IMPLEMENTING THE CP/M IOBYTE FUNCTION

See Pages 22-26

Also in this Issue

Modifications to CBasic-2 by Andy & Ben Galewsky Page 28
Running North Star DOS and CP/M Together by Randy Reitz Page 32
Directory Program for CP/M Systems by Mark M. Zeiger Page 38
S-100 EPROM Programmer Using the Intel 8255 PPI by Ted Croal Page 46

*CP/M is a registered trademark of Digital Research

and more

Complete Table of Contents on Page 3
Suddenly, S-100 microcomputer systems can easily handle 100 million bytes. Because Morrow Designs™ now offers the first 26 megabyte hard disk memory for S-100 systems—the DISCUS M26™ Hard Disk System.

It has 26 megabytes of usable memory (29 megabytes unformatted). And it's expandable to 104 megabytes.

The DISCUS M26™ system is delivered complete—
a 26 megabyte hard disk drive, controller, cables and operating system—for just $4995. Up to three additional drives can be added, $4495 apiece.

The DISCUS M26™ system features the Shugart SA4008 Winchester-type sealed media hard disk drive, in a handsome metal cabinet with fan and power supply.

The single-board S-100 controller incorporates intelligence to supervise all data transfers, communicating with the CPU via three I/O ports (command, status, and data). The controller has the ability to generate interrupts at the completion of each command to increase system throughput. There is a 512 byte sector buffer on-board. And each sector can be individually write-protected for data base security.

The operating system furnished with DISCUS M26™ systems is the widely accepted CP/M* 2.0.

See the biggest, most cost-efficient memory ever introduced for S-100 systems, now at your local computer shop. If unavailable locally, write Morrow Designs™ 5221 Central Avenue, Richmond, CA 94804. Or call (415) 524-2101, weekdays 10-5 Pacific Time.

*CP/M is a trademark of Digital Research.
ELECTRONIC CONTROL TECHNOLOGY’s R2I/O is an S-100 Bus I/O Board with 3 Serial I/O Ports (UART’s), 1 Parallel I/O Port, 4 Status Ports, 2K of ROM with Monitor Program and 2K of Static RAM. The R2I/O provides a convenient means of interfacing several I/O devices, such as CRT terminals, line printers, modems or other devices, to an S-100 Bus Microcomputer or dedicated controller. It also provides for convenient Microcomputer system control from a terminal keyboard with the 8080 Apple ROM monitor containing 26 Executive Commands and I/O routines. It can be used in dedicated control applications to produce a system with as few as two boards, since the R2I/O contains ROM, RAM and I/O.

The standard configuration has the Monitor ROM located at F000 Hex with the RAM at F800 Hex and the I/O occupies the first block of 8 ports. Jumper areas provide flexibility to change these locations, within reason, as well as allow the use of ROM’s other than the 2708 (e.g. 2716 or similar 24 pin devices). Baud rates are individually selectable from 75 to 9600. Voltage levels of the Serial I/O Ports are RS-232.

8080 APPLE MONITOR COMMANDS

A - Assign I/O
B - Branch to user routine A-Z
C - Undefined
D - Display memory on console in Hex
E - End of file tag for Hex dumps
F - Fill memory with a constant
G - GOTO an address with breakpoints
H - Hex math sum & difference
I - User defined
J - Non-destructive memory test
K - User defined
L - Load a binary format file
M - Move memory block to another address
N - Nuls leader/trailer
O - User defined
P - Put ASCII into memory
Q1 (N) - read I/O; Q0(N, V) - send I/O
R - Read a Hex file with checksum
S - Substitute examine memory in Hex
T - Types the contents of memory in ASCII equivalent
U - Unload memory in Binary format
V - Verify memory block against another memory block
W - Write a checksummed Hex file
X - Examine/modify CPU registers
Y - Yes there search for N Bytes in memory
Z - 'Z END' address of last R/W memory location

SPECIALIZING IN QUALITY MICROCOMPUTER HARDWARE
BUILDING BLOCKS FOR MICROCOMPUTER SYSTEMS, CONTROL AND TEST EQUIPMENT
CARD CAGES, POWER SUPPLIES, MAINFRAMES, CPU’S, MEMORY, I/O

ELECTRONIC CONTROL TECHNOLOGY
763 Ramsey Ave., Hillside, N.J. 07205
(201) 688-8080
THE NEXT GENERATION OF MICROCOMPUTERS IS HERE AT QUASAR DATA PRODUCTS

16 BIT POWER

Z-8000

AND STILL RUN YOUR 8 BIT SOFTWARE

Z-8000 SERIES 16 BIT CPU S-100 BOARD — CAN BE PLUGGED INTO YOUR EXISTING SYSTEM

• FULLY S-100 IEEE COMPATIBLE
• SUPPORTS EXISTING 8 BIT MEMORY AND 8 BIT PERIPHERAL BOARDS
• CAPABLE OF OPERATING AS A SLAVE PROCESSOR TO ENABLE YOUR EXISTING CPU TO CONTROL THE Z-8000

Z-80 SERIES 8 BIT CPU S-100 BOARD

• 4 MHz Z-80 MICROPROCESSOR
• FLOPPY DISK CONTROLLER ALLOWING SINGLE AND DOUBLE DENSITY USING EITHER 8" or 5½" DISK DRIVES
• ROOM FOR THREE 2716 EPROMS or THREE 2516 ROMs
• TWO RS232C SERIAL PORTS
• TWO PARALLEL PORTS
• HARD DISK CONTROL VIA THE PARALLEL PORTS

INDUSTRIAL QUALITY

Z-80

• REAL TIME CLOCK
• RESET JUMP CIRCUIT ALLOWS CPU TO JUMP TO MONITOR SOFTWARE ON RESET
• CAPABLE OF PROGRAMMING AND VERIFYING INTEL 2716 ON BOARD WITH EXTERNAL POWER SUPPLY
• UTILIZES VECTORED INTERRUPTS OF Z-80 CPU
• MONITOR PROVIDED

QDP-8100 WITH 2 MEGABYTES STORAGE STANDARD (OPTIONAL 4 MEGABYTES)

Z-8000 SERIES 16 BIT CPU S-100 BOARD — SEE ABOVE

• SOFTWARE (PROVIDED WITH SYSTEM)
• CP/M 2.2 OPERATING SYSTEM
• ACCOUNTS RECEIVABLE, GENERAL LEDGER, ACCOUNTS PAYABLE, PAYROLL WITH COST ACCOUNTING

INDUSTRIAL QUALITY

SYSTEMS

QDP-100 WITH 2 MEGABYTES STORAGE STANDARD (OPTIONAL 4 MEGABYTES)

• Z-80 SERIES 8 BIT CPU S-100 BOARD — SEE ABOVE
• SOFTWARE (PROVIDED WITH SYSTEM)
• CP/M 2.2 OPERATING SYSTEM
• BASIC
• ACCOUNTS RECEIVABLE, GENERAL LEDGER, ACCOUNTS PAYABLE, PAYROLL WITH COST ACCOUNTING
• OPTIONAL SOFTWARE: FORTRAN, PASCAL, COBOL, C

4 Mhz 64K Dynamic RAM

16K - '250" 32K - '350" 48K - '450" 64K - '549"

QUASAR FLOPPY SYSTEM

• Two MFE DBL sided drives • Cable • Case & Power Supply assembled and tested Wood cabinet '1895"

QUASAR 2 MEG FLOPPY

• 2 MFE double sided drives
• Teletek disk controller board
• Power supply & cable
• Wood cabinet
• CP/M version 2.2 & bios
• Assembled & tested '2295"

MFE Double Sided - Double Density 8" Floppy Disk Drives. (the best) '650"

Using the Teletek Controller under CP/M, THIS DRIVE WILL GIVE YOU ALMOST ONE MEGABYTE PER DISK DRIVE.

Power supply for above '110"

PIPER TIGER

Includes Graphics '949"

Call for Apple

TELETEK DBL. DENSITY, DBL. SIDED

Disk Controller Board '395"

MFE Double Sided - Double Density 8" Floppy Disk Drives. (the best) '650"

Using the Teletek Controller under CP/M, THIS DRIVE WILL GIVE YOU ALMOST ONE MEGABYTE PER DISK DRIVE.

Power supply for above '110"

TI - 820

Serial Printer -

Full package options '1995"

Checks, money orders accepted

Add $2.50 freight charges on orders under 10 lbs. Over 10 lbs. F.O.B. Cleveland

QUASAR DATA PRODUCTS

25151 Mitchell Dr., No.Olmsted, Ohio 44070 (216)779-9387

S-100 MICROSYSTEMS
In This Issue

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Master</td>
<td>14</td>
</tr>
<tr>
<td>Bill Machrone</td>
<td></td>
</tr>
<tr>
<td>The Talos Digi-kit-izer Digitizing Tablet Kit</td>
<td>17</td>
</tr>
<tr>
<td>Jon Bondy</td>
<td></td>
</tr>
<tr>
<td>The CP/M* Connection</td>
<td>22</td>
</tr>
<tr>
<td>Chris Terry</td>
<td></td>
</tr>
<tr>
<td>Modifications to CBasic-2</td>
<td>28</td>
</tr>
<tr>
<td>Andy & Ben Galewsky</td>
<td></td>
</tr>
<tr>
<td>North Star Topics</td>
<td>32</td>
</tr>
<tr>
<td>Randy Reitz</td>
<td></td>
</tr>
<tr>
<td>Directory Program for CP/M Systems</td>
<td>38</td>
</tr>
<tr>
<td>Mark M. Zeiger</td>
<td></td>
</tr>
<tr>
<td>An S-100 Eprom Programmer Using the Intel 8255 PPI</td>
<td>46</td>
</tr>
<tr>
<td>Ted Croal</td>
<td></td>
</tr>
</tbody>
</table>

Departments

<table>
<thead>
<tr>
<th>Department</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editor's Page</td>
<td>4</td>
</tr>
<tr>
<td>Letters to the Editor</td>
<td>8</td>
</tr>
<tr>
<td>News & Views</td>
<td>10</td>
</tr>
<tr>
<td>CP/M* Bus</td>
<td>11</td>
</tr>
<tr>
<td>New Products</td>
<td>52</td>
</tr>
<tr>
<td>Software Directory</td>
<td>54</td>
</tr>
<tr>
<td>Advertiser Index</td>
<td>56</td>
</tr>
</tbody>
</table>

*CP/M is a registered trademark of Digital Research.

S-100 MICROSYSTEMS (ISSN#0199-7955) is published bi-monthly by Microsystems, P.O. Box 789-M, Morristown, NJ 07960. Controlled circulation pending at New Berlin, Wisconsin.

Postmaster: Send address changes to: MICROSYSTEMS, P.O. Box 789-M, Morristown, NJ 07960.

Copyright © 1980 by MICROSYSTEMS—A Subsidiary of Creative Computing.
With this issue of MICROSYSTEMS I am retiring from the position of publisher and will only be the editor of the magazine. In other words, I have decided to sell MICROSYSTEMS. The magazine will become a subsidiary of Creative Computing.

I found it necessary to sell the magazine because it had gotten too big for me to handle. MICROSYSTEMS has become a great success. But success comes at a high price. I found that publishing a magazine was an all-consuming undertaking that affected my family relationships, health and job. I was at the point where to continue the magazine meant quitting my job and hiring a staff. My basement looked like a combination of warehouse and production department; we would have needed to move into offices. I examined the alternatives and feel that I have made the right decision—for the readers, my family and for myself.

In addition, I am not a businessman. I find it difficult to hire and fire. Also, I like my job and want to keep it (for those that do not know, I am a teacher in a Community College). I found that the major portion of my time was spent in publishing activities rather than editing activities. I cannot describe the time spent dealing with subscribers, dealers, advertisers, printers, typesetters, mailing service and worst of all the U.S. Mail Service (or as Jim Warren says: “The U.S. Snail Service”). This last one alone must have driven my blood pressure up by at least 10 points.

Being relieved of the publishing load I will be free to spend more time on editing. I will have total editorial control of MICROSYSTEMS, assuring that it will continue with the same editorial focus as before. All other tasks will now be handled by a professional publishing staff. I am pleased that Dave Ahl, owner of Creative Computing, has organized the staff of MICROSYSTEMS as a separate entity from the Creative Computing organization. Claudette Moore is now the Managing Editor. She handles the day-to-day running of the magazine, including advertising and promotion. Further, she assists me in editorial matters and oversees the production of the magazine. Actual production, typesetting and artwork, subscriptions, warehousing, etc. will be handled by the Creative Computing staff.

Dave Ahl has also undertaken a large promotional effort to increase the circulation of the magazine and its distribution through dealers. These efforts were just not possible with the limited facilities and staff that I had access to previously. Thus, I expect MICROSYSTEMS readership and advertising to increase substantially in the coming year.

You are already seeing results from this new change. First, the size of the magazine has been increased by eight pages to provide more editorial content and advertising space. I expect that size of the magazine will continue to grow with MICROSYSTEMS advertising support. Secondly, we hope to increase the amount of editorial...
At Intersystems, “dump” is an instruction. Not a way of life.

(Or, when you’re ready for IEEE S-100, will your computer be ready for you?)

We’re about to be gadflies again. While everyone’s been busy trying to convince you that large buses housed in strong metal boxes will guarantee versatility and ward off obsolescence, we’ve been busy with something better. Solving the real problem with the first line of computer products built from the ground up to conform to the new IEEE S-100 Bus Standard. Offering you extra versatility in 8-bit applications today. And a full 16 bits tomorrow.

We call our new line Series II™. And even if you don’t need the full 24-bit address for up to 16 megabytes (!) of memory right now, they’re something to think about. Because of all the performance, flexibility and economy they offer. Whether you’re looking at a new mainframe, expanding your present one or upgrading your system with an eye to the future. (Series II boards are compatible with most existing S-100 systems and all IEEE S-100 Standard cards as other manufacturers get around to building them.)

Consider some of the features: Reliable operation to 4MHz and beyond. Full compatibility with 8- and 16-bit CPUs, peripherals and other devices. Eight levels of prioritized interrupts. Up to 16 individually-addressable DMA devices, with IEEE Standard overlapped operation. User-selectable functions addressed by DIP-switch or jumpers, eliminating soldering. And that’s just for openers.

The best part is that all this heady stuff is available now! In our advanced processor—a full IEEE Bus Master featuring Memory Map™ addressing to a full megabyte. Our fast, flexible 16K Static RAM and 64K Dynamic RAM boards. An incredibly versatile and economical 2-serial, 4-parallel Multiple I/O board, 8-bit A/D-D/A converter, Our Double-Density High-Speed Disk Controller. And what is undoubtedly the most flexible front panel in the business. Everything you need for a complete IEEE S-100 system. Available separately, or all together in our new DPS-1 Mainframe!

Whatever your needs, why dump your money into obsolete products labelled “IEEE timing compatible” or other words people use to make up for a lack of product. See the future now, at your Intersystems dealer or call/write for our new catalog. We’ll tell you all about Series II and the new IEEE S-100 Bus we helped pioneer. Because it doesn’t make sense to buy yesterday’s products when tomorrow’s are already here.

Intersystems™

Ithaca Intersystems Inc.,
1650 Hanshaw Road/P.O. Box 91,
Ithaca, NY 14850
607-257-0190/TWX: 510 255 4346
Editor's Page cont'd...

space devoted to product reviews. In this issue we feature one hardware and one software product review. I will try to continue and increase the number of these product reviews in every issue. We are looking for more product reviewers, particularly software product reviewers.

If you have suggestions for improving MICROSYSTEMS do not hesitate to write or call me. (You will find my telephone number on the Table of Contents page.) I wish to thank all the readers, authors and advertisers who helped me get MICROSYSTEMS off the ground, making it a viable publication. I would also like to thank the following friends who helped unselfishly: Russell Gorr, Fred Gohlke, Jon Bondy, Randy Reitz, Jake Epstein, Bill Yarnall, George Lyons, Marty Nichols, Bob Stewart and Larry Stein. I am also indebted to my wife, Lennie and my son and daughter, Don and Susan who shared in the "dirty work". (I should mention that my wife is a professor of mathematics and my children at doctoral candidates at the University of Rochester and M.I.T.)

DIGITAL SOUND SYNTHESIZER BY CASHEAB

- 32 CHANNELS
- S-100
- FREQUENCY MODULATION
- UP TO 16 WAVEFORM STORAGE

Casheab has designed and developed a 32 channel digital sound synthesizer for the S-100 bus. The synthesizer consists of two cards: a synthesizer card (SYN-10) and a controller card (CTR-10). The S-100 host processor programs the waveforms (1024 by 12 bits) into the synthesizer. Either 4 waveforms (SYN-10/4) or 16 waveforms (SYN-10/16) can be stored. Any of the channels can use any of the waveforms. In addition attack, steady state and decay envelopes can be implemented by the host processor controlling each channel's amplitude. The synthesizer also incorporates frequency modulation which can be used for vibrato or FM synthesis.

- PROGRAMMABLE TIMBRE WAVEFORMS
- INDIVIDUAL CHANNEL AMPLITUDE CONTROL
- INDIVIDUAL CHANNEL FREQUENCY CONTROL
- INDIVIDUAL CHANNEL TIMBRE SELECTION

Software on a CP/M* compatible floppy disk is provided free with the purchase of the synthesizer. This software includes a waveform creation, music compiling and a real time operating program. The waveform creation software generates waveforms from user supplied data. This program, written in BASIC utilizes a FFT algorithm. A music compiler program converts music data, entered using data statements to and executable format. The real time operating program, written in 8080 assembly language loads the waveforms and plays the music generated from the compiler.

*CP/M is a trademark of Digital Research

CASHEAB
5737 AVENIDA SANCHEZ
SAN DIEGO, CA 92124
(714) 277-2547

SYN-10/4 & CTR-10 $1095.00
SYN-10/16 & CTR-10 $1245.00
MANUAL $5.00
DEMO CASSETTE $3.00
Overseas order for air mail add $20.00 for synthesizer and $3.00 for MANUAL purchase.
The Empire has expanded!

New Mainframe opens more areas for development

In one quantum leap Tarbell has expanded its popular Empire (the vertical disk subsystem) into a full line. This entire series now encompasses 5 variations. Each one contains different components so the S-100 system designer, hobbyist, or serious business user can arrive at the exact custom state he wants and needs.

The basic Empire still includes two Shugart or Siemens 8" disk drives; the compact cabinet with fan and power supply; a Tarbell floppy disk interface; CP/M*; Tarbell BASIC; the necessary cables, connectors and complete documentation. Naturally, it's fully assembled and Tarbell tested.

The new, top of the line Empire contains the basic model's components with the Tarbell design-approved Mainframe. Beside the 8-slot S-100 motherboard with an active terminated bus, there's a card cage with card guides and a double-density interface.

You're the master of your Empire
You can call the shots in the Empire. Tarbell's made sure of that by offering them as complete subsystem packages... or, as separate units. For example, the mainframe may be ordered with 1, 2 or no drives. Whichever way you go, however, you always get the reliability of Tarbell tested components and leadership-engineering.

To get control of your own Empire, see your quality computer store for quick delivery. Or, contact us for dealer locations or further information.

CP/M is a trademark of Digital Research.

Tarbell Electronics
950 Dovlen Place - Suite B
Carson, California, 90746
(213) 538-4251 / 538-2254
Dear Editor:

Small C is a compiler by Ron Cain. It was printed in source form in DDJ, May '80. The article discussed Ron's interest in C, dealing with Tiny-C, but then deciding he wanted a compiler. He did not have "by choice" CP/M. He tried developing the compiler under Tiny-C, but just didn't have the room (in memory). So he "borrowed Unix time" and got it going.

It generates 8080 assembler code directly, and requires a run time library to handle file open, char. read and write (disk and console) 16 bit multiply and divide, and several arithmetic and logical comparison subroutines, and indirect memory reference instructions for fetching local variables.

The compiler, being based on Tiny-C, is quite limited: No FOR, DO, CASE, etc. Just "while" like "teeny-C" as we call it. But it does handle "i + + " and a few things I don't believe (but don't recall) T-C did.

Of course, the big news is that the compiler compiles itself (in about 20 minutes on a 2MHz 8080). It is quite readable code. Seems quite bug-free, although I stumbled it with an obscure "pointer-memory addr" which erroneously doubled the memory addr, thus was pointer minus 2* memory addr, which was garbage. I solved it by saying that an int = the pointer. I then had int minus memory reference.

I am having a real ball with Small-C, have gotten the author's permission to put it in the CP/M U.G. and just last night, a friend with a 6809 got it running with my help. Johy Byrns took the source from me (he wrote a compatible modem transfer program for his '09), modified the code generator to put out macros (i.e. machine independent code) and then sent it back to me.

I compiled his compiler with mine, then compiled his compiler with itself, thus outputting macros. I sent them to him, he reviewed the output, asked for some changes (due to 8080 putting low-byte-first in a word, while the '09 does high-byte-first). I compiled it again, sent it to him, and he got it going.

I am very interested in pursuing the addition of a code optimizer to the end of it. Right now it generates "bullet proof" code, i.e. the expression processor does "PUSH H" whenever more is to be processed in the expression. Thus for Global variable "k") k = k + 1; generates:

```
LHLD k
PUSH H
LXI H,1
POPD
DAD D
SHLD k
```

If instead of directly producing 8080 code, a pseudo code were output, say into a 25 element table, than a pattern recognizing optimizer could see:

```
PUSH H and replace XCHG
LXI H,xxx it with:
LXI H,xxx
POPD
```

Several more passes thru the optimizer for this block of pseudo code could theoretically recude it to:

```
LHLD k
INX H
SHLD k
```

Just bluc skying right now, but you see the "place" for Small-C, namely a super facility for hacking with compilers. Thanks for writing it to Ron Cain, for DDJ for publishing it, and to Alan McNeil and Jim Kirns for getting the copy that I have keyed in and running.

The Code Works is selling a copy on CP/M disks for $15 + postage. The address is: Box 550, Goleta CA 93017. Phone: (805) 967-6905.

Small C doesn't have "for" but it appears it could be added in about an hour. The code for "while" is very similar. Only a routine to test things would have to be changed in the original code, as that routine tests for a condition in "++", where as the "for" the test condition isn't in parens.

More easily perhaps to get done, would be adding "do", as that ends in a while test, which is in parens.

Ward Christensen
Dolton, Illinois

Dear Editor:

During the coming year we can expect a proliferation of systems utilizing the Z8000 microprocessor. These systems can be expected to upgrade existing Z80 systems.

Indications are at this time that UNIX will probably become the standard DOS, replacing the present dominance of CP/M.

This presents something of a "retrofit" or old disk file usage problem since UNIX in Z8000 code does not fit on two 8" floppy tracks and it doesn't like CP/M style disks.

A number of CP/M style DOS systems are in the field. Since the authors of these systems have the source code, they can probably be cross compiled into Z8000 code relatively easily. To name a few of these systems, we have K3, SDOS, LDOS, TPM, OS and PDOS — for which we have the source.

CP/M offers a definite advantage over other microcomputer DOS systems in the way it does a DOS entry via address 0005 with the appropriate commands and data in certain registers. This "standardization" enables Basic's, Pascal, Fortran, Cobol, PL, "C" and other high level languages to be written explicitly for CP/M disk file control. This is not to mention all the utility programs — assemblers, debuggers, etc. which are dependent upon the same DOS entry.

Digital Research indicates they have no interest in Z8000 software at this time. Microsoft has a Basic using UNIX ready for release and will also probably offer UNIX. This may still leave the industry with a lot of CP/M files it cannot digest.

Cross Compiling Z80 to Z8000 code results in about a 2.5/1 increase in byte size. This is too much for two tracks of single density 8" disk to hold a DOS of CP/M's present complexity. However, re-editing code to take advantage of Z8000 instructions and byte doubling up in messages make it appear that a DOS of the size of CP/M 2.2 with adequate Z8000 I/O handling can be accommodated on two tracks of 8" double density. CP/M type file structures, directories, etc. can there-
fore be preserved. Format programs can accommodate double density system tracks and single or double data.

Therefore, we propose:

1) Authors of DOS systems and other software usable on Z80's who wish to compile Z8000 code should agree upon a standard.

2) The standard should return CP/M style file structure and entry concepts so that present disks with files will still be readable—at least in single density. There is no double density standard which could apply.

3) Instead of 8080/Z80 registers, the ZILOG Cross assembler registers should be used.

4) \[AF = 0, \ BC = RH1, \ DE = RH2, \ HL = RH3, \ IX = RH4, \ IY = RH5, \ SP = \] RHF, C, E, L are RL parts of their respective registers. This information is given in the ZILOG translator users guide. Where any intermediate register is required, Register RH 4 can be used. The remaining registers are open to use as well.

At the zero Address:

\[0000 - 0005 \text{ Warm Boot}\]
\[0006 - 000B \text{ DOS Entry (Functional)} \quad \text{(Replaces CP/M)} \quad 0005\]
\[000C - 004F \text{ Interrupts, Restarts* and/or Scratch}\]
\[0050H - 007FH \text{ Default file control.}\]

Note that 6 bytes (3 words) are reserved even though the jump mode used may require only two. This allows the software writer to use any mode and to use segments and offsets.

Restarts are not valid in Z8000 code but equivalent addressing concepts can be used.

We have contacted Microsoft about their Basic and they have informed us they see no difficulty in using this concept. The change from UNIX is relatively simple for them. You can expect to see Microsoft Basic at some of the upcoming shows.

The CDL (TDL/XITAN) Basic should be relatively easy to compile after changing the Math routines. The same should be true of their ZTEL and TOP. We have written a MACRO assembler cross compiler which we will make available to them. At this time there are no readily available Z8000 assemblers and text editors other than those sold by AMD software movement than helping it.

Softech (UCSD Pascal) is not interested. No matter, there are much better Pascals around.

National Multiplex Corp.
Middlesex, NJ

Your CP/M system just isn't worth its salt...until it's been through a night like this.

The Pirate stands ready to challenge your CP/M system to a battle of wit and endurance. As you traverse uncharted lands and seas, you'll meet up with wild animals, magical beings and a smart alec parrot. Adventureland and Pirate Adventure are two of the most mind-bending game simulations you'll ever encounter. (CS-9003) $24.95.

Original Adventure is an undisputed classic. The treasures you seek are hidden in underground caverns. All you have to do is find them. It's easy...just overcome a giant clam, nasty little dwarves and other deadly perils. This game is bi-lingual so, to make it really a cinch, just type in "GO FRANCE" and the characters will speak and understand only French. (CS-9004) $24.95.

The Basic Games Library features 190 top-notch simulations, battles and strategy games from the celebrated Basic Computer Games Book and its sequel, More Basic Computer Games. Volume I (CS-9001) and Volume II (CS-9006) include Super Star Trek, Stalom, and Checkers. Each disk is $24.95. Both disks and the Basic Computer Games Book are available for only $50.00 (CS-9000).

Volume III (CS-9005) and Volume IV (CS-9006) feature Yahtzee, Tennis, Wumpus and Grand Prix. The disks are $24.95 each. Both disks and the More Basic Computer Games Book are $50.00 (CS-9007). The entire four disk collection also includes both big games books, edited by David Ahl, and is $95.00 (CS-9008). All are on 8" disks, require 48K and Microsoft Basic.

Your local computer store should carry Creative Computing Software. If your favorite retailer does not carry the software you need, have him call in your order to 800-631-8112. Or, you can order directly from Creative Computing, Write to Creative Computing Software, Dept. AHHG, P.O. Box 789-M, Morristown, NJ 07960. Include $1.00 for postage and handling. For faster service, call in your bank order toll free to 800-631-8112.

sensational software
NEW S-100 PRODUCTS SHOWN AT WESCON

The WESCON/80 show, held September 16-18th in Anaheim CA, saw the introduction of some really new S-100 products.

Morrow Designs announced a "Unix-Equivalent" operating system running on a Z-80 based system with a special S-100 CPU board. The board has the Z-80, a floating point processor circuit, interrupt system and task supervisor/memory management circuitry.

Godbout Electronics introduced a digital multiplexer board using an 8085 that provides multiplexed communications with any portion of the computer. It takes over the tasks of transferring storage or I/O memory via DMA cycle stealing, which halts the main processor to transfer data. The device acts as a bus master and uses only about 1% of the available bandwidth. Godbout also showed an S-100 RAM board using 20-pin rather than 18-pin sockets. The board will accommodate the standard 18-pin 4K RAM ICs or the new 20-pin shadow RAMs (EEPROMs) expected to become available next year. Shadow RAMs retain data during power interruptions.

Cromemco showed their new $995 System Zero, a four slot S-100 system using a Z-80 CPU, up to 8K ROM, 1K RAM, one serial and three parallel ports in one slot. The remaining three slots can be used for a floppy/hard disk controller card, 64K RAM card, modem card, etc. Cromemco also showed their new $595 "Quadart" communications card designed for multiplexed communications. The card permits multiple operations, allowing the system to communicate with an IBM mainframe via a variety of user-definable protocols.

Measurement Systems & Controls showed a 64K dynamic RAM card with each of 4 memory banks selectable via I/O ports. Up to 256 banks may thus be selected. The board contains 4 LEDs to indicated when a bank is being accessed.

SOFTWARE REVIEW PUBLISHED

John C. Dvorak is publishing a monthly four page review of software. The primary emphasis is on North Star system software. A subscription is $5/year (foreign $10). The sample issue I received contained a great deal of useful information. John also distributes a wide selection of North Star software. For more information write: Software Review, 704 Solano Ave, Albany, CA 94706.

370 MICRO USER GROUP FORMING

This may be the first user group to be formed before the fact rather than the usual practice of after the after. Rumors are floating around that Intel, Motorola and Fujitsu are working on a microprocessor chip set that executes the IBM 370 instruction set. Mokurai Cherlin (Box 1131, Mt. Shasta CA 96067) has decided to form a user group in anticipation of the 370-micro. Membership is $10 for individuals and $25 for companies. You will get a newsletter and access to a computer database.

There is no doubt that if such an IC is released someone will put it on the S-100 bus. Mokurai points out that there is more free, public domain software for the 360 than you can buy for all present micros together, including operating systems, languages, tools and applications. There have probably been about a thousand languages brought up on a 360 or 370 over the last 16 years. IBM itself has a list of more than 2500 public domain programs available for a copying and media charge — the universities and users generally have an awful lot more. You don't have to wrestle with IBM operating systems and Job Control Language if you don't want to, because here are numerous software houses that have improved on IBM in all sorts of ways.

MICROPOLIS USER GROUP FORMED

The Micropolis Users Group (MUG) has been formed to maximize the use of the Micropolis supplied software. The group is compiling a directory of all software which runs on MDOS or Micropolis Basic without requiring a second operating system (such as CP/M). The group would appreciate suppliers of such software informing them of their products.

Membership is $12/year for 12 monthly newsletters. Micropolis Users Group, c/o Buzz Rudow, 604 Springwood Circle, Huntsville AL 35803.

UCSD USER'S SOCIETY FORMED

A User's Group has been formed to support UCSD products such as PASCAL. Membership is $20/year. UCSD System User's Society, Chip Chapin Secretary, c/o Softech Microsystems Inc., 9494 Black Mountain Road, San Diego CA 92126.

SOL SOFTWARE AVAILABLE

Processor Technology Company, manufacturer of the SOL computer went out of business over a year ago but its software lives on. PROTEUS (the SOL Users Group) is now distributing the Processor Technology software with hopes of soon having it available on 8" soft sector disk. They are furnishing the complete source code for PT DOS, Basic, ALS8, Games and Test Routines. The charge range from $50 to $95. PROTEUS, 1690 Woodside Drive, Suite 219, Redwood City CA 94061; tel: (415) 368-3331.

RUMOR

It is rumored that early next year Intel will introduce an enhanced 8251 serial I/O chip. It will include baud rate generator, five timer/counters, two full parallel ports and a complete interrupt controller; all in a 40 pin DIP.

MICROSYS TEMS BACK ISSUE NEWS

The premier issue (JAN/FEB) of MICROSYSTEMS has been reprinted and can be ordered by writing: MICROSYSTEMS, Box 789-M, Morristown, NJ 07960. The price is $5.00. Vol. 1/NO.3 (MAY/JUNE) is out of stock. We do not foresee a second printing.
This is the first of what I hope will be a regular column in S-100 Microsystems. The column will serve as a forum on CP/M. Readers are encouraged to send in questions about CP/M, which the author will attempt to answer. The questions can be both technical and non-technical. Until the questions are received, here is some news about the CP/M world.

SIG/M-ACG/NJ Generates First Three CP/M Disks

The Special Interest Group for CP/M (SIG/M) of the Amateur Computer Group of New Jersey (ACG-NJ) has produced three disks of CP/M software containing different versions of the ever popular Adventure game. The software has been placed in the public domain. The disks are the following:

SIG/M0001 - Adventure (350 pts) 8080 object code, for 48K RAM system.
SIG/M0002 - Adventure source code in Microsoft Fortran.
SIG/M0003 - 'Super' Adventure (550 pts) Z80 object, for 52K RAM system.

The disks are available for copying at meetings of the ACG-NJ CP/M User Group and at the New York Computer Club Flea Markets. Disks must be supplied and a $1/disk contribution to the club is requested. The ACG-NJ is really not prepared to furnish copies via mail. Therefore, it will accept orders only from other bona-fide clubs. Only one copy will be shipped to a club (8" single density); the club will then be responsible for providing copies for its members. It is asked that the club make a contribution to the ACG-NJ of $4/disk plus $2 to cover mailing and handling. ACG-NJ, 1776 Raritan Road, Scotch Plains, NJ 07081.

CP/M User Group News

The Chicago Area Computer Hobbyist Exchange (CACHE) is presently engaged in putting together twenty new 8" disks for the CP/M User Group to distribute. CACHE is the group that put together the last batch of CP/MUG disks. This is strictly a volunteer effort; no one is paid for their efforts. Jim Mills is coordinating CACHE's efforts.

Jim says that these new disks will include the following, among other things:

RATFOR adapted for Fortran-80
Household Budget Management (CBasicll)
Math Primer (CBasicll)
Osborne's A/P, A/R & G/L (CBasicll)
TDL Basic Games, Utilities, tutorials, I/O Drivers and Interactive Retrieval Info System (IRIS)
Loader/Relocator (TDL MAC 6.ASM)
TDEBAS.AZM (allows TDL Extended Basic to run under CP/M)
CP/M.ASC (simulates CP/M mode with TDEBAS.AZM)
SSM PROM Burner Program (ASM)
Pictures (ASCII files)
Dungeons & Dragons (MBasic)
Maillist (Ward Christensen's program in MBasic)
And lots more!

S-100 MICROSYSTEMS

*CP/M is a registered trademark of Digital Research.
No. 17
Software with full support

Purchasing our software is just the beginning. We then back it up with professional support:

- Subscription to "LIFELINES" for automatic notifications of revisions!
- Update service for software and documentation!
- Telephone Hotline!
- Overseas software export service!

All Lifeboat programs require CP/M, unless otherwise stated.

AVOCET SYSTEMS

- **AXASM-68** - Non-macro-assembler with native C compiler. One powerful language, suitable for batch and interactive use.
- **AXASM-69** - As AXASM-68 for MOS Technology.
- **AXASM-66** - Non-macro-assembler with native C compiler. One powerful language, suitable for batch and interactive use.
- **AXASM-67** - As AXASM-66 for Intel MVX.
- **AXASM-68** - As AXASM-68 for Intel MVX.
- **AXASM-69** - As AXASM-69 for Intel MVX.

BPW

- **BPW-100** - Utility program to permit simultaneous printing of text files and execution of command line parameters and search file directories.
- **BPW-120** - Automatic page setup and machine code library sources included.
- **BPW-130** - Automatic page setup and machine code library sources included.
- **BPW-140** - Automatic page setup and machine code library sources included.

CP/M

- **CP/M** - Floppy Disk Operating System, configured for many popular micro-computers and operating systems.
- **SoftCard with 2B** - Screen sizes 5x7.
- **SoftCard with 3B** - Screen sizes 5x7.
- **SoftCard with 4B** - Screen sizes 5x7.
- **SoftCard with 5B** - Screen sizes 5x7.

DISCOS

- **DISCOS** - As DISTEL to Zilog/Mos Technology.
- **SMALL/80** - Structured Macro Assembler.
- **PHOENIX SOFTWARE ASSOCIATES**
 - **FASM** - Z80 assembler, Intel/TMS PASM utilities.
 - **PASM** - Z80 assembler, Intel/TMS PASM utilities.
 - **XASM-48** - As XASM-68 for Intel MKS.
 - **XASM-68** - As XASM-48 for Intel MKS.
 - **XASM-18** - As XASM-68 for RCA 1802.

DOSE

- **DOSE** - Disk Operating System DPC.

EVOLVING SOFTWARE

- **EVOLVING SOFTWARE** - Disk Operating System DPC.

IBM

- **IBM** - IBM 3101.

INTEGRATION SYSTEMS

- **INTEGRATION SYSTEMS** - Disk Operating System DPC.

ISYS

- **ISYS** - Intelligent Software Systems.

LIFETRENDS

- **LIFETRENDS** - Disk Operating System DPC.

MICROSOFT

- **MICROSOFT** - Disk Operating System DPC.

NEC

- **NEC** - Disk Operating System DPC.

NEOLINE

- **NEOLINE** - Disk Operating System DPC.

RECLAIM

- **RECLAIM** - Disk Operating System DPC.

SUN

- **SUN** - Disk Operating System DPC.

SYMBOS

- **SYMBOS** - Disk Operating System DPC.

TAPES

- **TAPES** - Disk Operating System DPC.

TIB

- **TIB** - Disk Operating System DPC.

USCO

- **USCO** - Disk Operating System DPC.

Z80

- **Z80** - Z80 assembly language.

ZILOTOS

- **ZILOTOS** - Disk Operating System DPC.
New Technology

T-Maker—New powerful tool for preparing custom financial reports. It allows you to:
- View and modify the financial model.
- See a profit summary for each mode.
- Compare different financial models.
- Open up to 8 financial models.
- See trend analysis.
- Print the report on your printer.
- View the report on your computer.
- Save the report on your diskette.
- Load the report from your diskette.
- Export the report to other programs.
- Import data from other programs.
- Customize the report to your needs.
- Print the report in different formats.
- Save the report in different formats.
- Share the report with others.
- Collaborate on the report.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
- Test the report before printing.
- Debug the report.
- Improve the report.
- Share the report with others.
- Secure the report with a password.
Software Product Review

INFORMATION MASTER

reviewed by Bill Machrone

INFORMATION MASTER is a CP/M*-compatible information retrieval program oriented towards textual data. The program, available from Island Cybernetics, was originally written to perform retrieval from a large data base of articles and abstracts in the ecological sciences field. It, however, is a generalized program and is adaptable to a number of different retrieval needs.

Information Master operates under a variety of the CP/M-derivative operating systems, such as COOS and IMDOS. It is "installable," in that some of the operating parameters can be changed for specific applications. The program is fast, since it maintains the dictionary in main memory during retrieval. The console displays are not sophisticated in that there are no cursor controls or even screen clears, but capabilities of that type are usually just window dressing, anyway. It does, however, format text going to the printer and gives you the option of sending it to a disk file for further editing or processing. Within its defined area of operation it does quite a lot, especially for the price, which is $37.50 per copy.

Within its defined area of operation it does quite a lot, especially for the price, which is $37.50 per copy.

One of the unique things about Information Master is that it does not have the input/data entry module that is usual for this type of program. Since its major function is to facilitate access to text, it is specifically intended for use with your current text editor. One advantage to this approach is that it isn't necessary to learn a new set of text editing rules in order to use Information Master. Whatever CP/M-compatible text editor you are familiar with is fine. There is also no reason why you can't use whatever high-level language you have at hand to create prompted input acceptable to Information Master. The files of information you create are considered "raw" text by Information Master; it processes them to build a dictionary of retrieval terms and a pointer file that provides access to the text.

Island Cybernetics provides a demonstration data base with the programs, and it is worthwhile to experiment with it before you plunge into creating your own. The data base has extracts from articles which are cross referenced by the topics upon which they are likely to be retrieved. A feature of the program is that only the dictionary and pointer files need be present on one disk. The data itself may be on a completely separate disk, thus maximizing data storage.

The input requirements are simple. There are three "triggers" or delimiters that Information Master looks for in raw text in order to distinguish keywords from text. One of the delimiters is used to establish a "brief" retrieval heading, such as the title of an article. Below is an example from the Information Master manual:

*C
INFORMATION MASTER, Users Manual, Island Cybernetics, 1979
*This short manual describes the use of the "INFORMATION MASTER" program for retrieval of text files using Boolean combinations of key words or phrases.
Vendor:
Island Cybernetics
P.O. Box 208
Port Aransas, TX 78373
*E
INFORMATION RETRIEVAL/CP/M/DATA
MANAGEMENT/8080 CPU Z-80 CPU

If the above entry (and any number of similarly organized entries) is presented to Information Master as raw text, it will be cataloged and cross-indexed by the key-

*CP/M is a registered trademark of Digital Research
words that follow the *K delimiter. The *E signifies the end of the entry. If you use the "short form" of retrieval, the program will display the text from the *C to the first *. If you specify the long form, it will display all of the text down to the *K.

Another nice feature of Information Master is that the output can be directed to either the list device or the console. While we're on the topic of nice features, another that deserves mention is the "not in dictionary" function. If you request a lookup under "Z-80" the program will inform you that there is no corresponding entry in the master dictionary and will then list the close matches to the entry you had specified. This makes it easy to pick out the entries you want. The "sounds like" algorithm may be a little generous in terms of giving you some matches that aren't even close to what you want, but it's better to have too many than too few.

Actual retrieval from the data base is done by specifying the keywords that you are looking for. Information Master provides a Boolean expression input capability, so that you can logically AND and OR your requirements. This feature alone sets it apart from most of the data retrieval applications written in Basic, which normally do not provide this function. Furthermore, most homegrown retrieval systems are limited in the number of keys that can be stored or retrieved upon. There is no limit to the number of keywords that can be associated with each piece of information, so that the cross-indexing capabilities are endless.

Information Master is unique in its "cataloging" capabilities of text and is adaptable to a variety of storage and retrieval needs.

Now that you know what Information Master does, the inevitable question arises, "What good is it?". Most of us don't have large data bases of articles and books to summarize, but we do have some commonplace data that could stand some organization, and there is the occasional unique application that can benefit from a program such as this. The manual contains some suggestions in addition to data bases of literature, including book collections, correspondence and recipes.

Taking recipes as an example, you can enter your favorite dishes and document where the recipes are located and what variants you have tried. Below is an example of how you might organize these entries:

*C
Chicken with walnuts in plum sauce
*Use 30% more sauce than recipe calls for. Breast meat a good substitute for thighs. Goes well over fried rice and with pina coladas. Simple but impressively good.
*K
CHINESE/CHICKEN/GINGER/HOISAN/WAL-NUTS/DINNER
*C
Oven fried fish
Better Homes Cookbook, page 260.
*Season bread crumbs with parsley, bouquet garni, parmesan cheese, dash garlic salt, tarragon, basil, oregano, or whatever comes to mind. 8-10 minutes sufficient for thin fillets.
*K
FISH/DINNER/FAST
*E

Information Master's short and long form output enables you to list just the recipe titles and the publication or list your comments as well. Any number of entries such as the ones above can be present in the raw text file. Information Master provides the dual advantage of random access with variable length records for the most efficient possible utilization of your disk storage. If you carefully standardize the usage of keywords you will have no trouble retrieving whatever you want from the data base. For example, you can specify "FAST and DINNER," "CHINESE and CHICKEN and DINNER," or something like "CHICKEN or FISH and DINNER."

Information Master can do things that would otherwise take extensive custom programming or cost far more for a generalized data base management subsystem. It compares very favorably to data managers like WHATSIT and Selector III, especially considering the price.

A totally different potential application is a personal diary or a businessman's calendar. In this mode, you could use the keywords to establish the date, the type of event and meaningful cross-indexes. The short form entry need not be used. Here's an example:

*C
10:00 Meeting with Joe Tyler. Discussed new applications program and suggested that Steve Linden be appointed as user liaison. Tyler not sure about Linden; will get back to me by 30 June.
*K
MEETINGS/10/JUN/1980/APPLICATIONS/TYLER
*E
*C
1:30 Phone with C. Daniels of Hairy Software Inc. Determined availability of King Kong word processing system. Version 1.0 will be replaced in 45—60 days. Field upgrade to existing licensees is for cost of media and manuals.
*K
10/JUN/1980/KING KONG/WORD PROCESSING
*E

In this kind of example, Information Master can manage past or future appointments and to-be-done items. With a little ingenuity, follow-up dates could be coded as part of the keyword area, so that an inquiry can tell you almost instantly what needs to be done by a certain date. Anyone can appreciate the permanence of the records and the ability to review a month's meetings or all those held on a given topic or with a specific individual.
Information Master cont'd...

In conclusion, Information Master is unique in its "cataloging" capabilities of text and is adaptable to a variety of storage and retrieval needs. If you don't need to do a lot of field-oriented further processing with the retrieved data and if simple list or console output is sufficient, Information Master can do things that would otherwise take extensive custom programming or cost far more for a generalized data base management subsystem. I think that it compares very favorably to data managers like WHATSIT and Selector III, especially considering the price. This is not to say that it would replace either of them; WHATSIT is uniquely capable in expressing hierarchical relationships among data items, while SELECTOR has a full range of report generation capabilities that are quite powerful in themselves. I feel, however, that neither of them could beat Information Master at its own game. It doesn't resort to cute "artificial intelligence" conversations with the user and, depending on how you set up your keywords, can represent hierarchical or relational data structures. It would be nice to see some substring operators so that it wouldn't be necessary to break up the year, month and day, and so you could pick out subcodings like "CPU" from both "Z80 CPU" and "8080 CPU." A negation operator would be neat, too. Then you could say, in essence, "DINNER but not FISH.

But all this is quibbling. Information Master is a good buy, has no apparent bugs, is reasonably well documented and is both easy and fun to use. It is available from: Island Cybernetics, P.O. Box 208, Port Aransas, Texas 78373, tel: (512) 749-6673. The cost is $37.50.

PASCAL Moonshadow Text Formatter VER 3.0

The UCSD Pascal (TM) screen editor is convenient for creating and maintaining text files, but isn't a proper word processor by itself because it can't underline, page, or perform many other essential word processing functions.

Merrimack Systems' Moonshadow Text Formatter (MTF) post processes text files which have been produced using the screen editor or Pascal application programs. MTF's output, a fully-formatted document, may be sent to your printer, console display, or even to another text file.

Since its introduction in mid-1979, MTF has offered standard formatting functions such as centering, underlining, right-justification, full control over page dimensions, and pagination with "header" and "footer" titles. The original version also boasted many advanced features including form-letter production, special handling for even and odd pages, text file concatenation, and output character translation to compensate for exotic fonts and printers.

Now, the new and improved MTF VERSION 3.0 supports conditional formatting, automatic section numbering, and for Letter-quality printers such as QUME, Diablo, and Spinwriter, proportional spacing, boldfacing, sub- and super-scripting, overstriking, alternate fonts, and much more.

MTF 3.0, the flexible, capable tool which turns your Pascal computer into a powerful word-processor, is available for many USCD Pascal (TM)-based systems, including Pascal I.5 and II.0 for S-100-family and DEC LSI-11/PDP-11 computers, Apple Pascal 1.0 and 1.1, North Star Pascal 1.0 and 2.0, and computers using the Western Digital MICROENGINE.

For just $199, the MTF 3.0 package includes object code, user manual in printed and machine-readable forms, and an easy-to-use system configuration program which allows you to tailor MTF to take advantage of your printer's special capabilities. You can get it all from Merrimack Systems, PO Box 5216, Redwood City, CA 94063. Phone (415) 365-6281. California residents add 6% sales tax.

DISK DRIVE WOES? PRINTER INTERACTION?
MEMORY LOSS? ERRATIC OPERATION?
DON'T BLAME THE SOFTWARE

Power Line Spikes, Surges & Hash could be the culprit!
Floppies, printers, memory & processor often interact!
Our unique ISOLATORS eliminate equipment interaction
AND curb damaging Power Line Spikes, Surges and Hash.

ALL ISOLATORS: • 125 VAC, Standard 3-prong plug
• 1875 W MAX Load - 1 KW/Socket or socket bank
• Balanced Pi Filtered sockets or socket banks
• Spike/Surge Suppression - 1000 Amps, 8/20 microsec
(SUPER ISOLATORS offer expanded filtering and Spike/Surge Suppression capabilities)

ISO-1 ISO-2
ISO-1A -3 individually filtered sockets $ 59.95
ISO-4 -6 individually filtered sockets 96.95
ISO-2 -2 filtered banks; 6 sockets 56.95
ISO-5 -3 filtered banks; 9 sockets 79.95
ISO-6 ISO-7

*SWITCHABLE ISOLATORS - ALL ISOLATOR advantages combined with the versatility, convenience and utility of individually switched sockets. Each switch has associated pilot lite.

ISO-6 -3 switched, filtered sockets $129.95
ISO-8 -5 switched, filtered sockets 161.95

*SUPER ISOLATORS - Cure for severe interference problems. Useful for Industrial applications and heavy duty controlled equipment or peripherals.

• Dual Balanced Pi Filtered sockets
• Spike/Surge Suppression - 2000 Amps, 8/20 microsec

ISO-3 -3 super filtered sockets $ 85.95
ISO-7 -5 Super-filtered sockets 139.95

*CIRCUIT BREAKER any model (add CB) . ADD 7.00
*CKT BKR/SWITCH/PILOT any model (CBS) ADD 14.00

PHONE ORDERS 1-617-655-1532

Electronic Specialists, Inc.
171 South Main Street, Natick, Mass. 01760
Dept. 696
Hardware Product Review

The Talos
DIGI-KIT-IZER
Digitizing Tablet Kit

by Jon Bondy

I have always been fascinated with graphics applications for computers. I therefore purchased an analog to digital converter board just to be able to interface a joystick to my computer as a graphics input device. I expected to be able to designate locations on my graphics CRT screen with the joystick, and hoped that I would be able to draw some simple pictures with it, too. The joystick proved to be far less useful in these capacities than I had imagined, for two reasons.

If one hooks the joystick up so that the position of the stick is directly related to the position of a cursor on the graphics screen, it is difficult to keep one's hand still enough to specify a single point on the screen with any accuracy. If one modifies the joystick so that it represents the direction of motion of the cursor on the screen (i.e., pushing the stick up moves the cursor up), then any point can be designated on the screen with ease, but it is sometimes a slow process to move the cursor to the correct position.

In the midst of this frustration, a friend of mine at Apple computer commented to me that they had selected a digitizing tablet product because it had solved these problems and he felt that it was the best way to input graphic data into a computer. I picked up a manual for their tablet, and it and their software did seem to offer a lot. Unfortunately, I am not an Apple owner, and even if I were, the price (in excess of $700) was more than I felt that I wanted to spend on that portion of my system hardware. I wanted to re-write the software anyway, to learn about how it fits together. I looked at the Summagraphics Bitpad and the Talos Digitizers, but they still were in the $700 and up price range. I then discovered that Talos made a digitizing tablet kit listing for $500 with an active area of 11 by 11 inches, a resolution of 200 coordinates per inch and a data rate of 100 coordinate pairs per second. I decided that this was worth a try, and ordered it from Cushman Associates, Inc. (2735 Skylark Road, Wilmington, Delaware, 19808) who supplied it for $450. You may be able to find it locally for a similar price.

The kit comes with a parallel interface and no power supply, although a serial interface board and a power supply can be purchased as options at about $100 each. I purchased the kit with no options, figuring that I could obtain power from my computer (+15 volts at 250 ma—more on this later) and a parallel interface from my Cromemco TUART board. One thing which was not clear until I received the kit was that the parallel interface really requires 16 bits, taking up two 8-bit parallel input ports rather than the one which I had assumed.

My kit arrived in a box containing two large plastic bags, one for the main kit and one for the parallel output board. This allows Talos to easily mix various output options with the main kit. The main kit consists of two PC boards and some hardware with which to make the digitizing tablet box. Each of the sub-kits (main kit and output board) contains its own instruction manual.

The kit is intended for those who have built kits before, since the manuals do not go into the kind of detail which a HeathKit manual might, but the construction instructions are carefully plotted step by step, and are for the most part easy to follow. There was one typo in their output board manual (on page 3, a 10 ohm resistor was listed as Brown-Black-Brown, whereas it should have been Brown-Black-Black), but the manuals were surprisingly free of printing mistakes. On page 3 of the main manual, the builder is instructed to determine if the pen is a 'style A' or 'style B' pen, but no indication is made as to how to determine which pen style came with the kit. It turns out that there is a small paper tag on the pen cord indicating this. On page 12 or the main manual, the builder is instructed to place the ICs for the MUX board into their sockets, but no list of IC's is provided. It proved easy for this board, since IC's 9 and 10 are 74C42's, and the rest are CD4051's. The section on the final mechanical construction of the tablet (where the PC boards are united with some aluminum shields using nuts, bolts and spacers) was not completely clear, but I figured it out after playing with the pieces for about 30 minutes. The section describing the theory on how the tablet works is rather skimpy and the schematics are not annotated with signal names, so understanding the circuitry is not as easy as one might with. All parts required for construction of the kit were present, down to the solder and wire needed for jumpers. One nice thing about this kit is that the parts are usually called out in the order in which they appear on the board, rather than by part number, so that you usually can locate parts rapidly and accurately. The plastic housing for the completed tablet was adequate for a hobby application, but probably would not stand up to a commercial environment.

Jon Bondy, Box 148, Ardmore, PA 19003

S-100 MICROSYSTEMS
In general, the instructions were good, but I assembled the boards in a slightly different manner than the manuals called for. I always install my sockets first, place a piece of cardboard over them, invert the cardboard and PC board and then solder all sockets in at once. In order to make sure that they are all in flush to the board, I tack solder them on two pins which are diagonally opposed (say 1 and 9 on a 16 pin socket) and then press them flush to the board while re-heating the two pins from the underside of the board. I find this to be easy and time-saving, as compared with placing a single socket in the PC board, turning the board over, crimping two leads, turning the board over again, etc. Since my technique will not work if any other components are on the board, I had to do this out of the order specified in the Talos manuals. If you do as I did, be careful, two IC positions (U17 and U18) do not use sockets on the parallel output board.

Assembly took 4.5 hours, but I have been building kits for over ten years, so that probably is the shortest time which you could expect. Most of the time was spent stuffing components into the PC boards, but some of it was spent making over 40 jumper wires (archaic, but it really didn’t take all that long) and performing the final mechanical assembly. I found that one way to make the

—CONTINUED ON NEXT PAGE—

program tablet;
const
 Port1 = 132; (* msb's and up/down x/y -- 84 hex *)
 (bit 0 -- printer on line
 bit 1 -- printer busy
 bit 2 -- tablet data bit 8
 bit 3 -- tablet data bit 9
 bit 4 -- tablet data bit 10
 bit 5 -- tablet data bit 11
 bit 6 -- tablet stylus up/down
 bit 7 -- tablet x/y data flag *)
 Port2 = 148; (* lsb's -- 94 hex *)
 (bit 0 -- tablet data bit 0
 bit 1 -- tablet data bit 1
 bit 2 -- tablet data bit 2
 bit 3 -- tablet data bit 3
 bit 4 -- tablet data bit 4
 bit 5 -- tablet data bit 5
 bit 6 -- tablet data bit 6
 bit 7 -- tablet data bit 7)
 Mask = 128; (* select x/y bit *)
 Msbs = 60; (* select msbs (8-11) out of Port1 *)
 MsbsShift = 64; (* to shift msb's out of byte *)

var
 X, Y, I : integer;

function Portread(Port : integer) : integer; external;
function Pand(val1, val2 : integer) : integer; external;

procedure Readxy(var x, y : integer);
begin
 { await y data }
 while (Pand(Portread(Port1), Mask) <> 0) do begin end;
 y := Portread(Port2) + (Pand(Portread(Port1), Msbs) * MsbsShift);
 { await x data }
 while (Pand(Portread(Port1), Mask) = 0) do begin end;
 x := Portread(Port2) + (Pand(Portread(Port1), Msbs) * MsbsShift);
end; (* readxy *)

begin
 for I := 1 to 1000 do begin
 Readxy(x, y);
 writeln(x:8, y:8);
 end;
end.
Tecmar's new A/D and Timer Board is designed to meet sophisticated data acquisition needs. The board can accommodate various A/D modules providing options such as 12, 14, 16 bit accuracy; 100 KHz throughput; variable ranges and gains. It contains a powerful timer circuit (AMD 9513) which can start A/D conversion and can also be used independently for time of day, event counting, frequency shift keying and many other applications.

TM-AD200 FEATURES

- Complies with IEEE S-100 specifications
- Transfers data in 8 or 16 bit words
- 30 KHz throughput standard
- 12 bit accuracy standard
- Jumper-selectable for 16 single-ended or 8 true differential channels
- External trigger of A/D
- Provision for synchronizing A/Ds
- Data over run detection
- Data is latched providing pipelining for higher throughput
- Input ranges: ±10V, ±5V, 0 to +10V, 0 to +5V
- Output formats: Two's complement, binary, offset binary
- Auto channel incrementing
- I/O or memory mapped
- Utilizes vectored interrupt or status test of A/D
- Provision for expansion to 256 channels

TIMER FEATURES

- 5 independent 16 bit counters (cascadable)
- 15 lines available for external use
- Time of day
- Event counter
- Alarm comparators on 2 counters
- One shot or continuous frequency outputs
- Complex duty cycle and frequency shift keying outputs
- Programmable gating and count source selection
- Utilizes vectored interrupt

TM-AD200 OPTIONS

- Programmable gain up to 500
- 14 bit accuracy
- 16 bit accuracy
- Screw terminal and signal conditioning panel with optional thermocouple cold junction compensation
- 100 KHz throughput with 12 bit accuracy
- Low level, wide range (10mV to 10V FSR) permitting low level sensors such as thermocouples, pressure sensors and strain gauges to be directly connected to the module input

S-100 A/D & TIMER

If your data acquisition needs are simple, the original Tecmar S-100 A/D Board will meet your needs.

TM-AD100 FEATURES

- Complies with IEEE S-100 specifications
- 16 single-ended or 8 true differential channels
- 12 bit accuracy
- 25 KHz throughput
- I/O or memory mapped
- Input ranges: ±10W, ±5V, 0 to +10V, 0 to +5V
- Minimal software required.

S-100 BOARDS

8086 CPU $450
W/veected interrupts
RAM 8Kx16/16Kx8 $395
8086 $495
495 PROM/O $350
Serial and Parallel I/O
Parallel I/O & Timer $350

TR-801 PET2 KIM2 APPLE

A/D 12 Bit High Speed
- 16 Bit
- 8 Ch. Differential

D/A 12 Bit High Speed
4 Channel
Each A/D Module $395
TRS-80 or PET expansion board, power supply, and enclosure $200.
Kim expansion board and power supply $150.

For digital to analog conversion, Tecmar's D/A Board provides four independent 12 bit high speed D/A channels.

TM-DA100 FEATURES

- Complies with IEEE S-100 specifications
- 4 independent digital to analog converters
- 12 bit accuracy
- 3 μsec settling time
- I/O or memory mapped
- Output ranges: ±12.5V, ±5V, ±10V, 0 to +5V, 0 to +10V

S-100 Real Time Video Digitizer

- Digitizes and Displays in 1/60 sec, flicker-free
- 16 Gray Levels
- Switch Selectable to display Black and White Graphics (8 pixels/byte)
- Maximum Resolution: 512 pixels/line x 240 lines
- Minimal software requirements $850

Data Acquisition Systems and Video Microcomputer Systems Available
DIGI-KITIZER cont’d...

final 34 jumpers rapidly and easily was to wrap the jumper wire around a rod of approximately 1/2 inch diameter and then cut semicircles of wire off the resulting spiral. This enabled me to have uniform jumpers which did not rise above the level of the IC’s, ensuring that no short circuits developed.

I am used to resistors with long leads which must be carefully formed in order to place them into the PC board. Talos supplied (for the most part) pre-formed resistors, so that they simply dropped into the holes in the PC board. This was a mixed blessing for me, since the leads were too short to bend easily, so the resistors tended to drop out of the board when it was turned over for soldering.

When it was complete, I ran the few tests which the manual recommended, using a multimeter, and then sat there staring at it. The tests said that it was O.K., but was it working, or not? I was using one of my TUART’s parallel ports to sense the status lines of my printer, but I managed to squeeze enough bits out of the status lines to get the tablet and printer to share two 8-bit input ports. I wired the parallel interface up to my two TUART input ports, and wrote the following program in UCSD Pascal in order to see if the tablet was functioning as I expected. Surprise! Not only did the tablet work, but the program worked the first time I tried it!

A few notes on the tablet which were not mentioned in the manuals. The tablet works by emitting a magnetic field (which changes at a high frequency) from the tip of the pen, and detecting it with a grid of sense lines just under the surface of the tablet’s plastic cover. The magnetic field emitted by the pen is strong enough to destroy floppy disks, so be careful when the unit is running. It may also leave enough residual magnetism to cause problems when powered down, although I have not checked this! The power required to drive the magnetic fields in the pen is great enough that the tip of the pen will heat up noticeably, but this doesn’t indicate a problem with the kit. If you become worried about the heating, put a scope on the two drive lines to the pen (I believe that these are jumpers R and T from looking at the output board schematic, but the main kit schematic would have you believe that they are jumpers Q and T). The signals should be undistorted sine waves; distortion indicates a parts mismatch in the oscillator, and could cause excess heating. The driver IC’s for the pen are protected against thermal overload with automatic shutdown circuits, so even if the drivers were to overhear, they should recover after they cool off. Although the manuals indicate that a voltage of +15 is required to run the tablet, the factory told me that it would run on voltages as high as +17, and I am running it at +16.5 (off of my S-100 bus unregulated power supply). Final tablet assembly involves attaching one of the PC boards to the plastic case with adhesive power supply. I wanted to avoid that step in order to be able to service the unit if necessary, and it turns out that my kit will press fit into the case without any adhesive.

Load TRS-80 software on your S-100 Z-80 or your money back!!!!
Of the 500,000 home computers in this country more than 200,000 are TRS-80's. Look through your magazines and you will see that there is more software available for the TRS-80 than all other computers combined. Here is what we offer.
1) An assembled hardware interface and software drive which will enable you to load data from TRS-80 cassette tapes into your S-100 memory.
2) Complete documentation telling you how to relocate the program at its correct address, find the entry point to the program, and link the program to your keyboard input and video output routines.
3) Include examples of how we interfaced TRS-80 Level II basic and SARGON II with our system.

PLUS Expandoram (4MHz) MOD. KIT

PLUS 16 A-D 8 D-A
This S-100 board has 16 channels of analog to digital input and 8 channels of digital to analog output. Enough for most burglar alarm or home energy monitoring system! It uses National Semiconductor’s ADC0816 sixteen channel analog to digital converter, which is available from DIGI KEY and other mail order houses for about thirty dollars. The total cost of construction including the board and parts should not exceed a hundred dollars. All inputs and outputs are 5 volts. Dual or split power supplies are not required. There is a on board kluge area for your custom construction circuits.

Board with documentation only $40.00

COMPURPISM COLOR GRAPHICS
Compurpism is a single board color graphics interface for the S-100 Bus. 16k of on board dynamic memory. 2 or 4 MHz Operation. May be used as 16k ram board. High Density 144 H. by 192 V. Dot Matrix with 16 colors simultaneously. Each byte has to control only two dots. Sequential bytes control sequential dots. Each dot is programed independent of all other dots. Sockets for all I.C.’s. Bare Board $50, Kit $240, A&T $280. All orders shipped C.O.D. within 72 hours.

J.E.S. GRAPHICS Box 2752 Tulsa, Ok. 74101 (918) 742-7104

(TRS-80 is a trademark of TANDY CORPORATION *SARGON II is a trademark of HAYDEN BOOK COMPANY)
How's your Memory?

Our MEMORIES Have Made US Famous!

Why?

Reliability!

That's the secret of our success. We are dedicated to producing the most reliable memories possible for the S-100 bus and the new IEEE S-100 bus.

Flexibility!

No matter what CPU you use, we have the memory for you.

SUPERAM™ 2—We've delivered over 5,000 of these 64K dynamic RAM boards to OEMs worldwide. This board sets the standard for reliable operation.

SUPERAM™ 4—Now available for Z80A and 8085A users, with bank select and optional parity bit.

SUPERAM™ 5—Our forthcoming IEEE-696 (S-100) compatible RAM will provide 64 Kbytes of dynamic RAM as either 32Kx16 or 64Kx8.

With ECC, too!

Announcing the SUPERMEM™ ECC! This is the ultimate in memory data protection: built-in automatic error correction. The SUPERMEM transparently corrects single bit errors and detects double bit errors.

We'll Design One for You!

If you have a special situation that calls for a custom design involving memory, processors, controllers, or even complete systems, give PIICEON a call. We might have the answer to your product need.

And That's Not All!

We also supply the following Microcomputer Boards:

- C-86 — 16-bit 8086 processor board with multi-processor arbitration logic, on-board PROM and RS-232 port.
- V-100 — 80x24 high-speed video output board.
- D-100 — Coming soon, the answer to 5½ and 8-inch Winchester control.

WRITE FOR OUR NEW BROCHURE

PIICEON™

OEM Computer Products
2350 Bering Drive
San Jose, CA 95131
(408) 946-8030
The CP/M Connection

Part III—Implementing the IOBYTE Function

by Chris Terry

The CP/M System Alteration Manual (page 15) notes that "...the user can optionally implement the IOBYTE function which allows reassignment of physical and logical devices." Unfortunately, the clues to the procedure are scattered through the Facilities Manual, the System Alteration Manual and the Interfacing Manual, and no examples are given.

Why, in practice, would we want to change the active peripherals? We might, for example, have both a dot-matrix printer (on a parallel port) and a daisy-wheel printer (on a serial port); the IOBYTE function allows us to use the dot-matrix printer for numeric output, but to switch to the daisy-wheel for correspondence. Again, if we normally use an electronic keyboard and VDM as the console, but also have a keyboard/printer serial terminal such as a Teletype or Diablo or TI Silent 700, we can switch all console functions to the serial terminal whenever we wish, and switch them back when desirable.

Logical Devices

The ability to perform this switching implies that we have a logical I/O system in which each kind of I/O operation is performed by a separate logical device—that is, a software routine which controls the flow of data, and may do some formatting and CRC generation or checking, but does not directly talk to a physical I/O device.

Communication between the logical device and a physical device takes place through two intermediaries: a logical driver, which is permanently associated with the logical device, and a physical driver that is permanently associated with a particular physical device (see Figure 1). In the distribution version of CP/M, the logical and physical drivers are one and the same; that is, each logical device is permanently linked to one, and only one physical device.

However, when the IOBYTE function is implemented, the logical and physical drivers are separated. The logical driver then consists of a switching mechanism that allows its associated logical device to be linked to any one of four physical drivers (and their associated physical devices). The IOBYTE itself is part of this switching mechanism.

CP/M contains four logical devices. For convenience, they are named:

1) CON: 2) RDR: 3) PUN: 4) LST:
 (The colons (:) are part of the names.)

The CON: device provides slow-speed communication between the operator and the operating system. It has three logical drivers: CONST, which checks the character ready/not ready status of the currently assigned console input device; CONIN, which fetches a single character from the console input device, and CONOUT, which outputs one character to the currently assigned console display device.

The RDR: device is for input only, from mass storage devices such as a paper tape reader, a cassette playback, a card reader, a badge reader, etc. It has one logical driver, called READER.

The PUN: logical device is for output only to paper tape, cassette recorder, etc. It complements the RDR: device. It has one logical driver, called PUNCH.

The LST: device is for output only. It is not used by the facilities built into the CCP, though it can be linked in tandem with the console display (ctrl-P toggles this link on and off). It is meant for directing the output of application programs to a printer or to mass storage devices other than the disk subsystem. It has one logical driver, called LIST.

Logical Drivers and the IOBYTE

In the distributed system, which does NOT have the IOBYTE function implemented, the logical drivers...
actually contain the physical drivers. This means that each logical device is linked to one, and only one, peripheral.

When the IOBYTE function is implemented, this situation changes. The physical device drivers become separate routines (TTYIN, TTYOUT, etc.). The logical drivers then become selection routines, each of which may select one out of four possible physical drivers according to the code found in the corresponding section of the IOBYTE.

The IOBYTE is located at 0003H, and is divided into four 2-bit sections (see figure 2), each of which is associated with one of the logical devices. The 2-bit code (00, 01, 10, or 11) found in any given section of the IOBYTE selects one of the four physical drivers that can legally be associated with that particular logical device. Figure 2 also shows the names associated with the codes for each logical device. It is important to note that from the viewpoint of the switch mechanism in the logical driver, only the codes themselves matter. The names are merely identifiers of the legal codes in each section of the IOBYTE, and only become useful when the STAT utility is used to change the contents of the IOBYTE - that is, to assign a new peripheral to a logical device.

There are many possible ways of implementing the selection mechanism. A neat and straightforward solution can be found in a program called VBIOS31, by Jeff Kravitz, which is contained in Volume 1 of the CP/M Users' Group library. Each logical driver has the form shown in figure 3, except that after the LDA IOBYTE instruction, the LIST driver has two RLC instructions, the PUNCH driver has four RLC instructions and the READER driver has two RRC instructions. The effect of these is to shift the bits of interest into bit positions 0 and 1 of the A register.
CP/M Connection cont'd...

The CALL to the common I/O Dispatcher (IOCAL) puts the address of the first entry in the table of physical drivers on the stack as the Return address, although it will not be used as such. IOCAL's job is to find which table entry to use, and then to branch to the address contained in the entry. To do this, it uses the IOBYTE code as an offset to be added to the address of the first table entry. The original IOBYTE code ranges from 0 through 3; however, each table entry is two bytes long, and therefore our offset must be doubled so that its possible values are 0, 2, 4, or 6. This is done by the single RLC at the start of IOCAL. Now we set bits 0 and 3 through 7 of the A register to zero with the ANI 6 instruction, which leaves the absolute value of our doubled code in the register to be used as the offset.

The XTHL instruction saves the current contents of the HL register pair on the stack and brings what was on the top of the stack (the address of the first table entry) into HL. To this (after saving the contents of DE) we double-add our offset by clearing D, moving the offset from A into E, and doing a DAD D. The HL register pair now points to the table entry containing the address of the desired physical driver. The next five instructions bring the driver address itself into HL and restore the original contents of DE. The XTHL again swap HL and the top of the stack, so that the physical driver address goes on the stack and the original contents of HL are restored. Finally, the RETurn instruction pops the driver address off the stack into the Program Counter, and we start executing the selected driver. The RETurn instruction at the end of the driver itself passes control back to whichever routine requested the I/O operation.

Thus, every I/O call, whether to BDOS or directly to any one of the logical drivers, causes the IOBYTE to be inspected and control to be passed to the physical driver specified in the appropriate section of the IOBYTE.

Other Considerations

The LST:, PUN:, and RDR: are one-way logical devices, and assigning a new physical device to one of them does not affect either of the other two. The only restriction is the obvious one that it is useless trying to obtain input from an output-only device, and vice versa. Care must be taken, however, in the assignments to CON: on a two-way logical device. Every assignment to this device changes all three of the associated physical drivers simultaneously; that is, the status driver, the character input driver and the character output driver. The branch tables for these drivers must be set up so that a mistaken reassignment

<table>
<thead>
<tr>
<th>CONIN:</th>
<th>LDA IOBYTE ;Gets the complete IOBYTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL</td>
<td>IOCAL ;Puts the address of CITBL on stack</td>
</tr>
<tr>
<td>CITBL:</td>
<td>DW TTYIN</td>
</tr>
<tr>
<td></td>
<td>DW CRTIN</td>
</tr>
<tr>
<td></td>
<td>DW RDRIN</td>
</tr>
<tr>
<td></td>
<td>DW UCLIN</td>
</tr>
<tr>
<td>IOCAL:</td>
<td>RLC ;Double the code bits of interest</td>
</tr>
<tr>
<td></td>
<td>ANI 6 ;Mask out all other codes</td>
</tr>
<tr>
<td></td>
<td>XTHL ;Save HL, get address of XXTBL</td>
</tr>
<tr>
<td></td>
<td>PUSH D</td>
</tr>
<tr>
<td></td>
<td>MOV E,A ;Put doubled code in E</td>
</tr>
<tr>
<td></td>
<td>MVI D,0 ;and clear D</td>
</tr>
<tr>
<td></td>
<td>DAD D ;Add doubled code to XXTBL address</td>
</tr>
<tr>
<td></td>
<td>MOV A,M ;Get low byte of entry</td>
</tr>
<tr>
<td></td>
<td>INX H ;Now point to high byte of entry</td>
</tr>
<tr>
<td></td>
<td>MOV H,M ;and put it into H</td>
</tr>
<tr>
<td></td>
<td>MOV L,A ;Put the low byte into L</td>
</tr>
<tr>
<td></td>
<td>POP D ;Restore DE</td>
</tr>
<tr>
<td></td>
<td>XTHL ;Put entry address on stack, restore HL</td>
</tr>
<tr>
<td></td>
<td>RET ;Pop entry address into PC to start</td>
</tr>
<tr>
<td></td>
<td>RET ;executing the required driver (TTYIN)</td>
</tr>
</tbody>
</table>

TTYIN: ---

Figure 3. Typical Code for one Logical Driver (CONIN), an associated Physical Driver (TTYIN), and the common I/O Dispatcher (IOCAL).
UCSD Pascal

Until now, setting up U.C.S.D. Pascal running on your system has been at best a chancey proposition.

There have been several versions of the system available for CP/M systems and one which requires extensive assembly language programming to bootstrap.

The U.C.S.D. Pascal system II.0 is now available ready to run for systems using the Thinker Toys® Morrow Designs) Discus II system. This outstanding 8" disk system offers 567,008 bytes of storage per drive as configured for U.C.S.D. Pascal and is exceptionally easy to install and use as well as offering a good deal of reliability.

The UCSD Pascal system now offered by Northwest Comm. includes the total Pascal system as released by the University of California as well as additional utility programs developed by Northwest Communications such as an interface to a Thinker Toys® M-26 hard disk (26 megabytes capacity) and a number of Pascal utility programs to assist you in the development of good software.

This software package is particularly easy to run on systems using Thinker Toys® Morrow Designs (discus II controller boards because of Morrow Design's thoughtfull inclusion of a serial 1/0 port on the disk controller board.

When you first receive your UCSD Pascal package from Northwest Communications, you may immediately boot the system into a program which will lead you through the steps necessary to configure the software for your system.

The program asks, in plain language, what the memory configuration is, and asks you which of several included I/O modules you wish to use.

The I/O modules supplied include one for only the on-board serial port, one which uses a Thinker Toys® Switchboard as ports for a printer and remote unit and one which is similar to the I/O supplied with a NorthStar Horizon computer. Several other useful I/O modules are included as well as one which you may use to tailor the software to your own unique hardware if necessary. This module is blocked out for you in advance with all disk 10 complete and requires that you just insert your own I/O routines and assemble using the excellent editor assembler included with the Pascal package. Use of the Disk Jockey serial port for this tailoring makes it very easy to implement. Remember, if you use a North Star Horizon, or wish to use only the on board serial port, or use a Thinker Toys Switchboard you have no programming to do. Just answer yes to the I/O question section of the configuration program and you're ready to go.

Once the I/O and memory configuration has been set, the Pascal system will use the new information in all future bootstraps. You may alter the IO any time to reflect changes in your system.

Future releases planned are interfaces to North Star and Tarbell disk control boards as well as modules for 10 involving many of the popular video control boards and other useful hardware such as Mountain Hardware’s Modem board. Also, we will introduce UCSD Pascal for the Heath/ Zephyr M-89 tablet computer in January 1981.

If you want to be informed when these programs are available please send us a letter or postcard with your name and address and a description of your system. We will put your name on our mailing list and keep you posted on all future releases.

These enhancements will be available at a low cost to registered owners of our UCSD Pascal package.

TECHNICAL INFORMATION

Our UCSD Pascal system will run on any computer with a minimum of 48K of RAM located anywhere between 0000 hex and DFFE hex. The computer must have at least 1 Discus II controller and 1 or more 8" drives. The software will support up to 4 Discus II 8" drives or 2 8" drives and 1 M-26 hard disk. Any IO configuration may be used.

The system initially bootstraps using the Discus II serial port.

DOCUMENTATION

System documentation is available in two forms. The standard package includes Printed Documentation on the Northrop Communications UCSD Pascal system as well as the complete UCSD Pascal system documentation on a Pascal format disk. You may access this material either by scanning through it using the Pascal system editor, or by printing it out on a line printer. If you prefer, we will send you the complete printed documentation packaged in an indexed 3-ring binder with room to store several disks in looseleaf holders.

As an introductory offer, on all orders for the UCSD Pascal system placed before Feb 1st, 1980, we will include at no extra charge our ‘PRINTER.CODE’ program. This program converts your Pascal system into a very powerful and easy to use Word processor. The program operates by the detection of symbols which you place into the text file. It operates on the text to format it to your specifications.

The PRINTER.CODE program normally sells for 99.95, but is free with the purchase of a Pascal system. Why not get on board the Pascal Bandwagon?

NHCD Pascal

UCSD Pascal System for Discus II 349.95
System for Discus II and M-26 Hard disk 379.95
Standard Documentation pack n/c
with system

Complete printed documentation with binder and dividers if ordered with system 39.95

Printed documentation without system 69.95
PRINTER.CODE 99.95
text formatting/word processing

Beginners guide to the UCSD Pascal system by Dr. Kenneth Bowles 11.95

Northwest Communications
2 airport plaza Box 2454
Idaho Falls, ID 83401

TOLL FREE ORDER LINE
800-635-4706
MC/VISA

*Thinker Toys/Discus are trade marks of Morrow Designs. CP/M is a trade mark of Digital Research
UCSD Pascal is a registered trade mark of the Regents of the University of California
CP/M Connection cont'd...

command does not cause loss of all communication between the operator and the operating system.

Suppose we have a keyboard and VDM as our standard console, a serial CRT terminal as the alternative device and do not intend to use the BAT: (input from RDR: output to LST:) or UC1: (user-defined) logical devices. Then in our CONST and CONIN logical drivers, the first table entry will branch to TTYST and TTYIN drivers, and in CONOUT the first table entry will branch to the VDM driver software. The second table entry in CONST and CONIN will branch to the CRTST and CRTIN routines, and the second entry in the CONOUT table will branch to CRTOUT. For the third (BAT:) and fourth (UC1:) table entries, we have two possibilities:

a. In each table, make the 3rd and 4th entries the same as the first. This will automatically default them to the standard device.

b. Put branches to an error handling routine. This might merely be a null input routine that returns a NULL (00) and a null output routine that copies C into A and then returns; or the error handling routine might include an error message.

Initialization. As we have seen, communication between the operator and the computer is now totally dependent upon having the correct code in bits 0 and 1 of the IOBYTE. At power-on time, this byte contains a random bit pattern. It is therefore essential that the CP/M Coldstart portion of the boot procedure be modified to include proper initialization of the IOBYTE. If the assignments are set up so that the first entry in each table (code 00) sets up our normal system configuration, the initializing code merely clears the A register (XRA A) and deposits this 00H in IOBYTE (STA IOBYT).

Device Assignment from the Console

The STAT utility has the ability to list the legal device assignments for each of the four logical devices, to list the current assignments, and to change the current assignments. STAT does not know (or care) how the logical driver tables are set up in the CBIOS; it is concerned only with examining the contents of the IOBYTE at location 0003H, reporting what it finds there, and changing specific bits in the IOBYTE while leaving the remainder untouched.

To obtain the list of legal assignments, we type the command:

A>STAT VAL:

which generates the response:

CON:= TTY: CRT: BAT: UC1
RDR:= TTY: PTR: UR1: UR2
PUN:= TTY: PTP: UP1: UP2:
LST:= TTY: CRT: LPT: UL1:

If the IOBYTE contains the bit pattern 10 11 01 00, the response will be:

CON:=IS TTY:
RDR:=IS PTR:
PUN:=IS UP2:
LST:=IS LPT:

Now, if we wish to change the reader assignment from PTR: (which could be a fast paper-tape reader) to UR1: (which could be a cassette), we type the command:

A>STAT RDR:=UR1:

STAT would then change the code in bits 2 and 3 of the IOBYTE from 01 to 10. All subsequent requests for Reader input would then access the cassette instead of the paper-tape reader.

If we want to change more than one assignment, we can put up to four such commands on the same line, separating them with commas, e.g.:

A>STAT RDR:=UR2:,LST:=TTY:

STAT will detect and deny any request to assign an input physical driver to an output logical device, or to assign device names that are unknown to it, with the error message:

INVALID ASSIGNMENT

Space on the System Tracks

There is one last item which we must take into account: the space on the system tracks (0 and 1) that is available to expand the CBIOS. The standard CBIOS begins at 3E00 in a 16K system or 7E00 in a 32K system. Thus, we have 512 bytes available for all CBIOS functions (including the disk primitives). If our expanded CBIOS (with the new IOBYTE function) requires more than 512 bytes, then we shall have to move CP/M downward by 1K in order to fit the new CBIOS between the top of the BDOS and the top of available memory. This creates a space of 512+1024=1536 bytes above the top of the BDOS. We cannot use all of this space, however, since only 9 sectors (1152 bytes) are available for the CBIOS on System Track 1. We must therefore ensure that the last byte of object code in our expanded CBIOS has a memory address no greater than XE1F (where CBIOS starts at XA00). There is nothing to prevent us from using the space XE80 thru XFFF as scratchpad memory.

If memory space is tight, and we only require (say) 640 bytes for the new CBIOS, we could move CPM downward by only one page (256 bytes). However, a shift of less than 1K will make computation of the ORG address of CBIOS and of the offset less convenient.

Introduction To CP/M

Part V of the "Introduction To CP/M," by Jake Epstein, will be continued in the next issue of S-100 MICROSYS TEMS. Regretfully, the manuscript arrived too late for inclusion in this issue.
a WORD to the wise...

IMM technology has developed a new innovative memory board with your future in mind. This compact static memory will operate in your present 8 bit S-100 system with built-in flexibility to handle 16 bit transactions when you are ready for it.

Sound engineering and common sense were the basic ingredients in our design parameters for the IMM-816. Your needs were our guidelines. The end result is a reliable memory with remarkable features at competitive prices.

* FULL IEEE COMPLIANCE
* LOW POWER 5327 STATIC MEMORIES
* 8 BIT EXTENDED ADDRESS OPTION
* ADDRESSABLE IN 2 SEPARATE BLOCKS OF 8K BOUNDARY

* OPERATES IN 8 or 16 BIT S-100 SYSTEMS
* IEEE OR NON IEEE SYSTEMS
* PHANTOM LINE ENABLE
* WAIT STATE ENABLE OPTIONS (0-2)
* MWRT/PWR OPTION
* 16 ENABLE

All lines are buffered to one low power Schottky TTL load. Our memory can coast at 2MHz or zip along at a fast 4 MHz clip. All functions are DIP switch selectable without wire jumpers. We used high quality parts such as the Augat face-grip, low profile sockets to assure maximum component retention.

If your system employs Bank Select operation, our Memory Manager Card (Model IMM-900) may be used to emulate virtually any bank select format currently in existence; i.e. Cromemo, Alpha Micro, Horizon, etc. The memory management card consists of a simple I/O port, switch selectable to any 8 bit address. Data is written to 8 IEEE extended address lines (A16-A23) to set the desired active bank.

IMM 816K-45	2MHz KIT	$290
IMM 816K-25	2MHz KIT	$315
IMM 816A-45	4MHz Assembled & Tested	$325
IMM 816A-25	4MHz Assembled & Tested	$350
IMM 900K	KIT	$65
IMM 900A	Assembled & Tested	$95

Charge Cards are accepted

INTERNATIONAL MICRO MACHINES
24125 Lamy Avenue
Canoga Park, California 91306 (213) 887-5737
Modifications to CBasic2

by Ben and Andy Galewsky

CBasic by Software Systems is a good language for many applications, especially in the business environment. The CBasic language comes as a package of two programs. The Basic source is entered into a file using a text editor, then compiled into intermediate code by the program CBAS2. The intermediate code is executed by invoking CRUN2.

Unfortunately, the language has one major shortcoming. There is no provision for outputting a single character to the console at the current cursor position; a buffer must be filled and then printed. This creates problems for users with memory mapped video displays. Formatted screens and other special programs also become difficult (i.e. Osborne and Associates' Payroll with Cost Accounting).

It is possible to write a machine language subroutine to output a single character and have CBasic load the program every time it is run. This has its own attendant problems. The solution presented in this article is a modification to CRUN2. A machine language subroutine is inserted into an unused portion of CRUN2. The character to be placed on the screen is POKEd into a memory location specified by the subroutine. The subroutine is then CALLed from Basic. Then the subroutine makes a call to CP/M to display the character at the cursor position. This eliminates the need to load the routine from disk every time the program is run because it travels along with CRUN2.

The second modification involves the CRUN2 sign-on message, allowing a more elegant and custom finish, as well as making computer operation easier for an inexperienced user.

Making The Modification

Before attempting to modify any program, especially expensive or irreplaceable software, a copy should be made and kept in a safe place free from magnetic radiation and high temperature.

With the backup made, it is now possible to begin the modifications. For this you will need to use DDT (Dynamic Debugging Tool) supplied with your CP/M system, or a similar program. First invoke DDT by typing DDT CRUN2.COM. DDT will return with the following prompt:

DDT VERS 1.4
NEXT PC
4300 0100

The 4300 under the NEXT shows the next available address after CRUN2. The 100 under PC tells the location of the program counter.

Starting around 110 hex is an embedded copyright notice. This area can be displayed by typing D100 (figure 1). It is here that the new machine language subroutine will be placed. To load the program into memory, the in-memory assembly function of DDT will be used. Type A120, to start the assembly at 120 hex. Type in the following program:

120 MVU C,02
122 LOA 130
125 MOV E,A
129 CALL 0005
129 RET

Key <RETURN> to end the in-memory assembly function. When called, this program loads the CP/M code for print character (2) into the C register of the microprocessor. Then it fetches the character out of memory location 130 hex and moves it to the E register to be passed to CP/M. Finally CP/M is called at 0005 hex to place the character on the screen. This solves the single character output problem.

The next modification is to the sign-on message. This message is found at 2147 hex (on CRUN vs 2.05). Display this message by typing D2100 (figure 2). The new message may be up to 18 characters long including a...
Testing The Modifications

As with any program, all changes must be thoroughly tested. Testing the sign-on message is easily done; simply run any CBasic program and your sign-on message should be displayed in lieu of CRUN VS 2.0X.

To test the single character printing, a short program will have to be written. The program in listing 1 is an example. This program uses the CONCHAR% function of CBasic. It will input a line of characters and then allow the editing of this line. The functions supported are:

- `<space bar>` advances to the next character
- `D` deletes the current character
- `C` changes the current character
- `<return>` inputs a new line to edit

This program is quite useful as an editor of input data in a program. Function PRT uses the single character print routine to display the argument DISP$.

In Conclusion

These modifications overcome some of CBasic's limitations. Combining these changes with the turnkey CP/M system described in December, 1979 Creative Computing will aid in the operation of your application runs.

—PROGRAM ON NEXT PAGE—

S-100 MICROSYSTEMS
Modifications cont'd...

1: REM

2: * CBASIC LINE EDITOR.

3: * THIS PROGRAM DEMONSTRATES THE CBASIC

4: * SINGLE CHARACTER OUTPUT ROUTINE

5: *

6: * WRITTEN JULY, 1980

7: * ANDY & BEN GALEWSKY

8: **

9: REM FIRST DEFINE THE PRINT SINGLE CHARACTER FUNCTION

10: DEF FN.PRN(DISPS) REM CHARACTER TO BE PRINTED

11: POKE 130H,ASC(DISPS) REM IS PASSED IN 130 HEX

12: CALL 120H REM CALL ROUTINE

13: RETURN

14: FEND

15: CLR$=CHR$(4) REM SCREEN CLEAR CHARACTER FOR VECTOR MINDLESS TERMINAL

16: PRINT "ENTER LINE TO EDIT" REM CHANGE TO SCREEN CLEAR ON YOUR TERMINAL

17: INPUT "1; LINE EDIT$"

18: POINTER%=1 REM CHARACTER POINTER

19: DUM=FN.PRN("...") REM PLACE MARKER ON SCREEN

20: INKEY%=CONCHAR% REM GET ONE KEYBOARD CHARACTER

21: IF INKEY%=32 THEN 20 REM SPACE BAR

22: IF INKEY%=ASC("D") THEN 30 REM DELETE CHARACTER

23: IF INKEY%=13 THEN 50 REM RETURN

24: GOTO 10 REM INCREMENT POINTER

25: DUM=FN.PRN(""") REM MOVE CURSOR BACK

26: DUM=FN.PRN(" ") REM ERASE OLD MARKER AND GO FORWARD

27: DUM=FN.PRN("...") REM PRINT NEW MARKER

28: FOR MOV%=1 TO POINTER%-1 REM REPOSITION CURSOR

29: DUM=FN.PRN(" ")

30: GOTO 10 REM REBUILD STRING

31: DUM=FN.PRN(""") REM PRINT IT

32: REBUILD STRING

33: PRINT CLRS REM GET LEFT OF DELETION

34: RIG$=MID$(EDIT$,POINTERX+1,LEN(EDIT$)) REM RIGHT PART

35: PRINT CLRS REM GET LEFT PART

36: PRINT CLRS REM REBUILD STRING

37: FOR MOV%=1 TO POINTERX-1 REM PRINT IT

38: REM PRINT MARKER

39: GOTO 10 REM GET CHANGE

40: REM CHANGE CHARACTER

41: REPL$=CHR$(CONCHAR%)

42: LERF$=LEFT$(EDIT$,POINTER%-1) REM LEFT PART

43: RIG$=MID$(EDIT$,POINTERX+1,LEN(EDIT$)) REM RIGHT PART

44: PRINT CLRS REM REBUILD STRING

45: EDIT$=LET$+RIG$ REM PRINT IT

46: POINTERX=POINTER%-1 REM DECREMENT CHARACTER POINTER

47: FOR MOV%=1 TO POINTER%-1 REM REPOSITION CURSOR

48: DUM=FN.PRN(""")

49: GOTO 10 REM REBUILD STRING

50: DUM=FN.PRN(""") REM PRINT IT

51: GET NEW LINE TO EDIT REM GET CHANGE

52: REM GET LEFT PART

53: REM GET RIGHT PART

54: PRINT CLRS REM REBUILD STRING

55: PRINT IT

56: REM REPOSITION POINTER

57: DUM=FN.PRN(""")

58: NEXT MOV% REM DISPLAY MARKER

59: GOTO 5 REM REBUILD STRING

60: PRINT IT

61: NEXT MOV% REM REBUILD STRING

62: DUM=FN.PRN(""")

63: NEXT MOV% REM PRINT IT

64: DUM=FN.PRN(""")

65: GOTO 5 REM GET CHANGE

66: REM GET LEFT PART

67: REM GET RIGHT PART

68: PRINT CLRS REM REBUILD STRING

69: PRINT IT

70: GOTO 5
NEW! TPM* for TRS-80 Model II
NEW! System/6 Package
Computer Design Labs

Z8O'Disk Software

We have acquired the rights to all TDL software (and hardware). TDL software has long had the reputation of being the best in the industry. Computer Design Labs will continue to maintain, evolve and add to this superior line of quality software.

— Carl Galletti and Roger Amidon, owners.

Software with Manual/Manual Alone

All of the software below is available on any of the following media for operation with a Z80 CPU using the CP/M or similar type disk operating system (such as our own TPM*).

- for TRS-80* CP/M (Model I or II)
- for 8" CP/M (soft sectored single density)
- for 5" CP/M (soft sectored single density)
- for 5" North Star CP/M (single density)
- for 5" North Star CP/M (double density)

Z8O'

S-100 MICROSYSTEMS

but with all the speed of assembly language. So, get the...

Development time is thus drastically reduced and...

or later.

grammers compile a library of these subroutines and...

in each new program? Top notched professional pro...

include 14 conditionals, 16 listing controls, 54 pseudo-

Intel mnemonics plus TDL/l80 extensions. Functions...

is so powerful you'll think it is doing all the work for you. It...

The most powerful Basic for business applications. It...

as standard ...

and "macro" capability for stringing multiple commands...

A character oriented text editor with 26 commands and...

TOP

A Z80 Text Output Processor which will do text...

a macro assembler which will generate relocatable or...

A macro assembler which will generate relocatable or...

MACRO II

Expands upon Macro I's linking capability (which is...

How many times have you written the same subroutine...

but without much less precision). (i.e. trace a program until a set of register, flag, and/or memory conditions occur). Also, instructions may be entered and executed immediately. This makes it easy to learn new instructions by examining registers/memory before and after. And a RADIUS function allows changing between ASCII, binary, decimal, hex, octal, signed decimal, or split octal. All these features and more add up to give you a very powerful development tool. Both Debug I and II must run on a Z80 but will debug both Z80 and 8080 code. $99.95/$20.

ZAPPLE

A Z80 executive and debug monitor. Capable of search, ASCII put and display, read and write to I/O ports, hex math, breakpoint, execute, move, fill, display, read and write in Intel or binary format tape, and more on disk. $34.95/$15.

NEW! TPM now available for TRS-80 Model II

A NEW Z80 disk operating system! This is not CP/M. It's better. You can still run any program which runs with CP/M but unlike CP/M this operating system was written specifically for the Z80 and takes full advantage of its extra powerful instruction set. In other words it's not worried over 8080 code! Available for TRS-80* (Model I or II), Tarbell, Xitan DDDC, SD Sales (5" or 8"), ICOM (5" or 8"), North Star (single or double density) or Digital (Micro) Systems.

SYSTEM MONITOR BOARD (SMBII)

A complete I/O Board for 5-100 systems. 2 parallel ports, 2 parallel ports, 1200 baud cassette tape interface, sockets for 2K of RAM, 3-2708/2716 EPROM's or ROM, jump on reset circuitry. Bare board $49.95/$20.

ROM FOR SMB II

2080 masked ROM of Zapple monitor. Includes source listing. $34.95/$15.

PAYROLL (source code only)

The Osborne package. Requires C Basic 2. 5" disks $19.95 (manual not included) 8" disks $ 9.95 (manual not included) Manual $20.00

ACCOUNTS PAYABLE/RECEIVABLE (source code only)

By Osborne, Requires C Basic 2 5" disks $24.95 (manual not included) 8" $99.95 (manual not included) Manual $20.00

GENERAL LEDGER (source code only)

By Osborne, Requires C Basic 2 5" disks $24.95 (manual not included) 8" disks $99.95 (manual not included) Manual $20.00

C BASIC 2

Required for Osborne software. $99.95/$20.

SYSTEM/6

TPM with utilities, Basic I, Macro I assembler, Debug I debugger, and ZEDIT text editor.

Above purchased separately costs $339.75 Special introductory offer: Only $179.75 with coupon!!

ORDERING INFORMATION

VISA, Master Charge and C.O.D. O.K. To order call or write with the following information:
1. Name of Product (e.g. Macro I)
2. Media (e.g. 8" CP/M)
3. Price and method of payment (e.g. C.O.D.) include credit card info. if applicable.
4. Name, Address and Phone number.
5. For TPM orders only: Indicate if for TRS 80, Tarbell, Xitan DDDC, SD Sales (5" or 8"), ICOM (5" or 8"), North Star (single or double density) or Digital (Micro) Systems.
6. N.J. residents add 5% sales tax.

Manual cost applicable against price of subsequent software purchase in any item except for the Osborne software.

For information and tech queries call
609-599-2146
For phone orders ONLY call toll free 1-800-327-9191 Ext. 676 (Except Florida)

OEMS

Many CPL products are available for licensing to OEMs. Write to Carl Galletti with your requirements.

- Z80 is a trademark of Zilog
- TRS-80 is a trademark for Radio Shack
- TPM is a trademark of Computer Design Labs. It is not CP/M
- CPM is a trademark of Digital Research
- Prices and specifications subject to change without notice.

DEALER INQUIRIES INVITED.
Running North Star DOS and CP/M Together

by Randy Reitz

I have always been interested in CP/M and its dynamic file management system. Last year I started to experiment with the Lifeboat implementation of CP/M for the North Star controller. Using CP/M is a great change from the North Star DOS. The North Star disk operating system (DOS) only performs directory maintenance and low level disk access whereas CP/M has features that should be found in a DOS such as file open, file close, etc. I became interested in how I could use my North Star programs under CP/M as well as use the CP/M editor to prepare text for my North Star Basic programs. The North Star system has some useful programs for poking around and I thought they would be helpful for exploring CP/M. For example, the North Star Monitor program easily dumps and modifies memory, while with the North Star RD command, the contents of a disk can be examined. So the natural outcome of this was to experiment with CP/M using North Star DOS, North Star Monitor and eventually North Star Basic.

Since the CP/M programs FDOS (Basic Input Output System—BIOS plus the Basic DOS—BDOS) and the Console Command Processor (CCP) are in high memory and the North Star DOS and its programs are at 2000H (in the Transient Program Area—TPA), my first idea was to load both systems and switch between them whenever desired. However, I quickly realized that simply running an unmodified North Star DOS in CP/M’s TPA did not work well. When I did something in North Star DOS that required a disk access and then returned to CP/M, I would get unpredictable results. Since computers are supposed to be very predictable, I set out to find what was causing the incompatibility between North Star DOS and CP/M.

I didn’t have to look too long to find 4 bytes in the North Star DOS that were causing the problem. I could say the problem was really with the North Star Micro-Disk System (MDS) controller. The North Star controller is simplicity itself. You may have noticed there is no “big” LSI chip on the North Star controller board. Everything on the board is simple, ordinary TTL stuff. This simplicity is deceiving since simple hardware usually requires complicated software. Now, I don’t want to say that the North Star DOS software is all that complicated; but since the North Star controller board is simple, the North Star software must do more than software that uses a TARBEILL controller. For example, there is no way to query the North Star controller board to find out what drive or track is currently selected. This extremely relevant information must be maintained by the software.

Since the controller board is simple, the North Star DOS software must do more than software that uses a TARBEILL controller.

Now, about those 4 bytes in the North Star DOS. In locations 2000H through 2002H, the current track number for each drive in the 3-drive North Star system is stored. In location 2003H, the number of the currently selected drive is stored. CP/M on North Star has to keep this same information in software, but since 2000H-2003H is smack in the middle of the TPA, Lifeboat’s BIOS keeps this information elsewhere. This is the problem with running two systems together—these bytes need to be synchronized. You can imagine what happens when CP/M’s BIOS looks and sees the drive motors are running (which means a drive has been selected) and checks its memory and finds the requested drive (or track) is selected, then proceeds when North Star DOS just finished with a different drive (or track). This condition guarantees unpredictable results.

Fortunately, the solution for this problem is straight forward. The folks at Lifeboat merely lifted the North Star DOS disk drivers that are in the ROM on the controller board and dropped the software unmodified into their BIOS. It didn’t take too much work with a disassembler to find where the drivers were in
Lifeboat’s BIOS. Lifeboat tried to discourage me since they inserted an extra byte after each RET and JMP instruction. This drives a disassembler wild; but once I figured out what was going on I could correct for it. It’s hard to keep secrets from a good disassembler and a persistent software hack.

The following are the steps required to modify North Star DOS to use the CP/M disk drivers so one set of memory locations are used to keep track of the disk system status. I have been using this “patched” North Star DOS for a while and I can say that it is well behaved. I usually run North Star DOS with CP/M also resident and bounce back and forth easily.

Lifeboat tried to discourage me since they inserted an extra byte after each RET and JMP instruction. This drives a disassembler wild; but once I figured out what was going on I could correct for it. It’s hard to keep secrets from a good disassembler and a persistent software hack.

The first 4 steps set up the environment to patch the North Star DOS. The Dynamic Debugging Tool (DDT) program in CP/M is well suited for this work. The Assembly and List (disassemble) commands are useful and the ASCII interpretation in the Dump command is also helpful.

1. Cold start (boot) CP/M for North Star (Lifeboat CP/M 1.4).
2. Cold start North Star DOS release 4.0 or 5.1S.
3. Insert the CP/M disk in drive A (North Star drive 1) and give the North Star DOS command JP 0. (i.e. get back to CP/M).
4. Issue the CP/M DDT command (i.e. start the CP/M dynamic debugging tool).

Now comes the point of this whole exercise.

5. Patch the North Star DOS in RAM at the following addresses:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>22C5H</td>
<td>MVI M,0ES5H</td>
<td>for N*DOS buffer area</td>
</tr>
<tr>
<td>22D6H</td>
<td>LXI H,0ES50H</td>
<td>for IN command</td>
</tr>
<tr>
<td>2381H</td>
<td>CALL BIOS+480H</td>
<td>use CP/M drivers</td>
</tr>
<tr>
<td>2497H</td>
<td>241DH</td>
<td>LDA BIOS+SFAR</td>
</tr>
<tr>
<td>24A2H</td>
<td>2428H</td>
<td>STA BIOS+SFAR</td>
</tr>
</tbody>
</table>

The value of BIOS above is calculated as MSIZE * 1024-512 where MSIZE is the size of your CP/M in kilobytes. For example, if I have 56K of memory so the largest CP/M I can run is 52K since the Lifeboat BIOS is 4K larger than the regular CP/M BIOS. Hence BIOS = 52 * 1024-512 = 52736 (CEO0H). These changes can be made easily with the DDT A(assemble) command.

6. Patch the North Star I/O area to use FDOS I/O functions. I will discuss below a suggested patch to use.

7. M2000, 2A00,100 (move North Star DOS to 100H).
8. Enter the following DOS mover program with the A(assemble) command:

```
100H JMP 8EOH use N*DOS buffer area
8EOH LXI H,BIOS+566H for mover program
9E3H LXI D,906H patch BIOS for 7 bytes
8E5H MVI C,7 with code at 906H
8E8H LDAX D
8E9H MOV M,A
8EEH INX H
8EFH INX D
8F0H DCR C
8F1H JNZ S8EH
8F4H LXI H,100H now move N*DOS to
8F5H LXI D,200CH proper location
8F6H LXI H,0600H this is -ACOH
8F7H MOV A,M
8F8H ORA A
8F9H STA X
8FAH INX H
8FBH INX D
8FCB INX E
8FDH MOV A,B
8FEH ORA A
900H JNZ 8F9H
908H JMP 208AH start N*DOS V5.1S
909H MVI A,1E look for -1 command
908H CMP C this is 5,10 single
909H JZ 2740H density disk init
90CH ND
```

9. Exit DDT with a control-C and execute the CP/M command “SAVE 10 NSTAR.COM”.

The reason for moving the North Star DOS program to 100H is to create the NSTAR command on the CP/M disk. When in CP/M, typing NSTAR will load the 20 records (10 pages) saved above and then the CCP jumps to location 100H. At 100H is a JMP 8E0H that executes the patch and mover program (step 8). This program patches 7 bytes in the CP/M BIOS to accomodate the new North Star DOS 5.1S command (-1) for single density disk initialization. This command was added to the DCOM entry in 5.1S so a disk could be initialized without using a buffer outside the North Star DOS. This BIOS patch isn't needed if you are using release 4.0, but it can still be put in since release 4.0 will not recognize the -1 command. After patching BIOS, the program moves the North Star DOS to 2000H and starts the DOS at the point in the cold start routine that calls TINIT. This will execute whatever initialization routine you have provided as well as check the “auto” start byte. Hence, you could have the DOS do a “GO BASIC, 2” immediately. I located this patch and mover program in the middle of the disk buffer in the North Star DOS. The jump at 903H to start the North Star DOS should be JMP 208AH if you are using release 4.

When running North Star DOS with the CP/M disk driver, you should not have any problems if you are careful not to disturb the CP/M FDOS (BDOS + BIOS) and the bytes at 0-3 that contain the JMP WARM to get back to CP/M and the IOBYTE.

One motivation for running North Star DOS and CP/M together is to use the North Star monitor and
North Star, cont'd...

North Star Basic programs to experiment with CP/M.

Another reason is to use North Star Basic to move files from a North Star disk to CP/M and vice versa. Following is a segment from a North Star Basic program that allows North Star Basic access to the CP/M FDOS facilities. The most important feature of this program is the assembly routine that provides the North Star Basic interface to CP/M. The segment of the program that does this is given below:

```
    DEF FNC(N,D)
    FILL 64,N
    RETURN CALL (65,D)
    FEND
    DATA 56,64,0,75,205,5,0,56,111,201,0
    F=92
    FILL F,0
    FOR I=1 TO 11
        FILL F+1,ASCII(“?”)
    NEXT
    READ X \ FILL 64+1,X
    R=FNC(13,F)
```

North Star Basic provides a method for accessing user written assembly language subroutines by using the CALL command. The CP/M FDOS can be considered such a subroutine. So a North Star Basic program can use FDOS to do the disk functions necessary to manipulate CP/M files. The FDOS cannot be called directly by North Star Basic since the conventions for passing arguments in the 8080 registers don’t agree for North Star and CP/M. Hence, another small assembly language program is needed to adjust the 8080 registers.

The North Star Basic CALL command can contain one or two arguments. The first argument is a numeric value between 0 and 65535 that is the decimal value of the memory address at the beginning of the assembly language subroutine. If a second argument is used, it will be converted to an integer value between 0 and 65535 and placed in the DE register pair. Since the CALL command is a Basic function, it will return a value. The value returned is an integer from 0 to 65535 that represents the value in the HL register pair when the assembly language subroutine returns.

The CP/M FDOS entry point is at address 5. CP/M requires a function number in the C register. Any address information that the CP/M function requires the assembly language subroutine returns. That represents the value in the HL register pair when 65535 and placed in the DE register pair. Since the memory address at the beginning of the assembly language program is needed to be converted to an integer value between 0 and 65535 that is the decimal value of the argument.

The CALL command will put the second argument in the DE register pair, just where CP/M FDOS expects the argument to be, so no adjustment is required. The Basic “FNC” function expects the interface program to be at address 64. Address 64 stores the CP/M function value for the interface program and the CALL is made to address 65. CP/M provides a 16-byte space starting at 64 for the user’s CBIOs. If your CBIOs doesn’t use these 16-bytes, you can use it for the interface program.

Now I’ll show you a North Star Basic program that will move a text file from North Star disk to a CP/M disk in drive A (North Star drive 1).

This program begins the same way as the last one. On line 13 the name of the North Star file is requested. If the file does not exist, the name is requested again. Next, the CP/M filename is requested. This name must be less than 12 characters to be valid. Lines 18 to 22 move the CP/M filename from the string C$ to the FCB.

On line 13 the name of the North Star file is requested. This name must be less than 12 characters to be valid. Lines 18 to 22 move the CP/M filename from the string C$ to the FCB. Lines 23-25 set up the CP/M file. If desired, this section of the program could detect if the CP/M file already exists, and if so, request permission to delete it. The CP/M file will be created on drive A. Line 27 opens the North Star file.

The file is transferred one byte at a time in the main loop (lines 28 to 39). Each CP/M sector of 128 bytes is loaded into the default buffer (lines 28 to 34) and then written to the CP/M disk (line 37). If more data remains (test in line 39) the main loop continues. Finally, the CP/M file is closed in line 40.

This program expects the North Star file to contain text that is separated by carriage returns. The program inserts a line feed character after each carriage return so the CP/M editor can be used. The North Star ed-of-file is an SOH character (ASCII 1). When this is found, the CP/M end-of-file SUB character (ASCII 26) is substituted. The record loop from line 28 to 34 could be changed to accommodate any North Star data file format you desire. The program ends in line 43 by returning to CP/M. I included this to show that since the CP/M warm start entry doesn’t require any data in the 8080 registers, the interface program is not required.
4 RETURN CALL (65, D)
5 PREND
6 DATA 58, 64, 0, 79, 205, 5, 0, 96, 111, 201, 0
7 F = 92 \ O = 0 \ B1 = 0 \ W = 0 \ DIM CS(16)
8 FILL F, 0
9 FOR I = 1 TO 11
10 FILL F + 1, 32
11 READ X \ FILL 64 + I, X
12 NEXT
13 INPUT * N* FILENAME = *.IS
14 F = FILE(S) \ IF F > 0 THEN 16
15 PRINT 15, "-- NOT FOUND" \ GOTO 13
16 INPUT *CP/M FILENAME = *,CS
17 IF LEN(CS) > 12 THEN 46
18 FOR I = 1 TO LEN(CS)
19 IF CS(I) = \ THEN 21
20 PRINT CS(I), A, ASC(CS(I), I)) \ GOTO 22
21 O = 8 - I
22 NEXT
23 R = FNC(13, 0) \ REM RESET CP/M
24 R = FNC(19, F) \ REM DELETE CP/M FILE
25 R = FNC(22, F) \ REM CREATE CP/M FILE
26 T$ = "CREATE" \ IF R = 128 THEN 44
27 OPEN #0, "I", I$, L \ L = L + 1
28 FOR I = 128 TO 255
29 IF B1 = 13 THEN 33 \ REM END-OF-LINE
30 READ #0, B1 \ PRINT CHR$(B1),
31 PRINT I, B1, IF B1 = 34 THEN 32
32 PRINT I, B2 \ EXIT \ REM END-OF-FILE
33 PRINT I, B1, B2, IF B1 = W \ PRINT \ REM ADD LINE FEED
34 NEXT
35 PRINT
36 PRINT "WRITING CP/M RECORD" \ E equals 80H
37 R = FNC(21, F)
38 T$ = "WRITE" \ IF R > 0 THEN 44
39 W = W + 1 \ L = L - 1 \ IF L = 0 AND B1 < 1 THEN 28
40 R = FNC(16, F)
41 T$ = "CLOSE" \ IF R = 255 THEN 44
42 PRINT "TRANSFER COMPLETE", "", CP/M RECORDS"
43 PRINT "RETURNING TO CP/M": W = CALL(0)
44 PRINT "CP/M ERROR", T$ \ E equals 80H
45 PRINT "RETURN CODE", R \ STOP
46 PRINT "CP/M FILENAME TOO LONG"
47 STOP
48 END

This is a small example to show what can be done with North Star Basic by using the CP/M FDOS. It isn’t difficult to modify this program to transfer files in either direction. So you might suspect that you could use the CP/M editor to prepare the text for a North Star Basic program and then transfer the program to North Star DOS. However, getting the text of the program into North Star Basic is a little tricky.

As a final topic, let me discuss the possibilities that arise when the CP/M FDOS facility is used to implement the North Star input/output routines. The North Star DOS provides a one-page (256 bytes) block at the end of the DOS to carry out four I/O functions:

COUT — character output

CIN — character input

TINIT — terminal initialization

CONTIC — control-C detection.

At entry to the COUT and CIN routines, the A-reg contains a number that represents the device the routine should use to do the I/O. The CP/M FDOS facility uses a code in the C-reg to indicate the function requested. So, one consideration is simply to set up the information in the proper 8080 registers. For example, here is what the North Star COURoutine could look like:

```
ORG 2900H
;
N* 1/O USING CP/M BIOS
;
COUT: PUSH B \ b-reg contains char
ORA A \ to output, A-reg is
MVI C, 2 \ 0 for console so use
JZ S+5 \ FDOS function 2
MVI C, 5 \ function 5 otherwise
LDA ECHO \ check if this character
CMP B \ was just read with CIN
CNZ DODCPM \ output character if not
MVI A, OFPH \ reset ECHO flag
STA ECHO
POP B
MOV A, B \ *E expects char in A-reg
JNZ 10

The B-reg contains the character to output when the COUT routine is called. Since CP/M FDOS expects to find the character in the E-reg when function code 2 (output to console) or code 5 (output to list) is used, the DODCPM routine will make the adjustment. The only other consideration is that FDOS automatically “echoes” characters typed so the COUT routine should not. Therefore, the COUT routine compares the character it is about to output with the last character received by CIN.

Next, consider the character input routine:

```
CIN: PUSH B \ can’t destroy any regs
MOV C, A \ save input device number
LDA NOFILE \ check if an "input file"
ORA A \ is active
JZ READCPM \ take all input from file
ORA A \ input from console if 0
MVI C, 1 \ use FDOS function code 1
JZ $+4 \ for console, code 3
MVI C, 3 \ otherwise
CALL FDOS
STA ECHO \ set ECHO flag
POP B
RET

Again, this routine is straightforward. The feature added to normal character input is the capability to read a CP/M file. In the implementation of North Star DOS for CP/M that I have been presenting, the North Star DOS exists as a CP/M command (COM) file. When the CP/M console command program (CCP) receives a string that does not start with the name of any built-in command, the CCP assumes that there is a file on the currently logged-in disk with the name given and an extension of COM. If this is so, the CCP loads the contents of the file into the TPA and sets up the default buffer at 80H with the remaining characters that were typed before the carriage return. CP/M programs usually understand these "arguments" to be CP/M file name(s). Hence, the North Star DOS can be considered a CP/M command that executes in the TPA and will accept a CP/M file name as an argument.

When the North Star DOS begins execution, the terminal initialization routine first gets control. Since CP/M has been running, the terminal doesn’t need to be initialized. This routine can be used to check if a CP/M file name has been passed as an argument. For example:

```
TINIT: MVI A, OFFH \ initialize some flags
STA CASE \ my upper/lower case flag
STA ECHO
STA NOPFILE \ assume no CP/M file
OUT 0FFH \ IMSAI front panel lights
LDA BUFF \ look in default buffer
ORA A \ if for a CP/M file name
ZP done if no file
LXI D, FC1 \ prepare to "open" file
MVI C, 15
CALL FDOS
CPI 255 \ check if successful
REZ \ return if no good
XRA A \ else indicate a CP/M
STA NOPFILE \ file is active
STA FCBCR \ start at record 0
MVI A, 60H \ force file read routine
STA IBP \ to get a new sector
```
North Star, cont’d...

If the North Star DOS was “called” by the CCP with a file name as an argument, the TINIT routine will open the file and if the open is successful, TINIT will reset the NOFILE flag so CIN is forced to read characters from the given CP/M file.

Notice the CIN routine above will jump to the READCPM routine if a CP/M file is active. This routine follows:

```
READCPM: PUSH B
          ; save all registers
          PUSH D
          PUSH H
          MVIC 11, ; check if any key has been hit on keyboard
          CALL FDOS ; been hit on keyboard
          RET
```

When a CP/M file is active, all input requested by North Star will be taken one character at a time from the CP/M file until the end of file is reached. Subsequent input will then be taken from the input device specified in the A-reg when CIN is called. The READCPM routine uses two subroutines:

```
DISKR: LXID, FCB 
MVIC 20, ; read the next sector
CALL FDOS ; read the default buffer
CPI 0 ; check for read error
R2 ; return if no problem
POP H ; clear return address
FINIS: MVIC OFF, ; set NOFILE flag
STA NOFILE
LXID, FCB ; close CP/M file
MVIC 16, ; character
CALL FDOS ; get CP/M character
POP H ; restore registers
POP D
POP B
JMP READEV ; return to CIN routine
```

The DOCPM routine is used by COUT and CIN to execute the selected FDOS function. The only tricky code above is that when DISKR returns successfully, the A-reg is 0 so IBP will be properly initialized for the new sector.

The only other routine required in the North Star DOS I/O is the control-C detection routine. Here it is:

```
CONT: MVIC 11, ; see if a key has been hit on the keyboard
CALL FDOS ; get character
ANI 1 ; return with Z-flag
XRI 1 ; reset if no C
ENZ MVIC 1, ; a key has been hit
CALL FDOS ; get character
CPI 3 ; look for C
STC ; kill CP/M char was read
RET
```

These routines use the following symbols:

- ECHO DB 0 ; don’t echo character
- NOFILE DB 0 ; subject for future
- CASE EQU 0DFS
- FDOS EQU 5 ; CP/M entry point
- FCB EQU 5CH ; default FCB address
- BUFF EQU 80H ; default buffer addr

At this point you might question the usefulness of this discussion. I mentioned above that I could use the CP/M text editor to prepare North Star Basic programs. With this driver for the North Star DOS I/O, you can do the following:

1. Prepare the text of a North Star Basic program using the CP/M editor.
2. Make the first line of this file the North Star command “GO BASIC, 2”.
3. Type the CP/M command “NSTAR <filename>.TXT”.
4. Sit back and watch North Star Basic read in the program you have prepared.

The North Star DOS and any programs running under it will treat the CP/M file as a command file. The file will be read until an end-of-file condition is encountered, then all input will be taken from the device specified in the A-reg when CIN is entered.

This completes my discussions of using North Star DOS and any programs running under it. If you would like to try this, but don’t want to do it yourself, for $15 I will supply a diskette containing the NSTAR command and some North Star Basic programs to demonstrate what can be done. You must have the Lifeboat CP/M 1.4 for single density North Star.

S-100 4 Channel Serial Interface

- Economical interface flexibility for the advanced amateur or small business computerist
- Industry standard LSI UARTS
- 8 reversible status and data ports
- Optically isolated current loop operation
- Independent channel operation-RS-232, 20mA or 60mA current loop
- On-board crystal time base
- One year defect and workmanship warranty

$249.00 Plus $1.50 postage and handling in the U.S.

THETA LABS INC
10911 Dennis Drive / Suite 405 / Dallas, Texas 75229
(214) 241-1090 Dealer Inquiries Welcome
SAVE MORE THAN 20%

NORTH STAR — INDIRECTUPE — MICROTEK
ZENITH — RCA-COSMAC — ITHACA
THINKER TOYS — GODBOUT — SUPERBRAIN

The smartest computers at the smartest price

FACTORY ASSEMBLED & TESTED LIST ONLY

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZON 1-32K DOUBLE DEN</td>
<td>6299</td>
</tr>
<tr>
<td>HORIZON 2-32K DOUBLE DEN</td>
<td>3095</td>
</tr>
<tr>
<td>HORIZON 2-24K QUAD DENSITY</td>
<td>3595</td>
</tr>
<tr>
<td>HORIZON 2-64K QUAD HARD DISK</td>
<td>9332</td>
</tr>
<tr>
<td>HORIZON MEMORY ASSM</td>
<td>10K</td>
</tr>
<tr>
<td>HORIZON MEMORY KIT</td>
<td>100K</td>
</tr>
<tr>
<td>NORTH STAR HARD DISK 16 MB</td>
<td>4999</td>
</tr>
<tr>
<td>PASCAL FOR NORTH STAR OR DISK</td>
<td>100</td>
</tr>
</tbody>
</table>

Powerful NORTH STAR BASIC, The Best. FREE

ORDER 2 or more COMPUTERS BIGGER DISCOUNTS

Subject to Available Quantities • Prices Quoted Include Cash Discounts.

Shipping & Insurance Extra.

We carry all major lines such as S. D. Systems, Cromemco, Ithaca Intersystems, North Star, Sanyo, ECT, TEI, Godbout, Thinker Toys, SSMM.

For a special cash price, telephone us.

S-100, inc.
7 White Place, Clark, N.J. 07066
201-382-1318

Hours: Mon. - Fri. - 10 a.m. to 6 p.m.

CP/M Systems Compatible 8080/Z80 Software

<table>
<thead>
<tr>
<th>Source/Object</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMX — Intercomputer and timesharing communications package</td>
<td>2500</td>
</tr>
<tr>
<td>DDIS — Directory files entry/spaces/ disk status 4 column sort</td>
<td>30</td>
</tr>
<tr>
<td>DDB — Disk directory database of your programs. Update/inquiry</td>
<td>20</td>
</tr>
<tr>
<td>DCOMP — Disk file compare with another disk file</td>
<td>20</td>
</tr>
<tr>
<td>MCOMP — Memory compare with memory (EPROM to RAM or EPROM)</td>
<td>20</td>
</tr>
<tr>
<td>MTEST — Memory test with before/after write error bits & pass #</td>
<td>20</td>
</tr>
<tr>
<td>DASM — 080 object disassembler with symbol table/XREF/map</td>
<td>20</td>
</tr>
<tr>
<td>GEFIT — One pass gap replacement non-destructive editor</td>
<td>20</td>
</tr>
<tr>
<td>PREDIT — Program version number maintenance at pre-edit time</td>
<td>20</td>
</tr>
<tr>
<td>减肥减肥减肥</td>
<td>20</td>
</tr>
<tr>
<td>RELC — 080 program code relocator (known data areas entered)</td>
<td>20</td>
</tr>
<tr>
<td>DLOG — Data buffer logged direct to end of disk file requested</td>
<td>20</td>
</tr>
<tr>
<td>POLAR — Converts origin/angle/radius to X/Y coordinates fast!</td>
<td>20</td>
</tr>
<tr>
<td>REDIX — Alphanumeric radix bin data sort with no data movement</td>
<td>20</td>
</tr>
<tr>
<td>SHELL — Shell and editor data sort with minimal overhead/movement</td>
<td>20</td>
</tr>
</tbody>
</table>

MEMORY MAPPED VIDEO

<table>
<thead>
<tr>
<th>Source/Object</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGEN — Video character generator/plotter for on screen updates</td>
<td>50</td>
</tr>
<tr>
<td>DXAM — Disk examine in ASCII/EBDID/HX with sector update</td>
<td>50</td>
</tr>
<tr>
<td>VBASE — 9K Video/disk Basic + full screen basic source editor</td>
<td>100</td>
</tr>
<tr>
<td>PMIS — Program management information system written in VBasic</td>
<td>200</td>
</tr>
<tr>
<td>VIDEO — Flexible multi-user/window video super video driver</td>
<td>50</td>
</tr>
<tr>
<td>YDRAW — Vector line draw and plot subroutine for fast graphics</td>
<td>30</td>
</tr>
<tr>
<td>CHESS — The best graphics for IMSAI VIO + VG Flashwriter 2 + SSM VBX</td>
<td>30</td>
</tr>
<tr>
<td>INVADERS — Zap sound effects/posts or buttons or console</td>
<td>30</td>
</tr>
<tr>
<td>STARTREK — Realtime action/sound effects with host of commands</td>
<td>30</td>
</tr>
<tr>
<td>TARGET — Moving aircraft shooting gallery with speed options</td>
<td>30</td>
</tr>
</tbody>
</table>

We carry all major lines such as

S. D. Systems, Cromemco, Ithaca Intersystems, North Star, Sanyo, ECT, TEI, Godbout, Thinker Toys, SSMM.

For a special cash price, telephone us.

S-100, inc.
7 White Place, Clark, N.J. 07066
201-382-1318

Hours: Mon. - Fri. - 10 a.m. to 6 p.m.

CP/M Systems Compatible 8080/Z80 Software

<table>
<thead>
<tr>
<th>Source/Object</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMX — Intercomputer and timesharing communications package</td>
<td>2500</td>
</tr>
<tr>
<td>DDIS — Directory files entry/spaces/ disk status 4 column sort</td>
<td>30</td>
</tr>
<tr>
<td>DDB — Disk directory database of your programs. Update/inquiry</td>
<td>20</td>
</tr>
<tr>
<td>DCOMP — Disk file compare with another disk file</td>
<td>20</td>
</tr>
<tr>
<td>MCOMP — Memory compare with memory (EPROM to RAM or EPROM)</td>
<td>20</td>
</tr>
<tr>
<td>MTEST — Memory test with before/after write error bits & pass #</td>
<td>20</td>
</tr>
<tr>
<td>DASM — 080 object disassembler with symbol table/XREF/map</td>
<td>20</td>
</tr>
<tr>
<td>GEFIT — One pass gap replacement non-destructive editor</td>
<td>20</td>
</tr>
<tr>
<td>PREDIT — Program version number maintenance at pre-edit time</td>
<td>20</td>
</tr>
<tr>
<td>减肥减肥减肥</td>
<td>20</td>
</tr>
<tr>
<td>RELC — 080 program code relocator (known data areas entered)</td>
<td>20</td>
</tr>
<tr>
<td>DLOG — Data buffer logged direct to end of disk file requested</td>
<td>20</td>
</tr>
<tr>
<td>POLAR — Converts origin/angle/radius to X/Y coordinates fast!</td>
<td>20</td>
</tr>
<tr>
<td>REDIX — Alphanumeric radix bin data sort with no data movement</td>
<td>20</td>
</tr>
<tr>
<td>SHELL — Shell and editor data sort with minimal overhead/movement</td>
<td>20</td>
</tr>
</tbody>
</table>

MEMORY MAPPED VIDEO

<table>
<thead>
<tr>
<th>Source/Object</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGEN — Video character generator/plotter for on screen updates</td>
<td>50</td>
</tr>
<tr>
<td>DXAM — Disk examine in ASCII/EBDID/HX with sector update</td>
<td>50</td>
</tr>
<tr>
<td>VBASE — 9K Video/disk Basic + full screen basic source editor</td>
<td>100</td>
</tr>
<tr>
<td>PMIS — Program management information system written in VBasic</td>
<td>200</td>
</tr>
<tr>
<td>VIDEO — Flexible multi-user/window video super video driver</td>
<td>50</td>
</tr>
<tr>
<td>YDRAW — Vector line draw and plot subroutine for fast graphics</td>
<td>30</td>
</tr>
<tr>
<td>CHESS — The best graphics for IMSAI VIO + VG Flashwriter 2 + SSM VBX</td>
<td>30</td>
</tr>
<tr>
<td>INVADERS — Zap sound effects/posts or buttons or console</td>
<td>30</td>
</tr>
<tr>
<td>STARTREK — Realtime action/sound effects with host of commands</td>
<td>30</td>
</tr>
<tr>
<td>TARGET — Moving aircraft shooting gallery with speed options</td>
<td>30</td>
</tr>
</tbody>
</table>
Directory Program for CP/M® Systems
by Mark M. Zeiger

Like most computerists, I like things to be neat and orderly. I also like convenience, and having a large disk directory scroll off the screen before I can find what I'm looking for is not convenient. Therefore I was overjoyed when I discovered the CP/M Users Library had a program called XDIR that would output an alphabetized directory using the whole screen. I got a copy and literally ran home to try it out on my North Star CP/M system. Goodbye disk! I then tried it on a friend's eight inch double density system. While it didn't blow the disk, it also did not list the directory. Evidently the program was not CP/M compatible. However, once I had seen such a program, I had to have one for myself. The program I have written is completely CP/M compatible. This means it does everything by using standard calls to the CP/M BDOS (which on most systems has its entry point at address 5 - if it doesn't, then it is not a "true" CP/M system). The only changes that have to be made from system to system are the commands that clear the screen and the tab control character (although the latter is pretty standard on most hardware).

The program has a number of "goodies"; the nicest being the Shell-Metzner sort. This sort is a fourteen line Basic program and it is not that much longer in assembly language. For a maximum of sixty-four items (the largest directory allowable in CP/M) almost any machine language sort would have been unnoticeable timewise. As near as I can tell, the Shell-Metzner sort takes less than one-quarter of a second.

The maximum of sixty-four entries is perfect for a 80 x 24 screen. The heading and the line skipped after it along with the twenty lines of names will fit on the screen and still allow the CP/M prompt to be shown at the bottom without the screen scrolling. If there is a sixty-fourth entry, it will be shown at the bottom of the third column. If you would like to adapt the program to a VDM, it would be easy to do if there are not more than forty entries in the directory. More than that will defeat the purpose of the entire program unless you put a pause after sixteen lines are printed.

I did try to make the program structured, and at first it was very much so. But naturally, as a few more things were added, the structure started to disappear. Below are the major routines that are called sequentially at the beginning of the program and some of the more important subroutines:

CKDRIVE ======>
See if drive is requested, else use logged-in drive.

SIGNON ======>
Store drive name in heading.

GETNAME ======>
Print heading message.

CLEARBUFF ======>
Checks to see if file name and/or type was requested; else finds all files.

SEARCHRT ======>
Clears RAM where names are to be stored for sorting and output.

[MOD4 ------>
Searches directory for names.

[TRANS ------>
Finds address of directory FCB in DMA

[MATCH ------>
Moves name and number of records to area in RAM where all names are to be stored contiguously.

[EXTCH ------>
Searches for file extents.

[RECIDEC ------>
Notes the existence of extent, the number of extents, and the number of records in the last extent.

[ADDEXT ------>
Searches buffer for matching 8th extent.

[SORT ---------->
Divides by two to get the numbers of sectors (256 bytes). Then calculates total number of records in file in decimal. Puts number next to name with leading zeros suppressed. Adds 64 decimal to number of sectors for each extent.

[COMPARE ------>
Shell-Metzner Sort

[SWITCH ------>
Compares the two names.

[WRITENAME ---->
Switches names in buffer if required.

PRINTOUT ======>
Prints names in three columns.

Checks to see if name in directory buffer has been output to screen.

Mark M. Zeiger, 198-01 B 67th St., Flushing, NY 11365
Hard disk and hardtape™ control

Up to 2400 Megabytes of hard disk control for the S-100 bus.

Konan's SMC-100 interfaces S-100 bus micro computers with all hard disk drives having the Industry Standard SMD Interface. It is available with software drivers for most popular operating systems. Each SMC-100 controls up to 4 drives ranging from 8 to 600 megabytes per drive, including most "Winchester" drives - such as Kennedy, Control Data, Fujitsu, Calcomp, Microdata, Memorex, Ampex, and others.

SMC-100 is a sophisticated, reliable system for transferring data at fast 6 to 10 megahertz rates with onboard sector buffering, sector interleaving, and DMA.

SMC-100's low cost-per-megabyte advanced technology keeps your micro computer system micro-priced. Excellent quantity discounts are available.

Konan’s HARDTAPE™ subsystem...very low cost tape and/or hard disk Winchester backup and more.

Konan's new DAT-100 Single Board Controller interfaces with a 17 1/2 megabyte (unformatted) cartridge tape drive as well as the Markesman Winchester disk drive by Century Data.

The DAT-100 "hardtape" system is the only logical way to provide backup for "Winchester" type hard disk systems. (Yields complete hard disk backup with data verification in 20-25 minutes.)

Konan’s HARDTAPE™ subsystem is available off the shelf as a complete tape and disk mass storage system or an inexpensive tape and/or disk subsystem.

Konan controllers and subsystems support most popular software packages including FAMOS™, CP/M® version 2.X, and MP/M.

Konan, first (and still the leader) in high-reliability tape and disk mass storage devices, offers OEM’s, dealers and other users continuing diagnostic support and strong warranties. Usual delivery is off the shelf to 30 days with complete subsystems on hand for immediate delivery.

Call Konan’s TOLL FREE ORDER LINE today:
800-528-4563

Or write to Bob L. Gramley
Konan Corporation, 1448 N. 27th Avenue
Phoenix, AZ 85009. TWX/TELEX 910951552

CP/M® is a registered trade name of Digital Research.
FAMOS™ is a trade name of MVT Micro Computer Systems.
HARDTAPE™ is a trade name of Konan Corporation.
The only routine I will explain in detail is the "search" routine. When a search or "search next" is requested, CP/M loads the directory file control blocks into the DMA address (defaults in this program to 80H) in groups of four. These FCB's include files which have been erased as well as extents (which are not usually contiguous with the zeroth extent on the disk). The accumulator then returns a number which when divided by four will give a remainder that is the thirty-two byte part of the DMA address where the directory FCB is located. Thus, the remainders of 0, 1, 2, or 3 will correspond to 80H, 0AH, 0CH, OEH as the location of the FCB in the DMA address if the address is set at 80H. The MOD4 routine does this calculation. A OFFH means the file does not exist. Extents have to be searched for as different files. Therefore, when first searching for the occurrence of a file, the DE registers must point to a RAM address containing the name and extent of the file(s) being sought. The "search next" routine will then get other occurrences of that file name (assuming, of course, that the filename is a wildcard). To search for extents, the DE registers must again point to the file name with the new extent and the initial search and the "search next(s)" must be requested.

I hope that you will enjoy the convenience of this program as much as I have. One of the nice things about it is that it is slightly less than 1K of object code. This means that it will use the minimum amount of disk space (important for those of us who have mini-floppies). And also, is there anyone out there who knows how to calculate the amount of space left on a disk? The CP/M STAT program does it with a call to BDOS using 27 in the C-register, but I can not figure out the details of the routine. I would like to put it in this program. If anyone knows, I would appreciate hearing from you.

;CP/M DIRECTORY LIST PROGRAM
;COPYRIGHT 1979 BY MARK M. ZEIGER
;THIS PROGRAM WILL LIST AN ALPHABETIZED DIRECTORY OF A CP/M 1.4 DISK IN A FORMATTED OUTPUT ON A 80 X 24 SCREEN.
;NEXT TO EACH FILENAME IS THE NUMBER OF 256 BYTE PAGES IN THE FILE. THIS PROGRAM WILL WORK FOR ANY TYPE OF CP/M,
;WHETHER THE DISKS ARE IBM COMPATABLE FORMAT OR NOT, BECAUSE ALL DISK ACCESSES ARE DONE BY STANDARD CP/M FUNCTION CALLS.

;TO USE THE PROGRAM, JUST TYPE "XDIR". ALL FILES ON THE DEFAULT DRIVE WILL BE LISTED. IF YOU WISH TO EXAMINE ANOTHER DRIVE,
;SAY DRIVE B, TYPE "XDIR B: ". IF YOU WISH TO LIST ONLY CERTAIN FILES, SUCH AS ALL COM FILES, TYPE "XDIR *.COM".

;REVISED 9/80 BY HARVEY FISHMAN TO WORK FOR CP/M 2 EXTENSION FORMATS

0100 ORG 100H
0100 C32D01 JMP START
0005 = BDOS EQU 5
0011 = SEARCH EQU 17
0012 = NXTSCH EQU 18
0009 = WRTBUF EQU 9
0002 = CONOUT EQU 2
005C = FCB EQU 5CH
0015 = NOLINES EQU 21
0103 3F PRNTCNT DB 63
0104 00 DIRCNT DB 0
0105 00 DESAVE DS 2
0107 00 STKSV DS 2
0109 00 WRTNUM DS 1

;FCB FOR SEARCH ROUTINE. SEARCHES FOR ALL FILES UNLESS CHANGED BY GETNAME.
010A 003F3F3F ANYNAME DB 0,'????????????',0,0,0,0,0
011B 00000000 DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
012D 210000 START LXI H,0 ;SAVE STACK
0130 39 DAD SP
0131 220701 SHLD STKSV
0134 31B805 LXI SP,NEWSTK
0137 CD5701 CALL CKDRIVE 013A CD7301 CALL SIGNON 013D CDCA01 CALL GETNAME 0140 CDB601 CALL CLEARBUFF 0143 CDE001 CALL SEARCHRT ;MAIN PROGRAM 0146 CD6202 CALL EXTSCH 0149 CDE602 CALL RECINDUC 014C CD4204 CALL PRINTOUT 014F CD6103 CALL PRINTOUT 0152 2A0701 LHLD STKSV ;RELOAD CP/M'S STACK 0155 F9 SPHL 0156 C9 RET ;RETURN TO CP/M 0157 3A5C00 CKDRIVE LDA FCB ;GET DRIVE NUMBER IN FCB 015A 320AO1 STA ANYNAME 015D FEO0 CPI 0 ;IF DRIVE IS ZERO, THEN.. 015F CA6801 JZ LOGDSK ;•.CALCULATE LOGGED-IN DRIVE. 0162 C640 ADI 40H ;CHANGE TO ASCII 0164 329701 STA DRMSG 0167 C9 RET 0168 OE19 LOGDSK MVI C,25 ;CP/M GET CURRENT DRIVE CALL 016A CD0500 CALL BDOS 016D C641 ADI 41H ;CHANGE TO ASCII 016F 329701 STA DRMSG 0172 C9 RET 0173 117A01 SIGNON LXI D,ONMSG ;SCREEN CLEAR AND.. 0176 CDFB03 CALL WRITOUT ;..PRINT HEADING. 0179 C9 RET 017A 1ADC2044 ONMSG DB lAH, OCH,' Directory ','Drive ' 017F = DRMSG EQU $-1 0180 0909436F DB 9,9, 'Copyright 1979 M. Zeiger',ODH,OAH,0 CLEARBUFF ;DIRECTORY BUFFER FILLED WITH SPACES. BUFFER IS 5 PAGES ;AT TOP OF PROGRAM. 0186 3E20 MV1 A,' ' 0188 219C05 LXI H,DIRBUFF 018B 1605 MV1 D,5 018D 1E00 LP1 MV1 E,0 018F 77 LP2 MOV M,A 0190 23 INX H 0191 1C INX E 0192 28F01 JNZ LP2 0195 15 DCR D 0196 2BD01 JNZ LP1 0199 C9 RET 019B 35D00 LDA FCB+1 GETNAME ;PUTS FILE NAME AND/OR TYPE INTO SEARCH FCB. IF DEFAULT FCB ;OF COMMAND LINE IS BLANK, THEN LEAVE SEARCH FCB WITH *?*S. 01CA 35D00 LDA FCB+1 01CD FE20 CPI '' 01CF FC00 HI 01D0 21D00 LXI H,FCB+1 01D3 110801 LXI D,ANYNAME+1 01D6 060B MV1 B,11 01DB CD904 CALL MTB 01DB C9 RET SEARCHRT ;SEARCHES FOR NAMES AND TRANSFERS TO BUFFER ABOVE PROGRAM. 01DC 219C05 LXI H,DIRBUFF ;SAVE ADDRESS.. 01DF 220501 SHLD DESAVE ;OF DIRBUFF 01E2 0611 MV1 C,SEARCH ;SEARCH FOR FIRST.. 01E4 110A01 LXI D,ANYNAME ;..OCCURRENCE. 01E7 CD6050 CALL BDOS 01FA PEFF CHECK1 CPI GFXH ;IF FIRST SEARCH FAILS.. 01EC CA013204 JZ NODIR ;..NO ENTRY EXISTS. ;FIND NEXT VALID FILENAME IN DMA. MULTIPLY IT BY 32, THE LENGTH ;OF A DISK DIRECTOR Y. CALCULATE ITS ADDRESS IN DMA IN HL REG. 01F0 215502 LOOP2 CALL MD4 ;ZERO THE 3 BYTES AFTER NAME 01F2 65 PUSH H 01F3 65 PUSH D 01F4 110CC0 LXI D,12 01F7 15 MV1 H,DAD D 01F8 3600 MV1 M,M 01FA 23 INX H 01FB 3600 MV1 M,M 01FD 23 INX H 01FE 3600 MV1 M,0 0200 D1 POP D 0201 E1 POP H 0202 62 CD4002 CALL TRANS ;TRANSFER TO DIRBUFF 0205 0E12 MV1 C,ANYNAME 0207 110A01 LXI D,ANYNAME 0209 CD6050 CALL BDOS 020D PEFF CPI GFXH ;NO MORE NAMES IF GFXH ;ZERO THE 3 BYTES AFTER NAME 0210 35D00 LDA FCB+1 0213 112002 JNZ LOOP2 0216 0809 MV1 C,WTBUF 0218 CD6050 CALL BDOS 021A 2A701 LHLD STKSV 021E F9 SPHL 021F C9 RET ;DO THE TRANSFER 0220 0004A4 NODIRM SG DB ODH,OAH,OAH,'No entry found',ODH,OAH,'$' TRANS ;STORES A DISK FCB ALONG WITH NUMBER OF RECORDS IN THE ;NEXT 16 BYTES OF DIRBUFF. 0234 F5 PUSH PSW 0235 D5 PUSH D 0236 0610 MV1 B,16 0238 E5 PUSH H 0239 2A0501 LHLD DESAVE ;..OF FILE IN DIRBUFF. 023C EE XCHR 023D E1 POP H 023E 7E LOOP1 MOV M,A,M 023F 12 STAX D 0240 23 INX H 0241 13 INX D 0242 05 DCR B 0243 C23E02 JNZ LOOP1 0246 EB XCHR ;SAVE THE LAST ADDRESS. 0247 220501 SHLD DESAVE ;..OF DIRBUFF USED. 024A EE XCHR 024B 01 POP D
MOD4

;CALCULATE THE ADDRESS OF THE DIRECTORY FCB IN DMA
0255 E603 ANI 03H ;GET DIR ENTRY MODULO 4
0257 070707 RLC ! ! ! ! ! RLC ;MULT BY 32
025A 0707 RLC ! ! ! ! ! RLC
025C 218000 LXT H,80H ;GET ADDR IN DMA (SOH)
025F 85 ADD L
0260 6", ~lOV L, A
0261 C9 RET

EXTSCH

;SEARCH FOR ALL FILES WITH EXTENT 1
0262 211601 LXI H,ANYNAME + 12
0265 011601 MVI C,SEARCH
0267 110A01 LXI D,ANYNAME
026A CD0500 CALL MOD4
026D FEFF CPI OFFH
026F CA6202 JZ EXTSCH
0272 3A1601 LDA ANYNAME+12
0275 E601 ANI 1
0277 78 MOV A, B
0278 CA8802 JZ LOOPS
027B CD5502 CALL MOD4
027E C60C ADI 12
0280 6F MOV L,A
0281 7E MOV A,M
0283 E601 ANI 1
0285 CAA802 JZ NXT 1
0287 78 MOV A, B
0288 CD5502 LOOPS CALL MOD4
028B EB XCHG
028C 219C05 LXI H,DIRBUFF
028F CD0F02 CALL MATCH
0292 DA9C02 JC FOUNDMATCH
0295 011000 LXI B,16
0298 09 DAD B
029B C38F02 JMP LOOPS

FOUNDMATCH

;DE POINTS TO # REC IN ENTRY EXIT
029C EB XCHG
029D 010F00 LXI B,15
02A0 09 DAD B
02A3 EB XCHG
02A4 2A9D LXI D,ANYNAME
02A7 77 MOV M,A
02A9 2B DCX H
02AB 2B DCX H
02AD 34 INR M
02A8 0E12 NXT1 MVI C,NXTSCH
02AA 110A01 LXI D,ANYNAME
02AC 3A0401 LDA DIRCNT ;COUNT THE NUMBER OF.. ;DIRECTORY ENTRIES.
02AD CD0500 CALL BDOS
02B0 FEFF CPI OFFH
02B2 CA6202 JZ EXTSCCH
02B5 47 MOV B,A
02B8 3A1601 LDA ANYNAME+12
02BB 8E E4 A,B
02BC AC8B02 JZ LOOP5
02BF CD5502 CALL MOD4
02C2 C60C ADI 12
02C5 7E MOV L,A
02C8 E601 ANI 1
02C9 8E CXA802 JZ NXT1
02CC 38B02 JMP LOOP5

MATCH

;CALLED WITH DE POINTING TO FILENAME IN FCB AND HL POINTING
;
;TO FILE NAME IN DIRBUFF. RETURNS WITH CARRY SET IF THE
;NAMES ARE THE SAME.
02CF E5 PUSH H
02D0 D5 PUSH D
02D1 0E0B MVI C, 11
02D3 1A LOOP3 LDAX D
02D4 BE CMP M
02D5 C2E202 JNZ CLRCRY ;THEY'RE NOT EQUAL. CLEAR CARRY
02D8 23 INX H
02D9 13 INX D
02DA OD DCR C
02DB C2D302 JNZ LOOP3 ;CHECK 11 CHARACTERS.
02DE DI POP D
02DF 37 STC
02E0 1C9 RET
02E1 8B7 CLRCRY ORA A ;CLEAR CARRY
02E2 3E3 D1 POP D
02E3 8E4 E1 POP H
02E4 8E5 C9 RET

RECINDEC

;GETS DECIMAL NUMBER OF PAGES (256 BYTES) IN FILE EXTENTS.
02E6 3A0401 LDA DIRCNT
02E9 47 MOV B,A
02EB 2A8B05 LXI H,DIRBUFF + 15
02E8 CD0500 CALL MATCH
02EA 78 MOV L,A
02EB 7B MOV A,M
02EC 7E MOV L,A
02ED 78 MOV A,M
02EF 3A0401 LDA DIRCNT
02F2 3C MVI C, 11
02F4 78 MOV A,M
02F7 7E MOV L,A
02F9 FE00 CPI 0
02FB 78 MOV A,M
02FC 1A8104 MOVL H,A
02FD FE20 CPI 0
02FE 215303 JNZ SKIP4
02FF 80H ORI 20H
0200 23 MOVL H,A
0202 23 MOVL H,A
0305 7A MOV A,D
0306 FEOO CPI 0
0308 C21003 JMP SKIP9
030B F620 ORI 20H
0310 F630 SKIP9 ORI 30H
0312 C31C03 JMP SKIPI0
0315 F620 SKIP9 ORI 30H
0317 7A MOV A,D
0318 23 INX H
0319 7A MOV A,D
031A F630 SKIPI0 ORI 30H
031B 77 SKIP5 MOV M,A
031C 23 INX H
031D 7B MOV A,E
031E F630 ORI 30H
031F 77 SKIPI0 MOV M,A
0320 E6FO ANI OFOH ;BLANK OUT LOWER NIBBLE
0321 C615 MOVL A
0322 27 DAD B
0323 5F MOV E,A
0324 F1 POP PSW
0325 110000 LXI D,17
0326 19 DAD D
0327 05 DCR B
0328 C2ED02 JNZ LOOP8
032A C9 RET

;TEST TO SEE IF TEN'S SHOULD BE BLANK.

;MAKE IT ASCII

;READY FOR NEXT ENTRY.

;IN DIRBUFF.

;HUNDRED'S IN C, TEN'S IN D, AND UNIT'S IN E.

;FOR EVERY EXTENT, ADD 64 DECIMAL TO NUMBER OF PAGES.

;CHANGES A-REG TO DECIMAL. RETURNS WITH TEN'S IN D,
;UNIT'S IN E.

;CHANGES "RECNO" TO (DIRBUFF+l) + 16*RECON. IT THEN STORES
;THAT ADDRESS IN HL AND PRINTS THE NAME AT THAT ADDRESS
;UNLESS IT IS BLANK.

;PRINTOUT

;PRINTEND

;WRITENAME

;CHANGES "RECNO" TO (DIRBUFF+l) + 16*RECON. IT THEN STORES
;THAT ADDRESS IN HL AND PRINTS THE NAME AT THAT ADDRESS
;UNLESS IT IS BLANK.

;TEST TO SEE IF NAME WAS..
; THE FOLLOWING IS AN ADAPTATION OF THE SHELL-METZNER SORT
; TAKEN FROM A BASIC PROGRAM.

SORT

LDA DIRECNT
STA RECNO
STA HALFREC
LOA HALFREC
INX ,
RAR
STA HALFREC
RZ
LDA HALFREC
MOV B,A
LDA RECNO
SUB B
STA SPREAD
MVI A, 0
STA J
LDA J
STA FIRSTREC
LDA FIRSTREC
MOV B,A
LDA HALFREC
ADD B
STA SECONDREC
LDA DIRECNT
ADD B
STA RECNO
SUB B
HALVE

X2

LDA J
INR A
STA J
MOV 8,A
LDA SPREAD
CMP B
JC HALVE
JMP X2

X3

LDA J
XCHG
LDA SECONDREC
CALL ADJUST
XCHG
LDA FIRSTREC
CALL ADJUST
RET

CHTOAD

LDA DIRCNT
CALL ADJUST

HALVE

LDA J
XCHG
LDA HALFREC
CALL ADJUST

X2

LDA J
XCHG
LDA SECONDREC
CALL ADJUST

X3

LDA J
XCHG
LDA FIRSTREC
CALL ADJUST

RET
THIS ROUTINE SWITCHES THE FIRST RECORD WITH THE SECOND.

ADJUST

;MULTIPLIES "RECNO" BY 16 AND PUTS IN HL TO POINT
;TO NAME IN DIRBUFF.

04B3 019C05 LXI B,DIRBUFF
04B6 6F MOV L,A
04B7 2600 MVI B,C
04B9 2929 DAD H 1 DAD H
04BD 09 DAD B
04BE C9 RET

COMPARE

;COMPARES THE NAMES IN THE FIRST AND SECOND ADDRESS. IF THE
;FIRST IS LARGER THAN THE SECOND, IT INDICATES A SWITCH
;SHOULD BE MADE BY SETTING THE CARRY.

04BF E5 PUSH H
04C0 D5 PUSH D
04C1 00DB MVI C,11
04C3 46 MOV B,M
04C4 1A LDAX D
04C5 88 CRF B
04C6 DADC04 JC RETC
04C9 CAD004 JZ INCREASE
04CC B7 ORA A
04CD D1 RETWC POP D
04CE E1 POP H
04CF C9 RET

INCREASE

;CHARACTERS WERE EQUAL. DO...

04D0 23 INX H
04D1 13 INX D
04D2 0D DCR C
04D3 CAC804 JZ RETWC-2
04DE C3C304 JMP COMPARE+4

SWITCHAD

04D9 D5 PUSH D
04DA E5 PUSH H
04DB 110605 LXI D,TEMP
04DE 0610 MVI B,16
04E0 CDF004 CALL HTD
04E2 E1 POP H
04E4 D1 POP D
04E5 EB XCHG
04E6 0610 MVI B,16
04E8 CDF004 CALL HTD
04EB EB XCHG
04EC E5 PUSH H
04ED D5 PUSH D
04EE 210605 LXI H,TEMP
04F0 E610 MVI B,16
04F2 CDF004 CALL HTD
04F6 D1 POP D
04F7 E1 POP H
04F8 C9 RET

HTD

;THIS ROUTINE DOES THE TRANSFER. MOVES RECORD ADDRESSED BY
;HL TO RECORD ADDRESSED BYE DE.

04F9 D5 PUSH D
04FA E5 PUSH H
04FB 7E MOV A,M
04FC 12 STAX D
04FD 23 INX H
04FE 13 INX D
04FF 05 DCR B
0500 C2F804 JNZ HTD+2
0501 E1 POP H
0504 D1 POP D
0505 C9 RET

0506 TEMP DS 16
0510 RECNO DS 1
0517 HALFREC DS 1
0518 SPREAD DS 1
0519 FIRSTREC DS 1
051A SECONDREC DS 1
051B J DS 1
051C STACK DS 80H
059B NEWSTK EQU 5-1
059C DIRBUFF DS 16*64
099C END
An S-100 Eprom Programmer
Using the Intel 8255 PPI

by Ted Croal

The 8255 programmable peripheral interface is a convenient interface for an EPROM programmer.

For my first scratch-built computer project to add to my 8080A system, I selected the EPROM programmer circuit provided by Steve Ciarcia in the March 1978 issue of "BYTE". I was reading Adam Osborne's "An Introduction to Microcomputers, Vol. II" at the time and I thought that the 8255PPI would be a good way to provide the four parallel I/O ports required for the project. When the board was about half completed, I realized that I did not have specific instructions for connecting to the S-100 bus. After some trial and error, I arrived at a configuration that worked well for programming but would not read data in from the 2708 EPROM. It was not until I read David Condra's article in the October 1979 issue of "BYTE", that I realized that I did not properly isolate the data lines of the 8255 from the data lines of the S-100 bus. I added tristate buffers to the data outlines and now the board is working as intended.

The 8255PPI is a 24 pin general purpose interface that can be programmed in a variety of ways. In my board it is used in the simplest mode (Mode O, for basic I/O). Included in the device are three data ports, referred to as A, B, and C and a fourth port which is used for programming the 8255. By writing into this control port (the highest of the four consecutive port addresses used by the 8255), ports A, B, and C can be assigned to either input or output. Individual pins of port C can also be set or reset by appropriate control bytes.

Programmer Hardware Structure

I use port A for data to be loaded into the 2708 EPROM, or read from it, port B for the eight lowest address lines of the EPROM, and the two lowest bits of port C for the two highest address lines of the EPROM (page address). I use bit 2 of port C for programming mode (set for programming, reset for reading) and bit 3 for the programming pulse, leaving bits 4-7 of port C available for other uses.

Port assignments are made by writing a control byte in which bit 7 is set. Bits 6 and 5 are reset to indicate mode 0 for port A and bit 2 is reset to indicate mode 0 for port B. Bits 4, 3, 1, and 0 control the direction of port A, the upper half of port C, port B, and the lower half of port C respectively. They are set for input and reset for output.

Port C can be used in the usual manner by writing a byte to the port address or the bits of port C can be controlled individually by writing to the control port a byte in which bit 7 is reset. Bits 3, 2, and 1 of this byte form a binary number specifying the bit number of port C to be controlled and bit 0 specifies the state (reset for 0, set for 1). Bits 6, 5, and 4 of the control byte are ignored.

The control bytes used in the listings are:

* **SOH (2000):** Ports A, B and C are defined as out ports and mode O is selected. This is in preparation for programming.
* **90H (2200):** Port A is defined as an in port and B and C as out ports. Mode O is selected. This prepares for reading the EPROM.
* **9BH (2330):** Ports A, B and C are assigned as in ports. This is intended to discourage a false pulse from reaching the EPROM when the power is turned off, but is not always effective. The 27V supply should be turned on after the main power supply and off before the main power supply.
* **07H (0070):** This sets bit 3 port C, initiating a programming pulse.

The following control bytes are useful in checking the operation of the board from the front panel or in a test program. (Port C must already be defined as an out port.)

* **05H (0050):** bit 2 of port C is set and the LED comes on to indicate "program mode".
* **04H (0040):** Bit 2 of port C is reset and the LED goes off to indicate "read mode".

The "program mode" LED also comes on when the 8255 is reset, as at power on, or when port C is defined as an in port.
The Best of BYTE

30% to 68% Discounts!

During a recent move, we found several skids of "The Best of Byte" lurking in a corner. It won't be reprinted, so this is your last chance to get a copy of this valuable book—and at a discount. The book contains most of the material from Byte Numbers 1 to 12. All of these issues are out of print and this is the only source of this vital material.

The normal price of this huge, 386-page book is $11.95 plus $1.00 shipping. Dealer discounts are normally 40%. However, the close-out prices give you big savings.

Quantity Postpaid Savings
Individual Copy $10.00 30%
1 to 4 Cartons (26) $150.00/ctn 52%
5 to 9 Cartons $140.00/ctn 55%
10 plus Cartons $130.00/ctn 58%
Full Skid $100.00/ctn 68%
(48 cartons—1248 books)

Free Shipping!

Creative will pay the shipping on all prepaid dealer orders. That's like getting an extra 3% discount!

Order today! Send payment to Creative Computing, P.O. Box 789-M, Morristown, NJ 07960. Visa, MasterCard or American Express is acceptable; send card number and expiration date.

Table of Contents

Let There Be Light Pens — Loomis
Build an Oscilloscope Graphics Interface — Hogenson
An Introduction to Addressing Methods — Zarrella
Interfacing an ASCII Keyboard to a 6800 — Rush
TTY Loop — Cotton
Interfacing the 680 mA Current Loop — King
The Complete Tape Cassette Interface — Hemmenway
Digital Data on Cassette Recorders — Mauch
Build a Fast Cassette Interface — Suding
Technology Update — Frank
What's in a Video Display Terminal? — Walters
Put Position Digitizing Idea — Schuh
Read Only Memories in Microcomputer Memory
Address Space — Elioneer
More Information on PROMs — Smith
Getting Input from Joysticks and Slide Pots — Helmers
Logic Probes — Hardware Bug Chasers — Boven
Controlling External Devices With Hobbyist Computers — Boven
Microprocessor Based Analog/Digital Conversion — Boven
Frank
Add a Huge Heap to Your Computer — Helmers
The Time Has Come to Talk — Atmar
Make Your Own Printed Circuits — Hogenson

SOFTWARE
Write Your Own Assembler — Fytsa
Simplify Your Homemade Assembler — Jewell
Interact With an ELM — Gable
Design an On Line Debugger — War and Brown
Processing Algebraic Expressions — Meyer
The "My Dear Aunt Sally Algorithm" — Grapple
Can YOUR Computer Tell Time? — Hogenson
More Information on PROMs — Hogenson
Build a Fast Cassette Interface — Suding
A Port Is Incomplete Without Characters — Lerseth
Hexspew: A Beginning Project in Artificial Intelligence — War
Shooting Stars — Wall
Biocyn for Computers — Fox
Life Line — Helmers

APPLICATIONS
Total Kitchen Information System — Sharp
A Small Business Accounting System — Lehman
Chips Found Floating Down Silicon Slough — Trumbull

RESOURCES
Books of Interest — Magazines

NOW-CALL TOLL-FREE
800-631-8112
(in NJ call 201 540-0445)
CHARGE YOUR ORDER

Creative Computing
P.O. Box 789-M
Morristown, New Jersey 07960

S-100 MICROSYSTEMS
Component side of board.

This board does not correspond to the schematic because it incorporates addressing decoding and data bus buffering. The data out lines are buffered with 2 input AND gates (74LS08, IC's A and B0. This proved to be unsuitable for proper operation of the internal bidirectional data bus. Adding an additional tri-state buffer (IC E) to the data out lines and employing the unused gates of IC C and IC D (Tri-state hex buffers on the data in lines) corrected the problem. A, B, C, D, and E serve the same function as IC's 4 and 5 in the schematic. It would be simpler to build on a completely bare board, following the schematic which can be found at the end of this article.

Wire side of board.

The heavy wiring is for the extra power supply connections required by the 2708 EPROM. The +5V supply is to pin 24 of the EPROM. The +12V supply is pin 19 and the -5V supply is pin 21. Pin 12 is the ground. Some of the bypass capacitors have been placed on this side.

Number	Type	+5V	-5V
I0 1 | 74LS04 | 14 | 7 |
I0 2 | 74LS00 | 16 | - |
I0 3 | 74LS04 | 16 | - |
I0 4 | 74LS04 | 16 | - |
I0 5 | 74LS04 | 16 | - |
I0 6 | 8255PPI| 26 | 7 |
I0 7 | 74LS21 | 14 | 7 |
I0 8 | 74LS21 | 14 | 7 |
I0 9 | 74LS21 | 24 | 12 |
(I0 9 also requires +12V (pin 19) and -5V (pin 21)

Power Supply Connections

Programmer Software

There are two subroutines, BURN (listing 1) and READ (listing 2), which address the EPROM. The subroutine CYCLE (listing 3) calls on BURN to program the block of memory specified in three memory words into the EPROM, starting at the address in the EPROM specified by a fourth memory word.

```
BURN:  MOV  A,D  ; high byte of EPROM addr
        MOV  OSH  ; Mask all but bits 0,1
        MOV  OSL  ; Set bit 2 for program mode
        MOV  PORTC ; Two highest addr lines of EPROM
        MOV  A,E  ; Low byte of EPROM addr
        OUT  PORTS  ; Remaining EPROM addr lines
        MOV  A,M  ; Data byte
        OUT  PORTA  ; Output to data lines
        OUT  PORTB  ; Write strobe
        OUT  PORTC  ; Control byte to set bit 3 port C
        MOV  A,07H ; Delay count
        MOV  B,8SH ; One millisecond delay
        MOV  A,1  ; During write stroke
        MOV  PORTC  ; Clear accumulator
        MOV  A,0  ; Clear port C
        OUT  PORTA  ; Return from BURN
```

Listing 1

Subroutine to program a byte of memory specified by register pair HL at an address in EPROM specified by register pair DE. "PORT A" is the lowest of the four consecutive port addresses used by the 8255PPI. "PORT B" and "PORT C" are the next two and "PORT D" is the highest address, that is, the address of the control port. Ports A, B, and C must first be defined as out ports.

```
READ:  MOV  A,D  ; high byte of EPROM addr
        MOV  OSH  ; Mask all but bits 0,1
        MOV  OSL  ; Two highest addr lines of EPROM
        MOV  A,E  ; Low byte of EPROM addr
        OUT  PORTS  ; Data byte
        INX  PORTA  ; Remaining EPROM addr lines
        MOV  A,0  ; Data byte
        OUT  PORTA  ; Return from READ
```

Listing 2

Subroutine to read a byte from the 2708 EPROM. Port A must first be defined as an in port, and ports B and C as out ports.

```
CYCLE:  MOV  A,00H  ; Code byte to define A, B, C
        MOV  PORTC  ; as out ports
        LDD  STSR   ; Starting addr in EPROM
        MOV  STSR  ; Place in 88
        MOV  STSR  ; Starting addr of source block in HL
        CALL  BURN  ; Program a byte of EPROM
        INX  D     ; Increment EPROM pointer
        INX  B     ; Increment source pointer
        MOV  A,88H  ; Addr of end block
        INY  PORTA  ; Test low byte source pointer
        CMP  0FFH  ; Loop until same
        CMP  88H    ; Two high byte source pointer
        CMP  88H    ; Loop until same
        OUT  PORTA  ; Return from CYCLE
```

Listing 3

Subroutine to program a block of memory into a given location in a 2708 EPROM. Each specified location in EPROM is given one programming pulse.

I have a routine (not listed) common to several programs that loads these memory locations. STSRC is the starting address of the source, that is, the starting address of the program to be loaded into EPROM. LNSRC is the length of the block and ENSRC is the first address past the end of the block (or STSRC + LNSRC). STDES is the address of the start of the block in the EPROM. Bits 7-2 of the high order byte of STDES are ignored so the address of the intended site for the EPROM can be used.

Before each programming run, the subroutine TSTER (listing 4) is called to see if the block to receive the program is blank. The status of the EPROM block is displayed. The message "error" indicates that at least
EPROM Programmer cont'd...

one bit of the block is reset. The operator may then abort the run or proceed to load over the block. (A set bit may be reset but a reset bit must be erased by ultra-violet light.)

Listing 4

Subroutine to test a block of EPROM for complete erasure. If the block is erased, the zero flag is set on return. Else it is reset.

A full load (listing 5) of one kilobyte is complete in less than two minutes, and a quick load (listing 6) requires only a few seconds, and usually consists of only 2 cycles. The quick-loaded EPROM seems to work just as well as the full-loaded one but you may wish to copy the program with a full load after you have debugged the program which you are loading.

Listing 5

Subroutine to make a full load of a block of memory, consisting of 100 programming pulses of 1 ms each to each byte in the block. Register C starts and ends with the number 100 to indicate the number of cycles used.

Listing 6

Subroutine to make a quick load of a block of memory. The 2708 is checked after each cycle to see if the loading is correct. One additional cycle is made and the count of the cycles is displayed and the load verified. The run is aborted after ten unsuccessful tries (you probably forgot to turn on the programming power supply).

At the end of the run, the EPROM is compared with the source block by the subroutine VERFY (listing 7) and the status displayed. The number of programming cycles used is also displayed.

Listing 7

Subroutine to verify the program loaded into the 2708 EPROM with the source in memory. If a byte is found that does not match, the zero flag is reset on return. If the load is verified, the zero flag is set.

I use a "menu" display in which the user can select the desired program. At the end of the run, the computer returns to the "utility directory" for selection of another program. Listing 8 shows how the subroutines can be combined to form a useful program. CARST (not listed) clears and resets the TV screen. CDISP (not listed) displays the contents of register C. Other programs not listed in this article display the contents of the EPROM and copy the EPROM into memory. These call on READ and can be written in the same manner as the routines listed. Several messages are used to inform the user of the progress of the program (listing 9). These are displayed by the subroutine MESGE (not listed). The routine at MENU (not listed) displays the choices, receives a keyboard entry, and jumps to the address specified in the table at MENTB (not listed).

Listing 8

Program to select either a full load or a quick load for a block of memory. Choices are (1) for quick load, (2) for full load, or (ESC) for return to start of program (not listed) to redefine the block. All other entries cause a return to (CHUSE).

At the end of the run, the EPROM is compared with the source block by the subroutine VERFY (listing 7) and the status displayed. The number of programming cycles used is also displayed.

At the end of the run, the EPROM is compared with the source block by the subroutine VERFY (listing 7) and the status displayed. The number of programming cycles used is also displayed.

At the end of the run, the EPROM is compared with the source block by the subroutine VERFY (listing 7) and the status displayed. The number of programming cycles used is also displayed.

At the end of the run, the EPROM is compared with the source block by the subroutine VERFY (listing 7) and the status displayed. The number of programming cycles used is also displayed.

At the end of the run, the EPROM is compared with the source block by the subroutine VERFY (listing 7) and the status displayed. The number of programming cycles used is also displayed.
If you are building this circuit, note that IC4 in Steve Ciarcia's article should be a 7406 not a 7407 (do not substitute a 7416). Note also that in Dave Condra's article there should be an inverter between pin 9 of IC3 (DM8131) and pin 5 of IC2 (74LS00). Use a section of IC1 (74LS04); connect pin 9 of IC3 to pin 13 of IC1 and pin 13 of IC1 to pin 5 of IC2. Although I did not use the DS8833 bus transceivers I would do so if I were building the circuit again.

References

1. Program Your Next EROM in BASIC; Ciarcia, Steve; BYTE March 1978, page 84.

2. Interfacing the S-100 Bus with the Intel 8255; Condra, David L.; BYTE October 1979, page 124.

Software Consultants
Harken!

Do you do software customizing? Do you do software package installation? Do you provide turnkey systems? Do you run a programming shop? Full-time? Part-time?

Starting with a future issue MICROSYSTEMS will publish a directory of "software shops." Places where computer customers can go for software package customizing. Most purchases of computer software packages find that the package does not exactly meet their needs—customizing is required—sometimes this is minor and sometimes it is major. Our directory will provide low cost advertising for "software shops." If you wish to be listed write to MICROSYSTEMS, Box 1192, Mountainside, NJ 07902 for information.
Beyond Our Dreams

Computers are not creative per se. But the way in which they are used can be highly creative and imaginative. Five years ago when Creative Computing magazine first billed itself as "The Number 1 magazine of computer applications and software," we had no idea how far that would take us.

Today, these applications are becoming so broad, so all-encompassing that the computer field will soon include virtually everything!

In light of this generality, we take "application" to mean whatever can be done with computers, ought to be done with computers, or might be done with computers. That is the meaning of Creative Computing.

Alvin Toffler, author of Future Shock and The Third Wave says, "I read Creative Computing not only for information about how to make the most of my own equipment but to keep an eye on how the whole field is emerging."

Creative Computing, the company as well as the magazine, is uniquely lighthearted but also seriously interested in all aspects of computing. Ours is the magazine of software, graphics, games and simulations for beginners and relaxing professionals. We try to present the new and important ideas of the field in a way that a 14-year-old or a Cobol programmer can understand them. Things like text editing, social simulations control of household devices, animation and graphics, and communications networks.

Understandable Yet Challenging

As the premier magazine for beginners, it is our solemn responsibility to make what we publish comprehensible to the newcomer. That does not mean easy; our readers like to be challenged. It means providing the reader who has no preparation with every possible means to seize the subject matter and make it his own.

However, we don't want the experts in our audience to be bored. So we try to publish articles of interest to beginners and experts at the same time. Ideally, we would like every piece to have instructional or informative content—and some depth—even when communicated humorously or playfully. Thus, our favorite kind of piece is accessible to the beginner, theoretically non-trivial, interesting on more than one level, and perhaps even humorous.

David Gerrold of Star Trek fame says, "Creative Computing with its unpretentious, down-to-earth lucidity encourages the computer user to have fun. Creative Computing makes it possible for me to learn basic programming skills and use the computer better than any other source."

Hard-hitting Evaluations

At Creative Computing we obtain new computer systems, peripherals, and software as soon as they are announced. We put them through their paces in our Software Development Center and also in the environment for which they are intended: home, business, laboratory, or school.

Our evaluations are unbiased and accurate. We compared word processing printers and found two losers among highly promoted makes. Conversely, we found one computer had far more than its advertised capability. Of 16 educational packages, only seven offered solid learning value.

When we say unbiased reviews we mean it. More than once, our honesty has cost us an advertiser—temporarily. But we feel that our first obligation is to our readers and that editorial excellence and integrity are our highest goals.

Karl Zinn at the University of Michigan feels we are meeting these goals when he writes, "Creative Computing consistently provides value in articles, product reviews and systems comparisons...in a magazine that is fun to read."

Order Today

To order your subscription to Creative Computing, send $20 for one year (12 issues), $37 for two years (24 issues) or $53 for three years (36 issues) If you prefer, call our toll-free number, 800-631-8112 (in NJ 201-540-0445) to put your subscription on your MasterCard. Visa or American Express card. Canadian and other foreign surface subscriptions are $29 per year, and must be prepaid. We guarantee your satisfaction or we will refund the unfulfilled portion of your subscription.

Join over 80,000 subscribers like Ann Lewin, Director of the Capital Children's Museum who says, "I am very much impressed with Creative Computing. It is helping to demystify the computer. Its articles are helpful, humorous and humane. The world needs Creative Computing"
NEW PRODUCTS

16-BIT 8086 CPU PRODUCTS
Seattle Computer Products has released several products which comprise an Intel 8086 based computer system. Included are the following:

16-BIT 8086 CPU CARD: The SPC200 is an S-100 8086 based CPU compatible with older 8-bit memories and newer 16-bit memories, or the two combined. It meets the IEEE S-100 bus standard. Address range is one megabyte. The price is $695 (4 MHz) or $895 (8 MHz/4 MHz).

CPU SUPPORT CARD: The SPC 300 is a companion to the SPC 200 and is necessary for a multi-user system. It provides 2K ROM (contains system monitor), serial I/O (programmable baud rate), form programmable times and more. The price is $395 (with ROM) or $370 (with disk instead of ROM).

MEMORY CARD: The SPC 107 is an IEEE compatible memory that automatically configures itself as 8K by 16 bits to the SPC 200 or 16K by 8 bits to 8-bit CPUs. It utilizes 200 nsec chips which can operate at 8 MHz with no wait states. Price: $455.

BASIC-86: Identical to Microsoft’s version 5.0 of Basic. Does not require an operating system as all disk and I/O drivers are included. Available on 8” IBM disk with Cromemco 4FDC drivers. Price: $350 (SCP owners), $500 (others).

CROSS-ASSEMBLER: A Z80 program that runs under CP/M and creates 8086 code. Includes a translator program which converts Z80 source code to 8086 source code. Available in 5” soft-sector, 5” North Star and 8” IBM disk. Price: $250.

DISK OPERATING SYSTEM: The SCP 86-DOS is a complete operating system package. Provides a high level interface to I/O devices and disk system. Includes resident assembler, Z80 to 8086 source code translator, a utility to read CP/M files, a line editor and disk maintenance utilities. Price: $95 (SCP owners), $195 (others).

For more information contact Seattle Computer Products, Inc., 1114 Industry Drive, Seattle WA 98188; (206) 575-1830.

16K and 48K TWO PORT MEMORY BOARDS
Cromemco introduces two new two-port memory boards, the 16KTP and the 48KTP, for use with their Model SDI high resolution, color graphics interface.

These two-port memory boards have two sets of address and data lines which give them the ability to process the SDI’s memory refresh requests while the CPU simultaneously and independently executes a user program. Picture information is accessible by the SDI through a connector on the top of the memory boards. This direct connection of the SDI and the two-port memory bypasses the S-100 bus so the CPU accesses the two-port memory as though the SDI were not present. Consequently, use of the special two-port memory in a graphics system assures 75% to 100% CPU utilization, depending on the application software.

These two-port memory boards are also designed to work with Cromemco’s powerful graphics software package. This graphics package provides a full range of powerful, human oriented commands that operate from such common high-level languages as Basic, Fortran and Ratfor. The graphics software package will operate with one or two pages of two-port memory. Two pages of 48K bytes of RAM are required for complete utilization of all available software options.

Cromemco’s two-board color graphics interface (Model SDI) is available for $595. The 16K two-port memory board (Model 16KTP) is available for $795 and the 48K two-port memory board (Model 48KTP) is available for $1785. Cromemco’s graphics software package is available on either 8” (Model SGS-L) or 5” (Model SGS-S) floppy diskette for $295. For additional information, contact Cromemco, Inc., 280 Bernardo Avenue, Mountain View, CA (415) 964-7400.

HIGH RESOLUTION COLOR GRAPHICS FROM CROMEMCO
Cromemco has just announced a new software package for its high resolution graphics system. The Cromemco graphics system can be used to display color or black-and-white images with up to 756 x 482 point resolution on a high quality RGB monitor.

The Cromemco system provides commands that operate from such common high-level languages as Basic, Fortran and Ratfor.

The graphics software package is designed to work with Cromemco’s 48KTP and 16KTP (two port) memory boards.
and will operate with one or two pages of
two port memory. Two pages of 48K
bytes of RAM are required for complete
utilization of all available software op-
tions.

For those using the graphics software
package, the subroutine calls provided are
sufficient to fully utilize all the capa-
bilities of the Cromemco SDI high res-
solution graphics interface board. These
subroutines allow the user a number of
powerful capabilities including; fast line
generation; fast generation of regular
shapes such as circles, rectangles, and
polygons; area fill of these shapes in a
designated color at video rates; text gen-
eration and rotation; the ability to open
and close windows in the page of me-
ory being displayed; the ability to sim-
ulate motion (animation); the ability to
CLIP which eliminates problems which
might arise from trying to plot outside the
screen area; and the ability to scale the
display area of the work page.

The programmer can generate and
display an image in high resolution (756
x 482 points) as well as the 16 color
medium resolution (378 x 241 points)
using the same system. In addition, the
programmer has the choice of plotting
explicitly (i.e., specifying within a call all
needed location and color information)
or implicitly (i.e., specifying needed loca-
tion information with regard to an impli-
ced cursor).

The software and hardware permit the
user to select 16 colors for the color map
from a palette of 4096 colors. The con-
ents of any color in this color map can be
modified by the user with a simple call
define color command. In addition, when
programming in Fortran or Assembly lan-
guage, the programmer has the option of
creating color maps using the command
CMAPGEN.

The SDI color graphics software pack-
age is available from Cromemco on
either 5' (Model SGS-S) or 8' (Model
SGS-L) diskette for $285. For additional
information, contact Cromemco, Inc.
280 Bernardo Avenue, Mountain View,
CA 94043, (415) 964-7400.

THE OS MICRO TRANSLATOR SYS-
TEMS TRANSLATES BRAILLE & DOES
WORD PROCESSING

DUXBURY SYSTEMS, INC., of
Maynard, Mass. has introduced a micro-
computer-based, word processing an
braille translating system. It includes a
North Star Z-80 based microcomputer
with dual quad-capacity diskettes for tra-
nslation and storage; a screen terminal
with keyboard for input; a Trif ormation
Systems LED-120 (Line Embossing
Device, 120 characters per second) for
braille production; Duxbury Systems
software for text editing, braille tran-
slation, and formatting; and an optional
letter-quality printing terminal for
inkprint production. In addition to the
LED-120 translated text can be transfr-
ted to any of the Trif ormation LED series
embossing devices, or the press braille
plate embosser, model PED-30, or the
hand-held Digicassette braille recorder.

In operation, the system permits a
sighted person with no knowledge of

S-100 MICROSYSTEMS

Portrait digitized with Tecmar's Video
Microcomputer System (resolution:128 x 128)
SOFTWARE DIRECTORY

Program Name: APL Version 2.3
Hardware System: CP/M system
Minimum Memory Size: 48K
Language: 8080 Machine Code
Description: An APL implementation having most of the functions and operators of full APL, including n-dimensional inner and outer product, reduction, compression, general transpose, reversal, take, drop, execute, format, logarithm, exponential, power, and the circular functions sine, cosine, tangent and arctangent. It has system variables, system functions, and shared variables for CP/M disk I/O. The interpreter will run in ASCII using CP/M standard I/O. In addition, it supports typewriter and bit-pairing ASCII-APL character sets and can run with user-supplied I/O drivers. A driver for a video display with programmable character generator is included. SONTRONICS APL uses Abrams’ descriptor calculus and shared data storage to save memory space and execution time.
Release: Currently available
Price: $250.00
Included in price: Object of three programs and users manual. System is available for RESALE LICENSE.
Author: G.B. Shaffstall
Where to purchase it:
International Software Service
13050 W. Cedar Drive #15
Lakewood, Colorado 80228

Program Name: ISSCAI SYSTEM
Hardware System: Standard CP/M or MP/M
Language: CBASIC-2
Minimum Memory Size: 8K
Description: This is a set of three programs CAIGEN, TUTOR, and ENROLL which provide, with the use of a system editor, a complete COMPUTER AIDED INSTRUCTION system. CAIGEN formats a editor written text file to the requirements of TUTOR and creates an enrollment file for the course if needed. TUTOR is the heart of the system providing forward and reverse linking of text, prompting for answers even where there might be several that are correct, responding on correct or incorrect answers with replies if wanted, chaining to next lesson, scoring, passwords, comments and several other functions. ENROLL provides complete enrollment file maintenance and teacher monitoring of student progress in a course. lesson by lesson, this program has password level access.
Release: Available now
Price: $295.00
Included with price: User documentation, 31 programs warranty
Author: Dr. Laird Whitehill
Where to purchase it:
Micro-computer Business Systems
161 W. 75 S.
New York, NY 10023

Program Name: Apparel Management System
Hardware System: CP/M 48K, 2-8” Drives
Language: CBASIC-2
Minimum Memory Size: 40K, 48K recommended
Description: Intended for programmers only, Screenmaster allows user to describe multi-screen input via data to the program. Program returns an array of responses, edited for validity. Programmer has pre-/post-input and submit exits where editing and control code may be inserted, commands 90 to m, back n, forward n, prior (screen 0, next (screen), submit etc. End-user can also be given the commands. Flexible design allows any input scheme to be implemented in minutes rather than days.
Release: Available now
Price: $295.00
Included with price: User documentation, 31 programs warranty
Author: The Software Store
Where to purchase it:
The Software Store
706 Chippewa Square
Marquette, MI 49855

Program Name: MWP-SEL
Hardware System: CP/M
Minimum Memory Size: 48K bytes
Language: Microsoft Basic
Description: Allows sophisticated selected records. Example: Select all records with ‘AMOUNT DUE’ greater than or equal to (=) ‘CREDIT LIMIT’. You may combine selection criteria with AND or OR for complex task.
Release: Available now
Price: $95; Licence Agreement Required
Included with price: Diskette, manual, examples, support
Author: The Software Store
Where to purchase it:
The Software Store
706 Chippewa Square
Marquette, MI 49855
At last there is a magazine written exclusively for S-100 system users. No other publication is devoted to supporting S-100 system users. No longer will you have to hunt through other magazines for an occasional S-100, CP/M* or PASCAL article. Find it all in one publication. Find it in S-100 MICROSYSTEMS.

Every issue of S-100 MICROSYSTEMS brings you the latest in the S-100 world. Articles on applications, tutorials, software development, letters to the editor, newsletter columns, book reviews, new products, etc. Material to keep you on top of the ever changing microcomputer scene.

SOFTWARE
CP/M*
Assembler
BASIC
PASCAL
applications
and lots more

SYSTEMS
Cromemco
Intersystems
North Star
IMSAI
SOL
and lots more

HARDWARE
8 bit & 16 bit CPUs
interfacing
hardware mods
bulletin board systems
multiprocessors
and lots more

* TMK
Digital
Research

USA
Canada, Mexico
Other Foreign (Air)

$23.00
$32.00
$65.00

$17.00
$23.00
$45.00

$9.50
$12.50
$23.50

New
Renewal
Payment Enclosed
Visa
MasterCard
American Express
Signature
Card No.
Expiration date

Please bill me ($1.00 billing fee will be added; foreign orders must be prepaid)

S-100 MICROSYSTEMS
P.O. Box 789-M, Morristown, NJ 07960

S-100 MICROSYSTEMS
ORDER FORM (SMLG)

Name __________________________
Address _______________________________________
City ___________________ State _______ Zip _________

S-100 MICROSYSTEMS

BACK ISSUES

1-1 Jan/Feb 1980 $5.00
1-2 Mar/Apr 1980 $2.50
1-3 May/Jun 1980 $2.50
1-4 Jul/Aug 1980 $2.50
1-5 Sep/Oct 1980 $2.50
1-6 Nov/Dec 1980 $2.50

Sold out!

Postpaid in USA; add $1.00 per issue foreign postage. Subscriptions start the month following receipt of order. Subscriptions cannot start with earlier issues.
Program Name: D-Directory and Disk
Status
Hardware System: any CP/M system
Minimum Memory Size: 16K
Language: 8080 Assembler
Description: This program works with single or double density systems on any selectable disk drive. The directory is presented in 4 columns sorted into alphabetical order (the number of columns is equate selectable in the source program). The first line contains the following disk information: Disk:? Files:? Entries:? (left) Space used:? K (? K left).
Release: Available now
Price: $40.00 Source $20.00 Object
Included with price: Program and documentation.
Author: Hawkeye Grafix
Where to purchase it:
Hawkeye Grafix
23914 Mobile St.
Canoga Park, CA. 91307

Program Name: Tarbell Dual-Density DMA Support Package
Hardware System:8080/Z80 S100 system with Tarbell DD/DMA disk controller.
Minimum Memory Size: N/A
Language: 8080 Assembly Language (ASM or MAC)
Description: CP/M 2.0 compatible BOOT and BIOS for Tarbell Dual Density disk controller, including all support programs required for normal operation (FORMAT, Disk validation, Fast absolute copy, auto-density sysgen, etc.) Not compatible with public domain code from Tarbell, this is all new code which supports IBM standard gaps and header information, has no known bugs, and is very clearly written. Currently supports CP/M with 128 byte sectors only, but will allow user to format and validate diskettes in any of the following formats (sectors/track x bytes/sector): Single: 26 x 128, 13 x 256, 8 x 512, 4 x 1024 Double: 48 x 128, 26 x 256, 15 x 512, 8 x 1024 Supports standard 10BYTE, remote console auto answer dial-in access, etc. Console/printer I/O currently uses IMSAI S102-2 (very easy to modify).
Release: Available now
Price: $50.00
Included with price: 8" 3740 CP/M style disk with source for BOOT, BIOS, FORMAT, VALDISK, ADOCOPY and SYSGEN.
Authors: Lawrence E. Highes and Sam H. Adams
Where to purchase it:
Mycroft Labs
P.O. Box 6045
Tallahassee, Fla 32301

Program Name: PRO-TYPE Word Processor
Hardware System: CP/M North Star, MECA ALPHA TAPE
Minimum Memory Size: 16K
Language: Baxex
Description: IMl's PRO-TYPE is a powerful word processor that is easy to learn and simple to use. Its comprehensive 72-page manual will guide you from beginner, to intermediate and on to advanced applications. PRO-TYPE packs all of these convenient features into a single 8K program that supports fully interactive text entry, editing, and print formatting. Works with ANY type of terminal (memory mapped or not). Floating tabs and underlining, Change left and right margin, line spacing while printing, double text buffers for form letters, etc. Multiple print modes (justification, line fill, verify) Embedded "STOP" codes allow special text insertion command macro; special text insertion command macro cros for repeated command execution.
Release: Available now
Price: North Star 5" SD & DD disk (with manual) $25. MECA ALPHA tape (with manual) $75. CP/M 8" disk (with manual) $75. Add $.75 Special 4th Class or $1.50 Special Handling or UPS
Included with price:72 page manual and disk or tape
Author: Paul K. Warme
Where to purchase it:
Interactive Microware
P.O. Box 771
State College, PA 16801
Why Pay More?

Budget InfoSystems maintains a price competitive inventory of several major manufacturer's product lines - all attractively discount priced to save you money...institutions & OEMs will find our prices less than most local distributors, and we don't require "blanket purchase orders!" Local prices may be somewhat higher on systems purchases only. Most items shipped from STOCK to 2 weeks - Inter-Systems products may run to 8 weeks. Minnesota residents must add 4% sales tax, unless purchased for resale. PREPAY by bank transfer or other means saves normal freight charges.

VECTOR GRAPHIC S100 SYSTEMS:

- All of the following Vector Graphic Systems include 64K RAM, "ZCB" single board computer (with I/O ports, space for 16K ROM, etc.), 80 x 24 Flashwriter II video, disk controller, CP/M 2.2, Microsoft BASIC-80, ZSM assembler, the incomparable SCOPE screen editor (with horizontal scroll, RAID debugger, and more! System B utilizes Vector's "Mindless Terminal" & an "MZ" mainframe, while all other systems use an intelligent "Vector 3" terminal with integral 6-slot (315K) card cage (4 slots used). The most comprehensive documentation in the industry accompanies each system. For a limited time, if you Order a Qume printer with your system and we'll include MEMORIE Word Mgmt. software FREE!

NEW! "VIP" (single Micropolis 315K disk) 3995.00
NEW! "VIP Plus" (Bis exclusive - dual 315K disks & more) 3795.00
System B (dual 315K disks) 5463.00
80 x 24 Timeshare terminal w/64K RAM 1750.00
System 2800 (dual 1MB Qume drives) 7250.00
System 3030 (Micropolis 32MB Hard Disk) 19415.00
(ask our "nearby FREE" Peachtree accounting & inventory software packages for ALL Vector systems)

MODULAR S100 MICROCOMPUTER SYSTEMS (MAINFRAMES ONLY):

- Vector Graphic MZ64K, CP/M, & much more! 4313.00
- Inter systems DPS-16 (front panel) 1795.00
- Inter systems DPS-16L (front Panelless) 1395.00
- Inter systems System 1A (w/84K, 250&IO) 3155.00
- Inter systems System 2A (same plus FDC2) 3595.00
- Inter systems System DFX-1 (1A w/88001) 4895.00
- Inter systems System DFX-2 (2A w/88002) 4755.00
(other configurations available on request)

Northstar Horizon I DD 16K - DEMO (one only) only 1299.00

CRT TERMINALS:

- Microterm 2A 955.00
- Microterm 5A 945.00
- Microterm 314 850.00
- Microterm 100 (DEC VT1000 emulator) 1850.00
- TVI 926B & 920C 950.00

MATRIX PRINTERS (RO):

- Anadex 9500 printer 1650.00
- Centronics 779TF 1350.00
- Centronics 737 (add $99 for serial vers.) 955.00

DAISY WHEEL CHARACTER PRINTERS (RO):

- Budget Riter III (Qume 3/55 w/S100 interface card) 2495.00
- Qume Sprite 5/55 3195.00
- Plessey CP4202 by Data Products 3615.00
- Vector/Qume Sprint 3/55 (for System B) 2750.00
- Vector/Qume 3/55 (for VIP, 2800 & 3030) 2995.00

MASS STORAGE SUBSYSTEMS:

- Budget Ster I (dual Micropolis 315K drives) 1599.00
- Budget Ster II (dual 8" Qume drives - 1.2MB) 1499.00
- Budget Ster III (dual 8" Qume drives - 2MB) 1899.00
- Konan "Hard Tape" controller, with Century Data 10MB disk & DEI 15.5MB tape drive 6455.00
- Same with 20MB disk drive 6915.00
- Same with 40MB disk drive 7685.00

CF & A DATA DISKS:

- Universal Printer Stand (all metal) 130.00
- CRT data desk 48" wide 170.00
- Data desk return 18" x 36" 145.00
- Microshelf (specify mainframe size) 110.00
- Microshelf (vented for Vector MZ) 135.00
- 28" Ht. and 30" depth are standard; returns are 26" Ht.

Top colors: Teak, Walnut, Pecan, Black, White, Putty, Champagne
Nonstandard tops are $25.00 extra (any std. Formica colors)

SOFTWARE:

- Vector Graphic MEMORITE III Word Management System - NOW CP/M 2.2/MS BASIC compatible, with proportional spacing, and many new features! The finest "canned" word processor available CALL FOR PRICE
- Computer accounting software most systems $500.00 per module
- SPECIAL for existing Vector Graphic systems only $250.00 per module
- OS-1 UNIX-like Z80 Optimized Operating System & Utilities (fully CP/M compatible) by Software Labs - shipped on three 8" CP/M disks $225.00
- 10% off the complete line of Microsoft software!
- MDS Data Base Management System (CODASYL-compatible) the last word in DBMS's available in a wide variety of formats, with or w/o optional modules $3750.00

We have a wide variety of development and applications packages from several of the major software houses, all at discount prices!

S100 BUS CIRCUIT CARD ASSEMBLIES:

- Intersystems DPS Front Panel card 469.00
- Intersystems MPU6000-1 CPU card 1395.00
- Intersystems MPU6000-2 CPU card 1245.00
- Intersystems MPU-80 card 395.00
- Intersystems 16KSR 16K Static (25ns) 495.00
- Intersystems 64KDR 64K Dyn. RAM card 995.00
- Intersystems FDC2 DDS DMA disk controller 495.00
- Intersystems VIO-I (4P x 25) I/O card 445.00
- Intersystems VIO-0 Same w/o interrupts 395.00
- Intersystems 64K DRAM card 995.00
- Intersystems 16K SRAM card 255.00
- Intersystems 286 EPROM card 295.00
- Intersystems 64K EPROM card 395.00
- Intersystems ADDA 68K A/D & D/A card 445.00
- Intersystems WW1 16/32 Prototyping card 350.00
- Konan SMC-100 Hard Disk Controller 21395.00
- NEW! Vector Graphics "ZIP" 2FB SBC card 375.00
- Vector 256K CPU card 257.00
- Vector Bitstreamer II card 270.00
- Vector Motherboard, 16 slot, terminated 201.00
- Vector Analog Interface Card 1325.00
- Vector Precision Analog Interface Card 449.00
- Vector High Res. Graphics Card 270.00
- Vector Video Digitizer Card 322.00
- Vector Flashwriter II 80 x 24 Video 368.00
- Vector PROM/RAM II Card 247.00
- Vector 64K (16MB) RAM Card 322.00
- NPROM/NVRAM Card 247.00
- Vector 64K Dyn. RAM Card 975.00
- Microdisk Controller Card 518.00

MISCELLANY:

- Budget ansr.lorig. modem 150.00
- Novation CAT ansr. I/O modem 189.95
- Qume Single sheet paper feeder 1390.00
- OPUS 80SS Mini-diskettes (10 in plastic box) SPECIAL $25.00
- OPUS 80SS 8" Diskettes (10 in plastic box) SPECIAL $25.00
- OPUS RECORDBING MEDIA ARE A PREMIUM GRADE FULLY GUARANTEED PRODUCT OFFERING SUPERIOR VALUE...DOUBLE DENSITY OR SPECIAL FORMATS AVAILABLE AT SLIGHTLY HIGHER PRICES!
- Compcline clean diskette diskette 6½" 10.00
- Compcline 8 ½" (Specify single or double sided) 32.00

These are a dry process - no mess & much safer!

OPUS SD/SS 8" Diskettes (10 in plastic box) SPECIAL 29.50
OPUS RECORDING MEDIA ARE A PREMIUM GRADE FULLY GUARANTEED

OPUS SD/SS Mini-diskettes (10 in plastic box) SPECIAL 27.50

Sheets of: Colors: Champagne, Black, Blue, Yellow, Putty, Brown, Butterscotch; legs are black (chrome $50.00 extra).

Sales tax, unless purchased for resale. PREPAY by bank transfer or other means saves normal freight charges.

BUDGET INFOSYSTEMS
1633 N.E. Highway Ten
Spring Lake Park, MN 55422
(612) 789-5545
Normal Order Line Hours Are: 12:00 to 6:00 p.m. CST
When we shipped the first CPU 8085/88 back in June of 1980, we created a bridge between the 8 bit world of the present and the 16 bit world of the future.

The response has been overwhelming - but really, no other reaction would be appropriate for a CPU board that is downward compatible with 8 bit 8080/8085 software, upward compatible with 16 bit 8086/8088 software (as well as Intel's coming P-Series), designed for professional-level high speed applications, and engineered for full compliance with all IEEE 696/5-100 standards.

See this bridge to the future of computing at finer computer stores world-wide.

The CPU 8085/88 is all that we say it is...and more.

CompuPro™
Bldg. 725, Oakland Airport, CA 94614

Prices: $295 unkit (sockets and bypass caps pre-soldered in place, 5 MHz operation); $425 assembled (5 MHz operation); $525 qualified under the high-reliability Certified System Component program (with 5 MHz 8085, 6 MHz 8088). Owner's manual available separately for $5. Monitor/debugger available on 8" disc for $35. For 24 hour VISA®/Mastercard® orders, call (415) 562-0636.