The IEEE-488 Bus in the Lab
Richard Newrock explains the facilities provided by the IEEE-488 General Purpose Interface Bus (GPIB), with practical guidance on design considerations affecting its use. In a second article, Richard Newrock gives a detailed review of the Pickles & Trout S-100/IEEE-488 interface board and its accompanying packages.

Other Instrumentation Interfaces
Joseph Long describes instrumentation interfaces developed to introduce chemistry students to computerization in the lab.
Ralph Place and Kirk Bailey discuss the problems encountered in bringing up a CP/M-86 on the STD bus for digitizer analysis of photographic material.

More on CP/M Plus
Bruce Ratoff concludes his two-part discussion of the advanced features of CP/M Plus.

Software Reviews
Chris Terry reviews utilities from Norway, as well as POWER (which replaces DDT, STAT, and other CP/M functions) and a keyboard redefinition program.

Hardware Review
Ernest Mau gives an in-depth review of the Morrow Designs' Decision 1, a versatile S-100 system in the middle price range.
SUPERIOR GRAPHICS HAVE COME DOWN TO EARTH.

$1995 AND THE FIRST AFFORDABLE HIGH RESOLUTION COLOR GRAPHICS MACHINE IS YOURS

VX128
- VERY HIGH RESOLUTION 672x480 pixels individually addressable
- EIGHT COLORS PER PIXEL 3 bit planes of memory totaling 128k graphics RAM
- ON-BOARD 16 BIT MICROCOMPUTER Intel 8088 microprocessor with additional PROM and RAM and built-in expansion capability
- 3D GRAPHICS SOFTWARE PACKAGE built-in command set includes rotation, scaling, translation, perspective, clipping, viewport, polygon, and filled polygon
- HARDWARE LINE AND ARC GENERATION on-board VLSI graphics display controller, 1600 nanoseconds pixel drawing time

VX384
- 512 COLORS PER PIXEL 9bit planes of memory with 384k graphics RAM
- COLOR LOOKUP TABLE 8 bit digital-to-analog converters provide a 16 million color palette
- INCLUDES ALL FEATURES of VX128 for total of $5995
- VXM HIGH RESOLUTION COLOR MONITOR RGB analog input with 24 kilohertz scan rate, long persistence phosphor $1295
- COLOR GRAPHIC PRINTER with interface cable $1295

For additional information on VX128, VX384, VXM Monitor or VXP Printer call Toll Free 1-800-334-6181, or 919-272-5479, or write Vectrix Corporation, 700 Battleground Avenue, Greensboro, NC 27401

CIRCLE 15 ON READER SERVICE CARD
Now Our Family Tree Is Complete

SBC-1 (Above) A multiprocessing slave board computer with Z-80 CPU (4 or 6 MHz), 2 serial ports, 2 parallel ports, and up to 128K RAM. Provides unique 2K FIFO buffering for system block data transfers. When used with TurboDOS or MDZ/OS the results are phenomenal!

HD/CTC (Left) A hard disk and cartridge tape controller combined together on one board! A Z-80 CPU (4 or 6 MHz); 16K ROM, and up to 8K RAM provide intelligence required to relieve disk I/O burden from host system CPU. Round out your multiprocessing system with an integrated mass storage/backup controller.

Systemaster® (Right) The ultimate one board computer; use it as a complete single-user system or as the “master” in a multi-processing network environment. Complete with Z-80A CPU, 2 serial and 2 parallel ports, floppy controller, DMA, real time clock, and Teletek’s advanced CP/M BIOS. Also supports MP/M-II, MDZ/OS, and TurboDOS.

TELETEK
9767F Business Park Drive
Sacramento, CA 95827
(916) 361-1777
Telex #4991834
Answer back-Teletek

Your Single Source Family of S-100 Products.

© Teletek 1983
All you dBASE II™ hotshots are about to get what you deserve.

You've written all those slick dBASE II programs.
- Business and personal programs. Scientific and educational applications. Packages for just about every conceivable information handling need.
- And everybody who sees them loves them because they're so powerful, friendly and easy to use.
 - But that's just not good enough.
 - Uh-uh.
 - Because now you can get the gold and the glory that you really deserve.

Here's how.
- We've just released our dBASE II RunTime™ application development module.
- And it can turn you into an instant software publisher.
- The RunTime module condenses and encodes your source files, protecting your special insights and techniques, so you can sell your code without giving the show away.
- RunTime also protects your margins and improves your price position in the marketplace. If your client has dBASE II, all he needs is your encoded application. If not, all you need to install your application is the much less expensive RunTime module.

We'll also provide additional "how to" information to get you off and running as a software publisher sooner.
- And we'll make your products part of our Marketing Referral Service. Besides putting you on our referral hotline, we'll publish your program descriptions and contact information in dBASE II Applied, a directory now in computer stores world-wide.

Go for it.
- But we can't do any of this until we hear from you.
- For details, write RunTime Applications Development, Ashton-Tate, 10150 West Jefferson Boulevard, Culver City, CA 90230.
- Or better yet, just call (213) 204-5570. And get what you deserve today.

ASHTON-TATE

©Ashton-Tate 1983.

CIRCLE 34 ON READER SERVICE CARD
Now our $29.95 complete Pascal for CP/M is an even better bargain...

WHAT THEY SAID ABOUT JRT PASCAL 2.0:
CREATIVE COMPUTING, Nov. '82 "...While there is no such thing as a free lunch, JRT Pascal at $29.95 (which includes postage) certainly allows the user to experience champagne and caviar at cafeteria prices..."
 INTERFACE AGE, Oct. '82 "...JRT Pascal is following the example set by Software Toolworks (Sherman Oaks, CA) of offering quality software at extremely low price..."
 INFOWORLD, Aug. 16, '82 The magazine's 'Software Report Card' rated JRT's documentation 'good' and performance, ease of use and error handling 'excellent' — the highest rating.

AND NOW: JRT PASCAL 3.0 — with all the features that earned 2.0 so much praise — PLUS the many new features shown here. The price? — still just $29.95! This astonishing price includes the complete JRT Pascal system on diskettes and the new expanded user manual. Not a subset, it's a complete Pascal for CP/M. Faster and more reliable than ever, for beginner or expert, engineer or businessman, JRT Pascal 3.0 provides a set of features unequaled by any other Pascal... or any other language.

OUR NO-RISK OFFER: When you receive JRT Pascal 3.0, look it over, check it out, compare it with similar systems costing ten times as much. If you're not completely satisfied, return it—with the sealed diskettes unopened—within 30 days, and your money will be refunded in full. That's right: satisfaction guaranteed or your money back!

A JRT bonus: if you want to copy the diskettes or manual — so long as it's not for resale — that's o.k. with us. Pass it on to your friends. But don't delay. Send the coupon or phone today and start enjoying the Pascal advantage; at $29.95, there's no reason to wait!

NEW Full support for indexed files
NEW CRT screen formatting and full cursor control
NEW Facilities for formatting printed reports
Graphing procedures
Statistic procedures
14 digit BCD FLOATING POINT arithmetic
True dynamic storage
Advanced assembly interface

NEW File variables and GET/PUT
NEW Dynamic arrays
Random files to 8 megabytes with variable length records
64K dynamic strings
Activity analyzer prints program use histogram
No limits on procedure size, nesting or recursion
More than 200 verbal error messages
Maximum program size: more than 200,000 lines

NEW Handy JRT Pascal reference card
NEW 175-page user manual with protective 3-ring binder and 5-1/4" or 8" diskettes
NEW SEARCH procedure for fast table look-up

$29.95!

Send or phone 415/566-5100

Here's my $29.95; please send me JRT Pascal. I understand that if I'm not completely satisfied, I can return it within 30 days—with the sealed diskettes unopened—for a full refund. (Allow 2-3 weeks for shipping.)

Name ________________________________
Address ________________________________
City __________________ State ________ Zip _______

☐ Check ☐ C.O.D. ☐ MasterCard ☐ VISA
(CA residents add sales tax. Add $6 for shipping outside North America.)

Card # ______________ Exp. ______________

Signature ________________________________

*CP/M is a Digital Research TM.

A 56K CP/M system is required.

CIRCLE 114 ON READER SERVICE CARD
Bored Waiting? Here's The Board You've Been Waiting For.

A hard disk and cartridge tape controller together on one board? Magic? Not really. It's Teletek's HD/CTC. The hard disk and cartridge tape drive controller provide the support necessary to interface both rigid-disk drives and a cartridge tape deck to the S-100 bus.

- A Z-80A CPU (optionally Z-80B) providing intelligent control of the rigid-disk and cartridge tape drives.
- Support of 5½" rigid-disk drives with transfer rates of 5 megabits per second. Minor changes of the on-board components allow the support of other drive types/sizes and transfer rates up to 15 megabits per second. (Interface to disk drive is defined by software/firmware on-board.)
- Controller communications with the host processor via 2K FIFO at any speed desirable (limited only by RAM access time) for a data block transfer. Thus the controller does not constrain the host processor in any manner.
- Two 28-pin sockets allowing the use of up to 16K bytes of on-board EPROM and up to 8K bytes of on-board RAM.
- Individual software reset capability.
- Conforms to the proposed IEEE-696 S-100 standard.
- Controller can accommodate two rigid-disk drives and one cartridge tape drive. Expansion is made possible with an external card.

Teletek's HD/CTC Offers A Hard Disk Controller, Plus Cartridge Tape Controller, All On One Board.

TELETEK

9767 F Business Park Drive Sacramento, CA 95827 (916) 361-1777 Telex #4991834 Answer back-Teletek

© Teletek 1983

CIRCLE 220 ON READER SERVICE CARD
Contents

Microsystems

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE-488 Bus Tutorial by Richard S. Newrock</td>
<td>34</td>
</tr>
<tr>
<td>Learn what the IEEE-488 GPIB bus does and how to use it</td>
<td></td>
</tr>
<tr>
<td>Interfacing Microcomputers to Laboratory Instruments by Joseph W. Long</td>
<td>62</td>
</tr>
<tr>
<td>Teaching students how a North Star Horizon II can speed data collection and leave more time for analysis</td>
<td></td>
</tr>
<tr>
<td>The "Standard" CP/M-B6 Hardware System in the Lab by Ralph L. Place and Kirk A. Bailey</td>
<td>70</td>
</tr>
<tr>
<td>Solving the problems encountered in setting up a photoanalysis system</td>
<td></td>
</tr>
<tr>
<td>The Pickles & Trout IEEE-488/IEEE-696 Bus Converter by Richard S. Newrock</td>
<td>74</td>
</tr>
<tr>
<td>Detailed review of a GPIB interface board and its software</td>
<td></td>
</tr>
<tr>
<td>Implementing CP/M Plus, Part 2 by Bruce R. Ratoff</td>
<td>84</td>
</tr>
<tr>
<td>Date/time support, multisector disk I/O, and non-disk I/O</td>
<td></td>
</tr>
<tr>
<td>A Garland of Utilities by Chris Terry</td>
<td>90</td>
</tr>
<tr>
<td>Reviews of some outstanding utilities</td>
<td></td>
</tr>
<tr>
<td>Decisions on the Decision I by Ernest E. Mau</td>
<td>98</td>
</tr>
<tr>
<td>Review of another important system from the Morrow product line</td>
<td></td>
</tr>
<tr>
<td>Hooking Made Easy by Kenneth M. Piggott</td>
<td>104</td>
</tr>
<tr>
<td>How to make a simple S-100 circuit card extractor</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor's Page</td>
<td>8</td>
</tr>
<tr>
<td>News and Views</td>
<td>10</td>
</tr>
<tr>
<td>Letters to the Editor</td>
<td>14</td>
</tr>
<tr>
<td>The CP/M Bus</td>
<td>18</td>
</tr>
<tr>
<td>In the Public Domain</td>
<td>30</td>
</tr>
<tr>
<td>Software Directory</td>
<td>106</td>
</tr>
<tr>
<td>New Products</td>
<td>108</td>
</tr>
</tbody>
</table>
We are delighted, and we have stacks of testimonial letters to prove it. Order today. We're sure you'll be

OKARA™!

In 1981-82, many vendors marketed CP/M user interfaces (also called front ends, shells or menu drivers). All of them (save one) were mastodons: slow, clumsy, inflexible, disk-hungry, hard to install, and overpriced. Their buyers usually tried them, sighed, shelved them, and forgot them.

OKARA, on the other hand, is a gazelle. Once you have tried OKARA, you will never willingly go back to bare CP/M. Why? Because OKARA is

- Incredibly fast: It operates at memory speed.
- Automatic and nearly invisible in operation.
- Flexible and programmable – You decide how it communicates and just how much control it exercises.
- Immediately usable by the most casual beginner, yet powerful enough for the most demanding OEM.
- In some ways more capable than CP/M 3.0, yet it runs on CP/M 2.2.
- Field proven in many real-world applications.
- Low priced: $39.95.

This is the same first-quality software package we used to sell for $150. We now proudly join the industry-wide trend toward reasonable software prices.

OKARA runs on any standard CP/M 2.2 system. We distribute it in CP/M-standard 8” SSSD, Northstar SSDD, and Osborne SD formats.

Order today. We’re sure you’ll be delighted, and we have stacks of testimonial letters to prove it. We are...

180 Grand Ave
Suite 900
Oakland
CA 94612
(415) 654-8671

Microsystems is published by the Consumer Computer & Electronics Division of Ziff-Davis Publishing Company

Peter J. Blank, creative director
VICE PRESIDENTS
J. Scott Briggs, marketing
Carole Mandel, circulation
Eileen Markowitz, general manager
PRESIDENT
Larry Sporn

MICROSYSTEMS (ISSN #0199-7955) is published monthly by Ahl Computing, Inc., a subsidiary of Ziff-Davis Publishing Company, One Park Avenue, New York, N.Y., 10016. David Ahl, President; Elizabeth B. Staples, Vice-President; Selwyn Taubman, Treasurer; Bertram A. Abrams, Secretary.

Second Class postage paid at New York, N.Y., and at additional mailing offices. POSTMASTER: Send address changes to MICROSYSTEMS, One Park Ave., New York, N.Y. 10016. Subscriptions are $24.97 for 12 issues. Canadian prices are $30.00 per year additional, other foreign $8.00 per year additional (U.S. currency only). For information or questions about subscriptions phone: (800) 631-8112.

Copyright © 1983 by Ahl Computing, Inc. CP/M is a registered trademark of Digital Research.

Editorial correspondence is welcomed and should be sent to: MICROSYSTEMS, One Park Ave., New York, N.Y., 10016. Phone: (212) 725-6871.

For information on commercial advertising, write to: MICROSYSTEMS Advertising Dept., One Park Ave., New York, N.Y., 10016, or call Jeff Weiner at (212) 725-7957.
NEVER INVEST IN SOFTWARE AGAIN!

unless you can “test” it first, from United Computer’s SOFTWARE RENTAL LIBRARY

You can now RENT the most popular software available for just 15% of Manufacturers’ Retail Price

- Eliminate the risk—rent first!
- All purchases are 20% Off of Manufacturer’s Suggested List
- 100% of rental fee applies toward purchase
- Rentals are for 7-days (plus 3 days grace for return shipping)

There are now 2 different plans to choose from:

<table>
<thead>
<tr>
<th>Game Group</th>
<th>Business Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50.00 per year</td>
<td>$125.00 per year</td>
</tr>
<tr>
<td>and receive your first computer game rental FREE.</td>
<td>and receive your first rental FREE.</td>
</tr>
<tr>
<td>Then rent as many games as you like for only 15% of Mfrs. Sugg. Retail Price.*</td>
<td>Then rent as many business application programs as you like for only 15% of Mfrs. Sugg. Retail Price.*</td>
</tr>
<tr>
<td>Minimum order, 3 game rentals</td>
<td></td>
</tr>
</tbody>
</table>

REMEMBER, THESE ARE NOT DEMOS, BUT ORIGINAL UNRESTRICTED SOFTWARE PROGRAMS (complete with manuals in original manufacturers’ packages)

To Immediately Order, or for more information:

Money Orders or credit cards

<table>
<thead>
<tr>
<th>Money Orders or credit cards</th>
<th>BUSINESS HOURS</th>
<th>Toll Free CALL 1-800 992-7777</th>
</tr>
</thead>
<tbody>
<tr>
<td>MasterCard</td>
<td>Mon-Fri: 8:30-5:30</td>
<td>In California CALL 1-800 992-8888</td>
</tr>
<tr>
<td>Visa</td>
<td>Saturday: 8:30-9:00</td>
<td>In L.A. County CALL 1-213 823-4400</td>
</tr>
</tbody>
</table>

Checks allow 2 weeks

*plus postage and handling. Some programs may require 2-4 weeks delivery.

REMEMBER, THESE ARE NOT DEMOS, BUT ORIGINAL UNRESTRICTED SOFTWARE PROGRAMS

(Complete with manuals in original manufacturers’ packages)

To Immediately Order, or for more information:

Money Orders or credit cards

<table>
<thead>
<tr>
<th>Money Orders or credit cards</th>
<th>BUSINESS HOURS</th>
<th>Toll Free CALL 1-800 992-7777</th>
</tr>
</thead>
<tbody>
<tr>
<td>MasterCard</td>
<td>Mon-Fri: 8:30-5:30</td>
<td>In California CALL 1-800 992-8888</td>
</tr>
<tr>
<td>Visa</td>
<td>Saturday: 8:30-9:00</td>
<td>In L.A. County CALL 1-213 823-4400</td>
</tr>
</tbody>
</table>

Checks allow 2 weeks

*plus postage and handling. Some programs may require 2-4 weeks delivery.

REMEMBER, THESE ARE NOT DEMOS, BUT ORIGINAL UNRESTRICTED SOFTWARE PROGRAMS

(Complete with manuals in original manufacturers’ packages)

To Immediately Order, or for more information:

Money Orders or credit cards

<table>
<thead>
<tr>
<th>Money Orders or credit cards</th>
<th>BUSINESS HOURS</th>
<th>Toll Free CALL 1-800 992-7777</th>
</tr>
</thead>
<tbody>
<tr>
<td>MasterCard</td>
<td>Mon-Fri: 8:30-5:30</td>
<td>In California CALL 1-800 992-8888</td>
</tr>
<tr>
<td>Visa</td>
<td>Saturday: 8:30-9:00</td>
<td>In L.A. County CALL 1-213 823-4400</td>
</tr>
</tbody>
</table>

Checks allow 2 weeks

*plus postage and handling. Some programs may require 2-4 weeks delivery.
It is with great pleasure that I can tell you that *Microsystems* magazine is doing really well. Total circulation is now approaching 50,000 with approximately one-third in dealer/newsstand sales and the rest direct subscribers. It must mean that we are doing things right... in other words, serving the needs of our readers. And we expect to continue as the leading magazine for the sophisticated user of microcomputer systems.

Incidentally, *Microsystems* is having its circulation figures audited by the publishing industry's independent auditing organization. So you can believe that our figures are accurate.

Also, we are in the process of conducting another of our reader surveys. We have selected 2,000 subscribers at random and mailed them our questionnaire and a one-dollar bill. If you are one of the lucky recipients of the questionnaire... congratulations... but please fill it out and return it to us. We really read your comments and they provide a terrific feedback to us on how to improve *Microsystems*.

You may have also noticed that we have finally gotten our act together and are getting issues out on time... in fact we are getting them in the mails so that they have been arriving in subscriber's mailboxes by the first of the month. And we have done that while going from bimonthly to monthly publication. We think that is quite an accomplishment.

Upcoming issues

We are working on some terrific issues that will highlight the following topics:

- May: S-100 Standard & Components Directory
- June: Computer Graphics
- July: Business Oriented Software
- August: Computer Communications
- September: 16-bit Systems
- October: UNIX On Micors - Part II
- November: Local Area Networks

The photo below were taken at a breakfast meeting of RCPM Sysops and public domain software groups. The meeting, sponsored by *Microsystems*, was held in conjunction with CP/M-83 (San Francisco, Jan. 20-23, 1983). An article on what took place will appear in the May issue.
Chairman of the Boards

Z-80A CPU, Floppy Disk Controller, 64K of Memory, Serial & Parallel I/O Ports . . . all on a SINGLE S-100 BOARD!

Advanced Digital is the leader in S-100 single board computers. Our attention to quality workmanship, our outstanding performance and proven reliability have made our SUPER QUAD™ computer on a board™ number one.

Now SUPER QUAD™ has been elected “Chairman of the Boards” in the expanding Multi-Processing marketplace. SUPER QUAD™ functions as the Bus Master and takes charge of many SUPER-SLAVE™ processor boards. SUPER QUAD™ is so complete, it actually replaces the traditional 4-board S-100 computer and for only $875.00.

Look at these features:
- IEEE S-100 Standard
- Z-80A CPU
- 64K of Bank Select Memory as well as extended addressing
- Double density floppy disk controller, both 8” or 5-1/4” Disk Drives
- 2K or 4K of monitor EPROM
- Runs with CP/M®, MP/M® and turbo-DOS™
- One year warranty.
- Free copy of bios disk.

Advanced Digital’s SUPER-SLAVE™ processor boards are the ideal directors to work with the Chairman of the Boards and Turbo-DOS™ operating system in a multi-user, multi-processor system.

Ask about our new HDC-1001 Hard Disk Controller for both 8” or 5-1/4” hard disk drives, only $500 retail. For more information, write or call: Sales Dept.
Rumors. . . .
It is expected that at next month's National Computer Conference, at least 20 companies will introduce UNIX systems based on the 68000 and 80286. Also, expect at least two companies to show prototypes of high-capacity optical read/write systems. Moreover, several other companies can be expected to introduce portable computers: Rumors are that both Tandy and IBM will bring out portable machines. And, look for Osborne to introduce their two new portables: One, a lower-cost unit weighing 40% less than the current unit, and the second, having a 9" display instead of the current 5-incher. Expect both to have some form of IBM-PC compatibility. . . .

There are rumors that Memotech, a manufacturer of peripherals for the Sinclair ZX81/Timex 1000, will shortly introduce a 5 1/4" disk drive add-on for the ZX81 that will include CP/M and an enhanced keyboard. They are expected to sell it for $300. Add some additional memory, and you should be able to have a minimal CP/M system for under $800.

Computer hobbyists to meet
Over 15,000 avid computer hobbyists are expected at the Trenton Computer Festival on April 16 and 17. The big attraction is an outdoor flea market that covers about 20 acres, where hobbyists can buy everything from complete used computer systems and components to used software and rare out-of-print manuals. Sellers and traders set up tables and sell off the back of their cars.

Called the "Trenton Computer Festival," it is now in its eighth year and has the distinction of being the first personal computer show ever held. It is held on the campus of Trenton State College, Trenton, New Jersey. There will also be an indoor commercial exhibitor area, speakers, user group meetings, and a banquet.

The Trenton Computer Festival is sponsored by three nonprofit organizations: The Amateur Computer Group of New Jersey, Philadelphia Area Computer Society, and Trenton State Computer Society. For information call (609) 771-2487 or write: TCF-83, Trenton State College, Trenton NJ 08625.

PICK A SYSTEM!

We're offering you our SB-80 system in either 5 1/4" or 8" disk drives, your choice. Either way your system comes with a full size (12" diagonal) non-glare tiltable green screen with 24 lines by 80 character format. Its multi-character set offers blinking cursor, underlining, reverse video, and half and zero intensity. The movable, detachable keyboard has a numeric pad with cursor control and function keys.

- Single Board Technology
- CP/M® Operating System
- 4 MHz Z80A CPU
- 64K 200ns Main Memory
- 8-Inch Dual Density Floppy Drives
- 5 1/4-Inch Dual Density Floppy Drives
- 2-Serial Ports
- 2-Parallel Ports
- 4-Counter/Timers
- Expandable

For further information about this limited offer call or write:

Colonial Data Services Corp., 105 Sanford Street, Hamden, Conn. 06514 • (203) 288-2524 • Telex: 956014

CIRCLE 75 ON READER SERVICE CARD
GREAT PRICES!

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>dBASE II</td>
<td>$529</td>
</tr>
<tr>
<td>C. Itoh</td>
<td></td>
</tr>
<tr>
<td>PROWRITER SERIAL</td>
<td>$639</td>
</tr>
<tr>
<td>PROWRITER PARALLEL</td>
<td>$489</td>
</tr>
<tr>
<td>F10-55</td>
<td>$1399</td>
</tr>
<tr>
<td>COMSHARE TARGET</td>
<td></td>
</tr>
<tr>
<td>PLANNER CALC</td>
<td>$79</td>
</tr>
<tr>
<td>TARGET FINANCIAL MODELING</td>
<td>$249</td>
</tr>
<tr>
<td>FORCE II</td>
<td></td>
</tr>
<tr>
<td>MATHSTAR</td>
<td>$99</td>
</tr>
<tr>
<td>FOX & GELLER</td>
<td></td>
</tr>
<tr>
<td>DUTIL</td>
<td>$98</td>
</tr>
<tr>
<td>QUICKCODE</td>
<td>$229</td>
</tr>
<tr>
<td>HAYES</td>
<td></td>
</tr>
<tr>
<td>MICROMODEM II</td>
<td>$289</td>
</tr>
<tr>
<td>1200 BAUD SMARTMODEM</td>
<td>$599</td>
</tr>
<tr>
<td>CHRONOGRAPH</td>
<td>$199</td>
</tr>
<tr>
<td>SMARTMODEM</td>
<td>$224</td>
</tr>
<tr>
<td>IDS</td>
<td></td>
</tr>
<tr>
<td>PRISM 132 PRINTER</td>
<td>$1649</td>
</tr>
<tr>
<td>IDS PRISM 80 PRINTER</td>
<td>$1049</td>
</tr>
<tr>
<td>MICROPRISM PRINTER</td>
<td>$599</td>
</tr>
<tr>
<td>ISA</td>
<td></td>
</tr>
<tr>
<td>SPELLGUARD</td>
<td>$189</td>
</tr>
<tr>
<td>LEXISOFT</td>
<td></td>
</tr>
<tr>
<td>SPELL CHECK</td>
<td>$225</td>
</tr>
<tr>
<td>MICROPRO</td>
<td></td>
</tr>
<tr>
<td>CALCSTAR</td>
<td>$189</td>
</tr>
<tr>
<td>DATASTAR</td>
<td>$239</td>
</tr>
<tr>
<td>INFOSTAR</td>
<td></td>
</tr>
<tr>
<td>CALLI</td>
<td></td>
</tr>
<tr>
<td>MAILMERGE</td>
<td>$89</td>
</tr>
<tr>
<td>SPELLSTAR</td>
<td>$149</td>
</tr>
<tr>
<td>WORDSTAR</td>
<td>$279</td>
</tr>
<tr>
<td>WORDSTAR CUSTOMIZATION NOTES</td>
<td>$299</td>
</tr>
<tr>
<td>MAXELL</td>
<td></td>
</tr>
<tr>
<td>FD-1 8" SINGLE SIDED</td>
<td>$41.50</td>
</tr>
<tr>
<td>FD-2 8" DOUBLE SIDED</td>
<td>$48.95</td>
</tr>
<tr>
<td>MD-1 5" SINGLE SIDED</td>
<td>$31.25</td>
</tr>
<tr>
<td>5" DOUBLE SIDED</td>
<td>$47.10</td>
</tr>
<tr>
<td>MICROSOFT</td>
<td></td>
</tr>
<tr>
<td>BASIC COMPILER</td>
<td>$299</td>
</tr>
<tr>
<td>M/SORT</td>
<td>$165</td>
</tr>
<tr>
<td>MICROSOFT COBOL 80</td>
<td>$559</td>
</tr>
<tr>
<td>MICROSOFT COBOL 80 with msort</td>
<td>$679</td>
</tr>
<tr>
<td>muLISP / muSTAR</td>
<td>$159</td>
</tr>
<tr>
<td>MULTIPLAN</td>
<td>$229</td>
</tr>
<tr>
<td>muSIMP / muMATH</td>
<td>$199</td>
</tr>
<tr>
<td>Z80 SOFTCARD PREMIUM PACK</td>
<td>$999</td>
</tr>
<tr>
<td>MICROSTUFF</td>
<td></td>
</tr>
<tr>
<td>CROSSTALK</td>
<td>$119</td>
</tr>
<tr>
<td>NOVATION</td>
<td></td>
</tr>
<tr>
<td>CAT ACCUSTIC MODEM</td>
<td>$134</td>
</tr>
<tr>
<td>CAT DIRECT CONNECT MODEM</td>
<td>$156</td>
</tr>
<tr>
<td>SORCIM</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLY CODE TRANSLATOR</td>
<td>$693</td>
</tr>
<tr>
<td>SUPERSOFT</td>
<td></td>
</tr>
<tr>
<td>DIAGNOSTIC I</td>
<td>$65</td>
</tr>
<tr>
<td>DIAGNOSTICS II</td>
<td>$85</td>
</tr>
<tr>
<td>DISK DOCTOR</td>
<td>$64</td>
</tr>
<tr>
<td>STACKWORKS FORTH</td>
<td>$153</td>
</tr>
<tr>
<td>C COMPILER</td>
<td>$153</td>
</tr>
<tr>
<td>FORTRAN RATFOR</td>
<td>$284</td>
</tr>
<tr>
<td>SSS FORTRAN IV</td>
<td>$219</td>
</tr>
<tr>
<td>SSS RATFOR</td>
<td>$88</td>
</tr>
<tr>
<td>TERM I</td>
<td>$131</td>
</tr>
<tr>
<td>TERM II</td>
<td>$150</td>
</tr>
<tr>
<td>UTILITIES I</td>
<td>$153</td>
</tr>
<tr>
<td>UTILITIES II</td>
<td>$53</td>
</tr>
<tr>
<td>TINY PASCAL</td>
<td>$74</td>
</tr>
<tr>
<td>TELEVIDEO</td>
<td></td>
</tr>
<tr>
<td>910 TERMINAL</td>
<td>$656</td>
</tr>
<tr>
<td>912C VIDEO TERMINAL</td>
<td>$806</td>
</tr>
<tr>
<td>920C VIDEO TERMINAL</td>
<td>$868</td>
</tr>
<tr>
<td>925 TERMINAL</td>
<td>$825</td>
</tr>
<tr>
<td>WHITESMITH</td>
<td></td>
</tr>
<tr>
<td>C COMPILER</td>
<td>$600</td>
</tr>
<tr>
<td>PASCAL</td>
<td>$437</td>
</tr>
<tr>
<td>ZENITH</td>
<td></td>
</tr>
<tr>
<td>219 VIDEO TERMINAL</td>
<td>$899</td>
</tr>
<tr>
<td>ZENITH 12" GREEN MONITOR</td>
<td>$129</td>
</tr>
<tr>
<td>MATERIALS</td>
<td></td>
</tr>
<tr>
<td>CIRCLE 91 ON READER SERVICE CARD</td>
<td></td>
</tr>
</tbody>
</table>

CALL TOLL-FREE

1-800-523-9511

IN PENNSYLVANIA:

1-215-868-8219

MICROHOUSE introduces innovative products periodically. Please call for the new CP/M menu.

PRICES MAY VARY WITH DIFFERENT FORMATS. ALL PRICES AND SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PLEASE CALL OR WRITE FOR SPECIFICS.

1444 LINDEN ST./BOX 499 BETHLEHEM, PA 18016

WE WANT YOU TO KNOW ...

MICROHOUSE
UNIX/C CBBS starts
C-LINE, A Computer Bulletin Board System supporting UNIX/C users is now in operation (2000-0900 hours weekdays, 24 hours weekends; 110-710 baud). The phone number is (201) 625-1779, and the sysop is David Fiedler (who has authored several articles on UNIX AND C for Microsystems). The system is running CP/M-Microshell with 2 Mbytes of files. It caters to news and rumors about UNIX, UNIX-like systems, and C software. The sysop promises online instruction in UNIX and C.

Public domain software
The SIG/M software group has released volumes 85 through 91, containing new utilities and the SYSLIB integrated library of macros.

These disks are available on many RCPM systems and local CP/M user groups or from SIG/M, Box 97, Iselin, NJ 08830.

Audio/Visuals
Bell Laboratories is offering two videotapes on the UNIX operating system. One gives an overview and shows how it is used. The second gives more details on UNIX. The cassette tapes are $100 VHS/Beta) or $140 (PAL/SECAM). They are available from MGS Services, Inc., 619 W. 54th St., NY, NY 10019.

The SIGGRAPH (Special Interest Group on Computer Graphics) of ACM (Association for Computing Machinery) has available 35-mm slides and video tapes on computer-generated graphics. For more information contact: Tom DeFanti, UICC/EECS, Box 4348, Chicago, IL 60680; (312) 996-5485.

News bits
Digital Equipment Corp. (DEC) has agreed to distribute the Bridge software package from Virtual Microsystems. The Bridge allows CP/M-based software to run on DEC minicomputers. Digital Research is expected to shortly introduce a Fortran Compiler. A new magazine for UNIX and C users is being published by World UNIX & C, 30 Mowry St., Box 5314, Mt. Carmel, CT 06518; tel: (203) 288-0283. A subscription is $12/year ($16 if invoiced).

Erratum
In “Four SBCs Reviewed” (Feb ’83), the price of the Intercontinental Micro Systems board in Table 1, p. 75 should be $995, not $1025. Also, we inadvertently showed a second view of the Sierra SBC-100 board instead of the Advanced Digital Super Quad. The correct photo of the Super Quad board is shown below.
#1 with Words. A+ with Numbers.

Spellbinder Word Processing and Office Management Software.

Spellbinder processes words and numbers.

Spellbinder lines up columns of numbers for faster data entry; calculates rows and columns; and puts the totals where you want them.

Spellbinder features flexible printing options; mass mailing and legal text capabilities; plus forms handler and boiler plate features for commonly used documents.

The software for discriminating users.
Whether you process numbers or words, you'll appreciate Spellbinder's unrivaled ease-of-use and superior capabilities. Spellbinder and an inexpensive microcomputer easily outperform dedicated word processing systems costing up to three times more.

You can edit numbers within a column, or move a column to a different location. Spellbinder's integrated forms handler saves time and manpower on multiple invoices, reports, and other documents.

Spellbinder makes word processing much easier, much faster, and much less expensive. In fact, many of our users convert from some of the better known (and more costly) systems.

You should be just as discriminating. See your nearest dealer for a demonstration of Spellbinder. Or call Lexisoft at (916) 758-3630.

Now available in 8086 and IBM® Personal Computer format.

IBM is a registered trademark of IBM Corporation.
Electralogic's MFIO is the most versatile and capable I/O board available for the S-100 bus. The 8 asynchronous serial ports, 2-8 bit bidirectional parallel ports, 8 level programmable interrupt controller and battery backed-up real time clock provide all the features which traditionally required 3 or more boards.

The design meets the needs of OEM's and system integrators who demand high density and reliability in their products.

Additional capabilities include: extended I/O addressing, up to 6 wait states, jumper selectable for high speed systems, easy to use interface cards and serial data rates up to 57.6 K baud.

The 2 pin boards allow any of 20 interrupt sources (11 on board + 9 from S100 bus) to activate 1-8 interrupt levels. The board comes complete with extensive manual and source listings for standard CP/M* BIOS, interrupt driven BIOS, clock set routine, time print routine, diagnostic routines and sample device initialization routines.

*CP/M is a trademark of DIGITAL RESEARCH, INC.

Manufactured by:
ELECTRALOGICS INCORPORATED
3S Durward Place, Waterloo, Ontario
Canada N2L 4E5
Tel: 519-884-8200

CIRCLE 58 ON READER SERVICE CARD
OEM and Dealer Inquiries Invited
Sir,

I have just finished reading Mr. Paul H. Earley's article “Twenty-six Megabytes for Your Computer” in the November/December 1982 issue of Microsystems. The article was quite interesting, especially since the company I worked with used a Morrow M26 as part of a computer system to be installed in a client’s offices. While I agree with Mr. Earley’s comments on this Hard Disk System, there are some additional remarks regarding the M26 that I feel should be presented to your readers.

The M26 was attached to an IEEE-696 S-100 based multi-processor microcomputer using dual 8” floppies with a Tarbell controller. The computer system was configured from its assembly to use the M26 and was in use for a period of approximately 4½ months. During this time I found the M26 to be generally reliable, with certain reservations.

One of the first things I noticed about the M26 was, as Mr. Earley stated, its “no-frills” design. This also extended to the chassis and cover. Despite the rather large size of the unit, it has no supports for the cover other than the sides. As a result, the cover has little solid structural strength and cannot safely support another unit on top of itself. Further, it is too heavy to sit directly on top of anything other than a table (assuming it is a table-top model, as was ours and apparently that of Mr. Earley). While we were able to place the computer chassis on top of the floppy disk unit, the M26 could only be used to hold manuals, forms, and other relatively lightweight items. Considering the area covered by the M26, this was a distinct disadvantage.

The noise from the cooling fan, which Mr. Earley described “as being quite loud” is very loud. This would be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.

The documentation and software provided for installation were in my opinion far less satisfactory than Mr. Earley described "as being quite loud". Would this be annoying enough by itself but when combined with the noise from the fans in the computer and the floppy disk unit, it becomes almost unbearable for any extended period of time. The client who was to receive the system decided it would have to be installed in a back storeroom rather than one of the offices due to this noise.
scribes. I assume that much of hardware point of view involved weeks and required 20 to 30 minutes to correct. This fairly large amount of time was needed because three or more tries were usually necessary before the belt would stay in place. On one occasion the belt broke completely and had to be replaced. Morrow was helpful in this situation, and the replacement belt arrived in three days at a cost (including shipping) of approximately $31. It appeared that the motor of the M26 simply accelerated too quickly for the disk to follow.

Overall, the Morrow M26 and its cousins, the M20 and M10 hard disks, are very useful additions to any computer system. It is not, however, an installation that should be undertaken by a novice, given the type of documentation and software provided with the unit. The hardware itself, although solid and basically well designed, has some problems that can cause trouble. Anyone considering acquiring a hard disk such as any of these should take these problems into account along with the comments and considerations put forward in Mr. Earley's article.

TECHNICAL SALES AND SUPPORT STAFF

Our ads have appeared continuously in Byte Magazine since 1977. We are Byte's oldest advertiser after Cromemco and Godbout. Then why are our ads suddenly appearing in Microsystems and Dr. Dobbs? Our product lines and technical staff address the needs of sophisticated, informed and intelligent users such as readers of Microsystems and Dr. Dobbs. Although we have added some non-S-100, home computer systems to our catalog, we will continue to focus on more sophisticated, high performance, high technology equipment.

MASTER MAX: Z-80, IEEE 696 S-100 system with dual 8” drives. Features Intercontinental CPZ48000 single card computer. 4 DMA channels and universal interrupt controller give great versatility and speed. $2,540 includes CP/M. OPTIONS: ICM slave cards, TURBODOS (single or multi user), double sided drives, single or dual Winchester subsystem, 220V/50Hz.

IMS MULTI USER SYSTEMS: Z-80, S-100, CP/M compatible TurboDos cuts link/edit time in half. 280 code, interrupt driven. Up to six times faster than CP/M; up to 35% increased disk capacity. Slave cards give each user own CPU, 64K RAM, 2 I/O. No speed degradation as users are added! On site service for NY quadrants.

GODDOUT DUAL PROCESSOR 816 SYSTEMS: 8085/8080, Multi or single user. Unique version of MP/M allows simultaneous use of both processors.

CROMEMCO DUAL PROCESSOR SYSTEM: Z80/8080, multi or single user under CROMIX.

LOMAS and SEATTLE 8086 implemented by J.D. Owens in choice of several S-100 mainframes w/ dual drives. 10MHZ option, dynamic or static RAM. CP/M 86 or MSDOS.

GRAPHICS: MICROANGELO (S-100) OR MIRAGE (RS232), Monochrome or color.

MODems: U.S. Robotics DC Hayes compatible modems at much lower prices.

PERIPHERALS: CRT (Televideo, Hazeltine, Zenith, Wyse, others); many dot matrix and letter quality printers, floppy disk subsystems (Shugart, Qume, Tandon, Per Sci). Full line of RAM and other accessories (for IBM PC).

SPECIAL INVENTORY SALE: (while they last) IMS boards at 25% off list price. We also offer EPSON QX10, Otron Attaché, NEC Advanced Personal Computer, Morrow Micro Decision, Cromemco C10.

3270 NETWORK: Teletype controllers, printers and terminals. Cost effective.

CALL OR WRITE FOR FREE PRODUCT SPECS ON ANY ITEM WE CARRY

WE EXPORT Overseas Calls: Phone (212) 448-6298
TXW 710.588.2844 or Cable: OWENSASSOC

Letters to the Editor continued

The one major problem encountered with the M26 from a hardware point of view involved the drive belt between the motor and the disk unit. On a number of occasions the belt came off of the spindles when the M26 was turned on. Our limited resources led us to decide to turn off the entire computer, including the M26, when it was not going to be used for a few hours. Apparently the power-ups (less than one per day) overstressed the belt. The belt came off on an average of more than once every two weeks and required 20 to 30 minutes to correct. This fairly large amount of time was needed because three or more tries were usually necessary before the belt would stay in place. On one occasion the belt broke completely and had to be replaced. Morrow was helpful in this situation, and the replacement belt arrived in three days at a cost (including shipping) of approximately $31. It appeared that the motor of the M26 simply accelerated too quickly for the disk to follow.

Overall, the Morrow M26 and its cousins, the M20 and M10 hard disks, are very useful additions to any computer system. It is not, however, an installation that should be undertaken by a novice, given the type of documentation and software provided with the unit. The hardware itself, although solid and basically well designed, has some problems that can cause trouble. Anyone considering acquiring a hard disk such as any of these should take these problems into account along with the comments and considerations put forward in Mr. Earley's article.

Letters to the Editor continued

Microsystems April 1983

Good reasons why you should subscribe to Creative Computing.

It's the Number One magazine of computer applications and software!

There's one place you can always be sure of learning more about microcomputer software and applications: Creative Computing.

Every month Creative Computing provides you with a continuing education on everything related to microcomputers and computer equipment. Useful articles, "how to" tutorials, exciting new applications, games and "no holds barred" reviews of the latest software and equipment make up a major part of Creative Computing's editorial content.

We give you probing features on programming breakthroughs and important news. Plus in-depth articles on elementary, intermediate and advanced software and applications topics—to help you develop your knowledge and skills, save hundreds (perhaps thousands) of dollars in unneeded software, discover uses for your personal computer that you might never have considered. Articles that increase your overall "computer consciousness." Here's how:

1. **Creative Computing** gives you things to actually do with a computer.

 Just owning a computer isn't enough. You've got to know what to do with it. That's why applications are our primary focus. Text editing, animation, graphics, business simulations, data base and file systems, music synthesis, control of household devices, communications, games—some of the applications and software you'll learn about in Creative Computing.

2. **Creative Computing** discusses business applications in simple, nontechnical language.

 If you're a business person who needs to know about the latest developments in word processing and office applications, turn to Creative Computing. We clarify such business applications as investment analysis, futures evaluations, data base management, mailing list programs, text editing, word processing and simulations. And all the software available for business people.

3. **Creative Computing** helps you decide which computer equipment is best for you.

 Our tough, no-nonsense equipment profiles arm you with the facts before you walk into a computer store. You'll know the right questions to ask and how to cut through the jargon and sales hype. We give you authoritative guidance in deciding what you need, what you don't need—and what's right for you and your pocketbook.

4. **Creative Computing** covers computer education in depth.

 We started out as a computer education publication, and we're still committed to the educational community. We regularly carry articles on designing educational software, evaluating educational software, teaching concepts and terminology in computer education, text editing applications for literature and computer simulations in the classroom—plus a great deal more.

5. **Creative Computing** brings you hours of mind-expanding game entertainment.

 We've got a soft spot for the computer game addict—and computer game software. We know you want to understand more about the new computer games flooding the market: which ones are easiest to learn? Require the most skill? Offer the most surprises? Give you the best graphics? Provide the most challenge? Contain a new twist? Creative Computing brings you the answers.

6. **Creative Computing** features the state of the art.

 Columns on the most popular personal computers, a "software legal forum," letters to the editor. Reviews of books, games, organizations, dealers and events. Fascinating interviews with leading innovators, equipment designers, program developers and game inventors—men and women who'll give you a real glimpse of the future!

SAVE UP TO 33%!

Creative Computing · P.O. Box 5214 · Boulder, Colorado 80322

YES! Send me Creative Computing for:

- One year (12 issues) for $19.97—I save 20%!
- Two years (24 issues) for $36.97—I save 26%!
- Three years (36 issues) for $49.97—I save 33%!

Savings based on full one-year subscription price of $24.97.

Check one: [] Payment enclosed. [] Bill me later.

Mr./Mrs./Ms. [please print full name]

Address:

City:

State: Zip:

Offer valid in U.S. and possessions only. Please allow 30 to 60 days for delivery of first issue.

Join over 150,000 Creative Computing readers by subscribing today! Just use the coupon at right.
The CP/M Bus
by Anthony Skjellum

Macros and Assemblers: Part II

Macro instructions are a convenient facility provided by sophisticated assemblers. An introduction to macros was presented in the “CP/M Bus,” Microsystems Nov/Dec ’82. Readers should refer to this article.

REPT . . . ENDM revisited

In the previous installment on macros, an example using the REPT . . . ENDM macro sequence to produce a 7-byte area filled with zeros was incorrect. This is the correct form of the example:

```
AREA REPT 7
LD C 0
ENDM
```

The symbol VALUE used in the original example is not needed.

Use of comments in macros

Normally, assembly language comments are delimited with the semicolon (‘;’) character. Macros may also have comments within their definitions. However, the comments will be stored within the symbol table and added into the assembly language output at each macro expansion. This is usually not required and can also consume significant space in the assembler’s symbol table. To avoid this overhead, assemblers such as Digital Research’s MAC interpret a double semicolon (‘;;’) as a special macro comment. Such comments are not stored in the symbol table and will not appear in macro expansions.

Redefining stored macros

It is often desirable to have a stored macro behave specially on its initial invocation. This permits various initializations to be done. A macro may be redefined by placing a stored macro definition of the same name within the original definition. A simple example follows:

```
CPHLDE MACRO
    JMP @SRGIP
    loop subroutine which follows:
    MOV A, L
    CMP E
    JLZ BRCPEX
    MOV A, H
    SBB D
    BRCPEX:
    BRA @SRACC
    DB @SRHACC
    @SRHACC:
    JMP @SRH
    @SRH:
    DB @SRACC
    @SRACC:
    JMP @SRG
    @SRG:
```

The above example compares the DE and HL register pairs and sets the 8080 register flags accordingly. On the first invocation, the subroutine @@CP: is assembled. This subroutine is preceded by a jump so that the main body of code (which called CPHLDE) skips the subroutine. After the subroutine is assembled, a redefinition macro is encountered. This redefinition changes CPHLDE to be a simple subroutine call to the @@CP subroutine just assembled.

Finally, an actual compare request is generated by calling the newly defined form of CPHLDE. This is included so that a comparison of HL and DE will occur as a result of the first macro call. In order to clarify the above macro and comments, the code caused by the initial use of CPHLDE is shown here:

```
CPHLDE: JMP @SRGIP
    loop subroutine which follows:
    MOV A, L
    CMP E
    JLZ BRCPEX
    MOV A, H
    SBB D
    BRCPEX:
    BRA @SRACC
    DB @SRHACC
    @SRHACC:
    JMP @SRH
    @SRH:
    DB @SRACC
    @SRACC:
    JMP @SRG
    @SRG:
```

Subsequent uses of CPHLDE cause just the last line of the macro to be assembled.

A note on LOCALs

In the previous installment, an example was included ("CMP16") to illustrate the use of LOCAL symbols. In the above macro, all but one symbol can be local. The @@CP symbol cannot be since it will be referenced by subsequent invocations of the redefined form of CPHLDE. None of the symbols have to be local since the subroutine @@CP: is assembled only once. Use of locals would be a matter of programming caution used to help avoid collision of symbol names with other programs segments. To give the macro the preferred form, the following would be added as the second line of the macro:

```
LOCAL @SRH, @SRG, @SRACC
```

which would make the symbols @@SKIP, @@CPEX, and @@ACC local and prevent potential problems.

Nested definitions

Above we discussed the possibility of redefining a macro within itself. It is also possible to define other macros within the body of a macro definition. Note that the macros specified in this way are not known to the assembler until the section of the enclosing macro which defines them is expanded. For example, consider a case where console input is to be performed via a macro called CONI. An assembly-time flag called INPFLG determines which type of BDOS input will be used. This check could be done at each invocation of the input macro, but conditional macro definition will result in faster assembly since the check is done only once.

```
INPFLG = EQ
IF NOT INPFLG
    DEFINE MACRO CONI
        CONI MACRO
            CALL CONI
```

18 Microsystems April 1983
POWER!
The first super program that puts you in control of CP/M.

POWER! works with CP/M or MP/M on any computer.
POWER! gives you complete control over CP/M.

Ever accidentally erased a file? POWER! restores erased files!
Ever fiddled with PIP in copying files? POWER! replaces PIP and is faster and easier. You simply pick files to be copied from a numbered menu. POWER! feeds the names to CP/M for you - no need to type file names, no typing errors...ever!
Tired of CP/M's scrolling through text files? POWER! goes through files for you, page by page, file by file, or line by line with instant halt at your finger tips.
Ever lost data on a glitched disk? POWER! tests disks and fixes glitched disks.
Damaged Directory? POWER! allows you to repair the directory!
Afraid of HEX numbers? POWER! automatically converts HEX to DECIMAL, BINARY & ASCII.
Need to patch or change a program? POWER! examines memory, displays memory, and lets you change memory wherever you want.
Want to locate a file? POWER! sorts the directory, searches all disks or all user areas automatically for files for you.

Annoyed at having to keep a system disk in Drive A? POWER! doesn't require a system disk in any drive.
Renamed a file using = and all that typing? POWER! lets you pick files from a numbered menu and prompts for every action.
Ever accidentally overwritten a file? POWER! checks first and asks permission.

Need to manipulate data on a disk? POWER! reads and writes any track or sector independently.
Ever make a mistake in the DDT? POWER! loads disk data to ANY memory address, not just 100, and writes to the disk from any memory address. POWER! Single-Steps through memory, moves memory, compares memory sectors, tests memory, allows you to change memory and saves to disk using Decimal numbers.
NOW POWER! permits you to securely lock any file with your password to protect sensitive information from prying eyes. PASSWORD program included FREE with every POWER! order.

Dislike BDOS errors? POWER! ends BDOS errors, and gives you a way out.
Trouble identifying files? POWER! marks original files and their copies for you. POWER! also compares files and finds identical copies regardless of name.
Can't remember odd file or program name abbreviations? POWER! lets you deal with disk files by number. Never type or mistype file names again.
POWER! does more...NEW version of over 55 command utility programs is the only CP/M housekeeper you will ever need to really get control of your computer. A great buy, too, at less than $2.75 each.

JOIN OTHER POWER USERS
E. I. DuPont
Sperry Univac
NY Stock Exchange
Livermore Labs
Union Carbide
UC Berkeley
UC San Francisco
Bendix Corp
Ford Motor Co.
Xerox Corp
Conn. Gen. Life
Princeton Univ
ITT
Dow Chemical
Advanced Logic Sys.
Charleston Univ
Univ Helsinki
AMF
Syracuse Univ
Olivetti
New Mexico State
Monsanto Chemical
Univ Minnesota
US Dynamics
CIB Bank

COMPUTING! 2519 Greenwich, San Francisco, CA 94123
TOLL FREE (800) 428-7825 Ext 968 DEALERS and OEM's
IN CA: (800) 428-7824 Ext 968 (415) 567-1634
□ CP/M $149 □ CP/M-86 $149 □ MP/M $198 California add 6½% sales tax.

Card No. Ex Date
Name ____________________________
Company ________________________
Address __________________________
City __________________ State ______ Zip ______

CIRCLE 6 ON READER SERVICE CARD
Software Associates
now introduces a new line of affordable, quality software

DATABASE SYSTEM
A user-friendly file management system. Includes:
- On-screen design of input and report formats
- Multiple field keys with capability to search on any field
- Query language included for easy retrieval of file information

SORT PACKAGE
A stand-alone, easy to use sorting package using fast heapsorting. Includes:
- Sorting on up to 10 keys
- May be parameter file driven
- A separate file merge capability

INDEX CARD FILE
A computerized index card file with user designed format. Includes:
- 60-column x 14-line size
- Search for any keyword(s) within file
- Sort “cards” into smaller categories
- Perform mathematical functions on given portions of a card

SOFTWARE ASSOCIATES
38A W. Oakland Avenue
Oakland, N.J. 07421
(201) 337-2002

Formats: IBM PC (PC-DOS or CP/M-86); Osborne; NorthStar; Altos. Call about the availability of other formats.

Requirements: CP/M-80; CP/M-86; IBM PC-DOS (MS-DOS); 54K RAM. Addressable cursor terminal; Printer capable of 132 column.

Terms: Money order, cashier's check, Visa, MasterCard, personal or company check (allow 14 days to clear). CCID (add $4.00) - Include $5.00 for shipping and handling. N.J. residents add 6% sales tax. All software shipped UPS (ground). UPS Blue Label add $3.00 per item.

© 1983 SOFTWARE ASSOCIATES

CIRCLE 12 ON READER SERVICE CARD

THE CP/M BUS
continued...

The macro DEFINE would need to be invoked before the macro CONI could be used.

Redefinition and conditional macro definition may also be combined to have a macro redefine itself in more than one way depending on the value of a given symbol. For example, we could rename the above macro DEFINE as CONI and thus combine conditional definition with redefinition. This would also require an explicit CONI request after the redefine so that console input would occur on the first use. The above macro would now have the following form:

```
CONI MACRO
  IF [some condition]
    MACRO
      LOCAL
      MVI
      MVI
      CALL
      ORA
      JZ
      EI'DM
  ELSE MACRO
    MVI
    CALL
    ENDEF
  ENDM

CONI 11 request input
      11 for first invocation
```  

Careful use of the above techniques can be used to produce versatile macro libraries.

Announcing errors
As soon as macros take parameters, the possibility of erroneous parameters must be considered. The following technique is used to announce such errors:

```
... somewhere in a macro
  IF cond : some condition met
    ERROR -- name of macro -- bad input'
    EXITM
  ENDIF
```

The assembler will flag the quoted string as an illegal operation and hence print it. This will alert the programmer to the situation. The EXITM statement is included to prevent the further expansion of the macro in which the error was discovered.

The MACLIB statement
Once a collection of macros has been created and debugged, it is convenient to place them in a single library file for reference by future programs. This is facilitated by the MACLIB statement. More than one MACLIB may be used in a program, and
THE CP/M BUS
continued...

these requests are normally placed near the beginning of
the module. MACLIB is called as follows:

MACLIB LIBRARY

where LIBRARY.LIB is a file on the currently logged-in
drive. It is also possible to specify the drive in the usual CP/
M convention. The MAC assembler comes with several
useful libraries, some of which will be discussed in future
columns.

MACLIB may not be used to include code (other than in
macros) but can be used to include symbol definitions
(EQUates and SETs). This can be immensely useful since defi-
nition libraries can be included. Such libraries can include sym-
monic names for the BDOS function numbers and symbolic
names for special addresses within the CP/M memory
map. This helps to standardize usages of symbol names and
also to eliminate unnecessary bugs arising from typographical
errors involving special constants.

THE CURE PACKAGE

Backup your valuable data and programs with dataCURE,
the industry's first diskette archiver with both error detec-
tion and error correction.

Not only does dataCURE take bad sectors out of service
so diskettes don’t have to be scrapped: It does
more . . .

Its unique software logic gives you corrected
copies of bad diskettes automatically and
quickly with no hardware changes.

User-friendly dataCURE's function menu includes:
HELP-COPY-PROTECT-DETCT-CORRECT-UNERASE-REIITE-EDIT

Designed for 48K CP/M 2.2 with two drives (one of which may be a Winchester),
dataCURE is distributed in 8" SSSD CP/M format. It handles all diskette
sector sizes to 1024 bytes.

$100 including UPS Blue. (In NJ add $6.00 tax.)

Orders only: 800-225-0103 any day, any hour.

COLORADO ONLINE
Suite 100
40 Balfour Lane
Ramsey, NJ 07446

Inquiries: 201-327-5155 Mon-Fri 9-5 or request callback.
Dealer inquiries invited.

CP/M is a trademark of Digital Research Incorporated. The trademark dataCURE, and the service
mark COLORADO ONLINE are owned by Colorado Online Systems, Incorporated.

CIRCLE 125 ON READER SERVICE CARD

THE P&T BUS GOES TO THEM ALL!

The P&T-488 interface enables you to use your S-100 computer and any of
these operating systems and languages to communicate with 488 equipment.

The P&T-488 supports FIVE languages!

- Basic:
 - Microsoft
 - CBasic 2°
 - Cromemco
 - North Star
- Pascal:
 - Pascal/M™
 - Pascal/MT+™
- Fortran: Microsoft
- C: Quality Systems
- Assembler

Sample Programs are included.

CIRCLE 61 ON READER SERVICE CARD

* CP/M and CBasic 2° are registered trademarks, and MP/M II
 and Pascal/MT+™ are trademarks of Digital Research, Inc.
* CDOS and CROMIX are trademarks of Cromemco, Inc.
* Pickles & Trout is a trademark of Spectrum.
Parameter evaluation

When evaluating a parameter, the assembler ignores any leading and trailing blanks and tab characters. The parameter must be enclosed in a single set of angle brackets if spaces and tabs are to be included as part of a parameter. (A single set of balanced angle brackets will be removed before the parameter is passed.)

Also, quoted strings are left untouched except for a single level of substitution involving the ampersand operator discussed previously. A numeric evaluation and escape character are also provided. These will be discussed in the next section.

Numeric evaluator

When a symbol is passed to a macro, it is the symbol's ASCII name, not its numeric value, which is given to the macro. If
Introducing the serious business solution.

Multi-User, Multi-Processing at a Credible Price. MultiNet sets the standard for multi-user business systems. Even the basic two-user system comes complete with everything you need. A master microprocessor and two user microprocessors, 20 megabytes to 104 megabytes of high performance 5½-inch Winchester disk, 13.4-megabyte cartridge tape, 1.2 megabyte industry standard 8-inch floppy diskette, distributed processing operating system, CP/M—at a price any business can afford: $9,995.

MultiNet: easily and quickly expandable to 8 users—just insert another user processor for each user. Clean and simple. On top of this, MultiNet allows the intermixing and simultaneous operation of 8-bit (Z-80) and 16-bit (8086/8087) user processors within a single system. Or start with an 8-bit system now and expand with 16-bit processors in the future. MultiNet also offers local area networking—up to 16 MultiNet systems—for users wishing to access programs and data on remote systems.

Programs For Every Application. Just load and go. With MultiNet, each user can have their own CP/M application software programs and data, or each can run the same. Run your accounts payable, accounts receivable, general ledger, customer data base or any of the thousands of CP/M programs available with the fast data handling and response features of a true multi-processor system. Install MultiNet for today's 8-bit programs and it will be ready for tomorrow's 16-bit programs. What's more, the master operating system allows each user to have a dedicated processor while handling the sharing and management of common services such as disk, tape and printers. Complete file/record updating, multi-user record locking and powerful automatic print spooling are provided.

From MicroSystems International, The Leader In Microcomputer Design. MultiNet is a design breakthrough. We've taken the very best, most reliable components money can buy and combined them in a single esthetically pleasing package. Components and modules can be swapped in minutes instead of hours. And MultiNet is designed to last years instead of months. MultiNet: The Serious Business Solution from MicroSystems International.

- Dual 5½" Winchesters
- Cartridge Tape Drive
- Industry standard 8" Floppy Disk Drive
- S-100 Module
- Dual whisper-quiet fans
- I/O connector
- Actively terminated bus
- Constant voltage transformer
- Multi-level power protection

For more information, write or call Customer Information Services, MicroSystems International, 12 Mercer Rd., Natick, MA 01760. (617) 655-9595. Dealer inquiries are invited.

MicroSystems International
See us at Comdex, Atlanta

CIRCLE 145 ON READER SERVICE CARD
introduces...
the Price & Performance Leader
the GENESIS 8D S-100 micro
A COMPLETE DUAL 8" DISK DRIVE S-100 MICROCOMPUTER
FOR ONLY... $1995.00

THE IDEAL MICROCOMPUTER FOR:
★ Business
★ Education
★ Industry
★ Development
★ Networking

FEATURES:
★ Z80A CPU 4MHz
★ 64K Dynamic RAM
★ 2 800K 8" disk drives (SSDD)
★ Floppy Disk Controller
★ CPM 2.2 Operating System
 (MPM and TURBODOS Available)
★ 10 Slot IEEE 696 Mainframe
★ 2 Serial Ports
★ 2 Parallel Ports
★ DMA
★ Keylock ON/OFF Switch

COMPLETE THE SYSTEM WITH OUR INEXPENSIVE TERMINAL AND PRINTER COMBINATION FOR ONLY $925

CIRCLE 173 ON READER SERVICE CARD
THE CP/M BUS
continued...

the value of the symbol, rather than its name, is required, the percent ("%") character must precede the symbol name. Numeric expressions involving the values of symbols may also be used. For example, imagine a macro EXAMPL which requires a symbol's name and its value plus three. Such information would be passed as follows:

```
EXAMPL SYMBOL, $SYMBl+3
```

The first parameter will be the string SYMBL, while the second will be the ASCII string representing the numeric expression. Thus if SYMBL had the value 15 (assigned previously with SET or EQU), the second parameter would be the ASCII string 18.

Escape character
The escape character is a caret or up-arrow: ("\(^\uparrow\)") and is used to prevent evaluation of dummy parameters within the body of a macro. This is done by a caret preceding the parameter. The caret can also be used to

BIG STEPPER
Stepping-Motor Driver Box

Apple
IBM pc
DEC

SELF-CONTAINED!
HOOKUP AND GO!
Provides all required power
Drives 4 motors while sensing 8 limit switches
Up to 5 amps per winding
with complete optoisolation

PARALLEL BIG STEPPER
$450
*Direct program control

SERIAL BIG STEPPER
$850
*RS232 compatible, obeys simple commands

STEPNING-MOTOR TIPS COOKBOOK
$5

Centre Computer Consultants
P.O. Box 739
State College, PA 16801
(814) 237-4535

PARALLEL INTERFACE
FOR APPLE
24 bits total: 16 out/8 in
$90

Parallel Interface for
TRS80 (Model I & II)
48 bits total: 32 out/16 in
$95
You Just Found It!

E-Z Tax. The simplest tax preparation software ever developed was designed for your Apple II personal computer.

Now you can prepare your own tax return without any knowledge of taxes or computer programming. From the moment you insert the E-Z Tax floppy disk, you'll be in full control. Every question is self-prompting and nothing is overlooked.

If you make a mistake, the program lets you know about it immediately. If you need tax help, just press a button and you'll get the answer. It's simply the most amazing tax preparation software ever.

Please send me the following # of kits requested:

<table>
<thead>
<tr>
<th>Apple II</th>
<th>IBM PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL REQUESTED

x $69.95 each

Total

Plus Postage & Handling ($3/kit)

Plus C.O.D. Charges ($3/kit)

TOTAL ORDER

(Enclose payment for this amount.)

ACT NOW!

Send: □ Check □ Money Order □ C.O.D.
Charge my credit card: □ Visa □ Mastercard

Card #: _______________ Exp. Date _______________
Signature ________________________________
Name ________________________________
Address ________________________________
City __________ State ______ Zip __________

Mail this coupon to: TAX HELP, INC.

CIRCLE 152 ON READER SERVICE CARD
force the assembler to treat other special characters (e.g. ';') literally within parameters. Note that the character must still be a printable ASCII character and that a literal caret is represented by a pair of carets ('``'). Note also that the up-arrow performs no special function within the confines of a quoted string.

Conclusion
In this installment of "CP/M Bus," we have discussed more about the use of macro instruction sequences. More information about macros will be given in future installments of this column.

Coming next month:
S-100/IEEE-696 Standard Update,
by Sol Libes.
S-100 Product Directory,
by Sol Libes.
Review of the CompuPro MPX-1 Intelligent I/O Board,
by Dennis Thovson

$175.00
THE BEST MBASIC DISPLAY INTERFACE EVER DEVELOPED!
Let MCDISPLAY handle the interface to the program user in your application program. For CP/M.
ORDER YOUR COPY TODAY
CALL COLLECT (803) 244-8174
DEMO PACKAGE $10.00 MANUAL $25.00
CHECK, MONEY ORDER, P.O., VISA, MASTERCARD

GET THE BEST OUT OF CP/M®
WITH WAVE MATE'S BULLET

- Cost Effective
- Highest Performance of any 4MHz Z80 Board
- 128 K Usable RAM
- Enhanced Software to Optimize CP/M
- DMA Track Buffered Disk Controller
- Only 8 x 10.7 inches in size
- Power only 5v @ 1.5 a.
- Use any Serial Terminal and Centronics compatible printer
- Capable of supporting MP/M

WAVE MATE INC.
14009 S. Crenshaw Blvd.
Hawthorne, CA 90250
(213) 978-8600 Telex: 194389

WAVE MATE INTERNATIONAL
159 Che de Vleurgat
1050 Brussels, Belgium
Tel: (02) 649 10 70 Telex: 24050

CIRCLE 63 ON READER SERVICE CARD
S-100

MEMORY BOARDS

64K STATIC RAM - Jade
Uses new 2K x 8 static RAMs, fully supports IEEE 896 24-bit extended addressing, 200mA RAMs, lower 32K or entire board phantomable. 2715 EPROMs may be subbed for RAMs, any 2K segment of upper 8K may be disabled, low power typically less than 500mW.

MEM-91152 Bar board $49.95
MEM-91152K Kit less RAM $59.95
MEM-32152K 32K kit $159.95
MEM-59152K 56K kit $209.95
MEM-84152K 64K kit $209.95
Assembled & Tested add $50.00

256 RAMDISK - SD Systems
Expand RAM on expandable from 64K to 256K using 64K×1 RAM chips, compatible with CP/M, MPOS, & most other Z-80 based systems, functions as ultra-high speed disk drive when used with optional RAMDISK software.

MEM-65606A 64K A & T $474.95
MEM-85128A 128K A & T $574.95
MEM-85192A 192K A & T $674.95
MEM-95256A 256K A & T $774.95
SFC-55009000F RAMDISK w/CPI 2.2 $44.95
SFC-55009000F RAMDISK w/EXRAM III $24.95

64K RAM BOARD - C.C.S.
IEEE S-100, supports front panels, bank select, fail-safe refresh 4MHz, extended addressing, list price $75.00 less than half price!!!

MEM-64556A $199.95

S-100

VIDEO BOARDS

MICROANGELO - Scion
Ultra-high-resolution 512x480, 256 color or black & white S-100 video board.

IOV-15006 A & T $799.95

LETTER QUALITY PRINTERS

LETTER QUALITY PRINTERS - COMREX
Uses standard daisy wheels and ribbon cartridges, 18 CPS bi-directional printing, semi-automatic paper loader (single sheet or fan fold), 10/12/15 pitch, up to 15" paper, built-in noise suppression cover.

PRD-11001 Centronics parallel $599.95
PRD-11002 RS-232C serial model $599.95
PRA-11000 Tractor Option $119.95

STARWRITER F-10 - C. Itoh
New 40 CPR daisy wheel printer with full 15" carriage, uses standard Diablo print wheels and ribbons, both parallel and serial interfaces included.

PRD-22010 Starwriter F-10 $1495.95

THE BUS PROBE - Jade
Inexpensive S-100 Diagnostic Analyzer
So your computer is down. And you don't have an oscilloscope. And you don't have a front panel... You're not alone - most computers have their occasional bad days. But without diagnostic equipment such as an oscilloscope (expensive) or a front panel (expensive), it can be very difficult to pinpoint the problem. Even if you have an extender board with a superfast logic probe, you can't see more than one signal at a time. You're stuck, right? Not anymore; Jade is proud to offer our cost-effective solution to the problems mentioned above: THE BUS PROBE.

MEM-64565A $199.95
MEM-56152K 64K kit $299.95
MEM-4152K 128K kit $299.95
MEM-99152K 56K kit $299.95
MEM-99152B 256K kit $299.95
Assembled & Tested add $50.00

DUAL DISK

SUB-SYSTEMS

Disk Sub-Systems - Jade
Handsome metal cabinet with proportionally balanced airflow system, rugged dual drive power supply, power cable kit, power switch, line cord, fuse holder, cooling fan, never-mar rubber feet. all necessary hardware to mount 2-8" disk drives, power supply, and fans. does not include signal cable.

Dual 8" Sub-Assembly Cabinet
END-00420 Bar cabinet $49.95
END-00421 Cabinet kit $195.95
END-00431 A & T $249.95

8" Sub-Systems - Single-Sided, Double Density
END-00423 Kit w/2D-100-090 $580.00
END-00424 A & T w/2D-100-090 $685.00
END-00433 Kit w/2D-SA-81R $99.95
END-00434 A & T w/2D-SA-81R $1195.00

8" Sub-Systems - Double-Sided Double Density
END-00426 Kit w/2D-100-090 $1294.95
END-00427 A & T w/2D-100-090 $1249.95
END-00436 Kit w/2D-SA-81R $1274.95
END-00437 A & T w/2D-SA-81R $1474.95

8" Slimline Sub-Systems - Jade
Handsome vertical cabinet with scratch resistant baked enamel finish, proportionally balanced airflow system, quiet cooling fan, rugged dual drive power supply, power cables, power switch, line cord, fuse holder, cooling fan, all necessary hardware to mount 2-8" slimline disk drives does not include signal cable.

Dual 8" Slimline Cabinet
END-00520 Bar cabinet $59.95
END-00522 A & T w/ drives $179.95

Dual 8" Slimline Sub-Systems
END-00523 Kit w/2D-100-090 $519.95
END-00524 A & T w/2D-100-090 $599.95
END-00533 Kit w/2D-100-090 $1149.95
END-00534 A & T w/2D-100-090 $1179.95

S-100

CPU BOARDS

MICROANGELLO - Scion
Ultra-high-resolution 512x480, 256 color or black & white S-100 video board.

IOV-15006 A & T $799.95

SBC-200 - SD Systems
4 MHz Z-80A CPU with serial & parallel I/O, 1K RAM, 8K ROM space, monitor PROM included.

CPC-30200A A & T $329.95

THE BIG Z - Jade
2 or 4 MHz switchable Z-80 CPU board with serial I/O, accommodates 2708, 2716, or 2732 EPROM, baud rates from 75 to 9600.

CPU-30201B Bare board w/manual $35.00
CPU-30201K Kit with Manual $149.95
CPU-30201A & T with Manual $199.95

2810 Z-30 CPU - C.C.S.
2 or 4 MHz Z-80 CPU board with serial I/O port & on board monitor PROM, front panel compatible.

CPU-30400A A & T w/PROM $289.95
CPU-Z Compupro
2 or 4 MHz Z80A CPU, 24 bit addressing.

CPU-30050A 24 MHz A & T $279.95
CPU-30050C 26 MHz CISC $279.95

8085/8088 - Compupro
Both 8 & 16 bit CPUs, standard 8 bit S-100 bus, up to 8 MHz, accesses 16 Megabytes of memory.

CPU-20510A 6 MHz A & T $398.95
CPU-20510C 8 MHz CISC $479.95

PLACE ORDERS TOLL FREE

Continental U.S. 800-421-5500
Inside California 800-262-1710

For Technical Inquiries or Customer Service call:
213-973-7707

We accept cash, checks, credit cards, or Purchase Orders from qualified firms and institutions.
Minimum prepaid order $15.00 California residents add 8 1/2% tax. Export customers outside the US or Canada please add 10% to all prices. Prices and availability subject to change without notice. Shipping and handling charges via UPS Ground $5.00/lb. UPS Air $1.00/lb. minimum charge $3.00
Siemens FDD 100-8 single-sided double-density 8" DISK DRIVES

END-000226

MP18-51

MPI

Shugart SA465
Shugart SA455
Shugart SA400L
Shugart SA450

MBS-181A A
MBS-121A
MBS-121B Bare board

MSM-155100 $234.95

MSM-155200 $344.95 ea

MSM-l04550 $349.95 ea 2

MSM-104000 $234.95 ea 2

MSM-l04650 $399.95 ea 2

Tandon TM100-3

Shugart SA450

MBS-121K

MBS-061 A A
MBS-061 K
MBS-061 B

5 1/4 MOTHERBOARDS

Silent, simple and on sale -

8-52

5 1/4" Cabinets with Power Supply
END-000216 Single cab w/power supply $69.95
END-000226 Dual cab w/power supply $54.95

S-100

ISO-BUS - Jade
Silent, simple and on sale - a better motherboard.
6 Slot (3 1/2" x 8 1/2")

MBS-061B Bare board $22.95
MBS-061K Kit $39.95
MBS-061A A & T $69.95
12 Slot (9 1/4" x 8")

MBS-121B Bare board $34.95
MBS-121K Kit $69.95
MBS-121A A & T $109.95

18 Slot (14 1/2" x 8 1/2")

MBS-181B Bare board $54.95
MBS-181K Kit $99.95
MBS-181A A & T $149.95

J-CAT** MODEM - Novatlon
1.5 the size of ordinary modems. Bell 103, manual or auto answer, automatic answer/orlinate, direct connect, built-in self-test, two LED's and audio "beeps" provide complete status information.

IOM-521A Novaton $149.95

S-100 DISK CONTROLLERS

DISK 1 - CompuPro 8" or 5 1/4" DMA disk controller, single or double density, single or double sided, 10MHz.

IOD-1810A A & T $449.95
IOD-5500C CSC $554.95

VERSAFLOPPY II - SD Systems
Double density disk controller for any combination of 5 1/4" and 8" single or double sided, analog phase-locked loop data separator, vectored interrupts. CP/M 2.2 & Oasix compatible, control/diagnostic software ROM inclulded.

IOD-1160A A & T with PROM $359.95

2242 DISK CONTROLLER - C.C.S.
5 1/4", 8" or 10" density disk controller with on-board boot loader ROM, free CP/M 2.2 & manual set.

IOD-1300A A&T with CP/M 2.2 $399.95

DOUBLE D - Jade
High reliability double density disk controller with on-board Z-80A, auxiliary printer port. IEEE S-100 can function in multi-user interrupt driven bus.

IOD-1200B Bare board & driver man $59.95
IOD-1200K Kit w/printer & driver man $299.95
IOD-1200A A & T w/printer & driver man $325.95

JADE Computer Products
4901 West Rosecrans, Hawthorne, California 90250

CIRCLE 16 ON READER SERVICE CARD
In the Public Domain
by Chris Terry

This month I will be summarizing the high-level language processors that are available in the CPMUG and SIG/M libraries. Assemblers, cross-assemblers and related utilities will be discussed in a future column.

BASIC

Six different versions of Basic, ranging from "tiny" to elaborate are available in the CPMUG. Volume 11 contains TINIDISK, a version of the Wang Palo Alto Basic originally described in Dr. Dobb's Journal. The source code for the interpreter is provided, together with a .COM file and a .DOC file containing full instructions for use. This was designed in the days when an 8K memory board could set you back $400 or so; the interpreter occupies only 3K and is consequently somewhat limited. But, believe it or not, TINIDISK is accompanied by a version of Star Trek (6K) which can be run with TINIDISK!

At a slightly more elaborate level is Processor Technology's BASIC/5 interpreter. The original cassette version occupied 5K; this adaptation to run under CP/M 1.3 occupies 8K. Again, a somewhat limited interpreter without transcendental functions or any form of sub-string handling. I ran the original cassette version and found it adequate for simple games (such as those in David Ahl's "101 Games for Computers"); I have never given this CP/M version anything of a workout, though I was able to bring it up under CP/M 1.4 and run one of the guessing games.

Volumes 31 and 32 of CPMUG contain the source code, documentation and executable module of an early version of Tarbell Basic. This needs a lot of experimentation. I tried to run version 12.1 (much later than this public domain version) and found the editor infuriating and difficult to work with, and there were still some bugs. In its day this was a very advanced interpreter with WHILE ... WEND and other structures absent even from Microsoft's Version 4, but I found the editor so tricky that I gave up on it—other people tell me they had better luck.

Probably the two most useful versions are the Lawrence Livermore interpreter in Volumes 2 and 10 of CPMUG, and EBASIC, included in Volume 26 of the SIG/M library. EBASIC is a semicompiler with a runtime interpreter, and is the ancestor of CBASIC, CBASIC2 and CB-80. This is more powerful than the other public domain Basics, in that it has higher precision, requires no line numbers except in state­ments that are the targets of GOTOs or GOSUBs, and has better control structures. However, it is somewhat slow and is less convenient than an interpreter when it comes to debugging. EBASIC was supplied free with CP/M by various disc controller manufacturers, and the manual is still available from various sources. An EBASIC Help file is available on SIG/M Vol. 14 (requires HELP.COM in Vol. 13 to run it); this gives you on-line help relating to EBASIC procedures, error messages, etc.

Volume 26 was also published (without change) as CPMUG Vol. 53. Floating Point conversion routines for EBASIC appear in Vols. 29 & 30, together with the PL/M source of the compiler and runtime interpreter.

Other procedure-oriented languages

FOCAL, a language similar to Basic supplied by Digital Equipment Corp. for use on their PDP/8 and other machines, was adapted to run under CP/M and issued in CPMUG Vol. 16. ALGOL/M, a subset of Algol-60, is available with full documentation and a useful set of test and demonstration programs in Algol/M on CPMUG Vol. 28.

RATFOR (the acronym stands for RA7ional FORtran) is a preprocessor for Fortran source programs. It allows control structures such as IF . . . ELSE, WHILE, REPEAT UNTil, FOR . . . NEXT, BREAK, and INCLUDE, and generates standard Fortran statements. A .COM file of the preprocessor is contained in CPMUG Vol. 24; a faster version for Z80 only is in CPMUG Vol. 49, together with the RATFOR source, documentation, and some demonstration programs. The output of the RATFOR preprocessor can be compiled with the Microsoft Fortran-80 compiler.

A Pascal compiler (written in Pascal) is available in SIG/M Vol. 50. This differs somewhat from standard Pascal, but the differences are fully documented. A preprocessor makes a single pass over the source code, generating a sort of p-code which is written to disk. A two-pass translator then scans the p-code and generates 8080 object code which is linked to a runtime library by using PIP.

Threaded languages

Two languages of this type are available in the public domain: FORTHII (SIG/M 13, republished as CPMUG 65) and STOIC (CPMUG 23 & 25). Both of these languages use Reverse Polish Notation and a threaded block structure that allows you to define your own
Finally, you can buy state-of-the-art S-100/IEEE 696 static memory for your computer at an unprecedented savings. Memory Merchant’s memory boards provide the advanced features, quality and reliability you need for the kind of operational performance demanded by new high-speed processors.

Completely Assembled.

These memory boards are not kits, nor skeletons - but top-quality, high-performance memories that are shipped to you completely assembled, burned-in, socketed, tested and insured with one of the industry's best warranties.

Superior Design & Quality.

Memory Merchant's boards are created by a designer, well known for his proven ability in advanced, cost-efficient memory design. Innovative circuitry provides you with highly desired features and incredible versatility.

Only first-quality components are used throughout, and each board is rigorously tested to assure perfect and dependable performance.

No Risk Trial.

We are so convinced that you will be absolutely delighted with our boards that we extend a no-risk trial offer. After purchasing one of our boards, you may return it (intact) for any reason within 15 days after shipment and we will refund the purchase price (less shipping).

NEW S-100 PRODUCTS COMING SOON:
- DUAL 8/16 BIT CPU BOARD
- 128K 8/16 BIT STATIC RAM
- 256K 8/16 BIT DYNAMIC RAM

64K RAM, MODEL MM65K16S
- 64K x 8-bit
- Speed in excess of 6 MHz
- Uses 150ns 16K (2K x 8) static RAMS
- Ultra-low power (435 ma. max. - loaded with 64K)
- Bank Select and Extended Addressing
- A 2K window which can be placed anywhere in the 64K memory map
- Four independently addressable 16K blocks organized as:
 - Two independent 32K banks or
 - One 64K Extended Address Page or
 - One 48K and one 16K bank for use in MP/M* (option)
- Each 32K bank responds independently to phantom
- 2716 (5V) EPROMS may replace any or all of the RAM
- Field-proven operation in CROMEMCO CROMIX* and CDOS*
- Compatible with latest IEEE 696 systems such as Northstar, CompuPro, Morrow, IMS, IMSAI front panel, Altair and many others.

OEM and DEALER inquiries invited.

FULL TWO-YEAR WARRANTY.

The reliability of our boards, through quality-controlled production and proven performance, has enabled us to extend our warranty to a full two years. That's standard with us, not an option. This includes a 6-month exchange program for defective units.

SHIPPED direct from stock.

All Memory Merchant’s boards are shipped direct from stock, normally within 48 hours of receipt of your order. Call us at (415) 483-1008 and we may be able to ship the same day.

16K RAM, Model MM16K14
- 16K x 8 Bit
- Bank Select & Extended Addressing
- Four independently addressable 4K blocks
- One 4K segment equipped with 1K windows
- Uses field-proven 2114 (1K x 4) RAMS
- Low Power (less than 1.2 Amps)
- Runs on any S-100 8080, 4 MHz Z-80 or 5 MHz 8085 system.

Prices, terms, specifications subject to change without notice.

*Cromix and CDOS are trademarks of CROMEMCO.
* MP/M is a trademark of Digital Research.
UNIX, with change.

Idris is a trademark of Whitesmiths, Ltd. / UNIX is a trademark of Bell Laboratories.

Put off by the UNIX price tag and licensing restrictions? If you are, take a closer look at Idris.

Idris gives you all the power of UNIX at a fraction of the cost—and they're highly compatible—even pin-for-pin in some cases. Upfront expenses are much lower and you only pay for the parts you ship.

What's more, we wrote Idris ourselves—from the ground up—so you'll have fewer licensing hassles. We wrote it almost entirely in C, for maximum portability across a wide range of processors. And we kept it small.

Idris can run comfortably where UNIX can't even fit: On an MC68000 with no memory management hardware, for example. On a bank-switched 8080 or Z80. Or on any LSI-11 or PDP-11 with memory management. A very big Idris plus.

Find out how you can put Idris to work in your favorite configuration today. Write Whitesmiths, Ltd., 97 Lowell Road, Concord, Massachusetts, 01742. Or call (617) 369-8499, TLX 951708 SOFTWARE CNCM.

With Idris, you pocket the change.

Whitesmiths, Ltd.
Crafting Software Tools for your Trade.

Distributors: Australia, Fawnyray Pty. Ltd., P.O.B. 224 Hurstville NSW 2220 (612) 578-6100
Japan, Advanced Data Controls Corp., Chiyoda-ku, Tokyo (03) 363-0383
United Kingdom, Real Time Systems, Newcastle upon Tyne 0652 733151

CIRCLE 89 ON READER SERVICE CARD
In the Public Domain continued...

extensions to the language. Both are interactive, which makes for easy debugging, but generate fast, compact machine code in the manner of a compiler. FORTH is in fact Fig-Forth Version 1.1 and ran under the contributor’s CP/M 1.43. He emphasizes that you should obtain the Fig model manual and the Fig Assembly Source Listing before attempting to use the program, in case any modifications are needed. STOIC is rather similar to Forth, but may produce more compact code in some applications (see Richard Moos's article “Stoic versus Forth” in the Sep/Oct 1982 issue of Microsystems.)

PISTOL (Portably Implemented Stack Oriented Language, SIG/M Vol. 59) was inspired by and has evolved from Forth and Stoic. Like these, Pistol uses RPN. At present all arithmetic is performed in integer form. The author notes that this language is still “in an early developmental stage,” and it may therefore have bugs. The CP/M implementation was written in C and compiled with the BDS C compiler.

Other languages
ACTOR (CPMUG Vol. 4.) is a TRAC-like string-processing language that comes with a comprehensive manual and some sample programs.

PILOT (Programmed Inquiry and Learning) is an interactive language for use in computer-aided instruction, where easy pattern-matching of responses is required. The complete documentation and listing were published in Dr. Dobb’s Journal, April and May 1977. The version in CPMUG Vol. 7 is for an Intel MDS but can be processed by ASM except for one statement that contains an 8-bit negative value (ASM insists that negative values have 16 bits). CPMUG Vol. 12 contains source code patched to interface properly with CP/M.

CASUAL (CPMUG Vol. 18) is a language originally described in Dr. Dobb’s Journal for December 1976. This version has no CP/M I/O, but has standard Intel mnemonics (which the original did not).

SAM76 (CPMUG Vol. 34) is a macro and string processing language that is powerful and, to some degree, extensible. It has been very successfully used in controlling a mobile robot, but has many other possibilities if you can master its subtleties.

PIDGIN, TINCMP (SIG/M Vol. 43). Pidgin is a systems programming language described in the July 1981 issue of Dr. Dobb’s Journal. TINCMP is a compiler for special purposes, written in Pidgin. The volume contains documentation on how to use Pidgin and how to put together a TINCMP compiler for your own special purpose; all macros and utilities needed are supplied on the disk.

Complete 8 inch CP/M format disk and manual retail for $99.95. N.Y. residents please add sales tax.

Toll free order line: (800) 431-1953 ext 185

In NY (800) 942-1935 ext 185

Dealer inquiries invited.

CP/M is TM of Digital Research
An IEEE-488 Bus Tutorial
by Richard S. Newrock

One of the most important uses of computers is to control industrial processes and laboratory experiments. To accomplish this it is often necessary to connect the computer to a variety of test and measurement equipment. This article describes the industry standard for interfacing computers to programmable instruments, a standard commonly known as the "488 bus" (IEEE-488/1978) or the "GPIB" (General Purpose Instrument Bus). The bus is known by other names as well, two of which are the "HPIB" (Hewlett-Packard Interface Bus) and the "ASCII" bus.

The 488 bus is the first universal computer/instrument interface and is probably the most well designed and consistent of all computer interfaces. The bus has become a worldwide standard primarily because of its ease of use, its well-defined functions, and its well-thought-out handshaking protocol. It is used by more than 175 manufacturers of nearly 1,500 instruments. Most of these are measurement and test instruments, but printers and plotters are also available. A user can select instruments from different manufacturers and be certain that (electronically) they will work together perfectly. No custom interface design will be needed. In addition, all commands and data are coded in ASCII (hence the "ASCII bus"), making bus operation and control particularly simple. So simple, in fact, that bus control can be done with programmable calculators; a computer is not a necessity. With a good software package even a novice can quickly design and construct a very complicated instrumentation system.

State-of-the-art instrument and computer manufacturers always try to use the latest and fastest technology. This resulted in the creation of a wide variety of computer/instrument interfaces during the '60s and early '70s. Unfortunately, most of these were incompatible. Steve Leibson has described the situation as similar to that which existed in railroading during the 1850s and '60s: each railroad used a different track gauge, and interfacing (passing a train of freight cars from one line to another) was impossible. A more modern illustration is the different buses currently used in microcomputers.

During the mid-'60s the Hewlett-Packard Corporation decided it needed a standard computer/calculator interface for all of its future instruments. Their design was taken by the International Electrotechnical Commission (IEC) as a starting point for an industry-standard interface. By 1974 a draft of the standard was ready for approval. Shortly thereafter, the Institute of Electronics and Electrical Engineers (IEEE) presented a draft for their own standard, the IEEE-488/1975. These were soon adopted and were followed by the essentially similar American National Standards Institute (ANSI) standard in 1976. The three standards are the IEEE-488/1978, the IEC-625-13, and the ANSI-MCl.I4. The IEEE standard was revised in 1978 for a variety of reasons. Most important, it was necessary to clarify some of the language and reflect new technology—in particular, Schottky logic. The result, IEEE-488/1978, is the standard of interest to us.

Before describing the "488" standard and its implementation, it is worth making a small digression. Exactly what is meant by a "standard"? What should it specify and what should it not specify? How much detail is to be given? A standard is a detailed specification of the important mechanical, electrical, and functional aspects of a device or a system. It must fix as many of the important parameters as possible without hindering the device's applicability or flexibility. If possible, it should not deal with the actual electronic design of the device; if it does, it will make the use of new technology more difficult. It ought to detail the function of the device without forcing the manufacturer into using a particular design or circuit.

The IEEE-488 interface standard addresses all of these concerns. It specifies only those electrical and mechanical parameters of the bus which are necessary to ensure compatibility: the cable, the connectors, the voltage levels, and the current drain. It does not intrude where it is not needed (for example, the circuit design and layout of the interface). It defines a number of bus commands and functions, but does not tell how, or indeed if, they are to be used.

The 488 standard defines the instrument bus, its functions, and the instrument interfaces. It defines the handshaking, the bus commands and the data transfer technique. A schematic of the bus is shown in Figure 1, where the bus, several instruments, and the controller are indicated. The bus is nothing more than a cable, with appropriate connectors daisy-chained to the various devices. Each device (including the controller) connected to the bus consists of two parts: an instrument-independent portion, the interface, defined by the standard, and an instrument-dependent portion, defined by the manufacturer. Only the instrument interface "talks" to the bus; commands and data coming over the bus may be interpreted by the instrument, but are sent and received by the interface. Perhaps the best way to describe these interfaces is that they allow the controller to operate the instrument in place of the instrument's front panel. That is, the interface allows the controller to program the instrument in exactly the same way that a person would from the front panel. Because of this the 488 bus is sometimes called the "interface bus."

An instrument system consists of devices that can play one or more of three different roles: controller, talker, or listener. All devices must act in at least one of these assigned roles; they provide...
the basis for the flow of information over the bus. The controller is a device that can manage the bus, including sending bus commands, and instructing other devices when to transmit (become talkers) or receive (become listeners). This is clearly the role played by the computer. Every device on the bus (including the controller) must follow strict rules assigned to its role. These rules allow orderly operation and data transfer.

The data transfer rates of the various instruments are not overly important; in fact this is one of the unique features of the bus. The handshaking has been designed so that the data transfer rate depends on the speed of the transmitters and receivers and not on a fixed system clock. The ultimate transfer rate is determined by the slowest active instrument on the bus. Thus, a wide variety of instruments can operate together, even if they have very different transfer rates and operating speeds. The communication is completely asynchronous, and it can even be interrupted during the handshake without loss of data.

The standard

The electrical, mechanical, and functional aspects of the bus are described in detail in this section. We begin with the mechanical and electrical specifications, since these are simple and straightforward.

The bus consists of a 24-conductor cable connected to the instruments with ribbon connectors (IEEE-488/1978 and ANSI-MC1.1). Each end of the cable has both male and female connectors, allowing the cables to be stacked (Figure 2). That is, several cables can be connected to a single point without using “Y’s” or “T’s”. Unfortunately, the IEC-625.1 standard specifies a type-D connector, a DB-25. Use of this connector should be avoided, as it is the same connector used for RS-232 serial ports. RS-232 voltage levels differ substantially from 488 voltage levels, and a misconnection will severely damage the 488 interface. Adapters are available to convert to ribbon connectors; these should be placed on the instrument and left there. There is another problem about which one should be aware. Most instruments use connectors with metric threads (black screws). However, English threads are occasionally used (silver screws); be careful not to mix them up or the threads will be destroyed.

The instruments and the controller can be connected in any order; they are just “device loads” to the bus. As many as 15 devices, including the controller, can be used. They can be connected linearly (daisy-chained), in a “star” (radiating outward from a point), or in any combination of the two. The only limitation is that there be no more than 2 meters of cable per device, up to 20 meters maximum (unless a bus extender is used). This is because the interface electronics must maintain the proper voltage levels and timing and, if the cable is too long, the interface cannot drive the lines. The devices need not be evenly spaced on the cable, but should be no more than 4 meters apart.

The 488 bus uses negative true logic, opposite to that used on the S-100 bus. Zero, or false, is a voltage greater than 2.0V and 1, or true, is 0.8V or less. All lines on the bus are active low (true) and

The 488 bus has become a worldwide standard primarily because of its ease of use, its well-defined functions, and its well-thought-out handshaking protocol.
An IEEE-488 Bus Tutorial continued...

A listener is any device that can receive data, including the controller. In general, a listener can only accept data when it is instructed to do so by the controller. The controller does this by designating ("addressing") the device to be a listener. This is done by placing the instrument's "listen address" on the data bus, as described later. Some devices are listen-only and are meant to be used in systems with no controller. These always listen and cannot be prevented from doing so.

A talker is any device, including the controller, that, when addressed, can send data over the bus. The controller designates a device as a talker by placing its "talk address" on the bus. Talk-only devices also exist and are meant to be used in systems with no controller. As they cannot be prevented from talking, they must be the only talker in a system.

In general, talkers get analog inputs (voltage, frequency, etc.) and transmit digital data over the 488 bus, whereas listeners receive digital data from the bus and create analog outputs (pulses, plotter-pen position, etc.). Some instruments can only listen, e.g., printers and signal generators. Some can only talk, e.g., tape readers. Some can perform both roles; e.g., a digital voltmeter can receive programming instructions and send measurements. When a device can be both a listener and a talker, the controller determines which function is active by how it addresses the instrument.

The controller can not only transmit and receive data, but can issue commands; it is the only device allowed to manage the bus. The controller can designate listeners and talkers, program them, trigger them, send instrument-dependent messages and interface-dependent messages. It can conduct polls to determine instrument status and handle service request interrupts. In short, it and its programs run the system. There is a provision in the standard to have more than one controller and to pass control between them, but this is seldom done.

Functions, commands, and addressing

The standard defines a number of functions that the instrument interfaces can perform. In addition, it defines the commands that they may recognize. A command tells the instrument interface to perform one of the functions. It is important to note that every instrument does not have to perform every function or obey every command. The manufacturer determines which are necessary for the operation of his instrument.

There are 10 interface functions, each with a set of options. Of these, five may be considered basic: an instrument may be a listener and if so, must be able to decode talker addresses and perform the talker (or source) handshake. The source hand-
I/O TECHNOLOGY S-100/IEEE-696 PLUG-INS

DUAL GPIB-488 INTERFACE BOARD
The Dual GPIB-488 is a Stand-Alone, independently controlled Dual Channel IEEE-488, 1978 Interface Controller. Interface Activity Modes such as Controller In-charge, Controller Assigned or Terminal Bus Slave and all Interface Functions, their Sub-Functions including Extended Functions, are handled by an On-Board 5MHz Processor and DMA Controller. 500K Byte Data rates are easily achieved with minimum host processor overhead.

Assembled and tested, P/N 52748-800-100 $650.00

12-BIT A-D-A CONVERTER BOARD
8 Channel A-D: 12 microsec. Conv. time, Programmable gain & Offset Voltage control, Diff./Single Voltage or Current Input.
8 Channel D-A: 2 microsec. Settling time, Bipolar V / Unipolar I Output, Programmable Reference levels, DUAL-PORTED Refresh RAM, 16 or 8-bit Data Transfers via Program I/O or Memory Mapped I/O, Extended Addressing and much more.

Assembled and tested, P/N 52748-900-100 $430.00

128K x 8 / 64K x 16 CMOS STATIC RAM MODULE
TOP BOARD SUPPORT
LOGIC AND
32K x 8 / 16 x 16 RAM

150 nsec. Access, 2716 compatible RAM devices, Extended Addressing, Programmable wait cycles, Write protect and Bank select. Battery back-up capability. No wait cycles with fast 16-Bit Processors. The module’s “Piggy-back” arrangement provides high density @ low input power yielding an improved MTBF and space utilization.

Assembled and tested, P/N 52748-650-128 $825.00

MULTI-FUNCTION I/O BOARD
Two Serial SYNC/ASYNC RS-232, TTL or Current Loop with XTAL controlled Dual Baud Rate Generator, Four Parallel Ports (Input, Output or Bi.), Three 16-Bit timers, 8-level Interrupt Controller and large Proto area with +5V, ±12V for custom applications.

Assembled and tested, P/N 52748-100-101 $325.00

PROTOTYPING BOARD KIT
Can be used for wire-wrap or solder prototyping projects. Comes complete with +5, ±12V Regulators, Heat sinks, 2 Bus Bars, Filter Capacitors and Manual.

K+ P/N 52748-400 $59.95

*PERFORMANCE, POWER, PRICE
New additions to our line of fine products are always on the drawing board. Please watch for the introduction of these new items as they become available.

CANYON COUNTRY, CALIFORNIA
POST OFFICE BOX 2119
CANYON COUNTRY, CA 91351
(805) 252-7666

Calif. residents add 6% sales tax.
Prices and Specifications subject to change without notice.
shake is a function that allows the interface to transmit data properly. Similary, listeners must decode listener addresses and perform the listener (or acceptor) handshake (the acceptor handshake function allows for proper reception of data), and controllers must be able to manage the bus. These five functions obviously determine whether an instrument can send and receive data and whether it can control the bus. These functions and the possible options are shown in Table 1. In addition to the basic functions, there are five others:

REMOTE/LOCAL. This function determines whether an instrument responds to its front panel or to programming information on the bus.

SERVICE REQUEST. This function allows the instrument to request service from the controller at some point in its operation or when an error has occurred. It is used in conjunction with the “serial poll,” which is described more fully later.

PARALLEL POLL. If this function is implemented, an instrument can identify itself to the controller when it needs service. It does this by setting or clearing a single data bit when polled. A seldom-used function, it is described in detail under polling.

DEVICE CLEAR. This function allows the controller to return a device to a manufacturer-determined default state, usually the state at power-up. This function is nearly always implemented.

TRIGGER. If this function is implemented, the device’s function can be initiated by the controller. For example, a pulse generator can be triggered when a pulse is desired. This function is almost always implemented when the use of the instrument warrants it. It is often used to synchronize and trigger groups of instruments.

The controller designates listeners and talkers, and issues commands to perform bus functions over the five bus management and the eight data lines. The 488 bus has two main modes of operation: command mode and data mode. The mode is determined by the attention (ATN) line, one of the five bus management lines. When ATN is true, we are in the command mode: all instruments must listen to the controller, which sends “commands” over the data lines. When ATN is false, we are in the data mode: instruments previously addressed as listeners and talkers send and receive “messages” over the data lines. When in command mode, the instrument interfaces accept and interpret the commands. In the data mode, the interface accepts or transmits the messages, but the instrument itself interprets or provides the messages.

There are two types of commands, UNILINE and MULTILINE, referring to the number of bus lines needed to transmit the command. For example, ATN has a line dedicated to its use and is therefore a uniline command. Uniline commands use the bus management lines. Multiline commands use the first seven data lines, with ATN true (to indicate command mode).

Uniline commands

ATTENTION (ATN). ATN tells an instrument if the information on the data lines is a command or a message. When true, the byte on the data bus is interpreted as either a talk or listen address or as a universal or addressed command. ATN forces all instruments to stop what they are doing.

Figure 3. The pin-out of the ribbon connector used in the IEEE and the ANSI standards. This is usually an Amphenol 57-20240-2 or its equivalent.
The O.T. Maxi-System is an industry standard S-100 expandable microcomputer which is ideal for general electronics on Two Cards • 64K RAM Standard • Universal Disk Controller • 2 Megabytes on line - OT 8" Mainframe with 8 slot Motherboard - Televideo 925 Full Featured CRT

- Filtered Fan • Two A.C. Outlets • Key Lock Switch • Two Serial Ports
- 4MZ Z80A CPU • Parallel Printer Port • 10-40 MB Hard Disk Option. Expandable to 256K RAM

Package Price Includes Cables, Documentation

Q.T. DISCOUNT MICRO-SYSTEMS PACKAGES

Q.T. MAXI-SYSTEM PACKAGE - Model 800P

$6,395.00
List $7,995.00—Save $1,600.00

Q.T. MINI-SYSTEM PACKAGE - Model 500P

$3,995.00
List $4,995.00—Save $1,000.00

Q.T. INDUSTRY STANDARD S-100 MAINFRAMES

Q.T. MICRO-FRAME™—Series 600
Desk Top—Plain Front Panel
- 6 to 22 slot Motherboard
- Full I/O Cutout Array
- Fused EMI/RFI Filter
- Heavy Duty Power Supply (+8V@16A ±16V@3A)
QTC-MF + 1 No MB ... $499
QTC-MF + 6 6 slot MB ... $599
QTC-MF + 8 8 slot MB ... $699
QTC-MF + 12 12 slot MB ... $799
QTC-MF + 18 18 slot MB ... $899
QTC-MF + 22 22 slot MB ... $999

Q.T. PRO-FRAME™—Series 700
Rack Mount—Constant Voltage
QTC-RM + 12 12 slot MB ... $799
QTC-RM + 18 18 slot MB ... $899
QTC-RM + 22 22 slot MB ... $999

Q.T. MINI-FRAME™—Series 500
Desk Top—Dual Mini Drives
- Holds two 514" Drives
- Full Cutout Array
- 6, 8, or 12 slot MB
- Fused EMI/RFI Filter
- Hard Disk Power Supply (+ 8V@16A, ± 16V@3A, ± 12V@5A, ±5V@5A)
QTC-MF + MD (No MB) ... $699
QTC-MF + MD6 6 slot MB ... $799
QTC-MF + MD8 8 slot MB ... $849
QTC-MF + MD12 12 slot MB ... $999

Q.T. MAXI-FRAME™—Series 800
Desk Top for Dual 8" Drives
- 6, 8, 12 slot Motherboard
- Universal Drive mounts
- Key Lock Power Switch
- Heavy Duty Power supply (+8V@16A, ±16V@3A, ± 5V@5A, ± 24V±5A)
QTC-MF + DD1 No MB ... $799
QTC-MF + DD6 6 slot MB ... $899
QTC-MF + DD8 8 slot MB ... $949
QTC-MF + DD12 12 slot MB ... $999

NEW IMPROVED 1983 MODELS

The entire Q.T. product line has been redesigned and improved using computer controlled manufacturing techniques to insure the highest quality. Many new features have been added to every item. The Q.T. 1983 models are among the best S-100 products available on the market today. They are fully compatible with the latest 16/32 bit CPUs.

Call (800) 238-3100 today for the location of your nearest dealer and/or to obtain the 1983 Q.T. catalog. Substantial dealer/OEM discount offered.

Stocking dealers with retail showrooms and mail order facilities include:
Priority One, Chatsworth, CA 800-423-5922
Bison Products, Los Angeles, CA 213-994-2533
Compatible Computer, New York City 212-221-7900

COMPATIBLE COMPUTER CORP.
Salt Lake City, UT 84115
O.T. Products Division
COMPATIBLE COMPUTER CORP.
641 North 100 West
Salt Lake City, UT 84115

NOTICE: CP/M is a trademark of Digital Research, Turbodos of Software 2000 and INFOWARE of Compatible Computer Corporation. The Q.T. trademark and product designs remain the property of the licensor. COMPATIBLE COMPUTER CORPORATION and Golden West Computers, Inc. The O.T. trademark and product designs remain the property of the licensor. COMPATIBLE COMPUTER CORPORATION. The O.T. trademark and product designs remain the property of the licensor.

Q.T. DISCOUNT MICRO-SYSTEMS PACKAGES

Q.T. MAXI-SYSTEM PACKAGE—Model 800P

$6,395.00
List $7,995.00—Save $1,600.00

Q.T. MINI-SYSTEM PACKAGE—Model 500P

$3,995.00
List $4,995.00—Save $1,000.00

O.T. DISCOUNT MICRO-SYSTEMS PACKAGES

O.T. PRO-FRAME™—Series 700
Rack Mount—Constant Voltage
QTC-RM + 12 12 slot MB ... $799
QTC-RM + 18 18 slot MB ... $899
QTC-RM + 22 22 slot MB ... $999

Q.T. INDUSTRY STANDARD S-100 MAINFRAMES

Q.T. MICRO-FRAME™—Series 600
Desk Top—Plain Front Panel
- 6 to 22 slot Motherboard
- Full I/O Cutout Array
- Fused EMI/RFI Filter
- Heavy Duty Power Supply (+8V@16A ±16V@3A)
QTC-MF + 1 No MB ... $499
QTC-MF + 6 6 slot MB ... $599
QTC-MF + 8 8 slot MB ... $699
QTC-MF + 12 12 slot MB ... $799
QTC-MF + 18 18 slot MB ... $899
QTC-MF + 22 22 slot MB ... $999

Q.T. PRO-FRAME™—Series 700
Rack Mount—Constant Voltage
QTC-RM + 12 12 slot MB ... $799
QTC-RM + 18 18 slot MB ... $899
QTC-RM + 22 22 slot MB ... $999

O.T. MINI-FRAME™—Series 500
Desk Top—Dual Mini Drives
- Holds two 514" Drives
- Full Cutout Array
- 6, 8, or 12 slot MB
- Fused EMI/RFI Filter
- Hard Disk Power Supply (+ 8V@16A, ± 16V@3A, ± 12V@5A, ±5V@5A)
QTC-MF + MD (No MB) ... $699
QTC-MF + MD6 6 slot MB ... $799
QTC-MF + MD8 8 slot MB ... $849
QTC-MF + MD12 12 slot MB ... $999

O.T. MAXI-FRAME™—Series 800
Desk Top for Dual 8" Drives
- 6, 8, 12 slot Motherboard
- Universal Drive mounts
- Key Lock Power Switch
- Heavy Duty Power supply (+8V@16A, ±16V@3A, ± 5V@5A, ± 24V±5A)
QTC-MF + DD1 No MB ... $799
QTC-MF + DD6 6 slot MB ... $899
QTC-MF + DD8 8 slot MB ... $949
QTC-MF + DD12 12 slot MB ... $999

Standard features & Options: All Q.T. mainframes are built on a strong steel chassis with sturdy heavy gauge aluminum covers. Heavy duty power supplies have individually fused outputs and are shielded by an HEMI metal face plate & surge protector. Standard I/O outlets include provision for 16 DB 25's, 1 DC 37, 2 8V@16A, ±16V@3A, ± 5V@5A, ± 24V±5A. Fused EMI/RFI filter & line surge protector. Filtered positive pressure cooling fan. Twin AC outlets provide convenient connection for and control over printer and terminal. Standard colors are charcoal/light grey to match Televideo terminals. Optional colors include brown/tan and federal spec. ivory at extra charge. Constant voltage power available on most models—add $100.00. EIA rack mount rails available on some units—add $95.00. Complete OEM customization available on orders of 10 or more units. Contact factory for details and pricing.

Q.T. DISK DRIVE CABINETS AND SUBSYSTEMS

Q.T.'s All in One®
Universal Disk Drive Cabinet
- Expandable
- Accepts all 8" drives
Q.T.'s unique new disk drive cabinet has been designed to accept virtually any 8" drive on the market today from Tandon Thinlines to 40 megabyte Quantum. Features include interchangeable face plates (Qume, Shugart, Tandon, etc.) and "electronics in a drawer" construction to simplify installation and maintenance. Heavy duty power supply will carry any combination of up to four drives, two standard, or one hard disk drive with floppy backup. +5V@5A, -5V@1A, +24V±5A.
QTC-DDC8 8V/XX w/one faceplate ... $399.00 Replacement Faceplates (Specify type & number of drives) ... $25.00 Tandon 4-drive power cable ... $15.00 Data Cables available ... $20-50.00

SINGLE 8" VERTICAL CABINET
Size: 11" H 11" W 18" D
Perfect add-on disk drive for any system. Accepts most brands.
QTC-DDC8V ... $299

DUAL 8" HORIZONTAL DRIVE CABINET
Dimensions: 5" H 17" W 20" D
Designed to provide basic disk storage capacity for S-100 and other computers. Low profile permits table top stacking.
QTC-DDC + 88H ... $349

Q.T. “ALL IN ONE” EXPANDABLE DISK DRIVE SUBSYSTEM SPECIALS
QTC-DDS + 0 with two single sided Siemens Drive (55MB) ... $695
QTC-DDS + 1 with one double sided Mitsubishi Drive (1MB) ... $895
QTC-DDS + 2 with two DSSD Mitsubishi Drives (2MB) ... $1,495

CIRCLE 40 ON READER SERVICE CARD
dBASE II

WE WROTE THE ONLY BOOK

dBASE II™ USER'S GUIDE $29
FREE WITH dBASE II™!

WE OFFER THE LATEST ACCESSORY PRODUCTS

dUTIL $ 69 dBASE II™ UTILITY PACKAGE
QUICKCODE $229 dBASE II™ PROGRAM GENERATOR
NEW! ABSTAT $379 STATISTICS PACKAGE FOR
dBASE II™ FILES

WE STOCK THE WIDEST SELECTION OF dBASE II™
dBASE II™ WITH FREE dBASE II™ USERS GUIDE
CALL FOR PRICE

8" SINGLE DENSITY, TRS-80 MODEL II
5¼" APPLE II/Ill, HP-125, NORTHSTAR, SUPERBRAIN, TELEVIDEO,
VECTOR GRAPHIC, XEROX, ZENITH Z-89
IBM PC DOS 1.1

WE TEACH ALL THE CLASSES
SPONSORED BY SOFTWAREBANC SEMINARS, INC.
DAY 1 INTRODUCTION TO dBASE II™ 9AM - 5PM $100
DAY 2 ADVANCED dBASE II™ TECHNIQUES 9AM - 5PM $100

Atlanta Boston Chicago
April 24, 25 Mar. 4, 5, 7 Mar. 18, 19, 20
Houston Los Angeles Miami New York
Feb. 4, 5, 6 Jan. 7, 8, 9 Dec. 28, 29 Feb. 25, 26, 28
San Francisco Washington D.C.
April 8, 9, 11 Jan. 21, 22, 23

ORDER 1-800-451-2502
(617) 641-1241 IN MASS.

TECHNICAL SUPPORT (617) 641-1235

Payment may be made by Mastercard, Visa, check, money order, wire transfers. Mass. residents please add 5% sales tax. Add $5.00 for shipping and handling.
Overseas orders add additional $10.00. Prices subject to change without notice. All items subject to availability.
*Mfg. Trademark
An IEEE-488 Bus Tutorial continued

are doing and listen to the controller; it can be asserted only by the controller.

INTERFACE CLEAR (IFC). This line clears the bus and sets all instruments to idle. It is normally asserted at power-up and may be asserted only by the controller. IFC halts all data transmission, unaddresses all instruments, and stops all polls.

REMOTE ENABLE (REN). Most instruments can be programmed either by the front panel or by information on the bus. When this line is asserted the instrument responds to the bus and

Table 1. The interface functions, their options, and the capability identification codes.

<table>
<thead>
<tr>
<th>Functions</th>
<th>Capability ID and options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>C</td>
</tr>
<tr>
<td>Talker</td>
<td></td>
</tr>
<tr>
<td>Extended talker</td>
<td>T0 T1 T2 T3 T4 T5 T6 T7 T8</td>
</tr>
<tr>
<td>Basic talker</td>
<td>x x x x x x x x</td>
</tr>
<tr>
<td>Serial poll</td>
<td>x x x x x x x x</td>
</tr>
<tr>
<td>Talk-only mode¹</td>
<td>x x x x x x x x</td>
</tr>
<tr>
<td>Unaddress if addressed to listen²</td>
<td>x x x x x</td>
</tr>
<tr>
<td>No capability</td>
<td>x</td>
</tr>
<tr>
<td>Listener</td>
<td>L</td>
</tr>
<tr>
<td>Extended listener</td>
<td>L0 L1 L2 L3 L4</td>
</tr>
<tr>
<td>Basic listener</td>
<td>x x x x x x</td>
</tr>
<tr>
<td>Listen-only mode¹</td>
<td>x x x x x x</td>
</tr>
<tr>
<td>Unaddress if addressed to talk²</td>
<td>x x x x x</td>
</tr>
<tr>
<td>No capability</td>
<td>x</td>
</tr>
<tr>
<td>Source handshake</td>
<td>SH0 SH1</td>
</tr>
<tr>
<td>No capability</td>
<td>SH0 SH1</td>
</tr>
<tr>
<td>Full capability</td>
<td>SH0 SH1</td>
</tr>
<tr>
<td>Acceptor handshake</td>
<td>AH</td>
</tr>
<tr>
<td>No capability</td>
<td>AH0 AH1</td>
</tr>
<tr>
<td>Full capability</td>
<td>AH0 AH1</td>
</tr>
<tr>
<td>Service request</td>
<td>SR</td>
</tr>
<tr>
<td>No capability</td>
<td>SR0 SR1</td>
</tr>
<tr>
<td>Full capability</td>
<td>SR0 SR1</td>
</tr>
<tr>
<td>Remote/local</td>
<td>RL</td>
</tr>
<tr>
<td>No capability</td>
<td>RL0 RL1</td>
</tr>
<tr>
<td>Full capability</td>
<td>RL0 RL1</td>
</tr>
<tr>
<td>No local lockout</td>
<td>RL2</td>
</tr>
<tr>
<td>Parallel poll</td>
<td>PP</td>
</tr>
<tr>
<td>No capability</td>
<td>PP0 PP1 PP2</td>
</tr>
<tr>
<td>Remote configuration</td>
<td>PP0 PP1 PP2</td>
</tr>
<tr>
<td>Local configuration</td>
<td>PP0 PP1 PP2</td>
</tr>
<tr>
<td>Device clear</td>
<td>DC</td>
</tr>
<tr>
<td>No capability</td>
<td>DC0 DC1 DC2</td>
</tr>
<tr>
<td>Full capability</td>
<td>DC0 DC1 DC2</td>
</tr>
<tr>
<td>No selected device clear</td>
<td>DC0 DC1 DC2</td>
</tr>
<tr>
<td>Driver electronics</td>
<td>E</td>
</tr>
<tr>
<td>Open collector</td>
<td>E1 E2</td>
</tr>
<tr>
<td>Tristate</td>
<td>E1 E2</td>
</tr>
</tbody>
</table>

¹. Allows an instrument to transmit data without a controller on the bus.
². Prevents an instrument from talking and listening at the same time.
³. Allows an instrument to receive data without a controller on the bus.
not to the front panel (see also LLO and GTL).

SERVICE REQUEST (SRQ). This line can be asserted only by an instrument. It is used to signal the controller that the instrument needs service. The controller performs a "serial poll" to determine which device has requested service and branches to a service routine. SRQ is not released by the instrument until it is polled.

END OR IDENTIFY (EOI). This uniline command is used in conjunction with ATN. If ATN is false, EOI is set by the talker and indicates that the last byte of a message string is being sent. The controller sets EOI and ATN to perform a parallel poll.

Multiline commands

There are four types of multiline commands: UNIVERSAL, ADDRESSED, UNADDRESS, and ADDRESS commands. A universal command is obeyed by all instruments regardless of whether or not they have been told to listen. An addressed command is obeyed only by those devices which have been designated as listeners. The unaddress commands remove the talker and all listeners from the bus, and the address commands designate the talker and the listeners. An instrument’s interface recognizes the type of command transmitted by the state of data bits 5, 6, and 7. A universal command always has lines 6 and 7 false with 5 true (001XXX). An addressed command always has

Table 2. ASCII codes and 488 code identification

<table>
<thead>
<tr>
<th>b4 b3 b2 b1</th>
<th>ASCII</th>
<th>COMMAND</th>
<th>ASCII</th>
<th>COMMAND</th>
<th>ASCII</th>
<th>Primary Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>NULL</td>
<td>DLE 'P'</td>
<td>SP</td>
<td>0 16</td>
<td>@</td>
<td>0</td>
<td>P</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>p</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>SOH 'A'</td>
<td>GTL 'C'</td>
<td>DC1 'O'</td>
<td>LLO '!'</td>
<td>1</td>
<td>17</td>
<td>A</td>
<td>Q</td>
<td>17</td>
<td>0</td>
<td>q</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>STX 'B'</td>
<td>DC2 'R'</td>
<td>"</td>
<td>2 18</td>
<td>B</td>
<td>2</td>
<td>R</td>
<td>18</td>
<td>b 2</td>
<td>R</td>
<td>r 18</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>ETX 'C'</td>
<td>DC3 'S'</td>
<td>#</td>
<td>3 19</td>
<td>C</td>
<td>3</td>
<td>S</td>
<td>19</td>
<td>c 3</td>
<td>S</td>
<td>s 19</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>EOT 'D'</td>
<td>SDC 'T'</td>
<td>$</td>
<td>4 20</td>
<td>D</td>
<td>4</td>
<td>T</td>
<td>20</td>
<td>d 4</td>
<td>T</td>
<td>t 20</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>ENQ 'E'</td>
<td>PPC 'W'</td>
<td>%</td>
<td>5 21</td>
<td>E</td>
<td>5</td>
<td>U</td>
<td>21</td>
<td>e 5</td>
<td>U</td>
<td>u 21</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>ACK 'F'</td>
<td>SYN 'V'</td>
<td>&</td>
<td>6 22</td>
<td>F</td>
<td>6</td>
<td>V</td>
<td>22</td>
<td>f 6</td>
<td>V</td>
<td>v 22</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>BEL 'G'</td>
<td>ETB 'W'</td>
<td>'</td>
<td>7 23</td>
<td>G</td>
<td>7</td>
<td>W</td>
<td>23</td>
<td>g 7</td>
<td>W</td>
<td>w 23</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>BS 'H'</td>
<td>GET 'X'</td>
<td>(</td>
<td>8 24</td>
<td>H</td>
<td>8</td>
<td>X</td>
<td>24</td>
<td>h 8</td>
<td>X</td>
<td>x 24</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>HT 'I'</td>
<td>TCT 'Y'</td>
<td>)</td>
<td>9 25</td>
<td>I</td>
<td>9</td>
<td>Y</td>
<td>25</td>
<td>i 9</td>
<td>Y</td>
<td>y 25</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>LF 'J'</td>
<td>SUB 'Z'</td>
<td>*</td>
<td>10</td>
<td>J</td>
<td>10</td>
<td>Z</td>
<td>26</td>
<td>j 10</td>
<td>Z</td>
<td>z 26</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>VT 'K'</td>
<td>ESC 'L'</td>
<td>+</td>
<td>11</td>
<td>K</td>
<td>11</td>
<td>_</td>
<td>27</td>
<td>k 11</td>
<td>_</td>
<td>_ 27</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>FF 'M'</td>
<td>FS 'N'</td>
<td><</td>
<td>12</td>
<td>L</td>
<td>12</td>
<td>/</td>
<td>26</td>
<td>l 12</td>
<td>/</td>
<td>/ 26</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>CR 'O'</td>
<td>GS 'P'</td>
<td>-</td>
<td>13</td>
<td>M</td>
<td>13</td>
<td>\</td>
<td>29</td>
<td>m 13</td>
<td>\</td>
<td>\ 29</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>SO 'Q'</td>
<td>RS 'R'</td>
<td>></td>
<td>14</td>
<td>N</td>
<td>14</td>
<td>^</td>
<td>30</td>
<td>n 14</td>
<td>^</td>
<td>^ 30</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>SI 'R'</td>
<td>US 'S'</td>
<td>/</td>
<td>15</td>
<td>O</td>
<td>15</td>
<td>-</td>
<td>UNT</td>
<td>o</td>
<td>15</td>
<td>DEL</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

42 Microsystems April 1983
THE ULTIMATE IEEE/S-100 MEMORY WOULD...

- **BE NONVOLATILE**, holding data for up to eight years with the power off.
- **RUN AT 6MHz** without wait states.
- **HAVE EXTENDED 24-BIT ADDRESSING** and bank select.
- **HAVE DYNAMICALLY MOVABLE WRITE PROTECT AREAS** to prevent accidental erasure of programs and critical data.
- **GENERATE POWER-FAIL** interrupts for orderly system shutdown & power failure recovery.

CMEM

AVAILABLE NOW FROM DUAL SYSTEMS, the CMEM memory boards combine high-speed CMOS memories with a new 5-8 year lithium battery. The CMEM offers the nonvolatility of an EPROM board while retaining the instant writability of a high-speed read/write RAM. These industrial grade boards are subjected to a 168-hour burn-in and a 1000-cycle power interruption test to insure data retention and the highest degree of reliability possible.

CMEM-32K, 32K Bytes $695
CMEM-16K, 16K Bytes $595
CMEM-8K, 8K Bytes $495

PRICES SLASHED!

DUAL SYSTEMS CORPORATION
2530 San Pablo Avenue • Berkeley CA 94702 • (415) 549-3854 • 172029 SPX

INTEGRAL MEMORY BOARDS FOR THE IEEE-696/S-100 BUS

CPU GROUP
- CPU 68000
 - MC68000 processor
 - 16 MHz operation
 - 64K-byte addressing
 - Single-user
 - $995

MEMORY GROUP
- CMEM
 - 8K/16K/32K CMOS
 - 6 MHz for 8/16-bit
 - Non-volatile with Li battery
 - $695/$595/$495

I/O GROUP
- WDC-5MD
 - DMA Winchester controller
 - 12 ms access time
 - No interleaving
 - $1800

ANALOG GROUP
- AIM-12 (A-to-D)
 - 32 E signal channels
 - 25 µsec conversion
 - 12-bit resolution
 - $605

DJ BOARD THE BUS

DUAL SYSTEM 83/20
- Multi-User/16, 20/40 MB
- Hard Disk
- UNIX, INGRES
- Relational DBMS...

$16,660

OEM and Dealer pricing is available.

Sales representatives in most metropolitan areas.

2530 San Pablo Avenue • Berkeley • CA 94702 • (415) 549-3854 • 172029 SPX

CIRCLE 151 ON READER SERVICE CARD
WE WILL BEAT OR MEET ALL PRICES ON ALL PRODUCTS IN THIS MAGAZINE
TO PLACE ORDER CALL (213) 219-0808 NOW!

SA400L, 40 Track
SA801R, Single Side/Double Density
SA851R, Double Side/Double Density

Tandon
TM1DO-1, Single Side/Double Density
TM1DO-2, Double Side/Double Density

Qume
DT-8 Double Side/Double Density $465

IBM PC PRODUCTS

Ast Research
Combo Plus 64K w/ clock, Par. Port., Serial Port, Software $359
to 512 $430

Tandon
TM100-0 Double Side/Double Density $235

5 1/4 & 8" DISK DRIVES

Shugart
SA400L, 40 Track $145
SA801R, Single Side/Double Density $369
SA851R, Double Side/Double Density $379

Tandon
TM100-1, Single Side/Double Density $179
TM100-2, Double Side/Double Density $235
TM681-1, Single Side/Double Density $369
TM681-2, Double Side/Double Density $449

Ome
DT-8 Double Side/Double Density $465

Siemens 8" Single Cabinet w/ Power Supply $209

Mitsubishi 8" Single Cabinet w/ Power Supply $209

FOR FRANKLIN & APPLE

All Apple Products Not Seen in this Ad Are Available. Call for Guaranteed Lowest Price

CABINETS & MAINFRAMES

CABINET & MAINFRAMES

QT Computer Systems
DDC-8 Cabinet w/ Power Supply & Fan ONLY $209.99

DDC-88-H Dual Cabinet w/ Power Supply & Fan ONLY $259.00

Mainframe
6 slot w/ 2, 8" cutouts, power supply, fan, filter, Connector Cutouts ONLY $590.00

5 1/4 " Cassettes
Single Cabinet w/ Power Supply $99
Dual Cabinet w/ Power Supply $159

DISK DRIVES FOR FRANKLIN & APPLE

Rana Systems
Rana Elite I $285
Rana Elite II $439
Rana Elite III $599
Controller $89

Micro Sci
A-2 (5.25" Drive) $292
Controller $75
Apple III Drives Available Call

Quentin Research
Apple Mates Controller $65

DISKETS

Franklin 5 1/4 " Single Side/Single Density $155
Franklin 5 1/4 " Double Side/Double Density $255

All Packages of diskettes come with free library case and reinforced hub. Full 1 year warranty. Prices are for packs of 10.

5 1/4 " Disks
SGL Side/Single Density $18.50/10
Dbl Side/Double Density $20.50/10

8" Disks
SGL Side/Single Density $25.00/10
Dbl Side/Double Density $29.00/10

EXCLUSIVE INVENTORY

48K APPLE COMPATIBLE

Computer Components

NEW RETAIL STORE:
11796 Aviation Blvd.
Inglewood, CA 90304

MAIL ORDER:
P.O. Box 1936
Hawthorne, CA 90250

ORDER DESK:
(213) 219-0808

Computer Components Unlimited
Each command is represented by an ASCII character, as displayed in Table 2. The first 16 ASCII control codes form the addressed command group, and the last 16 control codes form the universal command group.

There are currently five defined universal commands and five defined addressed commands.

Universal commands

DEVICE CLEAR (DCL). This command causes all programmable instruments to return to a default state determined by the manufacturer.

LOCAL LOCKOUT (LLO). This command disables the front panel local/remote button, providing security from tampering and protecting instruments from accidental return to local control. Local operation can be restored by setting REN false or by using GTL. LLO is unaffected by an interface clear (IFC).

SERIAL POLL ENABLE (SPE). This command places all talkers in the serial poll mode. When addressed in this mode, an instrument puts its status byte onto the data bus. The status byte, defined by the manufacturer (see polling), provides information about the instrument.

SERIAL POLL DISABLE (SPD). This command terminates a serial poll and returns all devices to their normal state. When addressed to talk, data rather than instrument status is placed on the data bus.

PARALLEL POLL UNCONFIGURE (PPU). This command resets all instruments to the "parallel-poll-idle" state.

Addressed commands

GO TO LOCAL (GTL). GTL returns all addressed listeners to local (front panel) control, causing them to exit the remote state. When addressed again they return to remote. GTL is useful for making operator adjustments on particular instruments without dropping all devices out of remote.

GROUP EXECUTE TRIGGER (GET). This command will trigger all devices addressed to listen, allowing them to initiate their functions. This permits synchronization and simultaneous triggering of all devices.

SELECTED DEVICE CLEAR (SDC). This command resets the addressed instrument to its default state.

TAKE CONTROL (TCT). TCT tells another controller to take over bus management.

PARALLEL POLL CONFIGURE (PPC). This command causes the addressed listener to configure its status bit according to a secondary command, which must follow (see Polling).

Address and unaddress commands

The process of designating an instrument as a talker or a listener is called “addressing.” Every talker or listener has an ASCII identification code called its address. Sometimes (most often with programmable calculators), the controller will have a talk and listen address as well. Most devices have only one address, the primary address, but some have secondary addresses or two primary addresses. When secondary addresses are present, we say the instrument is an extended talker or extended listener. In this case, the primary address designates the instrument (a digital voltmeter for example), while the secondary addresses might designate instrument functions (ohms, amps, etc.), or particular circuit cards or modules.

Most instruments have a five-pole dip-switch on the back panel (Figure 4) that is used to set its address (the switch is occasionally found inside, on the interface card). The user sets this switch to a number between 0 and 30. This sets the listen and talk addresses of the device; the instrument interface is responsible for setting the sixth and seventh bits to differentiate between listener and talker.

A standard is a detailed specification of the most important mechanical, electrical, and functional aspects. It should detail the function of a device without forcing the manufacturer into using a particular design or circuit.
Secondary addresses are set in a similar manner. Not all instruments have switch-selectable addresses; some have fixed addresses that cannot be altered. Also, if there are two primary addresses, the first is determined by the user; the second is the next in sequence. (In that case, a four-pole dip-switch is used.) Finally, all primary addresses must be unique, but secondary addresses can be duplicated.

Note that 31 is not an allowed primary address. It is reserved for the two unaddress commands, un-talk (UNT) and un-listen (UNL). (The two unaddress commands are, in a sense, addresses.) UNT unaddresses the current talker and UNL unaddresses all listeners. The ASCII codes are “?” for UNT and “_” for UNT. Unlisten is usually sent at the beginning of each command string when listeners and talkers are designated. Untalk is rarely necessary, as addressing a talker automatically unaddresses the previous one, and using it slows down handshaking. It is useful when it is desirable to remove all talkers from the bus. For example, untalk might be used to suspend data output from a device.

Handshaking

We now come to one of the more important aspects of the 488 bus and one that makes it unique—the three-wire handshake. We need to understand it to know how the sources and acceptors communicate, and how instruments with very different transfer rates can share the bus without loss or duplication of data.

Two of the three handshake lines must have open collector drivers. As mentioned, they can be thought of as being “wired-or”: more than one device can assert these lines, and an asserted line is not released until all instruments release it. As we’ll see, this allows for asynchronous data transfer at a rate that automatically adjusts to the speed of the slowest addressed listener or, for universal commands, to the speed of the slowest instrument. Because of this, the transfer rate is extremely device-dependent.

The first of the handshake lines is called DATA VALID (DAV). This line is controlled by the source: the active talker or the controller as talker. It indicates to the listeners when the data on the signal lines are valid.

The second of the handshake lines is NOT READY FOR DATA (NRFD). This line is controlled by the acceptors: the active listeners or the controller as listener. A device releases this line when it is ready to accept data. Since this is an open collector line, all instruments must release the line before it will go false. False means that every acceptor is ready for the next character. The source tests the line and, if it is asserted, no change of data takes place.

The final handshake line is NOT DATA ACCEPTED (NDAC). This line is also controlled by the acceptors. It is released by an instrument when it has accepted the data byte. Again, it is open collector and will not become false until all instruments release it. When false, it means that every acceptor has accepted the current character.

These three lines ensure that no data is lost, that each device gets every byte no matter how slowly it transfers data, and that no device receives a byte more than once. To understand this, and to see how these lines are used in the handshake, we will describe a handshake cycle using the timing diagram in Figure 5 and the flowchart in Figure 6. In the following discussion, the numbers in parentheses match those in the timing diagram.

We assume at the start that the acceptors have set NRFD and NDAC low (true) and that the source has set DAV high (false). As soon as the slowest acceptor is ready for new data, it releases NRFD; since the faster acceptors have already released it, this line goes high (false) (1). The source sees NRFD high and knows that all the instruments are ready. It puts the new byte on the data lines and sets DAV low (2), telling everyone that

![Figure 5. 488 bus handshake timing diagram.](image-url)
Super Subsystems For Super Micros

Fixed Disk Subsystems
47 MEGABYTE 8" subsystem includes PCE's FDC 4000 hard disk controller, the Fujitsu M2303BE 47 MB, 1.2 MBYTE/SEC, 8" Winchester type fixed disk drive, and an 8" single density diskette (P/M) containing Z-80 source code for the FDC 4000 drivers, format and diagnostic programs. PF47 SUBSYSTEM $3,995.00

20 MEGABYTE 5.25" subsystem same as above, but includes the Fujitsu M2234B 20 MBYTE 5.25" Winchester type fixed disk drive instead of the M2303BE. PF20 SUBSYSTEM $2,275.00

Winchester Fixed Disk Controller
Completely I/O Mapped—No Wait States—
No CPU Cycle Stealing
The FDC 4000, an IEEE 696 (S-100) compatible fixed disk controller provides an interface between the host system and any disk drive having a Shugart SA4000 type interface. Manufacturers producing this type drive include Shugart, Fujitsu, 3M, and others. FDC 4000 $895.00

8" Floppy Disk Controller
With 16K Track Buffer
Completely I/O Mapped—No Wait States—
No CPU Cycle Stealing
The FDC 800, an IEEE 696 (S-100) compatible floppy disk controller, controls up to 4 (16 with encoded drive select) 8" floppy disk drives. Any combination of single or double density, single or double sided drives is accommodated. Any portion of the 16K of on-board static RAM may be used as a sector or track buffer, to hold portions of the operating system, or may be configured as a virtual disk. Features hardware only head load delay and a circuit that watches for disoriented or missing diskette with the drive ready and the door closed. Comes with Z-80 source code for CP/M BIOS. FDC 800 $480.00

256K RAM In 4K Blocks
The BSR 64/256 is an 8 bit bank selectable dynamic random access memory card designed to operate in Z-80, 8080 and 8085 based S-100 computer systems with a CPU clock frequency of up to 5MHz (A model) or 6MHz (B model).

Individual 64K banks are selected via the IEEE 696 8 bit address bus extension. If the host system is not capable of driving the extended address bus, one of the BSR 64/256 cards in the system may be configured to drive it through an onboard latched output port.

System area is allocated in 4k blocks by writing a system mask out to two latched output ports. Another port allows any one of up to eight cards to be assigned as the current system master. Logically, up to 64 cards may be addressed in a single computer system. BSR 64/256 A@5MHz $895.00

Attractive OEM and dealer pricing on all of our products.
Prices subject to change

CIRCLE 222 ON READER SERVICE CARD

4219 S. Market Ct.
Sacramento, CA 95839
(916) 921-5454
An IEEE-488 Bus Tutorial continued...

Source Acceptors

Polling

Polling is used to determine a device's status. There are two ways to take a poll. The controller can query each instrument in sequential order (Serial Poll) or in groups (Parallel Poll). The two methods often have an important difference (besides the serial/parallel nature): an instrument that can respond to a serial poll can, at any time, inform the controller that it needs service (via SRQ). An instrument that responds to a parallel poll usually does not have the service request function, and the controller, not the device, must initiate the poll.

Serial polls

Devices request service by asserting SRQ. The controller can periodically check SRQ or it can be used as an interrupt. Because there is only one SRQ line and because several devices can assert SRQ at once (it is an open collector line), the controller must have some way to identify the devices requesting service. It does this with a serial poll, polling all the active instruments in a user-determined sequence. As it polls each instrument, it reads its status byte. Bits 1-6 and 8 of the status byte are set or cleared to indicate specific functions of the instrument, as determined by the manufacturer. Bit 7 is always set when SRQ is asserted. The controller identifies the requestor by checking bit 7. SRQ can only be cleared by polling the requesting device, and therefore a poll is necessary even if only one instrument is on the bus.

To perform a serial poll, the controller first sends serial-poll-enable (SPE), which places all devices into the serial poll mode. It then sends the first device's talk address. This causes the instrument to place its status byte on the bus. The controller reads the byte and determines if this is the device requesting service. If the device is not requesting service, the controller moves to the next specified device. If it is requesting service, the controller can interpret the rest of the status byte to determine what action to take, or it can ignore the instrument and continue. If the poll is not necessary even if only one instrument is on the bus.

The controller, therefore, never puts a new byte onto the bus until the slowest instrument has accepted the old one. An acceptor, once it has taken a byte, cannot take another until it sees DAV true (5). This prevents the acceptors from attempting a new transfer. The acceptors begin to take the data at their own rates, and, as each acceptor takes the byte, it releases NDAC. When the fastest acceptor has taken the data, NDAC goes false (4). The source sees NDAC high, knows that all the instruments have accepted the data, and sets DAV high (5), indicating that the byte is no longer valid. The fastest acceptor sets NDAC low in preparation for the next cycle and is followed by the others (6).

If a talker tries to send a character and there is no listener, NRFD and NDAC will both be high. If a talker tries to send a character and there is no listener, NRFD and NDAC will both be high. This situation, which will never occur if there is an acceptor to perform the handshake, will generate an error and stop all bus operation. The error occurs when there are no instruments on the bus, when there is no instrument at the designated address, or when a talk-only instrument is on the bus.

A price is paid for sophistication and ease of use:
It severely slows down bus transactions.
High-level programs often send unnecessary and repetitive commands to ensure user flexibility.
Performance, speed, control, ease of use. That's what you expect from a finely tuned machine. And that's what your data management software should deliver too. The new FMS-80 Version 3 gives you this and more -- a fully integrated Applications Development System that makes even the most complex application easy.

Almost everyone needs to manipulate information. With FMS Version 3 even a beginner can follow the simple menu selections and be off and running in almost no time. Customized screens and user menus are easy to design. Powerful full-screen editing makes entering, modifying, adding or deleting data a snap.

FMS makes getting your information out easy too. Interactive QUERY and comprehensive SELECT can extract the data you need almost instantly. Our powerful Report Generator can produce almost any imaginable report with minimal effort. FMS takes you by the hand each step of the way.

More Than Just a Database Manager.
If you've been around the track a few times already, FMS is for you too. Our enhanced Version 3 EFM programming language gives you total control. Our ISAM-like multi-key data structure, access to 19 open files, full string handling, alphanumeric variable, field and file names, 18 digit FP&BCD math, structured programming constructs and other advanced features make EFM the language of choice for data management applications. FMS can make you more productive and save you time and money, whether you're developing a simple mailing list or a complex turn-key general accounting system.

The UNIX-inspired FMS Shell brings advanced capabilities like command stream manipulation and dynamic input and output redirection to the CP/M world for unprecedented control of the operating environment.

Don't Run Out of Gas.
FMS's capabilities go way beyond other data manipulation programs. More fields per record, more open files, more variables, more everything.

<table>
<thead>
<tr>
<th></th>
<th>FMS</th>
<th>dBASE</th>
<th>Condor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum fields per record</td>
<td>255</td>
<td>32</td>
<td>127</td>
</tr>
<tr>
<td>Maximum number of variables</td>
<td>281</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Maximum number of open files in a program</td>
<td>19</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Maximum number of open files in a report</td>
<td>19</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum display pages per record</td>
<td>255</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Don't lock yourself into a system that can't handle the big jobs!

A Proven Winner
FMS-80 has been leading the field since 1978. Now Version 3 sets new standards for the future. Contact your local dealer for a test drive.

DJR Associates, Inc.
303 S. Broadway • Tarrytown, N.Y. 10591
(914) 631-6766 • Telex 646792 DJR NTAR
parallel poll. The PPE commands can be represented in binary as
\[X \ 1 \ 1 \ 0 \ S \ P1 \ P2 \ P3, \]
where \(S \) is the sense and the binary value of \(P1 \ P2 \ P3 \) determines the data line. After sending PPE, the controller unaddresses the instrument and repeats the procedure for all instruments in the poll.

When the controller decides to take a parallel poll, it asserts ATN and EOI. This causes all devices in the parallel poll standby state to set or clear their lines on the data bus according to the sense bit in the PPE command. If \(S = 0 \), the instrument sets its assigned data line if its status bit equals zero when it is polled. If \(S = 1 \), the instrument sets its data line if its status bit equals 1 when it is polled.

This is best seen by example. Consider two instruments, one at address 10 and the other at address 20. Assume we configure instrument 10 to report on line 1 with \(S = 0 \) (code \(X \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 = \text{"a"} \)), and we configure instrument 20 on line 3 with \(S = 1 \) (code \(X \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 = \text{"k"} \)). When the poll is conducted, the byte received will be \(\text{00000Y0X} \), where
\[X = 0 \text{ if instrument 10's status bit is 1; } \]
\[Y = 1 \text{ if instrument 10's status bit is 0; } \]
and
\[X = 0 \text{ if instrument 20's status bit is 1; } \]
\[Y = 1 \text{ if instrument 20's status bit is 1. } \]

The controller reads the byte and takes appropriate action.

The controller can disable the parallel poll response in two ways. It can address all or some of the previously configured instruments, issue PPC, and then issue parallel-poll-disable (PPD, 70H). This command places the addressed instruments in the “parallel-poll-addressed-to-configure” state into the “parallel-poll-idle” state. Or, it can send

Table 3. Subsets of the Pickles & Trout

<table>
<thead>
<tr>
<th>488 Basic routines, DEC</th>
<th>MINC Basic, and RT-11 subroutines and commands</th>
</tr>
</thead>
</table>

Pickles and Trout:
- CALL("command")
- SEND("message")
- RECEIVE("message")
- WRITE("data")
- READ("data")
- ENABLE REMOTE
- DISABLE REMOTE
- INTERFACE CLEAR
- LOCAL LOCKOUT
- SERIAL (transmit, receive)
- PARALLEL (transmit, receive)
- SERIAL TERMINATORS
- PARALLEL TERMINATORS
- INSTRUMENTS
- SYNCHRONOUS INSTRUMENTS
- HDRC BUS CLEAR
- IFD RT-11

MINC BASIC:
- ALL INSTR CLEAR
- DISABLE REMOTE
- ENABLE REMOTE
- INTERFACE CLEAR
- LOCAL LOCKOUT
- SERIAL (transmit, receive)
- PARALLEL (transmit, receive)
- SERIAL TERMINATORS
- PARALLEL TERMINATORS
- INSTRUMENTS
- SYNCHRONOUS INSTRUMENTS
- HDRC BUS CLEAR
- IFD RT-11

Interface Clear:
- CLEAR
- ENABLE
- DISABLE
- INTERFACE CLEAR
- LOCAL LOCKOUT
- SERIAL (transmit, receive)
- PARALLEL (transmit, receive)
- SERIAL TERMINATORS
- PARALLEL TERMINATORS
- INSTRUMENTS
- SYNCHRONOUS INSTRUMENTS
- HDRC BUS CLEAR
- IFD RT-11

If speed is important, the fastest and most direct method is to write your own assembly language routines and do your own bus management. This is rarely done.
Z-80® and 8086 FORTH
PC/FORTH™ for IBM® Personal Computer available now!

FORTH Application Development Systems include interpreter/compiler with virtual memory management, assembler, full screen editor, decompiler, demonstration programs, utilities, and 130 page manual. Standard random access disk files used for screen storage. Extensions provided for access to all operating system functions.

Z-80 FORTH for CP/M® 2.2 or MP/M .. $ 50.00
8086 FORTH for CP/M-86 .. $100.00
PC/FORTH for IBM Personal Computer ... $100.00

Extension Packages for FORTH systems

- Software floating point .. $100.00
- Intel 8087 support (PC/FORTH, 8086 FORTH only) $100.00
- AMD 9511 support (Z-80, 8086 FORTH only) $100.00
- Color graphics (PC/FORTH only) .. $100.00
- Data base management .. $200.00
- Symbolic Interactive Debugger (PC/FORTH only) $100.00
- Cross Reference Utility .. $ 25.00
- Curry FORTH Programming Aids ... $150.00
- PC/GEN™ (custom character sets, IBM PC only) $ 50.00

Nautilus Cross-Compiler allows you to expand or modify the FORTH nucleus, recompile on a host computer for a different target computer, generate headerless code, and generate ROMable code with initialized variables. Supports forward referencing to any word or label. Produces load map, list of unresolved symbols, and executable image in RAM or disk file. No license fee for applications created with the Cross-Compiler! Prerequisite: one of the application development systems above for your host computer.

Hosts: Z-80 (CP/M 2.2 or MP/M), 8086/88 (CP/M-86), IBM PC (PC/DOS or CP/M-86)
Targets: Z-80, 6800, 8086/88, IBM PC, 6502, LSI-11, 68000, 1802, Z-8

- Cross-Compiler for one host and one target $300.00
- Each additional target .. $100.00

AUGUSTA™ from Computer Linguistics, for CP/M 2.2 $ 90.00
LEARNING FORTH, by Laxen & Harris, for CP/M $ 95.00
Z-80 Machine Tests Memory, disk, console, and printer tests
with all source code in standard Zilog mnemonics $ 50.00

All software distributed on eight inch single density soft sectored diskettes, except PC/FORTH on 5¼ inch soft sectored single sided double density diskettes. Micropolis and North Star disk formats available at $10.00 additional charge.

Prices include shipping by UPS or first class mail within USA and Canada. Overseas orders add US$10.00 per package for air mail. California residents add appropriate sales tax. Purchase orders accepted at our discretion. No credit card orders.

Laboratory Microsystems, Inc.
4147 Beethoven Street
Los Angeles, CA 90066
(213) 306-7412

Z-80 is a registered trademark of Zilog, Inc.
CP/M is a registered trademark of Digital Research, Inc.
IBM is a registered trademark of International Business Machines Corp.
Augusta is a trademark of Computer Linguistics
PC/FORTH and PC/GEN are trademarks of Laboratory Microsystems

CIRCLE 13 ON READER SERVICE CARD
the universal command parallel-poll-unconfigure (PPU), which directly takes devices in the “parallel-poll-standby” state and puts them into the “parallel-poll-idle” state.

Bus operation

The actual programming and operation of an instrument system is clearly dependent on the instruments used and on the software supplied by the bus manufacturer. The software must be able to address the instruments, send device-dependent and interface-dependent messages and commands, and handle SRQ interrupts. It is also useful to have a simple (preferably numerical) addressing scheme and high-level commands. In our experience, the manufacturer of the controller usually supplies “reasonably good” high-level software support, and often supplies very detailed and sophisticated support.

By “reasonably good” support, we mean simple, callable Basic or Fortran subroutines that allow the user to transmit command strings, and send and receive message strings, by using them as arguments in subroutines that handle all the bus management chores. This is the approach usually taken by manufacturers of S-100 488 converter cards such as Pickles & Trout, and by manufacturers of programmable calculators, such as Hewlett-Packard. A sense of what is available can be obtained from Table 3, which shows a subset of the subroutines provided by Pickles & Trout for its bus.

At the other end of the spectrum, manufacturers of complete computer systems often supply very high-level and sophisticated software. Table 3 also shows a subset of Digital Equipment Corporation’s (DEC) MINC Basic commands and its RT-11 Fortran subroutines. The command and subroutine names and variables displayed in the table give one the flavor of what is available.

These three software packages show a gradation of software sophistication. At the lowest level shown—the Pickles & Trout routines—the user must transmit the ASCII code for every bus command he needs and handle all error checking himself. This requires the user to understand the bus fully. Alternatively, in the DEC MINC commands, all the work is done for you. In fact, all the bus commands are essentially self-descriptive. In using these advanced routines, the user doesn’t have to supply the ASCII commands to operate the bus, address the devices, etc. He only has to provide the message string and address numbers or, in some cases, he simply has to give the command. A price is paid for all this sophistication and ease of use: it severely slows down bus transactions. High-level programs often send unnecessary and repetitive commands to ensure user flexibility. For example, they may send far too many UNT/s and UNL/s. On the other hand, such software is simple to use for novices and those who wish to get a system up with a minimum of fuss.

It is worth remarking at this point, that if speed is important, the fastest and most direct method is to write your own assembly language routines and do your own bus management. This is rarely done.

The best way to illustrate a typical bus transaction is to discuss the operation of a simple instrument system. The first problem one must discuss is software. No two manufacturers of controllers use the same software routines or commands. For descriptive purposes we will invent six Basic 488-bus commands. We will assume they handle all bus management tasks (setting ATN, etc.). These commands are:

- **CMDS** ("command") sends the string "command" and places the bus in command mode.
- **SEND** ("message") transmits a string "message".
- **RECV** ("message") receives the string "message".
- **SRQ(N)** tests SRQ and sets N = 1 if it is asserted.
- **REN** places all instruments into remote.
- **IFC** clears the interface.

These are not the only Basic commands we could define, but they are adequate to describe a typical bus transaction. Note that we are assuming that SRQ does not interrupt the processor.

The instrument system we will consider is used to measure the current-voltage (I-V) characteristics of a specimen. It consists of a controller (a microcomputer with a 488 interface), a Hewlett-Packard 3465A digital voltmeter (DVM), a Hewlett-Packard 9872A digital plotter and a voltage-programmable current supply. The first two instruments are 488-bus compatible and can talk, listen, and respond to a serial poll. The DVM can be extensively programmed. Table 4 shows the 488-bus functions each device can perform, and Table 5 shows some of the DVM programmable functions and their codes. For simplicity, we will assume that the current source supplies a current directly proportional to a programming voltage and is not 488 compatible. We will assume that a suitable D/A converter exists in the computer and use it to operate the supply.

Suppose we wish to take and plot a series of data points. We will vary the current, measure the induced voltage and plot the point. Assume the last...

Table 4. 488 bus functions supported by the digital voltmeter and plotter

<table>
<thead>
<tr>
<th>DVM Bus Functions</th>
<th>Plotter Bus Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taker</td>
<td>Taker</td>
</tr>
<tr>
<td>Listener</td>
<td>Listener</td>
</tr>
<tr>
<td>Source Handshake</td>
<td>Source Handshake</td>
</tr>
<tr>
<td>Aceptor Handshake</td>
<td>Aceptor Handshake</td>
</tr>
<tr>
<td>Service Request</td>
<td>Service Request</td>
</tr>
<tr>
<td>Remote/Local</td>
<td>Parallel Poll</td>
</tr>
<tr>
<td>Device Clear</td>
<td>Device Clear</td>
</tr>
<tr>
<td>Serial Poll</td>
<td>Serial Poll</td>
</tr>
<tr>
<td>Trigger</td>
<td></td>
</tr>
</tbody>
</table>

In high-level driver routines, the work is done for you—all the bus commands are essentially self-descriptive.
T/MAKER III - PERHAPS THE FIRST TRULY UNIVERSAL PROGRAM.

Now you can spreadsheet, bar chart and word process from the same program. You can adapt it to use all your terminal's special keys. You will be operating with it after 10 minutes. We have called it “universal” because it is hardware independent, flexible, integrated, user friendly and powerful. At only $275 you save hundreds of dollars.

By having one universal program, you save hundreds of hours.

HARDWARE INDEPENDENT
Using T/MAKER III's powerful T/MODIFY you can incorporate all your terminal's and printer's special keys and features into your package. Cursor control, video attributes, insert and delete, printer width, font selection, everything.

T/MODIFY isn’t like the INSTALL programs where you hope the terminal and printer you have in 2 years is supported by the software manufacturer. With T/MAKER III you have the power to make the decision, and to make it again and again—anytime your hardware configuration changes.

FLEXIBLE
Sometimes word-wrap is good, but for spreadsheet building or program entry it’s disastrous. T/MAKER III lets you decide— even in the middle of a document.

Sometimes a “what you see is what you get” word processor is best; other times you want to enter text using maximum width. T/MAKER III will do either.

If you want to stop printing after each page...print a few pages of the file...combine 2 spreadsheets...rearrange the columns in a list...stack bar charts on each other...use one character for bar charts on the screen and a different one on the printer...issue a RESET command to the operating system...change the drive number for text files...T/MAKER III does it all, and lots, lots more.

INTEGRATED
Usually this means that files created by the word processor can be read by the spreadsheet sold by the same manufacturer, but T/MAKER III takes you into real operational integration.

You can instantly bar chart any row or column of your spreadsheet (on screen or printer) then return to the spreadsheet without leaving T/MAKER III. You can put spreadsheets or bar charts right in the middle of your word processor report—without leaving T/MAKER III.

You can examine, create, rename or erase files, then return to your word processing—without leaving T/MAKER III.

T/MAKER III gives you complete integrated capabilities in one program, so you don’t have to use three.

USER FRIENDLY
T/MAKER III's plain English breaks the training and memory barrier. It gives you easy to remember commands:
- ALIGN does all the justifying and margin setting you have specified.
- COMPUTE does all the spreadsheet calculations you define.
- SORT sorts a list alphabetically or numerically.
- TALLY does 2 dimensional tabulations. Others include:
 - PRINT, EDIT, COMBINE, ARANGE, REPLACE, BAR, FIND, KEEP, and lots more that are all easy to understand and remember. And more.

Suppose you leave the editor portion of the program to examine another file. When you return, the cursor will be exactly where you left it. Have you ever looked at a spreadsheet and forgotten the underlying schema? T/MAKER III will show you the spreadsheet data and the underlying formulae at the same time.

You know how the star of the word processors bombs out if there isn’t room to save the file at the end of an exciting session? T/MAKER III tells you about the problem, then lets you examine the directory and erase files until there’s room.

POWERFUL
Universal, flexible, integrated, hardware independent, but has it the power to do the job?

Multi-line page headers and footers. Multiple footnotes automatically placed on the correct page. Control of orphan and widow lines. Linkage of multiple files at print time. Global search and replace. Control of page width and length and numbering. Comment lines in text. And more.

Averages, logs and exponentials, trig functions, min, max and mean and percent change. Projection, increases, growth rate, net present value. Rearrange columns, drop or keep all lines containing specified string, match 2 files line-for-line in both directions, sort list by columns, tally and cross tabulate. And more.

Bar chart any data row or column, keystroke macro up to 150 characters, or delete blocks of text; a unique DO command takes a command from a file, and carries out those commands, a WAIT command for push-button demos. And Still lots more!

WHAT YOU HAVE TO DO TO GET T/MAKER III
Simply take out your Mastercharge or VISA, and call Nth Dimension:
1-800-457-4177
(California: 408-980-9122).

*If you think $275 is extremely reasonable for a program that does so much more for you than anything else on the market, what do you think of $249 as an introductory offer? You can be certain this special low price won’t last for long!

AVAILABLE FORMATS at present are: CPM-80; standard 8” SSSD, Televideo, Apple II and Northstar. CPM-86; standard 8” SSSD, IBM-PC DOS. The number of formats is increasing fast, so call if you don’t see yours listed. 1-800-457-4177.

CIRCLE 211 ON READER SERVICE CARD
Does Yours Compare with OMNIDISK?

Introducing tomorrow’s disk controller… OMNIDISK offers S-100 users a unique combination of compatibility and technological innovation that together produce features not found in any conventional disk controllers. See for yourself what tomorrow looks like:

- Simultaneous support of both 5½” and 8” floppy disks allows software transfer between disks.
- 24 bit DMA allows CPU by-pass.
- Power-on boot PROM gets you up and running in a hurry.
- On-board de-blocking conserves valuable RAM space above bios.
- Interfaces with the WD 1001® hard disk controller. No need to buy a host adapter.
- Full 16 bit port addressing.
- Full track buffer allows controller to recall entire track, not just sectors. Results in a speed increase 3-to-7-times greater than conventional controllers for both read and write operations.

OMNIDISK’S features reflect our commitment to designing S-100 products with an eye on the future. OMNIDISK’S price reflects our commitment to offer products with an eye on the needs of today’s user. You can begin using tomorrow’s disk controller today for only...

$399*

So why wait, order now.

*CP/M configured for OMNIDISK, only $25 with purchase.

distributed by:
W.W. COMPONENT SUPPLY INC.
1771 Junction Avenue
San Jose, CA 95112
(408) 295-7171

FREE U.P.S. ground shipping on pre-paid orders. Shipping will be added to C.O.D., VISA and M/C orders. CA residents please add sales tax.

Tomorrow’s 8 MHZ Z80 CPU coming soon from FULCRUM

CIRCLE 10 ON READER SERVICE CARD
Table 5. Program codes for the digital voltmeter

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Program Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>DC volts</td>
<td>F1</td>
</tr>
<tr>
<td></td>
<td>AC volts</td>
<td>F2</td>
</tr>
<tr>
<td></td>
<td>AC+DC</td>
<td>F3</td>
</tr>
<tr>
<td></td>
<td>2 wire K-Ohms</td>
<td>F4</td>
</tr>
<tr>
<td></td>
<td>4 wire K-Ohms</td>
<td>F5</td>
</tr>
<tr>
<td>Range</td>
<td>Auto</td>
<td>R1</td>
</tr>
<tr>
<td></td>
<td>1000V or 0.1K</td>
<td>R2</td>
</tr>
<tr>
<td></td>
<td>1000V or 1K</td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td>100V or 10K</td>
<td>R4</td>
</tr>
<tr>
<td></td>
<td>100V or 100K</td>
<td>R5</td>
</tr>
<tr>
<td></td>
<td>1000V or 1M</td>
<td>R6</td>
</tr>
<tr>
<td>Trigger</td>
<td>Internal</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>External</td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td>Single</td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>Hold</td>
<td>T4</td>
</tr>
<tr>
<td>Autozero</td>
<td>On</td>
<td>Z1</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Z2</td>
</tr>
<tr>
<td>Math</td>
<td>Off</td>
<td>Z0</td>
</tr>
<tr>
<td></td>
<td>Pass/Fail</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
<td>M2</td>
</tr>
<tr>
<td></td>
<td>Null</td>
<td>M3</td>
</tr>
<tr>
<td>EDI</td>
<td>Enable</td>
<td>O1</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>O0</td>
</tr>
</tbody>
</table>

An effort is now underway to provide standardized guidelines for the preferred syntax, format, and terminators for bus terminals.

An effort is now underway to provide standardized guidelines for the preferred syntax, format, and terminators for bus terminals.
format are not a part of the standard. This is an important problem, one that actually negates some of the usefulness of the bus and the standard. Different companies can, and do, use different message formats, program codes, and terminators. The codes for data transmission are arbitrary; the only real specification is that the listeners and talkers must agree on the syntax and format. It is very important that the controller software be flexible, or programming can be quite difficult.

There do exist some general guidelines for codes and formats used in programming instruments. In general, instruments are programmed using one or more alpha characters to identify instrument functions, followed by one or more numeric characters which give the parameter value or option. The Hewlett-Packard DVM has such a format (Table 5). Note that even within this guideline, code assignments are still unique to each device. The format for data messages has likewise been somewhat formalized. There is usually a header field of alpha characters, a data field for the measured quality, and a connector or terminator. The header has the information about what has been measured and possible error messages (e.g., overflow). The data field contains the actual measurement. It is generally recommended that the only ASCII characters used for the header and numeric fields be plus, minus, the decimal point, the 10 numerals, and the uppercase alpha characters. Spaces, punctuation, and nonprintable ASCII characters are to be avoided. The separator, used when several readings are to be sent in sequence, is usually a semicolon or comma. Different manufacturers use different terminators, but carriage return and line feed are the most common and usually occur together. Often the terminator in an instrument can be changed with software or hardware jumpers. Of course, EOI can be used if the manufacturer has allowed for it.

An effort is now underway to provide standardized guidelines for the preferred syntax, format, and terminators for bus instruments. (Note: The IEEE 728/1982 standard has been approved.)

“Time” is a very important parameter in bus transactions. We are referring to the time it takes an instrument to perform its function and respond to the controller. Many instruments are mechanical and can “hang up.” Others can be mistakenly, but properly (i.e., error free), programmed so that they take much longer than expected to perform their functions. To check for this, most software packages have some form of “timeout” command. This routine allows the user to set a time limit for instrument response; if the time limit is exceeded, the controller will send an error message. DEC’s INSTRU.TIME LIMIT is a typical example.

Bus speed, another aspect of time, is also important. What determines the data transfer rate and how can it be optimized? The ultimate transfer rate on the bus is one megabyte/second, a rate
SOFTWARE DESCRIPTIONS

TPM (TPM I) - $80 A 280 by operating system which is capable of running CP/M programs. Includes many features not found in CP/M such as independent disk directory partitioning for up to 255 user partitions. The speed of assembly. Additional features include line numbers, interrupt handling, and more. Available preconfigured for Versafloppy II (8" or 5") and ESPON QX-10, or TRS-80 Model I.

CONFIGURATOR I
- This package provides all the necessary programs for customizing TPM for a floppy controller which we do not support. We suggest ordering this on a single density (SECID) basis.
 - Includes: TPM-I ($125), Sample QOS (1656) SOURCE (SFRE), MACRO-I ($100), LINKER ($80), DEBUG ($30), OED ($150), ZETL ($50), TOIP ($50), BASIC-I ($50) and BASIC-II ($100)

MODEL I PROGRAMMER
- This package is only for the TRS-80 Model I. Note: These are the ONLY COL programs available for the Model I. It includes: TPM-I ($80), BUSINESS BASIC ($200), MACRO-I ($150), LINKER ($80), DEBUG ($30), OED ($150), ZETL ($50), TOUCH ($40), ZDDT ($80), TOIP ($50) and MODEM SOURCE ($40) and DISASSEMBLER ($40)

MODEL II PROGRAMMER
- This package is only for the TRS-80 Model II. It includes: TPM-I ($125), BUSINESS BASIC ($200), MACRO-I ($150), LINKER ($80), DEBUG ($30), OED ($150), ZETL ($50), TOUCH ($40), ZDDT ($80), TOIP ($50) and MODEM SOURCE ($40) and DISASSEMBLER ($40)

DEVELOPER I
- Includes: MACRO-I ($80), DEBUG-I ($80), ZETL ($50), TOIP ($50), BASIC-I ($50) and BASIC-II ($100)

DEVELOPER II
- Includes: MACRO-II ($100), MACRO-III ($150), LINKER ($80), DEBUG ($80), DEBUG-II ($100), BUSINESS BASIC ($200), OED ($100), TOIP ($100), ZDDT ($50), ZAPPLE SOURCE ($40), MODEM SOURCE ($40) and DISASSEMBLER ($80) ZETL ($80)

DEVELOPER III
- Includes: QOSL ($200), OED ($150), BUSINESS BASIC ($200), 2TEL ($80) and TOIP ($100)

COMBO
- Includes: DEVELOPER-I ($125), ACCOUNTING PACKAGE ($300), OED ($200) and 6502X ($250) ($1250 Value NOW $950)

LINKER - $80 A linking loader for handling the linkable modules created by the above assemblers.

DEBUG
- $80 A tool for debugging 280 or 8000 code. Includes a disassembler to convert 280 or 8000 code to our 12 or 16 bit machine code. Traces code even through ROM. Commands include: Calculate, Display, Examine, Fill, Go to, List, Mode, Open File, Put, Set, Trace, and Step.

DEBUT II - $100 A superset of Debug I. Adds interpretation and debugging commands. Radio change. Set Trap/Conditional display. Trace commands, and more. This one uses Zilog Mnemonics.

6502X - $150 A Z80 cross assembler. Runs on the 8080 bus and assembles 6502 instructions into 6502 object code. Similar features as our Macro assemblers.

OED - $50 A screen editor which is both FAST and easy to learn. Commands include block delete, copy, and move to a named file or with text, repeat previous command, change locate, find at start of line, and numerous cursor and window movement functions. Works with any CRT, using class screen, addressable cursor, scroll to end of line, and clear to end of screen.

DISK FORMATS

When ordering software specify which disk format you would like.

ZTEL - $80 An extensive text editing language and editor modelled after BASIC's TEQO.

ZEDIT - $50 A mini-text editor. Character line oriented. Works well with hardcopy terminals and is easy to use. Includes macro command capability.

TOP I - $80 A Text Output Processor for formatting manuals, documents, etc. Includes commands which are entered into the text by an editor. Commands include justify, page number, heading, subheading, centering, and more.

TOP II - $100 A superset of TOP I. Adds embedded control characters in the file. page at a time printing, selected portion printing, include/merge files, from file on CRLF option for paging, instant start up and final page ejection.

ZDDT - $40 This is the disk version of our famous Zapple monitor. It will also load hex and relocatable files.

ZAPPLE SOURCE - $50 This is the source to the SMB ROM version of our famous Zapple monitor. It can be used to create your own custom version or as an example of the features of our assemblers. Must be assembled using one of our assemblers.

MODEM
- A communication program for file transfer between systems or using a system as a terminal. Based on the user group version but modified to work with our SMB or TRS-80 models for II. You must specify which version you want.

MODEM SOURCE - $40 For making your own custom version. Requires one of our Macro Assemblers.

DISASSEMBLER - $80 Does bulk disassembly of object files created by programs which can be assembled by one of our assemblers.

HARDWARE

S-100 - $1295 A bare board computer. Includes Monitor Board, for 5-100 systems, 2 serial ports, parallel ports, cassette interface, 64K ROM, (2870 EPROM, 2141 RAM), and power on reset. When used with a Z80/8080 board it makes putting a S-100 system together a snap.

ZTRON III - $50 Provides initializes SMB I/F hardware, produces a powerful debug monitor.

IBM PC - $1750 The IBM PC board. Adds 280 capability to your IBM Personal Computer. Runs CP/M programs but does not require CP/M or TPM. Complete with Z80 CPU, U6K on memory, serial port, parallel port, time and date clock with battery backup, hard disk interface and software to attach to PDIS and transfer programs. Metered by QCS.

APPLE II - $1750 Apple II. Once, at this price. Including a complete $350, Apple Screen Editor which is both fast and easy to learn. Includes display, examine, list, open, put, chain for assembler time, and more. Handles very large and much more.

DEVELOPER II - $1250 Adds 280 capability to your Apple II/I Plus computer. Runs CP/M programs with our more powerful TPM includes 6502 memory add on until the competition this is also useable by the 6502 DOS as well as the Z80. TPM, QOSL, ZDDT, QED Screen Editor, and Business BASIC. Must be ordered with AMT Research.

APPLE SPECIAL 1 - $55 Apple II/I Plus computer. Runs CP/M programs with our more powerful TPM includes 6502 memory add on until the competition this is also useable by the 6502 DOS as well as the Z80. TPM, QOSL, ZDDT, QED Screen Editor, and Business BASIC. Must be ordered with AMT Research.

DEVELOPER SPECIAL 1 - $175 Apple II/I Plus computer. Runs CP/M programs with our more powerful TPM includes 6502 memory add on until the competition this is also useable by the 6502 DOS as well as the Z80. TPM, QOSL, ZDDT, QED Screen Editor, and Business BASIC. Must be ordered with AMT Research.

APPLE SPECIAL 2 - $525 Apple II/I Plus computer. Runs CP/M programs with our more powerful TPM includes 6502 memory add on until the competition this is also useable by the 6502 DOS as well as the Z80. TPM, QOSL, ZDDT, QED Screen Editor, and Business BASIC. Must be ordered with AMT Research.

APPLE SPECIAL 2 - $525 Apple II/I Plus computer. Runs CP/M programs with our more powerful TPM includes 6502 memory add on until the competition this is also useable by the 6502 DOS as well as the Z80. TPM, QOSL, ZDDT, QED Screen Editor, and Business BASIC. Must be ordered with AMT Research.

STANDARD SOFTWARE OPTIONS

VISA/MasterCard/C.O.D. Call or Write With Ordering Information

DEMS
- Many CDL products are available for licensing to OEM's. Write to Carl Galletti with your requirements. Dealer Invitations Invited.

ORDERING INFORMATION:
- Visa/MasterCard/C.O.D.
- Call or Write With Ordering Information...

OEM's
- Many CDL products are available for licensing to OEM's. Write to Carl Galletti with your requirements. Dealer Invitations Invited.

For Phone Orders ONLY Call Toll Free: 1-(800) 458-3491

Ask For Extension #15

For information and tech queries call (609) 599-2146

CIRCLE 84 ON READER SERVICE CARD
$1590

Full size smart terminal with detachable keyboard

4MHz Z80A CPU
64K RAM Main Memory
200Kbyte 5¼” floppy disk
(Osborn, Xerox, IBM, CP/M-86 formats)
Two serial ports

Complete software package includes:
- WordStar word processing
- Correct-It spelling checker
- LogiCalc electronic spreadsheet
- Microsoft BASIC
- NorthStar compatible BAZIC
- CP/M 2.2 Operating System
At $1790, this computer was selling like hotcakes. So we dropped the price.

Crazy? No, not really. You see in order to meet the demand for the Micro Decision™ we increased our production. When we did that, our costs dropped. We're passing our savings on to you, because that's our philosophy.

More for less.

So now it only takes $1590 to buy a Micro Decision with 64K of memory, a 200K double density floppy drive and a full-size Morrow smart terminal with detachable keyboard. Not bad. But there's more.

The Micro Decision also includes a package of business and professional software worth well over $2000. The WordStar® word processor. A 36,000 word spelling checker. The LogiCalc™ electronic spreadsheet. And both Microsoft BASIC-80™ and NorthStar-compatible BAZIC® Plus, the CP/M® 2.2 Operating System that gives you access to thousands of other software programs. And, we take the mystery out of CP/M with plain English commands and single-key operation.

If you have your own terminal, you can buy the complete computer and software package for $995. That's the Micro Decision MD1™. The MD2™ includes another double-density disk drive, plus Personal PEARL™ the relational data base manager. Price? Only $1395.

More memory? No problem. The Micro Decision MD3™ gives you two double-sided, double-density disk drives with 768K of storage and Personal PEARL for only $2290. Without the terminal, $1695.

Come in for a complete demonstration at your nearest Morrow Designs dealer. If you don't know who that is, call us toll-free at (800) 521-3793. In California, call (415) 430-1970. At $1790, the Micro Decision sold like hotcakes. At $1590, we've just sweetened the deal.

More computer, for less.

MORROW DESIGNS

600 McCormick Street San Leandro, CA 94577
(800) 521-3793 (415) 430-1970 In California

Micro Decision, MD1, MD2, and MD3 are trademarks of Morrow Designs.

WordStar is a registered trademark of WordStar International.

LogiCalc is a trademark of Software Products Corporation.

BASIC-80 is a registered trademark of Microsoft Corporation.

BAZIC is a registered trademark of Micro Mikes, Inc.

Personal PEARL is a trademark of Relational Systems, Inc.

CP/M is a registered trademark of Digital Research, Inc.
An IEEE-488 Bus Tutorial continued...

that is very seldom reached in a system of any complexity. More typical rates are 250KB/sec with open collector drivers, and 500KB/sec with tristate drivers. In a given system, the actual speed at which data can be transferred depends on a variety of things, including the controller I/O and processing time, the instrument’s speed, and the number of instruments attached to the bus.

Increasing the number of instruments has two effects. The time needed to perform addressing and handshaking increases, and the loading of the bus increases. In the first instance, the handshaking proceeds at the rate of the slowest instrument on the bus. Even if only one or two of the devices are addressed, they all must respond to universal commands. In the second instance each instrument is a capacitive load on the bus, and such loads slow down data transmission. The more instruments, the more serious the problem.

Today’s computers have sufficient speed so that they are usually not responsible for slow rates. Nevertheless, a misused computer can severely slow down data transfer. One often overlooked problem is the relative slowness of a disk access, which often takes between 100 and 400 milliseconds. If the 488 driver routines are poorly chained oroverlayed, bus operation will be markedly affected.

Ultimately however, the data rate is determined by the instruments themselves. The faster a device can transfer messages and perform the handshake, the faster the job will done. What determines the speed of an instrument? The speed depends on four factors: the time required to set up and acquire the data, the internal process time, the data transfer time, and the interface process time. The user is obviously unable to make many changes here—he can only select sufficiently fast instruments. However, instrument manufacturers are making many improvements. In particular, microprocessor-controlled test and measurement devices are fast becoming the norm.

Many microprocessor-controlled instruments have preprocessors that handle addressed and universal commands, with the more complex commands being handled by the processor. This can speed up handshaking operations by a factor of 100 or so. Such instruments often have small internal memories that allow them to handshake messages at the fastest possible rate and store them in the buffer. When the message is terminated, the instrument acts on the message and the controller goes on to its next task. This doesn’t necessarily speed up bus operation and, in fact, can lead to unexpected errors. After the instrument gets the message and stores it in memory, it must evaluate it. This takes time; the message must be read and checked for errors, the operation executed, and the results placed in output buffers. If the controller tells a second device to perform an operation based on the first device’s setup, errors will occur if programming delays are not taken into account. Properly used, however, such instruments are significantly faster.

Microprocessor control has led to one very real improvement is bus operation. Many instruments can be programmed to perform fairly sophisticated data reduction and analysis, relieving the computer of this task. The digital voltmeter discussed above is one such device. It can take a large number of readings and perform many statistical analyses of the data. Other devices have memory areas into which the controller can download instruction sets and analysis programs, again saving the computer this overhead.

The ultimate questions to be answered, however, are “How do I improve the speed in my system?” and “Can I go beyond 500KB/sec?” The answer has two parts: hardware improvements, which are not always accessible, and software improvements, which can always be employed. On the hardware side, one should, if possible, purchase instruments that are microprocessor controlled, have internal memory buffers, and can be downloaded. They should use tristate drivers and present a low capacitance (<50pF) to the bus. Cable lengths should be kept below 15 meters and should never exceed 1 meter per device. The number of devices on the bus should be kept to an absolute minimum, and they all must be on. If it is necessary to use slow devices along with fast ones, consider using two 488 buses on separate ports.

From the software viewpoint, take full advantage of internal memories and download smart devices. Whenever possible, interrupt drive the system. Use as many low-level drivers as possible (assembly language routines) and, when higher level routines are adequate, use a compiled language. Avoid unnecessary and redundant bus commands and UNTs and UNLs. Use bus commands rather than instrument-dependent commands where possible. Last but not least, suppress all unneeded terminators.

Finally, we should comment on a nonmandatory but frequently used aspect of the revised IEEE standard. It provides for “capability ID” on the rear panel of all instruments. The interface function codes (Table 1) for all functions supported by the instrument may be displayed near the 488 connector. Figure 4 shows the codes for the digital voltmeter.

References
3. IEC Standards, 1, Rue de Varembe, 1211 Geneva 20, Switzerland.
4. ANSI Standards, 1430 Broadway, New York, NY 10018.

For software improvement, take full advantage of internal memories and download smart devices; avoid unnecessary and redundant bus commands; and suppress all unneeded terminators.
IEEE-488 Bus Tutorial continued...

Other reading

Tutorial Description on the Hewlett-Packard Interface Bus. Available from the Hewlett-Packard Company, this booklet has an extensive bibliography on HPB articles and instruments. "Understanding IEEE-488 Basics Simplifies System Integration." June and August 1982 issues of EDN.

Introduction to the GPIB. Available from the Wavetek Corporation.

From Plum Hall an Introductory Book on C.

Richard S. Newrock is professor of physics and department chairman at the University of Cincinnati. He received a B.S. in physics from Rensselaer and a Ph.D. from Rutgers. After several years of post-doctoral research at Cornell University, he joined the faculty at Cincinnati. An active researcher, he is currently involved in investigations into two-dimensional physics and topological phase transitions in superconducting arrays and granular metals. He uses microcomputers extensively in the laboratory, office, and home for word processing, database handling, scientific calculations and experimental control and data taking.

Learning to Program in C

This guide to the C language is in keeping with the man's enthusiasm for the language and programming. This resource is particularly valuable for those who have not previously programmed in a non-procedural environment. It gives a complete overview of C, with emphasis on programming in a non-procedural environment. It gives a complete overview of C, with emphasis on programming in a non-procedural environment.
Interfacing Microcomputers with Laboratory Instruments

by Joseph W. Long

Within the last six years, the microcomputer has rapidly developed into a very important laboratory tool, since the cost of microcomputer software and hardware has been steadily dropping while its computing power has increased. Much of the new chemical instrumentation currently entering the market is microcomputer-controlled. Here at Broome Community College, examples of such equipment in our Chemical Technology laboratories run all the way from programmable pH meters to a very sophisticated Perkin-Elmer computerized infrared spectrophotometer.

However, to keep the education of our students abreast with the state of the art, we decided that student involvement with microcomputers beyond the commercially available “off the shelf” equipment was desirable. For this purpose, two microcomputer-controlled laboratory instrumentation systems were constructed for the use of second-year chemical technology students. The first consists of a Gow Mac Gas Chromatograph interfaced to a Processor Technology microcomputer and functions as a “smart” gas chromatographic data analyzer, collecting and processing data in real time. The second system consists of Nucleus scintillation equipment interfaced to a North Star Horizon microcomputer; it functions as an intelligent gamma scintillation spectrometer.

The microcomputer-controlled gamma scintillation spectrometer, a scheme of which is shown in Figure 1, consists of a North Star Horizon II microcomputer interfaced to Nucleus scintillation equipment. (Interface hardware will be discussed later.) The Nucleus equipment includes a sodium iodide detector, pulse height analyzer, ratemeter, and chart recorder. The microcomputer contains 64K of RAM, an eight-channel digital-to-analog/analog-to-digital converter (ADC/DAC), and a high-resolution graphics video terminal.

Spectra may be run completely under control of the microcomputer. Controllable parameters include scan speed, scan energy limits, scan output media, etc. Available output media include the chart recorder and/or low- or high-resolution graphics on the video terminal. Once scanned, spectra may be saved on disk (over 250 spectra per quad-density disk) for subsequent re-examination. Disk spectra consist of 255 data points, where each point is resolved to one part in 2^8. A typical spectrum replotted from disk is shown in Figure 2.

The Basic program that controls the spectrometer requires about 52K of memory. The control program includes continuous display of prompt lines, making the system very simple to operate. The self-prompting nature of the programs makes it possible for a student to operate the spectrometer under computer control, with perhaps 15 minutes of instruction.

Chromatographic data analyzer

The chromatographic data analyzer (Figure 3) consists of a gas chromatograph interfaced to another microcomputer. The gas chromatograph used is a Gow Mac model GC-2, with a strip chart recorder. The microcomputer is a Processor Technology Sol, with 64K RAM and a Helios II dual floppy disk system. Data analysis capabilities of this system include the ability to calculate the relative areas of each peak in a series of a chromatographic run, together with determination of the retention time of each peak. The results of a run may be printed optionally on a teletype terminal for a permanent record. A full set of continuous prompts appearing during execution makes this equipment as simple to operate as the scintillation system.

The software developed for the data analyzer is rather unsophisticated, requiring that three assumptions be met for good results. These assumptions are that the baseline is drift-free, the peaks symmetric, and the signals noise-free. There are two reasons for this lack of sophistication. First, the software is written in Processor Technology Basic, an interpreted language that is too slow to allow much real-time calculating (the amount of calculation increases rapidly with increasing sophistication of the routines). Second, the amount of time required to develop even the simple software used in this project has been very large, and a
great deal more additional time would be required in order to improve the programs significantly.

One interesting aspect of the computers used in this project is their electronic architecture. Both computers consist of a “backplane” into which electronic circuit cards are plugged. Each computer uses the IEEE-696/S-100 bus, for which dozens of manufacturers have produced hundreds of different boards. A computer can be made by plugging into the backplane (also called a “motherboard”) the units that comprise a computer: a central processor unit (CPU) board, memory boards, an input/output board, and so on. This approach can produce a custom-built computer having just the specifications a given situation requires. There are a number of advantages to this approach: One is that as technological advances or changing requirements dictate, old boards may be replaced by newer ones, making it impossible for the computer to become obsolete (for a few years anyway!). Another advantage is that troubleshooting is often relatively easy with a modular system of this type, since a board can be swapped from a known good system to one with problems in order to isolate a problem quickly in a given part of the computer.

The alternative approach in terms of architecture is to use one of the “single” board computers, such as the Radio Shack, Heath/Zenith or Apple. In these machines, the entire computer is built onto one or two large circuit boards. One result of this approach is that a computer of this type may be unpacked, plugged in, and run; it is easy to get running. While these are excellent computers and have many good points, from the viewpoint of adaptability, expandability, and ease of repair, they suffer in comparison with a computer using the IEEE-696/S-100 bus. A similar situation exists in buying high-fidelity equipment: One can either buy a package system or opt for “components.” The first gives a system ready to operate; the second may want a bit of fiddling to get it going, but has more possibilities.

Using a separate microcomputer allows students to see clearly the interrelation between computer and instrument, and gives them a chance to modify the software.
The Well-Tempered Cross-Assembler

Before Johann Sebastian Bach developed a new method of tuning, you had to change instruments practically every time you wanted to change keys. Very difficult.

Before Avocet introduced its family of cross-assemblers, developing microprocessor software was much the same. You needed a separate development system for practically every type of processor. Very difficult and very expensive.

But with Avocet's cross-assemblers, a single computer can develop software for virtually any microprocessor! Does that put us in a league with Bach? You decide.

Development Tools That Work

Avocet cross-assemblers are fast, reliable and user-proven in over 3 years of actual use. Ask NASA, IBM, XEROX or the hundreds of other organizations that use them. Every time you see a new microprocessor-based product, there’s a good chance it was developed with Avocet cross-assemblers.

Avocet cross-assemblers are easy to use. They run on any computer with CP/M* and process assembly language for the most popular microprocessor families.

<table>
<thead>
<tr>
<th>XASMO5</th>
<th>6805</th>
</tr>
</thead>
<tbody>
<tr>
<td>XASMO9</td>
<td>6809</td>
</tr>
<tr>
<td>XASM18</td>
<td>1802</td>
</tr>
<tr>
<td>XASM48</td>
<td>8048/8041</td>
</tr>
<tr>
<td>XASM51</td>
<td>8051</td>
</tr>
<tr>
<td>XASM65</td>
<td>6502</td>
</tr>
<tr>
<td>XASM68</td>
<td>6800/01</td>
</tr>
<tr>
<td>XASMF8</td>
<td>F8/3870</td>
</tr>
<tr>
<td>XASMZ8</td>
<td>Z8</td>
</tr>
<tr>
<td>XASM400</td>
<td>COP400</td>
</tr>
<tr>
<td>XASM75</td>
<td>NEC 7500</td>
</tr>
</tbody>
</table>

(Coming soon: XASM58K 68000)

Turn Your Computer Into A Complete Development System

Of course, there’s more. Avocet has the tools you need from start to finish: to enter, assemble and test your software and finally cast it in EPROM:

Text Editor VEDIT -- full-screen text editor by CompuView. Makes source code entry a snap. Full-screen text editing, plus TECO-like macro facility for repetitive tasks. Pre-configured for over 40 terminals and personal computers as well as in user-configurable form.

CP/M-80 version $150
CP/M-86 or MDOS version $195

(when ordered with any Avocet product)

ROM Simulator -- ROMSIM by Inner Access eliminates need to erase and reprogram EPROM. Installed in an S-100 host, ROMSIM substitutes RAM for EPROM in external target system. 16K memory can be configured to simulate the 2708, 2758, 2716, 2516, 2732, 2532, 2764, 2564 in either byte or word organization. Avocet’s configurable driver makes loading of HEX or COM files fast and easy.

From $495 depending on cabling and RAM installed.

EPROM Programmer -- Model 7128 EPROM Programmer by Gtek programs most EPROMS without the need for personality modules. Self-contained power supply accepts ASCII commands and data from any computer through RS 232 serial interface. Cross-assembler hex object files can be down-loaded directly. Commands include verify and read, as well as partial programming.

PROM types supported: 2508, 2758, 2516, 2716, 2532, 2732, 2532A, 27C32, MCM8766, 2564, 2764, 27C64, 27128, 8748, 8741, 8749, 8742, 8751, 8755, plus Seeq and Xicor EEPROMS.

(Upgrade kits will be available for new PROM types as they are introduced.)

Programmer $389
Options include:
Software Driver Package $30
RS 232 Cable $30
8748 family socket adaptor $98
8751 family socket adaptor $174

Call Us

If you’re thinking about development systems, call us for some straight talk. If we don’t have what you need, we’ll help you find out who does. If you like, we’ll even talk about Bach.

VISA and Mastercard accepted. All popular disc formats now available – please specify. Prices do not include shipping and handling – call for exact quotes. OEM INQUIRIES INVITED.

*Trademark of Digital Research.

AVOCET SYSTEMS INC.
DEPT. 483M
804 SOUTH STATE STREET
DOVER, DELAWARE 19901
302-734-0151 TLX 467210

CIRCLE 60 ON READER SERVICE CARD
A limitation inherent in the 07 A necessitates the second electronics package. The limitation is this: Both the input and output sections of the 07 A are designed to function over the voltage range of -2500 mV to +2500 mV. The problem here is that the analog peripherals to be connected to the converter have many different voltage ranges extending, for example, from 0 to 1 mV for output from the gas chromatograph to the computer, to the 0-to-10V range required from the computer to drive the analyzer in the scintillation spectrometer.

Operational amplifier circuits, functioning as inverting amplifiers and/or summing amplifiers (or both) were used to do the required matching between the computer and the peripherals. These circuits were designed using low-cost, easy-to-use 741 operational amplifier integrated circuits. Four such circuits were required for the work done in this project: three in the scintillation spectrometer, and one in the data analyzer.

Examples of the circuits used in the scintillation spectrometer are shown in Figures 4 and 5. The first circuit matches the 0 to 100 mV output of the ratemeter to a ±2500 mV input channel on the 07 A. The second converts the DAC analyzer ramp output, which ranges from -2.5 V to +2.5 V, to 0 V to 10 V.

Figure 4. Ratemeter output amplifier. This circuit converts the ratemeter's 0—100 mV output to the -2.5 to +2.5 V output needed to drive the D7A analog input. The circuit is built into the ratemeter.
Interfacing to Instruments continued

Figure 5. Analyzer ramp interface. This circuit converts a computer-generated ramp signal of -2.5 to +2.5V into a ramp running from 0 to 10V. The circuit was built into the Nucleus Analyzer.

The software

Two main programs were written for this project: one for the spectrometer, and one for the data analyzer. The programs were written respectively in North Star Basic and Processor Technology Basic. Each program had a highly structured, modular (within the limits of Basic) format containing a great deal of documentation. (The programs run to several hundred statements, with documentation included in each line.)

Basic was chosen for a number of reasons. At the start of the project, it was the only high-level language immediately available for the North Star computer. Although Fortran IV was available for the Processor Technology computer, it was not chosen because of problems with interweaving Fortran and assembly language programs. Another reason for using Basic was that its availability as an interpreted language allowed faster and easier program development and debugging than compiled languages such as Fortran and Pascal. Finally, properly written Basic programs can be much easier for a student who does not have much programming experience to read and understand than programs in most other languages. This is important if students are to be able to examine and modify portions of the program within a reasonable period of time.

However, Basic has two disadvantages when used in work of this sort. The first is that Basic has few rules regarding structure or documentation. It is very easy to write Basic programs that are totally indecipherable not only to a student, but also to the programmer after a few days. This problem can impede the development or modification of a Basic program of any significant size. The cure is simple: The programmer must force himself to stick to structured modular programming techniques. The other disadvantage of Basic is that it is inherently a much slower language than Fortran, Pascal, or assembly language. The speed problem is related to the fact that most Basics are interpreted rather than compiled. A program in an interpreted language may typically run only one-tenth as fast as the same program written using a compiled language. Speed can cause problems if the program is to provide real-time control over an instrument. In fact, the two chemical instruments chosen for use in this project were selected partly because they run quite slowly. Blinding speed is not necessary to monitor the output of a gas chromatograph, or to control a gamma scintillation spectrometer.

It is important to note that there is nothing inherent in Basic that requires it to be interpreted. In fact, at least one company (Microsoft, Bellevue, WA) has identical versions of Basic, one interpreted, the other compiled. A program may be written and debugged using the interpreter, then compiled to produce a much faster version for actual use.

Students benefit in two ways: They learn about the advantages of using laboratory computers and, at the same time, are able to do more chemistry because of increased instrument efficiency.
Megabyte S-100 Memory Here Now

Major breakthrough made by Macrotech International Corporation

CANOGA PARK (MI)—January 20, 1983—Mike Pelkey, president of Macrotech International Corporation, today announced a major technological breakthrough in S-100 dynamic memory board density. A full megabyte of high speed dynamic ram is contained on a single standard size S-100 multilayer P.C. board. The product, dubbed ‘Max’ meets all IEEE/696 mechanical and electrical specifications and byte parity generation/checking is included as a standard feature. Max supports IEEE/696 24-bit addressing (selectable at any 128K boundary), 8/16 data transfer protocol, phantom line operation, and the same ultra low noise bus signal filtering provided on Macrotech's popular high performance 256K dynamic memory board.

Max is in production now and shipping at the all-time low cost per bit list price of $1,983 in unit quantity.

Bruce Kimmel, Macrotech's sales manager reports that customers are being served on a "first-in, first-out" basis and warns that due to a high incidence of graphics and similar memory-intensive applications, along with an unwillingness in the trade to pay exorbitant prices for memory, backlogs may occur for Max which could delay shipments against some late orders. With the improbability of second sourcing for some time, interested parties are urged to get orders in as soon as possible. Bruce can be contacted at 22133 Cohasset Street, Canoga Park, California 91303, or reached by telephone at (213) 887-5737.

Virtual Disk Flexibility Cited

CANOGA PARK—January 20, 1983—Macrotech reports their Multiuser I and Multiuser II S-100 ram memory boards can be used as both system memory and "virtual disk" storage in eight or sixteen-bit applications. Addressing flexibility is the key. The Multiuser M3 memory mapped addressing is guaranteed to allow memory partitioning to fit the exact requirements of your system without ever wasting a single byte.

Today's trend in operating systems appears to include extended memory capabilities to allow for the recent technological advances in semiconductor memory. A close look at Digital Research's new CP/M 3.0 for example, would lead you to believe that it was especially created to fit Macrotech's family of Multiuser memory boards. (It wasn’t, but try to find one that fits better.)

Where it all started: pictured is the popular Multiuser I, Macrotech’s first product. This widely used board provides 256 Kbytes of dynamic ram with 4K page memory mapping (called M’), 8/16 bit operation, 24 bit addressing and byte parity checking.

Macrotech’s advanced memory mapping scheme allows each 4K block of the 16 bit (64K) logical addresses to be dynamically translated to any 4K block of the physical memory. Global memory can be configured to any size and located anywhere in the logical address space. All remaining memory can be addressed through the remaining logical address space by simply reloading the mapping registers to address the desired physical memory blocks. This scheme permits unlimited use of all on-board physical memory.

CIRCLE 28 ON READER SERVICE CARD
Interfacing to Instruments continued

Further work

This project is part of a continuing series that we are doing at Broome Community College. Previous projects involving computer control and laboratory interfacing include development of a microcomputer-controlled automatic titrator and a constant-current coulometer. Other projects include several computer programs that students can use in laboratory work. One example is a program that assists in the preparation of samples for liquid scintillation counting (LSC); another is a Sartorius Analytical Balance interfaced to a Hewlett-Packard desktop computer. (The latter is a commercially prepared package.)

Project evaluation

Both systems functioned as intended. The gamma scintillation spectrometer even emerged as a much more powerful and versatile system than had been planned, in terms of its capabilities and ease of use, while the data analyzer functioned almost exactly as had been projected.

The primary users of the data analyzer are liberal arts students and chemical technology students in their organic chemistry courses. An experiment comparing simple with fractional distillation includes analysis of samples using the gas chromatograph. Students analyzed their results by integrating peaks on their chromatogram via several methods: cutting and weighing, triangulation, and now, by use of the data analyzer. Students are required to do integrations using all of these methods, and they therefore see the computer-controlled integrator simply as an additional (and very powerful) way of analyzing chromatographic data.

Equipment Suppliers

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatographic data analyzer</td>
<td>Company out of business. Current source of this equipment:</td>
</tr>
<tr>
<td>Processor Technology Sol computer, Helios II disk system</td>
<td>Computer Port</td>
</tr>
<tr>
<td>Model D7A digital-to-analog/analog to digital converter</td>
<td>Cromemco, Inc.</td>
</tr>
<tr>
<td>LA 36 Decwriter II printing terminal</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>GC-2 Gas chromatograph with chart recorder</td>
<td>Gow Mac Instrument Company</td>
</tr>
<tr>
<td>Scintillation spectrometer</td>
<td>North Star Computers, Inc.</td>
</tr>
<tr>
<td>Horizon II microcomputer</td>
<td>14440 Catalina St.</td>
</tr>
<tr>
<td></td>
<td>San Leandro, CA 94577</td>
</tr>
<tr>
<td>ADM3A video terminal</td>
<td>Lear-Siegler, Inc.</td>
</tr>
<tr>
<td>Retrographic high-resolution graphics for ADM3A</td>
<td>Digital Engineering, Inc.</td>
</tr>
<tr>
<td>NaI detector</td>
<td>1787-K Tribute Road</td>
</tr>
<tr>
<td>Model 2010 amplifier analyzer</td>
<td>Sacramento, CA 95815</td>
</tr>
<tr>
<td>Model L scaler</td>
<td>The Nucleus, Inc.</td>
</tr>
<tr>
<td>Model SR255B chart recorder</td>
<td>Box R</td>
</tr>
<tr>
<td>Model D7A AD/DA converter</td>
<td>Oak Ridge, TN 37830</td>
</tr>
<tr>
<td></td>
<td>Heath Company</td>
</tr>
<tr>
<td></td>
<td>Benton Harbor, MI 49022</td>
</tr>
<tr>
<td></td>
<td>Cromemco, Inc.</td>
</tr>
<tr>
<td></td>
<td>280 Bernardo Ave.</td>
</tr>
<tr>
<td></td>
<td>Mountain View, CA 94040</td>
</tr>
</tbody>
</table>
Users of the gamma scintillation spectrometer are chemical technology and medical laboratory technology students in their instrumental analysis courses. They operate the scintillation spectrometer both in its original manual mode and in its computer-controlled mode, and are thus able to see the sort of enhancement in instrument performance that is possible when computer control is used. Also important is that the students are able to spend more time on the chemical techniques and applications of gamma scintillation spectroscopy because the equipment is easier to use, and it takes much less fiddling on the part of the student to get it to produce usable results. This is an important point. Students benefit in two ways by using the gamma scintillation system: They learn about the advantages of using laboratory computers, and, at the same time, are able to do more chemistry due to the increased efficiency of the computer-controlled equipment. Using each system has become a regular part of the laboratory courses at Broome.

Some final words
Interfacing a microcomputer with external instrumentation requires skill in analog and digital electronics and computer programming in both high-level and assembly language. A sophisticated type of ADC/DAC converter (California Data Corporation, Newbury Park, CA) now eliminates the need for much of the electronics work (interface hardware) done in this project. These converters contain built-in software-controlled, programmable-gain operational amplifiers that can eliminate the requirement for interface hardware. Such equipment allows interfacing the analog peripherals by simply running a two-wire pair to each piece of equipment to be connected to the computer. There is, of course, a penalty to be paid for this convenience: The ADC/DAC boards are more expensive than the Cromemco board used in this project. The cost is not prohibitive; thus it should be possible for many more individuals with a knowledge of programming but little hardware experience to do their own interfacing, using this newest type of equipment.

The era of having a computer or two in every laboratory is upon us. Now the newest computer equipment should make it possible for anyone with even a minimal software background to begin working with laboratory computer interfacing.

Information packages for the two projects described are available, each containing additional details of the project hardware and listings of the programs, at a cost of $5 per package to cover postage and handling. Make checks payable to Joseph W. Long, Chemical Engineering Technology Department, Broome Community College, Box 1017, Binghamton, NY 13902 and specify either the Data Analyzer package or Scintillation Spectrometer package. Copies of the programs, on disk, are also available at no charge (North Star single density). You must supply the disk and include SASE for return of the disk.
Implementing the Advanced Features of CP/M Plus: Part 2

by Bruce R. Ratoff

In the February issue, I discussed some of the details of bringing up a CP/M Plus system with memory management. Now we will look at some additional routines that may be added to your CP/M Plus BIOS to further enhance system performance. None of these routines is required to get the system running, but each one activates an additional feature or makes the system run faster.

Date and time support

One of the most asked-for features in the new CP/M is the ability to handle date and time. BDOS calls have been provided to read and set the system date and time. For compatibility, these calls use the same function numbers and data format as MP/M. While it's nice to be able to use the date and time from your programs, the most valuable use of date and time is the ability to time-stamp your files. On each of your diskettes or hard disk drives, you may instruct CP/M Plus to record the date and time each of your files was last updated. In addition, you may also elect to record either the date and time of creation or the date and time of last access. Since most CP/M programs update a file by outright replacement, the most useful combination is probably update time and access time.

The BDOS keeps the system date and time in a group of memory locations in the System Control Block. The SCB is a special area of memory containing a number of BDOS variables. These variables may be accessed from the BIOS by declaring them in an EXTERN statement and linking the BIOS with the system module SCB.REL, which is provided on the release disk.

If your system has a clock chip somewhere, implementing the system date and time features becomes extremely easy. One of the new BIOS jump vectors is intended for a routine called TIME. This vector is called whenever the BDOS wants to either read or change the date and time. On entry to your TIME routine, if the C register contains a 0, the BDOS is about to read the date and time. Your routine should read your clock hardware and store the date and time into the appropriate slots in the SCB. If, on entry to the TIME routine, the C register contains an FF (hex), the BDOS has just written the date and time. In this case, your routine should use the date and time in the SCB to update the clock hardware.

Even if your system does not contain specific timekeeping hardware, you can still have date and time support if your hardware can provide some kind of periodic interrupt. The most common implementation would be to use a counter/timer chip such as the Intel 8253 or Zilog Z80-CTC. Another common method is to pick off the unfiltered 60 Hz from your power supply and derive an interrupt from that. If your system contains video-generation hardware, you may also be able to obtain an interrupt from the vertical sync circuit, which is also usually around 60 Hz.

Whatever the implementation, the object is to generate an interrupt at some regular interval. You then must write an interrupt handler that counts up the interrupts and updates the time and date fields once per second. If your hardware can be programmed for one interrupt per second, this becomes very straightforward. If the only interrupt rates available are somewhat faster (and this is usually the case), you must include an extra counter in your interrupt routine.

The time-of-day routine used in my BIOS is shown at the end of this article.

Multisector disk I/O

One of the new BDOS features of CP/M Plus allows an application program to read or write more than one 128-byte disk record at a time with a single BDOS call. A new BDOS function, "Set Multisector Count," may be used by an application program to set the number of records read or written by each BDOS call to any number between 1 and 128. This means that an entire extent can be transferred in a single operation. The CCP and PIP both make heavy use of this function to speed up program loading and file copying.

Several changes in the BDOS behavior occur when an application uses the Multisector I/O feature. In processing a multisector read or write, the BDOS will attempt to pick out the sections of the file which are contiguous on the disk. Whenever one of these sections encompasses one or more entire physical (nondeblocked) sectors, the entire deblocking and buffering scheme is bypassed and the data is transferred from the disk directly into the TPA. This speeds up the transfer by eliminating the time required to copy each sector into or out of a deblocking buffer. This portion of the multisector transfer logic is handled entirely within the BDOS, requiring no special code in the BIOS.

You may provide an additional speed increase in multisector disk I/O by adding code to your BIOS to read and write multiple sectors at a time. Before starting the transfer of each contiguous section of a multisector transfer, the BDOS makes a call to the MULTIO entry point of the BIOS. This new entry point informs the BIOS that the next "n" disk reads or writes are to a logically contiguous area of the disk. The BIOS can make use of this information on the next read or write call to transfer the total number of sectors requested.

There is one major "gotcha" in the MULTIO...
logic. In making a multisection BIOS call, the BDOS does not take into account your sector translation ("skew") logic. Therefore, you can only do the disk operation correctly on the first call if your BIOS does not use a software skew of the disk sector numbers. How then can you take advantage of MULTIO on a skewed disk? By performing a bit of additional trickery.

It is significant to observe that the BDOS will still make the full set of disk I/O (Set Track, Sector, Read, Write) for each sector of a multisection transfer. Note also that the BDOS does not really care which of these calls performs the actual disk I/O, as long as all of the sectors have been transferred by the time the "nth" read or write call is completed. If you are on a nonskewed disk, it is probably simplest to do the entire data transfer on the first of these calls, and ignore the next "n-1" read or write calls. If you are on a skewed disk, you can store the track numbers, sector numbers, and DMA addresses in a table, and perform all of the disk I/O on the final call. Various other schemes are possible, and the best advice here is to do the best you can on your particular hardware to take advantage of the added information passed by the MULTIO call.

Nondisk I/O enhancements

You may recall that previous versions of CP/M have often made reference to something called the "I/O byte." This dates back to the original Intel development system for which CP/M was originally created. The I/O byte was a simple means of taking up to four physical devices, such as a Teletype, a CRT terminal, paper tape equipment, etc., and selecting which one to use for each of CP/M's five logical devices: Console Input, Console Output, Auxiliary Input ("Reader"), Auxiliary Output ("Punch"), and List Output. Under this scheme, there was a one-out-of-four choice for each logical device, although the four physical devices for one logical device did not necessarily have to be the same as for another logical device.

In CP/M Plus, the I/O byte has been replaced by five 16-bit words in the SCB, known as the Redirection Vectors. There is one Redirection Vector for each logical device. The upper 12 bits of each Redirection Vector are used to select up to 12 physical devices. Unlike the previous scheme, it is assumed that the same 12 physical choices will be available for each logical device. The lower four bits of each Redirection Vector are reserved for internal use by the BDOS. Setting any of the upper 12 bits in one of the Redirection Vectors means that the corresponding physical device should be used as that logical device.

This new scheme has several interesting implications. For one thing, a broader range of choices now exists for each logical device assignment, since 12 choices are possible instead of four. Also, it is possible under this new scheme to have more than one physical device associated with a logical device at the same time. This allows you to do such things as sending a listing to more than one printer, or simultaneously to the printer and the console. You might assign more than one device as the console, enabling you to operate your system from more than one location, or to let somebody watch what you're doing on another display. Other possibilities that come to mind are multiplayer games and operating your system via modem.

The Redirection Vectors reside in the System Control Block (SCB), but the code to handle them must be provided in your BIOS. Two new BIOS routines, and some changes to your console, auxiliary input, auxiliary output, and printer routines are required.

The first new routine required is called DEVITBL. This routine must return the address of a table containing the names and attributes of each physical device in your system. Each physical device is given a name of up to six characters. The attributes stored in the device table include whether the device can do input or output, whether the device is serial or parallel, its baud rate, whether the baud rate can be changed, and whether XON/ XOFF protocol should be recognized. You must create this table within the resident portion of your BIOS, and fill it with the names and attributes of your hardware.

The other new routine is called DEVINI. This routine is called with a device number, corresponding to the relative position of one of your system's physical devices in the device table described above. DEVINI must re-initialize the indicated device according to the parameters set in the device table. Normally, this routine will be called by the CP/M Plus program DEVICE, to indicate that it has modified the indicated device's attributes. You may also modify the device table and call DEVINI from your applications programs.

Note that DEVICE is the only program provided with the system that uses DEVITBL and DEVINI. The BDOS itself never calls these routines or references the device table. It is therefore entirely up to you whether or not to implement this feature.

Once you have created a device table and provided the DEVITBL and DEVINI routines, you must modify all your character I/O routines to use the Redirection Vectors. The routines for each logical device must pick up the corresponding vector, scan it for all the "1" bits, and call each physical I/O routine whose bit is set. This is not as tedious as it sounds, since most of the code will probably be common to all logical devices. The only differences will be in which Redirection Vector is used, and whether an input or output routine is called.

Goodbye, Control-C

This month's final item is a no-risk way to eliminate the need to type control-C when you change diskettes. This applies if your diskette drives have a way of signaling that the door has been opened. Most 8" and some 5" drives have an optional signal called "Disk change" that performs this function. If you have a way of reading this signal, you may use it to tell the BDOS when to check for a disk change.

There is a new field in the Disk Parameter Headers called the Media Flag. There is also a Media Flag in the System Control Block. If you can detect the Disk Change signal from your drives, you should set the Media Flag in the DPH of the affected drive to FF hex. You also must set the Media Flag in the SCB to FF hex, since this is what tells the BDOS to look at the DPH media flags. In order to be truly useful, you must set the
RTCINT

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>RTCRST</td>
</tr>
<tr>
<td>SAVHL</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

INT$SAVE

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>POP</td>
<td></td>
</tr>
</tbody>
</table>

PUTSEC

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>MILSEC</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

NEWSEC

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>$#SEC</td>
</tr>
<tr>
<td>ADI</td>
<td>1</td>
</tr>
<tr>
<td>CPI</td>
<td>60H</td>
</tr>
</tbody>
</table>

PUTMIN

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>$#MIN</td>
</tr>
<tr>
<td>SUB</td>
<td>A</td>
</tr>
<tr>
<td>JMP</td>
<td>PUTSEC</td>
</tr>
</tbody>
</table>

NEWMIN

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>$#MIN</td>
</tr>
<tr>
<td>ADI</td>
<td>1</td>
</tr>
<tr>
<td>DAA</td>
<td></td>
</tr>
<tr>
<td>CPI</td>
<td>60H</td>
</tr>
</tbody>
</table>

PUTHOUR

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>$#HOUR</td>
</tr>
<tr>
<td>SUB</td>
<td>A</td>
</tr>
<tr>
<td>JMP</td>
<td>PUTMIN</td>
</tr>
</tbody>
</table>

NEWDAY

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>$#DATE</td>
</tr>
<tr>
<td>INX</td>
<td>H</td>
</tr>
</tbody>
</table>

INT$REST

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVRET</td>
<td></td>
</tr>
<tr>
<td>POP</td>
<td>H</td>
</tr>
<tr>
<td>RETCALL</td>
<td></td>
</tr>
</tbody>
</table>

INT$SAVE

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>POP</td>
<td></td>
</tr>
<tr>
<td>PSW</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0</td>
</tr>
<tr>
<td>DAD</td>
<td>SP</td>
</tr>
<tr>
<td>LXI</td>
<td>SP,STACK</td>
</tr>
<tr>
<td>PUSH</td>
<td>B</td>
</tr>
<tr>
<td>PUSH</td>
<td>D</td>
</tr>
<tr>
<td>PUSH</td>
<td>H</td>
</tr>
<tr>
<td>Product Name</td>
<td>Price</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Final Word</td>
<td>$300</td>
</tr>
<tr>
<td>Plannercalc</td>
<td>$295</td>
</tr>
<tr>
<td>Condor I</td>
<td>$694</td>
</tr>
</tbody>
</table>

SPECIAL COMBINATION PRICE: $439
Offer good to the end of the month of publication of this magazine. Call for our other PAC prices.

OFFER GOOD TO THE END OF THE MONTH OF PUBLICATION OF THIS MAGAZINE. CALL FOR OUR OTHER PAC PRICES.

SPECIAL COMBINATION PRICE: $439
Offer good to the end of the month of publication of this magazine. Call for our other PAC prices.
The Pickles & Trout
IEEE-488/IEEE-696 Bus Converter

by Richard S. Newrock

Microcomputers are rapidly finding their way into the laboratory for numerical analysis, data reduction, experimental control and data taking. For the last two, there are three options: direct I/O via parallel ports (and occasionally, serial ports), analog I/O via the appropriate A/D and D/A converters, and the IEEE-488 instrument bus (GPIB or HPIB). This last is a most important method, as most state-of-the-art test and measurement instruments come with a 488-bus interface. If microcomputers are to be useful in the laboratory, they must be able to control such instruments. When I decided to switch my laboratory from minis to micros, the availability of a good S-100/488 bus converter was an important factor. This article reviews the bus converter I purchased, the Pickles & Trout 488 Bus Interface (P&T-488).

This review discusses the hardware and software aspects of the P&T-488. My conclusions can be summarized briefly: the P&T-488 bus converter is an excellent product. The hardware is well-designed and executed. It is simple to program in high-level languages or in assembler (when bus speed is important), and it comes with a useful and complete software package. The driver software, while slow, is good for most purposes, and adequate information is provided to help you write faster routines. Many good examples of software are displayed. Unfortunately, as is often the case in this field, the manual is poor.

In addition, and of great importance to me, the software driver routines are relocatable; they can be called from high-level languages. In particular, I can call them from Fortran programs, a considerable timesaver since nearly all of my research software is written in Fortran, as are the libraries of scientific subroutines I use.

The board is available for $450, directly from Pickles & Trout, P.O. Box 1206, Goleta, CA 93116. The price includes the board, software, test plug, and a ribbon cable with a 488 metric connector. The 488 connector is mounted on the rear panel of the computer and the ribbon cable is run between it and the board; a 488-bus cable is not supplied.

The hardware

The P&T-488 board is glass-epoxy and is solder-masked with silk-screened labels. Each component, the jumper area (for interrupts), and the address switch is clearly labeled. The soldering is cleanly done and all components are carefully mounted. Sockets are provided for the ICs. The ribbon cable connector on the board is of good quality; it is keyed and has connector ejectors. The only thing I didn’t like was the 488 connector. The one provided looks as if it will not stand up to repeated use. The manufacturer assures me that it will, and that they tested several other types and found them wanting.

The board power supply, which consists of a single five-volt regular, looks to be more than sufficient. There is an adequate number of bypass capacitors distributed about the board to suppress switching transients.

The P&T-488 can generate interrupts, and provision has been made (via jumpers) to select NMI, pINT, or one of the vectored interrupt lines. Eight conditions can cause an interrupt: a change on any one of the three handshake lines (DAV, NRFD, and NDAC), four of the bus management lines (IFC, ATN, SRQ, and REN) or POC/RESET on the S-100 bus. They are “or-ed” onto the selected line. Note that it is not necessary to use interrupts to operate the P&T-488.

Pickles & Trout does not make any claims about the compatibility of their board with the IEEE-696 standard; indeed, the pin labels on their schematic are the old S-100 names. To make certain it is compatible with the standard, I checked each pin assignment; there were no conflicts. The board does not use any of the undefined (NDEF) or reserved (RFU) lines, and there are no problems with the new ground lines. The P&T-488 does not support 16-bit data transfers (SIXTN* and SXTRQ* are not implemented), but that is unimportant for a device that uses ASCII codes. It is only addressable at the first 256 I/O ports, and, in that respect, does not meet the IEEE standard, but that is not critical.

Insofar as the IEEE-488 standard is concerned, extensive checks weren’t necessary. The P&T-488 works at the data transfer rates for which it was designed, so we can assume that the bus timing, pin assignments, etc., are correct. I did check the line drivers; they are open collector, as they should be for a fully operational controller.

Registers. The user accesses the bus through four 8-bit registers that appear at four consecutive I/O addresses. The port is addressed, via a DIP switch, to any location which is an integral multiple of four (0, 4, 8, . . .). The board comes addressed at 7C and the software provided expects that address. A special routine allows you to use the software with a different board address. The use of these registers is straightforward, and they make the P&T-488 easy to use. They are worth further discussion.

Register 3, a write-only register, stores the parallel poll response byte. The CPU inserts a byte into this register to be placed on the data lines in response to such a poll.

Register 2 is the data line register; it is a read/write register connected to the 488-bus data lines. To read the data lines, the CPU reads the byte in...
The ACTION Solution

For Expanding Businesses...

From single-user workstations to multiuser Systems & Networks, our DISCOVERY MULTIPROCESSOR is designed to grow by leaps and bounds. No more obsolete hardware or software. As your business expands... DISCOVERY expands with you!

The DISCOVERY 500, a fully integrated desktop computer with 5½" hard and floppy disks, supports up to 7 users. It is the ideal, low cost turnkey business system. The full size DISCOVERY supports up to 16 users with a wide variety of disk and tape subsystems. And remember, all DISCOVERY users have their own dedicated memory and 8-bit or 16-bit CPU, running CP/M-80™ or CP/M-86™. Action's own multiuser multiprocessor operating system, the dpc/os™ makes it easy.

The dpc/net™ low-cost local area networks of multiple DISCOVERY's provide the ultimate in performance. Up to 150 users in 10 DISCOVERY systems can be on-line simultaneously with full resource sharing. For the first time, mainframe capability at micro prices.

Take ACTION! Call us NOW... at (213) 793-2440
Pickles & Trout continued

this register. It can also write a byte to this register to be transferred to the data lines. Whenever an external controller takes over the bus, or when POC/RESET occurs on the S-100 bus, flags are set that disable the P&T-488's output buffers. If so, whatever is contained in register 2 cannot be output.

Register 1, the command line register, is a read/write register that allows the user to set or sense the bus management and handshake lines. Again, if an external controller is active, the interface is inhibited. If an external interface clear (XIFC) is sensed, the P&T-488 will not set any bus management or handshake lines. If external attention (XATN) is set, no lines except "not-ready-for-data" (NRFD) and "service request" (SRQ) can be set. NRFD is made true to prevent an external controller from sending commands to the P&T-488 until its host CPU is ready. SRQ is set if the SRQ bit in register 2 is low; it permits the host CPU to signal the external controller that it wants service.

The read section of register 0 is the interrupt status register. The bits in this register change in response to changes in the state of the bus management and handshake lines, and to POC. This byte is used by the CPU to monitor bus status. In particular, since the board uses only one interrupt line, the CPU must read this register to determine the cause of the interrupt. Two of the status bits are the flags XATN and XIFC. The first of these flags, mentioned above, is set whenever an external controller takes over the bus; the second whenever an external controller issues an IFC.

The write section of register 0 is for interrupt reset. The upper six bits of this register are used to reset the status bits. Bit 1 is used to instruct the controller to be a listener or a talker. Bit zero enables or disables the interrupt.

To someone familiar with 488-bus operation, it should be clear that these registers are all that is needed to control the bus: register three is to respond to parallel polls; register two is to send or receive data; register one is to assert the handshake and bus management lines; and register zero is for status. Pickles & Trout provides examples of assembly language routines for source handshaking, acceptor handshaking, initialization, etc. The best way to understand the operation of the bus and the use of the registers is to examine these routines carefully. In addition, they are an excellent starting place for writing your own drivers.

Since Pickles & Trout supplies driver subroutines as part of the P&T-488 package, why would you want to write your own drivers? The answer is simple: speed. Pickles & Trout note that their software, with an 8080 CPU running at 2MHz with no memory wait states, will transfer data at 3KB/sec. This is rather slow. One reason is that the software continually checks for things that may be nonexistent (or unnecessary) in your system. For example, the software checks for the presence of another controller, for POC on the S-100 bus, for time limits on the handshake cycle, etc. Eliminating these checks (and others) by writing your own software will speed up the data transfer rate considerably. I have not measured the increase, but, according to the manufacturer, the maximum transfer rate should be about 9KB/sec with a 2MHz 8080 (and, perhaps, 22-23KB/sec with a 5Mz 8085).

The software

The software provided by Pickles & Trout can be divided into four parts. The package includes a routine to test bus operation; MSOFT, a package of Basic subroutines to operate the bus; three utility programs; and the aforementioned assembler source and acceptor handshake routines. I found all of it useful, if only for informational purposes.

Test program. The function-test program is a nice touch; I wish more manufacturers would supply such a routine. The program performs seven tests of the board and cable, which allow the purchaser to check the P&T-488 before he is received and at any time thereafter. When planning a new experiment, I often need to order new equipment; naturally, deliveries aren't simultaneous. I have often been in the position of having an instrument's warranty period elapse while waiting for something necessary to test it. The self-test program alleviates this for the P&T-488.

The first four tests are performed with nothing connected to the bus; with the last three a special test plug is used. The first four are simple and check the registers. They consist of writing a byte to the appropriate register and checking the P&T-488's response. If any of these tests fail, it is reported on the system console. Once a successful completion of these tests the operator is prompted to connect the test plug, which connects the data lines to the bus management and handshake lines. This allows the cable to be tested for shorts and continuity, and allows the P&T-488 to talk to itself to test the response to external IFC and ATN.

The tests are simple to use and take little time; my P&T-488 passed with no problems. Two versions of the test are supplied, because of recent revisions to the board. Be sure to check the board serial number and use the correct test routine. The test routine assumes the factory standard address; I found it simplest to test the P&T-488 there and make address changes later.

Utilities. Three utility programs are supplied: BUSMON, 488TODSK, and DSKT0488. The latter two send data from the bus to a disk file or send a disk file over the bus. I generally analyze data as it comes in and create files in my control.

The Pickles & Trout 488 is an excellent product, well designed and executed. It comes with a useful and complete software package.
MICROSTAT® - Release 3.0
MICROSTAT® + baZic® = PERFORMANCE
The best just got better! MICROSTAT has been the leader in the statistics field for microcomputers since 1979, and the new release 3.0 outperforms and is noticeably faster than previous versions. Just a few of the features include:

GREATER ACCURACY
BCD with up to 14 digit precision;

PROGRAM ENHANCEMENTS
Missing data capabilities and many more;

FASTER EXECUTION
Calculation time greatly reduced;

DYNAMIC FILE ALLOCATION
Data can be inserted, added, or deleted;

SPECIAL PRICE:
For a limited time get MICROSTAT plus baZic complete with program disk and documentation for each for $395.00, save $50.00.

The MICROSTAT - baZic version requires: a Z80 CPU, CP/M®, and 48K of memory. Available formats: 8" SO disk or 5"14" North Star only. Check with your dealer for other formats. Also available for: Microsoft’s Basic-B® and IBM. For more information, call or write:

ECOSOFT INC.
P.O. Box 66602
Indianapolis, IN 46268-0602
(317) 255-6476

MICROSTAT is a registered trademark of ECOSOFT, INC.
baZic is a registered trademark of MICROKES, INC.
Basic-B® is a registered trademark of MICROSOFT
CP/M® is a trademark of DIGITAL RESEARCH

SMARTKEY™ is a unique utility that can redefine any ASCII character or function key to become anything you want. For example, "#" becomes "pip b:r:a:pass[v]". With a single stroke, a key can represent a chosen character or string at the system level or within a program. Instantly. Without rewiring or soldering.

SMARTKEY™ is completely transparent to the user. It resides on the top of memory and intercepts calls to the BIOS, translating system input to whatever you desire. You can even change a key definition while another program, such as WordStar®, is in operation... without interruption! It's perfect for programming, data entry or word processing.

"EXCELLENT" InfoWorld
"VERSATILE AND RELIABLE" Lifelines
"WORKS LIKE A CHARM" Microsystems

Think of the acceleration in productivity. Think of the versatility in keyboard layouts. Think of the possibilities. And, best of all, SMARTKEY™ is only $60.

Ask about SMARTPRINT®, SMARTSCREEN®, SPOOL® and other programs.

To order or obtain more information, call or write to:

HERITAGE SOFTWARE, INC.
2130 S. Vermont Ave., Los Angeles, CA 90007/(213) 737-7252

SMARTKEY™ is compatible with all standard versions of CP/M® Programs copyrighted by FBN Software. WordStar® is a registered trademark of MicroPro, Inc. CP/M® is a trademark of Digital Research.

CIRCLE 189 ON READER SERVICE CARD

IMPOSSIBLE? NOT WITH SMARTKEY!

Components Express, Inc.
1380 E. Edinger • Santa Ana, Calif. 92705 • 714/558-3972
Terms of Sale: Cash, Checks, Credit Cards, M.O., C.O.D. Calif. residents add 6% sales tax.

Now You Can Afford Another 64K . . .

Especially when it’s less than a half cent per bit!

COEX 64K S-100 CMOS STATIC RAM BOARD

$299.00
only
Assembled & Tested

“Have You Kissed Your Computer Lately?”

CIRCLE 226 ON READER SERVICE CARD
and analysis routines. As such, I don’t need these utilities and did not test them. They should be particularly useful for sending data directly to a printer or plotter, for communication between computers, and collecting large amounts of data rapidly.

BUSMON monitors and reports all bus transactions. It reports in two forms: with no special character handling and with all control codes replaced by printable characters. BUSMON stops the processing on three conditions: the occurrence of LF, CR, or on every byte. When the processing stops, the user can enter bus commands from the keyboard, restart, and observe the results of the command. All instructions sent to the controller, and all data sent or received, are displayed on the console. Messages which indicate the occurrence of XIFC, XATN, etc., changes in SRQ, POC and REN, as well as identifiers for the various addressed and universal commands, are also displayed. I found BUSMON to be useful for troubleshooting instrumentation systems, for learning about newly purchased instruments, and for general error checking. It probably is a useful learning tool for someone new to 488-bus operation.

MSOFT. I have two software packages for the P&T-488: MSOFT, and a set of routines called “CP/M-488.” The CP/M-488 package came with the bus when I ordered it. When used, it alters CP/M’s I/O routines to allow the P&T-488 to substitute directly for the console keyboard and display. A software switch allows the user to determine where the I/O goes: to the normal console or to the P&T-488. I found these routines clumsy, and the instructions unclear. When I called Pickles & Trout to get some assistance, they told me about the new MSOFT routines; they can be purchased for about $50. You now have a choice when you purchase the package; make sure you get MSOFT, as it is significantly better and easier to use than CP/M-488.

MSOFT is an interface program between P&T-488 and Microsoft Basic. It consists of two parts: MSOFT.COM and MSOFT.REL. The .COM file is used with interpreter basic; the .REL file, a library of relocatable subroutines, is meant to be used with compiled languages. A typical application program has two parts: a Basic (or other high level language) program plus MSOFT. In a compiled language, the MSOFT routines are inserted at link-time; in interpreter Basic they are called before MBasic (i.e., at the prompt, one enters MSOFT MBASIC MYPROG.BAS).

The MSOFT package defines 11 communication variables and 13 communication functions, four set-up functions and one configuration function.

The variables are for communication to and from MSOFT. The user can choose any names he wishes, but he must tell MSOFT what they are. Several of these variables have obvious uses: the INPUT and the OUTPUT strings; the string LENGTH, POLL RESPONSE and BUS STATUS integers; and the input and output ECHO bytes.

The user should be aware of an important point concerning MSOFT’s output. MSOFT always writes data into the same buffer. If the user wishes to save the data in that buffer he must move it before asking MSOFT to get more. This is a subtle point. The MSOFT routine LSTN(A$) tells the P&T-488 to become a listener. Data is read from the bus and stored in the buffer; the string A$ points to that buffer. That is, the string descriptor (described below) of A$ contains the address of MSOFT’s buffer. If you now tell MSOFT to get more data, perhaps with LSTN(B$), the string descriptor for B$ will also contain the address of MSOFT’s buffer, i.e., both string descriptors now point to the same buffer and therefore both strings contain the same data; whatever was contained in the buffer after the first LSTN command has been lost. To save the data you must move the string between calls to LSTN. For example, between calls to LSTN, use the Basic statement S$ = A$.

Three of the variables have special uses:

ERROR CODE. This integer variable indicates if errors occurred during a bus operation. Each bit represents a different type of error.

TIMEOUT. This is the amount of time within which a handshake must occur, or an error will result. TIMEOUT can take any value between 0 and 255; if it equals 255, no check is made. It is important that a 488-bus operating system have a time limit, particularly in systems where the controlled instruments can be many meters away, and under local control. According to Pickles & Trout, with a 2MHz system clock, TIMEOUT = 254 corresponds to about 6.5 seconds. (This maximum) time is much too short, more so with a 5MHz processor. Initializing some digital plotters, for example, can take 8-10 seconds.

EOT and EOS. These variables allow the user to set string terminators and other string parameters. This is a necessary feature; many older instruments do not follow the new standard for communications over the 488-bus, IEEE 728-1982.

The communications functions are used to operate the bus. There are three main communication routines which allow the user to control the bus, to listen and to talk. Two routines are provided for each of these functions. The first clears the error byte, performs the function, and then updates the

The CP/M-488 routines are clumsy and the instructions unclear. The MSOFT interface package, now available, is significantly better and easier to use.
MicroScript™

Are you wasting valuable time trying to format complex documents with a word processor or obsolete text formatter? MicroScript™ is a state of the art text formatter specifically designed for the production of technical manuals, specifications, and other complex documents. This powerful tool pays for itself the first time you use it. Featuring:

- generalized markup
- left alignment
- center alignment
- right alignment
- justification
- left indentation
- right indentation
- bold text
- underscored text
- proportional spacing
- fully definable page
- multiple columns
- headers and footers
- floating text blocks
- footnotes
- variable line spacing
- widow supression
- section numbering
- imbedded documents
- automatic lists
- macro processing
- symbol processing
- table of contents
- direct printer control
- initialization profile
- page numbering

$99 postpaid within U.S., outside U.S. add $10. CA residents add 6%. Specify CP/M-BO', CP/M·B6·, MS-DOS', or PC-DOS'; printer type; disk format.

Software Technique™
6531 Crown Blvd., Suite 3A
San Jose, CA 95120
(408) 997-5026

*C P M - B 0 , C P M · B 6 trademarks of Digital Research, MS-DOS trademark of Microsoft, PC-DOS trademark of IBM Corporation.

Don't Re-Invent the Wheel - Use Ours!

Blaze/lib™

A solid, time-tested core of linkable modules providing buffer manipulation, string/number conversions, directory search, character I/O, and screen formatting functions in Pascal/M T + " . The Terminal Dependent Library provides full screen control for Lear-Siegler, Sonar, Xerox 820, TRS-80 II, Televisions, and Heath terminals.

ERL $75
Source $200

Phonedex™

$49.95

Personal phone/mailing list data base. Prints mail labels 1-4 up, address book pages. Data can be queried on any field and extract files created. Phone numbers can be dialed through D.C. Hayes Smartmodem ™. Dumb terminal function allows communication with CBBS/timesharing systems.

ANOVA/Plus™

$69.95

Step up from two-level "T" tests to full 5-factor ANOVA, with an option for comparison of individual mean levels through Scheffe's Contrasts. Data files may be created and edited from within the program. In machine code Pascal for lightning speed beside versions in BASIC.

Starside Engineering

PO Box 18306 • Rochester NY 14618 • (716) 451-1027

Please add $3 shipping/handling for all orders. NYS add 7% tax.

CIRCLE 31 ON READER SERVICE CARD

DEVELOPING SOFTWARE UNDER CP/M?

LIFT YOUR OUTPUT WITH MICROSHHELL®

When you're into heavyweight software development you need more operating system power than CP/M can offer. MICROSHHELL builds up CP/M with UNIX features that really help you put out software. Just for starters: MICROSHHELL crunches long CP/M dialogs into one-line commands. Pulls muscle and flexibility into SUBMIT commands. Captures CRT output and redirects it to CP/M files without retyping. Pulls programs from another disk drive or user number automatically (makes hard disk handling a snap). And it's ready for more work with no time-consuming warm-start after a program runs. MICROSHHELL fits your system — uses just 8K of memory in any CP/M computer from Apple to Zenith. Check out MICROSHHELL today and find out what a powerful partner it makes — at only $150.

Order Toll Free: 800-368-3359
VISA, MasterCard accepted.
Overseas add $29.00 for air mail.
Manual only: $25.

CIRCLE 225 ON READER SERVICE CARD
error byte. The second performs the function and updates the error byte. The difference is quite important as it gives the user the option of calling a series of subroutines and checking for errors after the series is complete. This speeds up bus transactions considerably. The other communication functions are simpler. Some of them allow the user to reset the bus, clear the interface, enable or disable remote, and update the bus status variable. Others are for parallel and serial polls.

There are four set-up functions used to initialize MSOFT; they tell it the variable and function names. One, SETUP, is only used with interpreter Basic, where you must inform MSOFT.COM of the names of each of the communication functions. This is not necessary in compiled languages, where the linker inserts relocatable subroutines where they are needed. The other set-up routines pass variable names to MSOFT, are needed by both MSOFT versions, and must be called at the beginning of all application programs.

The two most important set-up functions are IOSET and PROTCL. IOSET tells MSOFT the name you’ve chosen for the error code, the timeout value, the poll response byte and the bus status byte. PROTCL sets up the data transfer protocol, including the string lengths and string terminators. These variables may have to be initialized, depending on the language used. (Remember, Basic initializes all variables to zero; other languages may not.) In any case, IOSET and PROTCL initialize time limit and string length to 254.

The last set-up function, ECHO, tells MSOFT the name of the byte which determines if bus I/O is echoed on the console. It defaults to no echo.

The last routine is the configuration function. It is called at the beginning of each program if MSOFT has to be informed of a change in the P&T-488’s address (from 7C).

Sample programs. Pickles & Trout provides several sample programs. Four of these programs (BISAMPL.BAS, BCSAMPL.BAS, MTSAMPLE.PAS and FSAMPLE.FOR) allow the user to connect any 488-controllable instrument to the bus and play with it. They are menu driven: the user is asked what bus function he would like to perform and is prompted for the necessary parameters. I found these programs to be very useful. If you are unfamiliar with the 488-bus and its commands, these routines will allow you to play with the system, controlling one or more instruments, sending commands and collecting data, until you gain familiarity with the operation of the bus. The programs allow you to try a new instrument, testing it and learning about its programming quirks. Finally, and perhaps most important, the programs present many examples of the software necessary to operate the P&T-488. Unfortunately, the only place much of this information is presented is in these programs.

In addition to the four sample programs, Pickles & Trout provides examples of application pro-
grams written in interpreter and compiler Basic, Fortran, assembler, Pascal and C. These programs, which control a Hewlett-Packard 59309 digital clock, also contain many valuable examples of the use of MSOFT’s functions. Although they were very informative, I think they would be even more useful if they referred to a more commonly available 488 instrument, such as a digital voltmeter.

Parameter conversion. The MSOFT communication functions are relocatable subroutines. Since MSOFT is designed to interface to Microsoft Basic, it passes parameters to such subroutines in the same manner as Basic: CALL SUB-PROG(P1,P2,.....Pn) passes the parameters P1......Pn. However, Basic passes parameters differently from other high-level languages. This means that an assembler program is necessary to convert from Basic’s parameter passing convention to whatever convention your language requires.

One important difficulty occurs with strings. Basic stores strings in two parts, the string itself and the string descriptor. This last, a three-byte block, contains the number of characters in the string in the first byte and the address of the first character in the string in the second and last bytes. When Basic passes a string, it passes the memory address of the string descriptor. The called subprogram must look into that descriptor block to find the string address.

MSOFT works the same way. When a non-Basic program wants to pass a string to MSOFT, it must first convert the string to Basic’s format; i.e., a string descriptor must be created. Similarly, when MSOFT returns a string (e.g., data) it must be converted to the form required by the calling program. The manufacturer provides several routines to perform and illustrate these conversions.

For assembly language programmers, Pickles & Trout wrote CLOCK.MAC. It illustrates how the addresses of passed parameters (strings and integers) are to be placed in the various registers and tables for MSOFT’s use. For users of PASCAL/MT+, MT488.MAC is supplied to perform the parameter passing conversion. PASCAL passes addresses on the stack and expects the called routine to remove them from the stack. MT488 does this and places the addresses into the appropriate registers and tables for MSOFT. Several assembly language programs are provided for users of Fortran: STRIN.MAC, STRXFR.FOR and STRSET.FOR. STRIN collects strings from the keyboard and creates the string descriptor for BASIC. STRXFR copies strings from MSOFT’s input buffer into a Fortran array. STRSET generates a string descriptor block for a Fortran array. For C a routine is provided to create a string descriptor.

I did not attempt to test all of the sample programs, but looked only at the ones in interpreter and compiler Basic, assembler, and Fortran. All of

Pickles & Trout continued . . .

the routines worked well. (In Fortran, I did not use STRIN.MAC, preferring to use a canned string-handling program The STRING BIT.) I wrote several application programs to control various instruments in my laboratory and found it to be a straightforward process. The software provided by Pickles & Trout works, and it works well.

The manual
Finally, a few comments about the manual. It is poorly written and extracting information from it is difficult. There are four major problems.

First, it is “schizophrenic.” The authors obviously cannot decide on their audience. Very detailed explanations, suitable for the experienced user, are intermixed with material clearly of value only to the novice. While there is nothing wrong with writing a manual for both audiences, it must be done carefully; the advanced material must be well separated from the elementary and clearly identified, or the novice will get lost quickly.

I think that some of the simple material is just plain silly: for example, an entire page is devoted to a table showing all possible settings of the address switches. I would imagine that if a user is unable to address the P&T-488 without this table, he is probably unable to use it at all. However, Pickles & Trout tell me that they received many telephone calls regarding addressing before they included that table; now they receive none. They conclude that such “silly” details are of great help to many users. Perhaps they are correct; after all, experience is the best teacher. But such details belong in an appendix.

Second, the authors have difficulty in going between the general and the specific. They often start a general discussion of some aspect of the bus only to get bogged down in specific, nonilluminating details. For instance, in the middle of a description of uniline and multiline commands, using serial and parallel polls as examples, they go off on a tangent describing parallel poll instrument assignments. While this is important, it is completely out of place, and the reader quickly loses his train of thought about uniline and multiline commands.

Third, many of the important features and functions of the IEEE-488 bus are either inadequately described or not described at all. Important instructions and comments about a particular function are often located in three or four different places in the manual. One has to search to get a complete description of a function or to get a “recipe” for its use. Sometimes the information is in the text and sometimes it is buried in programs. This is exacerbated by the lack of an index. Surely, if you are going to scatter important information about in the text, an index should be provided to help you find it. I spent an inordinate amount of time searching for remarks I recalled reading, but couldn’t locate. It would be best if each and every 488-bus command and function were individually
described with notations as to how to best implement the operation in software.

Fourth, and of less importance, the P&T-488 is meant to be used by microcomputer owners, a group that (probably) has little previous 488 experience. Therefore, a (reasonably) complete description of the bus should be given. An attempt to do so is made, but more care and detail are needed. A glossary of bus terms (taken from the IEEE standards document) is provided, but it is terse to the point where an inexperienced user will find it worthless.

Miscellaneous
Finally, there are two miscellaneous items:

—An interesting section of the manual contains a discussion of various “quirks, oddities and gotcha’s.” You should be aware of these when programming. Look here when your “bugfree” software crashes.

—I contacted the Pickles & Trout people several times while trying to get their software running; they were unfailingly polite and always helpful.

For more information contact:

Pickles & Trout
P.O. Box 1206
Goleta, CA 93116
(805) 685-4641

TAKE CONTROL

of your Application!

MC100 Dual Stepper Motor Controller

- Independent operation of two four phase motors.
- On board translators directly drive motors up to 20 w/coil.
- Universal translator interface to external high power translators.
- Programmable step rates and step counter.
- Automatic limit response with limit display LED.
- Full software motor ramping control.
- Dual 4 bit parallel ports which can be a single 8 bit port.
- Optional manual control panel (shown above).
- Optional CP/M and C DOS compatible driver software.

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC100</td>
<td>$350.00</td>
</tr>
<tr>
<td>MC102</td>
<td>$335.00</td>
</tr>
<tr>
<td>MC104</td>
<td>$35.00</td>
</tr>
<tr>
<td>MC110 (includes MC100, MC102, MC104)</td>
<td>$499.00</td>
</tr>
</tbody>
</table>

SNOW MICRO SYSTEMS, INC.

P.O. Box 2201 Fairfax, VA 22031 (703) 378-7257

CIRCLE 70 ON READER SERVICE CARD

DATA FLEX

The Multi-User Data Base

When we say multi-user, we mean it!

Running software on a multi-user operating system is different than running it multiprogrammed!

With DataFlex, multi-user operation means that several users on a system or network can enter data in the same file or files at the same time with complete data protection. Multi-user DataFlex is available for:

- MSDOS Networks
- CP/M Networks
- Novell ShareNet
- DMS Hi-Net
- MP/M-86
- PC-Net
- TurboDOS Multi-User
- IBM “PC” w/ Corvus
- Televideo Mmmost
- Molecular N-Star
- Action DPC/OS
- OSM Muse

Single user DataFlex runs on CP/M 80 and 86, MSDOS, and IBM “PC” DOS. Applications can be created on these operating systems and moved to multi-user systems without change. That’s transportability!

DataFlex is the most efficient software system available for application development on microcomputer systems. All versions give you the essential features that applications need like fast on-line multi-key ISAM (to eliminate time consuming sorts); on-line processing of multiple files; 255 fields per record; formatted data entry screens (for operator efficiency); powerful report generation; and exceptional performance, even with very large data bases.

To create the best applications, start with the best application development system, DataFlex. It will get you running fast single or multi-user… and we mean it!

DATAACCESS CORPORATION

4221 Ponce De Leon Blvd., Coral Gables, FL 33146
(305) 446-0669
TLX 469021 Data Access CI

CP/M is a registered trademark of Digital Research. MSDOS is a registered trademark of Microsoft

CIRCLE 221 ON READER SERVICE CARD
The "Standard" CP/M-86
Hardware System in the Lab

Bringing up CP/M-86 on an Intel single-board computer
system interfaced to a Summagraphics Digitizer

by Ralph L. Place and Kirk A. Bailey

CP/M-86, as distributed by Digital Research, Inc., comes with a bootstrap program and BIOS specifically written for a hardware system consisting of the following components:

- Intel iSBC 86/12A single-board computer
- Intel iSBC 204 single-density floppy disk controller
- dual Shugart 800/801 disk drives
- a National BLC 8538 I/O board
- a CRT terminal
- a TI 810 printer
- at least 64K of RAM.

This is a system which operates on an Intel Multibus and offers considerable potential and expansion capability. Several years ago, shortly after Intel first announced the availability of the 86/12 board (the first version didn't have the "A" designation), we decided to build a system around this board for use as a data acquisition computer in the department's particle physics laboratory. At that time there was essentially no software available for and Multibus-based system outside some Intel development software, so we expected to have to write everything—including a rudimentary operating system. Fortunately for us, by the time all the hardware actually was delivered, Digital Research had announced that CP/M-86 was available for this system, and Microsoft announced the availability of Basic-86. We concentrated our efforts on getting the system up and going.

Bringing up the system

Bringing the system up was, in principle, not difficult. However, a number of hardware problems complicated the process, especially since we were working with (to us) new and unfamiliar hardware on an unfamiliar bus. We had experience with 8-bit machines on the S-100 bus, but had had no previous experience with 16-bit machines of any kind, nor were we familiar with the Multibus. Additionally, a power supply problem zapped several ICs, and as a result considerable time was spent examining the system with a logic analyzer.

Leaving these "minor" problems aside, let's take a closer look at the hardware itself—specifically, the 86/12A board, since it is the heart of the system.

The 86/12A board is a single-board computer that plugs into one Multibus slot. The Multibus furnishes power to the board (±5V, ±12V, all regulated) and provides a 16-bit-wide data bus over which data is transferred to/from off-board memory and ports. A 20-bit-wide address path allows direct access to the entire 1 MB address space of the 8086. Depending on the particular instructions being executed, an entire 16-bit word can be transferred in a single access. Single-byte transfers are also supported. Additionally, there are signals for bus requests, priority signals, and interrupts, among others. In all, there are 86 pins on the Multibus. The 86/12A board itself is based on a 5MHz 8086 and includes 32K of on-board RAM, a serial RS-232C port, sockets for up to 16K of ROM, an interrupt controller that can handle up to eight interrupt sources, a programmable interval timer, and 24 programmable parallel I/O lines. For operation with CP/M-86, these on-board capabilities must be augmented with the other hardware previously listed.

In order to get CP/M-86 up on the system, we first took steps to burn-in the boot program into 2716 EPROMS. At the time we ordered the board, we also ordered a Monitor program from Intel that came in four 2716 EPROMS mounted in the ROM sockets on the 86/12A board. The monitor gave us some rudimentary capabilities for program development. This monitor program allows the user to perform some elemental functions such as examine and alter memory locations, display regions of memory, execute or single-step through programs, examine registers, and perform data I/O via ports. Additional commands allow the user to communicate with an Intel development system. Since ours was a stand-alone system, we were not interested in these latter monitor capabilities. This monitor goes by the name of the "iSBC 86/12 Interface and Execution Package," a somewhat extensive title for a small monitor program. At any rate, it was and continues to be a very valuable part of the system and has proved to be very useful in debugging.

The monitor uses up 6143 bytes of the 8K of ROM space, leaving plenty of free space for the boot program. The ROM address space on the 86/12A is located in the bottom part of the 16-bit address space of the 8086, from FFFF1H to FFFFFH. Upon a RESET, the 8086 jumps to memory location FFFFH in the ROM space where a jump instruction sends the CPU to the beginning of the monitor itself. The procedure expected by the monitor is for the user to press "U" twice after a RESET, setting the baud. The monitor then prompts the user for a command.

Ralph L. Place and Kirk A. Bailey, Dept. of Physics and Astronomy, Ball State University, Muncie, IN 47306
We situated the CP/M-86 boot in the lower 2K of the EPROM’s space with starting address (absolute) FE000H. To execute the boot, we use the monitor to set the CS (Code Segment) register to FE000H, then enter the command G to commence execution at the desired point.

Loading CP/M-86 for this system is a two-step process with the boot program loading LOADER off the first two tracks of the disk and then jumping to it. LOADER then loads CPM.SYS into memory, starting at absolute location 0400H (1K), which is just above the reserved interrupt space in RAM. The system occupies space up to an offset of 29E4H, or a total of 10,724 bytes. This resides entirely in the 32K of on-board RAM. This on-board RAM may be accessed by the 8086 at any time; i.e., on-board accesses by the CPU do not use the Multibus. Thus, whether or not another bus master other than the 8086 has control of the Multibus, this does not prevent the 8086 from accessing the on-board RAM. This RAM is of the dual-port variety and may be accessed through the Multibus by other bus masters on other boards (e.g., DMA devices) independently of the 8086. By means of user-selectable jumpers, it is possible, if so desired, to configure this on-board RAM to be accessible only by the 8086 so that it has exclusive access rights.

Although the early documentation received from Digital Research stated that CP/M-86 would run with only a total of 64K of RAM, it failed to mention that although the operating system would in fact boot up, you couldn’t do anything with it; i.e., ED or PIP wouldn’t work. After considerable head-scratching (we didn’t know whether or not we still had hardware problems, since we had not gotten the system completely going at one time) as well as sending several communications to Digital Research (from which we received no reply about the problem), we obtained a 128K byte board, slid it into the system, and voila!, the problem was solved.

With regard to the I/O features of the 86/12A board, it has one RS-232C port (an Intel 8251 USART) that is initially configured by the monitor so that CP/M-86 really doesn’t have to do further initialization. Connection to the port is via a 26-pin PC edge connector. Parallel /O is controlled by an 8255 Programmable Peripheral Interface that has three 8-bit ports. As delivered, one of the ports is configured as a bidirectional port buffered using 8226 bidirectional buffers (actually the factory configuration is set by a jumper so that the port in question is by default an output port only). The other two ports of the 8255 are brought out to an array of jumper posts and four empty 14-pin IC sockets that can be user-configured. All the parallel lines are accessed by a 50-pin PC edge connector.

The rate generator/interval timer (an 8253) provides the clock signal that is input into the USART to control baud rate. Two other outputs are available that can provide real-time interrupts to the 8259A interrupt controller.

Turning our attention to the other boards of the system, the floppy disk controller board (an iSBC 204) is based on the Intel 8271 controller chip and the Intel 8257 DMA controller. There is circuitry on the board for two 8271 chips which would enable the board to control up to four drives (single sided) but the standard board comes with only one 8271 installed. The board operates in the usual way whereby the DMA controller is first loaded with the necessary information by the CPU; the CPU then sends an appropriate command or string of commands to the controller and stands aside to let the DMA process work.

Interfacing the digitizer

As an application of this system, we can look at the way we have it connected to a 36” x 48” Summagraphics digitizer (Summagrid). This system is used in the laboratory to analyze photographic material ranging from bubble-chamber photographs of high-energy particle collisions to geological maps for research on archeoastronomy.

The Summagrid converts x-y positions on its surface to two binary numbers, one proportional to the x-position, the other proportional to the y-position. This binary data is output from the Summagrid through its controller in either a serial or parallel form. We chose to accept the data in parallel form and input it into the 86/12A through the 50-pin edge connector parallel I/O port. In detail, the parallel I/O is controlled on the 86/12A board by the 8255 which has three 8-bit ports, labelled A, B, and C in the Intel documentation for the 8255A and addressed at port addresses C8H, CAH, and CCH, respectively, on the 86/12A. As mentioned previously, Port A is factory-configured as an output port that we changed to an input port by changing the jumper to tie the DIEN pin to +5V instead of ground. This port accepted the 8-bit parallel data from the Summagrid. Port B has no buffers in the sockets provided as it comes from the factory, so we installed 7408s as buffer/drivers to let this port serve as an output port to send 8-bit commands to the Summagrid controller. Although the 8255A can be set up in a mode where it automatically furnishes handshaking signals, one of the signals (IBF from the 8255A) would have required an inverter to provide an active-low signal. Because of this and because this was also partly a student project, we decided to use an 8255A mode where we supplied the handshaking through software so that we could become more familiar with the details of the handshaking process. For handshaking, we used Port C, which is divided into two 4-bit sub-ports called Port C(upper) and Port C(lower) that are individually configurable as input or outputs. We configured Port C(lower) as input and Port C(upper) as output (from the computer’s view). Four signals are involved in the handshaking process:

Bringing up CP/M-86 was, in principle, not difficult. However, a number of hardware problems complicated the process.
Listing 1

10	Set 8255 to mode 0, port A and port C(lower)=input,
20	port B and port C (upper)=output
30	Control word #9. See Intel Component Data Catalog
40	Input from the SUMMAGRAPHICS controller is signaled
50	by a 'LO' on port C, bit 0. The I/O address for
60	port C is &HCC
70	First send the control word (&H91) to the command
80	port (AHCE)
90	OUT &HCE, &H91
100	Now set bit 4 of port C 'Hi'
110	OUT &HCE, &H9
120	Now read the button colors into an array
130	FOR I = 1 TO 5 READ BUTTONS(I)
140	NEXT I
150	DATA RED, white, blue, green, yellow
160	** ** INITIALIZATION IS COMPLETED ** **
170	** **
180	** **
190	** **
200	** **
210	** **
220	** **
230	** **
240	** **
250	** **
260	** **
270	** **

The code communicates with the pad:

300 FOR I = 1 TO 7 : 7 data bytes per point
310 IF (INP(AHCC) AND 1) = 1 THEN 320: 'Wait till button pushed
320 IF I = 1 THEN PRINT CHR$(7)
330 OUT &HCE, 8: 'Request data byte
340 READ a data byte and erase garbage
350 D(I) = R改进的INP(&HCE) AND &H3F
360 OUT &HCE, 9: 'Confirm byte read
370 NEXT I: 'Repeat for all 7 bytes
380 PRINT X = 4096 * (D(7) AND &HFF) + 64 * D(3) + D(2)
390 Y = 4096 * (D(7) AND &HFF) + 64 * D(6) + D(5)
400 Z = 4096 * (D(7) AND &HFF) + 64 * D(5) + D(4)
410 Compute the number of counts:
420 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
430 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
440 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
450 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
460 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
470 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
480 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
490 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
500 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
510 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
520 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
530 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
540 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
550 PRINT "X = "; X; "Y = "; Y; "Z = "; Z
560 GOTO 310: 'Go get the next data bytes

Summary

In summary, we have found that this computer system, based on the Intel 86/12A, single-board computer, has performed very well and has been operating in the lab for over a year with minor problems. The 8086 processor, with its Intel 288 disk controller, allows both single and double-density disk storage and additional main memory. The system has been used for the four-conductor null-modem configuration to interface the Summagraphics controller and the Summagraphics controller. We have found that the 8255A in the appropriate mode provides the best implementation for the Summagraphics controller, allowing the system to function as intended.

The output strobe from the 86/12A to the STBO—acknowledge signal from the 86/12A does not have to be read by the controller, as the controller acknowledges the data byte has been read. The data byte is ready for input to the 86/12A from the grid. The ACKO—acknowledge signal, then, is not required. The STBI—input strobe from controller to the 86/12A. When this goes low, it signals that a data byte is ready for input to the 86/12A from the grid. The ACKI—acknowledge signal, then, is not required. The STBI—input strobe from controller to the 86/12A. When this goes low, it signals that a data byte is ready for input to the 86/12A from the grid. The ACKO—acknowledge signal from the 86/12A does not have to be read by the controller, as the controller acknowledges the data byte has been read.
HARD DISKS
For Systems Integrators

Whether you're an OEM, system integrator, or end user, when the time comes to add a hard disk unit to your computer you want a building block that offers high performance, quality, and cost effectiveness. The Pragmatic Designs PD-10M, PD-20M, and PD-40M all provide these features and more.

All Pragmatic Designs hard disk sub-systems are designed for use in systems equipped with the CompuPro® Disk II hard disk controller. They can also be used with other OEM controllers which support the popular SA-4000 hard disk interface. Standard features include:

- 10, 20, and 40 Megabyte formatted storage
- 11.7, 23.4, or 47.5 Megabyte unformatted storage
- Fully compatible with CompuPro Disk II controller
- Heavy duty power supply with 110/220V capability
- 19" rack mount configuration available
- 1 Year limited warranty
- Full hard disk system including controller, cables, and software available

Hard disks... easy solution. If you're ready to add a full capability industrial grade hard disk sub-system to your computer system then call Jerry Hall at Pragmatic today.

Pragmatic Designs, Inc., 950 Benicia Ave., Sunnyvale, CA 94086 408/736-8670 TLX: 171627

™ CompuPro is a registered trademark of Godbout Electronics

CIRCLE 186 ON READER SERVICE CARD
A Garland of Utilities

by Chris Terry

Rearranging your keyboard

If you have an exotic keyboard with lots of function keys that you cannot use because the codes generated by them send your editor up the wall, or if you have a French or German daisy wheel but no corresponding keyboard, or if you want to use a DSK (Dvorak Simplified Keyboard) layout, do not despair! Help is on the way from Heritage Software. They have come up with SMARTKEY, a neat program that tucks itself away just below the CCP and allows you to redefine the codes generated by all the keys on your keyboard. It intercepts all calls to the BIOS keyboard input routines and translates received characters into codes that you have set up in a table with the aid of the FIXKEY program.

The really nice thing is that your translation is not restricted to one character per key—when trying it out, I defined the tilde (~) as a 15-character string containing my logon and password, dialed the Xerox CP-V time-sharing system at my place of work, pressed the tilde, and Presto! I was signed on with that single keystroke. In the same way, if you have function keys that generate codes with bit 7 high, you can bypass the CP/M input routine (which forces that bit low) and use them to initiate Escape sequences such as those used by the MINCE editor.

The 18-page manual contains full, easy-to-follow instructions for defining your translation table and installing and running SMARTKEY. It is not difficult to make up several versions of SMARTKEY, each having a different translation table, and store them on the disks containing different editors so that you always strike the control keys that you are used to but generate the codes required by the editor in use. SMARTKEY reduces the size of your TPA by 1.75K, but this is a small price to pay for the convenience of not having to learn a whole new set of control codes for each editor you try out.

There’s really no more to say about this one. The manual is clear and has all the information you need, and the program works like a charm. If you are trying out different keyboard hardware or layouts, or editors with differing control codes, SMARTKEY will save you a lot of time and frustration.

SMARTKEY: $60.
From: Heritage Software,
2130 S. Vermont Ave.
Los Angeles, CA 90007
(213) 737-7252.

CP/M disk utilities from Norway

Contents of the package
- DDUMP: disk review and patching utility.
- DDUP: copy utility with the capability of ignoring bad sectors encountered on the source disk and continuing to read instead of aborting.
- DTEST: two-option disk test. Option 1 is a Read-Only test for use on newly formatted disks. Option 2 writes E5 to all sectors and then performs the read test. Bad blocks found are collected into a garbage file.
- DUSER copies directory entries from one user area to another, thereby allowing several users to access the same files without the need to duplicate the files.
- UNERA restores the directory entry of a file previously erased by the ERA command.

$29.95 each program, or $125 for the set of 5.

The general picture

Programs similar to DDUMP, DDUP, and DTEST are available in the CPMUG or SIG/M public domain libraries for a total cost of $12 ($4 each for three diskettes full of other goodies). One must therefore ask what special features make the Elektroconsult utilities worth the extra money. The answer will depend upon your experience with CP/M and your needs.

If you are a newcomer to CP/M, or running a business system with nontechnical operators, some of these utilities will soon earn their keep because of their transportability and ease of use. Only .COM files are supplied, since customization is considered unnecessary and undesirable. No installation at all is necessary, and it is claimed that the programs will run on most CP/M version 2.x systems. This is particularly valuable because some of the public-domain utilities will not run on 5¼” disk formats or on many double-density 8” formats. I can confirm that DDUMP and DDUP run on the following systems with no trouble and consistent results: Tarbell 8” SD, North Star 5” DD/SD with Morrow hard disk, and Teletek 8” DD/SD. The programs were developed on a Zenith/Heath system running under HDOS.

These programs have what I consider to be very well-designed and friendly human interfaces. A prompt is issued for every item of data needed by the program, and in the case of commands, all of the applicable command letters are listed as a reminder. Entering H at any stage gets a Help menu showing what each command does. When numeric values are needed, you are told whether they should be decimal, hexadecimal, or ASCII (or given a choice). Warnings are issued when a command is potentially destructive. Error messages are explicit and helpful (e.g., “Error: Non-existent source disk drive!”)

Documentation is well organized, clear, and includes a “First Time Through” tutorial section for each program. This is followed by a detailed description of each command, a list of the error messages, and comments on possible causes of each
“EASI-PATH”
Project Management Program
$300.00

for TRS-80, IBM and CP/M micros

FEATURES:
- Program Compiles w/ Corp. of Engineers ER1-1-11
- 500 Activity Capacity
- Data Base w/ Editor
- Compiled BASIC w/ Source
- Easy Input: project description, starting date, length of week, holidays deleted, activity description, etc.
- Concise Output: project report, bar chart, project cost report, etc.

Customized Versions Available For Reasonable Fee

CALL OR WRITE:
EASI Software, Inc.
2 Windsor Court
Jackson, N.J. 08527
(201) 367-5735, 1-7 pm EST

Demo Diskette with Manual $30.00
Complete Line of Engineering Programs Available

CIRCLE 147 ON READER SERVICE CARD

A› INFORMATION MANAGEMENT PACKAGE (indexing, sort & search, tabulation, address labels, word processor interfaces, and lots more!)

A› COMMUNICATION SOFTWARE

A› For CP/M-based Systems

FOR CP/M is a trademark of Digital Research

Configured for a wide variety of systems. Disk formats include 8-inch, Osborne, Xerox ...

Call or write for
COMPU-DRAW
1227 Goler House
Rochester, NY 14620
Phone: (716)-454-3188

MasterCard, Visa & American Express cards welcome. Separately ordered documentation may be returned for full refund within 10 days!

It’s the writing on the wall.

CIRCLE 73 ON READER SERVICE CARD

Now
tiny Soars!

...with tiny-c two — the compiler

Tiny-c two is ten times faster than tiny-c one, with many features, including long (32 bit) integers, lots of new operators, and redirectable and direct access input/output. Viable for professional work, either systems programming or business applications.

It comes with a UNIX® style command interpreter called the “tiny-shell”. Every compiled tiny-c program becomes a new shell command. Commands can have arguments, and dash (-) options, just as real UNIX shell commands do. The < and > input/output redirection operators are supported.

Fifty standard library functions, and readily extended. The input/output functions are UNIX styles, including fopen, fprintf, etc. Both ascii and raw (binary) input/output are supported.

Package is portable. Bringing it up on a new processor or new operating system should take just days. And as usual with tiny-c products, all the source code is included.

Tiny-c two is available now on standard 8” CP/M.

$250.00 - Includes Owners Manual and Disk
Manual Only $50.00
(20% Discount to tiny-c one owners)

The original tiny-c ONE is still available on a wide variety of cassettes and diskettes. This version is an interpreter, complete with a Program Preparation System. Disk or cassette versions $100 (this price includes the Owners Manual, available separately at $50). CP/M, Apple DOS 3.2, 3.3 H8/89 HOS, PDP-11, Flex 2.0 Northstar, CP/M.

Call or write tiny-c associates, P.O. Box 269, Holmdel, N.J. 07733 (201) 671-2296. You’ll discover tiny-c is flying higher and faster.

New Jersey residents include 6% sales tax Visa or Master Card accepted include charge plate number with order.

UNIX is a trademark of Bell Laboratories, Inc.
tiny-c and tiny-shell are trademarks of tiny c assoc.

CIRCLE 216 ON READER SERVICE CARD
Thus system or advances; you can dump the allocation bit map to advance and back up one sector (DDUMP only and Block numbers are used—because the program can portion, without laboriously counting across the address, either in the hex portion or the ASCII cause it is so easy to use. An address "ruler" over DDUMP. I happen to like this one very much, be­cause there are no ambiguities, and the style is neither stiff nor overly colloquial. For day-to-day usage, I prefer the Tarbell program and its variants, also in the public domain (CPMUG Volume 25). These give you the choice of copying system tracks only, file tracks only, or both, and also permit copying to terminate when a track containing nothing but E5 is found on the source disk.

DTEST. I am not at all impressed, with this pro­gram. Like FINDBAD (SIG/M Volume 16), DTEST isolates bad blocks into a garbage file and sets the file to system status so that it does not show up in the directory and will not be picked up by a PIP ** command. Unlike FINDBAD, which nondestructively examines and checks sectors regardless of their content, DTEST absolutely requires a newly formatted disk to work on. It can be argued that this is the time to find out if the disk is bad—that is certainly true for hard errors. But soft errors are occasionally introduced by application programs, line surges, or noise, and make part of a file unreadable—and that is the time when FINDBAD is most valuable. I usually need to iso­late the bad block immediately and continue working on the current file—I don’t in the least want to swap disks around in the drives while I DDUP all the files to another disk.

A less serious (but to me extremely irritating) defect is that the Read-Only test falsely reports (and isolates) a bad block if a single byte on the disk is not E5, even if the sector itself is perfectly readable. (See the vendor’s response in the box.) I see this as a design defect—at formatting time I want to know about hard errors, not stray data bytes that don’t impair the readability of the disk. This defect should not occur if you opt for a Write/Read test, because the Write portion writes E5 into all sectors before the read check is per­formed. In my view, DTEST is neither flexible enough for superficial testing, nor thorough enough to give a real workout to an intermittently troublesome disk. It is, however, useful for quick testing of new disks containing no data.

For detailed testing, DISKTESI (CPMUG Volume 8) is far superior. This program first fills the data areas with 00 and then does a seek from the home position to each track in turn. Then it fills the data areas successively with FF, 55, AA, and E5, checking the result of each operation, af­ter which it does a second (and final) seek to each track. On several occasions this test has found sec­tors with what I can only call "sticky bits" that slipped through the cracks of FINDBAD, because they were set by E5 but de not go back to 0 under normal writing conditions. It takes 6 min 47

The Elektrokonsult programs have very well-designed and friendly human interfaces... warnings are issued when a command is potentially destructive... DDUP is a copy utility that does not abort when a bad sector is encountered in the source.
THE BURNER I/O FOR THE S-100 BUS

Our BURNER I/O has a complete EPROM programmer, two serial ports, one parallel I/O port with handshaking and memory management.

Programmer features:
- Programs EPROM types 2704 thru 2764 and TMS2508, 2516, 2716
- Does NOT require programming modules.
- Extensive, easy to use menu driven CP/M compatible programming software supplied in a 4K EPROM. Is easily written on diskette as .COM file.
- Programming socket is zero insertion force type.
- Programming voltages generated on board.
- Programmer is totally I/O mapped.

I/O Features: (serial)
- 2 fully independent RS-232 serial ports.
- RS-232 data ready supported.
- Each serial port has independent baud rate generators that are software programmable from 50 to 19,200 baud.
- Serial ports may be polled and/or interruppted.

I/O features: (parallel)
- Independent 8 bit output, input and status flags.
- All I/O including flags are latched.
- In addition, there are 4 direct sense lines.

Memory management features:
- Controls the S-100 address lines from A16-A23.
- Uses output instruction to load the address.
- Quality construction including silk screen, solder mask, sockets and card ejectors.

We are offering this board with all options, or just the portions that are needed. All combinations are assembled and tested.

Option A: Complete board with programmer, I/O and memory management.
$354.95
Option B: Programmer only.
$219.95
Option C: I/O only.
$219.95
Option D: Option B and C.
$329.95
Option E: Memory management only.
$109.95

Memory management may be added to options B or C for $25.00.
Shipping, UPS: $3.00 surface, $5.00 air

Extended Processing
3861 Woodcreek Lane
San Jose, CA 95117
(408) 249-8248

TimeEPROMmer, the S-100 CP/M* compatible programmer that’s useful every second of every day. A real time calendar/clock with lithium battery and an EPROM programmer that programs all popular eproms. Unbeatable price/performance ratio. Features designed for easy operation.

Eprom Programmer: Port addressable. Read, Verify, Program, and Disk transfer. Handles up to 28 pins. Power generated and controlled on board. All software and documentation included. Assembled units tested with burn in.

Real Time Calendar/Clock: Complete time counting functions with CMOS LSI. Allows up to 6 months power down use. Independently port addressable.

CIRCLE 188 ON READER SERVICE CARD
sec to run (contrasted with the 1 min 40 sec of DTEST Read-Only, 3 min 28 sec for DTEST Write/Read, and 1 min 28 sec of FINDBAD), but it does a good job. In justice, however, I must admit that it may be hardware-dependent: I have used it on Tarbell and Thinker Toy single-density systems, under CP/M 1.4 and 2.2, but not on double-density or 5¼" systems. The Elektrokonsult DTEST will definitely cope with any density or format.

DUSER. I can verify that this program works as stated, and I can see that it allows multiple users to make more efficient and convenient use of available disk space. However, because I have no experience with multiuser systems, I can't offer any practical comments. (See vendor's response in the box.)

UNERA. This is convenient if you are a non-technical user who has just typed \texttt{A>ERA FOOBAR.*}, forgetting that \texttt{FOOBAR.DAT} contains test data that would be useful on other occasions. Just type \texttt{A>UNERA FOOBAR.DAT} and, as if by magic, the file is back in your directory—always supposing you have not written anything to that disk since the ERA command. But if you are fluent in the use of DDUMP or DU, why pay $30 to save two or three seconds in the process of changing an E5 back to a 00?

Conclusions
Elektrokonsult has come up with human interfaces that are worth study by anyone who wishes to market a program or circulate one for general use in the CPMUG and SIG/M libraries. They have (in DDUP) created a valuable file recovery aid that is not already in the public domain. It looks as though they have also been successful in creating system-independent utilities, which is a distinct advantage—a number of the public domain utilities do have unfortunate hardware or software dependencies. However, these successes in themselves do not necessarily justify the selling price. In performance I feel that DDUMP and especially DDUP are well worth anyone's consideration; DUSER and UNERA may or may not have something for you, depending on your system needs. DTEST (in my view) compares poorly with existing public domain disk tests. However, if these will not run on your system because of format incompatibilities, try DTEST; it will run on almost any format and will at least allow you to check your newly formatted disks.

From: Elektrokonsult AS
Konnerudgaten 3
3000 Drammen
NORWAY

Elektrokonsult replies:

Our disk utilities were designed to:
- be user-friendly
- work with most diskette formats and some hard disks
- be relatively well-documented so that the user may also learn something about the "inner works" of CP/M from the manuals and application notes.

In DDUMP, we deliberately did \textit{not} zero the 8th bit so that System or R/O files would declare themselves by the period in the filetype. We see this as an advantage, not as a defect.

DTEST tests ALL tracks of the diskette, including the system tracks. We have found that some of the public domain utilities do not test the system tracks. The test for all data bytes being E5 was designed in as a check that all bytes have been correctly written by the formatter, rather than merely testing for readability. The check for E5 may be removed in a future version, allowing DTEST to be used also on diskettes containing data.

You do not have to be in a multiuser environment to take advantage of DUSER. In a single-user system, the USER partitioning can be used to group files by topic and so help to organize your work. DUSER may not be of much use for diskettes with limited storage capacity, but for storage capacities of 500K or more, it can be very useful indeed.

The one that does everything

If you want to give away your PROM monitor and use the extra space, or to defenestrate DDT, forget FINDBAD, pitch PIP out the door, and stomp on STAT—POWER is exactly what you need. It's a steal at that modest price!

POWER is, to my way of thinking, the most versatile, friendly, convenient, and protective utility ever to hit the market. It performs most of the functions of PIP, STAT, DDT, REN, SAVE, DIR, TYPE, DUMP, FINDBAD, CKSUM and a system monitor much more conveniently than the originals do. It is a transient program executing at 100H, and occupies 12K (to 2FFFH). There are 45 different commands, including four different flavors of DUMP and TYPE and four user-definable commands for each of which an 8-byte patch area is provided. The user interface is outstandingly friendly and protective, and many of the features are unique to this program. Four special features make POWER easy for even completely nontechnical persons to use:

- Once loaded and running, POWER does not...
BRIDGE GRAPHICS

PLOTPAK™ is a complete plotting library that runs under FORTRAN-80 and performs a variety of functions:
- windowing, linear print arrays, automatic polygon drawing, annotations, plotting symbol/line selection, labeling, coordinate conversions.
- PLOTPAK can drive a screen and plotter simultaneously and includes your choice of the following drivers:
 - SCREENS
 - MicroAngelo MA 512
 - ADM + Retrographics
 - TEK 4010 Compatible Terminals
 - PLOTERS
 - Houston Instruments DMP-4
 - H.P. Plotters 7225B & 7420
 - Radio Shack Printer/Plotter

PLOTPAK (.REL file) two drivers $275
PLOTPAK (source code) two drivers $365

Computer Company
ONE BRIDGE ST., NEWTON, MA 02158
PHONE (617) 244-8190

CIRCLE 52 ON READER SERVICE CARD

Main/Frames

Main/Frames from $200

- 3D Models of Enclosures
- Assembled and tested
- Quasi-Coax Motherboards
- Power Supply
- Card cage and guides
- Fan, line, card, fuse, power & reset switches

8" Floppy Main/Frame $482
8" Disc Enclosure $250
Phase 80 8" Floppy Mainframe $525
Phase 80 Desk + Mainframe $900

INTEGRAND
8620 Roosevelt Ave. • Visalia, CA 93291
209-651-1203
We accept BankAmericard/Visa and MasterCharge

CIRCLE 49 ON READER SERVICE CARD

NEW! ATTENTION

S-100 PRODUCTS

Z80
CP/M & NorthStar
APC BASIC
The ROLLS ROYCE of Basics
2-5 times faster performance
Accurate arithmetic
Reduces program development time up to 25%
More programming flexibility
Better memory utilization
Easier testing and debugging
Simple to use
NorthStar compatible
(Microsoft basic translator available)
Supports NorthStar floating point processor board under CP/M

FEATURES:
- Trace/conditional trace
- Global edit
- Multiple buffer files
- Dynamic code merging
- Dynamic array dimensioning
- Bit functions
- Local variables
- Cross reference program
- Expanded assembly language interface
- Multiline user functions
- Flexible output formatting
- Subscription phone support
- Source code protection

APCBASIC pays for itself quickly
ORDER NOW!
Dealer inquiries welcome

Includes APC BASIC, editor, cross reference program, library modules, configuration and compilation programs and manual

APC BASIC
NorthStar Dos, Gdos, CP/M $400
Z80 CP/M 8" SS SO $400
8086/8088 (avail. NOV.) CP/M86 $400
(avail. DEC.) MSDOS $400
Manual only $48

Check VISA or MasterCard accepted

American Planning Corp.
Suite 423, 4600 Duke Street
Alexandria, Va. 22304
703-751-2574

CIRCLE 41 ON READER SERVICE CARD

Speaking of Computers

THE SOUNDING BOARD

- S-100/EE 696
- unlimited vocabulary
- CP/M software included
- numerous applications (talking terminals, morse code training, electronic music . . .)

For more information, call or write:
Cygnus Systems
(303) 393-6526
1245 Columbine #402
Denver, CO 80206

WE LISTEN!

CIRCLE 190 ON READER SERVICE CARD

We're no longer the best kept secret in the universe. The Martians (Sandy & I) have landed in La Mesa, Ca. with a complete line of CP/M software.

WRITE or call for our brochure which includes our application note: "Building Computers - A Recipe"

INTEGRAND
8620 Roosevelt Ave. • Visalia, CA 93291
209-651-1203
We accept BankAmericard/Visa and MasterCharge

CIRCLE 153 ON READER SERVICE CARD

NEW! ATTENTION

APC BASIC
The ROLLS ROYCE of Basics
2-5 times faster performance
Accurate arithmetic
Reduces program development time up to 25%
More programming flexibility
Better memory utilization
Easier testing and debugging
Simple to use
NorthStar compatible
(Microsoft basic translator available)
Supports NorthStar floating point processor board under CP/M

FEATURES:
- Trace/conditional trace
- Global edit
- Multiple buffer files
- Dynamic code merging
- Dynamic array dimensioning
- Bit functions
- Local variables
- Cross reference program
- Expanded assembly language interface
- Multiline user functions
- Flexible output formatting
- Subscription phone support
- Source code protection

APC BASIC pays for itself quickly
ORDER NOW!
Dealer inquiries welcome

Includes APC BASIC, editor, cross reference program, library modules, configuration and compilation programs and manual

APC BASIC
NorthStar Dos, Gdos, CP/M $400
Z80 CP/M 8" SS SO $400
8086/8088 (avail. NOV.) CP/M86 $400
(avail. DEC.) MSDOS $400
Manual only $48

Check VISA or MasterCard accepted

American Planning Corp.
Suite 423, 4600 Duke Street
Alexandria, Va. 22304
703-751-2574

CIRCLE 41 ON READER SERVICE CARD
require the system disk. Hitting "C" does not attempt to reboot the system; it merely updates the directory information for the current or specified drive so that you can change diskettes at any time. If you change diskettes but forget to hit "C", POWER detects the error and prompts you for "C" before allowing you to continue the operation. Thus, you will never again get those annoying "BDOS Error: R/0" error messages. You can copy and rename and erase files to your heart's content, secure that you cannot accidentally overwrite or destroy files. Any operation that involves a disk write automatically asks for reconfirmation before performing the operation, though reconfirmation requests can, if you wish, be suppressed.

- COPY, ERA, REN, and other file operations display a directory in which a decimal number is assigned to each file. You select the files to be operated on by typing in single numbers (e.g., 5 15 31) or a range of numbers (e.g., 1-4 8-9 34-). This eliminates many, many keystrokes and greatly reduces the chances of making a mistake. No more repetitious typing of filenames and filetypes!

- As each file in a series comes up for processing, the operation and filename are displayed and the program asks for reconfirmation (Y or N) that this file is to be processed. Thus, if you do make a mistake in your entry line, the reconfirmation request allows you to correct it. Just type N, and that file is skipped. The LOG command allows you not only to select or reject reconfirmation requests, but also to show or suppress system and R/O files in the directory display, and to choose how many columns wide the directory should be.

- The documentation is excellent. The first three pages of the manual contain a command index showing command name, page number for the full description, a 2-3 line brief description, and the syntax of the command. The index is followed by a four-page section on "Getting Started with POWER," containing good examples. The rest of the manual consists of a full description of each command in name alphabetic order, with copious and helpful examples of command variants and the displays that result.

There just is not space to discuss all of the goodies in detail—You have to read the 60-page manual to grasp all the details of the power you get in this package. But I will give you the highlights, and say that after using POWER daily for three weeks I wouldn't be without it for all the tea in China!

Disk medium and file commands

- DISK reports the parameters and formatting of the diskette in the current drive.

5-INCH HARD DISK SUBSYSTEMS WITH LOW COST PER MEGABYTE.

Tarbell 5-inch hard disk subsystems with amazingly low cost per megabyte are available in 5, 10 or 16 megabyte formatted configurations. Subsystem includes 5-inch hard disk drive, 8-inch metal frame with 5-volt and 12-volt regulators or optional cabinet with power supply, hard disk controller and cable, CP/M 2.2 for Tarbell floppy and hard disk, and documentation. Data transfer rate is 5 megabits per second and average seek time 120 milliseconds.

LESS COST PER MEGBYTE

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Mbyte</td>
<td>$2095</td>
</tr>
<tr>
<td>10 Mbyte</td>
<td>$2265</td>
</tr>
<tr>
<td>16 Mbyte</td>
<td>$2375</td>
</tr>
<tr>
<td>Cabinet with power supply</td>
<td>$200</td>
</tr>
</tbody>
</table>

Tarbell Electronics

950 Dovlen Place, Suite B
Carson, California 90746
(213) 538-4251

CP/M is a trademark of Digital Research

CIRCLE 223 ON READER SERVICE CARD
A Garland of Utilities continued...

- STAT reports free and used space on diskettes in all currently active drives.
- SIZE reports size in kilobytes, sectors used, and sectors unused, for each file selected from the numbered directory.
- SETxxx set files selected by number to SYS, R/O, R/W, or DIR status.
- CHECK computes and reports a unique checksum for each file selected by number. (A checksum for the entire diskette is handled by TEST.)
- USER and XUSER select source and destination user areas for a COPY operation on files selected by number.
- TEST nondestructively tests all sectors on the disk, segregates bad blocks into a file that is set to SYS System status, and computes a checksum for the disk.
- REN renames files selected by number from the directory. The program displays the old name and prompts you for the new name.
- ERA erases files selected by number from the directory and reports each file as it is being erased.
- RECLAIM restores files previously deleted from the current drive, after asking for reconfirmation. It will not create two files of the same name in the directory. Note that reclaimed files are automatically set to R/O status, although this fact is not mentioned in the manual. The idea is that a file that is valuable enough to reclaim should be protected against further accidental deletion. If you want to modify a reclaimed file, you must first use the SETWR command to give it Read/Write status.
- COPY copies files selected by number from any drive to any other drive, verifying the copy.
- TYPE displays an ASCII file, selected by number, exactly as entered. TYPEA displays the ASCII hex codes, 16 bytes to a line. TYPEH displays the hex code of a .COM or other file, 16 bytes to a line. TYPEX is like TYPEA but adds the printable ASCII equivalents (same format as DDT).

Monitor commands

The monitor commands are fairly standard, except that they include commands to read a disk data into memory at any address and write the data back to the disk. However, the performance of even standard commands is superior.
- DS (Display/Substitute) automatically displays the current address and the hex, decimal, binary and ASCII forms of the data

INTRODUCING

UNIFORTH

One of the finest implementations of the FORTH language. Field tested and reliable, UNIFORTH is available for Z-80 and most 16-bit systems using 8" disk drives.

As a task, UNIFORTH is compatible with and supports all features and file types of the CP/M, CDOS, MS-DOS and DEC operating systems. As an operating system, UNIFORTH will function "stand-alone" on most commercial microcomputers.

The FORTH-79 Standard language has been extended with over 500 new words that provide full-screen and line-oriented editors, array and string handling, enhanced disk and terminal I/O, and an excellent assembler. Detailed reference manuals supply complete documentation for programming and system operation, in an easy-to-understand, conversational style using numerous examples.

Optional features include an excellent floating-point package with all transcendental functions (log, tangents, etc.), the MetaFORTH cross compiler, printer plotting and CP/M file transfer utilities, astronomical and amateur radio applications, etc.

Test these features with any other FORTH on the market:
- Speed and efficiency
- Variety of options
- Ease of use
- Quality of documentation

You'll find UNIFORTH is superior.

Prices start at $35. Call or write for our free brochure.

Unified Software Systems
P.O. Box 2644, New Carrollton, MD 20784, (301) 552-1295

CP/M SUMMARY GUIDE

Tired of fanning through your CP/M manuals or writing notes that remind you of the commands, functions and error codes? Well it's about time you ordered our CP/M Summary Guide! Spiral bound and handy to hold, our guide is a 60 page booklet summarizing the features of CP/M (Ver. 1.4 & 2.X) and 2 totally alphabetical listings of the commands, functions, statements and error codes of MICROSOFT BASIC-80 Ver. 5.0 and CBASIC-2. Areas summarized are in table form and include all direct and transient commands, plus MAC™, DESPOOL™, and TEX™. Our booklet is a much needed supplement to any of the literature currently available on CP/M and has been recommended by Digital Research.

P.S. Over 15,000 users can't be wrong!

Ask your local computer store for our guide or send $6.95 plus $1.00 (postage and handling) to:

THE ROSETTA STONE, P.O. BOX 35, GLASTONBURY, CT 06025 (203/633-8490)

Name _____________________________

Street _____________________________

City __________________ State _______ Zip _______

CP/M™, DESPOOL™, MAC™, TEX™ are registered trademarks of Digital Research. CBASIC™ is a registered trademark of Digital Research.
there. The default entry mode is hex, but it can at any time be changed to any of the other forms, even in mid-line.

- **DUMP** has the same variants as **TYPE** and produces similar displays.
- **MOVE** moves a block of data from one place to another in memory. However, the move can be in either direction, and the target address range can overlap the source address range.
- **SEARCH** searches a specified address range for a byte sequence. The target bytes may be ASCII, hex, or mixed, and the wild card "?” may be used to fill in an unknown portion. A target sequence may be up to 128 bytes long.
- **READ** and **READGR** bring in disk data specified by Track/Sector or by Block to any specified starting address in memory. **LOAD** brings in a whole file, provided there is sufficient free memory to hold it. The corresponding write commands are **WRITE**, **WRGR** and **SAVE**.

There are other monitor commands which allow execution of a program in memory with return to **POWER** or to CP/M upon completion, filling a memory block with a byte, etc.

Parameter selection
The **LOG** command allows you to change the way certain commands work. For example, you can set the directory width, select or suppress reconfirmation requests, select or suppress read-after-write verification of disk writes, and show or suppress system files in the directory. For disk writes, if the target filename already exists, you can opt for overlaying of the previous file, creation of a backup, a reconfirmation request, or an automatic skip to the next file in the series. The options you select remain in force for your current session with **POWER** (unless you change them again with **LOG**). If you don’t like the defaults selected by the vendor, you merely use **LOG** to set up the defaults you prefer, and then **SAVE** that version of **POWER**. Next time you use the program, your own defaults will be in effect until you change them with **LOG**. The **LOG** command tells you the last address used by **POWER**, so you can use **POWER** itself to do the save.

I could go on for hours about this utility. It’s much more than a “utility” (something useful)—it becomes a necessity or an addiction, and you wonder how you ever got on without it! My heartfelt advice is: Don’t even try to get on without it!

POWER, $149.

From: Computing! San Francisco
2519 Greenwich St.
San Francisco, CA 94123
(415) 553-0204

EPROM PROGRAMMERS

EPROM PROGRAMMERS

EP-2A-79

HARDWARE CAPABILITY

CP/M SOFTWARE
The program which includes source code provides for extensive file management for large files including 15 commands for programming, reading, and verifying the devices listed above. Easy to use, the program is menu driven with an expert mode which eliminates many of the prompts once the user is familiar with the program.

PRICE AND DELIVERY
Available from stock to 2 weeks, the EP-2A-87 is $650 which includes an 8K buffer, stand alone copy, edit. The EP-2A-79 is $169. Personality modules $17 to $36 depending on device. Software $40. S-100 parallel interface (S-100-3P) is $105.

OPTIMAL TECHNOLOGY, INC
EARLYSVILLE, VA. 22936
804-973-5482

CIRCLE 66 ON READER SERVICE CARD

C COMPARE COMPILERS

C COMPARE COMPILERS

New C/80 2.0 gives you all three: features, performance and price.

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Compiled Program Size (Bytes)</th>
<th>Loaded Size (with runtime support)</th>
<th>Compile and Load Time (sec)</th>
<th>Execute Time (sec)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/80 2.0</td>
<td>313</td>
<td>3181</td>
<td>90</td>
<td>24.8</td>
<td>$ 49.95</td>
</tr>
<tr>
<td>Aztec C</td>
<td>376</td>
<td>4657</td>
<td>139</td>
<td>33.0</td>
<td>$ 125</td>
</tr>
<tr>
<td>BCS C 1447</td>
<td>305</td>
<td>3696</td>
<td>54</td>
<td>44.0</td>
<td>$ 150</td>
</tr>
<tr>
<td>SuperSoft C</td>
<td>300</td>
<td>2550</td>
<td>92</td>
<td>26.0</td>
<td>$ 200</td>
</tr>
<tr>
<td>Tiny c 2 Compiler</td>
<td>(4)</td>
<td>(4)</td>
<td>96</td>
<td>930</td>
<td>$ 250</td>
</tr>
<tr>
<td>Whitesmith C</td>
<td>290</td>
<td>7384</td>
<td>242</td>
<td>15.6</td>
<td>$ 750</td>
</tr>
</tbody>
</table>

Performance Comparison Using Benchmark Program
Published in BYTE. September 1981

1. Our results on 4 MHz Zenith Z89 with 8” disks
2. Results reprinted with permission from September 1981 BYTE © BYTE Publications Inc
3. From manufacturer's information sheet provided by manufacturer
4. Figures not available

The new C/80 compiler. Version 2.0, supports all C language features except floating point, long, typedef, bit fields, and arguments to macros.

C/80 2.0 is available in disk formats for Heath/Zenith (HDOS & CP/M*). Osborne 1" and 8" standard CP/M systems. Price is $49.95, add $3 shipping ($2 for 5" disks) in CA add tax. Phone orders welcome.

1. *CP/M is a registered trademark of Digital Research. Osborne 1 is a registered trademark of Osborne Computer Company.

The Software Toolworks

14478 Glorietta Drive
Sherman Oaks, CA 91423
(213) 986-4885

Call or write for our catalog of over 20 software products.
Dealer inquiries invited.

CIRCLE 200 ON READER SERVICE CARD
Heath/Zenith Users—
Get the Information You Need:

Read the only independent magazine with a specific focus on your system: Sextant, the Independent Magazine for the Entire Zenith Computer Community.

Whether you use a Z/H100 with S100 bus expansion, an H/Z89, Z90, H88, H11, or H8—you’ll find articles in every issue which apply to your system.

Explore CP/M, HDOS, and ZDOS capabilities through Sextant’s articles. Applications programs, compatible hardware and software, and the latest developments in the Heath/Zenith community are among the topics included in Sextant on a regular basis.

Sextant is a quarterly magazine, carefully edited to provide wide coverage of the Heath/Zenith community for the benefit of the Heath/Zenith user. Below are some of the topics we’ll be addressing this spring, and in future issues of Sextant.

• A broad range of “how-to” articles which will help you implement system enhancements as you need them.

• Reviews of products from Zenith and its independent suppliers to help you sort out the questions you have about hardware and software options you might consider.

• Short program listings, including both utility programs and games.

• For your system needs, you’ll find over 50 advertisements of compatible products in each issue of Sextant. Many advertisers find the independent magazine for the entire Zenith computer community the most direct medium to market their Heath/Zenith-specific products—you’ll find independent suppliers with products you wouldn’t see advertised elsewhere.

• And, so that you’ll be informed of the latest progress and innovations in your Heath/Zenith community, Sextant provides extensive coverage of community affairs. Read about major events in the Heath/Zenith community, as Heath/Zenith users meet to discuss regular developments and future projections. Specific companies and individuals are highlighted as they make significant contributions to the state of the Heath/Zenith community.

A Whole World of Information About Your System!

Start your Sextant subscription today!

CALL TOLL FREE: DATATEL 800/341-1522
(M-F 8 a.m. - 9 p.m. EST. For orders only.)

Or send in the postage-paid card provided here (facing page).

Your satisfaction with Sextant is guaranteed. If at any time you’re not satisfied, just let us know and your money will be returned—in full.

Sextant Subscriptions, 716 E Street S.E., Washington DC 20003 202/544-0900
Five years ago, when I went looking for a computer system to function as a word processor and general-purpose “number cruncher” in my business, there were few machines available at anything approaching an affordable price. Last summer, when I had to replace my original system—which had become obsolete and could no longer be supported or repaired—I found a variety of systems to choose from, all at affordable prices and all offering features undreamed of in my earlier computer.

Finally, I happened on a system that seemed just right—an expandable IEEE-696/S-100 bus, 4MHz Z80 CPU, 64K memory, two 8” floppy disk drives, multiple serial and parallel input/output ports, a single-user CP/M-80 operating system, and the capability of being modified or changed to meet the ongoing needs of my enterprises. That machine was a Morrow Designs’ Decision I. I cannot go into all the reasons I wanted an S-100 bus rather than a single-board computer, why I prefer dual floppy drives to a single floppy and a hard disk, or the rationale behind other selection criteria. It’s sufficient to say that the Decision I met my requirements, and that I purchased it as the new primary system for my entire consulting and writing business.

What I am going to do is report on things I encountered and the overall performance. First, however, I need to define the system in more detail. The unit I’ve tested, used, and generally given a thorough shakedown is the rack-mounted Decision I, model RIB, which cost $4,995. That price included CP/M-80 2.2, Microsoft BASIC-80, and WordStar revision 3.0.

The standard RIB is equipped with two double-sided double-density 8” disk drives (Shugart 850) with Morrow Designs’ Disk Jockey DMA Floppy Controller. It has a 64K high-speed static RAM board (Morrow calls it 65K), and a Morrow MULT I/O board with three RS-232C serial ports, one 50-pin parallel port, a real-time clock, and a programmable interrupt controller. It’s equipped with a 150-watt switching supply to power the S-100 bus and a separate linear supply to power the disk drives. The linear drive supplies are factory selected to match the drive configuration, with different supplies used for systems with one 8” floppy, two 8” floppies, or one floppy and one 8” Winchester hard disk. A line filter is built into the unit for noise and surge suppression, though no specifications are published on the performance of that filter.

The system provides for expandability and growth, with the 12-slot S-100 motherboard having eight spare slots after the standard plug-in boards have been installed. It should be easy to add an external hard disk system or other peripherals later. A memory larger than 64K is possible for multiuser or multitasking applications, since the system incorporates direct extended addressing to 2 megabytes. Morrow Designs also can provide their Micronix Operating System (a UNIX derivative) for multiuser environments. There even are provisions for installing a 6MHz Z80 processor or a future 16-bit processor.

All in all, the system has been designed to avoid early obsolescence, unlike many others that are limited to initial configurations or make future expansions impossible. Other systems often are obsolete within months, but the Decision I is likely to be around for a long time because it can and does grow as the user’s needs grow.

I’ve mentioned that my unit is a rack-mount configuration. That means it’s a plain black box hanging from rails under my desk surface. And I do mean it’s plain—there’s no brand or manufacturer identification whatsoever on the front panel. However, the system is available in other configurations, with desktop units being more stylish and possibly more visually appealing. Desktop units range from $2,395 for a unit without disk drives, to $5,400 for one with a 5¼” floppy disk plus a 16MB 5¼” hard disk. For rack-mount unit prices, contact Morrow Designs.

I must cite at least one functional difference between the rack-mount unit I use and the desktop configurations. The rack-mount system controls are on the front panel, consisting of a red rocker-switch master power control and an illuminating red pushbutton switch that serves as the system reset and doubles as the power-on indicator. The desktop units have only the system reset pushbutton on the front, with the master power switch on the rear panel. The only reason I make a point of this is that the dealership has commented on some desktop users not liking the rear-panel power control. The Decision I is just large enough to make it somewhat inconvenient to reach behind the system for power switching, but it certainly doesn’t interfere with the overall operation.

In the first 25 weeks of running the system an average of 15 hours per day, seven days per week, there were no malfunctions. I saw a few BDOS errors, but only a half dozen or so were not due to operator error. Even those were “soft” in that a second try at reading the disk was successful. In all likelihood, the BDOS errors were caused by careless disk insertion, where the disks weren’t properly seated and centered on the drive hubs. By comparison, the system the Decision I replaced had some 35 service calls during its first eight weeks of operation, and continued at nearly that rate for most of its first six months. It’s obvious that the Decision I has much higher reliability.

Morrow Design calls the Decision I rack mount an “industrial grade computer package,” a designation that should and usually does indicate a high-reliability unit. I did ask the factory representative for a “mean time between failures” (MTBF) figure since there wasn’t one in their lit-

Ernest E. Mau, 3108 South Granby Way, Aurora, CO 80014
erature, but they indicated that sufficient statistical data had not yet been accumulated to determine an accurate MTBF. However, the representative said they anticipated achieving an MTBF exceeding 5,000 power-on hours. That's not bad if they make it!

From a user's view, the Decision 1 is close to ideal. The dual double-sided 8'' floppies provide up to 2.2 megabytes of storage on line at any one time; the CPU and memory speeds are adequate for most applications; and disk accesses are surprisingly fast. Morrow Designs eliminated sector buffering by transferring data directly to memory via the DMA channel, so the CPU is free to proceed with other processing tasks during the disk transfers. Compared with my old computer, based on an 8080 CPU and comparatively slow access to 32-sector drives, there is an apparent increase in overall operating speed and throughput of about 6-to-1 for programs not requiring operator intervention during a run.

The physical construction is beautiful! Having grown accustomed to an older system packed with jumper wires, jury-rigged bypass circuits, sloppily soldered boards, and much general clutter, I was particularly impressed with the Decision 1. In the entire unit, I've found only one jumper wire (on the back of the MULT I/O board), indicating that the boards have been thoroughly tested and proven before being released to the market. I've been told that the systems were held off the market and shipment delayed for some months because there was a problem with one of the boards and the company didn't want to release units until the problem had been resolved.

There is no clutter. Interfacing ribbon cables to the four MULT I/O board connectors route cleanly from the top of the card to rear-panel connectors where the interface cables to the peripherals are attached—without interfering with other circuitry or boards. The boards themselves are works of art—clean design and clean soldering—obviously designed and manufactured with a good degree of pride.

Throughout, I've found the Decision 1 a delight to own and operate. While I don't want to get carried away singing its praises, it certainly deserves them. To illustrate, there are many seemingly minor provisions that make life a lot easier for the user. Among these are:

- Software selection of the baud rates can be done independently for each of the three serial ports. The selection may be built into system or utility software like the CBIOS or a communication program, or performed individually with a BAUD program provided.

- Independently strappable signal assignments for all three serial ports are provided on the MULT I/O board. Depending on the CBIOS and other system requirements, changes from "data set" to "data terminal" operation, modem to non-modem communication, or for the individual RS-232C signal line assignments are easily implemented in the hardware.

- A special disk-formatting program called (FORMTDJ.COM) allows a choice of densities and sector sizes and also verifies the sectors of each formatted disk. On an 8'' system, disks can be formatted for either single or double density and then for 256, 512, or 1024 bytes per sector.

- The disk controller automatically adjusts to single-sided, double-sided, single-density, double-density, and sector size parameters of the inserted disk on booting the system. And it does so without the operator having to input any disk parameters from the keyboard. This allows a single-sided single-density CP/M

The Decision 1 is a thrill to use. It does everything I'd ever ask of a hard-working computer system, and has provisions for many more things than I ever expect to need.
distribution disk to be copied from Drive B to a double-sided, double-density disk in Drive A. It also allows writing single-density disks for distributing software in a standard format.

- A special SINGLE.COM program allows users having only a single drive to copy CP/M files from one disk to another. The program converts the one drive to a "logical" two-drive system and prompts for disk swaps as necessary to accomplish copying that otherwise could not be done with PIP.COM.

Documentation

All these features and many more are included in the system. However, like any other computer, peripheral, or software product, the Decision 1 does have some shortcomings that prospective users should recognize. The first and most easily recognized is that the hardware documentation is not oriented to the end user. The system comes with Morrow Designs' own reprints of the CP/M, BASIC-80, and WordStar manuals, plus a binder full of technical information on the system.

The latter item is exactly that, a technical manual, and it takes a technician to make much sense of it. It contains information that might be needed by a service technician, an advanced programmer, or a system designer integrating the unit into other OEM equipment. It does contain things like system schematics that would be invaluable for arranging "third-party" service or for modifying the system. However, it doesn't tell the end user how to get the system up and running. It briefly describes programs available on the system disk furnished, but it describes a disk with a different set of programs from the one I received.

The documentation does lack information about the switching power supply, linear power supply, and line filter. That could be a problem later, but I suppose the philosophy is that anyone needing such detailed information could obtain it from the original manufacturers of the power supplies.

Getting the system operational

The lack of effective user documentation gives rise to the most serious difficulty I've encountered—getting the system operational the first time through. The first problem I hit was formatting diskettes and recording the CP/M operating system on them. Running the Morrow formatting program had me facing a menu for selecting disk type (8" obviously), single- or double-density (double looked good), the drive number, and then the bytes per sector. Coming from a single-format system and finding a choice of 256, 512, or 1024 bytes per sector sent me scrambling to find some information in the manual—it wasn't there. My first evening with the machine, I spent six hours trying to get a copy of the CP/M operating system onto a new disk formatted for 256 bytes per sector—unsuccessfully. I tried every combination of MOVCPM, SYSGEN, DDT, and SAVE, and any other operations I could imagine, all with no luck. I then spent another two hours trying the same with a 512-byte disk. Finally, I got around to trying a 1024-byte disk, and it was the only format that worked.

Four weeks later, I happened to find two sentences in an on-disk information file I would never have read until after I had made a backup system disk. The statements explained that added features and functions increased the size of the Morrow CP/M system to exceed the capacity of the first two tracks of any disk formatted for other than 1024 bytes per sector. Therefore, CP/M can only be put on 1024-byte disks. Since that format is the most efficient data storage for the system (1.1 megabytes per disk), it's not particularly troublesome unless there's some special reason for wanting to use another format. Even then, about the only thing you can't do with other sector sizes is put on the CP/M operating system, so you can work with the others. I just wish the manual would have made a point of it and kept me from wasting hours.

Still, I didn't anticipate all the ramifications of an "oversize" CP/M. When I later tried to recompile some Basic programs transferred over from my older system, the Microsoft version 5.24 BASIC, COM2 compiler and LINK-802 loader would run out of memory just a few seconds before completing the linking. The COM files from compilations done on the other machine could be run without difficulty; only the linking process was troublesome. As a result, I couldn't recompile and relink programs I had been using for years.

With BASIC-80 and some other tools as a check of free memory, I found the Decision 1 was providing 3900 fewer memory bytes for program use than was my old system. That doesn't sound like a big deal, but my programs use maximum available memory for large data arrays and can't be shortened easily, so the loss of 6% of usable memory space did prove a problem. Finally, I had

Unlike many other systems limited to their initial configuration, the Decision 1 is designed to avoid early obsolescence.
FREE BASIC Z-80 BOARD COMPUTER

The MASTER CONTROLLER BOARD contains:
- Z-80 Microprocessor
- 72-Parallel I/O lines; three 8255s
- Keyboard controller: 8279
- 12K-EPROM: three sockets for
- 2K-RAM: 2114s
- 6-Sixteen bit counter timer channels: one 8253 and one
- 2-Serial I/O ports; one Z-80 SIO chip. One port is RS-232
- 1-High speed arithmetic processor: AMD 9511

All this on one board less than nine inches on a side

Bare Controller Board with Doc. $49.95
Free Controller Basic is a public domain Tiny Basic that can IN and OUT ports, PEAK and POKE RAM, CALL assembly language programs, and use either DECIMAL OR HEXIDECIMAL numbers. In a
2716. Requires 2k RAM,SIO,8253 (baud gen.). With the BARE BOARD $14.95 Alone $19.95
TDL monitor program allows a CRT or TTY to control the MASTER CONTROLLER BOARD. Requires 2k RAM,SIO,8253 (baud gen.), 4MHz X/TAL. Includes Complete Listing on a
2732, $69.95
All assembled TINY BASIC CONTROLLER BOARD has 2k RAM,SIO,8253 (baud gen.), 8255. This arrangement gives 24 I/O lines, 2 spare counter timer channels, and a serial channel available after using one counter timer channel as a baud gen, and one serial channel to talk to a terminal or computer. Functions can be expanded by adding additional RAM/ROM, I/O and processing chips. EXPANDABLE SPECIAL $299.99

OEM & Dealer Inquiries Welcome USA & CANADA include $4.95 postage & handling. We ship World Round. Please include 20% for shipping plus $5 handling we refund the excess.

SPACE-TIME PRODUCTIONS
2053 N. Sheffield
Chicago, Illinois 60614
(312) 327-0391

CIRCLE 106 ON READER SERVICE CARD

80 CHARACTER VIDEO BOARD – S-100

- Keyboard port with TYPE-AHEAD buffer
- 8275 CRT controller with light pen port
- Two 2716’s, program & character rom’s
- Optional 2716 for CHARACTER GRAPHICS
- All screen & keyboard ram
- 696 Bus Compliance: D8 M16 18 T200
- Build for less than $200
- OEM & Dealers: MicroAngelo Graphics Board (MA-512) with
- Display/Modify Program & Data Memory, Registers, I/O Ports & Flags
- Scope trigger from breakpoint locations
- Ease to adapt Software
- Z-80 MPU - 2 or 4 Mhz system clock
- Uses only EASY-TO-GET parts
- Build for less than $200
- All screen & keyboard ram
- 696 Bus Compliance: D8 M16 18 T200
- Optional 2716 for CHARACTER GRAPHICS
- Two 2716’s – program & character rom’s
- SIMULTANEOUS 110 or Memory mapped
- 8275 CRT controller with light pen port
- Keyboard port with TYPE-AHEAD buffer

CIRCLE 109 ON READER SERVICE CARD
to update the BASCOM/LINK-80 package to version 5.3 and use the "runtime" feature to arrive at a reccompilation that would link the large files within the smaller memory. Ultimately that proved a real advantage because the runtime COM files are only half the size of the older COM files and allow much more efficient disk storage.

Disk drive considerations

The disk drives require some special consideration. I've stated that they can work with single-density disks or ones formatted as double density in 256-, 512-, or 1024-byte sectors, recognizing and automatically adjusting for the formatting of the disk in a drive at the time the system is cold or warm booted. They can read standard single-sided single-density (SSSD) disks and copy those to double-sided double-density (DSDD). They can even write data to an SSSD disk. However, in my system there was no provision for formatting SSSD media, and the single-density function of the FORMTDJ.COM program turned out to be double sided on double-sided drives. This meant that writing SSSD disks for distribution required having single-sided drives or using disks preformatted on some other machine's drives. According to Morrow, the failure to format SSSD disks resulted from an outdated PROM on the disk controller. When I installed a replacement PROM, formatting SSSD disks could be done normally.

I also had to grow accustomed to a delay between the completion of a disk operation and the time when I can remove the disk. It's a characteristic of the controller, the drives, or both that there's a 7- to 10-second delay between the end of a disk operation and the "in use" light going off. During that time, the drive doors are locked. The first time it caught me, I had just received the CP/M prompt back on the screen after a PIP copy, reached over and pressed the drive release, and nothing happened. Panic! I first thought the drive door had jammed. It hadn't! It's a normal feature, keeping the user from possibly damaging a disk while the drive is in use. Yet after four years on a system without such protection, I still get caught trying to remove a disk before it's allowed.

I've tested the Decision 1 with a variety of commercial and custom software. As part of a series of book projects I've been preparing under contract to publishers, I've used 35 CP/M-based word processors and related programs, about a dozen disk and general system maintenance programs, and numerous other packages. All but two commercial packages ran successfully, and both "failures" were disk diagnostic or recovery programs that involved special disk handling. In both cases, I suspected a flaw in the software instead of the computer system—the programs didn't seem to read the disk-format information properly and subsequently malfunctioned when accessing the DSDD formats.

One problem program is Advanced Micro Techniques' D'Patch®, a useful utility providing direct disk alteration, direct file alteration, I/O ERROR file recovery, erased file recovery, and surface analysis. Only that last function fails. I like to do my own surface analysis or "certification" on every disk to minimize data losses. Even the sector verification function built into the Morrow formatting program doesn't satisfy me—I've had two bad sectors sneak past it and "trash" files on top-of-the-line premium-grade disks. I had hoped D'Patch would prove a useful certification check; however, running the surface analysis registers hundreds of sector errors on a perfectly good disk. In fact, the function has never run to completion, eventually detecting what it "thinks" is a bad directory track and aborting because there's no way to store the bad-sector information.

The other program that fails is SuperSoft's Disk Doctor®, a program designed to recover disk crashes or accidental file erasures. This one can't even be "installed" for the system. Any disk parameters fed into the installation routine generate errors at one point or another. I've talked to SuperSoft personnel, and they indicated they've been having trouble with other DSDD systems, and their new magazine advertisements specifically state that the program is not designed for double-sided disks. So once again, its a software problem rather than the fault of the Decision 1. I must point out, however, that I've experienced no problems with SuperSoft's Disk-Edit® or Diagnostics II® programs; both appear to operate properly with any disk format available on the system, and the Diagnostics II software gives me good assurance that the system is indeed functioning properly at all times.

One final observation concerns uninterruptible or standby power supplies. Since residential power in my locale is subject to frequent interruptions and brownouts, I want to equip the system with a suitable unit that would allow time for an orderly shutdown. So far, I've not found a workable, affordable unit. The ones I've tried either aren't powerful enough or generate an unusable output. The Decision 1 is rated at 5.0 amps (about 550W) according to the back-panel label, with my complete system totalling 9.7 amps (about 1070W). Typical 200- or 400-watt (200VA or 400VA) supplies aren't enough. Even a 600W unit would support only the computer and drives, leaving me "blind" and helpless with no keyboard or display. Ideally, I need a 1200W (1.2KVA) or larger supply—an expensive proposition at best.

The situation is complicated by needing a sine-wave output from the uninterruptible or standby power supply. Several units on the market provide a square-wave output, but the ones I've tried have caused the internal regulated switching power supply of the Decision 1 to oscillate and "buzz" loudly. A call to Morrow Designs' customer support...
Decision 1 continued...

Even with these few difficulties, the Decision 1 has been a thrill to use. It does everything I'd ever ask of a hard-working computer system and has provisions for many more things than I ever expect to need. I don’t anticipate any situation where the system will be unable to accommodate my business operations.

In short, anyone in the market for an expandable, reliable, state-of-the-art computer system would be well advised to look at the Decision 1. Additional information and lists of local dealers are readily available from Morrow Designs, 600 McCormick St., San Leandro, CA 94577; (415) 430-1970.

Notes
1. The Decision 1 is a trademark of Morrow Designs.
2. BASIC-80, BASCOM, and LINK-80 are trademarks of Microsoft.
3. WordStar is a registered trademark of Micropro International.
4. Disk Jockey and Micronix Operating System are registered trademarks of Morrow Designs.
5. UNIX is a registered trademark of Bell Laboratories.
6. D Patch is a trademark of Advanced Micro Techniques.
7. Disk Doctor, Disk-Edit, and Diagnostics II are trademarks of SuperSoft, Inc.
Before disk errors ruin your work again order BADLIM.
- BADLIM assures the reliability of your CP/M computer.
- You can use your disks 10 times longer without losing your data AND your time.
- BADLIM checks thoroughly your disk marking all the blocks which have defective sectors. The operating system will know that those sectors should be skipped.
- BADLIM is the only program that gives protection for soft and hard errors.
- The first time BADLIM will list which files in your disk are on bad sectors, so you can take action to correct it.
- But thereafter the bad areas in your disk will be automatically by-passed.
- For CP/M 1.4 single density and for CP/M 2.x.xx of any format and density. It is a must for Winchester as the media cannot be replaced.

BADLIM costs only $73. Whatever the reason you have to use a computer you need BADLIM. Contact your dealer or call us today.

BLAT R&D Corp., 8016 188th St SW, Edmonds WA 98020. Phone: (206) 771-1408

DEALER INQUIRIES INVITED. BADLIM

CIRCLE 57 ON READER SERVICE CARD

BDOS ERROR ON B:BAD SECTOR

Extensive documentation includes tutorials, reference manuals, individual spec sheets for each component, and thorough descriptions of each Unicum.

Update policy: Each Unicum owner is informed when new Unicas or components become available. At any time, and as often as you like, you can return the distribution disk with a $10 handling fee and get the current versions of the Unica and XM-80, with documentation for all new or changed software.

The Unica and XM-80 (which requires MACRO-80) are priced at $195. or $25 for the documentation. The Unica alone are supplied as *COM executable files* and are priced at $95 for the set, or $55 for the documentation. Software is distributed only on 8" floppy disks for CP/M version 2 systems. All orders must be paid in advance; no COD's or purchase orders, please. Quantity discounts are available. Shipment outside of the US or Canada costs an additional $20. Bank checks must be in US funds drawn on a US bank.

Knowledgey

P.O. Box 283-A
Wilsonville, Oregon 97070

Visa Mastercard customers call (503) 639-3420 for next day shipment.

CP/M is a trademark of Digital Research. Unica and XM are trademarks of Knowledgey, Inc. a trademark of Bell Telephone Labs. XM-80 is a trademark of Scientific Enterprises. Z80 is a trademark of Zilog Inc.
Hooking Made Easy
An inexpensive S-100 circuit card extractor

by Kenneth M. Piggott

If you're the owner of an S-100 system or any system with a circuit card cage and motherboard arrangement, you have probably encountered difficulties when one of your system's circuit cards had to be removed. Very few of the S-100 circuit cards have ejection ears to aid in their removal from the card cage. Unfortunately, even fewer card cages have provisions for using the ejector ears. To complicate matters even further, the S-100 card cage is based on \(\frac{3}{8} \) spacing between circuit cards, resulting in a difficult time for fingers as they try to grasp the circuit cards. To remedy the situation, I devised a pair of simple card extractors.

Each card extractor is made by bending an 18" length of \(\frac{1}{8} \times \frac{1}{8} \) aluminum welding rod into a "T" with a hook (see Figure 1). I purchased a 36" aluminum welding rod at a hobby shop for 30¢. When constructing the card extractors, make a 90° bend at (A). Then slide an 8" piece of heat-shrink tubing down the long portion and work it around the hook. When the entire hook is covered, shrink the tubing. Then make a 90° bend at (B) and a 180° bend at (C) and (D). To finish the card extractor, slide a 2" piece of heat-shrink over each half of the Tee-handle and shrink the tubing.

To use, simply slide a card extractor down the rear side of each end of the circuit card, hook under the circuit card and apply a gentle rocking, upward pull. The circuit card will slide out easily for user access. If the card extractors are to be used with cards other than the S-100 type, the \(\frac{3}{8} \)" dimension should be adjusted for the particular cards used.

Kenneth M. Piggott, 16166 Chesterfield, East Detroit, MI 48021

Figure 1.
Physical layout of the S-100 circuit card extractor.
Program name: MultI/NET
Hardware system: Z80, 8080, 8085
Minimum memory size: 32K
Language: Assembly
Description: MultI/NET is a logical extension to MultI/OS, UNI/OS, and I/OS. MultI/NET broadens InfoSoft's line of functions from single-user through single-CPU multiuser to complete network containing any mix of single-user and multiuser CPUs.

The basic structure of MultI/NET follows the ISO open system interconnect structure, with the interunit message structure allowing flexible protocols. Some features of the system architecture are: Network nodes can be either single user with disk, single user without disk, or multiuser with disk. Shared resources, such as disks and printers, operate as a server for the network nodes. Multiple servers and users can be set up at the same location using MultI/OS.

Standard facilities include: Directory, subdirectory, remote task, password protection, interunit file transfer, multiple printers (both local and remote), file sharing, record/file lock, remote disk, directory assigning, and remote spooler control.

When released: August 1982
Price: $300; OEM prices available on request.
Included with price: No. of stations (1-255) depends on hardware configuration.

Where to purchase it:
InfoSoft Systems, Inc.
80 Washington St.
Norwalk, CT 06854
(213) 866-8833
CIRCLE #159 ON READER SERVICE CARD

Program name: Tarbell Database System
Hardware system: CP/M, MP/M
Minimum memory size: 48K
Language: CBasic (source and .COM files provided).
Description: The Tarbell Database System consists of a series of programs that use a common file format for random and sequential files with optional index files. The main menu program chains to other programs and to HELP files. Nineteen files may be open with no limit on record length or number of records. Field names may be any length.
A QUERY language that may be used interactively or written in command files allows the user to define search area and scope or search, as well as conditions to be met. It includes a report writer that uses most of the QUERY commands, a file copy program, sort, mail label, and personalized letter programs.

When released: December 1982
Price: $100 plus $1.50 S&H; CA residents add tax.
Included with price: Disk (8" SD or North Star SD/DD) and manual.

Where to purchase it:
Elliam Associates
24000 Bessemer St.
Woodland Hills, CA 91367
(213) 348-4278
CIRCLE #160 ON READER SERVICE CARD

Program name: DES-Crypt
Hardware system: CP/M-80, CP/M-86
Minimum memory size: 36K or user memory
Language: 8080 and 8086 assembly
Description: Des-Crypt is a software implementation of the NBS data encryption standard (DES) algorithm. DES-Crypt protects the privacy and integrity of information contained in any file. It includes functions for encryption, decryption, verifying encryption, data authentication, destroying plaintext, creating hex keys, comparing and listing files. DES-Crypt is menu-oriented with extensive error checking and on-line help. It accepts either hex or ASCII keys. Data authentication function is based on cryptographic checksums and can be used independently of encryption to...
International Software Directory
A reference source giving extensive details of over 10,000 packaged software products from major software houses throughout the world. Two volumes are available: Vol. 1 for microcomputer software, Vol. 2 for minicomputer software. Each is fully indexed for Computer Model, Application (Subject), Operating System, Language, Program Name, and Software House. The database is also accessible on-line internationally through the Lockheed Dialog Information Service. An annual update subscription service is available. Vol. 1, $59.95; Vol. 2, $69.95. Add $2.95 shipping in U.S.A.

Where to purchase it:
Imprint Software
1520 South College Ave.
Fort Collins, CO 80524
(800) 525-4955
CIRCLE #165 ON READER
SERVICE CARD

Program: BOBCAT
Hardware system: CP/M Z80, 8080
Minimum memory: 48K
Language: Object code
Description: BOBCAT is a very user-friendly disk catalog program that takes all the work out of keeping track of disk contents. It creates, adds, deletes, and updates catalog entries. It provides four report formats, sorted either alphabetically or numerically. It has three date format options of MM/DD/YY, DD/MM/YY or YY/MM/DD, and a selectable reminder date for updating. The program automatically numbers disks and provides for disk titles in the catalog. BOBCAT is written in PL/I.

When released: Sept. 1982
Price: U.S. residents, $25 USD; Canadian residents, $25 CDN; other countries, $30 USD; all postpaid.

What is included with price: 8” standard CP/M SSSD disk and 21-page documentation.

Where to purchase it:
R & L Micro Consulting Services
6 Lipstan Ave
Nepean, Ontario
Canada K2E 5Z3
(613) 225-7904
CIRCLE #164 ON READER SERVICE CARD

COUNTRY PC DESK-TOP & PORTABLE MODELS

Corona PC Desk-Top & Portable Models

VECTOR 4/20

ONLY $2395

CALL!

Convergent Technologies/Burroughs B20 systems

ONLY $9990

CALL!

Molecular ‘Super 8’ & ‘Super 32’ systems

ONLY $189

CALL!

NEC HO-2 ‘Advanced Personal Computer’

ONLY $6990

CALL!

IDS Prism 132 with sprint & color options

ONLY $1999

CALL!

IDS MicroPrin 400 printer

ONLY $699

CALL!

IDS Prism 132 with sprint & color options

ONLY $1799

CALL!

Tec (high) F10-40 letter quality printer

ONLY $1499

CALL!

Tec (high) F10-55 letter quality printer

ONLY $1699

CALL!

Tec / Video 970 terminals

ONLY $995

CALL!

UCS modems (all models) 10-15% savings

ONLY $899

CALL!

Wyse Technology WY-100 CRT terminals

ONLY $899

CALL!

We beat everyone’s PC-BUS board prices!

AVL Eago II, III, 1600 SERIES

CALL!

Convergent Technologies/Burroughs B20 systems

CALL!

Molecular ‘Super 8’ & ‘Super 32’ systems

CALL!

NEC HO-2 ‘Advanced Personal Computer’

CALL!

Parallel Computer ‘CPU’ fault tolerant 8-32 user

UNIX systems with up to 2MB RAM and 400MB disk

CALL!

VECTOR 4/20

CALL!

VECTOR 4/30 (with 5MB rigid disk drive)

CALL!

AWESOME POTENTIAL . . .
FOR THE DEMANDING CUSTOMER

International Microcomputer Brokers
607 NE Highway Ten
Blaine, MN 55434
(612) 786-5545

Call for details other popular product lines
New Products

Portable computer

ACCESS is a complete portable computer system with all the peripherals integrated into a single compact unit. Designed for business, education, professional and home use, ACCESS has the features, capabilities, and versatility to handle every application.

ACCESS contains a high-speed dot matrix printer, a direct-connect modular telephone jack and acoustical coupler, a 7” amber monitor, two high-performance double-density 5½” disk drives, a low-profile detachable keyboard, 64K of user memory, a Z80Z central microprocessor, a comprehensive software package, multiple I/O ports, a storage compartment for 10 diskettes, and a leather carrying case. All are standard features.

The ACCESS built-in printer delivers quality hard copy at a rate of 80 characters per second. Users can print up to 132 characters per line on standard 8½” paper. In addition to the 96 ASCII character set, there are graphic capabilities as well. A program included in the software package allows various type styles to be printed.

The internal modem, adjustable for 0-300 baud, gives the utmost in telecommunications capabilities and flexibility. There is a direct line modular telephone jack as well as an acoustical coupler. There are four operating modes: manual originate, manual answer, automatic dialing, and directory support. The 7” amber screen displays 80 characters per line on 24 lines. An extra 25th line has been included as a status line. Data and time information are available on the status line. The screen has several user-selectable attributes: inverse, blink blank, underline, double underline, half intensity and normal intensity.

ACCESS has one parallel port that is Centronics compatible or bidirectional, one fully implemented IEEE 488 port, and two RS-232C serial ports with software-selectable baud rates up to 9600.

The two 5½” single-sided double-density disk drives provide 184KB of data storage per disk. Offered as an option are double-sided double-density disk drives for a total of 736KB of disk storage. ACCESS also supports two external 8½” disk drives.

Included in ACCESS’ software package are CP/M 2.2., Perfect Writer, Speller, Filer, and Calc. Fancy Font by Softcraft provides various type style selections. MBasic from Microsoft, CB-80 from Digital Research, and a communications package are also included.

Price: $2495.

Access Matrix Corporation,
2159 Bering Drive, San Jose, CA 95131; (408) 263-3660.

CIRCLE #166 ON READER SERVICE CARD

S-100 stepper controller

The MC100 motor controller system consists of an S-100 controller card, a manual control panel, and CP/M driver software. Of the many options available to the system designer for controlling digital motors, the MC100 is the only one designed specifically for S-100 computers. This fact allows reduction of the total system cost because the motor control function is integrated within the computer chassis and does not require a separate stand-alone unit.

The MC100 will directly drive two moderate-power four-phase motors. The universal translator interface allows higher power motors to be controlled by the system. Other significant features of the system include motor ramping, automatic limit sensing, and internal or external step pulse count functions.

The controller is a 5” x 10” card and is fully compliant with the IEEE-696 standard for interface to the S-100 bus. The manual control panel measures 6” x 4” and gives the user control of motor step and variable jog rates in either direction.

The CP/M-compatible software package for the MC100 allows complete control of all system features with a simple software interface which may be accessed from Basic, Fortran, or assembly language programs.

Price:
- controller (A&T), $350; manual control panel (optional), $135; CP/M driver software, $35; MC103 (combination of above), $449.

Snow Micro Systems, Inc.,
P.O. Box 2201, Fairfax, VA 22033; (703) 378-7257.

CIRCLE #167 ON READER SERVICE CARD
GET FULL VALUE FROM YOUR VICTOR 9000™
with the
UCSD p-SYSTEM™ IV.1

Get the most from your VICTOR 9000 as well as from your software development efforts. The power and portability of the UCSD p-System is available for the VICTOR 9000 from TDI.

The Standard Development System Includes:
- Full Screen Editor, Filer, Assembler and other Utilities
- The UCSD Pascal Compiler
- Native Code Generator
- Ram Disk Support Above 128K
- Teletypewriter - full use of VICTOR screen (800 x 400)
- Complete documentation

Options:
- Fortran 77 and Basic compilers
- Hard disk support

TDI SYSTEMS, INC.
620 HUNGERFORD DR.
ROCKVILLE, MD 20850
(301) 340-8700

VICTOR 9000 is a trademark of VICTOR TECHNOLOGIES, INC.
UCSD p-SYSTEM and UCSD PASCAL are trademarks of the Regents of the University of California

CIRCLE 219 ON READER SERVICE CARD

MIDWEST MICRO
WAREHOUSE
3437 Holmes • Kansas City, MO 64109 • Phone (816) 753-1304

LIST
MMW

IEE-696 S-100 (PURE!) SYSTEMS:

COMPUPRO SYSTEM A 5495 4795
COMPUPRO SYSTEM B 7995 6995
COMPUPRO SYSTEM C 8995 7995
SEATTLE GAZETTE 5995 4995

PRINTERS:

DIABLO 620 1595 1475
NEC 3510 1995 1875
OKIDATA 82A 995 875
OKIDATA 84A 1395 1275

TERMINALS:

HAZELINE ESPIRIT I 595 495
TVI 925 995 775
TVI 950 1195 975
VISUAL 200 1295 975
VISUAL 300 1195 975
VISUAL 50 745 625

8" MS-DOS SOFTWARE:

COMPUPRO 1.2X CASAN FOR COMPUPRO DISK I & SPC CARDS (MMW/CUMPVIEW PRODUCTS) 150 130
ASCOM (DNA-THE ULTIMATE MODEM PROGRAM) 160 140
ASHTON-TATE BRASE I-B 700 420
MICROSOFT MULTIPLAN 500 345
MICROSOFT BASCOM 86 400 270
MICROSOFT FORTRAN 77 400 270
MICROSOFT PASCAL 400 270
EM-86 (LIFEBOAT) 75 70
SUPERCALC 86 (RUNS W/ EMULATOR-86!) 295 165
SORDUM SUPERWRITER (BETTER THAN WORD!!) 395 245
COMPVIEW VEDIT-86 195 175
PERFECT WRITER (PERFECT SOFTWARE) 395 280
WATFF FORTRAN 66 (SUPERSOFT) 425 325
S-100 EQUIPMENT:

COMPUPRO 256K (STATIC) MODULE 1595 1445
PARADYMANICS PRONTO 1595 1355
HAYES SMARTMODM (1200 BAUD) 695 545
TEI DTD-0 (DEMO) 595 445
COMPUPRO APPROVED 20 MB HD SUBSYSTEM 3695 3295

TAPE DRIVES, SEATTLE & COMPUPRO CARDS, NORTH STAR ADVANTAGE, MS-DOS FOR COMPUPRO 8/16 SYSTEMS, ETC. IT'S HERE! CALL!!!

TERMS: COD CERTIFIED CHECK OR CORPORATE PURCHASE ORDER W/BANK REFERENCE

CIRCLE 85 ON READER SERVICE CARD
New Products continued ...

Compact S-100 computer
California Computer Systems, Inc., has announced the Slimline 3000, an 8-bit general-purpose microcomputer with 16-bit upgrade capability. Contained in a single 19" cabinet, it can be desktop or rack-mounted. The Slimline 3000 includes

S-100 bus compatibility, Z80 CPU, high-density 5 1/4" Winchester disk, dual floppy disk capability, expansion to 1024 K RAM, 27 MB hard disk, and 20MB streaming tape cartridge drive. It comes with CP/M; Oasis and MP/M are available for multiuser support and may be upgraded for 8 users.

Price: 16 configurations available: $4,295-$10,995.

California Computer Systems, Inc., 250 Caribbean Dr., Sunnyvale, CA 94086; (408) 734-5811.

CIRCLE #168 ON READER SERVICE CARD

OSBAUD
The OSBAUD baud rate generator allows the Osborne 1 user the versatility of baud rates from 50 to 19,200 (1200 baud is the maximum available from the standard Osborne 1). The 16 different baud rates are switch-selectable via a dip-switch accessible through the front panel of the Osborne 1.

OSBAUD is a small auxiliary circuit board attached via four terminals that solder directly to four corresponding points on the main circuit board of the Osborne 1 computer. One circuit trace must...

MITE vs Crosstalk

MITE - An intelligent terminal and file transfer utility, includes all capabilities of CROSSTALK, plus:

- Binary Protocols: CLINK, XMODEM (with opt. CRC and BATCH), HAYES terminal program, IBMPC (text files only)
- Macro Strings: 10 of up to 64 characters, fully interactive, able to tie into function keys, supports fully automatic login
- Command Style: Menu OR Command
- Parameter Control: Full control on ALL hardware implementations (over 20 systems)
- Text File Upload Features: XON/XOFF support, programmable lumaround character, programmable intercharacter delay
- Text File Download Features: Programmable firmware characters
- System Commands: Disk directory, display remaining disk space, display size of any file(s), type file to console, list file to printer, erase file(s) with opt. query, rename file, login new diskette for read/write, set file attributes, set user number
- Utilities: Text file compression/expansion, TRSDOS to CP/M text file conversion, Line Numbered Text Editor, MFT for single drive systems
- Installation: Simple to use INSTALL program

Price: $150.00

A product of MYCROFT LABS INC.

Crosstalk - An intelligent terminal and file transfer utility

- Binary Protocols: CLINK
- Macro Strings: 4 of up to 40 characters
- Command Style: Command only
- Parameter Control: (baud rate, parity, data bits, etc.) Only on 3 implementations (Hayes S100/PMII/S100/IBMPC)
- Text File Upload Features: None
- Text File Download Features: None
- System Commands: Disk directory
- Utilities: None
- Installation: Requires DDT

Price: $190.00

Crosstalk is a trademark of Microstuf

Dealer and distributor inquiries welcome.

CIRCLE 53 ON READER SERVICE CARD

Microsystems April 1983
Unlock the Door to Progress.

Move up to the speed and power of a true 16 bit Key Micro System S-100 Computer. Unlock the door to your future now with a Key Micro System.

KEY SYSTEM 16
Assembled and unit tested using CompuPro boards
- CPU 8086 (10 MHz)
- 128k memory (16 bit wide)
- 3 serial 2 parallel I/O ports
- DMA Floppy Controller
- 2 DD DS 8" Floppy Drives in enclosure with power supply and cables
- 20 slot S-100 Enclosure
- CP/M 86

KEY SYSTEM 16H10
The same as KEY System 16 but includes one 8" DD DS Floppy and one 10 Mb 8" Hard Disk instead of two Floppies.

$7595.00

We Specialize in Single and Multi-user Systems Based on CompuPro S-100 Products

$5195.00

Micro Systems, Inc.
1606 Nooseneck Rd., Coventry, RI 02816 • 401/828-7270
822 Boylston St., Suite 201, Chestnut Hill, MA • 617/738-7305

Professionals Prefer Q/C.

For only $95, Q/C is a professional, fully-supported C compiler for CP/M. Q/C supports a large subset of C, and is upward compatible with the UNIX Version 7 C compiler from Bell Labs. The Q/C library includes over 50 input/output and other support functions, all written in C.

When you buy Q/C, you get a working compiler that generates assembly language. You also receive the complete source code for the Q/C compiler and the function library. The Q/C compiler is written in C, with a few functions hand-coded in assembler to enhance performance. Most compiler options can be customized to suit your taste by using the configuration program we supply.

What really sets Q/C off from the competition is our 138-page User's Manual. The tone of the manual is informal and personal. Jim Colvin (the author of Q/C) tells you how to use the compiler, and clearly describes each library function. There's even a chapter that explains in detail the "internals" of Q/C.

Q/C is a fully-supported professional product. We continue to develop and enhance Q/C, and provide updates at a nominal cost. Write or call for details of Q/C Version 2.0.

S-100 Color Graphics!

- Display consists of background and pattern planes plus 32 sprite planes; each pixel in a plane can be colored or transparent to reveal the underlying plane(s); 16 colors (including transparent) are available.
- Four display modes:
 1) TEXT - twenty-four 40-character rows in two colors.
 2) MULTICOLOR - 64H x 48V pixels; each pixel can be one of 16 colors.
 3) GRAPHICS 1 - 256H x 192V pixels; each horizontal group of 8 pixels contains two different colors; all 16 colors can be on screen simultaneously.
 4) GRAPHICS 2 - 256H x 192V pixels; each horizontal group of 8 pixels can contain two different colors; all 16 colors can be on screen simultaneously.
- Composite video output connects directly to color monitor or RF modulator.
- On-board 16K RAM occupies no system memory space; board uses only two I/O ports.
- Uses powerful Texas Instruments TMS3918A Video Display Processor; DIP switch selection of 0-4 wait states, I/O port numbers and vertical retrace interrupt options.
- Comprehensive documentation includes user's manual with listings of demonstration software and its manual for the TMS3918A video display processor.

MicroDynamics Corporation

P.O. Box 17577
2333 Cornell St.
Memphis, TN 38117
(901) 756-3679

Dealer and OEM Inquiries Invited

THE CODE WORKS

5266 Hollister
Suite 224
Santa Barbara, CA 93111
(805) 683-1565

CP/M is a trademark of Digital Research.
UNIX is a trademark of Bell Laboratories.

Hawkeye Grafix

Contact: Your Local Dealer or Call of Wire For Free Brochure

O/C-Quality Code

For only $95, O/C is a professional, fully-supported C compiler for CP/M. O/C supports a large subset of C, and is upward compatible with the UNIX Version 7 C compiler from Bell Labs. The Q/C library includes over 50 input/output and other support functions, all written in C.

When you buy O/C, you get a working compiler that generates assembly language. You also receive the complete source code for the O/C compiler and the function library. The O/C compiler is written in C, with a few functions hand-coded in assembler to enhance performance. Most compiler options can be customized to suit your taste by using the configuration program we supply.

What really sets O/C off from the competition is our 138-page User's Manual. The tone of the manual is informal and personal. Jim Colvin (the author of O/C) tells you how to use the compiler, and clearly describes each library function. There's even a chapter that explains in detail the "internals" of O/C.

O/C is a fully-supported professional product. We continue to develop and enhance O/C, and provide updates at a nominal cost. Write or call for details of O/C Version 2.0.

THE CODE WORKS

5266 Hollister
Suite 224
Santa Barbara, CA 93111
(805) 683-1565

CP/M is a trademark of Digital Research.
UNIX is a trademark of Bell Laboratories.

Hawkeye Grafix

Contact: Your Local Dealer or Call of Wire For Free Brochure

O/C-Quality Code

For only $95, O/C is a professional, fully-supported C compiler for CP/M. O/C supports a large subset of C, and is upward compatible with the UNIX Version 7 C compiler from Bell Labs. The Q/C library includes over 50 input/output and other support functions, all written in C.

When you buy O/C, you get a working compiler that generates assembly language. You also receive the complete source code for the O/C compiler and the function library. The O/C compiler is written in C, with a few functions hand-coded in assembler to enhance performance. Most compiler options can be customized to suit your taste by using the configuration program we supply.

What really sets O/C off from the competition is our 138-page User's Manual. The tone of the manual is informal and personal. Jim Colvin (the author of O/C) tells you how to use the compiler, and clearly describes each library function. There's even a chapter that explains in detail the "internals" of O/C.

O/C is a fully-supported professional product. We continue to develop and enhance O/C, and provide updates at a nominal cost. Write or call for details of O/C Version 2.0.

THE CODE WORKS

5266 Hollister
Suite 224
Santa Barbara, CA 93111
(805) 683-1565

CP/M is a trademark of Digital Research.
UNIX is a trademark of Bell Laboratories.
be cut to disable the standard Osborne 1 baud rate generator. The installer has the option of making a small opening in the front panel of the Osborne 1 if repeated access to the dip-switches is desired, or replacing the front panel unaltered. Time required for installation is approximately 30 minutes.

Price: $59.95; includes installation instructions and 1-year warranty.

Advent Products, Inc., 965 N. Main St., Orange, CA 92667; (714) 997-0800. CIRCLE #169 ON READER SERVICE CARD

68000 S-100 CPU board

CompuPro has introduced a 10MHz CPU board based on the 68000 microprocessor, designated CPU 68K, that accesses a full 16MB of nonsegmented memory available on the IEEE 696-S-100 bus. The CPU 68K handles both 8- and 16-bit memory and permits mixing of both types in the same system. The board can change from full speed to half-speed operation with a simple jumper change.

It includes a socket for the 68451 Memory Management Unit, and sockets for up to 16KB of EPROM (8K x 16), and accept 2716, 2732, or 2764-type EPROMS. There is a provision for power-on jump using EPROMs.

An on-board wait state generator accommodates all types of machine operations, and as many as five waits can be added to any cycle.

An on-board interrupt structure works with either the internal vector-generation circuitry or an external source.

Fully compatible with CompuPro's entire IEEE-696/S-100 bus product line, CPU 68K is capable of sharing the bus with CompuPro slave processors in order to run 8-bit or 16-bit

DATA COMMUNICATION WITHOUT A TERMINAL

With the MM-VT1, all you need to access data from any location, any time, is a phone. Enter requests via the Touch-Tone pad. Receive answers in synthesized speech.

- FCC-Registered for Direct Connection
- Unlimited Vocabulary Speech Synthesis®
- Sends & Receives All 16 Touch-Tones
- Auto Dial (Touch-Tone or Pulse Dial)
- Auto Answer (Call Any Time)
- IEEE 696/S-100 Compatible
- Five Year Limited Warranty
- Touch Tone is a registered trademark of AT&T

* Phonemes dictionary provided. English text to phonemes software available for unlimited vocabulary.

For further information, including numerous suggestions for use, call or write for free MM-VT1 brochure:

P.M.M. COMMUNICATIONS (703) 379-9660
5201 Leesburg Pike, Suite 604, Falls Church, VA 22041

DON'T LET LACK OF A TERMINAL TIE YOU DOWN!

CIRCLE 174 ON READER SERVICE CARD

PRINT BUFFER

3085 Based Print Buffer

$85.00

System consists of:
- Bare board, software in read and complete documentation.
- Uses popular 2K or 3K byte wide cards for expansion to 14K or 56K bytes.
- Automatic adjustment for any use.
- Diagnostics and status indicators supported.
- Parallel interface (Centronics and epson compatible).
- Clear, copy and paper switches supported.
- Only 1.5 amp on 12V required.
- Small 6" x 6" size.

For Ohio Residents Add 5.25% - Add $3.00 For C.O.D. Orders

CIRCLE 30 ON READER SERVICE CARD
New Products continued...

Software programs. CompuPro's software support includes CP/M-68K and an advanced FORTH operating system (the latter includes a complete macro-assembly and a full set of utilities that allows users to read and write CP/M files). Users can also employ existing CP/M-80 or CP/M-86 files to create program run-time tools.

Price: CPU 68K, $695 (8MHz); $850 (10MHz CSC). Optional FORTH OS: $200.

CompuPro, Oakland Air...

CO-POWER-88: THE EXTRAORDINARY 8088 COPROCESSOR FOR Z80/8080 COMPUTERS USING CP/M 2.2

CO-POWER-88 is a powerful 16-bit, 8088 coprocessor for Z80 and 8080 computers using CP/M 2.2. It is available in three RAM sizes: 64k, 128k and 256k. CO-POWER-88 runs CP/M-86 or MSDOS, the operating system of the IBM-PC. Simple commands move the user between the Z80-8080 CP/M 2.2 system and the Z88 CP/M-86, MSDOS system. While running CP/M 2.2, the RAM of CO-POWER-88 can be used as a "memory" drive ("M"). When programs are compiled or run in M, disk access time is eliminated, making job operation time faster. Currently available for the Xerox 820 and 820-11, the Bigboard and the ATR8000.

PRICING:

- $699.95 *64k CO-POWER-88
- $799.95 *128k CO-POWER-88
- $1250.00 256k CO-POWER-88 with CP/M-86

OTHER PRODUCTS:

- Dual Density for the Xerox 820 is still available. 5¼" disks have up to 185k of user storage per side. 8" disks have up to 674k of user storage per side. Software includes a parallel and several serial printer drivers, as well as double density CP/M disk utility programs. Available for single or double-sided drives. **$199.95**

- Dual Density for the Bigboard is available in 2.5 MHz and 4 MHz versions. Manual includes instructions for using 5¼" drives with the Bigboard. 5¼" disks have up to 185k of user storage per side. 8" disks have up to 674k of user storage per side. Printer drivers are included. Available for 5¼" or 8" drives (SS or DS). **$199.95**

- Extended Dual Density for the Xerox 820-11 is available for systems with 8" drives. This increases user storage from 486k to 674k (per side). **$100.00**

The ATR8000. This 4 MHz, Z80, 64k RAM, double density processor interfaces to the ATARI 800/400 or to a RS-232 terminal. The FLOPPY DISK port runs up to four 5¼" or 8" drives of mixed definition. It has a parallel PRINTER port and a RS-232 port, CP/M 2.2 and several double density CP/M disk utility programs are included. The ATR8000 and the ATARI 800/400 also run ATARI DOS and OS/A+.

CONTACT:

SOFTWARE PUBLISHERS, INC.
2500 E. Randol Mill Rd., Suite 125
Arlington, TX 76011
(817) 469-1181

Connecting to the AC line with a standard 3-prong plug, the self-reset power interrupter can accommodate a 15-amp resistive load or a 10-amp inductive load.

Electronic Specialists, Inc., 171 South Main St., P.O. Box 389, Natick, MA 01760; (617) 655-1532.

CIRCLE #171 ON READER SERVICE CARD

AC power from controlled apparatus. A 4-min time delay, followed by automatic self-reset, helps avoid wide voltage fluctuations associated with power line malfunctions. An optional line voltage monitor is available.

Intended for installations operating unattended for long periods, the self-reset power interrupter provides safety and protection for equipment and personnel.

Now...You Can Monitor 7 Most Important RS-232 Interface Lines

RS-232-INTERFACE TESTER

connects in series with any RS-232 interface. LED's clearly display status of 7 functions: transmit data, receive data, request to send, clear to send, data set ready, carry detect, data terminal ready. Requires no power, may be set in permanency. Satisfaction guaranteed. ORDER NOW! Only $39.95, plus $1.75 for postage & handling. Illinois residents add 5% sales tax. We accept MC and Visa. Purchase Orders from rated Corps accepted. FREE, illustrated catalog of problem detecting equipment.

CIRCLE #191 ON READER SERVICE CARD
Program EPROMs From CP/M or MP/M Using EPM

EPM is a software worker that interacts with EPROM programmer through CP/M or MP/M, input or output format, memory or PROM, EPROM programming hardware, input through EMU. I/O monitors, SKELL, I/O monitors are provided in source form for both CP/M and MP/M programming programs.

Features of EPM:
- PROM programming through CP/M or MP/M data files
- EPROM can be read as a data file for reading
- Program output address or EPM output calculations
- Uses output and extinction operator monitors for ease of use
- Uses EPM verification before programming
- Verification of EPROM after programming
- User written I/O machine can be replaced for varying hardware
- EPM editor option permits byte level modifications
- Program utility can convert from the EPROM utility to memory

EPM on a 5 INCH DISK Includes Documentation: $75
EPM Editor Option: $45
Shipping: $2.50
Cost: $25.00

CompuPro!

Components!

- Disk 1: $365.00
- Disk 2: $549.00
- RAM 16: $449.00
- Base II: $465.00
- Interfacler 4: $284.00
- Enclosure 2(md) $625.00
- Dual Processors (8086/6086) $320.00
- CPU 8086/8067 (MHz): $51.00

Write or Call for Complete Price List

(415) 453-0865

Authorized CompuPro Systems Center

Computer House

501 "B" St.
San Rafael, CA 94901

Morrow Designs Micro Decision

Includes Wordstar, Logical, Spelling corrector, CP/M 2.2, MBasic, MStar, Basic & Pilot programs plus smart terminal—includes personal pearl, Data base value to $295.00.

See February Microsystems.

<table>
<thead>
<tr>
<th>Disk 1</th>
<th>Disk 2</th>
<th>RAM 16</th>
<th>Base II</th>
<th>Interfacler 4</th>
<th>Enclosure 2D</th>
<th>Dual Processors</th>
<th>CPU 8086/8067</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,500</td>
<td>$1,900</td>
<td>$1,900</td>
<td>$2,200</td>
<td>$2,200</td>
<td>$350</td>
<td>$320</td>
<td>$51.00</td>
</tr>
</tbody>
</table>

Specify Morrow or Liberty Terminal

- 110B Winchester: $200
d, 220B Winchester: $2,750
- Okidata B2A: $450
- Okidata B3A: $650

Computer Marketplace

1708 Yankee Trader Plaza
Stuart, Florida 33494
(305) 692-2455, V, MC, AE
We export worldwide!

Electronic Circuit Analysis

- DC and AC analysis
- Very fast, machine language
- Infinite circuits on multiple passes
- Worst case, sensitivity analysis
- Dynamic modification
- 64 Nodes, 173 branches
- Compare circuits
- Log or linear sweep
- Full file handling
- Frequency response, magnitude and phase
- Complete manual with examples
- CP/M $150.00

Tatum Labs
P.O. Box 722
Hawleyville, CT
06840
(203) 426-2184

Save 90%

YES you can save up to 90% on a computer system by ROLLING—YOUR—OWN TECHNOLOGY!

- 68000 Microsystems (8MHz) with 128KB & three RS-232C ports, $252.00
- 8086 microcomputer with 128KB & three RS-232C ports, $204.00
- 2833A 4MHz micro with 64KB & two RS-232C ports, $110.00
- Floppy Interface as little as $60.00

Free Brochure Today

Digatek Corporation

Suite 10
2723 West Butler Drive
Phoenix, AZ 85021
350 Computer Book Titles, List $1.00

ISIS ↔ CP/M®

Full bi-directional file transfer capabilities are provided in the ISIS-CP/M utilities package. Written in machine language and running under CP/M, these utilities permit the CP/M user to read or write files direct to/from an ISIS Diskette. They will run under any version of CP/M without regard to diskette density. The complete package is $250.00 including user’s manual. Write for free brochure on other CP/M software.

CP/M is a registered trademark of Digital Research.
ISIS is a trademark of the Corporation

Southern Computer Systems, Inc.

P.O. Box 3373A
Birmingham, AL 35255
(205) 932-1659

I Will Beat Any Competitor’s Price

Provided it is not below my cost. Try to Beat These IC Prices.

<table>
<thead>
<tr>
<th>IC</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>64K</td>
<td>$4.85</td>
</tr>
<tr>
<td>64K</td>
<td>$5.00</td>
</tr>
<tr>
<td>16K</td>
<td>$1.25</td>
</tr>
</tbody>
</table>

EPM

- 2764 80ns $8.00
- 2732 450ns $4.15
- 2116 450ns $3.33
- 2532 450ns $4.70

Static RAM

- 6116P-2 150ns $4.40
- 2016 100ns $4.00
- 2114 200ns $1.60
- Z80A Family
 - CPU, CTC, or PIO $3.39
 - DART $8.25
 - DMA or SIO/O $12.50

Microsystem Mart

FREE BROCHURE TODAY

S-100 Color Graphics

Music Synthesis

Dual I/O Ports

Save 90%

Dynamic RAM

- 2764 80ns $8.00
- 2732 450ns $4.15
- 2116 450ns $3.33
- 2532 450ns $4.70

Static RAM

- 6116P-2 150ns $4.40
- 2016 100ns $4.00
- 2114 200ns $1.60
- Z80A Family
 - CPU, CTC, or PIO $3.39
 - DART $8.25
 - DMA or SIO/O $12.50

Microsystems Mart

List $1.00

Send address and payment to:

Foresight Technology

2723 West Butler Drive
Phoenix, AZ 85021

Microprocessors Unlimited

2916 South Portico Ave.
(305) 267-4901

Microsystem Mart

ADVERTISE!

Microsofts Mart Ads really generates sales $205 each, 6x $185 each, 12x $170 each. Send ad and payment to:

Microsystems Mart

Classified Ad Dept.

One Park Avenue
New York, NY 10016

Call Collect: Lois Price (212) 725-4215
Leading Edge Z-80, S100 Distributed Processing.
$475.00

Memory transfer rates of 517 Kbytes/second, direct memory access, memory mapping and host to slave requests via interrupt control make the CPS-MX fast. And easy to integrate. Fully compatible with TURBodos™, Intercontinental Micro System's slaves are available in four versions: synchronous or asynchronous serial port, 4MHz or 6MHz. The choice is yours. The CPS-MX also allows the bus master to utilize slave memory at the user's discretion. The slave then acts as a 64K RAM card.

The CPS-MX is also easy to integrate with Intercontinental's full line of S100 products: CPZ-48000 SBC single board computer with 64K on board RAM, 4 I/O channels, memory management, on board floppy controller, DMA and vectored priority interrupts; and 256K bank selectable or contiguous memory. A complete line of personality boards allow easy interface to anything from a floppy to a winchester, including modems and printers, and don't take up any S-100 bus space.

Best of all is the price. The CPS-MX starts at $475.00. That's right, up to 65% less than what you have been paying for products that may not measure up.

Call Intercontinental Micro Systems today. We'd like to send you information on the S-100 slave alternative.

1733 South Douglass Road, Suite E, Anaheim, California 92806 (714) 978-9758 Telex: 678401-TAB-IRIN

TURBodos is a trademark of Software 2000, Inc.
Who Uses CompuPro?

The H. S. Dakin Company specializes in word processing, mailing services, mailing list maintenance, and computerized typesetting. This kind of workload demands reliability and performance not found in “personal” computers . . . so Henry Dakin chose CompuPro.

His systems work long and hard: they run 8 and 16 bit word processors, mailing list programs, spreadsheets, and custom software. However, reliability wasn’t the only reason for choosing CompuPro equipment—cost-effectiveness was equally important. Mr. Dakin estimates his CompuPro systems cost 2/3 less than equivalent dedicated systems capable of performing similar tasks.

Henry Dakin, owner of H. S. Dakin Company, San Francisco, California, with associate Lynne Burwell of Lexis Press

CompuPro systems work hard for the H. S. Dakin Company, and they’ll work hard for you. For business, scientific, and industrial computing solutions, visit your Authorized CompuPro Systems Center

H. S. Dakin’s systems were integrated by Gifford Computer Systems, an Authorized CompuPro Systems Center. Call (415) 562-0636 for the location of the Systems Center nearest you.

CIRCLE 81 ON READER SERVICE CARD