TABLE OF CONTENTS

HCR OPERATORS MANUAL

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>ERROR DETECTION</td>
<td>1</td>
</tr>
<tr>
<td>HCR CODE NUMBERS</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL CONTROL ROUTINES</td>
<td></td>
</tr>
<tr>
<td>ERROR MESSAGE MODE (HYTST)</td>
<td>6</td>
</tr>
<tr>
<td>INITIALIZE (INITA)</td>
<td>6</td>
</tr>
<tr>
<td>CONSOLE SELECT (CONSO)</td>
<td>7</td>
</tr>
<tr>
<td>CONSOLE CONNECT (HON)</td>
<td>7</td>
</tr>
<tr>
<td>CONSOLE DISCONNECT (HOFF)</td>
<td>7</td>
</tr>
<tr>
<td>ANALOG DATA ROUTINES</td>
<td></td>
</tr>
<tr>
<td>READ AN ANALOG VALUE (READ)</td>
<td>7</td>
</tr>
<tr>
<td>READ A NON-CONTIGUOUS BLOCK OF ANALOG VALUES (READA)</td>
<td>8</td>
</tr>
<tr>
<td>SET COEFFICIENT (STIND)</td>
<td>8</td>
</tr>
<tr>
<td>SET A NON-CONTIGUOUS BLOCK OF COEFFICIENTS (STINA)</td>
<td>8</td>
</tr>
<tr>
<td>MODE CONTROL</td>
<td></td>
</tr>
<tr>
<td>INITIAL CONDITION (IC)</td>
<td>9</td>
</tr>
<tr>
<td>HOLD (HOLD)</td>
<td>9</td>
</tr>
<tr>
<td>OPERATE (OP)</td>
<td>9</td>
</tr>
<tr>
<td>LOGIC MODE LOAD (LOAD)</td>
<td>9</td>
</tr>
<tr>
<td>LOGIC MODE STOP (LSTOP)</td>
<td>10</td>
</tr>
<tr>
<td>LOGIC MODE RUN (LRUN)</td>
<td>10</td>
</tr>
<tr>
<td>PROBLEM VERIFY (VER)</td>
<td>10</td>
</tr>
<tr>
<td>LOGIC EXECUTE (LEX)</td>
<td>10</td>
</tr>
<tr>
<td>AUTO-HOLD (AUTHD)</td>
<td>10</td>
</tr>
</tbody>
</table>
PATCHBOARD (PB) ... 10
TEST FUNCTION (TEST) 11
LOGIC STEP (STEP) .. 11
DIGITAL COEFFICIENT MODE (STREF) .. 11
TIME SCALE (TSCAL) .. 11
INTERVAL TIMER PERIOD (STITR) .. 11
INTERVAL TIMER SET (SELIT) 12
V-SIGNAL SELECT (SELVS) 12
SET ADDRESS REGISTER (SETAR) 12
SET MODE CONTROL REGISTER (SETC) 12

FUNCTION Routines

TEST AMPLIFIER OVERLOAD (IOVLD) 14
TEST CONSOLE BUSY (IBUSY) 14

HYBRID EXPANSION ROUTINES

DISCRETE DATA

SET CONTROL LINE (SETCL) .. 15
SET SENSE LINE (SETSL) .. 15
SET CONTROL LINE REGISTER (SETCR) 15
READ CONTROL LINE REGISTER (SENCR) 15
SET SENSE LINE REGISTER (SETSR) 15
READ SENSE LINE REGISTER (SENSR) 15
READ INTERRUPT REGISTER (INTRW) 16
COMMUNICATIONS ROUTINE (COMSY) 16

ANALOG CONTROL

ADC SAMPLE/HOLD (ADCSH) .. 16
DAC UPDATE (UPDAT) .. 17
DAC UPDATE CODE (DACU) 17
GROUP DAC UPDATE (CONUP) 17
ANALOG DATA

READ BLOCK OF ADC CHANNELS (SCANH) ... 17
READ ADC CHANNEL (READH) ... 18
SET COEFFICIENT (STINH) ... 18
SET BLOCK OF COEFFICIENTS (STBLK) .. 19
CYCLE STEAL BLOCK OF ADC CHANNELS (STSCN) 19
CYCLE STEAL BLOCK OF COEFFICIENTS (STSEQ) 19

FUNCTION ROUTINES

CYCLE STEAL COMPLETION (ICMPL) .. 20
TEST CONTROL LINE (ITSTC) ... 20
TEST CONTROL LINE REGISTER (ITSCM) ... 20
TEST SENSE LINE (ITSTS) ... 20
TEST SENSE LINE REGISTER (ITSSM) ... 20
TEST INTERRUPT LINE (INTR) ... 20
TEST INTERRUPT REGISTER (INTRM) .. 20
ERROR WORD FORMATS .. 20

LINKAGE DIAGNOSTIC OPERATORS MANUAL 23-30
1.0 INTRODUCTION

1.1 The following routines provide hybrid communication between the digital computer and the AD/FIVE system. They are written to effectively communicate with a single or multiple console (up to 8) AD/FIVE system and are referred to as HCR's (Hybrid Communication Routines). The routines satisfy the following basic requirements:

a.) The HCR's are USASI Basic Fortran compatible, written in assembly language for each system.
b.) Fixed argument lists are used in all calls to HCR's, therefore all arguments must be present.
c.) All hybrid data will be two's complement and right justified in the word, with the sign bit extended where necessary.

1.2 The HCR's may be separated into two distinct categories, depending upon the interface between the digital and the AD/FIVE. These two categories are basic hybrid routines and hybrid expansion routines.

The basic hybrid category consists of routines which perform the "push-button" functions on the AD/FIVE: Mode Control, General Analog Control, and Reading and Setting Pots and DCU's.

The hybrid expansion routines provide communication with the expanded interface, which includes sense, control and interrupt register, MDAC's and ADC channels. All these devices are modules, which are added to the module line rack. Also included are two cycle stealing routines which provide sophisticated communication to the MDAC's and ADC channels.

2.0 ERROR DETECTION

2.1 Error Mode Description

The Hybrid Communication Routines (HCR's) can be used in two modes, the Run Mode and the Test Mode. In the Run Mode there is no error detection and the error argument is not accessed so that all HCR's are as fast and efficient as possible.
All error detection is made in the Test Mode where normal program and problem debugging takes place. Whenever an error is detected, the assigned HCR code number and code representing the error type encountered are put into the error argument. This allows control of error lists and action based on program decisions. Immediately thereafter, rather than perform its function incorrectly due to the error, the HCR returns control to the calling program.

Whenever printing is requested, any error detected in an HCR also causes the error routine to print out a message to the operator on the principal print device. The message identifies the HCR in which the error was detected and specifies the type of error. After the error message is printed, control is returned to the calling program as in the non-print mode. The operator may interpret whatever error messages are printed after the program has run to completion.

2.2 Error Argument Word
Detection of an error will cause the following information to be placed within the error argument:

a.) A numeric code for the error type (see Section 2.2.d).
b.) A numeric code for the routine (see Table 1).
c.) In the case of the unique (pot setting) error, the pot address.

In the test mode, if no error is detected, the error argument is set to zero. The documentation accompanying each set of HCR's for a specified digital computer contains the exact error word description.

TABLE 1: The following numeric codes are assigned to the HCR's for general identification and for flagging in the error word. HCR's 1-27 perform testing when in test mode and the remaining routines are high speed and perform no error testing. Codes 28-63 are reserved for expansion of routines with testing.

<table>
<thead>
<tr>
<th>HCR Routine</th>
<th>Numeric Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYTST (M,IE)</td>
<td>0</td>
</tr>
<tr>
<td>INITA (N)</td>
<td>1</td>
</tr>
<tr>
<td>CONSO (N)</td>
<td>2</td>
</tr>
<tr>
<td>HON (N)</td>
<td>3</td>
</tr>
<tr>
<td>HOFF (N)</td>
<td>4</td>
</tr>
<tr>
<td>Instruction</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>READ (IA, IV)</td>
<td>5</td>
</tr>
<tr>
<td>READA (IA (I), IV (J), N)</td>
<td>6</td>
</tr>
<tr>
<td>STIND (IA, IV)</td>
<td>7</td>
</tr>
<tr>
<td>STINA (IA (I), IV (J), N)</td>
<td>8</td>
</tr>
<tr>
<td>IC</td>
<td>9</td>
</tr>
<tr>
<td>HOLD</td>
<td>10</td>
</tr>
<tr>
<td>OP</td>
<td>11</td>
</tr>
<tr>
<td>LOAD</td>
<td>12</td>
</tr>
<tr>
<td>LSTOP</td>
<td>13</td>
</tr>
<tr>
<td>LRUN</td>
<td>14</td>
</tr>
<tr>
<td>VER (N)</td>
<td>15</td>
</tr>
<tr>
<td>LEX (N)</td>
<td>16</td>
</tr>
<tr>
<td>AUTHD (N)</td>
<td>17</td>
</tr>
<tr>
<td>PB (N)</td>
<td>18</td>
</tr>
<tr>
<td>TEST (N)</td>
<td>19</td>
</tr>
<tr>
<td>STREF (N)</td>
<td>20</td>
</tr>
<tr>
<td>STEP</td>
<td>21</td>
</tr>
<tr>
<td>TSCAL (N)</td>
<td>22</td>
</tr>
<tr>
<td>STITR (I, J, K)</td>
<td>23</td>
</tr>
<tr>
<td>SELIT (N)</td>
<td>24</td>
</tr>
<tr>
<td>SELVS (N)</td>
<td>25</td>
</tr>
<tr>
<td>SETAR (IA)</td>
<td>26</td>
</tr>
<tr>
<td>SETC (M)</td>
<td>27</td>
</tr>
<tr>
<td>IOVLD (D)</td>
<td>64</td>
</tr>
<tr>
<td>IBUSY (D)</td>
<td>65</td>
</tr>
<tr>
<td>UPDAT (N)</td>
<td>66</td>
</tr>
<tr>
<td>ADCSH (N, M)</td>
<td>67</td>
</tr>
<tr>
<td>CONUP (M)</td>
<td>68</td>
</tr>
<tr>
<td>DACU (M,N)</td>
<td>69</td>
</tr>
<tr>
<td>COMSY (K, L, M, N)</td>
<td>70</td>
</tr>
<tr>
<td>SETCL (M, N)</td>
<td>71</td>
</tr>
<tr>
<td>SETSL (M, N)</td>
<td>72</td>
</tr>
<tr>
<td>SETCR (M)</td>
<td>73</td>
</tr>
<tr>
<td>SENCR (M)</td>
<td>74</td>
</tr>
<tr>
<td>SETSR (M)</td>
<td>75</td>
</tr>
<tr>
<td>SENS (M)</td>
<td>76</td>
</tr>
<tr>
<td>INTRW (M)</td>
<td>77</td>
</tr>
<tr>
<td>READH (N, IV)</td>
<td>78</td>
</tr>
<tr>
<td>SCANH (N, IV, M)</td>
<td>79</td>
</tr>
</tbody>
</table>
d.) Printed Error Messages

All error messages on the principal print device will be of the form:

ERROR - (Name of HCR) - (Type of Error)

The error types are:

<table>
<thead>
<tr>
<th>CODE</th>
<th>TYPE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ADDR</td>
<td>The routine has asked for a non-valid address;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or address is incompatible with routine.</td>
</tr>
<tr>
<td>1</td>
<td>DATA</td>
<td>The range of an argument is exceeded or the number of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>arguments is incorrect.</td>
</tr>
<tr>
<td>2</td>
<td>BUSY</td>
<td>The analog console addressed is in the BUSY mode and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cannot be accessed.</td>
</tr>
<tr>
<td>3</td>
<td>CANNOT SET POT JKLM</td>
<td>Where JKLM is the address of the pot.</td>
</tr>
</tbody>
</table>

2.3 FUNCTIONS

2.3.1 Functions are routines which return a number as the value of the functions name. The only values returned by the functions in the Hybrid Communication Library are: +1, 0, or -1. The format of the returned value is always integer. Functions can be used in the following ways:

IF (FUNCTION(K+2)), A, B, C
ALPHA = FUNCTION (4)
X = Y ** FUNCTION (I, K(3))
ETC.

2.3.2 All of the functions included in the HCR's accept only integer arguments. The arguments may be supplied in any standard way within the program.
2.4 SUBROUTINES

2.4.1 A subroutine can return one or many values. These are stored in memory and may not even require an argument for operation. Subroutines are used by writing CALL SUBR (X, Y, ...) in which case subroutine SUBR is supplied with arguments X, Y, etc., and granted control of the computer. A check for compatibility between arguments supplied and those acceptable to the subroutine using them is performed, if possible. If any argument type incompatibility is found, an error statement is output.

2.5 ARGUMENTS

2.5.1 In the following description, the argument IE, where it appears, is the location to which error information is returned, when the system is in test mode. All subroutines treat this argument as an integer without testing it; therefore, it should be specified as such within a program.

2.5.2 The argument D, which may appear following a function, is a dummy argument specified here to satisfy the requirements of Fortran. No form restriction applies, since it is ignored by the function.

2.5.3 Argument IA is a four-digit decimal integer representation of an address comprising the element class, field, area, and component number, in that order. The element class number is taken from the list in Table 2.

TABLE 2: Addressing List for AD/FIVE Components

<table>
<thead>
<tr>
<th>Type (Class)</th>
<th>Element</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Amplifier</td>
<td>OKLM</td>
</tr>
<tr>
<td>1</td>
<td>Pot Coefficient</td>
<td>1KLM</td>
</tr>
<tr>
<td>2</td>
<td>Trunks</td>
<td>2KLM</td>
</tr>
<tr>
<td>3</td>
<td>Digital Coefficient</td>
<td>3KLM</td>
</tr>
<tr>
<td>4</td>
<td>Non-Linear</td>
<td>4KLM</td>
</tr>
<tr>
<td>5</td>
<td>Miscellaneous</td>
<td>5KLM</td>
</tr>
</tbody>
</table>

The element type is the first number of an address; the other three are:

- \(K = 0 \text{ or } 1 \) Field Number
- \(L = 0 \text{ through } 5 \) Area Number
- \(M = 0 \text{ through } 9 \) Component Number
2.5.4 Argument IV is fixed point 2's complement binary.

2.5.5 All other arguments are integer and are defined within the subroutine descriptions.

3.0 BASIC HYBRID ROUTINES

3.1 Fortran Callable Routines

3.1.1 General Control Routines. These general control routines allow selection, initialization, and enabling or disabling hybrid access of a particular analog console. Not all the HCR's have an argument for console selection. For a multiple console system the INITA or CONSO routines are used to select the console with which the digital computer will communicate. In a single console system console number 0 must be used.

3.1.1.1 CALL HYTST (M,IE)

This routine, usually called at the start of a program, controls the flags which determine the testing modes. The flags, which are accessible to all hybrid routines, are set depending on the value of M. The argument IE is the error argument used in the Test mode.

<table>
<thead>
<tr>
<th>Argument M</th>
<th>Resultant Flag Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Do not change mode - IE is new error word</td>
</tr>
<tr>
<td>1</td>
<td>Run mode - no error tests</td>
</tr>
<tr>
<td>2</td>
<td>Test mode - test errors, place error code in word IE and return</td>
</tr>
<tr>
<td>3</td>
<td>Test mode with print out - test errors, place error code in word IE, print out error message on the principal print device and return</td>
</tr>
</tbody>
</table>

3.1.1.2 CALL INITA (N)

Argument N (0 through 7) specifies the console number. This routine, usually called at the start of a program, sets the console selection number to N (same as CONSO (N) does) and then initializes console N as follows:

Sets: Time Scale - XI
 Analog Mode - IC
 Logic Mode - Load
 Interval Timer uses thumb wheels
 V-Signals to Interval Timer - 1sec.
 All other controls off
 and, if modules present, sets:
All MDAC's to update immediate
All ADC channels to sample
Control Line Register to 0
Sense Line Register to 0

Error Messages:
(a) ERROR-INITA - BUSY: Occurs when console is busy.
(b) ERROR-INITA - DATA: Occurs when N is outside allowable range.

3.1.1.3 CALL CONSO (N)
This routine sets the console selection number to N (0 to 7), to enable HCR's to communicate with AD/FIVE Console N.
Error Message:
(a) ERROR-CONSO - DATA: Occurs when N is outside allowable range.

3.1.1.4 CALL HON (N)
The routine HON allows the user to enable Hybrid Access to AD/FIVE console N (HYB ON switch on).
Error Message:
(a) ERROR-HON - DATA: Occurs if N is outside range.

3.1.1.5 CALL HOFF (N)
The HOFF routine allows the user to disable Hybrid Access to AD/FIVE console N (HYB ON switch off).
Error Message:
(a) ERROR-HOFF - DATA: Occurs if N is outside range.

3.1.2 Analog Data Routines

3.1.2.1 CALL READ (IA, IV)
The READ routine allows the user to read a digital representation of the analog voltage for any device which is addressable from the AD/FIVE keyboard.

Argument IA is a four digit integer address (see Table 2).

Argument IV is an integer variable, in which the value measured at the address IA is returned.
Error Messages:
(a) ERROR-READ - ADDRESS: Occurs when analog address is non-valid.
(b) ERROR-READ - DATA: Occurs if number of arguments is incorrect.
(c) ERROR-READ - BUSY: Occurs when console is busy.

3.1.2.2 CALL READA (IA (I), IV (J), N)
Arguments IA and IV are arrays of data as described in READ. N is the count of the number of addresses to be read. Last array points used are IA (I+N-1) and IV (J+N-1). READA is identical to READ in all other respects.
Error Messages:
(a) ERROR-READA - ADDRESS: Occurs when address is non-valid.
(b) ERROR-READA - DATA: Occurs if number of arguments is incorrect.
(c) ERROR-READA - BUSY: Occurs when console is busy.

3.1.2.3 CALL STIND (IA, IV)
The routine STIND may be used to set a coefficient into any of the coefficient devices addressable from the AD/FIVE keyboard.

Argument IA is a four digit integer address of a coefficient device in the AD/FIVE CONSOLE.

Argument IV is the coefficient to be set into the addressed device.
Error Messages:
(a) ERROR-STIND - ADDRESS: Occurs when analog address is non-valid.
(b) ERROR-STIND - DATA: Occurs if the number of arguments is incorrect or value is out of range.
(c) ERROR-STIND - BUSY: Occurs when console is busy.
(d) ERROR-STIND - CANNOT SET POT XXXX: Occurs if pot fails to set after two attempts.

3.1.2.4 CALL STINA (IA (I), IV (J), N)
Arguments IA and IV are arrays of data as described in STIND. N is the count of the number of successive array points to be used.
Last array points used are IA (I+N-1) and IV (J+N-1). STINA is otherwise identical to STIND.

Error Messages:
(a) ERROR-STINA - ADDRESS: Occurs when analog address is non-valid.
(b) ERROR-STINA - DATA: Occurs if number of arguments is incorrect or value is out of range.
(c) ERROR-STINA - BUSY: Occurs when console is busy.
(d) ERROR-STINA - CANNOT SET POT XXXX: Occurs if pot fails to set after two attempts.

3.1.3 Mode Control
These routines affect the modes of the analog computer which are defined by various pushbuttons and switches.

3.1.3.1 Analog Modes

3.1.3.1.1 CALL IC
The analog console is put into the Initial Condition mode.
Error Message:
ERROR-IC - BUSY: Occurs if console is busy.

3.1.3.1.2 CALL HOLD
The analog console is put into the Hold mode.
Error Message:
ERROR-HOLD - BUSY: Occurs if console is busy.

3.1.3.1.3 CALL OP
The analog console is put into the Operate Mode.
Error Message:
ERROR-OP - BUSY: Occurs if console is busy.

3.1.3.2 Logic Modes

3.1.3.2.1 CALL LOAD
The analog logic is put into the Load mode.
Error Message:
ERROR-LOAD - BUSY: Occurs if console is busy.
3.1.3.2.2 CALL LSTOP

Mode
STOP

The analog logic is put into the Stop Mode.

Error Message:
ERROR-LSTOP - BUSY: Occurs if console is busy.

3.1.3.2.3 CALL LRUN

Mode
RUN

The analog logic is put into the Run Mode.

Error Message:
ERROR-LRUN - BUSY: Occurs if console is busy.

3.1.3.3 CALL VER (N)

N Mode
0 Problem verify off
1 Problem verify on

Error Messages:
(a) ERROR-VER - DATA: Occurs when N is outside allowable range.
(b) ERROR-VER - BUSY: Occurs if console is busy.

3.1.3.4 CALL LEX (N)

N Mode
0 Logic execute off
1 Logic execute on

Error Messages:
(a) ERROR-LEX - DATA: Occurs when N is outside allowable range.
(b) ERROR-LEX - BUSY: Occurs if console is busy.

3.1.3.5 CALL AUTHD (N)

N Mode
0 Auto-hold off
1 Auto-hold on

Error Messages:
(a) ERROR-AUTHD - DATA: Occurs when N is outside allowable range.
(b) ERROR-AUTHD - BUSY: Occurs if console is busy.

3.1.3.6 CALL PB (N)

N Mode
0 PB off
1 PB On
Error Messages:
(a) ERROR-PB - DATA: Occurs when N is outside allowable range.
(b) ERROR-PB - BUSY: Occurs if console is busy.

3.1.3.7 CALL TEST (N)
N Mode
0 Test function off
1 Test function on
Error Messages:
(a) ERROR-TEST - DATA: Occurs when N is outside allowable range.
(b) ERROR-TEST - BUSY: Occurs if console is busy.

3.1.3.8 CALL STEP
If the logic mode is STOP, the logic is advanced through one
clock period of normal operation.
ERROR-STEP - BUSY: Occurs if console is busy.

3.1.3.9 CALL STREF (N)
N Mode
0 Coefficient values read from coefficient devices
1 Coefficient X input values read from coefficient devices
Error Messages:
(a) ERROR-STREF - DATA: Occurs if N is not in range.
(b) ERROR-STREF - BUSY: Occurs if console is busy.

3.1.3.10 CALL TSCAL (N)
N Mode
0 Time scale X1
1 Time scale X10
2 Time scale X100
3 Time scale X1000
Error Messages:
(a) ERROR-TSCAL - DATA: Occurs when N is outside allowable range.
(b) ERROR-TSCAL - BUSY: Occurs if console is busy.

3.1.3.11 CALL STITR (I, J, K)
The routine STITR allows the user to set the length of the periods
in the interval timer register.
The arguments I, J and K correspond to the number and counts in the A, B and C periods in the interval timer register.

Error Messages:
- (a) ERROR-STITR - DATA: Occurs when I, J, or K are outside allowable range.
(b) ERROR-STITR - BUSY: Occurs if console is busy.

3.2.3.12 CALL SELIT (N)
SELIT is called to select the interval timer periods from either the thumb wheel switches or the interval timer register.

N MODE
0 Interval Timer periods selected from thumb wheel switches.
1 Interval Timer periods selected from register.

Error Messages:
(a) ERROR-SELIT - DATA: Occurs when N is outside allowable range.
(b) ERROR-SELIT - BUSY: Occurs if console is busy.

3.1.3.13 CALL SELVS (N)
The routine SELVS is used to select the V-signals which are used to count the periods in the interval timer.

N Mode
0 Selects 1 sec V-pulse into Interval timer
1 Selects 100 m sec V-pulse into Interval timer.
2 Selects 10 m sec V-pulse into Interval timer.

Error Messages:
(a) ERROR-SELVS - DATA: Occurs when N is outside allowable range.
(b) ERROR-SELVS - BUSY: Occurs if console is busy.

3.1.3.14 CALL SETAR (IA)
SETAR is used to set an address into the AD/FIVE address register.
Argument IA is the integer address (see Table 2) to be set into the address register.

Error Messages:
(a) ERROR-SETAR - ADDRESS: Occurs when analog address is non-valid.
(b) ERROR-SETAR - BUSY: Occurs when console is busy.

3.1.3.15 CALL SETC (M)
The routine SETC allows the user to set up individual control conditions for an AD/FIVE console.
Argument M is the number corresponding to the desired control condition (see Table 3).

Error Messages:
(a) ERROR-SETC - DATA: Occurs if M is not in range.
(b) ERROR-SETC - BUSY: Occurs if console is busy.

TABLE 3: CONTROL CONDITION

<table>
<thead>
<tr>
<th>M</th>
<th>FUNCTION</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>IC</td>
<td>Place AD/FIVE in Initial Condition mode</td>
</tr>
<tr>
<td>1</td>
<td>OP</td>
<td>Place AD/FIVE in Operate mode</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>Place AD/FIVE in Hold mode</td>
</tr>
<tr>
<td>3</td>
<td>LD</td>
<td>Place AD/FIVE in Load mode</td>
</tr>
<tr>
<td>4</td>
<td>RUN</td>
<td>Place AD/FIVE in Run mode</td>
</tr>
<tr>
<td>5</td>
<td>STOP</td>
<td>Place AD/FIVE in Stop mode</td>
</tr>
<tr>
<td>6</td>
<td>VIS</td>
<td>Place Interval Timer in 1 sec frame</td>
</tr>
<tr>
<td>7</td>
<td>V100M</td>
<td>Place Interval Timer in 100ms frame</td>
</tr>
<tr>
<td>8</td>
<td>V10M</td>
<td>Place Interval Timer in 10ms frame</td>
</tr>
<tr>
<td>9</td>
<td>X1</td>
<td>Place AD/FIVE in X1 time scale</td>
</tr>
<tr>
<td>10</td>
<td>X10</td>
<td>Place AD/FIVE in X10 time scale</td>
</tr>
<tr>
<td>11</td>
<td>X100</td>
<td>Place AD/FIVE in X100 time scale</td>
</tr>
<tr>
<td>12</td>
<td>X1000</td>
<td>Place AD/FIVE in X1000 time scale</td>
</tr>
<tr>
<td>13</td>
<td>SET COEF</td>
<td>Initiate a set coefficient operation</td>
</tr>
<tr>
<td>14</td>
<td>LST</td>
<td>Initiate a logic step</td>
</tr>
<tr>
<td>15</td>
<td>SP</td>
<td>Initiate a DRM sample operation to digitize an analog value</td>
</tr>
<tr>
<td>16</td>
<td>LE SET</td>
<td>Set Logic Exec state</td>
</tr>
<tr>
<td>17</td>
<td>LE CLR</td>
<td>Clear Logic Exec state</td>
</tr>
<tr>
<td>18</td>
<td>AH SET</td>
<td>Set Auto Hold state</td>
</tr>
<tr>
<td>19</td>
<td>AH CLR</td>
<td>Clear Auto Hold state</td>
</tr>
<tr>
<td>20</td>
<td>PB SET</td>
<td>Transfer PB hole to ASO</td>
</tr>
<tr>
<td>21</td>
<td>PB CLR</td>
<td>Remove PB hole from ASO</td>
</tr>
<tr>
<td>22</td>
<td>COEFXS</td>
<td>Set Coef X Input state</td>
</tr>
<tr>
<td>23</td>
<td>COEFXC</td>
<td>Clear Coef X Input state</td>
</tr>
<tr>
<td>24</td>
<td>PV SET</td>
<td>Set Problem Verify State</td>
</tr>
<tr>
<td>25</td>
<td>PV CLR</td>
<td>Clear Problem Verify State</td>
</tr>
<tr>
<td>26</td>
<td>TEST SET</td>
<td>Set Test state</td>
</tr>
<tr>
<td>27</td>
<td>TEST CLR</td>
<td>Clear Test state</td>
</tr>
<tr>
<td>M</td>
<td>FUNCTION</td>
<td>OPERATION</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>CLR</td>
<td>Clear the address or data register</td>
</tr>
<tr>
<td>29</td>
<td>SCLR</td>
<td>Clear the AD/FIVE system (initialize)</td>
</tr>
<tr>
<td>30</td>
<td>AE</td>
<td>Set the Address entry state</td>
</tr>
<tr>
<td>31</td>
<td>DE</td>
<td>Set the Data Entry state</td>
</tr>
<tr>
<td>32</td>
<td>ENA 15</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>ENA 14</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ENA 13</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>ENA 12</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>ENA 11</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>ENA 10</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>ENA 9</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ENA 8</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ENA 7</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>ENA 6</td>
<td>Hybrid On</td>
</tr>
<tr>
<td>42</td>
<td>ENA 5</td>
<td>Hybrid Off</td>
</tr>
<tr>
<td>43</td>
<td>ENA 4</td>
<td>Enable MSD of the DRM onto system read bus.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Includes MSB, Sign, 1SP.</td>
</tr>
<tr>
<td>44</td>
<td>ENA 3</td>
<td>Enable NMSD (BCD) of the DRM onto system read bus.</td>
</tr>
<tr>
<td>45</td>
<td>ENA 2</td>
<td>Enable NMSD (BCD) of the DRM onto system read bus.</td>
</tr>
<tr>
<td>46</td>
<td>ENA 1</td>
<td>Enable NMSD (BCD) of the DRM onto system read bus.</td>
</tr>
<tr>
<td>47</td>
<td>ENA 0</td>
<td>Enable LSD (BCD) of the DRM onto system read bus.</td>
</tr>
</tbody>
</table>

3.2 Fortran Functions

3.2.1 IOVLD (D)
Tests the overload bit of the status register and returns an arithmetic 0 if off and an arithmetic +1 if on. D is a dummy argument.

3.2.2 IBUSY (D)
Tests the BUSY bit of the status register and returns an arithmetic 0 if off and an arithmetic +1 if on. D is a dummy argument.
4.0 HYBRID EXPANSION ROUTINES
4.1 Fortran Callable Routines
4.1.1 Discrete Data
4.1.1.1 CALL SETCL (M, N)
The routine SETCL is used to set or clear one of the sixteen lines in the control line register for the AD/FIVE. All other lines are unchanged.

Argument M defines the line number in the control line register (0-15).

Argument N is 0 if the line is to be off, and is 1 if the line is to be on.

4.1.1.2 CALL SETCL (M, N)
The routine SETSL is used to set or clear one of the sixteen bits in the sense line register for the AD/FIVE. All other lines are unchanged. This routine is applicable only to the D16.201 Sense Line Register.
Arguments M and N are the same as in SETCL, except the sense line register is referenced.

4.1.1.3 CALL SETCR (M)
SETCR sets a 16 bit image into the control line register. This allows more than one line to be set simultaneously.

Argument M is the sixteen bit image to set into the control line register.

4.1.1.4 CALL SENCRR (M)
SENR allows the user to read the sixteen bit image out of the control line register. The register is not cleared at the end of the read. The sixteen bit image is placed in the argument M.

4.1.1.5 CALL SETSR (M)
SETSR sets a sixteen bit image into the sense line register. This allows more than one bit to be set simultaneously. This routine is applicable only to the D16.201 Sense Line Register.
Argument M is the sixteen bit image to be set into the sense line register.

4.1.1.6 CALL SENSRR (M)
SENSR allows the user to read the sixteen bit image in the sense line register. The register is cleared at the end of the read.
The sixteen bit image is placed in the argument M.

4.1.1.7 CALL INTRW (M)
The routine INTRW is used to read the 8 bit image in the interrupt register. The register is cleared at the end of the read. The resultant 8 bit image is placed in the 8 low order bits of the variable M. The high order bits are set to zero.

4.1.1.8 CALL COMSY (K, L, M, N)
The routine COMSY is provided to allow the use of the special functions within the AD/FIVE Interface and Communications System. The user may build his own routines not provided in the HCR's.

Refer to Vol. 3 of the AD/FIVE maintenance manual for details on the address and command bytes specified in the arguments L and M.

Argument K is the function and modifier for I/O commands to the interface (0 = read, 1 = write).

Argument L is the Communications System address of the module to receive or send data (the address byte).

Argument M is the 8 bit function code to the Communications System (the command byte).

Argument N is the variable from which data is sent or into which data is received (the data word).

4.1.2 MDAC and ADC Control Routines

4.1.2.1 CALL ADCSH (N, M)
The routine ADCSH facilitates control of the ADC Sample-Hold package, if present in the ADC.

Argument N is the channel number of any of the eight channels on a Sample-Hold card.

Argument M is a zero to set all channels on card to sample and is a one to set all channels on card to hold.

Note: Addressing any of the channels on a card sets the whole card into sample or hold.
4.1.2.2 CALL UPDAT (N)
The routine UPDAT allows a chassis of 16 DAC's to be updated simultaneously. This routine is used in connection with STINH with a load data only option and overrides external logic patchboard control (see 4.1.3).

Argument N is the chassis number of the DAC's to be updated.

4.1.2.3 CALL DACU (M,N)
The DACU routine permits the user to set up update groups in the DAC Controller.

Chassis number is denoted by argument M.

Argument N is a 16-bit word pattern whose bit positions correspond one-for-one with the 16 DAC's in one chassis.

In the argument N, a 1-bit in a particular position enables that DAC to be updated by calling CONUP. A 0-bit disables that DAC from updating.

4.1.2.4 CALL CONUP (M)
The CONUP routine, used in conjunction with DACU, allows updating of groups of DAC's through the DAC Controller.

Argument M is the chassis number of the DAC's to be updated.

When CONUP is called, all DAC's in chassis M whose update lines have been enabled by a previous call to DACU, are simultaneously updated.

4.1.3 MDAC and ADC Data Routines

4.1.3.1 CALL SCANH (N, IV, M)
The SCANH routine is used to read ADC-MUX channels in the sequential mode.
Argument N is the number of the channel (0-15) at which the scan is to begin.

Argument IV is the array into which the data read out of the ADC is placed.

Argument M is the number of ADC-MUX channels to be scanned.

4.1.3.2 CALL READH (N, IV)
The READH routine permits the user to read a single ADC-MUX channel.

Argument N is the number of the channel (0-15) to be read.

Argument IV is the variable in which the data read from the ADC is placed.

4.1.3.3 CALL STINH (N, M, L)
The routine STINH is used to set an individual MDAC to a specified value. There is also control over immediate or delayed updating of the MDAC.

Argument N is the number of the MDAC (0-15) to be set.

Argument M is the value to which the MDAC is to be set.

Argument L gives control over updating and external control.

L Result
0 load data into initial register only
1 load data and update immediate
2 load data and enable external logic patchboard control

Note: External control pertains to the updating capabilities through the DAC Controller.
4.1.3.4 CALL STBLK (N, M, L, K)

The STBLK routine allows one or more MDAC's to be set to specified values in the non-sequential mode. As in STINH, control over updating is also given.

Argument N is an array containing the numbers of the MDAC's (0-15) to be set.

Argument M is an array containing the values to be set into the MDAC's.

Argument L is a variable containing the update control code for the MDAC's as in STINH.

Argument K is the number of MDAC's to be set.

4.1.4 Routines using Cycle Stealing

4.1.4.1 CALL STSCN (N, IV, M)

The routine STSCN is identical to SCANH except that the values are read out under cycle stealing.

Note: Before using data read back, completion of cycle stealing must be tested using the function ICMPL.

4.1.4.2 CALL STSEQ (N, M, L, K)

The routine STSEQ facilitates the setting of sequential MDAC's using cycle stealing. The routine uses the DAC Controller.

Arguments N, M, L, and K are the same as in STBLK.
4.2 Fortran Functions

4.2.1 ICMPL (D) D is a dummy argument. Tests the completion of the routines using cycle stealing. Returns 0 if not complete, 1 if complete and -1 if an error occurred and the cycle steal failed to complete.

4.2.2 ITSTC (M) Tests line M in the control register. Returns 0 if M is off and 1 if M is on.

4.2.3 ITSCM (M) Tests the control register under the mask M. Returns 0 if all bits tested are off and 1 if at least one is on.

4.2.4 ITSTS (M) Tests line M in the sense register. Returns 0 if M is off and 1 if M is on.

4.2.5 ITSSM (M) Tests the sense register under the mask M. Returns 0 if all bits tested are off and 1 if at least one is on.

4.2.6 INTR (M) Tests line M in the interrupt register. Returns 0 if M is off and 1 if M is on.

4.2.7 INTRM (M) Tests the interrupt register under the mask M. Returns 0 if all bits tested are off and 1 if at least one is on.

ERROR WORD FORMATS

For the AD/FIVE/IBM-1130 system and the AD/FIVE/PDP-11 the error word format is:

```
15 8 7 2 1 0
```

Bits 0 and 1 contain the error type:

<table>
<thead>
<tr>
<th>Number</th>
<th>Type of Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Address</td>
</tr>
<tr>
<td>1</td>
<td>Data</td>
</tr>
<tr>
<td>2</td>
<td>Busy</td>
</tr>
<tr>
<td>3</td>
<td>Cannot Set Pot</td>
</tr>
</tbody>
</table>

Bits 2-7 contain the HCR number.

In the special case of "Cannot Set Pot" error, the HCR number is either 7 for STIND or 8 for STINA, bits 8 through 15 are free to be used for the pot address. The format is as follows:

```
  15  8  7  2  1  0
------
      0  1  1
```

Since the error type is 3, we know the address is a pot, and bits 8-15 contain the field, area, and number in binary format of the pot where the error occurred.
APPLIED DYNAMICS ANALOG/HYBRID SYSTEMS

AD/FIVE

LINKAGE DIAGNOSTIC

OPERATORS MANUAL

Revised June 1973
TABLE OF CONTENTS

Introduction ... 25

Individual Tests

<table>
<thead>
<tr>
<th>Section</th>
<th>Test</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>LKD1 - STATUS</td>
<td>27</td>
</tr>
<tr>
<td>02</td>
<td>LKD2 - AD/FIVE CONTROL REGISTER</td>
<td>27</td>
</tr>
<tr>
<td>03</td>
<td>LKD3 - AD/FIVE SENSE REGISTER</td>
<td>27</td>
</tr>
<tr>
<td>04</td>
<td>LKD4 - CONTROL, SENSE AND INTERRUPT REGISTERS.</td>
<td>27</td>
</tr>
<tr>
<td>05</td>
<td>LKD5 - DAC UPDATE REGISTER</td>
<td>28</td>
</tr>
<tr>
<td>06</td>
<td>LKD6 - ADC SAMPLE/HOLD REGISTER</td>
<td>28</td>
</tr>
<tr>
<td>07</td>
<td>LKD7 - DAC</td>
<td>29</td>
</tr>
<tr>
<td>08</td>
<td>LKD8 - DCU</td>
<td>29</td>
</tr>
<tr>
<td>09</td>
<td>LKD9 - SERVO SET POT</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>LKD10 - DRM</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>LKD11 - ADC SYSTEM</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>LKD12 - CONSOLE CONTROL</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>LKD13 - SET TOLERANCE FOR TESTS</td>
<td>31</td>
</tr>
</tbody>
</table>
The Linkage Diagnostic Program (LKD) consists of a mainline program, 13 independent subroutines, and 8 support subroutines.

The mainline program initializes variables to be used by the subroutine, prints its identifier, and requests system parameters (i.e. console number, error log device, and pause code) and thereafter simply requests a new routine number (1-13) and calls the routine. To restart LKD type a negative routine number. Type Ø to change consoles, error log device, or pause code. To perform an automatic run of LKDØ1 - LKDØ1 type 98 (see Section 1-3). To exit from the automatic run before its normal termination type 99 and another request for a routine number will be made.

Each routine called prints its number and name. If any errors are encountered an appropriate error message is sent to the error log device. If no errors are encountered an appropriate message is sent to the principle print and error log devices.

If the pause mode has been selected and an error occurs, the operator may continue, restart, or abort a routine by typing: <cr>, 1 <cr>, or 2 <cr> in response to LKD's *. If the run mode (no pause after error) has been selected a free running routine may be restarted or aborted by raising switch 1 or 2 along with switch Ø.

The operator may interact with those routines which search the valid address table by raising switches 14 and/or 15 as follows: To enter the number of valid devices raise switch 15. To change the entries in the valid address table (for current run only) raise switch 14 and enter the valid addresses (until table is full or switch 14 is lowered).

"Normal" operation of the routines is with all switches down.
Following is a list of the thirteen diagnostic routines, the functions they test and explanations of their error messages.

01 LKD1 - STATUS BIT TEST
By causing appropriate error and non-error conditions, LKD1 tests all bits of the status bus.

Error Messages
- ERROR - OVLD IS 0
- ERROR - DRM BSY IS 1
- ERROR - CONS BSY IS 0
- ERROR - ISP IS 0

NOTE: This routine will pause regardless of pause action decided by the operator.

02 LKD2 - AD/FIVE CONTROL REGISTER TEST
This routine requests "ENTER (I4) TEST CYCLES". The operator should enter the number of times the test will be performed, with leading zero (s) if the number is less than 1000. The register is tested by writing a series of data words in, reading them back, and comparing the results with the data sent.

Error Messages
- ERROR SENT nnnnn - RECEIVED nnnnn
 where nnnnn is decimal representation of the bit pattern sent or received.

03 LKD3 - AD/FIVE SENSE REGISTER TEST
This test operates in the same manner as LKD2, except the AD/FIVE sense register is tested with the inputs disabled. This routine is applicable only to the D16.201 Sense Register.

04 LKD4 - CONTROL, SENSE, INTERRUPT REGISTER TEST
The first time LKD4 is called, "PATCH ACCORDING TO MANUAL" is typed. Patching instructions are:
Control reg. lines 0-15 to sense reg. lines 0-15, control reg. lines 0-7 to interrupt reg. lines 0-7.

The routine then requests "ENTER (I4) TEST CYCLES". The operator should enter the number of times the test will be performed, with leading zero(s) if the number is less than 1000. The registers are tested by sending a series of data words to the control register, reading the control, sense, and interrupt registers and comparing with the data sent.

Error Messages

ERROR

REGISTER SENT RECEIVED

(register) nnnn nnnn

where: nnnn is the decimal representation on the value sent or received.

05 LKD5 - DAC UPDATE REGISTER TEST

LKD5 uses the valid address table to determine the addresses of all valid DACs. If there are none, a message is typed and the routine is skipped. Each DAC is tested by writing each update code into the update register, reading it back, and comparing with the code sent.

Error Messages

ERROR - ADDR. baaa

SENT RECVD

n n

where b is the component class

aaa is the address

n are the values sent and received.

06 LKD6 - ADC SAMPLE/HOLD REGISTER TEST

If there are no S/H registers, a message is typed and the routine is skipped. Each S/H register is tested by writing each S/H code into the register, reading it back, and comparing with the original.

Error Messages

ERROR - ADDR. baaa

SENT RECVD

n n
where b is component class
aaa is the address
n are the values sent and received.

07 LKD7 - DAC TEST
LKD7 uses the valid address table to determine the addresses of all
valid DACs. If there are no DACs a message is typed and the test is
skipped. A table of valid DAC addresses and "PATCH ACCORDING TO MANUAL"
are typed. Patching instructions are:
Patch all multiplying DACs in the valid address
table to minus reference. Each DAC is tested by
writing a series of values into it, reading them
back through the DRM, and comparing the results
with the values sent.

Error Messages
ERROR - DAC baaa
SENT RECD ERROR
nnnn nnnn eeee
where b is the component class
aaa is the DAC address
nnnn is the values sent and received
±eee is the amount of the error

08 LKD8 - DCU TEST
LKD8 uses the valid address table to determine the addresses of all
valid DCUs. If there are no DCUs a message is typed and the test
is skipped.

Error Messages
ERROR - DCU baaa
SENT RECD ERROR
nnnn nnnn eeee
where b is the component class
aaa is the DCU address
nnnn is the value sent or received
±eee is the amount of the error
09 LKD9 - SERVO SET POT TEST
LKD9 uses the valid address table to determine valid pot addresses.
If there are no pots, a message is typed and the routine is skipped.
Otherwise, a table of valid pot addresses is typed. These pots are
tested by sending values to each, reading them back and comparing with
the values sent.

Error Messages
ERROR
ADDR SENT RECD ERR
baaa nnnn nnnn
where b is the component class
aaa is the pot address
nnnn are the values sent and received.

10 LKD10 - DRM
LKD10 requests the operator to patch a sequence of voltages into PB.
Each time the operator types <cr>, the voltages are read back through
the DRM. The reading is compared within tolerance to 5 volts. LKD10
then requests the operator to patch 1 volt into PB and then reads it
back through the DRM. The reading is compared within tolerance to
1 volt.

Error Messages
ERROR - DRM EXPECTED nnnnn RECVD nnnnn
where nnnnn are the values sent and received.

11 LKD11 - ADC SYSTEM TEST
LKD11 uses the valid address table to determine a valid DAC, and all
valid ADC channel numbers, then types "PATCH ACCORDING TO MANUAL", and
the DAC address. If there is not at least one valid DAC address and
one valid ADC channel the appropriate message is typed and the routine
is skipped. Patching instructions are: Patch -1 to DAC input and
output to all ADC channels (through buffer amplifier(s)).

Each ADC channel is tested by sending a series of values to the DAC,
reading the ADC channels and comparing values.
Error Messages
ERROR -

CH SENT RECD ERR
baaa nnnn nnnn eeee

where b is component type
aaa is the address
nnnnn is the value sent
±eee is the amount of the error

12 LKD12 - CONSOLE CONTROL

LKD12 tests the action of each pushbutton on the AD/FIVE console for appropriate control from the digital computer. Each button is tested in sequence for on and off state with verification by the operator. When proper operation is confirmed by the operator (typically visually verifying the bushbutton lamps), LKD12 proceeds to the next test upon receipt of an interrupt or the depression of the carriage return key on the typewriter. A pause is automatically built into LKD12 after each test regardless of pause action selected by the operator. Appropriate messages are typed out for the operator identifying the particular condition for verification.

13 LKD13 - SET TOLERANCE

LKD13 types "ENTER (I2) NEW TOLERANCE", reads the value and types "NEW TOLERANCE IS PLUS OR MINUS nn MV". The operator should enter desired tolerance expressed in MV. Thus, for a tolerance of .0055 of reference only the 55 must be typed. If a negative tolerance is entered a list of all tests performed during the execution of each routine is typed (whether or not an error occurred).