

I SURGE I LENGTH
REGISTER

1
j, PROGRAM I
SUB-COUNTER

I

OPERATION,
S TATUS LEVEL,

32
L

AND
TIME PULSE
GENERATOR

I �P�R�O�~�R�A�M�
COU TER I
!

I ADDRESS I
AUXILIARY

MEMORY
768 CHARACTERS
EFT I RIGHT

-tRY MEM
REGIS

LE
TER
FT

: MEMtRY
I REGIST;R
I RIGH

I I J I

f--

the auxiliary memory and stored in the
high-speed memory. This is referred to
as a surge of instructions. When these
instructions have been executed, an auto­
matic surge of the next group from the
auxiliary memory into the high-speed
memory occurs, The number of instruc­
tions surged is programmed in multiples
of four up to a maximum of 64.

Addressing of Instructions

Instructions for transfer from the auxil­
iary memory are selected by the program
counter which maintains the number of
the instruction next to be executed.
Transfer of control may be effected by
setting this counter to an appropriate
instruction number. Once a group of
instructions has been transferred from the
auxiliary to the high-speed memory, the
program subcounter functions to address
the high-speed memory TIuring the rapid
read-out of instructions to the operation
registers and the addressing counters.
By 'programming, the contents of this

134

A

1 C
COUNTER COUNTER

�.�~�

I ADDRESS I
HIGH SPEED

MEMORY LEFT
2048 CHARACTERS

,
I MEMORY I REGISTER

LEFT

�~�
�~� t .t

SYMBOL I ADDER
RECOGNITION CONVERTER

TAPE f
TRUNK

SELECTION
ADDER AND

TAPE OUTPUT
LOGIC REGISTER

Fig. 1. Computer block diagram

sub counter may be changed to effect a
transfer of control to other instructions
already contained in the high-speed mem­
ory storage. Another important function
of the subcounter is to determine when the
last instruction in the surge has been exe­
cuted, and thus initiate the next surge of
instructions from the auxiliary memory.

Staticizing of Instructions

The initial st-ep prior to every instruc­
tion execution is to read out of the high­
speed memory the proper instruction and
store it in the operation and variation reg­
isters and the A, B, and C counters.
This will be referred to as "staticizing an
instruction." During the read-out from
the high-speed memory, both banks are
addressed in parallel by the program sub­
counter. Four 20-microsecond cycles are
required to staticize the instruction since
two characters are read out simulta­
neously. When the staticizing has been
completed, the program control signals
for the execution of the instruction.

..

I 8 I COUNTER

I ADDRESS I
HIGH SPEED •

MEMORY RIGHT
2048 CHARACTERS

I MEMORY I REGISTER
RIGHT ,

I SYMBOL I
RECOGN ITiON

DATA STORAGE AND FLOW

Data enter the computer from magnetic
tapes via trunks specified by the program.
Characters from tape enter a I-character
buffer and are then transferred to memory
registers, left or right, and then to the
high-speed memory. Under the control
of the program, items are assigned indi­
vidually to various high-speed memory lo­
cations thus enabling the programmer to
arrange the information as it enters the
computer.

Internal data may be transferred within
a memory bank, from one bank to the
other, or �~�e�t�w�e�e�n� the high-speed and
the auxiliary memories. All characters
transferred internally or externally flow
through the memory registers where they
are checked for even parity, and special
symbols are recognized. Data to be
transferred are specified by indicating the
address of one limit of an item and are
terminated by either recognition of a
control symbol or a specified limit. In
arithmetic processes, data flow is from the

Beard, Bensky, Nettleton, Poorte-Characteristics of BIZMAC

OPERATION LEVEL - LENGTH DETERMINED BY INSTRUCTION a DATA

r-__ -+ __ -:;STATUS LEVELS- 18 MICROSECOND INTERVALS SEPARATED BY Z MICROSECONDS

~ ROOI U R002 U R003 U R004 U U U
I
\PULSES OF I MICROSECOND DURATION SEPARATED BY I MICROSECOND

fU1JlJlJlJUlJUl
I 2 34 5 6 7 8 8s

Fig. 2. Three levels of intelligence: operation level, status level, and time pulses

ROOI
R002
R003
R004

RO

IU

Ie

ITEM SEPARATOR
HAS BEEN
SENSED IN RO

ITEM SEPARATOR
HAS NOT BEEN
SENSED IN RO

Fig. 3. Status flow diagram of the transfer
of data instruction

memory through the memory registers to
the adder, then to the adder-output
register." From the adder-output regis­
ter data are returned directly to the mem­
ory. Data flow in the arithmetic proc­
esses is controlled by recognition of
special symbols.

Information is read out to magnetic
tape from the memory through the mem­
ory register right and then to the trunk
specified by the programmer. A return
signal derived from the current passing
through the tape recording heads is re­
turned to the memory register left and a
comparison is made between the two
memory registers to insure the correct
receipt of information at the recording
head.

Computer Concepts

The RCA BIZMAC system requires a
computer that can. accept and generate

Fig. 5. RCA
BIZMAC computer

magnetic tapes with variable item and
message lengths. In order to conserve
high-speed memory, and to minimize
operating time, variable item lengths are
used internally also. This leads to a
machine of advanced design, embodying
several original concepts.

THREE LEVELS OF INTELLIGENCE

Three levels of intelligence exist within
the computer. First are the 22 individual

Table I

Status
level Function

ROOI . .. Read out first part of an instruction
R002 .. . Read out second part of an instruction
R003 . .. Read out third part of an instruction
R004 . .. Read out fourth part of an instruction
RO Read from the memory
ROM . .. Read out a multiplier digit
RS Read out and search for a significant

character
RI Read into the memory
RIC Read a special character into the

memory
RE Obtain new instructions or data from

auxiliary memory
RD Dummy cycle
IC Instruction complete-prepare for next

instruction

Beard, Bensky, Nettleton, Poorte-Characteristics of BIZMA C

ADDEND

•
1004 1003 1002 1001 1000

AUGEND

6037 6036 6035 6034 6033

Fig. 4. Arithmetic operands addressed re­
spectively at locations 1000 and 6033

operations, some o{ which have several
variations. Next are the twelve status
levels which cause the machine to perform
a simple function. These status levels,
with a brief description of each, are found
in Table r.

Finally, there is a repetitive chain of
eight time pulses which time the elemen­
tary operations during a status level. In
general, control gates have at least these
three levels of intelligence applied: an.
operation, a status level, and a time pulse.
Fig. 2 shows the time relationship be­
tween these three control levels.

Most digital computers have the ability
to select for subsequent execution one or
two or more sequences of instructions.
Not only does the RCA BIZMAC com­
puter possess this ability, but it also pos­
sesses the ability to select during the ex­
ecution of a given instruction the most
productive sequence of status levels. This
selection is made on the basis of the data
upon which the computer is operating,
and provides the means for eliminating
nonproductive steps in data processing.
Use of the status level concept also makes
possible economic mechanization of in­
structions and variations thereof.

135

A simple transfer of data within the
high-speed memory will be used to ex­
emplify the use of status levels. See Fig.
3. First, status levels R001, R002,
R003, and R004 are executed, thus
staticizing the instruction. Then a se­
quence of RO and RI levels is executed to
transfer successive characters of an item
from one group of memory locations to
another. After each RI a choice, based
on the absence or presence of an item
separator symbol, is made either to con­
tinue the sequence of RO through RI, or
next to use status level IC denoting the
end of the operation. In this way only
the time necessary to transfer tb~ item in
question, regardless of length, is used in
instruction execution.

V ARlABLE ITEM LENGTH

The RCA BIZ MAC system employs
variable message and item lengths on all
tapes. The computer, which must accept
and generate such tapes, uses variable
item lengths internally also. This per­
mits optimum use of high-speed memory,
and minimizes instruction execution times
as well.

In general, the computer operates only
on those digits which are present in an
item, terminating operations, when the
lack of significant characters is recognized.
If a single digit is present in a certain item
location, the computer takes only the
time to process that digit. If in that
same location in the processing of a suc­
ceeding message, four digits are present,
the computer will take the longer time
necessary to process the four digits.

A simple example involving the addi­
tion of two positive numbers will suffice to
show the way in which the computer proc­
esses items of variable length. Assume
that the operands have been placed in
the high-speed memory as shown in Fig.
4. In this example the addend has been
assumed to have been addressed at high­
speed memory location 1000, and the
augend at location 6033. These addresses
are supplied by the addition instruc­
tion. In processing these operands the
computer first examines, simultaneously,
the characters in locations 1000 and 6033.
Upon finding a space in 1000, the decision
is made to continue the search for a digit.
The existence of a digit in location 6033
causes the digit, in this case a 2, to be
stored in the memory register until the
search for the least significant digit of the
addend is completed. Once the least
significant digits have been located, addi­
tion proceeds in a normal fashion until
the end of the operands is sensed. In
the case of the addend the terminating
symbol is an item separator symbol while

136

in the augend a space serves to notify
that digits have been exhausted.

Thus, the concept of variable item
length is instrumented not only in input
devices and storage and work tapes but
also within the, RCA BIZMAC com­
puter. Here, it permits a flexibility in
the use of the memory, allowing maximum
use of available locations together with a
minimum operating time not set by some
fixed word length or even by the possible
maximum length of given items, but by
the number of significant digits actually
present in an item.

INPUT-OUTPUT

The RCA BIZMAC computer must be
able to accept data from input tapes and
to generate output in the form which is
standard for the RCA BIZMAC system.
Therefore, an input tape for use with a
given program may contain items of vari­
able length, within a message of variable
length, and the precise location in terms
of the number of characters after the
start of the message is not known. Since
information is read from tape with the
most significant digit first, the memory
location which must necessarily be speci­
fied for each item is that of the item sep­
arator which precedes the most signifi­
cant character of that item. These mem­
ory locations are contained in a block of
addresses that are stored in the auxiliary
memory together with the program.
These addresses are transferred to the
tape control logic, an address at a time,
as each item separator coming in from
tape is sensed. Should an item be of less
than the assigned length, spaces will re­
main in the memory to the right of the
item.

A compress instruction is therefore pro­
vided which removes all excess spaces to
the right of an item in a specified assem­
blage of data prior to read-out. Hence,
the RCA BIZMAC computer accepts
messages in the most compact form, dis­
tributes these items in the memory in lo­
cations of nonstandard maximum length,
and then compresses all items to be read
out into the most compact form which is
used on all tapes.

EDITING

Automatic editing of messages and
items is a prominent feature of the RCA
BIZMAC system. It is instrumented
primarily by the computer. Automatic
editing results in minimization of the com­
plexities of input transcription and out­
put printings, and helps maintain mag­
netic tapes of minimum lengths. Some
provisions for editing messages and items
are as follows:

Read-In From Magnetic Tape

Of the several means at the program­
mer's disposal for rearranging items of a
message the most versatile is "random
composition" during "read-in" from mag­
netic tape. By random composition the
programmer may reorder all or some of
the incoming items, and also leave blank
areas for those items to be generated by
computation if desired. Thus he may
compose an output document or abstract
a message intended for another device in
the system; e.g., an output printer or a
sorter.

Computational Editing

To some degree, editing is also accom­
plished by the computer during compu­
tation proper. Since a 3-address instruc­
tion code is used, arithmetic instructions
can place items to conform with desired
output message format. This method of
editing must of necessity be restrained by
computational programming demands.
Transfer item and internal block transfer
operations can also aid the editing proc­
ess.

Write-Out to Magnetic Tape

A third means for accomplishing editing
is provided in the computer's flexible
write-out-to-tape operation. Segments
of a message may be gathered from sev­
eral areas of the computer high-speed
memory and composed into one message
on the output tape by using a combination
of several of the variations on the write­
out operation.

HIERARCHY OF MEMORIES

To satisfy the RCA BIZMAC system
requirements, large amounts of storage
and fast processing of data are necessary.
Since no one storage medium is available
which has the' characteristics of fast
access time and large storage capacity
(108 to 1010 bits), the requirements must
be met by the proper system integration
of several types of storage media. These
media include magnetic tape and magne­
tic cores.

The bulk store of the system is the mag­
netic-tape file. The'data from tapes are
read into the high-speed random-access
core memory of the computer. Once
within the memory, the data can be proc­
essed and manipulated at high speeds.
The fast random-access feature of this
memory is an underlying factor in the
flexibility that the computer achieves.
It is used to match the data rates of the­
tapes to the computer, it makes possible
the random composition of items as they
arrive from tape, it provides rapid access

Beard, Bensky, Nettleton, Poorte-Characteristics oj BIZMAC

to instructions and data, and it relieves
the arithmetic unit from providing stor­
age and shifting registers. The auxil­
iary storage is a backup store for the core
memory. It provides an economical means
to store data and instructions thereby
effectively increasing the internal mem­
ory capacity and achieving a compromise
between cost and access time.

EXTERNAL CONTROL

The over-all system operating philos­
ophy is /hat of centralized control. Ap­
propriate remote indicators and controls
from most of the equipments, including
the computer, are provided at the sys­
tem central consoles. Control of the
system is under the direction of a central­
ized team. To control the system effi­
ciently, and to minimize potential hu­
man operating errors, simplified controls
and proper operating techniques have
been designed. The computer itself has
a console designed primarily for mainte­
nance and checking operations, and in­
cludes a wide variety of status indica­
tors, as well as the necessary controls to
test properly and service the computer.

Fig. 5 shows the RCA BIZMAC
computer.

ACCURACY CONTROL

The system philosophy of centralized
control with its concept of minimum
human intervention makes automatic de-

tection and correction highly desirable.
The problems involved in providing such
a feature are many and complex. De­
tection circuits are necessary to insure re­
liable output. Once an error is detected,
a correction must be made. The correc­
tion is a direct function of where the error
occurred in the program, what caused it,
whether it was a transient or permanent
failure, etc. To simplify this complex
problem, errors are classified in two gen­
eral groups. The first group includes
errors resulting from a known permanent
component failure or major malfunction
of external equipment. The machine is
stopped immediately and suitable main­
tenance is performed or replacement is
made. The second group includes those
errors that result from either transient or
questionable permanent-component fail­
ure, or voltage transients. This group
generally requires a rerun of a portion of
the program to determine if a shutdown
is required. All errors in this group are
handled in the same manner. A com­
plete rerun of the transaction (computa­
tion) in process takes place automatically.
The necessary clearing, backing up of
tape, and other appropriate operations
required are performed prior to the rerun.
Programmed counters are provided to
limit the number of reruns that can be
performed.

Examples of the type of error detection
found in group one are as follows:

Programming a V ariable-Word-Length

Computer

L. S. BENSKY T. M. HUREWITZ

INVESTIGATION of commercial appli­
cations for electronic data-processing

systems has revealed certain basic charac­
teristics. Very high volumes of input
and output data are handled with a mod­
est amount of data calculation. Varia­
bility in data length, data occurrence, and
in procedures for handling of these data is
another major characteristic.

L. S. BENSKY, T. M. HUREWITZ, R A. C. LANE,

and A. S. KRANZLEY are with the Radio Corpora­
tion of America, Camden, N. J.

R. A. C. LANE A. S. KRANZLEY

The manner in which the RCA
BIZMAC computer handles variability in
all of its aspects has provided a uniquely
adaptable tool for commercial applica­
tions. The intermediate function of pre­
paring the computer for these applica­
tions, programming, is therefore unique
in many respects.

Working with clear and concise defini­
tions of commercial applications. the pro­
grammer is concerned with applying com­
puter flexibility in an optimum manner.

Bensky, Hurewitz. Lane. Kranzley-Programming a Computer

1. Magnetic tape moving forward when it
should be moving in reverse, or vice versa.

2. Magnetic tape circuits not operable.

3. End of magnetic tape.

4. The counter which addresses the high­
speed memory during instruction read-out
is not cycling properly.

Examples of error detection found in
group two are as follows:

1. P8rity failures.

2. Adder comparator (arithmetic is per­
formed twice. The second addition is per­
formed using complemented operands and
the results are then compared).

3. Verify operation where data are com­
pared bit for bit.

4. Arithmetic overflow.

Conclusion

The RCA BIZMAC computer is a
major element of the RCA BIZMAC
data-handling system. The several novel
features which it incorporates permit it to
fulfill its missions in data conversion, data
editing, and data generation. It is de­
signed to operate upon variable item and
message lengths in order that the system
may maintain the economy in reduced
tape lengths, and that the computer may
achieve maximum useful data rates.
Every attention has been given to make
it a part of an integrated data-handling
system.

The variable-word-Iength computer per­
mits concentration of effort in applying
flexibility to the handling of data. Pro­
gramming results may be measured in
terms of effectiveness in computer-time
and storage utilization, and accuracy con­
trol tempered by the availability of well­
defined problems and programming time.

Efficiency in Program Composition

One of the prime objectives in the
writing of data-processing programs is
minimization of the over-all computer
time required to accomplish a specific task.
In commercial applications, where the
work load for the computer is essentially
of a cyclic nature, significant cost reduc­
tions may be realized from effective equip­
ment utilization. These gains take the
form of a smaller complement of equip­
ment, or the performance of more tasks
with existing equipment.

137

It has previously been stated that com­
mercial applications are characterized by a
high volume of input messages. Each
of these messages is handled individually
by the computer until all have been proc­
essed. Programs for such applications,
then, are used in a repetitive fashion, with
each cycle representing action taken on a
single message. A shortening of the
message cycle by only a few milliseconds
will have a significant cumulative effect if
the cycle is repeated many times. For
example, 36 milliseconds cut from a
cycle which is repeated 100,000 times

, amounts to a total saving of 1 hour of
computer time.

A complete and well-organized defini­
tion of the problem is the starting point
from which an efficient program can
be obtained. Characteristics of data
handled by the computer (as shown .on
standard data sheets) directly affect the
efficiency of programs. One outstanding
example of this is the format of output
messages to be printed. A good format
will make maximum use of tabulating
stops, thus reducing the programmed steps
needed for line composition. The co­
lumnar alignment of items is another
criterion of an output format which may
be used to relate the problem definition to
efficiency in the program.

Messages entering the computer fre­
quently contain coded items which serve
as the basis for decision-making. For
example, a I-digit decimal code may be
used to distinguish ten distinct types of
transactions. In a computer where in­
struction modification is easily performed,
the choice of values for such codes permits
reduction of decision-making sequences of
instructions. With latitude in establish­
ing such codes, it is possible to make each
value correspond to an address in either
the high -speed memory or the auxiliary
memory. Decision-making would then
consist of modifying a transfer of control
(or other instruction) with the particular
code value for each message. Other
features which facilitate a reduction in the
number of instructions executed, but not
in the number provided, are consecutive­
ness, and ordering of codes by relative
volume of appearance.

From descriptions of input and output
data, the statement of intermediate opera­
tions may also be examined for areas
affecting efficiency in the program. Inas­
much as the majority of commercial pro­
grams are executed in a cyclic fashion, the
establishment of volume figures assumes
major importance in selecting operation
sequences. Emphasis is placed on
optimizing those operations which repre­
sent major streams of data flow. Con-

138

versely, infrequently used sequences may
be complex at small cost in over-all com­
puter time.

Unique Characteristics of Variable­
Word-Length Programming

INTRODUCTION

It has been stated previously that two
basic requirements necessary for the
production of efficient programs are: (1)
a knowledge of the problem; and (2) a
knowledge of the equipment to be used
in the solution of the problem. Some
of the flexibility available to the program­
mer in the RCA BIZMAC computer is
briefly described and illustrated in the
remainder of this section. Utilization of
the instructions is explained in terms of
the application of the RCA BIZMAC
equipment to business problems.

A functional subdivision is made into
the three broad categories: computer
handling of programs, computational
aspects, and editing of data.

COMPUTER HANDLING OF PROGRAMS

Programs for the RCA BIZMAC com­
puter are stored permanently on magnetic
tape. The initial preparation of the
magnetic tape is accomplished in exactly
the same manner as the initial input of
data to the system. That is, a 7-channel
paper tape is first prepared and verified,
followed by transcription to magnetic
tape. The indexed programs are then
stored in what may be called a magnetic­
tape program file. It is possible to store
up to 2,500 different programs on a single
reel of tape.

Part of the initial setup of a computer
operation consists of transferring the
proper sequence of instructions from the
magnetic-tape program file to the auxiliary
memory. This is accomplished by a short
routine which will search the tape for the
desired program and make the transfer.
Excluding tape search time, it takes
approximately 1 minute to load the auxili­
ary memory completely. Programs that
require less than the full capacity of the
auxiliary memory take proportionately
less insertion time.

For most business applications, the
entire program for a particular computer
run will be loaded initially. In cases
where many irregularities are to be
handled automatically as part of one
computer operation, those portions of the
program used infrequently may be stored
on magnetic tape. When necessary,
these portions may be entered without
any appreciable time delay.

It is quite probable that some applica­
tions will require that the program be

modified at regular intervals, that running
control totals be maintained, that dates
be changed, etc. In these cases, a new
program tape may be prepared at the
conclusion of a computer run. Undoubt­
edly, changes will be made in existing pro­
grams as systems and procedures are
altered. Changes of this nature can be
made through the use of special service
routines designed for this1purpose.

Instructions are "surged" from the
auxiliary memory into the high-speed
memory in groups (multiples of' four) of
up to 64 instructions. The quantity of
data transferred during a surge contrib­
utes to the time required to perform the
surge function. There are cases where
the large surges would be wasteful because
only a few instructions are used before
transferring control, and other cases where
a part of the high-speed memory usually
reserved for the storage of instructions is
needed for data storage of temporary
work area. It is clear that the ability to
change the length of the surge automati­
cally during the running of a program is
an extremely useful tool for minimizing
running time.

An excellent way to reduce program­
access time is to refrain from surging.
This can be accomplished through effec­
tive use of the instructions and data that
are· already stored in the high-speed
memory, by transferring control to in­
structions that are stored in the memory,
and by appropriate modification of in­
structions.

Address modification, or the ability of
a computer to operate on its own in­
structions in the same manner as it op­
erates on data, is an extremely important
characteristic of efficient programming.
It is useful where an identical sequence of
instructions must be repeated in each
case using operands stored in different
memory locations. For example, it may
be required to advance an address or series
of addresses by a count of one pre­
ceding each cycle through a "loop." It
may be required to advance or decrease
an address by any constant amount. In
any event, this can be accomplished
through the use of the "binary add" or
"binary subtract left-justified" instruc­
tions.

As has been mentioned, the "binary
add" instruction adds RCA BIZMAC
characters according to their binary
equivalents. For example, excluding
parity bits, K + $ = (101010)2 +
(000111)2 = (110001)2. Octally, this
would be K + $ = (52)g >\- (07)g = (61)g.
A bit is carried into the next addition cy­
cle if the sum of two characters is greater
than (77)s. Both auxiliary and high-speed

Bensky, Hurewitz, Lane, Kranzley-Programming a Computer

AREA OF HIGH-SPEED ••••••••
MEMORY CLEARED TO SPACE

PRIOR TO READ-IN

SAME AREA
AFTER READ-IN

memories are addressed octally in the
program, and each address is expressed as
four octal digits. Therefore, to advance
an address by one, two, six, etc., it is
necessary to store (0001)8, (0002)8, (0006)8,
etc., in the high-speed memory. Each
constant uses only three memory loca­
tions (including one for the item separa­
tor). In cases where unused instruction
addresses are available for the storage of
the constant, no additional high-speed
memory locations are required. For
decreasing an address by a constant
amount, "binary subtract left-justified" is
employed in the same manner as the
"binary add" instruction.

It is very convenient in many cases to
generate the address instead of modifying
an existing address. This can be accom­
plished quite simply by a "transfer of
data" instruction to the surge area.

One application for this technique is in
pigeonhole sorting where the numbers to
be sorted are converted to addresses
which are then placed in a "transfer of
data" instruction prior to its execution.
The same technique saves considerable
program-running time, instruction storage
and programming effort, wh~n applied to
problems involving the posting of amounts
to one of a number of totals. For ex­
ample, in life insurance accounting it may
be necessary to accumulate the' premium
amounts received by state. The amounts
need not be arranged in state order. A
code indicating the state total to which
each amount is to be posted may be asso­
ciated with each amount. If the program­
mer is free to establish the state code for
internal processing, a 2-character code
may be used that corresponds to the
storage location of the state total. The
code is now transferred to a single
"decimal add" instruction (A and Cor B
and C addresses). Thus, the posting is
accomplished without the series of deci­
sions normally required for the accom­
plishment of similar tasks. Only three
instructions are used, including the
completion of the addition. If the code

INFORMATION
RECORDED ON
MAGNETIC TAPE

Fig. 1 (left). Status of
high-speed memory
locations allotted for
an item with a maxi­
mum length of ten

decimal digits

is fixed by the procedural requirements it
is often possible to establish a transforma­
tion procedure for conversion to memory
addresses.

In computer handling of programs, a
major concern in the use of subroutines
is the return to the main routine after
execution of the subroutine. Calling in
a particular subroutine is no problem since
it may be stored at a fixed location on the
auxiliary memory. However, since a
particular subroutine may be required in
several different parts of a program, the
return to the main routine necessarily
must be variable. The return to the
main routine is handled in' the RCA
BIZMAC computer by storing the address
of the point of return in an unused portion
of the high-speed memory prior to execut­
ing the subroutine. This is conveniently
accomplished with the use of the "set up"
instruction. The last instruction in the
subroutine then must be a "refer" instruc­
tion which scans the high -speed memory
address containing the point of return to
the main routine.

The procedure outlined in the foregoing
serves as a convenient tool in the initial
development of a program. It represents
a scheme whereby a rather complex and
lengthy programming task can be sub­
divided into a number of simpler tasks.
These simpler tasks may be programmed
and coded individually. Two unused
memory locations are assigned to each
routine.

Each routine is terminated with a
"refer" instruction which scans these
locations. This assignment also serves
to identify the particular routine. When
each of these subroutines has been written,
the program may begin with a series of
"set up" instructions (one for each rou­
tine) in order to tie each of the parts to­
gether to form the whole program.

This method is particularly efficient in
those types of problems that require these
subroutines to be related in a variety of
ways, depending on certain decisions and
conditions which are established only

Bensky, Hurewitz, Lane, Kranzley-Programming a Computer

AUGEND

FIELD ALLOCATED FOR SUM
(CLEAR PRIOR TO ADDITION)

I 2 9 0

LOCATION OF SIGN
(SPACE--- PLUS)

Fig. 2. Addition-operands justified left

ADDEND

AUGEND

SUM

1324_

Fig. 3. Addition-operands justified right

during the running of the program. In
these cases, the proper series of "set up"
instructions must, follow the decision­
making portions of the program occurring
within the main routine. Each "set up"
instruction controls the "refer" action
from one subroutine to the next.

Computational Aspects

An important and fundamental cop.­
cept of a variable-item-Iength computer
is the complete flexibility available in the
definition of items for a given problem.

In an insurance company's billing
operation, the policy holder's name and
address may be defined as an item. One
need only consider the names and ad­
dresses of a few friends to see that this
particular item could range in length
from less than 20 characters to more than
100. On the other hand, to facilitate ar­
rangement of last names in alphabetical
order, it may be desirable to define the last
name as a separate item. Similarly,
identifying information such as stock
numbers or policy numbers, with their
associated handling codes, maybehandled
as one item. I t should be emphasized
that item definition depends primarily on
the meaning ~nd intended use of the in­
formation.

Since the RCA BIZMAC computer is
basically a serial machine and the high­
speed memory is used to perform the func­
tions of registers for the storage of all
operands and results of arithmetic opera­
tions, the number of digits involved in
arithmetic operations is unlimited. The
use of multiple precision techniques in
programming is wholly unnecessary. For
example, to program the 'addition of two
positive numbers of 100 decimal digits
each requires one instruction that specifies
the locations of the least significant digits
for each of the operands and for the sum.
This applies also in the event the numbers
are each one decimal digit in length; or
are of unequal length with no restriction
on the degree of inequality.

139

SUM LOCATION PRIOR
TO ADDITION

I·

Fig. 4. OverFlow in addition operation

A
(3 DECIMAL PLACES)

B
(2 DECIMAL PLACES)

1,,2 3

Fig. 5. The computation of y = ax + b
involving decimal points

When considering the lengths of the
various items to be processed in a particular
computer run, it is necessary to determine
the maximum number of digits that may
occur in each item. Although this is not
a requirement for magnetic-tape storage
a field consisting of one or more memory
locations must be established in the high­
speed memory for the storage of each
item. This field must be capable of
storing the longest of the items for which
it was allotted. Thus, if an item is less
than maximum length it will be read in to
the memory as indicated by Fig. 1. In
this case the item is said to be left-justified
with reference to its field.

If the item in Fig. 1 is to be added to a
second item with a maximum length of
five characters, it is necessary only to
address the least significant locations of
the fields containing the two operands in
one "decimal add" instruction. No pro­
gram routine is required to locate the
least significant digits of the items,
no instruction to justify the items right
is necessary, and no extraction of digits
is needed prior to the addition. Accord­
ing to the logic of the RCA BIZMAC
computer the characters are read out from
each of the fields serially. The actual
addition takes place only when two non­
space characters are recognized. This is
illustrated in Fig. 2.

Gains in programming facility are
accompanied by the minimization of the
time required for the computer to
execute the addition. Time is minimized
because the addition is performed on
significant digits only, and the time
required to search each location for the
least significant decimal digit is only half
that of the addition of each pair of digits.

Let it be required to add the sum ob­
tained in the above illustration to another
2-digit number where both operands are
justified right. This operation is illus­
trated in Fig. ::L

140

MAGNETIC TAPE (INPUn

AREAS IN HIGH-SPEED
MEMORY

Fig. 6. Compression of output data for
maximum tape utilization

WITHOUT
VARIATIONS

WITH ZERO SUPPRESSION
AND LEFT JUSTIFICATION
VARIATIONS

Fig. 7. Illustration of zero suppression with
left justification

Spaces to the left of each of the operands
add nothing to the sum. In the RCA
BIZMAC computer, the addition opera­
tion ends on recognition of spaces or item
separators to the left of both operands.
Only those digits representing the sum
are written into the field allocated, and
the spaces to the left of the sum are those
that were present prior to the addition.
"Decimal subtract" and "multiply" are
handled in a similar manner making
optimum use of variable item lengths.

The ability to multiply and accumulate
(i.e., x = ab + c) with one instruction
is incorporated in the RCA BIZMAC
computer. This is accomplished by ad­
dressing the product (ab) to a location in
which another item is stored (c). This
particular feature evolves from the use
of high-speed memory locations as partial­
product registers in the multiplication
process.

Although the number of digits occurring
in the results of arithmetic operations is
usually predictable, there may be certain
instances, particularly in the case of some
accumulated totals, where the capacities
of the fields allotted for the results may be
exceeded (see Fig. 4). In order to avoid
such a possibility, a variation of the
decimal arithmetic operations is provided
to detect overflow. It will actuate an
overflow alarm, indicating that a result
has exceeded the capacity of its field.

The handling of decimal points in the
RCA BIZMAC computer can be con­
sidered neither floating-point nor fixed in
the strict sense of these terms. It em­
ploys the advantage of both and might be
termed "absolute variable." All arith­
metic operations treat the operands as
whole numbers, and decimal points per se

are entirely excluded from the operations.
I t is the function of the programmer to

determine the magnitudes of each operand,
and by proper addressing, to insure that
the correct results of operations involving
decimal places are obtained. In most
business applications, this is easily accom­
plished. In scientific computation this
could be accomplished using well known
floating-point tecnniques. The computa­
tion of y = ax + b involving decimal
points is illustrated in Fig. 5 where" 1\ "
indicates the theoretical location of the
point.

In business data processing there is a
definite need for handling alphabetic in­
formation in a manner similar to numer­
ical data. This is illustrated quite vividly
in the sorting of names into alphabetic
order, and determination of the relative
order of items such as stock numbers,
policy numbers, etc., where the items
consist of both alphabetic and numeric
information. In addition, considerations
relative to address modification (pre­
viously explained) require the inclusion of
binary operations.

The numbers and letters in the RCA
BIZMAC code have been assigned binary
codes such that the commonly accepted
ordering (i.e., 0, 1, 2, ... , 9; A, B, C, ... ,
Z) corresponds to increasing numerical
values of their binary equivalents. Thus,
the ability to handle the characters of an
item according to their true binary values
implies the ability to determine the nor­
mal alphanumeric ordering of a pair of
digits (e.g. 3A, CM, AB, etc.).

To determine which of two items con­
taining combinations of alphanumeric
characters is of larger magnitude, it is only
necessary to subtract one from the other
and examine the sign of the results. The
"binary subtract" instruction is used.
The test of the sign is accomplished with
the "conditional transfer of control."
Thus, a combination of only two instruc­
tions is sufficient to determine the relative
magnitudes of two items regardless of
lengths and alphanumeric composition.

Editing of Data

Consideration must be given to the form
and content of data handled by the vari­
ous pieces of equipment comprising the
system. Messages entering these equip­
ments must have proper control symbols,
item ordering, and positioning to insure
that output information is correctly
produced. The process of adding, delet­
ing, and rearranging data within a message
for subsequent operations is defined as
editing. Most of the editing work is
handled by the computer, since it is the

Bensky, Hurewitz, Lane, Kranzley-Programming a Computer

most flexible unit for data processing.
Many of the problems in editing in­

coming data for the cO!1ilputer are handled
by the "read-in" instruction. It was pre­
viously noted that items in an incoming
message may be placed randomly in the
high-speed memory under the direction
of the program. Random composition on
the read-in is used to store items in such
a manner that subsequent data transfers
are minimized. For example, arithmetic
instructions require operands to be located
in opposite banks of the high-speed
memory. When two incoming items are
to be added, they are initially placed in
opposite banks by the read-in instruction.
In the same way, items may be stored in
correct order for writing out to tape. The
best arrangement of the read-in is made by
deciding how each incoming item is to be
subsequently used.

Items in a reference file which are not
required for a particular computer opera­
tion may be discarded by the "read-in"
instruction by addressing to a special dis­
card location. In some operations where
long, consolidated reference file messages
enter the computer for summarization or
modification, several hundred high-speed
memory locations and clearing operations
for these locations may be saved. Item­
separator symbols which are required as
control symbols for subsequent operations
may be generated by providing item ad­
dresses in excess of input message require­
ments. Otherwise, these additional con­
trol symbols must be placed in the high­
speed memory as part of a special editing
subroutine.

Although it is possible to arrange the
items of an input message in a form suit­
able for output, it is frequently the case
that more than one arrangement is
desired. This happens where several
types of output documents and an up­
dated reference file are to be produced by
the computer operation. Intelligent use
of the rather potent transfer-of-data in­
struction is called for here.

The amount of processing that can be
accomplished during one computer opera­
tion is dependent to a large extent on the
amount of storage that is available. This
refers to the number of tapes that can be
utilized as well as internal storage. In
the RCA BIZMAC computer, as many as
15 separate magnetic tapes can be con­
nected at the same time. Five of these
are input tapes and ten are output tapes.
The output tapes may be used in a read
or a write status. This multiplicity of
input and output tapes makes it possible
to prepare many different output docu­
ments in a single computer operation,
thus eliminating other machine interven-

tion between the computer and the high­
speed printer.

Maximum tape utilization is obtained
by using the "compress" instruction to
eliminate nonessential space symbols from
the data to be written out (see Fig. 6).
Such space symbols represent the differ­
ence between the maximum number of
locations allowed for items in the high­
speed memory, and the actual number of
characters in the items.

Composition of messages routed from
computer to printer presents a somewhat
different problem. Here, the emphasis is
shifted to line and page composition.
Left or right columnar alignment of items
(justification), item ordering, and the
insertion of control symbols are the ele­
ments to be considered in programming
for a specific printed format. A require­
ment in business data processing, partic­
ularly with regard to output documents,
is the suppression of excess zeros in
numeric quantities.

The suppression of zeros in the RCA
BIZMAC computer is automatic and is
included as a variation of the "decimal
add" and "decimal subtract" instructions
(see Fig. 7). Each item to be written out
must be examined for its justification.
If an item is left-justified (having the
most significant character next to the
item-separator symbol) and is to be
printed with right justification, a "justify
right" instruction must be executed.
When items must be left-justified, an
arithmetic operation using the justify
left variation will provide the necessary
shift.

Evaluation of Variable-Word­
Length Programming

In programming for commercial data­
processing problems, minimization of
over-all computer time is the major
criterion for evaluation.

INSTRUCTION UTILIZATION

The RCA BIZMAC computer provides
a list of instructions specifically designed
to handle variability in data and variabil­
ity in processing requirements. An illus­
tration of this versatility is furnished by
considering the decimal arithmetic in­
structions. The foregoing text mentions
in detail the following functions:

1. Operands are located and results are
stored by one instruction (A + B = C),
eliminating the need for special registers.

2. No shifting (justification) of operands
is necessary since instructions opera te on
significant characters only.

3. There is no preparatory extraction of
characters before operation.

Bensky, Hurewitz, Lane, Kranzley-Programming a Computer

4. The operations are algebraic and sign
handling is automatic.

5. Decimal points are program-handled in
an absolute variable fashion.

6. Automatic suppression of zeros may be
included.

7. Results may be automatically justified.

In addition, the particular features of
the computer which reduce instruction
requirements for total data-processing
functions are important to the program­
mer. For example, storage of the pro­
gram in the high-speed memory assists in
the use of address modification tech­
niques which are an important require­
ment of commercial data-processing pro­
grams. Random composition of data
entering the computer is another feature
which makes possible more efficient com­
binations of instructions in subsequent
data processing steps.

Another category of instruction func­
tions is useful for purposes of data-proc­
essing economy outside of the computer
operation proper. For example, use of
the "compress" instruction is related
specifically to tape-storage economies.
It should be noted this also provides
subsequent reduction of read-in time
throughout the system.

STORAGE UTILIZATION

As mentioned previously, the use of
variable and adjustable-field item lengths
permits appreciable savings. Magnetic­
tape space is saved by putting on {he tape
only these characters that actually ap­
pear in the input, thus reducing the length
of tape necessary to hold a given piece
of information. This implies a reduction
in the number of reels of tape and con­
sequently fewer tape-handling devices
required. It also results in saving of
computer time since tape movement con­
sumes a large portion of the total time.
(Savings up to 70 per cent over maximum
field data storage are achieved.) Finally,
a saving is achieved in the internal
storage required by having to provide
only sufficient storage for each item to
accommodate the maximum length of
that item, rather than having to provide
the same maximum amount of storage
for each item. In the former case, the
storage required is merely the total of the
maximum item lengths for all of the items
to be handled, while in the latter the
storage required would be the maximum
required for the maximum length item
multiplied by the number of items to be
handled.

The computer is designed to permit
optimum use of internal storage facilities.
The use of an auxiliary memory for the

141

storage of both data and instructions in
any desired array, the variability of
surge length, the unrestricted ability to
transfer control within the high-speed
memory, and finally the reduction in high­
speed memory work area requirements
brought about by the ability to com­
pose output data randomly, exemplify the
tools that are in the hands of the pro­
grammer to maintain an efficient balance
between time and storage.

ADAPTABILITY TO THE PROBLEM

Throughout this paper, pertinent char­
acteristics of commercial data-processing
problems have been mentioned when
descriptions of functional and program­
ming features called for them. A review
of these characteristics in retrospect com­
pletes the evaluation of variable-word-

142

length programming by the RCA
BIZMAC.

Variability in data (size and occurrence)
and in procedural requirements is
handled by providing a list of instructions,
and other computer characteristics, espe­
cially designedf or flexibility. This makes
it possible to write very compact programs
for handling business problems. Flexi­
bility in assignment of internal storage at
several levels is the necessary corollary to
the efficient programming of commercial
data-processing problems.

From detailed analyses of many types of
commercial data-processing problems, it
has been found that some categories of
procedures are related to the end use of
output\data. Of greater importance, con­
siderable similarity of procedures among
apparently unrelated applications is evi­
dent. It turns out that these similar

procedures are composed of basic opera­
tions which are identical in nature. This
simplifies the programming task partic­
ularly where equipment functions are
specifically designed to respond to problem
data-characteristics.

Detailed programming for many com­
mercial data-processing problems will
furnish the final evaluation of variable­
word-length programming. It is certain
that this expansive phase in the art of
programming will be marked by further
advances in programming techniques;
these new techniques in turn will influence
future equipment design. Such advances
will be based on substantially improved
knowledge of data characteristics, the
standardization of routine business proc­
esses, and the acceptance of mathematical
techniques as tools in scientific manage..;
ment.

Bensky, Hurewitz, Lane, Kranzley-Programming a Computer

