& Macintosh®

Allegro Common LISP

APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted, with
all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in
whole or in part, without written
consent of Apple, except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary and
copyright notices must be affixed to
any permitted copies as were affixed
to the original. This excep-tion
does not allow copies to be made
for others, whether or not sold, but
all of the material purchased (with
all backup copies) may be sold,
given, or loaned to another person.
Under the law, copying includes
translating into another lan-guage
or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

© Apple Computer, Inc., 1983-
1989

20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Apple, the Apple logo, LaserWriter,
Macintosh, and MacApp are
registered trademarks and
MultiFinder and MPW are
trademarks of Apple Computer, Inc.
Adobe Ilustrator and POSTSCRIPT
are registered trademarks of Adobe
Systems Incorporated.

Allegro CL is a registered trademark
of Franz,Inc.

ImageStudio is a trademark of
Esselte Pendaflex Corporation in the
United States, of LetraSet Canada
Limited in Canada, and of Esselte
LetraSet Limited elsewhere.

ITC Garamond and ITC Zapf
Dingbats are registered trademarks of
International Typeface Corporation.
Linotronic is a registered trademark
of Linotype company.

MacPaint and MacWrite are

registered trademarks of Claris
Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.

QMS is a registered trademark of
QMS, Inc.

Smalltalk-80 is a registered
trademark of the Xerox Corporation.

Apple Computer,Inc., acknowledges
the contributions of Franz, Inc. in
the creation of this product.

Simultaneously published in the
United States and Canada.

Table of Contents

Introduction
Documentation
Running Allegro CL
Installing Allegro CL
Launching Allegro CL

1. Getting Started
Overview

The Allegro CL Environment
The Menubar

2. Fred the Editor
Overview
Fred and Packages
Editing Macintosh Style
Editing Emacs Style

3. Object Lisp
Overview
Tutorial
Object Lisp Functions

4. Macintosh Basics
Overview
Points
Font Specs
Turnkey Dialogs
Miscellaneous

5. Menus

Overview
Menubars
Menus
Menu-items

6. Windows

Overview

Window Functions and Variables
Supporting Undo

Supporting Save and Save As...

7. Dialogs
Overview
Dialog Functions
Dialog Items
Specialized Dialog-items
Table-dialog-items
Specialized Table-dialog-items

8. Events
Overview
Event Handlers
Event Information Functions
The Event Management System
Cursor Handling

9. Programming Fred
Overview
Windows, Buffers, and Marks
Parameter Conventions
The Kill-Ring
Buffer Functions
Fred Window Functions
Fred Command Tables

10. File System Interface
Overview
Pathname Specification
Common Lisp Pathnames
Parsing Pathname Strings
Pathname Escape Character
Using Lisp Pathnames
Macintosh Pathnames
Default Directories
Search Path
Wildcards
Logical Pathnames

- File System Manipulation

User Interface Functions

90 990 0 o
J CAFLLI

1
[=,}

ooo\pooo
AN NN e

'
o

10-1
10-1
10-1
10-1
10-3
10-4
10-5
10-6
10-7
10-7
10-8
10-9
10-13

2N

M

11. Debugging
Overview
Fred Commands
Inspect
Step
Backtrace
Trace

12. Low-level System Interface
Overview
Sharing Data Between Allegro CL
and the Macintosh Operating System
Lisp Data Representation
Calling Macintosh Traps from Allegro CL
Memory Management
Pascal var arguments
DefPascal

13. Pascal Records
Overview

The Structure of Records
Record Functions

Appendix A: Implementation Notes
Appendix B: System Parameters

Appendix C: Quickdraw Graphics

Appendix D: Selected Bibliography

Glossary

Index

Introduction

Documentation
Running Allegro CL

Hardware Requirements
System Software Configuration

Installing Allegro CL
Launching Allegro CL

Introduction

Allegro CL is a complete implementation of the Common Lisp standard, with additional
programming and Macintosh interface tools. It is based on the specification described in
Common Lisp the Language by Guy Steele (Digital Press 1984), taking into account
clarifications which have occurred since the book’s publication.

For details on our implementation, and our approach to situations not clearly defined by
Common Lisp, see the appendix Implementation Notes.

This manual assumes some knowledge of Common Lisp the Macintosh user interface. If
you don’t know anything about the Macintosh, read through the Macintosh User’s Guide
and try out some simple Macintosh applications, such as MacWrite™ and MacPaint™. For
information on Lisp, consider some of the books in the bibliography at the end of the
manual. :

Documentation

Common Lisp: the Language should be used as the primary reference for the Common Lisp
features of Allegro CL. The information in Common Lisp: the Language is not duplicated in the
Allegro CL manual. Tutorials and other reference works on Common Lisp are listed in the
bibliography.

Information regarding installation and use of Macintosh computers can be found in the Macintosh
User’s Guide. Technical information on the Macintosh can be found in Inside Macintosh
volumes 1-5 (Addison Wesley, 1985-87). Because Allegro CL adds a high-level programming
interface to many Macintosh system routines, you may not need to use /nside Macintosh at all.
However, it does provide good background material, and is probably indispensable for
programming Macintosh features which Allegro CL does not provide at a high level.

The information specific to Allegro CL is described in this manual. The documentation covers the
Allegro CL environment (editing, evaluating, etc), language extensions (file system extensions and
Object Lisp), Macintosh tools, and implementation notes (information on the compiler, and Allegro
CL’s approach to ambiguities in Common Lisp).

Running Allegro CL

Hardware Requirements

To run Allegro CL you will need a Macintosh Plus, Macintosh SE, or Macintosh II. Allegro CL
requires 1 megabyte of RAM and 1.6 megabytes of disk storage (though 2 megabytes of RAM and
a hard disk are recommended). It will currently take advantage of up to 8 megabytes of RAM, the
limit imposed by the Macintosh operating system.

Allegro CL has been tested and works with the Levco Prodigy-4, General Computer’s
HyperCharger, and E-Machines’ Big-Picture monitor. It has not been tested with other hardware

add-ons, but should run on these without problems. Allegro CL runs approximately 5-times faster
on a Macintosh II than it does on a 68000-based Macintosh.

System Software Configuration

Allegro CL has been designed to run the Macintosh System version 4.1 and Finder 5.5. These are
the versions provided on the Allegro CL disks. It should also run on newer versions of the system
software as they are released by Apple.

i Allegro CL

Installing Allegro CL

Allegro CL comes on 2 double sided disks.

+ Disk A contains three directories. The first is a system folder containing
Macintosh System 4.1 and Finder 5.5. The second is the ccl-docs directory, which
contains files used by the Allegro CL help system and other useful text documents.
The third is the Library folder, containing example and utility files.

* Disk B contains Allegro CL and a file named init.lisp. The initlisp fileis
automatically loaded when you launch Allegro CL. The contents of this file may be
changed by the user.

You should not run Allegro CL from the original disk. Instead, copy it to a hard disk (the
preferable solution) or make a working copy on another floppy. If possible, the Allegro CL
application, the init.lisp file, and the ccl-doc and Library folders should all reside in the same
folder. The original disks should be kept as back-ups. Allegro CL is not copy-protected, so it can
be copied easily.

Launching Allegro CL

To launch Allegro CL, double-click on the Allegro CL icon. This will load the kernel, initialize the
Lisp system, and load the file init.lisp or init.fasl (if one of these is present). When this is done,
you will be presented with the Allegro CL menubar, a Listener window, and a welcome message.

You can also launch Allegro CL by double-clicking an Allegro CL document. When this is done
Allegro CL is started and the document is loaded. In this case, no init file is loaded.

You may wish to turn off the RAM cache and remove memory-hungry inits before starting Allegro
CL. When running under MultiFinder, Allegro CL should be given a partition of at least 1
megabyte.

Getting Started

Overview

The Allegro CL Environment
The Lisp Listener
Evaluating Lisp Expressions
The Environment
Note on the Clover Key
Note on the Clipboard and Kill-Ring

The Menubar
File Menu
Edit Menu
Eval Menu
Tools Menu
Windows Menu

-

1-1

Getting Started

Overview

This chapter describes the basic information you’ll need to get started programming in Allegro CL.
- Itdescribes the Allegro CL environment and the functions found in the menubar.

The Allegro CL Environment

Allegro CL provides an integrated programming environment built around a Lisp listener, Emacs-
style editor, and window- and menu-based programming tools.

If you are familiar with the Macintosh user interface, you can probably start working in Allegro CL
with little instruction. However, there are a few things to keep in mind:

The Lisp Listener
The Lisp listener is a special window designed for interactive Lisp programming.

* Text entered into the listener by the user is in boldface. Text printed by Allegro CL is in a
plain typeface.

* Interaction occurs at the bottom of the listener. The upper portions of the listener provide
a transcript history.

* Typing RETURN drops the caret (i.e. the insertion point) to the bottom of the listener. If
there is a selection, the selection is copied down to the bottom of the listener. If there is no
selection, the text surrounding the caret is copied down only if it is boldface (i.e. if it was
typed by the user), not if it is plain (i.e. printed by Allegro CL).

» Typing ENTER performs both copy-down and evaluation.

* When at the bottom of the listener, typing RETURN from a complete Lisp expression
evaluates the expression. If the expression is not complete (e.g. there are unmatched
parentheses or quotes), a carriage return is inserted and no evaluation takes place.

* CONTROL-RETURN inserts line-breaks in the listener without causing evaluation or drop-
down. This is useful when expressions do not fit comfortably on a single line. (However,
such expressions might be more conveniently edited in a non-listener editor window).

» All Fred editor commands work from the listener.

* The listener may be closed, like any other window. If there is no listener, any attempt to
output to the listener will create a new listener. Closing the listener purges its buffer,
which can be useful if a large buffer begins to retard listener performance.

Evaluating Lisp Expressions

* Expressions can be evaluated from any editing window. They do not have to be copied
to the listener for evaluation. Simply select the expression or place the caret at the end of an
expression, and type ENTER or choose the Eval menu-item from the Eval menu.

* Allegro CL uses an incremental compiler. In the default mode, evaluation of function
definitions actually causes compilation (provided there are no lexically apparent bindings);
expressions other than definitions are evaluated. To turn off auto-compilation of
definitions set *compile-definitions* tonil.

The Environment

* When the user double-clicks the Allegro CL icon, Allegro CL attempts to load a file
called “init.lisp” or “init.fasl” from its home folder (i.e. the folder containing Allegro CL).
If both files are found, the more recent one is loaded. The init file can be used to create a
default initial environment. For example, it can set the state of various system parameters,
load utility files, etc.

* The user may also double click an Allegro CL file. In this case, Allegro CL is launched,

 and the file is loaded.

1-2 Allegro CL

* There are several parameters used to control the environment. These can be set in the

normal Lisp fashion, in an init file, or from the Print Options... and Environment... N
menu-items, available through the Tools menu. These parameters are described in the A
System Parameters appendix.

* Functions are loaded into main memory as they are needed. There may be slight pauses
as functions are first loaded in from disk. Garbage collection purges any Allegro CL
functions which are not currently on the stack. This “load on call” mechanism allows
Allegro CL to operate with extremely modest memory requirements.

* On systems with sufficient memory, function purging can be disabled by calling
(purge-functions nil). Purging can be re-enabled by calling
(purge-functions t). All functions can be pre-loaded into memory by calling
(preload-all-functions). See the appendix Implementation Notes for details.

* During garbage collection, Lisp operation pauses and the cursor tumns into the letters

“GC”. Garbage collection can be invoked manually by calling the procedure gc.

¢ Allegro CL has a pseudo multi-tasking system. This allows editing and other operations

to occur while Lisp code is running (e.g. during evaluation and compilation). Allegro CL

never puts up the Macintosh watch cursor. When Allegro CL is in the eval phase of the
read/print/eval loop (i.e. when it is executing rather than reading) the About Allegro CL...
menu-item will be preceded by a diamond.

* Certain Allegro CL tasks are non-interruptible, including garbage collection and event

processing (such as menu-item-action processing). During these operations no other

functions can be performed.

* Lisp operations—besides those which are non-interruptible—can be stopped by typing

clover-. (clover period). This will return control to the top level listener loop, or will enter

abreak loop if *break-on-errors*isnon-nil. The user can define a synonym for
clover-, by setting *abort-character* to the desired character.

* Allegro CL has an elegant method for specifying directories with logical pathnames. S

These are described in a section of the File System chapter.

Note on the Clover Key

The Allegro CL environment attempts to conform to both Macintosh and Emacs standards. The
largest problem is in the use of keyboard modifier keys. (Shift and control are examples of
modifier keys. They do not register as keystrokes, but are only used to modify the values of other
keystrokes.) Older Macintosh computers do not provide a control key. The following method is
used to work around this limitation. (Note: in the discussion below, “clover-key” refers to the
physical key on the keyboard, “command” refers to the logical modifier key used to invoke menu-
items, and “control” refers to the logical modifier key used to invoke Fred commands.)

Allegro CL can operate in two modes: Macintosh mode and Emacs mode. In Emacs mode, the
clover key is used as control, and shift-clover is used as command. In Macintosh mode, the clover
key is used as command, and shift-clover is used as control. If there is no menu-item for a given
character, clover and shift-clover will both be interpreted as control.

The global variable *emacs-mode* determines whether Allegro CL is in Macintosh or Emacs
mode. Allegro CL originally comes up in Macintosh mode.

The physical control key is supported on those Macintoshes which provide one.
Note on the Clipboard and Kill-Ring

Allegro CL integrates the Macintosh clipboard with the Emacs kill-ring. The clipboard is taken to .
be the top item in the kill-ring. Commands which move text to the clipboard also move it to the top L

Getting Started 1-3

of the kill-ring, and vice-versa. This mechanism functions properly with all Macintosh
requirements, such as the ability to copy and paste between applications. For Macintosh users, the
kill-ring can be thought of as a multi-level clipboard.

The Menubar

This section describes the options available through the Allegro CL menubar. Note that the
menubar can be customized by the user (for details see the Menus chapter). This section describes
the menubar that appears when an unmodified version of Allegro CL is booted.

Command-key equivalents for menu-items are noted after the menu-item name.

Apple Menu

About Allegro CL.. [Menu Item]

displays a dialog box showing the version number of Allegro CL. Also gives the version numbers
of the Macintosh ROM and system file.

The remainder of the Apple menu contains desk accessories. These are described in the
Macintosh User's Manual.

File Menu

New (command-n) [Menu Item)
creates an editor window for a new file.

Open.. (command-o) . [Menu Item]
allows the user to select a text file, and creates a new editor window for the file.

Open Selected File [Menu Item]
is only enabled when there is a selection in the top editor buffer. It attempts to parse this selection
as a pathname; if successful, it creates an editor window for the pathname’s file. The title of this
menu-item will change to reflect the contents of the current selection.

Close [Menu Item]
closes the active window. If text in the window has been edited since the last time it was saved, a
dialog box will appear asking if you want to save or throw away the changes.

Save (command-s) [Menu Item]
saves the contents of the active window into the file named in the window’s title bar. If the
window is not yet associated with a disk file, Save As... is invoked.

Save As.. ' [Menu Item]
allows the user to specify a directory and file name, and saves the contents of the active window to
that directory/file name.

Revert [Menu Item]
reverts the window to the last version saved to disk. Before the reversion occurs, you will be
asked to verify that you really want to revert to the last version saved.

1-4 Allegro CL

Page Setup.. . [Menu Item]
allows the user to set printing options for the current hardcopy device.

Print (command-p) = [Menu Item]
prints the contents of the active window to the currently selected hardcopy device.

Quit [Menu Item)
closes all open windows and exits the Lisp environment. If there are any modified and unsaved
editing windows, you are given a chance to save them.

Edit Menu

Undo (command-z) [Menu Item)
undoes the last editor command. This does not work for all commands (it will be disabled at times
when it will not work). In general, Undo works for insertions and deletions, but not for caret
movement. The name of this menu-item may change depending on context.

Cut (command-x) [Menu Item)
deletes the selected region and pushes it onto the kill-ring/clipboard.

Copy (command-c) [Menu Item]
copies the selected region to the top of the kill-ring/clipboard.

Paste (command-v) [Menu Item)
replaces the current selection with the text on the top of the kill-ring (i.e. with the contents of the
clipboard). If there is no current selection, the text is simply inserted.

Clear [Menu Item)
deletes the current selection. The deleted text is not saved anywhere, and the kill-ring/clipboard is
not altered.

Select All (command-a) [Menu Item)
selects the entire contents of the active window.

Insert Killed String.. [Menu Item]

shows a dialog box of the strings in the kill-ring. The user may select one for insertion in the top
editor buffer.

Search (command-f) [Menu Item]

brings up a search/replace dialog box.

Change Font ' [Menu Item)
allows the user to change the font, font-size, and font-style of the top editor buffer. This menu-
item will be disabled if the top window is not a Fred window.

Eval Menu

Eval Selection (command-e) _ [Menu. Item]
evaluates the current selection in the top editing buffer. If there is no selection and the caret is next

Getting Started 1-5

to a close parenthesis, the expression bounded by the parenthesis is evaluated. If
compile-definitions is non-nil (and there are no lexically apparent bindings),
function definitions will be compiled rather than evaluated. If *fast-eval* is non-nil the
expression may be compiled and executed.

Eval Buffer [Menu Item]
evaluates the entire contents of the top editing buffer. If *compile-definitions* is non-

nil (and there are no lexically apparent bindings), definitions will be compiled rather than
evaluated. This is equivalent to Select All followed by Eval Selection.

Load.. [Menu Item]
allows the user to select a file for loading into Allegro CL. Both text and fasl files may be loaded.

.Compile File.. [Menu Item)

allows the user to select a file for compilation. The user will be asked to specify both the source
and destination files.

Tools Menu

List Definitions [Menu Item]
brings up a modeless dialog box containing a table of all the definitions in the top editor buffer.
The user can select a definition, and the buffer will scroll to that definition. When the dialog is the

top window, typing the name of a definition causes the table to scroll to the entry for that
definition.

Edit Definition.. [Menu Item]
allows the user to enter a symbol name, and attempts to find the source code for the definition of
the symbol.

ipropos... [Menu Item]
performs apropos on a string entered by the user. The user can specify several options for
filtering the symbols returned.

Inspect [Menu Item]
brings up the inspector control dialog box. (See the Debugging chapter for details).

Backtrace ' [Menu Item)
this item is only enabled when Allegro CL is in a break loop. Selecting it brings up a stack
backtrace. (See the Debugging chapter for details.)

Documents... [Menu Item]
opens up a standard file dialog to the ccl-docs folder. This folder contains text files with
information on Common Lisp, and text files used by the Allegro CL help system.

Fred Commands [Menu Item]
brings up a window of Fred keyboard commands. The commands shown are calculated at run
time from *comtab* (see the chapter Programming Fred for a description of comtabs).

Print Options.. [Menu Item]
brings up a dialog box which allows the user to set the values of several Lisp printer parameters.

1-6 Allegro CL

Environment.. [Menu Item]

brings up a dialog box which allows the user to set the values of several global variables which
effect the Allegro CL environment.

Windows Menu

The titles of all visible windows appear as items in this menu. The menu is ordered by window
layer (i.e. the front window is the top menu-item and the back window is the bottom menu-item).
To activate a window, select its menu-item. Editor buffers which have been changed and not
saved have a cross next to their names. The menu-item of the front window is dimmed and cannot
be selected. The listener menu-item has the command-key equivalent command-1.

Fred the Editor

Overview
Editing Macintosh Style

Menus
Windows
The Caret '
Editing Emacs Style
-+ Control, Command, Option, and Meta
Documentation Conventions
Help Functions
Movement
Insertion
Deletion
Lisp Operations
Windows
Miscellaneous

2-1

Fred the Editor

Overview

In the Allegro CL programming environment, Fred (Fred Resembles Emacs Deliberately) plays
the star role of editor. Fred is a combination of the standard Macintosh multiple window text-
editor and Emacs. If you are familiar with other editors on the Macintosh (such as MacWrite or
QUED), you can skip the section on Macintosh-style editing. Following the Macintosh section is a
section describing Fred’s Emacs-style capabilities. Documentation for programming Fred is
provided in the chapter Programming Fred.

Fred and Packages

Every Fred window has an associated package. Expressions evaluated from the window are
evaluated in the window’s package. If the window’s package is nil, then *package* is used.
(Note that the declaration in-package effects *package*. If a window has an associated
package, in-package declarations will not effect evaluation of expressions from the window.)

A window’s package may be set in one of two ways:

+ Through a mode line at the start of the buffer. This method only works if the mode line
is present when the buffer is opened. Only the package declaration in the mode line is
parsed. The other declarations are ignored.

The mode line, if present, must be the first non-empty line in the buffer. It begins with a
comment character (semi-colon), followed by -*-, followed by the package declaration.
For example, the following mode line would cause evaluations in a buffer to take place in.
the QUUX package.

;77 —*- package: QUUX -*-

* Through the function set-window-package. This is an object function defined for
Fred windows. It takes a single argument, which should be a package or a symbol.

You can find the package associated with a window through the window object function window-
package.

Editing Macintosh Style
At first glance, Fred looks just like a normal Macintosh editor.

Menus
Many Fred commands are invoked through menus. These commands are described in the chapter
Getting Started.

Windows)
All Fred editing takes place inside windows. Window movement and scrolling commands
conform to Macintosh standards.

* Select a window ' _
by moving the mouse into it and clicking. This brings it to the front and makes it the active
window.

2-2 Allegro CL

* Scroll a window horizontally and vertically

by using the scroll bars at the bottom and right edge of the window respectively, or by dragging
the thumb.

* Move the window

by moving the cursor to the window’s title bar, holding down the mouse button, and moving the
mouse to a new location on the screen.

* Resize a window

by moving the mouse to the grow-box in the lower right corner of the window, holding down
the mouse button, and dragging to a new location.

» Toggle between full-screen and a smaller size
by clicking in the zoom-box in the upper-right corner of the window. This is called ‘zooming’
the window. The full-screen size can be customized. See the Windows chapter for details.

* Close a window

by clicking the mouse in the close-box in the upper-left comer of the window, or by choosing
Close from the File menu.

* A small cross appears on the left side of the file name in the window’s title bar to indicate that the
window has been altered since the last time the buffer was saved. The cross also appears next to
the window’s title in the Windows menu. A quick look at the Windows menu will let you know
if any windows have been modified and not saved.

* You can cut, copy, and paste text between different windows (including the listener).

The Caret

The caret (also known as the insertion-point and sometimes known as the cursor) is shown by a
flashing vertical bar between characters. As distinguished from text editors on other computers,
the caret is not on a character—it is between two adjacent characters. BACKSPACE deletes the
character to the left of the caret. Text insertion moves the caret to the right.

* Move the caret to a location
by moving the mouse to a new location and clicking.

* Select a region
by dragging the mouse through the region with the mouse-button down.

A selection can be extended by holding the shift key and clicking.

Regions larger than the window can be selected by holding down the mouse button and moving
outside the edge of the window. The window will auto-scroll.

You can select a Lisp expression by positioning the mouse at a close-parenthesis and double-
clicking. .

You can select a word by positioning the mouse over the word and double-clicking. After
selecting a word with a double-click, dragging the mouse extends the selection along word
boundaries.

Inserting text when there is a selection causes the selection to be replaced by the new text.

Fred the Editor 2-3

Editing Emacs Style

Fred commands have been defined with care to conform to Emacs conventions. The exceptions
are primarily due to the Macintosh standards and keyboard limitations.

Control, Command, Option and Meta

Combining Macintosh capabilities and Emacs capabilities requires some creative use of the
Macintosh keyboard. The Macintosh does not have a meta key, and only the most recent
Macintoshes have a control key. To get around this, Allegro CL uses the following system:

* The option key is used as the meta key.
To access the Macintosh’s optional character set, type control-q, and then type the desired
option-character. For the first character following control-q, option will not be treated as
meta.

» The clover key and shift clover key are used for control and command.
In Macintosh-mode, the clover key is used for command, and shift-clover is used for

control. In Emacs-mode, the mapping is reversed. For details, see the note on the clover
key in the chapter Getting Started.

The function names given are accessible as object functions defined for windows.

Documentation Conventions

(o} stands for Control (either clover or shift-clover. ‘See the note on commands keys
in the menubar section of this chapter.)
M stands for Meta (the option key)

current expression stands for the region selected by the user, if any. If no region is selected
and the caret is next to a parenthesis, the current expression is between that
parenthesis and the matching parenthesis. If no region is selected and the
cursor is inside a symbol, the symbol is taken as the current expression. In
other cases, the current expression is considered to be nil.

Help Functions

c-\ (ed-help) brings up the Fred help window. This window contains a list of all
Fred keyboard commands available in the current comtab. It may be
searched and printed.

C-= (ed-what-cursor-position) prints information about the current buffer.

M-. (ed-edit-definition) attempts to bring up the source code (and

surrounding file) for the symbol surrounding the caret. If the symbol was
defined from more than one source code the user is given a choice of
definitions.
This function works for most forms defined with a call to de £xxx with
record-source-files non-nil.

C-x C-a (ed-arglist) attempts to print the argument list of the function bound to the
symbol surrounding the caret.
This works for Common Lisp functions, and for most forms defined with a
call to defxxx with *record-source~files* turned on.

2-4

C-x C-d

C-x C-i

Movement
LEFTARROW

RIGHTARROW

UPARROW
DOWNARROW
C-b

c-f -
M-b

M-£
C-M-b
C-M-f£f
C-a

C-e

C-p

C-n
M-v

C-x h

Insertion
RETURN

C-o

TAB
C-M-q
C-RETURN
C-y

Allegro CL

(ed-get-documentation) attempts to print the documentation string of the
function bound to the symbol surrounding the caret. o
This works for most forms defined with a call to de £xxx with
save-doc-strings turned on.
(ed-inspect-current-sexp) inspects the current expression.

R

(ed-backward-char) moves the caret back one character.

(ed-forward-char) moves the caret forward one character.

(ed-previous-line) moves the caret up one line.

(ed-next-1line) moves the caret down one line.

(ed-backward-char) moves the caret back one character.

(ed-forward-char) moves the caret forward one character.

(ed-backward-word) moves the caret back one word.

(ed-forward-word) moves the caret forward one word.

(ed-backward-sexp) moves the caret back one expression.

(ed-forward-sexp) moves the caret forward one expression.

(ed-beginning-of-line) moves the caret to the beginning of the line.

(ed-end-of-1ine) moves the caret to the end of the line.

(ed-previous-1line) moves the caret up one line.

(ed-next-1line) moves the caret down one line.

(ed-previous-screen) scrolls towards the top of the text by a window-full
and moves the cursor to the upper left corner of the window. The number
of lines to be retained after scrolling is determined by *next-screen-
context-lines*,. TN

(ed-next-screen) scrolls towards the bottom of the text by a window-full
and moves the cursor to the upper left corner of the window. The number
of lines be retained after scrolling is determined by *next-screen-
context-lines*.

(ed-bef?inning-of -buffer) moves the caret to the beginning of the
buffer.

(ed-end-of-buffer) moves the caret to the end of the buffer.

(ed-move-over-close-and-reindent) moves the caret over the next
close parenthesis and into position for typing the next Lisp expression.

(select-all) selects the entire buffer.

(ed-self-insert) inserts a new line and puts the caret at the beginning of
that line.

(ed-open-1line) inserts a new line without moving the caret.

(ed-indent-for-1lisp) re-indents the current line.

(ed-indent-sexp) re-indents the current expression.

(ed-newline-and-indent) is equivalent to RETURN followed by TAB.

(ed-yank) inserts (yanks) the current kill-ring string into the buffer at the
caret. If there is a selected region, it is replaced with the inserted text.

IS
[:v J
L

M-y

M_ "

Deletion
BACKSPACE
M-BACKSPACE

Cc-d

M-d

Fred the Editor 2-5

(ed-insert-killed-string-from-menu) brings up a menu of the
strings in the kill-ring, allows the user to pick a string from it, and inserts it
into the buffer at the caret. If there is a selected region, it is replaced with
the inserted text.

(ed-insert-quoted) allows access to the Macintosh optional character set.
For a single keystroke following C-q, the Option key will not be translated
into meta. For example, inserting the bullet sign (normally the Option-8
keystroke) is accomplished by the keystrokes C-q and M-8. By itself, M-8
would cause Fred to look for a command. C-q can also be used for
inserting control characters—such as tabs—into buffers.

(ed-insert-double-quotes) inserts a set of double quotes and puts the
caret in between them.

(ed- tlilnsert-sharp--comment) inserts # | | # and puts the caret in between

em.

(ed-insert-parentheses) inserts a set of parentheses and puts the caret
in between them.

(ed-upcase-word) upper-cases the current word or selection. (Because of
the design of the Macintosh, this should be typed with the shift-key held
down.)

(ed-downcase-word) lower-cases the current word or selection

(ed-capitalize-word) capitalizes the current word or selection

(ed-transpose-chars) transposes the two characters surrounding the
caret. If there is a selection, the first character in the selection is transposed
with the character before the selection.

(ed-rubout-char) deletes the character to the left of the caret.

(ed-rubout-word) deletes the word to the left of the caret. If the caret is
inside a word, only the portion of the word to the left of the caret is deleted.

(ed-delete-char) deletes the character to the right of the caret.

(ed-delete-word) deletes the word to the right of the caret. If the caret is
inside a word, only the portion of the word to the right of the caret is
deleted.

C-M-BACKSPACE (ed-delete-bwd-delimiters) deletes backward delimiters. This

C-M-d

C-w
M-w

C-k

C-M-k

works when caret is behind (..) or ".." or #|..| # .

(ed-delete-fwd-delimiters) deletes forward delimiters. Works when
the caret is in front of (..) or ".." or #|..1# .

(cut) deletes the current selection, adding it to the kill-ring.

(ed-copy-region-as-kill) pushes current expression onto the kill-ring.
The expression is not deleted from the buffer.

(ed-kill-1line) kills (deletes) the selected region or the remainder of the line
containing the caret, adding it to the kill-ring. If the caret is at theend of a
line, the following RETURN is deleted.

(ed-kill-sexp) kills the current expression, adding it to the kill-ring.

Lisp Operations

ENTER

(ed-eval-or-compile-current-sexp) evaluates the current
expression. If *compile-definitions* is t (and there are no
lexically apparent bindings) then definitions will be compiled rather than
evaluated.

2-6 _Allegro CL

C-x C-c¢ (ed-compile-top-level-sexp) compiles the current selection or the
current top-level Lisp expression. The current top-level Lisp-expression is
determined heuristically by searching backwards for an open parenthesis at

the start of a line.
C-x C-e (ed-eval-current-sexp) evaluates the current expression.
C-m (ed-macroexpand-l-current-sexp) macroexpands the current

expression with macroexpand. The result of each call to
macroexpand-1 is printed in the listener.

C-x C-m (ed-macroexpand-current-sexp) macroexpands the current expression
and pretty-prints the result into the listener. The expansion is done as if by
amacroexpand. :

C-x C-r (ed-read-current-sexp) reads the current expression and pretty-prints

the result into the listener. This command is useful for checking read-time
bugs, especially for those expressions containing backquotes.
C-M-SPACE (ed-select-current-sexp) selects the current expression.

Windows

C-s _ (wfind) brings up the search dialog box.

C-x C-s (window-save) saves the contents of the top Fred window to its associated
disk file. If there is no file associated with the window, the user will be
requested to supply a file name.

C-x C-w (window-save-as) saves the contents of the top Fred window to file
specified by the user.

C-x C-v (edit-select-file) allows the user to select a text file and opens up a Fred
window for editing that file.

Miscellaneous

The following keys are used by the Macintosh to implement a function key feature. These are
invoked by typing clover-shift-n, where # is a number between 0 and 9. Four standard function
keys are provided with the Macintosh. Additional function keys are available through commercial
and other sources.

clover-shift-1 ejects the internal floppy disk.

clover-shift-2 ejects the external floppy disk.

clover-shift-3 save current screen as MacPaint® file.

clover-shift-4 if the current hardcopy device is a non-networked ImageWriter®,

prints current window (including window-frame). If the caps-
lock key is depressed, the entire screen is printed.

clover-. clover-period is used as the abort key. It can be typed to interrupt
program execution.

In addition to the keyboard commands listed above, many menu items can be invoked through the
keyboard. See the chapter Getting Started for details.

/////

®

Object Lisp

Overview

Tutorial
Objects as Containers
Objects Inherit From Other Objects
Object Environments are Composed of Frames
Objects with Internal Procedures
Multiple Inheritance
Classes and Instances
Advanced Topic: Objects and Scoping
Object Variables and Lexical Variables
Object Lisp Functions
Creating and Initializing Objects
Communicating with Objects
Managing Bindings and Definitions Inside Objects
Managing Objects

3-1

Object Lisp

Overview

In traditional programming methods, a series of procedures is used to operate on a set of data. The
procedures and the data are stored separately. Object-oriented programming combines procedures
and data into discrete units called objects. An object contains data as well as procedures which
know how to operate on the data. When you want to perform some operation on the data, you ask
the object to do it. The object knows how, so you don’t need to specify the operation in more
detail. You can create multiple instances of an object; each one has its own data, but they all have
the same procedures (i.e. they all know how to do the same things).

Object-oriented programming is a powerful metaphor for simplifying many programming tasks.

. Object-oriented programming increases modularity, so it helps keep program units from
interfering with each other. It aids in hiding complexity, because once an object is implemented it
can be used without extensive knowledge of its internal workings. It facilitates the re-use of code,
because new objects can easily inherit the capabilities of old objects.

Allegro CL currently supports an object-oriented programming system (oops) called Object Lisp.
Object Lisp is elegant, and very easy to use. It supports multiple-inheritance, a feature missing
from many oops’.

The Common Lisp community is standardizing on an oops called CLOS (Common Lisp Object
System). CLOS is largely derived from Common Loops, with additions from Flavors and Object
Lisp. Future releases of Allegro CL will support CLOS. At that point native support of Object
Lisp may be phased out, to be replaced by an implementation built on top of CLOS. The current
implementation of Object Lisp has not been optimized for speed. It is suitable for implementing
user-interface tools (its main function in Allegro CL), but in other areas performance may become a
problem. We don’t recommend using Object Lisp in large, time-critical portions of systems.

Tutorial

Objects as Containers

Objects act as containers for variables and procedures. The variables and procedures inside an
object are local to the object, i.e. they do not interfere with global versions, and they do not
interfere with versions inside other objects. For example, the variable foo could have the value
"I am Foo" in the global environment, it could have the value 15 in one object, and it could
have the value (a b (c d foo) (x)) in another object. In a window object the procedure
show could cause its argument to appear on the screen, while in a speaker object, show could
send its argument to a speech synthesizer. Each object can have its own value for any variable,
and its own definition for any procedure. Objects can access their own variables and procedures
directly. They can also access the variables and procedures of other objects indirectly. The global
environment can be considered the global object (also known as the root object). In most
situations where an object should be specified, passing nil indicates the root object.

The following sample interaction shows how objects can be used to create private versions of
variables

? (setqg fourth-grader (kindof nil))
#<Object #322, a generic object>

3-2 Allegro CL

Here we create a new object, using the function kindof. kindof creates and returns a new
object based on its argument, which should be an object. If no the new object is based on the root
object. We store the new object in the global variable fourth-grader. The setq returns the
object, and we see its print representation.

To do something inside an object, you use the special form ask. ask takes at least two
arguments: the first argument should be an object and the rest are Lisp expressions. ask

evaluates the expressions in the environment of the object. Think of it as asking the object to
evaluate the expressions.

? (ask fourth-grader (have 'teacher))
NIL

In this case, we are asking the object to have a variable. The function have creates a distinct
binding for a variable within the object. It tells the object to have its own version of the variable,
rather than using a global or otherwise inherited version of the variable. (Details on inheritance are
given below).

We now ask fourth-grader to set the value of the variable teacher. The binding between

the variable and value is internal to fourth-grader. It does not affect other bindings of the
variable.

? (ask fourth-grader (setq teacher "Mrs. Marple"))
"Mrs. Marple"

We can ask fourth-grader to evaluate teacher, and we get back the correct value, the string
"Mrs. Marple".

? (ask fourth-grader teacher)
"Mrs. Marple"

If we try to evaluate teacher in the global environment, we get an error, because teacher does
not have a global binding. It only has a binding inside the object fourth-grader.

? teacher
> Error: Unbound variable: TEACHER
> While executing: SYMBOL-VALUE

We can give teacher a global binding by assigning it a value at the global level. Once this is
done, we have established two independent bindings for the variable t eacher: one is global and
one is local to the fourth-grader object. These two bindings do not interfere with each
other. Changing the value of one does not change the value of another.

? (setq teacher "Hal")

"Hal"

? teacher

"Hal"

? (ask fourth-grader teacher)
"Mrs. Marple”

When we evaluate teacher in the global environment, we get back "Hal". When we evaluate it
in the environment of the fourth-grader object, we get back the value "Mrs. Marple”.

Object Lisp 3-3

Objects Inherit from Other Objects

Objects do not only have access to their own variables and procedures. They also have access to
inherited variables and procedures. When you create a new object, the new object is always
based on one or more previously existing objects. We will initially discuss the simpler case, where
an object inherits from a single parent.

? (setq school "Bronx Science")
"Bronx Science"

? school

"Bronx Science"

? (ask fourth-grader school)
"Bronx Science"

Here we create a global binding for the variable school. We see that fourth-grader has
access to this binding. As stated above, fourth-grader inherits from the root object (i.e. the
global environment). Because fourth-grader did not have its own binding for the variable
school, it used the inherited binding.

? (ask fourth-grader (setq school "PS 110"))
"PS 110"

? (ask fourth-grader school)

"PS 110"

? school

"PS 110"

When we ask an object to set the value of a variable, it sets whichever binding it can access.
fourth-grader does not have its own binding of school, so the setq affects the inherited
binding. If we want fourth-grader to have its own binding of school, we must to ask it to
(have 'school).

? (ask fourth-grader (have 'school))

NIL

? (ask fourth-grader (setq school "MIT"))
"MIT"

? (ask fourth-grader school)

"MIT"

? school

"PS 110"

When we ask fourth-grader to have school, it creates its own binding for school. The
new binding is internal to the object, and is said to shadow any inherited binding. All references to
school in fourth-grader’s environment will now refer to this local binding.

A single object can use some inherited values, and some values of its own.

3-4 Allegro CL

? (setqg planet "Earth")
"Earth"

? (ask fourth-grader planet)
"Earth" :

? (ask fourth-grader school)
1IMIT ”

? (ask fourth-grader teacher)
"Mrs. Marple™

In the second line, fourth-grader uses the inherited binding for planet, because it does
not have its own binding. In the last two lines, fourth-grader uses its own bindings.

Besides creating new objects which inherit from the root object, we can create objects which inherit
from other objects. This is where the power and utility of object-oriented programming becomes

more evident.

We can create another object which inherits from fourth-grader. This new object will have
access to all of fourth-grader’s environment; it will have access to all of
fourth-grader’s bindings and all the bindings which fourth-grader inherits.

? (setq Amanda (kindof fourth-grader))

<object #367, a #322>

Here the argument to kindof is fourth-grader. We are creating a new object based on
fourth-grader and storing this new object in the global variable Amanda. A short interaction
shows us that because Amanda inherits from fourth-grader she has access to all the things

which fourth-grader can access.

? (ask Amanda teacher)
"Mrs. Marple" ;
? (ask Amanda school)

"MIT" : ; fourth-grader’s binding

? (ask Amanda planet)

"Earth” ;global binding

Just as fourth-grader’s bindings are not accessible to its parens, ..manda’s bindings are not

accessible to her parent.

? (ask Amanda

(have 'calculator "hp")) shave can take another argument

” hp ”
? calculator

> Error: Unbound variable: CALCULATOR
> While executing: SYMBOL-VALUE ;no global binding for calculator

? (ask fourth-grader calculator)

> Error: Unbound variable: CALCULATOR
> While executing: SYMBOL-VALUE ;no fourth-grader binding

? (ask Amanda calculator)

"hp" ;Amanda has a binding

This points out that inheritance flows in only one direction. Amanda inherits from fourth-
grader (and, through fourth-grader, from the root object), but fourth-grader does not
inherit from Amanda. fourth-grader therefore does not have access to Amanda’s bindings.

fourth-grader’s binding

Object Lisp 3-5

Object Environments are Composed of Frames

The above examples illustrate an object hierarchy; Amanda inherits from fourth-grader
which in turn inherits from the global environment. In such a hierarchy, there is a simple rule for
determining which binding is accessed by an object: the object will use the innermost binding.

If the object has its own binding, that will be used. If not, the look-up will proceed to the parent,
then to the parent’s parent, and so on, all the way to the root object. As soon as one binding is
found, it is used and the search stops. All further bindings are shadowed by the innermost
binding, and are therefore inaccessible.

Technically, an object’s environment is composed of a series of frames. The innermost frame
contains the object’s own bindings. The next frame out contains the bindings local to the object’s
parent. The next frame contains the bindings of the parent’s parent, and so on. The outermost
frame is the global environment. Whenever a look-up occurs, the frames are searched from
innermost to outermost.

Objects with Internal Procedures

In all of the examples above, we have given objects internal variables, but not any internal
functions. Objects can have private versions of both functions and variables. Function inheritance
follows the same rules as variable inheritance.

The macro defobfun is used to define functions within objects.

? (defobfun (say fourth-grader) (sentence)
(princ "***x V)
(princ sentence)
(princ " *%x*M)
(terpri))
SAY
? (say "hello")
> Error: Undefined function: SAY .
> While executing: EVAL ;no global definition of say

? (ask fourth-grader (say "hello"))
* % % hello * %k %

NIL
?

Here we define the function say inside of fourth-grader. Just as with object variables, this
function definition is not accessible globally. It is only accessible from fourth-grader, and
from objects which inherit from fourth-grader.

Because Amanda inherits from fourth-grader, she has access to fourth-grader’s
function definition of say, (just as she has access to fourth-grader’s variable binding for
teacher).

3-6 Allegro CL

? (ask Amanda (say teacher))
*** Mrs. Marple **x ‘ £
NIL Ry
? (ask Amanda (say calculator))

* % % Hp * % %

NIL
?

(Note: Amanda has access to the definition of say, even though say was defined in

fourth-grader after Amanda was created from fourth-grader. This is because the
look-ups, for both values and functions, occur at run time.)

So far so good. Amanda can do the things that any fourth-grader can do. But she can
actually do even more. One of the most powerful features of object oriented programming is that
objects can modify inherited behavior. Of course, we could define say inside Amanda, thereby
shadowing the inherited version of say and giving Amanda her own, completely new version of

say. Buta more efficient technique allows Amanda to use the inherited version, and add her own
idiosyncrasies.

? (defobfun (say Amanda) (sentence)
(usual-say sentence)
(princ "I have an hp calculator")
(terpri))

SAY

? (ask Amanda (say "hi there."))

*** hi there. **x

I have an hp calculator

NIL S
? .

The magic line in the above definition is (usual-say sentence). The construct
usual-xxx is used to call the shadowed version of xxx. That s, it calls the version of the
function which would have been called if the current version did not exist. In this case, say calls
the shadowed version of say with the same argument that it was passed, and then performs some
additional behavior. There are many other uses of usual, however. For example, a function can
do some bounds checking, or other type of checking, before invoking its usual function. Or it
can modify an argument or pass a completely different argument to the usual function. In
addition, it can add behavior before and/or after the usual behavior, as in this example.

We can create another object which inherits from fourth-grader, and give it yet another
definition of say:

Object Lisp 3-7

? (setq doubly (kindof fourth-grader))

<object #400, a #322>

? (ask doubly (say teacher))

*** Mrs. Marple ***

NIL

? (defobfun (say doubly) (sentence)
(usual-say sentence)
(usual-say sentence))

SAY

? (ask doubly (say "hello"))

x* hello * .

* %k % hello * %k %

NIL
?

Here we have given doubly a slightly more complex version say. It calls the usual-say
twice. Of course, Amanda’s version of say, and fourth-grader’s version of say are
unaffected by this redefinition inside doubly.

? (ask Amanda (say "hi there"))

*** hi there., **x

I have an hp calculator

NIL

? (ask fourth-grader (say "I'm fourth-grader")
***x I'm fourth-grader ***

NIL
?

Multiple Inheritance
Multiple inheritance occurs when one object inherits from more than one other object—when an
object has more than one parent.

In Object Lisp, an object can have a virtually unlimited number of parents. There are two general

cases of multiple inheritance: the simple case, in which the characteristics of the parents do not

have any overlap; and the more complex (but often more useful) case, in which there is overlap in

the characteristics of the parents.

In the simple case there is no overlap between the functionality of the parents, so there is no

possible ambiguity in variable and function reference. Some functions and variables are inherited

from one parent, some from another.

It is often useful to create an object with multiple parents, where the parents do have some overlap
in their functionality. In this case, the same function may have one definition in one parent, and a
different definition in another. There is a simple rule for determining which binding is used when
a look-up occurs in the child object. The frames of the parents are combined in a linear sequence,

with duplicate frames removed. An example will illustrate this.

3-8 Allegro CL

? (setq Bobl (kindof Amanda Doubly))
<object #464, a #367, #400>

? (ask Bobl (say "I am Bobl"))

" *** T am Bobl **x*

*** T am Bobl ***

I have an hp calculator

NIL

Here we create a new object based on both Amanda and Doubly. The frames inherited from
Amanda are:
Amanda’s, fourth-grader’s, and the global frame.

The frames inherited from Doubly are:
- Doubly’s, fourth-grader’s, and again the global frame.

First we combine these two sequences of frames. This gives us the series of frames:
Amanda, fourth-grader, root,Doubly, fourth-grader, root.

The next step involves removing duplicate frames. Only the outer-most occurrence of each frame
is retained. After the removal we have the frames:

Amanda, Doubly, fourth-grader, and root.

It is as if Amanda inherited from Doubly which inherited from fourth-grader, etc. When
Amanda’s say calls usual-say, the say inside Doubly will be called. When Doubly calls
usual-say, fourth-grader’s say will be invoked. The outermost frame is retained
because inner definitions are often specializations which depend on being able call their shadowed
counterparts.

The order in which parents are specified can have a significant effect on the behavior of the child

object.- In the example below we see that in an object that inherits from Doubly and Amanda in
the inverse order, the say procedure behaves quite differently. Both cases can be understood by
looking at the order of frames and tracing through the calls to say and usual-say.

? (setq Bob2 (kindof Doubly Amanda))
<object #4699, a #367, #400>

-? (ask Bob2 (say "I’m Bob2"))

*** I'm Bob2 **x

I have an hp calculator

* %k % Ilm BObZ * % %

I have an hp calculator

NIL

A final word about these examples. They all work because the specialized functions make calls to
their usual counterparts. Given the example of Bob1l, Doubly’s behavior would not have been
exhibited if Amanda’s say had not called usual-say. If we look at Bob1’s set of
frames—Amanda, Doubly, fourth-grader, and root—it becomes clear why. If
Amanda’s say did not call usual-say, the call to say would just stop inside Amanda. Any
function which does not call its usual counterpart cuts off the inheritance path. This can be
useful in some situations (for example, in implementing filters), but it can cause unexpected
behavior in others. (Don’t worry about calling usual-foo if there is no inherited version. Object
Lisp simply ignores such calls.)

Y
S
.

Object Lisp 3-9

Classes and Instances
In the examples above, the evolution of objects from fourth-grader through Amanda and

Doubly, to the Bobs was exploratory and somewhat haphazard, and does not show how a typical
object hierarchy would be set up in a program.

When using objects there is usually a distinction made between classes and instances. Object
Lisp does not enforce this distinction; you are free to create and modify objects incrementally, as
we did above. This is very useful when learning, and when prototyping a system. However, in
production work the class/instance paradigm often leads to more organized programs.

A class describes a type of object. For example, you could have a class of spreadsheet windows.
From this class, multiple instances can be created; you might want to have many spreadsheet
windows on the screen at once. It is normal for the class to contain procedures (i.e. behavior),
while instances contain instance variables (i.e. data) for maintaining the individual state of the
instance. In the spreadsheet example, the class would contain the code for entering information
and performing calculations, while each instance would have unique instance variables holding the
contents of the cells, screen position, etc. '

All objects, both classes and instances, are normally created from classes. You would not typically
create a new object based on an instance. In general, classes are created at the start of a program,
and instances are created for use during the course of a program.

Initializing Instances and the exist Procedure

In creating object instances, it is usually necessary to perform some initialization. The initialization
may give the new instance its own bindings for instance variables and set these variables to initial
values; it also may create more complex data structures which need to be owned by the instance.

For example, each instance of the spreadsheet window class will need to be associated with its
own spreadsheet data, and with its own window on the screen. In this case, the initialization of an
instance would involve creating a window and some instance variable bindings and filling the
instance variables with initial data. These variables cannot be stored in the class, because then
there would be no difference between one spreadsheet and another. Each instance must have its
own bindings for the instance variables, and must have its own window. These bindings are
created by asking each instance to have the variables. This process should occur when the
instance is initialized.

Object Lisp provides a standard protocol for initializing instances. This is the exist procedure.
Any initialization common to all instances of a class should be performed by exist. As stated
above, this initialization usually involves giving the instance its own bindings of variables, and
perhaps setting these bindings to initial values.

The function oneof is supplied to.facilitate the creation of instances. oneof does two things.
First it calls kindof, creating a new object, and then it asks the new object to exist. It then
returns the newly created and initialized object. In general, most exist procedures will call

usual-exist; this guarantees that no inherited steps in the initialization process are left out.

By convention, exist takes a single argument, called an init-list. This argument, again by
convention, is a list of alternating keys and values. The keys are generally keywords, and the
values may be any Lisp data. The values are extracted from the init-list with the Common Lisp
function get £ (for this reason, init-lists should always have an even number of elements). When

3-10 Allegro CL

calling usual-exist, the init-list or a modified version of the init-list is generally passed as an
argument.

exist is simply an object-function that can be defined for a class. When instances are created s
from a class, the exist procedure will be run. Because the object is new, and doesn’t have its
own exist procedure, it will naturally run the one it inherits from its class.

? (defobfun (exist fourth-grader) (init~-list)
(have 'nick-name (getf init-list :nick-name "Anonymous"))
(have 'age (getf init-list :age 10)))

EXIST

?

When we create new instances of fourth-grader with oneof, they will be initialized to have
a name and age instance variable (note that oneof takes a rest argument, which it passes to
exist as alist.)

? (setq franklin (oneof fourth-grader

inick-name "frankie" :age 11))
<object #476, a #322>
? (ask franklin (print nick-name) (print age) (terpri))

"frankie"

11

nil

? (setq bettina (oneof fourth-grader :nick-name "betsy")) o
<object #481, a #322> SN
? (ask bettina (print nick-name) (print age) (terpri)) R
"betsy"

10 ;betsy gets the default age

nil

?

Advanced Topic: Objects and Scoping

This section discusses scoping in objects, especially cases where objects need to communicate the
values of their instance variables to other object. You may want to skip it until you have some
experience with programming in Object Lisp.

When you ask an object to evaluate an expression, the expression is evaluated in the environment
of the object being asked, not in the environment of the asking object. This means that variable
references inside the expression will generally refer to bindings within the object being asked. The
following example shows a common scoping difficulty which occurs when one object asks another
object to do something.

? (setq ob-1 (kindof))

#<Object #500, a generic object>

? (ask ob-1 (have 'x-var 10))

10

? (ask ob-1 x-var)

10 .

? (setq ob-2 (kindof)) (
A

Object Lisp 3-11

#<Object #501, a generic object>

? (ask ob-2 (have 'y-var 20))

20

? (ask ob-1 (ask ob-2 (+ x-var y-var)))
> Error: Unbound variable: X-VAR .

> While executing: SYMBOL-VALUE

The last line caused an error, because the reference to x-var was evaluated inside ob-2, and ob-
2 has no binding—its own or inherited—for x-var. To get around this problem, the last line
could be rewritten:

? (ask ob-1 (+ x-var (ask ob-2 y-var)))
30

A more insidious problem occurs when ob-2 does have a binding for x-var (or perhaps inherits
such a binding), but we want the reference to refer to ob-1’s binding of x-var.

? (ask ob-2 (have 'x-var 20))
20
? (ask ob-1 (ask ob-2 (+ x-var y-var)))

40
?

This situation does not signal an error, but gives incorrect results. The thing to keep in mind is that
variable look-ups always occur in the environment of the innermost ask. Again, the proper
functionality could be achieved by rewriting the last line

? (ask ob-1 (+ x-var (ask ob-2 y-var)))

30

?

Object Variables and Lexical Variables

The solutions given above are usable because the function + is defined in both both ob-1 and

ob-2. A more difficult situation arises when ob-1 wants to pass a value to be acted upon by a
function defined in object-2. Of course, it is possible to write

(ask ob-1
e e ;smiscellaneous code here
(ask ob-2 (frob (ask ob-1 x-var) y-var))
;frob is only defined in ob-2
.)

But this is somewhat ungainly. There is a better way of communicating the values of instances
variables between objects. The method relies upon the fact that lexical bindings take precedence
over object bindings, and they are always visible (unless, of course, they are shadowed by other
lexical bindings). Using lexical bindings, the above code could be rewritten

3-12 Allegro CL

(ask ob-1
(let ((my-x-var x-var)) o
e imiscellaneous code S
(ask ob-2 (frob my-x-var y-var)) ;lexical binding is accessible —
2))

Object bindings are only accessed for free references. If there is a lexical binding for a symbol,
that will be used.

? (ask ob-2 (have 'y-var 100))
Y-VAR
? (ask ob-2
(print (+ y-var 1))
(let ((y-var 200))
(+ y-var 1)))
101
201

?

-

Because of the lexical binding of y-var (from the let statement), ob-2’s object binding was not
used. This technique makes it possible for an object to pass the values of its instance variables to
another object. The giving object first binds the values to lexical variables, and then uses these in
the call to the receiving object. The giving object doesn’t need to worry about the possibility that
the receiving object has object variables with the same name. As an added benefit, lexical bindings
are accessed more quickly than object bindings.

Lexical bindings are established for arguments to functions, as well as by let statements.

? (defun lex-show (x1) e
(ask ob-1 (princ x1)) (terpri)
(ask ob-2 (princ x1)) (terpri))

LEX-SHOW

? (lex-show "xl1 is now referenced lexically")

x1l is now referenced lexically

X1l is now referenced lexically

NIL

?

Object Variables and Special Variables
Object variables have dynamic scope. For example:

? (setqg foo (kindof))

#<Object #507, a generic object>
? (ask foo (have 'bar 10))

10

? (defun baz (n) (+ n bar)

BAZ

? (baz 5)

> Error: Unbound variable: BAR
> While executing: BAZ

? (ask foo (baz 5))

15 d:

/

Object Lisp 3-13

The first call to baz fails because of the free reference to bar. However, the second call
succeeds, because the call was made inside foo. Inside foo, bar is bound, and the free
reference in baz uses this binding.

The dynamic nature of object variables introduces possible conflicts with special variables. For
this reason, an error will be signalled if a program attempts to use a variable as both a special
variable and an object variable.

Object Lisp Functions

In the functions below, which require objects as arguments, nil should be passed to indicate the
root object.

Creating and Initializing Objects

kindof &rest parents [Function)]
creates and returns a new object which inherits from parents. parents should all be objects. If no
parents are given, the new object will inherit from the root object.

oneof &optional parents arest key-val-pairs [Function)
creates and returns a new object using kindof£, and then asks the object to run exist with key-
val-pairs as the argument. parents should be either an object or a list of objects from which the

new object will inherit. If no arguments are passed to oneof, the new object will inherit from the
root object.

defobject name {parents}* [Macro]
creates a new object based on parents using kindof or remake-object (se€ below), binds the
new object to the global symbol name, and gives the new object an instance variable object -
name, whose value is the symbol name. The new object is consed onto the instance variable

object-children in any of the parents that were created with defobject. If no parents are
specified, then the new object will inherit from the root object.

If name is not currently globally bound to an object, the new object is created with kindof. If
name is currently globally bound to an object, then the new object is created with
remake-object. name is returned.

remake-object object &rest parents [Function]
remakes object, leaving its own frame intact, but making it inherit from parents, rather than the
objects from which it previously inherited. If no parents are given, the object will be made to
inherit directly from the root object. The new inheritance path is propagated to any objects which
inherit from object. exist is notcalled. The variables and functions owned by the object are not
affected.

exist init-list [Function]
exist is the function conventionally used to initialize new instance objects. exist is used to
give instance variables to a new instance and to perform other required initializations. exists
should generally call usual-exist (unless they have a specific reason for not doing so).
exist is called by oneof .

3-14 Allegro CL

init-list should be a list of alternating keys and values. The keys should be symbols or keywords.
init-list is used to specify the initial state of the new object. get £ can be used to conveniently
extract values from an init-list (for this reason, init-lists should always have an even number of
clements). init-list-default (described below) is also useful for manipulating init-lists.
Note that nothing is automatically done with an init-list. Each object must have a definition of
exist that performs actions appropriate to the contents of the init-list it receives.

init-list-default inir-list {key expression}* [Macro]
is used to add default values to an init-list.

init-list should be a list of alternating keys and values. For each key and expression, if key is a
member of init-list (using eq for comparison), then expression is not evaluated and init-list is
not altered; if key is not a member of init-list, then expression is evaluated, and result and key
are appended to init-list. The modification is not destructive; the resulting list is returned.

Communicating with Objects

ask object {form}+ [Macro]
evaluates forms inside object. It returns the value returned by the last form. Multiple value
returns are supported.

talkto &optional (objectnil) [Function]
changes the current object to object. If object is not specified, the root object is used. Future
evaluation will take place in object’s environment (until the execution of another talkto).
talkto should only be used from the top-level read-eval-print loop; inside programs, ask
should be used instead. talkto returns the previously current object. o~

Whenever the current object is not the root object, the listener question-mark prompt is preceded by
the current object’s number (from its object-1icense). This is done to remind you that forms
typed in are no longer evaluated in the global Lisp environment.

Managing Bindings and Definitions Inside Objects

defobfun (name [object]) lambda-list {declaration | doc-string}* {form}* [Macro]
defobfun name lambda-list {declaration | doc-string}* {form}*

is used to define and name a function within an object. It causes name to be bound in object to the
function (lambda lambda-list {declaration | doc-string}* {form}*) . Definitions of name in
other objects are not affected. Within the forms usual-name may be called. Such calls will
invoke the inherited version of name, i.e. the definition of name which would have been called
had there been no binding for name within object.

If object is not specified the parentheses surrounding name may be omitted; the definition will be
created in the root object

It is an error to defobfun a function which has previously been defined with de fun, and it is an
error to defun a function which has previously been defined with defobfun. In this way the
name-spaces of global and object-bound functions are kept separate.

C
A}
! |
| o

Object Lisp 3-15

symbol-value symbol [Function]
symbol-function symbol [Function)]
These Common Lisp functions are extended to work with the object system. Both functions work
properly with setf.

symbol-value returns the first accessible object binding or special binding of symbol. The
search will proceed up the inheritance path of the current object. If there is no object binding of
symbol, then the value of any special binding will be used.

symbol-function returns the first accessible object or global function binding of symbol. The
search will proceed up the inheritance path of the current object.

set symbol new-value [Function]
setq {symbol new-value}* [Special Form)
£set symbol function [Function]
£set-globally symbol function [Function]

set and setq are extended to work with the object system. set makes an assignment to the first
accessible object or special binding of symbol, using the same look-up algorithm as symbol-
value. If symbol is unbound, a global binding is created.

setq performs the same action as set, except that it takes any even number of arguments, does
not evaluate its symbols, and recognizes lexical bindings of its symbols (whereas set does not).

fset is analogous to set, except it affects the functional binding of symbol.

fset-globally always sets the global definition of symbol and makes it illegal to ever create an
object binding for it. It is analogous to proclaiming a variable special. defun uses fset-
globally.

The new-value or function is returned.

nfunction name lambda-expression [Special Form]
is equivalent to (function lambda-expression) , except that it lets the compiler and evaluator
associate name with the function. The name lets otherwise functions work with usual mechanism.
It is also used in the error system.

name must be a symbol; lambda-expression must be a lambda expression.

In the following example, we cannot call usual-double from an anonymous compiled
function. We have to call it from a compiled function with the name double.

? (defobject £foo0)

foo

? (defobfun (double foo) (x) (+ x x))
double

? (defobject bar £foo)

bar

? (defobfun (double bar) (x) (usual-double (+ x x)))
double
? (ask bar (double 1))

3-16 Allegro CL

4
? (ask bar (fset 'double #'(lambda (x) (usual-double x))))
#<An Anonymous Compiled Function>
? (ask bar (double 1))
> Error: Undefined function: usual-double .
> While executing: ask
? (ask bar (fset 'double

(nfunction double

(lambda (x) (usual-double x)))))

#<Compiled Function DOUBLE>
? (ask bar (double 1))

2
have symbol sopt ional value -[Function]
fhave symbol function [Function]

have creates a value binding for symbol in the current object and sets the binding to value (or
nil if value is not supplied). fhave creates a function binding for symbol in the current object
and sets it to function. value or function is returned. defobfun uses fhave.

makunbound symbol [Function]
fmakunbound symbol [Function]
These Common Lisp functions are extended to work in the object system. They will delete the
current object’s own value or function binding of symbol. Inherited bindings are not affected. If
the current object does not have its own value or function binding of symbol, no action is taken.
symbol is returned.

makunbound-all symbol [Function]
fmakunbound-all symbol [Function]
makunbound-all deletes all the value bindings of symbol, in any object including the root
object. fmakunbound-all performs the same operation on function bindings. These are very
?hangcrous operations. If used without care, they can delete necessary system bindings and crash

e system.

ownp symbol ' [Function]
fownp symbol [Function]
ownp returns t if symbol has a value binding in the current object (inherited bindings are
excluded); otherwise, it returns nil. fownp performs the same operation on function bindings.

boundp symbol [Function]
fboundp symbol [Function]
These functions are extended to work with the object system. boundp is true if symbol has a
value binding which is accessible from the current object. fboundp is true if symbol has a
function-binding which is accessible from the current object, or if it is a macro or a special form.
Inherited bindings are included. (Lexical bindings are, of course, not included).

£
S

Object Lisp 3-17

bound-anywhere-p symbol [Function]
fbound-anywhere-p symbol [Function]
bound-anywhere-p is true if symbol is bound anywhere in the system, otherwise it returns
nil. fbound-anywhere-p is true if symbol has a function binding anywhere in the system or
was ever defined inside an object, otherwise it returns nil. Note that unlike the Common Lisp
function fboundp, fbound-anywhere-p does not check for macro and special form

definitions. (These functions do not recognize lexical bindings; they only recognize object and
special bindings).

where symbol [Function]
fwhere symbol [Function]
where returns the object containing the first accessible value binding of symbol, or nil if symbol
has no currently accessible binding. fwhere returns the object containing the first accessible
function binding of symbol, or nil if symbol has no currently accessible function binding. The

look-up algorithm is the same as that used by symbol-value and symbol-function,
respectively.

Managing Objects

self [Function)
returns the current object. The returned value can, for example, be lexically bound, passed to
functions, or passed to objects.

typep thing specifier [Function)

extended to work with the object system if specifier is an object. typep returns t if thing inherits

from specifier, otherwise returns nil. (Note: this means that specifier must be an ancestor of
thing, not necessarily an immediate parent of thing).

typep is the one function which does not accept nil as a synonym for the root object. To find
out if thing is an object, specifier can be the symbol object (alternatively, use the function
objectp instead of t ypep).

If either thing or specifier is not an object, the normal rules for evaluating t ypep take place.

Examples:

? (typep *window* 'object)

T

? (typep *window* 'number)

NIL

? (typep *window* nil)

NIL ‘

? (typep (car (windows)) *window¥)
T

? (typep (front-window) *menu*)
NIL

? (typep (car (windows)) *stream¥*)
T

3-18 Allegro CL

objectp thing [Function]
returns non-nil if thing is an object, otherwise returns nil.

object-name [Instance Variable]
Every object created with defobject is given an instance variable object-name. The value
of object -name will be the symbol to which the new object is being bound. Objects created
with oneof and kindof may be given a binding of object -name explicitly. The system uses
object-name in the print representation of an object and its children. If a program binds or

alters ob ject -name, it should ensure that the new value can be easily displayed in the object’s
print representation.

object-children [Instance Variable)
This instance variable is maintained for objects created by defobject. It contains a list of
objects which have been created from the object with defobject. Objects created from the
object with kindof and oneof are not included on this list. (Note: because such children are

pointed to by their parents, the children will not be garbage-collected until the parents are garbage-
collected.)

object-parents object [Function)]
returns a list of object’s immediate parents. These are the objects which were passed to kindof,
oneof, defobject, or remake-object when object was created.

object-ancestors object [Function]
returns a list of object’s ancestors, i.e. its entire inheritance path. Duplicate references are
removed, so that the list returned is the one used when function and variable look-up takes place in
object.

print-self &optional stream [Function]
is used to print objects. The print representation of an object will vary, depending on whether the
object has an object-name, and whether its parent(s) have object -names. The print
representation is not readable. If stream is not specified, the object will be printed to
standard-output. print-self may be shadowed.

In the unshadowed form of print-self, the format for print representations is:

#<object #n, [name,] a {parent-name-or-number, }*+>
Examples:

? (defobject fourth-grader)
FOURTH-GRADER

? fourth-grader :
#<object #45, FOURTH-GRADER, a generic-object>
? (setq foo (kindof))

#<object #47, a generic-object>

? (defobject Amanda fourth-grader)
AMANDA

2?2 amanda

#<object #50, AMANDA, a fourth-grader>
? (defobject Herbert £foo)

HERBERT

\,

A

Object Lisp 3-19

? herbert

#<object #51, HERBERT, a #47>

? (setq bar (kindof foo0))

#<object #53, a #47>

? (defobject baz Herbert £foo0)

BAZ

? baz

#<object #54, baz, a Herbert, #47>

? (setq bim (kindof foo Herbert))
#<object #55, a #49, HERBERT>

? (ask foo (have 'object-name "foobird"))
"foobird"

? foo

#<object #49, "foobird", a generic-object>
? baz

#<object #54, BAZ, a "foobird", HERBERT>

object-license object [Function]
returns object’s license number. Whenever an object is created, it is given a object-1license.
object-1licenses are integers, generated sequentially by the Lisp operating system (though
there may appear to be gaps in the numbers due to objects generated by the run time system).
object-1licenses are used in print representations, and are sometimes useful for interactive
debugging. Programs should not depend on them, because they will almost certainly change from
one programming session to another.

The object-1license of the root object is 0.

license-to-object integer [Function)
returns the object whose object-1license is integer, or nil if no such object exists. This
function should be used for single-session debugging only.

next-license-to-object integer [Function]
returns the object with the smallest object-1icense greater than integer, or nil if no such
object exists.

highest-license-number [Function]
returns the highest object-1license used by the system so far.

do-all-objects (var result-form) {form}* [Macro]
goes through all existing objects, evaluating forms with var bound to each object in turn. When all
of the objects have been gone through, result-form is evaluated and its result is returned. While
result-form is being evaluated, var is bound to nil. Objects created during the evaluation of
forms may or may not be included in the iteration.

Example:

; ;who-fowns returns a list of all the objects which have their
;; own definition of a given function

3-20 Allegro CL

(defun who-fowns (sym &aux return-list)
(do-all-objects (ob) £
(when (ask ob (fownp sym)) N
(push ob return-list)))
return-list)

? (who-fowns 'window-close)

(#<Object #164, ccl::*step-fred-window*, a *fred-window*>

#<Object #84, a *dialog*>

#<Object #82, a *dialog*>

#<Object #68, *dialog*, a *window*>

#<Object #10, ccl::*da-window*, a *window*>

#<Object #9, ccl::*listener*, a #2,
ccl::*selection-stream*,
fred-window>

#<Object #8, *fred-window*, a *window*>

#<Object #7, *window*, a *stream*>)

do-object-variables (var object result-form) {form}+ [Macro]
goes through all the variables owned by object, evaluating forms with var bound to the name of
each variable in turn. When all the variables have been gone through, result-form is evaluated and
its result is returned. While result-form is being evaluated, var is bound to nil. The effect of
creating or removing bindings during the evaluation of forms is undefined.

do-object-functions (var object result-form) {form}+ [Macro]

goes through all the functions owned by object, evaluating forms with var bound to the name of

each function in turn. When all the variables have been gone through, result-form is evaluated and O
its result is returned. While result-form is being evaluated, var is bound to nil. The effect of S
creating or removing bindings during the evaluation of forms is undefined.

Macintosh Basics

Overview

Points

Font Specs
Turnkey Dialogs
Miscellaneous

Macintosh Basics

Overview

This chapter describes some data formats and functions used in Allegro CL’s implementation of

Macintosh features, points and font-specs. It also describes some turnkey dialogs built into the
Allegro CL system.

Points

Points are used throughout Allegro CL for representing two-dimensional data. The most common
use of points is in graphics operations which require a width and height (e.g. the size of a
window), or a horizontal and vertical coordinate (e.g. the position of a dialog-item within a
dialog). -

2-dimensional points are often stored in 31-bit fixnums. This is known as the “encoded form.”
The low-order 16 bits correspond to the horizontal dimension, and the high-order 15 bits
correspond to the vertical dimension. Both dimensions are signed This representation makes point
manipulation very efficient; creating points does not cons, and eq can be used to compare points
(in Allegro CL, eq can be used to compare fixnums).

Many functions which take a point as an argument can take it as two coordinates (h and v) ora
single fixnum holding both coordinates. If a function takes more than one point , or has optional
arguments, the points must all be passed in encoded form. Points are always returned as a single
encoded fixnum.

The reader macro #@ converts the subsequent list of two fixnums into a point. This can be used
for clarity in source code and for efficiency. For example #@ (30 -100) expands into
-6553570 a fixnum that represents the point with horizontal coordinate 30 and vertical
coordinate -100.

point-string point [Function]
returns a string representation of point.

? (point-string 4194336)
"$@(64 32)"

point-h point [Function)
returns the h-coordinate of point.

? (point-h 2097184)
32

point-v point [Function]
returns the v-coordinate of point.

? (point-v 4194336)
32

4-2 Allegro CL

make-point h v [Function)
returns a point constructed from horizontal and vertical coordinates hand v. If vis nil, A is

assumed to be a point, and is returned unaltered. make-point signals an error if 4 and v are not
fixnums (or nil for v).

add-points point-1 point-2 [Function)]
returns a point that is the result of adding point-1 and point-2. (Points cannot be added with the
generic addition function because of possible overflow between the low and high words).

subtract-points point-1 point-2 [Function]
returns a point that is the result of subtracting point-2 from point-1. (Points cannot be subtracted

with the generic subtraction function because of possible overflow between the low and high
words).

Font Specs

Font information is given in the form of font-specs. A font spec is an atom or list of atoms givihg
the font-name and/or font-size and/or font-styles and/or transfer-mode.

The font-name is a string. It should correspond to a font available in the system file. You can find

out which fonts are available by examining the variable *font-1ist*. Font names are not case
sensitive.

The font-size is a fixnum in the range 1-127.

The font-style is one or more of the following style keywords: :plain, :bold, :italic,
:underline, :outline, :shadow, :condense, :extend. These keywords are the keys
in an association list in the global variable *style-alist*.

The transfer-mode should be one of the following transfer-mode keywords: :srcCopy,
:srcOr, :srcXor, :srcBic, :srcPatCopy, :srcPatOr, :srcPatXor,
:srcPatBic. (See the pen-mode section in the addendum on Quickdraw for a description of the
transfer modes). These keywords appear in the global variable *pen-modes*.

An error will be signalled if more than one name, more than one size, or more than one transfer
mode are given in a single font-spec. Multiple font-styles are allowed.

The following are examples of legal font-specs:

"New York"

"nEw YOrk"

(3 "Monaco")

("Monaco" :extend :shadow 57 :srcpatcopy)
:srccopy

:outline

(12 :sxccopy)

font-list [Variable)
a list of all the fonts installed in the current Macintosh operating system.

/ £

Macintosh Basics 4-3

real-font &optional font-spec [Function)
returns t if fonr-spec corresponds to a font/font-size that actually exists in the system (i.e. is not a
calculated font). The font-styles and transfer mode are not significant. If fonr-spec is not

supplied, the font-spec of the current window object (if any) is used, otherwise the font-spec of the
current grafport is used.

string-width string soptional font-spec [Function)
returns the width in pixels of szring, as if it were displayed using the font, size and style of fon:-

spec. If font-spec is not supplied, the font-spec of the current window object (if any) is used,
otherwise the font-spec of the current grafport is used.

font-info &optional font-spec " [Function]
returns four values that represent the ascent, descent, widmax, and leading in pixels of font-spec.
The ascent is distance from the baseline to the top of the font, descent is the distance from the
baseline to the bottom of the font, widmax is the maximum width for characters in the font, and the
leading is the suggested spacing between lines. Only the font and font-size are used in the
calculation. The font-styles and transfer mode are not significant. If font-spec is not supplied, the

font-spec of the current window object (if any) is used, otherwise the font-spec of the current
grafport is used.

Turnkey Dialogs

Allegro CL provides four pre-designed dialogs for use by applications. For instructions on how to
customize or make more complex dialogs, see the chapter Dialogs.

For all of the following dialogs, choosing Cancel causes a throw to : cancel. This throw may be
caught by user code, otherwise it will cause a return to top-level, or if it occurs within event-
processing, the execution of the interrupted program will continue.

message-dialog message &optional position size [Function]
displays a dialog box holding the message, with a single button containing the text OK. The
function will return when the user clicks OK. An optional position and size may be specified.

y-or-n-dialog &rest format-args [Function]
puts up the standard Macintosh Yes, No, Cancel dialog. The message displayed in the dialog will
be a string resulting from applying format to format-args. If the user clicks Yes, t is returned;
if No, nil is returned; if Cancel, the dialog throws to : cancel.

get-string-from-user &optional message initial-string [Function]
ok-string cancel-string
position size
prompts the user for a string, which it returns. The dialog will display the string message as the
message in the dialog. initial-string can specify the default string in the editable-text item of the
dialog. ok-string and cancel-string specify the text to be placed in the ok and cancel buttons.
position and size may be used to set the position and size of the dialog.

If the user clicks OK, the contents of the editable-text are returned. If the user clicks Cancel, a
throw to :cancel is performed.

4-4 Allegro CL

choose-font-dialog &optional font-spec [Function]

displays a dialog showing available fonts, sizes and styles. If the user clicks OK, the chosen font

information is returned as a font-spec. If the user clicks Cancel, a throw to :cancel is A
performed. N

Jont-spec may be given as an argument to set the initial values displayed when the dialog appears.
For example, when setting the font of a window, the choose-font dialog should reflect the font,
size, and style currently being used by the window.

Miscellaneous

ed-beep [Function)]
makes a short beeping sound, often used by the Macintosh to issue warnings. ed-beep can also
be useful when running diagnostics (i.e., if it beeps, you know that part of the got executed).

Menus

Overview
Menubars
Menus
Menu-items

e

Y

S

Menus

Overview
The standard Macintosh user interface displays a menubar at the top of the screen. The menubar
displays the titles of several menus. When the user clicks on a menu title, the menu pulls down,

displaying the titles of its menu-items. The user can then move the mouse to select one of the
menu-items.

In Allegro CL menus and menu-items are objects. A menubar is simply a list of menus. You can
maintain several such lists, but only one will be the current menubar. Only the current menubar is
displayed and useable.

- A menu object is created from the class *menu*. A menu will not be displayed (and will therefore

be unusable) until it is added to the current menubar with the function menu-install. Once
installed, a menu will appear in the current menubar until it is de-installed. The menu-title may be
changed, and menu—items may be added or removed regardless of whether the menu is installed.
Menus may also be disabled; an installed disabled menu appears grayed-out and its items cannot
be selected.

A menu-item has five characteristics. These are the title (used for displaying the menu-item when
its menu is pulled down), the keyboard equivalent for the menu-item (if any), the font-style to be
used in displaying the menu-item title, whether the menu-item has a check mark (or other character)
next to it when it is displayed, and whether the menu-item is enabled or disabled (disabled menu-
items are displayed grayed-out and cannot be selected).

Most menu-items have a definition for the object function menu-item-action. This object
function is called whenever the user selects the menu-item. Menu-items may also have definition

- for the object function menu-item-update. menu-item-update is called for every menu-

item when the user clicks in the menubar or types a keyboard equivalent.
menu-item-update functions let menu-items adjust to program context (for example, the
Save menu-item is only enabled when the top window is an editor buffer which has been
modified). The usual menu-item-update does nothing.

If a menu-item has the keyboard equivalent <x>, then the menu-item’s action may be invoked by
typing command-<x>. In Emacs mode, command-<x> is typed as clover-shift-<x>. In
Macintosh mode, command-<x> is typed as clover-<x>. For a complete description of Emacs and
Macintosh modes, see the chapter on Getting Started.

It is often desirable to separate menu-items within a menu into groups. This is done by placing a
dotted line between the groups of items. A menu-item whose title is the string "~ will appear as
a dotted line which cannot be selected.

Whenever a menu-item is selected by the user (either by mousing a menu or using a keyboard
equivalent) the current program is interrupted and the menu-item’s definition of menu-item-
action is run. The result of the function is not used. When the function returns, normal
program operation resumes.

During the execution of menu-item-action, event interaction is disabled. If a menu-item is
used to initiate a program, the program should be inserted into the normal read/eval/print loop with
eval-enqueue. This will allow event processing during program execution.

5-2

Allegro CL

Many menu-items perform their actions on the front window. Such actions can find the front

window with the front-window function (see chapter Windows for details).

Menubars

menubar

set-menubar new-menubar

menubar returns the current menubar (i.e. a list of all the installed menus).

[Function)
[Function)

set-menubar installs a new menubar. new-menubar should be a list of menus. All the
currently installed menus are asked to de-install, and each of the menus in new-menubar is
asked to install. new-menubar may be nil, in which case the menubar is simply cleared.

Example:

? (setq foo (menubar))

(#<Object
#<Object
#<Object
#<Object
#<Object
#<Object

? (set-menubar

(#<Object

#<Object #180,

#15,
#18,
#29,
#42,
#48,
#60,

#15,

? (menubar)
(#<Object #15, "®", a *menu*>

#<Object #180,

"®", a *menu*>
"File", a *menu*>
"Edit", a *menu*>
"Eval", a *menu*>
"Tools", a *menu*>
"Windows", a *menu*>)

(list (car foo) calc-menu))

"‘ ", a *menu*>

"Calculate", a *menu*>)

"Calculate"”, a *menu*>)

default-menubar
the default menubar. This is the menubar which appears when you begin a Allegro CL session. It
may be installed using set-menubar if you want to get a fresh start after hacking things up.

Example:

? (set-menubar

(#<Object
#<Object
#<Object
#<Object
#<Object
#<Object

find-menu string
returns the first installed menu that has string as its title.

Example:

#15,
#18,
#29,
#42,
#48,
#60,

default-menubar)
""’, a *menu*>
"File", a *menu*>
"Edit", a *menu*>
"Eval”, a *menu*>
"Tools", a *menu*>
"Windows", a *menu*>)

? (find-menu "File")
#<Object #18,

"File", a *menu*>

[Variable]

[Function)

Menus 5-3

Menus

menus [Function)
returns a list of all existing menu objects, including those which are not currently installed.

menu [Variable]
the menu class, used for creating new menus.

exist init-list [Menu Function)]
initializes the menu so that menu-items can be added to it and so that it can be installed. exist
does not add the menu to the menu-bar. This must be done by asking the menu to menu-
install.

keyword default , meanin
:menu-title.............. string "Untitled"...cocoomun. the title of the menu.
imenu-items.............. list......... O I list of items to be added to the

newly created menu.

Example:

? (setq foo-menu (oneof *menu* :menu-title "Foo"))

#<Object #187, "Foo", a *menu*>

? (ask foo-menu (menu-title))

"FOO"

? (ask foo-menu (menu-installed-p)) ;Hasn’t yet been installed

NIL in the menubar.

menu-install [Menu Function)]
menu-deinstall [Menu Function)
menu-installed-p [Menu Function]

menu-install adds the menu to the menubar, at the rightmost position. From this point (until
it is deinstalled), it will be useable.

menu-deinstall removes a menu from the menubar. It still exists, so it retains its state and
may be re-installed.

menu-installed-p returns non-nil if the menu is installed, nil if the menu is not installed.

menu-dispose [Menu Function)
retires the menu and reclaims its storage. If it is installed, it will first be asked to deinstall.
menu-dispose returns t. Once a menu is disposed of, its state is lost. To do anything more
with it, you must first ask it to exist again.

menu-title [Menu Function)
set-menu-title new-title [Menu Function]
menu-title returns the menu’s title as a string.

set-menu-title sets the menu’s title to new-ritle, which should be a string. If the menu is
installed , the change in title will be immediately reflected in the menubar. new-ritle is returned.

Example:

? (ask foo-menu (menu-title))

NFOO"

? (ask foo-menu (set-menu-title "Bar"))
"Bar"

5-4 Allegro CL

? (ask my-menu (menu-title))

" B ar ”n

menu-disable [Menu Function)
menu-enable [Menu Function)
menu-enabled-p [Menu Function]

menu-disable dims out a menu. Its items may still be viewed, but they cannot be selected.

The menu and its items will appear in grayed out text. menu~-disable has no effect if the menu
was already disabled.

menu-enable undims a menu, making it possible to use its items (provided it is installed).
menu-enable has no effect if the menu was already enabled.
menu-enabled-p returns non-nil if the menu is enabled, or ni1 if the menu is disabled.

add-menu-items &rest menu-items [Menu Function)
appends menu-items to the menu. They will be added to the bottom of the menu in the order they
are specified. nil is returned. ‘

Example:
? (ask foo-menu (add-menu-items
(oneof *menu-item*
‘menu-item-title "Beep"
:menu-item-action '(ed-beep))
(oneof *menu-item*
:menu-item-title "Say Hello"
:menu-item-action '(print "Hello"))))

NIL

remove-menu-items &rest menu-items [Menu Function)
removes menu-items from the menu. The menu-items may later be re-installed, or may be

installed in other menus. nil is returned. It is not an error to attempt to remove an item that is not
in the menu.

menu-items &optional (menu-item-class *menu-item*) [Menu Function]
menu-items returns a list of the menu-items currently installed in the menu. Only those menu-
items which inherit from menu-item-class are included in the list that is returned. The menu-items
are in the same order in which they appear in the menu.

Example:

? (ask foo-menu (menu-items))

(#<Object #190, "Beep", a *menu-item*>
#<Object #191, "Say Hello", a *menu-item*>)

find-menu-item string ' [Menu Function]
Returns the first menu-item in the menu whose title is string. If no menu-items in the menu have
string for a title, nil is returned.

menu-update [Menu Function)]
This procedure is called whenever the user clicks in the menubar. The usual menu-update
simply asks all the of menu’s menu-items to menu-item-update. This facility is provided so
that menus and menu-items can adjust to the current program context before they are displayed (for
example, by checking, unchecking, enabling or disabling, or adding or removing items).

P

N~

"keyword

Menus 5-5

menu-update may be shadowed, but should not normally be called by the user. (It is called by
the Lisp run-time system).

Menu-items

menu-item [Variable]
the menu-item class. This is used for creating menu-items.

exist init-list ' [Menu-item Function]
initializes the menu-item so that it may be installed in a menu.

default -

:menu-item-title..... string "Untitled".....the title of the menu-item.
:command-Key charinil...nil....eiiieeennn. if nil, then the menu-item will have no
command-key equivalent. If a
character, then that character will be the
menu-item’s command-key equivalent.
:menu-item-action...thing () vereeeeeenrannnnnns used to define menu-item-action,
i.e. the action run when the menu-item
is selected. thing may be a function, a
symbol with a function binding, or a
form. If it is a form, it will be used as
the body of a defobfun.
:disabled....cccouninnenns boolean....nil.......uveeueenne. if non-ni1, the menu-item will be
disabled.

Example:
? (setq Quux (oneof *menu-item*
:menu-item-title "Quux"
:menu-item-action #'(lambda ()
(ed-beep)
(print "I beeped!"))))
#<Object #203, "Quux", a *menu-item*>
[

menu-item-action [Menu-item Function]
this function is called whenever the user selects the menu-item with the mouse or through the
command-key equivalent. The usual version does nothing. This function should generally be
shadowed by each menu-item. It is responsible for actually doing whatever the menu-item is
supposed to do.

menu-item-title [Menu-item Function]
set-menu-item-title new-title [Menu-item Function]
menu-item—-title returns the menu-item’s title (a string).

set-menu-item-tit le sets the menu-item’s title to string and returns string.

If a menu-item’s title is " =", then the menu-item will be an unselectable dotted line. Such items
are useful for separating sets of items in a menu.

5-6 Allegro CL

Example:

? (ask Quux (menu-item-title))

"Quux"

? (ask Quux (set-menu-item-title "Baz"))

"Baz ”

? (ask foo (menu-item-title))

"Baz ”

command-key [Menu-item Function]
set-command-key char [Menu-item Function]

command-key returns the menu-item’s keyboard equivalent. If the menu-item does not have a
command-key equivalent, nil is returned.

set-command-key sets the menu-item’s keyboard equivalent to char, which should be a
character.

menu-item-disable [Menu-item Function)
menu-item-enable [Menu-item Function]
menu-item-enabled-p [Menu-item Function]

menu-item-disable disables a menu-item. It will be grayed-out, and the user will not be able
to select it (with the mouse or its command-key equivalent). menu-item-disable has no
effect if the menu-item is already disabled.

menu-item-enable enables a menu-item. The user will be able to select it.
menu-item-enable has no effect if the menu-item is already enabled.

menu-item-enabled-p returns non-nil if the menu-item is enabled, or ni1 if the menu-item
is disabled.

menu-item-check-mark [Menu-item Function]
set-menu-item-check-mark new-mark [Menu-item Function]
menu-item-check-mark returns the character which is currently used to check the menu-item,
or nil if the item is not currently checked.

set-menu-item-check-mark sets the check-mark of the menu-item. If new-mark is nil,
then the item will be unchecked. If it is t, then the item will be checked with a standard check-
mark symbol (V). If it is a character or ascii value, then the appropriate character will be used as a
check-mark next to the menu-item. new-mark is returned. (Note, the check-mark character has
the reader macro #\checkmark.)

(See example below).

menu-item-style [Menu-item Function)]
set-menu-item-style new-styles [Menu-item Function]
menu-item-style returns a single keyword or list of keywords representing the menu-item’s
style.)

new-styles should be a keyword or list of keywords. Allowable keywords are :plain, :bold,
:italic,:shadow, :outline, sunderline, :condense, and :extend. :plain indicates
the absence of other styles.

menu-item-update [Menu-item Function)]
menu-item-update is called by menu-update whenever the user clicks in the menubar. The
pre-defined menu-item-update does nothing, but may be shadowed to let menu-items adjust

/{« ;\%z
l‘k/’f' :

-
N

Ve \

{./

;

Menus 5-7

to the current program context. (for example, by checking, unchecking, disabling, or enabling

themselves.) It is not normally called by the user. The value returned by menu-item-update
is not normally used.

Example:
(defobfun (menu-item-update Quux) ()
(if (= *time-zone* 5)
(set-menu-item-check-mark t)
(set-menu-item-check-mark nil)))

Quux will be checked if Allegro CL is running in the same time zone as Cambridge,
Massachusetts.

5-8

Allegro CL

W

Windows

Overview

Window Functions and Variables
Supporting Undo

Supporting Save and Save As...

S

6-1

Windows

Overview

Windows are the primary method for doing screen-related I/O. Information is displayed in
windows, and the user edits, alters, and enters information by mousing windows, typing, etc.
Events (such as keystrokes) are generally handled by the top window (see the Events chapter for
details). The most commonly used windows are subclasses of *window*, Fred windows and
dialog windows, which add important behavior. This chapter describes only the primitive
superclass from which other windows inherit. All the commands described in this chapter can,
however, be applied to the subclasses.

For information on drawing into windows, see the Quickdraw appendix.

For information on the size, resolution, and other physical characteristics of the display, see the
System Parameters appendix.

Window Functions and Variables

window . [Variable]
the window class. Windows inherit from *stream*.

windows &optional (class *window*) (only-visible-p t) [Function]
returns a list of existing windows which inherit from class. They are listed in order from front to
back. If only-visible-p is nil, then invisible windows are included in the list; otherwise only
visible windows are included.

front-window &optional (window-class *window*) [Function]
(only-visible-p t)

returns the front-most window satisfying the arguments. The window must inherit from window-

class, and if only-visible-p is t, then only visible windows qualify. If no windows satisfy the

tests, nil is returned.

find-window string [Function)]

returns the front-most window whose title is szring. If no window has string as its title, nil is
returned. (Note: the cross which appears in the title bar of modified Fred windows is ignored).

exist init-list [Window Function)
initializes a window instance.

keyword default

:window-title....... string "Untitled"...... initial title of window is string. Only
some types of windows display their
titles.

:window-position.point #@ (6 44)......... initial position of window is point.

:window-size point #@ (502 150)initial size of the window is x and y
dimensions of point.

:window-show........ boolean....... B ererereeeeeenenenens determines whether the window is
visible when created.

:window-font font-spec..... ("monaco" 9) ..the font-spec used by the window.

6-2 Allegro CL

:window-layer....... integer....... Oueneens eeeereneene determines the plane in which the new
window will be created (see
set-window-layer for details).

:window-type......... type-key :document-with-zoom

sets the window type according to
type-key. type-key should be one of
:document, :document-with-
grow, :document-with-zoom,
:double-edge-box, :single-
edge-box, : shadow-edge-box,
or :tool (see diagram below). The
window type cannot be modified once
the window is created.

:close-box-p......... boolean....... | OO determines whether the window has a
close box. This feature cannot be
modified once the window is created.
It is only available on : document,
rdocument-with-grow,
:document-with-zoom, and
:tool windows.

close-box

window-title
zoom-box

L=
Im&\

My Window

/"

origin

grow-box

Windows 6-3

| Title | Title Title EO= Titie =051
B [
:document :document with :document-with-grow :document-with-zoom
close-box without close-box with close-box
:double-edge-box :single-edge-box :shadow-edge-box :tool with
close-box
Example
7?7 (setq baz (oneof *window* :window-title "Bazwin"

:window-position #@ (200 300)
:window-type :tool))
#<Object #206, "Bazwin", a *window*>

window-close [Window Function]
removes the window from the screen and reclaims the memory it uses. This operation is the
inverse of exist. The window may be asked to exist again but its state will be lost. If the
window is active when it is closed, window-deactivate is called first. It is an error to call
window-close a second time, without first calling exist. window-close is called by the
Allegro CL event system when the user clicks in a window’s close-box.

You can tell if a window has been closed (or has not yet been asked to exist) by seeing if the
window has a binding for the variable wpt r.

Example:

? (ask baz (window-title))

"Bazwin"

? (ask baz (ownp 'wptr))

t ;the window has a binding of wptr

? (ask baz (window~close))

NIL . ;the window disappears from screen
? (ask baz (ownp 'wptr)) ~

NIL ;now closed, so no binding of wptr
? (ask baz (exist))

NIL ;the window reappears,

? (ask baz (window-title))
"Generic Window" sbut with default state

6-4 Allegro CL

window-position [Window Function)
set-window-position h &optional (v nil) [Window Function)
window-position returns the position of the window’s origin (i.e. the upper-left comer of the
window’s content region), in global screen coordinates. The position is returned as a point.

set-window-position moves the window. If both 4 and v are give, they should be the new
horizontal and vertical coordinates of the window. If vis nil, A is taken to be an encoded point
holding both dimensions. The new position is returned as a point.

Example:
? (setq bim (oneof *window* :window-position #@ (50 50)))

#<Object #208, "Untitled", a *window*>
? (ask bim (point-string (window-position)))

#Q@ (50 50)
window-size [Window Function]
set-window-size h &optional (v nil) [Window Function]

window-size returns the window’s size as a point.

set-window-size sets the size of the window. The upper-left corner of the window will be
anchored, and the lower-right corner will move according to the new size. If both 4 and v are
given, they should be the new horizontal and vertical dimensions of the window. If vis nil, & is
taken to be an encoded point holding both dimensions. The new size is returned as a point.

window-zoom-position [Window Variable]
window-zoom-size [Window Variable]
These variables determine the size and position of a window when it is zoomed out. Initially,
windows use inherited bindings for these values. The inherited bindings may be changed, or
particular classes or instances may be given their own bindings. window-zoom-position

defaults to the upper-left corner of the screen, and window-zoom-size defaults to the full size
of the screen.

window-title [Window Function)
set-window-title new-title [Window Function]
window-title returns the window’s title as a string.

set-window-title sets the window’s title to new-title.

Both functions ignore the crosses in the title-bars of modified Fred windows.

window-font [Window Function)
set-window-£font font-spec [Window Function)
window-font returns the font-spec used for drawing text into the window.
set-window-font sets the window’s font-spec to font-spec.

Example
? (ask bim (set-window-font ' ("helvetica" 10)))
#<A MAC Pointer 10371E>

Windows 6-5

window-show [Window Function)
window-hide [Window Function]
window-shown-p [Window Function]

window-show makes a window visible on the screen (assuming it is not at an off-screen
position). window-hide makes the window invisible. window-shown-p returns nil if the
window is currently hidden, and otherwise returns non-nil.

window-layer &optional (class *window*) [Window Function]
(only-visible-p t)
set-window-layer number &optional (class *window*) [Window Function]

(only-visible-p t)
window-layer returns the number of windows in front of the current window. Only windows
of the specified class are counted. If only-visible-p is non-nil, then only visible windows are
counted.
set-window-1layer changes a window’s layer to number, which should be a non-negative
integer. number indicates how many windows should be in front of the window. If number is
greater than the number of windows, the window will be moved all the way to the back. class and
only-visible-p have the same meaning as for window-layer.

window-select [Window Function)
makes the window the front window, draws its controls, and makes it the recipient of future
non-window-specific events (See the Events chapter for details), and shows it if it is hidden.

The window which was previously the front window is deactivated.

wptr [Window Variable]
holds the pointer to the window record on the Macintosh heap. It can be used for directly
examining the window record or for passing a window-pointer to Macintosh traps.

You can test to see if a window has been asked to exist, and has not been asked to
window-close, by seeing if it has a binding for wptr.

with-port grafport {form}™ [Macro]
executes the forms with grafport as the current grafport. The forms usually include low-level

toolbox traps. Upon exit, the previously current grafport is restored. grafport is usually the wpt r
of a window. '

This macro is not needed when using the high-level Quickdraw calls described in the Quickdraw
chapter. It is only used when calling Quickdraw traps directly for maximum efficiency.

Supporting Undo

Any window can support an undo feature in conjunction with the Undo menu-item. Fred
windows have a special mechanism for supporting undo, which is described in the chapter
Programming Fred. The following general mechanism can be used by any window.

undo [Window Function]
If a window has a function binding for the symbol undo—but doesn’t have a function binding for
window-can-undo-p—then when the window is on top, the Undo menu-item will be enabled.
If the window also has a function binding for window-can-undo-p, then the Undo menu-item
will only be enabled if window-can-undo-p returns non-nil.

The undo function will be called when the Undo menu-item is selected.

6-6 Allegro CL

window-can-undo-p [Window Function]
If a window has an undo function, it may also have window-can-undo-p function. If it does,
then the Undo menu-item will only be enabled when calls to window-can-undo-p return non-
nil. '

window-can-undo-p can also have the sneaky side-effect of changing the title of the Undo
menu-item (this menu-item is bound to the global variable *undo-menu-item*). The title
will automatically be changed back when another window is selected.

Supporting Save and Save As...

Any window can make use of the Save and Save As... menu-items on the file menu. To support
Save, the window should have a definition for the function window-save. To support

Save As..., the window should have a definition for the function window-save-as. In
addition, a window may have a definition for the function window-needs-saving-p, which
determines whether the Save menu-item is enabled when the window is on top.

window-save [Window Function]
called when the window is on top and the user selects the Save menu-item from the File menu. If
a window does not have (or inherit) a definition for this function, the Save menu-item will be
disabled when the window is on top.

window-save-as [Window Function]

called when the window is on top and the user selects the Save As... menu-item from the File
menu. If a window does not have (or inherit) a definition for this function, the Save As... menu-
item will be disabled when the window is on top.

window-needs-saving-p [Window Function)
if defined for a window that also has a definition for window-save, window-needs-
saving-p is used to determine whether the Save menu-item from the File menu should be
enabled. A window does not need to have a definition for this function; if it doesn’t (but does
have a definition for window-save) then the Save menu-item will always be enabled.
Otherwise, it will only be enabled if window-needs-saving-p returns non-nil.

S

Dialogs

Overview

Dialog Functions

Dialog Items

Specialized Dialog-items
Table-dialog-items
Specialized Table-dialog-items

7-1
Dialogs

Overview

A dialog is a specialized kind of window that contains dialog-items (which perform actions when
clicked by the user), text, and graphics. Dialog-items are implemented as objects; the available
classes are buttons, check-boxes, radio-buttons, static text, editable text, and tables. Each dialog-
item class inherits from the generic *dialog-item* class, so they share common capabilities.
They all have a position, size, text and action. They are also either enabled or disabled. Disabled
dialog-items usually appear grayed-out.

Because dialogs inherit from *window* they can perform all window operations. Some window
operations (such as window-show and set-window-position) are needed to use dialogs
effectively . See the chapter Windows for details of these operations.

static-text
editable-text

window-type
:double-edge-box

radio-buttons in a
cluster

[>
] *PRINT-PRETTY* *PRINT-LENGTH* |nil *PRINT-CRSE*
] *PRINT-RRRAY* *PRINT-LEVEL* O :UPCASE
[J *PRINT-CIRCLE* @ :DOWNCASE
[J *PRINT-STRUCTURE*| | "PRINT-BASE* O :CAPITALIZE
X] *PRINT-ESCRPE* *LINE-W IDTH* 55 |
X *PRINT-GENSYM* 0K
[0 *PRINT-RADIH*

static-text items Buttons

check-boxes Default
Button

A Modal Dialog Box

A dialog may be either modal or modeless . A modal dialog requires the user to exit the dialog
before any other user actions can be performed A message box with an OK button is an example
of a modal dialog. A modeless dialog allows active menus and the activation of other windows
without explicitly terminating the dialog interaction. The “search” dialog is an example of a
modeless dialog.

A dialog’s modality is not inherent in the dialog object, but is determined by how the dialog is used.
Any dialog object may be used as a modal or modeless dialog (although dialogs will normally be set
up to work as one or the other). In order not to confuse users, a particular dialog should only be
used in one way, as modal or modeless. Modal dialogs are usually created from window-type
:double-edge-box (and are therefore not movable and have no close-box, size-box, or title).
Modeless dialogs are usually created from window-type : document (and are therefore movable,
have a title, and may have a close-box). Modal dialogs should only be made from : document
windows when they must be movable.

7-2 Allegro CL

Title
R
/[ﬁﬂ% Defs in Buffer S==——==—===| Default Button - -
close-box ' e ————————
@® Buffer Order | Go To Def |
AO Alphabetical Order (Cancel) Buttons
radio-buttons -
in a cluster ||a@add-points
subtract-points | |
inval-dialog-item
exrist-default
with-clip-rect
dialog-item
(list :handle) ™~ table with
dialog vertical
H -3 scroll-bar and
"‘dlalog |te_m*) one selected
control-dialog-item cell
button-dialog-item
A Modeless Dialog Box
A modal dialog is activated by calling the function modal-dialog with a dialog object as the e

argument. The dialog will be shown (an error will be signalled if the dialog is already shown), and
made the front window. All subsequent user events will be processed by the dialog, illegal events
will produce a beep and legal events will trigger the action of the appropriate dialog-item. The
dialog will continue to intercept all events until return-from-modal-dialog is called. This
causes the dialog to be hidden and supplies the value to be returned from the call to modal-
dialog. Modal dialogs may be nested. An abort (command-period) always gets you out of a
modal dialog.

Modeless dialogs are available for use if they are shown. Like any window, if a modeless dialog is
clicked when it is not the front window, it comes to the front and becomes the active window. If a
modeless dialog is the active window, then appropriate user events trigger the actions of its dialog-
items.

Unless otherwise specified, all the text in a dialog (i.e. the text of all the items) appears in the
window’s current font. The desired font should be set before the dialog is created (using set -
window-font or the window-font init option). Individual items may be given their own font,
which will be used instead of the window’s font. Changing the font while a dialog is shown may
produce some undesirable cosmetic effects.

dialog [Variable]
Contains the dialog class object.

:; ‘\
/
S

Dialogs 7-3

exist init-list [Dialog Function]
Initializes the dialog. The dialog will take up space on the Macintosh heap until it is closed. A
window is closed by clicking in the close-box or explicitly asking it to window-close.

keyword default

meaning

the windo

:window-title........ String "Untitled Dialog”".. w title of the dialog.
:window-position..point........ #Q (200 50) ceeeeeeriennns initial position
:window-size point........ #Q@ (200 100) .cevinrinnns size of dialog
:window-show......... boolean..... L orrerreneerreereiieaes whether dialog window is
initially shown
:window-font font-spec ...("chicago” 12)......... font to be used in the dialog.
:window-type keyword.... :document type of window used. For
available window-types, see
the Windows chapter.
:dialog-items........ list........... Niloiiiieiiiiiiniiiiiininnn, a list of dialog-items to place in
the dialog
:default-button....thing......... OO may be t, nil, or a button. If
nil, the dialog will have no
default button. If t, the first
button in the dialog will be the
default button. If a button, it
will be made the default button.
modal-dialog dialog-object soptional (close-on-return t) [Function]

makes dialog-object the front window, shows it, then intercepts subsequent user events until a
return-from-modal-dialog is executed. User events are directed to the appropriate dialog-
items triggering their actions; events outside the frame of the dialog window cause a beep. The
return value is supplied by the call to return-from-modal-dialog that exits the modal
dialog. An error is signalled if dialog-object does not inherit from *dialog*. Modal dialogs
may be nested.

The optional argument close-on-return specifies whether the dialog window should be closed just
before the call to modal-dialog returns. Having the windows closed automatically prevents the
accumulation of numerous hidden windows during development. If close-on-return is nil,

then the window is hidden, but not closed. (Note: close-on-return is unwind-protected, so that
any throw past modal-dialog will close or hide the window, as appropriate).

return-from-modal-dialog values [Macro]
Causes values to be returned from the most recent call to modal-dialog. The dialog is hidden
or closed, depending on the value of close-on-return that was passed to the call tomodal-
dialog. (Any throw past the modal-dialog call also causes the dialog to be hidden or
closed). If the dialog is only hidden, it will continue to take up memory until it is explicitly asked
to window-close.

return-from-modal-dialog supports multiple-values. If the first (or only) value is the
keyword :cancel, return-from-modal-dialog will throw to : cancel. Unless caught
by the user, this throw will return to the top level listener loop. It is customary for the cancel
button to return the value : cancel.

If the modal dialog has a close box (they usually shouldn’t), and the user clicks in it, return-
from-modal-dialog will be called with the argument : closed. The window will be closed,
regardless of the value of close-on-return.

7-4 Allegro CL

window-close [Dialog Function]
Reclaims space used by the dialog. All of the items in the dialog are removed.

add-dialog-items &rest dialog-items [Dialog Function]
each of the dialog-items is added to the dialog. If any of the items are already owned by a dialog,
an error is signalled. nil is returned.

Example:

(ask my-dialog
(add-dialog-items (oneof *button-dialog-item*
:dialog-item-text "Do It"
:dialog-item-position #@Q (20 80)))

remove-dialog-items &rest dialog-items [Dialog Function]
Removes each of the dialog-items from the dialog. ni1l is returned.

dialog-items &optional dialog-item-class [Dialog Function]
returns a list of the dialog’s dialog-items that inherit from dialog-item-class. dialog-item-class

defaults to *dialog-item* so thatall of the dialog’s dialog-items will be returned. The items
are returned in the reverse order that they were added.

find-dialog-item string [Dialog Function)
returns the first item in the dialog whose dialog-item-text is equalp to string. The items
are searched in the order they were added to the dialog (which is the reverse of the order that they
are returned by dialog-items).

current-editable-text [Dialog Function]
set-current-editable-text dialog-item [Dialog Function]
The current-editable-text-item is the editable text item that contains the blinking insertion point.
This is the item where user typing appears.

current-editable-text returns the dialog’s current editable text dialog-item. If the dialog
contains no enabled editable text items, nil is returned.

set-current-editable-text changes the dialog’s current editable text item to be dialog-

item. dialog-item must inherit from *editable-text-dialog-item* and be in the dialog’s

list of dialog-items or an error will be signalled. dialog-item is returned.

default-button [Dialog Function]
set-default-button rhing ; [Dialog Function]
The default button is the button whose action is run when the user types #\return or #\enter
while a dialog is active. The default button is automatically outlined with a black border to indicate
to the user which button it is. If the current editable text allows returns, return characters will go
into the editable text instead of running the default button’s action. If this is true, the black border
around the default button will be removed to indicate this condition to the user (but calls to
default-button will still return the button).

default-button returns the current default button. If the dialog has no default button, nil is
returned.

{/

Dialogs 7-5

set-default-button changes the default button in the dialog according to the value of thing,
which should be nil, t, or a button-dialog-item. If thing is nil, there will be no default button.
If it is t, the first button in the dialog will be made the default button. If it is a button, the button
will be made the default button. zhing is returned.

pushed-radio-button &optional (cluster 0) [Dialog Function]
returns the pushed radio-button from the specified cluster. nil is returned if there is no such

cluster, or no pushed radio-button in the cluster (the latter should only occur when the radio-
buttons in a cluster are disabled).

cut [Dialog Function]
Deletes selected text from the current editable text dialog-item and puts it into the Clipboard.

copy [Dialog Function)
Copies selected text from the current editable text dialog-item into the Clipboard.

paste [Dialog Function)
Replaces the selected text of the current editable text dialog-item with the contents of the Clipboard.

Dialog-items
dialog—-item is an abstract class (it is not meant to be directly instantiated). It is the parent of
more specific classes of dialog-item class.

The dialog-item subclasses are:
button-dialog-item
check-box-dialog-item
radio-button-dialog-item
static-text-dialog-item
editable-text-dialog-item
table-dialog-item (an abstract class)
sequence-dialog-item
array-dialog-item

dialog-item [Variable]
The dialog-item class. *dialog—item* provides the basic functionality that all dialog-items
share.

exist init-list [Dialog-Item Function]
Initializes a dialog-item. If dialog-item-size is not specified in init-list it is determined
heuristically from the dialog-item’s class and other init-list data. For example, a button will be
made just big enough to contain its text. If dialog-item-position is not specified, the
dialog-item is positioned in the first vacant space when it is added to the dialog window; if there is
no rectangle large enough to hold the item, an error is signalled.

:dialog-item-position.....point..... calculated the position in the dialog where the
item will be placed, in local
window coordinates. If not

7-6 Allegro CL

specified, the first available
position large enough to hold the
item will be used.
:dialog-item-size............. point............ calculated.....the size of the dialog-item. If not
specified, this will be calculated to
fit the item. If specified and too
small, the item will be clipped.
:dialog-item-font............. font-spec...nil........... the font used to display the dialog-
item’s text. If nil, the dialog’s
window-font is used.
:dialog-item-enabled-p.... boolean....... | OO whether the item is enabled.
disabled items are displayed
grayed-out, and their actions are
not run when you click on them.
:dialog-item-text............. string........... the text of the dialog-item.
:dialog-item-action......... expression .nil........... used to define dialog-item-
action, i.e. the action run when
the dialog-item is selected. thing
may be a function, a symbol with a
function binding, or a form. If it is
a form, it will be used as the body
of a defobfun.

o

dialog-item-action [Dialog-Item Function]
This function is called with no arguments whenever the user clicks in the dialog-item. Each
individual instance of a dialog-item may have its own definition, but since each class of dialog-item
has a usual behavior (for example check-boxes toggle their state), usual-dialog-item-
action should normally be called. dialog-item-action will not be called if the item is
disabled. It is normally called when the mouse button is released, not when it is pressed (this
allows tracking to be performed by the system).

Whena dialog-item-action is called, the program is interrupted and further events are
disabled until the dialog-item—action returns. This means that other dialog-items cannot be
selected until the first returns. To avoid locking out other actions, dialog-items can insert forms
into the read/eval/print loop with eval-enqueue. For details, see the Events chapter.

Ifadialog-item-action is fbound to an anonymous lambda expression, the action will only
be able to call usual-action if the lambda was defined with nfunction. See the Object Lisp
chapter for details.

dialog-item-position [Dialog-Item Function]
set-dialog-item-positionh soptional (vnil) [Dialog-Item Function]
A dialog-item’s position is the position of the item’s upper-left corner in the dialog window’s local
coordinates.

dialog-item-position returns the dialog-item’s position.
set-dialog-item-position moves the dialog-item to the position represented by Aand v in
the dialog window’s local coordinates. If v is nil, A is assumed to represent a point. The new
position is returned as a point.

Dialogs 7-7

dialog-item-size [Dialog-Item Function)
set-dialog-item-size s &optional (vnil) [Dialog-Item Function)
When a dialog-item is drawn, the drawing is clipped to the rectangle determined by the dialog-
item’s position and size. This is also the rectangle that is used to determine which dialog-item
receives user mouse-clicks.

dialog-item-size returns the dialog-item’s size as a point.

set-dialog-item-size changes the size of the dialog-item to the width and height

represented by A and v. If v is not given, & is assumed to represent a point. The new size is
returned.

dialog-item-text [Dialog-Item Function]
set-dialog-item-text string [Dialog-Item Function)
The text of a dialog-item has different meanings for each dialog-item class. It is the text of static-
text and editable-text items. It is displayed inside buttons, and to the right of radio-buttons, and
check-boxes. If a different location is desired, set the text to the empty string and use a separate
static-text item. Tables do not display their dialog-item-text.

set-dialog-item-text returns the text associated with the dialog-item as a string.
dialog-item-text sets the text associated with the dialog-item to string and returns string.

dialog-item-font [Dialog-Item Function]
set-dialog-item-£font font-spec [Dialog-Item Function)
dialog-item-font returns the font used by the item in the form of a font-spec, or nil if the
dialog-item uses its window’s font.

set-dialog-item-font sets the dialog-item’s font to font-spec. If font-spec is nil, the
dialog-item will use the font of its dialog window. The dialog-item will not resize, so calling this
function after a dialog-item has been created may cause display problems.

dialog-item-draw [Dialog-Item Function]
This function is defined in each type of item. Itis called by the system whenever the item needs to
be drawn (for example, when the dialog is first displayed, or when it is uncovered after having
been covered up). This function may be defined for any user-specialized items.

dialog-item-enable [Dialog-Item Function)]
dialog-item-disable [Dialog-Item Function]
dialog-item-enabled-p [Dialog-Item Function]

dialog-item-enable enables the dialog-item. It will not be dimmed, and its action will be
run when the user clicks in it. nil is returned.

dialog-item-disable disables the dialog-item. This causes the dialog-item to become
dimmed; clicks in the item are ignored, and the action of the item is never run. Disabling a check-
box does not uncheck it, and disabling a radio-button does not unpush it (you may want to
uncheck or unpush the item explicitly). nil is returned.

dialog-item-enabled-p returns t if the dialog-item is enabled, ni1l if it is disabled.

my-dialog [Dialog-Item Variable]
the dialog object that owns the dialog-item. Itis nil if the item is not installed in any dialog
object. This variable should never be changed by the user. It is affected by the *dialog*
functions: add-dialog-items, and remove-dialog-items.

7-8 Allegro CL

add-self-to-dialogdialog [Dialog-Item Function]
this function is called by add-dialog-items when it is adding an item to a dialog. Its purpose
is to perform those initialization tasks that require a window (e.g. defaulting the position or size).
It should never be called directly by user code. However, it may be shadowed. dialog will hold
the dialog that the item is being added to. Specialized versions of add-self-to-dialog
should always call usual-add-self-to-dialog.

remove-self-from-dialog [Dialog-Item Function)
this function is called when a dialog-item is being removed from a dialog by a call to
remove-dialog-items. It should never be called directly by user code. However, it may

be shadowed. Specialized versions of remove-self-from-dialog should dispose of any
Macintosh data (i.e. non-garbage-collectable data) used by the item, and should always call
usual-remove-self-to-dialog.

Specialized Dialog-items

button-dialog-item [Variable]
the class used to make button dialog-items. Buttons are displayed as rounded rectangles that
contain text. Clicking in a button usually has an immediate result (they should have their own
definition of dialog-item-action). The first button added to a dialog automatically becomes
the default button. This may be changed by asking the dialog to set-default-button. The
default button is outlined with a black border. In general, typing return or enter is equivalent to
clicking in the default button. However, if the current editable-text item allows returns, then
returns and enters will not trigger the default button; in this case, the black border around the
default button is removed.

static-text-dialog-item [Variable]
the class of static text dialog-items. Static text may be positioned anywhere in a dialog window to
explain the layout of the dialog or supply additional information to the user. The text appears in the
window’s font, unless otherwise specified. Static text does not generally have an action, but it
may. (Unlike other items, the action of a static text is run when button is pressed, not when it is
released).

Depending on the amount of text, and the size of the item, the text may perform word-wrap to fit
within its area. If the size is not given explicitly, it will be the size needed to hold the text without
wrapping to multiple lines.

editable-text-dialog-item [Variable]
Contains the editable text dialog-item class. Editable text dialog-items are surrounded by a box.
The text that appears in the box may be edited by the user in the standard Macintosh ways. It may
be selected using the mouse, and works with cut, copy, and paste (though the command-keys for
cut, copy and paste do not work from within modal dialogs).

At any given time, there is only one current editable text dialog-item. This is the one that contains a
blinking cursor or a highlighted selection. User typing is directed to the current editable text
dialog-item by asking it to dialog-item-key-event-handler. The tab key changes the
current editable text to the next editable text in the dialog, cycling back to the first after the last.

The current editable text item may determined by asking the dialog current-editable-text
and changed by asking the dialog to set-current-editable-text.

‘»ijf

C\

Dialogs 7-9

The text may be determined by calling dialog-item—text or changed by calling
set-dialog-item-text. The initial text may be specified when an editable text dialog-item is
created by using the dialog-item—-text init option.

exist init-list [Editable-Text-Dialog-Item Function)
Initializes the editable text dialog-item.

tallow-TreturnS..ccceeeieeennnns boolean........ nil........ if allow-returns is non-nil,
then carriage returns may be entered
into the text of the editable text item.
The default button (if there is one)
will be disabled.

allow-returns (Editable-Text-Dialog-Item Variable]
this variable will be non-nil if the editable-text item allows returns, otherwise it will be nil.
This variable should never be changed by the user.

check-box-dialog-item¥ [Variable]
Contains the check-box class. Check-boxes are small squares that contain an x when they are
checked. The usual dialog-item-action toggles its state between being checked and unchecked.
The text of a check-box appears to the right of the box.

exist init-list [Check-Box-Dialog-Item Function)
Initializes the item.

:check-box-checked-p....... boolean........ nil...... whether the item is initially
checked.

check-box-check [Check-Box-Dialog-Item Function)

check-box-uncheck [Check-Box-Dialog-Item Function]

check-box-checked-p [Check-Box-Dialog-Item Function)

check-box-check checks the dialog-item’s check-box. The dialog-item’s action is not run.
check-box-uncheck unchecks the dialog-item’s check-box. The dialog-item’s action is not
run.

check-box-checked-p returns t if the dialog-item’s check-box is checked, nil if it is
unchecked.

radio-button-dialog-item [Variable]
Contains the radio-button dialog-item class. Radio-buttons are small open circles that contain a
black dot when pushed. Radio-buttons occur in clusters in which only one button is pushed at a
time. They are like the buttons on a car radio: pushing one button causes the previously pushed
button to unpush. ~

7-10 Allegro CL

exist [Radio-Button-Dialog-Item Function)
Initializes the radio-button instance. P
kezword type default _ meaning e
:radio-button-cluster........ sym............ Oevrenennnnn the cluster to which the radio-button

belongs. To test if two buttons are

in the same cluster, the values for

this variable are compared using eq.
:radio-button-pushed-p...... boolean.....ni1l......... determines whether the radio-button

is initially pushed.
radio-button-push [Radio-Button-Dialog-Item Function]
radio-button-unpush [Radio-Button-Dialog-Item Function)
radio-button-pushed-p [Radio-Button-Dialog-Item Function)
radio-button-push pushes the radio-button and unpushes the previously pushed button in
the cluster. The dialog-item’s action is not run.
radio-button-unpush unpushes the radio-button.
radio-button-pushed-p returns t if the radio-button is pushed, nil if it is not pushed.
radio-button-cluster [Radio-Button-Dialog-Item Variable]
this variable holds the radio-button’s cluster ID. Only one button from a given cluster is pushed at
atime. Whenever you push one button, all the other buttons with the same value for
radio-button-cluster (testing with eq) are asked to radio-button-unpush.
Table-dialog-items o
Table-dialog-items provide a method for viewing a set of items, and selecting items from the set. e

The items are usually members of a list, vector, or multi-dimensional array, but this is not
required. table-dialog-items may be one or two dimensional. Two dimensional table-dialog-
items look like spreadsheets. One dimensional table-dialog-items look like the file selection boxes
when you choose Save As.... (Note: table-dialog-items are implemented using the Macintosh
List Manager. We call them tables to avoid confusion with the ubiquitous “list” of Lisp.)

foo CaSe foo

bar 1t bar

baz 1234 baz bbb

bim (+54) bim

qUUR qUUXH

‘ . % 1 dimensional table-dialog-item
2 dimensional table-dialog-item arranged vertically, with no
with horizontal scroll-bar. scroll-bar.

=
L

: /
7

Dialogs 7-11

add-points
subtract-points
inval-dialog-item
erist-default
with-clip-rect
dialog-item
(list :handle)
dialog
dialog-item
control-dialog-item
button-dialog-item

1 dimensional table-dialog-item
1 dimensional table-dialog-item arranged arranged horizontally, with

vertically, with vertical scroll-bar. horizontal scroll-bar

Everything that works for normal dialog-items (such as dialog-item-size, dialog-item-position, etc)
works for tables, except that the text of tables is not shown.

Table-dialog-items are rectangles with a series of cells. In each given dimension (vertically and
horizontally), if all the cells cannot be fit in the item’s rectangle, then scroll bars will appear. When
you click on a cell, it is selected, and the previously selected cell is de-selected. Selected cells
usually appear in inverse video (though you can shadow the highlighting function). A contiguous
group of cells can be selected by holding down the shift key and dragging or clicking. A
discontiguous group of cells can be selected by holding down the command key and clicking on
each desired cell. Clicking and dragging outside the table’s rectangle causes auto-scrolling. Your
program can access various information about a table, such as which cells are selected, the
quickdraw positions of any cell, the contents of any cell, etc.

The cells in table-dialog-items are described as points. The horizontal and vertical dimensions of
the point are encoded in a fixnum, with the same technique used for Quickdraw points. The
horizontal and vertical components can be retrieved from the point with the functions point-h
and point-v. The point can be printed readably with the function point-string. The

following diagrams show one and two dimensional tables, and the points associated with their
cells.

7-12

Allegro CL

#@(00) #e(10) #e@(20) #e(30)
#@(01) #e(11) #e(21) #e(31) #@(0 0)
#@(02) #e(12) #e(22) #e(32) #@(0 1)
|#@(03) #e(13) #e(23) #e(33) #@(0 2)
#@(04) #e(14) #e@(249) #e(34) #@(0 3)
#@(05) #e@(15 #e(25) #e(35) #@(0 4
#@(06) #@(16) #e(26) *#e@(36) #@(0 5)
#@(07) #e(1?7) #e@(27) #e(37) #@(0 6)
#@(08) #e(18) #e@(28) #e@(38) #@(07)
#¥@(09) #e@(19) #e@(29) *#*e(39) #@(0 8)
#@(0 9)

[#@(0 0) ¥*@(10) #@(20) ¥@(30) #@(40) |

table-dialog-item
an abstract class, from which usable classes of table-dialog-items inherit. It provides the base
functionality for all types of table-dialog-items. This class should not be directly instantiated.

Exist init-list

[Variable]

[Table-Dialog-Item Function)

initializes a new table-dialog-item.

keyword _ : default _
:table-vscrollp............. boolean ...calculated........ whether the table should have a
vertical scroll-bar.
:table-hscrollp............. boolean ...calculated......... whether the table should have a

horizontal scroll-bar.

:table-dimensions.......... point......... #@(0 0) number of cells in horizontal and
vertical dimension. A dimension
given as zero will be calculated.
The theoretical dimension limit is
32k by 32k. However, the
Macintosh allocates 4 bytes per cell,
so the practical limitation is much
smaller than this, and depends on
available memory.

:visible-dimensions...... point.........calculated if given, will set the size of the table
so that the number of cells shown
horizontally and vertically
correspond to the dimensions of
point.

:cell-sizZe.iiiiiiiiinninnnnnn, point......... calculated........ horizontal and vertical dimensions
of the cells in the table.

Dialogs 7-13

:selection-type............. keyword..:single....... determines whether the table allows
single or multiple selections, and
whether multiple selections must be
contiguous. Possible keywords are
:single, :contiguous, and
:disjoint.

The standard keyword arguments for dialog-items (such as dialog-item-position,
dialog-item-size) may also be used. Note that table-dialog-items do not display their text.

cell-contents h &optional (vnil) [Table-Dialog-Item Function]
This function is shadowed by specialized forms of table-dialog-items to return a printable
representation of the contents of the cell specified by hand v. cell-contents is called by
draw-cell-contents.

draw-cell-contents cell [Table-Dialog-Item Function]
draws the contents of cell. This function is called by CCL and should not usually be called by user
code. It may be shadowed to provide specialized displays (for example, you could create a table of
patterns, or icons). The usual version princs the cell’s contents into the display; if the item is

too long to fit in the cell, an ellipsis is added to specify that truncation has occurred. cell is a point.

Before calling this function, CCL sets the clip-rect to restrict drawing to the cell, erases the cell,

and moves the pen to a position three-pixels from the bottom, and three pixels from the left edge of
the cell.

table-dimensions [Table-Dialog-Item Function]
set-table-dimensions 4 &optional (vnil) [Table-Dialog-Item Function]
51 able-dimensions returns a point indicating the number of cells horizontally and vertically in
e table.
set-table-dimensions sets the number of cells horizontally and vertically according to A
and v. The theoretical limits on the number of cells are 32k by 32k. However, the Macintosh
allocates 4 bytes per cell, so the practical limit will be much lower. The new dimensions are
returned as a point.

visible-dimensions [Table-Dialog-Item Function]
set-visible-dimensions 4 &optional (vnil) [Table-Dialog-Item Function]
provides an alternate to dialog-item-size for specifying the size of a table.

visible-dimensions returns a point indicating the number of cells visible in the horizontal
and vertical dimensions.

set-visible~-dimensions resizes the table so that A cells are visible per row, and v cells are
visible per column. The new dimensions are returned as a point.

cell-size [Table-Dialog-Item Function]
set-cell-size h &optional (vnil) [Table-Dialog-Item Function]
cell-size returns the cell-size of the table.

set-cell-size sets the cell size according to & and v and returns the new size as a point.

7-14 Allegro CL

cell-select h&optional (vnil) (Table-Dialog-Item Function]
cell-deselect hsoptional (vnil) [Table-Dialog-Item Function)
cell-selected-p h &optional (vnil) [Table-Dialog-Item Function)

cell-select selects the cell specified by 4 and v. Previously selected cells are not affected.
cell-deselect deselects the cell specified by 4 and v.
cell-selected-p retumns t if the cell specified by 4 and v is selected, otherwise nil.

selected-cells [Table-Dialog-Item Function]
returns a list of all the cells selected in the table. Each cell is represented by a point. If no cells are
selected, nil is returned.

scroll-to-cell A &optional (vnil) [Table-Dialog-Item Function)
scrolls the table so that the cell specified by 4 and v is in the upper-left corner.

scroll-position [Table-Dialog-Item Function]
returns the coordinates of the cell in the upper left comer of the table.

cell-position cell [Table-Dialog-Item Function]
if the cell is visible, returns the position of the cell’s upper left corner, otherwise returns nil.
Positions are given in the dialog window’s local window coordinates.

point-to-cell point [Table-Dialog-Item Function]
point should be given in the local coordinates of the dialog window. Returns the cell enclosing
point, or ni2 if point is not within a cell.

Specialized Table-dialog-items

The following are specializations of table-dialog-items which may be used to create dialog-item
instances. The first associates the table with a sequence. The second associates the table with an
array.

sequence-dialog-item [Variable]
the sequence dialog-item class, used for displaying the elements of a sequence. Each instance is
associated with a sequence. The elements of the sequence are displayed in the table, in a single
row or column, or in multiple rows and columns. The table will only have multiple rows and
columns if the length of the sequence is greater than the : sequence-wrap-length.

exist [Sequence-Dialog-Item Function]
initializes a sequence dialog-item.

kezword ﬁ default meaning

:table-sequence ..., sequence..must be specified...... the sequence to be associated
: with the table. This argument
must be specified by the user.
:sequence-order ... keyword...:vertical........... whether the sequence will fill
the table row by row, or

column by column. Allowed
keywords are :vertical
and :horizontal.

/A '
{
A4

{ \
4 t
/

Dialogs 7-15

:sequence-wrap-length....integer.....1073741823......... The number of items to be
allowed in a row or column
before the tables wraps to the
next row or column. This
number overrides the

:table-dimensions

argument.
table-sequence [Sequence-Dialog-Item Function]
set-table-sequence new-sequence [Sequence-Dialog-Item Function]

table-sequence returns the sequence associated with the dialog-item.

set-table-sequence sets the sequence associated with the dialog-item to new-sequence,
resets the table’s dimensions and scroll-bars, and redisplays the table.

cell-to-index cell [Sequence-Dialog-Item Function)
returns an index into the sequence associated with the table, corresponding to the element
associated with cell.. This index may be used with elt.

index-to-cell index [Sequence-Dialog-Item Function)
returns a cell in the table which corresponds into the index’th element of the table’s sequence.

Example

The following definitions create a new class which inherits from *sequence-dialog-item*.
This class is useful for displaying association lists. Only the keys are displayed in the table. The
keys, the values, or the complete association pair can be retrieved from the table.

;define the class
(defobject *alist-dialog-item* *sequence-dialog-item¥*)

;jcell-contents is called by draw-cell-contents

;it returns only the car of the pair

(defobfun (cell-contents *alist-dialog-item*) (cell)
(car (usual-cell-contents cell)))

;full-cell-contents returns the full pair
(defobfun (full-cell-contents *alist-dialog-item*) (cell)
(elt (table-sequence) (cell-to-index cell)))

;value-cell-contents returns the value
(defobfun (value-cell-contents *alist-dialog-item*) (cell)
(cdr (full-cell-contents cell)))

array-dialog-item [Variable]
The array-dialog-item-class. Each instance displays an associated array. The array may have any
number of dimensions. At a given time, the index into all but two of the dimensions will be
constant. The indexes into the non-constant dimensions are associated with the rows and columns
of the table, and may be scrolled through. The non-constant dimensions are called the
h-specifier and v-specifier. The indexes into the constant dimensions are taken from
the current-subscript list.

7-16 Allegro CL

exist [Array-Dialog-Item Function]

word pe __ default

:table-array........ array......... must be specified...... the array which will be associated
with the table.
th-specifier.... integer.....0 ..ccoevevnenenininnnnnn, the array dimension to be

associated with the horizontal
axis of the table.

:v-specifier... integer.....1cccevvuineninnnnnnn. the array dimension to be
associated with the vertical axis
of the table.

:table-subscript........ list............ (0 0 0..)eeennne list of integers used for indexing

, into the array. The list’s length
should equal the array’s rank.
h-specifier [Array-Dialog-Item Function)
set-h-specifier new-h-specifier [Array-Dialog-Item Function]

h-specifier holds the dimension of the array which is currently shown along the horizontal
axis of the table.

set-h-specifier sets the table’s h-specifier to new-h-specifier.

v-specifier [Array-Dialog-Item Function)]
set-v-specifier new-v-specifier [Array-Dialog-Item Function)]
v-specifier holds the dimension of the array which is currently shown along the vertical axis
of the table.

set-v-specifier sets the table’s v-specifier to new-v-specifier.

cell-to-subscript cell [Array-Dialog-Item Function)
given a cell (as a point), returns an index into the array (as a list of integers).

subscript-to-cell list-of-integers [Array-Dialog-Item Function)
given a list of subscripts, returns the corresponding cell or nil (if there is no corresponding cell).

table-array [Array-Dialog-Item Function)
set-table-array new-array [Array-Dialog-Item Function)]
table-array retumns the array associated with the dialog-item.

set-table-array sets the table’s array to new-array, resets the table’s dimensions and scroll-
bars, and redisplays the table.

table-subscript [Array-Dialog-Item Function]
set-table-subscript new-subscript [Array-Dialog-Item Function)
table-subscript returns a list holding the subscripts currently used for indexing into the
array.

set-table-subscript sets the subscripts used for indexing into the array. new-subscript
should be a list (of integers) whose length equals the rank of the array. The h-specifier and v-
specifier still determine which dimensions are displayed in the vertical and horizontal dimensions
of the table. The indexes into the other dimensions are taken from the table-subscript.

Events

Overview

Event Handlers

Event Information Functions
The Event Management System
Cursor Handling

8-1

Events

Overview

This chapter describes Allegro CL’s facilities for handling events, and for changing the appearance
of the cursor.

Whenever possible, Macintosh programs should be event driven. Events are usually generated by
the user as a way of directing program flow. Typical events are keystrokes and mouse clicks.
Events interrupt a program and often require a response. This chapter explains how Allegro CL
processes events and describes the language features for responding to events.

Allegro CL automatically handles events as a background task. When an event occurs, the current
program is interrupted and the event is handled. Program execution is not resumed until the event
handling function returns. Further event processing is also deferred until the event handling
function returns. To initiate a program from within an event handler, use the function eval-
enqueue.

Many user programs do not need to handle events explicitly. For those programs that do, there are
several different event handling methods available. In order of increasing complexity these are:

« Defining a window object’s response to specific types of events;

« Defining a window object’s response to all events directed to the window;

« Defining a hook procedure that has first crack at processing all events;

« Disabling all background event-processing, and handling events with an event loop.

Most programming languages for the Macintosh support only the last (the most difficult) method of
event handling. Programs in Allegro CL rarely need to do anything more complex than the first.

Event Handlers

The Allegro CL event system gets each event from the Macintosh operating system in turn and
binds it to *current-event *. It then determines the type of the event and asks the appropriate
window object to run an event-handling function for that event. The name of each window event-
handler function starts with “window-" to indicate that it is a window object function and ends
with “~event-handler” to indicate that it should only be called by the event system.

Many of the system’s default event-handler functions do nothing, though they are called whenever
an event of the appropriate type is processed. These handlers exist so that they may be shadowed
by any window object that needs to process events of that type.

Event handler functions assume that a valid event record (see the chapter Pascal Records) is bound
to *current-event *; they may call the current event information functions listed in the next
section, which depend on *current-event* being bound.

window-click-event-handler where [Window Function]
is called by the event system whenever the user clicks in the content region of the active window.
It is not called when the user clicks in an inactive window; in this case window-activate-
event-handler is called. It is also not called when the user clicks in the title-bar, close-box, or
other window control. where holds the mouse position of the click, in window coordinates. The

8-2 Allegro CL

usual version does nothing (except, of course, in specialized windows provided by the system,
such as Fred windows).

The following function will print the mouse coordinates whenever the user clicks in
my-window.

(defobfun (window-click-event-handler my-window) (where)
(print (point-string where)))

window-key-event-handler char [Window Function)
is called by the event system whenever the window is active and the user types a key. char is the
character that was typed. This function is not called in response to command- and control-key
events. Such events are handled by Fred (see the chapter Programming Fred for details).

window-null-event-handler [Window Function)
is called by the event system whenever it checks for an event and finds no events pending.
window-null-event-handler should be defined for any window that needs to perform
some periodic action, such as blinking the caret. The global version calls update-cursor (see
the section Manipulating the Cursor, below). The Fred version blinks parentheses and other
delimiters.

window-activate-event-handler [Window Function]
is called by the event system when a window is made the front window. It draws its controls, and
deactivates the previously active window.

window-deactivate-event-handler [Window Function)

is called by the event system to deactivate a window. It is called when the window is active, and a
different window is brought to the front.

window-update-event-handler [Window Function)
is called by the event system whenever any portion of the window needs to be redrawn. The usual
version calls _BeginUpdate to up the VisRgn of the window to the portion that needs to be
redrawn, draws the controls (if any), calls window-draw-contents, then calls _EndUpdate
to restore the window’s VisRgn. Since its behavior is universal for all windows, this function is
seldom shadowed. Instead, window-draw-contents is shadowed.

window-draw-contents [Window Function)
is called whenever a window needs to redraw its contents. It may be shadowed so that a user-
defined window can redraw when portions of it are covered and uncovered. When window-
draw-contents is called by the event system, the window’s Vi sRgn will be set so that
drawing will only occur in the portions of the window that need to be redrawn.
window-draw-contents is not strictly an event handler, since it may be called at any time (not
only during event processing).

window-key-up-event-handler [Window Function]
Every key typed by the user actually generates two events. One event when the key is pressed
down and another when the key is let up. This function is called whenever a key is let up. The
usual version does nothing.

window-mouse-up-event-handler . [Winfiow Function]
is called whenever the user releases the mouse button. The usual version does nothing.

A

k JJ

Events 8-3

window-select-event-handler [Window Function]
is called whenever the user clicks the mouse in an inactive window. The usual version calls

_SelectWindow. window-select-event-handler may be shadowed, for example, to
make a window unselectable.

window-suspend-event-handler : [Window Function)
is called by the event system whenever Lisp is suspended by the Switcher. The usual version
converts the scrap from internal format to universal format (if necessary) and calls window-
deactivate-event-handler.

window-resume-event-handler [Window Function)]
is called by the event system whenever Lisp is resumed from the Switcher. The usual version
converts the scrap to internal format and calls window-activate-event-handler.

window-disk-insert-event-handler [Window Function]
is called whenever a disk is inserted. The usual version mounts the disk; if the disk is unreadable,
the usual version asks the user whether or not it should be initialized.

Event Information Functions
The following functions give event-related information. In addition, a program may examine the
value of *current-event* during event-handling.

mouse-down-p [Function]

returns t if the mouse button is pushed, otherwise returns nil. This function may be called at
any time, not only during event processing.

window-mouse-position [Window Function]
returns the mouse position as a point in the window’s local coordinates. The point will be returned
as a single fixnum (see the chapter Macintosh Basics). This function may be called at any time from
within a window object, not only during event processing. The coordinates may be negative, or
outside of the window’s portrect, depending on the position of the mouse.

double-click-p [Function]
returns t if the mouse-click currently being processed was the second half of a double-click.
double-click-p will return nil if called from outside event processing.

double-click-spacing-p pointl point2 [Function]
This function is called by double-click-p when checking if two clicks should count as a
double-click. point] and point2 give the mouse positions of the two clicks. Macintosh guidelines
specify that if the mouse is moved excessively between clicks, the clicks should not be counted as
a double-click. '

The usual version of double-click-spacing-p returns nil if pointl and point2 are
separated by more than 4 pixels, horizontally or vertically. If they are within 4 pixels of each
other, both horizontally and vertically, t is returned.

This function may be shadowed by windows which filter double-click spacing with a different
algorithm.

8-4 Allegro CL

command-key-p [Function)
control-key-p [Function]
ogt:'f.on—key-p {gunction%
shift-key-p unction
caps-lock-key-p [Function)]

Each of these functions has two meanings, depending on whether they are called during or outside
of event processing.

If called during event processing, they will return t if the corresponding key was depressed during
the event, otherwise nil.

If called outside of event processing, they will return t if the key is currently depressed, otherwise
nil.

Note that only the most recent Macintosh keyboards have a control key.

The Event Management System
This section describes the system used for implementing event-handling in Allegro CL.

event-dispatch [Function]
is called periodically in the background. Itcalls _GetNextEvent, binds the value of
*current-event * for the duration of the event processing, sets up the event-processing
environment. It then calls *eventhook*, if it is bound. If *eventhook* returns nil, the
event is then passed passed to the system event handlers. If *eventhook * returns non-nil, the
processing of the event stops.

current-event [Variable]
holds the event record currently being processed. This is bound by event-dispatch and is
only valid during event processing. The fields of *current-event * may be accessed with
rref (see the chapter Pascal Records and Inside Macintosh for details).

The definition of the event record-type is:

(defrecord Event
(what integer)
(message longint)
(when longint)
(where point)
(modifiers integer))

eventhook : [Variable]
If *eventhook* is non-nil, it should contain a function to call in response to all events. After
getting an event from the Macintosh operating system and binding it to *current-event *, the
event system will funcall *eventhook* if itis non-nil. If the function returns nil, then
normal event processing will continue, otherwise no further event processing will occur. This is
the mechanism used to implement modal dialogs that beep on inappropriate events.

event-ticks [Function)]
returns the number of ticks (60ths of a second) between calls to event-dispatch.

C
s !
Ly :

Events 8-5

set-event-ticks ticks [Function]
sets the number of ticks between calls to event-dispatch to ticks. If ticks is too low, the

system may get bogged down by event processing. If it is too high, the system may not respond
smoothly to events. .

window-event [Window Function]
After determining which window is the appropriate recipient for an event, the event system asks
the window object to window-event. The usual window-event determines the type of the
event and calls the appropriate event-handler. window-event should be shadowed by windows
that need to do something in addition to or different from the default behavior.

eval-enqueue form [Function)]
queues up form for evaluation in the read-eval-print loop. eval-enqueue returns immediately.

This function is useful for initiating programs from within event handlers. The form is executed as
part of the normal read-eval-print loop, rather than as part of an event-handler. This means that
other events can be processed during the execution of form.

Example:
(setq my-menu (oneof *menu* :menu-title "Events"))
(ask my-menu (menu-install))

(setqg inter-item
(oneof *menu-item*
:menu-item-title "Interruptible"”
:menu-item-action ' (eval-enqueue
' (loop
s (print "choose menus")))))
(setqg non-inter-item
(oneof *menu-itemx*
:menu-item-title "Non Interruptible"”
:menu-item-action ' (loop
(print "choose if you can"))))

(ask my-menu (add-menu-items inter-item_ non-inter-item))

The first menu-item does not disable event handling. The second menu-item does. (Note: both
can be aborted by typing command-period.)

The use of eval-enqueue can also be important for use in dialogs.

8-6 Allegro CL

Example:

(setqg my-dialog
(oneof *dialog*
:window-title "Stop and Go"
:dialog-items
*(, (oneof *button-dialog-item*
:dialog-item-text " Start "
:dialog-item-action
' (eval-enqueue
' (progn
(setg *stop-global* nil)
(loop
(if *stop-global*
(return)
(print
"Click 'Stop' when bored"))))))
, (oneof *button-dialog-item*
:dialog-item-text " Stop "
:dialog-item-action
' (setqg *stop-global* t)))))

Notice that the action of the Stop button does not use eval-enqueue. If it did, the queued up
form would never be evaluated (because the form queued up by the Go button would never
return). The stop button has to communicate with the Go button’s action by side-effecting a
variable.

without-interrupts &body body [Special Form]
executes body with all event processing disabled. This should be used sparingly since anything
executing dynamically within a without-interrupts cannot be aborted or easily debugged.
You are on your own if you execute a break within a without-interrupts.

Manipulating the Cursor

The cursor is the screen image corresponding to the mouse. As the mouse moves, the cursor
moves on the screen. This is distinguished from the caret or insertion point that indicates the
position in text where typed characters will appear.

The cursor often changes shape as it is moved over different areas of the screen. For example,
when pointing at the menubar or into scroll-bars, it is shaped like an arrow; when inside a text
window, the cursor is shaped like an I-beam. There are four ways a program can control the
appearance of the cursor:

« a window may have a window-cursor variable. The event system will set the cursor
according to this variable whenever the cursor is over the window.

« a window may have a window-update-cursor function. This function will be called by
the event system whenever the cursor if over the with window.

« the with-cursor macro may surround a series of forms. The cursor will be set to a given
shape for the duration of the macro.

« the variable *cursorhook* may be bound to a function or cursor-shape, giving you
complete control over the shape of the cursor. ’

Events 8-7

window-cursor [Window Variable]
Whenever the window is on top, and the cursor is over its content region, the cursor will be set to
the cursor-shape contained in this variable. This is done by *window*’s
window-update-cursor function. If this function is shadowed (as it is by Fred

windows), then this variable may not have any effect.

window-update-cursor where [Window Function)
This function is called by update-cursor whenever the mouse is over the window (i.e. not
only over the content region). where is the position of the cursor in the window’s local
coordinates. *window*’s version simply sets the cursor to the contents of the variable window-
cursor. *fred-window*’s version sets the cursor to *arrow-cursor* if it is over a scroll
bar or *i-beam-cursor* if itis not. window-update-cursor should be shadowed if a

window needs to change the cursor to a different shape depending on what part of the window it is
over.

with-cursor cursor ébody body [Macro]
body is executed with the cursor set to cursor. cursor may be a cursor record or a CURS resource
id (see Inside Macintosh for details).

cursorhook [Variable)
If this variable is non-nil, then no other cursor functions will be called. If *cursorhook* is a
function, it will be called repeatedly in the background and have complete control over the state of
the cursor at all times. If it is not a function then it should be a cursor. The cursor shape will be
repeatedly set to its value using set-cursor.

update-cursor [Function]
does the actual work of cursor handling. It calls the *cursorhook* function if there is one,
otherwise it calls window-update-cursor. Itis called periodically by the global window-
null-event-handler. Itisnot normally necessary to call this function directly, but it may be

called to make sure that the cursor is correct at a particular time. The definition of update-cursor
could be the following:

(defun update-cursor ()
(if *cursorhook*

(if (functionp *cursorhook*)
(funcall *cursorhook¥*)
(set-cursor *cursorhook¥*))

(window-update-cursor)))

set-cursor cursor [Function]
Sets the shape of the mouse cursor to cursor. cursor may be a cursor record (either a pointer or a
handle) or a CURS resource id. Note: if set-cursor is called from anywhere besides within a
window-update-cursor function, a *cursorhook* function, or a
without-interrupts, the cursor will be immediately set back to some other shape by the
event system’s background cursor handling. If cursor is not of an acceptable type, then no action
is taken and no error is signalled.

arrow-cursor¥ [Variable]
The standard north-northwest arrow cursor shape.

8-8 Allegro CL

watch-cursor [Variable] N
The watch cursor. This cursor should be shown during time-consuming operations when event- A
processing is disabled. SN
i-beam-cursor [Variable]

The I-beam cursor which is used when the cursor is over text to position the insertion point or
make selections.

Programming Fred

Overview

Windows, Buffers, and Marks
Buffers

Marks

Fred Windows

Parameter Conventions

The Kill-Ring

Buffer Functions

Fred Window Functions

Fred Command Tables

9-1

Programming Fred

Overview
This chapter describes the functions and concepts needed to program Fred the editor.

Windows, Buffers, and Marks

Fred editing depends on two new data types and one new class: the two new data types are
pbuffer and mark, and the new class is *fred-window*. Edited text appears on the screen in
Fred windows. The actual text being edited is stored in a buffer. Locations or components of a
buffer are associated with marks. In general, low-level operations are not object-oriented, and take
a pugfer as an argument. Higher-level operations are implemented as object functions for Fred
windows. ’

Buffers

A buffer holds a sequence of characters, much like a string. However, the implementation of
buffers makes insertion and deletion of characters much more efficient. In addition, a buffer has:
« a modification counter, which is incremented any time the buffer is modified;
« the set of marks in the buffer;
« a default-position mark, which provides the default position for many buffer
operations such as insertion and deletion;

* a property list.

Marks

A mark is a pointer into a buffer. It contains:
« a pointer to its owning buffer;
« a position in its buffer, dynamically updated as the buffer changes;
« a direction, forward or backward.

The direction determines what happens when a character is inserted precisely at the mark’s
position: forward marks move forward, placing themselves after the new character, backward
marks stay behind the new character. The buffer default-position mark is (initially) a forward
mark. The window-position mark is (initially) a backward mark.

Fred Windows

Fred windows are used for on-screen editing. The variable *fred-window* holds the class of
Fred windows. Fred windows inherit from *window*. In addition, a Fred window has
« a buffer, the buffer which is displayed in the window;
« a cursor mark, where the blinking caret appears in the window, and where typing is
generally inserted into the window. The cursor is a forward mark in the window’s buffer.
It is not the default position mark of the buffer;
« a selection range, which is displayed in reverse video. Note that the selection range is
distinct from the cursor, although most Fred window functions try to keep the cursor at one
of the ends of the selection range;
« a window position, a backward mark in the first line of the buffer to be displayed in the
buffer’s window;
« a filename string.

Fred windows are output streams, and may be used in any situation which calls for a stream.
Characters output to a Fred window stream are inserted at the cursor mark of the window. Stream

9-2 Allegro CL

output to Fred windows is buffered, and will not be displayed until wi ndow-update or
force-output is called.

Parameter Conventions
The descriptions below use the following conventions for argument description:

* A place is either a buffer or a mark. It will be coerced to a buffer or mark as needed.
When a function which wants a mark is passed a buffer, it will generally use the buffer’s
default-position mark. When a function which wants a buffer is passed a mark, it uses the
buffer associated with the mark.

* A position is a position in a buffer. It can be an integer offset from the beginning of the
buffer, a mark, or t, meaning the end of the buffer. The position will often be an optional
argument which defaults to the default-position of the given buffer.

The Kill-Ring

Fred combines the kill-ring with the Macintosh clipboard. Operations which normally
operate from the clipboard (such as cut, copy, and paste), instead use the top item on the
kill-ring. Clipboard interaction with other Macintosh programs works according to normal
Macintosh standards.

The kill-ring is stored in the global variable *killed-strings*. Itis alist of strings.
The contents of the list may be freely manipulated.

Buffer Functions

buffer place [Function)
coerces place to a buffer. If place is already a buffer, it is returned. If place is a mark, the mark’s
buffer is returned. It is an error if place is neither a buffer nor a mark.

mark place [Function]
coerces place to a mark. If it is already a mark, it is returned. If it is a buffer, the buffer’s default
mark is returned. It is an error if place is neither a buffer nor a mark.

markp form [Function)
returns non-nil if and only if form is a mark, otherwise nil. The same as (typep form
'mark).

bufferp form [Function]
returns non-nil if and only if form is a buffer, otherwise nil. The same as (typep form
'buffer).

buffer-mark place [Function]
returns the default-position mark of (buffer place).

buffer-position place soptional (position (mark place)) [Function]
Returns the position (number of characters from start of buffer) of position in (buffer place).
If position is an integer, it is checked for being in the range of legal buffer positions and then

-

Yo/

Programming Fred 9-3

returned. If position is a mark in (buf fer place), its position is returned. Otherwise, an error is
signalled. This function is often used to check position arguments to other functions.

mark-position place [Function]
returns the current position (number of characters from the start of the buffer) of (mark place).

make-mark place soptional (position (mark place)) (backward-p nil) [Function)
creates and installs a new mark, with owner (buffer place), and the specified position and
direction. If given, position must be a mark or an integer. The new mark is returned.

Note: Since each buffer maintains a list of all the marks it owns, marks don’t always get
garbage-collected. They stay around as long as the buffer stays around. You must keep track
of the marks you create and explicitly dispose of them (with kill-mark) when you are
done with them. Use with-mark whenever you need a temporary mark.

kill-mark mark [Function]
kills mark, removing it from its owner. Returns t unless mark was already dead, in which case it
does nothing and returns nil. Itis an error to pass a killed mark to any other Fred function.

If mark is essential to the operation of the system, for example if it is the default mark of a buffer
or a window position mark of a window, then kill-mark will do nothing and return nil.

with-mark (varplace [position (mark place)] [backward-p nil]) {form}* [Macro]
evaluates forms with var bound to a new mark created by (make-mark place position
backward-p). The mark is killed when the with-mark form is exited.

set-mark place position [Function]
sets the position of (mark place) to position. Returns the updated mark.

move-mark place &opt ional (distance 1) [Function]
moves (mark place) an amount specified by distance, which should be an integer. The same as
(set-mark place (+ (mark-position place) distance).

mark-backward-p place [Function]
returns t if (mark place) is a backward mark, otherwise nil.

reverse-mark place [Function)]
reverses the direction of (mark place). The changed mark is returned.

make-buffer [Function]
returns a new, empty buffer.

buffer-size place [Function)]
returns the number of characters in (buffer place).

buffer-modcnt place [Function]
returns the modification count of (buffer place). This is the number of times the buffer has

been modified since it was created. By comparing the value returned by buf fer-modcnt at
different times, you can tell whether the buffer has been modified in the meantime.

9-4 Allegro CL

Example:

(let ((start-count (buffer-modcnt buffer)))
(maybe-do-something buffer)
(unless (eql (buffer-modcnt buffer) start-count)
(princ "Did something!"™)))

buffer-plist place [Function]
Returns the property list of (buffer place). setf may be used with buffer-plist to
replace the entire property list. This is not reccommended, since the system itself keeps certain
information on buffer property lists.

buffer-getprop place key soptional default [Function]
looks up the key property on (buffer-plist place). Returns the value associated with the
key, if found, otherwise defaul:.

buffer-putprop place key value [Function]
gives key the value value on (buffer-plist place). value is returned.

buffer-line-start place soptional (position (mark place)) (count 0) [Function]
returns the position of the start of the countth line from the line containing position. count

of O means the start of that line, count of -1 means start of previous line, count of 1 means

start of next line and so on. If there aren’t enough lines in the buffer, returns the end of the

range searched (start of buffer if count is negative, the end of buffer if count is positive)

and a second value which is the number of lines of short-fall.

buffer-line-end place soptional (position (mark place)) (count 0) [Function]
returns the position of the end of the countth line from the line containing position. count of 0
means the end of that line, count of -1 means end of previous line, count of 1 means end of next
line and so on. If there aren’t enough lines in the buffer, returns the end of the range searched

(start of buffer if count is negative, the end of buffer if count is positive) and a second value which
is the number of lines of short-fall.

buffer-column place soptional (position (mark place)) [Function)]
returns the distance between position and the start of the line containing it.

buffer-line place soptional (position (mark place)) [Function]
returns the line number of position in the buffer. The first line is number 0, etc.

lines-in-buffer place [Function]
returns the number of lines in the buffer.

buffer-char place soptional (position (mark place)) [Function]
returns the character at the specified position in (buffer place) .

buffer-char-replace place char soptional (position (mark place)) [Function]
replaces the character at the specified position in (buffer place) with char.

buffer-insert place string soptional (position (mark place)) [Function]
inserts string into (buffer place) at position position. string may actually be anything
acceptable to the st ring function, that is, a string, a symbol or a character.

N

Programming Fred 9-5

buffer-substringplace skey (:start (mark place)) :end :length [Function]
returns a string of the characters in (buf fer place) in the range described by the keyword
arguments. Either :end or : length, but not both, must be specified. If : Llength is given, the
range consists of : Llength characters starting at : start. If :end is given, the range consists
of the characters between :start and :end. The returned string is always a simple string.

buffer-current-sexp-start-pos place &optional (pos (mark piace)) [Funcrion]
returns the starting position of the current s-expression, or nil if there is no current s-expression.

buffer-current-sexp place soptional (pos (mark place)) [Function)
returns two values. The first is the s-expression in (buffer place) at pos. This function
actually reads the characters from the buffer, so you may evaluate what it returns. nil is returned
if there is no s-expression at pos.

The second value returned is t if an s-expression was found at pos, or nil if no s-expression was
found at pos.

buffer-delete place skey (:start (mark place)) :end :length [Function]
deletes the characters in (buf fer place) in the range described by the keyword arguments. Either
:end or :length, but not both, must be specified. If : length is given, deletes : length
characters starting at : start. If :end is given, deletes the characters between : start and
:end .

buffer-downcase-region place start soptional (end (mark place)) [Function]
buffer-upcase-region place start soptional (end (mark place)) [Function]
buffer-capitalize-region place start soptional (end (mark place)) [Function]
lower-cases, upper-cases or capitalizes all words between szart and end .

buffer-char-pos place chars skey (:start (mark place)) [Function]
(:from-end nil)
(:end (if :from-end 0 t))
buffer-not-char-pos place chars &key (:start (mark place)) [Function]

(:from-end nil)

(:end (if :from-end 0 t))
buffer-char-pos returns the position of the first occurrence of a character which is an element
of chars in the buffer between : start and :end. chars may be a string or a character. If

: from-end is non-nil, the search is backwards. The search is case-sensitive, i.e., the
comparison is done using char=. If the character is not found, nil is returned.
buffer-not-char-pos performs the same function, except that it returns the first character in
the buffer that is not one of chars.

buffer-string-pos place string &key (:start (mark place)) [Function]
(:from-end nil)
(:end (if :from-end 0 t))
returns the position of the first occurrence of string in the buffer between :start and :end. An
error is signalled if : start is not less than :end. If : from-end is non-nil, the search will
proceed backwards. If string is not found, nil is returned, otherwise the position of the first
character of the string is returned. The search is case-insensitive, i.e., the comparison is done
using char=.

9-8 Allegro CL

buffer-substring-p place string soptional (position (mark place)) [Function]
returns t if szring appears at the specified position in (buffer place). The comparison is case
insensitive. string may be a string or a character.

buffer-word-bounds place soptional (position (mark place)) [Function]
returns two values, the start and end of the word at position.

buffer-fwd-sexp place soptional (position (mark place)) [Function]
returns the position of the end of the s-expression which starts at position.

buffer-bwd-sexp place soptional (position (mark place)) [Function)
returns the position of the start of the s-expression which ends at position.

buffer-insert-file place pathname soptional (position (mark place)) [Function]
inserts the file specified by pathname into (buffer place) at position.

buffer-write-file place pathname skey (:if-exists :error) [Function]
outputs the contents of the buffer to the file specified by pathname. if-exists specifies what to do
if the file already exists. Ifitis : error, an error is signalled. If it is : supercede, the file is

deleted and a new file is written. If itis : overwrite, the data fork of the existing file is replaced
with the contents of the buffer, and the resource fork remains unchanged.

Fred Window Functions

In addition to the functions outlined below, many Fred functions are associated with keystrokes.
The names and actions of these functions are given in the chapter Using Fred. They are defined
only for Fred windows, not globally. In addition, most of the keystroke functions are not
exported, so you must refer to them using the CCL: : prefix, for example CCL: : ed-forward-
char.

You can create a new Fred window with the call (oneof *f red-window¥*).

exist init-list [*fred-window* Function]
initializes a Fred window. The standard window init-list arguments are allowed, in addition to the
following:

:filename.........., pathname ..nil.................... if given, specifies a file to read into the
buffer. The file type defaults to
.lisp.

:scratch-p......... boolean Niloiiiiiiiinnninnn, if non-nil, the user will not be

prompted to save the contents of the
buffer when it is closed, and the
modified marker will not appear in the
buffer’s title.

Programming Fred 9-7

:package package........ Nil.iiiiiiiiiiiiinen. if given, associates a package with the
window. Commands which evaluate
expressions from the buffer (e.g.
window-eval-selection) will
bind *package* to the specified
package before reading. If nil, the
current package is not changed when
evaluating from the window.

If both :buffer and : filename are specified, the buffer is erased before the file is read in.

window-buffer [*fred-window* Function]
returns the buffer displayed in the window.

window-update [*fred-window* Function)
updates the window display of the window, using the current values of the cursor-mark, window-
position mark, selection region and the contents of the buffer.

window-update is called automatically in several situations: in response to window update
events from the Macintosh Window Manager (which occur due to resizing or uncovering a portion
of the window); after the execution of every Fred keyboard command; in response to mouse-

clicks in the window; and in response to force-output calls to the window (windows inherit
from output streams).

If you modify the window (or its buffer) in any other context, for instance in a menu command or
in a function meant to be called directly by user code, you must call window-update explicitly
or the changes you make will not become visible on the screen.

window-start-mark [*fred-window* Function]
feturns the window-position mark of the window. The line containing this mark is always the first
line drawn in the window. By moving this mark you affect which part of the window buffer is
displayed by window-update.

For example:

(ask the-window
(set-mark (window-start-mark) 0)
(window-update))

will cause the beginning of the buffer in the-window to be visible.

Note that after every Fred keyboard command, Fred will try to make sure the cursor is visible on
the screen, repositioning the window-start-mark if necessary. To disable this behavior for
the duration of one Fred command, set the variable *show-cursor-p* to nil.

window-cursor-mark [*fred-window* Function]
returns the cursor mark of the window. window-update will draw the blinking vertical bar
wherever this mark is located (unless the mark is off the screen, in which case no vertical bar will
be drawn). Note that the cursor mark is not the same as the default-position mark of the window’s
buffer.

9-8 Allegro CL

window-point-position &optionalv [*fred-window* F unction]
returns the buffer position of the character nearest to the point specified by 4 and v in the local Ao
coordinates of the window. (See the chapter Macintosh Basics for a description of the point R

format). This function assumes that the buffer has not been modified since the last call to
window-update.

window-hpos &optional (pos (window-curso r-mark)) [*fred-window* Function]
returns the horizontal position of the character at the given pos in the window’s buffer. The value
is given in local window coordinates. The position is computed as the length (in pixels) of the line
containing pos, minus the amount of horizontal scrolling currently in effect in the window.

window-line-vpos line-number [*fred-window* Function]
returns the vertical position (in local window coordinates) of the baseline of the line-numberth
line in the window.

selection-range [*fred-window* Function]
returns two values giving the beginning and end of the current selection. If there is no selection, it
returns the cursor mark position as both values. You can test if there is a selection by checking
whether the two values are eql.

Selections in the top window are displayed in reverse video.

set-selection-range soptional (pos (window-cursor-mark))

[*fred-window* Function)
sets the current selection to the range of the buffer between pos and the eursor, and updates the
window display. If pos is equal to the cursor position, the selection range is made empty.

collapse-selection forward-p [*fred-window* Function) ';\ o
If there is no selection, this function does nothing and returns nil. Otherwise, it sets the cursor
mark to the end of the selection if forward-p is non-ni 1, or the beginning of the selection if

forward-p is nil, de-selects the selection, and returns t. The Macintosh user interface guidelines

suggest that cursor motion commands collapse the selection in this way and not perform their

actions when there is a selection. The following function shows how to use collapse-

selection in order to conform to the guidelines:

(def-fred-command (:meta #\3) ed-forward-3 "Move forward by 3")
(defobfun (ed-forward-3 *fred-window*) ()
(unless (collapse-selection t)
(move-mark (window-cursor-mark) 3)))

window-filename ' [*fred-window* Function)
returns the filename associated with the window (as a string), or nil if there is none. Files
become associated with windows when set-window-filename is called, or if the window
was created with the : £ilename initlist argument.

set-window-filename filename [*fred-window* Function]
sets the filename associated with the window. When the window contents are saved, they will be
saved to the new filename. If a file corresponding to the filename already exists, it will be
overwritten without warning when the window is next saved.

window-package _ [*fred-window* Function) -
returns the package associated with the window, or ni1 if there is none. 1

Programming Fred 9-9

set-window-package package [*fred-window* Function]
sets the package associated with the window. package can be a package or symbol whose name is
the name of a package.

window-save ' [*fred-window* Function)
saves the window to its disk file. If the window is not associated with a disk file,
window-save-as is called.

window-save-as [*fred-window* Function)
calls the standard save-as dialog box, allowing the user to choose a directory and input a filename,
and saves the contents of the window to the filename. Note: if the user selects the Cancel item
from this dialog, Allegro CL will throw to : cancel. User code may wish to catch cancel to
prevent a return to top-level.

window-revert [*fred-window* Function]
reverts the window to the last version saved. The user will be asked to confirm the reversion
before it is performed.

window-hardcopy [*fred-window* Function]
prints the contents of the window to the current hardcopy device. Before printing takes place, the
user will be prompted for various printer options.

setup-undo undo-function sopt ional title [*fred-window* Function]
allows Fred commands to support the Undo menu-item. Any undo-able Fred action should call
setup-undo. undo-function should be a function to call when the Undo menu-item is chosen.
If given, title should be a short string which will be used as the title of the menu-item.

The Undo menu-item will be enabled when the effected Fred window is the top window, and as
long as the buf fer-modcnt of the window’s buffer does not change.

Example

;this function inserts the string "hello" at the cursor position.
;it supports undo and redo.

(defobfun (insert-hello *fred-window*) (&aux buf start-pos)
(setqg buf (window-buffer)
start-pos (mark-position (window-cursor-mark)))
(buffer-insert buf "hello" start-pos)
(setup-undo #' (lambda ()
(buffer—-delete buf
:start start-pos
:end (window-cursor-mark))
(window-update)
(setup-undo #' (lambda ()
(insert-hello)
(window-update))
"Redo Hello"))
"Undo Hello"))

9-10 Allegro CL

cut [*fred-window* Function]
deletes the current selection from the buffer and adds it to the kill-ring/clipboard.

copy [*fred-window* Function) N
adds the current selection to the kill-ring/clipboard. The selection is not removed from the buffer.

paste [*fred-window* Function]
replaces the current selection with the text from the top of the kill-ring/clipboard. The kill-ring is
not affected. If the kill-ring is empty, no action is taken. If there is no selection, the text from the
kill-ring is inserted at the caret.

select-all [*fred-window* Function]
sets the current selection to the entire contents of the buffer.

Fred Command Tables

This section describes the functions which allow the user to associate Lisp functions with
keystrokes.

In normal operation, keystrokes are handled by the front-most window. Fred treats every
keystroke typed at a Fred window as a command. Associated with every possible keystroke is a
Lisp function which implements the command. Some commands are simple, for example typing
#\a is a command to insert #\a in the buffer; some are more complex, for example typing
control-meta-f is a command to move forward by one s-expression. Fred makes no distinction
between these two kinds of commands. Indeed, you could easily redefine #\a to do something
complicated.

When you type a key in a Fred window, Fred first translates it into a keystroke code. The Y
keystroke code contains a character and two flags called control and meta. 1t is encoded as a small RNy

integer, with the character code in the least significant 8 bits, the control bit in bit 9 and the meta bit
in bit 8. «

The binding between keystrokes and the functions they invoke is stored in a data structure called a
comtab (short for command table). There is a global comtab stored in the variable * comtab*.

In addition, each Fred window may contain a local comtab in an instance variable comtab. The
bindings in the local comtab override global bindings.

When Fred receives a keyboard event, it translates the event to a keystroke code with the function
event-keystroke, finds the function associated with the keystroke by using keyst roke-
binding, and then invokes the function with no arguments. When the function is invoked, the
current object is the Fred window which received the event (for this reason, Fred command
functions are usually *fred-window* object-functions). When the function returns, Fred
updates the display of the window on the screen, making sure the cursor is visible. (The function
may set the variable *show-cursor-p* to nil to inhibit this. This is useful for functions
which scroll the display).

event-keystroke message modifiers [Function]

takes the message and modifiers fields of a Macintosh event record and returns a keystroke code.

It sets the control bit if either the Control key or the Command/shift-Command key (depending on

the value of *emacs-mode*) was pressed, and the meta bit if the Option key was pressed. The

character portion of the keystroke code is set to the ASCII code in the message field; if the Option

key was pressed the character portion will contain the standard, rather than the optional character \
(i.e. it will be #s rather than #\8 when you type Option-s). This function is called by Fred when it @

Programming Fred 9-11

receives a key-down event. You may redefine this function if, for example, you don’t like Fred’s
default translation of the Macintosh modifier keys into control/meta bits.

keystrcke-code keystroke-name [Function]
translates a keystroke name to a keystroke code. A keystroke name is either a character, or a list of
the form (:control :meta character) or (:control character) or (:meta

character) . keystroke-name may also be a keystroke code (an integer), in which case it is simply
returned.

keystroke-name keystroke-code [Function)
returns the name of a keystroke code.

make-comtab [Function)
returns an empty comtab.

copy-comtab &opt ional (from-comtab *comtab*) [Function]
returns a new comtab which is initially functionally equivalent to from-comtab. If from-comtab is
specified as nil, then it returns a copy of the comtab which was in use when Allegro CL was
launched. This is useful if you’ve badly mangled the current comtab.

comtab-set-key comtab keystroke function &optional doc-string [Function]
sets the definition of keystroke to function. function may be a symbol, a compiled function, or a
lambda expression (a symbol is recommended), indicating a function to call when keystroke is
entered. It may also be a comtab, indicating that the keystroke is a prefix character (like control-x)
which reads another character and looks it up in its own comtab. It may also be another keystroke
(name or code) to indicate that keystroke should do whatever the other keystroke would do.
Finally, function can also be nil, in which case keystroke will be made undefined. keystroke
may be a keystroke code or a keystroke name.

def-fred-command keystroke function sopt ional doc-string [Macro]
is equivalent to (comtab-set-key *comtab* 'keystroke 'function doc-string).
Example

? (def-fred-command (:meta #\h) insert-hello)

#<A COMTAB>

comtab-get-key comtab keystroke [Function]

looks up the definition of keystroke in comtab. This is the reverse of comtab-set-key. The
value may be a symbol, a compiled function, a lambda expression, another keystroke or nil.
keystroke may be a keystroke code or a keystroke name.

Example
? (comtab-get-key *comtab* '(:meta #\h))
INSERT-HELLO

keystroke-function keystroke [Fred-window Function]
does the full Fred command look-up for keystroke. Always returns a function or a comtab, never
nil or another keystroke. First looks up the keystroke in the local comtab, or *comtab* if there
is no local definition. If the definition is another keystroke, starts the look-up from the beginning.
If no definition exists, returns # ' ed-beep if the (original) keystroke had control or meta set,
otherwise it returns # 'ed-self-insert.

g9-12 Allegro CL

comtab-key-documentation comtab keystroke [Function]

returns the doc string associated with keystroke. keystroke may be a keystroke code or
keystroke name.

comtab-find-keys comtab function [Function)]
returns a list of all keystrokes which are bound to functions in the comtab. Comparison is done
using eql.

comtab [Variable]
the global comtab. You may modify this very comtab, or set the variable to a totally new comtab.

listener-comtab [Variable]
the listener’s local comtab; whenever a new a new listener is created, the listener’s local comtab is
set to the value of this variable. By modifying this comtab, you may change the behavior of the
listener without affecting other Fred windows. Note that setting this variable to a new comtab (as
opposed to modifying the comtab it is set to) will only affect listeners created after the change.

comtab [*fred-window* Variable]
the window’s local comtab.

4/ n 71\‘
N

File System Interface

Overview
Pathname Specification
Common Lisp Pathnames
Parsing Pathname Strings
Parsing Examples
Pathname Escape Character
Using Lisp Pathnames
Macintosh Pathnames
Default Directories
Macintosh Defaults
Allegro CL Defaults
Search Path
Wildcards
Logical Pathnames
File System Manipulation
File and Directory Manipulation
File Operations
Volume Operations
Directory Operations
User Interface

10-1

File System Interface .

Overview

This document describes pathname specification and the functions present for manipulating the
Macintosh file system. It assumes some familiarity with section 23.1 of Common Lisp: the
Language.

Pathname Specification

A pathname is a way to specify a particular directory or file. Common Lisp specifies pathnames to
have six components: host, device, directory, filename, type and version number. In the
Macintosh world, pathnames have three components: directory, filename and an optional volume
number. The Common Lisp and Macintosh representations each have advantages, so both are
made available. Lisp pathnames are simply referred to as pathnames and Macintosh pathnames are
referred to as mac-pathnames.

Common Lisp Pathnames

The host, device, and version components of Common Lisp pathnames are currently ignored in file
system operations. However, a standard namestring is defined for them to allow for future
extensions, or user-written extensions.

To make a pathname one can use a string representation or use the make-pathname function.

In Allegro CL, Lisp pathnames are printed using the # . reader macro.

Example:

? (make-pathname :directory "hd:" :name "foo")
#. (pathname "hd:foo")

All functions that are specified to take pathname arguments also take strings as arguments, SO it
will hardly ever be necessary to use (pathname "hd:foo"). Instead, one can use
"hd:foo".

Parsing Pathname Strings

The pathname parser uses the following rules to break strings into five components: host,
directory, filename, file type, and version. Unspecified components are represented as nil.

* Host

All characters up to the last exclamation mark character " !" in the strihg are part of the host
description.
Because the host component is ignored, the following two pathnames are equivalent

(pathname "coral-vax!coral-macs !j-mac!hd: foo.Lisp")
(pathname "hd:foo.Lisp")

* Device
The device component is currently ignored.

10-2 Allegro CL

* Directory
The directory component is identified as the characters between the host component and the last
colon or semicolon. The colon is the standard separator character for directories. The
semicolon is introduced to implement logical pathnames (see section on logical pathnames) and
to allow programmers access to both the Macintosh and Common Lisp notion of the default
directory (see section on default directories). A directory name that begins with a colon inherits

from the Macintosh default directory. A leading semicolon indicates inheritance from the Lisp
defaults.

The colons and semicolons are not merely separators. They are actually part of the directory
component.

The device section of the pathname is the first directory in the directory tree.

« File Name
The filename is composed of the characters that follow the directory component until either the
end of the string or the first period. The period is only a separator and is not actually part of
the filename. To make a filename containing a period, use escape characters as described
below. To specify a file that has an empty string as its filename, use a single period after the
directory separator character. There is currently no namestring representation for a pathname
which has a file type and an unspecified file name.

« File Type
The file type is composed of the characters that follow the name component until either the end
of the string or the first comma. The comma is only a separator and is not actually part of the
file type. To make a file type containing a comma, use escape characters as described below.
As a convention, the type "1isp" is used as the type for source code files and "fas1" is
used for compiled files.

These file types should not be confused with Macintosh file types. Macintosh file types are not
part of the pathname of a file.

* Version
The version is composed of the characters that follow the type component until the end of the

string. The Macintosh does not support versions for pathnames. Allegro CL does not
implement any support.

Parsing Examples
The following table contains some examples of pathname parsing:

pathname Components
Namestring _ _ Directo ‘ File name

"hd:foo.Lisp" "hd:" "foo"" Lisp"” nil
":foo" won "foo" nil nil
",foo" nil "foo" nil nil
"foo" nil "foo" nil nil
"foo." nil "foo" nil nil
"foo.," nil "foo" e nil
*;sub-dir:foo.," ";sub-dir:" "foo" ne nil
"foo.fasl" nil "foo" "fasl" nil
"foo.fasl," nil "foo" "fasl"® nil
Yhd:" "hd:" nil nil nil
"hd:." "hd:" e nil nil
"hd: .'n "hd:" "we " nil

"ccl; foo™ "ccl; " "foo" nil nil

File System Interface 10-3

"CCl,‘fOO." "CCl;" "foon " nil
"ccl;foo.." "ccl;" "foo" " nil
"ccl;foo..’," "ccl;" llfoo" ".l' "'"
"hd:foc.Lisp,2" "hd:" "foo" "Lisp" na"
"Coralthd:foo.Lisp,2" "hd:" "foo" "Lisp" nan
"hd:pr,4.1:foo.Lisp,2.1" "hd:pr,4.1" "foo" "Lisp" "2.1"
"hd:sub-dir:foo.text" "hd:sub-dir:" "foo" "text"” nil
"log-dir;subdir:foo" "log-dir;subdir:" "foo" nil nil

Table: Pathname Parsing Examples.

Neither defaults nor logical pathnames are merged at parse time. The function
merge-pathname performs mergings by replacing nil components of its first argument with
corresponding components of its second argument. The function expand-logical-
pathname performs the logical to physical pathname translation.

Pathname Escape Character

Although the addition of exclamation marks, semicolons, periods, commas, and asterisks to
Allegro CL’s pathnames adds functionality, it also limits the use of these characters as part of a
pathname. To alleviate this problem, pathnames have a special escape character, #\d (Option-d).
This escape character works very much like the backslash character in strings.

Any character that is preceded by a "9" loses any special meaning it might have had in a pathname.
The table below illustrates this mechanism:

v : Pathname Components

Namestring Directory File name File type version
"hd:food.Lisp" "hd:" "food.Lisp" nil nil
"hd:foo.Lisp" "hd:" "foo" "Lisp" nil
":.fodod.," nen "£f500.," nil nil
";fo00d.d," w,n "f00d.," nil nil
",;fo00d.d, .fasl" nwen "food.," "fasl" nil
";ccld; foo" ", "ccld; foo" nil nil
“ccl; foddo™ "ccl;" "f£oddo" nil nil
"Corald'hd:foo.Lisp, 2" "corald'hd:” "foo" "Lisp" non
"hd:fo\"o.Lisp" "hd:" "fo\"o" "Lisp" nil

Table: Parsing Pathnames with escapes.

Only the needed escape characters are retained (i.e. the "9" before the "0" in the third line is
removed, but the one before the period is retained). Of course, this mechanism is meant to work
only for the Allegro CL additions; one is not and should not be able to specify a filename that
includes a colon, since such a filename is not allowed on the Macintosh.

Note that the escape characters are not part of the truename. They are included only in the
Lisp representation of the pathname, not in the Macintosh system’s representation of the
pathname. :

10-4 Allegro CL

Using Lisp Pathnames

make-pathname &¢key :host :device :directory :name [Function]
‘type :version :defaults

This Common Lisp function constructs and returns a pathname. After the components specified by

the :host, :device, :directory, :name, :type, and :version arguments are filled in,

missing components are taken from the :defaults argument. The default value of the

:defaults argument is a pathname whose host component is the same as the host component of

*default-pathname-default *, and whose other components are all nil.

All arguments to make-pathname should be strings or nil. nil specifies that a component
should be taken from the default. Directory components beginning with a colon specify inheritance
from the Macintosh default directory. make-pathname will endeavor to insert the appropriate
escape Characters in components which need them. The user need only insert escape characters in
front of semicolons that are part of directory components, and in front of 9’s.

Examples:
? (make-pathname :directory "Hd:" :name "foo" :type "Lisp")
. (pathname "Hd:foo.Lisp")
(make-pathname :directory ";" :name "foo" :type nil)
. (pathname "foo")
(make-pathname :directory nil :name "foo." :type "fasl")
. (pathname "food.fasl")
(make-pathname :directory nil :name "foo." type ", ")
. (pathname "food..d,")
(make-pathname :directory "hd;" :name "foo." :type "Lisp")
. (pathname "hd; food..Lisp")
? (make-pathname :directory ";subdir:" :name "foo.")
#. (pathname ";subdir:food.")
? (make-pathname :name "food")
#. (pathname "foo")
? (make-pathname :name "£fo0o0dd")
#. (pathname "foodd")
? (make-pathname :host "Coral-vax" :device "bobo" :name "foo")
#. (pathname "foo")
? (make-pathname :directory "hd:" :type "fasl")
#. (pathname "hd:.fasl")

J

Vo 0D e 00 He o) e 0 3

The last example shows a peculiarity of specifying pathnames using namestrings. If there is a type
specified but there is no name specified, then the print representation will not read correctly. When
read, the name will be taken as the empty-string, rather than as unspecified. The same situation
arises if the version is specified without the preceding fields being specified.

merge-pathnames parhname soptional defaults default-version [Function)
This is the Common Lisp function which is generally called to process a filename supplied by the
user. It fills in unspecified components of pathname from defaults and returns a new lisp
pathname. The pathname and defaults arguments may each be a string, a stream, a lisp
pathname, or a mac-pathname. The returned value will always be a lisp pathname.

defaults defaults to the value of *default-pathname-defaults*. default-version defaults
tonil.

File System Interface 10-5

The merge operation replaces the nil components of pathname with corresponding components
from defaults, with the following caveats for merging versions: If a pathname does not specify a
name, then the version, if not provided, will come from defaults. However, if the pathname does
specify a name, then the version is not affected by defaults; it is taken instead from default-
version. default-version defaults to nil.

pathname-host pathname {Function)
pathname-device pathname [Function]
pathname-directory pathname [Function]
pathname-name pathname [Function]
pathname-type pathname [Function]
pathname-version pathname [Function]

" These Common Lisp functions accept strings, mac-pathnames, streams and Lisp pathnames as
arguments. They build a corresponding Lisp pathname, if necessary, and return the specified
component of that Lisp pathname.

namestring pathname [Function)
file-namestring pathname [Function]
directory-namestring pathname [Function]
host-namestring pathname [Function]
enough-namestring pathname &optional defaults [Function]

These Common Lisp functions accept strings, mac-pathnames, streams and Lisp pathnames as
arguments. namestring returns the full form of the pathname as a string.
file-namestring retumns a string representing only the name, type and version components
of the pathname. directory-namestring returns a string representing only the _
directory-name portion. host—namestring returns a string for only the host portion.
Note that the string representation of unspecified components is an empty string.

lisp-pathnamep thing ' [Function]
This non-Common Lisp function returns non-nil if thing is a Lisp pathname. It returns nil if
thing is anything else, including a mac-pathname, string, or stream.

pathnamep datum [Function]
This Common Lisp function returns t if datum is either a Lisp pathname or mac-pathname.

(pathnamep form) = (or (lisp-pathnamep form) (mac-pathnamep form))

Macintosh Pathnames

Mac-pathnames are much simpler than Common Lisp pathnames. Mac-pathnames know nothing
about logical directories, types, or version numbers. They have two basic components: directory-
name and filename. The directory-name consists of the Common Lisp directory component, and
the filename consists of the concatenation of the Common Lisp name, type, and version
components.

A third optional component is introduced to distinguish between mounted volumes with the same
name. This component holds the volume reference number assigned by the Macintosh to mounted
volumes. The user is not expected to specify this field; the system functions that return mac-
pathnames will insert the correct volume reference number. Functions that use mac-pathnames

10-6 Allegro CL

refer to this number when there is an ambiguity caused by mounted volumes having the same

name. o
R

Mac-pathnames can be used everywhere other pathnames are used. They are printed using using

the #P reader macro.

? (make-mac-pathname :directory "hd:ccl:"

:name "foo.Lisp"
:volume-number -2)

#P"hd:ccl:foo.Lisp"

Because volume numbers may vary between programming sessions, they are not used in a mac-

pathname’s printed representation.

The following functions are provided for manipulating mac-pathnames.

make-mac-pathname &key :directory :filename :volume-number [Function]

This non-Common Lisp function constructs and returns a mac-pathname. The :direct ory and

: filename components are strings and the : volume-number must be an integer. This

function inserts a colon at the end of the :directory argument if there is not one there, and

errors if there is a colon in the : filename argument.

mac-pathname thing soptional (volume 0) [Function]

returns a mac-pathname that corresponds to thing. thing should be a string, stream, Lisp

pathname or a mac-pathname. String arguments are first parsed as a lisp pathname and then S

converted to mac-pathnames. o
S

The volume component will remain unspecified unless the optional volume argument is supplied.
mac—pathname will signal an error if it cannot convert its argument to a mac-pathname.

mac-£filename pathname [Function]
mac-directory pathname [Function)]
mac-volume pathname [Function]

pathname is converted to a mac-pathname, and appropriate component is returned. pathname can
be a string, stream, Lisp pathname, or mac-pathname.

mac-namestring pathname [Function]
returns a string that represents how the Macintosh would represent the particular pathname.
(mac-namestring pathname) = (concatenate 'string
(mac-pathname-directory pathname)
(mac-pathname-name pathname))

Default Directories

There are three different directories maintained by Allegro. These are used to fill in pathname
components specified as default.

Macintosh Defaults

The Macintosh maintains a default directory of its own. Any pathname that begins with a colon

specifies the Macintosh default directory. Using the Macintosh default directory is useful with {:/
mac-pathnames. Beware that desk accessories and other background processes may change the L W

File System Interface 10-7

default directory without notice. It is therefore suggested that one set the Macintosh default
directory directly before accessing it.

The Macintosh default directory is initially the directory holding Allegro CL.

mac-default-directory [Function]
returns the Macintosh default directory.

set-mac-default-directory pathname [Function)
sets the Macintosh default directory to the directory component of pathname.

Allegro CL Defaults

default-pathname-defaults [Variable]
is used for merging if the default-pathname argument is not specified. The initial value is
#. (pathname "").

working-directory [Variable)
is used in merging arguments to probe-file. probe-file is called by all functions that
access files from disk. There may be an initial merging by the function which called
probe-file, but in any case, probe-file does a final merging with

working-directory before actually passing the name to the Macintosh operating system.
The initial value is #. (pathname "").

user-homedir-pathname &optional host [Function]

returns a mac-pathname that represents the directory pointed to by the logical pathname "home; "
(see logical pathnames section).

Search Path

If a pathname has an empty directory component, the Macintosh will look for it in the Macintosh
default directory. If one wants to insure that the Macintosh default is used, then one must precede
the directory name with a colon. To ensure that the Macintosh default is not used, specify the
directory component of the pathname (perhaps by doing a merge with some other default).

Wildcards

Wildcards are implemented for searching the file structure for particular directories and files with
the Common Lisp function directory. directory takes a pathname as argument and
returns a list of matching pathnames on the system. For example, (directory "hd:system
folder:") willreturn (#P"hd:system folder:") if the specified directory exists and
nil otherwise.

The wildcards are used in three different ways:
« One asterisk, "*", matches zero or more characters within a component.
» Two asterisks, "**", in place of a directory matches the present directory, its subdirectory, all
their subdirectories until there are no subdirectories left.
» Two asterisks, "**", in place of the filename components matches any number of components
that are left.

10-8 Allegro CL

The following examples assume that there is a mounted disk with the name "hd".

« To get a list of subdirectories under "hd: " evaluate (directory "hd:*:")

* To get a list of files under "hd:" evaluate (directory "hd:*.*,*") or (directory
” hd sk %k)

* To get a list of all the subdirectories at all levels in all the devices known to the machine,
evaluate (directory "**:") ,

« To get a List of all the files in all the devices known to the machine, evaluate (directory
"k % . * %)

» To get a list of all the files in "hd: " of type "Lisp", evaluate (directory
"hd:*.Lisp, *")

* To get a list of the files directly under "hd: " that do not have a type and version number
specified, evaluate (directory "hd:*")

» To get a list of all the files in any device that start with the letters "prin" and end in "12" and
are two levels below a directory named "ccl: ", evaluate (directory
"xk:ccl:i*:*:prin*12., xx")

« Note that while
(directory "h*d:") isequivalentto (directory "h**x*xxxxd:"),
(directory "hd:*:) isnotequivalentto (directory "hd:*:*:").

The first and second commands return a list of all the devices known to the machine that start
with the letter "h" and end with the letter "d". The third command returns a list of the
subdirectories under "hd: ". The fourth command returns a list of all the directories that are
two levels below "hd: ".

Logical Pathnames

Logical pathnames serve as variables in a pathname string. Logical pathnames let code with
embedded pathname information run under different directory hierarchies.

Logical directories end with semicolons, as opposed to physical directories which end with colons.

When Allegro CL is run, four logical pathnames are set up automatically.

"ccl;" is set to the directory holding the Allegro CL application.

"home;" is set to the directory holding the document which was launched with Allegro CL.
"ccl-doc;" is set to the directory "ccl;ccl-doc:"

"library;" is set to the directory "ccl;library:"

logical-pathname-alist . [Variable]
an association list which maps between logical and physical pathnames.

def-logical-pathname logical-string physical-pathname [Function]
defines a new logical pathname and adds it to *1ogical-pathname-alist*. logical-string
becomes the name of the logical pathname and physical-pathname becomes the associated
physical pathname. physical-pathname may also contain logical components. To remove a
logical pathname from the environment call def-logical-pathname with a
physical-pathname of nil.

expand-logical-pathname pathname &key :no-error [Function]
returns a pathname that has all its logical components expanded into physical components.
expand-logical-pathname expands logical directories from left to right, calling itself
recursively until there are no logical pathnames left.

File System Interface 10-9

If there is no physical directory for a logical directory in pathname, an error will be signalled or
nil will be returned, depending on the value of :no-error.

expand-logical-namestring name-string &§key :no-error [Function]

performs the same function as expand-logical-pathname except that it takes a string as an
argument, and returns a string as its result.

Examples:

? (def-logical-pathname "misc" "hd:ccl-misc") ;creates the logical to
NIL ; physical mapping

? (load "misc;aloysius.Lisp) ;will load the file "hd:ccl-misc:aloysius.Lisp"
"hd:ccl-misc:aloysius.Lisp"

? (expand-logical-namestring "misc;aloysius.Lisp")
"hd:ccl-misc:aloysius.Lisp"

? (expand-logical-namestring "MISC;aloysius.Lisp")
"hd:ccl-misc:aloysius.Lisp"” ;note case insensitivity

? (expand-logical-namestring "MISC;sub-dir:aloysius.Lisp")"hd:ccl-
misc:sub-dir:aloysius.Lisp"”

? (expand-logical-namestring "misc:aloysius.Lisp")
"misc:aloysius.Lisp" ;no semicolon in the input, so no modification

? (def-logical-pathname "misc" "hd:music") ;redefine misc
NIL

? (expand-logical-namestring "misc;aloysius.Lisp")
"hd:music:aloysius.Lisp" ;uses new mapping

File System Manipulation
The following functions return mac-pathnames or lists of mac-pathnames, unless otherwise noted.

File and Directory Manipulation
These functions operate on both directories and files. A directory operation is performed if the

filename component is empty (i.e. if the pathname ends in a colon or semicolon), otherwise a file
operation is performed.

The functions operate on pathnames, mac-pathnames, strings and streams.

The functions that create a new file or directory have an :overwrite keyword. If the

: overwrite keyword is non-ni1, then the function will delete anything standing in its way. If the
keyword is specified as ni I, the function will not delete any file or directory and simply return
nil as sign of failure. If :overwrite is not specified, the user is given the option of specifying
a new name, overwrite the files in question, or abort computation.

rename-£ile old-file-or-dir new—file—or-dir §key :overwrite [Function]
the specified oldfile—or-dir is renamed to the result of merging new-file—or-dir with
old—file-or-dir. Both arguments may be a string, stream, lisp pathname, or a mac-pathname. If

new-file-or-dir is an open stream associated with a file, then the stream itself and the file
associated with it are affected.

rename-£ile returns three values if successful. The first value is the renamed old—file-or-dir.

10-10 Allegro CL

The second value is the truename of the old—file—or-dir before it was renamed. The third value is

the truename of the old—file—or-dir after it was renamed. An error is signalled if the renaming
operation is not successful.

move-file file-or—dir new—dir skey :overwrite [Function)]
the specified file—or—dir is moved to the directory component of new—dir. Arguments may be
strings, pathnames, mac-pathnames or streams. If the first argument is a directory. then the whole
directory with all its contents is moved to the new location. If the first argument is an open stream
associated with a file, then the stream itself and the file associated with it are affected.

If file-or—dir and new—dir are on different volumes, move-file copies file—or—dir to new—dir
and then deletes file—or—dir from its original volume. However, when the two arguments are on

the same volume, move-£ile performs a fast catalog operation that does not involve moving the
actual data of the file.

move-file returns three values if successful. The first value is the moved file-or-dir. The
second value is the truename of the file—or-dir before it was moved. The third value is the

truename of the file—or—dir after it was moved. An error is signalled if the operation is not
successful.

delete-file file—or-dir skey :error-if-no-exist :overwrite [Function]
The specified file-or—dir is deleted. An error is signalled if file-or-dir does not exist and
:error-if-no-exist is non-nil (the defaultis t).

The : overwrite keyword is consulted in the regular manner if file—or—dir specifies a non-
empty directory. If :overwrite is not specified, the user is given the chance to delete a
different directory or to choose a file—rather than a directory—to delete. delete-file returns
the truename of the deleted file if successful, otherwise nil. ’

create-file file—or—dir skey :overwrite [Function)]
:mac-file-type
:mac-file-creator

creates an empty file or directory named file—or—dir.

For files, the :mac-file-type and :mac-file-creator keywords default to : TEXT
and [:CCL | (#\space is the last characterin | :CCL |). The keywords are case-sensitive.
Directories do not have Macintosh types or creators. create—-file returns the truename of the
created file or directory. An error is signalled if the operation is not successful.

probe-£file file-or-dir [Function]
returns nil if there is no file or directory named file—or—dir, otherwise it returns a pathname that
is the truename of the file. probe-£ile does not accept wild-cards.

file-create-date pathname [Function]
file-write-date pathname [Function]
set-file-create-date pathname time [Function)
set-file-write-date pathname time [Function)

file-create-date retumns the time when the volume, directory, or file specified by pathname
was created. file-write-date returns the time when the volume, directory, or file specified
by pathname was last modified. The corresponding set - functions change these file
parameters. The time is given in the universal-time format.

-
N

i '
1 i

File System Interface 10-11

file-author file—or-dir [Function)
This Common Lisp function—not to be confused with mac-file-creator—does not make
much sense on the Macintosh. It returns an empty string if file—or—dir exists and errors otherwise.

File Operations

The functions below operate on files only. These functions, in conjunction with the directory
function, provide the needed flexibility for operating on directories.

copy-£file file new-pathname &key :overwrite [Function]
file is copied to the pathname specified by merging new-pathname with file. Arguments may be
either strings, lisp pathnames, mac-pathnames or streams. If new-pathname does not have a
filename component then the file’s own filename is used. :overwrite has the usual meaning.

copy-file returns three values if successful. The first value is the new-pathname with the
filename component filled in. The second value is the truename of the file before it was copied.
The third value is the truename of the copied file. An error is signalled if the copying operation is
not successful.

lock-file file [Function)
unlock-£file file [Function)]
file-locked-p file [Function]

These functions allow one to manipulate the software lock that prevents modifications to a
particular file. file-locked-p returns nil if the file is not locked.

mac-file-type file [Function)
mac-file-creator file [Function)
set-mac-file-type file os-type [Function)]
set-mac-file-creator file os-type [Function]

Every Macintosh file has two parameters specifying the type of the file and the application which
created the file. These parameters are called os-zypes, and are specified by four character
keywords. os-types are case-sensitive, and they may contain spaces.

Files created by Allegro have the creator : |CCL |, (i.e. "CCL" followed by a space), and the
type :TEXT or :FASL.

mac-file-type and mac-file-creator return keywords indicating the type and creator
parameters of file.

set-mac-file-type and set-mac-file-creator destructively modify the type or
creator of the file. os-type may be a string of four characters or a four character keyword. The
new type or creator is returned as a keyword.

Volume Operations

Volume operations take as argument either an integer (the volume number) or a pathname (the
volume component is used). Volume numbers are unique negative integers assigned to each
mounted volume. Volumes numbers change from session to session, and may change if a volume
is unmounted and remounted. Within these limits, volume numbers allow a program to distinguish
between multiple volumes with the same name. The volume number 0 is used to specify the
default volume.

10-12 Allegro CL

The functions below will signal an error if the number or pathname given as an argument does not
correspond to a mounted volume.

volume-number volume [Function]

returns the volume reference number of the specified volume. If volume is valid volume number,
it is simply returned.

eject-disk volume [Function]

ejects the specified volume if possible. It is not possible to eject hard disks. eject-disk
returns the truename of volume if successful, otherwise it signals an error.

ejectedp volume [Function]

returns t if the volume is ejected, ni1 otherwise. ejectedp signals an error if the specified
volume is not mounted. probe-file can be used to check whether a volume is mounted.

hfs-volume-p volume [Function]

returns t if volume uses HFS (Hierarchical File System) and ni1 if it uses MFS (Macintosh File
System). Most current Macintoshes only use HFS devices.

flush-volume volume ¢key :drive-number [Function]
Some file system manipulations are buffered for execution at a later time. flush-volume
insures that all buffered file manipulations to a specified volume are performed. volwne may
specify either a name or a drive-number. If given, : drive-number takes precedence.
flush-volume returns the name or the drive number of the volume effected.

Directory Operations
do-files-in-directory (var pathname [resultform]) {form}* [Macro]

iterates forms with the variable var bound to a mac-pathname specifying each file in the directory
component of pathname .

do-directories-in-directory (var pathname [resultform)) {form}* [Macro)

iterates forms with the variable var bound to a mac-pathname specifying each subdirectory in the
directory component of pathname .

files-in-directory pathname [Function]
returns a list of files (as mac-pathnames) in the directory component of pathname . Signals an
error if there is no directory corresponding to the directory component of pathname.

files-in-directory is equivalent to

(let ((names nil))
(do-files-in-directory (file pathname (nreverse names))
(setqg names (cons file names))))

directories-in-directory pathname [Function]
returns a list of directories (as mac-pathnames) in the directory component of pathname. Signals
an error if there is no directory corresponding to the directory component of pathname.

File System Interface 10-13

directories-in-directory is equivalent to

(let ((names nil))
(do-directories-in-directory (file pathname (nreverse names))
(setqg names (cons file names))))

devices [Function]
returns a list of devices (as mac-pathnames) known to the machine.

User Interface

choose-file-dialog &key :mac-file-type :mac-file-creator [Function]
:directory
displays the standard Macintosh choose-file dialog.

:mac-file-type and :mac-file-creator should be os-type keywords, or lists of os-type
keywords. If specified, only files with the given mac-file-types and mac-file-creator will be
displayed in the dialog.

The :directory keyword specifies the directory shown when the dialog first appears. It
defaults to the last directory shown by the choose-file-dialog or choose-new-file-dialog.

choose-new-file-dialog &key:directory :prompt [Function]
displays the standard Macintosh choose-new-file dialog.

The :directory keyword specifies the directory shown when the dialog first appears. It
defaults to the last directory shown by the choose-file-dialog or choose-new-file-dialog.

The filename component of :directory is used as the default filename in the editable-text item
of the dialog.

The : prompt keyword specifies the text to display above the file-name type in area. If supplied,
:prompt should be a string. The default Prompt is "As...".

Debugging

Overview

Fred Commands
Inspect

Step

Backtrace
Trace

11

i - \\\
| /

Debugging

Overview
Allegro CL provides several tools which help programmers examine and debug programs and
environments. These include a window-based inspector, a stepper, a stack-backtrace facility, and

the standard Common Lisp t race function. Most of these tools can be used without any
documentation. Here are a few helpful tips.

Fred Commands
Several Fred commands help the programmer get information.

m-. [Fred Command)
Typing meta-period when the cursor is in or next to a symbol causes Allegro CL to search for the
source-code associated with the symbol. This will be available if the symbol was defined with
record-source-files non-nil. If the source-code is found, it is brought up in a Fred
window. If the symbol has been defined from several files, the user is given the choice of files.

c-x c-a [Fred Command]
Typing control-x followed by control-a when the cursor is in or next to a symbol causes Allegro
CL to display the argument list of the function associated with the symbol. This search may be
performed in four ways. If the function is a Common Lisp function, the argument-list information
1s taken from the cl-database.text file in the ccl-doc folder. If the function was defined with
record-source-file or *save-definitions* non-nil, Allegro CL extracts the
argument list from the source code. As a last resort, limited argument-list information is extracted
from the compiled function. :

c-x c-d [Fred Command]
Typing control-x followed by control-d when the cursor is in or next to a symbol causes Allegro
CL to search for the documentation string of the function associated with the symbol. If the search
is successful, the documentation string is printed. The search will only succeed if the function was
defined with *save-doc-strings* non-nil.

c-x c-i [Fred Command]
inspects the current expression. See the section on Inspect, below, for a description.

c-x c-m [Fred Command]

macroexpands the current expression with macroexpand and pretty-prints the result into the
listener.

c-m [Fred Command]
macroexpands the current expression with macroexpand. The result of each call to
macroexpand-1 is printed in the listener.

c-x Cc-r . [Fred Command)

prints the result of reading the current s-expression. This is useful for tracking down read-time
bugs, particularly in expressions containing backquotes.

11-2 Allegro CL

Inspect

Allegro CL supports the Common Lisp function inspect with a window-based inspector. Their
are three ways of invoking the inspector.

The first is through the Inspect menu-item, on the Tools menu. Selecting this item brings up a
modeless dialog box with several inspect options, including a help function and a function for
inspecting system data. The help function is only available if the ccl-docs folder is in the same
directory as Allegro CL.

The second method is through the Fred command control-x control-i. This command inspects the
current selection or current Lisp expression. When performed in the listener, if there is no
selection or current expression, the value of * is passed to inspect.

The third method is through a call to the function inspect. For example
(inspect *menu*)
would bring up an inspector window for the menu class.

The form associated with the top inspector window can be accessed through the function
top-inspect-form. This allows limited data modification throu gh the inspector.

Step

Allegro CL supports the Common Lisp step function with a modal window-based stepper. Two
types of functions can be stepped: evaluated functions, and functions which were compiled when
save-definitions was non-nil. Functions compiled with *save-definitions*
settonil need to be redefined (either as evaluated functions, or as compiled functions with
save-definitions non-nil) before they can be stepped.

Backtrace

When Allegro CL enters a break-loop, the stack backtrace dialog becomes available. If the break-
loop is entered through an error (which will happen if *break-on-errors* is non-ni 1), the
stack backtrace dialog will appear automatically. In other situations, the stack backtrace dialog may
be brought up by choosing the Backtrace menu-item from the Tools menu.

The stack backtrace dialog consists of two tables. The top table shows the functions awaiting
return values on the stack. The name of each function is preceded by the address (in hex) of the
function’s stack frame. Keep in mind that Allegro CL is properly tail-recursive; functions may be
missing from the stack, even though they were a part of the calling sequence that led to the break.
(See the Implementation Notes appendix for details on tail recursion and the Allegro CL compiler).

When a function is selected in the upper table of the backtrace dialog, the lexical values held in that
function’s frame are shown in the lower table. Selecting a value causes it to be assigned to the
global variable *d*. This variable may then be used in forms evaluated from the listener or other
windows. When the backtrace dialog is closed, or when a different frame is selected, the value of
d is settonil.

The Allegro CL backtrace mechanism does not currently show the names of lexical values.

Debugging 11-3

Trace

The trace function is implemented to Common Lisp standards, and has been extended to work with
Allegro CL’s object system. If a function has separate definitions in several objects, the tracing of
each is independent. You simply ask the desired object to trace the function.

Example:

? (defobfun add-twice (x y)
(+xyxy))

ADD-TWICE

? (defobject £foo0)

FOO

? (defobfun (add-twice foo) (x y)

(usual-add-twice (+ x x) (+ ¥y v¥)))

ADD-TWICE -
? (trace add-twice)

NIL -

? (add-twice 1 1)
Calling (ADD-TWICE 1 1)
ADD-TWICE returned 4

4

? (ask foo (add-twice 1 1))
Calling (ADD-TWICE 2 2)
ADD-TWICE returned 8

8

? (untrace add-twice)

NIL

? (ask foo (trace add-twice))

NIL

? (add-twice 1 1)

4

? (ask foo (add-twice 1 1))
Calling (ADD-TWICE 1 1)
ADD-TWICE returned 8

8

? (trace add-twice)

NIL

? (ask foo (add-twice 1 1))
Calling (ADD-TWICE 1 1)

Calling (ADD-TWICE 2 2)
ADD-TWICE returned 8

ADD-TWICE returned 8

8

?

Low-level System Interface 12

Overview

Sharing Data Between Allegro CL and the Macintosh Operating
System
Lisp Data Representation

Calling Macintosh Traps from Allegro CL
Stack Traps
Register Traps
General Trap Calls
Memory Management
Stack Blocks
Accessing Memory
Strings, Pointers, and Handles
Pascal var arguments

DefPascal

12-1

Low-level System Interface

Overview

This Chapter describes Allegro CL’s most direct, complete, efficient and dangerous level of access
to the Macintosh ROM. Because Allegro CL provides higher-level access to the most commonly
used parts of the Macintosh ROM, many users will not need to use these low-level features. The
higher-level tools are easier to use and safer. If used improperly, the low-level calls can easily
make the system crash. They are provided so programmers can use traps which aren’t included in
the high-level interface, can customize calls to particular traps, and can optimize critical sections of
code.

These descriptions assume some familiarity with Inside Macintosh.

Sharing Data Between Allegro CL and the Macintosh Operating System
Allegro CL manipulates two distinct sets of data: Macintosh data such as windows, patterns, and
regions; and Lisp data such as lists, symbols, and objects. Macintosh and Lisp data are stored in
different places and in different formats. Macintosh data is stored on the Application Heap, and
Lisp data is stored on the Lisp Heap. These two heaps operate independently. Every datum
belongs on one heap or the other.

Some Lisp data contain pointers to Macintosh data, but Macintosh data should never point to Lisp
data. For example, a window object (a Lisp datum) contains a pointer to a Macintosh window
record (on the Macintosh heap). Users should never store a Lisp datum on the Macintosh heap
(such as putting the window object into the refCon slot of a window record). This is because Lisp
data is movable, and pointers to Lisp data on the Macintosh Heap cannot be updated when data is
moved. After a garbage collection, any pointers to Lisp data on the Macintosh heap could easily
point to the wrong place and would probably cause an immediate or delayed crash.

In general, Macintosh data is only needed for communication with Macintosh ROM calls. Before
Allegro CL can pass data to the ROM, the data must be coerced to a form that the ROM can use.
This data cannot be stored on the Lisp Heap, but instead must be stored on the Application Heap or
on the stack.

Lisp Data Representation .

Every Lisp datum is represented in 32 bits as either an immediate or a pointer to the Lisp heap.
Immediate data are completely represented in 32 bits and may be stored directly in a variable, cons
cell, etc. There are currently only five types of data that are represented as immediates: fixnums,
characters, Macintosh pointers, and aliases for the commonly used symbols t and nil. All other
Lisp data is represented by pointers to the actual data.

Every Lisp datum has an associated type that can be quickly determined from the datum. The type
of non-immediate data can be determined by looking at the address of the pointer; the type of
immediate data is encoded in the datum itself. In brief:

If bit 31 is set, the datum is a fixnum.

If the datum is all zeros, itis nil.

If the datum has only the low five bits set, it is t.

If the three high bytes of the datum are all zero except for bit 8, it is a character.

12-2 Allegro CL

If a datum points to the Lisp heap, then its type is determined by the location in the Lisp heap.
Otherwise it is a Macintosh pointer (which must point to real memory).

For fixnums, the low 31 bits are interpreted as a two’s complement integer. When 32-bit numeric
values are required by the ROM, fixnums need to be sign-extended to the full 32 bits. This
operation is called unboxing. The reverse operation of converting from 32-bit numeric values to
31-bit fixnums is called boxing.

The 31-bit limitation on fixnums can (in rare instances) lead to some trouble when the ROM
requires a full-precision 32-bit value. It is usually possible to work around the 31-bit limitation of
fixnums by passing two successive 16-bit values (i.. by using the low 16 bits of two fixnums).
Allegro CL also provides functions which move data between a fixnum-or-bignum and a 32-bit
long word in memory. However, these functions are not as efficient as other data-sharing
functions.

Calling Macintosh Traps from Allegro CL

There are two types of Macintosh traps: those which accept arguments and return values on the
stack, and those which accept arguments and return values through registers. The type of a trap
can be determined by reading the description of the trap in Inside Macintosh. If registers are
mentioned, it is a register trap; if registers are not mentioned it is a stack trap. In general, the
operating system traps are register-based and the toolbox traps are stack-based, but there are
exceptions. Calls to these two types of traps have different formats, as outlined below.

Within a single trap call, some arguments are passed as immediate values and some are passed by
reference (i.e. a pointer to the value is passed). In general, data four bytes long or less is passed
by value, and data longer than four bytes is passed by reference. Check Inside Macintosh for the
calling sequences of particular traps. Arguments which are passed by reference may be modified
by the trap (these are Pascal var parameters).

For each trap TrapName, Allegro CL defines a constant _TrapName (equal to the trap number)
and a macro _TrapName which expands into the trap call and is recognized by the compiler. The
use of these macros is described in the following sections. In addition, the macros stack-trap

and register-trap are described. These macros can be used for calling any traps, including
those which are not predefined by Allegro CL.

Note:

No Lisp data should be passed to Macintosh traps (or any foreign function). Only unboxed
immediates or pointers to the Mac Heap should be received by traps. If Lisp data is used,
the function will not receive the correct data, but will instead receive a pointer to a data
structure in the Lisp Heap or a boxed value that will probably be incorrect. If memory is
allocated by the foreign function, a garbage-collection may be triggered which will cause the
Lisp data to move without updating the pointer. In other words, the data will be invalid, and
it will probably crash the system immediately or even worse, crash later.

Neither the Macintosh operating system, nor the Allegro CL low-level trap interface perform
significant type-checking on arguments to traps. Therefore, care should be taken when
passing arguments to traps.

L/’

Low-level System Interface 12-3
Stack Traps
The general format of a stack trap call is:
_Foo {type-keyword argument}* [return-value-keyword] [Macro]
where _Foo is the name of the trap.

The arguments are evaluated, coerced according to type-keyword, and passed as the arguments to

the trap. As noted above, the arguments should evaluate to fixnums (integers in the range +23) or
to pointers to data on the Macintosh Heap or the stack.

The type-keywords signify the type coercion to be performed on the correspondjng argument.
Possible type-keywords are :word, : long, and :ptr. The keywords operate on the
subsequent argument according to the following table.

:WOrd.eieeunnns argument is truncated to 16 bits and passed as a 16-bit word.

:10NG.iiiieinnnns argument is sign extended from 31 to 32 bits (unboxed) and passed as a 32-bit
long word.

TPET v argument is passed unmodified as a 32-bit pointer.

return-value-keyword indicates the type of value which the trap returns. If return-value-keyword
is not supplied, : novalue is assumed. The following keywords are recognized:

TWOTd.eeenneen. a 16-bit result is read from the stack, sign-extended and returned as a fixnum.
:long........ ... a 32-bit result is read from the stack, truncated to 31 bits (boxed), and returned
as a fixnum.
TPEL e a 32-bit result is returned from the stack unmodified as a pointer.
:novalue....... the Macintosh trap does not return a value. The Lisp call will retun nil.
Example:

(let ((oval-width 12)
(oval-height 8))
($stack-block ((my-rect 8))
($put-word my-rect 12 0) ;top=12
($put-word my-rect 40 2) ;left=40
($put-word my-rect 32 4) ;bottom=32
($put-word my-rect 80 6) ;right=80
(_FrameRoundRect :ptr my-rect
:word oval-width
:word oval-height)))

This form will call the trap FrameRoundRect with three arguments, a pointer and two words.
nil will be returned.

12-4 Allegro CL

(_GetResource :word #x5223 iASCII "R#"
:word #x5354 ;ASCII "gsT" Fan

:word n Lo
:ptr) -

This gets STR# resource number n (see Inside Macintosh for a complete description of
_GetResource). Note that the components of the resource type are pushed in reverse order so
that they will be in the correct order on the stack. If the resource is found, it will be loaded into
memory and a pointer to it will be returned; if it is not found, ni1 will be returned.

Register Traps
The general format of a register trap call is:

_Foo [:check-error] {register-keyword argument}* [return-register-keyword] [Macro)

where _Foo is the name of the trap.

If the symbol : check-error appears as the first argument to a register trap, then Allegro CL
will signal an error if the trap returns with a negative value in register d0. Before using
:check-error, make sure that the trap in question uses this error-signalling protocol.

The register-keywords specify the register which will hold the subsequent arguments. The
return—register-keyword specifies which register will hold the value returned by the trap (if any).
Recognized register keywords are :a0 thru :a6 and : dO thru :d7.

The arguments are evaluated in left to right order and placed in registers according to the register- N
keywords. Arguments to be placed in data registers should be fixnums; these will be sign- R
extended from 31 to 32 bits (unboxed). Arguments placed in address registers are not coerced in

any way, and should usually be handles or pointers to non-Lisp memory.

Example:
(_Delay :A0 (%int-to-ptr 60))

The value 60 must be explicitly coerced from an integer to a pointer (thereby modifying the high
bit) because the trap call will not perform this coercion.

The return-register-keyword specifies which register contains the value to be returned from the
trap. If return-register-keyword is not supplied, then nil is returned. Values returned from a
data register will be truncated to 31 bits and returned as a fixnum. Values returned from an address
register are returned unmodified and will usually be a handle or pointer to non-Lisp memory.
There is no facility for returning multiple values from register traps.

Example:

(setq my-pointer (_newptr :check-error
:d0 2000
:a0))

upon completion my-pointer will hold a pointer to a 2000-byte block of memory on the current
Macintosh Heap. If the memory cannot be allocated, a Lisp error will be signalled.

O

Low-level System Interface 12-5

General Trap Calls

Two macros—stack-trap and register-trap—provide a generalized mechanism for
calling Macintosh traps. These functions can be used for calling traps which are not defined by
Allegro CL, for example, color Quickdraw traps contained in the Macintosh II.

stack-trap [:check-error] trap-number [Macro]
{type-keyword argument}* [return-value-keyword)
register-trap [:check-error] trap-number [Macro]

{register-keyword argument}* [return-value-keyword]
trap-number should evaluate to a 68000 A-trap instruction. These can be found in /nside

Macintosh. If trap-number is specified as a compile-time constant expression, the trap call can be
open-coded by the compiler.

The type-keywords, return-value-keywords, register-keywords, and arguments have the same
meanings as for predefined trap-calls, as does the keyword : check-error.

Example:

;:; Setting bit 9 of certain Memory Manager traps causes
;i; allocated memory to be initialized to zero by the ROM.
;i; This feature saves us a little code and also exploits
;:: the fact that, for hardware reasons, code in ROM

ii; executes about 20% faster than code in RAM on many

;ii versions of the Macintosh.

(defconstant _NewPtr.CLEAR
(logior NewPtr (ash 1 9))
" NewPtr with bit 9 set")

(defmacro _NewPtr.CLEAR (&rest args)
(if (eqg (car args) :check-error)
: ;; 1f present, put it in the right place.
“(ccl::register-trap :check-error
_NewPtr.CLEAR
,@(cdr args))
“(ccl::register-trap _NewPtr.CLEAR
,@args)))

;;; test it

(defun test-it ()
(let ((p (_NewPtr.CLEAR :check-error :d0 20 :a0)))
(unwind-protect
(dotimes (i (_GetPtrSize :check-error :a0 p :d40) t)
(unless (zerop (%get-byte p 1i))
(error
" NewPtr.CLEAR didn’t work as advertised.")))
(_DisposPtr :check-error :a0 p))))

(test-1it)

12-6 Allegro CL

Memory Management L
Allegro CL works cooperatively with the Macintosh Memory Manager. Thus you can use the traps e
_NewPtrand NewHandle to allocate blocks of memory on the Application Heap. The

Macintosh and Lisp heaps are dynamically resized to satisfy memory requests. This resizing will

sometimes trigger a garbage collection.

You are responsible for releasing memory allocated on the Macintosh heap (this can be done
with _disposptr and _disposhandle. It will not be garbage collected even if all pointers to the
memory are lost. Also, care should be taken so that once memory is released, nothing in Lisp
still refers to it. This could cause a crash if that memory location is later used for Lisp data
and a garbage collection occurs.

_NewPtrand NewHandle are automatically called by make-record, described in the chapter
Pascal Records.

Stack Blocks

When you need a small amount of memory for temporary storage, it is often more convenient and

more efficient to bypass the Macintosh Memory Manager. The $stack-block special form

allows programs to allocate blocks of memory on the stack. Be very careful using

%stack-block. When you exit the $stack-block form, all the memory allocated is

reclaimed, so any remaining pointers into the stack block will be invalid. $stack-block should

only be used for well-defined temporary storage, for example in setting up rectangles or /O

parameter blocks to be passed to traps, or as a temporary place to put var arguments.

$stack-block ({(variable size)}*) {form}+ [Special Form]1 ,
for each variable and size, $stack-block allocates a block of storage size bytes long, and p—
binds variable to a pointer to the block. If there is not enough room on the stack to allocate the

requested memory, an error is signalled. The forms are executed in the resulting environment.

The maximum total size for an individual stack block form is 32k bytes. Every size must be a

positive fixnum, or a compile-time error will be signalled. $stack-block is semantically

equivalent to doing a_NewPtr/ DisposPtr pair for each variable, but much more efficient.

The bindings and the storage created by $stack-block have lexical scope and dynamic
extent. They do not have indefinite extent. They disappear when the $stack-block
exits. The variables cannot be accessed outside of the $stack-block form and they
cannot be declared as special variables. They cannot be closed over.

Example:

(let ((oval-width 12)
(oval-height 8))

(3stack-block ((my-rect 8))

($put-word my-rect 12 0) ;top=12

($put-word my-rect 40 2) ;left=40

($put-word my-rect 32 4) ;bottom=32

($put-word my-rect 80 6) ;right=80

(_FrameRoundRect:ptr my-rect

- :word oval-width

:word oval-height))) L

Low-level System Interface 12-7

An eight-byte block is allocated on the stack. The memory is filled with the coordinates of a
rectangle. A pointer to the block—and two additional words—are then passed to the trap
_FrameRoundRect.

Accessing Memory

Once memory for a structure has been allocated, programs need methods for directly reading from
and writing to the memory. Allegro CL provides the following low-level functions for reading and
writing to memory locations. (The functions rref and rset may be used. See the chapter
Pascal Records for details.) Most calls to these functions are compiled inline for efficiency.

Each of the following functions takes an offser as an optional argument. No type-checking is

performed on the offser. It is treated as a fixnum (i.e. an immediate datum), and sign-extended
from 31 to 32 bits (unboxed).

$get-byte pointer soptional offset [Function]
gets the byte (8 bits) at pointer + offset and returns it as a fixnum.

$get-signed-byte pointer soptional offset [Function)]
gets the byte (8 bits) at pointer + offset, sign-extends it, and returns it as a fixnum.

$get-word pointer soptional offset [Function]
gets the word (16 bits) at pointer + offset and returns it as a fixnum. Note that on a 68000 (but
not a 68020) a fatal error will occur when a word is accessed at an odd memory address.

$get-signed-word pointer soptional offset [Function]
gets the word (16 bits) at pointer + offset, sign-extends it, and returns it as a fixnum. Note that
on a 68000 (but not a 68020) a fatal error will occur when a word is accessed at an odd
memory address.

$get-long pointer soptional offset [Function]
gets the long-word (32-bits) at pointer + offset , truncates it to 31 bits (by removing the high bit)
and returns it as a fixnum. Note that on a 68000 (but not a 68020) a fatal error will occur when
a long-word is accessed at an odd memory address.

$get-ptr pointer soptional offset [Function]
gets the long-word (32-bits) at pointer + offset and returns it unmodified. The data should be a
valid pointer or the garbage collector will be confused by it and probably crash. Note that on a
68000 (but not a 68020) a fatal error will occur when a long-word is accessed at an odd
memory address.

$get-safe-ptr pointer soptional offset [Function]
gets the long-word (32-bits) at pointer + offset, checks to see if it is a pointer to valid memory,
and returns it if it is, otherwise returns nil. Note that on a 68000 (but not a 68020) a fatal
error will occur when a long-word is accessed at an odd memory address.

$get-string pointer soptional offset . [Function)
gets the Pascal string at pointer + offser and returns it as a Lisp string. (Pascal strings are
formatted differently from Lisp strings. The Macintosh Toolbox uses Pascal strings.)

12-8 Allegro CL

¥get-ostype pointer soptional offset [Function]
gets the four bytes at pointer + offser and returns it as a keyword of four characters.

$put-byte pointer data soptional offser [Function]
stores the low eight bits of dara at pointer + offset.

$put-word pointer data soptional offset [Function)
stores the low 16 bits of data at pointer + offset. Note that on a 68000 (but not a 68020) a
fatal error will occur when a word is stored into an odd memory address.

$put-long pointer data soptional offset [Function)]
sign-extends data from 31 to 32 bits and stores the result at pointer + offset. Note that on a
68000 (but not a 68020) a fatal error will occur when a long-word is stored into an odd
memory address.

$put-full-long pointer data soptional offset [Function]
stores the integer value of data at pointer + offset. data should be an integer (fixnum or bignum).
This operation is less efficient than $put-1long, but it allows full 32-bit accuracy. Note that on
a 68000 (but not a 68020) a fatal error will occur when a long-word is stored into an odd
memory address.

$put-ptr pointer data soptional offset [Function)
stores data at pointer + offset. The full 32-bits of data will be written unmodified, so care
should be taken to not put Lisp data into non-Lisp memory space and not put Macintosh data into
Lisp memory space. Note that on a 68000 (but not a 68020) a faral error will occur when a
long-word is stored into an odd memory address.

¥put-string pointer string soptional offset [Function]

stores string as a Pascal string starting at pointer+ offset. string should have a maximum length
of 255.

tput-ostype pointer string soptional offser [Function]
string should have a length of four characters. $put-ostype stores string as four bytes at
pointer + offset. Note that on a 68000 (but not a 68020) a fatal error will occur when an
os-type is stored into an odd memory address.

Strings, Pointers, and Handles
The following utilities are provided for using strings, pointers, and handles.

with-pstrs ({(variable string)}*t) {form}* [Macro]
with-returned-pstrs ({(variable string)}*) {form}+ [Macro]
Strings are passed from Allegro CL to the Macintosh operating system with such frequency that
Allegro CL provides a macro, with-pstrs, to expedite the process. with-pstrs saves the
trouble of allocating memory and filling it with individual characters every time a Macintosh
accessible string is needed.

Memory for each string is allocated, the string is stored in this memory in the Pascal string format,
and the corresponding variable is bound to a pointer to the memory. Each string can have a
maximum length of 255 characters. The forms are evaluated in the resulting environment.

A

'“k.“/

Low-level System Interface 12-9

Traps which use the strings as var arguments for returning values should be called through the
macro with-returned-pstrs. with-returned-pstrs allocates 256 bytes for each

string (rather than trying to optimize the amount of memory allocated). This guarantees that the
returned string will not overwrite other segments of memory.

pointerp thing [Function]
returns t is thing is a pointer to non-Lisp memory, nil otherwise. A datum is considered a
pointer if it is not a fixnum and it points anywhere besides the Lisp heap.

zone-pointerp thing [Function]
returns t if zhing is a pointer to a non-relocatable system or application HeapZone memory block,
otherwise nil. The test is performed heuristically by first determining if zhing points into a
Macintosh HeapZone, and if so, seeing if the long word before the address pointed at by thing is
equal to the HeapZone. A zone pointer is different from a generic pointer since it points to a
memory block that was allocated using _NewPtr, and the various memory manager pointer traps

such as_DisposPtr may be used on it. See the Memory Manager chapter in Inside Macintosh
for more information on the structure of zone pointers.

handlep thing [Function)
returns t is thing is a Macintosh handle, otherwise nil. This is determined heuristically by first
checking if thing points into the system or application HeapZone, and if so, indirecting through
thing to see if the long word prior to the address plus the Zone pointer is equal to thing. See the
Memory Manager chapter in Inside Macintosh for more information on the structure of handles.

with-dereferenced-handles ({(variable handle)}t) {form}+ [Macro]
executes forms with each variable bound to the locked, dereferenced handle. Only previously
unlocked handles are locked. Upon exit, only handles which were unlocked on entry are
unlocked. (This prevents an annoying and difficult to find bug that occurs when programming the
Macintosh with other languages). Unlocking of handles is unwind-protected, so the handles are

guaranteed to be left in the same state before and after the with-dereferenced-handles,
even if termination is abnormal.

with-pointers ({(variable pointer-or-handle)}*) {form}+ [Macro]
for each pointer-or-handle which is a pointer, binds the variable to the pointer; for each pointer-
or-handle which is a handle, binds the variable to the locked, dereferenced handle, as with
with-dereferenced-handle. with-pointers is useful if you are unsure whether

pointer-or-handle will be a pointer or a handle. An error is signalled if pointer-or-handle is
neither a pointer nor a handle.

$inc-pointer pointer number [Function]
increments (or decrements) pointer by adding it to number, and returns a new pointer. pointer
should be a Mac pointer. number should be a fixnum.

$ptr-to-int pointer [Function]
returns a fixnum coerced from pointer, that is, the numerical address pointer points to. This
involves setting the high-bit.

$int-to-ptr fixnum [Function]
returns a pointer coerced from fixnum, that is, a pointer to the numerical address fixnum. This
involves unboxing fixnum, i.e., setting bit-31 to the same value as bit-30.

12-10 Allegro CL

Pascal var arguments

Pascal var arguments are passed by reference, rather than by value; i.e., you pass the function a
pointer to a datum, rather than the datum itself. The called function may then side-effect the datum
and in this way communicate information to the caller. Implementing var arguments in Allegro CL
is very easy. Just allocate memory of the appropriate size for the datum (either on the stack or on
the Macintosh heap, depending on how long you want to use the datum) and pass a pointer to the
memory as the var argument.

DefPascal

The defpascal macro allows programs to create Lisp procedures which can be called by the
Macintosh toolbox. Defpascal has the general form

defpascal name ({(argument type)}* (: result return-type)) [Macro]
[doc-string] {form}*
defpascal name ((argument : reg)) [Macro]

[doc-string] {form}*
The syntax is similar to de fun, except that the lambda list contains pairs rather than arguments,
and ends with a type specifier for the value returned by the procedure. Each pair is the name of the
argument followed by the argument’s type. &optional, skeyword, srest, and saux
arguments are not permitted because they are not supported by the Pascal calling sequence.

In the first format, arguments may be of type :word, :long, :ptr. :word’sand :long’s
will be passed to the procedure as fixnums, and :pt r’s will be passed to the procedure as
pointers. return-type may be :word, :long, :ptror :void. :void is used when the the
procedure does not return a value. (Omitting return-type is equivalent to a return-type of : void.)

In the second format, only a single argument is given. This should be a pointer to a Pascal record
of type regbuf. When the function is called, the values of the machine registers are copied into
the record. The values of the record can be set and accessed with rref and rset (see the chapter
Pascal Records for details). The value returned from the function is the pointer to the record.

name will be set to a pointer to the procedure. This pointer may be passed to traps.

The following procedure could be passed to _TrackControl and used to track scroll bars:

(defpascal my-track-proc ((my-control PPTR) (partCode PWORD))
(_SetCtlvalue :ptr my-control :word

(+ (_GetCtlValue :ptr my-control :word)
(case partCode

(20 -1) ;scroll back one line
(21 1) ’ iscroll forward on line
(22 (- *page-height¥*)) ;scroll back on page

(23 *page-height*))))) ;scroll forward one page

A

Low-level System Interface

It could be used as follows:

(if (logbitp 8
(_TrackControl :ptr the-control :long mouse-point
:ptr my-track-proc :word))
(update-window))

12-11

Pascal Records

Overview
The Structure of Records
Record Functions

13

13-1

Pascal Records

Overview

The functions and macros described below allow Coral Lisp programs to manipulate data using
Pascal record formats. This is useful because the Macintosh Operating System usually stores data
as Pascal records. Data structures created at run-time (such as windows and text-edit records), as
well as Macintosh resources may be conveniently accessed and altered using these functions.

There are some caveats to sharing data between CCL and the Macintosh operating system. These
are described in the first three sections of the chapter Low Level System Interface. You should be
familiar with the information from those sections before reading the rest of this chapter.

. Records may be thought of in two ways, how they are stored and used, and how they are passed
around by Lisp. As stored and used, a record is a contiguous, highly formatted block of memory
of a specific size, on the stack or Macintosh heap. As passed around, a record is a simple pointer
into memory, with no formatting or length information. To use a record (which Lisp sees as a
mac-pointer), a program must provide a record-type, telling the system how the data pointed at
should be interpreted. It is up to your program to remember the types of all the records you create.
This system allows you to map over a single block of memory in several different ways, as if it
were several different types of record. It also allows you to take pointers returned by Macintosh
traps and use them as records.

In the discussion below, the word record can mean either a block of memory, or a pointer into
memory, depending upon the context. For example, when you allocate a new record with
make-record, a block of memory is allocated on the heap, and a pointer to the block is
returned. Below we would simply say a record is allocated and returned.

The Structure of Records

A record is a contiguous block of memory on the Macintosh heap. A record has an associated set
of fields, that refer to different portions of the memory block. A record definition is a template
that defines the fields for a specific type of record. Each field has a name, a type, and a byte offset
into the record. Field names are used to symbolically access portions of a record and field types
are used to determine the size of each field and how the information in the field should be
encoded/decoded (for example, a field may itself be a record and therefore contain subfields).

The same portion of a record may be accessed in different ways by using variant fields. Variant
fields allow an area of a record to be mapped to different sets of fields. For example, variant fields
could be used to access one part of a record as a single long word or as four bytes. Variant fields
(like records in general) are useful mnemonic aids and shortcuts. The size of a variant field is
equal to the largest total size of one of the sets of fields in the variant portion of a record.

New record types are defined with defrecord. record-type-p can be used to determine if
something is a record type. record-length and record-storage, record-default,
and record-fields return information about a record type. describe-record-field
returns information about a specific field in a type of record. Records may be created with
make-record. Records allocated by make-record will remain until explicitly de-allocated
using dispose-record. Records may be temporarily allocated (on the stack) with rlet.
They can be copied using copy-record. Fields within records are accessed with rref and set
with rset. set-record allows setting multiple fields in a record using keywords to specify
fields. record-string may be used to get a printed representation of a record.

13-2 Allegro CL

£
Record Functions S
defrecord name-and-storage [doc-string] {field-description}+ [Macro]

defrecord is used to define new record types. name-and-storage should be either a symbol

that will be used to name the type of record, or a list whose car is the symbol used to name the

type of record and whose cadr is one of the keywords :pointer, :handle, or :either

which specifies the default type of storage used for the record type. :pointer means that unless

otherwise specified, records of that type will be assumed to be pointers, : handle means that

records of that type are assumed to be Macintosh handles and : either means no assumptions are

made; the record is examined at run time to determine whether it is a pointer or a handle (this is

flexible but inefficient). If no storage type is specified, : pointer is assumed.

Records stored as handles are less likely to cause fragmentation of the Macintosh heap, but they
cannot be allocated using rlet. In addition, the Macintosh ROM is very strict about whether it
gets records passed to it by handle or by pointer. The default storage type for a record can be
overridden for many record instructions (such as rref and rset) by specifying the storage type
with the : storage keyword. Be very careful when overriding the default record storage. A
crash is very likely if a handle is used as a pointer or vice versa.

In addition to defining a record type, defrecord creates a record to be used as a default value
whenever that record type is used as a field in another record type. This default record uses the
default values of all of the types that it is composed of.

A standard field-description has the form: P
(field-name type soptional default)

Field-name is the name which will be used to access the field in the record. type is the type of
data which will be held in the field. It is used to determine the field’s length. #ype must be one of
the pre-defined types (see table below), a previously defined record type, or a list whose car is
the symbol string and whose cadr is a fixnum from 1 to 255, that is used to specify the space
to be allocated for the string.

The pre-defined field types, lengths, and defaults are :

Z& length default

boolean 1 bytes nil
byte 1 byte 0
character 1 byte #\null
handle 4 bytes nil
integer 2 bytes 0
longint 4 bytes 0
ostype 4 bytes irdedrdr
point 4 bytes #@ (0 0)
pointer 4 bytes nil

-
a
C

Pascal Records 13-3

Fields that are two or more bytes will always begin at word boundaries (i.e. at even memory
locations). This means that fields that are one byte long will sometimes be padded out to two
bytes, so that the next field can begin at an even address.

The following standard Macintosh record types are pre-defined by Allegro CL. Their definitions

can be found in the file Library:records.lisp or through the record-types option of the
inspector.

bitmap
bitslé
cursor
dialog
dialog-item
event
fontinfo
grafport
pattern
penstate
rect
regbuf
sfreply
window

Example:

(defrecord PenState (pnloc point)
(pnSize point)
(pnMode integer)
(pnPat pattern))

This call creates a new record type called PenState with four fields.

If a field-description includes a default, the corresponding field will be initialized to defaulr when
a new record is created, otherwise the default from the table above will be used.

A field description may contain variant fields, in which case it will have the form

(variant ({field-descriptionl}+)
({field-description2}*)

({field-descriptionN}+))

The part of the record described by the variant may be accessed through N sets of fields. The size
of the variant field is equal to the size of the largest set of fields.

Example:
(defrecord Rect
(variant ((top Integer 0) (left Integer 0))
((topleft point)))
(variant ((bottom integer 0) (right integer 0))
((bottomright point))))

13-4 Allegro CL

A rect record may be accessed either as two points or as four coordinates. All the fields of new
records will have a default initial value of zero. When a record is created, only the default values
of the first of any set of variants are used.

The following functions take a record-type as an argument. They do not take an actual record, but
only a type, or template, which has been created with defrecord.

record-type-p record-type “ [Function]
returns t if record-type is a defined type of record, nil otherwise.

record-length record-type [Function]

returns the length, in bytes, of the record type specified by record-type. Signals an error if there is
no record type record-type .

record-storage record-type [Function]
returns the keyword that specifies the default storage for records of type record-type. This will be
one of :pointer, :handle, or :either. Signals an error if there is no record type record-
type .

record-default record-type [Function)
returns the record of type record-type that is used as a default whenever a record is created that

includes fields that have type record-type. The fields of the default record may be changed.
Signals an error if there is no record type record-type.

record-£fields record-type [Function]
returns a list of the names of all the fields of record-type including the names of variant fields.
Signals an error if there is no record type record-type.

field-info record-type field-name [Function]
returns three values that describe the field of record-type named by field-name The values are the
byte offset of the field within the record, the field-type, and the default value of the field. Signals
an error if there is no record type record-type or no field within record-type with name field-
name.

record-info record-type &optional (errorpnil) [Function]
returns a list of descriptions of all the fields of record-type including variant fields. Each field
descriptor is a list of four values: the field name, type, offset and default value. If there is no

record type record-type and errorp is non-nil an error is signalled; if errorpis nil, nilis
returned.

make-record record-type skey :storage {field-name contents}* [Function]
Allocates space on the Macintosh heap for a record of type record-type and returns a pointer or a
handle to it. If : storage is not specified, it will be a pointer if the default storage for record-type
is :pointer, otherwise it will be a handle. Be very careful when overriding the default record
storage. A crash is very likely if a handle is used as a pointer or vice versa.

The fields of the record may be initialized by using the fieldnames as keywords. Any fields not
initialized by keywords will be initialized to their default values for the record type. The memory
used by the new record will not be automatically garbage-collected; it must be disposed of with
dispose-record. ,

AT

N

&
£

Pascal Records 13-5

Some records, such as windows, must be created and initialized by specific toolbox routines.
Such records should not be created with make-record but with the appropriate toolbox traps.
Their fields can, of course, still be accessed with rref and rset.

set-recoxd record record-type skey {field-name value}* [Function]
Sets multiple fields of record at one time. Each field-name should be a keyword that names the
field of record-ripe that will be set to value in record. The storage type of record is determined at
the time of the call, so any storage type may be used for any record type. record is returned.

copy-recoxd source-record record-type &optional dest-record [Function]
copies all of the fields of source-record which should be of type record-type into dest-record. If
dest-record is not supplied, a new one will be allocated that has the same storage type as source-
record. Returns dest-record.

dispose-record record [Function]
disposes of the given record. If record contains pointers to other records, these other records will
not be automatically disposed by dispose-record since other pointers to those records may
exist. dispose-record only has an effect if record is a pointer or a handle to a Macintosh
Memory Manager block. nil is returned.

print-record record record-type &optional print-level [Function]
prints the values of the fields of record with type record-type. This pays attention to the values of
print-length and *print-level*. print-level is the current print nesting, it defaults to
zero and is normally used only internally. No values are returned.

get-record-field record record-type field-name [Function]
returns the value of the field-name field of record which should be of type record-type. The
macro rref should normally be used to get the values since it is more efficient. get-record-
field is provided so that there is a functional way to get the values of fields.

set-record-£field record record-type field-name value [Function]
sets the value of the field-name field of record which should be of type record-type to value and
returns nil. The macro rset should normally be used to set the values of fields since it is more

efficient. set—-record-field is provided so that there is a functional way to change the values
of fields.

rref record accessor &key :storage [Macro]
is used for accessing the fields of a record. record is a pointer or handle to a record. accessor tells
rref what record and definition to apply and what field to access, and : storage tells rref
what kind of storage to assume for the record. It should be :pointer, :handle, or :either.
: storage is not usually specified, being taken instead from the record-type of accessor.

accessor has the form:
record-type{ field}*
where the record-type must be a previously defined record type, and field must be a field in a

record of type record-type (with extensions if record-type’s first field is a record, see below). If
field is also a record type, its fields may be accessed by appending an additional period and field

13-6 Allegro CL

name. If that field is a record type, the process can continue. There can be any number of fields
as long as all but the last is a record type. £

In cases where the first field of record-type is also a record, then that field’s fields may be referred
to as if they were direct fields of record-type. For example, a Quickdraw grafport is the first
field of a window record, so the grafport’s portrect could be referred to as
wirdow.partrect as an abbreviation for window.grafport .portrect.

If : storage is not supplied, then the default storage type for record-type is used. If it is
supplied it should be :pointer, :handle, or :either. Be very careful when overriding
the default record storage. An immediate or delayed crash is very likely if a handle is used as
a pointer or vice versa.

If the final field of accessor is is not a record, then the actual field value is returned. If the final
field of accessor is itself a record, then a pointer to that record is returned. An error is signalled
at macro-expansion time if an attempt is made to get a pointer to a record within a handle, since the
memory block pointed to by the handle may move. If that is desired, use a with-
dereferenced-handle form around the call and specify : storage to be :pointer.
Warning: such a pointer to a record within a handle will be valid only for the duration of the
with-dereferenced-handle.

rref is very efficient. It macro-expands into a simple call to a low-level memory accessing
function (unless : storage is :either) which is in turn compiled inline. For the curious, try
experimenting with how rref expands to see how it works.

Examples: T
(rref my-rect rect.top)

(rref wptr window.portrect.bottomright)

(rref .tePtr terec.viewrect.left :storage :pointer)
(rref my-control control.contrlvalue)

rset record accessor value skey :storage [Macro]
is used to change the values of the fields of a record. recordis a pointer or handle to a record,
accessor has the same format as the accessor for rref, and value is the new value to store into
the field. If the final field of accessor is a record, value must also be a record (either a handle or
a pointer) that is copied into the appropriate field of record.

If : storage is not supplied, then the default storage type for record-type is used. If it is
supplied it should be :pointer, :handle,or :either. Be very careful when overriding
the default record storage. An immediate or delayed crash is very likely if a handle is used as
a pointer or vice versa.

rset is very efficient. It macro-expands into a simple call to a low-level memory accessing
function (unless : storage is :either) which is in turn compiled inline. For the curious, try
experimenting with how rset expands to see how it works.

Examples:

(rset wptr window.portrect.topleft #@ (100 200))
(rset my-rect rect.left -10)

(rset teptr terec.viewrect.top 50 :storage :pointer)
(rset my-control control.contrlvalue 200) A N

Pascal Records 13-7

rlet ({(var record-type {field-keyword value}*)}+) {form}* [Macro]
is used to efficiently create temporary records. rlet has the same general form as let. For
every var a new binding is created. Space is allocated on the stack for a record-type record, the
record is initialized according to the field-keywords and values as in make-record. A pointer

to the new record is stored in the corresponding var. The forms are evaluated in the resulting
environment, and the value of the final form is returned.

Note that rlet differs from make-record in that fields not explicitly initialized by a

field—keyword/value pair will contain garbage instead of a default value. This is so that rlet
will be as efficient as possible in cases where you do not care what is in the fields, such as when a
record is to be filled in by a subsequent function call.

rlet cannot create records that are accessed through handles. Also, the records are stored on the
stack and are therefore ephemeral. When the evaluation of forms is done, all the records vanish
irretrievably, so make sure you do not have any dangling pointers when an rlet terminates.

Appendix A: Implementation Notes

Overview

Reader Macro Characters

Numbers

Characters

Arrays

Packages

Modules

Memory Management

Function Swapping

Garbage Collection

Evaluator

Compiler
Error Messages
Constants
Tail-recursion
Compiler Declarations
File Compiler

A
\\“ L

A-1

Appendix A
Implementation Notes

Overview

This chapter describes the particulars of Allegro CL’s Common Lisp implementation. It includes
information on cases which are ambiguous in Common Lisp and technical information on memory
management, the compiler, and other aspects of the Allegro CL system.

The information in this chapter is complemented by the information in the chapter Low -level System
Interface.

Reader Macro Characters

In addition to supporting the standard Common Lisp reader macro characters, Allegro CL adds
definitions for the following characters, which are-undefined by Common Lisp.

$#@....... transforms the subsequent list of two fixnums, into a point
#D....... causes the following string to be read as a mac-pathname
Numbers

« Fixnums are stored as immediate data using a two’s complement representation. Fixnums are 31

bits long (the thirty-second bit is used as a type marker). eql fixnums are eq (although portable
code should not rely on this fact).

« There is only one float type, corresponding to IEEE double floats. Each float is 64 bits (8 bytes),
consisting of a sign bit, an 11-bit binary exponent (allowing exponents in the range -1022:1023
inclusive), and a 52-bit significand. The significand precision is 53 bits. If the Macintosh contains
the MC68881 floating point processor, Allegro CL uses the processor for all floating point
computations. Otherwise, Apple’s SANE package is used. If Allegro CL is using the MC68881,
the symbol :MC68881 will be present on the *features* list.

Characters

Characters are represented as immediate data. The character code is the 8-bit extended ascii value.
There are no bits or font information—the char-code and the char-int of a character are the same.
eql characters are eq (although portable code should not rely on this fact). Strings may contain
any character (i.e. any character is a string-char).

The characters with ascii codes of 0 through 31 inclusive may use the reader macros #\"@
through A\ . More generally, #\"c, for any character c, is equivalent to (code-char (logxor 64
(char-code #\c))). In addition #\nnn, where nnn are two or three octal digits, is equivalent to (code-
char #onnn).

The variable CCL: : *name-char-alist* contains names for spec1a1 characters. It is used by
the char-name and name~-char functions. In addition to supporting the standard ascii
character set, Allegro CL supports the Macintosh optional character set.

A-2 Allegro CL

Arrays

The following distinct array element types are supported:
bit.oiiiiiiiiiiiiiii, 1 bit per element
character............... 8 bits per element

(signed-byte 8)..... 8 bits per element
(signed-byte 16) ...16 - 5 per element
B N One node (32 bits) per element

In addition, Allegro CL supports the special non-CL array element type CCL: : short, which is
similar (signed-byte 16) except that setting an array element to a fixnum which is not in the

(signed-byte 16) range truncates the value to 16 bits rather than causing an error. This is
useful in certain system programming applications.

Only simple vectors are supported. All arrays of rank other than 1 are implemented as displaced
arrays. In addition to the memory required to store the elements, a simple vector has 8 bytes of
overhead (9 bytes in the case of bit vectors). A complex (displaced) array has about 32+(4*rank)
bytes of overhead. The rank of an array must be less than #x2000.

The theoretical limits on the sizes of arrays are as follows:

Bitiiiiiiiiiiiiiiiieea, #xTFFFFF1
character............... #x1000000
(signed-byte 8)..... #x1000000
(signed-byte 16) ...#x800000
T oeereeeeeeiteneeaiennaenns #x400000

All these limits represent arrays requiring approximately 16 megabytes of contiguous memory.

There is no a priori limit on the size of individual dimensions of an array aside from that imposed
by the array total size limit. ' '

Packages

The only external symbols of the LISP package are the 775 symbols of Common Lisp. The CCL
package uses the LISP package. Its exported symbols consist of extensions to Common Lisp
provided by Allegro CL. The CCL package shadows none of the Common Lisp symbols. The
USER package uses both the CCL and the LISP packages.

Modules:

There are three ways you can tell the require function how to look for a module.

If the second argument to require is given, it should be a pathname or a list of pathnames which
make up the module.

If the second argument to require is not provided, require first looks in the variable
module-file-alist, which is bound to an alist. In this alist, the car of each element
should be a module name, and the cdr of each element should be a pathname or list of pathnames
making up the module. require will load all the files listed. Initially, *module-file-
alist* is empty.

;

Implementation Notes A-3

Example:

(push ' (my-system . ("my-sys;definitions.fasl"
"my-sys;actions.fasl"))
module-file-alist)

If the module is not registered in *module-file~alist*, require looks for a file with the
same name as the module name, in the locations specified by the variable *module-search-
path*. *module-search-path* should be bound to a list of pathnames, each specifying the
directory and possibly a file type (the name component is ignored, and is replaced by the name of

the module). If no file type is given, both “lisp” and “fasl” are looked for, and the more recent file
is used.

Example:
(push "misc;" *module-search-path*)
will cause (require 'tools) to look for the file “misc;tools.fasl” or “misc;tools.lisp”.

(setg *module-search-path*
(list* "misc;.fasl"
module-search-path¥))

will cause (require 'tools) tolook for “misc;tools.fasl” before searching for other versions
of the tools file.

The initial value of *module-search-path*is ' ("home;" "ccl;" "library;").

Memory Management

Allegro CL can access up to 8-megabytes of RAM (the current maximum supported by the
Macintosh operating system). Configuration for different memory sizes occurs automatically at
launch time.

The Macintosh divides memory into three areas: the system heap (used by the Macintosh operating
system), the application heap (used to store program data), and the stack. Running under the
Switcher, there may be several application heaps, but only one is active at a given time. Allegro
CL adds two additional memory areas: a Lisp heap, and a control stack. For efficiency and
flexibility, Lisp data is stored on the Lisp heap rather than on the application heap. The Lisp heap
and application heap are dynamically resized in response to requests for memory. See the chapter
Low-level System Interface for further details.

Allegro CL uses a BiBOP (Big Bag Of Pages) memory and type management system. Pages are
4 k-bytes each.

Function Swapping

A large number (over 2600) of the compiled functions in the Allegro CL kernel participate in a
“load-on-call” memory management system. These functions are not loaded into memory until
they are first called. When garbage collection occurs, any of these functions which are not active
(i.e. not awaiting return values on the stack), are purged. If called again, they will have to be

A-4 Allegro CL

reloaded. Depending on disk speed, there may be a slight pause when functions are loaded into
memory. P

The total size of all swappable functions is somewhat greater than 600K bytes. N

The load-on-call system is biased towards memory conservation, speed sometimes being
sacrificed. Users with sufficient memory who wish to optimize speed may use the following
functions to affect the swapping mechanism.

Functions written by the user do not participate in the load-on-call system.

purge-functions &optional boolean [Function)
globally enables or disables purging of swappable functions. If boolean is non-nil, purging will

be enabled. If boolean is nil, purging will be disabled. If boolean is not specified, the function
has no side-effect.

purge-functions retumns t is purging is enabled, otherwise nil.

purge-functions allows the user to disable function-purging before executing programs in
which purging and re-loading is undesirable. In general, purging should be disabled if Allegro CL
has access to more than 1 megabyte of RAM.

In environments with restricted memory, this feature should be used with caution: there is no way
of changing your mind in the middle of a garbage collection. If functions cannot be purged, an
out-of-memory error may occur.

preload-all-functions : [Function] \
loads all swappable functions into memory. Functions will still be purged during garbage
collection, unless the appropriate call to purge-functions has been made.

preload-all-functions is primarily intended for use in conjunction with

purge-functions. The following code could be placed in an init file to completely remove
swapping.

(progn
(preload-all-functions)
(purge-functions NIL))

This is recommended for configurations with greater than 1.5 megabytes of RAM.

Garbage Collection

Allegro CL uses a mark/compact/forward garbage-collector. Garbage collection occurs
automatically, as memory is needed. This can happen when the Macintosh operating system or
Allegro CL need memory. Garbage collection can be invoked manually through the function gc.

Evaluator

Allegro CL offers two evaluation options: a standard evaluator, and a compiling evaluator. The
standard evaluator conforms to Common Lisp standards and supports evalhook and)
applyhook. The compiling evaluator compiles non-trivial expressions and then runs them. For &

Implementation Notes A-5

looping or self-recursive constructs the compiling evaluator is much faster. However, the
compiling evaluator does not support *evalhook* and *applyhook*. When the variable
*fast-eval*isnon-nil the compiling evaluator is used. In the default environment, *fast-
eval*isnil.

When *compile-definitions* is non-nil, the standard evaluator will attempt to compile
definitions, thereby creating compiled, rather than evaluated, functions. This attempt will fail if
there are lexical bindings in the evaluation environment. For example,

(eval '(defun foo (n) (+ n n)))
will produce a compiled function if *compile-definitions*isnon-nil. However,
(eval '(let ((x 5)) (defun foo (n) (+ n n))))

will not produce a compiled definition, regardless of the value of *compile-definitions*.
(It will, however, produce a compiled definition if the compiling evaluator is used).

In the default mode, *compile-definitions*is t.

Compiler

Unless otherwise directed, the compiler attempts to produce compact, correct, safe, and reasonably
fast code. With very few exceptions, system functions do run-time type checking of their
arguments and signal errors when the number or types of arguments are incorrect (the notable
exceptions are the trap interface functions and the low-level memory access primitives). Compiled
functions normally check for stack overflow conditions and arrange to do periodic event
processing. The overhead associated with maintaining this safe run-time environment is intended
to be very low.

The vast majority of calls to built-in kernel functions—and all calls to user functions—are compiled
out-of-line. The remaining set, which consists primarily of common, computationally inexpensive
Lisp primitives such as cons, eq, and cdr, are implicitly declared to be inline and typically
compile into calls to hand-coded subprimitives in the Lisp kernel. In addition, the accessor
functions defined by defst ruct are, by default, proclaimed to be inline and typically compile
to code which does appropriate type and bounds checking with minimal function-call overhead.
Appropriate not inline declarations can be used to override this behavior if, for example, you
wish to trace calls to defstruct functions.

Lexical closure objects produced by the compiler are always full (upward) funargs.

Run-time processing of &key arguments never involves consing (unless, of course, an &rest
argument is involved).

Error Messages

Error messages produced by the compiler are intended to be self-explanatory. Whenever possible
they contain the name of the function being compiled. One source of confusion arises from the fact
that many side-effect-free expressions with self-evaluating arguments are evaluated at compile-
time. When this occurs, errors may be signalled by the evaluation of the expression, rather than by
the compiler itself.

A-6 Allegro CL

Example:

(defun silly (x vy)
(- x (+y (+ 23 '2))))

The compiler recognizes that 2, 3, and ' z are all constants, and so it attempts to evaluate the
expression (so that it can replace the expression with its result). Compiling s111y will cause an
error to be signalled by + at compile-time, because the symbol z is not numeric. It will not
mention that the error occurred while compiling silly.

Constants
The compiler folds equal constant expressions. As a consequence, defconstant does not
consider it to be an error to re-define a constant symbol as long as the new value is equal to the

old. See p.78 of Common Lisp: the language for a discussion of the implications of constant
folding.

Tail-recursion

By default, the compiler attempts to produce code which uses minimal stack space. To this end it
is properly tail-recursive. Function calls which return the values returned by the called function are
compiled in such a way as to re-use the calling function’s stack frame. For example, if foo calls
bar and foo returns the value returned by bar, foo’s stackframe will be re-used when bar is
called. This means that the function call history displayed in a stack backtrace is not necessarily
complete: the functions listed are only those which would be returned to if the computation
resumed (i.e. only those functions awaiting return values). The compiler’s license to collapse
stack frames is governed by the compile-time value of the global variable *nx-tailcalls*;
When non-nil (the default), stack space is conserved at the expense of debugging convenience.

Example:

(eval-when (compile eval)
(setq *nx-tailcalls* t))

(defun foo (n)
(if (=n 0)
(break "Foo: n finally reached 0.")
:+ calls to BREAK are not compiled
;7 tail-recursively; see below.
(foo (1- n))))

(foo 20)

When executed, this program will call itself 20 times and then enter a break loop. Examining the
backtrace will show one instance (the most recent) of £oo on the stack. If one sets
nx-tailcalls tonil and then recompiles the definition of foo, the backtrace will show

20 additional instances of foo and the consumption of a few dozen additional bytes of stack space.

As a special case, the compiler never compiles calls to error, cerror, warn,
or break tail-recursively. This means that the stack frame of the calling function is always
available if a break loop is entered.

®

Implementation Notes A-7

Compiler Declarations
special declarations are treated in accordance with the language specification.

ignore declarations are processed and used to generate/suppress compile warnings during file
compilation.

ftype and function declarations, and declarations of the form (TYPE <type>...) are
ignored by the current version of the compiler.

Declarations of the form (<type> ...) are processed and the results are used to facilitate code
optimization in some cases (see below).

The primary interpretation given to inline and not inline declarations is to control the
compiler’s treatment of defst ruct accessor functions and primitive operations. In addition,
inline declarations which refer to a given function advise that, within the body of that function,
self-referential calls can be made as simple branch or call instructions. In the absence of such
inline declarations, self-referential function calls are compiled exactly like all other function
calls. This default behavior is consistent with the semantics of Object Lisp, allows function
tracing, and is “correct” in pathological cases in which a function redefines itself. However, it
involves slightly higher overhead than the case in which an inline declaration is used.

optimize declarations are given the following treatment:

The quality compilation-speed is effectively ignored; setting it to 3 disables a fairly quick
branch-shortening pass in the code generator and results in slightly larger, slightly slower object
code.

The other recognized qualities—safety, space, and speed—are used to select various
optimization strategies. Each of the global variables described below is bound to a predicate
function which, given arguments representing the current values of the safety, space, and
speed qualities, returns t if the indicated optimization is to be performed. The user is free to
redefine these predicates according to their own requirements.

nx-trust-declarations [Variable]
Specifies whether variable type declarations and type specifier arguments to the the special form
should be trusted. The default predicate returns t when speed is greater than safety.

nx-fixnums-remain-£fixnums [Variable]
Specifies whether arithmetic operations involving only arguments known or declared as fixnums
will not cause fixnum overflow or underflow. The default predicate returns t when speed is 3
and safetyis O or 1.

nx-open-code-in-line¥ [Variable]
Specifies whether certain arithmetic operations are to be performed as out-of-line subprimitive calls
or as in-line instruction sequences. The in-line sequences are usually much larger and slightly
faster. The default predicate returns t when speed is 2 or more units greater than space.

A-8 Allegro CL

nx-inline-car-cdr [Variable)
Specifies whether calls to car and cdr should perform run-time type checking on arguments
whose type is unknown. Omission of this type-check can lead to system failure. The default
predicate returns T when speed is 3 and safety is O or 1.

In addition, declaring speed 3 and safety O inhibits the usual safety checks which are
performed on function entry. Functions may omit number-of-arguments checking and stack-
overflow checking and may skip periodic event processing. Needless to say, this combination of
optimization settings should only be used in small sections of well-debugged code where execution
speed is of great importance.

When safety is declared to be 0, defstruct accessor functions not declared not inline are
open-coded as memory access operations with no type-checking.

Lastly, declaring space to be more important than safet y results in the suppression of the
event-processing usually performed on backward branches. This results in iterative loops being
somewhat smaller and faster but may make them uninterruptible.

The compiler also recognizes the declaration specifiers of the form

(object-variable varl var2 ... varN)

The sole effect of ob ject-variable declarations is to suppress compiler warnings about free
references to any of the vars specified. The objvar macro wraps an object-variable
declaration around its argument and is the preferred way of communicating object-variable

declarations. Global object-variable declarations have the danger of suppressing free-variable
warnings which should not be suppressed.

File Compiler
compile-file has been extended to accept the following additional keyword arguments:

:verbose When non-nil, causes a message to be printed as each file is compiled.

:print When non-nil, causes a digested version of each top-level form to be printed as it
is compiled. '

:load When non-nil, causes the result of a successful compilation to be loaded into the
current environment.

:features should be a symbol or a list of symbols. These symbols are pushed onto the
reader’s *features* variable for the duration of the compilation.

:warnings Whennon-nil (the default), causes warnings about undeclared special variables
and unused lexical variables to be printed after compilation.

N

Appendix B: System Parameters

Overview

Screen Information
Window Configuration
Allegro CL Menus
Environment Parameters
Modules

Compiler

Miscellaneous

G

L N

B-1

Appendix B
System Parameters

Overview

Allegro CL provides a range global variables which describe and affect the system configuration.
These global variables are described in this chapter. The standard Common Lisp globals are not
discussed here.

screen information

screen-width [Variable]
screen-height [Variable]
the number of pixels of width and height of the current screen. On a Macintosh Plus or Macintosh

SE, width will be 512 and height will be 342. On a Macintosh II with multiple screens, the values

will refer to the main screen.

pixels-per-inch-x [Variable]
pixels-per-inch-y [Variable]
the number of pixels per inch in the horizontal and vertical directions. On a Macintosh Plus or
Macintosh SE, both numbers will be 72. On a Macintosh II with multiple screens, the values will
refer to the main screen.

menubar-bottom [Variable]
the vertical coordinate of the first quickdraw point below the menubar. On most Macintoshes, this
will be 38. The number is provided so.that programs do not accidently place windows behind the
menubar.

Window configuration

fred-window-position [variable]
fred-window-size [variable]
listener-window-position [variable]
]listener-window-size [variable]

These variables hold the default size and position for many of the windows that come up
under Allegro CL. The values are given as points (see the chapter Macintosh Basics),
and changed by the user.

fred-window-position and *fred-window-size* determine the size and
position of newly created fred-windows.

When the listener is created, its size and position are determined by
listener-window-position and *listener-window-size*. For these
variables to have an effect, they must be set before the listener is created (i.e. from an
initialization file, such as init.lisp).

top-listener¥ [Variable]
bound to the top-most listener.

B-2 Allegro CL

Allegro CL Menus

apple-menu [Variable]
file-menu ' [Variable]
edit-menu [Variable]
eval-menu¥ [Variable]
tools-menu [Variable]

These variables are bound to the menus which appear when you first boot Allegro CL. The menus
are normal menu-objects, and may be modified by Lisp code. Menu-items can be renamed, added,
and deleted.

undo-menu-item [Variable]
This variable is bound to the Undo menu-item. The title of this item is sometimes changed to
reflect the specifics of an undo operation (for example, after a cut, it may say Undo Cut rather
than simply Undo).

Environment Parameters
The following global variables control user-selectable environment options. These can be

conveniently set in the init file, or at any other time. They are also accessible through the
Environment... menu-item.

compile-definitions [Defaults t] [Variable]
if t, all function definitions will be compiled, even if the defun was evaluated.

record-source-file [Defaults t] [Variable]

If £, causes the compiler and evaluator to associate a definition with the name of the file contaning

the definition. Used for the Warn on Redefine and Edit Definition mechanisms.

save-doc-strings [Defaults nil] ' [Variable]

If non-nil, documentation strings are retained; if nil they are thrown away (which saves
space).

save-definitions [Default t] [Variable]
If non-n11l, the definitions of of compiled functions will be saved. These definitions can

then be used by the stepper. If nil, the definitions are not saved (and therefore do not
take up room).

load-verbose [Defaults nil] [Variable]
If non-nil, whenever a file is loaded, the name of the file is printed to the listener.

verbose-eval-selection [Defaults nil] [Variable]
This variable is used when a selection from a Fred window is evaluated. If it is t, the result of

each evaluated expression is printed in the listener. Otherwise only the result of the last evaluated
expression is printed.

warn-if-redefine [Default t] [Variable]
When lisp source files are loaded, the name of the source file is put on the property list of the
names of defun and defmacro calls. If you load a source file that contains a definition for a
name previously defined in a different file, and *warn-if-redefine?* is non-nil, then a
warning message will be printed in the Listener.

y=
AN

System Parameters B-3

break-on-warnings [Defaultnil] [Variable]
If non-nil, warnings will cause the Allegro CL system to enter a break loop, and a stack
backtrace will be shown. Note that Allegro CL is properly tail-recursive, so some functions may
not be visible in the stack-backtrace.

break-on-errors [Default t] [Variable]
if ncri-nil, errors will cause the Allegro CL system to enter a break loop.

backtrace-on-break [Defaultnil] [Variable]
If non-ni1l, entering a break loop through an error will cause the backtrace dialog to be displayed.
At any point in a break when the backtrace is not shown, it may be brought up by selecting the
Backtrace menu-item from the Tools menu.

fast-eval [Default nil] [Variable]
If non-nil, Allegro CL will evaluate expressions by first compiling them, and then running the
compiled result. This can be faster for complex expressions, but *apply-hook* and *eval-
hook * will not function.

emacs-mode [Defaultnil] [Variable]
If non-nil, the clover key is used for control, and clover-shift is used for command. If

nil the clover key is used for command, and clover-shift is used for control. See the

chapter Getting Started for details.

Modules

See appendix Common Lisp Implementation for details on the use of the following variables.

module-file-alist [Default ()] [Variable]
an alist. The car of each element should be the name of a module. The cdr of each

element should be a pathname or list of pathnames making up the module. This variable is

used by require.

module-search-path [Default ("Library")] [Variable]
a list of pathnames. These pathnames are used by require to locate modules.

Compiler

nx-tailcalls [Default t] [Variable]
when non-ni1l, the compiler will re-use stack-frames on tail-recursive function calls. This
conserves stack space but is a little bit slower and can make debugging more confusing (because
function calls disappear from the stack-backtrace). See the appendix Implementation Notes for
details.

B-4 Allegro CL

nx-trust-declarations [Variable]
nx-fixnums-remain-fixnums [Variable]
nx-open-code-in-line [Variable]
nx-inline-car-cdr [Variable]

these variables contain predicate functions used in conjunction with speed, safety, and
space declarations. The predicates determine whether certain compiler transforms and

optimizations and transforms take place. They are described in more detail in the appendix
Implementation Notes.

Miscellaneous

d [Variable]
During debugging with the backtrace dialog, *d* is bound to the currently selected value from the
currently selected frame. This variable may be used in expressions during debugging sessions,
much as *, **, and *** are used during normal Lisp interactions.

next-screen-context-lines [Default 2] [Variable]
should always be a fixnum. This is the number of lines that are retained from screen to

screen when the user scrolls through editor buffers using the control-v and meta-v
commands.

killed-strings¥ [Variable]
a list of the killed strings. This variable is used by Fred the editor.

white-pattern [Variable)
black-pattern : [Variable]
gray-pattern [Variable]
light-gray-pattern [Variable]
dark-gray-pattern [Variable]

These variables hold patterns which may be used in conjunction with Quickdraw calls.

font-listx [Variable]
a list of all the font-names (as strings) available for use by Allegro CL.

N

g
\

Appendix C: Quickdraw Graphics

Overview

Windows, Grafports, and Portrects
Points and Rectangles

General Window State

Cursor Primitives

Pen and Line-drawing Routines
Drawing Text

Calculations with Rectangles
Graphics Operations on Rectangles
Graphics Operations on Ovals
Graphics Operations on RoundRects
Regions

Graphics Operations on Arcs
Calculations with Regions
Graphics Operations on Regions
Bitmaps

Pictures

Polygons

Graphics Operations on Polygons
Miscellaneous Procedures

C-1

Appendix C
Quickdraw Graphics

Overview

This chapter outlines a set of interface functions between Allegro CL and Quickdraw, the
Macintosh graphics package. The code which implements these functions is included as an
example file. Before calling any of the functions described in this chapter, the user must load the
Quickdraw file, which can be found in the Library directory. Some familiarity with the Quickdraw
chapter of Inside Macintosh is assumed.

The interface routines support all of the functionality found in Quickdraw for Macintoshes with
64K ROMS. For newer Quickdraw features, traps may be called directly, as outlined in the
chapter Low Level System Interface.

Some Quickdraw functions may only be performed within window objects (i.e. by asking the
window to do them). These are the functions that depend on a grafport and are labeled as window
functions in brackets along the right column. All other functions may be performed globally.

The arguments to the Allegro CL Quickdraw functions generally parallel the arguments to the
Pascal Quickdraw function given in Inside Macintosh. In several cases we have extended the
Pascal functionality by taking advantage of Common Lisp’s optional arguments. In some cases we
have changed the order of arguments to make the mapping of the optional arguments more
effective. In some cases var arguments have been eliminated, and instead a value is returned.

Windows, Grafports, and Portrects

All drawing on the Macintosh takes place inside grafports. Grafports are usually associated with
windows. In low level Macintosh drawing, there are several levels of initialization in setting up
windows and grafports for drawings. Once they have been created, you must keep track of the
current grafport when you do any drawing. This process is simplified for the graphics routines
given in this chapter. When you create a window, an initialized grafport is automatically created.
Drawing commands are defined as object functions for windows; when you ask a window to
perform one of the commands, grafports are set and restored as needed.

Drawing inside windows is automatically cropped to the inside of the window, and to the portions
of the window that are visible (i.e. not covered up by other windows). Drawing is also affected by
the clip-region (described below), and the portrect. The portrect is an arbitrary rectangle
designating the outermost bounds in which drawing can occur. It supplies a frame of reference for
the window. The default portrect is infinitely large; it can be set with low-level calls (though you
usually won’t need to worry about the portrect at all).

Points and Rectangles

In Quickdraw points are specified by two coordinates, the horizontal coordinate (called h) and the
vertical coordinate (called v). h increases to the right and v increases down. The upper left hand
corner of a window is usually the point 0,0 but it may have any coordinates. This may be changed
by using the set-region function.

C-2 Allegro CL

Points are stored in encoded fixnums. A general description of the Allegro CL point data format
can be found in the chapter Macintosh Basics. Points lie at the intersection of two grid lines on the
QuickDraw plane. Note: points and pixels are not equivalent. The point associated with a given
pixel is at the upper-left corner of the pixel.

‘7 grid lines

pixel

point

The Macintosh stores rectangles as eight-byte records. (Records are blocks of non-Lisp data
stored on the Macintosh heap; see the chapter Pascal Records for details.) Rectangle records can
be thought of as two points (top-left and bottom-right), or four edges (left, top, right, and bottom).
Allocating memory for rectangle records can be inefficient, so Allegro CL provides several ways of
doing this. make-record is used to allocate memory for long-lived rectangles, and rlet is
used to allocate records for short-lived rectangles (see the chapter Pascal Records for details). For
many of the Allegro CL Quickdraw functions that take rectangles, rectangle records do not need to
be allocated at all; the rectangles can be specified by four coordinates, two points, or a rectangle
record. In general, if a rectangle is used only once, it is all right to pass it as two points or four
coordinates. However, if the rectangle is used several times, it is more efficient to create and pass
an actual rectangle record.

left

top

bottom

right

In cases where alternate forms of a point or a rectangle are accepted as arguments, the flexible
argument appears last. This is to avoid ambiguity as to which argument is which, and explains
why the order of arguments is sometimes different from the order given in Inside Macintosh.

{ s
S

e

Quickdraw Graphics C-3

General Window State

origin [Window Function]
set-originh &optional (v nil) [Window Function]
origin returns the coordinates of the top-left point in the window’s content region. This is
usually #@ (0 0), but may be different if it is set by user-written code.

set-origin sets the origin to the point specified by # and v. If only A is given, it is taken to be
an encoded point. The contents of the window are not moved; only future drawing is effected.

#@ (0 0) #@ (50 25)

¥@ (100 50) #@ (150 75)

(set-origin #@ (50 25))
(fill-rect 50 25 75 50)

clip-region &optional save-region [Window Function)
set-clip-region new-region [Window Function]
A clip-region allows drawing in a window to be constrained to an arbitrary region. Drawing will
only occur within the clip-region. The default clip-region is arbitrarily large, so no clipping takes
place. .

clip-region returns the window’s current clip-region. If save-region is supplied, it is used to
hold the returned region, otherwise the clip-region is returned in a newly allocated region. Note:
regions must be explicitly disposed of; they are not automatically garbage collected.

set-clip-region sets the window’s clip-region to new-region. new-region is returned.
See the section on Regions, below, for functions which allocate and manipulate regions.

clip-rect rectangle [Window Function]
clip-rect top-left-point bottom-right-point

clip-rect left top right bottom

sets the window’s clip region to be a rectangular region equivalent to rectangle. nil is returned.

c-4

Pen and Line-drawing Routines

Every window has its own pen. The state of the pen determines how drawing occurs in the
window. For example, if the pen is hidden, no drawing commands will actually have an effect on
the screen. In addition to being hidden or shown, a pen has a size, position in the window, and
pattern used for drawing.

Pen attributes

pen-show

pen-hide
pen-shown-p
pen-show shows the pen.

pen-hide hides the pen. If the pen is hidden, no drawing will occur.
pen-shown-p returns t if the pen is shown, ni1 if the pen is hidden.

pen-position

returns a point corresponding to the pen position in local coordinates.

pen-size
set-pen-size point

Allegro CL

[Window Function]
[Window Function)
[Window Function)

[Window Function)

[Window Function)]

pen-size returns the current pen-size as a point (expressing a width and height).

set-pen-size sets the pen-size to point.

QuickDraw PenSizes:

¢ - indicates pen location of the pen

u | [4

[

#2(1 1) +#e(4 4) @#(4 3)

#2(3 4)

P
s by
] t

Quickdraw Graphics C-5

pen-mode [Window Function)
set-pen-mode new-mode [Window Function)
pen-modes effect the way drawing occurs in the window. They provide a logical mapping
between the current state of pixels in the window, and the state of the pixels being drawn.
pen-mode returns a keyword indicating the window’s current pen-mode.

set-pen-mode sets the window’s current pen-mode. new-mode should be one of the
following keywords: :patCopy, :patOr, :patXor, :patBic, :notPatCopy,
:notPatOr, :notPatXor, :notPatBic.

source destination transfer mode result

:patCopy

cpatOr

:patXor

:patBic

:notPatCopy

:notPatOr

:notPatXor

:notPatBic

ipipipiannnnni
.-

uills"N= B 1" of

C-6 Allegro CL

pen-pattern &optional save-pattern [Window Function) N
set-pen-pattexn new-pattern [Window Function) oy
pen-pattern returns the window’s pen pattern. If save-pattern is given, it should be a pattern R

record; the pattern will be returned in this record. If save-pattern is not given, a new pattern
record will be allocated for holding the returned pattern. Pattern records (like all records) will
continue to take up space on the Macintosh heap until they are explicitly disposed of.

set-pen-pattern sets the window’s pen-pattern. new-pattern should be a pattern record.

A pattern is stored as a 64-bit block of memory. The definition of a pattern record allows patterns
to be accessed as 8 bytes or 4 words.

(defrecord pattern
(variant ((b0 byte) (bl byte) (b2 byte) (b3 byte)
: (b4 byte) (b5 byte) (b6 byte) (b7 byte))
((wO integer) (wl integer)
(w2 integer) (w3 integer))))

128

2 2
I 64
|

8 2
16 ‘ 4 I 1
111

1

128 + 64 + 32 + 8 + 4 + 2 = 238 --> b0
128 + 64 + 16 + 8 + 4 + 1 = 221 --> bl P
128-+ 32 + 16 + 8 + 2 + 1 = 187 --> b2 .
64 + 32 + 16 + 4 + 2 + 1 =119 --> b3 S
128 + 64 + 32 + 8 + 4 + 2 = 238 --> b4
128 + 64 + 16 + 8 + 4 + 1 = 221 --> b5
128 + 32 + 16 + B + 2 + 1 = 187 --> b6
64 + 32 + 16 + 4 + 2 + 1 = 119 --> b7

There are five patterns stored as constants by Allegro CL: *white-pattern*, *black-
pattern*, *gray-pattern*, *light-gray-pattern*, and *dark-gray-
pattern*,

pen-state &optional save-pen-state [Window Function]
set-pen-state new-pen-state [Window Function)]
pen-state returns the current pen-state, a record containing the pen’s location, size, mode (as
an integer), and pattern. If save-pen-state is given, it should be a pointer to a pen-state record;
the returned state will be stored in this record. If save-pen-state is not given, the pen-state will be
returned in a newly allocated record. Pen-state records (like all records) will continue to take up
space on the Macintosh heap until they are explicitly disposed of.

set-pen-state sets the window’s pen-state. new-pen-state should be a pen-state record.

Quickdraw Graphics c-7

Pen-state records represent the pen-mode as an integer. This integer will equal the position of the
corresponding pen-mode keyword in the list *pen-modes*. To translate an integer into a
keyword, make the call (elt *pen-state* mode-integer). To translate a keyword into an
integer, make the call (position mode-keyword *pen-state*).

The definition of a penstate record is:

(defrecord PenState
(pnLoc point)
(pnSize point)
(pnMode integer)
(pnPat pattern))

pen-normal [Window Function)
sets the pen’s size, pattern, and mode to normal. The pen-size is set to #@ (1 1), pen-mode to
:patCopy, and pen-pattern to *black-pattern*. The pen location is not changed.

move-to h &optional (v nil) [Window Function)
moves the pen to the point specified by A and v. If vis nil, h is interpreted as an encoded point.
No drawing occurs. The point moved to is returned.

move h &optional (v nil) [Window Function]
moves the pen A points to the right and v points down. If vis nil, A is interpreted as an encoded
point and its two coordinates are used. No drawing occurs. The encoded form of % and v is
returned.

line-to h &optional (v nil) [Window Function)
draws a line from the pen’s current position to Aand v. If vis nil, A is interpreted as an encoded
point.

line h &optional (v nil) [Window Function)
draws a line to a point 4 points to the right and v points down from the current pen position. If
only A is given, it is interpreted as a point, and its two coordinates are used.

Drawing Text

Text is drawn in windows by using a window as an output stream. Text is drawn starting at the
current pen position using the window’s current font, size, style and mode. The initial pen
position determines the placement of the lower left corner of the first character drawn, and the pen
is moved to the right the width of each character after it is drawn. Special characters such as return
(i.e. from terpri and fresh-1ine) and backspace have no effect. Note that when a window
is created, its pen-position is #@ (0 0). This means that any text drawn into it will be above the
visible portion of the window until the pen-position is lowered.

stream-tyo char [Window Function]
This function draws char at the current pen position, in the current font using the current text
transfer mode, and moves the pen to the right the width of the character. Since windows are
streams, all stream output functions (such as prinl) can be performed to them. stream-tyo

is not normally called directly but is called by stream output functions.

c-8 Allegro CL

Calculations with Rectangles
These functions do not draw, they simply perform calculations. They do not depend on a grafport, P
and so they are defined globally, rather than as object functions. N

P

offset-rect rectangle h soptional (v nil) [Function]
moves rectangle hto the right and v down. If only 4 is given, it is interpreted as an encoded
point. rectangle is destructively modified and returned.

(offset-rect rect 4 2) 2 +

inset-rect rectangle h soptional (v nil) [Function)]
insets rectangle by h and v . If only A is supplied it is interpreted as an encoded point. rectangle is
destructively modified and returned.

(inset-rect rect 4 2) ‘ 2 e
4 4 N
]
2
intersect-rect rectl rect2 dest-rect [Function]

stores the rectangle that is the intersection of rectl and rect2 into dest-rect and returns dest-rect .
rectl or rect2 may be used as dest-rect.

resulting Rectangle

-~

r o

Quickdraw Graphics Cc-9

union-rect rectl rect2 dest-rect [Function)]
stores the smallest rectangle that encloses both rectl and rect2 into dest-rect and returns
dest-rect. rectl or rect2 may also be used as dest-rect.

resulting Rectangle \

point-in-rect-p rectangle h soptional (v nil) [Function]
returns t if the point specified by 4 and v is inside of rectangle, otherwise nil. If only A is given,
it is interpreted as a point and its coordinates are used.

points-to-rect pointl point2 dest-rect [Function)]
stores the smallest rectangle that encloses both pointl and point2 into dest-rect and returns

dest-rect. pointl and poin:2 will be the top-left and bottom-right corners of the returned
rectangle.

point-to-angle rectangle h soptional (v nil) [Function]
returns an “angle number” calculated from rectangle and the point specified by h and v(see Inside
Macintosh for details). If only 4 is given, it is interpreted as an encoded point.

angle = 23 angle = 23

/ angle = 45
angle = 45

equal-rect rectl rect2 [Function]
returns t if rectl and rect2 are equal, nil otherwise.

empty-rect-p rectangle [Function]
empty-rect-p top-left-point bottom-right-point

empty-rect-p left top right bottom

returns t if recrangle is empty (contains no points), nil otherwise. A rectangle is empty if its
bottom is equal to or above its top, or if its left side is equal to or to the right of its right side.

C-10 Allegro CL

Graphics Operations on Rectangles

frame-rect rectangle [Window Function) S
frame-rect top-left-point bottom-right-point

frame-rect left top right bottom

draws a line just inside the boundaries of rectangle using the current pen.

paint-rect rectangle [Window Function]
paint-rect top-left-point bottom-right-point

paint-rect left top right bottom

fills rectangle with the current pen pattern and mode.

erase-rect rectangle [Window Function]
erase-rect rop-left-point bottom-right-point

erase-rect left top right bottom

fills rectangle with the current background pattern using patCopy mode.

invert-rect rectangle [Window Function]
invert-rect top-left-point bottom-right-point

invert-rect left top right bottom

inverts the pixels inside of rectangle.

£ill-rect pattern rectangle [Window Function)]
£ill-rect pattern top-left-point bottom-right-point

£ill-rect pattern left top right bottom .

fills rectangle with pattern using patCopy mode.

Quickdraw Graphics Cc-11

Graphics Operations on Ovals
Ovals are drawn inside of rectangles.

e

frame-oval rectangle [Window Function]
frame-oval top-left-point bottom-right-point

. £rame-oval left top right bottom

draws a line just inside the boundaries of the oval specified by rectangle using the current pen.

paint-oval rectangle [Window Function]
paint-oval top-left-point bottom-right-point

paint-oval left top right bottom

fills the oval specified by rectangle with the current pen pattern and mode.

erase-oval rectangle [Window Function)
erase-oval top-left-point bottom-right-point

erase-oval left top right bottom

fills the oval specified by rectangle with the current background pattern using patCopy mode.

invert-oval rectangle [Window Function]
invert-oval top-left-point bottom-right-point '
invert-oval left top right bottom

inverts the pixels enclosed by the oval specified by rectangle.

f£ill-oval pattern rectangle [Window Function}]
fill-oval pattern top-left-point bottom-right-point ,
f£ill-oval pattern left top right bottom

fills the oval specified by rectangle with pattern using patCopy mode.

C-12 Allegro CL

Graphics Operations on RoundRects

A roundrect is a rectangle whose comers are rounded. The shapes of the corners are determined
by ovals associated with the roundrects.

oval width oval height

:

)l

frame-round-rect oval-width oval-height rectangle [Window Function]
frame-round-rect oval-width oval-height top-left-point bottom-right-point
frame-round-rect oval-width oval-height left top right bottom

draws a line just inside the boundaries of the roundrect specified by rectangle, oval-width and
oval-height using the current pen.

paint-round-rect oval-width oval-height rectangle [Window Function]
paint-round-rect oval-width oval-height top-left-point bottom-right-point
paint-round-rect oval-width oval-height left top right bottom

fills the roundrect specified by rectangle, oval-width and oval-height with the current pen pattern
and mode.

erase-round-rect oval-width oval-height rectangle [Window Function)
erase-round-rect oval-width oval-height top-left-point bottom-right-point
erase-round-rect oval-width oval-height left top right bottom

fills the roundrect specified by rectangle, oval-width and oval-height with the current background
pattern using patCopy mode.

invert-round-rect oval-width oval-height rectangle [Window Function)
invert-round-rect oval-width oval-height top-left-point bottom-right-point
invert-round-rect oval-width oval-height left top right bottom

inverts the pixels enclosed by the roundrect specified by rectangle, oval-width and oval-height.

fill-round-rect pattern oval-width oval-height rectangle [Window Function)
fill-round-rect pattern oval-width oval-height top-lefi-point bottom-right-point
fill-round-rect pattern oval-width oval-height left top right bottom

fills the roundrect specified by rectangle, oval-width and oval-height with pattern using patCopy
mode. ‘

'

Quickdraw Graphics C-13

Graphics Operations on Arcs

frame-arc start-angle arc-angle rectangle [Window Function]
frame-axrc start-angle arc-angle top-left-point bottom-right-point
frame-arc start-angle arc-angle left top right bottom

#@ (0 0) 45°

#@ (150 100)

180°

(frame-arc 45 135
0 0 150 100)

draws a line just inside the arc specified by rectangle, start-angle and arc-angle using the current
pen.

paint-arc start-angle arc-angle rectangle [Window Function]
paint-arc start-angle arc-angle top-left-point bottom-right-point
paint-arc start-angle arc-angle left top right bottom

fills the arc specified by rectangle, start-angle and arc-angle with the current pen pattern and
mode. :

erase-arc start-angle arc-angle rectangle [Window Function]
erase-arc start-angle arc-angle top-left-point bottom-right-point
erase-arc start-angle arc-angle left top right bottom

fills the arc specified by rectangle, start-angle and arc-angle with the current background pattern
using patCopy mode.

invert-arc siart-angle arc-angle rectangle [Window Function]
invert-arc start-angle arc-angle top-left-point bottom-right-point

invert-arc start-angle arc-angle left top right bottom

inverts the pixels enclosed by the arc specified by rectangle, start-angle and arc-angle.

£ill-arc pattern start-angle arc-angle rectangle [Window Function]
£ill-arc pattern start-angle arc-angle top-left-point bottom-right-point

£ill-arc pattern start-angle arc-angle left top right bottom

fills the arc specified by rectangle, start-angle and arc-angle with pattern using patCopy mode.

C-14 Allegro CL

Regions

A region divides the graphics plane of points into two sets of points: those inside the region and
those outside the region. Regions can be any arbitrary shape.

111
1

|00 O
IR EERREN

1 1
1 1

LLLI

The storage for regions is not automatically garbage-collected; region storage must be manually
reclaimed with the function dispose-region. Within this limitation, the use of regions has
been greatly simplified from the specification given in Inside Macintosh. Specifically, much of
the initialization of regions is performed automatically.

new-region [Window Function)
allocates a new empty region and returns it.

dispose-region region [Window Function]
reclaims storage space used by region and returns nil.

copy-region region &optional dest-region [Window Function]
if dest-region is supplied, changes it to be equivalent to region and returns it. If desr-region is not
supplied, creates a new region equivalent to region and returns it. Note that if a new region is
treated, it must be explicitly disposed of to reclaim its storage space.

set-empty-region region [Window Function]
destructively modifies region to be an empty region and returns it.

set-rect-region region rectangle [Window Function)
set-rect-region region top-left-point bottom-right-point

set-rect-region region left top right bottom

sets region to be a rectangular region equivalent to rectangle and returns it.

open-region [Window Function]
hides the pen and begins recording a region. Subsequent drawing commands to the window will
add to the region. The recording will be terminated when close-regionis called. It is an error
to call open-region a second time without first calling close-region. Returns nil.

Quickdraw Graphics C-15

close-region &optional dest-region [Window Function)
shows the pen and returns a region that is the accumulation of drawing commands in the window
since the last open—region for the window. If dest-region is specified, it will hold the returned
value. Otherwise a new region will be created. It is an error to do a close-region before an

open-region has been done. Note that if a new region is created, it must be explicitly disposed
of to reclaim its storage space.

Calculations with Regions

offset-region region h soptional (v nil) [Function]
destructively offsets region by h to the right and v down and returns it. If only A is given, it is
interpreted as an encoded point and its coordinates are used.

inset-region region h soptional (v nil) | [Function]
destructively insets region by h horizontally and v vertically and returns it. If only A is given, it is
interpreted as an encoded point and its coordinates are used.

intersect-region regionl region2 soptional dest-region [Function]
returns a region that is the intersection of regionl and region2. The result is returned in dest-

region if supplied, or else in a newly created region. Note that if a new region is created, it must
be explicitly disposed of to reclaim its storage space.

union-region regionl region2 &optional dest-region [Function]
returns a region that is the union of regionl and region2. The result is returned in dest-region if
supplied, or else in a newly created region. Note that if a new region is created, it must be
explicitly disposed of to reclaim its storage space.

difference-region regionl region2 &optional dest-region [Function]
returns a region that is the difference of regionl and region2. The result is returned in dest-region
if supplied, or else in a newly created region. Note that if a new region is created, it must be
explicitly disposed of to reclaim its storage space.

xor-region regionl region2 soptional dest-region [Function]
returns a region that consists of all the points that are in regionl or region2 but not both. The
result is returned in dest-region if given, or else in a newly created region. Note that if a new
region is created, it must be explicitly disposed of to reclaim its storage space.

point-in-region-p region h soptional (v nil) [Function]
returns t if the point specified by A and v is contained in region,otherwise nil. If only A is
given, it is interpreted as an encoded point.

rect-in-region-p region rectangle [Function]
rect-in-region-p region top-left-point bottom-right-point

rect-in-region-p region left top right bottom

returns t if the intersection of rectangle and region contains at least one point, otherwise nil

equal-region-p regionl region2 [Function]
returns t if regionl and region2 are identical in size, shape and position, nil otherwise.

C-16 Allegro CL

empty-region-p region
returns t if region contains no points, nil otherwise.

Graphics Operations on Regions

frame-region region

draws a line just inside the boundaries of region using the current pen.

paint-region region
fills region with the current pen pattern and mode.

erase-region region
fills region with the current background pattern using patCopy mode.

invert-region region
inverts the pixels enclosed by region.

fill-region pattern region
fills region with pattern using patCopy mode.

Bitmaps

Bitmaps are rectangular arrays of pixels which are either black or white.

make-bitmap rectangle
make-bitmap top-left-point bottom-right-point
make-bitmap left top right bottom

[Function]

[Window Function]
[Window Function)
[Window Function]
[Window Function)

[Window Function)]

[Function)

returns a new bitmap the size of rectangle. This bitmap is not displayed anywhere, but can be

used for calculations and storage.

copy-bits bitmapl bitmap?2 rectl rect2 soptional pen-mode region

[Function]

copies and scales the bits inside rect! of bitmapl to the bits inside rect2 of bitmap?2 using the the
transfer mode pen-mode. If region is given, the transferred bitmap is clipped to region.and

pen-mode defaults to : srcCopy.

Quickdraw Graphics C-17

scroll-rect rectangle h soptional (v nil) [Window Function)
shifts the bits inside rectangle h pixels to the right and v pixels down within rectangle, erases the

uncovered region and adds it to the window’s update region. If only & is given, it is interpreted as
an encoded point and its coordinates are used.

#@ (0 0) $@(0 0)

pen position

#@ (250 250) #@(250 250)

(scroll-rect 100 100 250 250
100 50)

Pictures

A picture is a recording of a sequence of QuickDraw commands which may be played back at a
later time, into the same window or into a different window. The Allegro CL picture commands
are slightly different from the QuickDraw ones, since Allegro CL takes care of some of the
memory management automatically. There are also some additional capabilities for manipulating
pictures not found in QuickDraw.

start-picture &optional rectangle [Window Function]
start-picture soptional top-left-point bottom-right-point

start-picture coptional left top right bottom

hides the pen and starts recording Quickdraw commands in a picture with frame rectangle, if
supplied, otherwise with the window’s portrect as a frame. You must terminate a
start-picture with a get-picture before another start-picture can be done.
Returns nil.

get-picture ' [Window Function)
shows the pen and returns a new picture that consists of all the Quickdraw commands since the last
start-picture. Itis anerror todo a get-picture before a start-picture has been
done for a window. Note that pictures must be explicitly disposed of using kill-picture to
reclaim their storage space.

draw-picture picture soptional rectangle-or-point ' [Window Function]
draws picture in the window. If rectangle-or-point is not given, the picture is drawn in its
original size and position. If rectangle-or-point is a point, picture is drawn in its original size, but

C-18 Allegro CL

with its upper left corner at the local coordinate given by rectangle-or-point. If rectangle-or-point
is a rectangle, picture is drawn scaled into the rectangle. Note that if the portrect was used as a
frame when the picture was made, and if the portrect was arbitrarily large (the default set up by
Allegro CL), then scaling will produce no drawing (since the drawing frame is so much smaller
than the creation frame). draw-picture returns picture.

kill-picture picture [Window Function)
reclaims the storage space used by picture and returns nil.

Polygons

The Allegro CL polygon commands are different from the QuickDraw ones, since Allegro CL
handles some of the memory management automatically.

start-polygon [Window Function)
hides the pen and starts making a polygon. Subsequent 1ine and 1ine-to commands are added
to a new polygon. Within a single window, you must terminate a start-polygon with a get -
polygon before another start-polygon can be done.

get-polygon [Window Function)
shows the pen and returns a polygon that consists of all the 1ine and 1ine-to commands since

the last start-polygon. Itis an error to do a get -polygon before a start-polygon has
been done for a window. Note that polygons must be explicitly disposed of using
kill-polygon to reclaim their storage space.

kill-polygon polygon [Window Function)
reclaims storage space used by polygon and returns nil.

offset-polygon polygon h soptional (v nil) [Function]
offsets polygon by h to the right and v down. This function can be performed outside of
windows because it does not involve drawing. If only 4 is given, it is interpreted as an

‘encoded point.
Graphics Operations on polygons

frame-polygon polygon [Window Function])
draws a line just inside the boundaries of polygon using the current pen.

paint-polygon polygon [Window Function)
fills polygon with the current pen pattern and mode.

erase-polygon polygon [Window Function]
fills polygon with the current background pattern using patCopy mode.

Quickdraw Graphics C-19

invert-polygon polygon [Window Function)
inverts the pixels enclosed by polygon.

£ill-polygon pattern polygon [Window Function]
Fills polygon with pattern using patCopy mode.

Miscellaneous Procedures

local-to-global h &optional (v nil) [Window Function]

returns a global point that corresponds to the window’s local point specified by 4 and v. If only &
is given, it is taken to be an encoded point.

global-to-local h &optional (v nil) [Window Function]
returns a point in the window’s coordinate system that corresponds to the global point specified by
handv. If only A is given, it is interpreted as an encoded point.

get-pixel h &optional (v nil) [Window Function)
returns t if the pixel specified by 4 and v is black and within the window’s VisRgn, nil
otherwise. If only 4 is given, it is interpreted as an encoded point.

scale-point rect]l rect2 h soptional (v nil) [Function]
returns a points whose h and v values are the scaled h and v values of the point specified by 4 and
v. If only h s give, it is interpreted as an encoded point. The scaling corresponds to the ratios of
rectl’s width and height to recr2’s width and height.

map-point source-rect dest-rect h soptional (v nil) [Function]
returns a point that corresponds to dest-rect in the way that the point specified by 4 and v
corresponds to source-rect. If only h is give, it is interpreted as an encoded point.

+

point (input)
#@(30 5)

dest-rect
(50 10 60 40)

source-rect
(0 0 20 10)

+

point (result)
#@ (65 25)

C-20 Allegro CL

map-rect source-rect dest-rect mapped-rect [Function]
returns a rectangle that corresponds to dest-rect in the same way that mapped-rect corresponds to
source-rect. mapped-rect is destructively modified to hold the return value. This function is
performed by calling map-point on the comer points of mapped-rect.

dest-rect
source-rect mapped-rect (input) (50 10 60 40)
(0 0 20 10)
(30 5 40 10)
mapped-rect (result)
(65-25 70 40)
map-region source-rect dest-rect region [Function)]

returns a region that corresponds to dest-rect in the same way that region corresponds to source-
rect. region is destructively modified to hold the return value. This function is effectively
performed by calling map-point on all the points in the region.

map-polygon source-rect dest-rect polygon [Function]
returns a polygon that corresponds to dest-rect in the same way that polygon corresponds to
source-rect. polygon is destructively modified to hold the return value. This function is
effectively performed by calling map-point on all the points which define the polygon.

Appendix D: Selected Bibliography

Overview

Common Lisp References
Lisp Tutorials

Artificial Intelligence
Macintosh

D-1

Appendix D
Selected Bibliography

Overview

This appendix list books that you may find useful while programming in Allegro CL for the
Macintosh.

Common Lisp References

Steele, Guy Common Lisp: the Language
Digital Press, Manard, MA, 1984
_ 465 pages. The standard reference manual and language specification for Common Lisp. A must.

Simpson, Rosemary Common Lisp the Index
Coral Software Corp, Cambridge, MA, 1987
74 pages. An extensive cross-referenced index to Guy Steele’s Common Lisp: the Language.

Lisp Tutorials

Abelson, Harold & Gerald Sussman Structure and Interpretation of Computer Programs
MIT Press, Cambridge, MA, 1985

542 pages. Originally developed for the introductory programming course at MIT. Stresses large
scale issues of program design and implementation. Good chapter on writing an evaluator. Uses
Scheme (rather than Common Lisp) for all examples.

Brooks, Rodney Programming in Common Lisp
John Wiley & Sons, New York, NY. 1985
303 pages. Contains tutorial and problems (answers included).

Friedman, Daniel and Matthias Fellestien The Little Lisper, trade edition

MIT Press, Cambridge, MA. 1987

186 pages. Introductory text. Exercises in Lisp that have made complex concepts transparent to
many. Does not use the Common Lisp but sticks to a very few set of lisp functions and includes
compatibility notes. Strong on recursion.

Tatar, Deborah A Programmer’s Guide to Common Lisp
Digital Press, Maynard, MA. 1987
327 pages. The last chapter contains the code and English explanation of a toy expert system.

Touretzky, David Lisp: A Gentle Introduction to Symbolic Computing

Harper & Row, 1984

384 pages. Uses the most common features of Common Lisp in the examples. Gentle, as the title
suggests.

Winston, Patrick and Bertold Horn Lisp [2nd edition]
Addison Wesley, Reading, MA. 1984
Lots of Al code examples. The 2nd edition uses Common Lisp.

D-2 Allegro CL

Wilensky, Robert Common LispCraft
Norton & Co. New York, NY. 1986
The last two chapters describe a pattern matcher and an associative data base.

Artificial Intelligence

Buchanon, Bruce & Edward Shortliffe Rule-Based Expert Systems
Addison-Wesley, Reading, MA. 1985
Describes the Mycin experiments of the Stanford Heuristic Programming Project. A classic.

Charniak, Eugene , Christopher Resbeck, Drew McDermott Artificial Intelligence Programming
Lawrence Erlbaum Assoc. Hillsdale, NJ. 1980

The original version came out in 1980 and used UCI Lisp in the examples. An upcoming 2nd
edition uses Common Lisp.

Harmon, Paul & David King Expert Systems
John Wiley & Sons, NY, NY. 1987
283 pages. Lots of graphics.

Shapiro, Stuart Encyclopedia of Artificial Intelligence

John Wiley & Sons New York, NY. 1987
Large collection of articles on diverse topics in AL Good as a glossary.

Macintosh

Apple Computer, Macintosh User Guide
Apple Computer, 1987

The 200 page manual that comes with every Macintosh. Explains the basics of using the machine.

Apple Computer, Inside Macintosh volumes 1,2,3,4,5

Addison Wesley, Reading, MA. 1985-87

Technical reference for system-level Macintosh programming. Difficult but sometimes necessary.
Excellent as reference.

Apple Computer, Macintosh Technical Notes

Apple Computer, ongoing

Technical notes describing system-level details, caveats, bugs, and work-arounds. Available
through Apple Programmer’s and Developer’s Association, 290 SW 43rd Street, Renton, WA
98055. (206) 251-6548.

Chernicoff, Stephen Macintosh Revealed volumes 1, 2

Hayden Book Co., Hasbrouck Heights, NJ. 1986

Introduction to Macintosh-style event driven programming, with windows, menus, etc. Good
introduction, but many concepts may not be applicable to programming in Allegro CL.

Knaster, Scott How to Write Macintosh Software

Hayden Book Co., Hasbrouck Heights, NJ 1986 ' _
510 pages. Advanced topics in Macintosh programming, including the handling of some tricky
situations.

e

A

l\\/”

'Y

Glossary

ancestor

buffer

caret

cell

class

command key

command table

comtab

control key

cursor

Glossary-1

Glossary

An object from which another object inherits, directly or indirectly. If foo
inherits from bar, then bar is an ancestor of foo. In addition, if bar
inherits from quux, then quux is an ancestor of both bar and foo. See
also child, descendent, parent. Pages 3-3 to 3-9.

A Fred data type that holds a sequence of characters, as does a string.
Buffers are optimized for efficient manipulation of text, including
insertion and deletion. Buffers are displayed in Fred windows. Pages 1-
1, 9-1

See insertion point. See also cursor.
A component of a table dialog. Page 7-11

An object from which other objects are created. Conceptually, it
represents a category, such as dog, whereas an instance represents a
specific example of a category, such as Lassie. Page 3-9.

The key used for invoking menu-items through keyboard equivalents; In
Macintosh editing mode, clover. In Emacs editing mode, shift clover.
Page 2-3.

A table of Fred keystrokes and pointers to the functions they invoke. Page
9-10.

See command table

The key used to invoke Fred commands. In Macintosh editing mode,
shift-clover. In Emacs editing mode, clover. Page 2-3.

The screen image corresponding to the mouse. As the mouse moves, the
cursor moves on the screen. This is distinguished from the caret or
insertion point that indicates the position in text where typed characters
will appear. Pages 2-2, 8-6.

Glossary-2

datum, Lisp

descendent

device,

dialog

dialog, modal

dialog, modeless

dialog-itém

directory

Emacs mode

Emacs-style editor

Allegro CL
A Lisp data object such as a list, array, number, character, string, etc. Ay
The words datum and data, rather than the traditional ‘object’ , are used to N
avoid possible confusion with the word object in object-oriented

programming.

An object which inherits, directly or indirectly from another object. If foo
inherits from bar, then foo is an descendent of bar. In addition, if bar
inherits from quux, then foo is as a descendent of both bar and quux.
Pages 3-3 to 3-9.

The component of a pathname that specifies the physical storage device,
such as a hard disk. On the Macintosh this is the first part of the directory
specification. Equivalent to a Macintosh volume. Page 10-1.

A window containing dialog items, i.e., controls, which allows formatted
interaction between a program and a user. Page 7-1.

A type of dialog that requires a response from the user before the user can
perform any other action. Page 7-1.

A type of dialog that can remain on the screen while the user performs
other actions. Page 7-1. N

An element of a dialog that may cause an action when clicked by the
mouse. When dialog-items are disabled they are shown in a grayed out
format and do not respond to mouse clicks. Types of dialog-items
include: button, check box, radio button, static text, editable text, and
table. Page 7-1.

The component of the pathname that specifies the file directory. A
Macintosh folder. Directory specifications end in a colon, for example
“letters:”, or a semi-colon in the case of logical directories, for example
“ccl;”. See also logical pathnames. Page 10-2.

The operating mode of Allegro in which the clover key is used as a control
key and shift-clover is the command key. Page 1-2.

An editor whose command set is extensible by the user and which is
extremely rich in keyboard commands. Emacs editors follow a set of
conventions for the mapping between keystrokes and functionality.
FRED is an Emacs-style editor. Page 1-1.

event

event-handler

file name

file type

font-spec

Fred

frame

host

inheritance

inheritance, multiple

insertion point

Glossary Glossary-3

An occurance outside of normal program flow, usually generated by the
user. Examples include keystrokes, mouse clicks, and floppy disk
inserts. Pages 1-2, 8-1. ’

A piece of code that responds to and processes events. Page 8-1.

The component of a pathname that specifies the name of the file. For
example: “init”. Page 10-2.

The component of a pathname that specifies the type of file. For example:
“fas]”. Page 10-2.

Specifies some or all of the characteristics of a font, including name, size,
type, transfer mode. For example: ("monaco” 12 :BOLD) Pages 4-1, 4-
2. .

The Emacs-style editor in Allegro. Pages 2-1, 9-1.

The local environment of an object, containing its variable and function
bindings. The complete environment of an object consists of all the frames
of all its ancestors and the global, or top-level Allegro environment.
Frame is also used to denote stack-frame, a different data structure that
contains the information for an active function (primarily lexical values).
Page 3-5.

The component of the pathname that specifies an operating system. For
example: “coral-macs!”. The host component of a pathname is currently
ignored by Allegro CL. Page 10-1.

A mechanism whereby objects are linked in a heterarchy such that lower
level objects can use procedures and variables defined in higher level
objects. Pages 3-1, 3-3 to 3-9.

An inheritance mechanism in which an object may have multiple parents.
The resulting structure can therefore be a heterarchy, which is more
complex than a simple tree; it cannot be a general net since links flow only
in one direction. Page 3-7.

The location between two characters where text may be entered into a
window. See also cursor. Pages 1-1, 2-2.

Glossary-4

inspector

instance

instance variables

kill-ring

Listener

logical pathname

Macintosh mode

mark

menu

menu-item

menubar

Allegro CL

‘A tool that permits easy interactive examination of data structures. Page o~
11-2. S

An object, particularly when it is being referenced in relation to its class.
For example, “win-1 is an instance of the class *window*”. Page 3-9.

Variables which maintain the state of an instance, usually defined when
the instance is created. Page 3-9.

A buffer in which killed strings are saved. It is integrated with the
Macintosh keyboard and may be thought of as a multi-level clipboard.
The top item in the kill ring is the equivalent to the Macintosh clipboard.
The full kill-ring is accessable through a dialog. It is stored as a list of
strings bound to the variable *killed-strings*. Pages 1-2,9-2.

A special window designed for interacting with Lisp. Allegro CL’s
listener includes such features as the blinking of parentheses to highlight
matching pairs, and the use of different type styles to differentiate between
what the user types in and Allegro CL’s response. Page 1-1.

An alias for a physical (or regular) pathname. Facilitates writing portable o
code with embedded file names. Page 10-8. ;o

The operating mode of Allegro in which the clover key is used as a
command key and shift-clover is the control key. Page 1-2.

A pointer into a position in a buffer. Page 9-1.

On the Macintosh, the term menu denotes a pull-down menu i.e. a list of
items from which the user can choose to initiate an action. Page 5-1

An element of a menu that when selected by mouse or keyboard
equivalent causes an action to occur. When menu-items are disabled they
are shown in a grayed out format and do not respond to user selection.
Page 5-1

A list of the titles of several menus. The standard Macintosh interface
displays the menubar as a horizontal bar at the top of the screen. Clicking
in the menubar displays the menus. Page 5-1

meta key

mode line

modifier keys

object

object license

parent

pathname

pointer

search path

stack-backtrace

stepper

undo mechanism

Glossary Glossary-5

A modifier key used for invoking Fred commands. The option key is
used as the meta key. In the Fred documentation, “meta” is shown as M-
in the commands which use it. For example, the delete word command,
is shown as M-d, where M is the meta key and d is the “d” key. Page 2-3.

The first non-blank line in a text file, used for giving the Lisp system
information on the file. In Allegro CL, only the package specification is
recognized. For example:

;;; —*- package: <package-name> ~—*-
Page 2-1.

Keyboard keys that do not register as keystrokes but which modify the
value of other keys. Examples include shift and clover. Page 1-2.

A data type that may contain data and/or procedures for handling that data.
Objects also inherit data and procedures from other objects. Page 3-1.

The integer that uniquely identifies an object to Allegro CL. License
numbers are regenerated each time Allegro CL is loaded, and as such may
change from session to session. Page 2-19.

The immediate ancestor of an object. Page 3-3.
A method of specifying a particular file or directory. The Common Lisp
standard pathname has six components: host, device, directory, filename,

type, and version number. In Allegro CL the host, device and version
number are ignored. Page 10-1.

A datum which is an address into memory. Page 12-8.

The sequence of directories to be searched when the file system is looking
for the physical pathname of a partially specified file. Page 10-7.

A debugging tool that examines the stack, showing stack-frames and their
contents. Page 11-2.

A debugging tool that evaluates code one expression at a time, displaying
all intermediate values. Page 11-2.

The ability to reverse an operation, or series of operations, restoring the
former state. Page 6-5.

Glossary-6 Allegro CL

version The component of a pathname that specifies which version of a particular
file. Not used in Allegro CL. Page 10-2.

wildcard characters Characters that match to multiple other characters. For example,
pathnames may contain a "*" to refer to a set of files. Page 10-7.

Index

N

Pad

“kwj’)

#@,
use in creating points 4-1
as an Allegro reader macro character A-1
#@(1,1), as the normal setting for pen—size
C-7
68000 A-trap instruction, as argument to
stack-trapand
register-trap 12-5
A~trap instruction, 68000, as argument to
stack-trap and
register-trap 12-5
:a0 thru : a6, as register—keyword for register
trap macros 124
abort (command-period), use in terminating a
modal dialog 7-2
abort-character, use in defining an
: abortkey 1-2
aborting Lisp operations 1-2, 2-6
accessing,
Fred commands 9-11
function, source code fora 2-3
memory 12-7
object, current 3-17
object, function binding in a 3-15
object, license number fora 3-19
the optional Macintosh character set 2-5
record,
fields 13-5
window, on the Macintosh heap 6-5
symbol, object value of a 3-15
windows, 6-1
open 1-6
by title 6-1
action, as a property of dialog-items 7-1
action to be taken when,
dialog—item, initializing 7-6
dialog—item, is selected 7-6
activate window event, handler for 8-2
activating,
adialog window 7-3
amodal dialog 7-2
windows 1-6, 6-5
active editor window
buffer,
evaluating and compiling the entire
1-5
finding a definition in 1-5
closing 1-3
evaluating the current selection in the 1-4
active window,
copying selected regions of the 1-4
deleting
selected regions of the 1-4
without saving the selected region from
14
inserting clipboard contents into the 1-4
printing 1-4
replacing selections in the 14

Index

index-1

saving 1-3
searching in the 14
selecting the entire contents of 1-4
add-dialog-items, dialog function
description 7-4
add-menu-items, menu function description
54
add-points, function description 4-2
add-self-to-dialog, dialog-item function
description 7-8 '

dialog-items
to a dialog 7-4, 7-8
to amenu 5-4
selections to the kill-ring 2-5
address registers, data type for 124
algorithm for representing Lisp data 12-1
Allegro,
Common Lisp
default directories 10-7
implementation concepts A-1
menu, system parameters B-2
environment, description of 1-1
exiting 14
installation disks contents
launching ii-2
memory management, division of memory
in A-3
menubar,
as user customizable 1-3
Edit menu 1-4
Eval menu 1-4
File menu 1-3
Tools menu 1-5
as a pseudo multi-tasking system 1-2
as superset of Common Lisp ii~1
windows menu, component descriptions
1-6

ii-2

allocating,
memory for rectangles C-2
space on a Macintosh heap for a Pascal
record 13-4
static records, use of make-record for 13-1
:allow-returns, as keyword for exist
editable—text—dialog—item
function 7-9
allow-returns, editable-text—dialog—item
variable description 7-9
altered editor window, detecting 2-2
ancestors, of an object, finding the 3-18
angle, calculating from a rectangle and a point
Apple menu, item description 1-3
apple-menu#, variable definition B-2
Application Heap,
allocating memory on 12-6
as storage area for Machintosh data 12-1

index-2 Allegro CL

application HeapZone memory block, testing for
a pointer to 12-9
applyhook, as supported by the standard
evaluator A-5
apropos, as tool for locating Allegro elements
1-5
Apropos Tools menu item description 1-5
arc,
drawing a border inside an C-13
erasing an C-13
filling an C-13
inverting an C-13
argument list, for a function, obtaining the 2-3
arguments,
to functions, lexical bindings as 3-12
trap,
characteristics of 12-2
register, description of register-keyword

for 124
stack, description of type-keyword for
12-3
type—checking not performed on 12-2
array,
dialog-item,

setting the dimensions of 7-16
initializing 7-16
how stored by Allegro A-2
of pixels, bitmaps as rectangular C-16
*array-dialog-item¥,
as a dialog—item subclass 7-5
as the array dialog—item class object 7-15
variable description 7-15
arrow-cursor, variable description 8-7
ascii codes, how represented in Allegro A-1
ask, .
examples of use in manipulating objects
3-2
macro description 3-14
use contrasted with talkto 3-14
assigning
function bindings of objects 3-15
values to
an object 3-15
fields in arecord 13-5
variables in an objects, examples of
3-2
auto-refreshing graphics windows, as subclass of
windows 6-1
backspace, affect of relative to cursor 2-2
BACKSPACE, use to delete character 2-5
backtrace dialog, controlling the display of B-3
Backtrace Tools menu item description 1-5
backtrace-on-break#, variable definition
B-3
backtracing, how to invoke 11-2
beeping sound, generating a 44
beeps, use in debugging 44
BiBOP, use in Allegro memory management

A-3
binding,
function,
testing anywhere in the system 3-16
testing current object 3-16
testing ;ﬁerarchy of current object
-16 :
inheritance rules 3-7
inherited, examples of shadowing of 3-3
lexical,
as arguments to functions 3-12
let statements as source of 3-12
use in communicating values between
instances 3-11, A-5
lexically apparent, affect on incremental
compilation 1-1
object,
as free references 3-12
determining which will be used 3-5
function,
creating 3-16
deleting 3-16
shadowing by lexical bindings 3-11
variable, deleting 3-16
$stack-block, lexical scope and
dynamic extent of 12-6
value,
testing anywhere in the system 3-16
testing current object 3-16
testing hierarchy of current object
3-16
of variable and value in an object, examples
of 3-2
bitmap,
concepts and forms C-16
copying C-16
creating C-16
Macintosh standard record type, as Allegro
pre—defined 13-3
bits16, Macintosh standard record type, as
Allegro pre-defined 13-3
*black-patternt,
as an Allegro pen pattern C-6
as the normal setting for pen—pattern C-7
variable definition B—4
:bold,
as a font-style keyword 4-2
as a menu-item font style 5-6
:boolean,
as return~-value-keyword for stack trap
macros 12-3
as type-keyword for stack trap macros
12-3
border, drawing,
around arectangle C-10
inside aregion C-16
inside a rounded rectangle C-12
inside an arc C-13

inside an oval C-11
bound-anywhere-p, function description
3-17
boundp, function description 3-16
boxing of fixnums 12-2
break, calls to, not tail-recursive A-6
break loop,
controlling the entry to B-3
obtaining a stack backtrace whileina 1-5
*break-on-errors¥,
use to control affect of clover—period 1-2
variable definition B-3
break-on-warnings¥, variable definition
B-3 ’
:buffer, as keyword for exist
fred-window function 9-6
buffer,
checking position argument for 9-2
as a component of a Fred window 9-1
as container for text being edited 9-1
creating 9-2,9-3
current, printing information about 2-3
deleting characters from 9-5
editor, inserting strings from kill-ring into
14

evaluating and compiling the entire active
editor window 1-5
finding
charactersina 9-5
a definition in the active editor window
1-5 .
astringina 9-5
for a window 9-7
as a Fred data type 9-1
function description 9-2
inserting
acharacterin 9-4
a kill-ring string into 2-4, 2-5
location, use of marks in handling 9-1
moving
the cursor to end of 2-4
the cursor to start of 2-4
obtaining
a character from 9-4
the default mark for 9-2
a Lisp expression from 9-5
the modification count of 9-3
the number of linesina 9-4
the property list of 9-4
the size of 9-3
a substring from 9-5
property list,
obtaining a property from 9-4
putting a property on 94
purging, closing the listener as means of
1

reading a file into 2-6, 9-6
replacing a characterin 9-4

Index

index-3

saving 2-6
selecting the entire 2-4, 9-10
testing for 9-2
writing
afilefroma 9-6
to afile 2-6
buf fer-bwd-sexp, function description
9-6
buffer-capitalize-region, function
description 9-5
buf fer-char, function description 9-4
buffer-char-pos, function description
9-§

buffer-char-replace, function
description 94

buffer-column, function description 9-4

buffer-current-sexp-start-pos,
function description 9-5

buffer-current-sexp, function
description 9-5

buffer-delete, function description 9-5

buf fer-downcase-region, function
description 9-5

buf fer-fwd-sexp, function description
9-6

buffer-getprop, function description 9-4

buffer-insert, function description 9-4

buffer-insert-file, function description
9-6

buffer-1line, function description 9-4

buf fer—1line-end, function description
94

buffer-line-start, function description
94

buf fer-mark, function description 9-2

buffer-modcnt, function description 9-3

buffer-not-char-pos, function
description 9-5

buffer-plist, function description 9-4

buffer-position, function description
9-2

buf fer-putprop, function description 9-4

buffer-size, function description 9-3

buffer-string-pos, function description
9-5

buf fer-substring, function description
9-5

buf fer-substring-p, function description
9-6

buffer-upcase-region, function
description 9-5

buf fer-word-bounds, function description
9-6

buffer-write-£file, function description
9-6

buf ferp, function description 9-2

button dialog-item class object 7-8

index-4 Allegro CL

button-dialog-item,
as a dialog-item subclass 7-5
as button dialog—item class object 7-8
dialog-item, variable description 7-8
buttons, as dialog-item class 7-1
byte—offset, of a field within a record-type,
obtaining the 13-4
bytes,
reading from memory 12-7
writing to memory 12-8
C, as symbol for control in editing Fred
commands 2-3
C-\, Fred command that brings up Fred help
window 2-3
C-=, Fred command that provides information
about the current buffer 2-3
C-a, Fred command that moves cursor to start of
line 24
C-b, Fred command that moves cursor back one
character 24
C—d, Fred command that deletes characters to
right of cursor 2-5
C-e, Fred command that moves cursor to end of
line 2-4
C-£, Fred command that moves cursor forward
one character 2-4
C~k, Fred command that kills rest of line or

selection 2-5
C-m,
as Fred command useful for debugging
11-1

Fred command that macroexpands current

expression 2-6

C-M-b, Fred command that moves cursor back
one expression 2—4

C-M-BACKSPACE, Fred command that deletes
backward delimiters 2-5

C-M-d, Fred command that deletes forward
delimiters 2-5

C-M-f£, Fred command that moves cursor
forward one expression 2—4

C-M-k, Fred command that kills current
expression 2-5

C-M-q, Fred command that reindents current
expression 24

C-M-SPACE, Fred command that selects the
current expression 2-6

C-n, Fred command that moves cursor down one .

line 24

C-o, Fred command that inserts new line
without moving the cursor 2-4

C-p, Fred command that moves cursor up one
line 2-4

C-q, Fred command that accesses the optional
Macintosh character set 2-5

C-RETURN, Fred command that is equivalent to
RETURN TAB 2-4

C-s, Fred command that brings up the search

dialog box 2-6 .
C-t, Fred command that transposes two A
characters 2-5 N
C-v, Fred command that scrolls forward one
screenful 2-4
C-w, Fred command that deletes the current
selection and adds it to the kill
ring 2-5
C-x C-a,
as Fred command useful for debugging
11-1

Fred command that prints the argument list
for a symbol 2-3
C-x C-c, Fred command that compiles current
expression 2-6
C-x C-4d,
as Fred command useful for debugging
11-1
Fred command that prints the documentation
string for a symbol 2-4
C-x C-e, Fred command that evaluates current
expression 2-6
C-x C-i,
as Fred command useful for debugging
11-1
Fred command that inspects the current
expression 2-4

C-x C-m, :
as Fred command useful for debugging -
11-1 ;o
Fred command that macroexpands current N
expression and pretty—prints it
2-6
C-x C-r,
as Fred command useful for debugging
11-1

Fred command that pretty prints current
expression into the Listener 2-6
C-x C-s, Fred command that saves the top
Fred window 2-6
C-x C-v, Fred command that gets a file 2-6
C-x C-w, Fred command that writes the top
Fred window to a file 2-6
C-x h, Fred command that selects entire buffer
24
C-y, Fred command that yanks current kill ring
string into buffer 2-4
calculating,
difference of two regions C-15
intersection
of two rectangles C-8
of two regions C-15
union of two rectangles C-9
with regions C-15
call-by-reference, trap arguments which are
12-2
call-by-value, trap arguments which are 12-2

:cancel,
as target of a throw from a Cancel dialog
choice 4-3,7-3
Cancel dialog choice, : cancel as the target of
a throw from 4-3
capitalizing
the current word or selection 2-5
words 9-5
caps—-lock-key-p,
function description 8-4
use during execution of menu—item—action
5-1
CCL: : *name-char-alist*, how used for
special characters A-1
CCL package, contents of A-2
cell contents,
drawing 7-13
obtaining 7-13
cell coordinates, table dialog, obtaining 7-14
cell-contents, table—dialog—item function
description 7-13
cell-deselect, table-dialog-item function
description 7-14
cell-position, table-dialog-item function
description 7-14
cell-select, table-dialog—item function
description 7-14
cell-selected-p, table-dialog-item
function description 7-14
:cell-size, as keyword for exist
table—dialog—item function
7-12
cell-size,
table dialog-item, initializing 7-12 °
table—dialog—item function description
7-13
cell-to-index, sequence—dialog-item
function description 7-15
cell-to-subscript, array-dialog—item
function descripation 7-16
cells, table dialog—item,
deselecting 7-14
obtaining a list of selected 7-14
selecting 7-14
testing for selected 7-14
cerror, calls to, not tail-recursive A-6
Change Font Edit menu item description 1-4
changed editor windows, detecting 2-2
changing ‘
active window contents, using command-f
for 14
current editable text for a dialog 74
default button for a dialog 7-4
font-spec for a window 6-4
sizeof a
dialog-item 7-7
window 64
title of a window 6-4

index-5

character,
deleting 2-5
from a buffer 9-5
downcasing 9-5
finding in a buffer 9-5
how represented in Allegro A-1
as immediate data 12-1
inserting in a buffer 9-4
moving the cursor
back one character 24
forward one character 2-4
obtaining from a buffer 9-4
replacing in a buffer 9-4
special, use of
CCL: :*name-char—alist*
for naming A-1
transposing two 2-5
upcasing 9-5
check character, menu—item,
obtaining the 5-6
setting the 5-6
check mark, as component of menu-item 5-1
check-box-check, check-box-dialog-item
function description 7-9
:check-box-checked-p, as keyword for
exist check-box—dialog-item
function 7-9
check-box-checked-p,
check-box—dialog—item function
description 7-9
check-box-dialog-item¥,
as check box dialog—item class object 7-9
as a dialog-item subclass 7-5
variable description 7-9
check-box—uncheck,
check-box—dialog—item function
description 7-9
check-box, as dialog—item class 7-1
:check-error, as keyword for register trap
macros 12-4
checking a dialog-item’s check-box 7-9
children, of an object, finding the 3-18
choose-file-dialog, function description
10-13
choose-font-dialog function description
4-3
choose-new-file-dialog, function
description 10-13
choosing fonts 4-3
class, as a type of object 3-9
Clear Edit menu item description 1-4
clicks, mouse, handler for 8-1
clip-rect, window function description
clip-region,
affect on drawing C-1
obtaining the current C-3

index-6 Allegro CL

setting C-3
to be a rectangular region C-3
window function description C-3
clipboard,
for cutting and pasting between windows
as integrated with Fred kill-ring 1-2
kill-ring as extension to 9-2
as save area for
copied regions 1-4
deleted regions 1-4
as source for pasting operation 1-4
CLOS (Common Lisp Object System), as
Common Lisp oops 3-1
close box,
as non—modifiable property of a window
6-2

list of which window types it is available on
6-2
window, initializing 6-2
Close File menu item description 1-3
:close-box-p, as keyword for exist
window function 6-2
close-region, window function description
C-15
:closed, as argument to
return—from-modal-dialog 7-3
closed windows,
testing for 6-5
wptr asflag for 6-3
closing .
a dialog window 7-3, 74
regions C-15
the active editor window 1-3
the listener, affects of 1-1
windows 2-2, 6-3
clover-. (clover—period), as abortkey 2-6
clover key,
as command key for Macintosh mode 1-2
as control key 2-2
as control key for Emacs mode 1-2
clover-period (clover-.), use in stopping Lisp
operations 1-2
clover-shift-1, Macintosh command that ejects
the internal floppy disk 2-6
clover-shift-2, Macintosh command that ejects
the external floppy disk 2-6
clover-shift-3, Macintosh command that creates
a Macpaint file of the current
screen 2-6
clover-shift-4, Macintosh command that prints
the current screen 2-6
code, facilities to aid optimization of 12-1
coercing a pointer from a fixnum 12-9
collapse-selection, *fred-window*
function description 9-8
command,
Fred,

accessing 9-11
defining 9-11
documentation, obtaining 9-11 o
- key, e
Emacs mode, shift-clover keys as 1-2,
2-2
Macintosh mode, clover key as 1-2,
2-2 ‘
tables,
copying 9-11
creating 9-11
command-a, use in selecting the entire contents
of the active window 1-4
command-, use in copying selected regions
14

command-e, use in evaluating the current
selection in the active editor
window 1-4
command-f, use in search and replace operations
14
:command-key, as keyword for exist
menu-item function 5-5
command-key
equivalent, for menu—items, generating 5-5
menu-item function 5-6
command-key-p,
function description 8-4
use during execution of menu-item—action
5-1
command-l, use in activating the listener 1-6
command-n, use in creating an editor window : ,
for anew file 1-3 N~
command-o, use in creating an editor window for
an existing file 1-3
command-p, use in printing the active window
14
command-s, use in saving the active editor
window 1-3
command-v, use in pasting the contents of the
clipboard into the active window
14
command-x, use in deleting a selected region
14
command-z, use to support undo 1-4
comment marks, group, inserting 2-5
Common Lisp
clarifications, Allegro, as subject of manual
ii-1
language extensions, Allegro, as subject of
manual ii-1
the Language, as source of documentation
for Allegro ii-1
communicating with objects, using ask for
’ 3-14
compilation, automatic, turning off 1-1
Compile File Eval menu item description 1-5
compile-definitions,
as control for definition compilation A-5 P

use in controlling the action of command-e
14
use in controlling the actions of the Eval
Buffer menu item 1-§
variable definition B-2
use in turning off automatic compilation
1-1
compile-file, Allegro keyword extensions
to A-8
compiler,
Allegro as an incremental 1-1
characteristics of A-5
declarations A-7
optimization, controlling B—4
speed, controlling B—4
system parameters B-3
compiling
the current expression 2-6
definitions, vs evaluating, use of
compile-definitions
to control 1-4
the entire active editor window buffer 1-5
evaluator, as an evaluation option A—4
files 1-5
complexity, object—oriented programming as aid
in managing 3-1
comtab,
as a Fred command table 9-10
copying 9-11
creating 9-11
fred-window variable description 9-11
comtab,
use in calculating editor keyboard commands
1-5 :
variable description 9-11
comtab-find-keys, function description
9-11
comtab-get-key, function description 9-11
comtab-key-documentat ion, function
description 9-11
comtab-set-key, function description 9-11
:condense,
as a font-style keyword 4-2
as a menu-item font style 5-6
constant definitions, examining 1-5
constants, how compiled A-6
control key,
Emacs mode, clover key as 1-2, 2-2
Macintosh mode, shift—clover keys as 1-2,
2-2
physical, support for 1-2
control-key-p, function description 8-4
CONTROL-RETURN keys,
affect in the Lisp listener window 1-1
use in inserting line breaks 1-1
controlling the programming environment,
parameters for 1-2
converting a

Index

index-7

global point to a local point C-19
local point to a global point C-19
Copy (command—c) Edit menu item description
14
copy,
dialog function description 7-5
fred-window function description 9-10
copy-bits, function description C-16
copy-comtab, function description 9-11
copy-down, of text, use of RETURN and
ENTER for 1-1
copy-file, function description 10-11
copy-record,
function description 13-5
use in copying records 13-1
copy-region, window function description
C-14
copying
bitmaps C-16
command tables 9-11
the current selection onto the kill-ring 2-5
files 10-11
using Save as File menu item for 1-3
records 13-5
regions C-14
selected regions 1-4
text
between windows 2-2
from editable text dialog—items 7-5
create-file, function description 10-10
creating,
bitmaps C-16
buffers 9-2, 9-3
command tables 9-11
a default value record for arecord type 13-2
an editor window for
anew file 1-3
an existing file 1-3
Fred commands 9-11
files 10-10
function bindings for objects 3-16
functions for objects 3-14
and initializing objects, function descriptions
3-13
logical pathnames 10-8
Macintosh pathnames 10-6
marks 9-2,9-3
menu objects from the class *menu* 5-1
new objects, example of use of kindof in
3-1
object variable bindings 3-16
aPascal record 13-4
pathnames 10-4
pictures C-17
points 4-1,4-2
polygons C-18
a rectangle from two points C-9
rectangular regions C-14

index-8 Allegro CL

aregion C-14
static records, use of make-record for 13-1
temporary records 13-7
cropping, of drawing C-1
current
expression, meaning in the editing
environment 2-3
object,
accessing 3-17
setting the 3-14
testing function and value bindings of
3-16
current-editable-text, dialog function
description 74
current-event,
as event being handled 8-1
variable description 8-4
cursor,
handling the 8-7
Macintosh standard record type, as Allegro
pre-defined 13-3
manipulation, concepts and forms 8-6
shape,
determining 8-7

updating 8-7
caret,
as flashing vertical bar between characters
2-2

hook for handling 8-7
located between two characters 2-2
mark, as a component of a Fred window
9-1
moving 2-2
back one character 2-4
back one expression 2-4
back one word 24
down one line 24
forward one character 2-4
forward one expression 2-4
forward one word 2-4
to end of line 2-4
to end of buffer 24
to start of buffer 24
to start of line 2-4
up one line 24
obtaining the mark for 9-7
*cursorhook#?, variable description 8-7

cut, as function that deletes the current selection

and adds it to the kill ring 2-5
Cut (command-x) Edit menu item description
' 14

cut,
dialog function description 7-5
fred-window function description 9-10
cutting,

copying, and pasting text between windows

selected regions 1-4

the selected region without saving 1-4
d, variable definition B—4
:d0 thru :d7, as register—keyword for register
trap macros 124
dark-gray-pattern,
as an Allegro pen pattern C—6
variable definition B-4
data, as component of instances 3-9
formats,
font-specs as 4-1
points as 4-1
immediate,
alias fornil as 12-1
alias for t as 12-1
characters as 12-1
fixnum as 12-1
Macintosh pointers as 12-1
Lisp,
algorithm for representing 12-1
how different from Macintosh data
12-1
how represented 12-1
Macintosh, how different from Lisp data
12-1
registers, data type for 124
sharing between
32-bit long word and fixnums 12-2
Allegro and the Macintosh operating
system 12-1
types, for address and data registers 12-4
deactivate window event, handler for 8-2
deactivating a
dialog window 7-3
awindow 6-5
memory for a record, use of
dispose-record for 13-4
records 13-5
static records, use of dispose-record
for 13-1
debugging,
concepts and forms 11-1
obtaining a stack backtrace while 1-5
stepping through program execution 11-2
tracing
calls through the stack 11-2
objects 11-3
using
beeps in 44
the inspector to examine data structures
11-2
variable, use of B—4
declarations, how compiled A-7
decrementing pointers 12-9
def-fred-command, macro description
9-11
def-logical-pathname, function
description 10-8

-
@

default button,
dialog window, initializing 7-3
for a dialog,
changing the 74
obtaining the 74
directory,
concepts and forms 10-6
finding 10-7
menubar, finding the 5-2
value, of a field within a record-type,
obtaining the 13-4
:default-button, as keyword for exist
dialog-window function 7-3
default-button, dialog function description
74
default-menubar, variable description
5-2
default-pathname-default, variable
description 10-7
:defaults, as a keyword for make—pathname
104
defaults, instance variables, establishing 3-14
defining
Fred commands 9-11
functions for objects 3-14
new record types 13-2
objects 3-13
points 4-1
procedures which can be called by the
Macintosh toolbox 12-10
definition,
in the active editor window buffer, finding a
1-5
record, as template that defines fields 13-1
in active editor window, evaluating and
compiling 1-4
defobfun, example of use in defining object
functions 3-5
defobject, macro description 3-13
defrecord,
macro description 13-2
use in defining new record types 13-1
defstruct accessor functions, how controlled
by compiler A-7
deinstalling a
menu 5-3
menubar 5-2
delete-file, function description 10-10
deleting .
all function bindings for objects 3-16
backward delimiters 2-5
characters 2-5
characters from a buffer 9-5
expressions 2-5
files 10-10
forward delimiters 2-5
Fred commands for 2-5
lines 2-5

Index

index-9

amark 9-3
menus 5-3
objects,
function bindings for 3-16
variable bindings for 3-16
pictures C-18
polygons C-18
records 13-5
regions C-14
selected 14
selected without saving 1-4
the current selection 2-5
static records, use of dispose-record for
13-1
text from editable text dialog-items 7-5
words 2-5
delimiters,
backward, deleting 2-5
forward, deleting 2-5
describe-record-field, use in finding
information on a field of a record
type 13-1
deselecting cells in a table dialog-item 7-4
desk accessories, use with Apple menu 1-3
:device, as a keyword for make-pathname
104
device, as component of pathname 10-1
devices,
function description 10-13
obtaining a list of 10-13
diagnostics, using beeps in 44
dialog,
as dialog window class object 7-2
variable description 7-2
dialog,
adding dialog-items to a 7-8
as a type of window 7-1
changing the current editable text for 74
choices, Cancel, : cancel as the target of a
throw from 4-3
font, setting the 7-2
items, concepts and forms 7-5
Macintosh standard record type, as Allegro
pre—defined 13-3
modal,
activating 7-2
characteristics of 7-1
retuning froma 7-2
modeless, characteristics of 7-1
obtaining the
current editable text for 74
default button for 74
removing dialog-items from 7-8
window,
activating 7-3
closing 7-3, 74
initializing 7-3
as subclass of windows 6-1

index-10 Allegro CL

dialog-item, exist dialog-item function .
as an abstract class 7-5 7-6 AN
as the dialog—-item class 7-5 dialog-item-size, dialog-item function N

as generic class for dialog-item objects 7-1
use in obtaining a list of dialog-items 7-4
variable description 7-5
dialog—item,
as component of dialog 7-1
action to be taken when selected 7-6
button, class object 7-8
checking a check-box 7-9
drawing 7-7
editable text, class object 7-8
finding the dialog object that owns 7-7
Macintosh standard record type, as Allegro
pre—defined 13-3
moving 7-6
obtaining the
font of 7-7
position of 7-6
size of 7-7
text of 7-7
setting the
fontof 7-7
position of 7-6
size of 7-7
text of 7-7
static text, class object 7-8
subclasses, list of 7-5
testing for a checked 7-9
unchecking a check-box 7-9
:dialog-item-action, as keyword for
exist dialog-item function
7-6
dialog-item-action, dialog-item function
description 7-6
dialog-item-disable, dialog-item
function description 7-7
dialog-item-draw, dialog-item function
description 7-7
dialog-item-enable, dialog-item function
description 7-7
:dialog-item-enabled-p, as keyword for
exist dialog-item function
7-6
dialog-item-enabled-p, dialog-item
function description 7-7
:dialog-item-£font, as keyword for
exist dialog-item function
7-6
dialog-item-font, dialog-item function
description 7-7 -
:dialog-item-position, as keyword for
exist dialog-item function
7-5
dialog-item-position, dialog-item
function description 7-6
:dialog-item-size, as keyword for

description 7-7
:dialog-item-text, as keyword for
exist dialog-item function
7-6 i
dialog-item-text, dialog—item function
description 7-7
:dialog-items, as keyword for exist
dialog-window function 7-3
dialog-items,
adding 74
adding to adialog 7-8
classes of 7-1
dialog function description 7-4
disabled, characteristics of 7-1
disabling 7-6, 7-7
editable text,
copying text from 7-5
deleting text from 7-5
replacing text from 7-5
enabling 7-6, 7-7
finding 7-4
initializing 7-5
radio button 7-10
obtaining a list of 7-4
removing 7-4
from a dialog 7-8
testing for enabled 7-7
dialogs,
Allegro turnkey 4-3
concepts and forms 7-1
terminating 4-3
turnkey,
choose-font-dialog 4-4
get-string-from-user 4-3
message-dialog 4-3
y-or-n-dialog 4-3
diamond symbol, in About Allegro CL
menu-item, as process indicator
1-2
difference-region, function description

C-15
dimensions,
array dialog—items, initializing 7-16
table dialog-item,
initializing 7-12
obtaining 7-13
setting 7-13
directories, default, finding 10-7
directories-in-directory, function
description 10-12
:directory, as a keyword for make—pathname
104

directory,
as component of pathname 10-2
home, finding 10-7 £)

manipulation, concepts and forms 10-9
directory-namestring, function
description 10-5
:disabled, as keyword for exist
menu-item function 5-5
disabled
dialog—-items, characteristics of 7-1
menus, characteristics of 5-1
disabling
dialog-items 7-6, 7-7
event handling 8-6
menu-items 5-5, 5-6

menus 54
disk,
ejecting 10-12

floppy, ejecting 2-6

insertion event, handler for 8-3

space requirements for running Allegro ii-1
dispose-record,

function description 13-5

use in deallocating memory for a record

use in deleting static records 13-1
dispose-region,
use in reclaiming regions C-14
window function description C-14
_disposhandle, use in releasing memory
from the Macintosh Heap 12-6
disposing of records 13-5
_DisposPtr
/_NewPtr trap pair, as semantically
equivalent to $stack-block
trap, use with zone pointers 12-9
use in releasing memory from the Macintosh
Heap 12-6
do-all-objects, macro description 3-19
do-directories-in-directory, macro
description 10-12
do-files-in-directory, macro
description 10-12
do-object-functions, macro description
3-20
do-object-variables, macro description
3-20
:document,
as a window type used for modeless dialogs
7-1
as a window-type keyword for exist
dialog-window function’ 7-2
as a window-type keyword for exist
window function 6-2
:document-with-grow,
as a window type which can have a close
box 6-2
as a window-type keyword for exist
dialog-window function 7-2
as a window-type keyword for exist
window function 6-2

Index

index-11

:document-with-zoom,
as a window type which can have a close
box 6-2
as a window-type keyword for exist
dialog-window function 7-2
as a window-type keyword for exist
window function 6-2
documentation string,
function, obtaining the 2-4
controlling the retention of B-2
Documents Tools menu item description 1-5
double click, testing for 8-3
double quotes, inserting 2-5
double-click-p, function description 8-3
double-click-spacing-p, function
description 8-3
:double-edge-box,
as a window type used for modal dialogs
7-1
as a window-type keyword for exist
dialog-window function 7-2
as a window-type keyword for exist
window function 6-2
DOWNARROW, use to move cursor 2-4
downcasing
characters 9-5
the current word or selection 2-5
draw contents of window event, handler for 8-2
draw-cell-contents, table-dialog-item
function description 7-13
draw-picture, window function description
C-17
drawing
affect of moving the penon C-7
cell contents of table dialog—item 7-13
commands, as object functions for windows
C-1
cropping of C-1
a dialog-item 7-7
factors which affect C-1
how affected by state of the pen C—4
lines C-7
pictures C-17
text C-7
affect of current font specification on
C-7
affect of windows as streamson C-7
dynamic extent, $stack-block bindings have
12-6
E-Machines’ Big-Picture monitor, as supported
by Allegro ii-1
ed-arglist, function description 2-3
ed-backward-char, function description
24
ed-backward-sexp, function description
24
ed-backward-word, function description
24

index-12 Allegro CL

ed-beep function description 4—4
ed-beginning~-of-buffer, function
description 24
ed-beginning-of-1line, function
description 2-4
ed-capitalize-word, function description
2-5
ed-compile-top-level-sexp, function
description 2-6
ed-copy-region-as-kill, function
description 2-5
ed-delete-bwd-delimiters, function
description 2-§
ed-delete-char, function description 2-5
ed-delete-fwd-delimiters, function
description 2-§5
ed-delete-word, function description 2-5
ed-downcase-word, function description
2-5
ed-end-of-buffer, function description
24
ed-end-of-1line, function description 2-4
ed-eval-current-sexp, function
description 2-6
ed-eval-or-compile-current-sexp,
function description 2-5
ed-forward-char, function description
24
ed-forward-sexp, function description
24
ed-forward-word, function description
24
ed-get-documentat ion, function
description 24
ed-help, function description 2-3
ed-indent-for-1lisp, function description
2-4
ed-indent-sexp, function description 2-4
ed-insert-double-quotes, function
description 2-5
ed-insert-~killed-string-from-menu,
function description 2-5
ed-insert-parentheses, function
description 2-5
ed-insert-quoted, function description
2-5
ed-insert-sharp-comment, function
description 2-5
ed-inspect—-current-sexp, function
description 24
ed-kill-1line, function description 2-5
ed-kill-sexp, function description 2-5
ed-macroexpand-l-current-sexp,
function description 2-6
ed-macroexpand-current-sexp,
function description 2-6
ed-move-over—close-and-reindent,
function description 2-4

ed-newline-and-indent, function
description 2-4
ed-next-line, function description 2-4
ed-next-line, function description 2-4
ed-next-screen, function description 2-4
ed-open-line, function description 24
ed-previous-1line, function description
24
ed-previous-1line, function description
24
ed-previous-screen, function description
24
ed-read-current-sexp, function
description 2-6
ed-rubout-char, function description 2-5
ed-rubout-word, function description 2-5
ed-select-current-sexp, function
description 2-6
ed-self-insert, function description 2-4
ed-transpose-chars, function description
2-5
ed-upcase-word, function description 2-5
ed-what-cursor-position, function
description 2-3
ed-yank, function description 2-4
Edit Definition,
establishing the source file linkage for B-2
Tools menu item description 1-5
Edit menu,
Allegro menubar, item descriptions 1-4

items,
Change Font 14
Clear 14

Copy (command—) 1-4
Cut (command-x) 1-4
Insert Killed String 1-4
Paste (command-v) 1-4
Search (command-f) 1-4
Select All (command-a) 1-4
Undo (command-z) 1-4
edit-menut, variable definition B-2
edit-select-file, as function that gets a
file 2-6
editable text,
as dialog-item class 7-1
dialog—-item
class object 7-8
initializing 7-9
testing for permitted returns 7-9
editable—text item, use with
get-string—from—user 4-3
editable-text-dialog-item,
as a dialog-item subclass 7-5
as editable text dialog-item class object
7-8 ,
dialog—item variable description 7-8
editing,
Emacs style, using Fred for 2-1

i

Macintosh style, using Fred for 2-1
editor,
Allegro, as subject of manual ii-1
buffer,
changing fonts, font sizes, and font
stylesin 14
detecting when it has been changed
2-2
inserting strings from kill-ring into
14
how to tell which have been changed
and notsaved 1-6
commands, use in listener 1-1
keyboard commands,
obtaining a window of 1-5
use of *comtab* to calculate 1-5
window
buffer, evaluating and compiling the
entire active 1-5
buffer, finding a definition in the active
1-5
closing the active 1-3
detecting a changed 2-2
evaluating the current selection in the
active 14
for an existing file, creating an 1-3
new file, creating 1-3
:either,
affecton rref 13-6
as a value returned by record-storage
134
use
in defining new record types 13-2
with rref 13-5
with rset 13-5
eject-disk, function description 10-12
ejectedp, function description 10-12
ejecting
adisk 10-12
external floppy disk 2-6
internal floppy disk 2-6
elt, use in obtaining a pen-mode keyword

Emacs
conventions, Macintosh-based exceptions
2-3
mode,

turning on and off B-3
typing keyboard equivalents in 5-1
use of clover key as control key 2-2
use of shift clover key as command key
2-2
style editing, using Fred for 2-1
Emacs-mode, clover key as control key for 1-2
emacs-mode, variable definition B-3
Emacs-style editor, as component of Allegro
programming environment 1-1
empty-rect-p, function description C-9

Index

index-13

empty-region-p, function description
C-16
enable status, as component of menu—item 5-1
enabled
menu-item, testing for 5-6
menus, testing for 54
enabling
dialog-items 7-6, 7-7
menu-items 5-6
menus 54
encoded fixnums, points stored as C-2
enough-namest ring, function description
10-5
ENTER key,
affect in the Lisp listener window 1-1
how different for RETURN key 1-1
use
for copy—down and evaluation 1-1
in evaluation expressions in an editor
window 1-1
to evaluate current expression 2-5
environment,
global, as both global and root object 3-1
programming,
controlling 1-2
setting up 1-1
system parameters B-2
Environment Tools menu item
description 1-6
use in controlling the environment 1-2
eq, use in comparing points 4-1
equal-rect, function description C-9
equal-region-p, function description
C-15
equality,
testing rectangles for C-9
testing regions for C-15
erase-arc, window function description
C-13
erase-oval, window function description
C-11
erase-polygon, window function
description C-18
erase-rect, window function description
C-10
erase-region, window function description
C-16
erase-round-rect, window function
description C-12
erasing a
polygon C-18
rectangle C-10
region C-16
rounded rectangle C-12
arc C-13
oval C-11
error,
calls to, not tail-recursive A-6

index-14

messages, characteristics of A-5
errors, register trap, signalling 124
escape character, pathname 10-3
Eval Buffer eval menu item description 1-5
Eval menu,
Allegro menubar, item descriptions 1-4
use in evaluating expressions in an editor
window 1-1
item,
Compile File 1-5
Eval Buffer 1-5
Eval Selection (command—e) 14
Load 1-5
Eval Selection (command-€) eval menu item
description 1-4
eval-enqueue,
function description 8-5
use by menu-items to initiate programs
5-1
eval-menu, variable definition B-2
evalhook, as supported by the standard
evaluator A-S
evaluating
the current expression 2-5, 2-6
the current selection in the active editor
window 14
the entire active editor window buffer 1-5
expressions, from an editor window 1-1
evaluation,
diamond symbol in About Allegro CL
menu-item as indicator of 1-2
of object variables, examples of 3-2
options, compiling evaluator as an A—4
results of, controlling the printing of B-2
use of RETURN and ENTER for 1-1
evaluator,
compiling, characteristics of A-4
standard, characteristics of A4
event
concepts and forms 8-1
dispatcher 84
dispatching interval,
obtaining 84
setting 8-5
handler,
selecting 8-5
concepts and forms 8-1
handling,
disabling 8-6
queueing programs during 8-5
by top window 6-1
information function descriptions 8-3
interaction, disabled during
menu—-item-action 5-1
Macintosh standard record type, as Allegro
pre—defined 13-3
management system, concepts and forms
84

Allegro CL

processing,

as a non-interruptable task 1-2 7
handling of by run—time environment N
A-5

windows as handlers for 6-1
event-dispatch, function description 8-4
event-keyst roke, function description

9-10
event-ticks, function description 8-4
eventhook, variable description 8-4
examining Lisp object definitions 1-5
examining the structure of Lisp objects 1-5
exist,

array—dialog—item function description

7-16
as an object—function that can be defined for
aclass 3-10
check-box—dialog-item function description
7-9

dialog function description 7-3

dialog—item function description 7-5

editable-text—dialog—item function

description 7-9

fred-window function description 9-6

function description 3-13

menu function description 5-3

menu-item function description 5-5

as the Object Lisp protocol for initializing

instances 3-9
radio-button—dialog—item function s

description 7-10 “
sequence-dialog-item function description

7-14
table-dialog—-item function description

7-12

use by oneof 3-13

window function description 6-1
existing file, creating an editor window for an
exiting Allegro 14
expand-logical-namestring, function

description 10-9
expand-logical-pathname, function

description 10-8
expanding logical pathnames 10-8
expression

compilation, controlling B-3

compiling the 2-6

deleting 2-5

evaluating 2-5, 2-6

macroexpanding 2-6

moving

into the Listener 2-6
the cursor back one 2-4
the cursor forward one 2-4

pretty printing 2-6

selecting 2-6 .

in a editor window, evaluating 1-1 .

:extend,
as a font-style keyword 4-2
as a menu—item font style 5-6
extension, of a compiled file, . fas1 as the
1-5
extent, dynamic, $stack-block bindings
have 12-6
.fas1, as extension of a compiled file 1-5
fasl files, loading 1-5
fast-eval,
use in selecting the evaluator option A-5
variable definition B-3
fbound-anywhere-p, function description
3-17
fboundp, function description 3-16
: features, compile file keyword, as Allegro
extension A-8
fhave, function description 3-16
field,
byte—offset of, obtaining for a record-type
: 13-4
as component of record 13-1
data type, record type, specifying 13-2
default value of, obtaining for a record-type
13-4
description,
obtaining for a particular field of a
record-type 13-4
obtaining a list for a record-type 13-4
record type, specifying 13-2
field—type of, obtaining for a record-type
134
names,
record type, specifying 13-2
obtaining a list for a record-type 13-4
of a record-type, obtaining a description of
134
in a record,
setting the values of 13-5
accessing 13-5
obtaining the value of 13-5
type, record, chart of pre—defined types,
lengths and defaults 13-2
values, use of rref to obtain 13-6
variant, as multiple field mapping
mechanism 13-1
field-info, function description 13-4
field type, of a field within a record-type,
obtaining the 134 .
file
author, obtaining 10-11
compiling 1-§
copying 10-11
creating 10-10
an editor window for 1-3
creation date,
obtaining 10-10
setting 10-10

Index

index-15
deleting 10-10
loading 1-5
controlling message verbosity during
B-2

locking 10-11
manipulation, concepts and forms 10-9
File menu,
Allegro menubar, item descriptions 1-3
item descriptions 1-3
menu items,
Close 1-3
New (command-n) 1-3
Open (command—-o) 1-3
Open Selected 1-3
Page Setup 14
Print (command-p) 14
Quit 14
Revert 1-3
Saveas 1-3
Save (command-s) 1-3
file
modification date,
obtaining 10-10
setting 10-10
moving 10-10
printing 14
reading into a buffer 2-6, 9-6
renaming 10-9
retrieving the last version of a 1-3
selected, opening 1-3
system
interface, concepts and forms 10-1
manipulation, concepts and forms

testing for
the existence of 10-10
being unlocked 10-11
type, Macintosh,
obtaining 10-11
setting 10-11
unlocking 10-11
using Save as File menu item for copying
1-3
volume reference number, obtaining 10-12
writing
from a buffer 9-6
the current buffertoa 2-6
file-author, function description 10-11
file-create-date, function description
10-10
file-locked-p, function description 10-11
£ile-menu, variable definition B-2
file-namestring, function description
10-5
file-write-date, function description
10-10
:filename, as keyword for exist
fred—window function 9-6

index-16 Allegro CL

filename,
as component of pathname 10-2
associated with a Fred window, obtaining
9-8
string, as a component of a Fred window
9-1 .
files-in-directory, function description
10-12
filetype, as component of pathname 10-2
fill-arc, window function description
C-13
fill-oval, window function description
C-11
fill-polygon, window function description
C-19
fill-rect, window function description
C-10
fill-region, window function description
C-16
fill-round-rect, window function
description C-12
filling a
polygon C-18
rectangle C-10
region C-16
rounded rectangle C-12
arc C-13 .
oval C-11
filters, creating through the manipulation of
function inheritance 3-8
find-dialog-item, dialog function
description 74
find-menu, function description 5-2
find-window, function description 6-1
finding
Allegro elements, using apropos for 1-§
characters in a buffer 9-5
the default
directory 10-7
pathname 10-7
size and position of Allegro windows
B-1
storage of a record-type 13-4
a definition in the active editor window
buffer 1-5
dialog-items 7-4
the dialog object that owns a dialog—-item

the fonts that can be used with Allegro B4 -

the home directory 10-7
the length of a record-type 13-4
a Lisp expression location 9-6
menu,
an installed 5-2
all 53
a menu-item 54
modules B-3
the number of pixels per inch B-1

objects 3-17
the ancestors of an 3-18
the children of an 3-18
function definitions in 3-17
the name of an 3-18
the parents of an 3-18
strings 2-6
in a buffer 9-5
a word location 9-6
fixnums,
boxing of 12-2
coercing a pointer from 12-9
as immediate data 12-1
how stored in Allegro A-1
transforming into a point A-1
unboxing of 12-2
working around the 31-bit limitation 12-2
floating point
numbers, how stored in Allegro A-1
processor, MC68881, how used by Allegro
A-1
flush-volume, function description 10-12
fmakunbound, function description 3-16
fmakunbound-all, function description
3-16
font,
dialog,
setting the 7-2
window, initializing 7-3
dialog-item,
initializing 7-6
obtaining the 7-7
setting the 7-7
information, coded as font-specs 4-2
mode, current, affect on text drawing C-7
size,
current, affect on text drawing C-7
changing, in editor buffer 1-4
specifiers, use in drawing text C-7
style,
current, affect on text drawing C-7
menu-item, list of 5-6
menu-item, setting the 5-6
changing, in editor buffer 1-4
type, current, affect on text drawing C-7
using a font-spec to find information about
a 43
window,
initializing 6-1
obtaining the 64
font-info, function description 4-3
font-1list, variable
definition B-4
description 4-2
font-name, as component of font-spec 4-2
font-names, Allegro, list of B—4
font-size, as component of font-spec 4-2

L

font-spec,
concepts and forms 4-2
as data formats 4-1
definition 4-2
example of legal 4-2
usein
choosing fonts 4-3
determining the pixel width of a string
4-3
to find information about a font 4-3
initializing window fonts 6-1
intializing dialog-item fonts 7-6
testing for existing fonts 4-3
window,
changing the 64
obtaining the 64
font-style,
as component of font-spec 4-2
as component of menu—item 5-1
fontinfo, Macintosh standard record type, as
Allegro pre~defined 13-3
fonts,
changing, in editor buffer 1-4
choosing 4-3
obtaining a list of all installed fonts 4-2
testing for existing 4-3
use in finding out what fonts are available
4-2
fownp, function description 3-16
frame, drawing
around a rectangle C-10
inside an arc C-13
inside an oval C-11
inside a region C-16
inside a rounded rectangle C-12
frame-arc, window function description
C-13
frame-oval, window function description
C-11
frame-polygon, window function
description C-18
frame-rect, window function description
C-10
frame-region, window function description
C-16
frame-round-rect, window function
description C-12
_FrameRoundRect stack trap, used in
example in stack trap discussion
12-3
_FrameRoundRect trap, as example of use of
$stack-block 12-6
frames, as object environments 3-5
Fred
the Allegro editor, using 2-1
command tables, concepts and forms 9-10
Commands Tools menu item description
1-5

Index

index-17

commands, useful for debugging,
C-m 11-1
Cc-x C-a 11-1
C-x C-d 11-1
C-x C-i 11-1
C-x C-m 11-1
C-x C-r 11-1
m-. 11-1
default package 2-1
editor commands, use in listener 1-1
help window, bringing up 2-3
keyboard commands, obtaining a window of
1-5
kill-ring, integrated with clipboard 1-2
programming 9-1
window
components of 9-1
functions, concepts and forms 9-6
initializing 9-6
printing hardcopy of 9-9
reverting 9-9
saving 9-9
updating 9-7
use for on-screen editing 9-1
fred-window, as an object class 9-1
fred-window-position#, variable
definition B-1
fred-windw-size, variable definition
B-1
free variables, object bindings as 3-12
front-window,
function description 6-1
use in finding the front window 5-2
ftype declarations, how compiled A-7
function binding,
anywhere in the system, testing 3-16
current object, testing 3-16
hierarchy of current object, testing 3-16
inheritance rules 3-7
object,
accesssing the 3-15
assigning 3-15
creating 3-16
deleting 3-16
functions
compiled definitions of, controlling the
retention of B-2
declarations, how compiled A-7
definitions,
controlling compilation of B-2
examining 1-5
in objects, finding 3-17
loading on call, as memory optimization
technique 1-2, A-3
naming 3-15
object,
defining and naming 3-14
rules for inheritance of 3-5

index-18 Allegro CL

owned by an object, iterative processing of
all 3-20
preloading, use of
preload-all-functions
for 1-2, A4
purging, controlling the 1-2, A—4
redefinition, controlling messages about
B2
swapping,
as component of Allegro memory
management system A-3
controlling the purging of A—4
preloading A—4
fwhere, function description 3-17
garbage collection,
affects on
Lisp operation 1-2
loaded functions 1-2, A-3
Allegro’s algorithm for A—4
invoking 1-2
as a non-interruptable task 1-2
not performed for regions C-14
triggered by heap resizing 12-6
GC, as cursor symbol during garbage collection
g¢, as procedure which manually invokes
garbage collection 1-2
General Computer’s HyperCharger, as supported
by Allegro ii-1
general trap calls,
register-trapasa 12-5
stack-trapasa 12-5
when to use 12-5
generic pointer, how different from a zone pointer
12-9
$get-byte, function description 12-7
%get-full-long, function description 12-7
%get-long, function description 12-7
$get-ostype, function description 12-8
get-picture, window function description
C-17
get—pixel, window function description
C-19
get-polygon, window function description
C-18
$get—ptr, function description 12-7
get-record-field, function description
13-5

$get-safe-ptr, function description 12-7 -

%get-signed-byte, function description
12-7

%get-signed-word, function description
12-7

%get-string, function description 12-7

get-string-from-user function
description 4-3

tget-word, function description 12-7

_GetResource stack trap, used in example in

stack trap discussion 12-4
getting
argument list for a function 2-3
author of a file 10-11
byte—offset of a field within a record—type
134
cell)
contents of table dialog—item 7-13
coordinates in a table dialog 7-14
character from a buffer 94
command documentation 9-11
current
clip-region C-3
editable text for a dialog 7-4
menubar 5-2
pen—-mode C-5
pen-pattern C-6
pen-state C-6
default
button for a dialog 7-4
mark for a buffer 9-2
value of a field within a record-type
134
value record for a record type 13-4
description of a field of a particular
record-type 13-4
dimensions of table dialog—items 7-13
documentation string for a function 24
end position of a line 9-4
event dispatching interval 8-4
field-type of a field within a record-type
134
field values with rref 13-6
file
creation date 10-10
modification date 10-10
font of a dialog-item 7-7
highest license number 3-19
horizonal
dimension of an array dialog 7-16
coordinate of a point 4-1
keyboard equivalent for a menu-item 5-6
kill-ring menu 2-5
layer number of a window 6-5
license number of an object 3-19
line number 9-4
Lisp expression from a buffer 9-5
list of
all installed menus 5-2
dialog-items 74
existing windows 6-1
field descriptions for a record-type
13-4
field names for a record-type 13-4
installed menu-items 5-4
selected cells in a table dialog—item
7-14
Macintosh file type of a file 10-11

Index index-19

menu—item window functions as Quickdraw functions
check character of a menu-item 5-6 that depend on C-1
font style of a menu-item 5-6 created when windows are created C-1
title of a menu—item 5-5 graphic operations on
modification count of a buffer 9-3 rectangles C-10
mouse position 8-3 polygons C-18
number of lines in a buffer 94 regions C-16
origin of a window C-3 use of points in 4-1
pixel C-19 *gray-pattern*, as an Allegro pen pattern
position of a C-6
dialog-item 7-6 h-specifier, array-dialog-item variable
mark 9-3 descripation 7-16
pen CH4 :h-specifier, as keyword for
window 64 array—dialog—item function
property description 7-16
from a buffer property list 94 :handle,
list of a buffer 94 as a value returned by record-storage 13-4
pushed radio-button of a cluster 7-5 use
record pointer within a handle 13-6 in defining new record types 13-2
scroll position of a table dialog 7-14 with rref 13-5
sequence from a sequence dialog-item 7-15 with rset 13-5
size of handle,
a buffer 9-3 as return value from an address register
a dialog-item 7-7 124
the pen C—4 obtaining a record pointer withina 13-6
table dialog-items 7-13 passing to the Macintosh operating system
a window 64 12-9
start position of a line 9-4 rlet not legal in allocating records stored
string representation of a point 4-1 as 13-2
substring from a buffer 9-5 testing for 12-9
text of a dialog—-item 7-7 handlep, function description 12-9
title of a handler
menu 5-3 v for mouse clicks 8-1
window 64 selecting an event 8-5
value of fields in records 13-5 event 8-1
vertical hardcopy,
coordinate of a point 4-1 device, setting up options for 1-4
dimension of an array dialog 7-16 of the active editor window, obtaining 1-4
visible dimensions of table dialog-items hardware requrements, for running Allegro ii-1
7-13 have, function description 3-16 :
volume reference number for afile 10-12 heap,
global Lisp, use in Allegro memory management
binding, variable, use with objects 3-2 A-3
environment, as outermost frame for an application,
object 3-5 alocating memory on 12-6
object, global environment as a 3-1 use in Macintosh memory management
point, A-3
converting a local pointtoa C-19 Macintosh,
converting to a local pont C-19 accessing the pointer to the window
variables, setting the value of 1-6 recordon 6-5
global-to-local, window function allocating space for a Pascal record on a
description C-19 134
rt, system, use in Macintosh memory
as first field of a window record 13-6 management A-3
Macintosh standard record type, as Allegro differences between Application and Lisp
pre—defined 13-3 12-1

rectangle calculations not dependent on resizing of 12-6

index-20

HeapZone memory blocks, testing for a pointer
to 12-9
help, Fred commands, descriptions 2-3
help, using the Documents tools menu item to
obtain 1-5
hfs-volume-p, function description 10-12
hiding
the pen CH4
windows 6-5
hierachy of current object, testing function and
value bindings of 3-16
highest-license-number, function
description 3-19
home directory, finding 10-7
hook,
for events 84 :
for handling cursors 8-7
horizontal
character position, Fred window,obtaining
9-8
coordinate of a point, obtaining the 4-1
scroll-bar, table dialog—item, initializing
7-12
:host, as a keyword for make-pathname 10-4
host, as component of pathname 10-1
host-namest ring, function description
' 10-5
i-beam-cursor, variable description
8-8
I/O, windows as primary method for
screen-related ™ 6-1
IEEE double float, as Allegro floating point data
type A-1
ignors declarations, how compiled A-7
implementation, Allegro A-1
¢inc-pointer, function description 12-9
incremental compiler, Allegro as an 1-1
incrementing pointers 12-9
index-to-cell, sequence-dialog-item
function description 7-15
indexing into a sequence dialog 7-15
inheritance,
as uni—directional only 3-4
object function, rules for 3-5
of objects, testing 3-17
of variables and procedures, by objects 3-3
overlapping vs non—overlapping 3-7
role of usual in implementing 3-8
single parent, example of 3-3
inherited behavior, modification by objects 3-6
init file,
use in creating a default initial environment
1-1
use in preloading swappable functions A—4
removal suggested for memory optimization
i-2
init.1lisp file, use in launching Allegro
ii-2

Allegro CL

init-list, use in initializing instances 3-9
init-list-default, macro description
3-14
initializing
array dialog—-items 7-16
dialog-items 7-5
dialog windows 7-3
editable text dialog-items 7-9
Fred windows 9-6
instance variables 3-9, 3-14
instances 3-9
amenu 5-3
menu-items 5-5
objects 3-13
radio button dialog—items 7-10
a sequence dialog-item 7-14
table dialog-items 7-12
windows 6-1
inline declarations, how compiled A-7
Insert Killed String Edit menu item description
14
inserting
a character from a buffer 9-4
clipboard contents into the active window
14
the current kill-ring string into the buffer
2-4

a kill-ring string from a menu into the
buffer 2-5

anew line 24

a set of double quotes 2-5

group comment marks 2-5

parentheses 2-5

strings from kill-ring into editor buffer
14

insertion,

affect of relative to cursor 2-2

Fred commands, descriptions 2-4

point, affect of RETURN key on 1-1
insertion—point, caret as 2-2
inset-rect, function description C-8
inset~-region, function description C-15
insetting

rectangles C-8

regions C-15
Inside Macintosh,

as a source of documentation for Allegro

ii-1
as background for understanding low-level
system interface 12-1

Inspect Tools menu item description 1-5
inspecting

Lisp objects 1-5

the current expression 2-4
inspector, window-based, how to invoke 11-2
installation disks, contents of ii-2
installed

menu, finding 5-2

menu, testing for 5-3
menu—items, obtaining a list of 5-4
installing
Allegro ii-2
a menubar 5-2
menus 5-3
using menu~install for 5-1
instance variables,
as state variables for an instance 3-9
initializating 3-9, 3-14
instances,
as example of a class 3-9
how different from classes 3-9
use of lexical bindings for communicating
values between 3-11
interactive programming, Lisp listener as
window designed for 1-1
intersect-rect, function description C-8
intersect-region, function description

C-15
intersection,
of a region and a rectangle, testing for
C-15
of two

rectangles, calculating C-8
regions, calculating C-15
invert-arc, window function description
C-13
invert-oval, window function description
C-11
invert-polygon, window function
description C-19
invert-rect, window function description
C-10
invert-region, window function
description C-16
invert-round-rect, window function
description C-12

inverting
anarc C-13
anoval C-11

apolygon C-19

arectangle C-10

aregion C-16

arounded rectangle C-12
:italic,

as a font-style keyword 4-2

as a menu-item font style 5-6
items, dialog window, initializing 7-3
skey arguments, optimization of A-5
key

typed, handler for 8-2

up event, handler for 8-2
keyboard commands,

obtaining a window of editor 1-5

use of *comt ab* to calculate editor 1-5
keyboard equivalent,

as component of menu—item 5-1

Index

index-21

menu-item,
action taken for 5-1
obtaining 5-6
setting 5-6
menu equivalents,
command-a
command—c
command-e
command-f
command-n
command-o
command-p
command-s
command-v
command-x
command-z
keystroke
events, handling 9-10
name, translating into a code 9-11
keystroke-code, function description 9-11
keystroke-function, *fred-window*
function description 9-11
keystroke-name, function description 9-11
keystrokes,
as an event 6-1
as event handled by top window 61
kill-mark, function description -3
kill-picture, window function description
C-18
kill-polygon, window function description

14
14
1-4
14
1-3
1-3
14
1-3
14
14
1-4

kill-ring,
adding lines to 2-5
adding selections to 2-5
copying the current selection onto 2-5
as extension to Macintosh clipboard 9-2
Fred, integrated with clipboard 1-2
inserting strings into editor buffer from
14
list of strings for B—4
menu, obtaining 2-5
as a multi-level clipboard 1-3
string, inserting into the buffer 2-4
killed strings, list of B-4

© *killed-strings*,

as kill-ring location 9-2
variable definition B—4
killing
amark 9-3
menus 5-3
pictures C-18
polygons C-18
kindof,
called by oneof 3-9, 3-13
examples of use in creating new objects
3-1
function description 3-13
use by defobject 3-13

index-22

launching Allegro ii-2
layer number, window, obtaining the 6-5
LEFTARROW, use to move cursor 2-4
length,
of a record type field, specifying 13-2
record-type, determining 13-4
let,
rlet uses the same general form as 13-7
statements, as source of lexical bindings
3-12
Levco Prodigy—4, as supported by Allegro ii-1
lexical
bindings,
as arguments to functions 3-12
let statements as source of 3-12
use in communicating values between
instances 3-11
closure objects, as full (upward) funags

scope, ¥stack-block bindings have
12-6
lexically apparent bindings, affect on incremental
compilation 1-1
Library:records.lisp, as file which contains
standard Macintosh record type
definitions 13-3
license number,
highest, obtaining 3-19
object, obtaining 3-19
function description 3-19
license-to-object, function description
3-19
light-gray-pattern,
as an Allegro pen pattern C-6
" variable definition B-4
line breaks, in listener, use of
CONTROL-RETURN keys for
inserting 1-1
line,
deleting 2-5
drawing C-7
inserting a new 2-4
moving the cursor
down one 24
toend of 24
to start of 24
upone 2-4
number, obtaining 9-4
obtaining the
end position of a 9-4
start position of a 9-4
reindenting 2-4
window function description C-7
line-to, window function description C-7
lines in a buffer, obtaining the number of 9—4
lines-in-buffer, function description

Lisp

Allegro CL

data,
algorithm for representing 121 g
as ineligible for passing to a Macintosh N
trap 12-2
how different from Macintosh data
12-1
how represented 12-1
expression,
how to select 2-2
inspecting the current 2-4
location, finding 9-6
obtaining from a buffer 9-5
reindenting 2-4
Heap, as storage area for Lisp data 12-1
listener window,
affect of CONTROL-RETURN keys in
1-1
affect of ENTER key in the 1-1
affect of RETURN key in the 1-1
as part of Allegro programming
environment 1-1
characteristics and use 1-1
suspend event, handler for 8-3
reactivat event, handler for 8-3
objects, examining the structure of 1-5
operations, aborting 1-2
Operations Fred commands, descriptions
2-5
package, contents of A-2
lisp-pathname, function definition 10-5 \;
List Definitions in buffer tools menu item
description 1-5
listener-window-position#, variable
definition B-1
listener-window-size, variable
definition B-1

listener,
closing, affects of 1-1
use of command-1 in activating 1-6
use of editor commands in 1-1
moving the current expression into 2-6
listener-comtab, variable description
9-11
listener-size, variable definition B-1
: load, compile file keyword, as Allegro
extension A-8
Load eval menu item description 1-S
load-on-call,
as component of Allegro memory
management system A-3
as function loading mechnism 1-2
*load-verbose#, variable definition B-2
loading files 1-5
controlling the message verbosity during
B-2

local point,
converting a global pointtoa C-19 .
converting to a global pont C-19 A

local-to-global, window function
description C-19
lock-file, function description 10-11
locking files 10-11
logical pathnames,
concepts and forms 10-8
creating 10-8
expanding 10-8
logical-pathname-alist, variable
description 10-8
:long,
as argument for defpascal 12-10
as return value type for defpascal
12-10
as return—value-keyword for stack trap
macros 12-3
long word data, 32-bit, sharing with traps 12-2
long-words,
reading from memory 12-7
writing to memory 12-8
low-level system calls, warning on the use of
12-1
M, as symbol for meta in editing commands
2-3
M-.,
Fred command useful for debugging 11-1
Fred command that displays source code for a
symbol 2-3
M-#, Fred command that inserts # | | # 2-5
M-", Fred command that inserts a set of double
quotes 2-S
M- (, Fred command that inserts a set of
parentheses 2-5
M-<, Fred command that moves cursor to
beginning of buffer 24
M->, Fred command that moves cursor to end of
buffer 24
M-), Fred command that moves cursor to right
of next right parenthesis 2-4
M-b, Fred command that moves cursor back one
word 24
M-BACKSPACE, Fred command that deletes
backward delimiters 2-5
M-c, Fred command that initial caps current
word or selection 2-5
M-d, Fred command that deletes words to the
right of the cursor 2-5
M- £, Fred command that moves cursor forward
one word 24
M-1, Fred command that downcases current word
or selection 2-5
M-U, Fred command that upcases current word
or selection 2-5
M-v, Fred command that scrolls back one
screenful 24
M-w, Fred command that pushes current selection
onto kill ring 2-5
M-y, Fred command that yanks from a kill ring

Index

index-23

menu 2-5
mac-default-directory, function
description 10-7
mac-directory, function description 10-6
mac-£file-creator, function description
10-11
mac-file-type, function description 10-11
mac-filename, function description 10-6
mac-namestring, function description 10-6
mac-pathname, function description 10-6
mac-pathname, reading astringasa A-1
mac-volume, function description 10-6
Macintosh
character set, optional, accessing 2-5, A-1

how different from Lisp data 12-1
when needed 12-1
data types,
patterns 12-1
regions 12-1
windows 12-1
editor mode,
turning on and off B-3
use of clover key as command key 2-2
use of shift clover key as control key
2-2
Finder version 5.5, as system software for
Allegro ii-1
heap, allocating space for a Pascal record on
a 134
1, affect on Allegro speed ii-1
memory management, division of memory
in A-3
Memory Manager, Allegro facilities for
working with 12-6
mode, typing keyboard equivalents in 5-1
models, which run Allegro ii-1
operating system, sharing data between
Allegro and the 12-1
pathnames,
concepts and forms 10-5
creating 10-6
pointers, as immediate data 12-1
ROM calls, use of Macintosh data for
communication with 12-1
standard record types, list of Allegro
pre—defined 13-3
style editing, using Fred for 2-1
System version 4.1, as system software for
Allegro ii-1
toolbox, creating procedures which can be
called by 12-10
traps,
legal data types for passing 12-2
pointers returned by, use as Pascal
records 13-1
register compared with stack 12-2

index-24

Macintosh—mode, shift-clover as control key for
1-2

macro definition, examining 1-5

macroexpanding the current expression 2-6

MacWrite, relation to the Allegro editor, Fred
2-1

make-bitmap, function description C-16
make-buffer, function description 9-3
make-comtab, function description 9-11
make-mac-pathname, function description
10-6
make-mark, function description 9-3
make-pathname, function description 104
make-point, function description 4-2
make-record,
as memory allocator for long—lived
rectangles C-2
function description 13-4
record-types which should not be created by
13-5
use in creating static records 13-1
makunbound, function description 3-16
makunbound-all, function description 3-16
map-point, function description C-19
map-polygon, function description C-20
map-rect, function description C-20
map-region, function description C-20
mapping
points C-19
polygons C-20
rectangles C-20
regions C-20
mark,
creating 9-3
deleting 9-3
function description 9-2
moving 9-3
- obtaining the position of 9-3
reversing the direction of 9-3
setting the position of 9-3
testing if backward 9-3
mark-backward-p, function description
9-3
mark-position, function description 9-3
markp, function description 9-2
marks,
creating 9-2
as a Fred data type 9-1
as pointers into buffers 9-1
testing for 9-2
MC68881 floating point processor, how used by
Allegro A-1
memory,
accessing 12-7
allocating on the stack 12-6
allocation for rectangles C-2
for a record, use of dispose-record for
deallocating 13-4

Allegro CL

management,
Allegro configuration A-3 2T
facilities for 12-6 \
implementation A-1
warnings on handling 12-6
Pascal record
as a block of 13-1
as a pointer into 13-1
reclaiming for closed windows 6-3
releasing from Macintosh Heap 12-6
requirements, for running Allegro ii-1
stack, use of $stack-block to allocate
12-6
*menux,
as class from which menu objects are created
5-1
variable description 5-3
menu-based programming tools, as components
of Allegro programming
environment 1-1
menu-deinstall, menu function description
5-3
menu-disable, menu function description
54
menu-dispose, menu function description
5-3
menu-enable, menu function description
54
menu-enabled-p, menu function description
54 P
menu-install, i
as function which installs menus in
menubars 5-1
menu function description 5-3
menu-installed-p, menu function
description 5-3
menu-item,
adding to amenu 54
changeability in an installed menu 5-1
check character,
obtaining the 5-6
setting the 5-6
components of 5-1
consequences of selecting 5-1, 5-5
disabling 5-5, 5-6
enabled, testing for 5-6
enabling 5-6
finding 54
font style,
obtaining the 5-6
setting the 5-6
generating command-key equivalents 5-5
how user selects 5-1
initializing 5-5
keyboard equivalent,
obtaining 5-6
setting 5-6
menu function description 54 ™

as object in Allegro 5-1
obtaining a list of installed 5-4
removing from a menu 54
separating into groups 5-1
style, menu—item function 5-6
title,
as component of menu-item 5-1
obtaining 5-5
setting 5-5
updating 5-6
menu-item, variable description 5-5
:menu-item-action, as keyword for
exist menu-item function
5-5
_ menu-item-action,
as function which is called when a
menu-item is selected 5-1
disabling of event interaction during 5-1
menu-item function 5-5
menu-item-check-mark, menu—item

function 5-6
menu-item-disable, menu-item function
5-6
menu-item-enable, menu-item function
5-6
menu-item-enabled-p, menu—-item
function 5-6

:menu-item-title, as keyword for exist
menu-item function 5-5
menu-item-title, menu-item function
5-5
menu-item-update,
as context-sensitive function 5-1
menu-item function 5-6
:menu-items, as keyword for exist menu
function 5-3
:menu-title, as keyword for exist menu
function 5-3
menu-title,
changability in an installed menu 5-1
menu function description 5-3
menu-update, menu function description
54
menubar,
Allegro,
description of components 1-3
Edit menu, component descriptions
14
Eval menu, component descriptions
14
File menu, component descriptions
1-3
Tools menu, component descriptions
1-5
Windows menu, component descriptions
1-6
as component of standard Macintosh user
interface S5-1

Index

index-25

concepts and forms 5-2
default, finding the 5-2
deinstalling a 5-2
function description 5-2
as list of menus 5-1
obtaining the current 5-2
options, item descriptions 1-3
quickdraw point, finding B-1
setting 5-2
menubar-bottom, variable definition
B-1
menus,
adding menu-items to 54
concepts and forms 5-1
deinstailing 5-3
deleting 5-3
disabled, characteristics of 5-1
disabling 54
enabling 54
finding all 5-3
finding installed 5-2
function description 5-3
initializing 5-3
installing 5-3
as Macintosh style editing command access
2-1
modifying 54
as object in Allegro 5-1
obtaining a list of all installed 5-2
obtaining the title of 5-3
removing menu-items from 5-4
setting the title of 5-3
testing for the installation of 5-3
updating 54
testing for enabled 54 v
merge-pathname, function description 104
merging pathnames 104
message-dialog function description 4-3
messages, communicating to user with
message-dialog 4-3
meta key, use of option key for 2-2
meta-point,
establishing the source file linkage for B-2
use in accessing source code for a function
2-3
using Edit Definition Tools menu item for
1-5
miscellaneous
Fred commands, descriptions 2-6
system parameters B—4
modal dialog,
activatinga 7-2
characteristics of 7-1
use of : double-edge-box window-type
in creating 7-1
modal-dialog,
function description 7-3
use in activating a modal dialog 7-2

index-26

mode
line, use in setting the package 2-1
pen,
obtaining the current C-$
setting the current C-5
modeless dialog,
characteristics of 7-1
as a normal window 7-2
when available 7-2
modification count, buffer, obtaining 9-3

modifying
menu-items 5-6
menus 54

modularity, as benefit of object-oriented
programming 3-1
module-file-alist, usein finding a

module A-3
module-file-alist, variable definition
B-3
module-search-path#, initial value of
A-3
module-search-path#, use in finding a
module A-3
module-search-path#, variable definition
B-3
modules,
finding A-2

search path for locating B-3
system parameters B-3
mouse
clicks, handler for 8-1
down, testing for 8-3
position, obtaining 8-3
up event, handler for 8-2
mouse-down-p, function description 8-3
move, window function description C-7
move-file, function description 10-10
move-mark, function description 9-3
move-to, window function description C-7
movement Fred commands, descriptions 24
moving
the current expression into the Listener 2-6
the caret
back one character 2-4
back one expression 2-4
back one word 2-4
down one line 2-4
to end of buffer 24
to end of line 24
forward one character 2-4
forward one expression 2-4
forward one word 2-4
to start of buffer 2-4
to start of line 24
up one line 2-4
howto 2-2
a dialog—item 7-6
the difference of two regions C-15

Allegro CL

files 10-10
the intersection of
two rectangles C-8 A
two regions C-15 N
amark 9-3 el
polygons C-18
rectangles C-8
regions C-15
the union of
two rectangles C-9
two regions C-15
a window, how to 2-2
windows 6-4
multi-tasking system, pseudo, Allegro as a
MultiFinder, Allegro requirements under ii-2
multiple inheritance,
as a feature of Object Lisp 3-1
object, concepts and examples 3-7
my-dialog, dialog-item variable description
7-7

:name, as a keyword for make-pathname 104
name, of an object, finding 3-18
namestring, function description 10-5
naming
functions 3-15
objects 3-13
New (command-n) file menu item description
1-3
new file, creating an editor window fora 1-3
new-region, window function description
C-14
_NewHandle trap, use in allocating memory .
on the Application Heap 12-6
_NewPtr/_DisposPtr trap pair, as
semantically equivalent to
$stack-block
_NewPtr trap, .
use in allocating memory on the Application
Heap 12-6
use in setting up zone pointers 12-9
next-license-to-object, function
description 3-19
next-screen-context-lines,
variable definition B-4
nfunction, special form description 3-15
nil alias, as immediate data 12-1
non-interruptable tasks,
event processing 1-2
garbage collection 1-2
non-overlapping multiple inheritance, concepts
of 3-7
notinline declarations, how compiled A-7
:notPatBix, as a pen-mode C-5
:notPatCopy, as a pen-mode C-5
:notPatOr, as apen-mode C-5
:notPatXor, as a pen-mode C-§

:novalue, as return-value-keyword for stack

trap macros 12-3
null event, handler for 8-2
numbers, how stored in Allegro A-1
nx-fixnums-remain-fixnums#,
. variable definition A-7,B—4

nx-inline-car-cdr#, variable definition

A-8,B4
nx-open-code-in-line, variable
definition A-7,B—4
nx-tailcalls,
use in controlling tail recursion A-6
variable definition B-3
nx-trust-declarations, variable
definition A-7, B4
object-ancestors, function description
3-18
object-children, instance variable
description 3-18
object-license, as current object’s
indentifying number 3-14

object-1license, function description 3-19

Object Lisp,

as Allegro’s object—oriented programming

system 3-1
concepts and forms 3-1
extensions of Common Lisp functions,
boundp 3-15
fboundp 3-15
fmakunbound 3-15
makunbound 3-15
set 3-15
setqg 3-15
symbol-function 3-15
symbol-value 3-15
typep 3-15
function descriptions 3-13
object-name, instance variable description
3-18
object—oriented programming, benefits and
characteristics 3-1

object-parents, function description 3-18

objectp, function description 3-18
objects,
accessing, function binding, 3-15
bindings, as free references 3-12

communication with, function descriptions

3-14

creating 3-13

function bindings in 3-16
defining functions in 3-14
deleting function bindings in 3-16
environments, frames as 3-5
finding, 3-17

ancestors 3-18

children 3-18

function definitions in 3-17

name 3-18

Index

index-27

parents 3-18
global, global environment as 31
hierarchy, rules for determining bindings in
3-5
inheritance,
multiple, concepts and examples 3-7
overlapping, concepts of 3-7
of variables and procedures by 3-3
initializing 3-13
inspecting 1-5
internal procedures for, examples of 3-5
iterative processing of all existing 3-19
iterative processing of all functions owned
by 3-20
iterative processing of all variables owned by

license number, obtaining 3-19
manipulation, example of use of ask for
managing
bindings and definitions inside of,
function descriptions 3-14
function descriptions 3-17
modification of inherited behavior by 3-6
naming 3-13
non-overlapping inheritance, concepts of
printing 3-18
oriented programming, tutorial on 3-1
as programming units that combine
procedures and data 3-1
redefining 3-13
root, global environment as the - 3-1
and scoping, concepts and examples 3-10
setting
the current 3-14
values of 3-15
testing
function and value bindings of current
3-16
function and value bindings of hierarchy
of current 3-16
inheritance of 3-17
value, accessing 3-15
variables,
conflict with special variables 3-13
creating bindings in -3-16
deleting bindings in 3-16
dynamic scope of 3-12
examples of binding and assignment
3-2
examples of evaluation 3-2
and procedures in, local scoping of 3-1

offset-polygon, function description

C-18

offset-rect, function description C-8
offset-region, function description C-15

index-28

oneof,
calling of exist by 3-9
function description 3-13
Open (command-o) File menu item description
1-3
Open Selected File File menu item descriptions
1-3
open—coding, of trap calls 12-5
open-region, window function description
C-14
opening
an existing file 1-3
regions C-14
aselected file 1-3
operating system
traps, as register-based 12-2
types, writing to memory 12-8
optimization of code, facilities to aid the 12-1
optimize declarations, how compiled A-7
option key, as the meta key 2-2
option—d, as pathname escape character 10-3
option-key-p,
function description 8—4
use during execution of menu—item-action
5-1
origin,
setting C-3
window
function description C-3
obtaining C-3
:ostype,
as return—value-keyword for stack trap
macros 12-3
as type—keyword for stack trap macros
12-3
:outline,
as a font-style keyword 4-2
as a menu-—item font style 5-6
oval,
drawing a border inside an C-11
erasing an C-11
filling an C-11
inverting an C-11
overlapping multiple inheritance, concepts of
3-7
overriding default record storage, cautions on
13-6
ownp, function description 3-16
#p, as an Allegro reader macro character A-1
package, as default package for Fred 2-1
:package, as keyword for exist
fred—window function 9-7
package,

associated with a Fred window,
obtaining 9-8
setting 9-8

contents of
CCL package A-2

Allegro CL

LISP package A-2
USER package A-2 TN
window, setting 2-1 Lo
Page Setup File menu item description 1-4 ~
paint-arc, window function description
C-13
paint-oval, window function description
C-11
paint-polygon, window function
description C-18
paint-rect, window function description
C-10
paint-region, window function description
C-16
paint-round-rect, window function
description C-12
parent, single, example of inheritance from 3-3
parentheses, inserting 2-5
parents, of an object, finding the 3-18
Pascal
Quickdraw functionality, extension by
Allegro C-1

formats, concepts and forms 13-1

passing around by Lisp 13-1

storing 13-1

use of pointers returned by Macintosh
traps as 13-1

using 13-1

arguments, passing 12-10
parameters, call-by-reference arguments
as 12-2
Paste (command-v) Edit menu item description
14
paste,
dialog function description 7-5
fred-window function description 9-10
pasting
text between windows 2-2
the contents of the clipboard into the active
window 1-4
:patBix, as a pen-mode C-5
:patCopy,
as a pen-mode C-5
as the normal setting for pen-mode C-7
pathname-device, function description
10-5
pathname-directory, function description
10-5
pathname-host, function description 10-5
pathname-name, function description 10-5
pathname-type, function description 10-5
pathname-version, function description
10-5
pathnamep, function description 10-5

pathnames
Common Lisp, concepts 10-1
components 10-1
creating 10-4
escape character 10-3
finding the default 10-7
functions which construct 10-5
Lisp, testing for 10-5
logical,
creating 10-8
expanding 10-8
Macintosh,
concepts and forms 10-5
creating 10-6
reading astring asa A-1
merging 104
parsing examples 10-2
strings, parsing 10-1
using Lisp 104
:patOr, as a pen-mode C-5
pattern,
as component of pen state C—4
Macintosh
standard record type, as Allegro
pre—defined 13-3
data type 12-1
pen,
how stored and accessed C-6
obtaining the current C—6
setting the current C—6
for use with Quickdraw calls B—4
:patXor, as apen-mode C-5
pen,
attributes, diagram of C—4
as component of a windkow C—4
hiding C-4
how state affects drawing C—4
location, affect of pen—normal on C-7
moving C-7
obtaining the
current mode of C-5
current pattern of C—6
current state of C-6
position of the C—4
size of the C—H4
patterns,
Allegro, list of C-6
how stored and accessed C-6
as records which must be explicitly
disposed of C-6
routines, concepts and forms C-—4
setting the
current mode of C-5
current pattern of C-6
current state of C-6
size of CH4
showing C—4
state, components of C—4

Index

index-29

testing for visibility C-—4
pen-hide, window function description C-4
pen-mode,
obtaining
as an integer C-7
the keyword for C-7
represented as an integer C-7
setting to normal C-7
window function description C-5
*pen-modes *, as pen-mode keyword list
C-7
pen-modes, diagram of effects C-5
pen-normal, window function description
C-7
pen-pattern,
setting to normal C-7
window function description .C-6
pen-position, window function description
Cc4
pen-show, window function description C-4
pen-shown-p, window function description
c4
pen-size,
setting to normal C-7
window function description C—4
pen-state,
window function description C-6
as records which must be explicitly disposed
of C-6
penstate, Macintosh standard record type, as
Allegro pre-defined 13-3
physical control key, support for 1-2
pictures,
concepts and forms C-17
creating C-17
deleting C-18
drawing C-17
pixels,
obtaining C-19
bitmaps as rectangular arrays of C-16
how affected by pen-modes C-5
how different from points C-2
per inch, horizontal and vertical, finding
B-1

pixels-per-inch-x, variable definition
B-1
pixels-per-inch-y#, variable definition
B-1
:plain,
as a font-style keyword 4-2
as 2 menu—item font style 5-6
plane, window, initializing 6-2
point-h, function description 4-1
point-in-rect-p, function description
c-9
point-in-region-p, function description
C-15
point-string, function description 4-1

index-30 Allegro CL

point-to-angle, function description C-9
point-to-cell, table-dialog-item function
description 7-14
point-v, function description 4-1
:pointer,
as a value returned by record-storage 13-4
use in defining new record types 13-2
use with rref 13-5
use with rset 13-5
pointerp, function description 12-9
pointers,
coercing from a fixnum 12-9
decrementing 12-9
generic, how different from a zone pointer
12-9
incrementing 12-9
to the Macintosh Heap, as legal to pass to a
Macintosh trap 12-2
to non-Lisp memory, testing for 12-9
to non-relocatable application HeapZone
memory block, testing for 12-9
passing to the Macintosh operating system
12-9
reading from memory 12-7
returned by Macintosh traps, use as Pascal
records 13-1
record, obtaining within a handle 13-6
to window record on the Macintosh heap,
accessing the 6-5
writing to memory 12-8
zone, how different from a generic pointer
12-9
points,
creating 4-2
how components increase C-1
as data formats 4-1
how different from pixels C-2
how specified C-1
how to represent in function arguments
4-1
manipulation, efficiency of 4-1
mapping C-19
obtaining
a string representation of 4-1
the horizontal coordinate of a 4-1
the vertical coordinate of a 4-1
position, Fred window, obtaining 9-8
as representation for two—dimensional data
4-1
scaling C-19
stored
as 31-bit fixnums 4-1
as encoded fixnums C-2
transforming two fixnums intoa A-1
use in describing the size of the pen C—H4
points-to-rect, function description C-9
polygon,
concepts and forms C-18

creating C-18

deleting C-18

erasinga C-18

fillinga C-18

inverting a C-19

graphics operations on C-18

mapping C-20
moving C-18
portrect,

affect on drawing C-1
window.portrect as abbreviation for 13-6
position
arguments, buffer, checking 9-2
dialog window, initializing 7-3
dialog-item,
initializing 7-5
obtaining the 7-6
setting the 7-6
pen, obtaining C-4
as a property of dialog—items 7-1
use in obtaining a pen-mode as an integer
Cc-7
window,
initializing 6-1
obtaining the 64
preload-all-functions,
as part of environment control 1-2
function description A—4
preloading swappable functions A-4
pretty printing the current expression 2-6
Print (command-p) file menu item description
14
:print, compile file keyword, as Allegro
extension A-8
Print Options Tools menu item
description 1-5
use in controlling the environment 1-2
print-length#, use with print-record
13-5

print-level#, use with print-record 13-5

print-record, function description 13-5
print-self, function description 3-18
printer paramenters, using Print Options Tools
menu item to set 1-5
printing
the active window 1-4
afile 14
hardcopy of a Fred window 9-9
information about the current Fred buffer
2-3
objects 3-18
options, setting up 1-4
records 13-5
the screen 2-6
probe-£ile, function description 10-10
procedures,
as component of classes 3-9
inheritance by objects 3-3

object, scoping of 3-1
programming
environment,
Allegro, as subject of manual ii-1
description of Allegro 1-1
Fred, concepts and forms 9-1
property
-list, buffer,
obtaining 94
obtaining a property from 9-4
putting a property on 9-4
obtaining from a buffer property list 9-4
putting on a buffer property list 9-4
prototyping object hierarchies, how different
from production setups 3-9
:ptr,
as argument for defpascal 12-10
as return value type for defpascal
12-10
as return—value—keyword for stack trap
macros 12-3
as type-keyword for stack trap macros
12-3
purge-functions,
as part of environment control 1-2
function description A-4
purging,
of functions, controlling the 1-2, A4
the buffer, closing the listener as means of
1-1
pushed-radio-button dialog function
description 7-5
$put-byte, function description 12-8
$put-full-long, function description 12-8
$put-ostype, function description 12-8
$put-ptr, function description 12-8
$put-string, function description 12-8
$put-word, function description 12-8
putting a property on a buffer property list 9-4
Quckdraw arguments, why Allegro order can
differ from Inside Macintosh
C-2
QUED, relation to the Allegro editor, Fred 2-1
queueing programs during event handling 8-5
Quickdraw
code, available as an example file C-1
graphics, concepts and forms C-1
patterns for use with B-4
traps, calling directly 6-5
Quit file menu item description 1-4
quiting Allegro 1-4
radio button
dialog-items,
determining if pushed 7-10
determining the cluster for 7-10
initializing 7-10
pushing 7-10
testing for pushed 7-10

Index

index-31

unpushing 7-10
obtaining the pushed 7-5
:radio-button-cluster, as a keyword for
exist radio-button—dialog-item
function 7-10
radio-button-cluster,
radio-button—dialog—item
variable description 7-10
radio-button-dialog-item,
as a dialog—item subclass 7-5
radio button dialog-item class object 7-9
variable description 7-9
radio-button-push,
radio-button—dialog—item
function description 7-10
:radio-button-pushed-p, as akeyword
forexist
radio-button—dialog-item
function 7-10
radio-button-pushed-p,
radio-button—dialog-item
function description 7-10
radio-button-unpush,
radio-button—dialog-item
function description 7-10
radio-buttons, as dialog—item class 7-1
RAM cache, turning off suggested ii—2
reader macro
characters, Allegro A-1
#@, use in defining a point 4-1
#p, use for pathnames A-1
reading
bytes from memory 12-7
afile into a buffer 2-6,9-6
long-words from memory 12-7
from memory, facilities for 12-7
operating system types from memory 12-8
pointers from memory 12-7
strings from memory 12-7
words from memory 12-7
real-font, function description 4-3
record-default,
function description 13-4
use in determining information about a
record type 13-1
record-fields,
function description 13-4
use in determining information about a
record type 13-1
record-info, function description 13-4
record-length,
function description 13-4
use in determining information about a
record type 13-1
record-source-file, variable definition
B-2
record-storage,
function description 13-4

index-32 Allegro CL

use in determining information about a use of pointers returned by Macintosh
record type 13-1 traps as 13-1 g
record-string, use in obtaining a printed printing 13-5 .
representation of a record 13-1 setting the value of fields in 13-5 -
record types, stored as handles, rlet not legal for
creating a default value record for 13-2 allocating 13-2
defining new 13-2 structure of 13-1
determining the default storage of 13-4 summary of Allegro operations on 13-1
field rect, Macintosh standard record type, as Allegro
data type, specifying 13-2 pre—defined 13-3
description, specifying 13-2 rect-in-region-p, function description
length, specifying 13-2 C-15
name, specifying 13-2 rectangles,
functions which manipulate 13-4 allocation of memory for C-2
length, determining 13-4 calculating C-8
obtaining an angle from apointanda C-9
the default value record for 13-4 functions, as global rather than object
a description of a field of 134 functions C-8
the byte—offset for a field within 13-4 creating from two points C-9
- the default value for a field within drawing a border around C-10
134 erasing C-10
the field descriptions for 134 filling C-10
the field names for 13-4 graphic operations on C-10
the field-type for a field within 13-4 how specified C-2
option of the inspector, use in finding how to specify without allocating memory
Macintosh record type definitions C-2
, 13-3 insetting C-8
Pascal, as guide to interpretation of 13-1 intersection of two, calculating and moving
standard Macintosh, list of Allegro C-8
pre—defined 13-3 inverting C-10 P
testing for a particular 13-4 “mapping C-20 L
record-type-p, moving C-8 N
function description 13-4 scrolling C-17
use in testing for record types 13-1 stored as eight-byte records C-2
records, testing for
copying 13-5 the inclusion of a point C-9
created the intersection of aregionand a C-15
by rlet, stored on stack 13-7 emptiness C-9
temporary 13-7 equality C-9
default value, union of two, calculating and moving C-9
creating for arecord type 13-2 when record allocation is not needed C-2
obtaining for a record type 13-4 rectangular
definition, as template that defines fields arrays of pixels, bitmaps as C-16
13-1 region, setting the clip-regiontobea C-3
fields, regions, creating C-14
accessing 13-5 redefining objects 3-13
setting the value of 13-5 regbuf,
memory for a, use of dispose-record Macintosh standard record type, as Allegro
for deallocating 134 pre—defined 13-3
pointer, obtaining within a handle 13-6 Pascal record type,
deleting 13-5 as target for defpascal argument
obtaining the value of fieldsin 13-5 12-10
Pascal, use of reset in setting 12-10
as a block of memory 13-1 use of rref in accessing 12-10
passing around by Lisp 13-1 regions,
record-type as guide to interpretation of calculating with C-15
13-1 closing C-15

storing and using 13-1 as component of windows C-14 @

concepts and forms C-14
copying C-14
creating C-14
deleting C-14
difference of two, calculating and moving
C-15
drawing a border inside a C-16
erasinga C-16
filling a C-16
graphics operations on C-16
how to select 2-2
insetting C-15
intersection of two, calculating and moving
C-15
inverting a C-16
as a Macintosh data type 12-1
mapping C-20
moving C-15
opening C-14
rectangular,
creating C-14
setting the clip-regiontobe a C-3
testing for
the inclusion of a point C-15
the intersection of a rectangle and a
C-15
emptiness C-16
equality C-15
union of two, calculating and moving
C-15
register trap macros, general form, description
124

- register-trap, macro description 12-5

register traps
as an Allegro facility for handling traps
12-2
compared with stack 12-2
errors, signalling 124
data types for 124
general format of 124
as a general trap call 12-5
registers,
address, data type for 12-4
data, data type for 12-4
reindenting
the current line 2-4
a Lisp expression 2-4
remake-object,
function description 3-13
use by defobject 3-13
remove-dialog-items, dialog function
description 7-4
remove-menu-items, menu function
description 5-4
remove-self-from-dialog, dialog-item
function description 7-8
removing
dialog-items 7-4

index-33

dialog-items from a dialog 7-8
menu-items from a menu 5-4
rename-£file, function description 10-9
renaming files 10-9
replacing
active window contents, using command-f
for 14
acharacter in a buffer 9-4
the selected region of the active window with
the contents of the clipboard
14
text from editable text dialog—items 7-5
representation of Lisp data 12-1
require, use in finding a module A-2
resize a window, how to 2-2
resources, Macintosh, accessing 12-4
retrieving last version of afile 1-3
RETURN key,
affect on insertion point in the Lisp listener
window 1-1
affect on selected text 1-1
how different from ENTER key 1-1
use for copy-down and evaluation 1-1
use to insert new line 24
return value,
register trap, return—register~keyword as
specifying the type of 12-4
stack trap, return—value-keyword as
specifying the type of 12-3
return-from-modal-dialog,
macro description 7-3
use in returning from a modal dialog 7-2
reverse-mark, function description 9-3
reversing the direction of a mark 9-3
Revert File menu item description 1-3
reverting a
Fred window 9-9
window to last version saved 1-3
RIGHTARROW, use to move cursor 24
rlet,
function description 13-7
as memory allocator for short-lived
rectangles C-2
not legal in allocating records stored as
handles 13-2
use in allocating temporary records on a
stack 13-1
ROM,
32-bit data fixnum requirement, working
around 12-2
calls, use of Macintosh data for
communication with 12-1
Macintosh, Allegro facilities for accessing
12-1
root object, global environment as the 3-1
rounded rectangle,
drawing a border inside a C-12
erasinga C-12

index-34

fillinga C-12
invertinga C-12
rref,
as very efficient macro 13-6
macro description 13-5
preferred to get~record-£field for
obtaining field values 13-5
use in accessing
fields within records 13-1
Pascal regbuf record types 12-10
use with records created by toolbox traps
13-5
using in reading from memory 12-7
rset,
macro description 13-6
preferred to set~record-£field for
setting field values 13-5
use
in setting fields within records 13-1
in setting Pascal regbuf record types
12-10
with records created by toolbox traps
13-5
in writing to memory 12-7
run-time type checking, performed by system
functions A-5
running Allegro ii-2
SANE, used by Allegro for floating point
computation A-1
save area,
for copied regions, clipboard as 1-4
for deleted regions, clipboard as 1-4
Save
as file menu item description 1-3
- (command-s) file menu item description
1-3
save-definitions, variable definition
B-2
save-doc-strings, variable definition
B2
saving
the active window 1-3
the current buffer 2-6
a Fred window 9-9
the screen as a MacPaint file 2-6
scale-point, function description C-19
scaling points C-19
scope,
dynamic, of object variables 3-12
lexical, $stack-block bindings have
12-6
scoping,
object, concepts and examples 3-10
of object variables and procedures 3-1
:scratch-p, as keyword for exist
fred-window function 9-6
screen,
height and width of, finding B-1

Allegro CL

information system parameters B-1
printing 2-6 A
saving as a MacPaint file 2-6 N
scrolling
back one screen 2-4
forward one screen 2-4
*screen-height #, variable definition B-1
screen-related I/O, windows as primary method
for 6-1
screen-width, variable definition B-1
scroll
a window, how to 2-2
position, table dialog, obtaining the 7-14
scroll-position, table-dialog—-item
function description 7-14
scroll-rect, window function description
C-17
scroll-to-cell, table-dialog-item function
description 7-14
scrolling
a table dialog 7-14
back one screen 2-4
forward one screen 2-4
rectangles C-17
search and replace dialog box, using command-f

to access 1-4
Search (command-f) edit menu item description
14
search path, .
for modules B-3
specifying 10-7 S

searching, using apropos as a tool for 1-5
Select All (command-a) edit menu item
description 1-4
select-all,
as the function that selects the entire buffer
24
fred-window function description 9-10
selected regions, copying 1-4
selected regions, deleting 1-4
selected regions, replacing 1-4
selected text, affect of RETURN key on 1-1
selected-cells, table-dialog-item function
description 7-14
selecting
cells in a table dialog-item 71-4
the current expression 2-6
the entire buffer 2-4
a Lisp expression, how to 2-2
menu-items, consequences of 5-1
aregion 2-2
a window 2-1.6-5
aword, 2-2
selection,
capitalizing the current 2-5
copying onto the kill-ring
deleting 2-5
downcasing the current 2-5 0

range,
as a component of a Fred window 9-1
Fred window, obtaining 9-8
Fred window, setting 9-8
type, table dialog—item, initializing 7-12
upcasing the current 2-5
selection-range, *fred-window* function
description 9-8
:selection-type, as keyword for exist
table—dialog—item function
7-13
self, function description 3-17
sequence
dialog, indexing into 7-15
dialog-item, initializing 7-14
sequence dialog—item,
obtaining 7-15
setting 7-15
sequence—-dialog-item,
as a dialog—item subclass 7-5
variable description 7-14
:sequence-order, as keyword for
sequence-dialog—item function
7-14
:sequence-wrap-length, as keyword for
exist sequence-dialog—-item
function 7-15
set,
extended for Object Lisp 3-15
function description 3-15
set-cell-size, table-dialog-item function
description 7-13
set-clip-region, window function
description C-3
set-command-key, menu-item function
5-6
set-current-editable-text, dialog
function description 7-4
set-cursor, function description 8-7
set-default-button, dialog function
description 7-4
set-dialog-item-font, dialog-item
function description 7-7
set- dlalog-ltem—posna.on, dialog-item
function description 7-6
set-dialog-item-size, dialog-item
function description 7-7
set-dialog-item-text, dialog-item
function description 7-7
set-empty-region, window function
description C-14
set-event-ticks, function description
8-5
set-file-create-date, function
description 10-10
set-file-write-date, function
description 10-10
set-h-specifier, array-dialog-item

index

index-35

function descripation 7-16
set-mac-default-directory, function
description 10-7
set-mac-file-creator, function
description 10-11
set-mac-file-type, function description
10-11
set-mark, function description 9-3
set-menu-item-check-mark, menu-item
function 5-6
set-menu-item-style, menu—item
function 5-6
set-menu-item-title, menu-item
function 5-5
set-menu-title, menu function description
5-3
set-menubar, function description 5-2
set-origin, window function description
set-pen-mode, window function description
C-5
set-pen-pattern, window function
4 description C-6
set—pen-s ize, window function description
c4
set-pen-state, window function
description C-6
set-record,
function description 13-5
use in setting multiple fields within a record
13-1
set-record-field, function description
13-5
set-rect-region, window function
description C-14
set-region, use in changing coordinates of
upper left hand corner of window
C-1
set-selection-range, *fred-window*
function description 9-8
set-table-dimensions, table—dialog—item
function description 7-13
set-table-sequence,
sequence—dialog-item function
description 7-15
set-v-specifier, array—dialog-item
function descnpauon 7-16
set-visible-dimensions,
table—dialog-item function
description 7-13
set-window-filename, *fred-window*
function description 9-8
set-window-font,
use in setting the dialog font 7-2
window function description 64
set-window-layer, window function
description 6-5

index-36

set-window-package,
fred-window function description 9-9
use in setting the package of a window 2-1
set-window-position, window function
description 64
set-window-size, window function
description 64
set-window-title, window function
description 64
setq,
extended for Object Lisp 3-15
special form description 3-15
setting,
a clip-region C-3
clip-region to be a rectangular region C-3
current
pen-mode C-5
pen—pattern C-6 .
pen-state C-6
dimensions of table dialog—-items 7-13
event dispatching interval 8-5
file
creation date 10-10
modification date 10-10
font of a dialog—item 7-7
function bindings of objects 3-15
horizonal dimension of an array dialog
7-16
keyboard equivalent for a menu—item 5-6
layer number of a window 6-5
Macintosh file type 10-11
menu—item
check character 5-6
font style 5-6
title 5-5
object values 3-15

mode to normal C-7
pattern to normal C-7
size tonormal C-7
position of a
dialog-item 7-6
mark 9-3
window 64
printer parameters, using Print Options tools
menu item for 1-5
a sequence from a sequence dialog-item
7-15
size of
a dialog-item 7-7
pen CH4
table dialog-items 7-13
awindow 64
text of a dialog—item 7-7
title of a
menu 5-3
window 64
value of

Allegro CL

fields in records 13-5
global variables 1-6
record fields 13-5 {
vertical dimension of an array dialog 7-16 N
visible dimensions of table dialog-items
7-13
awindow package 2-1
up a menubar 5-2
setup-undo, *fred-window* function
description 9-9
sfreply, Macintosh standard record type, as
Allegro pre-defined 13-3
:shadow,
as a font-style keyword 4-2
as a menu-item font style 5-6
:shadow-edge-box,
as a window-type keyword for exist
dialog-window function 7-2
:shadow-edge-box, as a window-type
keyword for exi st window
function 6-2
shadowing, .
of inherited bindings, example of 3-3
of object bi;\djngs, by lexical bindings
-11
sharing data between Allegro and the Macintosh
operating system 12-1
shift—clover key,
as command key for Emacs mode 1-2, 2-2
as control key for Macintosh mode 1-2 —
shift-key-p, :
function description 8-—4 N
use during execution of menu-item—action
5-1
showing the pen C—4
:single—-edge-box, as a window-type
keyword for
exist dialog-window function 7-2
exist window function 6-2
size,
buffer, obtaining 9-3
as component of pen state C—4
dialog window, initializing 7-3
dialog-item,
initializing 7-6
obtaining the 7-7
setting the 7-7

obtaining C—4
setting C4
as a property of dialog-items 7-1
table dialog-item,
obtaining 7-13
setting 7-13
window,
changing the 64
initializing 6-1
obtaining the 64

software configuration for Allegro ii-1
source code, for a function, accessing 2-3
special declarations, how compiled A-7
special variables, conflict with object variables

3-13

specialized table—dialog-items, concepts and
forms 7-14

specifying a field

data type for a record type 13-2
description for a record type 13-2
name for a record type 13-2
specifying the length of a record type field 13-2
:srcBic, as atransfer-mode keyword 4-2
:srcCopy, as a transfer-mode keyword 4-2
:srcOr, as atransfer-mode keyword 4-2
:srcPatBic, as a transfer-mode keyword
4-2
:srcPatCopy, as a transfer-mode keyword
4-2

:srcPatOzr, as a transfer-mode keyword
4-2
:srcPatXor, as atransfer-mode keyword
4-2
:srcXor, as atransfer-mode keyword 4-2
stack trap macros, general form, description
123
stack,
allocating memory on the 12-6
as efficient temporary storage device 12-6
backtrace,
components of 11-2
obtaining 1-5
blocks, managing 12-6
control, use in Allegro memory management
A-3
overflow, checked by compiled functions
space, use of tail-recursion to reduce A-6
traps,
compared with register traps 12-2
data types for 12-3
general format of 12-3
use by
rlet to store records 13-7
Macintosh memory management A-3
stack, warning on use for temporary memory
12-6
$stack-block,
special form description 12-7
use in allocating storage on the stack 12-6
stack-trap,
as a general trap call 12-5
as an Allegro facility for handling traps
12-2
macro description 12-5
standard evaluator, as an evaluation option A-4
*standard-output *, use in printing objects
3-18

Index

index-37

start-picture, window function
description C-17
start-polygon, window function
description C-18
starting Allegro ii-2
state, pen,
obtaining the current C—6
setting the current C-6
static text, as dialog—item class 7-1, 7-8
static-text-dialog-item,
as a dialog-item subclass 7-5
as static text dialog—-item class object 7-8
dialog—-item variable description 7-8
stepper, window-based, how to invoke 11-2
stopping Lisp operations, using clover—period
(clover-.) for 1-2
:storage, use in
overriding default storage type 13-2
specifying the storage type for a record
134

storage, of a record-type, determining the default
134

storing Pascal records 13-1
stream-tyo, window function description
C-7
streams,
Fred windows as output 9-1
use in printing objects 3-18
windows as, affect on drawing text C-7
strings, 2-6
finding in a buffer 9-5
representation of a point, obtaining 4-1
strings, from kill-ring, inserting into editor
buffer 1-4
passing to the Macintosh operating system
12-8
reading from memory 12-7
using
Allegro turnkey dialog to obtain from
user 4-3
font-specs to determine the pixel width
of 4-3
writing to memory 12-8
string-width, function description 4-3
subscript-to-cell, array—dialog—item
function descripation 7-16
subscripts, array dialog—items, initializing 7-16
substring, obtaining from a buffer 9-5
subtract-points, function description
4-2
swappable functions,
as component of Allegro memory
management system A-3
controlling the purging of A—4
preloading A-4
symbol-function,
extended for Object Lisp 3-15
function description 3-15

index-38 Allegro CL

symbol-value,
extended for Object Lisp 3-15
function description 3-15
system
HeapZone memory block, testing for a
pointer to 12-9
interface, low-level, concepts and forms
12-1
parameters,
Allegro Common Lisp menu B-2
compiler B-3
environment B-2-
miscellaneous B—4
modules B-3
screen information B-1
variables which describe B-1
window configuration B-1
t alias, as immediate data 12-1
TAB, use to reindent current line 2-4
:table-array, as keyword for exist
array-dialog-item function 7-16
table-dialog-item,
as a dialog—item subclass 7-5
variable description 7-12
table dialog—items,
concepts and forms 7-10
initializing 7-12
as a method for selecting items from a set
7-10
as rectangles with a series of cells 7-11
:table-dimensions, as keyword for
exist table-dialog—item
function 7-12
table-dimensions, table-dialog-item
: function description 7-13
:table-hscrollp, as keyword for exist
table—dialog-item function
7-12
:table-sequence, as keyword for
sequence—dialog—item function
7-14
table-sequence, sequence-dialog-item
function description 7-15
:table-subscript, as keyword for
array-dialog-item function
description 7-16
:table-vscrollp, as keyword for exist
table~dialog—item function
7-12
tables, as dialog—-item class 7-1
tail recursion, controlling B-3
tail-recursive, compiler as properly A-6
talkto,
function description 3-14
use contrasted with ask 3-14
temporary records, creating 13-7
terminating a modal dialog 7-2
terminating dialogs 4-3

testing

arectangle for the inclusion of a point C-9
a region for the inclusion of a point C-15
anywhere in the system, for function
bindings in 3-16
anywhere in the system, for value bindings
in 3-16 -
current object, for function bindings in
3-16
current object, for value bindings in 3-16
for
achecked dialog-item 7-9
adouble click 8-3
an enabled menu-item 5-6
buffers 9-2
enabled dialog-items 7-7
enabled menus 54
existence of a file 10-10
existing fonts 4-3
files being locked 10-11
installation of a menu 5-3
Lisp pathnames 10-5
marks 9-2
mouse down 8-3
permitted returns in editable text 7-9
selected cells in a table dialog—item
7-14
the intersection of a region and a
rectangle C-15
function and value bindings anywhere in the
system 3-16
hierarchy of current object, for function
bindings 3-16
hierarchy of current object, for value
bindings 3-16
if a mark is backward 9-3
inheritance, of objects. 3-17

objects 3-18
rectangles for
emptiness C-9
equality C-9
regions for
emptiness C-16
equality C-15
windows for

undo capability 6-6
visibility 6-5
text,
as a property of dialog-items 7-1
current editable for a dialog,
changing the 74
obtaining the 7-4
dialog, font of 7-2
dialog—item,
initializing 7-6
obtaining the 7-7
setting the 7-7

)

drawing C-7
affect of current font specification on
C-7
drawing, affect of windows as streams on
C-7
editable text dialog—item
class 7-1
copying 7-5
deleting 7-5
deleting 7-5
files,
compiling 1-5
loading 1-5
using the Documents tools menu item
to obtain 1-5
static, as dialog—item class 7-1
windows, as subclass of windows 6-1
title,)
accessing windows by 6-1
as component of menu—item 5-1
dialog window, initializing 7-3
menu-item,
obtaining 5-5
setting 5-5
of a menu,
obtaining 5-3
setting the 5-3
of undo menu-item, changing the 6-6
window,
changing the 64
initializing - 6-1
obtaining the 64
toggle between full-screen and a smaller size
2-2
:tool, as a window type
which can have a close box 6-2
keyword for
exist dialog-window function 7-2
exist window function 6-2
toolbox,
Macintosh, creating procedures which can be
called by 12-10
traps, as stack-based 12-2
Tools menu,
Allegro menubar, item descriptions 1-5
item descriptions 1-5

items,
Apropos 1-5
Backtrace 1-5

Documents 1-5

Edit Definition 1-5

Environment 1-6

Fred Commands 1-5

Inspect 1-5

List Definitions 1-5

Print Options 1-5
t ools-menu, variable definition B-2
t op-listener, variable definition B-1

Index

index-39

tracing, how to invoke 11-3
_TrackControl trap, as example of use of
defpascal 12-10
transfer-mode, as component of font—spec 4-2
transposing two characters 2-5
traps
Allegro facilities for handling 12-2
arguments, characteristics of 12-2
how to customize calls to 12-1
Macintosh, use of pointers returned by as
Pascal records 13-1
not included in Allegro, how to use 12-1
Quickdraw, calling directly 6-5
register,
data types for 124
general format of 124
stack,
data types for 12-3
general format of 12-3
type—checking not performed on arguments
to 12-2
tutorial on object oriented programming 3-1
:type, as a keyword for make—-pathname
104
type
coercion, type—keyword as specifying
argument 12-3
dialog window, initializing 7-3
window, initializing 6-2
type—checking, not performed on arguments to
traps 12-2
typeface conventions, in the Lisp listener
window 1-1
typep, function description 3-17
unboxed immediate data, as legal to pass to a
Macintosh trap 12-2
unboxing
of fixnums 12-2
use in coercing a pointer from a fixnum
12-9
unchecking a dialog-item’s check-box 7-9
:underline,
as a font-style keyword 4-2
as a menu~item font style 5-6
Undo (command-z) Edit menu item description
14
menu-item,
as trigger for undo window function

title, changing the 6-6

support, 9-9
concepts and forms 6-5

window function
description 6-5
triggered by undo menu-item

6-5
undo-menu-item,
undo menu-item as value of 6-6

index-40

variable definition B-2
union,
of two rectangles, calculating C-9
of two regions, calculating C-15
union-rect, function description C-9
union-region, function description C-15
unlock-file, function description 10-11
unlocking files 10-11
unwind-protect, use with unlocking of
handles 12-9
UPARROW, use to move cursor 2-4
upcasing
characters 9-5
the current word or selection 2-5
update window event, handler for 8-2
update-cursor, function description 8-7
updating a Fred window 9-7
updating
the cursor shape 8-7
amenu 54
menu-items 5-6
user interface functions, file system 10-13
USER package, contents of A-2
user-homedir-pathname, function
description 10-7
using Pascal records 13-1
usual, :
example of use in modifying object
functions 3-6
role in implementing inheritance 3-8
usual-exist, use by exist 3-13
v-specifier, array-dialog—item variable
descripation 7-16
:v-specifier, as keyword for exist
array-dialog-item function 7-16
value
bindings,
anywhere in the system, testing 3-16
current object, testing 3-16
hierarchy of current object, testing
3-16
in an object, accessing 3-15
object,
assigning 3-15
function bindings, assigning 3-15
var arguments, Pascal, passing 12-10
variables

assignment, in an object, examples of 3-2

binding,
in an object, examples of 3-2
inheritance rules 3-7
conflict between special and object 3-13
definitions, examining 1-5
global
binding of, use with objects 3-2
setting the value of 1-6
inheritance by objects 3-3
instance,

Allegro CL

initialization of 3-9

as state variables for an instance 3-9 £
establishing default values 3-14 N
object,

creating bindings for 3-16
deleting bindings for 3-16
dynamic scope of 3-12
examples of evaluation of 3-2
scoping of 3-1
examples of multiple private versions
3-1
owned by an object, iterative processing of
all 3-20
variant fields, as multiple field mapping
mechanism 13-1
:verbose, compile file keyword, as Allegro
extension A-8
verbose-eval-selection#, variable
definition B-2
:version, as a keyword for make-pathname
104
version, as component of pathname 10-2
vertical
character position, Fred window,obtaining
9-8

coordinate of a point, obtaining the 4-1
scroll-bar, table dialog-item, initializing
7-12
visibility, dialog window, initializing 7-3
visible
dimensions, table dialog-item,
initializing 7-12
obtaining 7-13
setting 7-13
making windows 6-5
:visible-dimensions, as keyword for
exist table-dialog—item
function 7-12
visible-dimensions, table-dialog-item
function description 7-13
:void, as return value type for defpascal
12-10
volume-number, function description 10-12
warn, calls to, not tail-recursive A-6
*warn-if-redefinex, variable definition
B2
:warnings, compile~£file keyword, as
Allegro extension A-8
warnings
about use of heaps 12-1
on allocating memory on the stack 12-6
on memory management handling 12-6
on overriding default record storage 13-6
on the use of low-level system calls 12-1
*watch-cursor#, variable description 8-8
wfind, as function that brings up the search
dialog box 2-6
where, function description 3-17 g

white-pattern#,
as an Allegro pen pattern C-6
variable definition B-4
wildcards, using 10-7
window¥,
as a parent of dialog objects 7-1
as the superclass from which other windows
inherit 6-1
variable description 6-1
window-activate-event-handler,
window function description 8-2
window-based programming tools, as
components of Allegro
programming environment 1-1
window-buf fer, *fred-window* function
description 9-7
window-can-undo-p window function
description 6-6
window-click-event-handler, window
function description 8-1
window-close,
dialog function description 7-4
use in closing a dialog window 7-3
window function description 6-3
window-cursor, window variable description
8-7
window-cursor-mark, *fred-window*
function description 9-7
window-deactivate, use when closing windows
6-3
window-deactivate-event-handler,
window function description 8-2
window-disk-insert-event-handler,
window function description 8-3
window-draw-contents, window function
description 8-2
window-event, window function description
8-5
window~filename, *fred-window* function
description 9-8
:window-font, as keyword for
exist dialog function 7-3
exist window function 6-1
window-font
init option, use in setting the dialog font
window function description 6-4
window-hardcopy, *fred-window* function
description 9-9 .
window-hide, window function description
6-5
window-hpos, *fred-window* function
description 9-8
window-key-event~handler, window
function description 8-2
window-~key-up-event-handler,
window function description 8-2
:window-layer, as keyword for exist

Index

index-41

window function 6-2
window-1layer, window function description
6-5
window-1line-vpos, *fred-window* function
description 9-8
window-mouse-position, window
function description 8-3
window-mouse-up-event-handler,
window function description 8-2
window-null-event-handler, window
function description 8-2
window-package, *fred-window* function
description 9-8
window-point-position, *fred-window*
function description 9-8
:window-position, as keyword for
exist dialog function 7-3-
exist window function 6-1
window-position,
use with dialogs 7-1
window function description 6-4
window-resume-event-handler,
window function description 8-3
window-revert, *fred-window* function
description 9-9
window-save,
as function that saves the top Fred window
2-6
fred-window function description 9-9
window-save-as,
as function that writes the top Fred window
to afile 2-6 :
fred-window function description 9-9
window-select, window function description
6-5
window-select-event-handler,
window function description 8-3
:window-show, as keyword for
exist dialog function 7-3
exist window function 6-1
window-show,
use with dialogs 7-1
window function description 6-5
window-shown-p, window function
description 6-5
:window-size, as keyword for
exist dialog function 7-3
exist window function 6-1
window-size, window function description
64
window-start-mark, *fred-window*
function description 9-7
window-suspend-event-handler,
window function description 8-3
:window-title, as keyword for
exist dialog function 7-3
exist window function 6-1

index-42 Allegro CL

window-title, window function description
64
:window-type, as keyword for
exist dialog function 7-3
exist window function 6-2
window-update, *fred-window* function
description 9-7
window-update-cursor, window function
description 8-7
window-update-event-handler,
window function description 8-2
windows,
activating 6-5
accessing 6-1
_by title 6-1
open 1-6
Allegro, finding the default size and position
of B-1
buffer,
evaluating and compiling the entire
active 1-5
finding a definition in the active editor
1-5
close box as a non-modifialbe property of
6-2
closed, testing for 6-5
closing 6-3
the active editor 1-3
concepts and forms 6-1
configuration, system parameters B-1
copying selected regions of the active 14
creation as trigger for grafport creation C-1
deactivating 6-S
deleting
selected regions of the active 1-4
without saving the selected region from
the active 14
dialog
activating 7-3
closing 7-3, 7-4
drawing commands as object functions for
C-1
as example of record which should not be
created with make-record 13-5
evaluating the current selection in the active
editor 1-4
font-spec, changing the 6-4
for a new file, creating an editor 1-3
for an existing file, creating an editor 1-3
Fred commands, description 2-6
function description 6-1
functions,
dependence on grafports C-1
Fred 9-6
grafport as first field of 13-6
hiding 6-5
initializing 6-1
inserting clipboard contents into the active

1-4
layer number,
obtaining the 6-5
setting the 6-5
list of types which can contain a close box
6-2

&

locating a buffer fora 9-7

as a Macintosh data type 12-1

as Macintosh style editing display 2-1

Macintosh standard record type, as Allegro
pre-defined 13-3

making visible 6-5

menu,

Allegro menubar, item descriptions 1-

6

use in detecting changed windows 2-2
moving 6-4
obtaining a list of existing 6-1
position,
as a component of a Fred window 9-1
as component of pen state C-4
obtaining the 6-4
setting the 6-4
as primary method for screen-related /O 6-
1 .
printing the active 1-4
record, on Macintosh heap, accessing pointer
to 6-5
replacing selections in the active 14
reverting to last version saved 1-3 ;,
regions as components of C-14 S
saving the active 1-3
searching in the active 1-4
select event, handler for 8-3
selecting 6-5
the entire contents of the active 1-4
size,
changing the 6-4
obtaining the 6-4
setting the 6-4
state, functions which manipulate C-3
as streams, affect on drawing text C-7
title,
changing the 6-4
obtaining the 6-4
setting the 6-4
type, as non-modifiable property of a
window 6-2
types, illustrations of 6-3
testing for
undo capability 6-6
visibility 6-5
window type as a non-modifialbe property of
6-2
wptr as flag for closed 6-3

with-cursor, macro description 8-7
with-dereferenced-handles,

macro description 12-9

Index

use in obtaining a pointer within a handle
13-6
with-mark, macro description 9-3
with-pointer, macro description 12-9
with-port macro description 6-5
with-pstrs, macro description 12-8
without-interrupts, special form
description 8-6
:word,
as argument for defpascal 12-10
as return value type for defpascal 12-
10
as return-value-keyword for stack trap macros
12-3
word,
capitalizing the current 2-5, 9-5
deleting 2-5
downcasing the current 2-5
location, finding 9-6
moving the cursor
back one 2-4
forward one 24
long,
reading from memory 12-7
writing to memory 12-8
reading from memory 12-7
selecting 2-2
upcasing the current 2-5
writing to memory 12-8
working-directory, variable description
10-7
wptr,
as flag for closed windows 6-3
window variable description 6-5
writing
bytes to memory 12-8
the current buffer to a file 2-6
afile from a buffer 9-6
long-words to memory 12-8
to memory, facilities for 12-7
operating system types to memory 12-8
pointers to memory 12-8
strings to memory 12-8
words to memory 12-8
xor-region, function description C-15
y-or-n-dialog function description 4-3
yanking
a kill-ring string from a menu into the buffer

the current kill-ring string into the buffer
24

yes-no-cancel dialog, standard Macintosh,
as Allegro turnkey dialog 4-3

zone pointer, how different from a generic pointer
129

zone-pointerp, function description 12-9

index-43

index-44

Allegro CL

