdisk(1M), mkdir(1M) mkfs(1M), mount(1M), swap(1M).
NAME
diskusg – generate disk accounting data by user ID

SYNOPSIS
/usr/lib/acct/diskusg [options] [files]

DESCRIPTION
diskusg generates intermediate disk accounting information from data in files, or
the standard input if omitted. diskusg output lines on the standard output, one
per user, in the following format: uid login #blocks

where
uid the numerical user ID of the user.
login the login name of the user; and
#blocks the total number of disk blocks allocated to this user.

diskusg normally reads only the inodes of file systems for disk accounting. In
this case, files are the special filenames of these devices.

diskusg recognizes the following options:
-s the input data is already in diskusg output format. diskusg com­
bines all lines for a single user into a single line.
-v verbose. Print a list on standard error of all files that are charged to
no one.

-i fnmlist ignore the data on those file systems whose file system name is in
fnmlist. fnmlist is a list of file system names separated by commas or
enclosed within quotes. diskusg compares each name in this list
with the file system name stored in the volume ID [see
labelit(1M)].

-p file use file as the name of the password file to generate login names.
/etc/passwd is used by default.

-u file write records to file of files that are charged to no one. Records con­
sist of the special file name, the inode number, and the user ID.

The output of diskusg is normally the input to acctdisk [see acct(1M)] which
generates total accounting records that can be merged with other accounting
records. diskusg is normally run in dodisk [see acctsh(1M)].

EXAMPLES
The following will generate daily disk accounting information for root on
/dev/dsk/cl0s0:

diskusg /dev/dsk/cl0s0 | acctdisk > disktacct

FILES
/etc/passwd used for user ID to login name conversions

SEE ALSO
acct(1M), acctsh(1M), acct(4)
NOTES

diskusg only works for S5 file systems. acctdusg (see acct(1M)) works for all file systems, but is slower than diskusg.
NAME
dispadmin – process scheduler administration

SYNOPSIS
dispadmin -l

dispadmin -c class -g [-r res]
dispadmin -c class -s file

DESCRIPTION
The dispadmin command displays or changes process scheduler parameters while the system is running.

The -l option lists the scheduler classes currently configured in the system.

The -c option specifies the class whose parameters are to be displayed or changed. Valid class values are RT for the real-time class and TS for the time-sharing class.

The -g option gets the parameters for the specified class and writes them to the standard output. Parameters for the real-time class are described on rt_dptbl(4). Parameters for the time-sharing class are described on ts_dptbl(4).

When using the -g option you may also use the -r option to specify a resolution to be used for outputting the time quantum values. If no resolution is specified, time quantum values are in milliseconds. If res is specified it must be a positive integer between 1 and 100000000 inclusive, and the resolution used is the reciprocal of res in seconds. For example, a res value of 10 yields time quantum values expressed in tenths of a second; a res value of 1000000 yields time quantum values expressed in microseconds. If the time quantum cannot be expressed as an integer in the specified resolution, it is rounded up to the next integral multiple of the specified resolution.

The -s option sets scheduler parameters for the specified class using the values in file. These values overwrite the current values in memory—they become the parameters that control scheduling of processes in the specified class. The values in file must be in the format output by the -g option. Moreover, the values must describe a table that is the same size (has same number of priority levels) as the table being overwritten. Super-user privileges are required in order to use the -s option.

The -g and -s options are mutually exclusive: you may not retrieve the table at the same time you are overwriting it.

dispadmin does some limited sanity checking on the values supplied in file to verify that they are within their required bounds. The sanity checking, however, does not attempt to analyze the effect that the new values have on the performance of the system. Inappropriate values can have a dramatic negative effect on system performance. See the System Administrator’s Guide for more information.

EXAMPLES
The following command retrieves the current scheduler parameters for the real-time class from kernel memory and writes them to the standard output. Time quantum values are in microseconds.

dispadmin -c RT -g -r 1000000
The following command overwrites the current scheduler parameters for the real-time class with the values specified in `rt.config`.

```
dispadmin -c RT -s rt.config
```

The following command retrieves the current scheduler parameters for the time-sharing class from kernel memory and writes them to the standard output. Time quantum values are in nanoseconds.

```
dispadmin -c TS -g -r 1000000000
```

The following command overwrites the current scheduler parameters for the time-sharing class with the values specified in `ts.config`.

```
dispadmin -c TS -s ts.config
```

**DIAGNOSTICS**

`dispadmin` prints an appropriate diagnostic message if it fails to overwrite the current scheduler parameters due to lack of required permissions or a problem with the specified input file.

**SEE ALSO**

`priocntl(1), priocntl(2), rt_dptbl(4), ts_dptbl(4)`
NAME
disp gid – displays a list of all valid group names

SYNOPSIS
disp gid

DESCRIPTION
disp gid displays a list of all group names on the system (one group per line).

EXIT CODES
0 = Successful execution
1 = Cannot read the group file
NAME
dispuid – displays a list of all valid user names

SYNOPSIS
dispuid

DESCRIPTION
dispuid displays a list of all user names on the system (one line per name).

EXIT CODES
0 = Successful execution
1 = Cannot read the password file
NAME
dname – print Remote File Sharing domain and network names

SYNOPSIS
dname [-D domain] [-N netspeclist] [-dna]

DESCRIPTION
dname prints or defines a host's Remote File Sharing domain name or the network(s) used by Remote File Sharing as transport provider(s). When used with d, n, or a options, dname can be run by any user to print the domain name, transport provider name(s), or both. Only a user with root permission can use the -D domain option to set the domain name for the host or -N netspeclist to set the network specification used for Remote File Sharing. netspeclist is a comma-separated list of transport providers (tp1,tp2,...). The value of each transport provider is the network device name, relative to the /dev directory. For example, the STARLAN NETWORK uses starlan.
domain must consist of no more than 14 characters, consisting of any combination of letters (upper and lower case), digits, hyphens (-), and underscores (_).
When dname is used to change a domain name, the host's password is removed. The administrator will be prompted for a new password the next time Remote File Sharing is started [rfstart(1M)].
If dname is used with no options, it will default to dname -d.

NOTES
You cannot use the -N or -D options while Remote File Sharing is running.

SEE ALSO
rfstart(1M)
NAME
domainname – get/set name of current secure RPC domain

SYNOPSIS
domainname [ newname ]

DESCRIPTION
The domainname command is used on secure RPC machines. With no argument, the name of the machine’s secure RPC domain is written to standard output.

The domainname command with an argument sets the name of the secure RPC domain to newname. newname may be up to 255 characters long.

domainname is normally run by the RPC administrator on all machines to set the name of the secure RPC domain. To use secure RPC, machines must have secure RPC domain names.

NOTES
Secure RPC domain names are not related to and should not be confused with RFS domains.

The RPC package expects the newname argument to be a valid filename for the underlying file system in use on the networked machines using secure RPC. For example, machines based on the s5 file system should not have domain names longer than 14 characters in length or problems may occur when using secure RPC.

The secure RPC domain name set by domainname will not be remembered across reboots. To give a machine a “permanent” name, set the SRPC_DOMAIN tunable in /etc/master.d/name to the secure RPC domain name.

SEE ALSO
RPC Administration in the Programmer’s Guide: Networking Interfaces
NAME
dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosls, dosrm, dosrmdir – access and manipulate DOS files

SYNOPSIS
doscat [-r | -m] file ...
doscp [-r | -m] file1 file2
doscp [-r | -m] file ... directory
dosdir directory
dosformat [-fqv] drive
dosls directory ...
dosmkdir directory ...
dosrm file ...
dosrmdir directory ...

DESCRIPTION
The dos commands allow access to files and directories on a DOS hard disk partition or diskette. The DOS partition must be bootable, although not active.

Below is a description of the dos commands:

doscat
Copies one or more DOS files to the standard output. If -r is given, the files are copied without newline conversions. If -m is given, the files are copied with newline conversions.

doscp
Copies files from/to a DOS diskette or a DOS hard disk partition to/from a UNIX file system. doscp will rename a file while it is copying. For example, the command:

doscp a:file1 file2

copies the file named file1 from the DOS disk to the UNIX file system and renames it file2.

If directory is given, one or more files are copied to that directory. If -r is given, the files are copied without new line conversions. If -m is given, the files are copied with newline conversions.

dosdir
Lists DOS files in the standard DOS style directory format. (See the DOS DIR command.)

dosformat
Creates a DOS 2.0 formatted diskette. It cannot be used to format a hard disk partition. The drive must be specified using the UNIX special file names. For example, if your system has two floppy drives, the first a 3.5" and the second a 5.25", then the following special file names would be used to format low and high density floppy:
The following special file names are used for the floppy drives:

- **f0** refers to the first floppy drive,
- **f1** refers to the second floppy drive.

The `-f` option suppresses the interactive feature. The `-q` (quiet) option is used to suppress information normally displayed during `dosformat`, but it does not suppress the interactive feature. The `-v` option prompts the user for a volume label after the diskette has been formatted. The maximum size of the volume label is 11 characters.

**Dosls**

Lists DOS directories and files in a UNIX system style format [see `ls(1)`].

**Dosrm**

Removes DOS files.

**Dosmkdir**

Creates DOS directories.

**Dosrmdir**

Deletes DOS directories.

The `file` and `directory` arguments for DOS files and directories have the form:

```
device:name
```

where `device` is a UNIX system path name for the special device file containing the DOS disk, and `name` is a path name to a file or directory on the DOS disk. The two components are separated by a colon (:). For example, the argument:

```
/dev/rdsk/f0t:/sre/file.asm
```

specifies the DOS file `file.asm` in the directory `/sre` on diskette `/dev/rdsk/f0t`. Note that slashes (and not backslashes) are used as file name separators for DOS path names. Arguments without a `device:` are assumed to be UNIX files.

For convenience, the user-configurable default file `/etc/default/mdos` can define DOS drive names to be used in place of the special device file path names. It may contain the following lines:

```
A=/dev/rdsk/f0t
C=/dev/rdsk/0s5
D=/dev/rdsk/1s5
```

The drive letter `A` may be used in place of special device file path name `/dev/rdsk/f0t` when referencing DOS files (see "Examples" below). The drive letter `C` or `D` refer to the DOS partition on the first or second hard disk.

The commands operate on the following types of disks:

- DOS partitions on a hard disk
- 5-1/4 inch DOS
- 3-1/2 inch DOS
- 8, 9, 15, or 18 sectors per track
In the case of `doscp`, certain name conversions can be performed when copying a UNIX system file. File names with a base name longer than eight characters are truncated. Filename extensions (the part of the name following the separating period) longer than three characters are truncated. For example, the file 123456789.12345 becomes 12345678.123. A message informs the user that the name has been changed and the altered name is displayed. File names containing illegal DOS characters are stripped when writing to the DOS format. A message informs the user that characters have been removed and displays the name as written.

All DOS text files use a carriage-return/linefeed combination, CR-LF, to indicate a newline. UNIX system text files use a single newline LF character. When the `doscat` and `doscp` commands transfer DOS text files to UNIX system text files, they automatically strip the CR. When text files are transferred to DOS, the commands insert a CR before each LF character.

Under some circumstances, the automatic newline conversions do not occur. The `-m` option may be used to ensure the newline conversion. The `-r` option can be used to override the automatic conversion and force the command to perform a true byte copy regardless of file type.

**EXAMPLES**

```
 doscat /dev/rdsk/f0t:tmp/output.1
 doscat /tmp/f1 /tmp/f2/A:prog/output.1
 dosdir /dev/rdsk/f0t:/prog
 dosdir /D:/prog
 doscp /mine/file.out/dev/rdsk/f0t:/mine/file.2
 doscp /tmp/f1 /tmp/f2 D:
 dosformat /dev/rdsk/f0d8dt
 dosls /dev/rdsk:/src
 dosls B:
 dosmkdir /dev/fd0:/usr/docs
 dosrm /dev/rdsk:/docs/memo.txt
 dosrm /A:/docs/memo1.txt
 dosrmdir /dev/rdsk:/usr/docs
```
FILES
/etc/default/msdos  Default information
/dev/rdsk/f0t    Floppy disk devices
/dev/rdsk/0s5    Hard disk devices

SEE ALSO
directory(3C) in the Programmer's Reference Manual
See your MS-DOS Documentation.

NOTES
It is not possible to refer to DOS directories with wild card specifications.
The programs mentioned above cooperate among themselves so no two programs will access the same DOS disk simultaneously. If a process attempts to access a device already in use, it displays the error message Device Busy, and exits with an exit code of 1.
The device argument to dosformat must be specific. For example, use
/dev/rdsk/f03ht not /dev/rdsk/f0t or a:.
The DOS partition hard disk device names correspond as follows:
/dev/dsk/0s5    is equivalent to /dev/hd0d
/dev/rdsk/0s5    is equivalent to /dev/rhd0d
/dev/dsk/1s5    is equivalent to /dev/hd1d
/dev/rdsk/1s5    is equivalent to /dev/rhd1d
All of the DOS utilities leave temporary files in /tmp. These files are automatically removed when the system is rebooted. They can also be manually removed.
You must have DOS 3.3 or earlier. Extended DOS partitions are not supported.
download(1) (Line Printer Spooling Utilities) download(1)

NAME
download – host resident PostScript font downloader

SYNOPSIS
download [options] [files]

DESCRIPTION
download prepends host resident fonts to files and writes the results on the standard output. If no files are specified, or if - is one of the input files, the standard input is read. download assumes the input files make up a single PostScript job and that requested fonts can be included at the start of each input file. The following options are understood:

-verbose Forc e a complete scan of each input file. In the absence of an explicit comment pointing download to the end of the file, the default scan stops immediately after the PostScript header comments.

-printer printer Before downloading, check the list of printer-resident fonts in /etc/lp/printers/printer/residentfonts.

-memory name Use name as the font map table. A name that begins with / is the full pathname of the map table and is used as is. Otherwise name is appended to the pathname of the host font directory.

-hostdir dir Use dir as the host font directory. The default is /usr/lib/lp/postscript.

Requested fonts are named in a comment (marked with %%%DocumentFonts:) in the input files. Available fonts are the ones listed in the map table selected using the -memory option.

The map table consists of fontname-filename pairs. The fontname is the full name of the PostScript font, exactly as it would appear in a %%%DocumentFonts: comment. The filename is the pathname of the host resident font. A filename that begins with a / is used as is. Otherwise the pathname is relative to the host font directory. Comments are introduced by % (as in PostScript) and extend to the end of the line.

The only candidates for downloading are fonts listed in the map table that point download to readable files. A font is downloaded once, at most. Requests for unlisted fonts or inaccessible files are ignored. All requests are ignored if the map table can’t be read.

EXAMPLES
The following map table could be used to control the downloading of the Bookman font family:

% The first string is the full PostScript font name.
% The second string is the file name - relative to the
% host font directory unless it begins with a /.
%

Bookman-Light bookman/light
Bookman-LightItalic bookman/lightitalic
Bookman-Demi bookman/demi
Bookman-DemiItalic bookman/demiitalic
Using the file `myprinter/map` (in the default host font directory) as the map
table, you could download fonts by issuing the following command:

```bash
download -m myprinter/map file
```

**DIAGNOSTICS**

An exit status of 0 is returned if files were successfully processed.

**NOTES**

The `download` program should be part of a more general program.
`download` does not look for `%%PageFonts:` comments and there is no way to
force multiple downloads of a particular font.

We do not recommend the use of full pathnames in either map tables or the
names of map tables.

**SEE ALSO**

dpost(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1),
posttek(1)
NAME
dpost - troff postprocessor for PostScript printers

SYNOPSIS
/usr/lib/lp/postscript/dpost [options] [files]

DESCRIPTION
dpost translates files created by troff(1) into PostScript and writes the results on
the standard output. If no files are specified, or if - is one of the input files, the
standard input is read. The following options are understood:

-c num  Print num copies of each page. By default only one copy is printed.
-e num  Sets the text encoding level to num. The recognized choices are
         0, 1, and 2. The size of the output file and print time should
decrease as num increases. Level 2 encoding will typically be
about 20 percent faster than level 0, which is the default and
produces output essentially identical to previous versions of
dpost.
-m num  Magnify each logical page by the factor num. Pages are scaled
         uniformly about the origin, which is located near the upper left
corner of each page. The default magnification is 1.0.
-n num  Print num logical pages on each piece of paper, where num can
         be any positive integer. By default, num is set to 1.
-o list Print those pages for which numbers are given in the comma-
         separated list. The list contains single numbers N
         and ranges N1–N2. A missing N1 means the lowest numbered page, a
         missing N2 means the highest.
-p mode Print files in either portrait or landscape mode. Only the first
         character of mode is significant. The default mode is portrait.
-w num  Set the line width used to implement troff graphics commands
to num points, where a point is approximately 1/72 of an inch.
         By default, num is set to 0.3 points.
-x num  Translate the origin num inches along the positive x axis. The
default coordinate system has the origin fixed near the upper
left corner of the page, with positive x to the right and positive
y down the page. Positive num moves everything right. The
default offset is 0 inches.
-y num  Translate the origin num inches along the positive y axis. Posi-
tive num moves text up the page. The default offset is 0.
-F dir  Use dir as the font directory. The default dir is /usr/lib/font,
         and dpost reads binary font files from directory
/usr/lib/font/devpost.
-H dir  Use dir as the host resident font directory. Files in this direc-
tory should be complete PostScript font descriptions, and must
be assigned a name that corresponds to the appropriate two-
character troff font name. Each font file is copied to the
output file only when needed and at most once during each job. There is no default directory.

-L file Use file as the PostScript prologue which, by default, is /usr/lib/postscript/dpost.ps.

-0 Disables PostScript picture inclusion. A recommended option when dpost is run by a spooler in a networked environment.

-T name Use font files for device name as the best description of available PostScript fonts. By default, name is set to post and dpost reads binary files from /usr/lib/font/devpost.

The files should be prepared by troff. The default font files in /usr/lib/font/devpost produce the best and most efficient output. They assume a resolution of 720 dpi, and can be used to format files by adding the -Tpost option to the troff call. Older versions of the eqn and pic preprocessors need to know the resolution that troff will be using to format the files. If those are the versions installed on your system, use the -r720 option with eqn and -T720 with pic.

dpost makes no assumptions about resolutions. The first x res command sets the resolution used to translate the input files, the DESC.out file, usually /usr/lib/font/devpost/DESC.out, defines the resolution used in the binary font mes, and the PostScript prologue is responsible for setting up an appropriate user coordinate system.

EXAMPLES
If the old versions of eqn and pic are installed on your system, you can obtain the best possible looking output by issuing a command line such as the following:

    pic -T720 file | tbl | eqn -r720 | troff -mm -Tpost | dpost

Otherwise,

    pic file | tbl | eqn | troff -mm -Tpost | dpost

should give the best results.

NOTES
Output files often do not conform to Adobe’s file structuring conventions. Piping the output of dpost through postreverse should produce a minimally conforming PostScript file.

Although dpost can handle files formatted for any device, emulation is expensive and can easily double the print time and the size of the output file. No attempt has been made to implement the character sets or fonts available on all devices supported by troff. Missing characters will be replaced by white space, and unrecognized fonts will usually default to one of the Times fonts (that is, R, I, B, or BI).

An x res command must precede the first x init command, and all the input files should have been prepared for the same output device.

Use of the -T option is not encouraged. Its only purpose is to enable the use of other PostScript font and device description files, that perhaps use different resolutions, character sets, or fonts.
Although level 0 encoding is the only scheme that has been thoroughly tested, level 2 is fast and may be worth a try.

DIAGNOSTICS
An exit status of 0 is returned if files have been translated successfully, while 2 often indicates a syntax error in the input files.

FILES
/usr/lib/font/devpost/*.out
/usr/lib/font/devpost/charlib/*
/usr/lib/lp/postscript/dpost.ps
/usr/lib/lp/postscript/color.ps
/usr/lib/lp/postscript/draw.ps
/usr/lib/lp/postscript/forms.ps
/usr/lib/lp/postscript/ps.requests
/usr/lib/macros/pictures
/usr/lib/macros/color

SEE ALSO
download(1), postdaisy(1), postdmd(1), postio(1), postmd(1), postprint(1),
postreverse(1), posttek(1), troff(1) devpost(5), troff(5)
NAME

\texttt{du} – summarize disk usage

SYNOPSIS

\texttt{du [-sar]} \texttt{[name ...]}

DESCRIPTION

The \texttt{du} command reports the number of blocks contained in all files and (recursively) directories within each directory and file specified. The block count includes the indirect blocks of the file. If no \textit{name}s are given, the current directory is used.

The optional arguments are as follows:

\texttt{-s} causes only the grand total (for each of the specified \textit{name}s) to be given.

\texttt{-a} causes an output line to be generated for each file.

If neither \texttt{-s} or \texttt{-a} is specified, an output line is generated for each directory only.

\texttt{-r} will cause \texttt{du} to generate messages about directories that cannot be be read, files that cannot be opened, etc., rather than being silent (the default).

A file with two or more links is only counted once.

NOTES

If the \texttt{-a} option is not used, non-directories given as arguments are not listed.

If there are links between files in different directories where the directories are on separate branches of the file system hierarchy, \texttt{du} will count the excess files more than once.

Files with holes in them will get an incorrect block count.

SEE ALSO

See the chapter on file system administration in the \textit{System Administrator's Guide}. 
NAME
du – display the number of disk blocks used per directory or file

SYNOPSIS
/usr/ucb/du [ -a ] [ -s ] [ filename ... ]

DESCRIPTION
du gives the number of kilobytes contained in all files and, recursively, directories
within each specified directory or file filename. If filename is missing, ‘.’ (the
current directory) is used.
A file which has multiple links to it is only counted once.

OPTIONS
-a Generate an entry for each file.
-s Only display the grand total for each of the specified filenames.
Entries are generated only for each directory in the absence of options.

EXAMPLE
Here is an example of using du in a directory. We used the pwd(1) command to
identify the directory, then used du to show the usage of all the subdirectories in
that directory. The grand total for the directory is the last entry in the display:

% pwd
/usr/ralph/misc
% du
5 ./jokes
33 ./squash
44 ./tech.papers/lpr.document
217 ./tech.papers/new.manager
401 ./tech.papers
144 ./memos
80 ./letters
388 ./window
93 ./messages
15 ./useful.news
1211 .
%

SEE ALSO
df(1M), pwd(1) in the User’s Reference Manual
quot(1M) in the System Administrator’s Reference Manual

NOTES
Filename arguments that are not directory names are ignored, unless you use -a.
If there are too many distinct linked files, du will count the excess files more than
once.
NAME
dump – dump selected parts of an object file

SYNOPSIS
dump [ options ] files

DESCRIPTION
The dump command dumps selected parts of each of its object file arguments. This command will accept both object files and archives of object files. It processes each file argument according to one or more of the following options:

- `a` Dump the archive header of each member of an archive.
- `-c` Dump decoded C++ symbol table names.
- `-C` Dump the string table(s).
- `-D` Dump debugging information.
- `-f` Dump each file header.
- `-g` Dump the global symbols in the symbol table of an archive.
- `-h` Dump the section headers.
- `-L` Dump dynamic linking information and static shared library information, if available.
- `-l` Dump line number information.
- `-o` Dump each program execution header.
- `-r` Dump relocation information.
- `-s` Dump section contents in hexadecimal.
- `-t` Dump symbol table entries.
- `-T index` or `-T index1,index2`
  Dump only the indexed symbol table entry defined by index or a range of entries defined by index1,index2.
- `-u` When reading a COFF object file, dump translates the file to ELF internally (this translation does not affect the file contents). This option controls how much translation occurs from COFF values to ELF. Normally (without `-u`), the COFF values are preserved as much as possible, showing the actual bytes in the file. If `-u` is used, dump updates the values and completes the internal translation, giving a consistent ELF view of the contents. Although the bytes displayed under this option might not match the file itself, they show how the file would look if it were converted to ELF. (See cof2elf(1) for more information.)
- `-v` Print version information.

The following modifiers are used in conjunction with the options listed above to modify their capabilities.
-d number or -d number1, number2
Dump the section number indicated by number or the range of sections starting at number1 and ending at number2. This modifier can be used with -h, -s, and -r. When -d is used with -h or -s, the argument is treated as the number of a section or range of sections. When -d is used with -r, the argument is treated as the number of the section or range of sections to which the relocation applies. For example, to print out all relocation entries associated with the .text section, specify the number of the section as the argument to -d. If .text is section number 2 in the file, dump -r -d 2 will print all associated entries. To print out a specific relocation section use dump -s -n name for raw data output, or dump -sv -n name for interpreted output.

-n name
Dump information pertaining only to the named entity. This modifier can be used with -h, -s, -r, and -t. When -n is used with -h or -s, the argument will be treated as the name of a section. When -n is used with -t or -r, the argument will be treated as the name of a symbol. For example, dump -t -n .text will dump the symbol table entry associated with the symbol whose name is .text, where dump -h -n .text will dump the section header information for the .text section.

-p
Suppress printing of the headings.

-v
Dump information in symbolic representation rather than numeric. This modifier can be used with -a (date, user id, group id), -f (class, data, type, machine, version, flags), -h (type, flags), -o (type, flags), -r (name, type), -s (interpret section contents wherever possible), -t (type, bind), and -L (value). When -v is used with -s, all sections that can be interpreted, such as the string table or symbol table, will be interpreted. For example, dump -sv -n .symtab files will produce the same formatted output as dump -tv files, but dump -s -n .symtab files will print raw data in hexadecimal. Without additional modifiers, dump -sv files will dump all sections in the files interpreting all those that it can and dumping the rest (such as .text or .data) as raw data.

The dump command attempts to format the information it dumps in a meaningful way, printing certain information in character, hexadecimal, octal or decimal representation as appropriate.

SEE ALSO
a.out(4), ar(4)
NAME
echo – echo arguments

SYNOPSIS
echo [ arg ]
echo [ -n ] [ arg ]

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on
the standard output.

The /usr/bin/sh version understands the following C-like escape conventions;
beware of conflicts with the shell’s use of \:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\v vertical tab
\\ backslash
\0n where n is the 8-bit character whose ASCII code is the 1-, 2- or 3-
digit octal number representing that character.

The following option is available to /usr/bin/sh users only if /usr/ucb pre­
cedes /usr/bin in the user’s PATH. It is available to /usr/csh users, regardless
of PATH:

-­n Do not add the newline to the output.

echo is useful for producing diagnostics in command files, for sending known
data into a pipe, and for displaying the contents of environment variables.

SEE ALSO
sh(1).

NOTES
The -­n option is a transition aid for BSD applications, and may not be supported
in future releases.

When representing an 8-bit character by using the escape convention \0n, the n
must always be preceded by the digit zero (0).

For example, typing: echo 'WARNING:\07' will print the phrase WARNING: and
sound the “bell” on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the “\" that precedes the “07”.

Following the \0, up to three digits are used in constructing the octal output
character. If, following the \0n, you want to echo additional digits that are not
part of the octal representation, you must use the full 3-digit n. For example, if
you want to echo “ESC 7” you must use the three digits “033” rather than just
the two digits “33” after the \0.
2 digits  Incorrect:  \texttt{echo "\\0337" | od -xc}  \\
produces:  \texttt{df0a}  \hspace{1cm}  \text{(hex)}  \\
            \texttt{337}  \hspace{1cm}  \text{(ascii)}  \\

3 digits  Correct:  \texttt{echo "\\00337" | od -xc}  \\
produces:  \texttt{1b37 0a00}  \hspace{1cm}  \text{(hex)}  \\
            \texttt{033 7}  \hspace{1cm}  \text{(ascii)}  \\

For the octal equivalents of each character, see \texttt{ascii(5)}, in the \textit{System Administrator's Reference Manual}.
NAME
  echo – put string on virtual output

SYNOPSIS
  echo [string . . .]

DESCRIPTION
  The echo function directs each string it is passed to stdout. It is often used in conditional execution or for passing a string to another command.

EXAMPLES
  Set the done descriptor to help if a test fails:

  done=`if [ -s $F1 ];
       then echo close;
       else echo help;
       fi`

SEE ALSO
  echo(1)
NAME
echo – echo arguments

SYNOPSIS
/usr/ucb/echo [ arg ]
/usr/ucb/echo [ -n ] [ arg ]

DESCRIPTION
echo writes its arguments separated by blanks and terminated by a new-line on
the standard output.

The /usr/bin/sh version understands the following C-like escape conventions;
be aware of conflicts with the shell’s use of \\:

\b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\v vertical tab
\\ backslash
\\n where n is the 8-bit character whose ASCII code is the 1-, 2- or 3-
digit octal number representing that character.

The following option is available to /usr/bin/sh users only if /usr/ucb pre­
cedes /usr/bin in the user’s PATH. It is available to /usr/csh users, regardless
of PATH:

-­n Do not add the newline to the output.

echo is useful for producing diagnostics in command files and for sending known
data into a pipe.

SEE ALSO
sh(1) in the User’s Reference Manual

NOTES
The -­n option is a transition aid for BSD applications, and may not be supported
in future releases.

The When representing an 8-bit character by using the escape convention \0n, the
n must always be preceded by the digit zero (0).

For example, typing: echo ‘WARNING:\07’ will print the phrase WARNING: and
sound the “bell” on your terminal. The use of single (or double) quotes (or two
backslashes) is required to protect the ‘\’ that precedes the “07”.

For the octal equivalents of each character, see ascii(5), in the System
NAME
  ed, red – text editor

SYNOPSIS
  ed [-s] [-p string ] [-x] [-c] [file]
  red [-s] [-p string ] [-x] [-c] [file]

DESCRIPTION
  ed is the standard text editor. If the file argument is given, ed simulates an e
  command (see below) on the named file; that is to say, the file is read into ed's
  buffer so that it can be edited.

  -s Suppresses the printing of character counts by e, r, and w commands, of
     diagnostics from e and q commands, and of the ! prompt after a
     !shell command.

  -p Allows the user to specify a prompt string.

  -x Encryption option; when used, ed simulates an X command and prompts
     the user for a key. This key is used to encrypt and decrypt text using the
     algorithm of crypt(1). The X command makes an educated guess to
     determine whether text read in is encrypted or not. The temporary buffer
     file is encrypted also, using a transformed version of the key typed in for
     the -x option. See crypt(1). Also, see the NOTES section at the end of
     this manual page.

  -c Encryption option; the same as the -x option, except that ed simulates a C
     command. The C command is like the X command, except that all text
     read in is assumed to have been encrypted.

  ed operates on a copy of the file it is editing; changes made to the copy have no
  effect on the file until a w (write) command is given. The copy of the text being
  edited resides in a temporary file called the buffer. There is only one buffer.

  red is a restricted version of ed. It will only allow editing of files in the current
  directory. It prohibits executing shell commands via !shell command. Attempts to
  bypass these restrictions result in an error message (restricted shell).

  Both ed and red support the fspec(4) formatting capability. After including a
  format specification as the first line of file and invoking ed with your terminal in
  stty -tabs or stty tab3 mode [see stty(1)], the specified tab stops will
  automatically be used when scanning file. For example, if the first line of a file
  contained:

  <:t5,10,15 s72:>

  tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
  would be imposed. NOTE: when you are entering text into the file, this format is
  not in effect; instead, because of being in stty -tabs or stty tab3 mode, tabs
  are expanded to every eighth column.

  Commands to ed have a simple and regular structure: zero, one, or two addresses
  followed by a single-character command, possibly followed by parameters to that
  command. These addresses specify one or more lines in the buffer. Every com-
  mand that requires addresses has default addresses, so that the addresses can
  very often be omitted.
In general, only one command may appear on a line. Certain commands allow the input of text. This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no commands are recognized; all input is merely collected. Leave input mode by typing a period (.) at the beginning of a line, followed immediately by a carriage return.

ed supports a limited form of regular expression notation; regular expressions are used in addresses to specify lines and in some commands (for example, s) to specify portions of a line that are to be substituted. A regular expression (RE) specifies a set of character strings. A member of this set of strings is said to be matched by the regular expression. The regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-character regular expression that matches the special character itself. The special characters are:
   a. ., *, {, and \ (period, asterisk, left square bracket, and backslash, respectively), which are always special, except when they appear within square brackets ([ ]); see 1.4 below).
   b. ^ (caret or circumflex), which is special at the beginning of an entire regular expression (see 4.1 and 4.3 below), or when it immediately follows the left of a pair of square brackets ([ ]); (see 1.4 below).
   c. $ (dollar sign), which is special at the end of an entire regular expression (see 4.2 below).
   d. The character used to bound (that is, delimit) an entire regular expression, which is special for that regular expression (for example, see how slash (/) is used in the g command, below.)

1.3 A period (.) is a one-character regular expression that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([ ]) is a one-character regular expression that matches any character in that string. If, however, the first character of the string is a circumflex (^), the one-character regular expression matches any character except new-line and the remaining characters in the string. The ^ has this special meaning only if it occurs first in the string. The minus (−) may be used to indicate a range of consecutive characters; for example, [0−9] is equivalent to [0123456789]. The − loses this special meaning if it occurs first (after an initial ^, if any) or last in the string. The right square bracket (]) does not terminate such a string when it is the first character within it (after an initial ^, if any); for example, [a−f] matches either a right square bracket (]) or one of the ASCII letters a through f inclusive. The four characters listed in 1.2.a above stand for themselves within such a string of characters.
The following rules may be used to construct regular expressions from one-character regular expressions:

2.1 A one-character regular expression is a regular expression that matches whatever the one-character regular expression matches.

2.2 A one-character regular expression followed by an asterisk (*) is a regular expression that matches zero or more occurrences of the one-character regular expression. If there is any choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character regular expression followed by \{m\}, \{m,n\}, or \{m,n\} is a regular expression that matches a range of occurrences of the one-character regular expression. The values of m and n must be non-negative integers less than 256; \{m\} matches exactly m occurrences; \{m,\} matches at least m occurrences; \{m,n\} matches any number of occurrences between m and n inclusive. Whenever a choice exists, the regular expression matches as many occurrences as possible.

2.4 The concatenation of regular expressions is a regular expression that matches the concatenation of the strings matched by each component of the regular expression.

2.5 A regular expression enclosed between the character sequences \( and \) is a regular expression that matches whatever the unadorned regular expression matches.

2.6 The expression \n matches the same string of characters as was matched by an expression enclosed between \( and \) earlier in the same regular expression. Here n is a digit; the sub-expression specified is that beginning with the n-th occurrence of \( counting from the left. For example, the expression ^\(\cdot\)\1$ matches a line consisting of two repeated appearances of the same string.

A regular expression may be constrained to match words.

3.1 \< constrains a regular expression to match the beginning of a string or to follow a character that is not a digit, underscore, or letter. The first character matching the regular expression must be a digit, underscore, or letter.

3.2 \> constrains a regular expression to match the end of a string or to precede a character that is not a digit, underscore, or letter.

An entire regular expression may be constrained to match only an initial segment or final segment of a line (or both).

4.1 A circumflex (^) at the beginning of an entire regular expression constrains that regular expression to match an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire regular expression constrains that regular expression to match a final segment of a line.

4.3 The construction ^entire regular expression$ constrains the entire regular expression to match the entire line.
The null regular expression (for example, //) is equivalent to the last regular expression encountered. See also the last paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally speaking, the current line is the last line affected by a command; the exact effect on the current line is discussed under the description of each command. Addresses are constructed as follows:

1. The character . addresses the current line.
2. The character $ addresses the last line of the buffer.
3. A decimal number n addresses the n-th line of the buffer.
4. 'x addresses the line marked with the mark name character x, which must be an ASCII lower-case letter (a-z). Lines are marked with the k command described below.
5. A regular expression enclosed by slashes (/) addresses the first line found by searching forward from the line following the current line toward the end of the buffer and stopping at the first line containing a string matching the regular expression. If necessary, the search wraps around to the beginning of the buffer and continues up to and including the current line, so that the entire buffer is searched. See also the last paragraph before FILES below.
6. A regular expression enclosed in question marks (?) addresses the first line found by searching backward from the line preceding the current line toward the beginning of the buffer and stopping at the first line containing a string matching the regular expression. If necessary, the search wraps around to the end of the buffer and continues up to and including the current line. See also the last paragraph before FILES below.
7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal number specifies that address plus (respectively minus) the indicated number of lines. A shorthand for .+5 is .5.
8. If an address begins with + or -, the addition or subtraction is taken with respect to the current line; for example, -5 is understood to mean .-5.
9. If an address ends with + or -, then 1 is added to or subtracted from the address, respectively. As a consequence of this rule and of Rule 8, immediately above, the address – refers to the line preceding the current line. (To maintain compatibility with earlier versions of the editor, the character ^ in addresses is entirely equivalent to –.) Moreover, trailing + and – characters have a cumulative effect, so -- refers to the current line less 2.
10. For convenience, a comma (,) stands for the address pair 1, $, while a semicolon (;) stands for the pair ., $.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the presence of an address as an error. Commands that accept one or two addresses assume default addresses when an insufficient number of addresses is given; if more addresses are given than such a command requires, the last one(s) are used.
Typically, addresses are separated from each other by a comma (,). They may also be separated by a semicolon (;). In the latter case, the first address is calculated, the current line (.) is set to that value, and then the second address is calculated. This feature can be used to determine the starting line for forward and backward searches (see Rules 5 and 6, above). The second address of any two-address sequence must correspond to a line in the buffer that follows the line corresponding to the first address.

In the following list of ed commands, the parentheses shown prior to the command are not part of the address; rather they show the default address(es) for the command.

It is generally illegal for more than one command to appear on a line. However, any command (except e, f, r, or w) may be suffixed by 1, n, or p in which case the current line is either listed, numbered or printed, respectively, as discussed below under the 1, n, and p commands.

(. )a  
<text>  

The append command accepts zero or more lines of text and appends it after the addressed line in the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the addressed line. Address 0 is legal for this command: it causes the “appended” text to be placed at the beginning of the buffer. The maximum number of characters that may be entered from a terminal is 256 per line (including the new-line character).

(. )c  
<text>  

The change command deletes the addressed lines from the buffer, then accepts zero or more lines of text that replaces these lines in the buffer. The current line (.) is left at the last line input, or, if there were none, at the first line that was not deleted.

C  

Same as the X command, described later, except that ed assumes all text read in for the e and r commands is encrypted unless a null key is typed in.

(. , . )d  

The delete command deletes the addressed lines from the buffer. The line after the last line deleted becomes the current line; if the lines deleted were originally at the end of the buffer, the new last line becomes the current line.

e file  

The edit command deletes the entire contents of the buffer and then reads the contents of file into the buffer. The current line (.) is set to the last line of the buffer. If file is not given, the currently remembered file name, if any, is used (see the f command). The number of characters read in is printed; file is remembered for possible use as a default file name in subsequent e, r, and w commands. If file is replaced by 1, the rest of the line is
taken to be a shell [sh(1)] command whose output is to be read in. Such a shell command is not remembered as the current file name. See also DIAGNOSTICS below.

\texttt{E file}

The \texttt{E}dit command is like \texttt{e}, except that the editor does not check to see if any changes have been made to the buffer since the last \texttt{w} command.

\texttt{f file}

If \texttt{file} is given, the \texttt{f}ile-name command changes the currently remembered file name to \texttt{file}; otherwise, it prints the currently remembered file name.

\texttt{(1, $)g/regular expression/command list}

In the \texttt{g}lobal command, the first step is to mark every line that matches the given regular expression. Then, for every such line, the given \texttt{command list} is executed with the current line (\texttt{.}) initially set to that line. A single command or the first of a list of commands appears on the same line as the global command. All lines of a multi-line list except the last line must be ended with a \texttt{\;} \texttt{a}, \texttt{I}, and \texttt{c} commands and associated input are permitted. The \texttt{.} terminating input mode may be omitted if it would be the last line of the \texttt{command list}. An empty \texttt{command list} is equivalent to the \texttt{p} command. The \texttt{g}, \texttt{G}, \texttt{v}, and \texttt{V} commands are not permitted in the \texttt{command list}. See also the NOTES and the last paragraph before FILES below.

\texttt{(1, $)G/regular expression/}

In the interactive \texttt{G}lobal command, the first step is to mark every line that matches the given regular expression. Then, for every such line, that line is printed, the current line (\texttt{.}) is changed to that line, and any one command (other than one of the \texttt{a}, \texttt{c}, \texttt{i}, \texttt{g}, \texttt{G}, \texttt{v}, and \texttt{V} commands) may be input and is executed. After the execution of that command, the next marked line is printed, and so on; a new-line acts as a null command; an \texttt{&} causes the re-execution of the most recent command executed within the current invocation of \texttt{G}. Note that the commands input as part of the execution of the \texttt{G} command may address and affect any lines in the buffer. The \texttt{G} command can be terminated by an interrupt signal (ASCII DEL or BREAK).

\texttt{h}

The \texttt{help} command gives a short error message that explains the reason for the most recent ? diagnostic.

\texttt{H}

The \texttt{Help} command causes \texttt{ed} to enter a mode in which error messages are printed for all subsequent ? diagnostics. It will also explain the previous ? if there was one. The \texttt{H} command alternately turns this mode on and off; it is initially off.
The insert command accepts zero or more lines of text and inserts it before the addressed line in the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the addressed line. This command differs from the a command only in the placement of the input text. Address 0 is not legal for this command. The maximum number of characters that may be entered from a terminal is 256 per line (including the new-line character).

The join command joins contiguous lines by removing the appropriate new-line characters. If exactly one address is given, this command does nothing.

The mark command marks the addressed line with name x, which must be an ASCII lower-case letter (a-z). The address 'x then addresses this line; the current line (.) is unchanged.

The list command prints the addressed lines in an unambiguous way: a few non-printing characters (for example, tab, backspace) are represented by visually mnemonic overstrikes. All other non-printing characters are printed in octal, and long lines are folded. An l command may be appended to any command other than e, f, r, or w.

The move command repositions the addressed line(s) after the line addressed by a. Address 0 is legal for a and causes the addressed line(s) to be moved to the beginning of the file. It is an error if address a falls within the range of moved lines; the current line (.) is left at the last line moved.

The number command prints the addressed lines, preceding each line by its line number and a tab character; the current line (.) is left at the last line printed. The n command may be appended to any command other than e, f, r, or w.

The print command prints the addressed lines; the current line (.) is left at the last line printed. The p command may be appended to any command other than e, f, r, or w. For example, dp deletes the current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The P command alternately turns this mode on and off; it is initially off.
The `quit` command causes `ed` to exit. No automatic write of a file is done; however, see
DIAGNOSTICS, below.

The editor exits without checking if changes have been made in the buffer since the last `w` command.

$(\$) r file

The `read` command reads the contents of `file` into the buffer. If `file` is not
given, the currently remembered file name, if any, is used (see the `e` and `f`
commands). The currently remembered file name is not changed unless
`file` is the very first file name mentioned since `ed` was invoked. Address 0
is legal for `r` and causes the file to be read in at the beginning of the
buffer. If the read is successful, the number of characters read in is
printed; the current line (.) is set to the last line read in. If `file` is replaced
by 1, the rest of the line is taken to be a shell [see sh(1)] command whose
output is to be read in. For example, `\$r !` appends current directory to
the end of the file being edited. Such a shell command is not remembered
as the current file name.

$(\ , \ , ) s/regular expression/replacement/ or
$(\ , \ , ) s/regular expression/replacement/g or
$(\ , \ , ) s/regular expression/replacement/n = 1-512

The substitute command searches each addressed line for an occurrence of
the specified regular expression. In each line in which a match is found,
all (non-overlapped) matched strings are replaced by the `replacement` if the
global replacement indicator `g` appears after the command. If the global
indicator does not appear, only the first occurrence of the matched string
is replaced. If a number `n`, appears after the command, only the `n`-th
occurrence of the matched string on each addressed line is replaced. It is
an error if the substitution fails on all addressed lines. Any character
other than space or new-line may be used instead of `/` to delimit the regu­
lar expression and the `replacement`; the current line (.) is left at the last line
on which a substitution occurred. See also the last paragraph before FILES
below.

An ampersand (&) appearing in the `replacement` is replaced by the string
matching the regular expression on the current line. The special meaning
of & in this context may be suppressed by preceding it by \\'. As a more
general feature, the characters \n, where `n` is a digit, are replaced by the
text matched by the `n`-th regular subexpression of the specified regular
expression enclosed between \(` and \\`). When nested parenthesized
subexpressions are present, `n` is determined by counting occurrences of \\
starting from the left. When the character % is the only character in the
replacement, the `replacement` used in the most recent substitute command is
used as the `replacement` in the current substitute command. The % loses its
special meaning when it is in a replacement string of more than one char­
acter or is preceded by a \\
.
A line may be split by substituting a new-line character into it. The new-line in the replacement must be escaped by preceding it by \. Such substitution cannot be done as part of a g or v command list.

\(.*\)ta
This command acts just like the m command, except that a copy of the addressed lines is placed after address a (which may be 0); the current line (.) is left at the last line copied.

u
The undo command nullifies the effect of the most recent command that modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1, $)v/regular expression/command list
This command is the same as the global command g, except that the lines marked during the first step are those that do not match the regular expression.

(1, $)V/regular expression/
This command is the same as the interactive global command G, except that the lines that are marked during the first step are those that do not match the regular expression.

(1, $)w file
The write command writes the addressed lines into file. If file does not exist, it is created with mode 666 (readable and writable by everyone), unless your file creation mask dictates otherwise; see the description of the umask special command on sh(1). The currently remembered file name is not changed unless file is the very first file name mentioned since ed was invoked. If no file name is given, the currently remembered file name, if any, is used (see the e and f commands); the current line (.) is unchanged. If the command is successful, the number of characters written is printed. If file is replaced by !, the rest of the line is taken to be a shell [see sh(1)] command whose standard input is the addressed lines. Such a shell command is not remembered as the current file name.

(1, $)W file
This command is the same as the write command above, except that it appends the addressed lines to the end of file if it exists. If file does not exist, it is created as described above for the w command.

x
A key is prompted for, and it is used in subsequent e, r, and w commands to decrypt and encrypt text using the crypt(1) algorithm. An educated guess is made to determine whether text read in for the e and r commands is encrypted. A null key turns off encryption. Subsequent e, r, and w commands will use this key to encrypt or decrypt the text [see crypt(1)]. An explicitly empty key turns off encryption. Also, see the -x option of ed.
The line number of the addressed line is typed; the current line (.) is unchanged by this command.

1 shell command
      The remainder of the line after the ! is sent to the UNIX system shell [see sh(1)] to be interpreted as a command. Within the text of that command, the unescaped character % is replaced with the remembered file name; if a ! appears as the first character of the shell command, it is replaced with the text of the previous shell command. Thus, !! will repeat the last shell command. If any expansion is performed, the expanded line is echoed; the current line (.) is unchanged.

(.+1)<new-line>
      An address alone on a line causes the addressed line to be printed. A new-line alone is equivalent to .+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

Some size limitations: 512 characters in a line, 256 characters in a global command list, and 64 characters in the pathname of a file (counting slashes). The limit on the number of lines depends on the amount of user memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters.

If a file is not terminated by a new-line character, ed adds one and puts out a message explaining what it did.

If the closing delimiter of a regular expression or of a replacement string (for example, /) would be the last character before a new-line, that delimiter may be omitted, in which case the addressed line is printed. The following pairs of commands are equivalent:

\texttt{\textbackslash s/s1/s2} \texttt{\textbackslash s/s1/s2/p} \texttt{\textbackslash g/s1} \texttt{\textbackslash g/s1/p} \texttt{\textbackslash ?s1} \texttt{\textbackslash ?s1?}

\textbf{FILES}

$\texttt{\$TMPDIR}$\hspace*{1em} if this environmental variable is not null, its value is used in place of /\texttt{\textbackslash var/tmp} as the directory name for the temporary work file.

/\texttt{\textbackslash var/tmp} \hspace*{1em} if /\texttt{\textbackslash var/tmp} exists, it is used as the directory name for the temporary work file.

/\texttt{\textbackslash tmp} \hspace*{1em} if the environmental variable \texttt{\$TMPDIR} does not exist or is null, and if /\texttt{\textbackslash var/tmp} does not exist, then /\texttt{\textbackslash tmp} is used as the directory name for the temporary work file.

\texttt{\textbackslash ed.hup} \hspace*{1em} work is saved here if the terminal is hung up.

\textbf{SEE ALSO}

\texttt{\textbackslash edit(1), \textbackslash ex(1), \textbackslash grep(1), \textbackslash sed(1), \textbackslash sh(1), \textbackslash stty(1), \textbackslash umask(1), \textbackslash vi(1), \textbackslash fspec(4), \textbackslash regexp(5)} in the \textit{System Administrator's Reference Manual}
DIAGNOSTICS

?            for command errors.
?file        for an inaccessible file.
             (use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroy ed's buffer via
the e or q commands. It prints ? and allows one to continue editing. A second
e or q command at this point will take effect. The -s command-line option in-
hibits this feature.

NOTES

The - option, although it continues to be supported, has been replaced in the
documentation by the -s option that follows the Command Syntax Standard [see
intro(1)].

The encryption options and commands are provided with the Security Adminis-
tration Utilities package, which is available only in the United States.

A command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be
used if the editor is invoked from a restricted shell [see sh(1)].

The sequence \n in a regular expression does not match a new-line character.

If the editor input is coming from a command file (for example, ed file <
ed_cmd_file), the editor exits at the first failure.
NAME
edit – text editor (variant of ex for casual users)

SYNOPSIS
edit [-r] [-x] [-c] name...

DESCRIPTION
edit is a variant of the text editor ex recommended for new or casual users who wish to use a command-oriented editor. It operates precisely as ex with the following options automatically set:

- novice ON
- report ON
- showmode ON
- magic OFF

These options can be turned on or off via the set command in ex(l).

- -r Recover file after an editor or system crash.
- -x Encryption option; when used the file will be encrypted as it is being written and will require an encryption key to be read. edit makes an educated guess to determine if a file is encrypted or not. See crypt(l). Also, see the NOTES section at the end of this manual page.
- -c Encryption option; the same as -x except that edit assumes files are encrypted.

The following brief introduction should help you get started with edit. If you are using a CRT terminal you may want to learn about the display editor vi.

To edit the contents of an existing file you begin with the command edit name to the shell. edit makes a copy of the file that you can then edit, and tells you how many lines and characters are in the file. To create a new file, you also begin with the command edit with a filename: edit name; the editor will tell you it is a [New File].

The edit command prompt is the colon (:), which you should see after starting the editor. If you are editing an existing file, then you will have some lines in edit’s buffer (its name for the copy of the file you are editing). When you start editing, edit makes the last line of the file the current line. Most commands to edit use the current line if you do not tell them which line to use. Thus if you say print (which can be abbreviated p) and type carriage return (as you should after all edit commands), the current line will be printed. If you delete (d) the current line, edit will print the new current line, which is usually the next line in the file. If you delete the last line, then the new last line becomes the current one.

If you start with an empty file or wish to add some new lines, then the append (a) command can be used. After you execute this command (typing a carriage return after the word append), edit will read lines from your terminal until you type a line consisting of just a dot (.); it places these lines after the current line. The last line you type then becomes the current line. The insert (i) command is like append, but places the lines you type before, rather than after, the current line.
**edit** numbers the lines in the buffer, with the first line having number 1. If you execute the command 1, then **edit** will type the first line of the buffer. If you then execute the command d, **edit** will delete the first line, line 2 will become line 1, and **edit** will print the current line (the new line 1) so you can see where you are. In general, the current line will always be the last line affected by a command.

You can make a change to some text within the current line by using the **substitute** (s) command: s/old/new/ where old is the string of characters you want to replace and new is the string of characters you want to replace old with.

The **file** (f) command will tell you how many lines there are in the buffer you are editing and will say [Modified] if you have changed the buffer. After modifying a file, you can save the contents of the file by executing a write (w) command. You can leave the editor by issuing a quit (q) command. If you run **edit** on a file, but do not change it, it is not necessary (but does no harm) to write the file back. If you try to quit from **edit** after modifying the buffer without writing it out, you will receive the message No write since last change (:quit overrides), and **edit** will wait for another command. If you do not want to write the buffer out, issue the quit command followed by an exclamation point (q!). The buffer is then irretrievably discarded and you return to the shell.

By using the d and a commands and giving line numbers to see lines in the file, you can make any changes you want. You should learn at least a few more things, however, if you will use **edit** more than a few times.

The change (c) command changes the current line to a sequence of lines you supply (as in append, you type lines up to a line consisting of only a dot (.)). You can tell change to change more than one line by giving the line numbers of the lines you want to change, i.e., 3,5c. You can print lines this way too: 1,23p prints the first 23 lines of the file.

The undo (u) command reverses the effect of the last command you executed that changed the buffer. Thus if you execute a **substitute** command that does not do what you want, type u and the old contents of the line will be restored. You can also undo an undo command. **edit** will give you a warning message when a command affects more than one line of the buffer. Note that commands such as write and quit cannot be undone.

To look at the next line in the buffer, type carriage return. To look at a number of lines, type ^D (while holding down the control key, press d) rather than carriage return. This will show you a half-screen of lines on a CRT or 12 lines on a hardcopy terminal. You can look at nearby text by executing the z command. The current line will appear in the middle of the text displayed, and the last line displayed will become the current line; you can get back to the line where you were before you executed the z command by typing ``. The z command has other options: z- prints a screen of text (or 24 lines) ending where you are; z+ prints the next screenful. If you want less than a screenful of lines, type z.11 to display five lines before and five lines after the current line. (Typing z.n, when n is an odd number, displays a total of n lines, centered about the current line; when n is an even number, it displays n-1 lines, so that the lines displayed are centered around the current line.) You can give counts after other commands; for
example, you can delete 5 lines starting with the current line with the command 
\texttt{d5}.

To find things in the file, you can use line numbers if you happen to know them; 
since the line numbers change when you insert and delete lines this is somewhat 
unreliable. You can search backwards and forwards in the file for strings by giv­
ing commands of the form \texttt{/text/} to search forward for \textit{text} or \texttt{?text?} to search 
backward for \textit{text}. If a search reaches the end of the file without finding \textit{text}, it 
wraps around and continues to search back to the line where you are. A useful 
feature here is a search of the form \texttt{/text/} which searches for \textit{text} at the begin­
ing of a line. Similarly \texttt{/text$/} searches for \textit{text} at the end of a line. You can 
leave off the trailing \texttt{/} or \texttt{?} in these commands.

The current line has the symbolic name dot (\texttt{.}); this is most useful in a range of 
lines as in 
\texttt{.,$p} which prints the current line plus the rest of the lines in the file. 
To move to the last line in the file, you can refer to it by its symbolic name \texttt{$}. 
Thus the command \texttt{$d} deletes the last line in the file, no matter what the current 
line is. Arithmetic with line references is also possible. Thus the line \texttt{$-5} is the 
fifth before the last and \texttt{.+20} is 20 lines after the current line.

You can find out the current line by typing \texttt{.=}. This is useful if you wish to 
move or copy a section of text within a file or between files. Find the first and 
last line numbers you wish to copy or move. To move lines 10 through 20, type 
\texttt{10,20d a} to delete these lines from the file and place them in a buffer named \texttt{a}. 
\texttt{edit} has 26 such buffers named \texttt{a} through \texttt{z}. To put the contents of buffer \texttt{a} 
after the current line, type \texttt{put a}. If you want to move or copy these lines to 
another file, execute an \texttt{edit (e)} command after copying the lines; following the \texttt{e} 
command with the name of the other file you wish to edit, i.e., \texttt{edit chapter2}. 
To copy lines without deleting them, use \texttt{yank (y)} in place of \texttt{d}. If the text you 
 wish to move or copy is all within one file, it is not necessary to use named 
buffers. For example, to move lines 10 through 20 to the end of the file, type 
\texttt{10,20m $}.

SEE ALSO 
\texttt{ed(1), ex(1), vi(1)}

NOTES 
The encryption options are provided with the Security Administration Utilities 
package, which is available only in the United States.
edquota (1M) (UFS) edquota (1M)

NAME
edquota – edit user quotas

SYNOPSIS
edquota [-p proto_user] username...
edquota -t

DESCRIPTION
edquota is a quota editor. One or more users may be specified on the command line. For each user a temporary file is created with an ASCII representation of the current disk quotas for that user for each mounted ufs file system that has a quotas file, and an editor is then invoked on the file. A null entry is used if no quotas file exists for a file system. The quotas may then be modified, new quotas added, etc. Upon leaving the editor, edquota reads the temporary file and modifies the binary quota files to reflect the changes made.

The editor invoked is vi(1) unless the EDITOR environment variable specifies otherwise.

Only the super-user may edit quotas. In order for quotas to be established on a file system, the root directory of the file system must contain a file, owned by root, called quotas. See quotaon(1M) for details.

proto_user and username can be numeric, corresponding to the uid of a user. Unassigned uids may be specified; unassigned names may not. In this way, default quotas can be established for users who are later assigned a uid.

The options are:

- Duplicate the quotas of the proto_user specified for each username specified. This is the normal mechanism used to initialize quotas for groups of users.
- Edit the soft time limits for each file system. If the time limits are zero, the default time limits in /usr/include/sys/fs/ufs_quota.h are used. Time units of sec(onds), min(utes), hour(s), day(s), week(s), and month(s) are understood. Time limits are printed in the greatest possible time unit such that the value is greater than or equal to one.

FILES

quotas quota file at the file system root
/etc/mnttab table of mounted file systems

SEE ALSO

quota(1M), quotacheck(1M), quotaon(1M), repquota(1M), vi(1)
NAME

edsysadm – sysadm interface editing tool

SYNOPSIS

edsysadm

DESCRIPTION

edsysadm is an interactive tool that adds or changes either menu and task definitions in the sysadm interface. It can be used to make changes directly online on a specific machine or to create changes that will become part of a software package. The command creates the administration files necessary to achieve the requested changes in the interface and either places them in the appropriate place for on-line changes or saves them to be included in a software package.

edsysadm presents several screens, first prompting for which type of menu item you want to change, menu or task, and then for what type of action to take, add or change. When you select add, a blank menu or task definition (as described below) is provided for you to fill in. When you select change, a series of screens is presented to help identify the definition you wish to change. The final screen presented is the menu or task definition filled in with its current values, which you can then edit.

The menu definition prompts and their descriptions are:

Menu Name

The name of the new menu (as it should appear in the lefthand column of the screen). This field has a maximum length of 16 alphanumeric characters.

Menu Description

A description of the new menu (as it should appear in the righthand column of the screen). This field has a maximum length of 58 characters and can consist of any alphanumeric character except at sign (@), carat (^), tilde (~), back grave (\), grave (‘), and double quotes (").

Menu Location

The location of the menu in the menu hierarchy, expressed as a menu pathname. The pathname should begin with the main menu followed by all other menus that must be traversed (in the order they are traversed) to access this menu. Each menu name must be separated by colons. For example, the menu location for a menu entry being added to the Applications menu is main:applications. Do not include the menu name in this location definition. The complete pathname to this menu entry will be the menu location plus the menu name defined at the first prompt.

This is a scrollable field, showing a maximum of 50 alphanumeric characters at a time.
## edsysadm(1M) (Essential Utilities) edsysadm(1M)

### Menu Help File Name
Pathname to the item help file for this menu entry. If it resides in the directory from which you invoked `edsysadm`, you do not need to give a full pathname. If you name an item help file that does not exist, you are placed in an editor (as defined by `$EDITOR`) to create one. The new file is created in the current directory and named `Help`.

The task definition prompts and their descriptions are:

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Task Name</strong></td>
<td>The name of the new task (as it should appear in the lefthand column of the screen). This field has a maximum length of 16 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>Task Description</strong></td>
<td>A description of the new task (as it should appear in the righthand column of the screen). This field has a maximum length of 58 characters and can consist of any alphanumeric character except at sign (@), carat (^), tilde (~), back grave (), grave (), and double quotes (&quot;).</td>
</tr>
<tr>
<td><strong>Task Location</strong></td>
<td>The location of the task in the menu hierarchy, expressed as a pathname. The pathname should begin with the main menu followed by all other menus that must be traversed (in the order they are traversed) to access this task. Each menu name must be separated by colons. For example, the task location for a task entry being added to the applications menu is <code>main:applications</code>. Do not include the task name in this location definition. The complete pathname to this task entry will be the task location as well as the task name defined at the first prompt. This is a scrollable field, showing a maximum of 50 alphanumeric characters at a time.</td>
</tr>
<tr>
<td><strong>Task Help File Name</strong></td>
<td>Pathname to the item help file for this task entry. If it resides in the directory from which you invoked <code>edsysadm</code>, you do not need to give a full pathname. If you name an item help file that does not exist, you are placed in an editor (as defined by <code>$EDITOR</code>) to create one. The new file is created in the current directory and named <code>Help</code>.</td>
</tr>
<tr>
<td><strong>Task Action</strong></td>
<td>The FACE form name or executable that will be run when this task is selected. This is a scrollable field, showing a maximum of 58 alphanumeric characters at a time. This pathname can be relative to the current directory as well as absolute.</td>
</tr>
<tr>
<td><strong>Task Files</strong></td>
<td>Any FACE objects or other executables that support the task action listed above and might be called from within that action. Do not include the help file name or the task action in this list. Pathnames can be relative to</td>
</tr>
</tbody>
</table>
the current directory as well as absolute. A dot (.)
implies "all files in the current directory" and includes
files in subdirectories.

This is a scrollable field, showing a maximum of 50
alphanumeric characters at a time.

Once the menu or task has been defined, screens for installing the menu or task
or saving them for packaging are presented. The package creation or on-line
installation is verified and you are informed upon completion.

NOTES

For package creation or modification, this command automatically creates a menu
information file and a prototype file in the current directory (the directory from
which the command is executed). The menu information file is used during pack-
age installation to modify menus in the menu structure. A prototype file is an
installation file which gives a listing of package contents. The prototype file
created by edsysadm lists the files defined under task action and gives them the
special installation class of "admin". The contents of this prototype file must be
incorporated in the package prototype file.

For on-line installation, edsysadm automatically creates a menu information file
and adds or modifies the interface menu structure directly.

The item help file must follow the format shown in the Application Programmer's
Guide in the "Customizing the Administration Interface" chapter or in the System
Administrator's Guide in the "Customizing the sysadm Interface" appendix.

SEE ALSO
delsysadm(1M), pkgmk(1), prototype(4), sysadm(1M)
NAME
edvtoc – VTOC (Volume Table of Contents) editing utility

SYNOPSIS
edvtoc -f vtoc-file raw-device

DESCRIPTION
The edvtoc command allows you to edit the contents of the VTOC (Volume Table Of Contents). The required procedure for editing the VTOC includes three steps. First, run prtvtoc [see prtvtoc(1M)] using the -f option. Second, edit the file created by prtvtoc to reflect the needed changes to the VTOC. Third, run edvtoc using the edited file.

edvtoc provides four functions; reading/interpreting the vtoc-file, limited validity checking of the new VTOC, displaying the new VTOC, and writing the VTOC to the disk if the user requests it.

When editing the VTOC, the following entries are the valid slice tags and slice permission flags.

Slice Tags
#define V_BOOT 0x01 /* Boot slice */
#define V_ROOT 0x02 /* Root filesystem */
#define V_SWAP 0x03 /* Swap filesystem */
#define V_USR 0x04 /* Usr filesystem */
#define V_BACKUP 0x05 /* full disk */
#define V_ALTS 0x06 /* alternate sector space */
#define V_OTHER 0x07 /* non-unix space */
#define V_ALTTRK 0x08 /* alternate track space */
#define V_STAND 0x09 /* Stand slice */
#define V_VAR 0x0a /* Var slice */
#define V_HOME 0x0b /* Home slice */
#define V_DUMP 0x0c /* dump slice */

Slice Permission Flags
#define V_UNMNT 0x01 /* Unmountable partition */
#define V_RONLY 0x10 /* Read only */
#define V_VALID 0x200 /* Partition is valid to use */

The start and size value are in absolute sector numbers where the first sector on the drive is 0 (which is reserved for the partition table). Slices should start and end on a cylinder boundary if possible. The head, cylinder and sectors/track information provided by prtvtoc -p will assist in the calculations. Slices should not overlap (slice 0 is the exception, it describes the entire UNIX partition).

OPTIONS
-f vtoc-file writes the current contents of the VTOC into the vtoc-file in a condensed format. The format of the file is slice number, slice tag value, slice flag value, slice start sector, slice size (in sectors). The purpose of this file is to be input for the edvtoc command.
raw-device

**raw-device** is the character special device for the disk drive to be accessed. It must be the slice 0 device to represent the entire device (for example, `/dev/rdsk/0s0` or `/dev/rdsk/c0t0d0s0`).

**FILES**

- `/dev/dsk/0s0`
- `/dev/rdsk/1s0`
- `/dev/rdsk/c?t?d?s0`

**SEE ALSO**

- `prtvtoc(1M)`
egrep (1)  (Directory and File Management Utilities)  egrep (1)

NAME
egrep – search a file for a pattern using full regular expressions

SYNOPSIS
egrep [options] full_regular_expression [file . . .]

DESCRIPTION
egrep (expression grep) searches files for a pattern of characters and prints all
lines that contain that pattern. egrep uses full regular expressions (expressions
that have string values that use the full set of alphanumeric and special charac-
ters) to match the patterns. It uses a fast deterministic algorithm that sometimes
needs exponential space.

egrep accepts the same full regular expressions accepted by ed, with six excep-
tions:

\( \) \(<\ \{m\ \)
\( \) \(\) \(n\) \}

(The regular expressions \( and \) should not be confused with parentheses used
for grouping.) In addition, egrep accepts the following expressions:
1. A full regular expression followed by + that matches one or more
   occurrences of the full regular expression.
2. A full regular expression followed by ? that matches 0 or 1 occurrences of
   the full regular expression.
3. Full regular expressions separated by | or by a newline that match strings
   that are matched by any of the expressions.
4. A full regular expression that may be enclosed in parentheses () for
   grouping.

Be careful using the characters $, *, [, ^, |, (, ), and \ in full_regular_expression,
because they are also meaningful to the shell. It is safest to enclose the entire
full_regular_expression in single quotes ‘ . . . ’.

The order of precedence of operators is [ ], then *?+, then concatenation, then |
and newline.

If no files are specified, egrep assumes standard input. Normally, each line
found is copied to the standard output. The filename is printed before each line
found if there is more than one input file.

Command line options are:

-\(b\) Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).
-\(c\) Print only a count of the lines that contain the pattern.
-\(i\) Ignore uppercase/lowercase distinction during comparisons.
-\(h\) Suppress printing of filenames when searching multiple files.
-\(l\) Print the names of files with matching lines once, separated by newlines.
   Does not repeat the names of files when the pattern is found more than
   once.
-n Precede each line by its line number in the file (first line is 1).
-ν Print all lines except those that contain the pattern.
-ε special_expression
    Search for a special_expression (full_regular_expression that begins with a -).
-ф file
    Take the list of full_regular_expressions from file.

SEE ALSO
    ed(1), fgrep(1), grep(1), sed(1), sh(1)

DIAGNOSTICS
    Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files (even if matches were found).

NOTES
    Ideally there should be only one grep command, but there is not a single algorithm that spans a wide enough range of space-time tradeoffs. Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in /usr/include/stdio.h.
NAME
enable, disable – enable/disable LP printers

SYNOPSIS
enable printers
disable [options] printers

DESCRIPTION
The enable command activates the named printers, enabling them to print requests submitted by the lp command. If the printer is remote, the command will only enable the transfer of requests to the remote system; the enable command must be run again, on the remote system, to activate the printer. (Run lpstat -p to get the status of printers.)

The disable command deactivates the named printers, disabling them from printing requests submitted by lp. By default, any requests that are currently printing on the designated printers will be reprinted in their entirety either on the same printer or on another member of the same class of printers. If the printer is remote, this command will only stop the transmission of jobs to the remote system. The disable command must be run on the remote system to disable the printer. (Run lpstat -p to get the status of printers.) Options for use with disable are:

-\c Cancel any requests that are currently printing on any of the designated printers. This option cannot be used with the -w option. If the printer is remote, the -c option will be silently ignored.

-\r reason Assign a reason for the disabling of the printers. This reason applies to all printers specified. This reason is reported by lpstat -p. reason must be enclosed in quotes if it contains blanks. The default reason is unknown reason for existing printers, and new printer for printers just added to the system but not yet enabled.

-\w Wait until the request currently being printed is finished before disabling the specified printer. This option cannot be used with the -c option. If the printer is remote, the -w option will be silently ignored.

FILES
/var/spool/lp/*

SEE ALSO
lp(1), lpstat(1)
NAME
  env – set environment for command execution

SYNOPSIS
  env [-] [ name=value ] . . . [ command args ]

DESCRIPTION
  env obtains the current environment, modifies it according to its arguments, then
  executes the command with the modified environment. Arguments of the form
  name=value are merged into the inherited environment before the command is
  executed. The – flag causes the inherited environment to be ignored completely,
  so that the command is executed with exactly the environment specified by the
  arguments.

  If no command is specified, the resulting environment is printed, one name-value
  pair per line.

SEE ALSO
  sh(1)
  exec(2) in the Programmer’s Reference Manual
  profile(4), environ(5) in the System Administrator’s Reference Manual
NAME
eqn, neqn, checkeq – typeset mathematics

SYNOPSIS
/usr/ucb/eqn [-dxy] [-fn] [-pn] [-sn] [filename] ...
/usr/ucb/neqn [filename] ...
/usr/ucb/checkeq [filename] ...

DESCRIPTION
The eqn and neqn commands are language processors to assist in describing
equations. eqn is a preprocessor for troff(1) and is intended for devices that can
print troff’s output. neqn is a preprocessor for nroff(1) and is intended for use
with terminals.

checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.
If no filenames are specified, eqn and neqn read from the standard input. A line
beginning with .EQ marks the start of an equation; the end of an equation is
marked by a line beginning with .EN. Neither of these lines is altered, so they
may be defined in macro packages to get centering, numbering, etc. It is also
possible to set two characters as “delimiters”; subsequent text between delimiters
is also treated as eqn input.

The following options are available for eqn and neqn:
-dxy Set equation delimiters set to characters x and y with the command-line
argument. The more common way to do this is with delimxy between
.EQ and .EN. The left and right delimiters may be identical. Delimiters
are turned off by delim off appearing in the text. All text that is neither
between delimiters nor between .EQ and .EN is passed through
untouched.
-fn Change font to n globally in the document. The font can also be changed
globally in the body of the document by using the gfont directive.
-pn Reduce subscripts and superscripts by n point sizes from the previous
size. In the absence of the -p option, subscripts and superscripts are
reduced by 3 point sizes from the previous size.
-sn Set equations in point size n globally in the document. The point size can
also be changed globally in the body of the document by using the gsize
directive.
-Tdev Prepare output for device dev. If no -T option is present, eqn looks at the
environment variable TYPESETTER to see what the intended output device
is. If no such variable is found in the environment, a system-dependent
default device is assumed. Not available using neqn.

USAGE
eqn Language
Tokens within eqn are separated by braces, double quotes, tildes, circumflexes,
SPACE, TAB, or NEWLINE characters. Braces {} are used for grouping; generally
speaking, anywhere a single character like x could appear, a complicated con-
struction enclosed in braces may be used instead. Tilde (~) represents a full SPACE
in the output, circumflex (^) half as much.

3/91
Subscripts and superscripts are produced with the keywords sub and sup. Thus ‘x sub i’ makes $x_i$, ‘a sub i sup 2’ produces $a_i^2$, and ‘e sup (x sup 2 + y sup 2)’ gives $e^{x^2+y^2}$.

Fractions are made with over: ‘a over b’ yields $\frac{a}{b}$.

sqrt makes square roots: ‘1 over down 10 sqrt (ax sup 2 + bx + c)’ results in $\frac{1}{\sqrt{ax^2+bx+c}}$.

Although eqn tries to get most things at the right place on the paper, occasionally you will need to tune the output to make it just right. In the previous example, a local motion, down 10 was used to get more space between the square root and the line above it.

The keywords from and to introduce lower and upper limits on arbitrary things: $\lim_{n \to \infty} \sum_{i=0}^{n} x_i$ is made with ‘lim from {n-> inf } sum from 0 to n x sub i’.

Left and right brackets, braces, etc., of the right height are made with left and right: ‘left [ x sup 2 + y sup 2 over alpha right ] -=-1’ produces $\left[ \frac{x^2+y^2}{\alpha} \right] = 1$.

The right clause is optional. Legal characters after left and right are braces, brackets, bars, c and f for ceiling and floor, and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile: ‘pile {a above b above c}’ produces $a$. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and cpile center, with different vertical spacing, and rpile right-justifies.

Matrices are made with matrix: ‘matrix { leo 1 { x sub i above y sub 2 } Xi 1 eeol { 1 above 2 } }’ produces $\begin{bmatrix} x_i \ 1 \\ 1 \end{bmatrix}$. In addition, there is rcol for a right-justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: ‘x dot = f(t) bar’ is $\dot{x} = \bar{f}(t)$, ‘y dotdot bar -=- n under’ is $\ddot{y} = n$, and ‘x vec -=- y dyad’ is $\vec{x} = \vec{y}$.

Sizes and font can be changed with size n or size ±n, roman, italic, bold, and font n. Size and fonts can be changed globally in a document by gsize n and gfont n, or by the command-line arguments -sn and -fn.

Successive display arguments can be lined up. Place mark before the desired lineup point in the first equation; place lineup at the place that is to line up vertically in subsequent equations.
Shorthands may be defined or existing keywords redefined with `define`:

```
define thing % replacement %
```

defines a new token called `thing` which will be replaced by `replacement` whenever it appears thereafter. The `%` may be any character that does not occur in `replacement`.

Keywords like `sum ( \sum )`, `int ( \int )`, `inf ( \infty )`, and shorthands like `>= ( \geq )`, `-> ( \rightarrow )`, and `!= ( \neq )` are recognized. Greek letters are spelled out in the desired case, as in `alpha` or `GAMMA`. Mathematical words like `sin`, `cos`, and `log` are made Roman automatically. `troff(1)` four-character escapes like `\(bu ( . )` can be used anywhere. Strings enclosed in double quotes "..." are passed through untouched; this permits keywords to be entered as text, and can be used to communicate with `troff` when all else fails.

**EXAMPLE**

```
eqn filename ... | troff
neqn filename ... | nroff
```

**SEE ALSO**

`tbl(1)`, `troff(1)`, `eqnchar(5)`, `ms(5)`

**NOTES**

To embolden digits, parens, etc., it is necessary to quote them, as in `bold "12.3"`. 
NAME

evgainit – Extended VGA keyboard/display driver initialization

SYNOPSIS

evgainit card-type

DESCRIPTION

evgainit is used to initialize the keyboard/display driver (see the keyboard(7) manual page) if extended VGA graphics modes are being used on certain video cards.

The keyboard/display driver provides the interface to the video card. evgainit informs the keyboard/display driver which video card is installed and should be rerun each time the system is booted.

In many cases the keyboard/display driver can determine which card is being used and therefore this command need not be run. For example, you don’t need to run evgainit for the following cards:

- AT&T VDC 400, VDC 600, or VDC 750.
- Any card that doesn’t have extended VGA capability (i.e. 800x600 pixels).
- Any card that is only VGA (640x480 pixels) or EGA (640x350 pixels).
- Any extended VGA cards (listed below) that will not be set to graphics modes with resolutions greater than 640x480 pixels.

evgainit must be run, however, for the following cards before attempting to use resolutions greater than 640x480 pixels. The following list shows the card-type argument value that should be used for each video card:

<table>
<thead>
<tr>
<th>card-type</th>
<th>Video Card(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vega</td>
<td>Video 7 800x600, Video 7 VEGA VGA Adaptor</td>
</tr>
<tr>
<td>stbga</td>
<td>STB VGA Extra/EM, Extra/EM-16</td>
</tr>
<tr>
<td>sigma/h</td>
<td>SIGMA VGA/H</td>
</tr>
<tr>
<td>pvgala</td>
<td>Paradise PVGA1A</td>
</tr>
<tr>
<td>dell</td>
<td>Dell VGA</td>
</tr>
<tr>
<td>vram</td>
<td>Video 7 VRAM VGA</td>
</tr>
<tr>
<td>orvga</td>
<td>Orchid Designer VGA, Designer 800 VGA, ProDesigner VGA</td>
</tr>
<tr>
<td>orvgani</td>
<td>Orchid Designer, ProDesigner VGA (non-interlaced)</td>
</tr>
<tr>
<td>tvga</td>
<td>Tseng Labs</td>
</tr>
<tr>
<td>tvgani</td>
<td>Tseng Labs (non-interlaced)</td>
</tr>
<tr>
<td>gvg</td>
<td>Genoa Super VGA</td>
</tr>
<tr>
<td>pega</td>
<td>Paradise PEGA2</td>
</tr>
<tr>
<td>gega</td>
<td>Genoa EGA</td>
</tr>
<tr>
<td>fastwrite</td>
<td>Video 7 FastWrite VGA</td>
</tr>
<tr>
<td>won</td>
<td>ATI VGA Wonder</td>
</tr>
</tbody>
</table>

The command can only be run with super user privileges.
evgainit(1M)  evgainit(1M)

EXAMPLES
For an STB Extra/EM-16 video card, evgainit should be invoked as:
   evgainit stb
This command could be run automatically from the inittab file (see the
inittab(4) manual page) or could be run by super user after each system reboot.

SEE ALSO
keyboard(7), console(7), inittab(4).
"Video Interface" in the Integrated Software Developer's Guide.
NAME
ex - text editor

SYNOPSIS

DESCRIPTION
ex is the root of a family of editors: ex and vi. ex is a superset of ed, with the most notable extension being a display editing facility. Display based editing is the focus of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1), which is a command which focuses on the display-editing portion of ex.

For ed Users
If you have used ed you will find that, in addition to having all of the ed commands available, ex has a number of additional features useful on CRT terminals. Intelligent terminals and high speed terminals are very pleasant to use with vi. Generally, the ex editor uses far more of the capabilities of terminals than ed does, and uses the terminal capability data base [see terminfo(4)] and the type of the terminal you are using from the environmental variable TERM to determine how to drive your terminal efficiently. The editor makes use of features such as insert and delete character and line in its visual command (which can be abbreviated vi) and which is the central mode of editing when using the vi command.

ex contains a number of features for easily viewing the text of the file. The z command gives easy access to windows of text. Typing ^D (control-d) causes the editor to scroll a half-window of text and is more useful for quickly stepping through a file than just typing return. Of course, the screen-oriented visual mode gives constant access to editing context.

ex gives you help when you make mistakes. The undo (u) command allows you to reverse any single change which goes astray. ex gives you a lot of feedback, normally printing changed lines, and indicates when more than a few lines are affected by a command so that it is easy to detect when a command has affected more lines than it should have.

The editor also normally prevents overwriting existing files, unless you edited them, so that you do not accidentally overwrite a file other than the one you are editing. If the system (or editor) crashes, or you accidentally hang up the telephone, you can use the editor recover command (or -r file option) to retrieve your work. This will get you back to within a few lines of where you left off.

ex has several features for dealing with more than one file at a time. You can give it a list of files on the command line and use the next (n) command to deal with each in turn. The next command can also be given a list of file names, or a pattern as used by the shell to specify a new set of files to be dealt with. In general, file names in the editor may be formed with full shell metasyntax. The metacharacter ‘%’ is also available in forming file names and is replaced by the name of the current file.
The editor has a group of buffers whose names are the ASCII lower-case letters (a-z). You can place text in these named buffers where it is available to be inserted elsewhere in the file. The contents of these buffers remain available when you begin editing a new file using the edit (e) command.

There is a command & in ex which repeats the last substitute command. In addition, there is a confirmed substitute command. You give a range of substitutions to be done and the editor interactively asks whether each substitution is desired.

It is possible to ignore the case of letters in searches and substitutions. ex also allows regular expressions which match words to be constructed. This is convenient, for example, in searching for the word “edit” if your document also contains the word “editor.”

ex has a set of options which you can set to tailor it to your liking. One option which is very useful is the autoindent option that allows the editor to supply leading white space to align text automatically. You can then use ^D as a backtab and space or tab to move forward to align new code easily.

Miscellaneous useful features include an intelligent join (j) command that supplies white space between joined lines automatically, commands < and > which shift groups of lines, and the ability to filter portions of the buffer through commands such as sort.

Invocation Options
The following invocation options are interpreted by ex (previously documented options are discussed in the NOTES section at the end of this manual page):

- Suppress all interactive-user feedback. This is useful in processing editor scripts.
- Invoke vi.
- Edit the file containing the tag and position the editor at its definition.
- Edit file after an editor or system crash. (Recovers the version of file that was in the buffer when the crash occurred.)
- List the names of all files saved as the result of an editor or system crash.
- Readonly mode; the readonly flag is set, preventing accidental overwriting of the file.
- Encryption option; when used, ex simulates an X command and prompts the user for a key. This key is used to encrypt and decrypt text using the algorithm of the crypt command. The X command makes an educated guess to determine whether text read in is encrypted or not. The temporary buffer file is encrypted also, using a transformed version of the key typed in for the -x option. See crypt(1). Also, see the NOTES section at the end of this manual page.
-c Encryption option; the same as the -x option, except that ex simulates a C command. The C command is like the X command, except that all text read in is assumed to have been encrypted.

-c command Begin editing by executing the specified editor command (usually a search or positioning command).

The file argument indicates one or more files to be edited.

ex States
Command Normal and initial state. Input prompted for by . Your line kill character cancels a partial command.

Insert Entered by a, i, or c. Arbitrary text may be entered. Insert state normally is terminated by a line having only ";." on it, or, abnormally, with an interrupt.

Visual Entered by typing vi; terminated by typing Q or \ (control-\).

ex Command Names and Abbreviations

<table>
<thead>
<tr>
<th>Command</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbrev</td>
<td>ab</td>
</tr>
<tr>
<td>append</td>
<td>a</td>
</tr>
<tr>
<td>args</td>
<td>ar</td>
</tr>
<tr>
<td>change</td>
<td>c</td>
</tr>
<tr>
<td>copy</td>
<td>co</td>
</tr>
<tr>
<td>delete</td>
<td>d</td>
</tr>
<tr>
<td>edit</td>
<td>e</td>
</tr>
<tr>
<td>file</td>
<td>f</td>
</tr>
<tr>
<td>global</td>
<td>g</td>
</tr>
<tr>
<td>insert</td>
<td>i</td>
</tr>
<tr>
<td>join</td>
<td>j</td>
</tr>
<tr>
<td>list</td>
<td>l</td>
</tr>
</tbody>
</table>

ex Commands
forced encryption C heuristic encryption X
resubst & print next CR
rshift > lshift <
scroll ^D window z
shell escape !

ex Command Addresses

<table>
<thead>
<tr>
<th>Command</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>line n</td>
</tr>
<tr>
<td>.</td>
<td>current</td>
</tr>
<tr>
<td>$</td>
<td>last</td>
</tr>
<tr>
<td>+</td>
<td>next</td>
</tr>
<tr>
<td>-</td>
<td>previous</td>
</tr>
<tr>
<td>+n</td>
<td>n forward</td>
</tr>
<tr>
<td>%</td>
<td>1,$</td>
</tr>
</tbody>
</table>
**Initializing options**

- **EXINIT**
- $HOME/.exrc
- ./.exrc
- set
- nox
- set x=set
- x=val
- all
- x?

**Most useful options and their abbreviations**

- autoindent  ai  supply indent
- autowrite   aw  write before changing files
- directory   ex  pathname of directory for temporary work files
- exrc        ex  allow vi/ex to read the .exrc in the current directory. This option is set in the EXINIT shell variable or in the .exrc file in the $HOME directory.
- ignorecase  ic  ignore case of letters in scanning
- list        ic  print *I for tab, $ at end
- magic       ic  treat . [ * special in patterns
- modelines   ex  first five lines and last five lines executed as vi/ex commands if they are of the form
-                ex:command: or vi:command:
- number      nu  number lines
- paragraphs  para  macro names that start paragraphs
- redraw      para  simulate smart terminal
- report      sect  informs you if the number of lines modified by the last command is greater than the value of the report variable
- scroll      sect  command mode lines
- sections    sect  macro names that start sections
- shiftwidth  sw  for < >, and input ^D
- showmatch   sm  to ) and } as typed
- showmode    smd  show insert mode in vi
- slowopen    slow  stop updates during insert
- term        slow  specifies to vi the type of terminal being used (the default is the value of the environmental variable TERM)
- window      wm  visual mode lines
- wrapmargin  wm  automatic line splitting
- wrapscan    ws  search around end (or beginning) of buffer
Scanning pattern formation

^ beginning of line
$ end of line
. any character
< beginning of word
> end of word
[\text{str}] any character in \text{str}
[\text{[str]}] any character not in \text{str}
[x\text{-}y] any character between \text{x} and \text{y}
* any number of preceding characters

AUTHOR

vi and ex are based on software developed by The University of California, Berkeley California, Computer Science Division, Department of Electrical Engineering and Computer Science.

FILES

/usr/lib/exstrings error messages
/usr/lib/exrecover recover command
/usr/lib/expreserve preserve command
/usr/share/lib/terminfo/* describes capabilities of terminals
$HOME/.exrc editor startup file
./.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/var/preserve/login preservation directory (where login is the user's login)

NOTES

Several options, although they continue to be supported, have been replaced in the documentation by options that follow the Command Syntax Standard [see intro(1)]. The - option has been replaced by \text{-s}, a \text{-r} option that is not followed with an option-argument has been replaced by \text{-L}, and \text{+command} has been replaced by \text{-c command}.

The encryption options and commands are provided with the Security Administration Utilities package, which is available only in the United States.

The \text{z} command prints the number of logical rather than physical lines. More than a screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line \text{-s} option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the editor.

Null characters are discarded in input files and cannot appear in resultant files.
SEE ALSO
  crypt(1), ed(1), edit(1), grep(1), sed(1), sort(1), vi(1)
curses(3X), in the Programmer's Reference Manual
term(4), terminfo(4) in the System Administrator's Reference Manual
User's Guide
  Editing Guide
curses/terminfo chapter of the Programmer's Guide
NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arguments

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written
on the standard output. Terms of the expression must be separated by blanks.
Characters special to the shell must be escaped. Note that 0 is returned to indi­
cate a zero value, rather than the null string. Strings containing blanks or other
special characters should be quoted. Integer-valued arguments may be preceded
by a unary minus sign. Internally, integers are treated as 32-bit, 2s complement
numbers. The length of the expression is limited to 512 characters.

The operators and keywords are listed below. Characters that need to be escaped
in the shell [see sh(1)] are preceded by \. The list is in order of increasing pre­
cedence, with equal precedence operators grouped within { } symbols.

expr | expr
returns the first expr if it is neither null nor 0, otherwise returns the
second expr.

expr & expr
returns the first expr if neither expr is null or 0, otherwise returns 0.

expr { =, \>, \>=, \<, \<=, != } expr
returns the result of an integer comparison if both arguments are
integers, otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, /, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr : expr
The matching operator : compares the first argument with the second
argument, which must be a regular expression. Regular expression syn­
tax is the same as that of ed(1), except that all patterns are “anchored”
(i.e., begin with ^) and, therefore, ^ is not a special character, in that con­
text. Normally, the matching operator returns the number of bytes
matched (0 on failure). Alternatively, the \( \ldots \) pattern symbols can
be used to return a portion of the first argument.

match expr expr
Compare the first argument with the second argument which must be a
regular expression. Regular expression syntax is the same as that of ed(1), except that all patterns are anchored (for example, begin with ^)
and, therefore, ^ is not a special character, in that context. Normally, the
number of characters matched (0 on failure) is returned. Alternatively,
the \( \ldots \) pattern symbols can be used to return a portion of the
first argument.
length string
   Return the length of string.

substr string index count
   Return the portion of string composed of at most count characters starting
   at the character position of string as expressed by index (where the
   first character of string is index 1, not 0).

index string character_sequence
   Return the index of the first character in string that is also in
   character_sequence or 0 to indicate no match.

EXAMPLES
Add 1 to the shell variable a:
   a= expr $a + 1

The following example emulates basename(1)—it returns the last segment of the
path name $a. For $a equal to either /usr/abc/file or just file, the example
returns file. (Watch out for / alone as an argument: expr takes it as the divi-
sion operator; see the NOTES below.)
   expr $a : \.*\(.*\) \(.*\)$a

Here is a better version of the previous example. The addition of the // charac-
ters eliminates any ambiguity about the division operator and simplifies the
whole expression.
   expr //$a : \.*\(.*\) \(.*\)

Return the number of characters in $VAR:
   expr $VAR : \.*

SEE ALSO
   ed(1), sh(1)

DIAGNOSTICS
As a side effect of expression evaluation, expr returns the following exit values:
   0 if the expression is neither null nor 0
   1 if the expression is null or 0
   2 for invalid expressions.

syntax error for operator/operand errors
non-numeric argument if arithmetic is attempted on such a string

NOTES
After argument processing by the shell, expr cannot tell the difference between
an operator and an operand except by the value. If $a is an =, the command:
   expr $a = \='

looks like:
   expr = =

as the arguments are passed to expr (and they are all taken as the = operator).
The following works:
   expr X$a = X=
NAME
exstr – extract strings from source files

SYNOPSIS
exstr file ...
exstr -e file ...
exstr -r [-d] file ...

DESCRIPTION
The exstr utility is used to extract strings from C language source files and replace them by calls to the message retrieval function [see gettext(3C)]. This utility will extract all character strings surrounded by double quotes, not just strings used as arguments to the printf command or the printf routine. In the first form, exstr finds all strings in the source files and writes them on the standard output. Each string is preceded by the source file name and a colon. The meanings of the options are:

-e Extract a list of strings from the named C language source files, with positional information. This list is produced on standard output in the following format:

file:line:position:msgfile:msgnum:string

file the name of a C language source file
line line number in the file
position character position in the line
msgfile null
msgnum null
string the extracted text string

Normally you would redirect this output into a file. Then you would edit this file to add the values you want to use for msgfile and msgnum:

msgfile the file that contains the text strings that will replace string. A file with this name must be created and installed in the appropriate place by the mkmsgs(1) utility.

msgnum the sequence number of the string in msgfile.

The next step is to use exstr -r to replace strings in file.

-r Replace strings in a C language source file with function calls to the message retrieval function gettext.

-d This option is used together with the -r option. If the message retrieval fails when gettext is invoked at run time, then the extracted string is printed.

You would use the capability provided by exstr on an application program that needs to run in an international environment and have messages print in more than one language. exstr replaces text strings with function calls that point at strings in a message database. The database used depends on the runtime value of the LC_MESSAGES environment variable [see environ(5)].
The first step is to use `exstr -e` to extract a list of strings and save it in a file. Next, examine this list and determine which strings can be translated and subsequently retrieved by the message retrieval function. Then, modify this file by deleting lines that can’t be translated and, for lines that can be translated, by adding the message file names and the message numbers as the fourth (msgfile) and fifth (msgnum) entries on a line. The message files named must have been created by `mkmsgs(1)` and exist in `/usr/lib/locale/locale/LC_MESSAGES`. The directory `locale` corresponds to the language in which the text strings are written [see `setlocale(3C)`]. The message numbers used must correspond to the sequence numbers of strings in the message files.

Now use this modified file as input to `exstr -r` to produce a new version of the original C language source file in which the strings have been replaced by calls to the message retrieval function `gettext`. The `msgfile` and `msgnum` fields are used to construct the first argument to `gettext`. The second argument to `gettext` is printed if the message retrieval fails at run time. This argument is the null string, unless the `-d` option is used.

This utility cannot replace strings in all instances. For example, a static initialized character string cannot be replaced by a function call, or a string could be in the form of an escape sequence that cannot be translated. In order not to break existing code, the files created by invoking `exstr -e` must be examined and lines containing strings not replaceable by function calls must be deleted. In some cases the code may require modifications so that strings can be extracted and replaced by calls to the message retrieval function.

**EXAMPLES**

The following examples show uses of `exstr`.

Assume that the file `foo.c` contains two strings:

```c
main()
{
 printf("This is an example\n");
 printf("Hello world!\n");
}
```

The `exstr` utility, invoked with the argument `foo.c`, extracts strings from the named file and prints them on the standard output.

`exstr foo.c` produces the following output:

```
foo.c:This is an example
foo.c:Hello world!
```

`exstr -e foo.c > foo.stringsout` produces the following output in the file `foo.stringsout`:

```
foo.c:3:8:::This is an example
foo.c:4:8:::Hello world!
```

You must edit `foo.stringsout` to add the values you want to use for the `msgfile` and `msgnum` fields before these strings can be replaced by calls to the retrieval function. If `UX` is the name of the message file, and the numbers 1 and 2 represent the sequence number of the strings in the file, here is what `foo.stringsout` looks like after you add this information:
The `exstr` utility can now be invoked with the `-r` option to replace the strings in the source file by calls to the message retrieval function `gettext`.

`exstr -r foo.c <foo.stringsout >intlfoo.c` produces the following output:

```c
extern char *gettext();
main() {
 printf(gettxt("UX:1", ""));
 printf(gettxt("UX:2", ""));
}
exstr -rd foo.c <foo.stringsout >intlfoo.c` uses the extracted strings as a second argument to `gettext`.

```c
extern char *gettext();
main() {
    printf(gettxt("UX:1", "This is an example\n"));
    printf(gettxt("UX:2", "Hello world!\n"));
}
```

files

```
/usr/lib/locale/locale/LC_MESSAGES/* files created by mkmsgs(1)
```

See Also

`gettext(1), mkmsgs(1), printf(1), srchtxt(1), gettext(3C), printf(3S), setlocale(3C), environ(5)`

Diagnóstics

The error messages produced by `exstr` are intended to be self-explanatory. They indicate errors in the command line or format errors encountered within the input file.
NAME
 face - executable for the Framed Access Command Environment Interface

SYNOPSIS
 face [-i init_file] [-c command_file] [-a alias_file] [file ...]

DESCRIPTION
 file is the full pathname of the file describing the object to be opened
 initially, and must follow the naming convention Menu.xxx for a menu,
 Form.xxx for a form, and Text.xxx for a text file, where xxx is any string
 that conforms to the UNIX system file naming conventions. The FMLI
 descriptor lifetime will be ignored for all frames opened by argument
 to face. These frames have a lifetime of immortal by default. If file
 is not specified on the command line, the FACE Menu will be opened
 along with those objects specified by the LOGINWIN environment
 variables. These variables are found in the user's .environ file.

FILES
 $HOME/pref/.environ

SEE ALSO
 env(4)

DIAGNOSTICS
 The face command will exit with a non-zero exit code if the user is not properly
 set up as a FACE user.
NAME
factor — obtain the prime factors of a number

SYNOPSIS
factor [integer]

DESCRIPTION
When you use factor without an argument, it waits for you to give it an integer. After you give it a positive integer less than or equal to 10^{14}, it factors the integer, prints its prime factors the proper number of times, and then waits for another integer. factor exits if it encounters a zero or any non-numeric character.

If you invoke factor with an argument, it factors the integer as described above, and then it exits.

The maximum time to factor an integer is proportional to \sqrt{n}. factor will take this time when n is prime or the square of a prime.

DIAGNOSTICS
factor prints the error message, Ouch, for input out of range or for garbage input.
fastboot (1M) (BSD Compatibility Package) fastboot (1M)

NAME
fastboot, fasthalt – reboot/halt the system without checking the disks

SYNOPSIS
/usr/ucb/fastboot [boot-options]
/usr/ucb/fasthalt [halt-options]

DESCRIPTION
fastboot and fasthalt are shell scripts that invoke reboot and halt with the
proper arguments.
These commands are provided for compatibility only.

FILES
/etc/rc

SEE ALSO
halt(1M), reboot(1M)
fsck(1M), init(1M), rc0(1M), rc2(1M), rc6(1M) in the System Administrator's
Reference Manual
NAME
 fdetach – detach a name from a STREAMS-based file descriptor

SYNOPSIS
 fdetach path

DESCRIPTION
 The fdetach command detaches a STREAMS-based file descriptor from a name in
 the file system. path is the path name of the object in the file system name space,
 which was previously attached [see fattach(3C)]. The user must be the owner
 of the file or a user with the appropriate privileges. All subsequent operations on
 path will operate on the file system node and not on the STREAMS file. The per-
 missions and status of the node are restored to the state the node was in before
 the STREAMS file was attached to it.

SEE ALSO
 fattach(3C), fdetach(3C), streamio(7)
 Programmer’s Guide: STREAMS
NAME
fdisk – create or modify hard disk partition table

SYNOPSIS
fdisk [argument]

DESCRIPTION
This command is used to create and modify the partition table that is put in the first sector of the hard disk. This table is used by DOS and by the first-stage bootstrap to identify parts of the disk reserved for different operating systems, and to identify the partition containing the second-stage bootstrap (the active partition). The optional argument can be used to specify the raw device associated with the hard disk; the default value is /dev/rdsk/0s0 for integral disks. For SCSI disks, there is no default value. However if the default on your system is set to 0s0, then it is linked to /dev/rdsk/c0t0d0s0. If the default is set to 1s0, then it is linked to /dev/rdsk/c0t1d0s0.

The program displays the partition table as it exists on the disk, and then presents a menu allowing the user to modify the table. The menu, questions, warnings, and error messages are intended to be self-explanatory.

If there is no partition table on the disk, the user is given the option of creating a default partitioning or specifying the initial table values. The default partitioning allows 10% of the disk for MS-DOS and 90% for the UNIX System, and makes the UNIX System partition active. In either case, when the initial table is created, fdisk also writes out the first-stage bootstrap code [see hd(7)] along with the partition table. After the initial table is created, only the table is changed; the bootstrap is not modified.

Menu Options
The following are the menu options given by the fdisk program:

Create a partition
This option allows the user to create a new partition. The maximum number of partitions is 4. The program will ask for the type of the partition (MS-DOS, UNIX System, or other). It will then ask for the size of the partition as a percentage of the disk. The user may also enter the letter c at this point, in which case the program will ask for the starting cylinder number and size of the partition in cylinders. If a c is not entered, the program will determine the starting cylinder number where the partition will fit. In either case, if the partition would overlap an existing partition, or will not fit, a message is displayed and the program returns to the original menu.

Change Active (Boot from) partition
This option allows the user to specify the partition where the first-stage bootstrap will look for the second-stage bootstrap, otherwise known as the active partition.

Delete a partition
This option allows the user to delete a previously created partition. Note that this will destroy all data in that partition.
Exit This option writes the new version of the table created during this ses-
session with fdisk out to the hard disk, and exits the program.

Cancel This option exits without modifying the partition table.

DIAGNOSTICS
Most messages will be self-explanatory. The following may appear immediately
after starting the program:

`fdisk: cannot open <device>`
This indicates that the device name argument is not valid.

`fdisk: unable to get device parameters for device <device>`
This indicates a problem with the configuration of the hard disk, or an
error in the hard disk driver.

`fdisk: error reading partition table`
This indicates that some error occurred when trying initially to read the
hard disk. This could be a problem with the hard disk controller or
driver, or with the configuration of the hard disk.

This message may appear after selecting the Exit option from the menu.

`fdisk: error writing boot record`
This indicates that some error occurred when trying to write the new par-
tition table out to the hard disk. This could be a problem with the hard
 disk controller, the disk itself, the driver, or the configuration of the hard
disk.

FILES
`/dev/rdsk/0s0` for integral disks
`/dev/rdsk/c?t?d?s0` for SCSI disks

SEE ALSO
mkpart(1M), disk(7), hd(7)

NOTES
Compatible with MS-DOS Versions 3.2, 3.3, and 4.0. Partitions set up using the
MS-DOS 4.0 fdisk command that are greater than 32 MB will appear in the
UNIX System display as "other". Partitions created with MS-DOS that are less
than 32 MB will appear correctly as DOS partitions.

The DOS 4.01 fdisk program assumes it can store diagnostic information in
cylinder 1020 on the hard disk. If a UNIX System partition is created that uses
cylinder 1020, DOS 4.01 fdisk will be unable to create a DOS partition. There-
fore, the user must either create the UNIX System partition at the front of the
disk so that cylinder 1020 is not used, or create the DOS partition using the UNIX
System fdisk (not DOS fdisk) and never delete it.

When setting up a DOS 4.01 partition on the hard disk to co-reside with a UNIX
partition that has already been set up, do not allow fdisk to create the largest
possible partition and make it active (as the fdisk prompt requests). Instead, the
user should manually set it up to line up against the UNIX partition. Note that
this applies to when the user boots DOS 4.01 from floppy disk (not from within
UNIX) and runs fdisk.
NAME

fdp – create, or restore from, a full file system archive

SYNOPSIS

```
fdp -B [-dovAENS] [-c count] bkjobid odpname odpdev odplab descript
fdp -RC [-dovAENS] [-c count] odpname odpdev redpname redev rsjobid descript
```

DESCRIPTION

The **fdp** command is invoked as a child process by other shell commands. The command name, **fdp**, is read either from the **bkhist.tab** file or the **bkreg -m** command and option. The **-B**, **-R**, and **-C** options are passed to **fdp** by the shell commands **backup** and **restore**. The other options are passed from the **bkhist.tab** file or the **bkreg -p** command and option. The arguments are sent to **fdp** from various locations in the backup service.

fdp -B is invoked as a child process by the **backdaemon** command to perform a backup of the data partition **odpdev** (the originating data partition). All blocks in the data partition are archived. The resulting backup is created in the format described on **dd(l)**. The backup is recorded in the backup history log, **/etc/bkup/bkhist.tab**.

fdp -RC is invoked as a child process by the **rsaper** command to restore the entire data partition from an archive created by **fdp -B**. The data partition archive is assumed to be in the format described on **dd(l)**. **dd(l)** format.

The arguments to **fdp** are defined as follows:

- **bkjobid** - the job id assigned by **backup**. The method uses the **bkjobid** when it creates history log entries.
- **odpname** - the name of the data partition that is to be backed up. Unused by **fdp**, but supplied by **backup** for command-line compatibility with other archiving methods.
- **odpdev** - the name of the block special device on which the data partition resides.
- **odplab** - the volume name on the file system [see **labelit(1M)**]. Unused by **fdp**, but supplied by **backup** for command-line compatibility with other archiving methods.
- **descript** - is a description for a destination device in the form:
  ```
dgroup:dname:dchar:dlabels
  ```
 - **dgroup** specifies a device group [see **devgroup.tab(4)**].
 - **dname** specifies a particular device name [see **device.tab(4)**].
 - **dchars** specifies characteristics associated with the device. If specified, **dchar** overrides the defaults for the specified device and group. [See **device.tab(4)** for a further description of device characteristics].
 - **dlabels** specifies the volume names for the media to be used for reading or writing the archive.
Options

Some options are only significant during fdp -B invocations; they are accepted but ignored during fdp -R invocations because the command is invoked and options are specified automatically by restore. These options are flagged with an asterisk (*).

c*count Archives or restores only the first count (512 byte) blocks of data in the data partition.

d* Inhibits recording the archive in the backup history log.

o Permits the user to override media insertion requests [see getvol(1M) and the description of the -o option].

v* Validates the archive as it is written. A checksum is computed as the archive is being written; as each medium is completed, it is re-read and the checksum recomputed to verify that each block is readable and correct. If either check fails, the medium is considered unreadable. If -A has been specified, the archiving operation fails; otherwise, the operator is prompted to replace the failed medium.

A Establishes automated mode, (that is, does not prompt the user to insert or remove media).

E* Reports an estimate of media usage for the archive; then performs the backup.

N* Reports an estimate of media usage for the archive; does not perform the backup.

S Displays a period (.) for every 100 (512 byte) blocks read-from or written-to the archive on the destination device.

User Interactions

The connection between an archiving method and backup is more complex than a simple fork/exec or pipe. The backup command is responsible for all interactions with the user, either directly, or through the bkoper command. Therefore, fdp neither reads from standard-input nor writes to standard-output or standard-error. A method library must be used [see libbrmeth(3)] to communicate reports (estimates, filenames, periods, status, and so on) to backup.

DIAGNOSTICS

The exit codes for fdp are the following:

0 successful completion of the task
1 one or more parameters to fdp are invalid.
2 an error has occurred which caused fdp to fail to complete all portions of its task.
FILES

/etc/bkup/bkexcept.tab lists the files that are to be excluded from an incremental file system backup.

/etc/bkup/bkhist.tab lists the labels of all volumes that have been used for backup operations.

/etc/bkup/rsstatus.tab tracks the status of all restore requests from users.

/etc/bkup/bklog logs errors generated by the backup methods and the backup command

/etc/bkup/rslog logs errors generated by the restore methods and the restore command

$TMP/filelist$$ temporarily stores a table of contents for a backup archive.

SEE ALSO

backup(1M), device.tab(4), fdp(1), ffile(1), fimage(1), getvol(1M), incfile(1), labelit(1M), libbrmeth(3), prtvtoc(1M), rsoper(1M)
NAME

ff (generic) – list file names and statistics for a file system

SYNOPSIS

ff [-F FSType] [-V] [current_options] [-o specific_options] special . . .

DESCRIPTION

ff reads the files and directories of the special file. I-node data is saved for files which match the selection criteria which is either the inode number and/or inode age. Output consists of the path name and other file information. Output fields are positional. The output is produced in i-node order. The default line produced by ff is:

 path-name i-number

current_options are options supported by the s5-specific module of ff. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

The options are:

- Specify the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table.

- V Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.

- Specify FSType-specific options.

NOTE

This command may not be supported for all FSTypes.

FILES

/etc/vfstab list of default parameters for each file system

SEE ALSO

ncheck(1M), vfstab(4)

find(1) in the User’s Reference Manual

Manual pages for the FSType-specific modules of ff
NAME

ff (s5) – display i-list information

SYNOPSIS

[-i-node-list] special...

DESCRIPTION

generic_options are options supported by the generic ff command.

ff reads the i-list and directories of the special file, assuming it is an s5 file system. I-node data is saved for files which match the selection criteria. Output consists of the pathname for each saved i-node, plus other file information requested using the print options below. Output fields are positional. The output is produced in i-node order; fields are separated by tabs. The default line produced by ff is:

pathname i-number

The pathname is preceded by a . (dot) unless the -p option is specified.

The maximum information the command will provide is:

pathname i-number size uid

The argument n in the option descriptions that follow is used as a decimal integer (optionally signed), where + n means more than n, - n means less than n, and n means exactly n. A day is defined as a 24 hour period.

The options are:

- $-F$ s5 Specifies the s5-FSTYPE.
- $-I$ Do not print the i-node number after each pathname.
- $-l$ Generate a supplementary list of all pathnames for multiply-linked files.
- $-pprefix$ The specified prefix will be added to each generated pathname. The default is . (dot).
- $-s$ Print the file size, in bytes, after each pathname.
- $-u$ Print the owner's login name after each pathname.
- $-an$ Select if the i-node has been accessed in n days.
- $-mn$ Select if the i-node has been modified in n days.
- $-cn$ Select if the i-node has been changed in n days.
- $-nfile$ Select if the i-node has been modified more recently than the argument file.
- $-i-node-list$ Generate names for only those i-nodes specified in $i-node-list$. $i-node-list$ is a list of numbers separated by commas and without spaces.
NOTE

If the -l option is not specified, only a single pathname out of all possible ones is generated for a multiply-linked i-node. If -l is specified, all possible names for every linked file on the file system are included in the output. If -l and -i are both specified, then only the names for linked files matching an i-node listed in the i-node list are displayed.

SEE ALSO

generic ff(1M), ncheck(1M).
find(1) in the User's Reference Manual
NAME
ff (ufs) – list file names and statistics for a ufs file system

SYNOPSIS
[-cn] [-nfile] [-ii-node-list] [-o a,m,s] special...

DESCRIPTION
generic_options are options supported by the generic ff command.
ff reads the i-list and directories of the special file, assuming it is a file system.
Inode data is saved for files which match the selection criteria. Output consists of
the pathname for each saved inode, plus other file information requested using
the options below. Output fields are positional. The output is produced in inode
order; fields are separated by TAB characters. The default line produced by ff is:

pathname i-number

The options are:

-F ufs Specify the ufs-FSType.
-I Do not print the i-node number after each pathname.
-l Generate a supplementary list of all pathnames for multiply-linked
files.
-pprefix The specified prefix will be added to each generated pathname. The
default is . (dot).
-s Print the file size, in bytes, after each pathname.
-u Print the owner’s login name after each pathname.
-an Select if the i-node has been accessed in n days.
-mn Select if the i-node has been modified in n days.
-cn Select if the i-node has been changed in n days.
-nfile Select if the i-node has been modified more recently than the argument file.

-ii-node-list Generate names for only those i-nodes specified in i-node-list.
i-node-list is a list of numbers separated by commas and without
spaces.
-o Specify ufs file system specific options. The options available are:
a Print the ‘.’ and ‘.’ directory entries.
m Print mode information.
s Print only special files and files with set-user-ID mode.

NOTE
If the -l option is not specified, only a single pathname out of all possible ones is
generated for a multiply-linked inode. If -l is specified, all possible names for
every linked file on the file system are included in the output. However, no
selection criteria apply to the names generated.
SEE ALSO

find(1), generic ff(1M), ncheck(1M)
NAME
ffile - create, or restore from, a full file system archive

SYNOPSIS
ffile -B [-dlmortvAENSV] bkjobid ofsname ofsdv ofslab descript
ffile -RC [-dlmortvAENSV] ofsname ofsdv refsname redev rsjobid descript
ffile -RF [-dlmortvAENSV] ofsname ofsdv descript rsjobid:uid:date:type:name
[:[rename]:[inode]] . . .

DESCRIPTION
The ffile command is invoked as a child process by other shell commands. The
command name, ffile, is read either from the bkhist.tab file or the bkreg -m
command and option. The -B, -R, -F, and -C options are passed to ffile by
the shell commands backup, restore, and urestore. The other options are
passed from the bkhist.tab or the bkreg -p command and option. The argu­
ments are sent to ffile from various locations in the backup service.

ffile -B is invoked as a child process by bkdaemon to perform a full backup of
the file system ofsname (the originating file system). All files in ofsname are
archived. The resulting backup is created in the format described on cpio(4).
The backup is recorded in the backup history log,
/usr/oam/bkrs/tables/bkhist.tab.

ffile -RC and RF are invoked as child processes by rsoper to extract files from
an full file system archive created by ffile -B. The file system archive is
assumed to be in the format described on cpio(4).

If the -RC option is selected, the entire file system is restored.

If the -RF option is specified, only selected objects from the archive are restored. Each
7-tuple, composed of rsjobid:uid:date:type:name:rename:inode, specifies an
object to be restored from the file system archive. The 7-tuple objects come to
ffile from rsstatus.tab.

The arguments to ffile are defined as follows:

bkjobid the job id assigned by backup. The method uses the bkjobid when it
 creates history log and table-of-contents entries.
ofsgname the name of the file system that is to be backed up.
ofsvdev the name of the block special device on which the file system resides.
ofsslab the volume name on the file system [see labelit(1M)].
descript is a description for a destination device in the form:
 dgroup:dname:dchar:dlabels

dgroup specifies a device group [see devgroup.tab(4)].
dname specifies a particular device name [see device.tab(4)].
dchars specifies characteristics associated with the device. If specified,
dchar overrides the defaults for the specified device and group. [See
device.tab(4) for a further description of device characteristics.]
dlabels specifies the volume names for the media to be used for reading or writing the archive.
ffile (1M) (System Administration Utilities) ffile (1M)

refsname if non-null, the name of the file system to be restored to instead of ofsname. At least one of refsname and redev must be null.

redev if non-null, the partition to be restored to instead of ofsdev. At least one of refsname and redev must be null.

rsjobid the restore jobid assigned by restore or urestore.

uid the real uid of the user who requested the object to be restored. It must match the uid of the owner of the object at the time the archive was made, or it must be the superuser uid.

date the newest "last modification time" that is acceptable for a restorable object. The object is restored from the archive immediately older than this date. date is a hexadecimal representation of the date and time provided by the time system call [see time(2)].

type either F or D, indicating that the object is a file or a directory, respectively.

name the name the object had in the file system archive.

rename the name that the object should be restored to (it may differ from the name the object had in the file system archive). If omitted, the object is restored to name.

inode the inode number of the object as it was stored in the file system archive. [inode] is not used by ffile -R, and is provided only for command-line compatibility with other restoration methods.

Options
Some options are only significant during ffile -B invocations; they are accepted but ignored during ffile -R invocations because the command is invoked and options are specified automatically by restore. These options are flagged with an asterisk (*).

d* Inhibits recording of the archive in the backup history log.

l* Creates a long form of the backup history log that includes a table-of-contents for the archive. This includes the data used to generate a listing of each file in the archive (like that produced by the ls -l command).

m* Mounts the originating file system read-only before starting the backup and remounts it with its original permissions after completing the backup. Cannot be used with root or /usr file systems.

D Permits the user to override media insertion requests [see getvol(1M) and the description of the -o option].

r* Includes remotely mounted resources in the archive.

t* Creates a table of contents for the backup on additional media instead of in the backup history log.

v* Validates the archive as it is written. A checksum is computed as the archive is being written; as each medium is completed, it is re-read and the checksum recomputed to verify that each block is readable and correct. If either check fails, the medium is considered
unreadable. If -A has been specified, the archiving operation fails; otherwise, the operator is prompted to replace the failed medium.

A	Establishes automated mode, (i.e., does not prompt the user to insert or remove media).

E* Reports an estimate of media usage for the archive; then performs the backup.

N* Reports an estimate of media usage for the archive; does not perform the backup.

S	Displays a period (.) for every 100 (512 byte) blocks read-from or written-to the archive on the destination device.

V	Displays the name of each file written-to or extracted-from the archive on the destination device.

User Interactions

The connection between an archiving method and backup is more complex than a simple fork/exec or pipe. The backup command is responsible for all interactions with the user, either directly, or through bkoper. Therefore, ffile neither reads from standard-input nor writes to standard-output or standard-error. A method library must be used [see libbrmeth(3)] to communicate reports (estimates, filenames, periods, status, etc.) to backup.

DIAGNOSTICS

The exit codes for ffile are the following:

0	successful completion of the task
1	one or more parameters to ffile are invalid.
2	an error has occurred which caused ffile to fail to complete all portions of its task.

FILES

/usr/oam/bkrs/tables/bkexcept.tab
lists the files that are to be excluded from an incremental file system backup.

/usr/oam/bkrs/tables/bkhist.tab
lists the labels of all volumes that have been used for backup operations.

/usr/oam/bkrs/tables/rsstatus.tab
tracks the status of all restore requests from users.

/usr/oam/bkrs/logs/bklog
logs errors generated by the backup methods and the backup command

/usr/oam/bkrs/logs/rslog
logs errors generated by the restore methods and the restore command

$TMP/filelist$$
temporarily stores a table of contents for a backup archive.

SEE ALSO

backup(1M), bkoper(1M) cpio(1), cpio(4), device.tab(4), fdp(1), ffile(1), findage(1), getvol(1M), incfile(1), labelit(1M), libbrmeth(3), ls(1), restore(1M), rsoper(1M), time(2), urestore(1)
fgrep(1) (Directory and File Management Utilities) fgrep(1)

NAME
 fgrep – search a file for a character string

SYNOPSIS
 fgrep [options] string [file ..]

DESCRIPTION
 fgrep (fixed string grep) searches files for a character string and prints all lines
 that contain that string. fgrep is different from grep and egrep because it
 searches for a string instead of searching for a pattern that matches an expression.
 It uses a fast and compact algorithm.

 The characters $, *, [, ^, |, (,), and \ are interpreted literally by fgrep, that is,
 fgrep does not recognize full regular expressions as does egrep. Because these
 characters have special meaning to the shell, it is safest to enclose the entire string
 in single quotes ' . . . '.

 If no files are specified, fgrep assumes standard input. Normally, each line
 found is copied to the standard output. The filename is printed before each line
 found if there is more than one input file.

 Command line options are:
 -b Precede each line by the block number on which it was found. This can be
 useful in locating block numbers by context (first block is 0).
 -c Print only a count of the lines that contain the pattern.
 -h Suppress printing of filenames when searching multiple files.
 -i Ignore uppercase/lowercase distinction during comparisons.
 -l Print the names of files with matching lines once, separated by newlines.
 Does not repeat the names of files when the pattern is found more than
 once.
 -n Precede each line by its line number in the file (first line is 1).
 -v Print all lines except those that contain the pattern.
 -x Print only lines matched entirely.
 -e special_string
 Search for a special_string (string begins with a -).
 -f file
 Take the list of strings from file.

SEE ALSO
 ed(1), egrep(1), grep(1), sed(1), sh(1)

DIAGNOSTICS
 Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible
 files (even if matches were found).

NOTES
 Ideally there should be only one grep command, but there is not a single algo-
 rithm that spans a wide enough range of space-time tradeoffs. Lines are limited
 to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in
 /usr/include/stdio.h.
NAME
file - determine file type

SYNOPSIS
file [-h] [-m mfile] [-f ffile] arg ...
file [-h] [-m mfile] -f ffile
file -c [-m mfile]

DESCRIPTION
file performs a series of tests on each file supplied by arg and, optionally, on each file supplied in ffile in an attempt to classify it. If arg appears to be a text file, file examines the first 512 bytes and tries to guess its programming language. If arg is an executable a.out, file prints the version stamp, provided it is greater than 0. If arg is a symbolic link, by default the link is followed and file tests the file that the symbolic link references.

-c Check the magic file for format errors. For reasons of efficiency, this validation is normally not carried out.

-f ffile ffile contains the names of the files to be examined.

-h Do not follow symbolic links.

-m mfile Use mfile as an alternate magic file, instead of /etc/magic.

file uses /etc/magic to identify files that have a magic number. A magic number is a numeric or string constant that indicates the file type. Commentary at the beginning of /etc/magic explains its format.

FILES
/etc/magic

SEE ALSO
filehdr(4) in the System Administrator’s Reference Manual

DIAGNOSTICS
If the -h option is specified and arg is a symbolic link, file prints the error message:

symbolic link to arg
fimage (1M) (System Administration Utilities) fimage (1M)

NAME
fimage – create, restore an image archive of a filesystem

SYNOPSIS
fimage -B [-dlmotuAENS] bkjobid ofsname ofsdev ofsdev ofsdev descript
fimage -RC [-dlmotuAENS] ofsname ofsdev refsname redev redev rsjobid descript
fimage -RF [-dlmotuAENS] ofsname ofsdev descript rsjobid:uid:date:type:name
 [:[rename]:[inode]] ...

DESCRIPTION
The fimage command is invoked as a child process by other shell commands. The
command name, fimage, is read either from the bkhist.tab file or the
bkreg -m command and option. The -B, -R, -F, and -C options are passed
to fimage by the shell commands backup, restore, and urestore described
below. The other options are passed from the bkhist.tab file or the bkreg -p
command and option. The arguments are sent to fimage from various locations
in the backup service. fimage neither reads from standard-input nor writes to
standard-output or standard-error.

fimage -B is invoked as a child process by bkdaemon to perform an image
backup of the filesystem ofsname (the originating filesystem). All files in ofsname
are archived. The resulting backup is created in the format described on
volcopy(1M). The backup is recorded in the backup history log,
/etc/bkup/bkhist.tab.

fimage -RC and -RF are invoked as child processes by the rsoper command to
extract files from an image archive created by fimage -B. The filesystem archive
is assumed to be in the format described on volcopy format.

If the -RC option is selected, the entire filesystem is restored.

If the -RF option is specified, only selected objects from the archive are restored.
Each 7-tuple, composed of rsjobid:uid:date:type:name:rename:inode, specifies an
object to be restored from the filesystem archive. The 7-tuple objects come to
fimage from the rsstatus.tab file.

The arguments to fimage are defined as follows:

bkjobid the job id assigned by backup. The method uses the bkjobid when it
 creates history log and table-of-contents entries.
ofsname the name of the file system that is to be backed up.
ofsdev the name of the block special device on which the file system resides.
ofsdev the volume name on the file system [see labelit(1M)].
descript is a description for a destination device in the form:
 dgroup:dname:dchar:dlabels
 dgroup specifies a device group [see devgroup.tab(4)].
dname specifies a particular device name [see device.tab(4)].
dchars specifies characteristics associated with the device. If specified,
dchar overrides the defaults for the specified device and group. [See
device.tab(4) for a further description of device characteristics.
dlabels specifies the volume names for the media to be used for reading
or writing the archive.
fimage (1M)

(System Administration Utilities)

fimage (1M)

`refsnme` if non-null, the name of the file system to be restored to instead of `ofsname`. At least one of `refsnme` and `redev` must be null.

`redev` if non-null, the partition to be restored to instead of `ofsdev`. At least one of `refsnme` and `redev` must be null.

`rsjobid` the restore jobid assigned by `restore` or `urestore`.

`uid` the real uid of the user who requested the object to be restored. It must match the uid of the owner of the object at the time the archive was made, or it must be the superuser uid.

`date` the newest "last modification time" that is acceptable for a restorable object. The object is restored from the archive immediately older than this date. `date` is a hexadecimal representation of the date and time provided by the `time` system call [see `time(2)`].

`type` either `F` or `D`, indicating that the object is a file or a directory, respectively.

`name` the name the object had in the file system archive.

`rename` the name that the object should be restored to (it may differ from the name the object had in the file system archive). If omitted, the object is restored to `name`.

`inode` the inode number of the object as it was stored in the file system archive. `[inode]` is not used by `ffile -R`, and is provided only for command-line compatibility with other restoration methods.

Options

Some options are only significant during `fimage -B` invocations; they are accepted but ignored during `fimage -R` invocations because the command is invoked and options are specified automatically by `restore`. These options are flagged with an asterisk (*).

- **d** Inhibits recording the archive in the backup history log.
- **l** Creates a long form of the backup history log that includes a table-of-contents for the archive. This includes the data used to generate a listing of each file in the archive (like that produced by the `ls -1` command).
- **m** Mounts the originating filesystem read-only before starting the backup and remounts it with its original permissions after completing the backup. Cannot be used with `root` or `/usr` filesystems.
- **o** Permits the user to override media insertion requests [see `getvol(1M)` and the description of the `-o` option].
- **t** Creates a table of contents for the backup on additional media instead of in the backup history log.
- **u** Unmounts the originating filesystem before the backup is begun. After the backup is complete, remounts the filesystem under its original permission. This option cannot be used with a `root` or `usr` filesystem. The `-u` option overrides the `-m` option.
Validates the archive as it is written. A checksum is computed as the archive is being written; as each medium is completed, it is re-read and the checksum recomputed to verify that each block is readable and correct. If either check fails, the medium is considered unreadable. If \(-A\) has been specified, the archiving operation fails; otherwise, the operator is prompted to replace the failed medium.

\(\mathbf{A}\) Do not prompt the user for removable media operations (automated operation).

\(\mathbf{E}\) Reports an estimate of media usage for the archive; then performs the backup.

\(\mathbf{N}\) Reports an estimate of media usage for the archive; does not perform the backup.

\(\mathbf{S}\) Displays a period (.) for every 100 (512 byte) blocks read-from or written-to the archive on the destination device.

User Interactions

The connection between an archiving method and \texttt{backup} is more complex than a simple fork/exec or pipe. The \texttt{backup} command is responsible for all interactions with the user, either directly, or through \texttt{bkoper}. Therefore, \texttt{ffile} neither reads from standard-input nor writes to standard-output or standard-error. A method library must be used [see \texttt{libbrmeth(3)}] to communicate reports (estimates, filenames, periods, status, etc.) to \texttt{backup}.

DIAGNOSTICS

The exit codes for \texttt{ffile} are the following:

- 0 successful completion of the task
- 1 one or more parameters to \texttt{ffile} are invalid.
- 2 an error has occurred which caused \texttt{ffile} to fail to complete all portions of its task.

FILES

- \texttt{/etc/bkup/bkhist.tab} lists the labels of all volumes that have been used for backup operations.
- \texttt{/etc/bkup/rsstatus.tab} tracks the status of all restore requests from users.
- \texttt{/etc/bkup/bklog} logs errors generated by the backup methods and the \texttt{backup} command.
- \texttt{/etc/bkup/rslog} logs errors generated by the restore methods and the \texttt{restore} command.
- \$\texttt{TMP/filelist}$ lists the labels of all volumes that have been used for backup operations.
- \$\texttt{TMP/filelist}$% tracks the status of all restore requests from users.
- \$\texttt{TMP/filelist}$ logs errors generated by the backup methods and the \texttt{backup} command.
- \$\texttt{TMP/filelist}$% logs errors generated by the restore methods and the \texttt{restore} command.
- \$\texttt{TMP/filelist}$ temporarily stores a table of contents for a backup archive.

SEE ALSO

\texttt{backup(1M)}, \texttt{bkoper(1M)} \texttt{device.tab(4)}, \texttt{fdp(1)}, \texttt{ffile(1)}, \texttt{fimage(1)}, \texttt{getvo1(1M)}, \texttt{incfile(1)}, \texttt{labelit(1M)}, \texttt{libbrmeth(3)}, \texttt{ls(1)}, \texttt{restore(1M)}, \texttt{rsoper(1M)}, \texttt{time(2)}, \texttt{urestore(1)}, \texttt{volcopy(1M)}
find (1) (Directory and File Management Utilities) find (1)

NAME
find - find files

SYNOPSIS
find path-name-list expression

DESCRIPTION
find recursively descends the directory hierarchy for each path name in the path-name-list (that is, one or more path names) seeking files that match a boolean expression written in the primaries given below. In the descriptions, the argument \(n \) is used as a decimal integer where \(+n\) means more than \(n \), \(-n\) means less than \(n \) and \(n \) means exactly \(n \). Valid expressions are:

-\(\text{name pattern} \) True if pattern matches the current file name. Normal shell file name generation characters [see sh(1)] may be used. A backslash (\) is used as an escape character within the pattern. The pattern should be escaped or quoted when find is invoked from the shell.

-\(\text{perm [-]onum} \) True if the file permission flags exactly match the octal number onum (see chmod(1)). If onum is prefixed by a minus sign (-), only the bits that are set in onum are compared with the file permission flags, and the expression evaluates true if they match.

-\(\text{size \(n[c] \)} \) True if the file is \(n \) blocks long (512 bytes per block). If \(n \) is followed by a c, the size is in characters.

-\(\text{atime \(n \)} \) True if the file was accessed \(n \) days ago. The access time of directories in path-name-list is changed by find itself.

-\(\text{mtime \(n \)} \) True if the file's data was modified \(n \) days ago.

-\(\text{ctime \(n \)} \) True if the file's status was changed \(n \) days ago.

-\(\text{exec \(cmd \)} \) True if the executed \(cmd \) returns a zero value as exit status. The end of \(cmd \) must be punctuated by an escaped semicolon. A command argument {} is replaced by the current path name.

-\(\text{ok \(cmd \)} \) Like -exec except that the generated command line is printed with a question mark first, and is executed only if the user responds by typing y.

-\(\text{print} \) Always true; causes the current path name to be printed.

-\(\text{newer \(file \)} \) True if the current file has been modified more recently than the argument file.

-\(\text{depth} \) Always true; causes descent of the directory hierarchy to be done so that all entries in a directory are acted on before the directory itself. This can be useful when find is used with cpio(1) to transfer files that are contained in directories without write permission.

-\(\text{mount} \) Always true; restricts the search to the file system containing the directory specified.
find (1) (Directory and File Management Utilities) find (1)

-`local`

True if the file physically resides on the local system.

(expression)

True if the parenthesized expression is true (parentheses are special to the shell and must be escaped).

-`type c`

True if the type of the file is c, where c is b, c, d, l, p, or f for block special file, character special file, directory, symbolic link, fifo (named pipe), or plain file, respectively.

-`follow`

Always true; causes symbolic links to be followed. When following symbolic links, find keeps track of the directories visited so that it can detect infinite loops; for example, such a loop would occur if a symbolic link pointed to an ancestor. This expression should not be used with the -`type l` expression.

-`links n`

True if the file has n links.

-`user` uname

True if the file belongs to the user uname. If uname is numeric and does not appear as a login name in the /etc/passwd file, it is taken as a user ID.

-`nouser`

True if the file belongs to a user not in the /etc/passwd file.

-`group` gname

True if the file belongs to the group gname. If gname is numeric and does not appear in the /etc/group file, it is taken as a group ID.

-`nogroup`

True if the file belongs to a group not in the /etc/group file.

-`fstype` type

True if the filesystem to which the file belongs is of type type.

-`inum` n

True if the file has inode number n.

-`prune`

Always yields true. Do not examine any directories or files in the directory structure below the pattern just matched. See the examples, below.

The primaries may be combined using the following operators (in order of decreasing precedence):

1. The negation of a primary (! is the unary not operator).
2. Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).
3. Alternation of primaries (o is the or operator).

Note that when you use find in conjunction with cpio, if you use the -L option with cpio then you must use the -follow expression with find and vice versa. Otherwise there will be undesirable results.

EXAMPLES

Remove all files in your home directory named a.out or *.o that have not been accessed for a week:

```bash
find $HOME \( -name a.out -o -name '.*' \) -atime +7 -exec rm {} \;
```
find(1) (Directory and File Management Utilities) find(1)

Recursively print all file names in the current directory and below, but skipping SCCS directories:

```
find . -name SCCS -prune -o -print
```

Recursively print all file names in the current directory and below, skipping the contents of SCCS directories, but printing out the SCCS directory name:

```
find . -print -name SCCS -prune
```

FILES
/etc/passwd, /etc/group

SEE ALSO
chmod(1), sh(1), test(1)
stat(2), and umask(2) in the Programmer’s Reference Manual
fs(4) in the System Administrator’s Reference Manual

NOTE
When using find to determine files modified within a range of time, one must use the "-time" argument BEFORE the "-print" argument otherwise find will give all files.

The following option is obsolete and will not be supported in future releases.

```
-cpio device
```
Always true; write the current file on device in cpio(1) format (5120-byte records).
NAME
finger – display information about local and remote users

SYNOPSIS
finger [-bfhilmpqsw] username . .
finger [-l] username@hostname . . (TC/IP)

DESCRIPTION
By default, the finger command displays information about each logged-in user, including login name, full name, terminal name (prepended with a ‘*’ if write-permission is denied), idle time, login time, and location if known.

Idle time is minutes if it is a single integer, hours and minutes if a ‘:’ is present, or days and hours if a ‘d’ is present.

When one or more username arguments are given, more detailed information is given for each username specified, whether they are logged in or not. username must be that of a local user, and may be a first or last name, or an account name.

When finger is used to find users on a remote device, the user and the name of the remote device are specified in the form username@hostname. Information is presented in a multi-line format, and includes, in addition to the information mentioned above:

the user’s home directory and login shell

time the user logged in if currently logged in, or the time the user last logged in if not, as well as the terminal or host from which the user logged in and, if a terminal.

last time the user received mail, and the last time the user read their mail

any plan contained in the file .plan in the user’s home directory

and any project on which the user is working described in the file .project (also in the user’s home directory)

The following options are available:

-b Suppress printing the user’s home directory and shell in a long format printout.

-f Suppress printing the header that is normally printed in a non-long format printout.

-h Suppress printing of the .project file in a long format printout.

-i Force “idle” output format, which is similar to short format except that only the login name, terminal, login time, and idle time are printed.

-l Force long output format.

-m Match arguments only on user name (not first or last name).

-p Suppress printing of the .plan file in a long format printout.

-q Force quick output format, which is similar to short format except that only the login name, terminal, and login time are printed.
finger(1)

(User Environment Utilities and Internet Utilities)

-s Force short output format.
-w Suppress printing the full name in a short format printout.

Within the TCP/IP network, the -1 option can be used remotely.

FILES
/var/adm/utmp who is logged in
/etc/passwd for users' names
/var/adm/lastlog last login times
~/.plan plans
~/.project projects

SEE ALSO
passwd(1), who(1), whois(1)

NOTES
Only the first line of the ~/.project file is printed.
NAME

fingerd, in.fingerd — remote user information server

SYNOPSIS

in.fingerd

DESCRIPTION

fingerd implements the server side of the Name/Finger protocol, specified in RFC 742. The Name/Finger protocol provides a remote interface to programs which display information on system status and individual users. The protocol imposes little structure on the format of the exchange between client and server. The client provides a single command line to the finger server which returns a printable reply.

fingerd waits for connections on TCP port 79. Once connected it reads a single command line terminated by a <RETURN-LINE-FEED> which is passed to finger(1). fingerd closes its connections as soon as the output is finished.

If the line is null (only a RETURN-LINEFEED is sent) then finger returns a default report that lists all users logged into the system at that moment.

If a user name is specified (for instance, eric<RETURN-LINE-FEED>) then the response lists more extended information for only that particular user, whether logged in or not. Allowable names in the command line include both login names and user names. If a name is ambiguous, all possible derivations are returned.

FILES

/var/utmp who is logged in
/etc/passwd for users’ names
/var/adm/lastlog last login times
$HOME/.plan plans
$HOME/.project projects

SEE ALSO

finger(1)

Harrenstien, Ken, NAME/FINGER, RFC 742, Network Information Center, SRI International, Menlo Park, Calif., December 1977

NOTES

Connecting directly to the server from a TIP or an equally narrow-minded TELNET-protocol user program can result in meaningless attempts at option negotiation being sent to the server, which will foul up the command line interpretation. fingerd should be taught to filter out IAC’s and perhaps even respond negatively (IAC will not) to all option commands received.
NAME
fixperm - correct or initialize XENIX file permissions and ownership

SYNOPSIS
fixperm [-acDfgilnSsvw [-d package] [-u package]] specfile

DESCRIPTION
For each line in the specification file specfile, fixperm makes the listed pathname conform to a specification. fixperm is typically used by the super-user to configure a XENIX system upon installation. It has been provided for use with any existing XENIX packages that you may have that you wish to install on the UNIX system. Nonsuper-users can only use fixperm with the -D, -f, -l, or -n options.

The following options are available:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>All files in the perm file must exist. This means that files marked as optional (type letter is in capital letters) must be present.</td>
</tr>
<tr>
<td>-c</td>
<td>Creates empty files and missing directories.</td>
</tr>
<tr>
<td>-d</td>
<td>Lists directories only on standard output. Does not modify target files.</td>
</tr>
<tr>
<td>-d package</td>
<td>Processes input lines beginning with given package specifier string (see above). For instance, -dBASE processes only items specified as belonging to the Basic utilities set. The default action is to process all lines.</td>
</tr>
<tr>
<td>-f</td>
<td>Lists files only on standard output. Does not modify target files.</td>
</tr>
<tr>
<td>-g</td>
<td>Lists all devices on the standard output. Target files are not modified (analogous to -l, -f, and -D).</td>
</tr>
<tr>
<td>-i</td>
<td>Checks to see if the selected packages are installed. Return values are if the equivalent package was installed as a UNIX package, -i will not detect it.</td>
</tr>
<tr>
<td></td>
<td>0: package completely installed</td>
</tr>
<tr>
<td></td>
<td>4: package not installed</td>
</tr>
<tr>
<td></td>
<td>5: package partially installed</td>
</tr>
<tr>
<td>-l</td>
<td>Lists files and directories on standard output. Does not modify target files.</td>
</tr>
<tr>
<td>-n</td>
<td>Reports errors only. Does not modify target files.</td>
</tr>
<tr>
<td>-s</td>
<td>Issues a complaint if files are not in x.out format.</td>
</tr>
<tr>
<td>-s</td>
<td>Modifies special device files in addition to the rest of the permfile.</td>
</tr>
<tr>
<td>-u package</td>
<td>Causes similar action to -d option but processes items that are not part of the given package.</td>
</tr>
</tbody>
</table>
---v (verbose) Issues a complaint if executable files are 1) word-swapped, 2) not fixed-stack, 3) not separate I and D, or 4) not stripped.

---w Lists location (volume number) of the specified files or directories.

Specification File Format

Each nonblank line in the specification file consists of either a comment or an item specification. A comment is any text from a pound sign "#" up to the end of the line. There is one item specification per line. User and group id numbers must be specified at the top of the specification file for each user and group mentioned in the file.

An item specification consists of a package specifier, a permission specification, owner and group specifications, the number of links on the file, the filename, and an optional volume number.

The package specifier is an arbitrary string that is the name of a package within a distribution set. A package is a set of files.

A permission specification follows the package specifier. The permission specification consists of a file type, followed by a numeric permission specification. The item specification is one of the following characters:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>executable</td>
</tr>
<tr>
<td>a</td>
<td>archive</td>
</tr>
<tr>
<td>e</td>
<td>empty file (create if -c option given)</td>
</tr>
<tr>
<td>b</td>
<td>block device</td>
</tr>
<tr>
<td>c</td>
<td>character device</td>
</tr>
<tr>
<td>d</td>
<td>directory</td>
</tr>
<tr>
<td>f</td>
<td>text file</td>
</tr>
<tr>
<td>p</td>
<td>named pipe</td>
</tr>
</tbody>
</table>

If the item specification is given as an uppercase letter, the file associated with it is optional, and fixperm will not return an error message if it does not exist.

The numeric permission conforms to the scheme described in chmod (1). The owner and group permissions are in the third column separated by a slash, such as "bin/bin". The fourth column indicates the number of links. If there are links to the file, the next line contains the linked filename with no other information. The fifth column is a pathname. The pathname must be relative (not preceded by a slash "/"). The sixth column is only used for special files, major and minor device numbers, or volume numbers.

EXAMPLES

The following two lines make a distribution and invoke tar(1) to archive only the files in my_package on /dev/sample:

```
/etc/fixperm-f/etc/perm/my_package> list
```

```
tar cfF /dev/sample list
```
fixperm (1M) (Base System) fixperm (1M)

This command line reports package errors:

/etc/fixperm -nd my-package

NOTES
fixperm is usually only run by a shell script at installation.
fixperm should only be run from the directory to which the target files are relative.

SEE ALSO
custom(1)
NAME

fixperm – correct or initialize file permissions and ownership

SYNOPSIS

fixperm [-cDJilNSvw [-d package] [-u package]] specfile

DESCRIPTION

For each line in the specification file specfile, fixperm makes the listed pathname conform to a specification. fixperm is typically used to configure a XENIX system upon installation. Nonsuper-users can only use fixperm with the -D, -f, -l, or -n options. Only super-users can use the -c, -d, -i, -n, -s, -u, -v, and -w options.

The following options are available:

-c
Creates empty files and missing directories.

-D
Lists directories only on standard output. Does not modify target files.

-d package
Processes input lines beginning with given package specifier string (see above). For instance, -dBASE processes only items specified as belonging to the Basic utilities set. The default action is to process all lines.

-f
Lists files only on standard output. Does not modify target files.

-i
Checks only if the selected packages are installed. Return values are:

0: package completely installed
4: package not installed
5: package partially installed

-l
Lists files and directories on standard output. Does not modify target files.

-n
Reports errors only. Does not modify target files.

-s
Issues a complaint if files are not in x.out format.

-S
Modifies special device files in addition to the rest of the perm-list.

-u package
Causes similar action to -d option, but processes items that are not part of the given package.

-v
Issues a complaint if executable files are:

1) word-swapped
2) not fixed-stack
3) not separate I and D
4) not stripped

-w
Lists location (volume number) of the specified files or directories.
Specification File Format

Each nonblank line in the specification file consists of either a comment or an item specification. A comment is any text from a pound sign "#" up to the end of the line. There is one item specification per line. User and group id numbers must be specified at the top of the specification file for each user and group mentioned in the file.

An item specification consists of a package specifier, a permission specification, owner and group specifications, the number of links on the file, the filename, and an optional volume number.

The package specifier is an arbitrary string that is the name of a package within a distribution set. A package is a set of files.

A permission specification follows the package specifier. The permission specification consists of a file type, followed by a numeric permission specification. The item specification is one of the following characters:

- x executable
- a archive
- e empty file (create if -c option given)
- b block device
- c character device
- d directory
- f text file
- p named pipe

If the item specification is given as an uppercase letter, the file associated with it is optional, and fixperm will not return an error message if it does not exist.

The numeric permission conforms to the scheme described in chmod. The owner and group permissions are in the third column separated by slash, such as "bin/bin". The fourth column indicates the number of links. If there are links to the file, the next line contains the linked filename with no other information. The fifth column is a pathname. The pathname must be relative (not preceded by a slash "/"). The sixth column is only used for special files, major and minor device numbers, or volume numbers.

EXAMPLES

The following two lines make a distribution and invoke tar to archive only the files in base.perms on /dev/sample:

```
/etc/fixperm -f/etc/base.perms>list
tar cfF /dev/sample list
```

This command line reports BASE package errors:

```
/etc/fixperm -nd BASE
```

NOTES

fixperm is usually only run by a shell script at installation.
NAME
fixshlib – alters executables to call SCO UNIX System V/386 Release 3.2-compatible libnsl

SYNOPSIS
fixshlib filename

DESCRIPTION
SCO applications installed with the custom command [see custom(1M) in the System Administrator’s Reference Manual] will automatically have references to libnsl changed to reference an SCO UNIX System V/386 Release 3.2-compatible libnsl (shlib/libNSL_S). However, you may need to run fixshlib on any SCO UNIX System V/386 Release 3.2 application that is not installed using the custom command. The fixshlib command will alter the executable to use the SCO UNIX System V/386 Release 3.2-compatible libnsl.

When executing the command, filename is the pathname of the executable to be modified.

DIAGNOSTICS
If filename is not a COFF format a.out executable, you will see the following error message:

 unknown file type - possibly bad magic: Error 0

SEE ALSO
custom(1M) in the System Administrator’s Reference Manual

NOTES
Using the fixshlib command on a COFF executable built or intended to run on non-SCO UNIX system implementations could cause the executable to fail. If your executable fails because of this, there is no way to restore the executable. The associated application should be re-installed.
NAME
fmlcut – cut out selected fields of each line of a file

SYNOPSIS
fmlcut -clist [file . . .]
fmlcut -flist [-dchar] [-s] [file . . .]

DESCRIPTION
The fmlcut function cuts out columns from a table or fields from each line in file; in database parlance, it implements the projection of a relation. fmlcut can be used as a filter; if file is not specified or is -, the standard input is read. list specifies the fields to be selected. Fields can be fixed length (character positions) or variable length (separated by a field delimiter character), depending on whether -c or -f is specified.

Note that either the -c or the -f option must be specified.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order), with optional - to indicate ranges For example: 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3- (short for third through last field).

-clist If -c is specified, list specifies character positions (for example, -c1-72 would pass the first 72 characters of each line). Note that no space intervenes between -c and list.

-flist If -f is specified, list is a list of fields assumed to be separated in the file by the default delimiter character, TAB, or by char if the -d option is specified. For example, -f1,7 copies the first and seventh field only. Lines with no delimiter characters are passed through intact (useful for table subheadings), unless -s is specified. Note that no space intervenes between -f and list. The following options can be used if you have specified -f.

-dchar If -d is specified, char is the field delimiter. Space or other characters with special meaning to FMLI must be quoted. Note that no space intervenes between -d and char. The default field delimiter is TAB.

-s Suppresses lines with no delimiter characters. If -s is not specified, lines with no delimiters will be passed through untouched.

EXAMPLES
fmlcut -d: -fl,5 /etc/passwd gets login IDs and names
`who am i | fmlcut -fl -d" "` gets the current login name

DIAGNOSTICS
fmlcut returns the following exit values:

0 when the selected field is successfully cut out
2 on syntax errors
The following error messages may be displayed on the FMLI message line:

ERROR: line too long
A line has more than 1023 characters or fields, or there is no new-line character.

ERROR: bad list for c/f option
Missing `-c` or `-f` option or incorrectly specified `list`. No error occurs if a line has fewer fields than the `list` calls for.

ERROR: no fields
The `list` is empty.

ERROR: no delimiter
Missing `char` on `-d` option.

NOTES
`fmlcut` cannot correctly process lines longer than 1023 characters, or lines with no newline character.

SEE ALSO
`fmlgrep(1F)`
NAME

fmlexpr – evaluate arguments as an expression

SYNOPSIS

fmlexpr arguments

DESCRIPTION

The \texttt{fmlexpr} function evaluates its arguments as an expression. After evaluation, the result is written on the standard output. Terms of the expression must be separated by blanks. Characters special to FMLI must be escaped. Note that 0 is returned to indicate a zero value, rather than the null string. Strings containing blanks or other special characters should be quoted. Integer-valued arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped are preceded by \. The list is in order of increasing precedence, with equal precedence operators grouped within \{\} symbols.

\begin{align*}
\texttt{expr} \mid \texttt{expr} & \quad \text{returns the first expr if it is neither null nor 0, otherwise returns the second expr.} \\
\texttt{expr} & \land \texttt{expr} \quad \text{returns the first expr if neither expr is null or 0, otherwise returns 0.} \\
\texttt{expr} \{ \texttt{=} , \texttt{\textbackslash >} , \texttt{\textbackslash >=} , \texttt{\textbackslash <} , \texttt{\textbackslash <=} , \texttt{!} \} \texttt{expr} & \quad \text{returns the result of an integer comparison if both arguments are integers, otherwise returns the result of a lexical comparison.} \\
\texttt{expr} \{ \texttt{\textbackslash +} , \texttt{\textbackslash -} \} \texttt{expr} & \quad \text{addition or subtraction of integer-valued arguments.} \\
\texttt{expr} \{ \texttt{\textbackslash *} , \texttt{\textbackslash /} , \texttt{\textbackslash \%} \} \texttt{expr} & \quad \text{multiplication, division, or remainder of the integer-valued arguments.} \\
\texttt{expr} : \texttt{expr} & \quad \text{The matching operator : compares the first argument with the second argument which must be a regular expression. Regular expression syntax is the same as that of \texttt{ed(1)}, except that all patterns are “anchored” (that is, begin with \^{}) and, therefore, \^{} is not a special character, in that context. Normally, the matching operator returns the number of bytes matched (0 on failure). Alternatively, the \texttt{\textbackslash (. . . \textbackslash)} pattern symbols can be used to return a portion of the first argument.}
\end{align*}

EXAMPLES

1. Add 1 to the variable \texttt{a}:
 \begin{verbatim}
 \texttt{fmlexpr \$a + 1 | set -l \$a}
 \end{verbatim}

2. For \texttt{$a} equal to either “\texttt{/usr/abc/file}” or just “\texttt{file}”:
 \begin{verbatim}
 \texttt{fmlexpr \$a : .*/\textbackslash(\.*\textbackslash) \mid \$a}
 \end{verbatim}
returns the last segment of a path name (for example, file). Watch out for / alone as an argument: `fmlexpr` will take it as the division operator (see NOTES below).

3. A better representation of example 2.

 `fmlexpr //$$a : .*/\(*\)`

 The addition of the // characters eliminates any ambiguity about the division operator (because it makes it impossible for the left-hand expression to be interpreted as the division operator), and simplifies the whole expression.

4. Return the number of characters in $VAR.

 `fmlexpr $VAR : .*`

DIAGNOSTICS

As a side effect of expression evaluation, `fmlexpr` returns the following exit values:

- 0 if the expression is neither null nor 0 (that is, TRUE)
- 1 if the expression is null or 0 (that is, FALSE)
- 2 for invalid expressions (that is, FALSE).

- *syntax error* for operator_operand errors
- *non-numeric argument* if arithmetic is attempted on such a string

In the case of syntax errors and non-numeric arguments, an error message will be printed at the current cursor position. Use `refresh` to redraw the screen.

NOTES

After argument processing by FMLI, `fmlexpr` cannot tell the difference between an operator and an operand except by the value. If a is an =, the command:

 `fmlexpr $a =`

looks like:

 `fmlexpr = =`

as the arguments are passed to `fmlexpr` (and they will all be taken as the = operator). The following works, and returns TRUE:

 `fmlexpr X$a = X=`

SEE ALSO

`ed(1), expr(1), set(1F), sh(1)`
NAME
fmlgrep - search a file for a pattern

SYNOPSIS
fmlgrep [options] limited_regular_expression [file ...]

DESCRIPTION
fmlgrep searches file for a pattern and prints all lines that contain that pattern. The fmlgrep function uses limited regular expressions (expressions that have string values that use a subset of the possible alphanumeric and special characters) like those used with ed(1) to match the patterns. It uses a compact non-deterministic algorithm.

Be careful when using FMLI special characters (for example, $, ', '', "') in limited_regular_expression. It is safest to enclose the entire limited_regular_expression in single quotes ’ ... ’.

If file is not specified, fmlgrep assumes standard input. Normally, each line matched is copied to standard output. The file name is printed before each line matched if there is more than one input file.

Command line options are:
-b Precede each line by the block number on which it was found. This can be useful in locating block numbers by context (first block is 0).
-c Print only a count of the lines that contain the pattern.
-i Ignore upper/lower case distinction during comparisons.
-l Print only the names of files with matching lines, separated by new-lines. Does not repeat the names of files when the pattern is found more than once.
-n Precede each line by its line number in the file (first line is 1).
-s Suppress error messages about nonexistent or unreadable files.
-v Print all lines except those that contain the pattern.

DIAGNOSTICS
fmlgrep returns the following exit values:

0 if the pattern is found (that is, TRUE)
1 if the pattern is not found (that is, FALSE)
2 if an invalid expression was used or file is inaccessible

NOTES
Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is defined in /usr/include/stdio.h.

If there is a line with embedded nulls, fmlgrep will only match up to the first null; if it matches, it will print the entire line.

SEE ALSO
fmlcut(1F)
NAME

fmli – invoke FMLI

SYNOPSIS

```
fmli [-a alias_file] [-c command_file] [-i initialization_file] file ...
```

DESCRIPTION

The `fmli` command invokes the Form and Menu Language Interpreter and opens
the frame(s) specified by the `file` argument. The `file` argument is the pathname of
the initial frame definition file(s), and must follow the naming convention
`Menu.xxx`, `Form.xxx` or `Text.xxx` for a menu, form or text frame respectively,
where `xxx` is any string that conforms to UNIX system file naming conventions.
The FMLI descriptor lifetime will be ignored for all frames opened by argument
to `fmli`. These frames have a lifetime of `immortal` by default.

The available options are as follows:

- `-a` If `-a` is specified, `alias_file` is the name of a file which contains lines of the
 form `alias=pathname`. Thereafter, `$alias` can be used in definition files to
 simplify references to objects or devices with lengthy pathnames, or to
define a search path (similar to `$PATH` in the UNIX system shell).

- `-c` If `-c` is specified, `command_file` is the name of a file in which default
 FMLI commands can be disabled, and new application-specific com-
 mands can be defined. The contents of `command_file` are reflected in the
 FMLI Command Menu.

- `-i` If `-i` is specified, `initialization_file` is the name of a file in which the
 following characteristics of the application as a whole can be specified:
 A transient introductory frame displaying product information
 A banner, its position, and other elements of the banner line
 Color attributes for all elements of the screen
 Screen Labeled Keys (SLKs) and their layout on the screen.

Environment Variables

LOADPFK

When this variable is set to `yes`, `true`, or the null string, it directs FMLI to down-
load alternative keystroke sequences into the function keys of terminals (such as
the AT&T 5620 and 630) that do not have fixed, preset values for them. See the
appendix titled “Keyboard and Mouse Support” of the Programmer’s Guide:
Character User Interface (FMLI and ETI) for more information on automatic func-
tion key downloading.

COLUMNS

Can be used to override the width of the logical screen defined for the terminal
set in `TERM`. For terminals with a 132-column mode, for example, invoking FMLI
with the line

```
COLUMNS=132 fmli frame-file
```

will allow this wider screen width to be used.
LINES
Can be used to override the length of the logical screen defined for the terminal set in TERM.

EXAMPLES
To invoke fmli:

```bash
fmli Menu.start
```
where `Menu.start` is an example of file named according to the file name conventions for menu definition files explained above.

To invoke fmli and name an initialization file:

```bash
fmli -i init.myapp Menu.start
```
where `init.myapp` is an example of initialization file.

DIAGNOSTICS
If file is not supplied to the fmli command, fmli returns the message:

```
Initial object must be specified.
```

If file does not exist or is not readable, fmli returns an error message and exits. The example command line above returns the following message and exits:

```
Can't open object "Menu.start"
```

If file exists, but does not start with one of the three correct object names (Menu., Form., or Text.) or if it is named correctly but does not contain the proper data, fmli starts to build the screen by putting out the screen labels for function keys, after which it flashes the message:

```
I do not recognize that kind of object
```
and then exits.

FILES
```
/usr/bin/fmli
```

SEE ALSO
vsig(1F)
NAME
fmt – simple text formatters

SYNOPSIS
fmt [-cs] [-w width] [file . . .]

DESCRIPTION
fmt is a simple text formatter that fills and joins lines to produce output lines of
(up to) the number of characters specified in the -w width option. The default
width is 72. fmt concatenates the inputfiles listed as arguments. If none are given,
fmt formats text from the standard input.

Blank lines are preserved in the output, as is the spacing between words. fmt
does not fill lines beginning with a "." (dot), for compatibility with nroff(1).
Nor does it fill lines starting with "From: ".

Indentation is preserved in the output, and input lines with differing indentation
are not joined (unless -c is used).

fmt can also be used as an in-line text filter for vi(1); the vi command:

!}fmt

reformats the text between the cursor location and the end of the paragraph.

OPTIONS
-c Crown margin mode. Preserve the indentation of the first two lines
within a paragraph, and align the left margin of each subsequent
line with that of the second line. This is useful for tagged para-
graphs.
-s Split lines only. Do not join short lines to form longer ones. This
prevents sample lines of code, and other such formatted text, from
being unduly combined.
-w width Fill output lines to up to width columns.

SEE ALSO
nroff(1), vi(1)

NOTES
The -w width option is acceptable for BSD compatibility, but it may go away in
future releases.
NAME
fmtmsg – display a message on stderr or system console

SYNOPSIS

DESCRIPTION
Based on a message’s classification component, fmtmsg either writes a formatted message to stderr or writes a formatted message to the console.

A formatted message consists of up to five standard components as defined below. The classification and subclass components are not displayed as part of the standard message, but rather define the source of the message and direct the display of the formatted message. The valid options are:

- **-c class** described the source of the message. Valid keywords are:
 - hard The source of the condition is hardware.
 - soft The source of the condition is software.
 - firm The source of the condition is firmware.

- **-u subclass** is a list of keywords (separated by commas) that further defines the message and directs the display of the message. Valid keywords are:
 - appl The condition originated in an application. This keyword should not be used in combination with either util or opsys.
 - util The condition originated in a utility. This keyword should not be used in combination with either appl or opsys.
 - opsys The message originated in the kernel. This keyword should not be used in combination with either appl or util.
 - recov The application will recover from the condition. This keyword should not be used in combination with nrecov.
 - nrecov The application will not recover from the condition. This keyword should not be used in combination with recov.
 - print Print the message to the standard error stream stderr.
 - console Write the message to the system console. print, console, or both may be used.

- **-l label** identifies the source of the message.

- **-s severity** indicates the seriousness of the error. The keywords and definitions of the standard levels of severity are:
 - halt The application has encountered a severe fault and is halting.
fmtmsg(1) (Essential Utilities) fmtmsg(1)

error The application has detected a fault.
warn The application has detected a condition that is out of the ordinary and might be a problem.
info The application is providing information about a condition that is not in error.

-t tag The string containing an identifier for the message.
-a action A text string describing the first step in the error recovery process. This string must be written so that the entire action argument is interpreted as a single argument. fmtmsg precedes each action string with the TO FIX: prefix.
text A text string describing the condition. Must be written so that the entire text argument is interpreted as a single argument.

The environment variables MSGVERB and SEV_LEVEL control the behavior of fmtmsg. MSGVERB is set by the administrator in the /etc/profile for the system. Users can override the value of MSGVERB set by the system by resetting MSGVERB in their own .profile files or by changing the value in their current shell session. SEV_LEVEL can be used in shell scripts.

MSGVERB tells fmtmsg which message components to select when writing messages to stderr. The value of MSGVERB is a colon separated list of optional keywords. MSGVERB can be set as follows:

 MSGVERB=[keyword[:keyword[: ...]]]
 export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB contains a keyword for a component and the component’s value is not the component’s null value, fmtmsg includes that component in the message when writing the message to stderr. If MSGVERB does not include a keyword for a message component, that component is not included in the display of the message. The keywords may appear in any order. If MSGVERB is not defined, if its value is the null string, if its value is not of the correct format, or if it contains keywords other than the valid ones listed above, fmtmsg selects all components.

MSGVERB affects only which message components are selected for display. All message components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by fmtmsg. The standard severity levels shown below cannot be modified. Additional severity levels can be defined, redefined, and removed.

 0 (no severity is used)
 1 HALT
 2 ERROR
 3 WARNING
 4 INFO
SEV_LEVEL is set as follows:

```
SEV_LEVEL=[description[:description[:...]]]
```

```
export SEV_LEVEL
```

description is a comma-separated list containing three fields:

```
description=severity_keyword,level,printstring
```

severity_keyword is a character string used as the keyword with the -s severity option to `fmtmsg`.

level is a character string that evaluates to a positive integer (other than 0, 1, 2, 3, or 4, which are reserved for the standard severity levels). If the keyword severity_keyword is used, level is the severity value passed on to `fmtmsg`(3C).

printstring is the character string used by `fmtmsg` in the standard message format whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the defaults are available. If a description in the colon separated list is not a comma separated list containing three fields, or if the second field of a comma separated list does not evaluate to a positive integer, that description in the colon separated list is ignored.

DIAGNOSTICS

The exit codes for `fmtmsg` are the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All the requested functions were executed successfully.</td>
</tr>
<tr>
<td>1</td>
<td>The command contains a syntax error, an invalid option, or an invalid argument to an option.</td>
</tr>
<tr>
<td>2</td>
<td>The function executed with partial success, however the message was not displayed on stderr.</td>
</tr>
<tr>
<td>4</td>
<td>The function executed with partial success, however the message was not displayed on the system console.</td>
</tr>
<tr>
<td>32</td>
<td>No requested functions were executed successfully.</td>
</tr>
</tbody>
</table>

EXAMPLES

Example 1: The following example of `fmtmsg` produces a complete message in the standard message format and displays it to the standard error stream:

```
fmtmsg -c soft -u recov,print,appl -l UX:cat -s error -t UX:cat:001 -a "refer to manual" "invalid syntax"
```

produces:

```
UX:cat: ERROR: invalid syntax
TO FIX: refer to manual UX:cat:001
```

Example 2: When the environment variable `MSGVERB` is set as follows:

```
MSGVERB=severity:text:action
```
and Example 1 is used, `fmtmsg` produces:

```
ERROR: invalid syntax
TO FIX: refer to manual
```

Example 3: When the environment variable `SEV_LEVEL` is set as follows:

```
SEV_LEVEL=note,5,NOTE
```

the following `fmtmsg` command:

```
fmtmsg -c soft -u print -l UX:cat -s note -a "refer to manual" "invalid syntax"
```

produces:

```
UX:cat: NOTE: invalid syntax
TO FIX: refer to manual
```

and displays the message on stderr.

SEE ALSO

`addseverity(3C)`, `fmtmsg(3C)` in the *Programmer's Reference Manual*
NAME
fold – fold long lines

SYNOPSIS
fold [-w width | -width] [filename . . .]

DESCRIPTION
Fold the contents of the specified filenames, or the standard input if no files are specified, breaking the lines to have maximum width width. The default for width is 80. width should be a multiple of 8 if tabs are present, or the tabs should be expanded.

SEE ALSO
pr(1)

NOTES
Folding may not work correctly if underlining is present.
The -w width option is provided as a transition tool only. It will be removed in future releases.
NAME
format – format floppy disk tracks

SYNOPSIS
/bin/format [-vVE] [-f first] [-l last] [-i interleave] device [t]

DESCRIPTION
The format command formats floppy disks. Unless otherwise specified, formatting starts at track 0 and continues until an error is returned at the end of a partition.

The -f and -l options specify the first and last track to be formatted. The default interleave of 2 may be modified by using the -i option. device must specify a raw (character) floppy device. The t indicates the entire disk. Absence of this letter indicates that the first track of the diskette cannot be accessed.

-v verbose.

-V verify. After tracks are formatted, a random sector is chosen and a write of test data is done into it. The sector is then read back and a comparison is made.

-E exhaustive verify. Every sector is verified by write/read/compare.

FILES
/dev/rdsk/* raw device for partition to be formatted

SEE ALSO
mkpart(1M), fd(7)
fromsmtp(1M)

NAME
fromsmtp – receive RFC822 mail from SMTP

SYNOPSIS
fromsmtp [-d] [-h host][-s sender] to ...

DESCRIPTION
fromsmtp reads an RFC822 message from its standard input, does some conver­
sion of the message to make it acceptable to UNIX System mail, and pipes the
result to rmail. The to arguments are passed as arguments to rmail. fromsmtp
is normally invoked by smtpd to deliver incoming mail messages.

The -d option may be used for debugging fromsmtp. It will cause the command
line for rmail to be echoed to standard output, as well as the results of the mes­
sage (after conversion). The message will not be given to rmail when this option
is used.

The -h host option may be used to prepend a host or network name to the front
of the sender path in the From line at the beginning of the message. This is use­
ful if you need to identify which of several possible networks a message was
received from (for possible use in replying).

The -s sender option is used to give a default sender name, in case fromsmtp can­
not determine the name of the sender from the message it reads. If this option is
not used, the default sender name unknown will be used.

FILES
/usr/bin/rmail where converted mail is piped to

SEE ALSO
rmail(1M), smtpd(1M)
RFC822 – Standard for the Format of ARPA Internet Text Messages
NAME
fsba - file system block analyzer

SYNOPSIS
/usr/sbin/fsba [-b target_block_size] file-system1 [file-system2 ...]

DESCRIPTION
The fsba command determines the disk space required to store the data from an existing file system in a new file system with the specified logical block size. Each file-system listed on the command line refers to an existing file system and should be specified by device name (for example, /dev/rdsk/*, where the value of * is machine dependent).

The target_block_size specifies the logical block size in bytes of the new file system. Valid target block sizes are 512, 1024, and 2048. Default target block size is 1024. A block size of 2048 is supported only if the 2K file system package is installed.

The fsba command prints information about how many 512-byte disk sectors are allocated to store the data in the old (existing) file system and how many would be required to store the same data in a new file system with the specified logical block size. It also prints the number of allocated and free i-nodes for the existing file system.

If the number of free sectors listed for the new file system is negative, the data will not fit in the new file system unless the new file system is larger than the existing file system. The new file system must be made at least as large as the number of sectors listed by fsba as allocated for the new file system. The maximum size of the new file system is limited by the size of the disk partition used for the new file system.

Note that it is possible to specify a target_block_size that is smaller than the logical block size of the existing file system. In this case the new file system would require fewer sectors to store the data.

SEE ALSO
mkfs(1M), prtvtoc(1M)
NAME

fsck (generic) – check and repair file systems

SYNOPSIS

fsck [-F FSType] [-v] [-m] [special . . .]
fsck [-F FSType] [-v] [current_options] [-o specific_options] [special . . .]

DESCRIPTION

fsck audits and interactively repairs inconsistent conditions for file systems. If the file system is inconsistent the user is prompted for concurrence before each correction is attempted. It should be noted that some corrective actions will result in some loss of data. The amount and severity of data loss may be determined from the diagnostic output. The default action for each correction is to wait for the user to respond yes or no. If the user does not have write permission fsck defaults to a no action.

The file system should be unmounted when fsck is used. If this is not possible, care should be taken that the system is quiescent and that it is rebooted immediately afterwards if the file system is a critical one, for example root.

current_options are options supported by the s5-specific module of fsck. Other FSTypes do not necessarily support these options. specific_options indicate suboptions specified in a comma-separated list of suboptions and/or keyword-attribute pairs for interpretation by the FSType-specific module of the command.

special represents a block or character special device (e.g., /dev/rdsk/*, where the value of * is machine dependent). It is preferable that a character special device be used. fsck will not work on a block device if it is mounted. If special is not supplied, fsck looks through /etc/vfstab and executes fsck for all character specials in the fsckdev field of /etc/vfstab for which there is a numeric entry in the fsckpass field.

The options are:

- **-F** Specifying the FSType on which to operate. The FSType should either be specified here or be determinable from /etc/vfstab by matching the special with an entry in the table.
- **-v** Echo the complete command line, but do not execute the command. The command line is generated by using the options and arguments provided by the user and adding to them information derived from /etc/vfstab. This option should be used to verify and validate the command line.
- **-m** Check but don’t repair. This option checks that the file system is suitable for mounting.
- **-o** Specify FSType-specific options.

NOTE

This command may not be supported for all FSTypes.
FILES

/etc/vfstab list of default parameters for each file system

SEE ALSO

checkfsys(1M), mkfs(1M), vfstab(4)
Manual pages for the FSType-specific modules of fsck
NAME

fsck (bfs) - check and repair bfs file systems

SYNOPSIS

fsck [-F bfs] [generic_options] [special ...]
fsck [-F bfs] [generic_optionsi] [-y | -n] [special ...]

DESCRIPTION

generic_options are options supported by the generic fsck command.

fsck checks to see if compaction was in process but was not completed, perhaps as a result of a system crash. If it was, fsck completes the compaction of the file [see fs_bfs(4)].

The options are:

-y Assume a yes response to all questions asked by fsck.
-n Assume a no response to all questions asked by fsck.

SEE ALSO

checkfsys(1M), generic fsck(1M), mkfs(1M), fs_bfs(4)
See the chapter on file systems in the System Administrator's Guide
NAME
fsck (s5) – check and repair s5 file systems

SYNOPSIS
fsck [-F s5] [generic_options] [special...]
[special...]

DESCRIPTION
generic_options are options supported by the generic fsck command.
The options are:
-F s5 Specifies the s5-FSTYPE.
-y Assume a yes response to all questions asked by fsck.
-n Assume a no response to all questions asked by fsck; do not open the file system for writing.
-p Correct inconsistencies that can be fixed automatically, that is, inconsistencies that are deemed harmless and can be fixed without confirmation by the administrator. Examples of such inconsistencies are unreferenced i-nodes, incorrect counts in the superblocks, and missing blocks in the free list.
-sX Ignore the actual free list and (unconditionally) reconstruct a new one by rewriting the super-block of the file system. The file system should be unmounted while this is done; if this is not possible, care should be taken that the system is quiescent and that it is rebooted immediately afterwards. This precaution is necessary so that the old, bad, in-core copy of the superblock will not continue to be used, or written on the file system.
The -sX suboption allows for creating an optimal free-list organization.
If X is not given, the values used when the file system was created are used. The format of X is cylinder size:gap size.
-sX Conditionally reconstruct the free list. This suboption is like -sX above except that the free list is rebuilt only if there were no discrepancies discovered in the file system. Using S will force a no response to all questions asked by fsck. This suboption is useful for forcing free list reorganization on uncontaminated file systems.
-tfile If fsck cannot obtain enough memory to keep its tables, it uses a scratch file. If the t option is specified, the file named is used as the scratch file, if needed. Without the t option, fsck will prompt the user for the name of the scratch file. The file chosen should not be on the file system being checked, and if it is not a special file or did not already exist, it is removed when fsck completes.
-1 Identify damaged files by their logical names.
NOTE

Checking the raw device is almost always faster.

I-node numbers for . and .. in each directory are not checked for validity.

SEE ALSO

checkfsys(1M), crash(1M), generic fsck(1M), mkfs(1M), ncheck(1M), fs(4)
NAME
fsck (ufs) – file system consistency check and interactive repair

SYNOPSIS
fsck [-F ufs] [generic_options] [special ...]
fsck [-F ufs] [generic_options] [(-y| -Y) | (-n| -N)] [-o p, b=#, w] [special ...]

DESCRIPTION
generic_options are options supported by the generic fsck command.
current_options are options supported by the s5-specific module of the fsck command.

fsck audits and interactively repairs inconsistent conditions on file systems. In this case, it asks for confirmation before attempting any corrections. Inconsistencies other than those mentioned above can often result in some loss of data. The amount and severity of data lost can be determined from the diagnostic output.

fsck corrects innocuous inconsistencies such as: unreferenced inodes, too-large link counts in inodes, missing blocks in the free list, blocks appearing in the free list and also in files, or incorrect counts in the super block, automatically. It displays a message for each inconsistency corrected that identifies the nature of, and file system on which, the correction is to take place. After successfully correcting a file system, fsck prints the number of files on that file system, the number of used and free blocks, and the percentage of fragmentation.

The default action for each correction is to wait for the operator to respond either yes or no. If the operator does not have write permission on the file system, fsck will default to a -n (no corrections) action.

Inconsistencies checked are as follows:

- Blocks claimed by more than one inode or the free list.
- Blocks claimed by an inode or the free list outside the range of the file system.
- Incorrect link counts.
- Incorrect directory sizes.
- Bad inode format.
- Blocks not accounted for anywhere.
- Directory checks, file pointing to unallocated inode, inode number out of range, absence of ‘.’ and ‘..’ as the first two entries in each directory.
- Super Block checks: more blocks for inodes than there are in the file system.
- Bad free block list format.
- Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, reconnected by placing them in the lost+found directory. The name assigned is the inode number. If the lost+found directory does not exist, it is created. If there is insufficient space its size is increased.
A file system may be specified by giving the name of the block or character special device on which it resides, or by giving the name of its mount point.

The options are:

- `-F ufs` Specifies the `ufs-FSType`.
- `-y | -Y` Assume a yes response to all questions asked by `fsck`.
- `-n | -N` Assume a no response to all questions asked by `fsck`; do not open the file system for writing.
- `-o` Specify `ufs` file system specific suboptions. These suboptions can be any combination of the following:
 - `p` Check the filesystem non-interactively. Exit if there is a problem requiring intervention.
 - `b=#` Use the block specified as the super block for the file system. Block 32 is always an alternate super block.

NOTES

Checking the character special device is almost always faster.

SEE ALSO

`checkfsys(1M), crash(1M), generic fsck(1M), mkfs(1M), ufs(4)`
NAME
fsdb (generic) – file system debugger

SYNOPSIS
fsdb [-F FSType] [-v] [current_options] [-o specific_options] special

DESCRIPTION
fsdb is a file system debugger which allows for the manual repair of a file system
after a crash. special is a special device used to indicate the file system to be
deprecated. fsdb is intended for experienced users only. FSType is the file system
type to be debugged. Since different FSTypes have different structures and hence
different debugging capabilities the manual pages for the FSType-specific fsdb
should be consulted for a more detailed description of the debugging capabilities.

current_options are options supported by the s5-specific module of fsdb. Other
FSTypes do not necessarily support these options. specific_options indicate suboptions
specified in a comma-separated list of suboptions and/or keyword-attribute
pairs for interpretation by the FSType-specific module of the command.

The options are:

-F Specify the FSType on which to operate. The FSType should either be
specified here or be determinable from /etc/vfstab by matching the
special with an entry in the table.

-v Echo the complete command line, but do not execute the command.
The command line is generated by using the options and arguments
provided by the user and adding to them information derived from
/etc/vfstab. This option should be used to verify and validate the
command line.

-o Specify FSType-specific options.

NOTE
This command may not be supported for all FSTypes.

FILES
/etc/vfstab list of default parameters for each file system

SEE ALSO
mkfs(1M), vfstab(4).
Manual pages for the FSType-specific modules of fsdb
NAME
fsdb (s5) – s5 file system debugger

SYNOPSIS
fsdb [-F s5] [generic_options] [-z i-number] special [-]

DESCRIPTION
generic_options are options supported by the generic fsdb command.

fsdb can be used to patch up a damaged s5 file system after a crash. special is a
special device used to indicate the file system to be debugged. It has conversions
to translate block and i-numbers into their corresponding disk addresses. Also
included are mnemonic offsets to access different parts of an i-node. These
greatly simplify the process of correcting control block entries or descending the
file system tree.

fsdb contains several error-checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the optional
- argument or by the use of the O symbol. (fsdb reads the i-size and f-size
tables from the superblock of the file system as the basis for these checks.)

The options are:

- F s5 Specifies the s5-FSType.
- z i-number Clear the i-node identified by i-number. Non-interactive.

Numbers are considered decimal by default. Octal numbers must be prefixed
with a zero. During any assignment operation, numbers are checked for a possi­
ble truncation error due to a size mismatch between source and destination.

fsdb reads a block at a time and will therefore work with raw as well as block
I/O. A buffer management routine is used to retain commonly used blocks of
data in order to reduce the number of read system calls. All assignment opera­
tions result in an immediate write-through of the corresponding block.

The symbols recognized by fsdb are:

absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+ , - address arithmetic
q quit
> , < save, restore an address
= numerical assignment
=+ incremental assignment
=- decremental assignment
=" character string assignment
O error checking flip flop
p general print facilities
f file print facility
B byte mode
The print facilities generate a formatted output in various styles. The current address is normalized to an appropriate boundary before printing begins. It advances with the printing and is left at the address of the last item printed. The output can be terminated at any time by typing the delete character. If a number follows the p symbol, that many entries are printed. A check is made to detect block boundary overflows since logically sequential blocks are generally not physically sequential. If a count of zero is used, all entries to the end of the current block are printed. The print options available are:

- **i**: print as i-nodes
- **d**: print as directories
- **o**: print as octal words
- **e**: print as decimal words
- **c**: print as characters
- **b**: print as octal bytes

The f symbol is used to print data blocks associated with the current i-node. If followed by a number, that block of the file is printed. (Blocks are numbered from zero.) The desired print option letter follows the block number, if present, or the f symbol. This print facility works for small as well as large files. It checks for special devices and that the block pointers used to find the data are not zero.

Dots, tabs, and spaces may be used as function delimiters but are not necessary. A line with just a new-line character will increment the current address by the size of the data type last printed. That is, the address is set to the next byte, word, double word, directory entry or i-node, allowing the user to step through a region of a file system. Information is printed in a format appropriate to the data type. Bytes, words and double words are displayed with the octal address followed by the value in octal and decimal. A .B or .D is appended to the address for byte and double word values, respectively. Directories are printed as a directory slot offset followed by the decimal i-number and the character representation of the entry name. I-nodes are printed with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to the current working i-node:

- **md**: mode
- **ln**: link count
- **uid**: user ID number
- **gid**: group ID number
- **sz**: file size
- **a #**: data block numbers (0 – 12)
- **at**: access time
- **mt**: modification time
- **maj**: major device number
EXAMPLES

386i prints i-number 386 in an i-node format. This now becomes the current working i-node.

ln=4 changes the link count for the working i-node to 4.

ln+=1 increments the link count by 1.

fc prints, in ASCII, block zero of the file associated with the working i-node.

2i.fd prints the first 32 directory entries for the root i-node of this file system.

d5i.fc changes the current i-node to that associated with the 5th directory entry (numbered from zero) found from the above command. The first logical block of the file is then printed in ASCII.

512B.pOo prints the superblock of this file system in octal.

2i.aO.b.d7=3 changes the i-number for the seventh directory slot in the root directory to 3. This example also shows how several operations can be combined on one command line.

d7.rm="name" changes the name field in the directory slot to the given string. Quotes are optional when used with rm if the first character is alphabetic.

a2b.pOd prints the third block of the current i-node as directory entries.

SEE ALSO

fsck(1M), generic fsdb(1M), dir(4), fs(4)
NAME
 fsdb (ufs) – ufs file system debugger

SYNOPSIS
 fsdb [-P ufs] [generic_options] [-z i-number] special

DESCRIPTION
 generic_options are options supported by the generic fsdb command.
 The options are:
 -P ufs
 Specifies the ufs-FSType.
 -z i-number
 Clear the i-node identified by i-number. Non-interactive.

SEE ALSO
 fsck(1M), generic fsdb(1M), dir(4), ufs fs(4)
NAME
fsirand – install random inode generation numbers

SYNOPSIS
/usr/ucb/fsirand [-p] special

DESCRIPTION
fsirand installs random inode generation numbers on all the inodes on device special, and also installs a filesystem ID in the superblock. This helps increase the security of filesystems exported by NFS.

fsirand must be used only on an unmounted filesystem that has been checked with fsck(1M). The only exception is that it can be used on the root filesystem in single-user mode, if the system is immediately re-booted afterwards.

The -p option prints out the generation numbers for all the inodes, but does not change the generation numbers.

SEE ALSO
fsck(1M) in the System Administrator's Reference Manual
NAME
 fstyp (generic) – determine file system type

SYNOPSIS
 fstyp [-v] special

DESCRIPTION
 fstyp allows the user to determine the file system type of unmounted file systems using heuristic programs.

 An fstyp module for each file system type to be checked is executed; each of these modules applies some appropriate heuristic to determine whether the supplied special file is of the type for which it checks. If it is, the program prints on standard output the usual file-system identifier for that type and exits with a return code of 0; if none of the modules succeed, the error message unknown_fstyp (no matches) is returned and the exit status is 1. If more than one module succeeds the error message unknown_fstyp (multiple matches) is returned and the exit status is 2.

 The options are:
 -v Produce verbose output. This is usually information about the file systems superblock and varies across different FSTypes.

NOTES
 The use of heuristics implies that the result of fstyp is not guaranteed to be accurate.
NAME

ftp – file transfer program

SYNOPSIS

ftp [-dgintv] [hostname]

DESCRIPTION

The ftp command is the user interface to the ARPANET standard File Transfer Protocol (FTP). ftp transfers files to and from a remote network site.

The client host with which ftp is to communicate may be specified on the command line. If this is done, ftp immediately attempts to establish a connection to an FTP server on that host; otherwise, ftp enters its command interpreter and awaits instructions from the user. When ftp is awaiting commands from the user, it displays the prompt ftp>

The following options may be specified at the command line, or to the command interpreter:

- d Enable debugging.
- g Disable filename globbing.
- i Turn off interactive prompting during multiple file transfers.
- n Do not attempt auto-login upon initial connection. If auto-login is not disabled, ftp checks the .netrc file in the user’s home directory for an entry describing an account on the remote machine. If no entry exists, ftp will prompt for the login name of the account on the remote machine (the default is the login name on the local machine), and, if necessary, for a password and an account with which to log in.
- t Enable packet tracing (unimplemented).
- v Show all responses from the remote server, as well as report on data transfer statistics. This is turned on by default if ftp is running interac­tively with its input coming from the user’s terminal.

The following commands can be specified to the command interpreter:

1 [command]

Run command as a shell command on the local machine. If no command is given, invoke an interactive shell.

$ macro-name [args]

Execute the macro macro-name that was defined with the macdef command. Arguments are passed to the macro unglobbed.

account [passwd]

Supply a supplemental password required by a remote system for access to resources once a login has been successfully completed. If no argument is included, the user will be prompted for an account password in a non-echoing input mode.

Page 1
append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is not
specified, the local file name is used, subject to alteration by any ntrans
or nmap settings. File transfer uses the current settings for representation
type, file structure, and transfer mode.

ascii Set the representation type to network ASCII. This is the default type.

bell Sound a bell after each file transfer command is completed.

binary
Set the representation type to image.

bye Terminate the FTP session with the remote server and exit ftp. An EOF
will also terminate the session and exit.

case Toggle remote computer file name case mapping during mget commands.
When case is on (default is off), remote computer file names with all
letters in upper case are written in the local directory with the letters
mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

cdup Change the remote machine working directory to the parent of the current
remote machine working directory.

close Terminate the FTP session with the remote server, and return to the com-
mand interpreter. Any defined macros are erased.

cr Toggle RETURN stripping during network ASCII type file retrieval.
Records are denoted by a RETURN/LINEFEED sequence during network
ASCII type file transfer. When cr is on (the default), RETURN characters
are stripped from this sequence to conform with the UNIX system single
LINEFEED record delimiter. Records on non-UNIX-system remote hosts
may contain single LINEFEED characters; when an network ASCII type
transfer is made, these LINEFEED characters may be distinguished from a
record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory,
and, optionally, placing the output in local-file. If no directory is specified,
the current working directory on the remote machine is used. If no local
file is specified, or local-file is -, output is sent to the terminal.

disconnect
A synonym for close.
form [format-name]
Set the carriage control format subtype of the representation type to format-name. The only valid format-name is non-print, which corresponds to the default non-print subtype.

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not specified, it is given the same name it has on the remote machine, subject to alteration by the current case, ntrans, and nmap settings. The current settings for representation type, file structure, and transfer mode are used while transferring the file.

glob Toggle filename expansion, or globbing, for mdelete, mget and mput. If globbing is turned off, filenames are taken literally.
Globbing for mput is done as in sh(1). For mdelete and mget, each remote file name is expanded separately on the remote machine, and the lists are not merged.
Expansion of a directory name is likely to be radically different from expansion of the name of an ordinary file: the exact result depends on the remote operating system and FTP server, and can be previewed by doing mls remote-files −.
mget and mput are not meant to transfer entire directory subtrees of files. You can do this by transferring a tar(1) archive of the subtree (using a representation type of image as set by the binary command).

hash Toggle hash-sign (#) printing for each data block transferred. The size of a data block is 8192 bytes.

help [command]
Print an informative message about the meaning of command. If no argument is given, ftp prints a list of the known commands.

lcd [directory]
Change the working directory on the local machine. If no directory is specified, the user’s home directory is used.

ls [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If remote-directory is left unspecified, the current working directory is used. If no local file is specified, or if local-file is −, the output is sent to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a null line (consecutive NEWLINE characters in a file or RETURN characters from the terminal) terminates macro input mode. There is a limit of 16 macros and 4096 total characters in all defined macros. Macros remain defined until a close command is executed.
The macro processor interprets $ and \ as special characters. A $ followed by a number (or numbers) is replaced by the corresponding argument on the macro invocation command line. A $ followed by an i signals that macro processor that the executing macro is to be looped. On
the first pass i is replaced by the first argument on the macro invocation command line, on the second pass it is replaced by the second argument, and so on. A \ followed by any character is replaced by that character. Use the \ to prevent special treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like **dir**, except multiple remote files may be specified. If interactive prompting is on, **ftp** will prompt the user to verify that the last argument is indeed the target local file for receiving **mdir** output.

mget remote-files
Expand the remote-files on the remote machine and do a **get** for each file name thus produced. See **glob** for details on the filename expansion. Resulting file names will then be processed according to **case**, **ntrans**, and **nmap** settings. Files are transferred into the local working directory, which can be changed with **! mkdir** directory; new local directories can be created with **mkdir** directory.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like **ls(1)**, except multiple remote files may be specified. If interactive prompting is on, **ftp** will prompt the user to verify that the last argument is indeed the target local file for receiving **mls** output.

mode [mode-name]
Set the transfer mode to **mode-name**. The only valid **mode-name** is **stream**, which corresponds to the default stream mode. This implementation only supports **stream**, and requires that it be specified.

mput local-files
Expand wild cards in the list of local files given as arguments and do a **put** for each file in the resulting list. See **glob** for details of filename expansion. Resulting file names will then be processed according to **ntrans** and **nmap** settings.

nmap [inpatter outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename mapping mechanism is unset. If arguments are specified, remote filenames are mapped during **mput** commands and **put** commands issued without a specified remote target filename. If arguments are specified, local filenames are mapped during **mget** commands and **get** commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host with different file naming conventions or practices. The mapping follows the pattern set by **inpatter** and **outpattern**. **inpatter** is a template for incoming filenames (which may have already been processed according to the **ntrans** and **case** settings). Variable templating is accomplished by including the sequences $1, 2, \ldots, 9$ in **inpatter**. Use \ to prevent this
special treatment of the $ character. All other characters are treated literally, and are used to determine the \texttt{nmap inpattern} variable values.

For example, given \texttt{inpattern $1.$2} and the remote file name \texttt{mydata.data}, 1 would have the value \texttt{mydata}, and 2 would have the value \texttt{data}.

The \texttt{outpattern} determines the resulting mapped filename. The sequences 1, 2, ..., 9 are replaced by any value resulting from the \texttt{inpattern} template. The sequence 0 is replaced by the original filename. Additionally, the sequence \texttt{[seq1,seq2]} is replaced by \texttt{seq1} if \texttt{seq1} is not a null string; otherwise it is replaced by \texttt{seq2}.

For example, the command \texttt{nmap $1.$2.$3 [[$1,$2].[$2,file]]} would yield the output filename \texttt{myfile.data} for input filenames \texttt{myfile.data} and \texttt{myfile.data.old, myfile.file} for the input filename \texttt{myfile}, and \texttt{myfile.myfile} for the input filename \texttt{myfile}. \texttt{SPACE} characters may be included in \texttt{outpattern}, as in the example \texttt{nmap $1 | sed "s/ *$///" > $1}. Use the \texttt{\} character to prevent special treatment of the $, \[, \], and \,, characters.

\texttt{ntrans [inchars [outchars]]}

Set or unset the filename character translation mechanism. If no arguments are specified, the filename character translation mechanism is unset. If arguments are specified, characters in remote filenames are translated during \texttt{mput} commands and \texttt{put} commands issued without a specified remote target filename, and characters in local filenames are translated during \texttt{mget} commands and \texttt{get} commands issued without a specified local target filename.

This command is useful when connecting to a non-UNIX-system remote host with different file naming conventions or practices. Characters in a filename matching a character in \texttt{inchars} are replaced with the corresponding character in \texttt{outchars}. If the character's position in \texttt{inchars} is longer than the length of \texttt{outchars}, the character is deleted from the file name.

\texttt{open host [port]}

Establish a connection to the specified \texttt{host} FTP server. An optional port number may be supplied, in which case, \texttt{ftp} will attempt to contact an FTP server at that port. If the \texttt{auto-login} option is on (default setting), \texttt{ftp} will also attempt to automatically log the user in to the FTP server.

\texttt{prompt}

Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to allow the user to selectively retrieve or store files. By default, prompting is turned on. If prompting is turned off, any \texttt{mget} or \texttt{mput} will transfer all files, and any \texttt{mdelete} will delete all files.

\texttt{proxy ftp-command}

Execute an FTP command on a secondary control connection. This command allows simultaneous connection to two remote FTP servers for transferring files between the two servers. The first \texttt{proxy} command should be an \texttt{open}, to establish the secondary control connection. Enter
the command `proxy ?` to see other FTP commands executable on the secondary connection.

The following commands behave differently when prefaced by `proxy`: `open` will not define new macros during the auto-login process, `close` will not erase existing macro definitions, `get` and `mget` transfer files from the host on the primary control connection to the host on the secondary control connection, and `put`, `mput`, and `append` transfer files from the host on the secondary control connection to the host on the primary control connection.

Third party file transfers depend upon support of the `PASV` command by the server on the secondary control connection.

```
put local-file [ remote-file ]
```

Store a local file on the remote machine. If `remote-file` is left unspecified, the local file name is used after processing according to any `ntrans` or `nmap` settings in naming the remote file. File transfer uses the current settings for representation type, file structure, and transfer mode.

```
pwd
```

Print the name of the current working directory on the remote machine.

```
quit
```

A synonym for `bye`.

```
quote arg1 arg2 ...
```

Send the arguments specified, verbatim, to the remote FTP server. A single FTP reply code is expected in return. (The `remotehelp` command displays a list of valid arguments.)

```
quote
```

should be used only by experienced users who are familiar with the FTP protocol.

```
recv remote-file [ local-file ]
```

A synonym for `get`.

```
remotehelp [ command-name ]
```

Request help from the remote FTP server. If a `command-name` is specified it is supplied to the server as well.

```
rename from to
```

Rename the file `from` on the remote machine to have the name `to`.

```
reset
```

Clear reply queue. This command re-synchronizes command/reply sequencing with the remote FTP server. Resynchronization may be necessary following a violation of the FTP protocol by the remote server.

```
rmdir directory-name
```

Delete a directory on the remote machine.

```
runique
```

Toggle storing of files on the local system with unique filenames. If a file already exists with a name equal to the target local filename for a `get` or `mget` command, a `.1` is appended to the name. If the resulting name matches another existing file, a `.2` is appended to the original name. If this process continues up to `.99`, an error message is printed, and the transfer does not take place. The generated unique filename will be
reported. `runique` will not affect local files generated from a shell command. The default value is off.

`send local-file [remote-file]`
A synonym for `put`.

`sendport` Toggle the use of PORT commands. By default, `ftp` will attempt to use a PORT command when establishing a connection for each data transfer. The use of PORT commands can prevent delays when performing multiple file transfers. If the PORT command fails, `ftp` will use the default data port. When the use of PORT commands is disabled, no attempt will be made to use PORT commands for each data transfer. This is useful when connected to certain FTP implementations that ignore PORT commands but incorrectly indicate they have been accepted.

`status` Show the current status of `ftp`.

`struct [struct-name]`
Set the file structure to `struct-name`. The only valid `struct-name` is `file`, which corresponds to the default file structure. The implementation only supports `file`, and requires that it be specified.

`sunique` Toggle storing of files on remote machine under unique file names. The remote FTP server must support the `STOU` command for successful completion. The remote server will report the unique name. Default value is off.

`tenex` Set the representation type to that needed to talk to TENEX machines.

`trace` Toggle packet tracing (unimplemented).

`type [type-name]`
Set the representation type to `type-name`. The valid `type-names` are `ascii` for network ASCII, `binary` or `image` for image, and `tenex` for local byte size with a byte size of 8 (used to talk to TENEX machines). If no type is specified, the current type is printed. The default type is network ASCII.

`user user-name [password] [account]`
Identify yourself to the remote FTP server. If the password is not specified and the server requires it, `ftp` will prompt the user for it (after disabling local echo). If an account field is not specified, and the FTP server requires it, the user will be prompted for it. If an account field is specified, an account command will be relayed to the remote server after the login sequence is completed if the remote server did not require it for logging in. Unless `ftp` is invoked with auto-login disabled, this process is done automatically on initial connection to the FTP server.

`verbose` Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the user. In addition, if verbose mode is on, when a file transfer completes, statistics regarding the efficiency of the transfer are
reported. By default, verbose mode is on if ftp’s commands are coming from a terminal, and off otherwise.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.
If any command argument which is not indicated as being optional is not specified, ftp will prompt for that argument.

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key. Sending transfers will be immediately halted. Receiving transfers will be halted by sending an FTP protocol ABOR command to the remote server, and discarding any further data received. The speed at which this is accomplished depends upon the remote server’s support for ABOR processing. If the remote server does not support the ABOR command, an ftp> prompt will not appear until the remote server has completed sending the requested file.

The terminal interrupt key sequence will be ignored when ftp has completed any local processing and is awaiting a reply from the remote server. A long delay in this mode may result from the ABOR processing described above, or from unexpected behavior by the remote server, including violations of the ftp protocol. If the delay results from unexpected remote server behavior, the local ftp program must be killed by hand.

FILE NAMING CONVENTIONS
Local files specified as arguments to ftp commands are processed according to the following rules.

1) If the file name - is specified, the standard input (for reading) or standard output (for writing) is used.

2) If the first character of the file name is I, the remainder of the argument is interpreted as a shell command. ftp then forks a shell, using popen(3S) with the argument supplied, and reads (writes) from the standard output (standard input) of that shell. If the shell command includes SPACE characters, the argument must be quoted; for example "I ls -lt". A particularly useful example of this mechanism is: "dir | more".

3) Failing the above checks, if globbing is enabled, local file names are expanded according to the rules used in the sh(1); see the glob command. If the ftp command expects a single local file (for example, put), only the first filename generated by the globbing operation is used.

4) For mget commands and get commands with unspecified local file names, the local filename is the remote filename, which may be altered by a case, ntrans, or nmap setting. The resulting filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the remote filename is the local filename, which may be altered by a ntrans or nmap setting. The resulting filename may then be altered by the remote server if sunique is on.
FILE TRANSFER PARAMETERS

The FTP specification type may be one of network ASCII, EBCDIC, image, or local byte size with a specified byte size (for PDP-10's and PDP-20's mostly). The network ASCII and EBCDIC types have a further subtype which specifies whether vertical format control (NEWLINE characters, form feeds, etc.) are to be passed through (non-print), provided in TELNET format (TELNET format controls), or provided in ASA (FORTRAN) (carriage control (ASA) format. ftp supports the network ASCII (subtype non-print only) and image types, plus local byte size with a byte size of 8 for communicating with TENEX machines.

The file structure may be one of file (no record structure), record, or page. ftp supports only the default value, which is file.

The transfer mode may be one of stream, block, or compressed. ftp supports only the default value, which is stream.

SEE ALSO
ls(1), rcp(1), tar(1), sh(1), ftpd(1M), popen(3S), netrc(4)

NOTES
Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2 BSD code handling transfers with a representation type of network ASCII has been corrected. This correction may result in incorrect transfers of binary files to and from 4.2 BSD servers using a representation type of network ASCII. Avoid this problem by using the image type.
NAME
ftpd – file transfer protocol server

SYNOPSIS
in.ftpd [-d1] [-ttimeout]

DESCRIPTION
ftpd is the Internet File Transfer Protocol (FTP) server process. The server is
invoked by the Internet daemon inetd(1M) each time a connection to the FTP
service [see services(4)] is made, with the connection available as descriptor 0.
Inactive connections are timed out after 90 seconds.

The following options are available:
-d Write Debugging information into the system log.
-1 Write each FTP session into the system log.
-ttimeout Set the inactivity timeout period to timeout, in seconds. The FTP server
will timeout an inactive session after 15 minutes.

Requests
The FTP server currently supports the following FTP requests; case is not
distinguished.

Request Description
ABOR abort previous command
ACCT specify account (ignored)
ALLO allocate storage (vacuously)
APPE append to a file
CDUP change to parent of current working directory
CWD change working directory
DELETE delete a file
HELP give help information
LIST give list files in a directory (1s -lg)
MKD make a directory
MODE specify data transfer mode
NLST give name list of files in directory (1s)
NOOP do nothing
PASS specify password
PASV prepare for server-to-server transfer
PORT specify data connection port
PWD print the current working directory
QUIT terminate session
RETR retrieve a file
RMD remove a directory
RNFR specify rename-from file name
RNTO specify rename-to file name
STOR store a file
STOU store a file with a unique name
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory
XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XRMD remove a directory

The remaining FTP requests specified in RFC 959 are recognized, but not implemented.

The FTP server will abort an active file transfer only when the ABOR command is preceded by a Telnet Interrupt Process (IP) signal and a Telnet Synch signal in the command Telnet stream, as described in RFC 959.

ftpd interprets file names according to the globbing conventions used by sh(1). This allows users to utilize the metacharacters: * ? [] { } ~

ftpd authenticates users according to four rules.

1) The user name must be in the password data base, /etc/passwd, and not have a null password. In this case a password must be provided by the client before any file operations may be performed.

2) If the user name appears in the file /etc/ftpusers, ftp access is denied.

3) ftp access is denied unless the user's shell (from /etc/passwd) is listed in the file /etc/shells, or the user's shell is one of the following:

 /bin/sh
 /bin/ksh
 /bin/csh
 /usr/bin/sh
 /usr/bin/ksh
 /usr/bin/csh
4) If the user name is anonymous or ftp, an anonymous FTP account must be present in the password file (user ftp). In this case the user is allowed to log in by specifying any password (by convention this is given as the client host’s name).

In the last case, **ftpd** takes special measures to restrict the client’s access privileges. The server performs a **chroot(2)** command to the home directory of the ftp user. In order that system security is not breached, it is recommended that the ftp subtree be constructed with care; the following rules are recommended.

home_directory
Make the home directory owned by **ftp** and unwritable by anyone.

home_directory/usr/bin
Make this directory owned by the super-user and unwritable by anyone. The program **ls(1)** must be present to support the list commands. This program should have mode 111.

home_directory/etc
Make this directory owned by the super-user and unwritable by anyone. Copies of the files **passwd(4)**, **group(4)**, and **netconfig** must be present for the **ls** command to work properly. These files should be mode 444.

home_directory/pub
Make this directory mode 777 and owned by **ftp**. Users should then place files which are to be accessible via the anonymous account in this directory.

home_directory/dev
Make this directory owned by the super-user and unwritable by anyone. Change directories to this directory and do the following:

```
FTP="grep '^ftp: /etc/passwd | cut -d: -f6'"
MAJORMINOR="ls -l /dev/tcp | awk '{ gsub(/,/, ""); print $5, $6}'"
mknod $FTP /dev/tcp c $MAJORMINOR
chmod 666 $FTP /dev/tcp
```

SEE ALSO
ftp(1), **getsockopt(3N)**, **passwd(4)**, **services(4)**

NOTES
The anonymous account is inherently dangerous and should be avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It maintains an effective user ID of the logged in user, changing to user ID 0 only when binding addresses to sockets. The possible security holes have been extensively scrutinized, but are possibly incomplete.
/etc/ftpusers contains a list of users who cannot access the system; the format of the file is one username per line.
NAME
 fumount – forced unmount of advertised resources

SYNOPSIS
 fumount [-w sec] resource [[-w sec] resource].

DESCRIPTION
 fumount unadvertises each resource and disconnects remote access to the resource. The -w sec causes a delay of sec seconds prior to the disconnect from the resource specified immediately after the -w.

 When the forced unmount occurs, an administrative shell script is started on each remote computer that has the resource mounted (/usr/bin/rfuadmin). If a grace period of several seconds is specified with -w, rfuadmin is started with the fuwarn option. When the actual forced unmount is ready to occur, rfuadmin is started with the fumount option. See the rfuadmin(1M) manual page for information on the action taken in response to the forced unmount.

 This command is restricted to the super-user.

ERRORS
 If resource (1) does not physically reside on the local machine, (2) is an invalid resource name, (3) is not currently advertised and is not remotely mounted, or (4) the command is not run with super-user privileges, an error message will be sent to standard error.

SEE ALSO
 adv(1M), mount(1M), rfuadmin(1M), rfudaemon(1M), rmount(1M), unadv(1M)
NAME
fusage – disk access profiler

SYNOPSIS
fusage [[mount_point] | [advertised_resource] | [block_special_device] [. . .]]

DESCRIPTION
When used with no options, fusage reports block I/O transfers, in kilobytes, to
and from all locally mounted file systems and advertised Remote File Sharing
resources on a per client basis. The count data are cumulative since the time of
the mount. When used with an option, fusage reports on the named file system,
advertised resource, or block special device.

The report includes one section for each file system and advertised resource and
has one entry for each machine that has the directory remotely mounted, ordered
by decreasing usage. Sections are ordered by device name; advertised resources
that are not complete file systems will immediately follow the sections for the file
systems they are in.

SEE ALSO
adv(1M), mount(1M), df(1M), crash(1M)
NAME
fuser – identify processes using a file or file structure

SYNOPSIS
/usr/sbin/fuser [-c] [-f] [-k] [-u] files [-] resources [-] files [-] resources...

DESCRIPTION
fuser outputs the process IDs of the processes that are using the files or remote resources specified as arguments. Each process ID is followed by one of these letter codes, which identify how the process is using the file:

- c as its current directory.
- r as its root directory, which was set up by the chroot(1M) command.
- o as an open file.
- t as its text file.
- a as its trace file located in the /proc directory.

For block special devices with mounted file systems, processes using any file on that device are listed. For remote resource names, processes using any file associated with that remote resource (Remote File Sharing) are reported. For all other types of files (text files, executables, directories, devices, etc.) only the processes using that file are reported.

The following options may be used with fuser:

- c may be used with files that are mount points for file systems. With that option the report is for use of the mount point and any files within that mounted file system.
- f when this is used, the report is only for the named file, not for files within a mounted file system.
- u the user login name, in parentheses, also follows the process ID.
- k the SIGKILL signal is sent to each process. Since this option spawns kills for each process, the kill messages may not show up immediately [see kill(2)].

If more than one group of files are specified, the options may be respecified for each additional group of files. A lone dash cancels the options currently in force.

The process IDs are printed as a single line on the standard output, separated by spaces and terminated with a single new line. All other output is written on standard error.

Any user with permission to read /dev/kmem and /dev/mem can use fuser. Only the super-user can terminate another user's process

EXAMPLES
fuser -ku /dev/dsk/ls?
if typed by a user with appropriate privileges, terminates all processes that are preventing disk drive one from being unmounted, listing the process ID and login name of each as it is killed.
fuser -u /etc/passwd
lists process IDs and login names of processes that have the password file open.

fuser -ku /dev/dsk/ls? -u /etc/passwd
executes both of the above examples in a single command line.

fuser -cu /home
if the /dev/dsk/c1d0s9 device is mounted on /home, lists process ID’s and login names of processes that are using /dev/dsk/c1d0s9.

FILES
/stand/unix for system namelist
/dev/kmem for system image
/dev/mem also for system image

NOTE
If an RFS resource from a pre System V Release 4 server is mounted, fuser can only report on use of the whole file system, not on individual files within it.

Because fuser works with a snapshot of the system image, it may miss processes that begin using a file while fuser is running. Also, processes reported as using a file may have stopped using it while fuser was running. These factors should discourage the use of the -k option.

fuser does not report all possible usages of a file (for example, a mapped file).

SEE ALSO
mount(1M), chroot(1M)
ps(1) in the User’s Reference Manual
NAME
fwtmp, wtmpfix – manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [-ic]
/usr/lib/acct/wtmpfix [files]

DESCRIPTION
fwtmp reads from the standard input and writes to the standard output, converting binary records of the type found in /var/adm/wtmp to formatted ASCII records. The ASCII version is useful when it is necessary to edit bad records.

The argument -ic is used to denote that input is in ASCII form, and output is to be written in binary form.

wtmpfix examines the standard input or named files in utmp.h format, corrects the time/date stamps to make the entries consistent, and writes to the standard output. A - can be used in place of files to indicate the standard input. If time/date corrections are not performed, acctcon will fault when it encounters certain date-change records.

Each time the date is set, a pair of date change records are written to /var/adm/wtmp. The first record is the old date denoted by the string "old time" placed in the line field and the flag OLD_TIME placed in the type field of the utmp structure. The second record specifies the new date and is denoted by the string new time placed in the line field and the flag NEW_TIME placed in the type field. wtmpfix uses these records to synchronize all time stamps in the file.

In addition to correcting time/date stamps, wtmpfix will check the validity of the name field to ensure that it consists solely of alphanumeric characters or spaces. If it encounters a name that is considered invalid, it will change the login name to INVALID and write a diagnostic to the standard error. In this way, wtmpfix reduces the chance that acctcon will fail when processing connect accounting records.

FILES
/var/adm/wtmp
/usr/include/utmp.h

SEE ALSO
acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), runacct(1M), acct(4), utmp(4)
acctcom(1), ed(1) in the User’s Reference Manual
acct(2) in the Programmer’s Reference Manual
NAME
gcore - get core images of running processes

SYNOPSIS
gcore [-o filename] process-id . . .

DESCRIPTION
gcore creates a core image of each specified process. Such an image may be
used with debuggers such as sdb. The name of the core image file for the pro­
cess whose process ID is process-id will be core.process-id.
The -o option substitutes filename in place of core as the first part of the name of
the core image files.

FILES
core.process-id core images

SEE ALSO
kill(1), csh(1)
sdb(1), ptrace(2) in the Programmer's Reference Manual
NAME
gencat - generate a formatted message catalogue

SYNOPSIS
gencat [-m] [-f format] catfile msgfile ...

DESCRIPTION
The gencat utility merges the message text source file(s) msgfile into a formatted
message database catfile. The database catfile will be created if it does not already
exist. If catfile does exist its messages will be included in the new catfile. If set
and message numbers collide, the new message-text defined in msgfile will replace
the old message text currently contained in catfile. The message text source file
(or set of files) input to gencat can contain either set and message numbers or
simply message numbers, in which case the set NL_SETD [see nl_types(5)] is
assumed.

The -f option allows different format message catalogues to be generated. Arguments
that can be used with this option are:

SVR4 Produces the System V Release 4 format catalogue. (This is the default
if -f or -m are not specified.)
m This is equivalent to the -m option.
XENIX Produces message catalogues suitable for use with SCO UNIX/XENIX
applications.

If the -m or -f options are not used, the format of an existing message catalogue
will be retained. The -f option can be used to change the format of a catalogue.

The format of a message text source file is defined as follows. Note that the
fields of a message text source line are separated by a single ASCII space or tab
character. Any other ASCII spaces or tabs are considered as being part of the
subsequent field.

$set n comment
Where n specifies the set identifier of the following messages until the next
$set, $delset or end-of-file appears. n must be a number in the range
(1-{NL_SETMAX}). Set identifiers within a single source file need not be con-
tiguous. Any string following the set identifier is treated as a comment. If
no $set directive is specified in a message text source file, all messages will
be located in the default message set NL_SETD.

$delset n comment
Deletes message set n from an existing message catalogue. Any string fol-
lowing the set number is treated as a comment.

(Note: if n is not a valid set it is ignored.)

$ comment
A line beginning with a dollar symbol $ followed by an ASCII space or tab
character is treated as a comment.

m message-text
The m denotes the message identifier, which is a number in the range (1-
{NL_MSGMAX}). The message-text is stored in the message catalogue with the
set identifier specified by the last $set directive, and with message
identifier \textit{m}. If the message-text is empty, and an ASCII space or tab field separator is present, an empty string is stored in the message catalogue. If a message source line has a message number, but neither a field separator nor message-text, the existing message with that number (if any) is deleted from the catalogue. Message identifiers need not be contiguous. The length of message-text must be in the range \((0-\{\text{NL_TEXTMAX}\})\).

\texttt{$quote c$}

This line specifies an optional quote character \textit{c}, which can be used to surround message-text so that trailing spaces or null (empty) messages are visible in a message source line. By default, or if an empty $quote$ directive is supplied, no quoting of message-text will be recognized.

Empty lines in a message text source file are ignored.

Text strings can contain the special characters and escape sequences defined in the following table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>newline</td>
<td>NL(LF)</td>
<td>\n</td>
</tr>
<tr>
<td>horizontal tab</td>
<td>HT</td>
<td>\t</td>
</tr>
<tr>
<td>vertical tab</td>
<td>VT</td>
<td>\v</td>
</tr>
<tr>
<td>backspace</td>
<td>BS</td>
<td>\b</td>
</tr>
<tr>
<td>carriage return</td>
<td>CR</td>
<td>\r</td>
</tr>
<tr>
<td>form feed</td>
<td>FF</td>
<td>\f</td>
</tr>
<tr>
<td>backslash</td>
<td>\</td>
<td>\d</td>
</tr>
<tr>
<td>bit pattern</td>
<td>dddd</td>
<td>\ddd</td>
</tr>
</tbody>
</table>

The escape sequence \texttt{\textbackslash dddd} consists of backslash followed by 1, 2 or 3 octal digits, which are taken to specify the value of the desired character. If the character following a backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a string on the following line. Thus, the following two lines describe a single message string:

\begin{verbatim}
 1 This line continues \\
 to the next line
\end{verbatim}

which is equivalent to:

\begin{verbatim}
 1 This line continues to the next line
\end{verbatim}

\textbf{NOTES}

This version of gencat is built upon the \texttt{mkmsgs} utility. The gencat database comprises of two files \texttt{catfile.m} which is an \texttt{mkmsgs} format catalogue and the file \texttt{catfile} which contains the information required to translate an set and message number into a simple message number which can be used in a call to \texttt{gettext}.

Using \texttt{gettext} constrains the catalogues to be located in a subdirectory under \texttt{/usr/lib/locale}. This restriction is lifted by placing only a symbolic link to the catalogue in the directory \texttt{/usr/lib/locale/Xopen/LC_MESSAGES} when the catalogue is opened. It is this link that \texttt{gettext} uses when attempting to access the catalogue. The link is removed when the catalogue is closed but occasionally
as applications exit abnormally without closing catalogues redundant symbolic links will be left in the directory.

For compatibility with previous version of gencat released in a number of specialized internationalization products, the `-m` option is supplied. This option will cause gencat to build a single file `catfile` which is compatible with the format catalogues produced by the earlier versions. The retrieval routines detect the type of catalogue they are using and will act appropriately.

SEE ALSO

`mkmsgs(1)`
`catopen(3C), catgets(3C), catclose(3C), gettxt(3C), nl_types(5)` in the `Programmer's Reference Manual`.
NAME

gencc – create a front-end to the cc command

SYNOPSIS

gencc

DESCRIPTION

The gencc command is an interactive command designed to aid in the creation of a front-end to the cc command. Since hard-coded pathnames have been eliminated from the C Compilation System (CCS), it is possible to move pieces of the CCS to new locations without recompilation. The new locations of moved pieces can be specified through the -Y option to the cc command. However, it is inconvenient to supply the proper -Y options with every invocation of the cc command. Further, if a system administrator moves pieces of the CCS, such movement should be invisible to users.

The front-end to the cc command that gencc generates is a one-line shell script that calls the cc command with the proper -Y options specified. The front-end to the cc command will also pass all user-supplied options to the cc command.

gencc prompts for the location of each tool and directory that can be respecified by a -Y option to the cc command. If no location is specified, it assumes that that piece of the CCS has not been relocated. After all the locations have been prompted for, gencc will create the front-end to the cc command.

gencc creates the front-end to the cc command in the current working directory and gives the file the same name as the cc command. Thus, gencc can not be run in the same directory containing the actual cc command. Further, if a system administrator has redistributed the CCS, the actual cc command should be placed in a location that is not typically in a user's path (e.g., /usr/lib). Such placement will prevent users from accidentally invoking the cc command without using the front-end.

NOTES

gencc does not produce any warnings if a tool or directory does not exist at the specified location. Also, gencc does not actually move any files to new locations. The gencc command is obsolete.

FILES

./cc front-end to cc

SEE ALSO

cc(1)
NAME
get – get a version of an SCCS file

SYNOPSIS

DESCRIPTION
get generates an ASCII text file from each named SCCS file according to the
specifications given by its keyletter arguments, which begin with -. The argu­ments
may be specified in any order, but all keyletter arguments apply to all
named SCCS files. If a directory is named, get behaves as though each file in the
directory were specified as a named file, except that non-SCCS files (last com­ponent of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read; each line of
the standard input is taken to be the name of an SCCS file to be processed.

The generated text is normally written into a file called the g-file whose name is
derived from the SCCS file name by simply removing the leading “s.” (see also
the FILES section below).

Each of the keyletter arguments is explained below as though only one SCCS file
is to be processed, but the effects of any keyletter argument apply independently
to each named file.

-rSID The SCCS identification string (SID) of the version (delta) of an
SCCS file to be retrieved. Table 1 below shows, for the most use­ful cases, what version of an SCCS file is retrieved (as well as the
SID of the version to be eventually created by delta(1) if the -e
keyletter is also used), as a function of the SID specified.

-ccutoff Cutoff date-time, in the form:

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file that were created after the
specified cutoff date-time are included in the generated ASCII text
file. Units omitted from the date-time default to their maximum
possible values; that is, -c7502 is equivalent to -c750228235959.
Any number of non-numeric characters may separate the two­
digit pieces of the cutoff date-time. This feature allows one to
specify a cutoff date in the form:

-c"77/2/2 9:22:25".

-xlist A list of deltas to be included (forced to be applied) in the crea­
tion of the generated file. The list has the following syntax:

<list> ::= <range> | <list> , <range>
<range> ::= SID | SID – SID

SID, the SCCS Identification of a delta, may be in any form shown
in the “SID Specified” column of Table 1.
A list of deltas to be excluded in the creation of the generated file. See the -i keyletter for the list format.

Indicates that the get is for the purpose of editing or making a change (delta) to the SCCS file via a subsequent use of delta(1). The -e keyletter used in a get for a particular version (SID) of the SCCS file prevents further gets for editing on the same SID until delta is executed or the j (joint edit) flag is set in the SCCS file [see admin(1)]. Concurrent use of get -e for different SIDs is always allowed.

If the g-file generated by get with an -e keyletter is accidentally ruined in the process of editing it, it may be regenerated by re-executing the get command with the -k keyletter in place of the -e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized user list stored in the SCCS file [see admin(1)] are enforced when the -e keyletter is used.

Used with the -e keyletter to indicate that the new delta should have an SID in a new branch as shown in Table 1. This keyletter is ignored if the b flag is not present in the file [see admin(1)] or if the retrieved delta is not a leaf delta. (A leaf delta is one that has no successors on the SCCS file tree.) A branch delta may always be created from a non-leaf delta. Partial SIDs are interpreted as shown in the “SID Retrieved” column of Table 1.

Suppresses replacement of identification keywords (see below) in the retrieved text by their value. The -k keyletter is implied by the -e keyletter.

Causes a delta summary to be written into an I-file. If -lp is used, then an I-file is not created; the delta summary is written on the standard output instead. See IDENTIFICATION KEYWORDS for detailed information on the I-file.

Causes the text retrieved from the SCCS file to be written on the standard output. No g-file is created. All output that normally goes to the standard output goes to file descriptor 2 instead, unless the -s keyletter is used, in which case it disappears.

Suppresses all output normally written on the standard output. However, fatal error messages (which always go to file descriptor 2) remain unaffected.

Causes each text line retrieved from the SCCS file to be preceded by the SID of the delta that inserted the text line in the SCCS file. The format is: SID, followed by a horizontal tab, followed by the text line.

Causes each generated text line to be preceded with the % identification keyword value (see below). The format is: %M value, followed by a horizontal tab, followed by the text line. When both the -m and -n keyletters are used, the format is: %M
value, followed by a horizontal tab, followed by the \texttt{-m} keyletter generated format.

\textbf{\texttt{-g}} \hspace{1cm} Suppresses the actual retrieval of text from the SCCS file. It is primarily used to generate an I-file, or to verify the existence of a particular SID.

\textbf{\texttt{-t}} \hspace{1cm} Used to access the most recently created delta in a given release (for example, \texttt{-r1}), or release and level (for example, \texttt{-r1.2}).

\textbf{\texttt{-w string}} \hspace{1cm} Substitute \textit{string} for all occurrences of \texttt{%%} when getting the file. Substitution occurs prior to keyword expansion.

\textbf{\texttt{-aseq-no.}} \hspace{1cm} The delta sequence number of the SCCS file delta (version) to be retrieved. This keyletter is used by the \texttt{comb} command; it is not a generally useful keyletter. If both the \texttt{-r} and \texttt{-a} keyletters are specified, only the \texttt{-a} keyletter is used. Care should be taken when using the \texttt{-a} keyletter in conjunction with the \texttt{-e} keyletter, as the SID of the delta to be created may not be what one expects. The \texttt{-r} keyletter can be used with the \texttt{-a} and \texttt{-e} keyletters to control the naming of the SID of the delta to be created.

For each file processed, \texttt{get} responds (on the standard output) with the SID being accessed and with the number of lines retrieved from the SCCS file.

If the \texttt{-e} keyletter is used, the SID of the delta to be made appears after the SID accessed and before the number of lines generated. If there is more than one named file or if a directory or standard input is named, each file name is printed (preceded by a new-line) before it is processed. If the \texttt{-i} keyletter is used, included deltas are listed following the notation "\texttt{Included}"; if the \texttt{-x} keyletter is used, excluded deltas are listed following the notation "\texttt{Excluded}".
TABLE 1. Determination of SCCS Identification String

<table>
<thead>
<tr>
<th>SID* Specified</th>
<th>-b Keyletter Used†</th>
<th>Other Conditions Retrieved</th>
<th>SID of Delta to be Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>none‡</td>
<td>no</td>
<td>R defaults to mR</td>
<td>mR.mL</td>
</tr>
<tr>
<td>none‡</td>
<td>yes</td>
<td>R defaults to mR</td>
<td>mR.mL</td>
</tr>
<tr>
<td>R</td>
<td>no</td>
<td>R > mR</td>
<td>mR.mL (mL+1)</td>
</tr>
<tr>
<td>R</td>
<td>no</td>
<td>R = mR</td>
<td>mR.mL</td>
</tr>
<tr>
<td>R</td>
<td>yes</td>
<td>R > mR</td>
<td>mR.mL (mL+1)</td>
</tr>
<tr>
<td>R</td>
<td>yes</td>
<td>R = mR</td>
<td>mR.mL</td>
</tr>
<tr>
<td>R</td>
<td>–</td>
<td>R < mR and R does not exist</td>
<td>hR.mL**</td>
</tr>
<tr>
<td>R</td>
<td>–</td>
<td>Trunk succ. in release > R and R exists</td>
<td>R.mL</td>
</tr>
<tr>
<td>R.L</td>
<td>no</td>
<td>No trunk succ.</td>
<td>R.L</td>
</tr>
<tr>
<td>R.L</td>
<td>yes</td>
<td>No trunk succ.</td>
<td>R.L</td>
</tr>
<tr>
<td>R.L</td>
<td>–</td>
<td>Trunk succ. in release ≥ R</td>
<td>R.L</td>
</tr>
<tr>
<td>R.L.B</td>
<td>no</td>
<td>No branch succ.</td>
<td>R.L.B.mS</td>
</tr>
<tr>
<td>R.L.B</td>
<td>yes</td>
<td>No branch succ.</td>
<td>R.L.B.mS</td>
</tr>
<tr>
<td>R.L.B.S</td>
<td>no</td>
<td>No branch succ.</td>
<td>R.L.B.S</td>
</tr>
<tr>
<td>R.L.B.S</td>
<td>yes</td>
<td>No branch succ.</td>
<td>R.L.B.S</td>
</tr>
<tr>
<td>R.L.B.S</td>
<td>–</td>
<td>Branch succ.</td>
<td>R.L.B.S</td>
</tr>
</tbody>
</table>

* "R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" components of the SID, respectively; "m" means "maximum". Thus, for example, "R.mL" means "the maximum level number within release R"; "R.(mB+1).1" means "the first sequence number on the new branch (that is, maximum branch number plus one) of level L within release R". Note that if the SID specified is of the form "R.L", "R.B", or "R.L.B.S", each of the specified components must exist.

** "hR" is the highest existing release that is lower than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new release.

Successor.

† The -b keyletter is effective only if the b flag [see admin(1)] is present in the file. An entry of - means "irrelevant".

‡ This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the file, then the SID obtained from the d flag is interpreted as if it had been specified on the command line. Thus, one of the other cases in this table applies.

IDENTIFICATION KEYWORDS

Identifying information is inserted into the text retrieved from the SCCS file by replacing identification keywords with their value wherever they occur. The following keywords may be used in the text stored in an SCCS file:
Keyword Value
%M% Module name: either the value of the m flag in the file [see admin(1)],
or if absent, the name of the SCCS file with the leading s. removed.
%I% SCCS identification (SID) (%R%-%L%-%S%-%S%) of the retrieved text.
%R% Release.
%L% Level.
%B% Branch.
%S% Sequence.
%D% Current date (YY/MM/DD).
%H% Current date (MM/DD/YY).
%T% Current time (HH:MM:SS).
%L% Date newest applied delta was created (YY/MM/DD).
%G% Date newest applied delta was created (MM/DD/YY).
%0% Time newest applied delta was created (HH:MM:SS).
%Y% Module type: value of the t flag in the SCCS file [see admin(1)].
%0% SCCS file name.
%F% Fully qualified SCCS file name.
%Q% The value of the q flag in the file [see admin(1)].
%C% Current line number. This keyword is intended for identifying mes-
sages output by the program such as "this should not have hap-
pened" type errors. It is not intended to be used on every line to pro-
vide sequence numbers.
%Z% The four-character string @(#) recognizable by the what command.
%W% A shorthand notation for constructing what strings for UNIX System
program files. %W% = %Z%<tab>=%I%
%W% Another shorthand notation for constructing what strings for non-
UNIX System program files: %W% = %Z%Y% %W% %I% %Z% %W%

Several auxiliary files may be created by get. These files are known generically
as the g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag.
An auxiliary file name is formed from the SCCS file name: the last component of
all SCCS file names must be of the form s.module-name, the auxiliary files are
named by replacing the leading s with the tag. The g-file is an exception to this
scheme: the g-file is named by removing the s. prefix. For example, s.xyz.c,
the auxiliary file names would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c,
respectively.

The g-file, which contains the generated text, is created in the current directory
(unless the -p keyletter is used). A g-file is created in all cases, whether or not
any lines of text were generated by the get. It is owned by the real user. If the
-k keyletter is used or implied, its mode is 644; otherwise its mode is 444. Only
the real user need have write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the
retrieved text. The I-file is created in the current directory if the -I keyletter is
used; its mode is 444 and it is owned by the real user. Only the real user need
have write permission in the current directory.
Lines in the l-file have the following format:

a. A blank character if the delta was applied; * otherwise.
b. A blank character if the delta was applied or was not applied and ignored; * if the delta was not applied and was not ignored.
c. A code indicating a "special" reason why the delta was or was not applied: "I" (included), "X" (excluded), or "C" (cut off by a -c keyletter).
d. Blank.
e. SCCS identification (SID).
f. Tab character.
g. Date and time (in the form YY/MM/DD HH:MM:SS) of creation.
h. Blank.
i. Login name of person who created delta.

The comments and MR data follow on subsequent lines, indented one horizontal tab character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e keyletter along to delta. Its contents are also used to prevent a subsequent execution of get with an -e keyletter for the same SID until delta is executed or the joint edit flag, j, [see admin(1)] is set in the SCCS file. The p-file is created in the directory containing the SCCS file and the effective user must have write permission in that directory. Its mode is 644 and it is owned by the effective user. The format of the p-file is: the gotten SID, followed by a blank, followed by the SID that the new delta will have when it is made, followed by a blank, followed by the login name of the real user, followed by a blank, followed by the date-time the get was executed, followed by a blank and the -i keyletter argument if it was present, followed by a blank and the -x keyletter argument if it was present, followed by a new-line. There can be an arbitrary number of lines in the p-file at any time; no two lines can have the same new delta SID.

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the binary (2 bytes) process ID of the command (that is, get) that created it. The z-file is created in the directory containing the SCCS file for the duration of get. The same protection restrictions as those for the p-file apply for the z-file. The z-file is created with mode 444.

FILES

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g-file</td>
<td>Created by the execution of get.</td>
</tr>
<tr>
<td>p-file</td>
<td>[see delta(1)]</td>
</tr>
<tr>
<td>q-file</td>
<td>[see delta(1)]</td>
</tr>
<tr>
<td>z-file</td>
<td>[see delta(1)]</td>
</tr>
<tr>
<td>bdiff</td>
<td>Program to compute differences between the "gotten" file and the g-file.</td>
</tr>
</tbody>
</table>

SEE ALSO

admin(1), delta(1), help(1), prs(1), what(1)

bdiff(1) in the User's Reference Manual
DIAGNOSTICS
Use `help(1)` for explanations.

NOTES
If the effective user has write permission (either explicitly or implicitly) in the directory containing the SCCS files, but the real user does not, then only one file may be named when the `-e` keyletter is used.
NAME
getdev – lists devices based on criteria

SYNOPSIS
getdev [-ae] [criteria [. . .]] [device [. . .]]

DESCRIPTION
getdev generates a list of devices that match certain criteria. The criteria includes
a list of attributes (given in expressions) and a list of devices. If no criteria is
given, all devices are included in the list.

Devices must satisfy at least one of the criteria in the list unless the -a option is
used. Then, only those devices which match all of the criteria in a list will be
included.

Devices which are defined on the command line and which match the criteria are
included in the generated list. However, if the -e flag is used, the list becomes a
set of devices to be excluded from the list.

Criteria Expression Types
There are four possible expression types which the criteria specified in the criteria
argument may follow:

attribute=value Selects all devices whose attribute attribute is defined and is
equal to value.

attribute!=value Selects all devices whose attribute attribute is defined and
does not equal value.

attribute:* Selects all devices which have the attribute attribute defined.

attribute!:* Selects all devices which do not have the attribute attribute
defined.

See the putdev(1M) manual page for a complete listing and
description of available attributes.

Options and Arguments
The options and arguments for this command are:

-a Specifies that a device must match all criteria to be included
in the list generated by this command. The flag has no effect
if no criteria are defined.

-e Specifies that the list of devices which follows on the com-
mand line should be excluded from the list generated by this
command. (Without the -e the named devices are included
in the generated list.) The flag has no effect if no devices are
defined.

criteria Defines criteria that a device must match to be included in the
generated list. Should be given in expressions.

device Defines devices which should be included in the generated
list. Can be the pathname of the device or the device alias.
getdev(1M) (Essential Utilities) getdev(1M)

ERRORS
The command will exit with one of the following values:

0 = Successful completion of the task.
1 = Command syntax incorrect, invalid option used, or internal error occurred.
2 = Device table could not be opened for reading.

FILES
/etc/device.tab

SEE ALSO
devattr(1), getdgrp(1), putdev(1), putdgrp(1), getdev(3X).
NAME

getdgrp – lists device groups which contain devices that match criteria

SYNOPSIS

getdgrp [-ael] [criteria [..]] [dgroup [..]]

DESCRIPTION

getdgrp generates a list of device groups that contain devices matching the given criteria. The criteria is given in the form of expressions.

criteria can be one expression or a list of expressions which a device must meet for its group to be included in the list generated by getdgrp. If no criteria is given, all device groups are included in the list.

Devices must satisfy at least one of the criteria in the list. However, the -a flag can be used to define that a "logical and" operation should be performed. Then, only those groups containing devices which match all of the criteria in a list will be included.

dgroup defines a set of device groups to be included in the list. Device groups that are defined and which contain devices matching the criteria are included. However, if the -e flag is used, this list defines a set of device groups to be excluded. When the -e option is used and criteria is also defined, the generated list will include device groups containing devices which match the criteria and are not in the command line list.

Criteria Expression Types

There are four possible expressions types:

attribute=value Selects all device groups with a member whose attribute attribute is defined and is equal to value.

attribute!=value Selects all device groups with a member whose attribute attribute is defined and does not equal value.

attribute:* Selects all device groups with a member which has the attribute attribute defined.

attribute!:* Selects all device groups with a member which does not have the attribute attribute defined.

See the putdev(1M) manual page for a complete listing and description of available attributes.

Options and Arguments

The options and arguments for this command are:

-a Specifies that a device must match all criteria before a device group to which it belongs can be included in the list generated by this command. The flag has no effect if no criteria are defined.

-e Specifies that the list of device groups on the command line should be excluded from the list generated by this command. (Without the -e the named device groups are the only ones which can be included in the generated list.) The flag has no effect if no device groups are defined.
-1 Specifies that all device groups (subject to the -e option and the dgroup list) should be listed even if they contain no valid device members. This option has no affect if criteria is specified on the command line.

criteria Defines criteria that a device must match before a device group to which it belongs can be included in the generated list.

dgroup Defines device groups which should be included in or excluded from the generated list.

ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
2 = device table or device group table could not be opened for reading.

FILES
/etc/device.tab
/etc/dgroup.tab

SEE ALSO
devattr(1), getdev(1), putdev(1), putdgrp(1), getdgrp(3X)
NAME

getfrm – returns the current frameID number

SYNOPSIS

getfrm

DESCRIPTION

getfrm returns the current frameID number. The frameID number is a number assigned to the frame by FMLI and displayed flush left in the frame’s title bar. If a frame is closed its frameID number may be reused when a new frame is opened. getfrm takes no arguments.

EXAMPLES

If a menu whose frameID is 3 defines an item to have this action descriptor:

```plaintext
action=open text stdtext 'getfrm'
```

the text frame defined in the definition file stdtext would be passed the argument 3 when it is opened.

NOTES

It is not a good idea to use getfrm in a backquoted expression coded on a line by itself. Stand-alone backquoted expressions are evaluated before any descriptors are parsed, thus the frame is not yet fully current, and may not have been assigned a frameID number.
NAME
getitems – return a list of currently marked menu items

SYNOPSIS
getitems [delimiter_string]

DESCRIPTION
The getitems function returns the value of lininfo if defined, else it returns the value of the name descriptor, for all currently marked menu items. Each value in the list is delimited by delimiter_string. The default value of delimiter_string is newline.

EXAMPLE
The done descriptor in the following menu definition file executes getitems when the user presses ENTER (note that the menu is multiselect):

```plaintext
Menu="Example"
multiselect=TRUE
done=' getitems ':' | message'
name="Item 1"
action=' message "You selected item 1"'

name="Item 2"
lininfo="This is item 2"
action= ' message "You selected item 2"'

name="Item 3"
action= ' message "You selected item 3"
```

If a user marked all three items in this menu, pressing ENTER would cause the following string to be displayed on the message line:

```
Item 1:This is item 2:Item 3
```

Note that because lininfo is defined for the second menu item, its value is displayed instead of the value of the name descriptor.
NAME
getopt – parse command options

SYNOPSIS
set -- `getopt optstring $*`

DESCRIPTION
The getopt command supercedes getopt. For more information, see the NOTES below.

getopt is used to break up options in command lines for easy parsing by shell procedures and to check for legal options. optstring is a string of recognized option letters; see getopt(3C). If a letter is followed by a colon, the option is expected to have an argument which may or may not be separated from it by white space. The special option -- is used to delimit the end of the options. If it is used explicitly, getopt recognizes it; otherwise, getopt generates it; in either case, getopt places it at the end of the options. The positional parameters ($1 $2 ...) of the shell are reset so that each option is preceded by a - and is in its own positional parameter; each option argument is also parsed into its own positional parameter.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can take the options a or b, as well as the option o, which requires an argument:

 set -- `getopt abo: $*`
 if [$? != 0]
 then
 echo $USAGE
 exit 2
 fi
 for i in $*
 do
 case $i in
 -a | -b)
 FLAG=$i; shift;;
 -o)
 OARG=$2; shift 2;;
 --)
 shift; break;;
 esac
 done

This code accepts any of the following as equivalent:

 cmd -aoarg file file
 cmd -a -o arg file file
 cmd -oarg -a file file
 cmd -a -oarg -- file file

SEE ALSO
getopts(1), sh(1)
getopt(3C) in the Programmer’s Reference Manual
DIAGNOSTICS
getopt prints an error message on the standard error when it encounters an option letter not included in optstring.

NOTES
getopt will not be supported in the next major release. For this release a conversion tool has been provided, getoptcvt. For more information about getopt and getoptcvt, see getopts(1).

Reset optind to 1 when rescanning the options.

getopt does not support the part of Rule 8 of the command syntax standard [see intro(1)] that permits groups of option-arguments following an option to be separated by white space and quoted. For example,

```
  cmd -a -b -o "xxx z yy" file
```

is not handled correctly. To correct this deficiency, use the getopts command in place of getopt.

If an option that takes an option-argument is followed by a value that is the same as one of the options listed in optstring (referring to the earlier EXAMPLE section, but using the following command line: cmd -o -a file), getopt always treats -a as an option-argument to -o; it never recognizes -a as an option. For this case, the for loop in the example shifts past the file argument.
getopts(1) (Essential Utilities) getopts(1)

NAME
getopts, getoptcvt – parse command options

SYNOPSIS
getopts optstring name [arg ...]
/usr/lib/getoptcvt [-b] file

DESCRIPTION
getopts is used by shell procedures to parse positional parameters and to check
for valid options. It supports all applicable rules of the command syntax stan­
dard (see Rules 3-10, intro(1)). It should be used in place of the getopt com­
mand. (See the NOTES section below.)

optstring must contain the option letters the command using getopts will recog­
nize; if a letter is followed by a colon, the option is expected to have an argu­
ment, or group of arguments, which must be separated from it by white space.

Each time it is invoked, getopts places the next option in the shell variable name
and the index of the next argument to be processed in the shell variable OPTIND.
Whenever the shell or a shell procedure is invoked, OPTIND is initialized to 1.
(OPTIND is not initialized to 1 when a shell function is called.)

When an option requires an option-argument, getopts places it in the shell vari­
able OPTARG.

If an illegal option is encountered, ? will be placed in name.

When the end of options is encountered, getopts exits with a non-zero exit
status. The special option –– may be used to delimit the end of the options.

By default, getopts parses the positional parameters. If extra arguments
(arg ...) are given on the getopts command line, getopts parses them instead.

/usr/lib/getoptcvt reads the shell script in file, converts it to use getopts
instead of getopt, and writes the results on the standard output.

-b Make the converted script portable to earlier releases of the UNIX system.
/usr/lib/getoptcvt modifies the shell script in file so that when the
resulting shell script is executed, it determines at run time whether to
invoke getopts or getopt.

So all new commands will adhere to the command syntax standard described in
intro(1), they should use getopts or getopt to parse positional parameters and
check for options that are valid for that command (see the NOTES section below).

EXAMPLE
The following fragment of a shell program shows how one might process the
arguments for a command that can take the options a or b, as well as the option
o, which requires an option-argument:

 while getopts abo: c
do
 case $c in
 a | b)
 FLAG=$c;;
 o)
 OARG=$OPTARG;;
 \?)
 echo $USAGE
 exit 2;;
 esac
 done

3/91
This code accepts any of the following as equivalent:

```
  cmd -a -b -o "xxx z yy" file
  cmd -a -b -o "xxx z yy" -- file
  cmd -ab -o xxx,z,yy file
  cmd -ab -o "xxx z yy" file
  cmd -o xxx,z,yy -b -a file
```

SEE ALSO

`intro(1), sh(1)`

`getopt(3C)` in the `Programmer's Reference Manual`

NOTES

Although the following command syntax rule [see `intro(1)`] relaxations are permitted under the current implementation, they should not be used because they may not be supported in future releases of the system. As in the `EXAMPLE` section above, `a` and `b` are options, and the option `o` requires an option-argument. The following example violates Rule 5: options with option-arguments must not be grouped with other options:

```
  cmd -aboxxx file
```

The following example violates Rule 6: there must be white space after an option that takes an option-argument:

```
  cmd -ab -oxxx file
```

Changing the value of the shell variable `OPTIND` or parsing different sets of arguments may lead to unexpected results.

DIAGNOSTICS

`getopts` prints an error message on the standard error when it encounters an option letter not included in `optstring`.
NAME
getable – get DoD Internet format host table from a host

SYNOPSIS
gettable host

DESCRIPTION
getable is a simple program used to obtain the DoD Internet host table from a
hostname server. The indicated host is queried for the table. The table, if
retrieved, is placed in the file hosts.txt.

getable operates by opening a TCP connection to the port indicated in the ser­
cvice specification for hostname. A request is then made for all names and the
resultant information is placed in the output file.

getable is best used in conjunction with the htable(1M) program which con­
verts the DoD Internet host table format to that used by the network library
lookup routines.

SEE ALSO
htable(1M)

Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler, HOSTNAME Server, RFC 953,
Network Information Center, SRI International, Menlo Park, Calif., October 1985

NOTES
Should allow requests for only part of the database.
NAME
gettxt – retrieve a text string from a message data base

SYNOPSIS
gettxt msgfile:msgnum [dflt_msg]

DESCRIPTION
gettxt retrieves a text string from a message file in the directory
/usr/lib/locale/locale/LC_MESSAGES. The directory name locale corresponds to
the language in which the text strings are written; see setlocale(3C).

msgfile Name of the file from which to retrieve msgnum. The name can be up
to 14 characters in length, but may not contain either \0 (null) or the
characters / (slash) or : (colon).

msgnum Sequence number of the string to retrieve from msgfile. The strings in
msgfile are numbered sequentially from 1 to n, where n is the number
of strings in the file.

dflt_msg Default string to be displayed if gettxt fails to retrieve msgnum from
msgfile. Nongraphic characters must be represented as alphabetic
escape sequences.

The text string to be retrieved is in the file msgfile, created by the mkmsgs(1) utility
and installed under the directory /usr/lib/locale/locale/LC_MESSAGES. You
control which directory is searched by setting the environment variable
LC_MESSAGES. If LC_MESSAGES is not set, the environment variable LANG will be
used. If LANG is not set, the files containing the strings are under the directory
/usr/lib/locale/C/LC_MESSAGES.

If gettxt fails to retrieve a message in the requested language, it will try to
retrieve the same message from /usr/lib/locale/C/LC_MESSAGES/msgfile. If
this also fails, and if dflt_msg is present and non-empty, then it will display the
value of dflt_msg; if dflt_msg is not present or is empty, then it will display the
string Message not found!!

EXAMPLE
If the environment variables LANG or LC_MESSAGES have not been set to other
than their default values,

 gettxt UX:10 "hello world"

will try to retrieve the 10th message from /usr/lib/locale/C/LC_MESSAGES/UX.
If the retrieval fails, the message "hello world," followed by a new-line, will be
displayed.

FILES
/usr/lib/locale/C/LC_MESSAGES/* default message files created by
mkmsgs(1)
/usr/lib/locale/locale/LC_MESSAGES/* message files for different languages
created by mkmsgs(1)

SEE ALSO
exstr(1), mkmsgs(1), srchtxt(1)
gettxt(3C), setlocale(3C) in the Programmer’s Reference Manual
NAME
getty – set terminal type, modes, speed, and line discipline

SYNOPSIS
getty [-h] [-t timeout] line [speed [type [linedisc]]]
getty -c file

DESCRIPTION
getty is included for compatibility with previous releases for the few applications that still call getty directly. getty can only be executed by the superuser, that is, by a process with the user ID root. Initially getty prints the login prompt, waits for the user’s login name, and then invokes the login command. getty attempts to adapt the system to the terminal speed by using the options and arguments specified on the command line.

line The name of a TTY line in /dev to which getty is to attach itself. getty uses this string as the name of a file in the /dev directory to open for reading and writing.

-h If the -h flag is not set, a hangup will be forced by setting the speed to zero before setting the speed to the default or specified speed.

-t timeout specifies that getty should exit if the open on the line succeeds and no one types anything in timeout seconds.

speed The speed argument is a label to a speed and TTY definition in the file /etc/ttydefs. This definition tells getty at what speed to run initially, what the initial TTY settings are, and what speed to try next, should the user indicate, by pressing the BREAK key, that the speed is inappropriate. The default speed is 1200 baud.

type and linedisc
These options are obsolete and will be ignored.

-c file The -c option is no longer supported. Instead use sttydefs -l to list the contents of the /etc/ttydefs file and perform a validity check on the file.

When given no optional arguments, getty specifies the following: The speed of the interface is set to 1200 baud, either parity is allowed, new-line characters are converted to carriage return-line feed, and tab expansion is performed on the standard output. getty types the login prompt before reading the user’s name a character at a time. If a null character (or framing error) is received, it is assumed to be the result of the user pressing the BREAK key. This will cause getty to attempt the next speed in the series. The series that getty tries is determined by what it finds in /etc/ttydefs.

NOTES
Administrators and developers are encouraged to use ttymon(1M) as support for getty may be dropped in the future.
FILES
/etc/ttydefs

SEE ALSO
sttydefs(1M), tty(7), ttymon(1M)
ct(1C), login(1) in the User's Reference Manual
ioctl(2) in the Programmer's Reference Manual
NAME
getvol – verifies device accessibility

SYNOPSIS
getvol -n [-l label] device
getvol [-f | -F] [-wo] [-l label] -x label] device

DESCRIPTION
getvol verifies that the specified device is accessible and that a volume of the
appropriate medium has been inserted. The command is interactive and displays
instructional prompts, describes errors, and shows required label information.

Options and arguments for this command are:

- n Runs the command in non-interactive mode. The volume is assumed to
be inserted upon command invocation.
- l Specifies that the label label must exist on the inserted volume (can be
overridden by the -o option).
- f Formats the volume after insertion, using the format command defined
for this device in the device table.
- F Formats the volume after insertion and places a file system on the
device. Also uses the format command defined for this device in the
device table.
- w Allows administrator to write a new label on the device. User is
prompted to supply the label text. This option is ineffective if the -n
option is enabled.
- o Allows the administrator to override a label check.
- x Specifies that the label label must exist on the device. This option should
be used in place of the -l option when the label can only be verified by
visual means. Use of the option causes a message to be displayed asking
the administrator to visually verify that the label is indeed label.

device Names the device which should be verified for accessibility.

ERRORS
The command will exit with one of the following values:
0 = successful completion of the task.
1 = command syntax incorrect, invalid option used, or internal error occurred.
3 = device table could not be opened for reading.

NOTES
This command uses the device table to determine the characteristics of the device
when performing the volume label checking.

FILES
/ etc/ device . tab

SEE ALSO
getvol(3X)
grep(1) (Essential Utilities) grep(1)

NAME
grep – search a file for a pattern

SYNOPSIS
grep [options] limited_regular_expression [file . . .]

DESCRIPTION
grep searches files for a pattern and prints all lines that contain that pattern.
grep uses limited regular expressions (expressions that have string values that
use a subset of the possible alphanumeric and special characters) like those used
with ed(1) to match the patterns. It uses a compact non-deterministic algorithm.

Be careful using the characters $, *, I, ^, |, (,), and \ in the
limited_regular_expression because they are also meaningful to the shell. It is safest
to enclose the entire limited_regular_expression in single quotes ‘ ... ’.

If no files are specified, grep assumes standard input. Normally, each line found
is copied to standard output. The filename is printed before each line found if
there is more than one input file.

Command line options are:
- -b Precede each line by the block number on which it was found. This can be
useful in locating block numbers by context (first block is 0).
- -c Print only a count of the lines that contain the pattern.
- -e special_expression
 Search for a special_expression (full_regular_expression that begins with a -).
- -f file
 Take the list of full_regular_expressions from file.
- -i Ignore uppercase/lowercase distinction during comparisons.
- -h Prevents the name of the file containing the matching line from being
 appended to that line. Used when searching multiple files.
- -l Print the names of files with matching lines once, separated by newlines.
 Does not repeat the names of files when the pattern is found more than
 once.
- -n Precede each line by its line number in the file (first line is 1).
- -s Suppress error messages about nonexistent or unreadable files
- -v Print all lines except those that contain the pattern.

SEE ALSO
ed(1), egrep(1), fgrep(1), sed(1), sh(1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inacces-
sible files (even if matches were found).

NOTES
Lines are limited to BUFSIZ characters; longer lines are truncated. BUFSIZ is
defined in /usr/include/stdio.h.
If there is a line with embedded nulls, grep will only match up to the first null; if
it matches, it will print the entire line.
NAME
groupadd – add (create) a new group definition on the system

SYNOPSIS
groupadd [-g gid [-o]] group

DESCRIPTION
The groupadd command creates a new group definition on the system by adding the appropriate entry to the /etc/group file.

The following options are available:

-`g gid` The group ID for the new group. This group ID must be a non-negative decimal integer below MAXUID as defined in the `<param.h>` header file. By default, a unique group ID is allocated in the valid range. Group IDs from 0-99 are reserved.

-`-o` This option allows the `gid` to be duplicated (non-unique).

`group` A string of printable characters that specifies the name of the new group. It may not include a colon (:) or newline (\n).

FILES
/etc/group

SEE ALSO
groupdel(1M), groupmod(1M), logins(1M), useradd(1M), userdel(1M), usermod(1M), users(1)

DIAGNOSTICS
The groupadd command exits with one of the following values:

0 Success.
2 Invalid command syntax; a usage message for the groupadd command is displayed.
3 An invalid argument was provided to an option.
4 `gid` is not unique (when the `-o` option is not used).
9 `group` is not unique.
10 Cannot update the /etc/group file.
groupdel(1M) (Essential Utilities) groupdel(1M)

NAME
groupdel – delete a group definition from the system

SYNOPSIS

 groupdel group

DESCRIPTION

The groupdel command deletes a group definition from the system. It deletes
the appropriate entry from the /etc/group file.

The following options are available:

 group A string of printable characters that specifies the group to be deleted.

FILES

 /etc/group

SEE ALSO

 groupadd(1M), groupmod(1M), logins(1M), useradd(1M), userdel(1M),
 usermod(1M), users(1)

DIAGNOSTICS

The groupdel command exits with one of the following values:

 0 Success.
 2 Invalid command syntax. A usage message for the groupdel command is
displayed.
 6 group does not exist.
 10 Cannot update the /etc/group file.
NAME
groupmod – modify a group definition on the system

SYNOPSIS
groupmod -g gid [-0] group
groupmod -n name group

DESCRIPTION
The groupmod command modifies the definition of the specified group by modifying the appropriate entry in the /etc/group file.

The following options are available:

-g gid Changes the value of the group id to gid. gid must be a non-negative decimal integer below MAXUID as defined in <param.h>.
-0 This option allows the gid to be duplicated (non-unique).
-n name A string of printable characters that specifies a new name for the group. It may not include a colon (:) or newline (\n).

FILES
/etc/group

SEE ALSO
groupadd(1M), groupdel(1M), logins(1M), useradd(1M), userdel(1M), usermod(1M).

DIAGNOSTICS
The groupmod command exits with one of the following values:
0 Success.
2 Invalid command syntax. A usage message for the groupmod command is displayed.
3 An invalid argument was provided to an option.
4 gid is not unique (when the -0 option is not used).
6 group does not exist.
9 name already exists as a group name.
10 Cannot update the /etc/group file.
groups(1)

NAME
groups – print group membership of user

SYNOPSIS

groups [user]

DESCRIPTION

The command groups prints on standard output the groups to which you or the
optionally specified user belong. Each user belongs to a group specified in
/etc/passwd and possibly to other groups as specified in /etc/group.

SEE ALSO

setgroups(2), group(4), passwd(4)

FILES

/etc/passwd
/etc/group
NAME
groups – display a user’s group memberships

SYNOPSIS
/usr/ucb/groups [user ...]

DESCRIPTION
With no arguments, groups displays the groups to which you belong; else it displays the groups to which the user belongs. Each user belongs to a group specified in the password file /etc/passwd and possibly to other groups as specified in the file /etc/group. If you do not own a file but belong to the group which it is owned by then you are granted group access to the file.

FILES
/etc/passwd
/etc/group

SEE ALSO
getgroups(2) in the Programmer’s Reference Manual

NOTES
This command is obsolescent.
NAME
 grpck – check group database entries

SYNOPSIS
/usr/ucb/grpck [filename]

DESCRIPTION
 grpck checks that a file in group(4) does not contain any errors; it checks the
 /etc/group file by default.
 This command differs from /usr/sbin/grpck in its ability to correctly parse YP
 entries in /etc/passwd.

FILES
 /etc/group

SEE ALSO
 group(4), passwd(4) in the System Administrator’s Reference Manual

DIAGNOSTICS
 Too many/few fields
 An entry in the group file does not have the proper number of fields.

 No group name
 The group name field of an entry is empty.

 Bad character(s) in group name
 The group name in an entry contains characters other than lower-case
 letters and digits.

 Invalid GID
 The group ID field in an entry is not numeric or is greater than 65535.

 Null login name
 A login name in the list of login names in an entry is null.

 Login name not found in password file
 A login name in the list of login names in an entry is not in the password
 file.
NAME
 halt – stop the processor

SYNOPSIS
 /usr/ucb/halt [-nqy]

DESCRIPTION
 halt writes out any information pending to the disks and then stops the processor.
 halt normally logs the system shutdown to the system log daemon, syslogd(1M), and places a shutdown record in the login accounting file /var/adm/wtmp. These actions are inhibited if the -n or -q options are present.

The following options are available:
 -n Prevent the sync before stopping.
 -q Quick halt. No graceful shutdown is attempted.
 -y Halt the system, even from a dialup terminal.

FILES
 /var/adm/wtmp login accounting file

SEE ALSO
 reboot(1M), syslogd(1M)
 shutdown(1M), init(1M) in the System Administrator’s Reference Manual

NOTES
 This command is equivalent to init 0.
NAME
hd - display files in hexadecimal format

SYNOPSIS
hd [-format [-s offset] [-n count] [file]

DESCRIPTION
The hd command displays the contents of files in hexadecimal octal, decimal and character formats. Control over the specification of ranges of characters is also available. The default behavior is with the following flags set: "-abx -A". This says that addresses (file offsets) and bytes are printed in hexadecimal and that characters are also printed. If no file argument is given, the standard input is read.

Options include:

-s offset Specify the beginning offset in the file where printing is to begin. If no 'file' argument is given, or if a seek fails because the input is a pipe, 'offset' bytes are read from the input and discarded. Otherwise, a seek error will terminate processing of the current file.

The offset may be given in decimal, hexadecimal (preceded by '0x'), or octal (preceded by a '0'). It is optionally followed by one of the following multipliers: w, l, b, or k; for words (2 bytes), long words (4 bytes), blocks (512 bytes), or K bytes (1024 bytes). Note that this is the one case where 'b' does not stand for bytes.

-n count Specify the number of bytes to process. The count is in the same format as offset, above.

Format Flags
Format flags may specify addresses, characters, bytes, words (2 bytes), or longs (4 bytes) to be printed in hexadecimal, decimal, or octal. Two special formats may also be indicated: test or ASCII. Format and base specifiers may be freely combined and repeated as desired in order to specify different bases (hexadecimal, decimal or octal) for different output formats (addresses, characters, etc.). All format flags appearing in a single argument are applied as appropriate to all other flags in that argument.

acbwlA Output format specifiers for address, characters, bytes, words, longs and ASCII, respectively. Only one base specifier will be used for addresses; the address will appear on the first line of output that begins each new offset in the input.

The character format prints printable characters unchanged, special C escapes as defined in the language, and remaining values in the specified base.

The ASCII format prints all printable characters unchanged, and all others as a period (.). This format appears to the right of the first of other specified output formats. A base specifier has no meaning with the ASCII format. If no other output format (other than addresses) is given, bx is assumed. If no base specifier is given, all of xdo are used.
Output base specifiers for hexadecimal, decimal and octal. If no format specifier is given, all of `acbwl` are used.

Print a test file, each line preceded by the address in the file. Normally, lines should be terminated by a `\n` character; but long lines will be broken up. Control characters in the range 0x00 to 0x1f are printed as `'^@'` to `'_'.` Bytes with the high bit set are preceded by a tilde (`~`) and printed as if the high bit were not set. The special characters (`","`\`) are preceded by a backslash (`\`) to escape their special meaning. As special cases, two values are represented numerically as `'\177'` and `'\377'`. This flag will override all output format specifiers except addresses.
NAME
 head – display first few lines of files

SYNOPSIS
 head [-n] [file . . .]

DESCRIPTION
 head copies the first \(n \) lines of each file to the standard output. If no file is given, head copies lines from the standard input. The default value of \(n \) is 10 lines.

 When more than one file is specified, the start of each file will look like:

 file==

 Thus, a common way to display a set of short files, identifying each one, is:

 head -9999 file1 file2 . . .

SEE ALSO
 cat(1), more(1), pg(1), tail(1)
NAME
help – ask for help with message numbers or SCCS commands

SYNOPSIS
help [args]

DESCRIPTION
help finds information to explain a message from a command or explain the use of a SCCS command. Zero or more arguments may be supplied. If no arguments are given, help will prompt for one.

The arguments may be either information within the parentheses following a message or SCCS command names.

The response of the program will be the explanatory information related to the argument, if there is any.

When all else fails, try “help stuck”.

FILES
LIBDIR/help directory containing files of message text.
LIBDIR/help/helploc file containing locations of help files not in LIBDIR/help.
LIBDIR usually /usr/ccs/lib
NAME
 hostid – print the numeric identifier of the current host

SYNOPSIS
 /usr/ucb/hostid

DESCRIPTION
 The hostid command prints the identifier of the current host in hexadecimal. This numeric value is likely to differ when hostid is run on a different machine.

SEE ALSO
 gethostid(2)
 sysinfo(2) in the Programmer’s Reference Manual
NAME
hostname – set or print name of current host system

SYNOPSIS
/usr/ucb/hostname [name-of-host]

DESCRIPTION
The hostname command prints the name of the current host, as given before the login prompt. The super-user can set the hostname by giving an argument.

SEE ALSO
uname(1) in the User’s Reference Manual
NAME
htable – convert DoD Internet format host table

SYNOPSIS
htable filename

DESCRIPTION
htable converts a host table in the format specified by RFC 952 to the format used by the network library routines. Three files are created as a result of running htable: hosts, networks, and gateways. The hosts file is used by the gethostent(3N) routines in mapping host names to addresses. The networks file is used by the getnetent(3N) routines in mapping network names to numbers. The gateways file is used by the routing daemon in identifying passive Internet gateways; see routed(1M) for an explanation.

If any of the files localhosts, localnetworks, or localgateways are present in the current directory, the file’s contents are prepended to the output file without interpretation. This allows sites to maintain local aliases and entries which are not normally present in the master database.

htable is best used in conjunction with the gettable(1M) program which retrieves the DoD Internet host table from a host.

FILES
localhosts
localnetworks
localgateways

SEE ALSO
gethostent(3N), getnetent(3N), gettable(1M), routed(1M)

Harrenstien, Ken, Mary Stahl, and Elizabeth Feinler, DoD Internet Host Table Specification, RFC 952, Network Information Center, SRI International, Menlo Park, Calif., October 1985

NOTES
Does not properly calculate the gateways file.
NAME
iconv — code set conversion utility

SYNOPSIS
iconv -f fromcode -t tocode [file]

DESCRIPTION
iconv converts the characters or sequences of characters in file from one code set to another and writes the results to standard output. Should no conversion exist for a particular character then it is converted to the underscore '_' in the target codeset.

The required arguments fromcode and tocode identify the input and output code sets, respectively. If no file argument is specified on the command line, iconv reads the standard input.

iconv will always convert to or from the ISO 8859-1 Latin alphabet No.1, from or to an ISO 646 ASCII variant codeset for a particular language. The ISO 8859-1 codeset will support the majority of 8 bit codesets. The conversions attempted by iconv accommodate the most commonly used languages.

The following table lists the supported conversions.

<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Target Code</th>
<th>Symbol</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 646</td>
<td>646</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>US Ascii</td>
</tr>
<tr>
<td>ISO 646de</td>
<td>646de</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>German</td>
</tr>
<tr>
<td>ISO 646da</td>
<td>646da</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>Danish</td>
</tr>
<tr>
<td>ISO 646en</td>
<td>646en</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>English Ascii</td>
</tr>
<tr>
<td>ISO 646es</td>
<td>646es</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>Spanish</td>
</tr>
<tr>
<td>ISO 646fr</td>
<td>646fr</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>French</td>
</tr>
<tr>
<td>ISO 646it</td>
<td>646it</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>Italian</td>
</tr>
<tr>
<td>ISO 646sv</td>
<td>646sv</td>
<td>ISO 8859-1</td>
<td>8859</td>
<td>Swedish</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646</td>
<td>646</td>
<td>7 bit Ascii</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646de</td>
<td>646de</td>
<td>German</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646da</td>
<td>646da</td>
<td>Danish</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646en</td>
<td>646en</td>
<td>English Ascii</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646es</td>
<td>646es</td>
<td>Spanish</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646fr</td>
<td>646fr</td>
<td>French</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646it</td>
<td>646it</td>
<td>Italian</td>
</tr>
<tr>
<td>ISO 8859-1</td>
<td>8859</td>
<td>ISO 646sv</td>
<td>646sv</td>
<td>Swedish</td>
</tr>
</tbody>
</table>

The conversions are performed according to the tables found on the iconv(5) manual page.

EXAMPLES
The following converts the contents of file mail1 from code set 8859 to 646fr and stores the results in file mail.local.

 iconv -f 8859 -t 646fr mail1 > mail.local
FILES
 /usr/lib/iconv/iconv_data lists the conversions supported
 /usr/lib/iconv/* conversion tables

SEE ALSO
 iconv(5) in the System Administrator's Reference Manual

DIAGNOSTICS
 iconv returns 0 upon successful completion, 1 otherwise.
NAME
\texttt{id} – print the user name and ID, and group name and ID

SYNOPSIS
\texttt{id [-a]}

DESCRIPTION
\texttt{id} displays the calling process’s ID and name. It also displays the group ID and name. If the real effective IDs do not match, both are printed.

The \texttt{-a} option reports all the groups to which the invoking process belongs. ID, and your username. If your real and effective IDs do not match, both are printed.

The \texttt{-a} option reports all the groups to which the invoking user belongs.

SEE ALSO
getuid(2) in the \textit{Programmer’s Reference Manual}
NAME
 idbuild – build new UNIX System kernel

SYNOPSIS
 /etc/conf/bin/idbuild

DESCRIPTION
 This script builds a new UNIX System kernel using the current system configuration in etc/conf/.
 Kernel reconfigurations are usually done after a device driver is installed, or system tunable parameters are modified. The script uses the shell variable ROOT from the user's environment as its starting path. Except for the special case of kernel development in a non-root source tree, the shell variable ROOT should always be set to null or to "/". idbuild exits with a return code of zero on success and non-zero on failure.

 Building a new UNIX System image consists of generating new system configuration files, then link-editing the kernel and device driver object modules in the etc/conf/pack.d object tree. This is done by idbuild by calling the following commands:

 etc/conf/bin/idconfig To build kernel configuration files.
 etc/conf/bin/idmkunix To process the configuration files and link-edit a new UNIX System image.

 The system configuration files are built by processing the Master and System files representing device driver and tunable parameter specifications. For the i386 UNIX System the files etc/conf/cf.d/mdevice, and etc/conf/cf.d/mtune represent the Master information. The files etc/conf/cf.d/stune, and the files specified in etc/conf/sdevice.d/* represent the System information. The kernel also has file system type information defined in the files specified by etc/conf/sfsys.d/* and etc/conf/mfsys.d/*.

 Once a new UNIX System kernel has been configured, a lock file is set in etc/.new_unix which causes the new kernel to replace /unix on the next system shutdown (i.e., on the next entry to the init 0 state). Upon the next system boot, the new kernel will be executed.

ERROR MESSAGES
 Since idbuild calls other system commands to accomplish system reconfiguration and link editing, it will report all errors encountered by those commands, then clean up intermediate files created in the process. In general, the exit value 1 indicates an error was encountered by idbuild.

 The errors encountered fall into the following categories:

 Master file error messages.
 System file error messages.
 Tunable file error messages.
 Compiler and Link-editor error messages.

 All error messages are designed to be self-explanatory.
SEE ALSO

idinstall(1m), idtune(1m),
mdevice(4), mfsys(4), mtune(4), sdevice(4), sfsys(4), stune(4) in the
NAME
idcheck – returns selected information

SYNOPSIS
/etc/conf/bin/idcheck

DESCRIPTION
This command returns selected information about the system configuration. It is useful in add-on device Driver Software Package (DSP) installation scripts to determine if a particular device driver has already been installed, or to verify that a particular interrupt vector, I/O address or other selectable parameter is in fact available for use. The various forms are:

idcheck -p device-name [-i dir] [-r]

idcheck -v vector [-i dir] [-r]

idcheck -d dma-channel [-i dir] [-r]

idcheck -a -l lower_address -u upper_address [-i dir] [-r]

idcheck -c -l lower_address -u upper_address [-i dir] [-r]

This command scans the System and Master modules and returns:

100 if an error occurs.

0 if no conflict exists.

a positive number greater than 0 and less than 100 if a conflict exists.

The command line options are:

-r Report device name of any conflicting device on stdout.

-p device-name This option checks for the existence of four different components of the DSP. The exit code is the addition of the return codes from the four checks.

Add 1 to the exit code if the DSP directory under /etc/conf/pack.d exists.

Add 2 to the exit code if the Master module has been installed.

Add 4 to the exit code if the System module has been installed.

Add 8 to the exit code if the Kernel was built with the System module.

Add 16 to the exit code if a Driver.o is part of the DSP (vs. a stubs.c file).

-v vector Returns ‘type’ field of device that is using the vector specified (that is, another DSP is already using the vector).

-d dma-channel Returns 1 if the dma channel specified is being used.

-a This option checks whether the IOA region bounded by "lower" and "upper" conflict with another DSP ("lower" and "upper" are specified with the -l and -u options). The exit code is the addition of two different return codes.
Add 1 to the exit code if the IOA region overlaps with another device.

Add 2 to the exit code if the IOA region overlaps with another device and that device has the 'O' option specified in the type field of the Master module. The 'O' option permits a driver to overlap the IOA region of another driver.

-c Returns 1 if the CMA region bounded by "lower" and "upper" conflict with another DSP ("lower" and "upper" are specified with the -l and -u options).

-1 address Lower bound of address range specified in hex. The leading 0x is unnecessary.

-u address Upper bound of address range specified in hex. The leading 0x is unnecessary.

-i dir Specifies the directory in which the ID files sdevice and mdevice reside. The default directory is /etc/conf/cf.d.

ERROR MESSAGES
There are no error messages or checks for valid arguments to options. idcheck interprets these arguments using the rules of scanf(3) and queries the sdevice and mdevice files. For example, if a letter is used in the place of a digit, scanf (3) will translate the letter to 0. idcheck will then use this value in its query.

SEE ALSO
idinstall(1M)
idconfig(1M) (i386) idconfig(1M)

NAME
 idconfig – produce a new kernel configuration

SYNOPSIS
 /etc/conf/bin/idconfig

DESCRIPTION
 The idconfig command takes as its input a collection of files specifying the
configuration of the next UNIX System to be built. A collection of output files for
use by idmkunix is produced.

 The input files expected by idconfig are as follows:

 mdevic - Master device specifications
 sdevice - System device specifications
 mtune - Master parameter specifications
 stune - System parameter specifications
 mfsys - File system type master data
 sfsys - File system type system data
 sassign - Device Assignment File

 The output files produced by idconfig are as follows:

 conf.c - Kernel data structures and function definitions
 config.h - Kernel parameter and device definitions
 vector.c - Interrupt vector definitions
 direct - Listing of all driver components included in the build
 fsconf.c - File system type configuration data

 The command line options are as follows:

 -0 directory Output files will be created in the directory specified rather than
 /etc/conf/cf.d.
 -i directory Input files that normally reside in /etc/conf/cf.d can be found
 in the directory specified.
 -r directory The directory specified will be used as the ID "root" directory
 rather than /etc/conf.
 -d file Use file name rather than sdevice for input.
 -t file Use file name rather than stune for input.
 -T file Use file name rather than mtune for input.
 -a file Use file name rather than sassign for input.
 -c file Redirect conf.c output to file name.
 -h file Redirect config.h output to file name.
 -v file Redirect vector.c output to file name.
 -p file Redirect direct output to file name.
These options are no longer supported.

Print debugging information.

This version of UNIX supports multiple major numbers for drivers. `idconfig` generates additional constants (via defines) in the `config.h` file so that they can be used by the driver (as they will get referenced in the `space.c` file to generate appropriate data structures. The information provided by these constants is how many major numbers were assigned to the device and what are their values. The names of the constants are as follows:

- `PRFX_CMAJOR_X`
- `PRFX_BMAJOR_X`

where `PRFX` stands for device prefix. In case of a SCSI device, it would be a SCSI device. The `X` stands for the list subscript, starting with subscript 0.

In addition, the configuration file `conf.c` that initializes `bdevsw[]` and `cdevsw[]` tables will also add entries for each of the major numbers and, as such, the same driver entry points will be repeated for each one of the entries.

ERROR MESSAGES

An exit value of zero indicates success. If an error was encountered, `idconfig` will exit with a non-zero value and report an error message. All error messages are designed to be self-explanatory.

SEE ALSO

`dmkunix(1M), idbuild(1M), idinstall(1M), mdevice(4), mtune(4), sdevice(4), stune(4)`
NAME
idinstall – add, delete, update, or get device driver configuration data

SYNOPSIS
/etc/conf/bin/idinstall -[adug] [-e] -[msoptnirhc] dev_name

DESCRIPTION
The idinstall command is called by a Driver Software Package (DSP) Install script or Remove script to Add (-a), Delete (-d), Update (-u), or Get (-g) device driver configuration data. idinstall expects to find driver component files in the current directory. When components are installed or updated, they are moved or appended to files in the /etc/conf directory and then deleted from the current directory unless the -k flag is used. The options for the command are as follows:

Action Specifiers:
- a Add the DSP components
- d Remove the DSP components
- u Update the DSP components
- g Get the DSP components (print to std out, except Master)

Component Specifiers: (*)
- m Master component
- s System component
- o Driver.o component
- p Space.c component
- t Stubs.c component
- n Node (special file) component
- i Initab component
- r Device Initialization (rc) component
- h Device shutdown (sd) component
- c Mfsys component: file system type config (Master) data
- l Sfsys component: file system type local (System) data

(*) If no component is specified, the default is all except for the -g option where a single component must be specified explicitly.

Miscellaneous:
- e Disable free disk space check
- k Keep files (do not remove from current directory) on add or update.

In the simplest case of installing a new DSP, the command syntax used by the DSP’s Install script should be idinstall -a dev name. In this case the command will require and install a Driver.o, Master and System entry, and optionally install the Space.c, Stubs.c, Node, Init, Rc, Shutdown, Mfsys, and Sfsys components if those modules are present in the current directory.
The Driver.o, Space.c, and Stubs.c files are moved to a directory in
/etc/conf/pack.d. The dev name is passed as an argument, which is used as
the directory name. The remaining components are stored in the corresponding
directories under /etc/conf in a file whose name is dev name. For example, the
Node file would be moved to /etc/conf/node.d/dev_name.

The idinstall -m usage provides an interface to the idmaster command which
will add, delete, and update mdevice file entries using a Master file from the
local directory. An interface is provided here so that driver writers have a con­
sistent interface to install any DSP component.

As stated above, driver writers will generally use only the idinstall -a
dev_name form of the command. Other options of idinstall are provided to
allow an Update DSP (that is, one that replaces an existing device driver com­
ponent) to be installed, and to support installation of multiple controller boards
of the same type.

If the call to idinstall uses the -u (update) option, it will:
 overlay the files of the old DSP with the files of the new DSP.
 invoke the idmaster command with the ‘update’ option if a Master module
 is part of the new DSP.

idinstall also does a verification that enough free disk space is available to
start the reconfiguration process. This is done by calling the idspace command.
idinstall will fail if insufficient space exists, and exit with a non-zero return
code. The -e option bypasses this check.

This version of UNIX Supports Multiple Major numbers per device. For the case
of a DSP package where idinstall is invoked by the installation software in the
DSP, the range specification will be used. The range "3.6" will mean four major
numbers are being requested. The ID Software will then look for the first four
available (consecutive) major numbers.

If a driver supports both block and character I/O both block and character majors
are assigned by idinstall. These major numbers do not have to be the same.
For SCSI developers who require them to be the same, a new field ‘v’ has to be
added to the third field of the master file.

idinstall makes a record of the last device installed in a file
(/etc/.last_dev_add), and saves all removed files from the last delete operation
in a directory (/etc/.last_dev_del). These files are recovered by
/etc/conf/bin/idmkenv whenever it is determined that a system
reconfiguration was aborted due to a power failure or unexpected system reboot.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered, idinstall
will exit with a non-zero value, and report an error message. All error messages
are designed to be self-explanatory. Typical error message that can be generated
by idinstall are as follows:
Device package already exists.
Cannot make the driver package directory.
Cannot remove driver package directory.
Local directory does not contain a Driver object (Driver.o) file.
Local directory does not contain a Master file.
Local directory does not contain a System file.
Cannot remove driver entry.

SEE ALSO
 idspace(1M), idcheck(1M)
idload (1M) (Remote File Sharing Utilities) idload (1M)

NAME
idload – Remote File Sharing user and group mapping

SYNOPSIS
idload [-n] [-g _rules] [-u _rules] [directory]
idload -k

DESCRIPTION
idload is used on Remote File Sharing server machines to build translation tables
for user and group ids. It takes your /etc/passwd and /etc/group files and
produces translation tables for user and group ids from remote machines, accord­
ing to the rules set down in the _u rules and _g rules files. If you are mapping by
user and group name, you will need copies of remote /etc/passwd and
/etc/group files. If no rules files are specified, remote user and group ids are
mapped to MAXUID+1 (this is an id number that is one higher than the highest
number you could assign on your system.)

By default, the remote password and group files are assumed to reside in
/etc/rfs/auth.info/domain/nodename/_[passwd| group]. The directory argu­
ment indicates that some directory structure other than /etc/rfs/auth.info
contains the domain/nodename passwd and group files. (nodename is the name of
the computer the files are from and domain is the domain that computer is a
member of.)

You must run idload to put the mapping into place. Global mapping will take
effect immediately for machines that have one of your resources currently
mounted. Mapping for other specific machines will take effect when each
machine mounts one of your resources.

-n This is used to do a trial run of the id mapping. No translation
table will be produced, however, a display of the mapping is output
to the terminal (stdout).

-k This is used to print the idmapping that is currently in use.
(Specific mapping for remote machines will not be shown until that
machine mounts one of your resources.)

-u _rules The _u rules file contains the rules for user id translation. The
default rules file is /etc/rfs/auth.info/uid.rules.

-g _rules The _g rules file contains the rules for group id translation. The
default rules file is /etc/rfs/auth.info/gid.rules.

This command is restricted to the super-user.

Rules
The rules files have two types of sections (both optional): global and host.
There can be only one global section, though there can be one host section for
each computer you want to map.

The global section describes the default conditions for translation for any
machines that are not explicitly referenced in a host section. If the global section
is missing, the default action is to map all remote user and group ids from
undefined computers to \texttt{MAXUID+1}. The syntax of the first line of the \texttt{global} section is:

\begin{verbatim}
global
\end{verbatim}

A \texttt{host} section is used for each machine or group of machines that you want to map differently from the global definitions. The syntax of the first line of each \texttt{host} section is:

\begin{verbatim}
host name ...
\end{verbatim}

where \texttt{name} is replaced by the full name of a computer (domain.nodename).

The format of a rules file is described below. (All lines are optional, but must appear in the order shown.)

\begin{verbatim}
global
default local | transparent
exclude remote_id-remote_id | remote_id
map remote_id:local

host domain.nodename [domain.nodename. ...]
default local | transparent
exclude remote_id-remote_id | remote_id | remote_name
map remote:local [remote | all
\end{verbatim}

Each of these instruction types is described below.

The line

\begin{verbatim}
default local | transparent
\end{verbatim}

defines the mode of mapping for remote users that are not specifically mapped in instructions in other lines. \texttt{transparent} means that each remote user and group id will have the same numeric value locally unless it appears in the \texttt{exclude} instruction. \texttt{local} can be replaced by a local user name or id to map all users into a particular local name or id number. If the default line is omitted, all users that are not specifically mapped are mapped into a "special guest" login id.

The line

\begin{verbatim}
exclude remote_id-remote_id | remote_id | remote_name
\end{verbatim}

defines remote ids that will be excluded from the \texttt{default} mapping. The \texttt{exclude} instruction must precede any \texttt{map} instructions in a block. You can use a range of id numbers, a single id number, or a single name. (\texttt{remote_name} cannot be used in a \texttt{global} block.)

The line

\begin{verbatim}
map remote:local | remote | all
\end{verbatim}

defines the local ids and names that remote ids and names will be mapped into. \texttt{remote} is either a remote id number or remote name; \texttt{local} is either a local id number or local name. Placing a colon between a \texttt{remote} and a \texttt{local} will give the value on the left the permissions of the value on the right. A single \texttt{remote} name or id will assign the user or group permissions of the same local name or id. \texttt{all} is a predefined alias for the set of all user and group ids found in the local
/etc/passwd and /etc/group files. (You cannot map by remote name in global blocks.)

Note: idload will always output warning messages for map all, since password files always contain multiple administrative user names with the same id number. The first mapping attempt on the id number will succeed, each subsequent attempts will produce a warning.

Remote File Sharing doesn’t need to be running to use idload.

EXIT STATUS

On successful completion, idload will produce one or more translation tables and return a successful exit status. If idload fails, the command will return an exit status of zero and not produce a translation table.

ERRORS

If (1) either rules file cannot be found or opened, (2) there are syntax errors in the rules file, (3) there are semantic errors in the rules file, (4) host password or group information could not be found, or (5) the command is not run with super-user privileges, an error message will be sent to standard error. Partial failures will cause a warning message to appear, though the process will continue.

FILES

/etc/passwd
/etc/group
/etc/rfs/auth.info/domain/nodename/[user|group]
/etc/rfs/auth.info/uid.rules
/etc/rfs/auth.info/gid.rules

SEE ALSO

mount(1M)
"Remote File Sharing" chapter of the System Administrator’s Guide for detailed information on ID mapping
idmkininit - reads files containing specifications

This command reads the files containing specifications of /etc/init.tab entries from /etc/conf/init.d and constructs a new init.tab file in /etc/conf/cf.d. It returns 0 on success and a positive number on error.

The files in /etc/conf/init.d are copies of the Init modules in device Driver Software Packages (DSP). There is at most one Init file per DSP. Each file contains one line for each init.tab entry to be installed. There may be multiple lines (that is, multiple init.tab entries) per file. An init.tab entry has the form (the id field is often called the tag):
 id:state:action:process

The Init module entry must have one of the following forms:
 action:process
 rstate:action:process
 id:state:action:process

When idmkininit encounters an entry of the first type, a valid id field will be generated, and an rstate field of 2 (indicating run on init state 2) will be generated. When an entry of the second type is encountered only the id field is prepended. An entry of the third type is incorporated into the new init.tab unchanged.

Since add-on init.tab entries specify init state 2 for their rstate field most often, an entry of the first type should almost always be used. An entry of the second type may be specified if you need to specify other than state 2. DSP’s should avoid specifying the id field as in the third entry, since other add-on applications or DSPs may have already used the id value you have chosen. The /etc/init program will encounter serious errors if one or more init.tab entries contain the same id field.

idmkininit determines which of the three forms above is being used for the entry by requiring each entry to have a valid action keyword. Valid action values are as follows:

 off
 respawn
 ondemand
 once
 wait
 boot
 bootwait
 powerfail
 powerwait
 initdefault
 sysinit
The `idmkinit` command is called automatically upon entering init State 2 on the next system reboot after a kernel reconfiguration to establish the correct `/etc/inittab` for the running `/unix` kernel. `idmkinit` can be called as a user level command to test modification of `inittab` before a DSP is actually built. It is also useful in installation scripts that do not reconfigure the kernel, but need to create `inittab` entries. In this case, the `inittab` generated by `idmkinit` must be copied to `/etc/inittab`, and a `telinit q` command must be run to make the new entry take affect.

The command line options are:

- `o directory` `inittab` will be created in the directory specified rather than `/etc/conf/cf.d`.
- `i directory` The ID file `init.base`, which normally resides in `/etc/conf/cf.d`, can be found in the directory specified.
- `e directory` The Init modules that are usually in `/etc/conf/init.d` can be found in the directory specified.
- `#` Print debugging information.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered, `idmkinit` will exit with a non-zero value and report an error message. All error messages are designed to be self-explanatory.

SEE ALSO
`idbuild(1M), idinstall(1M), idmknod(1M), init(1M)

`inittab(4)` in the *Programmer’s Reference Manual*
idmknod(1M) (Base System) idmknod(1M)

NAME
idmknod – removes nodes and reads specifications of nodes

SYNOPSIS
idmknod [options]

DESCRIPTION
This command performs the following functions:

Removes the nodes for non-required devices (those that do not have an r
in field 3 of the the device’s mdevice entry) from /dev. Ordinary files
will not be removed. If the /dev directory contains subdirectories, those
subdirectories will be traversed and nodes found for non-required devices
will be removed as well. If empty subdirectories result due to the remo­
val of nodes, the subdirectories are then removed.

Reads the specifications of nodes given in the files contained in
/etc/conf/node.d and installs these nodes in /dev. If the node
specification defines a path containing subdirectories, the subdirectories
will be made automatically.

Returns 0 on success and a positive number on error.

The idmknod command is run automatically upon entering init state 2 on the next
system reboot after a kernel reconfiguration to establish the correct representation
of device nodes in the /dev directory for the running /unix kernel. idmknod can
be called as a user level command to test modification of the /dev directory
before a Driver Software Package (DSP) is actually built. It is also useful in in­
stallation scripts that do not reconfigure the kernel, but need to create /dev
entries.

The files in /etc/conf/node.d are copies of the I. Node modules installed by
device DSPs. There is at most one file per DSP. Each file contains one line for
each node that is to be installed. The format of each line is:

Name of device entry (field 1) in the mdevice file.
(The mdevice entry will be the line installed by the DSP from its Master
module.) This field must be from 1 to 8 characters in length. The first char­
eracter must be a letter. The others may be letters, digits, or underscores.

Name of node to be inserted in /dev.
The first character must be a letter. The others may be letters, digits, or
underscores. This field can be a path relative to /dev, and idmknod will
create subdirectories as needed.

The character b or c.
A b indicates that the node is a 'block' type device and c indicates 'character'
type device.

For devices having multiple major numbers, the following scheme is used to
specify which device nodes belong to which major. The third field is
expanded to specify a major number offset as follows:

"[b/c]: maj_off", where [b/c] refers to either block or character major and
maj_off refers to an offset number within the major number range in the
mdevice file. For example, a specification "C:2" refers to a character major offset 2, which for a major range of "15-18" would translate to character major 17.

Minor device number.
If this field is a non-numeric, it is assumed to be a request for a streams clone device node, and idmknod will set the minor number to the value of the major number of the device specified [see mknod(2) in the Programmer's Reference Manual for information on minor device number values].

User id.
The integer value in this field describes the ownership of the node to be made.

Group id.
The integer value in this field describes the group ownership of the node to be created.

Permission.
The value expected must be in octal form, in the manner in which permissions are described to the chmod(1) command (i.e. 0777).

Some example node file entries are as follows:

asy tty00 c 1 makes /dev/tty00 for device asy using minor device 1.
qt rmt/c0s0 c 4 makes /dev/rmt/c0s0 for device qt using minor device 4.
clone net/nau/clone c nau makes /dev/net/nau/clone for device clone. The minor device number is set to the major device number of device nau.
scsi tty1 C:0 5 makes tty1 for device scsi using minor device 1 major_number offset 0.

The command line options are:

-o directory Nodes will be installed in the directory specified rather than /dev.
-i directory The file mdevice which normally resides in /etc/conf/cf.d, can be found in the directory specified.
-e directory The Node modules that normally reside in /etc/conf/node.d can be found in the directory specified.
-s Suppress removing nodes (just add new nodes).

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered due to a syntax or format error in a node entry, an advisory message will be printed to stdout and the command will continue. If a serious error is encountered (that is, a required file cannot be found), idmknod will exit with a non-zero value and report an error message. All error messages are designed to be self-explanatory.
SEE ALSO

idinstall(1M), idmkininit(1M)

NAME
idmkunix - build new UNIX System kernel

SYNOPSIS
/etc/conf/bin/idmkunix

DESCRIPTION
The idmkunix command creates a bootable UNIX Operating System kernel in the
directory /etc/conf/cf.d. The component kernel "core" files and device driver
object files contained in subdirectories of /etc/conf/pack.d are used as input
along with device and parameter definition files produced by idconfig. In brief,
the required input files are as follows:

/etc/conf/cf.d/conf.c - Kernel data structures and function
definitions
/etc/conf/cf.d/config.h - Kernel parameter and device definitions
/etc/conf/cf.d/vector.c - Interrupt vector definitions
/etc/conf/cf.d/direct - Listing of all driver components included
 in the build
/etc/conf/cf.d/fsconf.c - File system type configuration data
/etc/conf/cf.d/vuife - Memory management definitions for
 the kernel
/etc/conf/pack.d/*/Driver.o - Component kernel object files
/etc/conf/pack.d/*/space.c - Component kernel space allocation files
/etc/conf/pack.d/*/stubs.c - Component kernel stubs files

The command line options are as follows:
-o directory The file unix be created in the directory specified rather than
 /etc/conf/cf.d.
-i directory Input files that normally reside in /etc/conf/cf.d can be found
 in the directory specified.
-r directory The directory specified will be used as the ID "root"
directory
 rather than /etc/conf.
-c, cc, -l, ld These options are no longer supported.
-# Print debugging information.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered, idmkunix
will exit with a non-zero value and report an error message. All error messages
are designed to be self-explanatory.

SEE ALSO
idbuild(1M), idconfig(1M), idinstall(1M), mdevice(4), mtune(4), sdevice(4),
stune(4)
idspace(1M) (Base System) idspace(1M)

NAME
idspace - investigates free space

SYNOPSIS
/etc/conf/bin/idspace [-i inodes] [-r blocks] [-u blocks]
[-t blocks]

DESCRIPTION
This command investigates free space in /, /usr, and /tmp file systems to determine whether sufficient disk blocks and inodes exist in each of potentially 3 file systems. The default tests that idspace performs are as follows:

Verify that the root file system (/) has 400 blocks more than the size of the current /unix. This verifies that a device driver being added to the current /unix can be built and placed in the root directory. A check is also made to insure that 100 inodes exist in the root directory.

Determine whether a /usr file system exists. If it does exist, a test is made that 400 free blocks and 100 inodes are available in that file system. If the file system does not exist, idspace does not complain since files created in /usr by the reconfiguration process will be created in the root file system and space requirements are covered by the test in (1.) above.

Determine whether a /tmp file system exists. If it does exist, a test is made that 400 free blocks and 100 inodes are available in that file system. If the file system does not exist, idspace does not complain since files created in /tmp by the reconfiguration process will be created in the root file system and space requirements are covered by the test in (1.) above.

The command line options are:

- **-i inodes** This option overrides the default test for 100 inode in all of the idspace checks.

- **-r blocks** This option overrides the default test for /unix size + 400 blocks when checking the root (/) file system. When the -r option is used, the /usr and /tmp file systems are not tested unless explicitly specified.

- **-u blocks** This option overrides the default test for 400 blocks when checking the /usr file system. When the -u option is used, the root (/) and /tmp file systems are not tested unless explicitly specified. If /usr is not a separate file system, an error is reported.

- **-t blocks** This option overrides the default test for 400 blocks when checking the /tmp file system. When the -t option is used, the root (/) and /usr file systems are not tested unless explicitly specified. If /tmp is not a separate file system, an error is reported.
ERROR MESSAGES

An exit value of zero indicates success. If insufficient space exists in a file system or an error was encountered due to a syntax or format error, `idspace` will report a message. All error messages are designed to be self-explanatory. The specific exit values are as follows:

0 success.
1 command syntax error, or needed file does not exist.
2 file system has insufficient space or inodes.
3 requested file system does not exist (\texttt{-u} and \texttt{-t} options only).

SEE ALSO

`idbuild(1M), idinstall(1M)`
NAME
idtune – attempts to set value of a tunable parameter

SYNOPSIS
/etc/conf/bin/idtune [-f | -m] name value

DESCRIPTION
This script attempts to set the value of a tunable parameter. The tunable parameter to be changed is indicated by name. The desired value for the tunable parameter is value.

If there is already a value for this parameter (in the stune file), the user will normally be asked to confirm the change with the following message:

Tunable Parameter name is currently set to old_value.
Is it OK to change it to value? (y/n)

If the user answers y, the change will be made. Otherwise, the tunable parameter will not be changed, and the following message will be displayed:

name left at old_value.

However, if the -f (force) option is used, the change will always be made and no messages will ever be given.

If the -m (minimum) option is used and there is an existing value which is greater than the desired value, no change will be made and no message will be given.

If system tunable parameters are being modified as part of a device driver or application add-on package, it may not be desirable to prompt the user with the above question. The add-on package Install script may chose to override the existing value using the -f or -m options. However, care must be taken not to invalidate a tunable parameter modified earlier by the user or another add-on package.

In order for the change in parameter to become effective, the UNIX System kernel must be rebuilt and the system rebooted.

DIAGNOSTICS
The exit status will ne non-zero if errors are encountered.

SEE ALSO
idbuild(1).
NAME
ifconfig – configure network interface parameters

SYNOPSIS
ifconfig interface [address_family] [address [dest_address]] [parameters]
[netmask mask] [broadcast address] [metric n]
ifconfig interface [protocol_family]

DESCRIPTION
ifconfig is used to assign an address to a network interface and/or to configure
network interface parameters. ifconfig must be used at boot time to define the
network address of each interface present on a machine; it may also be used at a
later time to redefine an interface’s address or other operating parameters. Used
without options, ifconfig displays the current configuration for a network inter-
face. If a protocol family is specified, ifconfig will report only the details
specific to that protocol family. Only the super-user may modify the
configuration of a network interface.

The interface parameter is a string of the form name unit, for example emdl.
Since an interface may receive transmissions in differing protocols, each of which
may require separate naming schemes, the parameters and addresses are inter-
preted according to the rules of some address family, specified by the
address_family parameter. The address families currently supported are ether
and inet. If no address family is specified, inet is assumed.

For the DARPA Internet family (inet), the address is either a host name present
in the host name data base [see hosts(4)], or a DARPA Internet address expressed
in the Internet standard dot notation. Typically, an Internet address specified in
dot notation will consist of your system’s network number and the machine’s
unique host number. A typical Internet address is 192.9.200.44, where
192.9.200 is the network number and 44 is the machine’s host number.

For the ether address family, the address is an Ethernet address represented as
x:x:x:x:x where x is a hexadecimal number between 0 and ff. Only the super-
user may use the ether address family.

If the dest_address parameter is supplied in addition to the address parameter, it
specifies the address of the correspondent on the other end of a point to point
link.

OPTIONS
The following parameters may be set with ifconfig:

up Mark an interface up. This may be used to enable an interface after
an ifconfig down. It happens automatically when setting the first
address on an interface. If the interface was reset when previously
marked down, the hardware will be re-initialized.

down Mark an interface down. When an interface is marked down, the
system will not attempt to transmit messages through that interface.
If possible, the interface will be reset to disable reception as
well. This action does not automatically disable routes using the interface.

trailers *(inet only)* Enable the use of a trailer link level encapsulation when sending. If a network interface supports trailer encapsulation, the system will, when possible, encapsulate outgoing messages in a manner which minimizes the number of memory to memory copy operations performed by the receiver. This feature is machine-dependent, and therefore not recommended. On networks that support the Address Resolution Protocol [see `arp(7)`]; currently, only 10 Mb/s Ethernet), this flag indicates that the system should request that other systems use trailer encapsulation when sending to this host. Similarly, trailer encapsulations will be used when sending to other hosts that have made such requests.

-trailers Disable the use of a trailer link level encapsulation.

arp Enable the use of the Address Resolution Protocol in mapping between network level addresses and link level addresses (default). This is currently implemented for mapping between DARPA Internet addresses and 10Mb/s Ethernet addresses.

-arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to n, default 0. The routing metric is used by the routing protocol [routed(1M)]. Higher metrics have the effect of making a route less favorable; metrics are counted as additional hops to the destination network or host.

netmask mask *(inet only)* Specify how much of the address to reserve for subdividing networks into sub-networks. The mask includes the network part of the local address and the subnet part, which is taken from the host field of the address. The mask can be specified as a single hexadecimal number with a leading 0x, with a dot-notation Internet address, or with a pseudo-network name listed in the network table `networks(4)`. The mask contains 1's for the bit positions in the 32-bit address which are to be used for the network and subnet parts, and 0's for the host part. The mask should contain at least the standard network portion, and the subnet field should be contiguous with the network portion.

broadcast address *(inet only)* Specify the address to use to represent broadcasts to the network. The default broadcast address is the address with a host part of all 1's.

EXAMPLES

If your workstation is not attached to an Ethernet, the `emdl` interface should be marked down as follows:

```
ifconfig emdl down
```
FILES
 /dev/nit
 /etc/netmasks
SEE ALSO
 netstat(1M), netmasks(4)

DIAGNOSTICS
 Messages indicating the specified interface does not exist, the requested address is unknown, or the user is not privileged and tried to alter an interface's configuration.
NAME

incfile - create, restore an incremental filesystem archive

SYNOPSIS

incfile -B [-dilmortvxAESV] bkjobid ofsname ofsdev ofslab descript
incfile -T bkjobid tocfname descript
incfile -RC [-dilmortvxAESV] ofsname ofsdev refsname redev rsjobid descript
incfile -RF [-dilmortvxAESV] ofsname ofsdev descript rsjobid:uid:date:type:name
[:rename]:[inode] ...

DESCRIPTION

incfile is invoked as a child process by other shell commands. The command name, incfile, is read either from the bkhist.tab file or the bkreg -m command and option. The -B, -T, -R, -F, and -C options are passed to incfile by the shell commands backup, restore, and restore(1) described below. The minus options are passed from the bkhist.tab file or the bkreg -p command and option. The arguments are sent to incfile from various locations in the backup service.

incfile -B is invoked as a child process by the bkdaemon command to perform an incremental backup of the filesystem ofsname (the originating filesystem). All files in ofsname that have been modified or have had an inode change since the last full backup are archived. The resulting backup is created in cpio file format. The backup is recorded in the backup history log, /etc/bkup/bkhist.tab.

bkjobid the job id assigned by backup. The method uses the bkhist.tab file when it creates history log and table-of-contents entries.

ofsname the name of the filesystem that is to be backed up.
ofsdev the name of the UNIX block special device on which the filesystem resides.
ofslab the volume name on the filesystem [see labelit(1M)].
descript is a description for a destination device in the form:

dgroup:dname:dchar:dlabels
dgroup specifies a device group [see devgroup.tab(4)].
dname specifies a particular device name [see device.tab(4)].
dchars specifies characteristics associated with the device. If specified,
dchar overrides the defaults for the specified device and group. [See
device.tab(4) for a further description of device characteristics].
dlabels specifies the volume names for the media to be used for reading or writing the archive.

incfile -T is invoked as a child process by the backup to archive a table-of-contents on the volumes described by descript.
tocfname the name of the file containing the table-of-contents.

incfile -RC and incfile -RF are invoked as child processes by the rsaper command to extract files from an incremental filesystem archive created by incfile -B. The filesystem archive is assumed to be in cpio format.
If the `-RC` option is selected, all files recorded in the archive are restored.

`refsnam`e if non-null, the name of the filesystem to be restored to instead of `ofsnam`e.

`redev` if non-null, the partition to be restored to instead of `ofsdev`.

At least one of `refsnam`e and `redev` must be null.

If the `-RF` option is specified, only selected objects from the archive are restored. Each 7-tuple, composed of `rsjobid:uid:date:type:name:rename:inode`, specifies an object to be restored from the filesystem archive. The 7-tuple objects come to `incfile` from the `rsstatus.tab` file.

`rsjobid` the restore jobid assigned by `restore` or `urestore`.

`uid` the real uid of the user who requested the object to be restored. It must match the uid of the owner of the object at the time the archive was made, or it must be the superuser uid.

`date` the newest "last modification time" that is acceptable for a restorable object. The object is restored from the archive immediately older than this date. `date` is a hexadecimal representation of the date and time provided by the `time` system call.

`type` either F or D, indicating that the object is a file or a directory, respectively.

`name` the name the object had in the filesystem archive.

`rename` the name that the object should be restored to (it may differ from the name the object had in the filesystem archive). If omitted, the object is restored to `name`.

`inode` the inode number of the object as it was stored in the filesystem archive. `[inode]` is not used by `incfile` `-R`, and is provided only for command-line compatibility with other restoral methods.

Options

Some options are only significant during `incfile` `-B` invocations; they are accepted but ignored during `incfile` `-R` invocations because the command is invoked and options are specified automatically by `restore`. These options are flagged with an asterisk (*).

`d*` Inhibits the recording of the archive in the backup history log.

`i*` Excludes from the backup those files that have only had an inode change.

`l*` Creates a long form of the backup history log that includes a table of contents for the archive. This includes the data used to generate a listing of each file in the archive like that produced by the `ls` `-l` command.

`m*` Mounts the originating filesystem read-only before starting the backup and remounts it with its original permissions after completing the backup. Cannot be used with `root` or `/usr` filesystems.
Permits the user to override media insertion requests [see the getvol(1M), -o option].

Includes remotely mounted resources in the archive.

Creates a table of contents for the backup on additional media instead of in the backup history log.

Validates the archive as it is written. A checksum is computed as the archive is being written; as each medium is completed, it is re-read and the checksum is recomputed to verify that each block is readable and correct. If either check fails, the medium is considered unreadable. If -A has been specified, the archiving operation fails; otherwise, the operator is prompted to replace the failed medium.

Ignores the exception list; backs up all changed or modified files.

Establishes automated mode, (i.e., does not prompt the user to insert or remove media).

Reports an estimate of media usage for the archive, then performs the backup.

Reports an estimate of media usage for the archive, but does not perform the backup.

Displays a period (.) for every 100 (512 byte) blocks read-from or written-to the archive on the destination device.

Displays the name of each file written-to or extracted-from the archive on the destination device.

The connection between an archiving method and the backup command is more complex than a simple fork/exec or pipe. The backup command is responsible for all interactions with the user, either directly, or through the bkoper command. Therefore, incfile neither reads from standard-input nor writes to standard-output or standard-error. A method library must be used [see librbrmeth(3)] to communicate reports (estimates, filenames, periods, status, etc.) to the backup command.

The exit codes for incfile are the following:

0 = successful completion of the task
1 = one or more parameters to incfile are invalid.
2 = an error has occurred which caused incfile to fail to complete all portions of its task.

lists the files that are to be excluded from an incremental filesystem backup.

lists the labels of all volumes that have been used for backup operations.
/etc/bkup/rsstatus.tab tracks the status of all restore requests from users.
/etc/bkup/bklog lists errors generated by the backup methods and the backup command.
/etc/bkup/rslog logs errors generated by the restore methods and the restore command.
$TMP/filelist$$ temporarily stores a table of contents for a backup archive.

SEE ALSO
backup(1M), bkoper(1M) cpio(1), cpio(4), device.tab(4), fdp(1), ff(1M), ffile(1), fimage(1), getvol(1M), incfile(1), labelit(1M), libb:r:meth(3), ls(1), restore(1M), rsoper(1M), time(2)
NAME
indicator – display application specific alarms and/or the "working" indicator

SYNOPSIS
indicator [-b [n]] [-c column] [-l length] [-o] [-w] [string ...]

DESCRIPTION
The indicator function displays application specific alarms or the "working" indicator, or both, on the FMLI banner line. By default, indicator ????. The argument string is a string to be displayed on the banner line, and should always be the last argument given. Note that string is not automatically cleared from the banner line.

The following options are available:

- **-b n**
 The -b option rings the terminal bell n times, where n is an integer from 1 to 10. The default value is 1. If the terminal has no bell, the screen is flashed instead, if possible.

- **-c column**
 The -c option defines the column of the banner line at which to start the indicator string. The argument column must be an integer from 0 to DISPLAYW-1. If the -c option is not used, column defaults to 0.

- **-l length**
 The -l option defines the maximum length of the string displayed. If string is longer than length characters, it will be truncated. The argument length must be an integer from 1 to DISPLAYW. If the -l option is not used, length defaults to DISPLAYW. NOTE: if string doesn’t fit it will be truncated.

- **-o**
 The -o option causes indicator to duplicate its output to stdout.

- **-w**
 The -w option turns on the working indicator.

EXAMPLES
When the value entered in a form field is invalid, the following use of indicator will ring the bell three times and display the word WRONG starting at column 1 of the banner line.

```
invalidmsg='indicator -b 3 -c 1 "WRONG"
```

To clear the indicator after telling the user the entry is wrong:

```
invalidmsg='indicator -b 9 -c 1 "WRONG"; sleep(3);
indicator -c 1 ""
```

In this example the value of invalidmsg (in this case the default value Input is not valid), still appears on the FMLI message line.
NAME

`indxbib` – create an inverted index to a bibliographic database

SYNOPSIS

```
/usr/ucb/indxbib database-file ...
```

DESCRIPTION

`indxbib` makes an inverted index to the named `database-file` (which must reside within the current directory), typically for use by `lookbib` and `refer`. A `database` contains bibliographic references (or other kinds of information) separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each field starts on a line beginning with a `%`, followed by a key-letter, then a blank, and finally the contents of the field, which may continue until the next line starting with `%` (see `addbib`).

`indxbib` is a shell script that calls two programs: `mkey` and `inv`. `mkey` truncates words to 6 characters, and maps upper case to lower case. It also discards words shorter than 3 characters, words among the 100 most common English words, and numbers (dates) < 1900 or > 2000. These parameters can be changed.

`indxbib` creates an entry file (with a `.ia` suffix), a posting file `.ib`, and a tag file `.ic`, in the working directory.

FILES

```
/usr/ucblib/reftools/mkey
/usr/ucblib/reftools/inv
* .ia entry file
* .ib posting file
* .ic tag file
* .ig reference file
```

SEE ALSO

`addbib(1), lookbib(1), refer(1), roffbib(1), sortbib(1)`

NOTES

All dates should probably be indexed, since many disciplines refer to literature written in the 1800s or earlier.

`indxbib` does not recognize pathnames.
NAME

inetd - Internet services daemon

SYNOPSIS

inetd [-d] [-s] [configuration-file]

DESCRIPTION

inetd, the Internet services daemon, is normally run at boot time by the Service Access Facility (SAF). When started, inetd reads its configuration information from configuration-file, the default being /etc/inetd.conf. See inetd.conf(4) for more information on the format of this file. It listens for connections on the Internet addresses of the services that its configuration file specifies. When a connection is found, it invokes the server daemon specified by that configuration file for the service requested. Once a server process exits, inetd continues to listen on the socket.

The -s option allows you to run inetd "stand-alone," outside the Service Access Facility (SAF).

Rather than having several daemon processes with sparsely distributed requests each running concurrently, inetd reduces the load on the system by invoking Internet servers only as they are needed.

inetd itself provides a number of simple TCP-based services. These include echo, discard, chargen (character generator), daytime (human readable time), and time (machine readable time, in the form of the number of seconds since midnight, January 1, 1900). For details of these services, consult the appropriate RFC, as listed below, from the Network Information Center.

inetd rereads its configuration file whenever it receives a hangup signal, SIGHUP. New services can be activated, and existing services deleted or modified in between whenever the file is reread.

SEE ALSO

comsat(1M), ftpd(1M), rexec(1M), rlogin(1M), rsh(1M), telnet(1M),
tftpd(1M), inetd.conf(4)

Postel, Jon, "Echo Protocol," RFC 862, Network Information Center,
SRI International, Menlo Park, Calif., May 1983

Postel, Jon, "Discard Protocol," RFC 863, Network Information Center,
SRI International, Menlo Park, Calif., May 1983

Postel, Jon, "Character Generator Protocol," RFC 864, Network Information
Center, SRI International, Menlo Park, Calif., May 1983

Postel, Jon, "Daytime Protocol," RFC 867, Network Information Center,
SRI International, Menlo Park, Calif., May 1983

Postel, Jon, and Ken Harrenstien, "Time Protocol," RFC 868,
Network Information Center, SRI International, Menlo Park, Calif., May 1983
NAME
infocmp – compare or print out terminfo descriptions

SYNOPSIS
[-1] [-w width] [-A directory] [-B directory] [termname . . .]

DESCRIPTION
infocmp can be used to compare a binary terminfo entry with other terminfo entries, rewrite a terminfo description to take advantage of the use= terminfo field, or print out a terminfo description from the binary file (term) in a variety of formats. In all cases, the boolean fields will be printed first, followed by the numeric fields, followed by the string fields.

Default Options
If no options are specified and zero or one termnames are specified, the -I option will be assumed. If more than one termname is specified, the -d option will be assumed.

Comparison Options [-d] [-c] [-n]
infocmp compares the terminfo description of the first terminal termname with each of the descriptions given by the entries for the other terminal’s termnames. If a capability is defined for only one of the terminals, the value returned will depend on the type of the capability: F for boolean variables, -1 for integer variables, and NULL for string variables.

-d produces a list of each capability that is different between two entries. This option is useful to show the difference between two entries, created by different people, for the same or similar terminals.

-c produces a list of each capability that is common between two entries. Capabilities that are not set are ignored. This option can be used as a quick check to see if the -u option is worth using.

-n produces a list of each capability that is in neither entry. If no termnames are given, the environment variable TERM will be used for both of the termnames. This can be used as a quick check to see if anything was left out of a description.

Source Listing Options [-I] [-L] [-C] [-r]
The -I, -L, and -C options will produce a source listing for each terminal named.

-I use the terminfo names
-L use the long C variable name listed in <term.h>
-C use the termcap names
-r when using -C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for the terminal name.

The source produced by the -C option may be used directly as a termcap entry, but not all of the parameterized strings may be changed to the termcap format. infocmp will attempt to convert most of the parameterized information, but anything not converted will be plainly marked in the output and commented out. These should be edited by hand.
All padding information for strings will be collected together and placed at the beginning of the string where `termcap` expects it. Mandatory padding (padding information with a trailing `'/'`) will become optional.

All `termcap` variables no longer supported by `terminfo`, but which are derivable from other `terminfo` variables, will be output. Not all `terminfo` capabilities will be translated; only those variables which were part of `termcap` will normally be output. Specifying the `-r` option will take off this restriction, allowing all capabilities to be output in `termcap` form.

Note that because padding is collected to the beginning of the capability, not all capabilities are output. Mandatory padding is not supported. Because `termcap` strings are not as flexible, it is not always possible to convert a `terminfo` string capability into an equivalent `termcap` format. A subsequent conversion of the `termcap` file back into `terminfo` format will not necessarily reproduce the original `terminfo` source.

Some common `terminfo` parameter sequences, their `termcap` equivalents, and some terminal types which commonly have such sequences, are:

<table>
<thead>
<tr>
<th><code>terminfo</code></th>
<th><code>termcap</code></th>
<th>Representative Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>%p1%c</code></td>
<td><code>%</code></td>
<td>adm</td>
</tr>
<tr>
<td><code>%p1%d</code></td>
<td><code>%d</code></td>
<td>hp, ANSI standard, vt100</td>
</tr>
<tr>
<td><code>%p1%'x%'%+%c</code></td>
<td><code>%+x</code></td>
<td>concept</td>
</tr>
<tr>
<td><code>%1</code></td>
<td><code>%d</code></td>
<td>ANSI standard, vt100</td>
</tr>
<tr>
<td><code>%p1%'x%'%+%c</code></td>
<td><code>%xy</code></td>
<td>concept</td>
</tr>
<tr>
<td><code>%p2</code> is printed before <code>%p1</code></td>
<td><code>%r</code></td>
<td>hp</td>
</tr>
</tbody>
</table>

Use= Option [-u]

The `-u` produces a `terminfo` source description of the first terminal `termname` which is relative to the sum of the descriptions given by the entries for the other terminals `termnames`. It does this by analyzing the differences between the first `termname` and the other `termnames` and producing a description with `use=` fields for the other terminals. In this manner, it is possible to retrofit generic `terminfo` entries into a terminal’s description. Or, if two similar terminals exist, but were coded at different times or by different people so that each description is a full description, using `infocmp` will show what can be done to change one description to be relative to the other.

A capability will get printed with an at-sign (@) if it no longer exists in the first `termname`, but one of the other `termname` entries contains a value for it. A capability’s value gets printed if the value in the first `termname` is not found in any of the other `termname` entries, or if the first of the other `termname` entries that has this capability gives a different value for the capability than that in the first `termname`.

The order of the other `termname` entries is significant. Since the `terminfo` compiler `tic` does a left-to-right scan of the capabilities, specifying two `use=` entries that contain differing entries for the same capabilities will produce different results.
depending on the order that the entries are given in. `infocmp` will flag any such inconsistencies between the other `termname` entries as they are found.

Alternatively, specifying a capability after a `use=` entry that contains that capability will cause the second specification to be ignored. Using `infocmp` to recreate a description can be a useful check to make sure that everything was specified correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow down the compilation time, is specifying extra `use=` fields that are superfluous. `infocmp` will flag any other `termname` `use=` fields that were not needed.

Other Options

```
Other Options [-s d| l| l| c] [-v] [-V] [-1] [-w width]
```

- `-s` sorts the fields within each type according to the argument below:
 - `d` leave fields in the order that they are stored in the `terminfo` database.
 - `i` sort by `terminfo` name.
 - `l` sort by the long C variable name.
 - `c` sort by the `termcap` name.

If the `-s` option is not given, the fields printed out will be sorted alphabetically by the `terminfo` name within each type, except in the case of the `-c` or the `-l` options, which cause the sorting to be done by the `termcap` name or the long C variable name, respectively.

- `-v` prints out tracing information on standard error as the program runs.
- `-V` prints out the version of the program in use on standard error and exit.
- `-1` causes the fields to be printed out one to a line. Otherwise, the fields will be printed several to a line to a maximum width of 60 characters.
- `-w` changes the output to `width` characters.

Changing Databases

```
Changing Databases [-A directory] [-B directory]
```

The location of the compiled `terminfo` database is taken from the environment variable `TERMINFO`. If the variable is not defined, or the terminal is not found in that location, the system `terminfo` database, usually in `/usr/share/lib/terminfo`, will be used. The options `-A` and `-B` may be used to override this location. The `-A` option will set `TERMINFO` for the first `termname` and the `-B` option will set `TERMINFO` for the other `termnames`. With this, it is possible to compare descriptions for a terminal with the same name located in two different databases. This is useful for comparing descriptions for the same terminal created by different people.

FILES

```
/usr/share/lib/terminfo/* Compiled terminal description database.
```

SEE ALSO

```
curses(3X), captinfo(1M), terminfo(4), tic(1M)
```
NAME
init, telinit – process control initialization

SYNOPSIS
/sbin/init [0123456SsQqabc]
/sbin/telinit [0123456SsQqabc]

DESCRIPTION
init
init is a general process spawner. Its primary role is to create processes from information stored in the file /etc/inittab [see inittab(4)].

At any given time, the system is in one of eight possible run levels. A run level is a software configuration of the system under which only a selected group of processes exist. The processes spawned by init for each of these run levels is defined in /etc/inittab. init can be in one of eight run levels, 0-6 and S or s (run levels S and s are identical). The run level changes when a privileged user runs /sbin/init. This user-spawned init sends appropriate signals to the original init spawned by the operating system when the system was booted, telling it which run level to change to.

The following are the arguments to init.

0 shut the machine down so it is safe to remove the power. Have the machine remove power if it can.
1 put the system in system administrator mode. All file systems are mounted. Only a small set of essential kernel processes are running. This mode is for administrative tasks such as installing optional utility packages. All files are accessible and no users are logged in on the system.
2 put the system in multi-user mode. All multi-user environment terminal processes and daemons are spawned. This state is commonly referred to as the multi-user state.
3 start the remote file sharing processes and daemons. Mount and advertise remote resources. Run level 3 extends multi-user mode and is known as the remote-file-sharing state.
4 is available to be defined as an alternative multi-user environment configuration. It is not necessary for system operation and is usually not used.
5 Stop the UNIX system and go to the firmware monitor.
6 Stop the UNIX system and reboot to the state defined by the init-default entry in /etc/inittab.

a,b,c process only those /etc/inittab entries having the a, b, or c run level set. These are pseudo-states, which may be defined to run certain commands, but which do not cause the current run level to change.
When a UNIX system is booted, `init` is invoked and the following occurs. First, `init` looks in `/etc/inittab` for the `initdefault` entry [see `inittab(4)`]. If there is one, `init` will usually use the run level specified in that entry as the initial run level to enter. If there is no `initdefault` entry in `/etc/inittab`, `init` requests that the user enter a run level from the virtual system console. If an S or s is entered, `init` goes to the single-user state. In the single-user state the virtual console terminal is assigned to the user’s terminal and is opened for reading and writing. The command `/sbin/su` is invoked and a message is generated on the physical console saying where the virtual console has been relocated. Use either `init` or `telinit`, to signal `init` to change the run level of the system. Note that if the shell is terminated (via an end-of-file), `init` will only re-initialize to the single-user state if the `/etc/inittab` file does not exist.

If a 0 through 6 is entered, `init` enters the corresponding run level. Run levels 0, 5, and 6 are reserved states for shutting the system down. Run levels 2, 3, and 4 are available as multi-user operating states.

If this is the first time since power up that `init` has entered a run level other than single-user state, `init` first scans `/etc/inittab` for the `boot` and `bootwait` entries [see `inittab(4)`]. These entries are performed before any other processing of `/etc/inittab` takes place, providing that the run level entered matches that of the entry. In this way any special initialization of the operating system, such as mounting file systems, can take place before users are allowed onto the system. `init` then scans `/etc/inittab` and executes all other entries that are to be processed for that run level.

To spawn each process in `/etc/inittab`, `init` reads each entry and for each entry that should be respawned, it forks a child process. After it has spawned all of the processes specified by `/etc/inittab`, `init` waits for one of its descendant processes to die, a powerfail signal, or a signal from another `init` or `telinit` process to change the system’s run level. When one of these conditions occurs, `init` re-examines `/etc/inittab`. New entries can be added to `/etc/inittab` at any time; however, `init` still waits for one of the above three conditions to occur.
before re-examining /etc/inittab. To get around this, init Q or init q command wakes init to re-examine /etc/inittab immediately.

When init comes up at boot time and whenever the system changes from the single-user state to another run state, init sets the ioctl(2) states of the virtual console to those modes saved in the file /etc/ioctl.syscon. This file is written by init whenever the single-user state is entered.

When a run level change request is made init sends the warning signal (SIGTERM) to all processes that are undefined in the target run level. init waits five seconds before forcibly terminating these processes via the kill signal (SIGKILL).

When init receives a signal telling it that a process it spawned has died, it records the fact and the reason it died in /var/adm/utmp and /var/adm/utmp if it exists [see who(1)]. A history of the processes spawned is kept in /var/adm/wtmp.

If init receives a powerfail signal (SIGPWR) it scans /etc/inittab for special entries of the type powerfail and powerwait. These entries are invoked (if the run levels permit) before any further processing takes place. In this way init can perform various cleanup and recording functions during the powerdown of the operating system.

telinit

Telinit, which is linked to /sbin/init, is used to direct the actions of init. It takes a one-character argument and signals init to take the appropriate action.

FILES

/etc/inittab
/var/adm/utmp
/var/adm/wtmp
/etc/ioctl.syscon
/dev/console

SEE ALSO

ttymon(1M), shutdown(1M), inittab(4), utmp(4), utmpx(4), termio(7)
login(1), sh(1), stty(1), who(1) in the User’s Reference Manual
kll(2) in the Programmer’s Reference Manual

DIAGNOSTICS

If init finds that it is respawning an entry from /etc/inittab more than ten times in two minutes, it will assume that there is an error in the command string in the entry, and generate an error message on the system console. It will then refuse to respawn this entry until either five minutes has elapsed or it receives a signal from a user-spawned init or telinit. This prevents init from eating up system resources when someone makes a typographical error in the inittab file or a program is removed that is referenced in /etc/inittab.

When attempting to boot the system, failure of init to prompt for a new run level may be because the virtual system console is linked to a device other than the physical system console.
NOTES

`init` and `telinit` can be run only by a privileged user.

The S or s state must not be used indiscriminately in the `/etc/inittab` file. A good rule to follow when modifying this file is to avoid adding this state to any line other than the `initdefault`.

If a default state is not specified in the `initdefault` entry in `/etc/inittab`, state 6 is entered. Consequently, the system will loop, that is, it will go to firmware and reboot continuously.

If the `utmp` file cannot be created when booting the system, the system will boot to state "s" regardless of the state specified in the `initdefault` entry in `/etc/inittab`. This can happen if the `/var` filesystem is not accessible.

In the event of a file table overflow condition, `init` uses the file descriptor associated with `/etc/inittab` that was retained from the last time it accessed the file. This prevents `init` from going into single user mode when it cannot obtain a file descriptor to open `/etc/inittab`.
install(1M) (Essential Utilities) install(1M)

NAME
install – install commands

SYNOPSIS

DESCRIPTION
The install command is most commonly used in "makefiles" [see make(1)] to install a file (updated target file) in a specific place within a file system. Each file is installed by copying it into the appropriate directory, thereby retaining the mode and owner of the original command. The program prints messages telling the user exactly what files it is replacing or creating and where they are going.

If no options or directories (dirx . . .) are given, install will search a set of default directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that order) for a file with the same name as file. When the first occurrence is found, install issues a message saying that it is overwriting that file with file, and proceeds to do so. If the file is not found, the program states this and exits without further action.

If one or more directories (dirx . . .) are specified after file, those directories will be searched before the directories specified in the default list.

The meanings of the options are:
-
-c dira Installs a new command (file) in the directory specified by dira, only if it is not found. If it is found, install issues a message saying that the file already exists, and exits without overwriting it. May be used alone or with the -s option.
-
-f dirb Forces file to be installed in given directory, whether or not one already exists. If the file being installed does not already exist, the mode and owner of the new file will be set to 755 and bin, respectively. If the file already exists, the mode and owner will be that of the already existing file. May be used alone or with the -o or -s options.
-
-i Ignores default directory list, searching only through the given directories (dirx . . .). May be used alone or with any other options except -c and -f.
-
-n dirc If file is not found in any of the searched directories, it is put in the directory specified in dirc. The mode and owner of the new file will be set to 755 and bin, respectively. May be used alone or with any other options except -c and -f.
-
-m mode The mode of the new file is set to mode.
-
-u user The owner of the new file is set to user.
-
-g group The group id of the new file is set to group. Only available to the superuser.
install (1M) (Essential Utilities) install (1M)

-o If file is found, this option saves the "found" file by copying it to oldfile in the directory in which it was found. This option is useful when installing a frequently used file such as /bin/sh or /lib/saf/ttymon, where the existing file cannot be removed. May be used alone or with any other options except -c.

-s Suppresses printing of messages other than error messages. May be used alone or with any other options.

SEE ALSO
make(1)
NAME
install – install files

SYNOPSIS
/usr/ucb/install [-cs] [-g group] [-m mode] [-o owner] file1 file2
/usr/ucb/install [-cs] [-g group] [-m mode] [-o owner] file . . . directory
/usr/ucb/install -d [-g group] [-m mode] [-o owner] directory

DESCRIPTION
Install is used within makefiles to copy new versions of files into a destination
directory and to create the destination directory itself.

The first two forms are similar to the cp(1) command with the addition that ex­
cutable files can be stripped during the copy and the owner, group, and mode of
the installed file(s) can be given.

The third form can be used to create a destination directory with the required
owner, group and permissions.

Note: install uses no special privileges to copy files from one place to another.
The implications of this are:

- You must have permission to read the files to be installed.
- You must have permission to copy into the destination file or directory.
- You must have permission to change the modes on the final copy of the
 file if you want to use the -m option to change modes.
- You must be superuser if you want to specify the ownership of the
 installed file with -o. If you are not the super-user, or if -o is not in
 effect, the installed file will be owned by you, regardless of who owns the
 original.

OPTIONS
- -g group Set the group ownership of the installed file or directory. (staff by
default)
- -m mode Set the mode for the installed file or directory. (0755 by default)
- -o owner If run as root, set the ownership of the installed file to the user-ID of
 owner.
- -c Copy files. In fact install always copies files, but the -c option is
 retained for backwards compatibility with old shell scripts that might
 otherwise break.
- -s Strip executable files as they are copied.
- -d Create a directory. Missing parent directories are created as required
 as in mkdir -p. If the directory already exists, the owner, group and
 mode will be set to the values given on the command line.
SEE ALSO
chgrp(1), chmod(1), cp(1), mkdir(1), strip(1) in the User's Reference Manual
install(1M) in the System Administrator's Reference Manual
NAME
installf – add a file to the software installation database

SYNOPSIS
installf [-c class] pkginst pathname [ftype [[major minor]
 [mode owner group]]]
installf [-c class] pkginst -
installf -f [-c class] pkginst

DESCRIPTION
installf is a tool available for use from within custom procedure scripts such as
preinstall, postinstall, preremove, and postremove. installf informs the
system that a pathname not listed in the pkgmap file is being created or modified.
It should be invoked before any file modifications have occurred.

When the second synopsis is used, the pathname descriptions will be read from
standard input. These descriptions are the same as would be given in the first
synopsis but the information is given in the form of a list. (The descriptions
should be in the form: pathname [ftype [[major minor] [mode owner group]]]).

After all files have been appropriately created and/or modified, installf should
be invoked with the -f synopsis to indicate that installation is final. Links will be
created at this time and, if attribute information for a pathname was not specified
during the original invocation of installf or was not already stored on the sys-
tem, the current attribute values for the pathname will be stored. Otherwise,
installf verifies that attribute values match those given on the command line,
making corrections as necessary. In all cases, the current content information is
calculated and stored appropriately.

-c class Class to which installed objects should be associated. Default class is
none.

pkginst A short string used to designate a package. It is composed of one or
two parts: pkg (an abbreviation for the package name) or, if more than
one instance of that package exists, pkg plus inst (an instance
identifier). (The term "package instance" is used loosely: it refers to
all instantiations of pkginst, even those that do not include instance
identifiers.)

The package name abbreviation (pkg) is the mandatory part of pkginst.
To create such an abbreviation, assign it with the PKG parameter. For
example, to assign the abbreviation sds to the Software Distribution
Service package, enter PKG=sds.

The second part (inst), which is required only if you have more than
one instance of the package in question, is a suffix that identifies the
instance. This suffix is either a number (preceded by a period) or any
short mnemonic string you choose. If you don’t assign your own
instance identifier when one is required, the system assigns a numeric
one by default. For example, if you have three instances of the
Software Distribution Service package and you don’t create your own
mnemonic identifiers (such as old and beta), the system adds the
suffixes .2 and .3 to the second and third packages, automatically.
installf(1M) (Essential Utilities) installf(1M)

To indicate all instances of a package, specify `inst.*`. (When using this format, enclose the command line in single quotes to prevent the shell from interpreting the * character.) Use the token `all` to refer to all packages available on the source medium.

pathname Pathname that is being created or modified.

ftype A one-character field that indicates the file type. Possible file types include:

- `f` a standard executable or data file
- `e` a file to be edited upon installation or removal
- `v` volatile file (one whose contents are expected to change)
- `d` directory
- `x` an exclusive directory
- `l` linked file
- `p` named pipe
- `c` character special device
- `b` block special device
- `s` symbolic link

major The major device number. The field is only specified for block or character special devices.

minor The minor device number. The field is only specified for block or character special devices.

mode The octal mode of the file (for example, 0664). A question mark (?) indicates that the mode will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.

owner The owner of the file (for example, `bin` or `root`). The field is limited to 14 characters in length. A question mark (?) indicates that the owner will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.

group The group to which the file belongs (for example, `bin` or `sys`). The field is limited to 14 characters in length. A question mark (?) indicates that the group will be left unchanged, implying that the file already exists on the target machine. This field is not used for linked or symbolically linked files.

-f Indicates that installation is complete. This option is used with the final invocation of `installf` (for all files of a given class).

NOTES

When `ftype` is specified, all applicable fields, as shown below, must be defined:
installf(1M) (Essential Utilities) installf(1M)

installf

Required Fields

<table>
<thead>
<tr>
<th>ftype</th>
<th>Required Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>p x d f v or e</td>
<td>mode owner group</td>
</tr>
<tr>
<td>c or b</td>
<td>major minor mode owner group</td>
</tr>
</tbody>
</table>

The **installf** command will create directories, named pipes and special devices on the original invocation. Links are created when **installf** is invoked with the `-f` option to indicate installation is complete.

Links should be specified as `path1=path2`. `path1` indicates the destination and `path2` indicates the source file.

For symbolically linked files, `path2` can be a relative pathname, such as `./` or `../`. For example, if you enter a line such as

```
s /foo/bar/etc/mount=/usr/sbin/mount
```

`path2` (`/foo/bar/etc/mount`) will be a symbolic link to `../usr/sbin/mount`.

Files installed with **installf** will be placed in the class `none`, unless a class is defined with the command. Subsequently, they will be removed when the associated package is deleted. If this file should not be deleted at the same time as the package, be certain to assign it to a class which is ignored at removal time. If special action is required for the file before removal, a class must be defined with the command and an appropriate class action script delivered with the package.

When classes are used, **installf** must be used as follows:

- `installf -c class1 . . .`
- `installf -f -c class1 . . .`
- `installf -c class2 . . .`
- `installf -f -c class2 . . .`

EXAMPLE

The following example shows the use of **installf** invoked from an optional preinstall or postinstall script:

```
# create /dev/xt directory
# (needs to be done before drvinstall)
installf $PKGINST /dev/xt d 755 root sys || exit 2
majno="/usr/sbin/drvinstall -m /etc/master.d/xt \
   -d $BASEDIR/data/xt.o -v1.0" || exit 2
i=00
while [ "$i" -lt "$limit" ]
do
    for j in 0 1 2 3 4 5 6 7
do
        echo /dev/xt$i$j c $majno 'expr $i + 8 + $j' \ 
            644 root sys |
        echo /dev/xt$i$j=/dev/xt/$i$j
        done
    i='expr $i + 1'
 done 
if [ "$i" -le 9 ] && i="0$i" # add leading zero
done || installf $PKGINST - || exit 2
# finalized installation, create links
installf -f $PKGINST || exit 2
```

3/91
SEE ALSO

compver(4), copyright(4), depend(4), pkgadd(1M), pkgask(1M), pkgchk(1M),
pkginfo(1), pkginfo(4), pkgmap(4), pkgmk(1), pkgparam(1), pkgproto(1),
pkgtrans(1), pkgrm(1M), removef(1M) space(4)
NAME
ipcrm – remove a message queue, semaphore set, or shared memory ID

SYNOPSIS
ipcrm [options]

DESCRIPTION
ipcrm removes one or more messages, semaphores, or shared memory identifiers. The identifiers are specified by the following options:

-q msqid Remove the message queue identifier msqid from the system and destroy the message queue and data structure associated with it.

-m shmid Remove the shared memory identifier shmid from the system. The shared memory segment and data structure associated with it are destroyed after the last detach.

-s semid Remove the semaphore identifier semid from the system and destroy the set of semaphores and data structure associated with it.

-Q msgkey Remove the message queue identifier, created with key msgkey, from the system and destroy the message queue and data structure associated with it.

-M shmkey Removes the shared memory identifier, created with key shmkey, from the system. The shared memory segment and data structure associated with it are destroyed after the last detach.

-S semkey Remove the semaphore identifier, created with key semkey, from the system and destroy the set of semaphores and data structure associated with it.

The details of the removes are described in msgctl(2), shmctl(2), and semctl(2). Use the ipcs command to find the identifiers and keys.

SEE ALSO
ipcs(1)
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2), shmop(2) in the Programmer's Reference Manual
NAME

`ipcs` – report inter-process communication facilities status

SYNOPSIS

`ipcs [options]`

DESCRIPTION

`ipcs` prints information about active inter-process communication facilities. Without `options`, information is printed in short format for message queues, shared memory, and semaphores that are currently active in the system. Otherwise, the information that is displayed is controlled by the following `options`:

- `q` Print information about active message queues.
- `m` Print information about active shared memory segments.
- `s` Print information about active semaphores.

If `-q`, `-m`, or `-s` are specified, information about only those indicated is printed. If none of these three are specified, information about all three is printed subject to these options:

- `b` Print information on biggest allowable size: maximum number of bytes in messages on queue for message queues, size of segments for shared memory, and number of semaphores in each set for semaphores. See below for meaning of columns in a listing.
- `c` Print creator's login name and group name. See below.
- `o` Print information on outstanding usage: number of messages on queue and total number of bytes in messages on queue for message queues and number of processes attached to shared memory segments.
- `p` Print process number information: process ID of last process to send a message, process ID of last process to receive a message on message queues, process ID of creating process, and process ID of last process to attach or detach on shared memory segments. See below.
- `t` Print time information: time of the last control operation that changed the access permissions for all facilities, time of last `msqnd` and last `msqrcv` on message queues, time of last `shmnd` and last `shmdt` on shared memory, time of last `semop` on semaphores. See below.
- `a` Use all print options. (This is a shorthand notation for `-b`, `-c`, `-o`, `-p`, and `-t`.)
- `C corefile` Use the file `corefile` in place of `/dev/kmem`.
- `N namelist` Use the file `namelist` in place of `/stand/unix`.
- `X` Print information about XENIX interprocess communication, in addition to the standard interprocess communication status. The XENIX process information describes a second set of semaphores and shared memory.
Note that the -p option does not print process number information for XENIX shared memory, and the -t option does not print time information about XENIX semaphores and shared memory.

The column headings and the meaning of the columns in an ipcs listing are given below; the letters in parentheses indicate the options that cause the corresponding heading to appear; “all” means that the heading always appears. Note that these options only determine what information is provided for each facility; they do not determine which facilities are listed.

T (all) Type of the facility:
 q message queue
 m shared memory segment
 s semaphore

ID (all) The identifier for the facility entry.

KEY (all) The key used as an argument to msgget, semget, or shmget to create the facility entry. (Note: The key of a shared memory segment is changed to IPC_PRIVATE when the segment has been removed until all processes attached to the segment detach it.)

MODE (all) The facility access modes and flags: The mode consists of 11 characters that are interpreted as follows. The first two characters are:
 R A process is waiting on a msgsnd.
 S A process is waiting on a msgsnd.
 D The associated shared memory segment has been removed. It will disappear when the last process attached to the segment detaches it.
 C The associated shared memory segment is to be cleared when the first attach is executed.
 - The corresponding special flag is not set.

 The next nine characters are interpreted as three sets of three bits each. The first set refers to the owner’s permissions; the next to permissions of others in the user-group of the facility entry; and the last to all others. Within each set, the first character indicates permission to read, the second character indicates permission to write or alter the facility entry, and the last character is currently unused.

 The permissions are indicated as follows:
 r Read permission is granted.
 w Write permission is granted.
 a Alter permission is granted.
 - The indicated permission is not granted.

OWNER (all) The login name of the owner of the facility entry.

GROUP (all) The group name of the group of the owner of the facility entry.
CREATOR (a,c) The login name of the creator of the facility entry.
CGROUP (a,c) The group name of the group of the creator of the facility entry.
CBYTES (a,o) The number of bytes in messages currently outstanding on the associated message queue.
QNUM (a,o) The number of messages currently outstanding on the associated message queue.
QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on the associated message queue.
LSPID (a,p) The process ID of the last process to send a message to the associated queue.
LRPID (a,p) The process ID of the last process to receive a message from the associated queue.
STIME (a,t) The time the last message was sent to the associated queue.
RTIME (a,t) The time the last message was received from the associated queue.
CTIME (a,t) The time when the associated entry was created or changed.
NATTPCH (a,o) The number of processes attached to the associated shared memory segment.
SEGSZ (a,b) The size of the associated shared memory segment.
CPID (a,p) The process ID of the creator of the shared memory entry.
LPID (a,p) The process ID of the last process to attach or detach the shared memory segment.
ATIME (a,t) The time the last attach was completed to the associated shared memory segment.
DTIME (a,t) The time the last detach was completed on the associated shared memory segment.
NSEMS (a,b) The number of semaphores in the set associated with the semaphore entry.
OTIME (a,t) The time the last semaphore operation was completed on the set associated with the semaphore entry.

FILES
/system namelist
/memory
/user names
/group names

NOTES
If the user specifies either the -C or -N flag, the real and effective UID/GID is set to the real UID/GID of the user invoking `ipcs`.
Things can change while `ipcs` is running; the information it gives is guaranteed to be accurate only when it was retrieved.

SEE ALSO

`msgop(2), semop(2), shmop(2)` in the *Programmer's Reference Manual*
NAME
 ismpx – return windowing terminal state

SYNOPSIS
 ismpx [-s]

DESCRIPTION
 The ismpx command reports whether its standard input is connected to a multi-
 plexed xt channel; that is, whether it’s running under layers or not. It is useful
 for shell scripts that download programs to a windowing terminal.

 ismpx prints yes and returns 0 if invoked under layers, and prints no and
 returns 1 otherwise.

 -s Do not print anything; just return the proper exit status.

SEE ALSO
 layers(1), jwin(1), xt(7)

EXAMPLE
 if ismpx -s
 then
 jwin
 fi
join (1) (Directory and File Management Utilities) join (1)

NAME
join — relational database operator

SYNOPSIS
join [options] file1 file2

DESCRIPTION
join forms, on the standard output, a join of the two relations specified by the
lines of file1 and file2. If file1 is -, the standard input is used.

file1 and file2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line [see sort(1)].

There is one line in the output for each pair of lines in file1 and file2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from file1, then the rest of the line from file2.

The default input field separators are blank, tab, or new-line. In this case, multiple
separators count as one field separator, and leading separators are ignored.
The default output field separator is a blank.

Some of the options below use the argument n. This argument should be a 1 or
a 2 referring to either file1 or file2, respectively. The following options are recog­
nized:

-an In addition to the normal output, produce a line for each unpairable line
in file n, where n is 1 or 2.

-e s Replace empty output fields with string s.

-j n m Join on the mth field of file n. If n is missing, use the mth field in each
file. Fields are numbered starting with 1.

-o list Each output line includes the fields specified in list, each element of which
has the form n.m, where n is a file number and m is a field number. The
common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in a
line is significant. The character c is used as the field separator for both
input and output.

EXAMPLE
The following command line will join the password file and the group file,
matching on the numeric group ID, and outputting the login name, the group
name and the login directory. It is assumed that the files have been sorted in
ASCII collating sequence on the group ID fields.

join -j1 4 -j2 3 -o 1.1 2.1 1.6 -t: /etc/passwd /etc/group

SEE ALSO
awk(1), comm(1), sort(1), uniq(1).

NOTES
With default field separation, the collating sequence is that of sort -b; with -t,
the sequence is that of a plain sort.
The conventions of the `join`, `sort`, `comm`, `uniq`, and `awk` commands are wildly incongruous.

Filenames that are numeric may cause conflict when the `-o` option is used just before listing filenames.
NAME
jterm – reset layer of windowing terminal

SYNOPSIS
jterm

DESCRIPTION
The jterm command is used to reset a layer of a windowing terminal after
downloading a terminal program that changes the terminal attributes of the layer.
It is functional only under layers. In practice, it is most commonly used to re­
start the default terminal emulator after using an alternate one provided with a
terminal-specific application package. For example, on the AT&T 630 MTG termi­
nal, after executing the xproof command in a layer, issuing the jterm command
will restart the default terminal emulator in that layer.

EXIT STATUS
Returns 0 upon successful completion, 1 otherwise.

NOTES
The layer that is reset is the one attached to standard error — that is, the window
you are in when you type the jterm command.

SEE ALSO
layers(l)
NAME

jwin - print size of layer

SYNOPSIS

jwin

DESCRIPTION

jwin is functional only under layers(l) and is used to determine the size of the window associated with the current process. It prints the width and the height of the window in bytes (number of characters across and number of lines, respectively). For bit-mapped terminals only, it also prints the width and height of the window in bits.

EXIT STATUS

Returns 0 on successful completion, 1 otherwise.

DIAGNOSTICS

If layers(l) has not been invoked, an error message is printed:

jwin: not mpx

NOTE

The window whose size is printed is the one attached to standard input; that is, the window you are in when you type the jwin command.

SEE ALSO

layers(l)

EXAMPLE

jwin

bytes: 86 25
bits: 780 406
kcrash(1M) (Multiprocessing) kcrash(1M)

NAME
kcrash – examine system images

SYNOPSIS
kcrash [-w] [-k] dump file [namelist]

DESCRIPTION
The kcrash program is similar to the crash(1M) program in that it examines system crash dumps. Command line arguments to kcrash are dumpfile and namelist. dumpfile is the file containing the system memory image. The default dumpfile is /dev/mem.

The text file namelist contains the symbol table information needed for symbolic access to the system memory image to be examined. The default namelist is /stand/unix.

Unlike crash, the kcrash command interface is based on the kernel debugger [see kdb(1M)]. All commands accepted by the kernel debugger can be used identically in kcrash, with the following exceptions:

I/O commands (such as in, out, and so forth) do not work.

Execution commands (such as go, tr, and so forth) do not work.

Multiprocessor commands (such as gos, ss, cpu, and so forth) do not work.

Instruction and memory breakpoint commands do not work.

Commands that modify memory (actually modify the crash dump file) work only if the -w flag is present in the command line.

If the -k flag is present, dump file can be /dev/mem, allowing kcrash to be used on the running system. In addition, the following commands work only in kcrash (not in the kernel debugger):

< file
<< file

Read and execute commands from the given file. Note that these commands are like dbcmd(1M) used with the kernel debugger.

! shell-command
!! shell-command

Execute the given shell command.

q
quit

Quit kcrash.

FILES
/crash/crash.* crash dumps
/crash/macros/* macros that are useful for kernel debugging
/stand/unix default namelist

SEE ALSO
crash(1M), kdb(1M), dbcmd(1M), and dbsym(1M)
NAME
kdb - kernel debugger

SYNOPSIS
kdb

DESCRIPTION
KDB is a kernel debugger that works like a Reverse Polish Notation (RPN) calculator. KDB can set breakpoints, display kernel stack traces and various kernel structures, and modify the contents of memory, I/O, and registers. The debugger supports basic arithmetic operations, conditional execution, variables, and macros. KDB does conversions from a kernel symbol name to its virtual address, from a virtual address to the value at that address, and from a virtual address to the name of the nearest kernel symbol. You have a choice of different numeric bases, address spaces, and operand sizes.

This is an advanced tool, only for those who are thoroughly familiar with the UNIX kernel. Because UNIX systems differ, you could possibly damage your system by following some of the examples in this discussion.

You can invoke the debugger by using the kdb command or the sysi86(S186TODEMON) system call on all systems, <CTRL-Alt-d> (from the console only) on an AT bus system, or the interrupt character (from the console only) on a Multibus system. In addition, KDB is entered automatically under various conditions, such as panics and breakpoint traps. Any time the kdb>> prompt appears, you are in the debugger. I/O is done via the console (kd), or a serial terminal.

To exit the debugger, type <CTRL-d> or q.

When you exit and re-enter the debugger, its state is preserved, including the contents of the value stack.

USING KDB AS A CALCULATOR
KDB operates as an RPN calculator, similar to dc(1). This calculator has a 32-level value stack for storing results and intermediate values. Commands and values you enter operate on the value stack, which is an internal data structure in KDB. It has no connection with the kernel stack or any other stack in the system.

To use KDB, at the kdb>> prompt type one or more items (values or commands) on a line. Separate items with spaces or tabs. Press <Enter> to end a line and send its contents to KDB for processing. Each item is processed separately, from left to right.

The values can be:

Numbers
Use positive or negative integers. Numbers must begin with a digit, or a minus sign for negative numbers. Begin octal numbers with "0o" and hex numbers with "0x". Otherwise, numbers are assumed to be in the default base — the default is hex, unless you change it. (See "Resetting the Numeric Base" for instructions.)
Character constants You can have KDB convert characters to a number by entering one to four characters inside single quotes. C-style escapes are supported in character constants.

Strings Use C-style strings, enclosed in double quotes.

Kernel symbol names When you type a kernel symbol name, its address is pushed onto the value stack.

When you enter a number or a string, it is pushed onto the value stack, becoming the new TOS (Top Of Stack). Values remain on the value stack until they are popped off as a result of a command.

In the descriptions below, [TOS] means the value on the top of the stack and [TOS-1] means the value just below it (pushed previously).

Stack Operations

KDB provides these commands for examining or changing the value stack:

- **stk** print all values on the stack
- **p** print [TOS]
- **dup** push [TOS]
- **pop** pop 1 value
- **clrstk** pop all values

stk For example, starting with an empty value stack, this input:

```
5 "xyzzy" 7 stk
```

displays the entire stack:

```
5
"xyzzy"
7
```

p At this point, the input:

```
p
```

displays the top value on the stack, which is:

```
7
```

The next example uses the **p** command to display the address of a kernel symbol. The input:

```
lbolt p
```

produces an address something like this:

```
D01821BC
```

dup This command is useful when you want to use a value twice in a calculation. For example:

```
5 3 * dup 2 + * p
```

would produce the output:

```
FF
```

which is the value of (((5 * 3) + 2) * (5 * 3))).
pop This command removes the top value from the value stack. For example, if this is the stack:

```
5
"xyzzy"
7
```

the input:

```
pop stk
```

removes the top value from the stack and displays the resulting stack:

```
5
"xyzzy"
```

clrstk This command clears the value stack. Remember that the contents of the stack are saved when you exit and re-enter KDB.

Arithmetic Operations

You can perform arithmetic operations on the top values on the stack:

- `+` compute [TOS-1] + [TOS]; pop 2; push result
- `-` compute [TOS-1] - [TOS]; pop 2; push result
- `*` compute [TOS-1] * [TOS]; pop 2; push result
- `/` compute [TOS-1] / [TOS]; pop 2; push result
- `%` compute [TOS-1] % [TOS]; pop 2; push result
- `>>` compute [TOS-1] >> [TOS]; pop 2; push result
- `<<` compute [TOS-1] << [TOS]; pop 2; push result
- `<` compute [TOS-1] < [TOS]; pop 2; push result
- `>` compute [TOS-1] > [TOS]; pop 2; push result
- `==` compute [TOS-1] == [TOS]; pop 2; push result
- `!=` compute [TOS-1] != [TOS]; pop 2; push result
- `&` compute [TOS-1] & [TOS]; pop 2; push result
- `|` compute [TOS-1] | [TOS]; pop 2; push result
- `^` compute [TOS-1] ^ [TOS]; pop 2; push result
- `&&` compute [TOS-1] && [TOS]; pop 2; push result
- `||` compute [TOS-1] || [TOS]; pop 2; push result
- `!` replace [TOS] with 1[TOS]
- `++` replace [TOS] with [TOS] + 1
- `--` replace [TOS] with [TOS] - 1

For example, this input (subtracting 5 from 7):

```
7 5 - p
```

would produce this output:

```
2
```

The power of KDB’s calculator feature lies in its ability to evaluate expressions like this:

```
callout 16 +
```

This pushes the address of the callout table on the stack and adds 16 to it. If the size of a callout table entry is 16 bytes, the result of the calculation is the address
of the second entry in the callout table. (Use the size command of crash(1M) to find the sizes of common system tables.)

WARNING: Make sure the divide operator (slash character) is both preceded and followed by spaces. If any other character appears next to the slash, it indicates a suffix instead of division.

READING AND WRITING TO MEMORY
These commands still operate like an RPN calculator, but they perform specific debugging operations instead of calculations. To examine and set the contents of memory (and I/O) use the commands:

- **r** replace [TOS] with the value at virtual address [TOS]
- **w** write [TOS-1] into virtual address [TOS]; pop 2
- **dump** show [TOS] bytes starting at virtual address [TOS-1]; pop 2

r For example, you can find the value of the (long) kernel variable, 1b01t, by typing:

```kdb
1b01t r p
```
This puts the virtual address of 1b01t on the stack, replaces it with the value found at that address, and prints the result.

w To change the value of 1b01t to 2000, type:

```kdb
2000 1b01t w
```
This writes 2000 at 1b01t's virtual address.

You could increment 1b01t by typing:

```kdb
1b01t r ++ 1b01t w
```
This puts the virtual address of 1b01t on the stack, replaces it with the value found at that address, adds 1 to the value, and writes the result at 1b01t's virtual address.

dump This command displays a range of memory, both in hex and ASCII. For example, if you typed:

```kdb
putbuf 10 dump
```
which shows 10 bytes, starting at the virtual address of putbuf, you would see something like:

```
6572206C 6D206C61 726F6D65 ......... D0108C60 1 real memori....
```
In each line, the block of four values on the left shows the values of 16 bytes, displayed as four 4-byte longwords in hex. The dots represent values outside of the requested range. (dump may also display question marks here; that means the address is invalid). The next column is the address of the first of the 16 bytes. The last column is the same 16 bytes displayed in ASCII. Dots here represent values outside the requested range or unprintable characters.

Suffixes
Suffixes can be appended to many KDB commands. They always begin with the slash character (/).

WARNING: Don’t leave spaces before or after the slash character. When the slash is preceded and followed by a space, it indicates division instead of a suffix.

Operand-size suffixes
The r, w and dump commands can also work with units of bytes and words, as well as the default longs. To do this, append one of these suffixes to the command:

/b byte
/w word (2 bytes)
/l long (4 bytes)—this is the default.

For example, to display the value of a short (2-byte) variable at address 0xD0008120, type:

0xD0008120 r/w p

Entering the dump command with /b displays 16 1-byte values per line, with /w displays eight 2-byte values per line, and with /l (or nothing) displays four 4-byte values per line.

Address-space suffixes
The r, w and dump commands, by default, work with kernel virtual addresses. You can change to physical addresses, I/O addresses, or user process virtual addresses by appending one of these suffixes to the command:

/k kernel virtual — the default
/p physical
/io I/O port
/u# user process number # virtual (# is a process slot number in hex)

/p For example, to dump 40 (hex) bytes in longword format from physical address 2000, type:

2000 40 dump/p

The default address is kernel virtual, so the /p suffix is required for the physical address. Note that an operand-size suffix is not required, because long is the default.

/io For example, to read from port 300 (in bytes) and display the result, type:

300 r/io/b p

/u# For example, to dump 20 longwords from process 16's u area at an offset of 1000, type:

1000 u + 20 dump/u16
Suffix formats.

Address-space suffixes can be combined with operand-size suffixes; only the first slash is required. For example, to do the read from I/O port 300 shown above, any of these command lines is acceptable:

```
300 r/io/b
300 r/b/io
300 r/iob
300 r/bio
```

Suffixes can also be attached directly to an address as shorthand for "read and print." Thus, `2000 r/p p` can be shortened to `2000/p`.

Since the default address-space is kernel virtual, the common operation of "read and print from kernel virtual" can be even further shortened. Type `1bolt/` to read and print the value of the (long) kernel variable, `1bolt`.

DISPLAYING AND WRITING TO REGISTERS

You can examine the CPU’s general registers (and a couple of pseudo-registers) with these commands:

```
%eax push the contents of 32-bit register eax
%ebx push the contents of 32-bit register ebx
%ecx push the contents of 32-bit register ecx
%edx push the contents of 32-bit register edx
%esi push the contents of 32-bit register esi
%edi push the contents of 32-bit register edi
%ebp push the contents of 32-bit register ebp
%esp push the contents of 32-bit register esp
%eip push the contents of 32-bit register eip
%efl push the contents of 32-bit register efl
%cs push the contents of 16-bit register cs
%ds push the contents of 16-bit register ds
%es push the contents of 16-bit register es
%fs push the contents of 16-bit register fs
%gs push the contents of 16-bit register gs
%err push the error number
%trap push the trap number
%ax push the contents of 16-bit register ax
%bx push the contents of 16-bit register bx
%cx push the contents of 16-bit register cx
%dx push the contents of 16-bit register dx
%si push the contents of 16-bit register si
%di push the contents of 16-bit register di
%bp push the contents of 16-bit register bp
%sp push the contents of 16-bit register sp
%p push the contents of 16-bit register ip
%f1 push the contents of 16-bit register f1
%al push the contents of 8-bit register a1
%ah push the contents of 8-bit register ah
%bl push the contents of 8-bit register bl
```
%bh push the contents of 8-bit register bh
%cl push the contents of 8-bit register cl
%ch push the contents of 8-bit register ch
%dl push the contents of 8-bit register dl
%dh push the contents of 8-bit register dh

You can modify the values of general-purpose registers with these commands:

w%eax write [TOS] into 32-bit register eax; pop 1
w%ebx write [TOS] into 32-bit register ebx; pop 1
w%ecx write [TOS] into 32-bit register ecx; pop 1
w%edx write [TOS] into 32-bit register edx; pop 1
w%esi write [TOS] into 32-bit register esi; pop 1
w%edi write [TOS] into 32-bit register edi; pop 1
w%ebp write [TOS] into 32-bit register ebp; pop 1
w%esp write [TOS] into 32-bit register esp; pop 1
w%eip write [TOS] into 32-bit register eip; pop 1
w%efl write [TOS] into 32-bit register efl; pop 1
w%cs write [TOS] into 16-bit register cs; pop 1
w%ds write [TOS] into 16-bit register ds; pop 1
w%es write [TOS] into 16-bit register es; pop 1
w%fs write [TOS] into 16-bit register fs; pop 1
w%gs write [TOS] into 16-bit register gs; pop 1
w%err write [TOS] into the error number pseudo-register; pop 1
w%trap write [TOS] into the trap number pseudo-register; pop 1
w%ax write [TOS] into 16-bit register ax; pop 1
w%bx write [TOS] into 16-bit register bx; pop 1
w%cx write [TOS] into 16-bit register cx; pop 1
w%dx write [TOS] into 16-bit register dx; pop 1
w%si write [TOS] into 16-bit register si; pop 1
w%di write [TOS] into 16-bit register di; pop 1
w%bp write [TOS] into 16-bit register bp; pop 1
w%sp write [TOS] into 16-bit register sp; pop 1
w%ip write [TOS] into 16-bit register ip; pop 1
w%fl write [TOS] into 16-bit register fl; pop 1
w%al write [TOS] into 8-bit register al; pop 1
w%ah write [TOS] into 8-bit register ah; pop 1
w%bl write [TOS] into 8-bit register bl; pop 1
w%bh write [TOS] into 8-bit register bh; pop 1
w%cl write [TOS] into 8-bit register cl; pop 1
w%ch write [TOS] into 8-bit register ch; pop 1
w%dl write [TOS] into 8-bit register dl; pop 1
w%dh write [TOS] into 8-bit register dh; pop 1

Register Sets
The commands listed above can also be used to access specific register sets. Multiple sets of general registers may have been saved on the kernel stack (one for each interrupt, trap, and so on). For more information see "Printing Kernel Stack Traces."
Register sets are numbered from 0 to 19, with 0 being the current (most recent) set. By default, the general-register commands use register set 0, but you can override this with a register-set suffix:

```
/rs# register set number #
```

Note that by combining suffixes, you can access any register of any process. For example, you can get the eax register from process 5’s register set 1 by typing:

```
%eax/u5rs1
```

to push the contents of that register (%eax) in register set 1 (/rs1) of user process 5 (/u5).

CPU Control Registers

In addition to the general registers, you can examine the values of CPU control registers with these commands:

- `cr0` push the contents of register cr0
- `cr2` push the contents of register cr2
- `cr3` push the contents of register cr3

CREATING DEBUGGER VARIABLES

KDB allows you to create named variables that are stored in the debugger and hold debugger values (numbers or strings). Two KDB commands apply to variables:

- `= variable` store [TOS] in [variable]; pop 1
- `vars` show values of debugger variables

- `= variable` This command assigns a value to a debugger variable. For example:

```
5 = abc
```

creates the variable abc if it does not exist, and sets the variable equal to 5. Now whenever you use the variable name, its value is pushed onto the stack. For example:

```
abc abc + 2 - p
```

(5 + 5 - 2) will yield 8.

Note that variable names share the same namespace as debugger macros and kernel global symbols.

- `vars` To look at all the existing variables, use the `vars` command. Variables are shown in the following format:

```
name = value
```

The `vars` command also lists macros, in this format:

```
name :: value
```

SETTING BREAKPOINTS

Set and modify breakpoints with these commands:

- `B` set breakpoint #[TOS] at address [TOS-1]; pop 2
- `-or-` set breakpoint #[TOS] at address [TOS-2] with command string
The `b` command lets you set specific breakpoints, while the `b` command automatically picks the first un-set breakpoint.

This example sets breakpoint 3 at a specific address:

```
0x0D0125098 3 b
```

Normally, you'll just set a breakpoint at a certain address. For example:

```
read b
```

This sets an instruction breakpoint at the beginning of the kernel `read` routine, using the next available breakpoint number. When the specified address is executed (after exiting from the debugger), you enter the debugger again, with a message indicating which breakpoint was triggered.

Debugger command strings can be added to the breakpoint commands. Enter a quoted string of commands after the address:

```
read "stack" b
```

which is used as a series of debugger commands that are executed when the breakpoint is triggered. If there are several items in the string, separate them with spaces:

```
ie6unitdata_req "300 r/bio p" b
```

After these commands are executed, you are prompted for debugger commands, as usual, unless the `q (quit)` command is executed in the command string.

You can append breakpoint-type suffixes to the breakpoint commands (`B` and `b`). By default, breakpoints are "instruction" breakpoints, which trigger when the specified address is executed. The suffixes cause breakpoints to trigger on data accesses instead. The breakpoint-type suffixes are:
/a data access breakpoint
/m data modify breakpoint
/i instruction execution breakpoint—this is the default

With access and modify breakpoints, you can also use operand-size suffixes to control the size of the address range that will trigger the breakpoint. The default is /i (4 bytes); you can also use /w (word) and /b (byte). (See the earlier discussion of suffixes under "Reading and Writing to Memory" for more information.)

brkoff and brkon

These commands let you temporarily disable and re-enable a breakpoint, instead of clearing it with clrbrk and then re-entering it later. This is especially handy for breakpoints with command strings.

trace

This command sets a trace count for a breakpoint. This causes the debugger to just print a message and decrement the count when the breakpoint is triggered, instead of entering the debugger, until the count reaches zero. Commands attached to the breakpoint are not executed.

?brk

Use this command to determine the current breakpoint settings. Each set breakpoint is displayed, with (1) the breakpoint number, the address (both (2) in hex and (3) symbolic), (4) the current state, and (5) the type:

```
0: 0x003907C(read) ON /i
```

The possible states are:

- **ON** set and enabled
- **DISABLED** set, but currently disabled
- **OFF** un-set (these breakpoints are not displayed by ?brk)

The possible types (in this example /i) are the same as the breakpoint-type suffixes described earlier.

If a breakpoint has a non-zero trace count, that is displayed after the breakpoint state. If a breakpoint has a command string, it is displayed at the end of the line. For example, with a count of 5 and a stack command, the above breakpoint would display as:

```
0: 0x003907C(read) ON 0x5 /i "stack"
```

SINGLE-STEPPING THROUGH INSTRUCTIONS

You can use these commands for single-stepping:

- `s` single step 1 instruction
- `ss` single step [TOS] instructions; pop 1
- `S` single step 1 instruction (passing calls)
- `SS` single step [TOS] instructions (passing calls); pop 1

`s` and `ss` single-step all instructions. `S` and `SS` single-step all instructions except call instructions. They don’t step down into the called routine, but instead skip
ahead to the return from the call, treating the whole subroutine sequence as a single instruction.

EXAMINING KERNEL DATA STRUCTURES
KDB provides commands for looking at certain kernel structures:

- **ps**
 - show process information

- **sleeping**
 - show list of sleeping processes

- **pinode**
 - print s5 inode at address [TOS]; pop 1

- **pinode**
 - print ufs inode at address [TOS]; pop 1

- **pprnod**
 - print /proc inode at address [TOS]; pop 1

- **psnode**
 - print snode at address [TOS]; pop 1

- **pvfs**
 - print vfs struct at address [TOS]; pop 1

- **pvnode**
 - print vnode at address [TOS]; pop 1

The **sleeping** command shows sleeping processes with their process table slot numbers and the channels on which they are waiting. This information can be used with the **call** and **pstack** commands.

The **ps** command shows information about each active process in the system. This information includes process IDs, flags, states, and command names. The current process is marked with an asterisk (*) after its state code.

PRINTING KERNEL STACK TRACES
KDB provides the following commands to look at kernel stack traces:

- **stack**
 - kernel stack trace for the current process

- **pstack**
 - kernel stack trace for process [TOS]; pop 1

- **stackargs**
 - set max # arguments in stack trace to [TOS]; pop 1

- **stackdump**
 - show contents of kernel stack in hex

Note that the argument to **pstack** can be specified either as a process table slot number, the address of the process structure, or -1 for the current process. (-1 **pstack** is equivalent to the **stack** command.)

The output of **stack** and **pstack** have the same format. A typical stack trace (for the current process, entered via <CTRL-Alt-d>) looks like this:

DEBUGGER ENTERED FROM USER REQUEST
kdcksysrq(D101FD40 D00DE624 81)...........ebp:E0000D30 ret:D008F592
*kdintr+0x168(1 0)..........................ebp:E0000D74 ret:D0011A3A
INTERRUPT 0x1 from 158:D001218A (ebp:E0000DB4)enp:EOOOODE7
 eax: 8 ebx: 0 ecx:FFFFFFED edx: 8 efl: 246 ds:160 esi:D00EDDD0 edi:D106BC00 esp:E0000DC8 ebp:E0000DE0 regset:0 es:160
 idle(0 D00EDDD0 D106BC00)..............(ebp:E0000DC4) ret:D006F11F
 pswitch(D002464C 0 D00F9090)............(ebp:E0000DE0) ret:D00122ED
 swtch(0 D00F9090 D101A160)............(ebp:E0000DE4) ret:D002464C
 sleep(D0038BEC 14 D00BCA3C)............(ebp:E0000DFC ret:D00138D6F
 fsflush(0 E0000002 E0000002)............(ebp:E0000E38 ret:D001E24B
 main+0x5FB()............................(ebp:E0000E70
The stack trace shows a history of which routine called which other routine, up until the point the debugger was entered (or in the case of a non-current process, until the process was context-switched out).

The most-recently-entered routine is shown on the first line. In the example, the debugger was entered from \texttt{kdcxsyrq}, which, in turn, was called by \texttt{kdintr}; \texttt{idle} was called from \texttt{pswitch}, and so on. The stack trace ends at the point the kernel was entered from user mode. In the case of a system process (as shown here) where there is no user mode, the stack trace ends at the call from \texttt{main}.

Routine Trace Format

The trace for each routine has four parts: (1) its address, (2) the arguments passed to it, (3) the value of its \texttt{ebp} register, and (4) its return address. For example:

```
fsflush(0 E0000002 E0000002).............ebp:E0000E38 ret:D001E24B
```

Address.

The address that was called usually appears in symbolic form. A routine name may also include:

An offset (a plus sign (+) and a hex number): \texttt{*kdintr+0x186}

The offset may mean that the actual address called was somewhere past the start of the indicated routine. This will most likely happen if a sub-routine was declared "static." Since the debugger only has access to global symbols, it finds the nearest preceding global symbol.

The offset may also mean that the exact addresscalled cannot be determined. The address displayed in this case is the return address into this routine from the routine it called. This will most likely happen if this routine was called indirectly via a function pointer.

An asterisk (*): \texttt{*kdintr+0x186}

This means the routine was called indirectly. There is insufficient information in the stack format to be 100% sure of the correctness of indirect call traces.

A tilde (\texttt{-})

This is used where there is some uncertainty in the stack trace that did not arise from indirect calls.

Whenever you see an asterisk or a tilde in a stack trace, there is a small chance that some part of the stack trace from that point on is incorrect.

Arguments.

The arguments passed to the routine appear as a list of hex numbers, enclosed in parentheses. Since the actual number of arguments passed cannot be determined, KDB assumes that each routine has no more than a certain maximum number of arguments. The default is three, but you can change it with the \texttt{stackargs} command. If a routine actually has:

Fewer arguments than displayed:

Only the first ones are real. In rare cases when the debugger can deduce that a routine could not have been called with the maximum number of arguments (because there isn't enough room on the stack), it displays
only the maximum possible number of arguments. In the above stack trace, the call to kdintr is shown with only two arguments (1 0).

More arguments than displayed:
Increase the number with stackargs and then display the stack trace again, or dump out a portion of the stack directly in order to see all the arguments (continue to the next section for details).

ebp register.
The value of the ebp register inside the routine is shown as a hex number following ebp:. This value can be used as a "frame pointer" to access arguments and local variables for the routine. The following diagram illustrates the stack layout.

```
+-------------------------+
| [EBP] + 0xC | argument 2 |
+-------------------------+
| [EBP] + 8 | argument 1 |
+-------------------------+
| [EBP] + 4 | return address |
+-------------------------+
| [EBP] ---> | saved EBP from caller |
+-------------------------+
| [EBP] - 4 | local or saved register |
+-------------------------+
| [EBP] - 8 | local or saved register |
+-------------------------+
| . . . |
```

For example, if you want to see all the arguments to a routine that takes five arguments, find its ebp value from the stack trace — say 0xEO000E0C — and enter these commands:

```
0xEO000E0C 8 + 5 4 * dump
```

or, more succinctly:

```
0xEO000E14 14 dump
```

Any ebp value in parentheses is a computed value (see the ebp values for idle and switch in the example). In these cases, due to code optimization or partial execution, the ebp value has not been set up for one or more routines. KDB computes the value ebp ought to have had and displays it in parentheses.

Return address.
This is the address this routine returns to in its caller. It is shown as a hex number following ret:.

Trap Frames
In addition to lines for each routine, stack traces will often include "trap frames" created when an event causes suspension of current processing, saving all register values on the stack. Typical events are interrupts, hardware exceptions, and
system calls. Trap frames are three lines each, starting with an upper-case, non-indented keyword (like INTERRUPT in the example). The next two lines contain the values of the registers at the time the event occurred. The first line of a trap frame is in one of these formats:

- **INTERRUPT** \(0x1\) from 158:D001218A (ebp: E0000D84)
- **TRAP** \(0x1\) (err \(0x0\)) from 158:D001218A (ebp: E0000D94, ss:esp: 1F:80468E8)
- **SYSTEM CALL** from 158:D001218A (ebp: E0000D94, ss:esp: 1F:80468E8)
- **SIGNAL** RETURN from 158:D001218A (ebp: E0000D94, ss:esp: 1F:80468E8)

These represent interrupts, hardware exception traps, system calls, and returns from old-style signal handlers, respectively. The number after INTERRUPT is the interrupt vector number (IRQ). The number after TRAP is the hardware exception number; the most common are \(0x1\) for breakpoint traps and \(0xE\) for page faults.

The colon-separated numbers after the word **from** are the segment and offset (cs and eip) at the time the event occurred. The values in parentheses show the ebp value for the beginning of the trap frame, and the user stack pointer segment and offset at the time the event occurred. The user stack information is only displayed if the trap frame is for an entry into the kernel from user mode.

RESETTING THE NUMERIC BASE

If you don't start numbers with "0o" (for octal) or "0x" (for hex), KDB assumes they are in the default numeric base. Initially, the defaults for both input and output are set to 16 (hex), but you can use these commands to change them:

```
ibase set default input base to [TOS]; pop 1
ibinary set default input base to 2
ioctal set default input base to 8
idecimal set default input base to 10
ihex set default input base to 16
obase set output base to [TOS]; pop 1
ooctal set output base to 8
odecimal set output base to 10
ohex set output base to 16
```

CONVERTING ADDRESS SPACES

Use these commands to convert a virtual address to a physical address:

```
kvtop convert kernel virtual address [TOS] to physical
uvtop convert user proc #[TOS] address [TOS-1] to physical; pop 1
```

DOING CONDITIONAL EXECUTION

KDB provides two commands for conditional execution:

```
then if [TOS] = 0, skip to endif; pop 1
endif end scope of then command
```

In other words, a sequence like:

```
<condition> then <commands> endif
```

executes **<commands>** if and only if the **<condition>** is true (non-zero).
These are mostly useful for macros and breakpoint command strings. For exam­ple, imagine you wish to set a breakpoint for when the function `inb` is called with `2E` as its first argument. Use the following command:

```
inb "%esp 4 + r 2E != then q" b
```

This says to set a breakpoint at `inb`, but enter the debugger only if the contents of `(%esp+4)` are equal to `2E`. This works because `esp` points to the return address on the stack, and the longword after that is the first argument. For the second argument, you would add 8 instead of 4 (see the "Printing Kernel Stack Traces" section for details of the stack layout).

If you do a `?brk` command, the display for that breakpoint includes the string of debugger commands:

```
0: 0x003907C(inb) ON /i "%esp 4 + r 2E != then q"
```

CALLING A KERNEL FUNCTION

Use this command to call an arbitrary kernel function:

```
call call the function at address [TOS-1] with [TOS] arguments,
given by [TOS-([TOS]+1)], ... [TOS-2]; pop [TOS]+2
```

To call `psignal()` with two arguments, the current process and `9`, type:

```
curproc r 9 psignal 2 call
```

`curproc r` gives the value of the current process, the first argument, and `9` is the second argument. `psignal` is converted into the address at which that function can be called, and `2` specifies the number of arguments to pass to `psignal()`.

DOING A SYSTEM DUMP

This command causes a system dump and forces a reboot:

```
sysdump cause a system dump
```

All of memory and the current state is dumped to the dump partition on the disk, so you can use `crash(1M)` to do a postmortem.

MISCELLANEOUS COMMANDS

Some miscellaneous KDB commands are:

```
findsym print kernel symbol with address closest to [TOS]; pop 1
dis disassemble [TOS] instructions starting at address [TOS-1];
pop 2
nonverbose turn verbose mode off
verbose turn verbose mode on
newdebug switch to another debugger on next debugger entry
help print a help message
? print a help message (same as `help`)
cmds print a list of all debugger commands
```

WRITING MACROS

KDB provides the ability to assign a string of commands to a single new command name, called a macro. When a debugging task involves repeating the same set of commands many times (possibly doing other things in between), it is easier to define a macro and use it in place of the whole set of commands.
These commands are used for macros:

```
:: macro define [macro] as command string [TOS]; pop 1
P print [TOS] in raw form; pop 1
PP print [TOS] values in raw form, 
from [TOS-[TOS]], ... [TOS-1]; pop [TOS]+1
vars show values of debugger macros and variables
:: macro Use this command to define macros. For example:
"curproc r 16 - p" :: newaddr
```

Note that macro names share the same namespace as debugger variables and kernel global symbols.

P and PP These commands are provided to aid in writing macros. P and PP print values in raw form, without the embellishments provided by the p command, such as quotes around strings and automatic newlines after each value. This allows complete control over formatting. For example, the input:

```
"The value of curproc is " curproc r ".\n" 3 PP
```

might produce the output:

```
The value of curproc is 0xD1011E80.
```

To put something like this into a macro means putting strings inside strings, so you'll have to escape the inner quotes:

```
"\"The value of curproc is \" curproc r \".\n\" 3 PP" :: pcurproc
```

vars Use this command to show the macro definitions. Macros are shown in this format:

```
name :: value
```

Note that the vars command also shows the values of variables, in this format:

```
name = value
```

EXECUTING DEBUGGER COMMANDS AT BOOT TIME

KDB allows you to specify an arbitrary command sequence to be executed at boot time, when the system is coming up (specifically, from main() at the time of the io_start routines). You can do this by writing the commands into the file $ROOT/etc/conf/cf.d/kdb.rc, then rebuilding the kernel with idbuild.

Instead of rebuilding the kernel with idbuild, you can modify the KDB information in an already-built kernel by typing the command:

```
unixsyms -i /etc/conf/cf.d/kdb.rc /unix
```

At boot time, after the (possibly blank) string is executed, the system enters KDB at the kdb>> prompt, unless a q command was executed as part of the string — just like conditional breakpoints. (A non-existent or zero-length kdb.rc file acts as a single q command, so KDB is not entered.)
USING A SERIAL TERMINAL

KDB can be used from a serial terminal as well as the console. This is particularly useful if you are trying to debug a scenario that involves graphics or multiple virtual terminals on the console.

Before you attempt to use the debugger from a serial terminal, make sure there is a `getty` or `ttymon` running on it. It may be either logged in or waiting at the login prompt. This ensures that the baud rate and other parameters are properly set.

You can switch from the console to a terminal, and vice-versa, with the `newterm` command. This immediately switches you to the new terminal. The debugger continues to use this terminal until you give it the `newterm` command again, even if you exit and re-enter KDB.

The `newterm` command does not take an argument. On a 386, the serial terminal is assumed to be `tty00`, the terminal on the com1 port. You can change the device used by editing the `/etc/conf/pack.d/kdb-util/space.c` file, rebuilding the kernel and rebooting. If the terminal is attached to the com2 port, set the device to `tty01` by changing all occurrences of `asyputchar` and `asygetchar` to `asyputchar2` and `asygetchar2`, respectively, and changing the minor number of the device from 0 to 1. The first lines of 386-specific code should look like this:

```c
#ifdef AT386
int asyputchar2(), asygetchar2();
static struct conssw asysw = {
    asyputchar2,  1, asygetchar2
};
#endif
```

To use terminals on both com1 and com2 ports, you can set up `newterm` to cycle from the console to `tty00` to `tty01` and back to the console. Edit all the 386-specific code in the `space.c` file to look like this:

```c
#ifdef AT386
int asyputchar(), asygetchar();
int asyputchar2(), asygetchar2();
static struct conssw asysw = {
    asyputchar, 0, asygetchar
};
static struct conssw asysw2 = {
    asyputchar2, 1, asygetchar2
};
#endif
```

```c
#ifdef AT386
&asysw,
&asysw2,
#endif
```
Once you exit from KDB, you can invoke it again from either the console or a serial terminal. Use the `kdb` command to invoke the debugger from a terminal; `<CTRL-Alt-d>` only works from the console. Regardless of where you invoke KDB, its I/O appears where you directed it during the last KDB session.

ENTERING THE DEBUGGER FROM A DRIVER

If you are debugging a device driver or another part of the kernel, you can directly invoke the kernel debugger by including this code in your driver:

```c
#include <sys/xdebug.h>

(*cdebugger) (DR_OTHER, NO_FRAME);
```

DR_OTHER tells the debugger that the reason for entering is "other." See `sys/xdebug.h` for a list of other reason codes.

Note that this mechanism cannot be used for debugging early kernel startup code or driver `init` routines, since the debugger cannot be used until its `init` routine (`kdb_init`) has been called.

DISABLING THE <CTRL-Alt-d> SEQUENCE

As a security feature, KDB can only be called from the console via `<CTRL-Alt-d>` if the `kdb_security` flag was set to 0 when the kernel was built. To disable the `<CTRL-Alt-d>` key sequence, reset the `kdb_security` flag by using `/etc/conf/bin/idtune` to change the KDBSECURITY tunable to 1. Note that the flag setting does not affect the `kdb` command.

COMMAND SUMMARY

```
+    compute [TOS-1] + [TOS]; pop 2; push result
-    compute [TOS-1] - [TOS]; pop 2; push result
*    compute [TOS-1] * [TOS]; pop 2; push result
/    compute [TOS-1] / [TOS]; pop 2; push result
%    compute [TOS-1] % [TOS]; pop 2; push result
>>   compute [TOS-1] >> [TOS]; pop 2; push result
<<   compute [TOS-1] << [TOS]; pop 2; push result
<    compute [TOS-1] < [TOS]; pop 2; push result
>    compute [TOS-1] > [TOS]; pop 2; push result
==   compute [TOS-1] == [TOS]; pop 2; push result
!=   compute [TOS-1] != [TOS]; pop 2; push result
&    compute [TOS-1] & [TOS]; pop 2; push result
|    compute [TOS-1] | [TOS]; pop 2; push result
^    compute [TOS-1] ^ [TOS]; pop 2; push result
&&   compute [TOS-1] && [TOS]; pop 2; push result
||   compute [TOS-1] || [TOS]; pop 2; push result
!    replace [TOS] with ! [TOS]
++   replace [TOS] with [TOS] + 1
--   replace [TOS] with [TOS] - 1
%eax push the contents of 32-bit register eax
%ebx push the contents of 32-bit register ebx
%ecx push the contents of 32-bit register ecx
```
%edx push the contents of 32-bit register edx
%esi push the contents of 32-bit register esi
%edi push the contents of 32-bit register edi
%ebp push the contents of 32-bit register ebp
%esp push the contents of 32-bit register esp
%eip push the contents of 32-bit register eip
%efl push the contents of 32-bit register efl
%cs push the contents of 16-bit register cs
%ds push the contents of 16-bit register ds
%es push the contents of 16-bit register es
%fs push the contents of 16-bit register fs
%gs push the contents of 16-bit register gs
%err push the error number
%trap push the trap number
%ax push the contents of 16-bit register ax
%bx push the contents of 16-bit register bx
%cx push the contents of 16-bit register cx
%dx push the contents of 16-bit register dx
%si push the contents of 16-bit register si
%di push the contents of 16-bit register di
%bp push the contents of 16-bit register bp
%sp push the contents of 16-bit register sp
%ip push the contents of 16-bit register ip
%fl push the contents of 16-bit register fl
%al push the contents of 8-bit register al
%ah push the contents of 8-bit register ah
%bl push the contents of 8-bit register bl
%bh push the contents of 8-bit register bh
%cl push the contents of 8-bit register cl
%ch push the contents of 8-bit register ch
%dl push the contents of 8-bit register dl
%dh push the contents of 8-bit register dh
= variable store [TOS] in [variable]; pop 1
:: macro define [macro] as command string [TOS]; pop 1
? print a help message (same as help)
?brk show current breakpoint settings
B set breakpoint #[TOS] at address [TOS]; pop 2 -or- set brkpoint #[TOS] at address [TOS-2] w/command string [TOS-1]; pop 3
b set 1st free breakpoint address [TOS]; pop 1 -or- set 1st free brkpoint at address [TOS-1] w/command string [TOS]; pop 2
brkoff disable breakpoint #[TOS]; pop 1
brkon re-enable breakpoint #[TOS]; pop 1
brksoff disable all breakpoints
brkson re-enable all (disabled) breakpoints
call call the function at address [TOS-1] with [TOS] arguments, given by [TOS-((TOS+1)), ... [TOS-2]; pop [TOS]+2
clear breakpoint #[TOS]; pop 1
clrbrks clear all breakpoints
clrstk pop all values
cmds print a list of all debugger commands
cr0 push the contents of register cr0
cr2 push the contents of register cr2
cr3 push the contents of register cr3
curbrk push the current breakpoint number, or -1 if not entered from a breakpoint
dis disassemble [TOS] instructions starting at address [TOS-1]; pop 2
dump show [TOS] bytes starting at virtual address [TOS-1]; pop 2
dup push [TOS]
dendif end scope of then command
findsym print kernel symbol with address closest to [TOS]; pop 1
help print a help message
ibase set default input base to [TOS]; pop 1
ibinary set default input base to 2
ioctal set default input base to 8
idecimal set default input base to 10
ihex set default input base to 16
kvtop convert kernel virtual addr [TOS] to physical
newterm alternate debugger I/O between console and tty00
newdebug switch to another debugger on next debugger entry
nonverbose turn verbose mode off
obase set output base to [TOS]; pop 1
odecimal set output base to 10
ohex set output base to 16
octal set output base to 8
P print [TOS] in raw form; pop 1
p print [TOS]
PP print [TOS] values in raw form, from [TOS-[TOS]], ... [TOS-1]; pop [TOS]+1
pinode print s5 inode at address [TOS]; pop 1
pop pop 1 value
pprnode print /proc inode at address [TOS]; pop 1
psnode print snode at address [TOS]; pop 1
ps show process information
pstack kernel stack trace for process [TOS]; pop 1
pvfs print vfs struct at address [TOS]; pop 1
pvmode print vnode at address [TOS]; pop 1
pumode print ufs inode at address [TOS]; pop 1
q quit—exit from the debugger
r replace [TOS] with the value at virtual address [TOS]
S single step 1 instruction (passing calls)
s single step 1 instruction
sleeping show list of sleeping processes
SS single step [TOS] instructions (passing calls); pop 1
ss single step [TOS] instructions; pop 1
stack kernel stack trace for the current process
stackargs set max # arguments in stack trace to [TOS]; pop 1
stackdump show contents of kernel stack in hex
stk print all values on the stack
sysdump cause a system dump
then if [TOS] = 0, skip to endif; pop 1
trace set breakpoint #[TOS] trace count to [TOS-1]; pop 2
uvtop convert user process #[TOS] address [TOS-1] to physical; pop 1
vars show values of debugger variables
verbose turn verbose mode on
w write [TOS-1] into virtual address [TOS]; pop 2
w%eax write [TOS] into 32-bit register eax; pop 1
w%ebx write [TOS] into 32-bit register ebx; pop 1
w%ecx write [TOS] into 32-bit register ecx; pop 1
w%edx write [TOS] into 32-bit register edx; pop 1
w%esi write [TOS] into 32-bit register esi; pop 1
w%edi write [TOS] into 32-bit register edi; pop 1
w%ebp write [TOS] into 32-bit register ebp; pop 1
w%esp write [TOS] into 32-bit register esp; pop 1
w%eip write [TOS] into 32-bit register eip; pop 1
w%efl write [TOS] into 32-bit register efl; pop 1
w%cs write [TOS] into 16-bit register cs; pop 1
w%ds write [TOS] into 16-bit register ds; pop 1
w%es write [TOS] into 16-bit register es; pop 1
w%fs write [TOS] into 16-bit register fs; pop 1
w%gs write [TOS] into 16-bit register gs; pop 1
w%err write [TOS] into the error number pseudo-register; pop 1
w%trap write [TOS] into the trap number pseudo-register; pop 1
w%ax write [TOS] into 16-bit register ax; pop 1
w%bx write [TOS] into 16-bit register bx; pop 1
w%cx write [TOS] into 16-bit register cx; pop 1
w%dx write [TOS] into 16-bit register dx; pop 1
w%si write [TOS] into 16-bit register si; pop 1
w%di write [TOS] into 16-bit register di; pop 1
w%bp write [TOS] into 16-bit register bp; pop 1
w%sp write [TOS] into 16-bit register sp; pop 1
w%i write [TOS] into 16-bit register ip; pop 1
w%fl write [TOS] into 16-bit register fl; pop 1
w%al write [TOS] into 8-bit register al; pop 1
w%ah write [TOS] into 8-bit register ah; pop 1
w%bl write [TOS] into 8-bit register bl; pop 1
w%bh write [TOS] into 8-bit register bh; pop 1
w%cl write [TOS] into 8-bit register cl; pop 1
w%ch write [TOS] into 8-bit register ch; pop 1
w%d1 write [TOS] into 8-bit register dl; pop 1
w%dh write [TOS] into 8-bit register dh; pop 1

Command Suffixes

Operand size
/b byte
/w word (2 bytes)
/l long (4 bytes)—this is the default

Address space
/k kernel virtual—this is the default
/p physical
/0 I/O port
/u# user process number # virtual

Register set
/rs# register set number #

Breakpoint type
/a data access breakpoint
/m data modify breakpoint
/i instruction execution breakpoint—this is the default

Old Commands

These commands from previous versions are supported as aliases to new commands:

<table>
<thead>
<tr>
<th>Old Command</th>
<th>New Command</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>r/b</td>
<td>r/b</td>
</tr>
<tr>
<td>r2</td>
<td>r/w</td>
<td>r/w</td>
</tr>
<tr>
<td>r4</td>
<td>r/l</td>
<td>r/l</td>
</tr>
<tr>
<td>w1</td>
<td>w/b</td>
<td>w/b</td>
</tr>
<tr>
<td>w2</td>
<td>w/w</td>
<td>w/w</td>
</tr>
<tr>
<td>w4</td>
<td>w/l</td>
<td>w/l</td>
</tr>
<tr>
<td>rp1</td>
<td>r/b/p</td>
<td>r/b/p</td>
</tr>
<tr>
<td>rp2</td>
<td>r/w/p</td>
<td>r/w/p</td>
</tr>
<tr>
<td>rp4</td>
<td>r/l/p</td>
<td>r/l/p</td>
</tr>
<tr>
<td>wp1</td>
<td>w/b/p</td>
<td>w/b/p</td>
</tr>
<tr>
<td>wp2</td>
<td>w/w/p</td>
<td>w/w/p</td>
</tr>
<tr>
<td>wp4</td>
<td>w/l/p</td>
<td>w/l/p</td>
</tr>
<tr>
<td>rio1</td>
<td>r/b/io</td>
<td>r/b/io</td>
</tr>
<tr>
<td>rio2</td>
<td>r/w/io</td>
<td>r/w/io</td>
</tr>
<tr>
<td>rio4</td>
<td>r/l/io</td>
<td>r/l/io</td>
</tr>
<tr>
<td>wio1</td>
<td>w/b/io</td>
<td>w/b/io</td>
</tr>
<tr>
<td>wio2</td>
<td>w/w/io</td>
<td>w/w/io</td>
</tr>
<tr>
<td>wio4</td>
<td>w/l/io</td>
<td>w/l/io</td>
</tr>
<tr>
<td>.trap</td>
<td>%trap</td>
<td>%trap</td>
</tr>
<tr>
<td>trc0</td>
<td>0 trace</td>
<td>0 trace</td>
</tr>
<tr>
<td>trc1</td>
<td>1 trace</td>
<td>1 trace</td>
</tr>
<tr>
<td>trc2</td>
<td>2 trace</td>
<td>2 trace</td>
</tr>
</tbody>
</table>
These old commands are supported:

- `.i` push breakpoint type: instruction
- `.a` push breakpoint type: access byte
- `.m` push breakpoint type: modify byte
- `.aw` push breakpoint type: access word
- `.mw` push breakpoint type: modify word
- `.al` push breakpoint type: access long
- `.ml` push breakpoint type: modify long
- `.clr` push breakpoint type: clear breakpoint

- `brk0` set breakpoint 0 to type [TOS] at address [TOS-1]; pop 2
- `brk1` set breakpoint 1 to type [TOS] at address [TOS-1]; pop 2
- `brk2` set breakpoint 2 to type [TOS] at address [TOS-1]; pop 2
- `brk3` set breakpoint 3 to type [TOS] at address [TOS-1]; pop 2

SEE ALSO
- `crash(1M)`
- `dc(1)` in the User’s Reference Manual
- The discussion of the UNIX kernel in the System Administrator’s Guide
NAME

kdb – multiprocessor kernel debugger

SYNOPSIS

kdb

DESCRIPTION

The multiprocessor kernel debugger is a simple debugger that resides in the kernel and allows the programmer to examine and modify memory, disassemble instructions, download and execute programs, set breakpoints, and single-step instructions, on all the online processors.

You can configure the kernel debugger as part of the kernel load file (/unix). The UNIX System V Release 4 System Administrator's Guide contains information about rebuilding the kernel. After loading the debugger, type CTRL-ALT-D to enter it.

Multiprocessor Support

The multiprocessor kernel debugger allows each processor independently to be either in the debugger or running at any time. Processors in the debugger are in one of two modes: master mode or slave mode. At most, one processor is in master mode at any time, although master mode may be transferred among the processors with a debugger command described below. When any processor enters the debugger from a state in which all processors are running, that processor becomes the master and forces all the other processors to become slaves, thereby suspending execution over the entire multiprocessor system. All the commands described below execute on the current master processor unless otherwise noted. Slave processors do nothing until instructed by the master as a result of a debugger command.

The console device is physically attached to only one processor in the multiprocessor system; that processor is termed the console processor. All debugger I/O is routed through the console processor, no matter which processor is master. Because the debugger allows independent control over processors, it is possible to “detach” the console processor from the master processor. This results in the loss of interaction between the debugger and the user (for example, by resuming execution on the console processor by using the gos command when it is in slave mode). The debugger prints a warning about this condition when it detects it. There are two methods for the console processor to resume performing console I/O to the debugger. The console processor can voluntarily enter the debugger (by hitting a breakpoint or otherwise trapping into the debugger). Or, failing that, the user can type the debugger keystroke, control-alt-D, on the console. Either of these will force the console processor back into slave mode and back into performing console I/O on behalf of the current master processor.
Commands

All debugger commands are brief mnemonics (usually two characters) followed by zero or more arguments. In the following descriptions, optional arguments are enclosed in square brackets. Arguments are separated by spaces or commas, and each argument must be one of the following:

A number in the current input radix (default hexadecimal), or in a different radix as specified by a prefix: 0x for hexadecimal, 0t for decimal, 0o for octal, or 0b for binary.

A percent sign followed by a register name, meaning the contents of that register, such as %eax, %esp, %eflags. Only 32-bit registers are allowed; 8- or 16-bit registers are invalid.

A percent sign followed by b and an instruction breakpoint number, meaning the address referred to by that breakpoint, such as %bx.

A dollar sign ($), meaning the address of the last memory location that was displayed.

The name of a kernel symbol. This works only if the kernel debugger has been loaded with the symbol table by using the dbSYM(1M) command. A sharp (#) prefix to a name forces the interpretation as a symbol, and not a hexadecimal number. (Without this, the name “add,” for example, would always be interpreted as 0XADD.)

The name of a user-defined debugger variable.

Any of the above combined by using the usual arithmetic operators (+ - * / & I), the relational operators as used in the C programming language (== != <> <= >=), or the C language pointer-dereference operator (*). Two special operators perform instruction arithmetic: A @- B backs up B instructions from address A; A @+ B advances B instructions from address A; where A and B are expressions. All operators have equal precedence. Use parentheses to force a particular order of evaluation. Division by zero yields zero.

A string surrounded by single-quotes (`) or double-quotes ("). The C escape for the newline character (\n) may be used in the string.

A percent sign followed by s and an expression, meaning the null-terminated character string starting at that memory address.

A percent sign followed by p and an expression, meaning the physical memory address corresponding to that virtual address.

A percent sign followed by v and an expression, to test that virtual address’ validity. If the virtual address is valid, this operation evaluates to 1, otherwise to 0.

Any numeric expression preceded by ~, meaning the ones-complement of the number.
Input Commands
The multiprocessor debugger prompts with Kn>, where n is the processor identification number (cpuid) of the current master processor, in hexadecimal. This prompt indicates that the debugger is ready to accept any of the commands described below. Input characters can be erased with BACKSPACE or DEL. An entire input line can be erased with control-U or control-X. In addition, the debugger supports flow control (CTRL-S, CTRL-Q) and keyboard interrupt (CTRL-C).

Before each time the debugger issues a prompt, it checks the state of each processor and notifies the user of those processors that have entered slave mode since the last check. In this way, the user is kept informed of the activities on all the processors.

After a breakpoint or debug trap, the debugger prints a status line describing the trap, immediately followed by the K prompt, and is again ready to accept commands. In the case of a trace trap, the debugger automatically supplies the expected command, tr. If you want to enter a different command, erase the tr and retype a new command.

During any of the display, modify, examine, or write commands, you can enter one of the following:

RETURN Move to the next item.
+n Move to the nth next item.
- Move to the previous item.
-n Move to the nth previous item.
=addr Move to the item at address addr. Only valid when operating on memory, not on registers.
n Change the value of the item to n. Only valid for modify or write commands, not display or examine. The mi command allows you to enter multiple numbers separated by spaces, to change more than one byte.
.(Or any character other than + - = or a hex number.) Exits the command and returns to the debugger prompt.

If an attempt is made to access an invalid virtual address, the command and all levels of invoked macros will be aborted and the debugger will prompt for the next command.
Display Commands
These commands allow you to examine memory only. This prevents accidental modification of system memory when in the debugger.

dl addr [count]
Display memory as long integers (4 byte hex integers), 32 bytes at a time. If a count is given, memory is displayed 32 * count bytes at a time.

dw addr [count]
Display memory as words (2 byte hex integers), 32 bytes at a time.

db addr [count]
Display memory as bytes (1 byte hex integers), 32 bytes at a time.

di [addr]
Display memory as disassembled instructions. The default addr is the contents of %eip.

dr [addr]
Display the CPU general registers stored at addr. The default addr is the automatically-determined register save area (see the rg command).

dR
Display the CPU “special” registers (debug, control, and table base registers).

dy addr [count]
Similar to dl, but displays the long integers in symbolic form, if possible.

se start end pattern [mask]
Search for the given pattern in the range of addresses starting at start, up to (but not including) end. The search is performed on long integers. If a mask is given, only those bits corresponding to 1 bits in the mask are significant in the search.

Examine Commands
el addr
Examine memory as longs, one at a time.

ew addr
Examine memory as words, one at a time.

eb addr
Examine memory as bytes, one at a time.

ei [addr]
Examine memory as disassembled instructions. (Same as di.)

er
Examine CPU general registers, one at a time.

eR
Examine the CPU special registers, one at a time.
Modify Commands
ml addr Examine and optionally modify memory, as long integers.
mw addr Examine and optionally modify memory, as words.
mb addr Examine and optionally modify memory, as bytes.
mi [addr] Examine memory as instructions and optionally modify (as bytes).
mr Examine and optionally modify the CPU registers.
mR Examine and optionally modify the CPU special registers.

Write Commands
wI addr Write memory as long integers, without examining.
ww addr Write memory as words, without examining.
wB addr Write memory as bytes, without examining.

I/O Commands
in addr
ib addr Read a byte from the specified I/O port.
iw addr Read a word (2 bytes) from the specified I/O port.
il addr Read a long word (4 bytes) from the specified I/O port.
ou addr value
ob addr value Output a byte (value) to the specified I/O port.

Execute Commands
go [addr] Resume execution on all processors. If an addr is given, the master processor resumes execution at addr.

gor [addr] Resume real-mode execution on the master processor, and normal execution on all other processors. If an addr is given, the master processor resumes execution at addr.

gos [cpuid] Resume execution on only the processors whose cpuid’s are listed. If no cpuid’s are given, it resumes execution on only the current master processor.

tr [addr] Trace: single step one instruction on the master processor. If an addr is given, the master processor resumes execution at addr.
trs [cpuid]
Trace (single step) on the slave processor identified by cpuid, or on the master processor if cpuid is omitted.

to [addr]
Trace over: single step over ‘‘call’’ instructions on the master processor. If an addr is given, the master processor resumes execution at addr.

tos [cpuid]
Trace (single step) over ‘‘call’’ instructions on the slave processor identified by cpuid, or on the master processor if cpuid is omitted.

stop [cpuid]
Suspend execution on the running processors whose cpuid’s are listed, and force them into slave mode. If no cpuid’s are given, it suspends every currently running processor.

call addr [args]
Call a function with the specified arguments and show the return value.

Multiprocessor Commands
These commands, together with the Execute Commands above, which start and stop processors, comprise the complete multiprocessor command set.

cpu cpuid
Switch master mode from the current master processor to the slave processor identified by cpuid. The current master processor becomes a slave, and the designated slave becomes the new master.

ss [cpuid]
Show the multiprocessor debugger status of the processor identified by cpuid, or of all processors if cpuid is omitted.

Instruction Breakpoint Commands
An instruction breakpoint invokes the debugger just prior to the execution of a specified instruction. There are a total of 16 instruction breakpoints available. Instruction breakpoints affect all processors; that is, every processor that hits an instruction breakpoint will enter the debugger. Chip breakpoints (see below) affect only the processor on which the breakpoint was set.

br [addr]
Set an instruction breakpoint. The default address is the contents of %eip.

bc [addr]
Clear (remove) an instruction breakpoint.

bc Clear (remove) all instruction breakpoints.

bx [addr]
Set a temporary (one-shot) instruction breakpoint.
bo [addr]
Turn an instruction breakpoint on or off. If a breakpoint is turned off, it acts as though it were cleared, but the breakpoint remains in the breakpoint table.

bp Display instruction breakpoints.

Chip Breakpoint Commands
A chip breakpoint invokes the debugger when a specified memory location is referenced. There are a total of four chip breakpoints available. Chip breakpoints affect only the processor on which the breakpoint was set. Instruction breakpoints (see above) affect all processors.

ur num type [addr]
Sets a chip breakpoint. Num must be 0 to 3, addr is the breakpoint address, and type gives the type of memory access that will trigger the breakpoint. Valid types are:

<table>
<thead>
<tr>
<th>Num</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Execute</td>
</tr>
<tr>
<td>10</td>
<td>Byte write</td>
</tr>
<tr>
<td>11</td>
<td>Byte read/write</td>
</tr>
<tr>
<td>20</td>
<td>Word write</td>
</tr>
<tr>
<td>21</td>
<td>Word read/write</td>
</tr>
<tr>
<td>40</td>
<td>Long write</td>
</tr>
<tr>
<td>41</td>
<td>Long read/write</td>
</tr>
</tbody>
</table>

Note that the first digit specifies the breakpoint length and the second specifies the access type (write-only or read/write). The breakpoint is global unless the type is ORed with 100, which makes it local; or with 200, which makes it global and local. For example, 140 specifies a local long write-only breakpoint.

uc num Clear a chip breakpoint.

uc Clear all chip breakpoints.

ux num type [addr]
Like ur, but set a temporary (one-shot) breakpoint.

up Print all chip breakpoints.

Miscellaneous Commands
bt [addr] Display a stack backtrace, using addr as a frame pointer. The default address is the contents of %ebp. This works only with C language routines in protected mode.

c3 [addr] Use the specified physical address as the base of the page directory for translating linear-to-physical addresses. This address is obtained from the special register CR3 if no c3 command is given. To restore the base to that original value, use an addr of zero. If addr is missing, display the current page directory base.
ds addr Print the value of the address as an offset from the nearest symbol.

fill start end value
Fill memory from address start up to (but not including) address end
with the byte value.

he or help or ? or ??
List the debugger commands.

ma addr
map addr Display the page directory and page table entries used to map the
given linear address to a physical address. This behaves the same
whether paging is on or off.

more [lines]
Set the number of display lines to lines. If lines is greater than zero, it
enables output paging. When lines or more contiguous lines of informa-
tion are printed without asking the user for input, the message
"--press space for more--" is displayed and output is tem-
porarily suspended until the user presses the space bar. This
prevents the debugger from printing too many lines of output at
once on video terminals. If lines is zero, it disables output paging.
Output paging is disabled by default. If lines is missing, it reports
whether output paging is enabled or disabled.

pause Pause until the user types something.

pf "string" [args...]

pg [n] If n is 0, turn paging off. If n is 1, turn paging on. If n is missing,
report whether paging is on or off. If paging is off, the debugger
interprets all addresses as linear (virtual) addresses. (breakpoints are
always linear addresses.)

pr addr [radix]
Print the value of the address given as an argument in the specified
radix, or in the current input radix if radix is missing. This is most
useful if addr is an expression (see the earlier discussion of argu-
ments).

printf "string" [args...]
Print the string. Percent signs in the string are treated as in
printf(3S): %d, %u, %x, %o, %b, %s, %c are supported. In addition, %y
prints its argument in symbolic form, if possible, and %I prints its
argument in disassembled instruction form.
printbits "bit-desc" word
Display the bits that are set (the 1 bits) in word symbolically according to bit-desc, which is a colon-separated list of names associated with the corresponding bit positions, starting with bit 0 (the least significant bit). For example, printbits `X:Y:Z:FOO:BAR' 0x9D prints X Z FOO BAR.

radix [n]
Set the input radix to n. If n is omitted, display the current input radix. The default radix is hexadecimal.

read var
Read an expression from the user and set the named debugger variable to the expression's value.

real [n]
If n is 0, turn real-mode off. If n is 1, turn real-mode on. If n is missing, report whether real-mode is on or off. If real-mode is off, the debugger traces in protected mode. If real-mode is on, the debugger traces in real mode.

rg [addr]
Change the pointer to the "register save area," from which all references to CPU registers retrieve registers. Normally, the register save area is set up automatically, but you can use a different set of registers when you use rg to change the pointer. To restore the pointer to its original value, use an addr of zero. If addr is missing, it displays the current register save area pointer.

set var value
Set the variable named by var to have the given value. If the variable var has not previously been defined, it becomes defined; if it was previously defined, its old value is lost.

sp [addr]
Addr must be the address of a kernel proc structure. The debugger uses the context of that process to translate linear-to-physical addresses. Use of the sp command overrides the CR3 register: after an sp command, c3 commands have no effect.

sy [n] [max]
If n is 0, turn symbolic display off. If n is 1, turn symbolic display on. If n is missing, report whether symbolic display is on or off. If max is given, it specifies the maximum offset for printing symbols. For example, if max is 1000, a symbol may be displayed in the form name+NNN, where NNN is 1 through 1000, but if NNN would be greater than 1000, the non-symbolic display format is used.

ve
Print the version number of the debugger.

or ## or no
No-op. Input lines beginning with # are treated as comments and ignored. px addr [radix] Prints the value of the address given as an argument in the specified radix, or in the current input radix if radix is missing. This is most useful if addr is an expression (see the earlier discussion of arguments).
Macro Commands

`define "name" [arg-desc] [maxsize]`

Defines a macro, with the given name and the specified argument description string. The optional `maxsize` argument specifies the maximum size (in bytes) of the macro; the default size is 4096 bytes. The macro can be invoked after its definition by simply typing its name like any other command. The `arg-desc` string describes to the debugger what arguments the macro expects. Each lower-case letter specifies the type of the corresponding argument, as follows:

- `a` or `i` address or integer, the result of an arbitrary expression
- `s` string
- `?` means the following arguments are optional
- `*` means any number of arguments or any type
- `.` means don’t parse more arguments
- `,` is ignored.

For example, the argument description for the `se` command is "aai?i", and for `pf` it is "s*". If `arg-desc` is missing, the macro will be defined as requiring no arguments. Any debugger commands can be entered as the body of the macro, although interactive commands, such as `di` are not recommended (see the `interact` command). The expression `$n`, where `n` is a digit from 1 to 9, is replaced on invocation with the `n`th argument to the macro. The expression `$#` evaluates to the number of arguments to the macro. Entry of the macro body is terminated by a period (.) anywhere in the macro body. Include a period in the macro body by preceding the character with a backslash (\).

`args n`

Set the number of macro arguments to `n`.

`delm "name"`

Erase (deletes) the named macro.

`do "name" [args ...]`

Repeatedly call the named macro with any `args` specified, until an `exit` command is executed. This is the only explicit form of iteration the debugger provides. The `args` are passed to the named macro — and, if `setarg` is not used within the macro, — `args` is passed to every subsequent iteration of the named macro.

`em "name"`

`echo [n]`

If `n` is 1, macros are echoed when they are invoked. If `n` is 0 (the default), macros are not echoed. If `n` is missing, the status of the echo flag is printed. If the `ec` command is given within a macro body, it is in effect for that macro only.
exit Stop iterating a repeated macro call (see do). Note that exit does not terminate the execution of the current macro; it merely prevents further iterations.

interact n
If n is 1, interactive commands (such as di, bt, and dr) when invoked during macro execution will read input from the user. If n is 0 (the default), interactive commands inside macros will read input from the macro body. The interact command affects only the currently-executing macro and has no effect outside a macro body.

lm ["name"]
List the named macro. If the macro name is omitted, list all macros.

nx Repeat the call to the previously invoked macro. The arguments used are those used on the previous call, possibly modified by any intervening sa commands.

onbreak ["name"]
Set the on-break macro to the macro named by name. If name is omitted, disable the on-break macro feature. The on-break macro, if one is specified, is executed on every entrance to the debugger resulting from any trap or breakpoint. This feature is very handy for implementing conditional breakpoints.

sa n value
setarg n value
Sets the nth macro argument to the given value. The value of n should be between 1 and 9. Useful within a macro to set up the arguments for the next call through an nx command.

Predefined Macros
buf addr Print selected fields of a struct buf at the given address.
buf+ addr Run buf addr and set up the debugger to display the next adjacent buffer.
buf- addr Run buf addr and set up the debugger to display the previous adjacent buffer.
bufv addr Run buf addr and set up the kernel debugger to display the buffer at addr->av_forw each time a carriage return is entered.
dscr addr Print any 286/386/i486 descriptor in its appropriate format.
dscr+ addr Run dscr addr and set up the debugger to display the next adjacent descriptor.
xintrq addr Print all the inter-CPU interrupt queues.
xintrq+ addr Run xintrq addr and set up the kernel debugger to print the next adjacent inter-CPU interrupt queue.
inode addr Print selected fields of a struct inode (in the same manner as sys/inode.h).
inode+ addr
 Run inode addr and set the debugger up to print the next adjacent inode address.

mutex addr
 Print selected fields of a struct mutex.

curlock
 Print the master processor’s curlock stack. (curlock_aux is a sub-macro used by curlock.)

percpu addr
 Print selected fields of a struct percpu.

percpu+ addr
 Run percpu *addr and set the debugger up to display the next adjacent cpu address.

cpuinfo cpuid
 Print selected fields of a struct cpuinfo for the given CPU.

proc addr
 Print selected fields of a struct proc.

proc+ addr
 Run proc addr and set up the debugger to display the next adjacent processor address.

ps
 Simulate /bin/ps -l. (ps_loop and ps1 are submacros used by ps.)

pid pid
 Find a process with the given pid (remember, the default debugger radix is hex, not decimal) and run proc on it. (pid_search is a sub-macro used by pid. pidof and pgrpof are submacros used by proc.)

btproc addr
 Set the KDB process context to addr and run the backtrace bt command.

strstat
 Prints selected STREAMS statistics. (strstat_aux is a submacro used by strstat.)

strmsg addr
 Print selected fields of a struct msgb. (strmsg_aux and strmsg_type are submacros used by strmsg.)

strqueue addr
 Print selected fields of a struct queue. (strqueue_aux is a sub-macro used by strqueue.)

strqueue_band addr
 Print selected fields of a struct qband. (strfollow is a submacro used by stream)

stream addr
 Print selected fields of a struct stdata and substructures.

streams
 Print all streams except muxs.

streams_muxs
 Print all streams. (streams_aux is a submacro used by streams and streams_muxs.)
queues Print all streams queues.

queues_flag
 Print all streams queues with none of the flags set. (queues_aux
 and queues_loop are submacros used by queues and queues_flag.)

stream_find addr
 Find and print a stream associated with the given queue.
 (stream_find1 and stream_find2 are submacros used by
 stream_find.)

flags addr Print flags (in the same manner as %eflags) set in dword at addr.

tss addr Run tss addr and set the debugger up to run tss on the next adja-
 cent address.

tty addr Print selected fields of a struct tty.

tty+ addr Run tty addr and set the debugger up to run tty on the next adja-
 cent address.

user addr Print selected fields of a struct user.

vnode addr Print selected fields of a struct vnode.

vnode+ addr Run vnode addr and set up the debugger to run vnode on the next
 adjacent address.

Conditional Commands

 IF expr
 EL
 FI
 If the expression evaluates to zero, all commands up to the matching
 EL or FI are skipped. If the expression is non-zero, execution
 proceeds normally to the matching FI, unless a matching EL is found,
 in which case, commands between the EL and the FI are skipped.
 During any of this “skipping,” the prompt changes from Kn> to -Kn>
 to indicate that the commands are being read but not executed.

 if expr
 elseif expr
 else
 fi
 Same as IF-EL-FI but with the elseif construct which allows chain-
 ing of conditional statements.

 ifdef “name”
 Like if, but the condition is “true” if a macro named name exists.

 ifdefs “name”
 Like if, but the condition is “true” if a symbol named name exists.

SEE ALSO
dbcmd(1M), dbsym(1M), and kcrash(1M)
NOTES

If you try to go at the exact address where a breakpoint is set, the breakpoint does not trigger.

The disassembler works only with protected mode (32 bit) instructions. It does not know how to disassemble 16 bit instructions.

FILES

/etc/conf/macros.d Directory containing macro files.
NAME
keylogin – decrypt and store secret key

SYNOPSIS
keylogin

DESCRIPTION
The keylogin command prompts for a password, and uses it to decrypt the user's secret key stored in the publickey(4) database. Once decrypted, the user's key is stored by the local key server process, keyserv(1M), to be used by any secure network service, such as NFS.

SEE ALSO
chkey(1), keylogout(1), publickey(4), keyserv(1M), newkey(1)
NAME

keyserv – server for storing public and private keys

SYNOPSIS

keyserv [-n]

DESCRIPTION

keyserv is a daemon that is used for storing the private encryption keys of each user logged into the system. These encryption keys are used for accessing secure network services such as secure NFS.

Normally, root’s key is read from the file /etc/.rootkey when the daemon is started. This is useful during power-fail reboots when no one is around to type a password.

When the -n option is used, root’s key is not read from /etc/.rootkey. Instead, keyserv prompts the user for the password to decrypt root’s key stored in the publickey(4) database and then stores the decrypted key in /etc/.rootkey for future use. This option is useful if the /etc/.rootkey file ever gets out of date or corrupted.

To start keyserv manually, you must be root with the appropriate privileges.

FILES

/etc/.rootkey

SEE ALSO

publickey(4)
NAME
 \texttt{kill} – terminate a process by default

SYNOPSIS
 \texttt{kill \{[-signal] pid\}...}
 \texttt{kill \{-signal \-pgid\}...}
 \texttt{kill \{-l\}}

DESCRIPTION
 \texttt{kill} sends a signal to the specified processes. The value of \texttt{signal} may be numeric or symbolic [see \texttt{signal(5)}]. The symbolic signal name is the name as it appears in \texttt{/usr/include/sys/signal.h}, with the \texttt{SIG} prefix stripped off. Signal 15 (\texttt{SIGTERM}) is sent by default; this will normally kill processes that do not catch or ignore the signal.

 \texttt{pid} and \texttt{pgid} are unsigned numeric strings that identify which process(es) should receive the signal. If \texttt{pid} is used, the process with process ID \texttt{pid} is selected. If \texttt{pgid} is used, all processes with process group ID \texttt{pgid} are selected.

 The process number of each asynchronous process started with \texttt{&} is reported by the shell (unless more than one process is started in a pipeline, in which case the number of the last process in the pipeline is reported). Process numbers can also be found by using \texttt{ps(1)}.

 When invoked with the \texttt{-l} option, \texttt{kill} will print a list of symbolic signal names. The details of the \texttt{kill} are described in \texttt{kill(2)}. For example, if process number 0 is specified, all processes in the process group are signaled.

 The signaled process must belong to the current user unless the user is the super-user.

SEE ALSO
 \texttt{ps(1), sh(1)}
 \texttt{kill(2), signal(2), signal(5)} in the \texttt{Programmer’s Reference Manual}
NAME
 killall – kill all active processes

SYNOPSIS
 /usr/sbin/killall [signal]

DESCRIPTION
 killall is used by /usr/sbin/shutdown to kill all active processes not directly related to the shutdown procedure.
 killall terminates all processes with open files so that the mounted file systems will be unbusied and can be unmounted.
 killall sends signal [see kill(1)] to all processes not belonging to the above group of exclusions. If no signal is specified, a default of 15 (SIGTERM) is used.

FILES
 /usr/sbin/shutdown

SEE ALSO
 fuser(1M), shutdown(1M), signal(5)
 kill(1), ps(1) in the User’s Reference Manual
 signal(2) in the Programmer’s Reference Manual

NOTES
 The killall command can be run only by a privileged user.
NAME
ksh, rksh – KornShell, a standard/restricted command and programming language

SYNOPSIS
ksh [+aeffikmnprstuvx] [+o option] ... [-c string] [arg ...]
rksh [+aeffikmnprstuvx] [+o option] ... [-c string] [arg ...]

DESCRIPTION
ksh is a command and programming language that executes commands read
from a terminal or a file. rksh is a restricted version of the command interpreter
ksh; it is used to set up login names and execution environments whose capabili­
ties are more controlled than those of the standard shell. See Invocation below for
the meaning of arguments to the shell.

Definitions.
A metacharacter is one of the following characters:
 ; & () | < > new-line space tab
A blank is a tab or a space. An identifier is a sequence of letters, digits, or
underscores starting with a letter or underscore. Identifiers are used as names for
functions and variables. A word is a sequence of characters separated by one or
more non-quoted metacharacters.

A command is a sequence of characters in the syntax of the shell language. The
shell reads each command and carries out the desired action either directly or by
invoking separate utilities. A special command is a command that is carried out
by the shell without creating a separate process. Except for documented side
effects, most special commands can be implemented as separate utilities.

Commands.
A simple-command is a sequence of blank separated words which may be preceded
by a variable assignment list (see Environment below). The first word specifies
the name of the command to be executed. Except as specified below, the remain­
ing words are passed as arguments to the invoked command. The command
name is passed as argument 0 [see exec(2)]. The value of a simple-command is
its exit status if it terminates normally, or (octal) 200+status if it terminates abnor­
mally [see signal(2) for a list of status values].

A pipeline is a sequence of one or more commands separated by |. The standard
output of each command but the last is connected by a pipe(2) to the standard
input of the next command. Each command is run as a separate process; the
shell waits for the last command to terminate. The exit status of a pipeline is the
exit status of the last command.

A list is a sequence of one or more pipelines separated by ;, & & & , or | | , and
optionally terminated by ; , & , or | | . Of these five symbols, ; , & , and | | have
equal precedence, which is lower than that of & & & and | | . The symbols & & &
and | | also have equal precedence. A semicolon (;) causes sequential execution of
the preceding pipeline; an ampersand (&) causes asynchronous execution of the
preceding pipeline (that is, the shell does not wait for that pipeline to finish). The
symbol | | & causes asynchronous execution of the preceding command or pipeline
with a two-way pipe established to the parent shell. The standard input and out­
put of the spawned command can be written to and read from by the parent
Shell using the -p option of the special commands read and print described later. The symbol && (\|\|) causes the list following it to be executed only if the preceding pipeline returns a zero (non-zero) value. An arbitrary number of newlines may appear in a list, instead of a semicolon, to delimit a command.

A command is either a simple-command or one of the following. Unless otherwise stated, the value returned by a command is that of the last simple-command executed in the command.

for identifier [in word ...] ; do list ; done
Each time a for command is executed, identifier is set to the next word taken from the in word list. If in word ... is omitted, then the for command executes the do list once for each positional parameter that is set (see Parameter Substitution below). Execution ends when there are no more words in the list.

select identifier [in word ...] ; do list ; done
A select command prints on standard error (file descriptor 2), the set of words, each preceded by a number. If in word ... is omitted, then the positional parameters are used instead (see Parameter Substitution below). The PS3 prompt is printed and a line is read from the standard input. If this line consists of the number of one of the listed words, then the value of the parameter identifier is set to the word corresponding to this number. If this line is empty the selection list is printed again. Otherwise the value of the parameter identifier is set to null. The contents of the line read from standard input is saved in the variable REPLY. The list is executed for each selection until a break or end-of-file is encountered.

case word in [[()pattern [| pattern] ...] list ;] ... esac
A case command executes the list associated with the first pattern that matches word. The form of the patterns is the same as that used for file-name generation (see File Name Generation below).

if list ; then list ; [elif list ; then list] ... [; else list] ; fi
The list following if is executed and, if it returns a zero exit status, the list following the first then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list following the next then is executed. Failing that, the else list is executed. If no else list or then list is executed, then the if command returns a zero exit status.

while list ; do list ; done
A while command repeatedly executes the while list and, if the exit status of the last command in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do list are executed, then the while command returns a zero exit status; until may be used in place of while to negate the loop termination test.

Execute list in a separate environment. Note, that if two adjacent open parentheses are needed for nesting, a space must be inserted to avoid arithmetic evaluation as described below.

(list)
{ list; }

list is simply executed. The { must be followed by a space. Note that unlike the metacharacters (and), { and } are reserved words and must be typed at the beginning of a line or after a ; in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expression is true. See Conditional Expressions below, for a description of expression.

function identifier { list ;}
identifier () { list ;}

Define a function which is referenced by identifier. The body of the function is the list of commands between { and }. (see Functions below). The { must be followed by a space.

time pipeline
The pipeline is executed and the elapsed time as well as the user and system time are printed on standard error.

The following reserved words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { } function select time [[]]

Comments.

A word beginning with # causes that word and all the following characters up to a new-line to be ignored.

Aliasing.

The first word of each command is replaced by the text of an alias if an alias for this word has been defined. An alias name consists of any number of characters excluding meta-characters, quoting characters, file expansion characters, parameter and command substitution characters and =. The replacement string can contain any valid Shell script including the metacharacters listed above. The first word of each command in the replaced text, other than any that are in the process of being replaced, will be tested for aliases. If the last character of the alias value is a blank then the word following the alias will also be checked for alias substitution. Aliases can be used to redefine special builtin commands but cannot be used to redefine the reserved words listed above. Aliases can be created, listed, and exported with the alias command and can be removed with the unalias command. Exported aliases remain in effect for scripts invoked by name, but must be reinitialized for separate invocations of the Shell (see Invocation below).

Aliasing is performed when scripts are read, not while they are executed. Therefore, for an alias to take effect the alias definition command has to be executed before the command which references the alias is read.

Aliases are frequently used as a short hand for full path names. An option to the aliasing facility allows the value of the alias to be automatically set to the full pathname of the corresponding command. These aliases are called tracked aliases. The value of a tracked alias is defined the first time the corresponding command is looked up and becomes undefined each time the PATH variable is reset. These aliases remain tracked so that the next subsequent reference will redefine the
value. Several tracked aliases are compiled into the shell. The -h option of the
set command makes each referenced command name into a tracked alias.

The following exported aliases are compiled into the shell but can be unset or
redefined:

```
autoload='typeset -fu'
false='let 0'
functions='typeset -f'
hash='alias -t'
history='fc -l'
integer='typeset -i'
nohup='nohup '
r='fc -e -'
true=': '
type='whence -v'
```

Tilde Substitution.
After alias substitution is performed, each word is checked to see if it begins with
an unquoted ~. If it does, then the word up to a / is checked to see if it matches
a user name in the /etc/passwd file. If a match is found, the ~ and the matched
login name is replaced by the login directory of the matched user. This is called
a tilde substitution. If no match is found, the original text is left unchanged. A ~
by itself, or in front of a /, is replaced by $HOME. A ~ followed by a + or - is
replaced by $PWD and $OLDPWD respectively.

In addition, tilde substitution is attempted when the value of a variable assignment
begins with a ~.

Command Substitution.
The standard output from a command enclosed in parentheses preceded by a dol-
lar sign ($()) or a pair of grave accents (` `) may be used as part or all of a
word; trailing new-lines are removed. In the second (archaic) form, the string
between the quotes is processed for special quoting characters before the com-
mand is executed (see Quoting below). The command substitution $(cat file)
can be replaced by the equivalent but faster $(<file). Command substitution
of most special commands that do not perform input/output redirection are car-
ed out without creating a separate process.

An arithmetic expression enclosed in double parentheses and preceded by a dol-
lar sign [$($)] is replaced by the value of the arithmetic expression within the
double parentheses.

Parameter Substitution.
A parameter is an identifier, one or more digits, or any of the characters *, @, #, ?,
-, $, and 1. A variable (a parameter denoted by an identifier) has a value and
zero or more attributes. Variables can be assigned values and attributes by using
the typeset special command. The attributes supported by the Shell are
described later with the typeset special command. Exported parameters pass
values and attributes to the environment.
The shell supports a one-dimensional array facility. An element of an array variable is referenced by a subscript. A subscript is denoted by a [, followed by an arithmetic expression (see Arithmetic Evaluation below) followed by a]. To assign values to an array, use set -A name value The value of all subscripts must be in the range of 0 through 1023. Arrays need not be declared. Any reference to a variable with a valid subscript is legal and an array will be created if necessary. Referencing an array without a subscript is equivalent to referencing the element zero.

The value of a variable may also be assigned by writing:

 name=value [name=value] ...

If the integer attribute, -i, is set for name the value is subject to arithmetic evaluation as described below.

Positional parameters, parameters denoted by a number, may be assigned values with the set special command. Parameter $0 is set from argument zero when the shell is invoked.

The character $ is used to introduce substitutable parameters.

${{parameter}}

The shell reads all the characters from ${{ to the matching } as part of the same word even if it contains braces or metacharacters. The value, if any, of the parameter is substituted. The braces are required when parameter is followed by a letter, digit, or underscore that is not to be interpreted as part of its name or when a variable is subscripted. If parameter is one or more digits then it is a positional parameter. A positional parameter of more than one digit must be enclosed in braces. If parameter is * or @, then all the positional parameters, starting with $1, are substituted (separated by a field separator character). If an array identifier with subscript * or @ is used, then the value for each of the elements is substituted (separated by a field separator character).

$#{parameter}

If parameter is * or @, the number of positional parameters is substituted. Otherwise, the length of the value of the parameter is substituted.

$#{identifier[*]}

The number of elements in the array identifier is substituted.

$(parameter :=word)

If parameter is set and is non-null then substitute its value; otherwise substitute word.

$(parameter :=word)

If parameter is not set or is null then set it to word; the value of the parameter is then substituted. Positional parameters may not be assigned to in this way.

$(parameter :=?word)

If parameter is set and is non-null then substitute its value; otherwise, print word and exit from the shell. If word is omitted then a standard message is printed.

$(parameter :=+word)

If parameter is set and is non-null then substitute word; otherwise substitute nothing.
If the Shell pattern matches the beginning of the value of parameter, then the value of this substitution is the value of the parameter with the matched portion deleted; otherwise the value of this parameter is substituted. In the first form the smallest matching pattern is deleted and in the second form the largest matching pattern is deleted.

If the Shell pattern matches the end of the value of parameter, then the value of this substitution is the value of the parameter with the matched part deleted; otherwise substitute the value of parameter. In the first form the smallest matching pattern is deleted and in the second form the largest matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following example, pwd is executed only if d is not set or is null:

```
echo ${d:-$(pwd)}
```

If the colon (:) is omitted from the above expressions, then the shell only checks whether parameter is set or not.

The following parameters are automatically set by the shell:

- `#` The number of positional parameters in decimal.
- `-` Flags supplied to the shell on invocation or by the `set` command.
- `?` The decimal value returned by the last executed command.
- `$` The process number of this shell.
- `_` Initially, the value _ is an absolute pathname of the shell or script being executed as passed in the environment. Subsequently it is assigned the last argument of the previous command. This parameter is not set for commands which are asynchronous. This parameter is also used to hold the name of the matching MAIL file when checking for mail.
- `!` The process number of the last background command invoked.
- `ERRNO` The value of errno as set by the most recently failed system call. This value is system dependent and is intended for debugging purposes.
- `LINENO` The line number of the current line within the script or function being executed.
- `OLDPWD` The previous working directory set by the `cd` command.
- `OPTARG` The value of the last option argument processed by the `getopts` special command.
- `OPTIND` The index of the last option argument processed by the `getopts` special command.
The following variables are used by the shell:

CDPATH The search path for the `cd` command.

COLUMNS If this variable is set, the value is used to define the width of the edit window for the shell edit modes and for printing `select` lists.

EDITOR If the value of this variable ends in `vi` and the `VISUAL` variable is not set, then the corresponding option (see Special Command `set` below) will be turned on.

ENV If this variable is set, then parameter substitution is performed on the value to generate the pathname of the script that will be executed when the *shell* is invoked (see Invocation below). This file is typically used for alias and function definitions.

FCEDIT The default editor name for the `fc` command.

FPATH The search path for function definitions. This path is searched when a function with the `-u` attribute is referenced and when a command is not found. If an executable file is found, then it is read and executed in the current environment.

IFS Internal field separators, normally `space`, `tab`, and `new-line` that is used to separate command words which result from command or parameter substitution and for separating words with the special command `read`. The first character of the `IFS` variable is used to separate arguments for the "`$*`" substitution (see Quoting below).

HISTFILE If this variable is set when the shell is invoked, then the value is the pathname of the file that will be used to store the command history (see Command re-entry below).

HISTSIZE If this variable is set when the shell is invoked, then the number of previously entered commands that are accessible by this shell will be greater than or equal to this number. The default is 128.

HOME The default argument (home directory) for the `cd` command.

LINES If this variable is set, the value is used to determine the column length for printing `select` lists. Select lists will print vertically until about two-thirds of `LINES` lines are filled.
MAIL
If this variable is set to the name of a mail file and the MAILPATH variable is not set, then the shell informs the user of arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will check for changes in the modification time of any of the files specified by the MAILPATH or MAIL variables. The default value is 600 seconds. When the time has elapsed the shell will check before issuing the next prompt.

MAILPATH
A colon (:) separated list of file names. If this variable is set then the shell informs the user of any modifications to the specified files that have occurred within the last MAILCHECK seconds. Each file name can be followed by a ? and a message that will be printed. The message will undergo parameter substitution with the variable, $_, defined as the name of the file that has changed. The default message is you have mail in $_.

PATH
The search path for commands (see Execution below). The user may not change PATH if executing under rksh (except in .profile).

PS1
The value of this variable is expanded for parameter substitution to define the primary prompt string which by default is "$". The character ! in the primary prompt string is replaced by the command number (see Command Re-entry below).

PS2
Secondary prompt string, by default "->".

PS3
Selection prompt string used within a select loop, by default "#?".

PS4
The value of this variable is expanded for parameter substitution and precedes each line of an execution trace. If omitted, the execution trace prompt is "+".

SHELL
The pathname of the shell is kept in the environment. At invocation, if the basename of this variable matches the pattern *r*sh, then the shell becomes restricted.

TMOUT
If set to a value greater than zero, the shell will terminate if a command is not entered within the prescribed number of seconds after issuing the PS1 prompt. (Note that the shell can be compiled with a maximum bound for this value which cannot be exceeded.)

VISUAL
If the value of this variable ends in vi then the corresponding option (see Special Command set below) will be turned on.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, TMOUT and IFS. HOME, MAIL and SHELL are set by login(1).

Blank Interpretation.
After parameter and command substitution, the results of substitutions are scanned for the field separator characters (those found in IFS) and split into distinct arguments where such characters are found. Explicit null arguments ("" or ' ') are retained. Implicit null arguments (those resulting from parameters that have no values) are removed.
File Name Generation.

Following substitution, each command word is scanned for the characters *, ?, and [unless the -f option has been set. If one of these characters appears then the word is regarded as a pattern. The word is replaced with lexicographically sorted file names that match the pattern. If no file name is found that matches the pattern, then the word is left unchanged. When a pattern is used for file name generation, the character . at the start of a file name or immediately following a /, as well as the character / itself, must be matched explicitly. In other instances of pattern matching the / and . are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of characters separated by – matches any character lexically between the pair, inclusive. If the first character following the opening “[“ is a “!” then any character not enclosed is matched. A – can be included in the character set by putting it as the first or last character.

A pattern-list is a list of one or more patterns separated from each other with a |. Composite patterns can be formed with one or more of the following:

? (pattern-list)
Optionally matches any one of the given patterns.

* (pattern-list)
Matches zero or more occurrences of the given patterns.

+ (pattern-list)
Matches one or more occurrences of the given patterns.

@ (pattern-list)
Matches exactly one of the given patterns.

! (pattern-list)
Matches anything, except one of the given patterns.

Quoting.

Each of the metacharacters listed above (see Definitions above) has a special meaning to the shell and causes termination of a word unless quoted. A character may be quoted (that is, made to stand for itself) by preceding it with a \. The pair \new-line is removed. All characters enclosed between a pair of single quote marks (‘’), are quoted. A single quote cannot appear within single quotes. Inside double quote marks (“”), parameter and command substitution occurs and \ quotes the characters \, ‘, ”, and $. The meaning of $* and $@ is identical when not quoted or when used as a variable assignment value or as a file name. However, when used as a command argument, "$*" is equivalent to "$1d$2d...", where d is the first character of the IFS variable, whereas "$@" is equivalent to "$1"d"$2"d... . Inside grave quote marks (’’) \ quotes the characters \, ′, and $. If the grave quotes occur within double quotes then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by quoting any character of the reserved word. The recognition of function names or special command names listed below cannot be altered by quoting them.
Arithmetic Evaluation.
An ability to perform integer arithmetic is provided with the special command `let`. Evaluations are performed using long arithmetic. Constants are of the form `[base#]n` where `base` is a decimal number between two and thirty-six representing the arithmetic base and `n` is a number in that base. If `base#` is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and associativity of expression of the C language. All the integral operators, other than `++`, `--`, `?:`, and `,` are supported. Variables can be referenced by name within an arithmetic expression without using the parameter substitution syntax. When a variable is referenced, its value is evaluated as an arithmetic expression.

An internal integer representation of a variable can be specified with the `-i` option of the `typeset` special command. Arithmetic evaluation is performed on the value of each assignment to a variable with the `-i` attribute. If you do not specify an arithmetic base, the first assignment to the variable determines the arithmetic base. This base is used when parameter substitution occurs.

Since many of the arithmetic operators require quoting, an alternative form of the `let` command is provided. For any command which begins with a `(, all the characters until a matching `)` are treated as a quoted expression. More precisely, `(...)` is equivalent to `let "..."`.

Prompting.
When used interactively, the shell prompts with the parameter expanded value of `PS1` before reading a command. If at any time a new-line is typed and further input is needed to complete a command, then the secondary prompt (that is, the value of `PS2`) is issued.

Conditional Expressions.
A conditional expression is used with the `[]` compound command to test attributes of files and to compare strings. Word splitting and file name generation are not performed on the words between `[` and `]`. Each expression can be constructed from one or more of the following unary or binary expressions:

- `-a file` True, if `file` exists.
- `-b file` True, if `file` exists and is a block special file.
- `-c file` True, if `file` exists and is a character special file.
- `-d file` True, if `file` exists and is a directory.
- `-f file` True, if `file` exists and is an ordinary file.
- `-g file` True, if `file` exists and is has its `setgid` bit set.
- `-k file` True, if `file` exists and is has its sticky bit set.
- `-n string` True, if length of `string` is non-zero.
- `-o option` True, if option named `option` is on.
- `-p file` True, if `file` exists and is a fifo special file or a pipe.
- `-r file` True, if `file` exists and is readable by current process.
- `-s file` True, if `file` exists and has size greater than zero.
- `-t filedes` True, if file descriptor number `filedes` is open and associated with a terminal device.
-u file True, if file exists and is has its setuid bit set.
-w file True, if file exists and is writable by current process.
-x file True, if file exists and is executable by current process. If file exists and is a directory, then the current process has permission to search in the directory.
-z string True, if length of string is zero.
-L file True, if file exists and is a symbolic link.
-O file True, if file exists and is owned by the effective user id of this process.
-G file True, if file exists and its group matches the effective group id of this process.
-s file True, if file exists and is a socket.
file1 -nt file2 True, if file1 exists and is newer than file2.
file1 -ot file2 True, if file1 exists and is older than file2.
file1 -ef file2 True, if file1 and file2 exist and refer to the same file.
string = pattern True, if string matches pattern.
string != pattern True, if string does not match pattern.
string1 < string2 True, if string1 comes before string2 based on ASCII value of their characters.
string1 > string2 True, if string1 comes after string2 based on ASCII value of their characters.
exp1 -eq exp2 True, if exp1 is equal to exp2.
exp1 -ne exp2 True, if exp1 is not equal to exp2.
exp1 -lt exp2 True, if exp1 is less than exp2.
exp1 -gt exp2 True, if exp1 is greater than exp2.
exp1 -le exp2 True, if exp1 is less than or equal to exp2.
exp1 -ge exp2 True, if exp1 is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/n, where n is an integer, then the test applied to the open file whose descriptor number is n.

A compound expression can be constructed from these primitives by using any of the following, listed in decreasing order of precedence.
(expression) True, if expression is true. Used to group expressions.
! expression True if expression is false.
expression1 & expression2 True, if expression1 and expression2 are both true.
expression1 || expression2 True, if either expression1 or expression2 is true.

Input/Output.
Before a command is executed, its input and output may be redirected using a special notation interpreted by the shell. The following may appear anywhere in a simple-command or may precede or follow a command and are not passed on to the invoked command. Command and parameter substitution occurs before word
or digit is used except as noted below. File name generation occurs only if the pattern matches a single file and blank interpretation is not performed.

\(<word\) Use file word as standard input (file descriptor 0).

\(>word\) Use file word as standard output (file descriptor 1). If the file does not exist then it is created. If the file exists, is a regular file, and the noclobber option is on, this causes an error; otherwise, it is truncated to zero length.

\(>1word\) Same as >, except that it overrides the noclobber option.

\(>>word\) Use file word as standard output. If the file exists then output is appended to it (by first seeking to the end-of-file); otherwise, the file is created.

\(<\&word\) Open file word for reading and writing as standard input.

\(<\&[-]word\) The shell input is read up to a line that is the same as word, or to an end-of-file. No parameter substitution, command substitution or file name generation is performed on word. The resulting document, called a here-document, becomes the standard input. If any character of word is quoted, then no interpretation is placed upon the characters of the document; otherwise, parameter and command substitution occurs, \new-line is ignored, and \ must be used to quote the characters \, $, \, and the first character of word. If - is appended to <, then all leading tabs are stripped from word and from the document.

\(<\&digit\) The standard input is duplicated from file descriptor digit [see dup(2)]. Similarly for the standard output using >\& digit.

\(<\&-\) The standard input is closed. Similarly for the standard output using >\&-.

\(<\&p\) The input from the co-process is moved to standard input.

\(>\&p\) The output to the co-process is moved to standard output.

If one of the above is preceded by a digit, then the file descriptor number referred to is that specified by the digit (instead of the default 0 or 1). For example:

\(\ldots\ 2>\&1\)

means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates each redirection in terms of the (file descriptor, file) association at the time of evaluation. For example:

\(\ldots\ 1>fname\ 2>\&1\)

first associates file descriptor 1 with file fname. It then associates file descriptor 2 with the file associated with file descriptor 1 (that is, fname). If the order of redirections were reversed, file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had been) and then file descriptor 1 would be associated with file fname.
If a command is followed by & and job control is not active, then the default standard input for the command is the empty file /dev/null. Otherwise, the environment for the execution of a command contains the file descriptors of the invoking shell as modified by input/output specifications.

Environment.

The *environment* [see environ(5)] is a list of name-value pairs that is passed to an executed program in the same way as a normal argument list. The names must be *identifiers* and the values are character strings. The shell interacts with the environment in several ways. On invocation, the shell scans the environment and creates a variable for each name found, giving it the corresponding value and marking it *export*. Executed commands inherit the environment. If the user modifies the values of these variables or creates new ones, using the *export* or *typeset* `-x` commands they become part of the environment. The environment seen by any executed command is thus composed of any name-value pairs originally inherited by the shell, whose values may be modified by the current shell, plus any additions which must be noted in *export* or *typeset* `-x` commands.

The environment for any *simple-command* or function may be augmented by prefixing it with one or more variable assignments. A variable assignment argument is a word of the form *identifier=value*. Thus:

```
TERM=450 cmd args
(eximport TERM; TERM=450; cmd args)
```

are equivalent (as far as the above execution of *cmd* is concerned except for commands listed with one or two daggers, †, in the Special Commands section).

If the `-k` flag is set, *all* variable assignment arguments are placed in the environment, even if they occur after the command name. The following first prints `a=b c` and then `c`:

```
set -k
echo a=b c
echo a=b c
```

This feature is intended for use with scripts written for early versions of the shell and its use in new scripts is strongly discouraged. It is likely to disappear someday.

Functions.

The *function* reserved word, described in the *Commands* section above, is used to define shell functions. Shell functions are read in and stored internally. Alias names are resolved when the function is read. Functions are executed like commands with the arguments passed as positional parameters (see *Execution* below).

Functions execute in the same process as the caller and share all files and present working directory with the caller. Traps caught by the caller are reset to their default action inside the function. A trap condition that is not caught or ignored by the function causes the function to terminate and the condition to be passed on to the caller. A trap on *EXIT* set inside a function is executed after the function completes in the environment of the caller. Ordinarily, variables are shared between the calling program and the function. However, the *typeset* special command used within a function defines local variables whose scope includes the current function and all functions it calls.
The special command `return` is used to return from function calls. Errors within functions return control to the caller.

Function identifiers can be listed with the `-f` or `+f` option of the `typeset` special command. The text of functions may also be listed with `-f`. Function can be undefined with the `-f` option of the `unset` special command.

Ordinarily, functions are unset when the shell executes a shell script. The `-xf` option of the `typeset` command allows a function to be exported to scripts that are executed without a separate invocation of the shell. Functions that need to be defined across separate invocations of the shell should be specified in the `ENV` file with the `-xf` option of `typeset`.

Jobs.

If the `monitor` option of the `set` command is turned on, an interactive shell associates a `job` with each pipeline. It keeps a table of current jobs, printed by the `jobs` command, and assigns them small integer numbers. When a job is started asynchronously with `&`, the shell prints a line which looks like:

```
[1] 1234
```

indicating that the job which was started asynchronously was job number 1 and had one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key `^Z` (CTRL-z) which sends a STOP signal to the current job. The shell will then normally indicate that the job has been ‘Stopped’, and print another prompt. You can then manipulate the state of this job, putting it in the background with the `bg` command, or run some other commands and then eventually bring the job back into the foreground with the foreground command `fg`. A `^Z` takes effect immediately and is like an interrupt in that pending output and unread input are discarded when it is typed.

A job being run in the background will stop if it tries to read from the terminal. Background jobs are normally allowed to produce output, but this can be disabled by giving the command “stty tostop”. If you set this tty option, then background jobs will stop when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. A job can be referred to by the process id of any process of the job or by one of the following:

- `%number` The job with the given number.
- `%string` Any job whose command line begins with `string`.
- `%@string` Any job whose command line contains `string`.
- `%` Current job.
- `%+` Equivalent to `%.`.
- `%=` Previous job.

This shell learns immediately whenever a process changes state. It normally informs you whenever a job becomes blocked so that no further progress is possible, but only just before it prints a prompt. This is done so that it does not otherwise disturb your work.
When the monitor mode is on, each background job that completes triggers any trap set for CHLD.

When you try to leave the shell while jobs are running or stopped, you will be warned that 'You have stopped(running) jobs.' You may use the jobs command to see what they are. If you do this or immediately try to exit again, the shell will not warn you a second time, and the stopped jobs will be terminated.

Signals.

When a command is run in the background (that it, when it is followed by &) and the job monitor option is active, the command does not receive INTERRUPT or QUIT signals. When a command is run in the background (that it, when it is followed by &) and the job monitor option is not active, the command receives INTERRUPT or QUIT signals but ignores them. Otherwise, signals have the values inherited by the shell from its parent (but see also the trap command below).

Execution.

Each time a command is executed, the above substitutions are carried out. If the command name matches one of the **Special Commands** listed below, it is executed within the current shell process. Next, the command name is checked to see if it matches one of the user defined functions. If it does, the positional parameters are saved and then reset to the arguments of the function call. When the function completes or issues a return, the positional parameter list is restored and any trap set on EXIT within the function is executed. The value of a function is the value of the last command executed. A function is also executed in the current shell process. If a command name is not a special command or a user defined function, a process is created and an attempt is made to execute the command via exec(2).

The shell variable PATH defines the search path for the directory containing the command. Alternative directory names are separated by a colon (:). The default path is /usr/bin: (specifying /usr/bin and the current directory in that order). The current directory can be specified by two or more adjacent colons, or by a colon at the beginning or end of the path list. If the command name contains a / then the search path is not used. Otherwise, each directory in the path is searched for an executable file. If the file has execute permission but is not a directory or an a.out file, it is assumed to be a file containing shell commands. A sub-shell is spawned to read it. All non-exported aliases, functions, and variables, are removed in this case. A parenthesized command is executed in a sub-shell without removing non-exported quantities.

Command Re-entry.

The text of the last HISTSIZE (default 128) commands entered from a terminal device is saved in a history file. The file $HOME/.sh_history is used if the file denoted by the HISTFILE variable is not set or is not writable. A shell can access the commands of all interactive shells which use the same named HISTFILE. The special command fc is used to list or edit a portion of this file. The portion of the file to be edited or listed can be selected by number or by giving the first character or characters of the command. A single command or range of commands can be specified. If you do not specify an editor program as an argument to fc then the value of the variable FCEDIT is used. If FCEDIT is not defined then /usr/bin/ed is used. The edited command(s) is printed and re-executed upon
leaving the editor. The editor name – is used to skip the editing phase and to re-execute the command. In this case a substitution variable of the form $old=new$ can be used to modify the command before execution. For example, if r is aliased to `fc -e -` then typing `$r bad=good c` will re-execute the most recent command which starts with the letter c, replacing the first occurrence of the string bad with the string $good$.

In-line Editing Options

Normally, each command line entered from a terminal device is simply typed followed by a new-line (‘RETURN’ or ‘LINE FEED’). If the vi option is active, the user can edit the command line. To be in this edit mode set the vi option. An editing option is automatically selected each time the $VISUAL$ or $EDITOR$ variable is assigned a value ending in either of these option names.

The editing features require that the user’s terminal accept ‘RETURN’ as carriage return without line feed and that a space (‘ ’) must overwrite the current character on the screen. ADM terminal users should set the “space - advance” switch to ‘space’. Hewlett-Packard series 2621 terminal users should set the straps to ‘bcGHxZ etX’.

The editing mode implements a concept where the user is looking through a window at the current line. The window width is the value of $COLUMNS$ if it is defined, otherwise 80. If the line is longer than the window width minus two, a mark is displayed at the end of the window to notify the user. As the cursor moves and reaches the window boundaries the window will be centered about the cursor. The mark is a $> (<, *)$ if the line extends on the right (left, both) side(s) of the window.

The search commands in each edit mode provide access to the history file. Only strings are matched, not patterns, although a leading * in the string restricts the match to begin at the first character in the line.

vi Editing Mode

There are two typing modes. Initially, when you enter a command you are in the input mode. To edit, the user enters control mode by typing ESC (\033) and moves the cursor to the point needing correction and then inserts or deletes characters or words as needed. Most control commands accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially enabled and the command will be echoed again if the speed is 1200 baud or greater and it contains any control characters or less than one second has elapsed since the prompt was printed. The ESC character terminates canonical processing for the remainder of the command and the user can then modify the command line. This scheme has the advantages of canonical processing with the type-ahead echoing of raw mode.

If the option $viraw$ is also set, the terminal will always have canonical processing disabled.
Input Edit Commands
By default the editor is in input mode.

erase (User defined erase character as defined by the stty command, usually ^H or #.) Delete previous character.

^W Delete the previous blank separated word.

^D Terminate the shell.

^V Escape next character. Editing characters, the user’s erase or kill characters may be entered in a command line or in a search string if preceded by a ^V. The ^V removes the next character’s editing features (if any).

\ Escape the next erase or kill character.

Motion Edit Commands
These commands will move the cursor.

[count]l Cursor forward (right) one character.
[count]w Cursor forward one alpha-numeric word.
[count]w Cursor to the beginning of the next word that follows a blank.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank delimited word.
[count]b Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count] Cursor to column count.
[count]c Find the next character c in the current line.
[count]C Find the previous character c in the current line.
[count]e Equivale to f followed by h.
[count]t Equivale to f followed by l.
[count]; Repeats count times, the last single character find command, f, p, t, or t.
[count], Reverses the last single character find command count times.
0 Cursor to start of line.
^ Cursor to first non-blank character in line.
$ Cursor to end of line.

Search Edit Commands
These commands access your command history.

[count]k Fetch previous command. Each time k is entered the previous command back in time is accessed.

[count]- Equivalent to k.
Fetch next command. Each time \texttt{j} is entered the next command forward in time is accessed.

Equivalent to \texttt{j}.

The command number \texttt{count} is fetched. The default is the least recent history command.

Search backward through history for a previous command containing \texttt{string}. \texttt{String} is terminated by a \texttt{RETURN} or \texttt{NEW LINE}. If \texttt{string} is preceded by a \texttt{^}, the matched line must begin with \texttt{string}. If \texttt{string} is null the previous string will be used.

Same as \texttt{/} except that search will be in the forward direction.

Search for next match of the last pattern to \texttt{/} or \texttt{?} commands.

Search for next match of the last pattern to \texttt{/} or \texttt{?}, but in reverse direction. Search history for the \texttt{string} entered by the previous \texttt{/} command.

These commands will modify the line.

Enter input mode and enter text after the current character.

Append text to the end of the line. Equivalent to \texttt{\$a}.

Delete current character through the character that \texttt{motion} would move the cursor to and enter input mode. If \texttt{motion} is \texttt{c}, the entire line will be deleted and input mode entered.

Delete the current character through the end of line and enter input mode. Equivalent to \texttt{c\$}.

Equivalent to \texttt{cc}.

Delete the current character through the end of line. Equivalent to \texttt{d\$}.

Enter input mode and insert text before the current character.

Insert text before the beginning of the line. Equivalent to \texttt{0i}.

Place the previous text modification before the cursor.

Place the previous text modification after the cursor.

Enter input mode and replace characters on the screen with characters you type overlay fashion.
[\textit{count}]_{\textit{xc}} \quad \text{Replace the} \ \textit{count} \ \text{character(s) starting at the current cursor position with} \ \textit{c}, \ \text{and advance the cursor.}

[\textit{count}]_{\textit{x}} \quad \text{Delete current character.}

[\textit{count}]_{\textit{x}} \quad \text{Delete preceding character.}

[\textit{count}]_{.} \quad \text{Repeat the previous text modification command.}

[\textit{count}]_{-} \quad \text{Invert the case of the} \ \textit{count} \ \text{character(s) starting at the current cursor position and advance the cursor.}

[\textit{count}]_{-} \quad \text{Causes the} \ \textit{count} \ \text{word of the previous command to be appended and input mode entered. The last word is used if} \ \textit{count} \ \text{is omitted.}

\star \quad \text{Causes an} \ \star \ \text{to be appended to the current word and file name generation attempted. If no match is found, it rings the bell. Otherwise, the word is replaced by the matching pattern and input mode is entered.}

\backslash \quad \text{Filename completion. Replaces the current word with the longest common prefix of all filenames matching the current word with an asterisk appended. If the match is unique, a} \ / \ \text{is appended if the file is a directory and a space is appended if the file is not a directory.}

\textbf{Other Edit Commands}

\textbf{Miscellaneous commands.}

[\textit{count}]_{\textit{ymotion}} \quad \text{Yank current character through character that} \ \textit{motion} \ \text{would move the cursor to and puts them into the delete buffer. The text and cursor are unchanged.}

\textbf{\textit{Y}} \quad \text{Yanks from current position to end of line. Equivalent to} \ \textbf{\textit{y}$}$.

\textbf{\textit{u}} \quad \text{Undo the last text modifying command.}

\textbf{\textit{U}} \quad \text{Undo all the text modifying commands performed on the line.}

[\textit{count}]_{\textit{v}} \quad \text{Returns the command} \ \textbf{fc} \ -e \ \${\textit{VISUAL}:=-${\textit{EDITOR}:=-vi}}\ \textit{count} \ \text{in the input buffer. If} \ \textit{count} \ \text{is omitted, then the current line is used.}

\textbf{\textit{^L}} \quad \text{Line feed and print current line. Has effect only in control mode.}

\textbf{\textit{^J}} \quad \text{\textbf{(New line) Execute the current line, regardless of mode.}}

\textbf{\textit{^M}} \quad \text{\textbf{(Return) Execute the current line, regardless of mode.}}

\textbf{\#} \quad \text{Sends the line after inserting a} \ \# \ \text{in front of the line. Useful for causing the current line to be inserted in the history without being executed.}
List the file names that match the current word if an asterisk were appended it.

Your alias list is searched for an alias by the name _letter and if an alias of this name is defined, its value will be inserted on the input queue for processing.

Special Commands.
The following simple-commands are executed in the shell process. Input/Output redirection is permitted. Unless otherwise indicated, the output is written on file descriptor 1 and the exit status, when there is no syntax error, is zero. Commands that are preceded by one or two † are treated specially in the following ways:

1. Variable assignment lists preceding the command remain in effect when the command completes.
2. I/O redirections are processed after variable assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by †† that are in the format of a variable assignment, are expanded with the same rules as a variable assignment. This means that tilde substitution is performed after the = sign and word splitting and file name generation are not performed.

† : [arg ...]
The command only expands parameters.

† . file [arg ...]
Read the complete file then execute the commands. The commands are executed in the current Shell environment. The search path specified by PATH is used to find the directory containing file. If any arguments arg are given, they become the positional parameters. Otherwise the positional parameters are unchanged. The exit status is the exit status of the last command executed.

†† alias [-tx] [name[=value]]...
Alias with no arguments prints the list of aliases in the form name=value on standard output. An alias is defined for each name whose value is given. A trailing space in value causes the next word to be checked for alias substitution. The -t flag is used to set and list tracked aliases. The value of a tracked alias is the full pathname corresponding to the given name. The value becomes undefined when the value of PATH is reset but the aliases remain tracked. Without the -t flag, for each name in the argument list for which no value is given, the name and value of the alias is printed. The -x flag is used to set or print exported aliases. An exported alias is defined for scripts invoked by name. The exit status is non-zero if a name is given, but no value, for which no alias has been defined.

bg [job ...]
This command is only on systems that support job control. Puts each specified job into the background. The current job is put in the background if job is not specified. See Jobs for a description of the format of job.
† **break** [*n*]

Exit from the enclosing `for`, `while`, `until` or `select` loop, if any. If *n* is specified then break *n* levels.

† **continue** [*n*]

Resume the next iteration of the enclosing `for`, `while`, `until` or `select` loop. If *n* is specified then resume at the *n*-th enclosing loop.

cd [*arg*]

This command can be in either of two forms. In the first form it changes the current directory to *arg*. If *arg* is \- the directory is changed to the previous directory. The shell variable `HOME` is the default *arg*. The variable `PWD` is set to the current directory. The shell variable `CDPATH` defines the search path for the directory containing *arg*. Alternative directory names are separated by a colon (:). The default path is `<null>` (specifying the current directory). Note that the current directory is specified by a null path name, which can appear immediately after the equal sign or between the colon delimiters anywhere else in the path list. If *arg* begins with a `/` then the search path is not used. Otherwise, each directory in the path is searched for *arg*.

The second form of `cd` substitutes the string `new` for the string `old` in the current directory name, `PWD` and tries to change to this new directory.

The `cd` command may not be executed by `rksh`.

echo [*arg* ...]

See `echo(1)` for usage and description.

† **eval** [*arg* ...]

The arguments are read as input to the shell and the resulting command(s) executed.

† **exec** [*arg* ...]

If *arg* is given, the command specified by the arguments is executed in place of this shell without creating a new process. Input/output arguments may appear and affect the current process. If no arguments are given the effect of this command is to modify file descriptors as prescribed by the input/output redirection list. In this case, any file descriptor numbers greater than 2 that are opened with this mechanism are closed when invoking another program.

† **exit** [*n*]

Causes the shell to exit with the exit status specified by *n*. If *n* is omitted then the exit status is that of the last command executed. An end-of-file will also cause the shell to exit except for a shell which has the `ignoreeof` option (see `set` below) turned on.

†† **export** [*name* [= *value*]] ...

The given *names* are marked for automatic export to the `environment` of subsequently-executed commands.
fc [-e ename] [-nlr] [first [last]]
fc -e - [old=new] [command]

In the first form, a range of commands from first to last is selected from the last HISTSIZE commands that were typed at the terminal. The arguments first and last may be specified as a number or as a string. A string is used to locate the most recent command starting with the given string. A negative number is used as an offset to the current command number. If the flag -1, is selected, the commands are listed on standard output. Otherwise, the editor program ename is invoked on a file containing these keyboard commands. If ename is not supplied, then the value of the variable FCEDIT (default /usr/bin/ed) is used as the editor. When editing is complete, the edited command(s) is executed. If last is not specified then it will be set to first. If first is not specified the default is the previous command for editing and -16 for listing. The flag -r reverses the order of the commands and the flag -n suppresses command numbers when listing. In the second form the command is re-executed after the substitution old=new is performed.

fg [job...]

This command is only on systems that support job control. Each job specified is brought to the foreground. Otherwise, the current job is brought into the foreground. See Jobs for a description of the format of job.

getopts optstring name [arg ...]

Checks arg for legal options. If arg is omitted, the positional parameters are used. An option argument begins with a + or a -. An option not beginning with + or - or the argument -- ends the options. optstring contains the letters that getopts recognizes. If a letter is followed by a :, that option is expected to have an argument. The options can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name each time it is invoked with a + prepended when arg begins with a +. The index of the next arg is stored in OPTIND. The option argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an invalid option in OPTARG, and to set name to ? for an unknown option and to : when a required option is missing. Otherwise, getopts prints an error message. The exit status is non-zero when there are no more options.

jobs [-lnp] [job ...]

Lists information about each given job; or all active jobs if job is omitted. The -l flag lists process ids in addition to the normal information. The -n flag only displays jobs that have stopped or exited since last notified. The -p flag causes only the process group to be listed. See Jobs for a description of the format of job.
kill [-sig] job ...
kill -l
Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by
names (as given in /usr/include/signal.h, stripped of the prefix
"SIG"). If the signal being sent is TERM (terminate) or HUP (hangup),
then the job or process will be sent a CONT (continue) signal if it is
stopped. The argument job can the process id of a process that is not a
member of one of the active jobs. See Jobs for a description of the format
of job. In the second form, kill -l, the signal numbers and names are
listed.

let arg ...
Each arg is a separate arithmetic expression to be evaluated. See Arithmetic
Evaluation above, for a description of arithmetic expression evaluation.
The exit status is 0 if the value of the last expression is non-zero, and 1
otherwise.

† newgrp [arg ...]
Equivalent to exec /usr/bin/newgrp arg

print [-Rnprsunn] [arg ...]
The shell output mechanism. With no flags or with flag - or -- the argu-
ments are printed on standard output as described by echo(l). In raw
mode, -R or -r, the escape conventions of echo are ignored. The -R
option will print all subsequent arguments and options other than -n.
The -P option causes the arguments to be written onto the pipe of the
process spawned with |& instead of standard output. The -s option
causes the arguments to be written onto the history file instead of stan-
donard output. The -u flag can be used to specify a one digit file descriptor
unit number n on which the output will be placed. The default is 1. If
the flag -n is used, no new-line is added to the output.

pwd Equivalent to print -r - $PWD

read [-prsu[n]] [name?prompt][name ...]
The shell input mechanism. One line is read and is broken up into fields
using the characters in IFS as separators. In raw mode, -r, a \ at the
end of a line does not signify line continuation. The first field is assigned
to the first name, the second field to the second name, and so on, with left-
over fields assigned to the last name. The -P option causes the input line
to be taken from the input pipe of a process spawned by the shell using
|&. If the -s flag is present, the input will be saved as a command in the history file. The flag -u can be used to specify a one digit file descriptor
unit to read from. The file descriptor can be opened with the exec special
command. The default value of n is 0. If name is omitted then REPLY is
used as the default name. The exit status is 0 unless an end-of-file is
encountered. An end-of-file with the -P option causes cleanup for this
process so that another can be spawned. If the first argument contains a
?, the remainder of this word is used as a *prompt* on standard error when the shell is interactive. The exit status is 0 unless an end-of-file is encountered.

†† **readonly** [*name* [=*value*]] ...
The given *names* are marked readonly and these names cannot be changed by subsequent assignment.

† **return** [*n*]
Causes a shell *function* to return to the invoking script with the return status specified by *n*. If *n* is omitted then the return status is that of the last command executed. If **return** is invoked while not in a *function* or a . script, then it is the same as an **exit**.

set [*taefhkmnpstuvx*] [±*option*]... [±A *name*] [arg ...]
The flags for this command have meaning as follows:
- **-A** Array assignment. Unset the variable *name* and assign values sequentially from the list *arg*. If +A is used, the variable *name* is not unset first.
- **-a** All subsequent variables that are defined are automatically exported.
- **-e** If a command has a non-zero exit status, execute the **ERR** trap, if set, and exit. This mode is disabled while reading profiles.
- **-f** Disables file name generation.
- **-h** Each command becomes a tracked alias when first encountered.
- **-k** All variable assignment arguments are placed in the environment for a command, not just those that precede the command name.
- **-m** Background jobs will run in a separate process group and a line will print upon completion. The exit status of background jobs is reported in a completion message. On systems with job control, this flag is turned on automatically for interactive shells.
- **-n** Read commands and check them for syntax errors, but do not execute them. Ignored for interactive shells.
- **-o** The following argument can be one of the following option names:
 - **allexport** Same as -a.
 - **errexit** Same as -e.
 - **bgnice** All background jobs are run at a lower priority. This is the default mode.
 - **ignoreeof** The shell will not exit on end-of-file. The command **exit** must be used.
 - **keyword** Same as -k.
 - **markdirs** All directory names resulting from file name generation have a trailing / appended.
 - **monitor** Same as -m.
 - **noclobber** Prevents redirection > from truncating existing files. Require >| to truncate a file when turned on.
 - **noexec** Same as -n.
 - **noglob** Same as -f.
nolog Do not save function definitions in history file.
nounset Same as -u.
privileged Same as -p.
verbose Same as -v.
trackall Same as -h.
vi Puts you in insert mode of a vi style in-line editor until you hit escape character 033. This puts you in move mode. A return sends the line.

viraw Each character is processed as it is typed in vi mode.
xtrace Same as -x.
If no option name is supplied then the current option settings are printed.

-p Disables processing of the $HOME/.profile file and uses the file /etc/suid_profile instead of the ENV file. This mode is on whenever the effective uid (gid) is not equal to the real uid (gid). Turning this off causes the effective uid and gid to be set to the real uid and gid.

-s Sort the positional parameters lexicographically.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are executed.
- Turns off -x and -v flags and stops examining arguments for flags.
-- Do not change any of the flags; useful in setting $1 to a value beginning with -. If no arguments follow this flag then the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These flags can also be used upon invocation of the shell. The current set of flags may be found in $. Unless -A is specified, the remaining arguments are positional parameters and are assigned, in order, to $1 $2 If no arguments are given then the names and values of all variables are printed on the standard output.

shift [n]
The positional parameters from $n+1 ... are renamed $1 ... , default n is 1. The parameter n can be any arithmetic expression that evaluates to a non-negative number less than or equal to $#.

times
Print the accumulated user and system times for the shell and for processes run from the shell.

trap [arg] [sig] ...
arg is a command to be read and executed when the shell receives signal(s) sig. (Note that arg is scanned once when the trap is set and once when the trap is taken.) Each sig can be given as a number or as the name of the signal. Trap commands are executed in order of signal number. Any attempt to set a trap on a signal that was ignored on entry to the current shell is ineffective. If arg is omitted or is -, then all trap(s) sig are reset to their original values. If arg is the null string then this signal is ignored by the shell and by the commands it
invokes. If `sig` is `ERR` then `arg` will be executed whenever a command has a non-zero exit status. `sig` is `DEBUG` then `arg` will be executed after each command. If `sig` is `0` or `EXIT` and the `trap` statement is executed inside the body of a function, then the command `arg` is executed after the function completes. If `sig` is `0` or `EXIT` for a `trap` set outside any function then the command `arg` is executed on exit from the shell. The `trap` command with no arguments prints a list of commands associated with each signal number.

```
typeset [ ±HLRzfilrtux[ ] ] [ name[ =value ] ] ...
```

Sets attributes and values for shell variables. When invoked inside a function, a new instance of the variable `name` is created. The parameter value and type are restored when the function completes. The following list of attributes may be specified:

- **-H** This flag provides UNIX to host-name file mapping on non-UNIX machines.
- **-L** Left justify and remove leading blanks from `value`. If `n` is non-zero it defines the width of the field, otherwise it is determined by the width of the value of first assignment. When the variable is assigned to, it is filled on the right with blanks or truncated, if necessary, to fit into the field. Leading zeros are removed if the `-Z` flag is also set. The `-R` flag is turned off.
- **-R** Right justify and fill with leading blanks. If `n` is non-zero it defines the width of the field, otherwise it is determined by the width of the value of first assignment. The field is left filled with blanks or truncated from the end if the variable is reassigned. The `L` flag is turned off.
- **-Z** Right justify and fill with leading zeros if the first non-blank character is a digit and the `-L` flag has not been set. If `n` is non-zero it defines the width of the field, otherwise it is determined by the width of the value of first assignment.
- **-f** The names refer to function names rather than variable names. No assignments can be made and the only other valid flags are `-t`, `-u` and `-x`. The flag `-t` turns on execution tracing for this function. The flag `-u` causes this function to be marked undefined. The `FPATH` variable will be searched to find the function definition when the function is referenced. The flag `-x` allows the function definition to remain in effect across shell procedures invoked by name.
- **-i** Variable is an integer. This makes arithmetic faster. If `n` is non-zero it defines the output arithmetic base, otherwise the first assignment determines the output base.
- **-l** All upper-case characters converted to lower-case. The upper-case flag, `-u` is turned off.
- **-r** The given `names` are marked readonly and these names cannot be changed by subsequent assignment.
-t Tags the variables. Tags are user definable and have no special meaning to the shell.
-u All lower-case characters are converted to upper-case characters. The lower-case flag, -l is turned off.
-x The given names are marked for automatic export to the environment of subsequently-executed commands.

Using + rather than − causes these flags to be turned off. If no name arguments are given but flags are specified, a list of names (and optionally the values) of the variables which have these flags set is printed. (Using + rather than − keeps the values from being printed.) If no names and flags are given, the names and attributes of all variables are printed.

ulimit [−[HS][a | cdfnstv]]

ulimit [−[HS][c | d | f | n | s | t | v] limit
ulimit prints or sets hard or soft resource limits. These limits are described in getrlimit(2).

If limit is not present, ulimit prints the specified limits. Any number of limits may be printed at one time. The −a option prints all limits.

If limit is present, ulimit sets the specified limit to limit. The string unlimited requests the largest valid limit. Limits may be set for only one resource at a time. Any user may set a soft limit to any value below the hard limit. Any user may lower a hard limit. Only a super-user may raise a hard limit; see su(1).

The −H option specifies a hard limit. The −S option specifies a soft limit. If neither option is specified, ulimit will set both limits and print the soft limit.

The following options specify the resource whose limits are to be printed or set. If no option is specified, the file size limit is printed or set.

-c maximum core file size (in 512-byte blocks)
-d maximum size of data segment or heap (in kbytes)
-f maximum file size (in 512-byte blocks)
-n maximum file descriptor plus 1
-s maximum size of stack segment (in kbytes)
-t maximum CPU time (in seconds)
-v maximum size of virtual memory (in kbytes)

If no option is given, −f is assumed.

umask [mask]
The user file-creation mask is set to mask [see umask(2)]. mask can either be an octal number or a symbolic value as described in chmod(1).

If a symbolic value is given, the new umask value is the complement of the result of applying mask to the complement of the previous umask value. If mask is omitted, the current value of the mask is printed.
unalias name ...
 The variables given by the list of names are removed from the alias list.

unset [-f] name ...
 The variables given by the list of names are unassigned, for example, their values and attributes are erased. Read-only variables cannot be unset. If the flag, -f, is set, then the names refer to function names. Unsetting ERRNO, LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ causes removes their special meaning even if they are subsequently assigned to.

† wait [job]
 Wait for the specified job and report its termination status. If job is not given then all currently active child processes are waited for. The exit status from this command is that of the process waited for. See Jobs for a description of the format of job.

whence [-pv] name ...
 For each name, indicate how it would be interpreted if used as a command name.
 -v produces a more verbose report.
 -p does a path search for name even if name is an alias, a function, or a reserved word.

Invocation.
 If the shell is invoked by exec(2), and the first character of argument zero ($0) is -, then the shell is assumed to be a login shell and commands are read from /etc/profile and then from either .profile in the current directory or $HOME/.profile, if either file exists. Next, commands are read from the file named by performing parameter substitution on the value of the environment variable ENV if the file exists. If the -s flag is not present and arg is, then a path search is performed on the first arg to determine the name of the script to execute. The script arg must have read permission and any setuid and setgid settings will be ignored. Commands are then read as described below; the following flags are interpreted by the shell when it is invoked:
 -c string If the -c flag is present then commands are read from string.
 -s If the -s flag is present or if no arguments remain then commands are read from the standard input. Shell output, except for the output of the Special commands listed above, is written to file descriptor 2.
 -i If the -i flag is present or if the shell input and output are attached to a terminal (as told by ioctl(2)) then this shell is interactive. In this case TERM is ignored (so that kill 0 does not kill an interactive shell) and INTR is caught and ignored (so that wait is interruptible). In all cases, QUIT is ignored by the shell.
 -r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

rksh Only.
 rksh is used to set up login names and execution environments whose capabilities are more controlled than those of the standard shell. The actions of rksh are identical to those of sh, except that the following are disallowed:
changing directory [see cd(1)],
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing /,
redirecting output (> , > | , <> , and >>).

The restrictions above are enforced after .profile and the ENV files are interpreted.

When a command to be executed is found to be a shell procedure, rksh invokes ksh to execute it. Thus, it is possible to provide to the end-user shell procedures that have access to the full power of the standard shell, while imposing a limited menu of commands; this scheme assumes that the end-user does not have write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control over user actions, by performing guaranteed setup actions and leaving the user in an appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (that is, /usr/rbin) that can be safely invoked by rksh.

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit status. Otherwise, the shell returns the exit status of the last command executed (see also the exit command above). If the shell is being used non-interactively then execution of the shell file is abandoned. Run time errors detected by the shell are reported by printing the command or function name and the error condition. If the line number that the error occurred on is greater than one, then the line number is also printed in square brackets ([]) after the command or function name.

FILES
/etc/passwd
/etc/profile
/etc/suid_profile
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
cat(1), cd(1), chmod(1), cut(1), echo(1), env(1), paste(1), stty(1), test(1),
umask(1), and vi(1)
dup(2), exec(2), fork(2), ioctl(2), lseek(2), pipe(2), signal(2), umask(2), ulimit(2), wait(2), and rand(3C) in the Programmer's Reference Manual
newgrp(1M), a.out(4), profile(4), and environ(4) in the System Administrator's Reference Manual

NOTES
If a command which is a tracked alias is executed, and then a command with the same name is installed in a directory in the search path before the directory where the original command was found, the shell will continue to exec the original command. Use the -t option of the alias command to correct this situation.
Some very old shell scripts contain a `^` as a synonym for the pipe character.

Using the `fc` built-in command within a compound command will cause the whole command to disappear from the history file.

The built-in command `. file` reads the whole file before any commands are executed. Therefore, `alias` and `unalias` commands in the file will not apply to any functions defined in the file.

Traps are not processed while a job is waiting for a foreground process. Thus, a trap on `CHLD` won’t be executed until the foreground job terminates.
NAME
labelit (generic) – provide labels for file systems

SYNOPSIS
labelit [-F FSType] [-v] [current_options] [-o specific_options] special [operands]

DESCRIPTION
labelit can be used to provide labels for unmounted disk file systems or file
systems being copied to tape.

The special name should be the disk partition (for example, /dev/rdsk/*, where
the value of * is machine specific), or the cartridge tape (for example,
/dev/rmt/*). The device may not be on a remote machine. operands are FSType-
specific and the manual page of the FSType-specific labelit command should be
consulted for a detailed description.

current_options are options supported by the s5-specific module of labelit. Other FSTypes do not necessarily support these options. specific_options indicate
suboptions specified in a comma-separated list of suboptions and/or keyword-
attribute pairs for interpretation by the FSType-specific module of the command.

The options are:

-F specify the FSType on which to operate. The FSType should either be
specifiable here or be determinable from /etc/vfstab by matching speci-

al with an entry in the table.

-v echo complete command line. This option is used to verify and vali-
date the command line. Additional information obtained via a
/etc/vfstab lookup is included in the output. The command is not
executed.

-o Specify FSType-specific options.

NOTE
This command may not be supported for all FSTypes.

FILES
/etc/vfstab list of default parameters for each file system

SEE ALSO
makefsys(1M), vfstab(4)
Manual pages for the FSType-specific modules of labelit
NAME
labelit (s5) – provide labels for s5 file systems

SYNOPSIS
labelit [-F s5] [generic_options] [-n] special [fsname volume]

DESCRIPTION
generic_options are options supported by the generic labelit command.
labelit can be used to provide labels for unmounted s5 disk file systems or s5
file systems being copied to tape.

With the optional arguments omitted, labelit prints current label values.
The special name should be the disk partition (e.g., /dev/rdsk/*), or the cartridge
tape (for example, /dev/rmt/*, where the value of * is machine dependent.) The
device may not be on a remote machine.
The fsname argument represents the mounted name (e.g., root, usr, etc.) of the
file system.
Volume may be used to equate an internal name to a volume name applied exter­
nally to the hard disk, diskette or tape.
For file systems on disk, fsname and volume are recorded in the superblock.
The options are:
-F s5 Specifies the s5-FSType. Used to ensure that an s5 file system is
labelled.
-n Provides for initial tape labeling only. (This destroys the previous
contents of the tape.)

SEE ALSO
generic labelit(1M), makefsys(1M), s5_specific mount(1M), fs(4).
NAME
labelit (ufs) – provide labels for ufs file systems

SYNOPSIS
labelit [-F ufs] [generic_options] special [fsname volume]

DESCRIPTION
generic_options are options supported by the generic labelit command.
labelit can be used to provide labels for unmounted disk file systems or file
systems being copied to tape.
If neither fsname nor volume is specified, labelit prints the current values.
The special name should be the physical disk section (for example, /dev/rdsk/*,
where * is machine specific), or the cartridge tape (for example, /dev/rmt/*).
The device may not be on a remote machine.
The fsname argument represents the mounted name (for example, root, usr, etc.)
of the file system.
Volume may be used to equate an internal name to a volume name applied exter­
nally to the disk pack, diskette, or tape.
The option is:
-F ufs Specifies the ufs-FSType.

SEE ALSO
generic labelit(1M), makefsys(1M), ufs(4)
NAME
last – indicate last user or terminal logins

SYNOPSIS
last [-n number | -number] [-f filename] [name | tty] …

DESCRIPTION
The last command looks in the /var/adm/wtmp, file which records all logins
and logouts, for information about a user, a terminal or any group of users and
terminals. Arguments specify names of users or terminals of interest. Names of
terminals may be given fully or abbreviated. For example last 10 is the same as
last term/10. If multiple arguments are given, the information which applies
to any of the arguments is printed. For example last root console lists all of
root’s sessions as well as all sessions on the console terminal. last displays the
sessions of the specified users and terminals, most recent first, indicating the
times at which the session began, the duration of the session, and the terminal
which the session took place on. If the session is still continuing or was cut short
by a reboot, last so indicates.
The pseudo-user reboot logs in at reboots of the system, thus

 last reboot

will give an indication of mean time between reboot.
last with no arguments displays a record of all logins and logouts, in reverse
order.

If last is interrupted, it indicates how far the search has progressed in
/var/adm/wtmp. If interrupted with a quit signal (generated by a CTRL-A) last
indicates how far the search has progressed so far, and the search continues.
The following options are available:

- n number | -number Limit the number of entries displayed to that specified by
number. These options are identical; the -number option is
provided as a transition tool only and will be removed in
future releases.

- f filename Use filename as the name of the accounting file instead of
/var/adm/wtmp.

FILES
/var/adm/wtmp accounting file

SEE ALSO
utmp(4) in the System Administrator’s Reference Manual
NAME
lastcomm – show the last commands executed, in reverse order

SYNOPSIS
/usr/ucb/lastcomm [command-name]... [user-name]... [terminal-name]...

DESCRIPTION
The lastcomm command gives information on previously executed commands. lastcomm with no arguments displays information about all the commands recorded during the current accounting file’s lifetime. If called with arguments, lastcomm only displays accounting entries with a matching command-name, user-name, or terminal-name.

EXAMPLE
The command:

 lastcomm a.out root term/01

would produce a listing of all the executions of commands named a.out, by user root while using the terminal term/01. and

 lastcomm root

would produce a listing of all the commands executed by user root.

For each process entry, lastcomm displays the following items of information:

 the command name under which the process was called
 one or more flags indicating special information about the process. The
 flags have the following meanings:
 F The process performed a fork but not an exec.
 S The process ran as a set-user-id program.
 the name of the user who ran the process
 the terminal which the user was logged in on at the time (if applicable)
 the amount of CPU time used by the process (in seconds)
 the date and time the process exited

FILES
/var/adm/pacct accounting file

SEE ALSO
 sigvec(3)
 last(1) in the User’s Reference Manual
 acct(4), core(4) in the System Administrator’s Reference Manual
NAME
layers – layer multiplexor for windowing terminals

SYNOPSIS
layers [-s] [-t] [-D [-m max-pkt] [-d] [-p] [-h modlist] [-f file] [layersys-prgm]

DESCRIPTION
layers manages asynchronous windows [see layers(5)] on a windowing terminal. Upon invocation, layers finds an unused xt(7) channel group and associates it with the terminal line on its standard output. It then waits for commands from the terminal.

Command-line options:

-s Report protocol statistics on standard error at the end of the session after you exit from layers. The statistics may be printed during a session by invoking the program xts(1M).

-t Turn on xt(7) driver packet tracing, and produces a trace dump on standard error at the end of the session after you exit from layers. The trace dump may be printed during a session by invoking the program xtt(1M).

-D Send debugging messages to standard error.

-m max-pkt
Set maximum size for the data part of regular xt packets sent from the host to the terminal. Valid values are 32 to 252. This option also implies that regular rather than network xt protocol should be used. See xtproto(5).

-d If a firmware patch has been downloaded, print out the sizes of the text, data, and bss portions of the firmware patch on standard error.

-p If a firmware patch has been downloaded, print the down-loading protocol statistics and a trace on standard error.

-h modlist
Push a list of STREAMS modules separated by a comma on a layer.

-f file Start layers with an initial configuration specified by file. Each line of the file represents a layer to be created, and has the following format:

origin_x origin_y corner_x corner_y command_list

The coordinates specify the size and position of the layer on the screen in the terminal’s coordinate system. If all four are 0, the user must define the layer interactively. command_list, a list of one or more commands, must be provided. It is executed in the new layer using the user’s shell (by executing: $SHELL -i -c "command_list"). This means that the last command should invoke a shell, such as /usr/bin/sh. (If the last command is not a shell, then, when the last command has completed, the layer will not be functional.)

layersys-prgm
A file containing a firmware patch that the layers command downloads to the terminal before layers are created and command_list is executed.
Each layer is in most ways functionally identical to a separate terminal. Characters typed on the keyboard are sent to the standard input of the UNIX system process attached to the current layer (called the host process), and characters written on the standard output by the host process appear in that layer. When a layer is created, a separate shell is established and bound to the layer. If the environment variable SHELL is set, the user gets that shell; otherwise, /usr/bin/sh is used. In order to enable communications with other users via write(1), layers invokes the command relogin(1M) when the first layer is created. relogin(1M) will reassign that layer as the user's logged-in terminal. An alternative layer can be designated by using relogin(1M) directly. layers will restore the original assignment on termination.

Layers are created, deleted, reshaped, and otherwise manipulated in a terminal-dependent manner. For instance, the AT&T 630 MTG terminal provides a mouse-activated pop-up menu of layer operations. The method of ending a layers session is also defined by the terminal.

If a user wishes to take advantage of a terminal-specific application software package, the environment variable DMD should be set to the path name of the directory where the package was installed. Otherwise DMD should not be set.

EXAMPLES
A typical startup command is:

```
layers -f startup
```

where startup contains

```
8 8 700 200 date ; pwd ; exec $SHELL
8 300 780 850 exec $SHELL
```

The command

```
layers -h FILTER,LDTERM
```

pushes the STREAMS modules FILTER and LDTERM on each layer that is opened.

FILES
/dev/xt/??[0-7]
/usr/lib/layersys/lsys.8;7;3
$DMD/lib/layersys/lsys.8;?;?

SEE ALSO
ismpx(1), jterm(1), jwin(1), sh(1), write(1)
relogin(1M), wtinit(1M), xts(1M), xtt(1M), jagent(5), layers(5), xtproto(5),
and xt(7)
libwindows(3X) in the Programmer's Reference Manual

NOTES
The xt(7) driver supports an alternate data transmission scheme known as ENCODING MODE. This mode makes layers operation possible even over data links which intercept control characters or do not transmit 8-bit characters. ENCODING MODE is selected either by setting a setup option on your windowing terminal or by setting the environment variable DMDLOAD to the value hex before running layers: DMDLOAD=hex; export DMDLOAD
If, after executing `layers -f file`, the terminal does not respond in one or more of the layers, often the last command in the `command_list` for that layer did not invoke a shell.

To access this version of `layers`, make sure `/usr/bin` appears before any other directory, such as `$DMD/bin`, you have in your path that contains a layers program. [For information about defining the shell environmental variable `PATH` in your `.profile`, see `profile(4)`.] Otherwise, if there is a terminal-dependent version of `layers`, you may get it instead of the correct one.

`layers` sends all debugging and error messages to standard error. Therefore, when invoking `layers` with the `-D`, `-d`, or `-p` option, it is necessary to redirect standard error to a file. For example,

```
layers -D 2>layersmsgs
```

If `layers` encounters an error condition and standard error is not redirected, the last error encountered will be printed when the `layers` commands exits.

When using `layers` the minimum acceptable baud rate is 1200. Behavior of `layers` is unpredictable when using baud rate below 1200.

When using V7/BSD/Xenix applications (for example, the `jim` editor) `layers` should be invoked as

```
layers -h ldterm,ttcompat
```

This pushes the `ttcompat` module on each window and converts the BSD interface into the `termio(7)` interface.
NAME
ld – link editor for object files

SYNOPSIS
ld [options] files . . .

DESCRIPTION
The ld command combines relocatable object files, performs relocation, and
resolves external symbols. ld operates in two modes, static or dynamic, as
governed by the -d option. In static mode, -dn, relocatable object files given as
arguments are combined to produce an executable object file; if the -r option is
specified, relocatable object files are combined to produce one relocatable object
file. In dynamic mode, -dy, the default, relocatable object files given as argu­
ments are combined to produce an executable object file that will be linked at
execution with any shared object files given as arguments; if the -g option is
specified, relocatable object files are combined to produce a shared object. In all
cases, the output of ld is left in a.out by default.

If any argument is a library, it is searched exactly once at the point it is encoun­
tered in the argument list. The library may be either a relocatable archive or a
shared object. For an archive library, only those routines defining an unresolved
external reference are loaded. The archive library symbol table [see ar(4)] is
searched sequentially with as many passes as are necessary to resolve external
references that can be satisfied by library members. Thus, the ordering of
members in the library is functionally unimportant, unless there exist multiple
library members defining the same external symbol. A shared object consists of a
single entity all of whose references must be resolved within the executable being
built or within other shared objects with which it is linked.

The following options are recognized by ld:

-a In static mode only, produce an executable object file; give errors
for undefined references. This is the default behavior for static
mode. -a may not be used with the -r option.

-b In dynamic mode only, when creating an executable, do not do spe­
cial processing for relocations that reference symbols in shared
objects. Without the -b option, the link editor will create special
position-independent relocations for references to functions defined
in shared objects and will arrange for data objects defined in shared
objects to be copied into the memory image of the executable by
the dynamic linker at run time. With the -b option, the output
code may be more efficient, but it will be less sharable.

-d[y] n] When -dy, the default, is specified, ld uses dynamic linking; when
-dn is specified, ld uses static linking.

-e epsym Set the entry point address for the output file to be that of the sym­
bol epsym.

-h name In dynamic mode only, when building a shared object, record name
in the object’s dynamic section. name will be recorded in execut­
ables that are linked with this object rather than the object’s UNIX
System file name. Accordingly, name will be used by the dynamic
linker as the name of the shared object to search for at run time.
-lx Search a library libx.so or libx.a, the conventional names for shared object and archive libraries, respectively. In dynamic mode, unless the -Bstatic option is in effect, ld searches each directory specified in the library search path for a file libx.so or libx.a. The directory search stops at the first directory containing either. ld chooses the file ending in .so if -lx expands to two files whose names are of the form libx.so and libx.a. If no libx.so is found, then ld accepts libx.a. In static mode, or when the -Bstatic option is in effect, ld selects only the file ending in .a. A library is searched when its name is encountered, so the placement of -l is significant.

-m Produce a memory map or listing of the input/output sections on the standard output.

-o outfile Produce an output object file named outfile. The name of the default object file is a.out.

-r Combine relocatable object files to produce one relocatable object file. ld will not complain about unresolved references. This option cannot be used in dynamic mode or with -a.

-s Strip symbolic information from the output file. The debug and line sections and their associated relocation entries will be removed. Except for relocatable files or shared objects, the symbol table and string table sections will also be removed from the output object file.

-t Turn off the warning about multiply defined symbols that are not the same size.

-u symname Enter symname as an undefined symbol in the symbol table. This is useful for loading entirely from an archive library, since initially the symbol table is empty and an unresolved reference is needed to force the loading of the first routine. The placement of this option on the command line is significant; it must be placed before the library that will define the symbol.

-z defs Force a fatal error if any undefined symbols remain at the end of the link. This is the default when building an executable. It is also useful when building a shared object to assure that the object is self-contained, that is, that all its symbolic references are resolved internally.

-z nodefs Allow undefined symbols. This is the default when building a shared object. It may be used when building an executable in dynamic mode and linking with a shared object that has unresolved references in routines not used by that executable. This option should be used with caution.

-z text In dynamic mode only, force a fatal error if any relocations against non-writable, allocatable sections remain.
-B [dynamic| static]
Options governing library inclusion. -Bdynamic is valid in dynamic mode only. These options may be specified any number of times on the command line as toggles: if the -Bstatic option is given, no shared objects will be accepted until -Bdynamic is seen. See also the -l option.

-Bsymbolic In dynamic mode only, when building a shared object, bind references to global symbols to their definitions within the object, if definitions are available. Normally, references to global symbols within shared objects are not bound until run time, even if definitions are available, so that definitions of the same symbol in an executable or other shared objects can override the object’s own definition. ld will issue warnings for undefined symbols unless -z defs overrides.

-G In dynamic mode only, produce a shared object. Undefined symbols are allowed.

-I name When building an executable, use name as the path name of the interpreter to be written into the program header. The default in static mode is no interpreter; in dynamic mode, the default is the name of the dynamic linker, /usr/lib/libc.so.1. Either case may be overridden by -I. exec will load this interpreter when it loads the a.out and will pass control to the interpreter rather than to the a.out directly.

-L path Add path to the library search directories. ld searches for libraries first in any directories specified with -L options, then in the standard directories. This option is effective only if it precedes the -l option on the command line.

-M mapfile In static mode only, read mapfile as a text file of directives to ld. Because these directives change the shape of the output file created by ld, use of this option is strongly discouraged.

-Q[y| n] Under -Qy, an ident string is added to the .comment section of the output file to identify the version of the link editor used to create the file. This will result in multiple ld idents when there have been multiple linking steps, such as when using ld -r. This is identical with the default action of the cc command. -Qn suppresses version.

-v Output a message giving information about the version of ld being used.

-YP, dirlist Change the default directories used for finding libraries. dirlist is a colon-separated path list.

The environment variable LD_LIBRARY_PATH may be used to specify library search directories. In the most general case, it will contain two directory lists separated by a semicolon:

dirlist1:dirlist2
If `ld` is called with any number of occurrences of `-L`, as in

```
ld ... -Lpath1 ... -Lpathn ...
```

then the search path ordering is

```
dirlist1 path1 ... pathn dirlist2 LIBPATH
```

`LD_LIBRARY_PATH` is also used to specify library search directories to the dynamic linker at run time. That is, if `LD_LIBRARY_PATH` exists in the environment, the dynamic linker will search the directories named in it, before its default directory, for shared objects to be linked with the program at execution.

The environment variable `LD_RUN_PATH`, containing a directory list, may also be used to specify library search directories to the dynamic linker. If present and not null, it is passed to the dynamic linker by `ld` via data stored in the output object file.

FILES

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libx.so</td>
<td>libraries</td>
</tr>
<tr>
<td>libx.a</td>
<td>libraries</td>
</tr>
<tr>
<td>a.out</td>
<td>output file</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>usually /usr/ccs/lib:/usr/lib</td>
</tr>
</tbody>
</table>

SEE ALSO

`as(1), cc(1), exec(2), exit(2), end(3C), a.out(4), ar(4)`

NOTES

Through its options, the link editor gives users great flexibility; however, those who use the `-M mapfile` option must assume some added responsibilities. Use of this feature is strongly discouraged.
NAME
ld – link editor, dynamic link editor

SYNOPSIS
/usr/ucb/ld [options]

DESCRIPTION
/usr/ucb/ld is the link editor for the BSD Compatibility Package. /usr/ucb/ld is identical to /usr/bin/ld [see ld(1)] except that BSD libraries and routines are included before System V libraries and routines.

/usr/ucb/ld accepts the same options as /usr/bin/ld, with the following exceptions:
- $L\ dir$ Add dir to the list of directories searched for libraries by /usr/bin/ld. Directories specified with this option are searched before /usr/ucblib and /usr/lib.
- $-y\ LU,\ dir$ Change the default directory used for finding libraries. Warning: this option may have unexpected results, and should not be used.

FILES
/usr/ucblib
/usr/lib
/usr/ucblib/libx.a
/usr/lib/libx.a

SEE ALSO
ar(1), as(1), cc(1), ld(1), lorder(1), strip(1), tsort(1) in the Programmer’s Reference Manual
NAME

`ldd` – list dynamic dependencies

SYNOPSIS

`ldd [-d | -r] file`

DESCRIPTION

The `ldd` command lists the path names of all shared objects that would be loaded as a result of executing `file`. If `file` is a valid executable but does not require any shared objects, `ldd` will succeed, producing no output.

`ldd` may also be used to check the compatibility of `file` with the shared objects it uses. It does this by optionally printing warnings for any unresolved symbol references that would occur if `file` were executed. Two options govern this mode of `ldd`:

- `-d` Causes `ldd` to check all references to data objects.
- `-r` Causes `ldd` to check references to both data objects and functions.

Only one of the above options may be given during any single invocation of `ldd`.

SEE ALSO

`cc(1), ld(1)`

The "C Compilation System" chapter in the *Programmer’s Guide: ANSI C and Programming Support Tools*

DIAGNOSTICS

`ldd` prints its record of shared object path names to `stdout`. The optional list of symbol resolution problems are printed to `stderr`. If `file` is not an executable file or cannot be opened for reading, a non-zero exit status is returned.

NOTES

`ldd` doesn’t list shared objects explicitly attached via `dlopen(3X)`. `ldd` uses the same algorithm as the dynamic linker to locate shared objects.
NAME

ldsysdump - load system dump from floppy diskettes

SYNOPSIS

/usr/sbin/ldsysdump destination_file

DESCRIPTION

The ldsysdump command loads the memory image files from the floppy diskettes used to take a system dump and recombines them into a single file on the hard disk suitable for use by the crash command. The destination_file is the name of the hard disk file into which the data from the diskettes will be loaded.

When invoked, ldsysdump begins an interactive procedure that prompts the user to insert the diskettes to be loaded. The user has the option of quitting the session at any time. This allows only the portion of the system image needed to be dumped.

EXAMPLES

This example loads the three floppies produced via the sysdump command on a machine equipped with 2 MB of memory.

$ ldsysdump /var/tmp/cdump

Insert first sysdump floppy.
Enter 'c' to continue, 'q' to quit: c

Loading sysdump
...
...

Insert next sysdump floppy.
Enter 'c' to continue, 'q' to quit: c

Loading more sysdump
...
...

Insert next sysdump floppy.
Enter 'c' to continue, 'q' to quit: c

Loading more sysdump
...
...

3 Sysdump files coalesced, 4096 (512 byte) blocks

$

SEE ALSO

crash(1M), sysdump(8)

ulimit(2) in the Programmer’s Reference Manual
DIAGNOSTICS
If a floppy diskette is inserted out of sequence a message is printed. The user is allowed to insert a new one and continue the session.

NOTES
The file size limit must be set large enough to hold the dump.
NAME
lex - generate programs for simple lexical tasks

SYNOPSIS
lex [-ctvn -V -Q[y|n]] [file]

DESCRIPTION
The lex command generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be searched for and C text to be executed when these strings are found.

lex generates a file named lex.yy.c. When lex.yy.c is compiled and linked with the lex library, it copies the input to the output except when a string specified in the file is found. When a specified string is found, then the corresponding program text is executed. The actual string matched is left in yytext, an external character array. Matching is done in order of the patterns in the file. The patterns may contain square brackets to indicate character classes, as in [abx-z] to indicate a, b, x, y, and z; and the operators *, +, and ? mean, respectively, any non-negative number of, any positive number of, and either zero or one occurrence of, the previous character or character class. Thus, [a-zA-Z]+ matches a string of letters. The character . is the class of all ASCII characters except new-line. Parentheses for grouping and vertical bar for alternation are also supported. The notation r{d,e} in a rule indicates between d and e instances of regular expression r. It has higher precedence than |, but lower than *, ?, +, and concatenation. The character ^ at the beginning of an expression permits a successful match only immediately after a new-line, and the character $ at the end of an expression requires a trailing new-line. The character / in an expression indicates trailing context; only the part of the expression up to the slash is returned in yytext, but the remainder of the expression must follow in the input stream. An operator character may be used as an ordinary symbol if it is within " symbols or preceded by \\.

Three macros are expected: input() to read a character; unput(c) to replace a character read; and output(c) to place an output character. They are defined in terms of the standard streams, but you can override them. The program generated is named yylex(), and the lex library contains a main() that calls it. The macros input and output read from and write to stdin and stdout, respectively.

The function yymore accumulates additional characters into the same yytext. The function yyless(n) pushes back yyleng−n characters into the input stream. (yyleng is an external int variable giving the length in bytes of yytext.) The function yywrap is called whenever the scanner reaches end of file and indicates whether normal wrapup should continue. The action REJECT on the right side of the rule causes the match to be rejected and the next suitable match executed. The action ECHO on the right side of the rule is equivalent to printf("%s", yytext).
Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes %, it is copied into the external definition area of the lex.yy.c file. All rules should follow a %, as in yacc. Lines preceding % that begin with a non-blank character define the string on the left to be the remainder of the line; it can be called out later by surrounding it with { }. In this section, C code (and preprocessor statements) can also be included between %{ and %}. Note that curly brackets do not imply parentheses; only string substitution is done.

The external names generated by lex all begin with the prefix yy or YY.

The flags must appear before any files.
- c Indicates C actions and is the default.
- t Causes the lex.yy.c program to be written instead to standard output.
- v Provides a two-line summary of statistics.
- n Will not print out the -v summary.
- v Print out version information on standard error.
- Q[y|n] Print out version information to output file lex.yy.c by using -Qy. The -Qn option does not print out version information and is the default.

Multiple files are treated as a single file. If no files are specified, standard input is used.

Certain default table sizes are too small for some users. The table sizes for the resulting finite state machine can be set in the definitions section:

```%-p n number of positions is n (default 2500)
%-n n number of states is n (500)
%-e n number of parse tree nodes is n (1000)
%-a n number of transitions is n (2000)
%-k n number of packed character classes is n (2500)
%-o n size of output array is n (3000)
```

The use of one or more of the above automatically implies the -v option, unless the -n option is used.

EXAMPLE

```D [0-9]
%{
    void
    skipcomments(void)
    {
        for(;;)
        {
            while(input()!="*")
            ;
            if(input()=="/")
                return;
        else
```
unput(yytext[yylen-1]);
}
%
%%
if [a-z]+ [0-9]+ {D}+ {D}+ 11++
ll
ll/*
%%
unput(yytext[yyleng-1]);
}
%
%%
if [a-z]+ printf("IF statement\n");
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);
printf("decimal number %s\n",yytext);
printf("unary op\n");
printf("binary op\n");
printf("\n"); /*no action */
"*/" skipcommnts();
%

SEE ALSO

yacc(1)
NAME
 line – read one line

SYNOPSIS
 line

DESCRIPTION
 line copies one line (up to a new-line) from the standard input and writes it on
 the standard output. It returns an exit code of 1 on EOF and always prints at least
 a new-line. It is often used within shell files to read from the user's terminal.

SEE ALSO
 sh(1)
 read(2) in the Programmer's Reference Manual
NAME
link, unlink – link and unlink files and directories

SYNOPSIS
/usr/sbin/link file1 file2
/usr/sbin/unlink file

DESCRIPTION
The link command is used to create a file name that points to another file. Linked files and directories can be removed by the unlink command; however, it is strongly recommended that the rm and rmdir commands be used instead of the unlink command.

The only difference between ln and link and unlink is that the latter do exactly what they are told to do, abandoning all error checking. This is because they directly invoke the link and unlink system calls.

SEE ALSO
rm(1) in the User's Reference Manual
link(2), unlink(2) in the Programmer's Reference Manual

NOTES
These commands can be run only by the super-user.
NAME
lint – a C program checker

SYNOPSIS
lint [options] files

DESCRIPTION
lint detects features of C program files which are likely to be bugs, non-portable, or wasteful. It also checks type usage more strictly than the compiler. lint issues error and warning messages. Among the things it detects are unreachable statements, loops not entered at the top, automatic variables declared and not used, and logical expressions whose value is constant. lint checks for functions that return values in some places and not in others, functions called with varying numbers or types of arguments, and functions whose values are not used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments whose names end with .ln are taken to be the result of an earlier invocation of lint with either the -c or the -o option used. The .ln files are analogous to .o (object) files that are produced by the cc(l) command when given a .c file as input. Files with other suffixes are warned about and ignored.

lint takes all the .c, .ln, and llib-1x.ln (specified by -1x) files and processes them in their command line order. By default, lint appends the standard C lint library (llib-1c.ln) to the end of the list of files. When the -c option is used, the .ln and the llib-1x.ln files are ignored. When the -c option is not used, the second pass of lint checks the .ln and the llib-1x.ln list of files for mutual compatibility.

Any number of lint options may be used, in any order, intermixed with filename arguments. The following options are used to suppress certain kinds of complaints:

- a Suppress complaints about assignments of long values to variables that are not long.
- b Suppress complaints about break statements that cannot be reached.
- h Do not apply heuristic tests that attempt to intuit bugs, improve style, and reduce waste.
- m Suppress complaints about external symbols that could be declared static.
- u Suppress complaints about functions and external variables used and not defined, or defined and not used. (This option is suitable for running lint on a subset of files of a larger program).
- v Suppress complaints about unused arguments in functions.
- x Do not report variables referred to by external declarations but never used.
The following arguments alter lint's behavior:

-`-rdir` Search for included header files in the directory `dir` before searching the current directory and/or the standard place.

-`-lx` Include the lint library `lib-lx.ln`. For example, you can include a lint version of the math library `lib-lm.ln` by inserting `-lm` on the command line. This argument does not suppress the default use of `lib-1c.ln`. These lint libraries must be in the assumed directory. This option can be used to reference local lint libraries and is useful in the development of multi-file projects.

-`-Ldir` Search for lint libraries in `dir` before searching the standard place.

-`-n` Do not check compatibility against the standard C lint library.

-`-p` Attempt to check portability to other dialects of C. Along with stricter checking, this option causes all non-external names to be truncated to eight characters and all external names to be truncated to six characters and one case.

-`-s` Produce one-line diagnostics only. lint occasionally buffers messages to produce a compound report.

-`-k` Alter the behavior of /*LINTED [message]*/ directives. Normally, lint will suppress warning messages for the code following these directives. Instead of suppressing the messages, lint prints an additional message containing the comment inside the directive.

-`-y` Specify that the file being linted will be treated as if the /*LINTLIBRARY*/ directive had been used. A lint library is normally created by using the /*LINTLIBRARY*/ directive.

-`-F` Print pathnames of files. lint normally prints the filename without the path.

-`-c` Cause lint to produce a .ln file for every .c file on the command line. These .ln files are the product of lint's first pass only, and are not checked for inter-function compatibility.

-`-ox` Cause lint to create a lint library with the name `lib-lx.ln`. The -c option nullifies any use of the -o option. The lint library produced is the input that is given to lint's second pass. The -o option simply causes this file to be saved in the named lint library. To produce a `lib-lx.ln` without extraneous messages, use of the -x option is suggested. The -v option is useful if the source file(s) for the lint library are just external interfaces.

Some of the above settings are also available through the use of "lint comments" (see below).

-`-v` Write to standard error the product name and release.

-`-wfile` Write a .ln file to file, for use by cflow(1).
-Rfile Write a .ln file to file, for use by cxref(1).

lint recognizes many cc(1) command line options, including -D, -U, -g, -O, -Xt, -Xa, and -Xc, although -g and -O are ignored. Unrecognized options are warned about and ignored. The predefined macro lint is defined to allow certain questionable code to be altered or removed for lint. Thus, the symbol lint should be thought of as a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/*ARGSUSEDn*/
 makes lint check only the first n arguments for usage; a missing n is taken to be 0 (this option acts like the -v option for the next function).

/*CONSTCOND*/ or /*CONSTANTCOND*/ or /*CONSTANTCONDITION*/
 suppresses complaints about constant operands for the next expression.

/*EMPTY*/
 suppresses complaints about a null statement consequent on an if statement. This directive should be placed after the test expression, and before the semicolon. This directive is supplied to support empty if statements when a valid else statement follows. It suppresses messages on an empty else consequent.

/*FALLTHRU*/ or /*FALLTHROUGH*/
 suppresses complaints about fall through to a case or default labeled statement. This directive should be placed immediately preceding the label.

/*LINTLIBRARY*/
 at the beginning of a file shuts off complaints about unused functions and function arguments in this file. This is equivalent to using the -v and -x options.

/*LINTED [message]*)/
 suppresses any intra-file warning except those dealing with unused variables or functions. This directive should be placed on the line immediately preceding where the lint warning occurred. The -k option alters the way in which lint handles this directive. Instead of suppressing messages, lint will print an additional message, if any, contained in the comment. This directive is useful in conjunction with the -s option for post-lint filtering.

/*NOTREACHED*/
 at appropriate points stops comments about unreachable code. [This comment is typically placed just after calls to functions like exit(2)].

/*PRINTFLIKEn*/
 makes lint check the first (n-1) arguments as usual. The nth argument is interpreted as a printf format string that is used to check the remaining arguments.
/*PROTOLIBn*/
causes lint to treat function declaration prototypes as function
definitions if n is non-zero. This directive can only be used in con­
junction with the
/* LINTLIBRARY */ directive. If n is zero, function prototypes will
be treated normally.

/*SCANFLlKEN*/
makes lint check the first (n-1) arguments as usual. The nth argu­
ment is interpreted as a scanf format string that is used to check
the remaining arguments.

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments
in the following function declaration. The data types of the first n
arguments are checked; a missing n is taken to be 0. The use of
the ellipsis terminator (…) in the definition is suggested in new or
updated code.

lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been processed,
if -s is not specified. Finally, if the -c option is not used, information gathered
from all input files is collected and checked for consistency. At this point, if it is
not clear whether a complaint stems from a given source file or from one of its
included files, the source filename will be printed followed by a question mark.

The behavior of the -c and the -o options allows for incremental use of lint on
a set of C source files. Generally, one invokes lint once for each source file with
the -c option. Each of these invocations produces a .ln file that corresponds to
the .c file, and prints all messages that are about just that source file. After all
the source files have been separately run through lint, it is invoked once more
(without the -c option), listing all the .ln files with the needed -lx options. This
will print all the inter-file inconsistencies. This scheme works well with make; it
allows make to be used to lint only the source files that have been modified
since the last time the set of source files were linted.

FILES

LIBDIR
the directory where the lint libraries specified by the
-1x option must exist

LIBDIR/1int[12]
first and second passes

LIBDIR/1lib-lc.ln
declarations for C Library functions (binary format;
source is in LIBDIR/1lib-lc)

LIBPATH/1lib-lm.ln
declarations for Math Library functions (binary format;
source is in LIBDIR/1lib-lm)

TMPDIR/*lint*
temporaries

TMPDIR
usually /var/tmp but can be redefined by setting the
environment variable TMPDIR [see tempnam in
tmpnam(3S)].
lint(1) (C Development Set) lint(1)

LIBDIR
usually /ccs/lib

LIBPATH
usually /usr/ccs/lib:/usr/lib

SEE ALSO
cc(1), make(1)
NAME
 listdgrp - lists members of a device group

SYNOPSIS
 listdgrp dgroup

DESCRIPTION
 listdgrp displays the members of the device group specified by the dgroup.

ERRORS
 This command will exit with one of the following values:
 0 = successful completion of the task.
 1 = command syntax incorrect, invalid option used, or internal error occurred.
 2 = device group table could not be opened for reading.
 3 = device group dgroup could not be found in the device group table.

EXAMPLE
 To list the devices that belong to group partitions:
 $ listdgrp partitions
 root
 swap
 usr

FILES
 /etc/dgroup.tab

SEE ALSO
 putdgrp(1)
NAME

listen - network listener daemon

SYNOPSIS

/usr/lib/saf/listen [-m devstem] net_spec

DESCRIPTION

The listen process "listens" to a network for service requests, accepts requests when they arrive, and invokes servers in response to those service requests. The network listener process may be used with any connection-oriented network (more precisely, with any connection-oriented transport provider) that conforms to the Transport Interface (TLI) specification.

The listener internally generates a pathname for the minor device for each connection; it is this pathname that is used in the utmp entry for a service, if one is created. By default, this pathname is the concatenation of the prefix /dev/netspec with the decimal representation of the minor device number. When the -m devstem option is specified, the listener will use devstem as the prefix for the pathname. In either case, the representation of the minor device number will be at least two digits (for example, 05 or 27), but will be longer when necessary to accommodate minor device numbers larger than 99.

SERVER INVOCATION

When a connection indication is received, the listener creates a new transport endpoint and accepts the connection on that endpoint. Before giving the file descriptor for this new connection to the server, any designated STREAMS modules are pushed and the configuration script is executed, if one exists. This file descriptor is appropriate for use with either TLI (see especially t_sync(3N)) or the sockets interface library.

By default, a new instance of the server is invoked for each connection. When the server is invoked, file descriptor 0 refers to the transport endpoint, and is open for reading and writing. File descriptors 1 and 2 are copies of file descriptor 0; no other file descriptors are open. The service is invoked with the user and group IDs of the user name under which the service was registered with the listener, and with the current directory set to the HOME directory of that user.

Alternatively, a service may be registered so that the listener will pass connections to a standing server process through a FIFO or a named STREAM, instead of invoking the server anew for each connection. In this case, the connection is passed in the form of a file descriptor that refers to the new transport endpoint. Before the file descriptor is sent to the server, the listener interprets any configuration script registered for that service using doconfig(3N), although doconfig is invoked with both the NORUN and NOASSIGN flags. The server receives the file descriptor for the connection in a strrecvfd structure via an I_RECVFD ioctl(2).

For more details about the listener and its administration, see nlsadmin(1M).

FILES

/etc/saf/pmtag/*
SEE ALSO

nlsadmin(1M), pmadm(1M), sac(1M), sacadm(1M),
doconfig(3N), nlsgetcall, nlsprovider(3N),
streamio(7)

Network Programmer's Guide

NOTES

When passing a connection to a standing server, the user and group IDs contained in the \texttt{strrecvfd} structure will be those for the listener (that is, they will both be 0); the user name under which the service was registered with the listener is not reflected in these IDs.

When operating multiple instances of the listener on a single transport provider, there is a potential race condition in the binding of addresses during initialization of the listeners if any of their services have dynamically assigned addresses. This condition would appear as an inability of the listener to bind a static-address service to its otherwise valid address, and would result from a dynamic-address service having been bound to that address by a different instance of the listener.
NAME

listusers — list user login information

SYNOPSIS

listusers [-g groups] [-l logins]

DESCRIPTION

Executed without any options, this command displays a list of all user logins, sorted by login, and the account field value associated with each login in /etc/passwd.

-g Lists all user logins belonging to group, sorted by login. Multiple groups can be specified as a comma-separated list.

-l Lists the user login or logins specified by logins, sorted by login. Multiple logins can be specified as a comma-separated list.

NOTES

A user login is one that has a UID of 100 or greater.

The -l and -g options can be combined. User logins will be listed only once, even if they belong to more than one of the selected groups.
NAME
\texttt{ln} – link files

SYNOPSIS
\texttt{ln} [\texttt{-s} [\texttt{-f} | \texttt{-n}]] \texttt{file1} [\texttt{file2} \ldots] \texttt{target}

DESCRIPTION
The \texttt{ln} command links \texttt{filen} to \texttt{target} by creating a directory entry that refers to \texttt{target}. By using \texttt{ln} with one or more file names, the user may create one or more links to \texttt{target}.

The \texttt{ln} command may be used to create both hard links and symbolic links; by default it creates hard links. A hard link to a file is indistinguishable from the original directory entry. Any changes to a file are effective independent of the name used to reference the file. Hard links may not span file systems and may not refer to directories.

Without the \texttt{-s} option, \texttt{ln} is used to create hard links. \texttt{filen} is linked to \texttt{target}. If \texttt{target} is a directory, another file named \texttt{filen} is created in \texttt{target} and linked to the original \texttt{filen}. If \texttt{target} is a file, its contents are overwritten.

If \texttt{ln} determines that the mode of \texttt{target} forbids writing, it will print the mode [see \texttt{chmod}(2)], ask for a response, and read the standard input for one line. If the line begins with \texttt{y}, the link occurs, if permissible; otherwise, the command exits.

There are three options to \texttt{ln}. If multiple options are specified, the one with the highest priority is used and the remainder are ignored. The options, in descending order of priority, are:

\texttt{-s} \texttt{ln} will create a symbolic link. A symbolic link contains the name of the file to which it is linked. Symbolic links may span file systems and may refer to directories. If the linkname exists, then do not overwrite the contents of the file. A symbolic link’s permissions are always set to read, write, and execute permission for owner, group, and world (777).

\texttt{-f} \texttt{ln} will link files without questioning the user, even if the mode of \texttt{target} forbids writing. Note that this is the default if the standard input is not a terminal.

\texttt{-n} If the linkname is an existing file, do not overwrite the contents of the file. The \texttt{-f} option overrides this option.

If the \texttt{-s} option is used with two arguments, \texttt{target} may be an existing directory or a non-existent file. If \texttt{target} already exists and is not a directory, an error is returned. \texttt{filen} may be any path name and need not exist. If it exists, it may be a file or directory and may reside on a different file system from \texttt{target}. If \texttt{target} is an existing directory, a file is created in directory \texttt{target} whose name is \texttt{filen} or the last component of \texttt{filen}. This file is a symbolic link that references \texttt{filen}. If \texttt{target} does not exist, a file with name \texttt{target} is created and it is a symbolic link that references \texttt{filen}.

If the \texttt{-s} option is used with more than two arguments, \texttt{target} must be an existing directory or an error will be returned. For each \texttt{filen}, a file is created in \texttt{target} whose name is \texttt{filen} or its last component; each new \texttt{filen} is a symbolic link to the original \texttt{filen}. The \texttt{files} and \texttt{target} may reside on different file systems.
SEE ALSO
chmod(1), cp(1), mv(1), rm(1), link(2), readlink(2), stat(2), symlink(2)

NOTES
Doing operations that involve "." (such as "cd ..") in a directory that is symbolically linked will reference the original directory not the target.
The -s option does not use the current working directory. In the command
ln -s path target
path is taken literally without being evaluated against the current working directory.
NAME
ln – make hard or symbolic links to files

SYNOPSIS
/usr/ucb/ln [-fs] filename [linkname]
/usr/ucb/ln [-fs] pathname ... directory

DESCRIPTION
/usr/ucb/ln creates an additional directory entry, called a link, to a file or directory. Any number of links can be assigned to a file. The number of links does not affect other file attributes such as size, protections, data, and so on.

filename is the name of the original file or directory. linkname is the new name to associate with the file or filename. If linkname is omitted, the last component of filename is used as the name of the link.

If the last argument is the name of a directory, symbolic links are made in that directory for each pathname argument; /usr/ucb/ln uses the last component of each pathname as the name of each link in the named directory.

A hard link (the default) is a standard directory entry just like the one made when the file was created. Hard links can only be made to existing files. Hard links cannot be made across file systems (disk partitions, mounted file systems). To remove a file, all hard links to it must be removed, including the name by which it was first created; removing the last hard link releases the inode associated with the file.

A symbolic link, made with the -s option, is a special directory entry that points to another named file. Symbolic links can span file systems and point to directories. In fact, you can create a symbolic link that points to a file that is currently absent from the file system; removing the file that it points to does not affect or alter the symbolic link itself.

A symbolic link to a directory behaves differently than you might expect in certain cases. While an ls(1V) on such a link displays the files in the pointed-to directory, an ‘ls -l’ displays information about the link itself:

```
example% /usr/ucb/ln -s dir link
example% ls link
file1 file2 file3 file4
example% ls -l link
lrwxrwxrwx 1 user 7 Jan 11 23:27 link -> dir
```

When you cd(1) to a directory through a symbolic link, you wind up in the pointed-to location within the file system. This means that the parent of the new working directory is not the parent of the symbolic link, but rather, the parent of the pointed-to directory. For instance, in the following case the final working directory is /usr and not /home/user/linktest.

```
example% pwd
/home/user/linktest
example% /usr/ucb/ln -s /var/tmp symlink
example% cd symlink
example% cd ..
example% pwd
/usr
```
C shell user’s can avoid any resulting navigation problems by using the `pushd` and `popd` built-in commands instead of `cd`.

OPTIONS

- `-f` Force a hard link to a directory — this option is only available to the super-user.
- `-s` Create a symbolic link or links.

EXAMPLE

The commands below illustrate the effects of the different forms of the `/usr/ucb/ln` command:

```
example% /usr/ucb/ln file link
example% ls -F file link
  file  link
example% /usr/ucb/ln -s file symlink
example% ls -F file symlink
  file  symlink@
example% ls -li file link symlink
  10606 -rw-r--r--  2 user 0 Jan 12 00:06 file
  10606 -rw-r--r--  2 user 0 Jan 12 00:06 link
  10607 lrwxrwxrwx  1 user 4 Jan 12 00:06 symlink -> file
example% /usr/ucb/ln -s nonesuch devoid
example% ls -F devoid
  devoid@
example% cat devoid
  devoid: No such file or directory
example% /usr/ucb/ln -s /proto/bin/* /tmp/bin
example% ls -F /proto/bin /tmp/bin
  /proto/bin:
    x*   y*   z*  
    /tmp/bin:
      x@   y@   z@
```

SEE ALSO

`cp(l), ls(l), mv(l), rm(l)` in the *User’s Reference Manual*

`link(2), readlink(2), stat(2), symlink(2)` in the *Programmer’s Reference Manual*

NOTES

When the last argument is a directory, simple basenames should not be used for `pathname` arguments. If a basename is used, the resulting symbolic link points to itself:

```
example% /usr/ucb/ln -s file /tmp
example% ls -l /tmp/file
  lrwxrwxrwx  1 user 4 Jan 12 00:16 /tmp/file -> file
example% cat /tmp/file
  /tmp/file: Too many levels of symbolic links
```
To avoid this problem, use full pathnames, or prepend a reference to the `PWD` variable to files in the working directory:

```
example% rm /tmp/file
example% /usr/ucb/ln -s $PWD/file /tmp
lrwxrwxrwx 1 user 4 Jan 12 00:16 /tmp/file -> /home/user/subdir/file
```
lockd(1M) (NFS) lockd(1M)

NAME
lockd – network lock daemon

SYNOPSIS
/usr/lib/nfs/lockd [-t timeout] [-g graceperiod]

DESCRIPTION
lockd processes lock requests that are either sent locally by the kernel or
remotely by another lock daemon. lockd forwards lock requests for remote data
to the server site’s lock daemon through RPC/XDR. lockd then requests the
status monitor daemon, statd(1M), for monitor service. The reply to the lock
request will not be sent to the kernel until the status daemon and the server site’s
lock daemon have replied.

If either the status monitor or server site’s lock daemon is unavailable, the reply
to a lock request for remote data is delayed until all daemons become available.

When a server recovers, it waits for a grace period for all client-site lock daemons
to submit reclaim requests. Client-site lock daemons, on the other hand, are
notified by the status monitor daemon of the server recovery and promptly
resubmit previously granted lock requests. If a lock daemon fails to secure a pre­
viously granted lock at the server site, the it sends SIGLOST to a process.

OPTIONS
-t timeout Use timeout seconds as the interval instead of the default value
(15 seconds) to retransmit lock request to the remote server.
-g graceperiod Use graceperiod seconds as the grace period duration instead of
the default value (45 seconds).

SEE ALSO
statd(1M), fcntl(2), signal(2), lockf(3C)
NAME
logger – add entries to the system log

SYNOPSIS
/usr/ucb/logger [-t tag] [-p priority] [-i] [-f filename] [message] ...

DESCRIPTION
logger provides a method for adding one-line entries to the system log file from
the command line. One or more message arguments can be given on the com­
mand line, in which case each is logged immediately. Otherwise, a filename can
be specified, in which case each line in the file is logged. If neither is specified,
logger reads and logs messages on a line-by-line basis from the standard input.

The following options are available:
- t tag Mark each line added to the log with the specified tag.
- p priority Enter the message with the specified priority. The message priority
 can be specified numerically, or as a facility.level pair. For example,
 ‘-p local3.info’ assigns the message priority to the info level in
 the local3 facility. The default priority is user.notice.
- i Log the process ID of the logger process with each line.
- f filename Use the contents of filename as the message to log.
message If this is unspecified, either the file indicated with -f or the standard
 input is added to the log.

EXAMPLE
logger System rebooted
will log the message ‘System rebooted’ to the facility at priority notice to be
 treated by syslogd as other messages to the facility notice are.

logger -p local0notice -t HOSTIDM -f /dev/idmc
will read from the file /dev/idmc and will log each line in that file as a message
with the tag ‘HOSTIDM’ at priority notice to be treated by syslogd as other mes­
sages to the facility local0 are.

SEE ALSO
syslog(3), syslogd(1M)
NAME
login – sign on
SYNOPSIS
login [-d device] [name [environ ...]]
DESCRIPTION
The login command is used at the beginning of each terminal session and allows you to identify yourself to the system. It may be invoked as a command or by the system when a connection is first established. It is invoked by the system when a previous user has terminated the initial shell by typing a CTRL-d to indicate an end-of-file.

If login is invoked as a command it must replace the initial command interpreter. This is accomplished by typing

```
exec login
```

from the initial shell.

login asks for your user name (if it is not supplied as an argument), and if appropriate, your password. Echoing is turned off (where possible) during the typing of your password, so it will not appear on the written record of the session.

If there are no lower-case characters in the first line of input processed, login assumes the connecting TTY is an upper-case-only terminal and sets the port’s termio(7) options to reflect this.

login accepts a device option, device. device is taken to be the path name of the TTY port login is to operate on. The use of the device option can be expected to improve login performance, since login will not need to call ttyname(3).

If you make any mistake in the login procedure, the message

```
Login incorrect
```

is printed and a new login prompt will appear. If you make five incorrect login attempts, all five may be logged in /var/adm/loginlog (if it exists) and the TTY line will be dropped.

If you do not complete the login successfully within a certain period of time (e.g., one minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the /etc/profile script is executed, the time you last logged in is printed, /etc/motd is printed, the user-ID, group-ID, supplementary group list, working directory, and command interpreter (usually sh) are initialized, and the file .profile in the working directory is executed, if it exists. The name of the command interpreter is – followed by the last component of the interpreter’s path name (e.g., -sh). If this field in the password file is empty, then the default command interpreter, /usr/bin/sh is used. If this field is *, then the named directory becomes the root directory, the starting point for path searches for path names beginning with a /. At that point login is re-executed at the new level which must have its own root structure, including /var/adm/login and /etc/passwd.
The basic environment is initialized to:

```
HOME=your-login-directory
LOGNAME=your-login-name
PATH=/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/var/mail/your-login-name
TZ=timezone-specification
```

The environment may be expanded or modified by supplying additional arguments to `login`, either at execution time or when `login` requests your login name. The arguments may take either the form `xxx` or `xxx=yyy`. Arguments without an equal sign are placed in the environment as

```
Ln=xxx
```

where \(n \) is a number starting at 0 and is incremented each time a new variable name is required. Variables containing an `=` are placed in the environment without modification. If they already appear in the environment, then they replace the older value. There are two exceptions. The variables `PATH` and `SHELL` cannot be changed. This prevents people, logging into restricted shell environments, from spawning secondary shells which are not restricted. `login` understands simple single-character quoting conventions. Typing a backslash in front of a character quotes it and allows the inclusion of such characters as spaces and tabs.

FILES

```
/var/adm/utmp     accounting
/var/adm/wtmp     accounting
/var/mail/your-name mailbox for user your-name
/var/adm/loginlog record of failed login attempts
/etc/motd         message-of-the-day
/etc/passwd       password file
/etc/profile      system profile
.profile            user's login profile
/var/adm/lastlog  time of last login
```

SEE ALSO

`mail(1)`, `newgrp(1M)`, `sh(1)`, `su(1M)`

`loginlog(4)`, `passwd(4)`, `profile(4)`, `environ(5)` in the *Programmer's Reference Manual*

Files and Directories in the *System Administrator's Guide*

DIAGNOSTICS

- `login incorrect` if the user name or the password cannot be matched.
- No shell, cannot open password file, or no directory: consult a system engineer.
- No utmp entry. You must exec "login" from the lowest level "sh" if you attempted to execute `login` as a command without using the shell's `exec` internal command or from a shell other than the initial shell.
NAME

logins – list user and system login information

SYNOPSIS

logins [-dmoptuxa] [-g groups] [-l logins]

DESCRIPTION

This command displays information on user and system logins. Contents of the output is controlled by the command options and can include the following: user or system login, user id number, /etc/passwd account field value (user name or other information), primary group name, primary group id, multiple group names, multiple group ids, home directory, login shell, and four password aging parameters. The default information is the following: login id, user id, primary group name, primary group id and the account field value from /etc/passwd. Output is sorted by user id, displaying system logins followed by user logins.

-d Selects logins with duplicate uids.

-m Displays multiple group membership information.

-o Formats output into one line of colon-separated fields.

-p Selects logins with no passwords.

-s Selects all system logins.

-t Sorts output by login instead of by uid.

-u Selects all user logins.

-x Prints an extended set of information about each selected user. The extended information includes home directory, login shell and password aging information, each displayed on a separate line. The password information consists of password status (PS for passworded, NP for no password or LK for locked). If the login is passworded, status is followed by the date the password was last changed, the number of days required between changes, and the number of days allowed before a change is required. The password aging information shows the time interval that the user will receive a password expiration warning message (when logging on) before the password expires.

-a Adds two password expiration fields to the display. The fields show how many days a password can remain unused before it automatically becomes inactive and the date that the password will expire.

-g Selects all users belonging to group, sorted by login. Multiple groups can be specified as a comma-separated list.

-l Selects the requested login. Multiple logins can be specified as a comma-separated list.

NOTES

Options may be used together. If so, any login matching any criteria will be displayed. When the -l and -g options are combined, a user will only be listed once, even if they belong to more than one of the selected groups.
NAME
 logname – get login name

SYNOPSIS
 logname

DESCRIPTION
 logname returns the name of the user running the process.

FILES
 /etc/profile

SEE ALSO
 env(1), login(1)
 cuserid(3C) in the Programmer's Reference Manual
 environ(5) in the System Administrator's Reference Manual
NAME

look – find words in the system dictionary or lines in a sorted list

SYNOPSIS

/usr/ucb/look [-d] [-f] [-tc] string [filename]

DESCRIPTION

The look command consults a sorted filename and prints all lines that begin with string.

If no filename is specified, look uses /usr/ucblib/dict/words with collating sequence -df.

The following options are available:

- d Dictionary order. Only letters, digits, TAB and SPACE characters are used in comparisons.
- f Fold case. Upper case letters are not distinguished from lower case in comparisons.
- tc Set termination character. All characters to the right of c in string are ignored.

FILES

/usr/ucblib/dict/words

SEE ALSO

grep(1), sort(1) in the User’s Reference Manual
NAME
lookbib – find references in a bibliographic database

SYNOPSIS
/usr/ucb/lookbib database

DESCRIPTION
A bibliographic reference is a set of lines, constituting fields of bibliographic
information. Each field starts on a line beginning with a '%', followed by a key­
letter, then a blank, and finally the contents of the field, which may continue until
the next line starting with '%'. See addbib.

lookbib uses an inverted index made by indxbib to find sets of bibliographic
references. It reads keywords typed after the ‘>’ prompt on the terminal, and
retrieves records containing all these keywords. If nothing matches, nothing is
returned except another ‘>’ prompt.

It is possible to search multiple databases, as long as they have a common index
made by indxbib. In that case, only the first argument given to indxbib is
specified to lookbib.

If lookbib does not find the index files (the .i[abc] files), it looks for a refer­
ence file with the same name as the argument, without the suffixes. It creates a
file with a .ig suffix, suitable for use with fgrep (see grep). lookbib then uses
this fgrep file to find references. This method is simpler to use, but the .ig file is
slower to use than the .i[abc] files, and does not allow the use of multiple
reference files.

FILES
* .ia
* .ib index files
* .ic
* .ig reference file

SEE ALSO
addbib(1), indxbib(1), refer(1), roffbib(1), sortbib(1)
grep(1) in the User's Reference Manual

NOTES
Probably all dates should be indexed, since many disciplines refer to literature
written in the 1800s or earlier.
NAME
lorder – find ordering relation for an object library

SYNOPSIS
lorder file . . .

DESCRIPTION
The input is one or more object or library archive files [see ar(1)]. The standard output is a list of pairs of object file or archive member names; the first file of the pair refers to external identifiers defined in the second. The output may be processed by tsort(1) to find an ordering of a library suitable for one-pass access by ld. Note that the link editor ld is capable of multiple passes over an archive in the portable archive format [see ar(4)] and does not require that lorder be used when building an archive. The usage of the lorder command may, however, allow for a more efficient access of the archive during the link edit process.

The following example builds a new library from existing .o files.

```sh
ar -cr library 'lorder *.o | tsort'
```

FILES
TMPDIR/*symref temporary files
TMPDIR/*symdef temporary files
TMPDIR usually /var/tmp but can be redefined by setting the environment variable TMPDIR [see tempname in tmpnam(3S)].

SEE ALSO
ar(1), ld(1), tsort(1), tempnam(3S), tmpname(3S), ar(4)

NOTES
lorder will accept as input any object or archive file, regardless of its suffix, provided there is more than one input file. If there is but a single input file, its suffix must be .o.
NAME
lp, cancel – send/cancel requests to an LP print service

SYNOPSIS
lp [printing-options] [files]
lp -i request-IDs printing-options
cancel [request-IDs] [printers]
cancel -u login-ID-list [printers]

DESCRIPTION
The first form of the lp command arranges for the named files and associated information (collectively called a request) to be printed. If no file names are specified on the command line, the standard input is assumed. The standard input may be specified along with named files on the command line by listing the file name(s) and specifying – for the standard input. The files will be printed in the order in which they appear on the shell command line.

The LP print service associates a unique request-ID with each request and displays it on the standard output. This request-ID can be used later when canceling or changing a request, or when determining its status. [See the section on cancel for details about canceling a request, and lpstat(l) for information about checking the status of a print request.]

The second form of lp is used to change the options for a request. The print request identified by the request-ID is changed according to the printing options specified with this shell command. The printing options available are the same as those with the first form of the lp shell command. If the request has finished printing, the change is rejected. If the request is already printing, it will be stopped and restarted from the beginning (unless the -P option has been given).

The cancel command allows users to cancel print requests previously sent with the lp command. The first form of cancel permits cancellation of requests based on their request-ID. The second form of cancel permits cancellation of requests based on the login-ID of their owner.

Sending a Print Request
The first form of the lp command is used to send a print request to a particular printer or group of printers.

Options to lp must always precede file names, but may be specified in any order. The following options are available for lp:

-c Make copies of the files before printing. Normally, files will not be copied, but will be linked whenever possible. If the -c option is not given, then the user should be careful not to remove any of the files before the request has been printed in its entirety. It should also be noted that if the -c option is not specified, any changes made to the named files after the request is made but before it is printed will be reflected in the printed output.

-d dest Choose dest as the printer or class of printers that is to do the printing. If dest is a printer, then the request will be printed only on that specific printer. If dest is a class of printers, then the request will be printed on the first available printer that is a member of the class. If dest is any, then the request will be printed on any printer which
Ip(1) (Line Printer Spooling Utilities) Ip(1)

can handle it. Under certain conditions (unavailability of printers, file space limitations, and so on) requests for specific destinations may not be accepted [see lpstat(1)]. By default, dest is taken from the environment variable LPDEST (if it is set). Otherwise, a default destination (if one exists) for the computer system is used. Destination names vary between systems [see lpstat(1)].

-\f form-name [-d any]

Print the request on the form form-name. The LP print service ensures that the form is mounted on the printer. If form-name is requested with a printer destination that cannot support the form, the request is rejected. If form-name has not been defined for the system, or if the user is not allowed to use the form, the request is rejected [see lpforms(1M)]. When the -d any option is given, the request is printed on any printer that has the requested form mounted and can handle all other needs of the print request.

-\f special-handling

Print the request according to the value of special-handling. Acceptable values for special-handling are defined below:

hold Don't print the request until notified. If printing has already begun, stop it. Other print requests will go ahead of a held request until it is resumed.

resume Resume a held request. If it had been printing when held, it will be the next request printed, unless subsequently bumped by an immediate request. The -i option (followed by a request-ID) must be used whenever this argument is specified.

immediate (Available only to LP administrators)

Print the request next. If more than one request is assigned immediate, the requests are printed in the reverse order queued. If a request is currently printing on the desired printer, you have to put it on hold to allow the immediate request to print.

-m Send mail [see mail(1)] after the files have been printed. By default, no mail is sent upon normal completion of the print request.

-n number Print number copies (default is 1) of the output.

-o option Specify printer-dependent options. Several such options may be collected by specifying the -o keyletter more than once (-o option1 -o option2 ... -o optionn), or by specifying a list of options with one -o keyletter enclosed in double quotes (that is, -o "option1 option2 ... optionn"). The standard interface recognizes the following options:

nobanner Do not print a banner page with this request. (The administrator can disallow this option at any time.)
nofilebreak

Do not insert a form feed between the files given, if submitting a job to print more than one file.

length=scaled-decimal-number

Print this request with pages scaled-decimal-number lines long. A scaled-decimal-number is an optionally scaled decimal number that gives a size in lines, columns, inches, or centimeters, as appropriate. The scale is indicated by appending the letter "i" for inches, or the letter "c" for centimeters. For length or width settings, an unscaled number indicates lines or columns; for line pitch or character pitch settings, an unscaled number indicates lines per inch or characters per inch (the same as a number scaled with "i"). For example, length=66 indicates a page length of 66 lines, length=11i indicates a page length of 11 inches, and length=27.94c indicates a page length of 27.94 centimeters.

This option may not be used with the -f option.

width=scaled-decimal-number

Print this request with page-width set to scaled-decimal-number columns wide. (See the explanation of scaled-decimal-numbers in the discussion of length, above.) This option may not be used with the -f option.

lp=ipi=scaled-decimal-number

Print this request with the line pitch set to scaled-decimal-number lines per inch. This option may not be used with the -f option.

cpi=scaled-decimal-number

Print this request with the character pitch set to scaled-decimal-number characters per inch. Character pitch can also be set to pica (representing 10 characters per inch) or elite (representing 12 characters per inch), or it can be compressed (representing as many characters as a printer can handle). There is no standard number of characters per inch for all printers; see the Terminfo database [terminfo(4)] for the default character pitch for your printer.

This option may not be used with the -f option.

stty=’stty-option-list’

A list of options valid for the stty command; enclose the list with single quotes if it contains blanks.

-P page-list

Print the pages specified in page-list. This option can be used only if there is a filter available to handle it; otherwise, the print request will be rejected.
The page-list may consist of range(s) of numbers, single page numbers, or a combination of both. The pages will be printed in ascending order.

-q priority-level
Assign this request priority-level in the printing queue. The values of priority-level range from 0, the highest priority, to 39, the lowest priority. If a priority is not specified, the default for the print service is used, as assigned by the system administrator. A priority limit may be assigned to individual users by the system administrator.

-s Suppress messages from lp such as those that begin with request id is.
-S character-set [-d any]
-S print-wheel [-d any]
Print this request using the specified character-set or print-wheel. If a form was requested and it requires a character set or print wheel other than the one specified with the -S option, the request is rejected.

For printers that take print wheels: if the print wheel specified is not one listed by the administrator as acceptable for the printer specified in this request, the request is rejected unless the print wheel is already mounted on the printer.

For printers that use selectable or programmable character sets: if the character-set specified is not one defined in the Terminfo database for the printer [see terminfo(4)], or is not an alias defined by the administrator, the request is rejected.

When the -d any option is used, the request is printed on any printer that has the print wheel mounted or any printer that can select the character set, and that can handle any other needs of the request.

-t title Print title on the banner page of the output. The default is no title. Enclose title in quotes if it contains blanks.

-T content-type [-r]
Print the request on a printer that can support the specified content-type. If no printer accepts this type directly, a filter will be used to convert the content into an acceptable type. If the -r option is specified, a filter will not be used. If -r is specified, and no printer accepts the content-type directly, the request is rejected. If the content-type is not acceptable to any printer, either directly or with a filter, the request is rejected.

In addition to ensuring that no filters will be used, the -r option will force the equivalent of the -o 'stty=-opost' option.

-w Write a message on the user's terminal after the files have been printed. If the user is not logged in, then mail will be sent instead.
Ip(1) Line Printer Spooling Utilities Ip(1)

-\texttt{y mode-list} Print this request according to the printing modes listed in \texttt{mode-list}. The allowed values for \texttt{mode-list} are locally defined. This option may be used only if there is a filter available to handle it; otherwise, the print request will be rejected.

Canceling a Print Request

The \texttt{cancel} command cancels requests for print jobs made with the \texttt{lp} command. The first form allows a user to specify one or more \texttt{request-IDs} of print jobs to be canceled. Alternatively, the user can specify one or more \texttt{printers}, on which only the currently printing job will be canceled.

The second form of \texttt{cancel} permits a user to cancel all of his or her own jobs on all printers. In this form the \texttt{printers} option can be used to restrict the printers on which the user's jobs will be canceled. Note that in this form, when the \texttt{printers} option is used, all jobs queued for those printers will be canceled. A printer class is not a valid argument.

Users without special privileges can cancel only requests associated with their own login IDs. The system administrator can cancel jobs submitted by any user. The \texttt{login-ID-list} must be enclosed in quotes if it contains blanks.

NOTES

Printers for which requests are not being accepted will not be considered when the \texttt{lp} command is run and the destination is \texttt{any}. (Use the \texttt{lpstat -a} command to see which printers are accepting requests.) On the other hand, if (1) a request is destined for a class of printers and (2) the class itself is accepting requests, then all printers in the class will be considered, regardless of their acceptance status.

For printers that take mountable print wheels or font cartridges, if you do not specify a particular print wheel or font with the \texttt{-s} option, whichever one happens to be mounted at the time your request is printed will be used. Use the \texttt{lpstat -p printer -1} command to see which print wheels are available on a particular printer, or the \texttt{lpstat -S -1} command to find out what print wheels are available and on which printers. For printers that have selectable character sets, you will get the standard character set if you don't use the \texttt{-s} option.

FILES

\texttt{/var/spool/lp/*}

SEE ALSO

\texttt{enable(1), lpstat(1), mail(1), accept(1M), lpadmin(1M), lpfilter(1M), lpfoms(1M), lpsched(1M), lpsystem(1M), lpusers(1M)} in the System Administrator's Reference Manual.

NAME
 Ipadmin — configure the LP print service

SYNOPSIS
 Ipadmin -p printer options
 Ipadmin -x dest
 Ipadmin -d [dest]
 Ipadmin -s print-wheel -A alert-type [-W minutes] [-Q requests]

DESCRIPTION
 Ipadmin configures the LP print service by defining printers and devices. It is
 used to add and change printers, to remove printers from the service, to set or
 change the system default destination, to define alerts for printer faults, and to
 mount print wheels.

Adding or Changing a Printer
 The first form of the Ipadmin command (Ipadmin -p printer options) is used to
 configure a new printer or to change the configuration of an existing printer. The
 following options may appear in any order.

-A alert-type [-W minutes]
 The -A option is used to define an alert to inform the administrator when a
 printer fault is detected, and periodically thereafter, until the printer fault is
 cleared by the administrator. The alert-types are:

 mail Send the alert message via mail [see mail(1)] to the administrator.
 write Write the message to the terminal on which the administrator is
 logged in. If the administrator is logged in on several terminals,
 one is chosen arbitrarily.
 quiet Do not send messages for the current condition. An administrator
 can use this option to temporarily stop receiving further messages
 about a known problem. Once the fault has been cleared and
 printing resumes, messages will again be sent when another fault
 occurs with the printer.
 none Do not send messages; any existing alert definition for the printer
 will be removed. No alert will be sent when the printer faults until
 a different alert-type (except quiet) is used.

shell-command
 Run the shell-command each time the alert needs to be sent. The
 shell command should expect the message in standard input. If
 there are blanks embedded in the command, enclose the command
 in quotes. Note that the mail and write values for this option are
 equivalent to the values mail user-name and write user-name
 respectively, where user-name is the current name for the adminis-
 trator. This will be the login name of the person submitting this
 command unless he or she has used the su command to change to
 another user ID. If the su command has been used to change the
 user ID, then the user-name for the new ID is used.
list Display the type of the alert for the printer fault. No change is made to the alert.

The message sent appears as follows:

The printer printer has stopped printing for the reason given below. Fix the problem and bring the printer back on line. Printing has stopped, but will be restarted in a few minutes; issue an enable command if you want to restart sooner. Unless someone issues a change request

 lp -i request-id -P ...

to change the page list to print, the current request will be reprinted from the beginning.

The reason(s) it stopped (multiple reasons indicate reprinted attempts):

 reason

The LP print service can detect printer faults only through an adequate fast filter and only when the standard interface program or a suitable customized interface program is used. Furthermore, the level of recovery after a fault depends on the capabilities of the filter.

If the printer is all, the alerting defined in this command applies to all existing printers.

If the -W option is not used to arrange fault alerting for printer, the default procedure is to mail one message to the administrator of printer per fault. This is equivalent to specifying -W once or -W 0. If minutes is a number greater than zero, an alert will be sent at intervals specified by minutes.

-c class
 Insert printer into the specified class. Class will be created if it does not already exist.

-D comment
 Save this comment for display whenever a user asks for a full description of printer [see lpstat(1)]. The LP print service does not interpret this comment.

-e printer1
 Copy the interface program of an existing printer1 to be the interface program for printer. (Options -i and -m may not be specified with this option.)

-F fault-recovery
 This option specifies the recovery to be used for any print request that is stopped because of a printer fault, according to the value of fault-recovery:

 continue
 Continue printing on the top of the page where printing stopped. This requires a filter to wait for the fault to clear before automatically continuing.
beginning
Start printing the request again from the beginning.

wait
Disable printing on *printer* and wait for the administrator or a user to enable printing again.

During the wait the administrator or the user who submitted the stopped print request can issue a change request that specifies where printing should resume. (See the -i option of the *lp* command.) If no change request is made before printing is enabled, printing will resume at the top of the page where stopped, if the filter allows; otherwise, the request will be printed from the beginning.

-f *allow:*form-list

Allow or deny the forms in *form-list* to be printed on *printer*. By default no forms are allowed on a new printer.

For each printer, the LP print service keeps two lists of forms: an "allow-list" of forms that may be used with the printer, and a "deny-list" of forms that may not be used with the printer. With the **-f allow** option, the forms listed are added to the allow-list and removed from the deny-list. With the **-f deny** option, the forms listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the forms in the list may be used on the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is not, the forms in the deny-list may not be used with the printer. All forms can be excluded from a printer by specifying **-f deny:all**. All forms can be used on a printer (provided the printer can handle all the characteristics of each form) by specifying **-f allow:all**.

The LP print service uses this information as a set of guidelines for determining where a form can be mounted. Administrators, however, are not restricted from mounting a form on any printer. If mounting a form on a particular printer is in disagreement with the information in the allow-list or deny-list, the administrator is warned but the mount is accepted. Nonetheless, if a user attempts to issue a print or change request for a form and printer combination that is in disagreement with the information, the request is accepted only if the form is currently mounted on the printer. If the form is later unmounted before the request can print, the request is canceled and the user is notified by mail.

If the administrator tries to specify a form as acceptable for use on a printer that doesn’t have the capabilities needed by the form, the command is rejected.

Note the other use of **-f**, with the **-M** option, below.

-h
Indicate that the device associated with the printer is hardwired. If neither of the mutually exclusive options, **-h** and **-l**, is specified, this option is assumed.
-I content-type-list

Allow printer to handle print requests with the content types listed in a content-type-list. If the list includes names of more than one type, the names must be separated by commas or blank spaces. (If they are separated by blank spaces, the entire list must be enclosed in double quotes.)

The type simple is recognized as the default content type for files in the UNIX system. A simple type of file is a data stream containing only printable ASCII characters and the following control characters:

<table>
<thead>
<tr>
<th>Control Character</th>
<th>Octal Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>backspace</td>
<td>10<sub>8</sub></td>
<td>move back one character, except at beginning of line</td>
</tr>
<tr>
<td>tab</td>
<td>11<sub>8</sub></td>
<td>move to next tab stop</td>
</tr>
<tr>
<td>linefeed (newline)</td>
<td>12<sub>8</sub></td>
<td>move to beginning of next line</td>
</tr>
<tr>
<td>form feed</td>
<td>14<sub>8</sub></td>
<td>move to beginning of next page</td>
</tr>
<tr>
<td>carriage return</td>
<td>15<sub>8</sub></td>
<td>move to beginning of current line</td>
</tr>
</tbody>
</table>

To prevent the print service from considering simple a valid type for the printer, specify either an explicit value (such as the printer type) in the content-type-list, or an empty list. If you do want simple included along with other types, you must include simple in the content-type-list.

Except for simple, each content-type name is freely determined by the administrator. If the printer type is specified by the -T option, then the printer type is implicitly considered to be also a valid content type.

-i interface

Establish a new interface program for printer. Interface is the pathname of the new program. (The -e and -m options may not be specified with this option.)

-l Indicate that the device associated with printer is a login terminal. The LP scheduler (lpsched) disables all login terminals automatically each time it is started. (The -h option may not be specified with this option.)

-M -f form-name [-a [-o filebreak]]

Mount the form form-name on printer. Print requests that need the pre-printed form form-name will be printed on printer. If more than one printer has the form mounted and the user has specified any (with the -d option of the lp command) as the printer destination, then the print request will be printed on the one printer that also meets the other needs of the request.

The page length and width, and character and line pitches needed by the form are compared with those allowed for the printer, by checking the capabilities in the terminfo database for the type of printer. If the form requires attributes that are not available with the printer, the administrator is warned but the mount is accepted. If the form lists a print wheel as mandatory, but the print wheel mounted on the printer is different, the administrator is also warned but the mount is accepted.
If the `-a` option is given, an alignment pattern is printed, preceded by the same initialization of the physical printer that precedes a normal print request, with one exception: no banner page is printed. Printing is assumed to start at the top of the first page of the form. After the pattern is printed, the administrator can adjust the mounted form in the printer and press return for another alignment pattern (no initialization this time), and can continue printing as many alignment patterns as desired. The administrator can quit the printing of alignment patterns by typing `q`.

If the `-o filebreak` option is given, a formfeed is inserted between each copy of the alignment pattern. By default, the alignment pattern is assumed to correctly fill a form, so no formfeed is added.

A form is “unmounted” either by mounting a new form in its place or by using the `-f none` option. By default, a new printer has no form mounted.

Note the other use of `-f` without the `-M` option above.

```
-M -S print-wheel
Mount the print-wheel on printer. Print requests that need the print-wheel will be printed on printer. If more than one printer has print-wheel mounted and the user has specified any (with the `-d` option of the `lp` command) as the printer destination, then the print request will be printed on the one printer that also meets the other needs of the request.

If the print-wheel is not listed as acceptable for the printer, the administrator is warned but the mount is accepted. If the printer does not take print wheels, the command is rejected.

A print wheel is “unmounted” either by mounting a new print wheel in its place or by using the option `-S none`. By default, a new printer has no print wheel mounted.

Note the other uses of the `-S` option without the `-M` option described below.
```

```
-m model
Select model interface program, provided with the LP print service, for the printer. (Options `-e` and `-i` may not be specified with this option.)
```

```
-o printing-option
Each `-o` option in the list below is the default given to an interface program if the option is not taken from a preprinted form description or is not explicitly given by the user submitting a request [see `lp(1)`]. The only `-o` options that can have defaults defined are listed below.

```
length=scaled-decimal-number
width=scaled-decimal-number
cpi=scaled-decimal-number
lpi=scaled-decimal-number
stty='stty-option-list'
```

The term “scaled-decimal-number” refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a “trailing” letter attached to the number. Three types of scaled decimal numbers can be used with the LP print service: numbers that show sizes in centimeters (marked with a trailing `c`); numbers that show sizes in inches (marked with a trailing `i`); and numbers that show sizes in millimeters (marked with a trailing `m`).
The first four default option values must agree with the capabilities of the type of physical printer, as defined in the terminfo database for the printer type. If they do not, the command is rejected.

The stty-option-list is not checked for allowed values, but is passed directly to the stty program by the standard interface program. Any error messages produced by stty when a request is processed (by the standard interface program) are mailed to the user submitting the request.

For each printing option not specified, the defaults for the following attributes are defined in the terminfo entry for the specified printer type.

- length
- width
- cpi
- lpi

The default for stty is

```
stty='9600 cs8 -cstopb -parenbixon
 -ixany opost -olcuc onlcr -ocrl -onocr
 -onlret -ofill n10 cr0 tab0 bs0 vt0 ff0'
```

You can set any of the -o options to the default values (which vary for different types of printers), by typing them without assigned values, as follows:

- `length=
- `width=
- `cpi=
- `lpi=
- `stty=

-o nobanner

Allow a user to submit a print request specifying that no banner page be printed.

-o banner

Force a banner page to be printed with every print request, even when a user asks for no banner page. This is the default; you must specify -o nobanner if you want to allow users to be able to specify -o nobanner with the lp command.

-r class

Remove printer from the specified class. If printer is the last member of class, then class will be removed.

-s list

Allow either the print wheels or aliases for character sets named in list to be used on the printer.
If the printer is a type that takes print wheels, then `list` is a comma or space separated list of print wheel names. (Enclose the list with quotes if it contains blanks.) These will be the only print wheels considered mountable on the printer. (You can always force a different print wheel to be mounted, however.) Until the option is used to specify a list, no print wheels will be considered mountable on the printer, and print requests that ask for a particular print wheel with this printer will be rejected.

If the printer is a type that has selectable character sets, then `list` is a comma or blank separated list of character set name “mappings” or aliases. (Enclose the list with quotes if it contains blanks.) Each “mapping” is of the form

\[\text{known-name} = \text{alias}\]

The `known-name` is a character set number preceded by `cs` (such as `cs3` for character set three) or a character set name from the `Terminfo` database entry `csmm`. [See `terminfo(4)` in the Programmer’s Reference Manual.] If this option is not used to specify a list, only the names already known from the Terminfo database or numbers with a prefix of `cs` will be acceptable for the printer.

If `list` is the word `none`, any existing print wheel lists or character set aliases will be removed.

Note the other uses of the `-S` with the `-M` option described above.

`-s system-name[!printer-name]`

Make a remote printer (one that must be accessed through another system) accessible to users on your system. `System-name` is the name of the remote system on which the remote printer is located; it must be listed in the systems table `/etc/lp/Systems`. `Printer-name` is the name used on the remote system for that printer. For example, if you want to access `printer1` on `system1` and you want it called `printer2` on your system, enter `-p printer2 -s system1!printer1`

`-T printer-type-list`

Identify the printer as being of one or more `printer-types`. Each `printer-type` is used to extract data from the `terminfo` database; this information is used to initialize the printer before printing each user’s request. Some filters may also use a `printer-type` to convert content for the printer. If this option is not used, the default `printer-type` will be `unknown`; no information will be extracted from `terminfo` so each user request will be printed without first initializing the printer. Also, this option must be used if the following are to work: `-o cpi`, `-o lpi`, `-o width`, and `-o length` options of the `lpadmin` and `lp` commands, and the `-S` and `-f` options of the `lpadmin` command.

If the `printer-type-list` contains more than one type, then the `content-type-list` of the `-I` option must either be specified as `simple`, as empty (`-I `""`), or not specified at all.
Ipadmin (1M) (Line Printer Spooling Utilities) Ipadmin (1M)

-`u allow:login-ID-list`
-`u deny:login-ID-list`

Allow or deny the users in `login-ID-list` access to the printer. By default all users are allowed on a new printer. The `login-ID-list` argument may include any or all of the following constructs:

- `login-ID` a user on the local system
- `system-name!login-ID` a user on system `system-name`
- `system-name!all` all users on system `system-name`
- `all!login-ID` a user on all systems
- `all!all` all users on all systems

For each printer the LP print service keeps two lists of users: an “allow-list” of people allowed to use the printer, and a “deny-list” of people denied access to the printer. With the `-u allow` option, the users listed are added to the allow-list and removed from the deny-list. With the `-u deny` option, the users listed are added to the deny-list and removed from the allow-list.

If the allow-list is not empty, only the users in the list may use the printer, regardless of the contents of the deny-list. If the allow-list is empty, but the deny-list is not, the users in the deny-list may not use the printer. All users can be denied access to the printer by specifying `-u deny:all`. All users may use the printer by specifying `-u allow:all`.

-`u dial-info`

The `-U` option allows your print service to access a remote printer. (It does not enable your print service to access a remote printer service.) Specifically, `-U` assigns the “dialing” information `dial-info` to the printer. `Dial-info` is used with the `dial` routine to call the printer. Any network connection supported by the Basic Networking Utilities will work. `Dial-info` can be either a phone number for a modem connection, or a system name for other kinds of connections. Or, if `-u direct` is given, no dialing will take place, because the name `direct` is reserved for a printer that is directly connected. If a system name is given, it is used to search for connection details from the file `/etc/uucp/Systems` or related files. The Basic Networking Utilities are required to support this option. By default, `-U direct` is assumed.

-`v device`

Associate a `device` with `printer`. `Device` is the path name of a file that is writable by `lp`. Note that the same `device` can be associated with more than one printer.

Restrictions

When creating a new printer, one of three options (`-v`, `-U`, or `-s`) must be supplied. In addition, only one of the following may be supplied: `-e`, `-i`, or `-m`; if none of these three options is supplied, the model standard is used. The `-h` and `-l` options are mutually exclusive. Printer and class names may be no longer than 14 characters and must consist entirely of the characters A-Z, a-z, 0-9 and
If \(-s\) is specified, the following options are invalid: \(-A\), \(-e\), \(-F\), \(-h\), \(-i\), \(-l\), \(-M\), \(-m\), \(-o\), \(-U\), \(-v\), and \(-w\).

Removing a Printer Destination

The \(-x\) \(dest\) option removes the destination \(dest\) (a printer or a class), from the LP print service. If \(dest\) is a printer and is the only member of a class, then the class will be deleted, too. If \(dest\) is \texttt{all}, all printers and classes are removed. No other options are allowed with \(-x\).

Setting/Changing the System Default Destination

The \(-d\) \([dest]\) option makes \(dest\), an existing printer or class, the new system default destination. If \(dest\) is not supplied, then there is no system default destination. No other options are allowed with \(-d\).

Setting an Alert for a Print Wheel

\(-S\) \(print-wheel\) \(-A\) \(alert-type\) \([-w\ minutes]\) \([-Q\ requests]\)

The \(-S\) \(print-wheel\) option is used with the \(-A\) \(alert-type\) option to define an alert to mount the print wheel when there are jobs queued for it. If this command is not used to arrange alerting for a print wheel, no alert will be sent for the print wheel. Note the other use of \(-A\), with the \(-P\) option, above.

The \textit{alert-types} are:

\begin{itemize}
  \item \texttt{mail}\quad Send the alert message via the \texttt{mail} command to the administrator.
  \item \texttt{write}\quad Write the message, via the \texttt{write} command, to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is arbitrarily chosen.
  \item \texttt{quiet}\quad Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the \texttt{print-wheel} has been mounted and subsequently unmounted, messages will again be sent when the number of print requests reaches the threshold specified by the \(-Q\) option.
  \item \texttt{none}\quad Do not send messages until the \(-A\) option is given again with a different \textit{alert-type} (other than \texttt{quiet}).

\end{itemize}

\texttt{shell-command}\quad Run the \texttt{shell-command} each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blanks embedded in the command, enclose the command in quotes. Note that the \texttt{mail} and \texttt{write} values for this option are equivalent to the values \texttt{mail user-name} and \texttt{write user-name} respectively, where \texttt{user-name} is the current name for the administrator. This will be the login name of the person submitting this command unless he or she has used the \texttt{su} command to change to another user ID. If the \texttt{su} command has been used to change the user ID, then the \texttt{user-name} for the new ID is used.
list Display the type of the alert for the print wheel on standard output. No change is made to the alert.

The message sent appears as follows:

```
The print wheel print-wheel needs to be mounted
on the printer(s):
printer (integer1 requests)
integer2 print requests await this print wheel.
```

The printers listed are those that the administrator had earlier specified were candidates for this print wheel. The number integer\textsubscript{1} listed next to each printer is the number of requests eligible for the printer. The number integer\textsubscript{2} shown after the printer list is the total number of requests awaiting the print wheel. It will be less than the sum of the other numbers if some requests can be handled by more than one printer.

If the print-wheel is all, the alerting defined in this command applies to all print wheels already defined to have an alert.

If the \(-w\) option is not given, the default procedure is that only one message will be sent per need to mount the print wheel. Not specifying the \(-w\) option is equivalent to specifying \(-w \text{ once} \) or \(-w \text{ 0}.\) If minutes is a number greater than zero, an alert will be sent at intervals specified by minutes.

If the \(-Q\) option is also given, the alert will be sent when a certain number (specified by the argument requests) of print requests that need the print wheel are waiting. If the \(-Q\) option is not given, or requests is 1 or the word any (which are both the default), a message is sent as soon as anyone submits a print request for the print wheel when it is not mounted.

FILES

```
/var/spool/lp/*
/etc/lp
```

SEE ALSO

accept(1M), lpsched(1M), and lpsystem(1M)

enable(1), lp(1), lpstat(1), and stty(1) in the User’s Reference Manual
dial(3C), terminfo(4) in the Programmer’s Reference Manual
**NAME**

lpc – line printer control program

**SYNOPSIS**

```
/usr/ucb/lpc [command [parameter...]]
```

**DESCRIPTION**

lpc controls the operation of the printer, or of multiple printers. lpc commands can be used to start or stop a printer, disable or enable a printer’s spooling queue, rearrange the order of jobs in a queue, or display the status of each printer—along with its spooling queue and printer daemon.

With no arguments, lpc runs interactively, prompting with ‘lpc’. If arguments are supplied, lpc interprets the first as a command to execute; each subsequent argument is taken as a parameter for that command. The standard input can be redirected so that lpc reads commands from a file.

Commands may be abbreviated to an unambiguous substring. Note: the printer parameter is specified just by the name of the printer (as lw), not as you would specify it to lpr(l) or lpq(l) (not as -Plw).

```
? [command]...
```

Display a short description of each command specified in the argument list, or, if no arguments are given, a list of the recognized commands.

```
abort [all/ [printer ...]]
```

Terminate an active spooling daemon on the local host immediately and then disable printing (preventing new daemons from being started by lpr(l)) for the specified printers. The abort command can only be used by the privileged user.

```
clean [all/ [printer ...]]
```

Remove all files created in the spool directory by the daemon from the specified printer queue(s) on the local machine. The clean command can only be used by the privileged user.

```
disable [all/ [printer ...]]
```

Turn the specified printer queues off. This prevents new printer jobs from being entered into the queue by lpr(l). The disable command can only be used by the privileged user.

```
down [all/ [printer ...]] [message]
```

Turn the specified printer queue off, disable printing and put message in the printer status file. The message does not need to be quoted, the remaining arguments are treated like echo(l). This is normally used to take a printer down and let others know why (lpq(l) indicates that the printer is down, as does the status command).

```
enable [all/ [printer ...]]
```

Enable spooling on the local queue for the listed printers, so that lpr(l) can put new jobs in the spool queue. The enable command can only be used by the privileged user.
exit
quit Exit from lpc.
restart [all| [printer ...]]
   Attempt to start a new printer daemon. This is useful when some abnormal condition causes the daemon to die unexpectedly leaving jobs in the queue. This command can be run by any user.
start [all| [printer ...]]
   Enable printing and start a spooling daemon for the listed printers. The start command can only be used by the privileged user.
status [all| [printer ...]]
   Display the status of daemons and queues on the local machine. This command can be run by any user.
stop [all| [printer ...]]
   Stop a spooling daemon after the current job completes and disable printing. The stop command can only be used by the privileged user.
topq printer [job# ...] [user ...]
   Move the print job(s) specified by job# or those job(s) belonging to user to the top (head) of the printer queue. The topq command can only be used by the privileged user.
up [all| [printer ...]]
   Enable everything and start a new printer daemon. Undoes the effects of down.

FILES
/var/spool/lp/*
/var/spool/lp/system/pstatus

SEE ALSO
lpq(1), lpr(1), lprm(1)
echo(1) in the User's Reference Manual
lpsched(1M) in the System Administrator's Reference Manual

DIAGNOSTICS
?Ambiguous command
   The abbreviation you typed matches more than one command.
?Invalid command
   You typed a command or abbreviation that was not recognized.
?Privileged command
   You used a command can be executed only by the privileged user.
lpc: printer: unknown printer to the print service
   The printer was not found in the System V LP database. Usually this is a typing mistake; however, it may indicate that the printer does not exist on the system. Use 'iptstat -p' to find the reason.
lpc: error on opening queue to spooler
   The connection to lpsched on the local machine failed. This usually means the printer server started at boot time has died or is hung. Check if the printer spooler daemon /usr/lib/lp/lpsched is running.
lpc: Can't send message to LP print service
lpc: Can't receive message from LP print service
    These indicate that the LP print service has been stopped. Get help from the system administrator.

lpc: Received unexpected message from LP print service
    It is likely there is an error in this software. Get help from system administrator.
Ipfilter(1M)

NAME

Ipfilter – administer filters used with the LP print service

SYNOPSIS

Ipfilter -f filter-name
Ipfilter -f filter-name -F path-name
Ipfilter -f filter-name -i
Ipfilter -f filter-name -x
Ipfilter -f filter-name -1

DESCRIPTION

The Ipfilter command is used to add, change, delete, and list a filter used with the LP print service. These filters are used to convert the content type of a file to a content type acceptable to a printer. One of the following options must be used with the Ipfilter command: -F path-name (or - for standard input) to add or change a filter; -i to reset an original filter to its factory setting; -x to delete a filter; or -1 to list a filter description.

The argument all can be used instead of a filter-name with any of these options. When all is specified with the -F or - option, the requested change is made to all filters. Using all with the -i option has the effect of restoring to their original settings all filters for which predefined settings were initially available. Using the all argument with the -x option results in all filters being deleted, and using it with the -1 option produces a list of all filters.

Adding or Changing a Filter

The filter named in the -f option is added to the filter table. If the filter already exists, its description is changed to reflect the new information in the input.

The filter description is taken from the path-name if the -F option is given, or from the standard input if the - option is given. One of the two must be given to define or change a filter. If the filter named is one originally delivered with the LP print service, the -i option will restore the original filter description.

When an existing filter is changed with the -F or - option, items that are not specified in the new information are left as they were. When a new filter is added with this command, unspecified items are given default values. (See below.)

Filters are used to convert the content of a request into a data stream acceptable to a printer. For a given print request, the LP print service will know the following: the type of content in the request, the name of the printer, the type of the printer, the types of content acceptable to the printer, and the modes of printing asked for by the originator of the request. It will use this information to find a filter or a pipeline of filters that will convert the content into a type acceptable to the printer.

Below is a list of items that provide input to this command, and a description of each item. All lists are comma or space separated.

Input types: content-type-list
Output types: content-type-list
Printer types: printer-type-list
Printers: printer-list
Filter type: filter-type
Command: shell-command
Options: template-list

Input types This gives the types of content that can be accepted by the filter. (The default is any.)

Output types This gives the types of content that the filter can produce from any of the input content types. (The default is any.)

Printer types This gives the type of printers for which the filter can be used. The LP print service will restrict the use of the filter to these types of printers. (The default is any.)

Printers This gives the names of the printers for which the filter can be used. The LP print service will restrict the use of the filter to just the printers named. (The default is any.)

Filter type This marks the filter as a slow filter or a fast filter. Slow filters are generally those that take a long time to convert their input. They are run unconnected to a printer, to keep the printers from being tied up while the filter is running. If a listed printer is on a remote system, the filter type for it must have the value slow. Fast filters are generally those that convert their input quickly, or those that must be connected to the printer when run. These will be given to the interface program to run connected to the physical printer.

Command This specifies the program to run to invoke the filter. The full program pathname as well as fixed options must be included in the shell-command; additional options are constructed, based on the characteristics of each print request and on the Options field. A command must be given for each filter.

The command must accept a data stream as standard input and produce the converted data stream on its standard output. This allows filter pipelines to be constructed to convert data not handled by a single filter.

Options This is a comma separated list of templates used by the LP print service to construct options to the filter from the characteristics of each print request listed in the table later.

In general, each template is of the following form:

    keyword pattern = replacement

The keyword names the characteristic that the template attempts to map into a filter specific option; each valid keyword is listed in the table below. A pattern is one of the following: a literal pattern of one of the forms listed in the table, a single asterisk (*), or a regular expression. If pattern matches the value of the characteristic, the template fits and is used to generate a filter specific option. The replacement is what will be used as the option.
Regular expressions are the same as those found in the ed(1) or vi(1) commands. This includes the \(...\) and \n constructions, which can be used to extract portions of the pattern for copying into the replacement, and the &r, which can be used to copy the entire pattern into the replacement.

The replacement can also contain a *; it too, is replaced with the entire pattern, just like the & of ed(1).

<table>
<thead>
<tr>
<th>1p Option</th>
<th>Characteristic</th>
<th>keyword</th>
<th>Possible patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>-T</td>
<td>Content type (input)</td>
<td>INPUT</td>
<td>content-type</td>
</tr>
<tr>
<td>N/A</td>
<td>Content type (output)</td>
<td>OUTPUT</td>
<td>content-type</td>
</tr>
<tr>
<td>N/A</td>
<td>Printer type</td>
<td>TERM</td>
<td>printer-type</td>
</tr>
<tr>
<td>-d</td>
<td>Printer name</td>
<td>PRINTER</td>
<td>printer-name</td>
</tr>
<tr>
<td>-f, -o cpi=</td>
<td>Character pitch</td>
<td>CPI</td>
<td>integer</td>
</tr>
<tr>
<td>-f, -o lpi=</td>
<td>Line pitch</td>
<td>LPI</td>
<td>integer</td>
</tr>
<tr>
<td>-f, -o length=</td>
<td>Page length</td>
<td>LENGTH</td>
<td>integer</td>
</tr>
<tr>
<td>-f, -o width=</td>
<td>Page width</td>
<td>WIDTH</td>
<td>integer</td>
</tr>
<tr>
<td>-P</td>
<td>Pages to print</td>
<td>PAGES</td>
<td>page-list</td>
</tr>
<tr>
<td>-S</td>
<td>Character set</td>
<td>CHARSET</td>
<td>character-set-name</td>
</tr>
<tr>
<td>-p</td>
<td>Print wheel</td>
<td>CHARSET</td>
<td>print-wheel-name</td>
</tr>
<tr>
<td>-f</td>
<td>Form name</td>
<td>FORM</td>
<td>form-name</td>
</tr>
<tr>
<td>-y</td>
<td>Modes</td>
<td>MODES</td>
<td>mode</td>
</tr>
<tr>
<td>-n</td>
<td>Number of copies</td>
<td>COPIES</td>
<td>integer</td>
</tr>
</tbody>
</table>

For example, the template

**MODES landscape = -l**

shows that if a print request is submitted with the -y landscape option, the filter will be given the option -l. As another example, the template

**TERM * = -T ***

shows that the filter will be given the option -T printer-type for whichever printer-type is associated with a print request using the filter.

As a last example, consider the template

**MODES prwidth\=(.*) = -w\1**

Suppose a user gives the command

```
lp -y prwidth=10
```

From the table above, the LP print service determines that the -y option is handled by a MODES template. The MODES template here works because the pattern prwidth\=(.*) matches the prwidth=10 given by the user. The replacement -w\1 causes the LP print service to generate the filter option -w10.

If necessary, the LP print service will construct a filter pipeline by concatenating several filters to handle the user's file and all the print options. (See sh(1) for a description of a pipeline.) If the print service constructs a filter pipeline, the
INPUT and OUTPUT values used for each filter in the pipeline are the types of the input and output for that filter, not for the entire pipeline.

Deleting a Filter
The -x option is used to delete the filter specified in filter-name from the LP filter table.

Listing a Filter Description
The -l option is used to list the description of the filter named in filter-name. If the command is successful, the following message is sent to standard output:

```
Input types: content-type-list
Output types: content-type-list
Printer types: printer-type-list
Printers: printer-list
Filter type: filter-type
Command: shell-command
Options: template-list
```

If the command fails, an error message is sent to standard error.

SEE ALSO
lpadmin(1M)
lp(1) in the User’s Reference Manual
NAME

`lpforms` – administer forms used with the LP print service

SYNOPSIS

```
lpforms -f form-name options
lpforms -f form-name -A alert-type [-Q minutes] [-W requests]
```

DESCRIPTION

The `lpforms` command is used to administer the use of preprinted forms, such as company letterhead paper, with the LP print service. A form is specified by its `form-name`. Users may specify a form when submitting a print request [see `lp(1)`]. The argument `all` can be used instead of `form-name` with either of the command lines shown above. The first command line allows the administrator to add, change, and delete forms, to list the attributes of an existing form, and to allow and deny users access to particular forms. The second command line is used to establish the method by which the administrator is alerted that the form `form-name` must be mounted on a printer.

With the first `lpforms` command line, one of the following options must be used:

- `-F pathname`
  To add or change form `form-name`, as specified by the information in `pathname`

- `-x`
  To delete form `form-name` (this option must be used separately; it may not be used with any other option)

- `-l`
  To list the attributes of form `form-name`

Adding or Changing a Form

The `-F pathname` option is used to add a new form, `form-name`, to the LP print service, or to change the attributes of an existing form. The form description is taken from `pathname` if the `-F` option is given, or from the standard input if the `-` option is used. One of these two options must be used to define or change a form. `Pathname` is the path name of a file that contains all or any subset of the following information about the form.

- **Page length**: `scaled-decimal-number1`
- **Page width**: `scaled-decimal-number2`
- **Number of pages**: `integer`
- **Line pitch**: `scaled-decimal-number3`
- **Character pitch**: `scaled-decimal-number4`
- **Character set choice**: `character-set/print-wheel` [mandatory]
- **Ribbon color**: `ribbon-color`
- **Comment**: `comment`
- **Alignment pattern**: `[content-type]

content`
The term "scaled-decimal-number" refers to a non-negative number used to indicate a unit of size. The type of unit is shown by a "trailing" letter attached to the number. Three types of scaled decimal numbers can be used with the LP print service: numbers that show sizes in centimeters (marked with a trailing c); numbers that show sizes in inches (marked with a trailing i); and numbers that show sizes in units appropriate to use (without a trailing letter), that is, lines, characters, lines per inch, or characters per inch.

Except for the last two lines, the above lines may appear in any order. The Comment: and comment items must appear in consecutive order but may appear before the other items, and the Alignment pattern: and the content items must appear in consecutive order at the end of the file. Also, the comment item may not contain a line that begins with any of the key phrases above, unless the key phrase is preceded with a > sign. Any leading > sign found in the comment will be removed when the comment is displayed. Case distinctions in the key phrases are ignored.

When this command is issued, the form specified by form-name is added to the list of forms. If the form already exists, its description is changed to reflect the new information. Once added, a form is available for use in a print request, except where access to the form has been restricted, as described under the -u option. A form may also be allowed to be used on certain printers only.

A description of each form attribute is below:

Page length and Page Width
Before printing the content of a print request needing this form, the generic interface program provided with the LP print service will initialize the physical printer to handle pages scaled-decimal-number1 long, and scaled-decimal-number2 wide using the printer type as a key into the terminfo database.

The page length and page width will also be passed, if possible, to each filter used in a request needing this form.

Number of pages
Each time the alignment pattern is printed, the LP print service will attempt to truncate the content to a single form by, if possible, passing to each filter the page subset of 1-integer.

Line pitch and Character pitch
Before printing the content of a print request needing this form, the interface programs provided with the LP print service will initialize the physical printer to handle these pitches, using the printer type as a key into the terminfo database. Also, the pitches will be passed, if possible, to each filter used in a request needing this form. scaled-decimal-number3 is in lines per centimeter if a c is appended, and lines per inch otherwise; similarly, scaled-decimal-number4 is in characters per centimeter if a c is appended, and characters per inch otherwise. The character pitch can also be given as elite (12 characters per inch), pica (10 characters per inch), or compressed (as many characters per inch as possible).
Character set choice
When the LP print service alerts an administrator to mount this form, it will also mention that the print wheel print-wheel should be used on those printers that take print wheels. If printing with this form is to be done on a printer that has selectable or loadable character sets instead of print wheels, the interface programs provided with the LP print service will automatically select or load the correct character set. If mandatory is appended, a user is not allowed to select a different character set for use with the form; otherwise, the character set or print wheel named is a suggestion and a default only.

Ribbon color
When the LP print service alerts an administrator to mount this form, it will also mention that the color of the ribbon should be ribbon-color.

Comment
The LP print service will display the comment unaltered when a user asks about this form [see lpstat(1)].

Alignment pattern
When mounting this form an administrator can ask for the content to be printed repeatedly, as an aid in correctly positioning the preprinted form. The optional content-type defines the type of printer for which content had been generated. If content-type is not given, simple is assumed. Note that the content is stored as given, and will be readable only by the user lp.

When an existing form is changed with this command, items missing in the new information are left as they were. When a new form is added with this command, missing items will get the following defaults:

- Page Length: 66
- Page Width: 80
- Number of Pages: 1
- Line Pitch: 6
- Character Pitch: 10
- Character Set Choice: any
- Ribbon Color: any

Deleting a Form
The -x option is used to delete the form form-name from the LP print service.

Listing Form Attributes
The -l option is used to list the attributes of the existing form form-name. The attributes listed are those described under Adding and Changing a Form, above. Because of the potentially sensitive nature of the alignment pattern, only the administrator can examine the form with this command. Other people may use the lpstat command to examine the non-sensitive part of the form description.

Allowing and Denying Access to a Form
The -u option, followed by the argument allow:login-ID-list or -u deny:login-ID-list lets you determine which users will be allowed to specify a particular form with a print request. This option can be used with the -F or - option, each of which is described above under Adding or Changing a Form.
The login-ID-list argument may include any or all of the following constructs:

- login-ID: A user on any system
- system_name!login-ID: A user on system system_name
- system_name!all: All users on system system_name
- all!login-ID: A user on all systems
- all: All users on all systems

The LP print service keeps two lists of users for each form: an “allow-list” of people allowed to use the form, and a “deny-list” of people that may not use the form. With the -u allow option, the users listed are added to the allow-list and removed from the deny-list. With the -u deny option, the users listed are added to the deny-list and removed from the allow-list. (Both forms of the -u option can be run together with the -F or the - option.)

If the allow-list is not empty, only the users in the list are allowed access to the form, regardless of the contents of the deny-list. If the allow-list is empty but the deny-list is not, the users in the deny-list may not use the form, (but all others may use it). All users can be denied access to a form by specifying -f deny:all. All users can be allowed access to a form by specifying -f allow:all. (This is the default.)

**Setting an Alert to Mount a Form**

The -f form-name option is used with the -A alert-type option to define an alert to mount the form when there are queued jobs which need it. If this option is not used to arrange alerting for a form, no alert will be sent for that form.

The method by which the alert is sent depends on the value of the alert-type argument specified with the -A option. The alert-types are:

- **mail**: Send the alert message via the `mail` command to the administrator.
- **write**: Write the message, via the `write` command, to the terminal on which the administrator is logged in. If the administrator is logged in on several terminals, one is arbitrarily chosen.
- **quiet**: Do not send messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the form form-name has been mounted and subsequently unmounted, messages will again be sent when the number of print requests reaches the threshold specified by the -Q option.
- **none**: Do not send messages until the -A option is given again with a different alert-type (other than quiet).
- **shell-command**: Run the shell-command each time the alert needs to be sent. The shell command should expect the message in standard input. If there are blanks embedded in the command, enclose the command in quotes. Note that the `mail` and `write` values for this option are equivalent to the values `mail login-ID` and `write login-ID` respectively, where login-ID is the current name for the administrator. This will be the login name of the person submitting this command.
unless he or she has used the `su` command to change to another
login-ID. If the `su` command has been used to change the user ID,
then the `user-name` for the new ID is used.

**list**  Display the type of the alert for the form on standard output. No
change is made to the alert.

The message sent appears as follows:

```
The form form-name needs to be mounted
on the printer(s):
printer (integer1 requests).
integer2 print requests await this form.
Use the ribbon-color ribbon.
Use the print-wheel print wheel, if appropriate.
```

The printers listed are those that the administrator had earlier specified were can­
didates for this form. The number $integer$ sub 1 listed next to each printer is
the number of requests eligible for the printer. The number $integer$ sub 2$ shown
after the list of printers is the total number of requests awaiting the form.
It will be less than the sum of the other numbers if some requests can be handled
by more than one printer. The `ribbon-color` and `print-wheel` are those specified in
the form description. The last line in the message is always sent, even if none of
the printers listed use print wheels, because the administrator may choose to
mount the form on a printer that does use a print wheel.

Where any color ribbon or any print wheel can be used, the statements above will
read:

```
Use any ribbon.
Use any print-wheel.
```

If `form-name` is `any`, the alerting defined in this command applies to any form for
which an alert has not yet been defined. If `form-name` is `all`, the alerting defined
in this command applies to all forms.

If the `-w` option is not given, the default procedure is that only one message will
be sent per need to mount the form. Not specifying the `-w` option is equivalent to
specifying `-w once` or `-w 0`. If `minutes` is a number greater than 0, an alert
will be sent at intervals specified by `minutes`.

If the `-Q` option is also given, the alert will be sent when a certain number
(specified by the argument `requests`) of print requests that need the form are wait­
ing. If the `-Q` option is not given, or the value of `requests` is 1 or `any` (which are
both the default), a message is sent as soon as anyone submits a print request for
the form when it is not mounted.

**Listing the Current Alert**

The `-f` option, followed by the `-A` option and the argument `list` is used to list
the type of alert that has been defined for the specified form `form-name`. No
change is made to the alert. If `form-name` is recognized by the `LP` print service,
one of the following lines is sent to the standard output, depending on the type
of alert for the form.
When requests requests are queued:
alert with shell-command every minutes minutes

When requests requests are queued:
write to user-name every minutes minutes

When requests requests are queued:
mainto user-name every minutes minutes

No alert

The phrase every minutes minutes is replaced with once if minutes (-w minutes) is 0.

Terminating an Active Alert
The -A quiet option is used to stop messages for the current condition. An administrator can use this option to temporarily stop receiving further messages about a known problem. Once the form has been mounted and then unmounted, messages will again be sent when the number of print requests reaches the threshold requests.

Removing an Alert Definition
No messages will be sent after the -A none option is used until the -A option is given again with a different alert-type. This can be used to permanently stop further messages from being sent as any existing alert definition for the form will be removed.

SEE ALSO
lpadmin(1M), terminfo(4)
lp(1) in the User’s Reference Manual
NAME
lpq – display the queue of printer jobs

SYNOPSIS
/usr/ucb/lpq [-Pprinter] [-l] [+ [ interval ]] [ job# . . . ] [ username . . . ]

DESCRIPTION
lpq displays the contents of a printer queue. It reports the status of jobs specified by job#, or all jobs owned by the user specified by username. lpq reports on all jobs in the default printer queue when invoked with no arguments.

For each print job in the queue, lpq reports the user’s name, current position, the names of input files comprising the job, the job number (by which it is referred to when using lprm(1)) and the total size in bytes. Normally, only as much information as will fit on one line is displayed. Jobs are normally queued on a first-in-first-out basis. Filenames comprising a job may be unavailable, such as when lpr is used at the end of a pipeline; in such cases the filename field indicates the standard input.

If lpq warns that there is no daemon present (that is, due to some malfunction), the lpc(1M) command can be used to restart a printer daemon.

OPTIONS
-P printer Display information about the queue for the specified printer. In the absence of the -P option, the queue to the printer specified by the PRINTER variable in the environment is used. If the PRINTER variable is not set, the queue for the default printer is used.

-l Display queue information in long format; includes the name of the host from which the job originated.

+[ interval ] Display the spool queue periodically until it empties. This option clears the terminal screen before reporting on the queue. If an interval is supplied, lpq sleeps that number of seconds in between reports.

FILES
/var/spool/lp spooling directory.
/var/spool/lp/tmp/system_name/*-0 request files specifying jobs

DIAGNOSTICS
printer is printing
The lpq program queries the spooler LPSCHED about the status of the printer. If the printer is disabled, the superuser can restart the spooler using lpc(1M).

printer waiting for auto-retry (offline ?)
The daemon could not open the printer device. The printer may be turned off-line. This message can also occur if a printer is out of paper, the paper is jammed, and so on. Another possible cause is that a process, such as an output filter, has exclusive use of the device. The only recourse in this case is to kill the offending process and restart the printer with lpc.
waiting for *host* to come up
A daemon is trying to connect to the remote machine named *host*, in order
to send the files in the local queue. If the remote machine is up, *lpd* on
the remote machine is probably dead or hung and should be restarted
using *lpc*.

sending to *host*
The files are being transferred to the remote *host*, or else the local daemon
has hung while trying to transfer the files.

printer disabled reason:
The printer has been marked as being unavailable with *lpc*.

lpq: The LP print service isn’t running or can’t be reached.
The *lpsched* process overseeing the spooling queue does not exist. This
normally occurs only when the daemon has unexpectedly died. You can
restart the printer daemon with *lpc*.

lpr: printer: unknown printer
The printer was not found in the System V LP database. Usually this is
a typing mistake; however, it may indicate that the printer does not exist
on the system. Use ‘*lptstat* -p’ to find the reason.

lpr: error on opening queue to spooler
The connection to *lpsched* on the local machine failed. This usually
means the printer server started at boot time has died or is hung. Check
if the printer spooler daemon /usr/lib/lpsched is running.

lpr: Can’t send message to LP print service
lpr: Can’t receive message from LP print service
These indicate that the LP print service has been stopped. Get help from
the system administrator.

lpr: Received unexpected message from LP print service
It is likely there is an error in this software. Get help from system
administrator.

SEE ALSO
lp(1M), lpr(1), lprm(1)

lpsched(1M) in the *System Administrator’s Reference Manual*
lp(1) in the *User’s Reference Manual*

NOTES
Output formatting is sensitive to the line length of the terminal; this can result in
widely-spaced columns.
NAME
   lpr – send a job to the printer

SYNOPSIS
   /usr/ucb/lpr [ -P printer ] [ -# copies ] [ -C class ] [ -J job ] [ -T title ]
   [ -i indent ] [ -w cols ] [ -B ] [ -r ] [ -m ] [ -h ] [ -s ]
   [ -filter_option ] [ filename . . . ]

DESCRIPTION
   lpr forwards printer jobs to a spooling area for subsequent printing as facilities
   become available. Each printer job consists of copies of, or, with -s , complete
   pathnames of each filename you specify. The spool area is managed by the line
   printer spooler, lpsched. lpr reads from the standard input if no files are
   specified.

OPTIONS
   -P printer       Send output to the named printer. Otherwise send output to the
                    printer named in the PRINTER environment variable, or to the
                    default printer, lp.
   -# copies        Produce the number of copies indicated for each named file. For
                    example:
                    lpr -#3 index.c lookup.c
                    produces three copies of index.c, followed by three copies of
                    lookup.c. On the other hand,
                    cat index.c lookup.c | lpr -#3
                    generates three copies of the concatenation of the files.
   -C class         Print class as the job classification on the burst page. For exam­
                    ple,
                    lpr -C Operations new.index.c
                    replaces the system name (the name returned by hostname) with
                    Operations on the burst page, and prints the file new.index.c.
   -J job           Print job as the job name on the burst page. Normally, lpr uses
                    the first file’s name.
   -T title         Use title instead of the file name for the title used by pr(1).
   -i[indent]       Indent output indent SPACE characters. Eight SPACE characters is
                    the default.
   -w cols          Use cols as the page width for pr.
   -r               Remove the file upon completion of spooling, or upon comple­
                    tion of printing with the -s option. This is not supported in the
                    SunOS compatibility package. However if the job is submitted to
                    a remote SunOS system, these options will be sent to the remote
                    system for processing.
-m  Send mail upon completion.

-h  Suppress printing the burst page.

-s  Use the full pathnames (not symbolic links) of the files to be printed rather than trying to copy them. This means the data files should not be modified or removed until they have been printed. -s only prevents copies of local files from being made. Jobs from remote hosts are copied anyway. -s only works with named data files; if the lpr command is at the end of a pipeline, the data is copied to the spool.

The following single letter options notify the line printer spooler that the files are not standard text files. The spooling daemon will use the appropriate filters to print the data accordingly.

-p  Use pr to format the files (lpr -p is very much like pr | lpr).
-l  Print control characters and suppress page breaks.
-t  The files contain troff(1) (cat phototypesetter) binary data.
-n  The files contain data from ditroff (device independent troff).
-d  The files contain data from tex (DVI format from Stanford).
-g  The files contain standard plot data as produced by the plot(3X) routines (see also plot(1G) for the filters used by the printer spooler).
-v  The files contain a raster image. The printer must support an appropriate imaging model such as PostScript® in order to print the image.
-c  The files contain data produced by cifplot.
-f  Interpret the first character of each line as a standard FORTRAN carriage control character.

If no filter_option is given (and the printer can interpret PostScript), the string '%!' as the first two characters of a file indicates that it contains PostScript commands.

These filter options offer a standard user interface, and all options may not be available for, nor applicable to, all printers.

FILES

/etc/passwd  personal identification
/usr/lib/1p/lpsched  System V line printer spooler
/var/spool/lp/tmp/*  directories used for spooling
/var/spool/lp/tmp/system/*-0  spooler control files
/var/spool/lp/tmp/system/*-N  (N is an integer and > 0) data files specified in ‘*-0’ files
DIAGNOSTICS

**lpd:** *printer*: unknown printer

The *printer* was not found in the LP database. Usually this is a typing mistake; however, it may indicate that the printer does not exist on the system. Use `lptstat -p` to find the reason.

**lpd:** error on opening queue to spooler

The connection to `ipsched` on the local machine failed. This usually means the printer server started at boot time has died or is hung. Check if the printer spooler daemon `/usr/lib/ipsched` is running.

**lpd:** *printer*: printer queue is disabled

This means the queue was turned off with

```
/usr/etc/lpc disable printer
```

to prevent `lpd` from putting files in the queue. This is normally done by the system manager when a printer is going to be down for a long time. The printer can be turned back on by a privileged user with `lpc`.

**lpd:** Can't send message to the LP print service

**lpd:** Can't receive message from the LP print service

These indicate that the LP print service has been stopped. Get help from the system administrator.

**lpd:** Received unexpected message from LP print service

It is likely there is an error in this software. Get help from system administrator.

**lpd:** There is no filter to convert the file content

Use the `lpstat -p -l` command to find a printer that can handle the file type directly, or consult with your system administrator.

**lpd:** cannot access the file

Make sure file names are valid.

SEE ALSO

`lpc(8), lpq(1), lprm(1), plot(1G), troff(1)`

plot(3X) in the *Programmer's Reference Manual*

`ipsched(1)` in the *System Administrator's Reference Manual*

`lp(1), pr(1)` in the *User's Reference Manual*

NOTES

`lp` is the preferred interface.

Command-line options cannot be combined into a single argument as with some other commands. The command:

```
lp -fs
```

is not equivalent to

```
lp -f -s
```

3/91
Placing the `-s` flag first, or writing each option as a separate argument, makes a
link as expected.

`lpr -p` is not precisely equivalent to `pr | lpr`. `lpr -p` puts the current date at
the top of each page, rather than the date last modified.

Fonts for `troff(1)` and `TEX®` reside on the printer host. It is currently not possi­
ble to use local font libraries.

`lpr` objects to printing binary files.

The `-s` option, intended to use symbolic links in SunOS, does not use symbolic
links in the compatibility package. Instead, the complete path names are used. Also, the copying is avoided only for print jobs that are run from the printer host itself. Jobs added to the queue from a remote host are always copied into the
spool area. That is, if the printer does not reside on the host that `lpr` is run
from, the spooling system makes a copy the file to print, and places it in the
spool area of the printer host, regardless of `-s`. 
NAME
lpnn - remove jobs from the printer queue

SYNOPSIS
/usr/ucb/lpnn [-Prnter] [-] [job # ...] [username ...]

DESCRIPTION
lpnn removes a job or jobs from a printer's spooling queue. Since the spool
directory is protected from users, using lpnn is normally the only method by
which a user can remove a job.

Without any arguments, lpnn deletes the job that is currently active, provided
that the user who invoked lpnn owns that job.

When the privileged user specifies a username, lpnn removes all jobs belonging to
that user.

You can remove a specific job by supplying its job number as an argument, which
you can obtain using lpq(l). For example:

lpq -Phost
host is ready and printing
Rank Owner Job Files Total Size
active wendy 385 standard input 35501 bytes
lpnn -Phost 385

lpnn reports the names of any files it removes, and is silent if there are no appli-
cable jobs to remove.

lpnn Sends the request to cancel a job to the print spooler, LPSCHED.

OPTIONS
-Prnter Specify the queue associated with a specific printer. Otherwise the
value of the PRINTER variable in the environment is used. If this vari-
able is unset, the queue for the default printer is used.

- Remove all jobs owned by you. If invoked by the privileged user, all
jobs in the spool are removed. Job ownership is determined by the
user's login name and host name on the machine where the lpr com-
mand was executed.

FILES
/var/spool/lp/* spooling directories

SEE ALSO
lpq(l), lpr(l)
lpsched(1M) in the System Administrator's Reference Manual
cancel(l), lp(l) in the User's Reference Manual

DIAGNOSTICS
lpnn: printer: unknown printer
The printer was not found in the System V LP database. Usually this is
a typing mistake; however, it may indicate that the printer does not exist
on the system. Use 'lptstat -p' to find the reason.
lprm: error on opening queue to spooler
   The connection to lpsched on the local machine failed. This usually
   means the printer server started at boot time has died or is hung. Check
   if the printer spooler daemon /usr/lib/lpsched is running.

lprm: Can't send message to the LP print service

lprm: Can't receive message from the LP print service
   These indicate that the LP print service has been stopped. Get help from
   the system administrator.

lprm: Received unexpected message from the LP print service
   It is likely there is an error in this software. Get help from system
   administrator.

lprm: Can't cancel request
   You are not allowed to remove another's request.

NOTES
An active job may be incorrectly identified for removal by an lprm command
issued with no arguments. During the interval between an lpq(1) command and
the execution of lprm, the next job in queue may have become active; that job
may be removed unintentionally if it is owned by you. To avoid this, supply
lprm with the job number to remove when a critical job that you own is next in
line.

Only the privileged user can remove print jobs submitted from another host.
lp is the preferred interface.
NAME
lprof – display line-by-line execution count profile data

SYNOPSIS
lprof -m file1.cnt file2.cnt filen.cnt [-T] -d destfile.cnt

DESCRIPTION
lprof reports the execution characteristics of a program on a (source) line by line basis. This is useful as a means to determine which and how often portions of the code were executed.

lprof interprets a profile file (prog.cnt by default) produced by the profiled program prog (a.out by default). prog creates a profile file if it has been loaded with the -ql option of cc. The profile information is computed for functions in a source file if the -ql option was used when the source file was compiled.

A shared object may also be profiled by specifying -ql when the shared object is created. When a dynamically linked executable is run, one profile file is produced for each profiled shared object linked to the executable. This feature is useful in building a single report covering multiple and disparate executions of a common library. For example, if programs prog1 and prog2 both use library libx.a, running these profiled programs will produce two profile files, prog1.cnt and prog2.cnt, which cannot be combined. However, if libx is built as a profiled shared object, libx.so, and prog1 and prog2 are built as profiled dynamically linked executables, then running these programs with the merge option will produce three profile files; one of them, libx.so.cnt, will contain the libx profile information from both runs.

By default, lprof prints a listing of source files (the names of which are stored in the symbol table of the executable file), with each line preceded by its line number (in the source file) and the number of times the line was executed.

The following options may appear singly or be combined in any order:

-p 
Print listing, each line preceded by the line number and the number of times it was executed (default). This option can be used together with the -s option to print both the source listing and summary information.

-s 
Print summary information of percentage of lines of code executed per function.

-x 
Instead of printing the execution count numbers for each line, print each line preceded by its line number and a [U] if the line was not executed. If the line was executed, print only the line number.

-I incdir 
Look for source or header files in the directory incdir in addition to the current directory and the standard place for #include files (usually /usr/include). The user can specify more than one directory by using multiple -I options.
Iprof(1) (Enhanced Programming Utilities) Iprof(1)

-\( r \) srcfile

Instead of printing all source files, print only those files named in -\( r \) options (to be used with the -\( p \) option only). The user can specify multiple files with a single -\( r \) option.

-\( c \) cntfile

Use the file cntfile instead of prog.cnt as the input profile file.

-\( o \) prog

Use the name of the program prog instead of the name used when creating the profile file. Because the program name stored in the profile file contains the relative path, this option is necessary if the executable file or profile file has been moved.

-\( v \)

Print, on standard error, the version number of Iprof.

Merging Data Files

Iprof can also be used to merge profile files. The -\( m \) option must be accompanied by the -\( d \) option:

-\( m \) file1.cnt file2.cnt filen.cnt -\( d \) destfile.cnt

Merge the data files file1.cnt through filen.cnt by summing the execution counts per line, so that data from several runs can be accumulated. The result is written to destfile.cnt. The data files must contain profiling data for the same prog (see the -\( T \) option below).

-\( T \)

Time stamp override. Normally, the time stamps of the executable files being profiled are checked, and data files will not be merged if the time stamps do not match. If -\( T \) is specified, this check is skipped.

CONTROLLING THE RUN-TIME PROFILING ENVIRONMENT

The environment variable PROFOPTS provides run-time control over profiling. When a profiled program (or shared object) is about to terminate, it examines the value of PROFOPTS to determine how the profiling data are to be handled. A terminating shared object will honor every PROFOPTS option except file=filename.

The environment variable PROFOPTS is a comma-separated list of options interpreted by the program being profiled. If PROFOPTS is not defined in the environment, then the default action is taken: The profiling data are saved in a file (with the default name, prog.cnt) in the current directory. If PROFOPTS is set to the null string, no profiling data are saved. The following are the available options:

msg=[y|n]

If msg=y is specified, a message stating that profile data are being saved is printed to stderr. If msg=n is specified, only the profiling error messages are printed. The default is msg=y.

merge=[y|n]

If merge=y is specified, the data files will be merged after successive runs. If merge=n is specified, the data files are not merged after successive runs, and the data file is overwritten after each execution. The merge will fail if the program has been recompiled, and the data file will be left in TMPDIR. The default is merge=n.

pid=[y|n]

If pid=y is specified, the name of the data file will include the process ID of the profiled program. Inclusion of the process ID allows for the creation of different data files for programs calling fork. If pid=n is specified, the default name is used. The
default is pid=n. For lprof to generate its profiling report, the -c option must be specified with lprof otherwise the default will fail.

**dir=dirname**  
The data file is placed in the directory dirname if this option is specified. Otherwise, the data file is created in the directory that is current at the end of execution.

**file=filename**  
filename is used as the name of the data file in dir created by the profiled program if this option is specified. Otherwise, the default name is used. For lprof to generate its profiling report, the -c option must be specified with lprof if the file option has been used at execution time; otherwise the default will fail.

**FILES**  
`prog.cnt` profile data

**TMPDIR**  
usually `/var/tmp` but can be redefined by setting the environment variable TMPDIR [see `tempnam` in `tempnam(3)`].

**SEE ALSO**  
cc(1), prof(1), fork(2), tmpnam(3)

The "lprof" chapter in the Programmer's Guide: ANSI C and Programming Support Tools

**NOTES**  
For the -m option, if destfile.cnt exists, its previous contents are destroyed.

Optimized code cannot be profiled; if both optimization and line profiling are requested, profiling has precedence.

Including header files that contain code (such as stat.h or utsname.h) will cause erroneous data.

Different parts of one line of a source file may be executed different numbers of times (for example, the for loop below); the count corresponds to the first part of the line.

For example, in the following for loop

```c
main()
1 [2] {
 int j;
1 [5] for (j = 0; j < 5; j++)
5 [6] sub(j);
1 [8] }
 sub(a)
 int a;
5 [12] {
5 [13] printf("a is %d\n", a);
5 [14] }
```

line 5 consists of three parts. The line count listed, however, is for the initialization part, that is, j = 0.
NAME
ipsched, lpshut, lpmove – start/stop the LP print service and move requests

SYNOPSIS
/usr/lib/lp/ipsched
lpshut
lpmove requests dest
lpmove dest1 dest2

DESCRIPTION
ipsched starts the LP print service; this can be done only by root or lp.
lpshut shuts down the print service. All printers that are printing at the time
lpshut is invoked will stop printing. When ipsched is started again, requests
that were printing at the time a printer was shut down will be reprinted from the
beginning.
lpmove moves requests that were queued by lp between LP destinations. The
first form of the lpmove command shown above (under SYNOPSIS) moves the
named requests to the LP destination dest. Requests are request-IDs as returned by
lp. The second form of the lpmove command will attempt to move all requests
for destination dest1 to destination dest2; lp will then reject any new requests for
dest1.

Note that when moving requests, lpmove never checks the acceptance status [see
accept(1M)] of the new destination. Also, the request-IDs of the moved request
are not changed, so that users can still find their requests. The lpmove command
will not move requests that have options (content type, form required, and so on)
that cannot be handled by the new destination.

If a request was originally queued for a class or the special destination any, and
the first form of lpmove was used, the destination of the request will be changed
to new-destination. A request thus affected will be printable only on new-
destination and not on other members of the class or other acceptable printers if
the original destination was any.

FILES
/var/spool/lp/*

SEE ALSO
accept(1M), lpadm(1M)
enable(1), lp(1), lpsstat(1) in the User’s Reference Manual
NAME
lpstat – print information about the status of the LP print service

SYNOPSIS
lpstat [options]

DESCRIPTION
The lpstat command prints information about the current status of the LP print service.

If no options are given, then lpstat prints the status of all the user’s print requests made by lp [see lp(1)]. Any arguments that are not options are assumed to be request-IDs as returned by lp. The lpstat command prints the status of such requests. The options may appear in any order and may be repeated and intermixed with other arguments. Some of the keyletters below may be followed by an optional list that can be in one of two forms: a list of items separated from one another by a comma, or a list of items separated from one another by spaces enclosed in quotes. For example:

- u "user1, user2, user3"

Specifying all after any keyletter that takes list as an argument causes all information relevant to the keyletter to be printed. For example, the command

lpstat -o all

prints the status of all output requests.

The omission of a list following such key letters causes all information relevant to the key letter to be printed. For example, the command

lpstat -o

prints the status of all output requests.

-a [list] Reports whether print destinations are accepting requests. list is a list of intermixed printer names and class names.

-c [list] Reports name of all classes and their members. list is a list of class names.

-d Reports the system default destination for output requests.

-f [list] [-1] Prints a verification that the forms in list are recognized by the LP print service. list is a list of forms; the default is all. The -1 option will list the form descriptions.

-o [list] Reports the status of output requests: list is a list of intermixed printer names, class names, and request-IDs. The keyletter -o may be omitted.

-p [list] [-D] [-1] Reports the status of printers. list is a list of printer names. If the -D option is given, a brief description is printed for each printer in list. If the -1 option is given, and the printer is on the local machine, a full description of each printer’s configuration is given, including the form mounted, the acceptable content and printer types, a printer description, the interface used, and so on. If the -1 option is given and the printer is remote, the only information given is the remote machine and printer.
names, and the shell-commands used for file transfer and remote execution.

-\( \text{-r} \)
Reports whether the LP request scheduler is on or off.

-\( \text{-R} \)
Reports a number showing the position of the job in the print queue.

-\( \text{-s} \)
Displays a status summary, including the status of the LP scheduler, the system default destination, a list of class names and their members, a list of printers and their associated devices, a list of the machines sharing print services, a list of all forms currently mounted, and a list of all recognized character sets and print wheels.

-\( \text{-S \ [list]} \) \[-1\]
Prints a verification that the character sets or the print wheels specified in \( \text{list} \) are recognized by the LP print service. Items in \( \text{list} \) can be character sets or print wheels; the default for the list is \textbf{all}. If the \textbf{-1} option is given, each line is appended by a list of printers that can handle the print wheel or character set. The list also shows whether the print wheel or character set is mounted or specifies the built-in character set into which it maps.

-\( \text{-t} \)
Displays all status information: all the information obtained with the \textbf{-s} option, plus the acceptance and idle/busy status of all printers.

-\( \text{-u \ [login-ID-list]} \)
Displays the status of output requests for users. The \textit{login-ID-list} argument may include any or all of the following constructs:

\begin{itemize}
  \item \textit{login-ID} \quad a user on any system
  \item \textit{system_name!login-ID} \quad a user on system \textit{system_name}
  \item \textit{system_name!all} \quad all users on system \textit{system_name}
  \item \textbf{all!login-ID} \quad a user on all systems
  \item \textbf{all} \quad all users on all systems
\end{itemize}

-\( \text{-v \ [list]} \)
Reports the names of printers and the pathnames of the devices associated with them or remote system names for network printers: \textit{list} is a list of printer names.

\textbf{FILES}

\begin{itemize}
  \item \texttt{/var/spool/lp/*}
  \item \texttt{/etc/lp/*}
\end{itemize}

\textbf{SEE ALSO}

\begin{itemize}
  \item enable(l), lp(l)
\end{itemize}
NAME
   lpsystem – register remote systems with the print service

SYNOPSIS
   lpsystem [-t type] [-T timeout] [-R retry] [-y "comment"] system-name.br
   [system-name . . .]
   lpsystem -1 [system-name . . .]
   lpsystem -r system-name [system-name . . .]
   lpsystem -A

DESCRIPTION
   The lpsystem command is used to define parameters for the LP print service,
   with respect to communication (via a high-speed network such as STARLAN or
   TCP/IP) with remote systems. Only a privileged user (that is, the owner of the
   login root) may execute the lpsystem command.

   Specifically, the lpsystem command is used to define remote systems with which
   the local LP print service can exchange print requests. These remote systems are
defined in terms of several parameters that control communication: type, retry and timeout. These parameters are defined in
/etc/1p/Systems. You can edit this file with a text editor (such as vi) but editing
is not recommended.

   The type parameter defines the remote system as one of two types: s5 (System V
Release 4) or bsd (SunOS). The default type is s5.

   The timeout parameter specifies the length of time (in minutes) that the print
   service should allow a network connection to be idle. If the connection to the
   remote system is idle (that is, there is no network traffic) for N minutes, then
   drop the connection. (When there is more work the connection will be
   reestablished.) Legal values are n, 0, and N, where N is an integer greater than 0.
   The value n means “never time out”; 0 means “as soon as the connection is idle,
   drop it.” The default is n.

   The retry parameter specifies the length of time to wait before trying to
   reestablish a connection to the remote system, when the connection was dropped
   abnormally (that is, a network error). Legal values are n, 0, and N, where N is an
   integer greater than 0 and it means “wait N minutes before trying to reconnect.
   (The default is 10 minutes.) The value n means “do not retry dropped connec-
tions until there is more work”; 0 means “try to reconnect immediately.”

   The comment argument allows you to associate a free form comment with the sys-
tem entry. This is visible when lpsystem -1 is used.

   System-name is the name of the remote system from which you want to be able to
   receive jobs, and to which you want to be able to send jobs.

   The command lpsystem -1 [system-name] will print out a description of the
   parameters associated with system-name (if a system has been specified), or with
   all the systems in its database (if system-name has not been specified).

   The command lpsystem -r system-name will remove the entry associated with
   system-name. The print service will no longer accept jobs from that system or
   send jobs to it, even if the remote printer is still defined on the local system.
The command `ipsystem -A` will print out the TCP/IP address of the local machine in a format to be used when configuring the local port monitor to accept requests from a SunOS system.

NOTES:
With respect to `/etc/lp/Systems`, this information is relatively minimal with respect to controlling network communications. Network addresses and services are handled by the `Netconfig` and `Netdir` facilities (see the “Network Services” chapter in the `System Administrator's Guide` for a discussion of network addresses and services.) Port monitors handle listening for remote service requests and routing the connection to the print service (see the “Service Access” chapter in the `System Administrator's Guide` for a discussion of port monitors.)

If the `Netconfig` and `Netdir` facilities are not set up properly, out-bound remote print service probably will not work. Similarly, if the local port monitors are not set up to route remote print requests to the print service, then service for remote systems will not be provided. (See “Allowing Remote Systems to Access Local Printers” and “Configuring a Local Port Monitor” in the “Print Service” chapter of the `System Administrator's Guide` to find out how to do this.)

With respect to the semantics of the `timeout` and `retry` values, the print service uses one process for each remote system with which it communicates, and it communicates with a remote system only when there is work to be done on that system or work being sent from that system.

The system initiating the connection is the “master” process and the system accepting the connection is the “slave” process. This designation serves only to determine which process dies (the slave) when a connection is dropped. This helps prevent there from being more than one process communicating with a remote system. Furthermore, all connections are bi-directional, regardless of the master/slave designation. You cannot control a system's master/slave designation. Now, keeping all this information in mind, if a master process times out, then both the slave and master will exit. If a slave times out, then it is possible that the master may still live and retry the connection after the retry interval. Therefore, one system's resource management strategy can affect another system's strategy.

With respect to `ipsystem -A`: a SunOS system (described with `-t bsd`) can be connected to your system only via TCP/IP, and print requests from a SunOS system can come in to your machine only via a special port (515). The address given to you from `ipsystem` will be the address of your system and port 515. This address is used by your TCP/IP port monitor (see `sacadm(1M)` and `nlsadmin(1M)`) to "listen" on that address and port, and to route connections to the print service. (This procedure is discussed in the “Service Access” chapter of the `System Administrator's Guide`.) The important point here is that this is where you get the address referred to in that procedure.

The command `ipsystem -A` will not work if your system name and IP address are not listed in `/etc/inet/hosts` and the printer service is not listed in `/etc/inet/services`. 
FILES
/var/spool/lp/* /etc/lp/*

SEE ALSO
netconfig(4)
Network Programmer’s Guide
System Administrator’s Guide
NAME
lptest – generate lineprinter ripple pattern

SYNOPSIS
/usr/ucb/lptest [ length [ count ] ]

DESCRIPTION
lptest writes the traditional “ripple test” pattern on standard output. In 96 lines, this pattern will print all 96 printable ASCII characters in each position. While originally created to test printers, it is quite useful for testing terminals, driving terminal ports for debugging purposes, or any other task where a quick supply of random data is needed.

The length argument specifies the output line length if the default length of 79 is inappropriate.

The count argument specifies the number of output lines to be generated if the default count of 200 is inappropriate.

NOTES
If count is to be specified, length must be also be specified.
This command is obsolescent.
NAME
lpusers – set printing queue priorities

SYNOPSIS
lpusers -d priority-level
lpusers -q priority-level -u login-ID-list
lpusers -u login-ID-list
lpusers -q priority-level
lpusers -l

DESCRIPTION
The lpusers command is used to set limits to the queue priority level that can be
assigned to jobs submitted by users of the LP print service.
The first form of the command (with -d) sets the system-wide priority default to
priority-level, where priority-level is a value of 0 to 39, with 0 being the highest
priority. If a user does not specify a priority level with a print request [see
lp(1)], the default priority is used. Initially, the default priority level is
20.
The second form of the command (with -q and -u) sets the default highest
priority-level (0-39) that the users in login-ID-list can request when submitting a
print request. The login-ID-list argument may include any or all of the following
constructs:
login-ID       A user on any system
system_name!login-ID A user on the system system_name
system_name!all     All users on system system_name
all!login-ID       A user on all systems
all               All users on all systems

Users that have been given a limit cannot submit a print request with a higher
priority level than the one assigned, nor can they change a request already
submitted to have a higher priority. Any print requests submitted with priority
levels higher than allowed will be given the highest priority allowed.
The third form of the command (with -u) removes any explicit priority level for
the specified users.
The fourth form of the command (with -q) sets the default highest priority level
for all users not explicitly covered by the use of the second form of this com-
mand.
The last form of the command (with -l) lists the default priority level and the
priority limits assigned to users.

SEE ALSO
lp(1) in the User's Reference Manual
NAME
ls – list contents of directory

SYNOPSIS
ls [-RadxLxmlnogrtucpFlbqisf1] [file ...]

DESCRIPTION
For each directory argument, ls lists the contents of the directory; for each file argument, ls repeats its name and any other information requested. The output is sorted alphabetically by default. When no argument is given, the current directory is listed. When several arguments are given, the arguments are first sorted appropriately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a terminal is multi-column with entries sorted down the columns. The -1 option allows single column output and -m enables stream output format. In order to determine output formats for the -C, -x, and -m options, ls uses an environment variable, COLUMNS, to determine the number of character positions available on one output line. If this variable is not set, the terminfo(4) database is used to determine the number of columns, based on the environment variable TERM. If this information cannot be obtained, 80 columns are assumed.

The ls command has the following options:

- -R  Recursively list subdirectories encountered.
- -a  List all entries, including those that begin with a dot (.), which are normally not listed.
- -d  If an argument is a directory, list only its name (not its contents); often used with -l to get the status of a directory.
- -L  When listing status, if an argument is a symbolic link, list the status of the file or directory referenced by the link rather than that of the link itself.
- -C  Multi-column output with entries sorted down the columns. This is the default output format.
- -x  Multi-column output with entries sorted across rather than down the page.
- -m  Stream output format; files are listed across the page, separated by commas.
- -l  List in long format, giving mode, number of links, owner, group, size in bytes, and time of last modification for each file (see below). If the file is a special file, the size field instead contains the major and minor device numbers rather than a size. If the file is a symbolic link, the filename is printed followed by “->” and the pathname of the referenced file.
- -n  The same as -l, except that the owner’s UID and group’s GID numbers are printed, rather than the associated character strings.
- -o  The same as -l, except that the group is not printed.
The same as -1, except that the owner is not printed.
-Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.
-Sort by time stamp (latest first) instead of by name. The default is the last modification time. (See -n and -c.)
-Use time of last access instead of last modification for sorting (with the -t option) or printing (with the -l option).
-Use time of last modification of the i-node (file created, mode changed, etc.) for sorting (-t) or printing (-l).
-Put a slash (/) after each filename if the file is a directory.
-Put a slash (/) after each filename if the file is a directory, an asterisk (*) if the file is an executable, and an ampersand (@) if the file is a symbolic link.
-Force printing of non-printable characters to be in the octal \ddd notation.
-Force printing of non-printable characters in file names as the character question mark (?).
-For each file, print the i-node number in the first column of the report.
-Give size in blocks, including indirect blocks, for each entry.
-Force each argument to be interpreted as a directory and list the name found in each slot. This option turns off -1, -t, -s, and -r, and turns on -a; the order is the order in which entries appear in the directory.

Print one entry per line of output.

The mode printed under the -l option consists of ten characters. The first character may be one of the following:

d the entry is a directory;
1 the entry is a symbolic link;
b the entry is a block special file;
c the entry is a character special file;
m the entry is XENIX shared data (memory) file;
p the entry is a fifo (a.k.a. "named pipe") special file;
s the entry is a XENIX semaphore;
- the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to the owner’s permissions; the next to permissions of others in the user-group of the file; and the last to all others. Within each set, the three characters indicate permission to read, to write, and to execute the file as a program, respectively. For a directory, "execute" permission is interpreted to mean permission to search the directory for a specified file.

**ls -l (the long list)** prints its output as follows:

```
-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2
```
Reading from right to left, you see that the current directory holds one file, named `part2`. Next, the last time that file's contents were modified was 9:42 A.M. on May 16. The file contains 10,876 characters, or bytes. The owner of the file, or the user, belongs to the group `dev` (perhaps indicating "development"), and his or her login name is `smith`. The number, in this case 1, indicates the number of links to file `part2`; see `cp(1)`. Finally, the dash and letters tell you that user, group, and others have permissions to read, write, and execute `part2`.

The execute (x) symbol here occupies the third position of the three-character sequence. A - in the third position would have indicated a denial of execution permissions.

The permissions are indicated as follows:

- r the file is readable
- w the file is writable
- x the file is executable
- - the indicated permission is *not* granted
- l mandatory locking occurs during access (the set-group-ID bit is on and the group execution bit is off)
- s the set-user-ID or set-group-ID bit is on, and the corresponding user or group execution bit is also on
- S undefined bit-state (the set-user-ID bit is on and the user execution bit is off)
- t the 1000 (octal) bit, or sticky bit, is on [see `chmod(1)`], and execution is on
- T the 1000 bit is turned on, and execution is off (undefined bit-state)

For user and group permissions, the third position is sometimes occupied by a character other than x or -. s also may occupy this position, referring to the state of the set-ID bit, whether it be the user’s or the group’s. The ability to assume the same ID as the user during execution is, for example, used during login when you begin as root but need to assume the identity of the user you login as.

In the case of the sequence of group permissions, 1 may occupy the third position. 1 refers to mandatory file and record locking. This permission describes a file’s ability to allow other files to lock its reading or writing permissions during access.

For others permissions, the third position may be occupied by t or T. These refer to the state of the sticky bit and execution permissions.

**EXAMPLES**

An example of a file’s permissions is:

```
-rwxr--r--
```

This describes a file that is readable, writable, and executable by the user and readable by the group and others.

Another example of a file’s permissions is:

```
-rwshr-xr-x
```
This describes a file that is readable, writable, and executable by the user, readable and executable by the group and others, and allows its user-ID to be assumed, during execution, by the user presently executing it.

Another example of a file’s permissions is:

```
-rw-rw1---
```

This describes a file that is readable and writable only by the user and the group and can be locked during access.

An example of a command line:

```
ls -a
```

This command prints the names of all files in the current directory, including those that begin with a dot (.), which normally do not print.

Another example of a command line:

```
ls -aisn
```

This command provides information on all files, including those that begin with a dot (a), the i-number—the memory address of the i-node associated with the file—printed in the left-hand column (l); the size (in blocks) of the files, printed in the column to the right of the i-numbers (s); finally, the report is displayed in the numeric version of the long list, printing the UID (instead of user name) and GID (instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is printed.

FILES

/etc/passwd user IDs for `ls -l` and `ls -o`
/etc/group group IDs for `ls -l` and `ls -g`
/usr/share/lib/terminfo/?/* terminal information database

SEE ALSO

`chmod(1)`, `find(1)`

NOTES

In a Remote File Sharing environment, you may not have the permissions that the output of the `ls -l` command leads you to believe. For more information see the `System Administrator's Guide`.

Unprintable characters in file names may confuse the columnar output options.
The total block count will be incorrect if if there are hard links among the files.
NAME
ls – list the contents of a directory

SYNOPSIS
/usr/ucb/ls [ -aAcdfgilLqrRstu1 ] filename ...

DESCRIPTION
For each filename which is a directory, ls lists the contents of the directory; for each filename which is a file, ls repeats its name and any other information requested. By default, the output is sorted alphabetically. When no argument is given, the current directory is listed. When several arguments are given, the arguments are first sorted appropriately, but file arguments are processed before directories and their contents.

Permissions Field
The mode printed under the -l option contains 10 characters interpreted as follows. If the first character is:

d entry is a directory;

b entry is a block-type special file;

c entry is a character-type special file;

l entry is a symbolic link;

p entry is a FIFO (also known as named pipe) special file;

s entry is an AF_UNIX address family socket, or

- entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to owner permissions; the next refers to permissions to others in the same user-group; and the last refers to all others. Within each set the three characters indicate permission respectively to read, to write, or to execute the file as a program. For a directory, execute permission is interpreted to mean permission to search the directory. The permissions are indicated as follows:

r the file is readable;
w the file is writable;
x the file is executable;
- the indicated permission is not granted.

The group-execute permission character is given as s if the file has the set-group-id bit set; likewise the owner-execute permission character is given as s if the file has the set-user-id bit set.

The last character of the mode (normally x or ‘-’) is true if the 1000 bit of the mode is on. See chmod(1) for the meaning of this mode. The indications of set-ID and 1000 bits of the mode are capitalized (S and T respectively) if the corresponding execute permission is not set.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks is printed. The following options are available:

-a List all entries; in the absence of this option, entries whose names begin with a ‘.’ are not listed (except for the privileged user, for whom ls normally prints even files that begin with a ‘.’).
Same as `-a`, except that `.` and `..` are not listed.

Use time of last edit (or last mode change) for sorting or printing.

Force multi-column output, with entries sorted down the columns; for `ls`, this is the default when output is to a terminal.

If argument is a directory, list only its name (not its contents); often used with `-l` to get the status of a directory.

Force each argument to be interpreted as a directory and list the name found in each slot. This option turns off `-l`, `-t`, `-s`, and `-r`, and turns on `-a`; the order is the order in which entries appear in the directory.

Mark directories with a trailing slash (`/`), executable files with a trailing asterisk (`*`), symbolic links with a trailing at-sign (`@`), and `AF_UNIX` address family sockets with a trailing equals sign (`=`).

For `ls`, show the group ownership of the file in a long output.

For each file, print the i-node number in the first column of the report.

List in long format, giving mode, number of links, owner, size in bytes, and time of last modification for each file. If the file is a special file the size field will instead contain the major and minor device numbers. If the time of last modification is greater than six months ago, it is shown in the format `month date year`; files modified within six months show `month date time`. If the file is a symbolic link the pathname of the linked-to file is printed preceded by `->`.

If argument is a symbolic link, list the file or directory the link references rather than the link itself.

Display non-graphic characters in filenames as the character `?`; for `ls`, this is the default when output is to a terminal.

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

Recursively list subdirectories encountered.

Give size of each file, including any indirect blocks used to map the file, in kilobytes.

Sort by time modified (latest first) instead of by name.

Use time of last access instead of last modification for sorting (with the `-t` option) and/or printing (with the `-l` option).

Force one entry per line output format; this is the default when output is not to a terminal.
FILES
/etc/passwd to get user ID's for ‘ls -l’ and ‘ls -o’.
/etc/group to get group ID for ‘ls -g’

NOTES
NEWLINE and TAB are considered printing characters in filenames.
The output device is assumed to be 80 columns wide.
The option setting based on whether the output is a teletype is undesirable as ‘ls -s’ is much different than ‘ls -s | lpr’. On the other hand, not doing this setting would make old shell scripts which used ls almost certain losers.
Unprintable characters in file names may confuse the columnar output options.
NAME
ls, lc – list contents of directory

SYNOPSIS
ls [-RadLcxmlnogrtucpFbqisfl] [names]
lc [-1CFILRabcfgilmnopqrstux] [name. . .]

DESCRIPTION
For each directory argument, ls lists the contents of the directory for each file argument. lc functions the same as ls except that the lc default output format is columnar, even if the output is redirected. ls repeats its name and any other information requested. The output is sorted alphabetically by default. When no argument is given, the current directory is listed. When several arguments are given, the arguments are first sorted appropriately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format for output directed to a terminal is multi-column with entries sorted down the columns. The -1 option allows single column output and -m enables stream output format. In order to determine output formats for the -C, -x, and -m options, ls uses an environment variable, COLUMNS, to determine the number of character positions available on one output line. If this variable is not set, the terminfo(4) database is used to determine the number of columns, based on the environment variable TERM. If this information cannot be obtained, 80 columns are assumed.

The ls command has the following options:

-R Recursively list subdirectories encountered.
-a List all entries, including those that begin with a dot (.), which are normally not listed.
-d If an argument is a directory, list only its name (not its contents); often used with -1 to get the status of a directory.
-L If an argument is a symbolic link, list the file or directory the link references rather than the link itself.
-C Multi-column output with entries sorted down the columns. This is the default output format.
-x Multi-column output with entries sorted across rather than down the page.
-m Stream output format; files are listed across the page, separated by commas.
-l List in long format, giving mode, number of links, owner, group, size in bytes, and time of last modification for each file (see below). If the file is a special file, the size field instead contains the major and minor device numbers rather than a size. If the file is a symbolic link, the filename is printed followed by "->" and the pathname of the referenced file.
-n The same as -l, except that the owner's UID and group's GID numbers are printed, rather than the associated character strings.
The same as -1, except that the group is not printed.

The same as -1, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

Sort by time stamp (latest first) instead of by name. The default is the last modification time. (See -n and -c.)

Use time of last access instead of last modification for sorting (with the -t option) or printing (with the -1 option).

Use time of last modification of the i-node (file created, mode changed, etc.) for sorting (-t) or printing (-1).

Put a slash (/) after each filename if the file is a directory.

Put a slash (/) after each filename if the file is a directory, an asterisk (*) if the file is an executable, and an ampersand (@) if the file is a symbolic link.

Force printing of non-printable characters to be in the octal \ddd notation.

Force printing of non-printable characters in file names as the character question mark (?).

For each file, print the i-number in the first column of the report.

Give size in blocks, including indirect blocks, for each entry.

Force each argument to be interpreted as a directory and list the name found in each slot. This option turns off -1, -t, -s, and -r, and turns on -a; the order is the order in which entries appear in the directory.

Print one entry per line of output.

The mode printed under the -1 option consists of ten characters. The first character may be one of the following:

d the entry is a directory;
1 the entry is a symbolic link;
b the entry is a block special file;
c the entry is a character special file;
p the entry is a fifo (named pipe) special file;
- the entry is an ordinary file.
s the entry is a XENIX semaphore.
m the entry is a XENIX shared data (memory).

The next 9 characters are interpreted as three sets of three bits each. The first set refers to the owner's permissions; the next to permissions of others in the user-group of the file; and the last to all others. Within each set, the three characters indicate permission to read, to write, and to execute the file as a program, respectively. For a directory, "execute" permission is interpreted to mean permission to search the directory for a specified file.
ls -l (the long list) prints its output as follows:

```
-rwxrwxrwx 1 smith dev 10876 May 16 9:42 part2
```

Reading from right to left, you see that the current directory holds one file, named `part2`. Next, the last time that file’s contents were modified was 9:42 A.M. on May 16. The file contains 10,876 characters, or bytes. The owner of the file, or the user, belongs to the group `dev` (perhaps indicating “development”), and his or her login name is `smith`. The number, in this case 1, indicates the number of links to file `part2`; see `cp(1)`. Finally, the dash and letters tell you that user, group, and others have permissions to read, write, and execute `part2`.

The execute (x) symbol here occupies the third position of the three-character sequence. A - in the third position would have indicated a denial of execution permissions.

The permissions are indicated as follows:

- r the file is readable
- w the file is writable
- x the file is executable
- the indicated permission is not granted
- 1 mandatory locking occurs during access (the set-group-ID bit is on and the group execution bit is off)
- s the set-user-ID or set-group-ID bit is on, and the corresponding user or group execution bit is also on
- S undefined bit-state (the set-user-ID bit is on and the user execution bit is off)
- t the 1000 (octal) bit, or sticky bit, is on [see `chmod(1)`], and execution is on
- T the 1000 bit is turned on, and execution is off (undefined bit-state)

For user and group permissions, the third position is sometimes occupied by a character other than x or -. s also may occupy this position, referring to the state of the set-ID bit, whether it be the user’s or the group’s. The ability to assume the same ID as the user during execution is, for example, used during login when you begin as root but need to assume the identity of the user you login as.

In the case of the sequence of group permissions, 1 may occupy the third position. 1 refers to mandatory file and record locking. This permission describes a file’s ability to allow other files to lock its reading or writing permissions during access.

For others permissions, the third position may be occupied by t or T. These refer to the state of the sticky bit and execution permissions.

**EXAMPLES**

An example of a file’s permissions is:

```
-rwxr--r--
```

This describes a file that is readable, writable, and executable by the user and readable by the group and others.
Another example of a file's permissions is:

```
-rwsr-xr-x
```

This describes a file that is readable, writable, and executable by the user, readable and executable by the group and others, and allows its user-ID to be assumed, during execution, by the user presently executing it.

Another example of a file's permissions is:

```
-rw-rw---
```

This describes a file that is readable and writable only by the user and the group and can be locked during access.

An example of a command line:

```
ls -a
```

This command prints the names of all files in the current directory, including those that begin with a dot (.), which normally do not print.

Another example of a command line:

```
ls -aisn
```

This command provides information on all files, including those that begin with a dot (a), the i-number—the memory address of the i-node associated with the file—printed in the left-hand column (i); the size (in blocks) of the files, printed in the column to the right of the i-numbers (s); finally, the report is displayed in the numeric version of the long list, printing the UID (instead of user name) and GID (instead of group name) numbers associated with the files.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect blocks, is printed.

**FILES**

- `/etc/passwd` user IDs for `ls -l` and `ls -o`
- `/etc/group` group IDs for `ls -l` and `ls -g`
- `/usr/share/lib/terminfo/?/*` terminal information database

**SEE ALSO**

- `chmod(1)`, `find(1)`

**NOTES**

In a Remote File Sharing environment, you may not have the permissions that the output of the `ls -l` command leads you to believe. For more information see the *System Administrator's Guide*.

Unprintable characters in file names may confuse the columnar output options.
Section 4 – File Formats

intro(4) .............................................................. introduction to file formats
a.out(4) .......................................................... ELF (Executable and Linking Format) files
acct(4) .............................................................. per-process accounting file format
admin(4) ............................................................. installation defaults file
aliases, addresses, forward(4) ................................ addresses and aliases for sendmail
ar(4) ................................................................. archive file format
archives(4) ..................................................... device header file
binarssys(4) ................................................ remote system information for the ckbinarssys command
boot(4) ............................................................. boot
compver(4) ...................................................... compatible versions file
copyright(4) ................................................ copyright information file
core(4) ............................................................ core image file
cron(4) ......................................................... cron
depend(4) ...................................................... software dependencies files
dfstab(4) ...................................................... file containing commands for sharing resources
dir (s5)(4) ...................................................... format of s5 directories
dir (ufs)(4) .................................................... format of ufs directories
dirent(4) ...................................................... file system independent directory entry
dump(4) ......................................................... dump
ethers(4) ....................................................... Ethernet address to hostname database or domain
/dev/fd(4) ..................................................... file descriptor files
filehdr(4) ...................................................... file header for common object files
fs (bfs)(4) ..................................................... format of the bfs file system volume
fs (s5)(4) ..................................................... format of s5 file system volume
fs (ufs)(4) ..................................................... format of ufs file system volume
fspec(4) ....................................................... format specification in text files
fstypes(4) .................................................. file that registers distributed file system packages
group(4) ..................................................... group file
hosts(4) ........................................................ host name data base
hosts.equiv, .rhosts(4) ........................... trusted hosts by system and by user
inittab(4) ................................................... script for init
inetd.conf(4) ............................................ Internet servers database
inode (bfs)(4) .............................................. format of a bfs i-node
inode (s5)(4) ................................................ format of an s5 i-node
inode (ufs)(4) .............................................. format of a ufs i-node
issue(4) ...................................................... issue identification file
limits(4) ...................................................... header file for implementation-specific constants
login(4) ...................................................... login default file
loginlog(4) ................................................ log of failed login attempts
Section 4 - File Formats

mailcnfg(4) ................................................................. initialization information for mail and rmail
mailsurr(4) ........................................................ surrogate commands for routing and transport of mail
mapchan(4) ........................................................ Format of tty device mapping files
mdevice (4) ................................................................................ file format
mdevice (4) ................................................................................ file format
mfsys (4) ................................................................................ file format
mnttab(4) ................................................................................ mounted file system table
mtune(4) ................................................................................ file format
netconfig(4) ................................................... network configuration database
netmasks(4) ................................................................................ network mask data base
netrc(4) ................................................................................ file for ftp remote login data
networks(4) ........................................................ network name data base
passwd(4) ................................................................................ password file
pathalias(4) ................................................................................ alias file for FACE
pkginfo(4) ................................................................................ package characteristics file
pkgmap(4) ................................................................................ package contents description file
pnch(4) ................................................................................ file format for card images
/proc(4) ................................................................................ process file system
profile(4) ................................................................................ setting up an environment at login time
protocols(4) ................................................................................ protocol name data base
prototype(4) ........................................................................ package information file
publickey(4) ........................................................................ public key database
resolv.conf(4) ........................................................................ configuration file for name server routines
rfmaster(4) .......................................................................... Remote File Sharing name server master file
routing(4) ........................................................................ system supporting for packet network routing
rpc(4) ................................................................................ rpc program number data base
rt_dptbl(4) ........................................................................ real-time dispatcher parameter table
sccsfile(4) ........................................................................ format of SCCS file
sdevice (4) ................................................................................ file format
services(4) ........................................................................... Internet services and aliases
sfsys (4) ................................................................................ file format
shadow(4) ................................................................................ shadow password file
sharetab(4) ........................................................................... shared file system table
space(4) ................................................................................ disk space requirement file
stat(4) ................................................................................ data returned by stat system call
strcf(4) ................................................................................ STREMS Configuration File for STREMS TCP/IP
strftime (4) ................................................................................ language specific strings
stune (4) ................................................................................ file format
su(4) ................................................................................ su
syslog.conf(4) ........................................................................ configuration file for syslogd system log daemon
Section 4 – File Formats

term(4) ................................................................. format of compiled term file
terminfo(4) .......................................................... terminal capability data base
timezone(4) ........................................................ set default system time zone
ts_dptbl(4) ..................................................... time-sharing dispatcher parameter table
ttydefs(4) ...................................................... file contains terminal line settings information for ttymon
ttysrch(4) ........................................................ directory search list for ttyname
unistd(4) ........................................................ header file for symbolic constants
updaters(4) ................................................. configuration file for Network Information Service (NIS) updating
utmp, wtmp(4) .................................................. utmp and wtmp entry formats
utmpx, wtmpx(4) ............................................. utmpx and wtmpx entry formats
vfstab(4) ........................................................ table of file system defaults
ypfiles(4) ...................................................... the Network Information Service (NIS) database and directory structure
Where To Find Section 4 Manual Pages

The Section 4 manual pages have been moved to another manual in this reference set. They are now located in the *System Files and Devices Reference Manual*.
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro(5)</td>
<td>introduction to miscellany</td>
</tr>
<tr>
<td>ascii(5)</td>
<td>map of ASCII character set</td>
</tr>
<tr>
<td>environ(5)</td>
<td>user environment</td>
</tr>
<tr>
<td>eqnchar(5)</td>
<td>special character definitions for eqn</td>
</tr>
<tr>
<td>fcntl(5)</td>
<td>file control options</td>
</tr>
<tr>
<td>iconv(5)</td>
<td>code set conversion tables</td>
</tr>
<tr>
<td>jagent(5)</td>
<td>host control of windowing terminal</td>
</tr>
<tr>
<td>langinfo(5)</td>
<td>language information constants</td>
</tr>
<tr>
<td>layers(5)</td>
<td>protocol used between host and windowing terminal under layers(1)</td>
</tr>
<tr>
<td>math(5)</td>
<td>math functions and constants</td>
</tr>
<tr>
<td>man(5)</td>
<td>macros to format Reference Manual pages</td>
</tr>
<tr>
<td>me(5)</td>
<td>macros for formatting papers</td>
</tr>
<tr>
<td>ms(5)</td>
<td>text formatting macros</td>
</tr>
<tr>
<td>nl_types(5)</td>
<td>native language data types</td>
</tr>
<tr>
<td>prof(5)</td>
<td>profile within a function</td>
</tr>
<tr>
<td>regexp: compile, step, advance(5)</td>
<td>regular expression compile and match routines</td>
</tr>
<tr>
<td>siginfo(5)</td>
<td>signal generation information</td>
</tr>
<tr>
<td>signal(5)</td>
<td>base signals</td>
</tr>
<tr>
<td>stat(5)</td>
<td>data returned by stat system call</td>
</tr>
<tr>
<td>stdarg(5)</td>
<td>handle variable argument list</td>
</tr>
<tr>
<td>term(5)</td>
<td>conventional names for terminals</td>
</tr>
<tr>
<td>types(5)</td>
<td>primitive system data types</td>
</tr>
<tr>
<td>ucontext(5)</td>
<td>user context</td>
</tr>
<tr>
<td>values(5)</td>
<td>machine-dependent values</td>
</tr>
<tr>
<td>varargs(5)</td>
<td>handle variable argument list</td>
</tr>
<tr>
<td>wstat(5)</td>
<td>wait status</td>
</tr>
<tr>
<td>xtproto(5)</td>
<td>multiplexed channels protocol used by xt driver</td>
</tr>
</tbody>
</table>
Where To Find Section 5 Manual Pages

NOTE
The Section 5 manual pages have been moved to another manual in this reference set. They are now located in the System Files and Devices Reference Manual.
## Section 7 – Special Files

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intro(7)</td>
<td>introduction to special files</td>
</tr>
<tr>
<td>ARP(7)</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>asy(7)</td>
<td>asynchronous serial port</td>
</tr>
<tr>
<td>clone(7)</td>
<td>open any major/minor device pair on a STREAMS driver</td>
</tr>
<tr>
<td>connd(7)</td>
<td>line discipline for unique stream connections</td>
</tr>
<tr>
<td>console(7)</td>
<td>STREAMS-based console interface</td>
</tr>
<tr>
<td>cram(7)</td>
<td>CMOS RAM interface</td>
</tr>
<tr>
<td>disk(7)</td>
<td>random access bulk storage medium</td>
</tr>
<tr>
<td>display(7)</td>
<td>system console display</td>
</tr>
<tr>
<td>fd(7)</td>
<td>diskette (floppy disk)</td>
</tr>
<tr>
<td>filesystem(7)</td>
<td>file system organization</td>
</tr>
<tr>
<td>hd(7)</td>
<td>hard (fixed) disk</td>
</tr>
<tr>
<td>ICMP(7)</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>ie6(7)</td>
<td>3C503 3Com Ethernet Driver</td>
</tr>
<tr>
<td>if(7)</td>
<td>general properties of Internet Protocol network interfaces</td>
</tr>
<tr>
<td>inet(7)</td>
<td>Internet protocol family</td>
</tr>
<tr>
<td>IP(7)</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>keyboard(7)</td>
<td>system console keyboard</td>
</tr>
<tr>
<td>ldterm(7)</td>
<td>standard STREAMS terminal line discipline module</td>
</tr>
<tr>
<td>lo(7)</td>
<td>software loopback network interface</td>
</tr>
<tr>
<td>log(7)</td>
<td>interface to STREAMS error logging and event tracing</td>
</tr>
<tr>
<td>lp(7)</td>
<td>parallel port interface</td>
</tr>
<tr>
<td>mem, kmem(7)</td>
<td>core memory</td>
</tr>
<tr>
<td>mouse(7)</td>
<td>mouse device driver supporting bus, serial, and PS/2 compatible mouse devices</td>
</tr>
<tr>
<td>null(7)</td>
<td>the null file</td>
</tr>
<tr>
<td>pckt(7)</td>
<td>STREAMS Packet Mode module</td>
</tr>
<tr>
<td>ports(7)</td>
<td>five-line asynchronous communications interface STREAMS driver</td>
</tr>
<tr>
<td>prf(7)</td>
<td>operating system profiler</td>
</tr>
<tr>
<td>ptem(7)</td>
<td>STREAMS Pseudo Terminal Emulation module</td>
</tr>
<tr>
<td>qt(7)</td>
<td>QIC cartridge magnetic tape streamer interface</td>
</tr>
<tr>
<td>rtc(7)</td>
<td>real time clock interface</td>
</tr>
<tr>
<td>SA(7)</td>
<td>devices administered by System Administration</td>
</tr>
<tr>
<td>sad(7)</td>
<td>STREAMS Administrative Driver</td>
</tr>
<tr>
<td>scsi_adaptec(7)</td>
<td>Adaptec 1542A SCSI host adapter subsystem</td>
</tr>
<tr>
<td>scsi_cdrom(7)</td>
<td>CD-ROM Target Driver</td>
</tr>
<tr>
<td>scsi_disk(7)</td>
<td>sd01 SCSI disk driver</td>
</tr>
<tr>
<td>scsi_dpt(7)</td>
<td>SCSI host adapter subsystem</td>
</tr>
<tr>
<td>scsi_tape(7)</td>
<td>st01 SCSI tape driver</td>
</tr>
<tr>
<td>scsi_wd7000(7)</td>
<td>WD7000 FASST2 host adapter subsystem</td>
</tr>
</tbody>
</table>
scsi_worm(7) ................................................................. sw01 SCSI WORM Target Driver
sockio(7) ................................................................. ioctls that operate directly on sockets
streamio(7) ............................................................. STREAMS ioctl commands
sxt(7) ................................................................. pseudo-device driver
TCP(7) ............................................................. Internet Transmission Control Protocol
termio(7) ............................................................. general terminal interface
termiox(7) .............................................................. extended general terminal interface
ticls, ticots, ticotsord(7) ........................................... loopback transport providers
timod(7) ........................................................... Transport Interface cooperating STREAMS module
tirdwr(7) ......................................................... Transport Interface read/write interface STREAMS module
ttcompat(7) ..................................................... V7, 4BSD and XENIX STREAMS compatibility module
tty(7) ............................................................. controlling terminal interface
UDP(7) ............................................................. Internet User Datagram Protocol
wd(7) .......................................................... Western Digital 8003 Adapter Board
xt(7) .................................................. STREAMS-based multiplexed tty driver for AT&T windowing terminals
zero(7) ................................................................. source of zeroes
The Section 7 manual pages have been moved to another manual in this reference set. They are now located in the *System Files and Devices Reference Manual*. 
Permuted Index

call SCO UNIX System V/386 Release x286emul emulate XENIX
3.2-compatible libnsl /to .............................................. fixshlib(1M)
diff3 3-way differential file comparison ............................. diff3(1)
format maplocale convert Release 80286 ............................. x286emul(1)
PostScript translator for tektronix ................................. x286emul(1)
wtinit object downloader for the PostScript translator for Diablo PostScript translator for Diablo
PostScript translator for Diablo /
/Dosmkdir, dosls, dosrm, dosrmdir accept, reject print requests
files settime change the face executable for the Framed
file touch update
acctcon, acctcon2 connect-time acetcms merge or add total
acctprc, acctprc1, acctprc2 process accounting acctmerg(1M)
/closewtmp, utmp2wtmp overview of accounting and miscellaneous/
turnacct shell procedures for accounting acctcon(1M)
of accounting and miscellaneous
 diskusg generate disk accounting acctmerg(1M)
acctcom search and print process accounting acctmerg(1M)
acctmerg merge or add total accounting acctmerg(1M)
command summary from per-process
fwtmp, wtmpfix manipulate connect accounting acctdisk, acctdusg, accton, acct(1M)
runcact run daily accounting acctdisk, acctdusg, accton, acct(1M)
acctwtmp closewtmp, utmp2wtmp/ accounting acctdisk, acctdusg, accton, acct(1M)
per-process accounting records accounting acctdisk, acctdusg, accton, acct(1M)
accounting file(s) accounting acctdisk, acctdusg, accton, acct(1M)
connect-time accounting accounting acctdisk, acctdusg, accton, acct(1M)
accounting acctcon,
acctcon, acctcon1,
acctwtmp closewtmp, acct: acctdisk,
accounting files accounting acctdisk, acctdusg, accton, acct(1M)
acct: acctdisk, acctdusg, accton,
accounting accounting acctdisk, acctdusg, accton, acct(1M)
acctprc, acctprc1, acctprc2 process accounting acctdisk, acctdusg, accton, acct(1M)
acctprc, acctprc1, acctprc2 process accounting acctdisk, acctdusg, accton, acct(1M)
acct: acctdisk, acctdusg, accton,
pkgchk check
pkgchk check
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>killall</td>
<td>kill all active processes</td>
</tr>
<tr>
<td>partsize</td>
<td>returns the size of the system</td>
</tr>
<tr>
<td>sag system</td>
<td></td>
</tr>
<tr>
<td>sadc, sa1, sa2 system</td>
<td>activity graph</td>
</tr>
<tr>
<td>sar system</td>
<td>activity report package</td>
</tr>
<tr>
<td>sar system</td>
<td>activity reporter</td>
</tr>
<tr>
<td>print current SCCS file</td>
<td>activity intro</td>
</tr>
<tr>
<td>editing report process</td>
<td>activity timex time a command;</td>
</tr>
<tr>
<td>data and system</td>
<td>add a file to the software</td>
</tr>
<tr>
<td>installation database</td>
<td>add (create) a new group definition</td>
</tr>
<tr>
<td>installf</td>
<td>add entries to the system log</td>
</tr>
<tr>
<td>on the system groupadd</td>
<td>add deletes, update, or get device</td>
</tr>
<tr>
<td>driver configuration/</td>
<td>add symbols to kernel debugger</td>
</tr>
<tr>
<td>idinstall</td>
<td>add total accounting files</td>
</tr>
<tr>
<td>logger</td>
<td>acctmerg create or extend a</td>
</tr>
<tr>
<td>dbsym</td>
<td>address resolution display</td>
</tr>
<tr>
<td>acctmerg merge or</td>
<td>Address Resolution Protocol server</td>
</tr>
<tr>
<td>bibliographic database</td>
<td>addresses to RPC program number</td>
</tr>
<tr>
<td>control arp</td>
<td>admin create and administer SCCS</td>
</tr>
<tr>
<td>rarpd DARPA Reverse</td>
<td>administer a new user login on the</td>
</tr>
<tr>
<td>mapper rpcbind universal</td>
<td>administer filters used with the LP</td>
</tr>
<tr>
<td>files</td>
<td>administer forms used with the LP</td>
</tr>
<tr>
<td>system useradd</td>
<td>admin SCCS files</td>
</tr>
<tr>
<td>print service lpfilter</td>
<td>admin SCCS files</td>
</tr>
<tr>
<td>print service lpforms</td>
<td>admin SCCS files</td>
</tr>
<tr>
<td>admin create and</td>
<td>ambler</td>
</tr>
<tr>
<td>dispadmin process</td>
<td>display active processes</td>
</tr>
<tr>
<td>scheduler</td>
<td>management</td>
</tr>
<tr>
<td>mouseadmin mouse</td>
<td>administration</td>
</tr>
<tr>
<td>nlsadmin network listener</td>
<td>administration</td>
</tr>
<tr>
<td>service</td>
<td>administration</td>
</tr>
<tr>
<td>pmadm port monitor</td>
<td>adminSCC files</td>
</tr>
<tr>
<td>rfadmin Remote File</td>
<td>administrative interface</td>
</tr>
<tr>
<td>Sharing domain</td>
<td>advertised resources</td>
</tr>
<tr>
<td>sacadm service access</td>
<td>fumount forced unmount of</td>
</tr>
<tr>
<td>controller</td>
<td>advertised resources</td>
</tr>
<tr>
<td>visual interface</td>
<td>advertised resources</td>
</tr>
<tr>
<td>to perform system</td>
<td>advertised resources</td>
</tr>
<tr>
<td>uadmin</td>
<td>advertised resources</td>
</tr>
<tr>
<td>swap</td>
<td>advertised resources</td>
</tr>
<tr>
<td>fumount</td>
<td>advertised resources</td>
</tr>
<tr>
<td>forced unmount of</td>
<td>advertised resources</td>
</tr>
<tr>
<td>dumbplot, gigiplot,</td>
<td>advertised resources</td>
</tr>
<tr>
<td>hpplot, / plot,</td>
<td>advertised resources</td>
</tr>
<tr>
<td>/display application</td>
<td>advertised resources</td>
</tr>
<tr>
<td>specific</td>
<td>advertised resources</td>
</tr>
<tr>
<td>mailalias translate mail</td>
<td>advertised resources</td>
</tr>
<tr>
<td>a command; display its</td>
<td>advertised resources</td>
</tr>
<tr>
<td>pathname or</td>
<td>advertised resources</td>
</tr>
<tr>
<td>rebuild the data base</td>
<td>advertised resources</td>
</tr>
<tr>
<td>for the mail</td>
<td>advertised resources</td>
</tr>
<tr>
<td>renice</td>
<td>advertised resources</td>
</tr>
<tr>
<td>System V/386 Release/</td>
<td>advertised resources</td>
</tr>
<tr>
<td>fixshlib</td>
<td>advertised resources</td>
</tr>
<tr>
<td>fixshlib file system</td>
<td>advertised resources</td>
</tr>
<tr>
<td>block sort</td>
<td>advertised resources</td>
</tr>
<tr>
<td>/display application</td>
<td>advertised resources</td>
</tr>
<tr>
<td>specific alarms</td>
<td>advertised resources</td>
</tr>
<tr>
<td>prompt; verify and return</td>
<td>advertised resources</td>
</tr>
<tr>
<td>a string pkgask stores</td>
<td>advertised resources</td>
</tr>
<tr>
<td>intro intro to commands</td>
<td>advertised resources</td>
</tr>
<tr>
<td>and the “working”/</td>
<td>advertised resources</td>
</tr>
<tr>
<td>indicator display</td>
<td>advertised resources</td>
</tr>
</tbody>
</table>
Permutted Index

with the controlling FMLI environment for console lookup library language bc the current host arch display the
or restore from, a full file system or restore from, a full file system convert convert another migration move an restore an incremental filesystem fimage create, restore an image
ar maintain portable
arc tape file cpio copy file command xargs construct expr evaluate fmlexpr evaluate echo echo
message put bc arbitrary-precision control notify notify user of the
encode a binary file, or decode its or SCCS commands help as setkey
at time gigiplot, hpplot/, uudecode, aedplot,
at specified times batch resources rmnttry parameter idtune
devattr lists device change login password and password systems automount autopush configure lists of mail messages vacation vacation reply to mail
files systems automatically pushed STREAMS/
share make local NFS resource systems share make local resource share make local RFS resource systems dfshares list
application /a co-process.................................................... vsig(1F)
aplications /set up compatibility ........................................ scompats(1)
apropos locate commands by keyword ................................ apropos(1)
ar maintain portable archive or ........................................... ar(1)
arbitrary-precision arithmetic ............................................. bc(l)
arch display the architecture of .......................................... arch(l)
architecture of the current host ........................................... arch(l)
archive fdp create, ........................................................... fdp(1M)
archive ffie create, ........................................................... ffie(1M)
archive files to common formats ........................................ convert(l)
arch from one set of volumes to ........................................ migration(1M)
arch incfile create, ........................................................... incfile(1M)
arch of a filesystem ......................................................... fimage(1M)
ar arch or library ............................................................... ar(1)
archiver ............................................................................ tar(l)
archives in and out ............................................................. cpio(1)
argument list(s) and execute .............................................. xargs(1)
aruments as an expression ................................................ expr(1)
aruments as an expression ................................................ fmlexpr(1F)
aruments ................................................................. echo(1)
aruments ................................................................. echo(1)
aruments on FMLI message line ....................................... message(1F)
argument list(s) and execute .............................................. xargs(1)
arguments as an expression ................................................ expr(1)
arguments as an expression ................................................ fmlexpr(1F)
aruments ................................................................. echo(1)
aruments ................................................................. echo(1)
aruments on FMLI message line ....................................... message(1F)
arp address resolution display and ...................................... arp(1M)
ASCII representation /uudecode ..................................... uuencode(1C)
ask for help with message numbers ................................... help(1)
assemblyer ................................................................. as(1)
assigns the function keys ................................................ setkey(1)
at, batch execute commands at a ....................................... at(l)
atplotlib, bgplot, crtplot, dumbplot, plot(1G)
at display the jobs queued to run ..................................... atq(lG)
atr remove jobs spoiled by at or ...................................... atrm(l)
attempt to mount queued remote ...................................... rmnttry(1M)
attempts to set value of a tunable ...................................... idtune(1M)
attributes ........................................................................ devattr(1M)
attributes passwd ........................................................... passwd(1)
automatically mount NFS file ........................................... automount(1M)
automatically pushed STREAMS/ ...................................... automount(1M)
automatically respond to incoming .................................... vacation(1)
automatically ............................................................... vacation(1)
atomount automatically mount NFS ................................... automount(1M)
atomount automatically mount NFS ................................... automount(1M)
available for mounting by remote/ .................................... share(1M)
available for mounting by remote ...................................... share(1M)
available for mounting by remote ...................................... share(1M)
available NFS resources from remote ............................ dfshares(1M)
Permutated Index

basic

uuglist list service grades
local systems dfshares list
systems dfshares list
wait
language
backup perform
backup session
bkhistory report on completed
bkstatus display the status of
insertion bkoper interact with
change or display the contents of a
cbupscd check file system
backup initiate or control a system
an exception list for incremental
newaliases rebuild the data
a text string from a message data
ypcat print values in a NIS data
getdev lists devices
(visual) display editor
of path names
pathnames
for a text string in, message data
atrm remove jobs spooled by at or
time at
language
procedures brc,
cb C program
su
systems fsck
mkfs
fsck (bfs) check and repair
mount (bfs) mount
mount

brigplot, plot, aedplot, atoplot,
addbib create or extend a
create an inverted index to a
lookbib find references in a
expand and insert references from a
roffbib format and print a
sortbib sort a
messages
comsat, in.comsat
bbox big diff
bfs
uuencode, uudecode encode a
whether remote system can accept
strings in an object file or
pbind
pexbind exclusively
ypserv, ypbind NIS server and
PostScript translator for DMD
exception list for incremental/
backup operations
operations to service media/
contents of a backup register
backup operations
fsba file system
sum print checksum and
sync update the super
/dfspace report number of free disk
df (s5) report number of free disk
du display the number of disk
mkfs (bfs) construct a
bootparamd
boot UNIX system

procedures
online
more, page
a menu item ckitem
ypinit
idbuild
idmkunix
size print section sizes in
cc
cc
cc
cc
cc
cc
cflow generate
cb
lint a
cxor generate
cscope interactively examine a
ctrace
and remove ifdef'ed lines from
sum
dc desk
cal print

big file scanner ......................................................... bfs(1)
binary file, or decode its ASCII/ ................................ uuencode(1C)
binary messages / determine ...................................... cebinsys(1M)
binary strings find printable .................................... strings(1)
bind a process to a processor ................................. pbind(1M)
bind processes to a processor ............................... pexbind(1M)
binder processes ......................................................... ypbind(1M)
bind processes ......................................................... ypbind(1M)
biod NFS daemon ....................................................... biod(1M)
bitmap files postdmd ............................................... postdmd(1)
bkexcept change or display an ............................. bkexcept(1M)
bkhistory report on completed ................................ bkhistory(1M)
bkoper interact with backup .................................... bkoper(1M)
bkreg change or display the .................................. bkreg(1M)
bsstatus display the status of ................................ bsstatus(1M)
block analyzer ................................................................. fsba(1M)
block count of a file .................................................. sum(1)
blocks and files/free disk space ............................. df(1M)
blocks and i-nodes for s5 file/ ............................... df(1M)
blocks used per directory or file .......................... du(1M)
boot file system ............................................................. mkfs(1M)
boot parameter server ............................................. bootparamd(1M)
boot UNIX system boot program ............................. boot(1M)
boot program .............................................................. bootparamd(1M)
procurements
bring a processor to online ..................................... online(1M)
webor page through a text file .......................... more(1)
build a menu; prompt for and return .................. ckmitem(1)
build and install YP database .............................. ypinit(1M)
build new UNIX System kernel ......................... idbuild(1M)
build new UNIX System kernel ......................... idmkunix(1M)
bytes of object files ................................................. size(1)
C compiler ................................................................. cc(1)
C compiler ................................................................. cc(1)
C flowgraph ............................................................. cflow(1)
C program beautifier ............................................. cb(1)
C program checker .................................................. lint(1)
C program cross-reference .................................. cxref(1)
C program .............................................................. cscope(1)
C program debugger ............................................... ctrace(1)
cal print calendar .................................................. cal(1)
calculate a checksum for a file ........................... sum(1)
calculator ................................................................. dc(1)
calendar ................................................................. cal(1)
calendar reminder service ................................. calendar(1)
cu
fixshlib alters executables to
truss trace system
cancel queued remote resource
cancel send/cancel requests to an
captinfo convert a termcap
casual users)
cat concatenate and print files
cat files for the manual
catalogue
cman create the cat files for the
cb C program beautifier
cbc C compiler
catalogue
catman create the cat files for the
cb C compiler
custom install specific portions of
certain UNIX or XENIX packages
cf flow generate C flowgraph
cf changes the delta comment of an
cf flow generate C flowgraph
change and display console flags
change file mode
change file owner
change file owner
change login password and password
change or display an exception list
change or display the contents of a
change or query stream
change Remote File Sharing host
change root directory for a command
change system state
change the access and modification
cahange the delta comment of an
change the format of a text file
change the group ownership of a
change the name of a file
(change) to an SCCS file
chchange user encryption key
change working directory
change working directory
change machine information
character classification and
character sets
character string
characteristics
characteristics
characters
characters
lastlogin, monacct, nulladm, /
checkfsys
pkgchk
fsck (ufs) file system consistency
fsck (bfs)
fsck (generic)
fsck (s5)
xfck
ckbupscd
grpck
report possible errors checknr
permissions file uucheck
eqn, neqn,
lint a C program
file system quota consistency
pwck, grpck password/group file
reboot/halt the system without files; report possible errors
sum print
sum calculate a a file
command
classification and conversion/
system can accept binary messages
schedule
prompt for and validate a date
prompt for and validate a group ID
return an integer value
return a menu item
keyword
monacct, nulladm, /
chargefee, ckpacct, dodisk, ........................................... chargefee(1M)
check a file system .................................................. checkfsys(1M)
check accuracy of installation ................................... pkgchk(1M)
check and interactive repair ...................................... fsck(1M)
check and repair bfs file systems ................................ fsck(1M)
check and repair file systems ..................................... fsck(1M)
check and repair s5 file systems ................................ fsck(1M)
check and repair XENIX filesystems ......................... xfsck(1M)
check file system backup schedule ......................... ckbupscd(1M)
check group database entries ................................... grpck(1M)
check nroff and troff input files; .......................... checknr(1)
check password database entries ........................... pwck(1M)
check the uucp directories and ................................ uucheck(1M)
checkeq typeset mathematics ...................................... eqn(1)
checker ................................................................. lint(1)
checker quotacheck .................................................. quotacheck(1M)
checkers ............................................................................. pwck(1M)
checkfsys check a file system .................................. checkfsys(1M)
checking the disks /fasthalt ................................... fastboot(1M)
checknroff and troff input .................................. checknr(1)
checksum and block count of a file ............................. sum(1)
checksum for a file .................................................. sum(1)
chgrp change the group ownership of .......................... chgrp(1)
chkey change user encryption key .................................. chkey(1)
chmod change file mode ........................................... chmod(1)
chown change file owner ........................................... chown(1)
chown change file owner ........................................... chown(1)
chroot change root directory for a .......................... chroot(1M)
chrtbl generate character ......................................... chrtbl(1M)
ckbinarsys determine whether remote ....................... ckbinarsys(1M)
ckbupscd check file system backup .......................... ckbupscd(1M)
ckdate, errdate, helpdate, validate ........................... ckdate(1)
ckgdir, enrdir, helpgdir, valgdir .............................. ckgdir(1)
ckit display a prompt; verify and .............................. ckint(1)
ckititem build a menu; prompt for and .......................... ckitem(1)
ckkeywd prompt for and validate a ............................. ckkeywd(1)
ckpacct, dodisk, lastlogin, ........................................... chargefee(1M)
ckpath display a prompt; verify and ........................... ckpath(1)
ckrange prompt for and validate an ............................. ckrange(1)
ckstr display a prompt; verify and ............................. ckstr(1)
cktime display a prompt; verify and ........................... cktime(1)
ckuid prompt for and validate a ............................... ckuid(1)
ckyorn prompt for and validate .................................. ckyorn(1)
classification and conversion .................................. chrtbl(1M)
cleanup program ...................................................... strclean(1M)
clear the terminal screen ..................................... clear(1)
clear
shell command interpreter with a

cron
set system time from hardware
time shutdown
/acctdusg, accton, acctwtmp
communicate with/ cocreate, cosend,
coreceive, cocreate communicate/
cosend, check, coreceive,
translation
cof2elf

colltbl create
mailstats print statistics
setcolor, setcolour set screen
setcolor redefine or create a
comb
to two sorted files

/kernel executable file dbcmd load
/KornShell, a standard/restricted
nice run a
chroot change root directory for a
alias which locate a
execute for the Framed Access
env set environment for
uxx UNIX-to-UNIX system
mailpipe invoke recipient
gencc create a front-end to the cc

nohup run a
syntax csh shell
shell, job control/ sh, jsh, rsh
getopt parse
getopts, getoptcvt parse
system activity timex time a
uxxqt execute remote
accounting records acctcms
test condition evaluation
test condition evaluation
test condition evaluation
time time a
shell run a
argument list(s) and execute
and miscellaneous accounting
intro introduction to
at, batch execute
apropos locate
lastcomm show the last
help with message numbers or SCCS
install install
environment rc2 run
reboot the operating/ rc6 run
operating system rc0 run
xinstall install
cdc change the delta
mcs manipulate the
prt display the delta and
convert convert archive files to
comm select or reject lines
coc`check, coreceive, codestroy
ipcs report inter-process
users display a
diff differential file
descriptions infocmp
cmp
file scsddiff
diff3 3-way differential file
dircmp directory
console/ scompat set up
regcmp regular expression
cc C
cc C
rpcgen an RPC protocol
tic terminfo
zic time zone
yacc yet another
bkhistory report on
wait await
pack, pcat, unpack
compress, uncompress, zcat
/hashmake, spellin, hashcheck,
data for storage, uncompress and/
for storage, uncompress and display
cat
test
test
update, or get device driver
idconfig produce a new kernel
stroconf change or query stream
pushed STREAMS modules autopush
commands at a later time ........................................ at(1)
commands by keyword lookup ................................ apropos(1)
commands executed, in reverse order ...................... lastcomm(1)
commands help ask for .............................................. help(1)
commands .............................................................. install(1M)
commands performed for multi-user ......................... rc2(1M)
commands performed to stop and ...................... rc6(1M)
commands performed to stop the ........................... rc0(1M)
commands .............................................................. xinstall(1M)
comment of an SCCS delta ................................. cdc(1)
comment section of an object file ......................... mcs(1)
commonality history of an SCCS file ..................... prt(1)
common formats ...................................................... convert(1)
common to two sorted files ................................. comm(1)
communicate with a process /cosend, ...................... cocreate(1F)
communication facilities status ........................ ipcs(1)
compact list of users logged in ......................... users(1)
comparator ......................................................... diff(1)
compare or print out terminfo ............................. infocmp(1M)
compare two files ................................................. cmp(1)
compare two versions of an SCCS ....................... scsddiff(1)
comparison ......................................................... diff3(1)
comparison ......................................................... dircmp(1)
compatibility environment for ......................... scompat(1)
compile .............................................................. regcmp(1)
compiler ................................................................ cc(1)
compiler ................................................................ cc(1)
compiler .............................................................. rpcgen(1)
compiler .............................................................. tic(1M)
compiler .............................................................. zic(1M)
compiler-compiler ................................................ yacc(1)
completed backup operations ......................... bkhistory(1M)
completion of process .............................................. wait(1)
compress and expand files .................................... pack(1)
compress data for storage,/ .............................. compress(1)
compress find spelling errors ............................... spell(1)
compress, uncompress, zcat compress ................ compress(I)
compressed files /compress data ......................... compress(I)
comsat, in.comsat biff server ...................... comsat(1M)
concatenate and print files ................................. cat(1)
condition evaluation command ......................... test(1)
condition evaluation command ......................... test(1)
condition evaluation command ......................... test(1F)
configuration data /add, delete, ...................... idinstall(1M)
configuration ...................................................... idconfig(1M)
configuration strchg, ......................................... strchg(1)
configure lists of automatically ........................ autoupush(1M)
mapkey, mapscrn, mapstr
parameters ifconfig
lpadmin
mapchan
flags
fwtmp, wtmpfix manipulate
mconnect
accton, acctcon1, acctcon2
repair fsck (ufs) file system
quotacheck file system quota
up compatibility environment for
configfs change and display
a message on stderr or system
mkfs (bfs)
mkfs (generic)
mkfs (ufs)
mkfs (s5)
execute command xargs
remove nroff, troff, tbl and eqn
remove nroff/troff, tbl, and eqn
debugging on Uutry try to
getdgrp lists device groups which
idmknit reads files
edvtoc VTOC (Volume Table of
bkreg change or display the
ls list the
ls, lc list
ls list
string in, message/ srchtxt display
csplit
backup initiate or
arp address resolution display and
tapecntl tape
init, telinit process
mt magnetic tape
priocntl process scheduler
lpc line printer
/interpreters: standard shell, job
sccs front end for the Source Code
uadmin administrative
uustat uucp status inquiry and job
vc version
sacadm service access
sac service access
synchronize a co-process with the
units
character classification and
configure monitor screen mapping .............. mapkey(1M)
configure network interface ...................... ifconfig(1M)
configure the LP print service ................. lpadmin(1M)
Configure tty device mapping .................. mapchan(1M)
configfs change and display console ....... configfs(1M)
connect accounting records .................... fwtmp(1M)
connect to SMTP mail server socket .......... mconnect(1M)
connect-time accounting ....................... acctcon(1M)
consistency check and interactive ............ fsck(1M)
consistency checker ................................ quotacheck(1M)
console applications scompat set ........... scompat(1)
console flags ...................................... configfs(1M)
console fntmsg display ....................... fntmsg(1)
construct a boot file system .................. mkfs(1M)
construct a file system ......................... mkfs(1M)
construct a ufs file system .................... mkfs(1M)
construct an s5 file system ................... mkfs(1M)
construct argument list(s) and ............. xargs(1)
constructs deroff ............................... deroff(1)
constructs deroff ............................... deroff(1)
contact remote system with ................... Uutry(1M)
contain devices that match criteria .......... getdgrp(1M)
containing specifications ...................... idmknit(1M)
Contents) editing utility ....................... edvtoc(1M)
contents of a backup register ................. bkreg(1M)
contents of a directory ....................... ls(1)
contents of directory ......................... ls(1)
contents of directory ......................... ls(1)
contents of, or search for a text .......... srchtxt(1)
context split .................................... csplit(1)
control a system backup session ............. backup(1M)
control ............................................. arp(1M)
control for tape device ....................... tapecntl(1)
control initialization ......................... init(1M)
control .......................................... mt(1)
control .......................................... priocntl(1)
control program ............................... lpc(1M)
control shell, restricted shell .......... sh(1)
Control System (SCCS) ......................... sccs(1)
control .......................................... uadmin(1M)
control .......................................... uustat(1C)
control .......................................... vc(1)
controller administration ..................... sacadm(1M)
controller ....................................... sac(1M)
controlling FMLI application vsig .......... vsig(1F)
conversion program ............................ units(1)
conversion tables chrtbl generate ........ chrtbl(1M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iconv</td>
<td>Conversion utility</td>
</tr>
<tr>
<td>a termcap</td>
<td>Convert a terminfo description into capinfo</td>
</tr>
<tr>
<td>dd</td>
<td>Convert and copy a file</td>
</tr>
<tr>
<td>convert</td>
<td>Convert archive files to common</td>
</tr>
<tr>
<td>common formats</td>
<td>Convert DoD Internet format host</td>
</tr>
<tr>
<td>ELF cvtomflib</td>
<td>Convert OMF (XENIX) libraries to cvtomflib</td>
</tr>
<tr>
<td>FMLI vsig</td>
<td>Convert Release 4 locale</td>
</tr>
<tr>
<td>dd</td>
<td>Copy a file</td>
</tr>
<tr>
<td>cpio</td>
<td>Co-process with the controlling</td>
</tr>
<tr>
<td>cp</td>
<td>Access time dcopy (generic)</td>
</tr>
<tr>
<td>cp</td>
<td>Copy a magnetic tape</td>
</tr>
<tr>
<td>cpio</td>
<td>Copy file systems for optimal</td>
</tr>
<tr>
<td>cp</td>
<td>Copy files</td>
</tr>
<tr>
<td>volcopy</td>
<td>Copy of a ufs file system</td>
</tr>
<tr>
<td>volcopy</td>
<td>Copy of an s5 file system</td>
</tr>
<tr>
<td>volcopy</td>
<td>Copy of file system</td>
</tr>
<tr>
<td>rcp</td>
<td>Copy s5 file systems for optimal</td>
</tr>
<tr>
<td>uulog</td>
<td>UUCP, Uuname UNIX-to-UNIX system file</td>
</tr>
<tr>
<td>gcore</td>
<td>Core images of running processes</td>
</tr>
<tr>
<td>cp</td>
<td>Correct or initialize file</td>
</tr>
<tr>
<td>cp</td>
<td>Count of a file</td>
</tr>
<tr>
<td>cp</td>
<td>Count profile data lprof</td>
</tr>
<tr>
<td>wc</td>
<td>Count</td>
</tr>
<tr>
<td>cp</td>
<td>Cpio copy files</td>
</tr>
<tr>
<td>cp</td>
<td>Cpio copy file archives in and out</td>
</tr>
<tr>
<td>cp</td>
<td>Crash examine system images</td>
</tr>
<tr>
<td>setcolor</td>
<td>Create a color</td>
</tr>
<tr>
<td>makefsys</td>
<td>Create a file system</td>
</tr>
<tr>
<td>command</td>
<td>Create a front-end to the cc</td>
</tr>
<tr>
<td>the system</td>
<td>(Create) a new group definition on</td>
</tr>
<tr>
<td>groupadd</td>
<td>Create a new key in the publickey</td>
</tr>
<tr>
<td>database</td>
<td>Create a tags file for use with vi</td>
</tr>
<tr>
<td>newkey</td>
<td>Create an inverted index to a</td>
</tr>
<tr>
<td>ctags</td>
<td>Create collation database</td>
</tr>
<tr>
<td>indxbib</td>
<td>Create message files for use by</td>
</tr>
<tr>
<td>admin</td>
<td>Create monetary database</td>
</tr>
<tr>
<td>colltbl</td>
<td>Create or extend a bibliographic</td>
</tr>
<tr>
<td>mkmsgs</td>
<td>Create or modify hard disk</td>
</tr>
<tr>
<td>montbl</td>
<td></td>
</tr>
<tr>
<td>database</td>
<td></td>
</tr>
<tr>
<td>addbib</td>
<td></td>
</tr>
<tr>
<td>fddisk</td>
<td></td>
</tr>
<tr>
<td>Command/Tool</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>compress, uncompress, zcat</td>
<td>compress, uncompress, zcat</td>
</tr>
<tr>
<td>a Network Information Service (NIS)</td>
<td>a Network Information Service (NIS)</td>
</tr>
<tr>
<td>runacct run</td>
<td>runacct run</td>
</tr>
<tr>
<td>Protocol server</td>
<td>Protocol server</td>
</tr>
<tr>
<td>Protocold server</td>
<td>Protocol server</td>
</tr>
<tr>
<td>Protocol server</td>
<td>Protocol server</td>
</tr>
<tr>
<td>time a command; report process</td>
<td>time a command; report process</td>
</tr>
<tr>
<td>newaliases rebuild the</td>
<td>newaliases rebuild the</td>
</tr>
<tr>
<td>a text string from a message</td>
<td>a text string from a message</td>
</tr>
<tr>
<td>ypcat print values in a NIS</td>
<td>ypcat print values in a NIS</td>
</tr>
<tr>
<td>for a text string in, message</td>
<td>for a text string in, message</td>
</tr>
<tr>
<td>diskusg generate disk accounting</td>
<td>diskusg generate disk accounting</td>
</tr>
<tr>
<td>compress, uncompress, zcat compress</td>
<td>compress, uncompress, zcat compress</td>
</tr>
<tr>
<td>or get device driver configuration</td>
<td>or get device driver configuration</td>
</tr>
<tr>
<td>execution count profile</td>
<td>execution count profile</td>
</tr>
<tr>
<td>initiate restores of file systems</td>
<td>initiate restores of file systems</td>
</tr>
<tr>
<td>prof display profile</td>
<td>prof display profile</td>
</tr>
<tr>
<td>create or extend a bibliographic</td>
<td>create or extend a bibliographic</td>
</tr>
<tr>
<td>colltbl create collation</td>
<td>colltbl create collation</td>
</tr>
<tr>
<td>grpck check group</td>
<td>grpck check group</td>
</tr>
<tr>
<td>inverted index to a bibliographic</td>
<td>inverted index to a bibliographic</td>
</tr>
<tr>
<td>a file to the software installation</td>
<td>a file to the software installation</td>
</tr>
<tr>
<td>find references in a bibliographic</td>
<td>find references in a bibliographic</td>
</tr>
<tr>
<td>montbl create monetary</td>
<td>montbl create monetary</td>
</tr>
<tr>
<td>create a new key in the publickey</td>
<td>create a new key in the publickey</td>
</tr>
<tr>
<td>join relational</td>
<td>join relational</td>
</tr>
<tr>
<td>references from a bibliographic</td>
<td>references from a bibliographic</td>
</tr>
<tr>
<td>remover remove a file from software</td>
<td>remover remove a file from software</td>
</tr>
<tr>
<td>format and print a bibliographic</td>
<td>format and print a bibliographic</td>
</tr>
<tr>
<td>sortbib sort a bibliographic</td>
<td>sortbib sort a bibliographic</td>
</tr>
<tr>
<td>a terminal or query terminfo</td>
<td>a terminal or query terminfo</td>
</tr>
<tr>
<td>ypinit build and install YP</td>
<td>ypinit build and install YP</td>
</tr>
<tr>
<td>ypmake rebuild YP</td>
<td>ypmake rebuild YP</td>
</tr>
<tr>
<td>validate prompt for and validate a</td>
<td>validate prompt for and validate a</td>
</tr>
<tr>
<td>date print and set the rdate set system</td>
<td>date print and set the rdate set system</td>
</tr>
<tr>
<td>change the access and modification</td>
<td>change the access and modification</td>
</tr>
<tr>
<td>into a kernel executable file</td>
<td>into a kernel executable file</td>
</tr>
<tr>
<td>a Network Information Service (NIS)</td>
<td>a Network Information Service (NIS)</td>
</tr>
<tr>
<td>debugger</td>
<td>debugger</td>
</tr>
<tr>
<td>Valdate prompt for and validate a date</td>
<td>Valdate prompt for and validate a date</td>
</tr>
<tr>
<td>print and set the rdate set system</td>
<td>print and set the rdate set system</td>
</tr>
<tr>
<td>daemons process</td>
<td>daemons process</td>
</tr>
<tr>
<td>daemons</td>
<td>daemons</td>
</tr>
<tr>
<td>nfsd NIS</td>
<td>nfsd NIS</td>
</tr>
<tr>
<td>rfudaemon Remote File Sharing</td>
<td>rfudaemon Remote File Sharing</td>
</tr>
<tr>
<td>routed network routing</td>
<td>routed network routing</td>
</tr>
<tr>
<td>strerr STREAMS error logger</td>
<td>strerr STREAMS error logger</td>
</tr>
<tr>
<td>daily accounting</td>
<td>daily accounting</td>
</tr>
<tr>
<td>DARPA Reverse Address Resolution</td>
<td>DARPA Reverse Address Resolution</td>
</tr>
<tr>
<td>DARPA TELNET protocol server</td>
<td>DARPA TELNET protocol server</td>
</tr>
<tr>
<td>DARPA Trivial File Transfer</td>
<td>DARPA Trivial File Transfer</td>
</tr>
<tr>
<td>DARPA Trivial name server</td>
<td>DARPA Trivial name server</td>
</tr>
<tr>
<td>data and system activity</td>
<td>data and system activity</td>
</tr>
<tr>
<td>data base for the mail aliases file</td>
<td>data base for the mail aliases file</td>
</tr>
<tr>
<td>data base gettxt retrieve</td>
<td>data base gettxt retrieve</td>
</tr>
<tr>
<td>data base</td>
<td>data base</td>
</tr>
<tr>
<td>data bases /contents of, or search</td>
<td>data bases /contents of, or search</td>
</tr>
<tr>
<td>data by user ID</td>
<td>data by user ID</td>
</tr>
<tr>
<td>data for storage, uncompress and/</td>
<td>data for storage, uncompress and/</td>
</tr>
<tr>
<td>data /add, delete, update,</td>
<td>data /add, delete, update,</td>
</tr>
<tr>
<td>data lprof display line-by-line</td>
<td>data lprof display line-by-line</td>
</tr>
<tr>
<td>data partitions, or disks restore</td>
<td>data partitions, or disks restore</td>
</tr>
<tr>
<td>data</td>
<td>data</td>
</tr>
<tr>
<td>data base addbib</td>
<td>data base addbib</td>
</tr>
<tr>
<td>database addbib</td>
<td>database addbib</td>
</tr>
<tr>
<td>database entries</td>
<td>database entries</td>
</tr>
<tr>
<td>database entries</td>
<td>database entries</td>
</tr>
<tr>
<td>database indxbib create an</td>
<td>database indxbib create an</td>
</tr>
<tr>
<td>database installf add</td>
<td>database installf add</td>
</tr>
<tr>
<td>database lookbib</td>
<td>database lookbib</td>
</tr>
<tr>
<td>database</td>
<td>database</td>
</tr>
<tr>
<td>database newkey</td>
<td>database newkey</td>
</tr>
<tr>
<td>database operator</td>
<td>database operator</td>
</tr>
<tr>
<td>database refer expand and insert</td>
<td>database refer expand and insert</td>
</tr>
<tr>
<td>database</td>
<td>database</td>
</tr>
<tr>
<td>database roffbib</td>
<td>database roffbib</td>
</tr>
<tr>
<td>database</td>
<td>database</td>
</tr>
<tr>
<td>database sortbib</td>
<td>database sortbib</td>
</tr>
<tr>
<td>database tput initialize</td>
<td>database tput initialize</td>
</tr>
<tr>
<td>database</td>
<td>database</td>
</tr>
<tr>
<td>database ypmake</td>
<td>database ypmake</td>
</tr>
<tr>
<td>date ckd ate, errrate, helpdate,</td>
<td>date ckd ate, errrate, helpdate,</td>
</tr>
<tr>
<td>date</td>
<td>date</td>
</tr>
<tr>
<td>date from a remote host</td>
<td>date from a remote host</td>
</tr>
<tr>
<td>date print and set the date</td>
<td>date print and set the date</td>
</tr>
<tr>
<td>dates of files settime</td>
<td>dates of files settime</td>
</tr>
<tr>
<td>dbcmdl load command and macro files</td>
<td>dbcmdl load command and macro files</td>
</tr>
<tr>
<td>dbm file makedbm make</td>
<td>dbm file makedbm make</td>
</tr>
<tr>
<td>dbsym add symbols to kernel</td>
<td>dbsym add symbols to kernel</td>
</tr>
</tbody>
</table>

Permuted Index
for optimal access time
optimal access time

ctrace C program
dbsym add symbols to kernel
dfsdb (generic) file system
dfsdb (s5) file system
dfsdb (ufs) file system
kdb kernel
kdb multiprocessor kernel
scrb symbolic
strip strip symbol table,
try to contact remote system with
/uudecode encode a binary file, or
keylogin
kill terminate a process by
reset the current form field to its
groupdel delete a group
groupadd add (create) a new group
groupmod modify a group
system groupdel
system userdel
driver/ idinstall add,
basename, dirname
tail
smtpqer queue mail for
task removal tool
SCCS file prt display the
change the delta comment of an SCCS
delta make a
cdc change the
rmdel remove a
SCCS file
comb combine SCCS
msg permit or
ldd list dynamic
eqn constructs
termcap description into a terminfo
captoinfo convert a termcap
compare or print out terminfo
a name from a STREAMS-based file
dc
file descriptor fdetach
fstyp (generic)

dc desk calculator ................................................. dc(1)
dcopy (generic) copy file systems ......................... dcopy(1M)
dcopy (s5) copy s5 file systems for ....................... dcopy(1M)
 dd convert and copy a file ................................... d(1M)
debugger .......................................................... ctrace(1)
dbsym ......................................................... dbsym(1M)
dfsdb ........................................................... dfsdb(1M)
dfsdb ........................................................... dfsdb(1M)
dfsdb ........................................................... dfsdb(1M)
kdb .............................................................. kdb(1M)
kdb .............................................................. kdb(1M)
sdb .............................................................. sdb(1)
strip .............................................................. strip(1)
Uutry .......................................................... Uutry(1M)
uuencode encode its ASCII representation ............... uuencode(1C)
keylogin encrypt and store secret key ...................... keylogin(1)
default ......................................................... kill(1)
default values reset ............................................. reset(1F)
groupdel definition from the system ...................... groupdel(1M)
groupadd definition on the system ......................... groupadd(1M)
groupmod definition on the system ......................... groupmod(1M)
groupdel definition from the system ...................... groupdel(1M)
groupdel delete a user's login from the ................. userdel(1M)
groupdel delete, update, or get device .................... idinstall(1M)
tail deliver portions of path names ......................... basename(1)
tail deliver the last part of a file ......................... tail(1)
delivery by SMTP ............................................. smtpqer(1M)
delsysadm delsysadm interface menu or ................ delsysadm(1M)
delta delta and commentary history of an ................ prt(1)
delta cdc ................................................................ cdc(1)
delta (change) to an SCCS file ......................... delta(1)
delta comment of an SCCS delta ......................... cdc(1)
delta from an SCCS file ........................................ rmdel(1)
delta make a delta (change) to an ......................... delta(1)
deltas ................................................................... comb(1)
deny messages .................................................... msg(1)
ldd list dynamic ............................................... ldd(1)
deroff remove nroff, troff, tbl and ...................... deroff(1)
deroff remove nroff/troff, tbl, and ...................... deroff(1)
description captinfo convert a ......................... captinfo(1M)
description into a terminfo/ ........................ captinfo(1M)
descriptions infoconv ....................................... infoconv(1M)
descriptor fdetach detach ................................. fdetach(1M)
desk calculator ............................................... dc(1)
detach a name from a STREAMS-based ................. fdetach(1M)
determine file system type ................................... fdesci(1M)
determine file type ............................................. file(1)
accept binary messages ckbinarsys
  exclusive use
devattr lists
getvol verifies
devattr lists
/add, delete, update, or get
listdgrp lists members of a
devnm
putdgrp edits
tapecntl tape control for tape
the font and video mode for a video
getdev lists
devreserv reserve
devfree release
/lists device groups which contain
  exclusive use
device driver configuration data
device groups which contain devices
device mapping
device accessibility
device attributes
devattr lists
devfree release
devreserv reserve devices for
of free disk blocks and files/free/
blocks and i-nodes for s5 file/
ufs file systems
resource information
resource information
resources from remote systems
from remote or local systems
resources from remote systems
blocks and / df (generic),
postdaisy PostScript translator for
list look find words in the system
bdiff big
diff
  comparison
troff input file
diffmark mark
sdiff print file
Release 4 locale information to
diff
diff3 3-way versions of a troff input file
unlink link and unlink files and
mkdir make
rm, rmdir remove files or
determine whether remote system can ckbinarsys (1M)
devrlist device attributes devattr (1M)
devrlist release devices from devfree (1M)
device accessibility getvol (1M)
device attributes devattr (1M)
device driver configuration data listdgrp (1M)
device group table putdgrp (1M)
device groups which contain devices getdgrp (1M)
device mapping mapchan (1M)
device name devnm (1M)
device table putdev (1M)
device table tapecntl (1M)
devices based on criteria getdev (1M)
devices for exclusive use devreserv (1M)
devices from exclusive use devfree (1M)
device attributes devattr (1M)
devreserv reserve devices for devreserv (1M)
df (generic), dfspace report number df (1M)
df report free disk space on file df (1M)
df (s5) report number of free disk df (1M)
df (ufs) report free disk space on df (1M)
dfmounts display mounted NFS dfmounts (1M)
dfmounts display mounted resource dfmounts (1M)
dfmounts display mounted RFS dfmounts (1M)
dfs shares list available NFS dfshares (1M)
dfs shares list available resources dfshares (1M)
dfs shares list available RFS dfshares (1M)
dfspace report number of free disk df (1M)
Diablo 630 files postdaisy (1M)
dictionary or lines in a sorted look (1)
diff bdiff (1)
diff differential file comparator diff (1)
diff3 3-way differential file diff3 (1)
diff mark differences between versions of a diffmk (1)
differences side-by-side sdiff (1)
different format maplocale convert maplocale (1M)
differential file comparator diff (1)
differential file comparator diff3 (1)
diffmk mark differences between diffmk (1)
dircmp directory comparison dircmp (1)
directories and permissions file uuchek (1M)
directories link, link (1M)
directories mkdir make rm (1)
Permuted Index

request restore of files and directories
 cd change working directory
 uucleanup uucp spool directory clean-up
 dircmp directory comparison
 chroot change root directory for a command
 ls, lc list contents of directory
 ls list contents of directory
 ls list the contents of a directory
 mvdir move a directory without checking the number of disk blocks used per directory
 pwd working directory name

restore restore file to original directory
 whois Internet user name directory service
 names basename, dis object code
 enable, dis object code
type, modes, speed, and line discipline
 type, modes, speed, and line discipline
 type, modes, speed, and line discipline
 fusage disk access profiler
 diskusg generate disk accounting data by user ID
 /dfspace report number of free disk blocks and files/free disk/
 df (s5) report number of free disk blocks and files
 file du display the number of dir
 prtvtoc disk information display utility
 mkpart disk maintenance utility
 fdisk create or modify hard disk partition table
 quota display a user's disk quota and usage
 diskadd disk set up utility
 disksetup disk set up utility
 of free disk blocks and files/free disk space /dfspace report number
 df report free disk space on file systems
 df (ufs) report free disk space on ufs file systems
 format format floppy disk tracks
 du summarize disk usage

load system dump from floppy diskettes
 the system without checking the diskadd disk set up utility
 of file systems, data partitions, or diskadd disk set up utility
 data by user ID disks /fasthalt reboot/halt
 administration disks restore initiate restores
 valid group names disksetup disk set up utility
 logged in users diskusg generate disk accounting
 system console ffmtmsg dispadmin process scheduler
 keyword whatis dispgid displays a list of all
 display a one-line summary about a

Permuted Index

a pathname ckpath
a string answer ckstr
a time of day ct ime
an integer value ckint
usage quota

groups
incremental/ bkexcept change or
arp address resolution
and/or the "working"/ indicator
data for storage, uncompress and
conflgs change and
a text string in, message/ srchtxt
vi screen-oriented (visual)
currently set printenv

hd

head

ff (S5)
remote users finger
which locate a command;
count profile data lprof
information dfmounts
information dfmounts
information rmntstat
information dfmounts
nroff format documents for
basename
prof
printers postmd matrix
find reference pages by/ man
information pkginfo
current host arch
register bkreg change or
history of an SCCS file prt
username whoami
specified times atq
used per directory or file du

current host mach
lpq
memory pagesize
operations bkstatus
processes ps
prtvtoc disk information
names dispgid
names dispuid
pkgparam
valid user names
postdmd PostScript translator for
display a prompt; verify and return ckpath(1)
display a prompt; verify and return ckstr(1)
display a prompt; verify and return ct ime(1)
display a prompt; verify and return ckint(1)
display a user's disk quota and quota(1M)
display a user's group memberships groups(1)
display an exception list for bkexcept(1M)
display and control arp(1M)
display application specific alarms indicator(1F)
display compressed files /compress compress(1)
display console flags conflgs(1M)
display contents of, or search for srchtxt(1)
display editor based on ex vi(1)
display environment variables printenv(1)
display files in hexadecimal format hd(1)
display first few lines of files head(1)
display i-list information ff(1M)
display information about local and finger(1)
display its pathname or alias which(1)
display line-by-line execution lprof(1)
display mounted NFS resource dfmounts(1M)
display mounted resource dfmounts(1M)
display mounted resource rmntstat(1M)
display mounted RFS resource dfmounts(1M)
display or line-printer nroff(1)
display portions of pathnames basename(1)
display profile data prof(1)
display program for PostScript postmd(1)
display reference manual pages; man(1)
display software package pkginfo(1)
display the architecture of the arch(1)
display the contents of a backup bkreg(1M)
display the delta and commentary prt(1)
display the effective current whoami(1)
display the jobs queued to run at atq(1)
display the number of disk blocks du(1M)
display the processor type of the mach(1)
display the queue of printer jobs lpq(1)
display the size of a page of pagesize(1)
display the status of backup bkstatus(1M)
display the status of current ps(1)
display utility prtvtoc(1M)
displays a list of all valid group dispgid(1)
displays a list of all valid user dispuid(1)
displays package parameter values pkgparam(1)
dispuid displays a list of all dispuid(1)
DMD bitmap files postdmd(1)
<table>
<thead>
<tr>
<th>Command Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>doscp, dosdir, dosformat, dosmkdir, dosls, /dosformat, dosmkdir, dosls, dosrm, /dosrm, /dosrmdir access and manipulate dosmkdir, dosls, dosrm, /dos: dos, dosrm, /dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosrm, /doscat, doscp, dosdir, dosformat, dosmkdir, dosrm, /dosformat, dosmkdir, dosrm, /dosrm</td>
<td>DOS terminal wtinit</td>
</tr>
<tr>
<td>dname print Remote File Sharing</td>
<td>dname(1M)</td>
</tr>
<tr>
<td>documents for display or</td>
<td>nroff(1)</td>
</tr>
<tr>
<td>documents</td>
<td>troff(1)</td>
</tr>
<tr>
<td>DoD Internet format host table from</td>
<td>gettable(1M)</td>
</tr>
<tr>
<td>DoD Internet format host table</td>
<td>htable(1M)</td>
</tr>
<tr>
<td>diskid, lastlogin, monacct,</td>
<td>chargefee(1M)</td>
</tr>
<tr>
<td>doing w</td>
<td>w(1)</td>
</tr>
<tr>
<td>doing what</td>
<td>whodo(1M)</td>
</tr>
<tr>
<td>domain administration</td>
<td>rfadmin(1M)</td>
</tr>
<tr>
<td>domain and network names</td>
<td>dname(1M)</td>
</tr>
<tr>
<td>domain domainname</td>
<td>domainname(1M)</td>
</tr>
<tr>
<td>domain name server</td>
<td>named(1M)</td>
</tr>
<tr>
<td>domain name server</td>
<td>domainname(1M)</td>
</tr>
<tr>
<td>domainname get/set name of current</td>
<td>do(1)</td>
</tr>
<tr>
<td>DOS files</td>
<td>dos(1)</td>
</tr>
<tr>
<td>doscat, doscp, dosdir, dosformat, dosmkdir, dosrm, /doscp, dosdir, dosformat, dosmkdir, dosrm</td>
<td>dos(1)</td>
</tr>
<tr>
<td>doscat, doscp, dosdir, dosformat, dosmkdir, dosrm, /doscat, doscp, dosdir, dosformat, dosmkdir, dosrm</td>
<td>dos(1)</td>
</tr>
<tr>
<td>doscp, dosdir, dosformat, dosmkdir, dosrm</td>
<td>dos(1)</td>
</tr>
<tr>
<td>dosdir, dosformat, dosmkdir, dosrmdir</td>
<td>dos(1)</td>
</tr>
<tr>
<td>dos, dosrm, dosrmdir access and /</td>
<td>dos(1)</td>
</tr>
<tr>
<td>dosformat, dosmkdir, dosrm</td>
<td>dos(1)</td>
</tr>
<tr>
<td>downloaded host resident PostScript download</td>
<td>download(1)</td>
</tr>
<tr>
<td>download host resident PostScript download</td>
<td>download(1)</td>
</tr>
<tr>
<td>download for the 5620 DMD download</td>
<td>download(1)</td>
</tr>
<tr>
<td>dpost troff postprocessor for</td>
<td>dpost(1)</td>
</tr>
<tr>
<td>dynamic link editor</td>
<td>ld(1)</td>
</tr>
<tr>
<td>dynamic link editor</td>
<td>ld(1)</td>
</tr>
<tr>
<td>dynamic dependencies</td>
<td>dynamic(1)</td>
</tr>
<tr>
<td>dynamic link editor</td>
<td>ld(1)</td>
</tr>
<tr>
<td>dynamic link editor</td>
<td>dynamic(1)</td>
</tr>
<tr>
<td>echo arguments</td>
<td>echo(1)</td>
</tr>
</tbody>
</table>
deroff remove nroff/troff, tbl, and mathematics
for and validate a date ckdate, and validate a group ID ckgid, strclean STREAMS strerr STREAMS troff input files; report possible hashcheck, compress find spelling setmnt characteristics tset, reset /etc/shadow with information from pwconv install and update expr fm lexpr test condition test condition test condition keyboard/display driver/ edit text editor (variant of (visual) display editor based on
cscope interactively
kcrash
bkexcept change or display an
devfree release devices from
devreserv reserve devices for processor pexbind
and macro files into a kernel
Command Environment Interface face run run an
V/386 Release/ fix shlib alters
construct argument list(s) and
at, batch
uuxqt
lastcomm show the last commands
lprof display line-by-line
env set environment for command
sleep suspend
rexecd remote
uux UNIX-to-UNIX system command
tunefs tune up a bibliographic database refer pack, pcat, unpack compress and expression
reg cmp regular
expr evaluate arguments as an e q n constructs ........................................ deroff(1)
e q n, neq n, checkeq typeset ................................................................. deroff(1)
error date, help date, validate prompt ................................................ ckgid(1)
error log error log daemon ................................................................. ckgid(1)
error log cleanup program .................................................. strclean(1M)
error log cleanup program ................................................................. strclean(1M)
error log daemon ................................................................. strerr(1M)
errors checknr check nroff and ............................................... checknr(1)
errors spell, hashmake, spellin, ............................................... spell(1)
errors errors checknr check nroff and ............................................... checknr(1)
expressions checknr check nroff and ............................................... checknr(1)
expressions evaluate arguments as an expression .............................. expr(1)
e q n constructs ........................................ deroff(1)
e q n, neq n, checkeq typeset ................................................................. deroff(1)
error date, help date, validate prompt ................................................ ckgid(1)
error log error log daemon ................................................................. ckgid(1)
error log cleanup program .................................................. strclean(1M)
error log cleanup program ................................................................. strclean(1M)
error log daemon ................................................................. strerr(1M)
errors checknr check nroff and ............................................... checknr(1)
errors spell, hashmake, spellin, ............................................... spell(1)
errors errors checknr check nroff and ............................................... checknr(1)
expressions checknr check nroff and ............................................... checknr(1)
expressions evaluate arguments as an expression .............................. expr(1)
e q n constructs ........................................ deroff(1)
e q n, neq n, checkeq typeset ................................................................. deroff(1)
error date, help date, validate prompt ................................................ ckgid(1)
error log error log daemon ................................................................. ckgid(1)
error log cleanup program .................................................. strclean(1M)
error log cleanup program ................................................................. strclean(1M)
error log daemon ................................................................. strerr(1M)
errors checknr check nroff and ............................................... checknr(1)
errors spell, hashmake, spellin, ............................................... spell(1)
errors errors checknr check nroff and ............................................... checknr(1)
expressions checknr check nroff and ............................................... checknr(1)
expressions evaluate arguments as an expression .............................. expr(1)
e q n constructs ........................................ deroff(1)
e q n, neq n, checkeq typeset ................................................................. deroff(1)
error date, help date, validate prompt ................................................ ckgid(1)
error log error log daemon ................................................................. ckgid(1)
error log cleanup program .................................................. strclean(1M)
error log cleanup program ................................................................. strclean(1M)
error log daemon ................................................................. strerr(1M)
errors checknr check nroff and ............................................... checknr(1)
errors spell, hashmake, spellin, ............................................... spell(1)
errors errors checknr check nroff and ............................................... checknr(1)
expressions checknr check nroff and ............................................... checknr(1)
expressions evaluate arguments as an expression .............................. expr(1)
Permuted Index

fmlexpr evaluate arguments as an
for a pattern using full regular
files
addbib create or
driver initialization evgainit
traces xtt
statistics xts
exstr
Access Command Environment/
report inter-process communication
a number
factor obtain the prime
true,
system without checking the disks
without checking the/ fastboot,
STREAMS-based file descriptor
partition table
file system archive
head display first
statistics for a file system
statistics for a ufs file system
full file system archive
string
reset reset the current form
cut cut out selected
fmlcut cut out selected
mkfifo make
tar tape
cpio copy
pwck, grpck password/group
change the group ownership of a
diff differential
diff3 3-way differential
rcp remote
uupick public UNIX-to-UNIX system
crontab user crontab
selected fields of each line of a
files into a kernel executable
dd convert and copy a
make a delta (change) to an SCCS
detach a name from a STREAMS-based
sdiff print
between versions of a troff input
disk blocks used per directory or
dump selected parts of an object

Permuted Index

expression ......................................................................... fmlexpr(lF)
expressions egrep search a file ........................ .................. egrep(l)
exstr extract strings from source .......... .... ................... ......... exstr(l)
extend a bibliographic database ....................................... addbib(l)
Extended VGA keyboard/ display ............................. evgainit(lM)
extract and print xt driver packet ........................................ xtt(lM)
extract and print xt driver ....... .................. .... ..... ............ ... ... xts(lM)
extract strings from source files .................................. ......... exstr(l)
face executable for the Framed .............................................. face(l)
facilities status ipcs ....... ............. ................... ...... .... ... ......... .... ipcs(l)
factor obtain the prime factors of ....................... ................ factor(l)
factors of a number ............................................................... factor(l)
false provide truth values ....................................................... true(l)
fastboot, fasthalt reboot/halt the ................................ fastboot(lM)
fasthalt reboot/halt the system ................................... fastboot(lM)
fdetach detach a name from a............ .......................... fdetach(lM)
fdisk create or modify hard disk .. ....... .... ........................ fdisk(lM)
fdp create, or restore from, a full ............... ............. ..... ...... fdp(lM)
few lines of files ........................... ........ ........................ ........... head(l)
ff (generic) list file names and ................................................ ff(lM)
ff (s5) display i-list information .............................................. ff(lM)
ff (ufs) list file names and ........ ........................... .... ................. ff(lM)
ffile create, or restore from, a ............................................. ffile(lM)
fgrep search a file for a character .................. ............ ......... fgrep(l)
field to its default values ............ ......................................... reset(lF)
fields of each line of a file ........................................................ cut(l)
fields of each line of a file ................................................ frnlcut(lF)
FIFO special file . ........................... .................................... mkfifo(lM)
file archiver ...................... ......................................... ...... ....... ...... tar(l)
file archives in and out ........................................................... cpio(l)
file checkers ........ ..... ................... ........................... .... .......... pwck(lM)
file chgrp ...... .... ......... ....................................... ..................... chgrp(l)
file comparator ........................................................................... diff(l)
file comparison . ....................................................................... diff3(1)
file copy.............. .... ........................... .............. ...... ............ ... ....... rcp(l)
file copy uuto, ...................................................................... uuto(lC)
file ........... ......... ... ................. .... ............................................. crontab(l)
file cut cut out ........................................................................... cut(l)
file dbcmd load command and macro .... .... ..... .......... dbcmd(lM)
file .. ... ...... ......... ... ............................... .............. ...... ............ ........ dd(lM)
file delta .................................................................................. delta(l)
file descriptor fdetach ............. .......................... ............ fdetach(lM)
file determine file type ........................................................ ...... file (1 )
file differences side-by-side ................................................... sdiff(l)
file diffrnk mark differences ............................................. diffrnk( 1)
file du display the number of ............................................. du(lM)
file dump ............................................................................... dump(l)

21


Permutated Index

- `sact` print current SCCS
- `selected fields of each line of a` `file` `editing activity` `sact(1)`
- `fgrep` search a `file` `fmcut` cut out `fmcut(1F)`
- `fnlgrep` search a `file` for a character string `fgrep(1)`
- `grep` search a `file` for a pattern `fnlgrep(1F)`
- `regular expressions` `egrep` search a `file` for a pattern using full `grep(1)`
- `ctags` create a tags `file` for use with vi `ctags(1)`
- `remove` remove a `file` from software database `removef(1M)`
- `get` get a version of an SCCS `file` `get(1)`
- `readfile`, `longline reads` `file`, gets longest line `readfile(1F)`
- `split` split a `file` into pieces `split(1)`
- `Information Service (NIS) dbm` `file` `makedbm` make a Network `makedbm(1M)`
- `the comment section of an object` `file` `names` dname print Remote `dname(lM)`
- `mkfifo` make FIFO special `file` `mkfifo` make a special `mkfifo(1M)`
- `mknod` make a special `file` `mknod` make a special `mknod(1M)`
- `chmode` change `file` mode `chmode(1)`
- `page browse or page through a text` `file` `more` more `more(1)`
- `file system` `ff` (generic) list `file` `names` and statistics for a `ff(1M)`
- `file system` `ff` (ufs) list `file` `names` and statistics for a `ff(1M)`
- `the data base for the mail aliases` `file` `newaliases` rebuild `newaliases(1M)`
- `newform` change the format of a text `file` `newform` `newform(1)`
- `nm` print name list of an object `file` or binary strings `strings(1)`
- `uencode`, `udecode encode a binary` `file`, or decode its ASCII/ `uencode(1C)`
- `uuser` identify processes using a `file` or file structure `fuser(1M)`
- `chown` change owner `file` `owner` `chown(1)`
- `chown` change owner `file` `owner` `chown(1)`
- `files or subsequent lines of one` `file` `/merge` same lines of several `merge(1)`
- `fixperm correct or initialize` `file` `permissions` and ownership `fixperm(1)`
- `fixperm correct or initialize XENIX` `file` `permissions` and ownership `fixperm(1M)`
- `pg` `file` `perusal filter for CRTs` `pg(1)`
- `pkgproto` generate a prototype `file` `pkgproto` `pkgproto(1)`
- `the page order in a PostScript` `file` `postreversed reverse` `postreversed(1)`
- `pr` print an SCCS `file` `pr` display the delta `pr(1F)`
- `and commentary history of an SCCS` `file` runs an initialization `reinit(1F)`
- `rename change the name of a` `file` `rename` `rename(1)`
- `rmdel` remove a delta from an SCCS `file` `rmdel(1)`
- `bfs` big `file` `scanner` `bfs(1)`
- `compare two versions of an SCCS` `file` `scsdiff` `scsdiff(1)`
- `rfudaemon Remote` `File Sharing daemon process` `rfudaemon(1M)`
- `rfadmin Remote` `File Sharing domain administration` `rfadmin(1M)`
- `names dname print Remote` `File Sharing domain and network` `dname(1M)`
- `rfstop stop the Remote` `File Sharing environment` `rfstop(1M)`
- `rfpasswd change Remote` `File Sharing host password` `rfpasswd(1M)`
- `nsquery Remote` `File Sharing name server query` `nsquery(1M)`
Permuted Index

script rfuadmin Remote
rumountall mount, unmount Remote
rfstart start Remote
idload Remote
number information from an object
identify processes using a file or
sum calculate a checksum for a
print checksum and block count of a
fdp create, or restore from, a full
create, or restore from, a full
ckbupscd check
fsba
checkfsys check a
interactive repair fsck (ufs)
fsdb (generic)
fsdb (s5) s5
fsdb (ufs) ufs
ufsdump incremental
file names and statistics for a
file names and statistics for a ufs
makefsys create a
mkfs (bfs) construct a boot
mkfs (generic) construct a
mkfs (s5) construct an s5
mkfs (ufs) construct a ufs
mount (s5) mount an s5
umountfsys mount, unmount a
quot summarize
checker quotacheck
quotao, quotaooff turn
requota summarize quotas for a
ufsrestore incremental
nfsstat Network
tunefs tune up an existing
fstyp (generic) determine
(generic) make literal copy of
(s5) make a literal copy of an s5
(ufs) make a literal copy of a ufs
/umount (generic) mount or unmount
automount automatically mount NFS
df report free disk space on
free disk blocks and i-nodes for s5
(ufs) report free disk space on ufs
time dcopy (generic) copy
time dcopy (s5) copy s5
fsck (bfs) check and repair bfs
fsck (generic) check and repair
File Sharing notification shell ........................................ rfuadmin(1M)
File Sharing resources rmountall, ................................ rmountall(1M)
File Sharing ................................................. rfstart(1M)
File Sharing user and group mapping ....................... idload(1M)
file /table, debugging and line ................................. strip(1)
file structure fuser ............................................. fuser(1M)
file ................................................................. sum(1)
file sum .............................................................. sum(1)
file system archive ............................................. fdp(1M)
file system archive file ....................................... file(1M)
file system backup schedule ................................. ckbupscd(1M)
file system block analyzer .................................. fsba(1M)
file system consistency check and ......................... fsck(1M)
file system debugger .......................................... fsdb(1M)
file system debugger .......................................... fsdb(1M)
file system debugger .......................................... fsdb(1M)
file system dump .............................................. ufsdump(1M)
file system ff (generic) list ................................ ff(1M)
file system ff (ufs) list ....................................... ff(1M)
file system makefsys(1M)
file system mkfs(1M)
file system mkfs(1M)
file system mkfs(1M)
file system mkfs(1M)
file system mount ............................................. mount(1M)
file system mountfsys, ...................................... mountfsys(1M)
file system ownership ........................................ quo(1M)
file system quota consistency .............................. quotacheck(1M)
file system quotas on and off ............................. quotaon(1M)
file system requota ........................................... requota(1M)
file system nfsstat(1M)
file system tunefs(1M)
file system fstyp(1M)
file system volcopy ........................................... volcopy(1M)
file system volcopy ........................................... volcopy(1M)
file system volcopy ........................................... volcopy(1M)
file systems and remote resources ...................... mount(1M)
file systems automount ..................................... automount(1M)
file systems .................................................. df(1)
file systems /s5 report number of ...................... df(1M)
file systems df ............................................... df(1M)
file systems for optimal access ......................... dcopy(1M)
file systems for optimal access ......................... dcopy(1M)
file systems .................................................. fsck(1M)
file systems .................................................. fsck(1M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dosrmdir</td>
<td>access and manipulate DOS directories</td>
</tr>
<tr>
<td>mount</td>
<td>mount (bfs, mount ufs, mount (ufs))</td>
</tr>
</tbody>
</table>
| umountall | umount multiple paths
| pathnames versus i-numbers for ufs | pathnames versus i-numbers for ufs |
| Permuter pathnames versus i-numbers for ufs | Permuter pathnames versus i-numbers for ufs |
| tail | deliver the last part of a file
| restore restore database | file to original directory
| access and modification times of a file | file to the software installation
| extension | file touch update
| file transfer program | file transfer program
| tftp | file transfer protocol server
| ftpd | File Transfer Protocol server
| co2elf | COFF to ELF object
| system uuco | file transport program for the uucp
| uucp | the scheduler for the uucp
| file determine | file type
| undo | accept, unget previous get
| uniq report repeated lines in a file | unique
| val validate an SCCS | file check the unique
| umask set | file creation mode mask
| pathconv | search FMLI criteria for search and print
| pathnames versus i-numbers for ufs | merge or add total accounting
| admin create and administer SCCS | file to the software installation
| link, unlink, link and unlink | restore request restore of
| urestore request restore of | files and directories
| cat concatenate and print | files and directories
| cmp compare two | files in original directory
| reject lines common to two sorted files | cmp compare two
| uncompress and display compressed files | files
| idmkinit reads | files
| copy copy groups of | files
| cp copy | files
| dosrmdir access and manipulate DOS files | files
| exstr extract strings from source | files
| find find | files
| catman create the cat | files for the manual
| mkmsgs create message | files for use by gettxt
| head display first few lines of files | files containing specifications
| hd display | files
| install install | files

---

index page for Permutated Index
Permuted Index

format format
ldsysdump load system dump from
clow generate C
each line of a file
expression
a co-process with the controlling
pathconv search
fml invoke
message put arguments on
or system console
fold
device vidi sets the
download host resident PostScript
map yppush
resources fumount
reset reset the current
monitor-specific/ ttypadm
database roffbib
line-printer roff
troff typeset or
format
hd display files in hexadecimal
gettable get DoD Internet
htable convert DoD Internet
4 locale information to different
newform change the
pkgtrans translate package
tbl
convert archive files to common
gencat generate a
printf print
fmt simple text
service lpsforms administer
Interface face executable for the
getfrm returns the current
(generic), dfspace report number of
file/ df (s5) report number of
df report
df (ufs) report
idspace investigates
fdp create, or restore
ffile create, or restore
floppy disk tracks ............................................ format(1M)
floppy diskettes ............................................. ldsysdump(1M)
flowgraph .................................................... clow(1)
fmlcut cut out selected fields of ..................... fmlcut(1F)
fmlEXPR evaluate arguments as an ................. fmlEXPR(1F)
fmsgrep search a file for a pattern .................. fmsgrep(1F)
FMLI application yvis synchronize ................... yvis(1F)
FMLI criteria for filename ............................... pathconv(1F)
fml invoke FMLI ............................................. fml(1)
fml invoke FMLI ............................................. fml(1)
FMLI message line ........................................ message(1F)
fmt simple text formatters ............................... fmt(1)
fmtmsg display a message on stderr ............... fmtmsg(1)
fold fold long lines ........................................ fold(1)
fold long lines ............................................. fold(1)
font and video mode for a video ...................... vidi(1)
font downloader ............................................. download(1)
force propagation of a changed NIS ............... yppush(1M)
forced unmount of advertised ......................... fumount(1M)
field to its default values ............................... reset(1F)
format and output port .................................. ttyadm(1M)
format and print a bibliographic .................... roffbib(1)
format documents for display or ................. roffbib(1)
format documents .......................................... troff(1)
format floppy disk tracks ............................. format(1M)
format format floppy disk tracks ................... format(1M)
format ....................................................... hd(1)
format host table from a host ....................... gettable(1M)
format host table ......................................... htable(1M)
format maplocale convert Release ................... maplocale(1M)
format of a text file ...................................... newform(1)
format ....................................................... pkgtrans(1)
format tables for roff or troff ..................... tbl(1)
formats convert ......................................... convert(1)
formatted message catalogue ....................... gencat(1)
formatted output ......................................... printf(1)
formatters ................................................  fmt(1)
forms used with the LP print ......................... lpsforms(1M)
Framed Access Command Environment ............... face(1)
frameID number ......................................... getfrm(1F)
free disk blocks and files/free/ df ................... df(1M)
free disk blocks and i-nodes for s5 ............... df(1M)
free disk space on file systems ...................... df(1M)
free disk space on ufs file systems ............... df(1M)
free space ............................................. idspspace(1M)
from, a full file system archive .................... fdp(1M)
from, a full file system archive .................... fdp(1M)
### SMTP
- fromsmtp receive RFC822 mail from

### Control System (SCCS) scs
- front end for the Source Code

### gencc create a
- cc command

### file systems
- fsba file system block analyzer
- fsck (bfs) check and repair bfs
- fsck (generic) check and repair
- fsck (s5) check and repair s5 file
- fsck (ufs) file system consistency
- fsdb (generic) file system debugger
- fsdb (s5) s5 file system debugger
- fsdb (ufs) ufs file system debugger

### check and interactive repair
- ncheck (generic) check and repair file
- ncheck (s5)
- ncheck (ufs)

### generation numbers
- i-numbers ncheck (generic)

### system type
- fsck (generic) construction

### system type
- fsck (generic) determine file
- ftppd file transfer protocol server

### fdp create, or restore from, a
- full file system archive
- full file system archive for

### file create, or restore from, a
- full file system archive

### search a file for a pattern using
- regular expressions

### advertised resources
- fmount forced unmounted

### setkey assigns the
- function keys

### backup perform backup
- functions
- backup

### file or file structure
- fuser identify processes

### accounting records
- ftemp, wtmpfix manipulate connect

### processes
- gcore get core images of running

### catalogue
gencat generate a formatted message
- gencat (generic) generate a formatted message

### command
- gencat (generic) construct a file system

### catalogue
gencat generate a formatted message
- gencat (generic)

### i-numbers ncheck (generic)
- gencat (generic) determine file

### pkgproto
- generate a prototype file

### random
- generate a random number

### cflow
- generate C flowgraph

### cxref
- generate C program cross-reference

### and conversion tables chrtbl
- generate character classification

### user ID diskusg
- generate disk accounting data by

### makekey
- generate encryption key

### lptest
- generate lineprinter ripple pattern

### i-numbers for s5 file/ ncheck (s5)
- generate path names versus

### for ufs file systems ncheck (ufs)
- generate pathnames versus i-numbers

### lexical tasks lex
- generate programs for simple

### fsirand install random inode
- generate numbers
- fsirand

### systems fsck
- (generic) check and repair file

### mksfs
- (generic) construct a file system

### mkfs
- (generic) create file systems

### dcopy
- (generic) copy file systems for

### type fsck
- (generic) determine file system

### free disk blocks and files/free/ df
- (generic) dspace report number of

### fsdb
- (generic) file system debugger
Permutated Index

names vs i-numbers ncheck
statistics for a file system ff
system volcopy
systems and remote/ mount, umount
systems labelit
criteria
contain devices that match/
number
marked menu items

getopts, options
readfile, longline reads file,
domain domainname
host table from a host
create message files for use by
a message data base
speed, and line discipline
/atplot, bgplot, crtplot, dumbplot,
messages biff
shutdown close down the system at a
set, unset set and unset local or
system uuuglist list service
sag system activity
PostScript translator for plot
/t300, t300s, t4013, t450, tek

ggrpck check
groupdel delete a
groupadd add (create) a new
groupmod modify a
valgid prompt for and validate a
listdgrp lists members of a device
idload Remote File Sharing user and
groups print
groups display a user's
id print the user name and ID, and
displays a list of all valid
newgrp log in to a new
chgrp change the
putdgrp edits device
definition on the system
from the system
on the system
memberships
copy copy

(generic) generate a list of path .................................. ncheck(1M)
(generic) list file names and .................................. ff(1M)
(generic) make literal copy of file .......................... volcopy(1M)
(generic) mount literal copy of file .......................... mount(1M)
(generic) provide labels for file .......................... labelit(1M)
getdevs devices based on .................................. getdev(1M)
getdgrp lists device groups which .................. getdgrp(1M)
getfrm returns the current frameID .................. getfrm(1F)
getitems return a list of currently .................. getitems(1F)
getopt parse command options .................. getopt(1)
getoptcvt parse command options .................. getoptcvt(1)
gets longest line .................................. readfile(1F)
get/set name of current secure RPC ................. domainname(1M)
gettable get DoD Internet format .................. gettable(1M)
gettext mkmsgs .................................. mkmsgs(1)
gettext retrieve a text string from .................. gettext(1)
getty set terminal type, modes, .................. getty(1M)
getvol verifies device .................................. getvol(1M)
gigiplot, hpplot, implot, plottoa,/ ................. plot(1G)
give notice of incoming mail .................. biff(1)
given time .................................. shutdown(1M)
global environment variables .............. set(1F)
grades available on this UNIX .................. uuuglist(1C)
graph .................................. sag(1M)
grep search a file for a pattern .................. grep(1)
group database entries .................. grpck(1M)
group definition from the system ........ groupdel(1M)
group definition on the system ........ groupadd(1M)
group definition on the system ........ groupmod(1M)
group ID ckgid, errgid, helpgid, .................. ckgid(1)
group .................................. listdgrp(1M)
group mapping .................................. idload(1M)
group membership of user .................. groups(1)
group memberships .................. groups(1)
group name and ID .................. id(1M)
group names dispgid .................. dispgid(1)
group .................................. newgrp(1M)
group ownership of a file .................. chgrp(1)
group table .................................. putdgrp(1)
groupadd add (create) a new group ........ groupadd(1M)
groupdel delete a group definition .......... groupdel(1M)
groupmod modify a group definition .......... groupmod(1M)
groups display a user's group .................. groups(1)
groups of files .......................... copy(1)
rfpasswd change Remote File Sharing
ECHO_REQUEST packets to network
Permuted
rdate set system date from a remote
name and ID, and group name and
groups which contain devices that
grpck check group database entries
grpck password/group file checkers
halt stop the processor
hangups and quits
hardware clock
hard disk partition table
hard or symbolic links to files
In
history of an SCCS file
help ask for help with message
help with message numbers or SCCS
hexadecimal format
history of the map at the NIS server
hostid print the numeric identifier
hostid print the user name and
hostname set or print name of
host resident PostScript font
host status of local machines
host system hostname
host table from a host
host table
host using Simple Mail Transfer/
host yppoll return current version
host ypclient send to a remote
host ypversion return current version
host ypclient send to a remote
host ypversion return current version
hostid print the numeric identifier
hostname set or print name of
hostid print the numeric identifier
hosts ping send ICMP
hpipconfig, hppipconfig, plot, t300,
htable convert DoD Internet format
hunt sequences for TTY ports
context]
ICMP ECHO_REQUEST packets to
iconv code set conversion utility
ID, and group name and ID
ID ckuid, errgid, helpgid, valgid
ID ckuid
ID diskusg generate
ID id print the user name and
ID id print the user name and
ID idprint
ID, and group name and
ID, and group name and
ID, and group name and
semaphore set, or shared memory ........................................... semaphore set

group name and ID ............................................................. group name and ID

kernel ............................................................................... kernel

information ......................................................................... information

configuration ....................................................................... configuration

what print ........................................................................... what print

hostid print the numeric .................................................... hostid

file structure fuser .............................................................. fuser

get device driver configuration/group mapping specifications .................................................... specifications

specifications of nodes kernel ............................................... kernel

tunable parameter ................................................................ tunable parameter

interface parameters ......................................................... interface parameters

source unifdef resolve and remove ....................................... source unifdef resolve and remove

ff (s5) display ....................................................................... ff (s5) display

fimage create, restore an .................................................. fimage create, restore an

crash examine system ......................................................... crash examine system

kcrash examine system ........................................................ kcrash examine system

gcore get core ................................................................... gcore get core

nohup run a command ........................................................ nohup run a command

t4013,/dumbplot, gigiplot, hpplot, w who is logged of, or search for a text string ...

incremental filesystem archive ........................................... incremental filesystem archive

invoke recipient command for biff give notice of vacation automatically respond to smtpd receive comsat,

or display an exception list for ufsdump ufsrestore incfile create, restore an xrestore, xrestor invoke XENIX indxbib create an inverted

logins last specific alarms and/or the/alarms and/or the “working’ a bibliographic database

server fingerd, terminfo descriptions users finger display pinfo get

ID ipcrm remove a message queue, ............................................ ipcrm

id print the user name and ID, and ........................................... id

idbuild build new UNIX System .......................................... idbuild

idcheck returns selected ..................................................... idcheck

idconfig produce a new kernel ............................................. idconfig

identification strings ............................................................ what

identifier of the current host ............................................... hostid

identify processes using a file or .......................................... fuser

idinstall add, delete, update, or .......................................... idinstall

idmknod removes nodes and reads ....................................... idmknod

idmknux build new UNIX System ......................................... idmknux

idspace investigates free space ............................................ idspace

idtune attempts to set value of a ........................................... idtune

ifconfig configure network ................................................... ifconfig

ifdef’ed lines from C program ............................................. unifdef

i-list information ................................................................ i-list information

image archive of a filesystem ............................................... fimage

images ............................................................................. crash

images ............................................................................. kcrash

images of running processes ............................................... gcore

immune to hangups and quits .............................................. nohup

implot, plotoa, t300, t300s, w who is logged in, message data bases /contents ........................................... srchtxt

in, and what are they doing .................................................. w

incfile create, restore an .................................................. incfile

incoming mail mail_pipe .................................................... incoming mail mail_pipe

incoming mail messages ..................................................... incoming mail messages

incoming mail messages ..................................................... vacation

incoming SMTP messages ................................................... incoming SMTP messages

in.comsat biff server ........................................................ comsat

incremental backups /change ............................................. bkexcept

incremental file system dump ............................................. ufsdump

incremental file system restore .......................................... ufsrestore

incremental filesystem archive .......................................... incfile

incremental filesystem restorer .......................................... xrestore

index to a bibliographic database ........................................ indxbib

indicate last user or terminal ............................................. last

indicator display application .............................................. indicator

indicator /application specific ........................................... indicator

indxbib create an inverted index to ...................................... indxbib

inetd Internet services daemon ........................................... inetd

in.fingerd remote user information ..................................... fingerd

infocmp compare or print out ............................................. infocmp

information about local and remote ..................................... finger

information about processors ............................................ pinfo
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP print service</td>
<td>Display mounted NFS resource</td>
</tr>
<tr>
<td>dfmounts</td>
<td>Display mounted RFS resource</td>
</tr>
<tr>
<td>pvtotoc disk</td>
<td>Display mounted LFS resource</td>
</tr>
<tr>
<td>ff (s5) display i-list</td>
<td>Debugging and line number</td>
</tr>
<tr>
<td>modes tset provide</td>
<td>Mounting and line number</td>
</tr>
<tr>
<td>/install and update /etc/shadow with</td>
<td>Install and update /etc/shadow with</td>
</tr>
<tr>
<td>idcheck returns selected</td>
<td>List users selected</td>
</tr>
<tr>
<td>listusers list user login</td>
<td>Logins list user and system login</td>
</tr>
<tr>
<td>logins list user and system login</td>
<td>Usermod modify a user's login</td>
</tr>
<tr>
<td>pkginfo display software package</td>
<td>Create a Network Information Service (NIS) dbm file</td>
</tr>
<tr>
<td>rmntstat display mounted resource</td>
<td>Display mounted NFS resource</td>
</tr>
<tr>
<td>rpcinfo report RPC</td>
<td>Display mounted RFS resource</td>
</tr>
<tr>
<td>fingerd, in.fingerd remote user</td>
<td>Display mounted RFS resource</td>
</tr>
<tr>
<td>makedbm make a Network</td>
<td>Set terminal changes machine</td>
</tr>
<tr>
<td>setname changes machine</td>
<td>Map locale convert Release 4 locale</td>
</tr>
<tr>
<td>tset provide</td>
<td>Set terminal modes</td>
</tr>
<tr>
<td>and output port monitor-specific</td>
<td>Set terminal modes</td>
</tr>
<tr>
<td>yupdated server for changing NIS Initialization</td>
<td>Set terminal modes</td>
</tr>
<tr>
<td>VGA keyboard/display driver</td>
<td>Set terminal modes</td>
</tr>
<tr>
<td>reinit runs an</td>
<td>Set terminal modes</td>
</tr>
<tr>
<td>init, telinit process control</td>
<td>Reinit runs an</td>
</tr>
<tr>
<td>brc, bcheckrc system</td>
<td>Reinit runs an</td>
</tr>
<tr>
<td>terminfo database tput</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>ownership fixperm correct or</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>setup</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>and ownership fixperm correct or setup</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>session backup</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>data partitions, or disks</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>restore server named</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>fsirand install random</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>number of free disk blocks and</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>between versions of a troff</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>checknr check nroff and troff</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>.so requests from nroff or troff</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>ustat status</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>rwhod, bibliographic/ refer expand and backup operations to service media</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>restore requests and service media</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>information from/</td>
<td>Synchronize a terminal or query</td>
</tr>
<tr>
<td>pwconv install</td>
<td>Synchronize a terminal or query</td>
</tr>
</tbody>
</table>

The table above lists various commands and their functions, including operations related to system administration and terminal management.
fml
incoming mail mail_pipe
restorer xrestore, xrestore
semaphore set, or shared memory ID
communication facilities status
state
menu; prompt for and return a menu
a list of currently marked menu
news print news
/interpreters: standard shell,
uustat uucp status inquiry and
lpr send a
lprm remove
lpq display the queue of printer
times atq display the
atrm remove
standard shell, job control/sh, terminal
idconfig produce a new
dbsym add symbols to
kdb
load command and macro files into a
idbuild build new UNIX System
idmunix build new UNIX System
chkey change user encryption
newkey create a new
keylogindecrypt and store secret
makekey generate encryption
evgainit Extended VGA
key
print the value of one or more
for storing public and private
setkey assigns the function
and private keys
ckkeywd prompt for and validate a
apropos locate commands by
pages; find reference pages by
display a one-line summary about a
killall
command and programming/, awk pattern scanning and processing
standard/restricted command and/
for file systems

file systems

ufs file systems

labelit (generic) provide

labelit (s5) provide

labelit (ufs) provide

awk pattern scanning and processing
bc arbitrary-precision arithmetic
command and programming
pattern scanning and processing
executed, in reverse order
chargefee, ckpact, dodisk,
at, batch execute commands at a
terminal type, modes, speed, and
cut cut out selected fields of each

put arguments on FMLI message

strip symbol table, debugging and

jwin print size of

shl shell
terminals layers

jterm reset

rename login entry to show current

windowing terminals

ls,

floppy diskettes
lexical tasks

lex generate programs for simple

System V/386 Release 3.2-compatible
cvtomflib convert OMF (XENIX)
ar maintain portable archive or
ordering relation for an object
terminal type, modes, speed, and
terminal type, modes, speed, and
terminal type, modes, speed, and
line read one

put arguments on FMLI message

/strip symbol table, debugging and

nl
cut cut out selected fields of each
cut out selected fields of each

longline reads file, gets longest

for TTY ports sttydefs maintain

profile data lprof display

col filter reverse

KornShell, a standard/restricted .............................................. ksh(1)
ksh, rksh KornShell, a .............................................. ksh(1)
labelit (generic) provide labels ........................................... labelit(1M)
labelit (s5) provide labels for s5 ....................................... labelit(1M)
labelit (ufs) provide labels for ......................................... labelit(1M)
labels for file systems ................................................... labelit(1M)
labels for s5 file systems ............................................. labelit(1M)
labels for ufs file systems ........................................... labelit(1M)
language ................................................................. awk(1)
language ................................................................. bc(1)
language /a standard/restricted ..................................... ksh(1)
language awk .................................................................. awk(1)
language lastcomm show the last commands ................... lastcomm(1)
language lastlogin, monacct, nulladm,/ ....................... chargefee(1)
later time .......................................................................... at(1)
layer ................................................................................. jwin(1)
layer manager ..................................................................... shl(1)
layer multiplexor for windowing ...................................... layers(1)
layer of windowing terminal ........................................... jterm(1)
layers layer multiplexor for ......................................... layers(1)
lc list contents of directory ........................................... ls(1)
ld link editor, dynamic link editor ................................... ld(1)
ld link editor for object files ........................................... ld(1)
ldd list dynamic dependencies ....................................... ldd(1)
layer relogin .................................................................... relogin(1M)
line printer control program .......................................... lpc(1)
line number information from an/ .................................... strip(1)
line numbering filter ..................................................... nl(1)
line of a file ................................................................... cut(1)
line of a file fmlcut ..................................................... fmlcut(1F)
line printer control program ......................................... lpc(1M)
line read one line .......................................................... lpc(1M)
line-readline, ......................................................... readline(1F)
line settings and hunt sequences ................................... sttydefs(1M)
line-by-line execution count ......................................... lprof(1)
line-feeds ....................................................................... col(1)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line-printer</td>
<td>nroff</td>
</tr>
<tr>
<td>lptest</td>
<td>generate</td>
</tr>
<tr>
<td>comm</td>
<td>select or reject</td>
</tr>
<tr>
<td>fold</td>
<td>fold long</td>
</tr>
<tr>
<td>undef resolve and remove</td>
<td>ifdef'ed</td>
</tr>
<tr>
<td>uniq report repeated</td>
<td>words in the system dictionary or</td>
</tr>
<tr>
<td>head display</td>
<td>of several files or subsequent</td>
</tr>
<tr>
<td>subsequent lines/</td>
<td>paste merge same</td>
</tr>
<tr>
<td>directories</td>
<td>link, unlink</td>
</tr>
<tr>
<td>ld</td>
<td>link editor, dynamic</td>
</tr>
<tr>
<td>ln</td>
<td>link files</td>
</tr>
<tr>
<td>slink</td>
<td>linker</td>
</tr>
<tr>
<td>remotes systems</td>
<td>dfshares</td>
</tr>
<tr>
<td>remote or local systems</td>
<td>dfshares</td>
</tr>
<tr>
<td>remote systems</td>
<td>dfshares</td>
</tr>
<tr>
<td>ls</td>
<td>list contents of directory</td>
</tr>
<tr>
<td>ls, lc</td>
<td>list contents of directory</td>
</tr>
<tr>
<td>ldd</td>
<td>list dynamic dependencies</td>
</tr>
<tr>
<td>a file system</td>
<td>ff (generic)</td>
</tr>
<tr>
<td>a ufs file system</td>
<td>ff (ufs)</td>
</tr>
<tr>
<td>/change or display an</td>
<td>exception</td>
</tr>
<tr>
<td>dictionary or lines in a sorted</td>
<td>list look find words in the system</td>
</tr>
<tr>
<td>dispgid displays a</td>
<td>list of all valid group names</td>
</tr>
<tr>
<td>dispuid displays a</td>
<td>list of all valid user names</td>
</tr>
<tr>
<td>nm print name</td>
<td>list of an object file</td>
</tr>
<tr>
<td>getitems return a</td>
<td>list of currently marked menu items</td>
</tr>
<tr>
<td>ncheck (generic)</td>
<td>generate a</td>
</tr>
<tr>
<td>users display a compact</td>
<td>list of path names vs i-numbers</td>
</tr>
<tr>
<td>this UNIX system</td>
<td>uuglist</td>
</tr>
<tr>
<td>information</td>
<td>logins</td>
</tr>
<tr>
<td>listusers</td>
<td>list user login information</td>
</tr>
<tr>
<td>group</td>
<td>listdgrp lists members of a device</td>
</tr>
<tr>
<td>listen network</td>
<td>listener daemon</td>
</tr>
<tr>
<td>nlsadmin network</td>
<td>listener service administration</td>
</tr>
<tr>
<td>xargs construct argument</td>
<td>list(s) and execute command</td>
</tr>
<tr>
<td>devattr</td>
<td>list devices attributes</td>
</tr>
<tr>
<td>devices that match/</td>
<td>getdgrp lists device groups which contain</td>
</tr>
<tr>
<td>getdev</td>
<td>lists devices based on criteria</td>
</tr>
</tbody>
</table>

**Permuted Index**
listdgrp
STREAMS modules autopush configure
information
volcopy (ufs) make a
volcopy (s5) make a
volcopy (generic) make
files
kernel executable file dbcmd
diskettes ldsysdump
finger display information about
rptime show host status of
users who's logged in on
who who's logged in on
mounting by remote/ share make
mounting by remote/ unshare make
variables set, unset set and unset
mounting by remote/ share make
mounting by remote/ unshare make
mounting by remote/ unshare make
available resources from remote or
format maplocale convert Release 4
pathname or alias which
apropos
lockd network
newgrp
logger add entries to the system
syslogd
who who's
rusers who's
rwho who's
display a compact list of users
log
strclean STREAMS error
strerr STREAMS error
rename
userdel delete a user's
listusers list user
logins list user and system
usermod modify a user's
logname get
useradd administer a new user
attributes passwd change
rlogin remote
rlogind remote lists members of a device group listdgrp
lists of automatically pushed autopush
listusers list user login listusers
literal copy of a ufs file system volcopy
literal copy of an s5 file system volcopy
literal copy of file system volcopy
In link files ln
In make hard or symbolic links to ln
load command and macro files into a dbcmd
load system dump from floppy ldsysdump
local and remote users finger
local machines ruptime
local machines users
local machines rwho
local NFS resource available for share
local NFS resource unavailable for unshare
local or global environment set
local resource available for share
local resource unavailable for unshare
local RFS resource available for share
local RFS resource unavailable for unshare
local systems dfshares list dfshares
locale information to different maplocale
locate a command; display its which
locate commands by keyword lookup apropos
lock daemon lockd
lockd network lock daemon lockd
log in to a new group newgrp
log system messages syslogd
logged in, and what are they doing w
logged in on local machines users
logged in on local machines rwho
logged in users users
logger add entries to the system logger
logger cleanup program strclean
logger daemon strerr
login entry to show current layer relogin
login from the system userdel
login information listusers
login information logins
login information on the system usermod
login information on the system usermod
login name logname
login on the system useradd
login password and password passwd
login rlogin
login server rlogind
login sign on ......................................................... login(1)
login to a remote terminal ........................................... ct(1C)
logins ......................................................... last(1)
logins list user and system login .............................. logins(1M)
logname get login name .............................................. logname(1)
longest line ..................................................... readline(1F)
longline reads file, gets longest ................................. readline(1F)
look find words in the system ................................. look(1)
lookbib find references in a dictionary or lines in a sorted/............. lookbib(1)
lp, cancel send/cancel requests to ............................. lp(1)
LP print service and move requests ............................. lpsched(1M)
LP print service lp, ................................................ lp(1)
LP print service ................................................... lpm(1M)
LP print service lpfilter .......................................... lpfilter(1M)
LP print service lpforms .......................................... lpforms(1M)
LP print service lpstat print ....................................... lpstat(1)
LP printers ......................................................... enable(1)
lpadmin configure the LP print ..................................... lpadmin(1M)
lpc line printer control program .................................. lpc(1M)
lpfilter administer filters used ..................................... lpfilter(1M)
lpforms administer forms used with the LP print service ......... lpforms(1M)
lpq display the queue of printer ................................... lpq(1)
lpr send a job to the printer ....................................... lpr(1)
lprm remove jobs from the printer ............................... lprm(1)
lprof display line-by-line ......................................... lprof(1)
lpsched, lpshut, lpmove start/stop the LP print service ......... lpsched(1M)
lpshed, lpmove start/stop the LP ................................ lpsched(1M)
lpsht, lpmove start/stop the LP ................................ lpsched(1M)
lpstat print information about the LP ................................ lpstat(1)
lpsystem register remote systems ............................. lpsystem(1M)
lptest generate lineprinter ripple .................................... lptest(1)
lpusers set printing queue ...................................... lpusers(1M)
ls, lc list contents of directory ................................. ls(1)
ls list contents of directory ...................................... ls(1)
ls list the contents of a directory ............................ ls(1)
m4 macro processor .............................................. m4(1)
mach display the processor type of ............................. mach(1)
machid get processor type truth .................................. machid(1)
machine information ............................................... setuname(1M)
machines ......................................................... ruftime(1)
machines ........................................................ ruusers(1)
machines ........................................................ rwho(1)
macro files into a kernel ........................................ dbcmd(1M)
machine processor ............................................ m4(1)
<table>
<thead>
<tr>
<th>Command/Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mnt</td>
<td>magnetic tape control</td>
</tr>
<tr>
<td>tape</td>
<td>magnetic tape maintenance</td>
</tr>
<tr>
<td>tcopy</td>
<td>magnetic tape</td>
</tr>
<tr>
<td>mailalias</td>
<td>mail alias names</td>
</tr>
<tr>
<td>rebuild</td>
<td>mail aliases file newaliases</td>
</tr>
<tr>
<td>vacation</td>
<td>mail automatically</td>
</tr>
<tr>
<td>smtpqer</td>
<td>mail for delivery by SMTP</td>
</tr>
<tr>
<td>fromsmtp</td>
<td>mail from SMTP</td>
</tr>
<tr>
<td>smtp</td>
<td>mail to a remote host using Simple</td>
</tr>
<tr>
<td>biff</td>
<td>mail messages</td>
</tr>
<tr>
<td>notify</td>
<td>mail messages vacation</td>
</tr>
<tr>
<td>sendmail</td>
<td>mail notify</td>
</tr>
<tr>
<td>sendmail send</td>
<td>mail over the internet</td>
</tr>
<tr>
<td>mconnect</td>
<td>mail queue smtqsched</td>
</tr>
<tr>
<td>Mail Transfer/</td>
<td>mail to a remote host using Simple</td>
</tr>
<tr>
<td>to users</td>
<td>mail to SMTP</td>
</tr>
<tr>
<td>Mail Transfer/</td>
<td>mail to users</td>
</tr>
<tr>
<td>smtp send</td>
<td>Mail Transfer Protocol /send SMTP</td>
</tr>
<tr>
<td>tosmtp send</td>
<td>mailalias translate mail alias</td>
</tr>
<tr>
<td>mail</td>
<td>mailPipe invoke recipient command</td>
</tr>
<tr>
<td>mail, rmail read</td>
<td>mailPipe invoke</td>
</tr>
<tr>
<td>mailx</td>
<td>mailx interactive message</td>
</tr>
<tr>
<td>sequences</td>
<td>maintain line settings and hunt</td>
</tr>
<tr>
<td>sttydefs</td>
<td>maintain portable archive or</td>
</tr>
<tr>
<td>library ar</td>
<td>maintain, update, and regenerate</td>
</tr>
<tr>
<td>groups of programs make</td>
<td>maintenance</td>
</tr>
<tr>
<td>tape</td>
<td>maintenance utility</td>
</tr>
<tr>
<td>mksys</td>
<td>makedbm make a Network Information</td>
</tr>
<tr>
<td>Service (NIS) dbm file</td>
<td>makedbm</td>
</tr>
<tr>
<td>passmgmt</td>
<td>makefsys create a file system</td>
</tr>
<tr>
<td>shl</td>
<td>makefsys</td>
</tr>
<tr>
<td>manager</td>
<td>makekey generate encryption key</td>
</tr>
<tr>
<td>manipulate</td>
<td>management</td>
</tr>
<tr>
<td>connect</td>
<td>manager</td>
</tr>
<tr>
<td>Accounting</td>
<td>manipulate connect accounting</td>
</tr>
<tr>
<td>fwtmpp</td>
<td>manipulate DOS files /dosmdir,</td>
</tr>
<tr>
<td>wtmpfix</td>
<td>manipulate the comment section of</td>
</tr>
<tr>
<td>dos, dosrm, dosmdir access and</td>
<td>manipulate the routing tables</td>
</tr>
<tr>
<td>an object file mcs</td>
<td>manual</td>
</tr>
<tr>
<td>route manually</td>
<td>manual pages; find reference pages</td>
</tr>
<tr>
<td>catman</td>
<td>manually manipulate the routing</td>
</tr>
<tr>
<td>create the cat files for the</td>
<td>map at the NIS server host ypdpoll</td>
</tr>
<tr>
<td>by keyword man display reference tables route</td>
<td>map from a YP server to host</td>
</tr>
<tr>
<td>return current version of the</td>
<td>map master ypwhich</td>
</tr>
<tr>
<td>ypxfr transfer YP</td>
<td>map ypmatch print the value</td>
</tr>
<tr>
<td>return name of NIS server or of one or more keys from the NIS force propagation of a changed NIS</td>
<td>map yppush</td>
</tr>
</tbody>
</table>
mapping
monitor screen
screen mapping
information to different format
addresses to RPC program number
Remote File Sharing user and group
mapchan Configure tty device
mapstr configure monitor screen
screen mapping mapkey,
mapping mapkey, mapscln,
of a troff input file
diffmk
getitems return a list of currently
umask set file-creation mode
return name of NIS server or map
groups which contain devices that
regex
eqn, neqn, checkeq
typeset
PostScript printers
postmd
server socket
of an object file
with backup operations to service
restore requests and service
listdgrp lists
groups print group

memberships

message numbers or SCCS commands

message put arguments on FMLI
help ask for help with
fmtmsg display a
mailx interactive
message line
shared memory ID
ipcrm remove a
biff give notice of incoming mail
remote system can accept binary
mesg permit or deny
queue smtpd process
smtpd receive incoming SMTP
strace print STREAMS trace
syslogd log system
respond to incoming mail
set of volumes to another

/overview of accounting and

j
overview of accounting and

permuted

40
automount automatically
remote/ mount, umount (generic)
rmnttry attempt to
mount
mount
mountd NFS
setmnt establish
mount (ufs)
unmount file systems and remote/
mountfsys, umountfsys
systems mountall, umountall
resources rmountall, rumountall
multiple file systems
dfmounts display
dfmounts display
rmnstat display
dfmounts display
unmount a file system
local NFS resource available for
make local resource available for
local NFS resource unavailable for
make local resource unavailable for
local NFS resource unavailable for
rmount queue remote resource
mouseadmin
mvdir
volumes to another migration
mv
start/stop the LP print service and
mountall, umountall mount, umount
shareall, unshareall share, unshare
layers layer
kdb
rc2 run commands performed for
id print the user
the user name and ID, and group
devnm device
whois Internet user
descriptor fdetach detach a

mount NFS file systems .............................................. automount(lM)
mount or unmount file systems and ...................... mount(lM)
mount queued remote resources .................. rmnttry(lM)
mount remote NFS resources ............................ mount(lM)
mount remote resources ................................... mount(lM)
mount request server .................................. mountd(lM)
mount (s5) mount an s5 file system ........ mount(lM)
mount table .............................................. setmnt(lM)
mount ufs file systems ..................................... mount(lM)
mount (ufs) mount ufs file systems .................. mount(lM)
mount, umount (generic) mount or ........ mount(lM)
mount, umount a file system .................... mountfsys(lM)
mount, unmount multiple file ..................... mountall(lM)
mount, unmount Remote File Sharing .......... rmountall(lM)
mountall, umountall mount, umount .. mountall(lM)
mountd NFS mount request server .......... mountd(lM)
mounted NFS resource information .......... dfmounts(lM)
mounted resource information .................. dfmounts(lM)
mounted resource information .................. rmnstat(lM)
mounted RFS resource information .......... dfmounts(lM)
mountfsys, umountfsys mount .............. mountfsys(lM)
mounting by remote systems /make ........ share(lM)
mounting by remote systems share ........ share(lM)
mounting by remote systems /make ........ share(lM)
mounting by remote systems /make ........ unshare(lM)
mounting by remote systems unshare ...... unshare(lM)
mounting by remote systems /make ........ unshare(lM)
mounts .................................................. rmount(lM)
mouse administration ......................... mouseadmin(1)
mouseadmin mouse administration ........ mouseadmin(1)
mv move files .............................................. mv(1)
mv move requests /lpshut, lpmove ................. lpshut(1)
mt magnetic tape control ............................... mt(1)
multiple file systems ................................... mountall(lM)
multiple resources ..................................... shareall(lM)
multiplexor for windowing terminals ........ layers(l)
multiprocessor kernel debugger .................... kdb(lM)
multi-user environment ............................... rc2(1M)
mv move files .............................................. mv(1)
mvdir move a directory ............................... mvdir(1M)
name and ID, and group name and ID .......... id(lM)
name and ID id print ..................................... id(lM)
nname .................................................... devnm(lM)
nname directory service .............................. whois(l)
nname from a STREAMS-based file .......... fdetach(lM)
name list of an object file
name of a file
name of current host system
name of current secure RPC domain
name of current UNIX system
name of NIS server or map master
name of the terminal
name server
name server query
name server
name servers interactively
names and statistics for a file
names and statistics for a ufs file
names basename, dispuid
names dispuid
names dnname print Remote
names
names versus i-numbers
nawk pattern scanning and
ncheck (generic) generate a list of
ncheck (s5) generate path names
ncheck (ufs) generate pathnames
neqn, checkeq typeset mathematics
netstat show network status
network hosts ping
network interface parameters
network listener daemon
network listener service
network lock daemon
network names dnname print
network routing daemon
network rwall server
network status monitor
network status
network username server
newaliases rebuild the data base
newform change the format of a text
newgrp log in to a new group
newkey create a new key in the
newlog create a new log file
news print

news print news items ........................................ news(1)
newvt opens virtual terminals ............................. newvt(1)

biod
NFS daemon ........................................... biod(1M)

nfsd
NFS daemon ........................................... nfsd(1M)

automount automatically mount
by remote systems share make local
automounting by/ unshare make local
dfmounts display mounted
defshares list available
mount mount remote

nfsd NFS daemon ........................................... nfsd(1M)
nfsstat Network File System ............................. nfsstat(1M)
nice run a command at low priority ................. nice(1)

NIS data base ........................................ ypcat(1)
(NIS) dbm file makedbm ................................ makedbm(1M)

NIS information ........................................ yppush(1M)
NIS map yppush ........................................ yppush(1M)
NIS server and binder processes .................... ypserv(1M)
NIS server host ypypoll return .................. ypypoll(1M)
NIS server or map master ......................... ypwhich(1)

administration

node idmknod removes ............................. idmknod(1M)

nodes and reads specifications of hangups and quits
nodes idmknod removes ............................. idmknod(1M)
nohup run a command immune to ..................... nohup(1)
nl line numbering filter ............................... nl(1)
nlsadmin network listener service ................ nlsadmin(1M)
nm print name list of an object .................... nm(1)

notification shell script ............................. rfuadmin(1M)
nrlookup Remote File Sharing server query
of new mail
mail notify ............................................. notify(1)
possible errors checknr check
or line-printer and eliminate .so requests from
tbl format tables for
constructs deroff remove
constructs deroff remove
interactively
server query
/dodisk, lastlogin, monacct,
obtain the prime factors of a
getfrm returns the current frameID
/symbol table, debugging and line
universal addresses to RPC program
directory or file du display the
df (generic), dfspace report

number factor ........................................ factor(1)
number .................................................. getfrm(1F)
number information from an object ................ strip(1)
number mapper rpcbind ............................. rpcbind(1M)
number of disk blocks used per .................... du(1M)
number of free disk blocks and .................... df(1M)
**Permutated Index**

i-nodes for s5 file/ df (s5) report random number of free disk blocks and ........................................... df(1M)
random generate a random nl line numbering filter ......................................................... random(1)
install random inode generation numbers lsirand ......................................................... lsirand(1)
help ask for help with message numbers or SCCS commands ................................. help(1)
host hostid print the numeric identifier of the current ....................................... hostid(1)
dis terminal wtinit object code disassembler ....................................................... dis(1)
dump dump selected parts of an object downloader for the 5620 DMD ......................... wtinit(1M)
the comment section of an object file dump .............................................................. dump(1)
line number list of an object file mcs manipulate ..................................................... mcs(1)
find printable strings in an object file size ............................................................... size(1)
and line number information from an object file lorder ........................................... lorder(1)
cof2elf COFF to ELF object file .......................................................... cof2elf(1)
ld link editor for print section sizes in bytes of object files ld ........................................ ld(1)
find ordering relation for an object files size ............................................................... size(1)
number factor od obtain the prime factors of a ....................................................... factor(1)
octal dump .............................................................. od(1)
octal dump .............................................................. od(1)
octal dump .............................................................. od(1)
of, or search for a text string in, ........................................... srchtxt(1)
message/ srchtxt display contents offline take a processor offline(1M)
offline take a processor offline(1M)
cvtomflib convert one-line summary about a keyword ........................................... whatis(1)
whatis display a online bring a processor online(1M)
online bring a processor online(1M)
newvt opens virtual terminals .......................................................... newvt(1)
vtlmgr monitors and operates to service media/ ........................................... vtlmgr(1)
run commands performed to stop the online bring a processor online(1M)
performed to stop and reboot the online online(1M)
reboot restart the online brings a processor online(1M)
report on completed backup operating system rc0 ................................................. rc0(1M)
display the status of backup operating system rc6 run commands ......................... rc6(1M)
bkoper interact with backup operations bkhistory ............................................. bkhistory(1M)
obtain the prime factors of a operations bkstatus ............................................ bkstatus(1M)
join relational database operations to service media/ ........................................... bkoper(1M)
(generic) copy file systems for operator operator ................................................. join(1)
dcopy (s5) copy s5 file systems for optimal access time dcopy .................................. dcopy(1M)
stty set the optimal access time dcopy .................................. dcopy(1M)
stty set the optimal access time dcopy .................................. dcopy(1M)
getopt parse command options for a terminal ........................................... stty(1)
getopts, getoptcvt parse command options for a terminal ................................... stty(1)
postreverse reverse the page options options ............................................... getopt(1)
last commands executed, in reverse order in a PostScript file ........................................ postreverse(1)
library lorder find order lastcomm show the ........................................... lastcomm(1)
restore restore file to ordering relation for an object ........................................... lorder(1)
echo put string on virtual original directory ........................................... restore(1)
output output ......................................................... echo(1F)
Permuted Index

information ttyadm format and
printf print formatted
acctwtmp closewtmp, utmp2wtmp
chown change file
chown change file
or initialize file permissions and
XENIX file permissions and
chgrp change the group
quot summarize file system
expand files
install specific portions of a UNIX
pkgtrans translate
pkgrm removes a
pkginfo display software
pkgparam displays
pkgmk produce an installable
sa1, sa2 system activity report
pkgadd transfer software
portions of certain UNIX or XENIX
xtt extract and print xt driver
spray spray
ping send ICMP ECHO_REQUEST
more,
pagesize display the size of a
postreverse reverse the
more, page browse or
manual pages; find reference
man display reference manual
of memory
attempts to set value of a tunable
bootparam boot
pkgparam displays package
configure network interface
getopt
getopts, getoptcvt
tail deliver the last
ypset point ypbind at a
the size of the active UNIX System
fdisk create or modify hard disk
restores of filesystems, data
dump dump selected
active UNIX System partition
password attributes
passwd change login
passwd change login password and
pwck check
output port monitor-specific ... ttyadm(1M)
output ... printf(1)
overview of accounting and/ /accton, ... acct(1M)
or owner ... chown(1)
or owner ... chown(1)
or ownership ... fixperm(1)
or ownership /correct or initialize ... fixperm(1)
or ownership of a file ... chgrp(1)
or ownership ... quot(1)
or pack, pcat, unpack compress and ... pack(1)
or package custom ... custom(1M)
or package format ... pkgrm(1M)
or package information ... pkginfo(1)
or package parameter values ... pkgparam(1)
or package ... pkgmk(1)
or package sadc, ... sadc(1M)
or package to the system ... pkgadd(1M)
or packages custom install specific ... custom(1)
or packet traces ... xtt(1M)
or packets ... spray(1M)
or packets to network hosts ... ping(1M)
or page browse or page through a text ... more(1)
or page of memory ... pagesize(1)
or page order in a PostScript file ... postreverse(1)
or page through a text file ... more(1)
or pages by keyword /display reference ... man(1)
or pages; find reference pages by/ ... man(1)
or pagesize display the size of a page ... pagesize(1)
or parameter idtune ... idtune(1M)
or parameter server ... bootparamd(1M)
or parameter values ... pkgparam(1)
or parameters ifconfig ... ifconfig(1M)
or parse command options ... getopt(1)
or parse command options ... getoptcvt(1)
or part of a file ... tail(1)
or particular server ... ypsit(1M)
or partition partsit returns ... partsit(1M)
or partition table ... fdisk(1M)
or partitions, or disks /initiate ... restore(1M)
or parts of an object file ... dump(1)
or partsit returns the size of the ... partsit(1M)
or passmgmt password files management ... passmgmt(1M)
or passwd change login password and ... passwd(1)
or password and password attributes ... passwd(1)
or password attributes ... passwd(1)
or password database entries ... passwd(1M)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Manual/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>passmgmt</td>
<td>password files management</td>
<td>passmgmt(1M)</td>
</tr>
<tr>
<td>rppasswd</td>
<td>password rpasswd</td>
<td>rppasswd(1M)</td>
</tr>
<tr>
<td>pwck, grpck</td>
<td>password/group file checkers</td>
<td>pwck(1M)</td>
</tr>
<tr>
<td>paste</td>
<td>paste merge same lines of several</td>
<td>paste(1)</td>
</tr>
<tr>
<td>basename</td>
<td>path names basename</td>
<td>basename(1M)</td>
</tr>
<tr>
<td>basenames</td>
<td>path names vs i-numbers for s5</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>ncheck</td>
<td>path names versus i-numbers</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pathconv search FMLI criteria for</td>
<td>pathconv(1F)</td>
</tr>
<tr>
<td>paste</td>
<td>paste merge same lines of several</td>
<td>paste(1)</td>
</tr>
<tr>
<td>passwd</td>
<td>pathnames</td>
<td>basename(1M)</td>
</tr>
<tr>
<td>group</td>
<td>pathnames versus i-numbers for ufs</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>which</td>
<td>pattern</td>
<td>grep(1)</td>
</tr>
<tr>
<td>basename</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>ncheck</td>
<td>pattern scanning and processing</td>
<td>nawk(1)</td>
</tr>
<tr>
<td>ncheck</td>
<td>pattern using full regular/</td>
<td>egrep(1)</td>
</tr>
<tr>
<td>ufs</td>
<td>patterns against a string</td>
<td>rege(1F)</td>
</tr>
<tr>
<td>fmlgrep</td>
<td>pbind bind a process to a processor</td>
<td>pbind(1M)</td>
</tr>
<tr>
<td>grep</td>
<td>pc, unpack compress and expand</td>
<td>pack(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pending restore requests and</td>
<td>rsoper(1M)</td>
</tr>
<tr>
<td>ncheck</td>
<td>per directory or file du display</td>
<td>du(1M)</td>
</tr>
<tr>
<td>pg</td>
<td>perform backup functions</td>
<td>backup(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perform system administration</td>
<td>sysadm(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed for multi-user</td>
<td>rc2(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed to stop and reboot the</td>
<td>rc6(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed to stop the operating</td>
<td>rc0(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions and ownership</td>
<td>fixperm(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions and ownership fixperm</td>
<td>fixperm(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions file ucheck</td>
<td>ucheck(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permit or deny messages</td>
<td>msg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>per-process accounting records</td>
<td>acctcms(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perusal filter for CRTs</td>
<td>pg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pg file perusal filter for CRTs</td>
<td>pg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pieces</td>
<td>split(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pinfo get information about</td>
<td>pinfo(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>ping send ICMP ECHO_REQUEST packets</td>
<td>ping(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pipe fitting</td>
<td>tee(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgadd transfer software package to</td>
<td>pkgadd(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgask stores answers to a request</td>
<td>pkgask(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgchk check accuracy of</td>
<td>pkgchk(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkginfo display software package</td>
<td>pkginfo(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgmk produce an installable</td>
<td>pkgmk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgparam displays package parameter</td>
<td>pkgparam(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgproto generate a prototype file</td>
<td>pkgproto(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pathnames</td>
<td>basename(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pathnames versus i-numbers for ufs</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern using full regular/</td>
<td>egrep(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>patterns against a string</td>
<td>rege(1F)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pbind bind a process to a processor</td>
<td>pbind(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pc, unpack compress and expand</td>
<td>pack(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pending restore requests and</td>
<td>rsoper(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>per directory or file du display</td>
<td>du(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perform backup functions</td>
<td>backup(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perform system administration</td>
<td>sysadm(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed for multi-user</td>
<td>rc2(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed to stop and reboot the</td>
<td>rc6(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed to stop the operating</td>
<td>rc0(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions and ownership</td>
<td>fixperm(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions and ownership fixperm</td>
<td>fixperm(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions file ucheck</td>
<td>ucheck(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permit or deny messages</td>
<td>msg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>per-process accounting records</td>
<td>acctcms(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perusal filter for CRTs</td>
<td>pg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pg file perusal filter for CRTs</td>
<td>pg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pieces</td>
<td>split(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pinfo get information about</td>
<td>pinfo(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>ping send ICMP ECHO_REQUEST packets</td>
<td>ping(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pipe fitting</td>
<td>tee(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgadd transfer software package to</td>
<td>pkgadd(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgask stores answers to a request</td>
<td>pkgask(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgchk check accuracy of</td>
<td>pkgchk(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkginfo display software package</td>
<td>pkginfo(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgmk produce an installable</td>
<td>pkgmk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgparam displays package parameter</td>
<td>pkgparam(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgproto generate a prototype file</td>
<td>pkgproto(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pathnames</td>
<td>basename(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pathnames versus i-numbers for ufs</td>
<td>ncheck(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern scanning and processing</td>
<td>awk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pattern using full regular/</td>
<td>egrep(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>patterns against a string</td>
<td>rege(1F)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pbind bind a process to a processor</td>
<td>pbind(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pc, unpack compress and expand</td>
<td>pack(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pending restore requests and</td>
<td>rsoper(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>per directory or file du display</td>
<td>du(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perform backup functions</td>
<td>backup(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perform system administration</td>
<td>sysadm(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed for multi-user</td>
<td>rc2(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed to stop and reboot the</td>
<td>rc6(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>performed to stop the operating</td>
<td>rc0(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions and ownership</td>
<td>fixperm(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions and ownership fixperm</td>
<td>fixperm(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permissions file ucheck</td>
<td>ucheck(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>permit or deny messages</td>
<td>msg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>per-process accounting records</td>
<td>acctcms(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>perusal filter for CRTs</td>
<td>pg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pg file perusal filter for CRTs</td>
<td>pg(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pieces</td>
<td>split(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pinfo get information about</td>
<td>pinfo(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>ping send ICMP ECHO_REQUEST packets</td>
<td>ping(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pipe fitting</td>
<td>tee(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgadd transfer software package to</td>
<td>pkgadd(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgask stores answers to a request</td>
<td>pkgask(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgchk check accuracy of</td>
<td>pkgchk(1M)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkginfo display software package</td>
<td>pkginfo(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgmk produce an installable</td>
<td>pkgmk(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgparam displays package parameter</td>
<td>pkgparam(1)</td>
</tr>
<tr>
<td>pathconv</td>
<td>pkgproto generate a prototype file</td>
<td>pkgproto(1)</td>
</tr>
</tbody>
</table>
settings and hunt sequences for TTY
Permuted
/dumbplot, gigiplot, hpplot, imp
postmd matrix display program for
ttymon port monitor for terminal
postplot PostScript translator for
nroff and troff input files; report
packages custom install specific
profiler: prfld, prfstat, profiler: prfld, prfstat,
techno graphics filters for various
textbooks UNIX system/profiler:
/lastlogin, monacct, nulladm,
dpost troff postprocessor for
crtplot, dumbplot, gigiplot,/
reverse the page order in a
custom install specific
pmadm portable archive or library
base command and output
port monitor administration
plot graphics files postplot
bitmap files postdmd
plot, PostScript translators
for Diablo ................................... postdaisy(l)
PostScript translators for text ......................................... postprint(l)
PostScript translators for tektronix .......... ... ........... ............ posttek(l)
prfdc, prfsnap, prfpr UNIX system ............................. profiler(lM)
prfld, prfstat, prfdc, prfsnap, ................. ...... ................ profiler(lM)
portions of path names ................................................. basename(l)
previous get of an sees file ............................................... unget(l)
PostScript file postreverse .................. ..... ........... ...... postreverse(l)
PostScript font downloader ......................................... download(l)
PostScript translators for plot .......................................... postplot(l)
PostScript printers ................................................................ postio(l)
PostScript printers ................................................................. dpost(l)
PostScript printers ............................................................. postmd(l)
PostScript translators for DMD ...................................... postdmd(l)
prdaily, prtacct,......................................... chargefee(lM)
possible errors checknr check . .......... ........... ... .......... ..... checknr(l)
DMD bitmap files report
ports
settings and hunt sequences for TTY
committing and output
port monitor-specific information .. ........... .... ... ....... ..... ttyadm(lM)
port monitor for terminal ports................................... ttymon(lM)
port monitor administration ........................................ pmadm(lM)
pkgtrans translate package format
plot, aedplot, atoplot, bgplot,.......................... plot(lG)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/prfld, prfsnap,</td>
<td>prpr UNIX system profiler</td>
</tr>
<tr>
<td>/prfld, prfsnap,</td>
<td>prpr UNIX system profiler</td>
</tr>
<tr>
<td>profiler: prfld, prfsnap,</td>
<td>prfsnap, prpr UNIX system profiler</td>
</tr>
<tr>
<td>profiler: prfld, prfsnap,</td>
<td>prfsnap, prpr UNIX system profiler</td>
</tr>
<tr>
<td>system profiler</td>
<td>prfsnap, prpr UNIX system profiler</td>
</tr>
<tr>
<td>system profiler</td>
<td>prfsnap, prpr UNIX system profiler</td>
</tr>
<tr>
<td>factor obtain the</td>
<td>prime factors of a number</td>
</tr>
<tr>
<td>roffbib format and</td>
<td>print a bibliographic database</td>
</tr>
<tr>
<td>prs</td>
<td>print an SCCS file</td>
</tr>
<tr>
<td>date</td>
<td>print and set the date</td>
</tr>
<tr>
<td>cal</td>
<td>print calendar</td>
</tr>
<tr>
<td>file sum</td>
<td>print checksum and block count of a</td>
</tr>
<tr>
<td>activity sact</td>
<td>print current SCCS file editing</td>
</tr>
<tr>
<td>sdiff</td>
<td>print file differences side-by-side</td>
</tr>
<tr>
<td>cat concatenate and</td>
<td>print files</td>
</tr>
<tr>
<td>pr</td>
<td>print files</td>
</tr>
<tr>
<td>printf</td>
<td>print formatted output</td>
</tr>
<tr>
<td>groups</td>
<td>print group membership of user</td>
</tr>
<tr>
<td>what</td>
<td>print identification strings</td>
</tr>
<tr>
<td>of the LP print service</td>
<td>print information about the status</td>
</tr>
<tr>
<td>lsstat</td>
<td>print name list of an object file</td>
</tr>
<tr>
<td>nm</td>
<td>print name of current host system</td>
</tr>
<tr>
<td>hostname set or</td>
<td>print name of current UNIX system</td>
</tr>
<tr>
<td>uname</td>
<td>print news items</td>
</tr>
<tr>
<td>news</td>
<td>print out terminfo descriptions</td>
</tr>
<tr>
<td>infocmp compare or</td>
<td>print process accounting file(s)</td>
</tr>
<tr>
<td>acctcom search and</td>
<td>print Remote File Sharing domain</td>
</tr>
<tr>
<td>and network names</td>
<td>print section sizes in bytes of</td>
</tr>
<tr>
<td>dname</td>
<td>print service and move requests</td>
</tr>
<tr>
<td>accept, reject accept or reject</td>
<td>print service lp, cancel</td>
</tr>
<tr>
<td>object files size</td>
<td>print service</td>
</tr>
<tr>
<td>/lpshut, lpmove start/stop the LP</td>
<td>print service lpsystem</td>
</tr>
<tr>
<td>send/cancel requests to an LP</td>
<td>print service /print information</td>
</tr>
<tr>
<td>lpadmin configure the LP</td>
<td>print service /print information</td>
</tr>
<tr>
<td>administer filters used with the LP</td>
<td>print service /print information</td>
</tr>
<tr>
<td>administer forms used with the LP</td>
<td>print service /print information</td>
</tr>
<tr>
<td>about the status of the LP</td>
<td>print service /print information</td>
</tr>
<tr>
<td>register remote systems with the</td>
<td>print service /print information</td>
</tr>
<tr>
<td>jwin</td>
<td>print size of layer</td>
</tr>
<tr>
<td>sendmail mailstats</td>
<td>print statistics collected by</td>
</tr>
<tr>
<td>strace</td>
<td>print STREAMS trace messages</td>
</tr>
<tr>
<td>yes</td>
<td>print string repeatedly</td>
</tr>
<tr>
<td>current host hostid</td>
<td>print the numeric identifier of the</td>
</tr>
<tr>
<td>group name and ID id</td>
<td>print the user name and ID, and</td>
</tr>
<tr>
<td>from the NIS map ypmatch</td>
<td>print the value of one or more keys</td>
</tr>
<tr>
<td>ypcat</td>
<td>print values in a NIS data base</td>
</tr>
<tr>
<td>xtt extract and</td>
<td>print xt driver packet traces</td>
</tr>
<tr>
<td>xts extract and</td>
<td>print xt driver statistics</td>
</tr>
<tr>
<td>or binary strings find</td>
<td>printable strings in an object file</td>
</tr>
</tbody>
</table>
variables currently set
  lpc line
  lpq display the queue of
  lpr send a job to the
  lprm remove jobs from the
troff postprocessor for PostScript
enable, disable enable/disable LP
serial interface for PostScript
display program for PostScript
lpr users set

lpr users set printing queue
nice run a command at low
renice alter
server for storing public and
brc, bcheckrc system initialization
shutacct, startup, turnacct shell
acctprc, acctprc1, acctprc2
acctcom search and print
kill terminate a
codestroy communicate with a
  init, telinit	
timex time a command; report
mail queue smtpsched
Remote File Sharing daemon
dispadmin
  priocntl
  ps report
  ps report
  pbind bind a
  wait await completion of
gcore get core images of running
  killall kill all active
ps display the status of current
renice alter priority of running
pbindbind exclusively bind
structure fuser identify
ypbind NIS server and binder
awk pattern scanning and
awk pattern scanning and
mailx interactive message
  halt stop the
m4 macro
  offline take a
online bring a
pbind bind a process to a
printenv display environment .................................. printenv(1)
printer control program ........................................... lpc(1M)
printer jobs .......................................................... lpq(1)
printer ............................................................... lpr(1)
printer queue ......................................................... lprm(1)
printers dpost ...................................................... dpost(1)
printers .............................................................. enable(1)
printers postio ..................................................... postio(1)
printers postmd matrix ......................................... postmd(1)
printf print formatted output ................................. printf(1)
printing queue priorities ....................................... Ipusers(1M)
priorities ......................................................... Ipusers(1M)
priorities ......................................................... nice(1)
priority of running processes ................................. renice(1M)
process accounting ............................................... acctprc(1M)
process accounting file(s) ..................................... acctcom(1)
process by default ............................................... kill(1)
process /cocheck, coreceive, ................................. cocreate(1F)
process control initialization ................................ init(1M)
process data and system activity ............................. timex(1)
process messages queued in the SMTP ..................... smtpsched(1M)
process rfudaemon ............................................... rfudaemon(1M)
process scheduler control ..................................... dispadmin(1M)
process scheduler administration ............................. dispadmin(1M)
process scheduler control ..................................... priocntl(1)
process status ................................................... ps(1)
process status ................................................... ps(1)
process to a processor .......................................... pbind(1M)
process ............................................................ wait(1)
processes .......................................................... gcore(1)
processes .......................................................... killall(1M)
processes .......................................................... ps(1)
processes .......................................................... renice(1M)
processes to a processor ........................................ pbind(1M)
processes using a file or file ................................. fuser(1M)
processes ypserv, ............................................... ypserv(1M)
processing language ............................................. awk(1)
processing language ............................................. awk(1)
processing system ............................................... mailx(1)
processor .......................................................... halt(1M)
processor .......................................................... m4(1)
processor offline ............................................... offline(1M)
processor online ............................................... online(1M)
processor .......................................................... pbind(1M)
exclusively bind processes to a
mach display the
machid get
pinfo get information about
idconfig
pkgmk
line-by-line execution count
prof display
fusage disk access
prf.snap, prf.pr UNIX system/
prf.snap, prf.pr UNIX system/
prf.d, prf.snap, prf.pr UNIX system
prf.d, prf.snap, prf.pr UNIX system
cb C
boot UNIX system boot
lint a C
cscope interactively examine a C
ctrace C
postmd matrix display
uucico file transport
ftp file transfer
lpc line printer control
rpcbind universal addresses to RPC
and remove ifdef'ed lines from C
STREAMS error logger cleanup
talkd, in.talkd server for talk
ftfp trivial file transfer
units conversion
for the uucp file transport
a standard/restricted command and
lex generate
to commands and application
update, and regenerate groups of
ckitem build a menu;
ckdate, errdate, helpdate, validate
ckgid, errgid, helpgid, valgid
ckkeywd
ckuid
ckrange
ckyorn
pathname ckapth display a
answer ckapth display a
day ckapth display a
integer value ckapth display a
to service media insertion
processor pexbind .......................................................... pexbind(1M)
processor type of the current host ................................ mach(1)
processor type truth value ........................................ machid(1)
processors ............................................................... pinfo(1M)
produce a new kernel configuration ......................... idconfig(1M)
produce an installable package ................................. pkg.mk(1)
prof display profile data .............................................. prof(1)
profile data lprof display ............................................. lprof(1)
profile data ............................................................... prof(1)
profiler ................................................................. fusage(1M)
profiler: prf.d, prf.stat, prf.d, ................................ profiler(1M)
profiler: prf.d, prf.stat, prf.d, ................................ profiler(1M)
profiler profiler: prf.d, prf.stat, ................................ profiler(1M)
profiler profiler: prf.d, prf.stat, ................................ profiler(1M)
program beautifier ..................................................... cb(1)
program ................................................................. boot(1M)
program checker ...................................................... lint(1)
program cross-reference .......................................... cscope(1)
program ................................................................. lint(1)
program debugger ..................................................... ctrace(1)
program for PostScript printers .............................. postmd(1)
program for the uucp system .................................. uucico(1M)
program ................................................................. ftp(1)
program ................................................................. lpc(1M)
program number mapper .......................................... rpcbind(1M)
program source unifdef resolve .............................. unifdef(1)
program strclean .................................................... strclean(1M)
program ................................................................. talkd(1M)
program ................................................................. talkd(1M)
program ................................................................. ftp(1)
program ................................................................. units(1)
program uusch.f the scheduler ............................. uusch(1M)
program ................................................................. units(1)
program make maintain, ......................................... make(1)
programs intro introduction ...................................... intro(1)
programs make maintain, ......................................... make(1)
programs intro introduction ...................................... intro(1)
programs make maintain, ......................................... make(1)
prompt for and return a menu item ............................. ckitem(1)
prompt for and validate a date .................................... ckdate(1)
prompt for and validate a group ID ............................. ckgid(1)
prompt for and validate a keyword ............................. ckkeyw(1)
prompt for and validate a user ID .............................. ckuid(1)
prompt for and validate an integer ............................. ckrange(1)
prompt for and validate yes/no ................................. ckyorn(1)
prompt; verify and return a ....................................... ckapth(1)
prompt; verify and return a string ............................. ckid(1)
prompt; verify and return a time of ........................... cktime(1)
prompt; verify and return an ..................................... ckapth(1)
prompt s /with backup operations ............................. bkoper(1M)
and service media insertion
yppush force
rpcgen an RPC
ftpd file transfer
DARPA Reverse Address Resolution
telnetd DARPA TELNET
tftp DARPA Trivial File Transfer
host using Simple Mail Transfer
to a remote system using the TELNET
trp transiterate
pkgproto generate a
terminal modes tset
modes tset
labelit (generic)
labelit (s5)
labelit (ufs)
true, false
commentary history of an SCCS file
/monacct, nulladm, prctmp, prdaily,
utility
processes
keyserv server for storing
public and private keys
newkey create a new key in the
configure lists of automatically
message
put arguments on FMLI message line
put string on virtual output
putdev edits device table
putdgrp edits device group table
pwck check password database
pwck, grpck password/group file
ps display the status of current
pr display the delta and
put arguments on each
put arguments in
putdev edits device table
putdgrp edits device group table
pwck check password database
pwck, grpck password/group file
query terminfo database
queue smtpsched process
permuted_index
permuted_index
rsoper
yppush
rpcgen
ftpd
DARPA Reverse Address Resolution
telnetd DARPA TELNET
tftp DARPA Trivial File Transfer
host using Simple Mail Transfer
to a remote system using the TELNET
trp transiterate
pkgproto generate a
terminal modes tset
modes tset
labelit (generic)
labelit (s5)
labelit (ufs)
true, false
commentary history of an SCCS file
/monacct, nulladm, prctmp, prdaily,
utility
processes
keyserv server for storing
public and private keys
newkey create a new key in the
configure lists of automatically
message
put arguments on FMLI message line
put string on virtual output
putdev edits device table
putdgrp edits device group table
pwck check password database
pwck, grpck password/group file
query terminfo database
queue smtpsched process
Permuted Index

smtpsched process messages .......................................................... smtpsched(1M)
queded remote resource request ................................................ smtpsched(1M)
queded remote resources ........................................................... rumount(1M)
queded to run at specified times ................................................. atq(1)
quits nohup ............................................................................... nohup(1)
quotald check file system quota ................................................. quotacheck(1M)
quotald file system quota ........................................................... quotacheck(1M)
quotald turn file system quotas on ............................................. quotaon(1M)
quotald turn file system quotas on and off ............................... quotaon(1M)
quotald turn file system quotas on and off ................................ quotaon(1M)
quotald for a file system ......................................................... repquota(1M)
quotald on and off ................................................................ repquota(1M)
quotald random generate a random number .............................. random(1)
quotald random number ............................................................. random(1)
rarpd DARPA Reverse Address .............................................. rarpd(1M)
rc0 run commands performed to stop ....................................... rc0(1M)
rc2 run commands performed for ............................................. rc2(1M)
rc6 run commands performed to stop ....................................... rc6(1M)
rcp remote file copy ................................................................. rcp(1)
rdate set system date from a remote ....................................... rdate(1M)
read mail or send mail to users ............................................... mail(1M)
read one line ............................................................................ line(1)
readfile, longline reads file, gets ........................................... readfile(1F)
reads file containing .............................................................. idmknod(1M)
reads file containing specifications ........................................ idmknod(1M)
reads file containing specifications of nodes ......................... idmknod(1M)
reboot restart the operating system ........................................ reboot(1M)
reboot the operating system ..................................................... reboot(1M)
reboot/halt the system without ............................................. fastboot(1M)
rebuild the data base for the mail ......................................... newaliases(1M)
rebuild YP database ............................................................... ypmake(1M)
receive incoming SMTP messages .......................................... smtpd(1M)
receive RFC822 mail from SMTP ............................................ fromsmtp(1M)
recipient command for incoming mail ..................................... mail(1M)
records acctcms command ..................................................... acctcms(1M)
records fwtmp, wtmpfix ......................................................... fwtmp(1M)
red text editor .............................................................. setcolor(1F)
 redefine or create a color ..................................................... setcolor(1F)
refer expand and insert references ........................................ refer(1)
reference manual pages; find ................................................ man(1)
reference pages by keyword /display ..................................... man(1)
references from a bibliographic ........................................... refer(1)
references in a bibliographic .............................................. lookbib(1)
make
maintain, update, and
or display the contents of a backup
print service lpsystem
regcmp
a file for a pattern using full
requests accept,
files comm select or
accept, reject accept or
lorder find ordering
join
/to call SCO UNIX System V/386
different format maplocale convert
devfree
current layer calendar
uxuxqt execute rexecd
rcp
rfudaemon administration rfadmin
network names dname print
rfstop stop the
rfsample change
query nsquery
shell script rfadmin
/rumountall mount, unmount
rfstart start
mapping idload
rdate set system date from a
Transfer/ smtp send SMTP mail to a
rlogin
rlogind
mount mount
list available resources from
rmount queue
rumount cancel queued
mount mount
mount or unmount file systems and
rmnttry attempt to mount queued
rsh
rshd
ckbinarsys determine whether
telnet user interface to a
Uutry try to contact
regcmp regular expression compile regcmp(1)
regenerate groups of programs make(1)
regex match patterns against a regex(1F)
register bkreg change bkreg(1M)
register remote systems with the lpsystem(1M)
regular expression compile regcmp(1)
regular expressions egrep search egrep(1)
reinit runs an initialization file reinit(1F)
reject accept or reject print accept(1M)
reject lines common to two sorted comm(1)
reject print requests accept(1M)
relation for an object library lorder(1)
relational database operator join(1)
Release 3.2-compatible libns1 fixshlib(1M)
Release 4 locale information to maplocale(1M)
release devices from exclusive use devfree(1M)
relogin rename login entry to show relogin(1M)
reminder service calendar(1)
remote command requests uuxqt(1M)
remote execution server rexecd(1M)
remote file copy rcp(1M)
Remote File Sharing daemon process rfudaemon(1M)
Remote File Sharing domain and dname(1M)
Remote File Sharing environment rfstart(1M)
Remote File Sharing host password rfpasswd(1M)
Remote File Sharing name server nsquery(1M)
Remote File Sharing notification rfadmin(1M)
Remote File Sharing resources rmountall(1M)
Remote File Sharing user and group idload(1M)
remote host rdate(1M)
remote host using Simple Mail smtp(1M)
remote login rlogin(1M)
remote login server rlogind(1M)
remote NFS resources mount(1M)
remote or local systems dfshares dfshares(1M)
remote resource mounts rmount(1M)
remote resource request rmount(1M)
remote resources mount(1M)
remote resources /umount (generic) mount(1M)
remote resources rmnttry(1M)
remote shell rsh(1M)
remote shell server rshd(1M)
remote system can accept binary/ ckbinarsys(1M)
remote system using the TELNET/ telnet(1M)
remote system with debugging on Uutry(1M)
list available NFS resources from
list available RFS resources from
resource available for mounting by
service lpsystem register
cnt spawn login to a
fingerd, in.fingerd
display information about local and
sysadm interface menu or task
rmdel
database removef
set, or shared memory ID ipcrm
rm, rmdir
program source undefresolve and
lpnm
atrm
constructs deroff
constructs deroff
database
rmgrm
specifications of nodes idmknod
layer relogin
processes
fsck (bfs) check and
fsck (generic) check and
consistency check and interactive
fsck (s5) check and
xfscck check and
uniq report
es print string
vacation
systems df
systems df (ufs)
facilities status ipc
and/ df (generic), dfspace
and i-nodes for s5 file/ df (s5)
operations bkhistory
sadc, sa1, sa2 system activity
check nroff and troff input files;
activity timex time a command;
ps
ps
remote systems dfshares dfshares(1M)
remote systems dfshares dfshares(1M)
remote systems /make local NFS share(1M)
remote systems share make local share(1M)
remote systems /make local NFS share(1M)
remote systems /make local NFS resource unshare(1M)
remote systems /make local NFS resource unshare(1M)
remote systems /local NFS resource unshare(1M)
remote systems /local NFS resource unshare(1M)
remote systems with the print lpsystem(1M)
remote terminal ct(1C)
remote user information server fingerd(1M)
remote users finger finger(1)
removal tool delsysadm delsysadm(1M)
remove a delta from an SCCS file rm(1)
remove a file from software removef(1M)
remove a message queue, semaphore ipcrm(1)
remove files or directories rm(1)
remove ifdef'ed lines from C undef(1)
remove jobs from the printer queue lp(1)
remove jobs spoiled by at or batch atm(1)
remove nroff, troff, tbl and eqn deroff(1)
remove nroff/troff, tbl, and eqn deroff(1)
removef remove a file from software removef(1M)
removes a package from the system pkgrm(1M)
removes nodes and reads idmknod(1M)
rename change the name of a file rename(1)
rename login entry to show current relogin(1M)
renice alter priority of running renice(1M)
repair bfs file systems fsck(1M)
repair file systems fsck(1M)
repair fsck (ufs) file system fsck(1M)
repair s5 file systems fsck(1M)
repair XENIX filesystems xfsck(1M)
repeatedly yes(1)
repeatly report possible errors checknr checknr(1)
report process data and system timex(1)
report process status ps(1)
report process status ps(1)
unshareall, shareall(1M)
unshare, unshare multiple
reboot
filesystem, filesystem(1M)
image create, image(1M)
archive, incfile create, incfile(1M)
restore
archive, fdp create, or
archive, file create, or
filesystems, data partitions, or/
urestore request
insertion/, rsoper service pending
directory
tset, reset establish or
timeout incremental file system
invoke XENIX incremental filesystem
partitions, or/ restore initiate
standard shell, job control shell,
message data base, gettxt
menu items, getitems
ckitem build a menu; prompt for and
ckpath display a prompt; verify and
cktime display a prompt; verify and
cint display a prompt; verify and
at the NIS server host, ypwhich
master, ypwhich
ismpx
idcheck
getfrm
System partition, partsize
server, rarpd, DARPA
col filter
show the last commands executed, in
PostScript file, postreverse
administration
fromsmtp receive
host password
by remote systems, share
make local
dfmounts display mounted
mounting by/, unshare
make local
dfshares list available
environment
notification shell script
daemon process
lptest generate lineprinter
resources, shareall, shareall(1M)
respond to incoming mail messages, vacation(1)
restart the operating system, reboot(1M)
restore an image archive of a, image(1M)
restore an incremental filesystem, incfile(1M)
restore file to original directory, restore(1)
restore from a full file system, fdp(1M)
restore from a full file system, file(1M)
restore initiate restores of, restore(1)
restore of files and directories, shareall(1M)
restore requests and service media, urestore(1M)
restore restore file to original, restore(1)
restore terminal characteristics, tset(1)
restore, ufsrestore(1M)
xrestore, xrestor(1M)
restores of filesystems, data, restore(1M)
restricted shell, /interpreters, sh(1)
return a list of currently marked, getitems(1F)
return a menu item, ckitem(1)
return a pathname, ckpath(1)
return a string answer, ckstr(1)
return a time of day, cktime(1)
return an integer value, ckint(1)
return current version of the map, yppoll(1M)
return name of NIS server or map, ypwhich(1)
return windowing terminal state, ismpx(1)
returns selected information, idcheck(1M)
returns the current frameID number, getfrm(1F)
returns the size of the active UNIX, partsize(1M)
Reverse Address Resolution Protocol, rarpd(1M)
reverse line-feeds, col(1)
reverse order, lastcomm(1)
reverse the page order in a, postreverse(1)
xexecd remote execution server, xexecd(1M)
rfsadmin Remote File Sharing, rfsadmin(1M)
rfpasswd change Remote File Sharing, rfpasswd(1M)
RFS resource available for mounting, share(1M)
RFS resource information, dfmounts(1M)
RFS resource unavailable for, unshare(1M)
RFS resources from remote systems, dfshares(1M)
rfstart start Remote File Sharing, rfstart(1M)
rfstop stop the Remote File Sharing, rfstop(1M)
rfsadmin Remote File Sharing, rfadmin(1M)
rfsadmin Remote File Sharing, rfadmin(1M)
rripple pattern, lptest(1)
standard/restricted command/ ksh,
rksh KornShell, a .............................................................. ksh(l)
rlogin remote login .......................................................... rlogin(l)
rlogin remote login server .............................................. rlogin(1M)
rm, rmdir remove files or ................................................. rm(l)
rmail read mail or send mail to ....................................... mail(l)
rmdel remove a delta from an SCCS ............................... rmdel(1)
rmdir remove files or directories ...................................... rm(l)
rmntstat display mounted resource ............................... rmntstat(1M)
rmount queue remote resource mounts ........................... rmount(lM)
rmountall, rumountall mount, ......................................... rmountall(1M)
rmount queue remote resource mounts ........................... rmount(lM)
r ByteString universal addresses to RPC .......................... rpcbind(lM)
rpcgen an RPC program number mapper .......................... rpcgen(l)
rpcgen an RPC protocol compiler ..................................... rpcgen(l)
rpcinfo report RPC information .................................... rpcinfo(1M)
rpcinfo report RPC information .................................... rpcinfo(lM)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)
rpcinfo report RPC domain information .......................... domainname(lM)
rpcinfo report RPC program number mapper ...................... rpcbind(lM)
rpcinfo report RPC protocol compiler ............................... rpcgen(l)

unmount Remote File Sharing/

directories

users mail,

file

rm, information

remote resources

unmount Remote File Sharing/

bibliographic database

chroot change

routing tables

routed network

route manually manipulate the

get/set name of current secure

current remote 

rpcinfo report
crcbind universal addresses to

rpcgen an

program number mapper

shell, job control shell, / sh, jsh,

requests and service media/

File Sharing resources

nice

quits nohup

shell

run

atq display the jobs queued to

multi-user environment

reboot the operating system

operating system

runacct

/nulldm, prctmp, prdaily, prtacct,
gcore get core images of

renice alter priority of
Permutted Index

reinit runs an initialization file .................................................. reinit(1F)
machines rusers who's host status of local .................................... rusers(1)
machines rusers who's logged in on local ..................................... rusers(1)
rpc.rwalld network rwall server ................................................. rpc.rwalld(1M)
    network rwall write to all users over a ................................... rwall(1M)
machines rwho who's logged in on local ...................................... rwho(1)
    server rwhod, in.rwhod system status .................................. rwhod(1M)
systems fsck (s5) check and repair s5 file .................................. fsck(1M)
mkfs (s5) construct an s5 file system ....................................... mkfs(1M)
    optimal access time dcopy (s5) copy s5 file systems for .......... dcopy(1M)
    ff (s5) display i-list information .......................................... ff(1M)
    fsdb (s5) s5 file system debugger ........................................... fsdb(1M)
    mount (s5) mount an s5 file system ....................................... mount(1M)
    (s5) make a literal copy of an s5 file system ....................... dcopy(1M)
    time dcopy (s5) copy s5 file system volcopy ......................... volcopy(1M)
    fsck (s5) check and repair s5 file system volcopy ................... volcopy(1M)
    labelit (s5) provide labels for s5 file ................................... labelit(1M)
    path names versus i-numbers for s5 file ........... ncheck(1M)
    file system volcopy (s5) generate path names versus ............. ncheck(1M)
    mount (s5) mount an s5 file system ....................................... mount(1M)
    systems labelit (s5) provide labels for s5 file ...................... labelit(1M)
    blocks and i-nodes for s5 file/ df fsdb ................................... fsdb(1M)
    package sadc, sa1, sa2 system activity report .................... sadc(1M)
    sadc, sa1, sa2 system activity report package ..................... sadc(1M)
    sac service access controller ............................................ sac(1M)
    administration sacadm service access controller .................. sacadm(1M)
    editing activity sact print current SCCS file ....................... sact(1)
    report package sadc, sa1, sa2 system activity ....................... sadc(1M)
    sag system activity graph ................................................ sag(1M)
    sar system activity reporter .......................................... sar(1M)
    sar system activity reporter .......................................... sar(1M)
    scanner bfs big file ......................................................... bfs(1)
    awk pattern scanning and processing language ..................... awk(1)
    nawk pattern scanning and processing language ..................... nawk(1)
    for help with message numbers or SCCS commands help ask .......... help(1)
cdc change the delta comment of an SCCS delta ........................... cdc(1)
    comb combine SCCS deltas .................................................. comb(1)
    delta make a delta (change) to an SCCS file .......................... delta(1)
    scact print current SCCS file editing activity .................... scact(1)
    get get a version of an SCCS file ...................................... get(1)
    prs print an SCCS file ..................................................... prs(1)
    delta and commentary history of an SCCS file ....................... prs(1)
    rmdel remove a delta from an SCCS file ................................ rmdel(1)
<table>
<thead>
<tr>
<th>Command/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>sccsdiff compare two versions of an SCCS file</td>
</tr>
<tr>
<td>unget undo a previous get of an SCCS file</td>
</tr>
<tr>
<td>val validate an SCCS file</td>
</tr>
<tr>
<td>admin create and administer the Source Code Control System (SCCS) sccs front end</td>
</tr>
<tr>
<td>sccs front end for the Source Code Control System (SCCS) sccs front end</td>
</tr>
<tr>
<td>ckbupsed check file system backup</td>
</tr>
<tr>
<td>dispadmin process scheduler administration</td>
</tr>
<tr>
<td>prionctl process scheduler control</td>
</tr>
<tr>
<td>transport program uuschd the scheduler for the uucp file</td>
</tr>
<tr>
<td>fixshlib alters executables to call the SCO UNIX System V/386 Release/ fixshlib(1M)</td>
</tr>
<tr>
<td>environment for console/ screen</td>
</tr>
<tr>
<td>clear the terminal screen color</td>
</tr>
<tr>
<td>setcolor, setcolour set screen mapping</td>
</tr>
<tr>
<td>mcs manipulate the comment screen-oriented (visual) display</td>
</tr>
<tr>
<td>pkgask stores answers to a request script make typescript of a script(1)</td>
</tr>
<tr>
<td>File Sharing notification shell script rfuadmin Remote</td>
</tr>
<tr>
<td>xinstall XENIX installation shell script sinstall(1M)</td>
</tr>
<tr>
<td>side-by-side script symbolic debugger</td>
</tr>
<tr>
<td>string fgrep search a file for a character</td>
</tr>
<tr>
<td>grepl</td>
</tr>
<tr>
<td>full regular expressions egrep search a file for a pattern using</td>
</tr>
<tr>
<td>file(s) acctcom search and print process accounting</td>
</tr>
<tr>
<td>pathconv search FMII criteria for filename</td>
</tr>
<tr>
<td>srchtxt display contents of, or search for a text string in,/*</td>
</tr>
<tr>
<td>keylogin decrypt and store secret key</td>
</tr>
<tr>
<td>mcs manipulate the comment section of an object file</td>
</tr>
<tr>
<td>files size print section sizes in bytes of object</td>
</tr>
<tr>
<td>domainname get/set name of current secure RPC domain</td>
</tr>
<tr>
<td>two sorted files comm sed stream editor</td>
</tr>
<tr>
<td>file cut cut out select or reject lines common to</td>
</tr>
<tr>
<td>file fmlcut cut out selected fields of each line of a</td>
</tr>
<tr>
<td>idcheck returns selected fields of each line of a</td>
</tr>
<tr>
<td>dump dump selected information</td>
</tr>
<tr>
<td>ipcrm remove a message queue, select parts of an object file</td>
</tr>
<tr>
<td>lpr semaphore set, or shared memory ID</td>
</tr>
<tr>
<td>network hosts ping send a job to the printer</td>
</tr>
<tr>
<td>sendmail send ICMP ECHO_REQUEST packets to</td>
</tr>
<tr>
<td>tosmtp send mail over the internet</td>
</tr>
<tr>
<td>mail, rmail read mail or send mail to SMTP</td>
</tr>
<tr>
<td>using Simple Mail Transfer/ send mail to users</td>
</tr>
<tr>
<td>smtp send SMTP mail to a remote host</td>
</tr>
</tbody>
</table>
Permutated Index

service lp, cancel
print statistics collected by internet
maintain line settings and hunt printers postio
ypserv, ypbind NIS
bootparamd boot parameter
comsat, in.comsat biff
in.fingerd remote user information
ypupdated
private keys keyserv
talkd, in.talkd
ftpd file transfer protocol
version of the map at the NIS
mountd NFS mount request
in.named Internet domain name
ypwhich return name of NIS
nsquery Remote File Sharing name
Reverse Address Resolution Protocol
rexecd remote execution
rlogind remote login
rpc.rusersd network username
rpc.rwalld network rwall
rpc.sprayd spray
rshd remote shell
rwhod, in.rwhod system status
mconnect connect to SMTP mail
telnetd DARPA TELNET protocol
Trivial File Transfer Protocol
in.tnamed DARPA trivial name
ypxfr transfer YP map from a YP
ypset point ypbind at a particular
nslookup query name
administration sacadm
sac
nlsadmin network listener
lpmove start/stop the LP print
UNIX system uuglist list
send/cancel requests to an LP print
lpadmin configure the LP print
filters used with the LP print
forms used with the LP print
about the status of the LP print
remote systems with the print
/interact with backup operations to
/pending restore requests and
send/cancel requests to an LP print lp
sendmail mailstats mailstats(1M)
sendmail send mail over the sendmail(1M)
sequences for TTY ports stydefs stydefs(1M)
serial interface for PostScript postio(1)
sender and binder processes ypserv(1M)
sender server bootparamd(1M)
sender server comsat(1M)
sender server fingerd(1M)
sender server for changing NIS information ypupdated(1M)
sender server for storing public and keyserv(1M)
sender server for talk program talkd(1M)
sender server ftpd(1M)
sender server host yppoll return current yppoll(1M)
sender server mountd(1M)
sender server named(1M)
sender server or map master ypwhich(1)
sender server query nsquery(1M)
sender server rarpd DARPA rarpd(1M)
sender server rexecd(1M)
sender server rlogind(1M)
sender server rpc.rusersd(1M)
sender server rpc.rwalld(1M)
sender server rpc.sprayd(1M)
sender server rshd(1M)
sender server rwshod(1M)
sender server mconnect(1M)
sender server telnetd(1M)
sender server tftp DARPA tftp(1M)
sender server tnamed(1M)
sender server to host ypxfr(1M)
sender server ypset(1M)
sender server nslookup(1M)
sender service access controller sacadm(1M)
sender service access controller sac(1M)
sender service administration nlsadmin(1M)
sender service and move requests /lpshut, lpsched(1M)
sender service calendar(1)
sender service grades available on this uuglist(1C)
sender service lp lp(1)
sender service lpadmin lpadmin(1M)
sender service lpfilter administer lpfilter(1M)
sender service lpforms administer lpforms(1M)
sender service lpstat lpstat(1)
sender service lpsystem lpsystem(1M)
sender service media insertion prompts bkoper(1M)
sender service media insertion prompts rsoper(1M)
makedbm make a Network Information
and service media insertion
whois Internet user name directory
initiate or control a system backup
make typescript of a terminal
environment variables set, unset
iconv code
execution env
umask
migration move an archive from one
system hostname
remove a message queue, semaphore
environment variables currently
lpusers
setcolor, setcolour
rdate
set system date from a remote host
setck
set tabs on a terminal
tset provide information to
and line discipline
getty
and line discipline
uugetty
date print and
stty
set the options for a terminal
stty
global environment variables
for console applications
scompat
diskadd disk
disksetup disk
idtune attempts to
hardware clock
color
setcolor,
and line discipline
vtgetty
video device
vidi
trchan translate character
modification dates of files
tset provide information for
ports
stydefs maintain line
information
user
of one/
paste merge same lines of
standard shell, job control shell,
available for mounting by remote/

Service (NIS) dbm file
makedbm(1M)
service pending restore requests
rsoper(1M)
service
whois(1)
services daemon
inetd(1M)
session backup
backup(1M)
session script
script(1)
set and unset local or global
set(1F)
set conversion utility
env(1)
set environment for command
iconv(1)
set file-creation mode mask
umask(1)
set of volumes to another
migration(1M)
set or print name of current host
hostname(1)
set, or shared memory ID
ipcrm
ipcrm(1)
set printing queue priorities
lpusers(1M)
set screen color
setcolor(1)
set system date from a remote host
rdate(1M)
set system time from hardware clock
setck(1M)
set tabs on a terminal
tabs(1)
set terminal modes
tset(1)
set terminal type, modes, speed,
getty(1M)
set terminal type, modes, speed,
uugetty(1M)
set the date
date(1F)
set the options for a terminal
stty(1)
set the options for a terminal
stty(1)
set, unset set and unset local or
set(1F)
set up compatibility environment
scompat(1)
set up utility
diskadd(1M)
set up utility
disksetup(1M)
set value of a tunable parameter
idtune(1M)
setck
set terminal modes
tset(1)
screen set system time from
tset(1M)
screen redefine create a color
setcolor(1F)
screen, setcolour
set colour, screen
setcolor(1)
set screen color
setcolor(1)
set system date from a remote host
rdate(1M)
set the font and video mode for a
vidi(1)
sets
trchan(1)
set the font and video mode for a
vidi(1)
setting terminal modes
tset(1)
sessions and hunt sequences for TTY
stydef(1M)
slookup
set time
settime(1)
slookup
set time
settime(1)
set terminal
settime(1)
slookup
set time
settime(1)
sh, jsh, rsh command interpreters:
sh(1)
share make local NFS resource
share(1M)

Permutated Index
for mounting by remote systems
available for mounting by remote/
share, unshare all
multiple resources
a message queue, semaphore set, or
rfudaemon Remote File
rfadmin Remote File
dname print Remote File
rfstop stop the Remote File
rfpasswd change Remote File
nsquery Remote File
rfadmin Remote File
mount, unmount Remote File
rfstart start Remote File
idload Remote File
C-like syntax csh
rsh command interpreters: standard
shl
/shutacct, startup, turnacct
/standard shell, job control
rsh remote
Remote File Sharing notification
xinstall XENIX installation
rshd remote
job control shell, restricted
shell run a command using
relogin rename login entry to
shutdown close down the system at a
given time
system state
sdiff print file differences
login
truss trace system calls and
lex generate programs for
SMTP mail to a remote host using
fmt
sulogin access
pages display the
jwin print
partition partsize returns the
share make local resource available
share make local RFS resource
share, unshare multiple resources
shareall, unshare all, unshare
shared memory ID iprm remove
Sharing daemon process
Sharing domain administration
Sharing domain and network names
Sharing environment
Sharing host password
Sharing name server query
Sharing notification script
Sharing resources /umount all
Sharing user and group mapping
shell command interpreter with a
shell, job control shell, sh, jsh,
shell layer manager
shell procedures for accounting
shell, restricted shell
shell run a command using shell
shell script
shell script
shell server
shell /standard shell,
shell unrestricted shell
shell unrestricted shell
shell restricted shell
she...
Index

spelling errors spell, hashmake, compress find
spelling errors spell, hashmake ........................................ spell(1)
spelling used by at or batch .............................................. spell(l)
split a file into pieces ..................................................... split(1)
split ................................................................. csplit(1)
split a file into pieces ..................................................... split(1)
spool directory clean-up ................................................. uucleanup(1M)
spool the system ........................................................... uucleanup(1M)
spoofed by at or batch ..................................................... atm(1)
spray slots ............................................................... spray(1)
spay packets ............................................................... spray(1)
spay packets ............................................................... spray(1)
spay server .............................................................. rpc.sprayd(1M)
spay spray packets ........................................................ spray(1M)
spray the LP print service and ......................................... spraysched(1M)
spay the Remote File Sharing ........................................... spraysched(1M)
spay the LP print service ................................................. spraysched(1M)
spay spray packets ........................................................ spray(1M)
sprint client for the LP print service and .................. spraysched(1M)
sprint client for the LP print service and .................. spraysched(1M)
sprint a file into pieces ..................................................... split(1)
sprint a text string in/ ..................................................... sp(1)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sed</td>
<td>stream editor</td>
</tr>
<tr>
<td>strclean</td>
<td>STREAMS error logger cleanup</td>
</tr>
<tr>
<td>strerr</td>
<td>STREAMS error logger daemon</td>
</tr>
<tr>
<td>slink</td>
<td>streams linker</td>
</tr>
<tr>
<td>autopush</td>
<td>STREAMS modules autopush configure</td>
</tr>
<tr>
<td>strace</td>
<td>STREAMS trace messages</td>
</tr>
<tr>
<td>fdetach</td>
<td>STREAMS-based file descriptor</td>
</tr>
<tr>
<td>strerr</td>
<td>STREAMS error logger daemon</td>
</tr>
<tr>
<td>/contents of, or search for a text</td>
<td>string answer ckstr display</td>
</tr>
<tr>
<td>echo put</td>
<td>string from a message data base</td>
</tr>
<tr>
<td>regex match patterns against a string</td>
<td>string in, message data bases</td>
</tr>
<tr>
<td>an object file or binary</td>
<td>string on virtual output</td>
</tr>
<tr>
<td>yes print</td>
<td>strings find printable strings in</td>
</tr>
<tr>
<td>extr extract</td>
<td>strings from source files</td>
</tr>
<tr>
<td>strings find printable strings</td>
<td>strings in an object file or binary</td>
</tr>
<tr>
<td>what print identification</td>
<td>strings</td>
</tr>
<tr>
<td>line number information from/strip processes using a file or file</td>
<td>strip strip symbol table, debugging</td>
</tr>
<tr>
<td>hunt sequences for TTY ports</td>
<td>strip symbol table, debugging and strip</td>
</tr>
<tr>
<td>su become super-user or another user</td>
<td>structure fuser identify</td>
</tr>
<tr>
<td>subsequent lines of one file</td>
<td>su become super-user or another user</td>
</tr>
<tr>
<td>sulogin access single-user mode</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>sum calculate a checksum for a file</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>sum</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>sum</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>du</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>du</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>quot</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>repquota</td>
<td>stty set the options for a terminal</td>
</tr>
<tr>
<td>whatis display a one-line summary about a keyword</td>
<td>sum calculate a checksum for a file</td>
</tr>
<tr>
<td>acctcms command</td>
<td>sum calculate a checksum for a file</td>
</tr>
<tr>
<td>sync update the super block</td>
<td>sum calculate a checksum for a file</td>
</tr>
<tr>
<td>su become super-user or another user</td>
<td>sum calculate a checksum for a file</td>
</tr>
<tr>
<td>sleep</td>
<td>suspend execution for an interval</td>
</tr>
<tr>
<td>swap</td>
<td>suspend execution for an interval</td>
</tr>
<tr>
<td>swap</td>
<td>suspend execution for an interval</td>
</tr>
<tr>
<td>number information/strip strip</td>
<td>suspend execution for an interval</td>
</tr>
<tr>
<td>sdb</td>
<td>symbolic debugger</td>
</tr>
<tr>
<td>ln make hard or dbsym add</td>
<td>symbolic links to files</td>
</tr>
<tr>
<td>symbols to kernel debugger</td>
<td>symbolic links to files</td>
</tr>
<tr>
<td>sync update the super block</td>
<td>symbolic links to files</td>
</tr>
<tr>
<td>vsig</td>
<td>synchronize a co-process with the</td>
</tr>
<tr>
<td>command interpreter with a C-like syntax</td>
<td>synchronize a co-process with the</td>
</tr>
<tr>
<td>csh shell</td>
<td>synchronize a co-process with the</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>ckbinarsys</td>
<td>Determine whether remote uucp, uulog, uuto</td>
</tr>
<tr>
<td>system administration</td>
<td>System administration to perform</td>
</tr>
<tr>
<td>sysadm interface menu or task</td>
<td>Sysadm interface to perform</td>
</tr>
<tr>
<td>removal tool delsysadm</td>
<td>Sysadm interface editing tool</td>
</tr>
<tr>
<td>system administration</td>
<td>Syslogd log system messages</td>
</tr>
<tr>
<td>sag</td>
<td>System activity graph</td>
</tr>
<tr>
<td>sadc, sa1, sa2</td>
<td>System activity report package</td>
</tr>
<tr>
<td>sar</td>
<td>System activity reporter</td>
</tr>
<tr>
<td>sar</td>
<td>System activity reporter</td>
</tr>
<tr>
<td>sar</td>
<td>System activity remover</td>
</tr>
<tr>
<td>a command; report process data and</td>
<td>System activity timex time</td>
</tr>
<tr>
<td>sysadm visual interface to perform</td>
<td>System administration</td>
</tr>
<tr>
<td>or restore from, a full file</td>
<td>System archive fdp create,</td>
</tr>
<tr>
<td>or restore from, a full file</td>
<td>System archive ff create,</td>
</tr>
<tr>
<td>shutdown close down the ckbupscd check file</td>
<td>System at a given time</td>
</tr>
<tr>
<td>backup initiate or control a</td>
<td>System backup schedule</td>
</tr>
<tr>
<td>fsdb (ufs) file</td>
<td>System block analyzer</td>
</tr>
<tr>
<td>boot UNIX</td>
<td>System boot program</td>
</tr>
<tr>
<td>truss trace</td>
<td>System calls and signals</td>
</tr>
<tr>
<td>ckbinsys determine whether remote</td>
<td>System can accept binary messages</td>
</tr>
<tr>
<td>shutdown shut down</td>
<td>System change system state</td>
</tr>
<tr>
<td>checksys check a file</td>
<td>System command execution</td>
</tr>
<tr>
<td>uux UNIX-to-UNIX</td>
<td>System command execution</td>
</tr>
<tr>
<td>interactive repair fsck (ufs) file</td>
<td>System consistency check and</td>
</tr>
<tr>
<td>display a message on stderr or</td>
<td>System console fmtmsg</td>
</tr>
<tr>
<td>uucp, uulog, uuname UNIX-to-UNIX</td>
<td>System copy</td>
</tr>
<tr>
<td>cu call another UNIX</td>
<td>System</td>
</tr>
<tr>
<td>rdate set</td>
<td>System date from a remote host</td>
</tr>
<tr>
<td>fsdb (generic) file</td>
<td>System debugger</td>
</tr>
<tr>
<td>fsdb (s5) s5 file</td>
<td>System debugger</td>
</tr>
<tr>
<td>fsdb (ufs) ufs file</td>
<td>System debugger</td>
</tr>
<tr>
<td>sorted list look find words in the</td>
<td>System dictionary or lines in a</td>
</tr>
<tr>
<td>ldysdswump load</td>
<td>System dump from floppy diskettes</td>
</tr>
<tr>
<td>ufsdump incremental file</td>
<td>System dump</td>
</tr>
<tr>
<td>names and statistics for a file</td>
<td>System ff (generic) list file</td>
</tr>
<tr>
<td>names and statistics for a ufs file</td>
<td>System ff (ufs) list file</td>
</tr>
<tr>
<td>uuto, uupick public UNIX-to-UNIX</td>
<td>System file copy</td>
</tr>
<tr>
<td>setup initialize</td>
<td>System for first user</td>
</tr>
<tr>
<td>a new group definition on the</td>
<td>System groupadd add (create)</td>
</tr>
<tr>
<td>delete a group definition from the</td>
<td>System groupdel</td>
</tr>
<tr>
<td>modify a group definition on the</td>
<td>System groupmod</td>
</tr>
<tr>
<td>uptime show how long the set or print name of current host</td>
<td>System has been up</td>
</tr>
<tr>
<td>set or print name of current host</td>
<td>System hostname</td>
</tr>
<tr>
<td>crash examine</td>
<td>System images</td>
</tr>
<tr>
<td>kcrash examine</td>
<td>System images</td>
</tr>
<tr>
<td>brc, bcheckrc</td>
<td>System initialization procedures</td>
</tr>
<tr>
<td>idbuild build new UNIX</td>
<td>System kernel</td>
</tr>
<tr>
<td>idmkunix build new UNIX</td>
<td>System kernel</td>
</tr>
</tbody>
</table>

logger add entries to the logins list to user and change interactive message processing
makefsys create a file
syslogd log
mkfs (bfs) construct a boot file
mkfs (generic) construct a file
mkfs (s5) construct an s5 file
mkfs (ufs) construct a ufs file
mount (s5) mount an s5 file
umountfsys mount, unmount a file
quotumountfsys, unmount a file
returns the size of the active UNIX file
unmountfsys mount, unmount a file
quotumountfsys, unmount a file
quotaon, quotaoff turn file
profiler profiler: prfd, prfsnap, prfpr UNIX
quotachk file
quotaon, quotaoff turn file
performed to stop the operating system
fastboot, fasthalt reboot/halt the system
reboot automatically mount systems automount

rm used to remove a package from the file
system
make literal copy of file
make literal copy of an ufs file
mkfs (generic) construct a file
mkfs (ufs) construct a ufs file
mount (s5) mount an s5 file
umountfsys mount, unmount a file
quotumountfsys, unmount a file
returns the size of the active UNIX file
unmountfsys mount, unmount a file
quotumountfsys, unmount a file
quotaon, quotaoff turn file
performed to stop the operating system
fastboot, fasthalt reboot/halt the system
reboot automatically mount systems automount

...
df report free disk space on file

disk blocks and i-nodes for s5 file
report free disk space on ufs file
available NFS resources from remote
resources from remote or local
available RFS resources from remote
dcopy (generic) copy file
dcopy (s5) copy s5 file
(bfs) check and repair bfs file
(generic) check and repair file
fsck (s5) check and repair s5 file
(generic) provide labels for file
(s5) provide labels for s5 file
(ufs) provide labels for ufs file
mount (bfs) mount bfs file
mount (ufs) mount ufs file
mount, unmount multiple file
names versus i-numbers for s5 file
versus i-numbers for ufs file
available for mounting by remote
available for mounting by remote
available for mounting by remote
unavailable for mounting by remote
unavailable for mounting by remote
unavailable for mounting by remote
ip system register remote
/gigplot, hpplot, implot, plottoa,
/hpplot, implot, plottoa, t300,
for/ /implot, plottoa, t300, t300s,
plottoa, t300, t300s, t4013,
information/ strip strip symbol
or modify hard disk partition
get DoD Internet format host
convert DoD Internet format host
edvtoc VTOC (Volume
putdev edits device
putdgrp edits device group
setmnt establish mount
classification and conversion
tbl format
manually manipulate the routing
tabs set
tags create a file
talkd, in.talkd server for
report available for mounting by remote
resources from remote or local
available RFS resources from remote
unavailable for mounting by remote
unavailable for mounting by remote
system with the print service
/Lpsystem(1M)
t300, t300s, t4013, t450, tek/
plot(1G)
t300s, t4013, t450, tek graphics/
plot(1G)
t4013, t450, tek graphics filters
plot(1G)
plot(1G)
table, debugging and line number
strip(1)
table fdisk create
fdisk(1M)
table from a host gettable
getable(1M)
table htable
htable(1M)
Table of Contents editing utility
edvtoc(1M)
table
putdev(1)
table
putdgrp(1)
table
setmnt(1M)
tables chrtbl generate character
chrtbl(1M)
tables for nroff or troff
tabl(1)
tables route
route(1M)
tabs on a terminal
tabs(1)
tabs set tabs on a terminal
tabs(1)
tags file for use with vi
tags(1)
tail deliver the last part of a
tail(1)
talk program
talk(1M)
talk talk to another user
talk(1)
talk
program
tapecntl
mt magnetic
tapecntl tape control for
tape magnetic

tcory copy a magnetic
device
delsysadm sysadm interface menu or
programs for simple lexical
deroff remove nroff, troff,
deroff remove nroff/troff,
troff
tapetoa, t300, t300s, t4013, t450,
posttek PostScript translator for
initialization init,
telnetd DARPA
to a remote system using the
system using the TELNET protocol
server
description captoinfo convert a
tset, reset establish or restore
cr spawn login to a remote
jterm reset layer of windowing
last indicate last user or
provide information for setting
tset provide information to set
tput initialize a
ttymon port monitor for
clear clear the
script make typescript of a
ismpx return windowing
stty set the options for a
stty set the options for a
tabs set tabs on a
tty get the name of the
line discipline getty set
line discipline uugetty set
line discipline vtgetty sets
object downloader for the 5620 DMD
layer multiplexor for windowing
newvt opens virtual

talk to another user ................................................. talk(1)
talkd, in.talkd server for talk .................................. talkd(1M)
tape control for tape device ................................. tapecntl(1)
tape control ......................................................... nt(1)
tape device ............................................................ tapecntl(1)
tape file archiver .................................................. tar(1)
tape magnetic tape maintenance ....................... tape(1)
tape maintenance ............................................... tape(1)
tape ................................................................. tcory(1)
tapecntl tape control for tape ............................. tapecntl(1)
tar tape file archiver .......................................... tar(1)
task removal tool .............................................. delsysadm(1M)
tasks lex generate ............................................... lex(1)
tbl and eqn constructs ...................................... deroff(1)
tbl, and eqn constructs ...................................... deroff(1)
tbl format tables for nroff or ................................. tbl(1)
tcory copy a magnetic tape .................................... tcory(1)
tee pipe fitting .................................................... tee(1)
tek graphics filters for various/ ....................... plot(1G)
tektronix 4014 files ............................................. posttek(1)
telnit process control ........................................... init(1M)
TELNET protocol server ..................................... telnetd(1M)
TELNET protocol /user interface ........................ telnet(1)
telnet user interface to a remote ...................... telnet(1)
telnitd DARPA TELNET protocol ........................ telnetd(1M)
termcap description into a terminfo ..................... captoinfo(1M)
terminal characteristics .................................... tset(1)
terminal ............................................................. ct(1C)
terminal ............................................................. jterm(1)
terminal logins .................................................... last(1)
terminal modes tset ............................................. tset(1)
terminal modes .................................................... tset(1)
terminal or query terminfo database .................. tput(1)
terminal ports ..................................................... ttymon(1M)
terminal screen ................................................... clear(1)
terminal session .................................................. script(1)
terminal state ..................................................... ismpx(1)
terminal ............................................................. stty(1)
terminal ............................................................. stty(1)
terminal ............................................................. tabs(1)
terminal ............................................................. tty(1)
terminal type, modes, speed, and ........................ getty(1M)
terminal type, modes, speed, and ......................... uugetty(1M)
terminal type, modes, speed, and ......................... vtgetty(1M)
terminal wtnit ..................................................... wtnit(1M)
terminals layers ............................................... layers(1)
terminals ......................................................... newvt(1)
<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor virtual terminals</td>
<td>vtlmgr</td>
</tr>
<tr>
<td>Initialize a terminal or query</td>
<td>tput</td>
</tr>
<tr>
<td>Retrieve a termcap description into a</td>
<td>infocmp</td>
</tr>
<tr>
<td>Compare or print out text string in</td>
<td>gettxt</td>
</tr>
<tr>
<td>A termcap description into a</td>
<td>srchtxt</td>
</tr>
<tr>
<td>Retrieve a termcap description into a</td>
<td>gettxt</td>
</tr>
<tr>
<td>Print STREAMS</td>
<td>strace</td>
</tr>
<tr>
<td>Transliterate protocol</td>
<td>trpt</td>
</tr>
<tr>
<td>Extract and print xt driver packet</td>
<td>extract_xt</td>
</tr>
<tr>
<td>Format floppy disk</td>
<td>format</td>
</tr>
<tr>
<td>FTP file</td>
<td>ftp</td>
</tr>
<tr>
<td>TFTP file</td>
<td>tftp</td>
</tr>
<tr>
<td>FTPD file</td>
<td>ftpd</td>
</tr>
<tr>
<td>FTPD DARPA Trivial File Transfer</td>
<td>tftp</td>
</tr>
<tr>
<td>Send mail to SMTP</td>
<td>tosmtp</td>
</tr>
<tr>
<td>Total accounting files</td>
<td>acctmerg</td>
</tr>
<tr>
<td>Format floppy disk</td>
<td>format</td>
</tr>
<tr>
<td>FTP file</td>
<td>ftp</td>
</tr>
<tr>
<td>TFTP file</td>
<td>tftp</td>
</tr>
<tr>
<td>FTPD file</td>
<td>ftpd</td>
</tr>
<tr>
<td>TFTPD DARPA Trivial File Transfer</td>
<td>tftp</td>
</tr>
<tr>
<td>Transfer Program</td>
<td>transfer</td>
</tr>
<tr>
<td>Transfer Program</td>
<td>transfer</td>
</tr>
<tr>
<td>Transfer Protocol server</td>
<td>transfer</td>
</tr>
<tr>
<td>Transfer Protocol server</td>
<td>transfer</td>
</tr>
<tr>
<td>Transfer software package to the</td>
<td>pkgadd</td>
</tr>
<tr>
<td>Transfer protocol server</td>
<td>ftpd</td>
</tr>
<tr>
<td>YP map from a YP server</td>
<td>ypxfr</td>
</tr>
<tr>
<td>Translate character sets</td>
<td>trchan</td>
</tr>
</tbody>
</table>
Permuted Index

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

tfpt

server

tftpd

tnamed

differences between versions of a

ersors from nroff or

.printers

dprop

.deroff

.tbl

txfm

tr

mailalias

pkgttrans

translation

translator for Diablo 630 files

translator for DMD bitmap files

translator for plot graphics files

translator for tektronix 4014 files

tr

troff

troff input file

diffmk

troff input files; report possible

checknr

.so

troff input

resolve and eliminate

troff postprocessor for PostScript

troff, tbl and eqn constructs

troff

bacn

translate mail alias names

package format

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

uucico

the scheduler for the uucp file

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr

mailalias

cof2elf

postdaisy

postmd

postplot

posttek

postprint

trft

system

tr
null
boot

UNIX system boot program ........................................ boot(1M)

UNIX system ......................................................... cu(I)

UNIX System kernel ................................................ idbuild(1M)

UNIX System kernel .............................................. idmkunix(1M)

UNIX System partition partsize ............................. partsize(1M)

UNIX System profiler /prfld, ................................ profiler(1M)

UNIX system profiler /prfld, ................................ profiler(1M)

UNIX system ....................................................... uname(1)

UNIX system uuglist list ........................................ uuglist(1C)

UNIX System V/386 Release/ fixshlib .................... fixshlib(1M)

UNIX-to-UNIX system command .............................. uux(1C)

UNIX-to-UNIX system copy ..................................... uucp(1C)

UNIX-to-UNIX system file copy .............................. uuto(1C)

unixlink files and directories ................................. link(1M)

unixlink and unlink files and directories ............... link(1M)

unmount a file system .......................................... mountfsys(1M)

unmount file systems and remote/ mount(1M)

unmount multiple file systems mountall(1M)

unmount of advertised resources fumount(1M)

unmount Remote File Sharing/ mountall(1M)

unpack compress and expand files ......................... pack(1)

unset local or global environment ........................ set(1F)

unset set and unset local or global ..................... set(1F)

unshare make local NFS resource ......................... unshare(1M)

unshare make local resource ................................ unshare(1M)

unshare make local RFS resource ......................... unshare(1M)

unshare multiple resources shareall(1M)

unshareall share, unshare multiple shareall(1M)

update access and modification .......................... touch(1)

update, and regenerate groups of ..................... make(1)

update /etc/shadow with information .................. pwconv(1M)

update, or get device driver/ ......................... idinstall(1M)

update the super block .................................. sync(1M)

uptime show how long the system has ................. uptime(1)

urestore request restore of files ..................... urestore(1M)

usage ......................................................... du(1M)

usage quota .................................................... quota(1M)

use by gettxt ................................................... mkmsgs(1)

use devfree ..................................................... devfree(1M)

use devreserv ................................................. devreserv(1M)

use with vi ..................................................... ctags(1)

user and group mapping ................................. idload(1M)

user and system login information ...................... logins(1M)

user crontab file ............................................. crontab(1)

user encryption key ........................................... chkey(1)

user .......................................................... groups(1)

user ID ......................................................... ckuid(1)
generate disk accounting data by
fingerd, in.fingerd remote
using the TELNET protocol telnet
listusers list
useradd administer a new
and ID id print the
whois Internet
displays a list of all valid
notify notify
last indicate last
edquota edit
setup initialize system for first
su become super-user or another
talk talk to another
write write to another
on the system
the system
information on the system
rpc.rusersd network
display the effective current
quota display a
users display a
users log in
editor (variant of ex for casual
information about local and remote
groups display a
users display a compact list of
userdel delete a
system usermod modify a
rmail read mail or send mail to
rwall write to all
wall write to all
fuser identify processes
egrep search a file for a pattern
shell run a command
/send SMTP mail to a remote host
user interface to a remote system
diskadd disk set up
disksetup disk set up
(Volume Table of Contents) editing
iconv code set conversion
mkpart disk maintenance
prtvtoc disk information display
and/accton, acctwtmp closertmp,
and permissions file
the uucp system
clean-up
file uuchek check the
user ID diskusg
user information server
user interface to a remote system
telnet
user login information
user login on the system
user name and ID, and group name
user name directory service
user names dispuid
user of the arrival of new mail
user quotas
user or terminal logins
useradd
user
usermod modify a
user name server
usermod modify a
user's disk quota and usage
users display a compact list of
users)
edquota edit
users finger display
users group memberships
users logged in
user's login from the system
user's login information on the
users mail
users over a network
users
usertlist write a file or file structure
users display a
using full regular expressions
egrep
using shell
using Simple Mail Transfer Protocol
using the TELNET protocol
telnet
utility
utility edvtoc VTOC
utility
utmpt2tmp overview of accounting
uuchek check the uucp directories
uuchek
uucico file transport program for
uucp cleanup uucp spool directory
uucp directories and permissions
uusched the scheduler for the
 uucleanup
 uustat
 file transport program for the
 system copy
 decode its ASCII/
 uencode, file, or decode its ASCII/
speed, and line discipline
 available on this UNIX system
copy uucp,
 uucp, uulog,
 file copy uuto,
 file transport program
 control
 system file copy
 with debugging on
 execution
 requests
 /executables to call SCO UNIX System
 incoming mail messages
 automatically

date ckdate, errdate, helpdate,
group ID ckgid, errgid, helpgid,
dispgid displays a list of all
dispuid displays a list of all
helpdate, validate prompt for and
helpgid, valgid prompt for and
ckkeywd prompt for and
ckuid prompt for and
ckrange prompt for and
val
ckyorn prompt for and
verify and return an integer
machid get processor type truth
 idtune attempts to set
 NIS map ypmatch print the
 ypcat print
 pkgparam displays package parameter
current form field to its default
ture, false provide truth
printenv display environment
unset local or global environment
edit text editor
t450, tek graphics filters for
getvol

tucp file transport program ................. tucp(1M)
tucp spool directory clean-up ................ tucp(1M)
tucp status inquiry and job control ........ tucp(1C)
tucp system uucico ....................... uucico(1M)
tucp, uulog, uname UNIX-to-UNIX ........... uucp(1C)
tucp, uulog, uuname UNIX-to-UNIX ........... uucp(1C)
tucp, uulog, uuname UNIX-to-UNIX system .... uucp(1C)
set global or local environment
helpdate, valdate prompt for and
group ID ckgid, errgid, helpgid,
ckrange prompt for and
ckuid prompt for and
ckyom prompt for and
ckvid prompt for and
ckrange prompt for and
val
ckyorn prompt for and
verify and return an integer
machid get processor type truth
 idtune attempts to set
 NIS map ypmatch print the
 ypcat print
 pkgparam displays package parameter
current form field to its default
ture, false provide truth
printenv display environment
unset local or global environment
edit text editor
t450, tek graphics filters for
getvol

tucp file transport program ................. tucp(1M)
tucp spool directory clean-up ................ tucp(1M)
tucp status inquiry and job control ........ tucp(1C)
tucp system uucico ....................... uucico(1M)
tucp, uulog, uname UNIX-to-UNIX ........... uucp(1C)
tucp, uulog, uuname UNIX-to-UNIX ........... uucp(1C)
tucp, uulog, uuname UNIX-to-UNIX system .... uucp(1C)
set global or local environment
helpdate, valdate prompt for and
group ID ckgid, errgid, helpgid,
ckrange prompt for and
ckuid prompt for and
ckyorn prompt for and
ckvid prompt for and
ckrange prompt for and
val
ckyorn prompt for and
verify and return an integer
machid get processor type truth
 idtune attempts to set
 NIS map ypmatch print the
 ypcat print
 pkgparam displays package parameter
current form field to its default
ture, false provide truth
printenv display environment
unset local or global environment
edit text editor
t450, tek graphics filters for
getvol

ckpath display a prompt; verify and return a pathname ........................................... ckpath(1)
ckstr display a prompt; verify and return a string answer ........................................ ckstr(1)
cktime display a prompt; verify and return a time of day ........................................ cktime(1)
ckint display a prompt; verify and return an integer value ...................................... ckint(1)
version control ................................................................. vc(1)
vc get get a
server host yppoll return current
version of an SCCS file .................................................. yppoll(1M)
diffmk mark differences between
version of the map at the NIS ................................. yppoll(1M)
sccsdiff compare two versions of an SCCS file ............... sccsdiff(1)
ncheck (s5) generate path names
versus i-numbers for s5 file/ ........................................ ncheck(1M)
ncheck (ufs) generate pathnames
versus i-numbers for ufs file/ ......................................... ncheck(1M)
initialization evgainit Extended
VGA keyboard/display driver ......................................... evgainit(1M)
create a tags file for use with
vi ctags ............................................................................ ctags(1)
video device vidi ............................................................... vidi(1)
video mode for a video device ......................................... vidi(1)
vida sets the font and video mode .................................... vidi(1)
ncheck (ufs) generate pathnames
virtual output ................................................................. echo(1F)
newvt opens
virtual terminals ................................................................... newvt(1)
vtlmgr monitors and opens
virtual terminals ............................................................... vtlmgr(1)
vi screen-oriented (visual) display .................................. vi(1)
video device vidi ............................................................... vidi(1)
video mode for a video device ......................................... vidi(1)
vida sets the font and video mode .................................... vidi(1)
ncheck (ufs) generate pathnames
volcopy (generic) make literal copy ............................. volcopy(1M)
volcopy (s5) make a literal copy of ................................. volcopy(1M)
volcopy (ufs) make a literal copy ..................................... volcopy(1M)
utilities edvtoc VTOC
(Volume Table of Contents) editing ......................... edvtoc(1M)
volumes to another migration .............................................. migration(1M)
vs i-numbers ncheck (generic) ........................................... ncheck(1M)
vsig synchronize a co-process with ............................... vsig(1F)
vtgetty sets terminal type, modes, .............................. vtgetty(1M)
vtlmgr monitors and opens virtual ................................... vtlmgr(1)
VTVO (Volume Table of Contents) ................................. edvtoc(1M)
w who is logged in, and what are ................................. w(1)
wait await completion of process ................................. wait(1)
wall write to all users ..................................................... wall(1M)
wc word count ................................................................. wc(1)
whatisis display a one-line summary ......................... whatis(1)
whether remote system can accept ............................... ckbinsys(1M)
whoami display the effective ......................................... whoami(1)
whoddo who is doing what .............................................. whodo(1M)
whois Internet user name directory .............................. whois(1)
who's logged in on local machines ................................. rusers(1)
who's logged in on local machines ................................. rusers(1)
windowing terminal ......................................................... jterm(1)
windowing terminal state .............................................. ismpx(1)
windowing terminals ...................................................... layers(1)
without checking the disks .......................................... fastboot(1M)
Permuted Index

wc
lines in a sorted list
look find
cd change
pwd
specific alarms and/or the
rwall
wall
write
5620 DMD terminal
accounting records fwtmp,
and execute command
x286emul emulate
fixperm correct or initialize
xfsck check and repair
restorer xrestore, xrestor invoke
xinstall
cvtomflib convert OMF
portions of certain UNIX or
filesystems
script
filesystem restorer xrestore, incremental filesystem restorer
xtt extract and print
xts extract and print
statistics
packet traces
ckyorn prompt for and validate
yacc
ypinit build and install
ypmake rebuild
ypxfr transfer
ypxfr transfer YP map from a
ypset point
processes ypbind, base
database
more keys from the NIS map
the map at the NIS server host
changed NIS map
binder processes
server

word count ............................................................ wc(1)
words in the system dictionary or ................................ look(1)
working directory .................................................... cd(1)
working directory name .......................................... pwd(1)
"working" indicator /application ............................ indicator(1F)
write to all users over a network ........................... rwall(1M)
write to all users .................................................. wall(1M)
write to another user ............................................ write(1)
write write to another user .................................... write(1)
wtinit object downloader for the ......................... wtinit(1M)
fwtmpfix manipulate connect ................................ fwtmpfix(1M)
x286emul emulate XENIX 80286 ............................... x286emul(1)
xargs construct argument list(s) ............................. xargs(1)
xfsck check and repair XENIX ................................. xfsck(1)
xrestore, xrestor invoke XENIX ............................... xrestore(1M)
xinstall XENIX installation shell script .................... xinstall(1M)
xinstall install commands ...................................... xinstall(1M)
xinstall XENIX installation shell ......................... xinstall(1M)
xrestore invoke XENIX incremental ........................ xrestore(1M)
oxrestore, xrestore invoke XENIX ............................ xrestore(1M)
x driver packet traces ............................................ xtt(1M)
x driver statistics .................................................. xts(1M)
x driver extract and print ....................................... xts(1M)
x driver extract and print x driver .......................... xtt(1M)
yacc yet another compiler-compiler ........................... yacc(1)
yes print string repeatedly .................................... yes(1)
ckyorn prompt for and validate ................................. ckyorn(1)
yacc yet another compiler-compiler ........................... yacc(1)
ypinit build and install YP database ......................... ypinit(1M)
ypmake rebuild YP database .................................... ypmake(1M)
ypxfr transfer YP map from a YP server to host ........ ypxfr(1M)
YP server to host ................................................. ypxfr(1M)
ypbind at a particular server ................................ ypserv(1M)
ypbind NIS server and binder ................................ ypserv(1M)
ypcat print values in a NIS data ................................. ypcat(1)
ypinit build and install YP ................................. ypinit(1M)
ypmake rebuild YP database .................................... ypmake(1M)
yppmatch print the value of one or ......................... yppmatch(1)
yppoll return current version of ........................... yppoll(1M)
yppush force propagation of a ................................ yppush(1M)
ypserv, ypbind NIS server and .............................. ypserv(1M)
yset point ypbind at a particular ......................... ypset(1M)
### Permutated Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Manual/Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>information</td>
<td>ypupdated server for changing NIS</td>
<td>ypupdated(1M)</td>
</tr>
<tr>
<td>or map master</td>
<td>ypwhich return name of NIS server</td>
<td>ypwhich(1)</td>
</tr>
<tr>
<td>server to host</td>
<td>ypxfr transfer YP map from a YP</td>
<td>ypxfr(1M)</td>
</tr>
<tr>
<td>uncompress/ compress, uncompress,</td>
<td>zcat compress data for storage,</td>
<td>compress(1)</td>
</tr>
<tr>
<td>zdump time</td>
<td>zone compiler</td>
<td>zic(1M)</td>
</tr>
<tr>
<td>zic time</td>
<td>zdump time zone dumper</td>
<td>zdump(1M)</td>
</tr>
<tr>
<td>zdump time</td>
<td>zone dumper</td>
<td>zdump(1M)</td>
</tr>
</tbody>
</table>
The reference manual set for UNIX® System V Release 4 for Intel Processors is the definitive source for complete and detailed specifications for all System V interfaces. Newly reorganized, this edition makes finding the manual page you need easy and fast.

The new organization groups manual pages in the way most users need to use them:

• The User's Reference Manual/System Administrator's Reference Manual describes all user and administrator commands in the UNIX system, including new multiprocessing commands.
• The Programmer's Reference Manual: Operating System API describes UNIX system calls and C language library functions, including new multiprocessing interfaces.
• The System Files and Devices Reference Manual describes file formats, special files (devices), and miscellaneous system facilities.
• The Device Driver Interface/Driver-Kernel Interface Reference Manual describes functions used by device driver software. Editions of this manual are available for both uniprocessor and multiprocessor versions of the operating system.
• The Product Overview and Master Index provides an overview of the system and comprehensive indices for the documentation set.