MI-286. Our 80286/Z80H Dual CPU Board is at least twice as fast as Compupro’s 8085/88 and it’s a direct replacement. The MI-286 has already become the standard by which other 80286 based systems are measured. Ask us for a complimentary Benchmark Report.

ADIT. There’s nothing else like it on the market. It’s an Intelligent I/O Board with its own real time firmware that lets you control up to 16 different terminals, modems or printers all from a single slot. ADIT is the performance standard in environments such as Alpha Micro where I/O speed is critical.

MSR. High performance and reliability in a memory so fast you won’t believe it’s a dynamic ram product. Compatible with all popular S-100 environments, the MSR’s low power consumption and 120 nanosecond ram devices set a new standard for dynamic memory products. The MSR is available in quarter, half, one and two megabyte configurations at the lowest prices in the industry.

V-RAM. High performance Static CMOS system memory/virtual disk in either quarter or half megabyte configurations. With its on-board battery and power-fail logic, the V-RAM sets a new performance standard at conventional static memory prices. When accessed through I/O port channels, the half megabyte V-RAM becomes M Drive compatible with true non-volatile solid-state disk capability.

Dealers:
- Gifford Computer Systems (415) 895-0798
- Custom Computer Technology (800) 222-8886
- S-100 (800) 453-5902
- John D. Owens & Associates (212) 448-6298
- In England: Fulcrum (Europe) Ltd. (0621) 828763

Macrotech dealers also include most Compupro Systems Centers, Heathkit Electronic Centers and Alpha Micro Dealers.

MACROTECH International Corp.
9551 Irondale Ave.
Chatsworth, CA 91311
(800) 824-3181 • in Calif. (818) 700-1501
Telex: 9109970653
Intelligent Computer Designs XL series 8-100 products offer the latest in state-of-the-art designs.

Our slave products, the 8-bit XL-DLZ80 and the 16-bit XL-DL88, feature two slaves on one card, enabling system integrators double the number of users previously possible.

The XL-M180, a high-performance system master for single or multi-user applications, complete with hard disk, streaming tape and floppy capabilities introduces something new. An onboard Local Area Network with up to 5Mbps transfer speed. With it, interfacing other XL-M180's or even IBM-PC's is a snap!

If you think ICD has solutions for your systems' needs, write or give us a call.

XL-DL88
- 2 completely independent slaves
- 8mhz 70108 processor
- 128k to 512k memory expansion
- 4 serial communication channels
- DMA transfers to/from system master
- CP/M 86, MS-DOS, PC-DOS, TurboDOS compatible

XL-M180
- High performance HD64180 uPD
- 512k memory with burst refresh
- 5Mbps local area network
- 4 bi-directional parallel ports
- 2 serial ports
- 1 clocked serial port
- Pipelined architecture
- Z SYSTEMS O/S available

XL-DLZ80
- 2 Z80H 8mhz processors
- ½ megabyte memory
- 2 190k local drives
- 4 serial ports
- Draws only 700 milliamps
- No wait states
- CP/M, MP/M, TurboDOS compatible

All ICD products have a one-year part/labor warranty.
Since 1968 Teletek has been a leader in the design and manufacture of single board computers, controllers, memory boards and interface boards.

Teletek offers five distinct single board computer (SBCs), each with its own unique features, to meet the varied needs of the system integrator. Based on the 8086 16-bit and 8088 8-bit microprocessors, Teletek's SBCs will run under CP/M and are available with up to 1MB of onboard dynamic RAM. The SBC 8667 also offers an optional 8087 math coprocessor for numeric intensive applications.

Teletek's Systemaster II provides two RS232C serial ports and two Centronics-compatible parallel ports or may be optionally configured to provide a SCSI interface or an IEEE-488 interface to support many laboratory testing and measuring instruments.

Teletek also offers a dual controller board, the HD/CTC, which will control any two ST506-compatible hard disk drives and any QIC-02/QIC-24-compatible cartridge tape drive. This unique design saves hardware cost as well as space in the mainframe. Teletek's IEEE 696/5-100 boards run under the multi-user, multi-processing operating system TurboDOS by Software 2000, supporting up to 16 users and capable of running PC-DOS application programs. For single-user systems, Teletek is supported by the CP/M operating system.

Teletek provides a 30 day evaluation program to qualified customers. For more information, call our Sales Department at 916-920-4600 or write for our information package.
IN THIS ISSUE

FEATURE ARTICLES

TurboCharge Your 8086/8088 Computer .. 32
Stephen R. Davis

Faster Floating Point Math .. 46
N. T. Carnevale

 Bringing Up CP/M-68K ... 58
J. L. Calaway & Ben Hill Jr.

Program Interfacing To MS-DOS - Part IV 70
William G. Wong

PRODUCT REVIEWS

The Peak 68K8-CP ... 66
Dave Hardy & Ken Jackson

Eureka ... 86
Robert Hazelwood

DEPARTMENTS

Editor's Page ... 4
Sol Libes

News, Views & Gossip ... 6
Sol Libes

Mail .. 10

Turbo Pascal Corner ... 12
David W. Carroll

The C Forum .. 16
Don Libes

The PC/Blue Report .. 18
Hank Kee

The SIG/M Public Domain .. 20
Steve Leon

The Data Base Forum ... 28
Nelson T. Dinerstein

The Scientific Computer User ... 76
A. G. W. Cameron

The UNIX File .. 84
Ian F. Darwin

The Software Directory ... 90

Classified Ads ... 96

SUBSCRIPTION RATES

1 Yr. 2 Yrs.
U.S. $20 $35
Canada & Mexico $28 $52
Europe & So. America $35 $64
Asia, Africa, Australia & Near East $39 $70

ADVERTISING RATES: Available on request. Call (201) 522-9347 or write to M/SJ, Box 1192, Mountainside, NJ 07092.

CHANGE OF ADDRESS: Please send old label and new address to: Micro/Systems Journal, Box 1192, Mountainside, NJ 07092.

AUTHORS: Micro/Systems Journal is always seeking good articles. Please write or call first to see if we are interested in the subject. Please do not send the article unless we ask for it.

If you are interested in reviewing hardware or software please write telling us your interests, your background and include a sample of your writings.

Send a stamped self-addressed business size envelope for a copy of our Author's Guide.
FUTURE DIRECTIONS FOR MICROSOFT'S OPERATING SYSTEMS

Operating System (OS) software is the silent foundation of all computer systems. At its most elemental level, this software enables the loading and running of application programs as well as communications between the program, keyboard, display and peripheral devices, e.g. printers. Operating-system software designed for use with a disk-type, software-storage device is called a "Disk Operating System" or DOS. DOS software usually has additional features, such as the ability to show the user what is available on the disk.

Microsoft is, without a doubt, the leading supplier of microcomputer OS and DOS software, having five OS and DOS packages currently in use by microcomputer-system manufacturers. They are called packages because in addition to the OS or DOS program they also contain utility programs which the OS or DOS can use to add functions to the OS or DOS (e.g. format a disk).

Microsoft's five OS and DOS packages include, of course, PC-DOS and MS-DOS for use on the IBM-PC and IBM-PC compatibles. Microsoft has also created XENIX (a Unix, multi-user, multi-processing DOS), MSX (for low-cost, Z80, cassette-based, home-computer systems), and MSX-DOS (for low-cost, Z80, disk-based, home-computer systems). Microsoft has also created two MS-DOS extensions: MS-Windows (an MS-DOS environment for applications' software which uses bit-mapped graphics and a mouse) and MS-Net (a networking extension for MS-DOS). Microsoft thus has the broadest line of microcomputer, operating-systems' software currently available.

At a recent National Computer Conference, Steve Ballmer, Vice President of Marketing at Microsoft, gave some insight into Microsoft's system-software strategies. The following discussion is based, in large measure, on his talk.

SOFTWARE & SYSTEM COMPATIBILITY

Microsoft is attempting to provide upward compatibility among all its operating systems, something no other system software producer has ever really attempted. Microsoft has adopted a philosophy that all new versions of operating systems must be able to run software written for earlier versions... this is called "upward" compatibility.

Microsoft is also attempting to provide compatibility between operating systems. Their greatest concern appears to be compatibility between MS-DOS, PC-DOS, and XENIX. Thus, they have attempted, wherever possible, to provide the same functionality, hierarchical file system, and the same memory management scheme in each DOS.

Microsoft claims they already have source-code compatibility between systems. Thus applications' software written in a Microsoft, high-level language can be compiled for either PC-DOS, MS-DOS, or XENIX. They are also working on binary-level compatibility so that applications' software can run under either operating system without compilation or modification.

Microsoft is also promising networking compatibility between users of different DOS kernels to guarantee software reliability. This means that what one user does on his system does not affect data on another system in the network.

DATA RELIABILITY

As systems become more complex with multi-tasking and networking capabilities, data reliability becomes increasingly more difficult. Thus a protection system is needed to ensure that data is not altered inadvertently.

For example, current 8088- or 8086-based systems do not provide any hardware protection, allowing any program to take command of the system at any time and do anything that it wants. Thus, in a networking system, there is no way of certifying that data at any one workstation is reliable.

The Intel, 80286 microprocessor includes on-board protection. Thus, Microsoft will, in all likelihood, introduce multi-tasking DOS exclusively for 80286-based systems with data reliability features.

OPERATING SYSTEM PHILOSOPHIES

MSX and MSX-DOS are Microsoft's home-computer versions of OS and DOS, respectively. They are very small, single-user, single-tasking systems with very friendly user interfaces. They are currently being used by several Japanese, personal-computer manufacturers in their consumer-oriented systems. These systems are being exported to countries other than the U. S. The price wars that have occurred in the U. S. -consumer, computer marketplace have made them hesitate.

PC and MS-DOS are Microsoft's office-worker versions of DOS. They are also single-user systems. Although the current versions of MS-DOS and PC-DOS are single-tasking systems, the next versions are expected to be capable of multi-tasking. Thus, a user will be able to handle communications, electronic mail, or networking tasks in the background. These new versions are also expected to have an advanced easy-to-use interface.

XENIX has been designed by Microsoft to serve as a multi-user operating system for transaction-processing in a small business environment (data-base access). It provides a customizable user shell so that software developers can create turnkey systems to hide the OS from the user altogether.

LOOKING TO THE FUTURE

Microsoft expects the Intel 8086, 80286, and 80386 (32-bits) to be the dominant microprocessors. As discussed earlier, the 286 includes hardware, memory-protection logic to
insure data integrity in multi-processing systems. There is no doubt that the 386 will include even more powerful memory-management features.

The likelihood is that the new versions of PC-DOS and MS-DOS will require more memory. Thus, we can expect that the typical memory size on the new 286-based systems will be in the megabyte range. Considering that we will have in memory the DOS kernel, the networking support, a window manager, and applications such as mail programs, integrated packages (Symphony, etc.), talking about kilobyte sized memory will become a thing of the past.

The current IBM-PC with its slow, 8088-based processor, 640K sized memory, and primitive, memory-management system, will be inadequate for the next generation of desk-top office workstations.

Microsoft is also expected to introduce a new version of PC/MS-DOS for the 8088 and 8086 systems currently in use. Expect this new version to include a more robust, memory-management system that provides for relocation of code, swapping of code, and virtual memory.

Microsoft is also expected to make the new versions of MS-PC/MS-DOS more modular. The new versions of the operating systems are expected to be dynamic. Modules will be moved in and out of memory as they are needed. As a form of dynamic linking, sometimes called "late binding", essentially any piece of the operating system will be available at run time. This is expected to allow binary compatibility between PC/MS-DOS and XENIX by linking in the appropriate OS, service library at run-time.

Microsoft has indicated it has already begun initial development of versions of MS-DOs and XENIX for Intel, 80386-based systems. Intel has already furnished preliminary data on the device to key users and is promising samples shortly with limited production to begin in early '86. Considering that Microsoft is already at work on operating systems for the device, it appears that the 386 versions of PC/MS-DOS and XENIX will be released in early 1986.
GOSSIP

IBM is expected to change the motherboard in the AT soon. Look for the new board to contain 640K of RAM...gone will be piggy-backed chips. Also expect some new VLSI chips to shrink the chip count. And a System V version of Xenix for the AT is due very early next year....Big Blue is finally expected to introduce its laptop machine in the first half of '86.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

GOSSIP

IBM is expected to change the motherboard in the AT soon. Look for the new board to contain 640K of RAM....gone will be piggy-backed chips. Also expect some new VLSI chips to shrink the chip count. And a System V version of Xenix for the AT is due very early next year....Big Blue is finally expected to introduce its laptop machine in the first half of '86. Expect it to use a CMOS 80286, 3.5'' drives, and back-lit screen....IBM is reportedly asking floppy disk drive vendors to quote on 3.5'', double-sided drives storing 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.

Digital Research has reportedly sold a significant minority interest (estimated at about 12%) to Northern Telecom Inc., a Nashville Tennessee telecommunications company for about $6 million. It is also rumored that Motorola sells DRI's languages for their 68000-based Meridian computers which feature 135 trackslinch and 1.6Mbytes unformatted and 1.2Mbytes formatted.
DUAL GPIB-488 INTERFACE BOARD
A Stand-Alone, Independently Controlled Dual Channel IEEE-488 I/O Processor. Interface Activity Modes for Controller-In-Charge, Controller Assigned or Terminal Bus Slave, and all Interface Functions are handled transparent to Host System CPU through an on-board CPU and DMA controller. User Friendly operation.

A&T, P/N 5274B-800-102

RGB COLOR GRAPHICS BOARD
Programmable resolution up to 512 x 512 pixels with 4 local video planes and on-board graphics processor. Color mapper allows 16 colors from a palette of 4096. Light pen input. Plus more...

A&T, P/N 5274B-800-101

12-BIT A-D-A CONVERTER BOARD
8 Channel A-D: 12 microsec. Conversion, 50KHz Sample Rate, Programmable Gain, Offset and Diff/Single Modes.
8 Channel D-A: 2 microsec, Settling, Bipolar V or Unipolar I Output. Programmable Reference Levels, Dual-Ported Channel Refresh RAM. 16/8-Bit Data Transfers via I/O or Memory Mapped
A&T, P/N 5274B-900-101

PERIPHERAL SUPPORT BOARD
Two Serial SYNC/ASYNC Ports with RS-232, TTL or Current Loop Outputs, three 8-Bit Parallel Ports, three Timers, Real Time Clock/Calendar and Response Programmable Interrupt Controller, Small Proto Area with +5 and ±12v.
A&T, P/N 5274B-150-101

BAR CODE PROCESSOR BOARD
The BarTender is a stand-alone I/O Processor that reads and prints most common Bar Codes, includes bi-directional reading, wand interface, clock/calendar with battery. Extensive documentation and software.
A&T, P/N 5274B-500-101

MULTI-PURPOSE PROTOTYPING KIT
Industrial Quality with Plated-Thru holes for Wire-Wrap or Solder projects. Complete with +5, ±12v Regulators, Bus Bar, Filter Capacitors, and Manual.
P/N 5274B-450
Lattice Products Are Your Best Investment

Lattice Screen Editor $125.00
[LSE]—Designed as a programmer's editor. LSE is fast, flexible, and easy to learn. LSE's multi-window environment provides all the editor functions you need including block moves, pattern searches, and "cut and paste." LSE also offers special features for programmers such as its error tracking mode and three assembly language input modes. You can create macros or customize keystrokes, menu, and prompts to your style and preferences.

Lattice TopView Tool-basket $250.00—Provides more than seventy C functions for creating programs to take advantage of the IBM TopView environment. Speed TopView-specific program development with window, cursor, pointer, and printer control functions. Expedite program development with the debugging utilities included.

LMK—Automated product generation utility for MS-DOS similar to UNIX "Make.”

C-Sprite—Symbolic debugger for programs written in Lattice C or assembly language.

C Compilers— MS-DOS $500.00 and PC-DOS—The industry standard.

Panel—High performance screen design and screen management system. Available for MS-DOS, PC-DOS, and UNIX systems.

dBC II or **dBC III**—$250.00 C function libraries supporting indexed files that are compatible with dBASE II or dBASE III.

C-Food Smorgasbord $150.00—Includes a BDC decimal arithmetic package, I/O functions, IBM-PC BIOS interface, terminal independence package, plus many other utility functions.

With Lattice products you get Lattice Service including telephone support, free updates during the warranty period, notice of new products and enhancements when you register, and a money-back guarantee.

Call us today for further information on these, or our many other C programs, utilities, and tools! Corporate site license agreements are also available.

TRON IS COMING

TRON (The Real-time Operating Nucleus) is an operating system being developed by a group, headed by Professor Ken Sakamura, at the University of Tokyo (considered the MIT of Japan). TRON has already been licensed by NEC, Mitsubishi, Matsushita, Xerox Japan, and Canon.

TRON is expected to be a full-blown, enhanced operating system specifically designed to take advantage of 32-bit microprocessor chips such as the Motorola 68020. TRON is planned as an operating-system nucleus contained in a single ROM with other ROMs containing device and application interfaces. TRON will feature fast real-time response and task-switching. NEC is expected to be the first to introduce a TRON system, sometime next year.

NOTEWORTHY BULLETIN BOARDS

Dan Wise's "Cleveland County BBS" (Shelby NC) has 45 different sections including S-100, CP/M, and UNIX/XENIX and callers can chat with "Willard" (artificial intelligence). The BBS runs 7 days 24 hrs, and there is no time limit. Call (704)482-8012.

Mike Connick (Reston VA) runs a BBS devoted to C at (703)476-9459.

RANDOM BITS

The Forth Interest Group (FIG) will hold the “Forth Modification Laboratory” conference at the Asilomar Conference Grounds, Pacific Grove CA, Nov 29-Dec 1, to discuss and share new proposals to enhance the Forth Language. For more info, call (408)277-0668 or write FIG, Box 8231, San Jose CA 95155.

Teletek (4600 Pell Dr., Sacramento CA 95838; (916)920-4600) is now offering an MS-DOS emulator (non-hardware specific) which runs under TurboDOS. Graphics capability is being explored.

Intel reports that it has begun shipping versions of the 80286 which run at clock speeds of 10-12.5Mhz.

Intercontinental Micro Systems has acquired the manufacturing rights to Musys' S-100 product line.
STARTER SYSTEM SPECIALS

WOW!

<table>
<thead>
<tr>
<th>Model</th>
<th>Qty</th>
<th>RAM</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-148-21</td>
<td>1</td>
<td>128K</td>
<td>$1195.00</td>
</tr>
<tr>
<td>FCC-SYS148-02</td>
<td>2</td>
<td>640K</td>
<td>$1595.00</td>
</tr>
<tr>
<td>FCC-SYS158-02</td>
<td>2</td>
<td>640K</td>
<td>$2099.00</td>
</tr>
</tbody>
</table>

WOW! POWERFUL WINCHESTER SYSTEMS

FCC-SYS158-11
- 158, one floppy
- 11 meg half high winchester
- 640K RAM
- 1220 or 1230 monitor
- With ZVM-135 color monitor
 - only $2475.00

FCC-SYS158-25
- 158, one floppy
- 25 meg half high winchester
- 640K RAM
- 1220 or 1230 monitor
- With ZVM-135 color monitor
 - only $2849.00

WOW! FREE FRAMEWORK!
- with purchase of 36 meg SuperSystem!
 - Z158, one floppy
 - 36 Meg winchester: full height, 40ms access time
 - 640K RAM
 - ZVM-135 color monitor
 - only $3875.00

AUTO CAD SYSTEM

Complete workstation with plotter and digitizer

- Z-158 8 Mhz
 - one floppy, 25 meg H/H internal
 - 8087-2 8 Mhz
 - ZVM-135 monitor
 - AutoCAD w/ ADE-1, 2, & 3
 - GTCO 12 x 12 4 button digitizer
 - DMP-41 or 42 plotter w/cable
 - ZVM-136 w/ Technar Graphics Master
 - 640 x 400 Color, add $785.00
 - only $9599.00

We also have the two hot new machines from Zenith, the 171 and the 200! Call for our latest price and specials, as well custom configurations on the 200, and the new 158.

Call for pricing on tape backup systems and cartridge winchester

WOW!

Printers with above systems:
- Epson LX-90, only $259.00
- Epson FX-85, only $399.00
- Toshiba P-1340, only $596.00
- Epson FX-185, only $549.00
- Toshiba P-351, only $1225.00

1-800-TO-BUY-IT (800-862-8948)

Orders and quotes
1-314-946-1968

Technical support and order status

1106 First Capitol Dr.
St. Charles, MO 63301
(314) 946-1968

Call for purchase order terms, government, and quantity pricing.

We will meet or beat any verifiable advertised price on stock Zenith Data Systems CPU's, from any legitimate dealer.
Dear Mr. Libes:
Shame on you for printing Charles Prohaska’s patch in the July/August issue! The binary-to-ASCII-hex conversion that he fixed dates back (at least) to ’77 or ’78, when an 8080 version appeared as a “byte-saving programming trick” in Dr. Dobbs Journal. It works perfectly as originally written.

Either Mr. Prohaska has a very sick processor in his system, or he never actually ran his code, but condemned it based on his (mis)understanding of the written source. The relevant instructions are:

ADD A,0TH
DAA
ADC A,04H
DAA

Contrary to his assertion, binary 1010 (for example) is correctly converted to ASCII “A”. This first addition gives hex 9A (decimal 100). The decimal-adjust leaves 0 in the accumulator and sets the carry flag, as is necessary for multi-byte BCD additions. The following add-with-carry therefore gives not 40, as he claims, but 41.

Bill Snyder, Richardson TX

Dear Sol:
I enjoyed “The CP/M Bus” in the May/June issue. Reading Bruce Ratoff’s choices of favorite public domain programs started me thinking what were my most useful CP/M programs. I came up with at least a half dozen in a few minutes.

My favorite is a directory program that has been named “D”. It produces an alphabetical listing in a vertical format with file size and disk space included. The horizontal version, SDIR, is much harder to read and I do not use it. Next on the list is my file manipulation program DISK 7.6, that someone named “T”. I really like the CRC verification feature on the copy command.

For handling library files I have gotten used to NULLU10 and will get NULLU11 off the board shortly. I figure this is really a matter of which library utility program you use. For handling the squeezed files off of bulletin boards, I find that NSWP207 is great. The view function for looking at squeezed files is very useful and

Dear Mr. Libes,
"Structured Programming with M80" (July/August ’85) has some interesting constructs. However, I have enclosed an INSTR and ON n GOSUB I GOTO, which could probably be modified to be used if followed by JP PE for a test on page 32, it certainly will; BC is the zero. LDIR is a repeat and even CPI can be converted to ASCII "A". This first addition gives hex 9A (decimal 100). The decimal-adjust leaves 0 in the accumulator and sets the carry flag, as is necessary for multi-byte BCD additions. The following add-with-carry therefore gives not 40, as he claims, but 41.

Alex K. H. Soya, Melbourne Beach FL

Dear Mr. Libes,
There is mail.

Letters to M/SJ
We welcome your letters with comments, compliments, criticism and suggestions. We read them all and publish the most noteworthy, even if they are critical of us. We do not have the staff to answer all letters personally. And all letters become the property of M/SJ and may be subject to editing. Further, we do not print letters that do not include a name and address.

Please send your letters to: Micro/Systems Journal, Box 1192, Mountainside NJ 07092.

Dear Mr. Libes,
"Structured Programming with M80" (July/August ’85) has some interesting constructs. However, I have enclosed an INSTR and ON n GOSUB I GOTO, which could probably be modified to be used if followed by JP PE for a test on page 32, it certainly will; BC is the zero. LDIR is a repeat and even CPI can be converted to ASCII "A". This first addition gives hex 9A (decimal 100). The decimal-adjust leaves 0 in the accumulator and sets the carry flag, as is necessary for multi-byte BCD additions. The following add-with-carry therefore gives not 40, as he claims, but 41.

Bill Snyder, Richardson TX

Dear Sol:
I enjoyed “The CP/M Bus” in the May/June issue. Reading Bruce Ratoff’s choices of favorite public domain programs started me thinking what were my most useful CP/M programs. I came up with at least a half dozen in a few minutes.

My favorite is a directory program that has been named “D”. It produces an alphabetical listing in a vertical format with file size and disk space included. The horizontal version, SDIR, is much harder to read and I do not use it. Next on the list is my file manipulation program DISK 7.6, that someone named “T”. I really like the CRC verification feature on the copy command.

For handling library files I have gotten used to NULLU10 and will get NULLU11 off the board shortly. I figure this is really a matter of which library utility program you use. For handling the squeezed files off of bulletin boards, I find that NSWP207 is great. The view function for looking at squeezed files is very useful and...
eliminates the need to unsqueeze before you can read the file. It also has unsqueeze and the usual file manipulation features.

For viewing ASCII files, the similar programs BISHOW-2 and BISHOW31 replace the CP/M TYPE command. BISHOW31 will even unsqueeze squeezed files. They both allow the forward and backward viewing of files. A gem with limited application but very useful is SORTDIR3 for alphabetizing the disk directory. It is useful for programs like BASIC where the FILES command does not sort the file names but rather just displays them like the CP/M DIR command.

There is one utility I have not been able to locate, a screen dump utility. I know there is one specifically for the KayPro, DUMP24.

Bob Phelps, Westerville OH

Dear Sol:

I enjoyed reading Steven Bosak’s “Scientific & Technical Word Processors” (Part 1) so much that I took the liberty of calling him about PS, my secret WP program. The PS Technical Word Processor was written by Murray Sargent, author of IBM PC From the Inside Out (Addison-Wesley). Murray is a Professor of physics at the University of Arizona. He developed the PS for his papers but the project (like most computer projects) expanded over time.

PS is based on Phoenix’s PMATE programmer’s editor, but Murray has turned it into a powerful, menu-driven, proportionately-spaced, what-you-see-is-what-you-get word processor complete with mail-merge. Unlike most other technical editors, PS is most at home on Diablo-compatible daisywheel printers from the 1620 on up - and the proportionately-spaced text appears on the screen as well! Although I don’t do scientific WP, I use PS for everything from general correspondence to our SOO-page RUNIC manual. I don’t think there is a more powerful, more flexible, faster word processing package available on any system.

Mr. Bosak agreed to take a look at PS and he should have it by now. I hope some day it will be possible to let your readers know about PS so they can compare it themselves to the other scientific packages on the market.

Todd Katz, Age of Reason Co., NY

NY
Turbo Pascal Corner

by David W. Carroll

This column features tips and techniques for using Turbo Pascal productively on MS/PC-DOS and CP/M microcomputer systems. It discusses typical problems and their solutions. Reader suggestions, comments, and questions are encouraged. Address them to: Turbo Pascal Corner, Box 699, Pine Grove CA 95665.

In this issue we will discuss some advanced machine level interface techniques with Turbo Pascal, primarily DOS calls, command line parameters, and wildcard file names. This article will address MSDOS operations and the next issue will address the same processes in CP/M Turbo Pascal systems.

DOS CALLS

Calls to MS/PC-DOS, in Turbo Pascal, are performed using either the INTR procedure or the MSDOS procedure. Both provide a software interrupt and pass a register record variable to the system, presetting the CPU registers and returning any parameters upon termination of the interrupt. MSDOS(regs) is actually a shorthand notation for the INTR($21,regs) procedure, and the two can be used interchangeably. The MSDOS call can only be used to access DOS functions, while the INTR call can access any software interrupt, including the BIOS routines.

The register record variable is set up like this:

```pascal
type regtype = record
  (ax, bx, cx, dx, bp, si, di, ds, es, flags: integer);
var reg : regtype;
```

or a free union variant record can be used to allow accessing and setting the registers either as word or byte values. The variant part of the record is automatically selected by the field identifier used.

```pascal
type regpack = record
  case integer of
    1: (ax, bx, cx, dx, bp, si, di, ds, es, flags: integer);
    2: (ax, bx, cx, dx, bp, si, di, ds, es : byte);
end;
var reg : regpack;
```

Advanced Machine Level Interface Techniques

COMMAND LINE

Up to 127 bytes of command line parameters, if any, are located at ABSOLUTE CSEG:$80 when an MS-DOS Turbo Pascal program begins. They must be copied to a program variable as the first action of the program or all but 32 bytes will be lost.

```pascal
type constr = string[127];
var buffer : constr;
begin
  constr := command line; // This must be first
  // statement in main program block.
end;
```

As with an user entered data, the command line parameters should be parsed and validated in your program.

WILD CARDS

The use of wild cards for file names in MS-DOS Turbo Pascal programs is not discussed in the *Turbo Reference Manual* or in the *Turbo Tutor* tutorial from Borland, so it is an often requested topic. There are two main considerations when using wild card file names - first, to properly parse and translate the entered wild card filename to produce an acceptable search mask or File Control Block (FCB) for DOS; and second, to find all the filenames that match the requested search mask.

MS-DOS allows two wild card characters ("?" and *) in filenames, but some internal DOS functions only recognize the ? wild card character. DOS provides a built-in parsing function ($29) can be used to generate a correct search mask from a filename string with or without wild cards.

Version 2.0, and later, of DOS provide two sets of functions for accessing directory information, one using FCBs much like CP/M and the other using DOS file handles. To be compatible with earlier DOS 1.X versions, the FCB function calls will be used here. Refer to Section 5 of the PC-DOS 2.1 Technical Manual for more information.

The basic technique is the same as is used in a directory list program. A DTA (disk transfer area) is set up for the disk operations using the set DTA DOS function call ($1A). An unopened FCB is set up (containing the search mask) and passed to the get first entry DOS function ($11). If found, the name is returned in the current DTA. Then subsequent calls (using the same FCB) are made to the get next directory entry DOS function ($12) until no match is found. In this application, instead of listing the filenames to the screen, each is used as a parameter specifying the file for processing by the program.

However, the DTA area used by the directory calls getfirst and getnext MUST be preserved if other disk accesses are done between directory calls. This is accomplished by using two DTA variables and switching between them. Then any required disk operations may be done by the routines which process each file found without destroying the directory search data.

The following program uses all of the above concepts to provide a general form for wild card file processing. The process used here is a simple page format list to printer routine using program source files. To use this design for other file processing tasks, simply replace the LISTPROC function with your own (and change the call in procedure FIND), using a similar file open technique and returning an error code of zero if no problems were encountered, non-zero if an error occurred.

This program and some 300 other Turbo Pascal and public domain programs are available 24 hours a day for free downloading on the "High Sierra RBBs" system at 209/296-3534.

David W. Carroll is a freelance writer and computer consultant living in the Sierra Nevada foothills near Sacramento, California. He is the author of "Telecommunications with the IBM PC/"r" co-published by Microtext/Prentice Hall in March 1985 and "Programming with Turbo Pascal" co-published by Microtext and McGraw Hill.

Micro/Systems Journal November/December 1985
program listwild;
{This program accesses files using command line wild-cards.}
{It works with MS-DOS (or PC-DOS) versions 1 and 2.}
{Copyright 1985 by David W. Carroll}
{All commercial rights reserved.}
type
regpack = record
 case integer of
 1: (ax,bx,cx,dx,bp,si,di,ds,es,flags: integer);
 2: (al,ah,bl,bh,cl,ch,dl,dh : byte)
end;

cbararray = strtype array[0..36] of char;
strtype = string[14];
string[127];
const
getdta = getlstdir = getnextdir = parsename =
l11; l12; $29;
var
buffer : cbararray;
constr : strtype absolute cseg:$80;
cstr; canstr absolute cseg:$80;
canstr
lines per page = 66;
chars per line = 79;
bottom margin = 8;
var
infile : text;
time, datel : string[8];
infname : string[20];
max lines : integer;
goodfile : boolean;
begin
bell = 0;
begin
infile := fname;
assign(infile,fname);
($I-$) reset(infile) ($I+$);
goodfile := (IOresult = 0);
if not goodfile then begin
write(chr(bell));
writeln('FILE "',fname,'" NOT FOUND');
delay(2000)
end;
end;
var
p, line : integer;
txtline, printline : string[255];
const
space = ' ';
period = '.';
begin
p := 0;
while not eof(infile) do begin
p := p + 1;
print heading(p);
line := 4;
while (not eof(infile)) and (line < max lines) do begin
if page <> 1 then writeln(lst,chr(12));
write(lst); writeln(lst);
end;
end;
begin [list]
p := 0;
while not eof(infile) do begin
p := p + 1;
print heading(p);
line := 4;
while (not eof(infile)) and (line < max lines) do begin
if page <> 1 then writeln(lst,chr(12));
write(lst); writeln(lst);
end;
end;
procedure setuTA(num:byte); {set Disk Transfer Address}
var
regs: regpack;
begin
with regs do begin
ah := num;
ex := 0;
ds := seg(dfcb);
dx := ofs(dfcb);
MSDOS(regs);
space := ' ';
period := '.';
var
i, err: byte;
begin
for i := 0 to 36 do dfcb[i] := chr(0);
if not user input then begin
writeln('Search mask: ',buffer:15);
parse(err);
calldir(getlstdir,err);{get first entry matching mask}
while err = 0 do begin
filename := ':
for i := 1 to 8 do
if dta[i] <> space then
filename := filename + dta[i];
if i = 8 then
filename := filename + period;
end;
end;
begin
var
num : byte;
begin
if num <> 0 then begin
setuTA(1);
end
else
setuTA(0);
end;
procedure calldir(calltype : byte; var errflag : byte);
var
regs: regpack;
begin
with regs do begin
ah := calltype;
ex := 0;
ds := seg(dfcb);
dx := ofs(dfcb);
MSDOS(regs);
errflag := al;
end;
end;
procedure parse(var errflag : byte);
var
regs: regpack;
begin
with regs do begin
ah := parsename;
ds := seg(buffer[1]);
cl := seg(buffer[1]);
es := seg(dfcb);
di := ofs(dfcb);
al := $OF;
MSDOS(regs);
errflag := al;
end;
end;
procedure find;
const
space = ' ';
period = '.';
begin
for i := 0 to 36 do dfcb[i] := chr(0);
if not user input then
remain('Search mask: ',buffer:15);
write(lst,chr(12)); [form feed]
end; {list}
begin
listproc
max lines := lines_per_page - bottom_margin;
open file;
if goodfile then begin
list;
writeln('listing done -');
end
else
listproc := 1;
end; {listproc}
procedure setuTA(num:byte); {set Disk Transfer Address}
var
regs: regpack;
begin
with regs do begin
ah := num;
ex := 0;
ds := seg(dfcb);
dx := ofs(dfcb);
MSDOS(regs);
space := ' ';
period := '.';
var
i, err: byte;
begin
for i := 0 to 36 do dfcb[i] := chr(0);
if not user input then begin
writeln('Search mask: ',buffer:15);
write(lst,chr(12)); [form feed]
end; {list}
begin
listproc
max lines := lines_per_page - bottom_margin;
open file;
if goodfile then begin
list;
writeln('listing done -');
end
else
listproc := 1;
end; {listproc}
HIGH PERFORMANCE RAM

64K CMOS STATIC RAM

256 K CMOS STATIC RAM
LITHIUM BATTERY BACKUP

✓ COMPARE

<table>
<thead>
<tr>
<th></th>
<th>CM6563</th>
<th>CM6564</th>
<th>CM6566</th>
<th>CM6567</th>
<th>BG Bank 256K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compupro Ram 22</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Octagon 256K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cromemco 256/2Z II</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dynamic Boards</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BG Bank 256K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

GUARANTEED IN YOUR SYSTEM
CROMIX-D • MPM • CCS • OASIS • AMOS

✓ PLUS: 8/16 BIT TRANSFERS • 24-BIT EX. ADDRESSING
8-12 MHz • 2K DESELECTS • RAM-EPROM MIX
IEEE 696/S-100 • LOW POWER • FULLY STATIC

LITHIUM BATTERY BACKUP avoids power failure crashes intelligently. Unique POWER-FAIL-SENSE circuit allows processor to save register information and disable board before POWER FAILURE CRASHES memory.

BG BANK 256S ✖ ✖ ✖ ✖ ✖ Battery Backup ✖ ✖ ✖ ✖ ✖
BG BANK 64S ✖ ✖ ✖ ✖ ✖ Battery Backup ✖ ✖ ✖ ✖ ✖

Megabyte Madness
FOUR 256S CARDS
$2295

call for new lower prices

CALL TARBELL TO ORDER

1082 E. Artesia Blvd.
Suite C
Long Beach, CA 90805
(213) 422-7081

TARBELL'S DUAL CPU 80186/Z80H DOES A LOT MORE!

- Runs PC-DOS, CP/M-80, CP/M-86 and CCP/M-86
- Floppy interface, 8 and 5-inch
- Two CPUs: 80186 and Z80H, both at 8 MHz speed
- Two serial ports: RS-232
- PROM: 4 kilobyte with monitor
- Memory Management: 16 Megabytes
- Interrupt Handler
- S-100 bus

Price: $1100 including manual and CP/M 2.2

Concurrent CP/M-86, CP/M-86, CP/M 2.2, and MP/M-II are trademarks of Digital Research, Inc. PC-DOS is a trademark of IBM.

TARBELL ELECTRONICS
Micro/Systems Journal November/December 1985
YOU CAN’T BUY HIGHER QUALITY, MORE RELIABLE S-100 STATIC MEMORY BOARDS AT ANY PRICE!

256K BYTES S-RAM 256™ $699* Qty. One

128K BYTES S-RAM 128™ $449* Qty. One

STANDARD FEATURES:
- Operates in excess of 12 MHz
- Certified system ready (industrial grade dynamic burn in)
- Supports 8 and 16 bit data transfers
- IEEE 696/S-100 compatible
- 24 bit addressing
- Address strappable to any 128K block within the 16 meg address range
- Extremely low power consumption
- Single +5 volt operation
- One year warranty

OPTIONS
- Battery back-up capability
- Military MIL-STD-883B type burn in
- Faster ram chips available

*SAVE AN ADDITIONAL $100! Buy one 256K board at $699 and receive a $100 certificate towards the purchase of your next 256K board. Buy one 128K board at $449 and receive a $50 certificate towards the purchase of either board.

NO HIDDEN CHARGES! Performics Inc., prices include dynamic burn in, insurance and UPS ground delivery within the continental U.S.

TERMS: Certified check, COD, Visa/Mastercard Volume discounts available.

Performics continues to deliver high performance products and excellent service at realistic prices.

S-RAM 128 and S-RAM 256 are trademarks of PERFORMICS INC.

ORDER NOW!

(603) 881-8334

11 Morning Dove Rd. • Kingston, New Hampshire 03848
Macros provide a means of textual substitutions in the source code at compile time. Most people get along fine with an intuitive idea of how they work, but occasionally stumble over anomalies.

These anomalies come from the C preprocessor’s (cpp) limited understanding (less than ours) of C. For example, while cpp knows not to perform substitutions inside of quoted strings, it doesn’t prevent changes in operator bindings, as the following example shows:

```c
#define weight 5
#define COVER 1
#define BATTERY_WEIGHT ACID_WEIGHT + COVER_WEIGHT /* WRONG! */
/* Compute total weight of 10 batteries */
total_weight = 10 * BATTERY_WEIGHT;
```

In this example, the assignment turns into a computation of 10*5+1. This is evaluated as (10*5)+1, not 10*(5+1) as the programmer wanted. The problem is that an operator (+) inside the macro was of lower precedence than one (*) outside the macro. Rather then learning all the rules of operator precedence, it is easier to simply remember to always enclose your entire macro with parentheses.

It is rare that this ability of cpp to change bindings is what is desired, although it is used occasionally (and typically produces obfuscated code). See Vol 1, #4 of M/SI for some classic examples!

Unfortunately, cpp can complicate things even further because it has the same effect on statements that it has on expressions. This is a much more troublesome problem, because the indentation that we use is completely ignored by the C compiler. While we understand the control of the program at a glance because of the indenting of the code, it can be misleading when the program has a completely different structure in reality.

For example, suppose we define the macro #assert. #assert is typically used to state a predicate that is always true. It generates actual code that checks that its argument is true. What is the point of that?

Think of it as being able to execute your comments; to check that the code really does what the comments say it does. If the assertion is ever false, a serious error has occurred - your program no longer matches your specification. For example, if you are writing a program and at a certain statement, you are confident that a pointer will always be valid (non-zero), you can place the statement:

```c
assert(pointer != NULL, "pointer is null");
```

This will generate code to verify the expression when the program is run. If the expression evaluates to 0 (false), a message will print stating that “assertion failed: pointer is null”. It is possible to set the macro up so that when you are ready to create a final program, the assertions are effectively ignored. (I will show this later.) Another possible use for this would be array bounds checking. During program development you might want this, but when you are convinced your program works, you can compile it without this feature.

A simple macro to do the assertion is:

```c
#define assert(expr,msg) 
  if ((expr)) printf("assertion failed: %s",msg) 
else c = 5;
```

Look at this macro very carefully. You should notice two things. The first is that we have put parentheses around expr. You should be able come up with an example where #assert would not perform correctly if we left the parentheses out. Also, take note that there is no terminating semicolon at the end of the if statement. This allows us to use the macro as if it were a function call, that is, to terminate it with a semicolon at the point of usage.

Now suppose that we have the following piece of code:

```c
if (a > b) assert(a+1 > b, "eh?");
else c = 5;
```

What happens after the macro is evaluated, is:

```c
if (a > b)
  if (a+1 > b) printf("assertion failed: %s","eh?");
else c = 5;
```

The else has bound with the wrong if! Not only will this function behave incorrectly, but the C compiler will not complain about it. It will compile just fine. These kinds of errors can be very hard to find, because the block and control bindings of the program don’t match the indentation level. Humans believe very strongly in white space, while the C compiler ignores it entirely.

The problem has occurred because our macro looks like a function call but doesn’t behave like one. Because the macro is only a textual substitution, it is free to rebind itself with any part of the program that the control structure syntactically warrants. If #assert had been a function, this would never had happened (and sometimes this is your only recourse).

In this case, an if statement bound with an else to become an if-else statement. One way to stop this rebinding is to make the if statement into its complete cousin. For example:

```c
#define assert(expr,msg) \ 
  if ((expr)) printf("assertion failed: %s",msg) \ 
else

Notice, the else just hanging off the end? This prevents another else from binding with the if. Remember that we are assuming that the user will terminate the macro use with a semicolon so that the else will be followed immediately by a semicolon (or more precisely, with a null statement).

Unfortunately, if you forget the semicolon, you will have more trouble since the following statement will be sucked up as the statement to be executed in the else clause (again without errors or warnings of any kind)!

Well, then, why don’t we just put the whole thing in a
pair of braces? This seems like a good idea, because it makes the macro into a complete C statement. You can also declare local variables and have other control structures such as loops in the macro.

Unfortunately, there is still a problem with this. (Think about it before reading on.) The problem appears in the following piece of code:

```c
if (expr) assert(expr2,"...");
else
```

which turns into:

```c
if (expr) {
 if (expr) printf;
else /* syntax error! */
}
```

What happened is that the assert is replaced by a block, but the block is followed by a semicolon. This semicolon came from the user adding it to the end of the macro. Unfortunately, it now terminates the `if` prematurely.

Is there anything that will do the job? The answer is yes, but its not exactly pretty. (You won't hit yourself on the head and say "Why didn't I think of that"?) The following macro does the job nicely:

```c
#define assert(e,m) do {
 if (!e) printf(m);
} while (0)
```

This is very similar to the previous case where we enclosed the macro in a block. The difference is that this one requires a semicolon to make it into a syntactically correct and complete statement. The block is sealed from misinterpretation through rebindings, and it will be executed once and only once. Although it may seem like an unusual way to do it, rest assured that every (reasonable) compiler will optimize the statement so that the extra test is not performed.

I particularly like this macro because if the user leaves off the semicolon, by mistake, the C compiler will complain.

On the other hand, the compiler won't complain with a macro like:

```c
#define assert(e,m) if (1) {
 if (e) printf(...);
}
```

For people who absolutely have to have the shortest macro, (no matter much readability they sacrifice,) here it is:

```c
#define assert(e,m) if (e) ; else printf(...)
```

It is particularly ugly, because 1) the test is reversed which can be a little confusing, and 2) there is a null `then` clause due to the semicolon immediately following the expression, which is easy to miss.

I'm not encouraging you to use these last two macros (or impress you with my knowledge). Rather I'm pointing out that you may see things like this when reading C source, and you should be able to understand it when you see it.

Note that in each macro above you can replace the `printf` by a `block of statements`

It is sometimes useful to have an if statement embedded in an expression (as opposed to a statement). This can be done with the following macro:

```c
#define EXPR_ASSERT(expr,msg) (expr || printf(...))
```

although this is not that useful, since you can't have local variables and looping control structures. Its occasionally called for, though.

What really makes `#assert` useful is that once you have debugged your program, you can turn off the assertion checking in the final version without doing any editing of your source.

Simply store `#assert` and any other debugging macros in a file called `debug.h` as follows:

```c
/* debug.h */
#define assert(expr,msg) if (1) {
 if (!(expr) printf(msg);
}
#endif
#define assert(expr,msg)
#definedefined DEBUG
```

Now if you define `DEBUG` when compiling, the assertions will generate real code, otherwise they are turned into null statements. (Convince yourself that the null statement doesn't mess anything else up!)

I encourage readers to write to me about topics or problems that you want to know about. I want this column to be reader driven. Write to me care of M/SJ, Box 1192, Mountainside, NJ 07092.

Don Libes is a computer scientist working in the Washington, DC area. He works on artificial intelligence in robot control systems. He is also the son of Lennie and Sol Libes.
In the past Sol Libes and I, at different times, discussed, in this publication, and in the old Microsystems, assembling an IBM PC clone. The task has come along way. Availability of components has increased and costs have dropped. Almost anyone who can use a screwdriver can put together a system. Not only have hardware costs dropped dramatically but so have software costs dropped, if one makes full use of public domain software, such as exists in the PC/Blue Library.

The main difference between commercial software and software in the public domain is mainly the depth of functionality. For example, Lotus 1-2-3 is currently the most popular commercial spreadsheet program. I would venture to guess that more than half the 1-2-3 users don't take advantage of its complex functions. This is also true for other programs like word processing and database management systems. There are however exceptions to the rule. I feel that public domain communication programs are far more creative and functional than their commercial counterpart systems.

We can divide public domain software into three basic categories - spreadsheets, database management systems, and word processors. Another category can be best described as esoteric. We have in the public domain library systems like XLISP, graphic display and bulletin board systems which really don't command a very large market. The third category consists of utilities. These programs tend to be small in program size. They include screen blanking, color graphics selector and many others. There is a multitude of them on the various bulletin boards across the country.

For this issue I will comment on building your own software library from what is available in the PC/Blue public domain library. Our base library should contain a word processor, spreadsheet, database manager, and communication programs.

For a word processor, there is PC-Write (Vol. 130) and WPK (Vol. 95). PC-Write reminds me of Volkswriter and Wordstar. It is a very functional program. It is memory mapped for high speed like Volkswriter. Everything is constructed in memory. Alas, it is similar to Wordstar in that the functional controls are accessed via control characters. Once the function keys are mastered, however, it is an excellent word processor. For the young ones in the home, WPK (Word Processing for Kids) is very easy to use and learn. Its very intelligent use of graphics makes it a joy to use.

PC-Calc (Vol. 115) and FreeCalc (Vol. 50) function in a manner very similar to the classic VisiCalc. Simple and functional and yet not encumbered by the extended features like regression routines, present values, or macro generation. For the home, we don't need something as complex as Lotus 1-2-3. On the contrary, PC-Calc is as simple to use as 1, 2, and 3. PC-File (Vol. 46) started off in the public domain or user supported sector. It has since graduated from the ranks and gone commercial. In its place, there are a number of candidates one can choose from. PC-DBMS (Vol. 131) and 3BY5 are pretty nifty programs. A clear cut leader from a bunch of good database managers will only come with their continued distribution and acceptance in the public domain library network. Database management systems will vary in functionality. They may perform the same tasks but the presentation can make two similar functions packages look like night and day. Pick the one that best meets your requirements.

QModem (Vol. 141) has fast become a very popular communications package. The author is constantly updating it. Sometimes a little too often. But we should never complain about a good thing. QModem is an excellent program that has incorporated graphics, windows, directories, and split screen operation. There are now many ancillary programs available for QModem such as background dialers. A challenger to QModem is Termulator (Vol. 143). Termulator does not have the cosmetics of QModem, but it has the Kermit and XModem protocols. It can also emulate a large number of terminals. Least of all, let's not forget PC-Talk III (Vol. 143). I think it has been surpassed by QModem, but for a very long time it set the benchmark standards for a public domain or user supported communications program.

A favorite of mine in the PC-Blue library is PC Picture Graphics (Vol. 44). IBM has since included this in their class C software product catalog. The updated version is very modestly priced. But the original version works almost as well at a very modest copying cost.

I will comment on esoteric systems and utilities to be added to a base library consisting of public domain or user supported software in following issues.

During the past two months, a number of new volumes have been added to the PC/Blue public-domain software library. They are the following.

Vol. 138 & 139
Remote Bulletin Board System v1.2.5A
Capital PC Users Group - vol 1 & 2
Vol. 140
PBITERM version 2.0 terminal emulator and host communications facility
JUDY version 1.01 background desktop utility
Vol. 141
QModem version 1.07 modem communications
PC-CALC - electronic spreadsheet
DIALER - background dialer
RM1200B - software power on reset

Vol. 142 Miscellaneous Utilities -
archive utility/overwrite boot sector
examine all RAM (1MB)/file encryption
list utilities/file managers
Burg's library utilities
squeeze/unsqueeze
disk cataloging/display environment
sort large files/TREE directory

Vol. 143
PC/Talk III v2.6 - Modem Communications
Terminator v1.0 - Kermit/XModem Compatible
Minitel v3.2 - Modem Communications
Butler v1.01 - Automatic Modem Communications

Vol. 144 Miscellaneous Utilities -
area code utility/create .BAT files
Bly's utilities/simple calculator
auto CAPS LOCK/file encryption
DES module/memory map display
disk and file utilities

Vol. 145 Hints, Tips, & Notes -
1-2-3 <-> dBase III
dBase III fixes
Macro Assembler tutorial
Copy B <-> C
extending DoubleDOS 1.0
640KB on XT system board
Multimate fixes
Turbo Pascal tutorial
Wordstar patches

Vol. 146 XLISP version 1.5

Vol. 147 Fun & Games -

PC/Blue disks are available from the New York Amateur Computer Club, Inc., Box 106, Church Street Station, NY NY 10008. Price is $7 per volume which includes media, postage, and handling. On foreign orders, please add $2 per order. A cross referenced printed catalog may also be purchased from the above address at $5.

We will do whatever it takes to make DSD86 the best debugger available for the IBM PC.

For starters, we have by far the best design, a superior base to build from. While the competition adds new "modes" for every feature, we have a pure, consistent and expandable design. While the competition forces you to accept their particular philosophy, we offer maximized flexibility. If you already have a debugger or are looking for your first, look no further because you can't do any better. We invite you to compare our debugger, DSD86, with any other on the market.

- Recursive Command Macros & Files
- Bind Macros to any key
- Multi-segment Symbol Support
- Symbolic Register & Stack Displays
- User Customizable Screen Layout
- Superior Mode-less Design
- Source Window for MS Languages
- User Writable Commands & Displays
- Fast Screen Update
- Unique Breakpointing Facilities
- 30 Day Money Back Guarantee

Call or write for our free report on truly advanced debugging technology which explains DSD86's design and why it is superior to the debugger you are currently using.

Take the DSD challenge: secure a money back guarantee with any of our competitors. Buy both debuggers and use them for a month. Send the one you like least back for a refund.

Only $69.95!

ATTENTION!
DDT, SID and ZSID USERS!

Why are you wasting your time with outdated debugging tools when you could be using DSD80 by Soft Advances?

DSD80 is unmatched in the CP/M-80 world and even makes most 16 bit PC programmers green with envy

- Full Screen Display
- DDT Command Compatibility
- Software In-Circuit Emulator
- Superior Symbol Support
- Intel and Zilog Mnemonics
- 8080 and 280 Support
- Single Step Subroutines
- Assembler and Binary String Searching
- Port Input and Output
- Fast Disk File Management
- Uses only 16k of TPA
- Stack Display
- Highlighted Memory Display
- Dual Monitor Support
- User Writeable Display
- 30 Day Money Back Guarantee

You can experience the power of DSD80 for only $125. Our money back guarantee will protect you from overloads.

Soft Advances
P.O. Box 49473
Austin, Texas 78763
512-478-4763

"Programming for Productivity and Profit"

Please include $4 for shipping. DSD is a trademark of Soft Advances. CP M, SID & ZSID are trademarks of Digital Research. Dealer inquiries invited. Ask us about DSD86 for the IBM PC.
THE PROTOCOL WAR

I rented a video tape a few weeks ago...a film called 'Protocol' with Goldie Hawn. It was so bad we just never bothered to see more than a few minutes of it. What we did, however, was turn on the computer, phone Compuserve and tune in to the "Protocol War".

It was the hottest thing around, in recent times, on the CP/M SIG (GO PCS-47). Always an interesting place, in recent times CP/M SIG has been bubbling with sarcastic wit, attack, retreat and sundry forms of mayhem. The subject...revising Ward Christensen's XMODEM protocol to handle 1024 byte blocks.

The present XMODEM error checking is based upon transmission of a 128 byte data block. After the receiver gets the block and checks it, it advises the sender all is well - continue, or - send the block again. With 2400 baud modems (and even 1200 baud) the experts say transmission speed can be significantly improved by increasing the block size to 1024 bytes and changing the method of retransmitting errors.

Ward had put a message on the SIG that he was doing an article for BYTE on the protocol and proposed adoption of the YMODEM protocol to bring XMODEM to 1K blocks. It seemed a logical way of handling the matter. YMODEM has been extensively tested and in wide use in the 16-bit world. Paul Homchick then went ahead and did the code. Ron Fowler put the code into MEX and we released SIG/M Volume 241 with the new XMODEM (XMODM110) and the new MEX (MEX114).

One would expect the problem has been solved. However, this was just the beginning. It seems there is a movement, led by Irv Hoff, to have two standards for 1024 byte blocks. Out in California they never discovered that if you take your shoes off one can count to 16. As a result, the revision an hour crew, led by Irv, has been putting out new program versions with non-sanctioned protocols. Therefore, watch out for version numbers greater than XMODM110. In the meantime, Irv has promised to send SIG/M his new IMP - (Irv's Modem Program). More on the protocol wars next issue.

FOREIGN SIG/M CONTRIBUTORS

CP/M is very popular in Australia and every month or so SIG/M gets a contribution from Bill Bolton of Software Tools of Australia (PO Box 357, Kenmore, QLD, 4069) with their latest public domain software releases. Australia must be modem heaven. The vast distances must make for a telephone way of life and modern and BBS systems are high on the frequency list of releases. Their library is also heavy on programs for limited distribution computers.

Derek Forded of the United Kingdom CP/M Users Group (72 Mill Road, Hawley, Darfield, Kent, England DA2 7RZ) is another frequent contributor. Unfortunately, the UK library features quite a few non-standard BASIC and PASCAL programs, which means that only a few of their releases make it into the SIG/M library for distribution in the U.S.

Readers interested in Australian and U.K. public domain software libraries can contact Bill and Derek directly.

NEW SIG/M RELEASES

Our new releases include an updated KERMIT for CP/M-80. KERMIT is widely distributed as the mainframe-to-micro modem program. Many IBM PC commercial packages include a version of it for communications. It has a number of limitations, but as its distribution keeps expanding it is becoming a must have package.

The Disk-Jockey Controller is in reasonably wide use and Robert Davies of Wellington, New Zealand has written a CP/M+ BIOS for it (SIG/M Vol 236). Also in that volume is a fine article by Bob on CP/M+ together with an updated LISP in PASCAL/Z.

Interest in transmission of computer data by radio is growing. The SIG/M library contains a number of programs of interest to packet radio buffs. The latest releases include two volumes in this area. Ed Elizondo has implemented all three levels of the CCITT X.25 Packet Standard for the Big Board (Vol 238). It contains full documentation and should be readily adaptable to other machines. Full documentation is also available for BASICODE radio transmission (Vol 235). Unfortunately, the documentation is mostly in Dutch. We are working on a translation. In the meantime, true radio fans should find it of interest. Additional packet radio material is also available on SIG/M Volume 143.

We really can't do justice to the ten volumes covered by SIG/M 232 through 241 in the space remaining, so we will just list them and perhaps cover them in more detail in the next issue. One last word, however, with respect to the fine contribution we received from Rick Surwild. He has written an excellent full screen Z80 debugger with full (90 pages) documentation (Vol 239). This is a major work, although as you can see from the list, there are a number of major innovations on these ten volumes.

SIG/M Volumes are available on 8" SSDS Disks for $6.00 each ($9.00 foreign) directly from SIG/M, Box 97, Iselin, NJ 08830. Printed catalogs are $3.00 each ($4.00 foreign). Disks in a variety of formats may be obtained through the worldwide SIG/M distribution network (which was published in the last issue of MSJ). The distributor list is included with the printed catalog. A disk version of the catalog (Volume 00) is available for $6.00. Many bulletin boards have the software for downloading and most new releases are available on the Compuserve CP/M SIG.
Vol 232 - Kermit 3.9 for CP/M-80, Z80 translator
released July 19, 1985

BEBCIGS.MQC Modified Ferguson Big Board 1 BIOS
KERMIT.VER KERMIT communications version list
KRNCSK.LBR KERMIT version 3.9 for CP/M-80
M7DTBS.AOM Modem 7 for Ferguson Big Board 1
XLANE216.LBR Updated XLANE 8080x280 source translator

Vol 233 - Miscellaneous CP/M-80 Utilities
released July 19, 1985

BOF-MOR.LBR 280 Boyer-More string search function
CLEANUP.LBR Cleans up C source, makes cross listing
DISNAME.LBR Gives 45 char volume name on CP/M disk
MODEM7.B.R MODEM7 modified for LST device output
PMATCH.LBR Checks print command pairing for Word
SENDUENT.LBR Updated SD77, more information displayed
UDMAUTOD.BAS BASIC auto dialer for Modem Tech UDM1200
думатьAUTOB.BAS BASIC auto dialer for Modem Tech UDM1200
STDDRNT.LBR Screen dump Microbee to Tandy DMP 200
XPRINT.LCR Screen dump utility in C

Vol 234 - CP/M & Other Utilities, Curve Fitting
released July 19, 1985

AUTO.LBR Auto execute program on cold boot
CPMUTIL.LBR Disk & other utilities for CP/M+
CUBE.LBR Solves 5 x 5 cube
CURLFIT.LBR Curve fitting in BASIC
DISKSTAT.LBR Display disk info and file allocation
DUMP.LBR Improved file dump utility
ECOPY.LBR Fast copy utility for SuperBrain
FXZ.LBR Full screen disk utility SuperBrain version
SYM.LBR Make SID symbol table from MACRO-80 listing

Vol 235 - BASICODE Radio Communications (in Dutch)
Netherlands Enhancements to FIG FORTH
released July 19, 1985

ABSTRACT.235 Abstract of disk contents (in Dutch)
BASICODE.DOC Documentation on BASICODE (in Dutch)
BASECODE.ENG Brief intro to BASICODE (in English)
BC2.BOS "Standard" BASICODE-2 for MS BASIC
BC2.GSB "Osborne" BASICODE-1 for Osborne 1
BC2.OOI "Brug Scientific" BASICODE-2
BCREAD.AGM Read BASICODE-2 from parallel port
BCRST.AGM Test program BASICODE-2 port transfer
BCWRIT.AGM Write out BASICODE-2 program, std
BCWRITE.AGM Write out BASICODE pgm, (BASICODE-17)
BOKAEST.BGS BASICODE-2 to Tc90 Toe, in Dutch
CONVERT.BGS BASIC source to BASIC source listing
CONVERL.BGS Conlates BASICODE-2 to Microsoft BASIC
DEB gos BASICIDE game of some sort, in Dutch
DIGIKLOK.BGS BASICODE-2 on screen digital clock
FEESTR.BGS BASICODE-2 show public holidays any year
FORTH-FL.LBR FIG FORTH 1.1 with enhancements for CP/M
FUNCTION.LAT Used with CONVERL.COM
KALFEST.BGS BASICODE-2 calendar-any month & year
KERNITIONS. DSB Used with CONVERL.COM
MASSA.BGS BASICODE-2 demo program, in Dutch
SORT.BGS BASICODE-2 sort program, in Dutch
STIELSLE.BGS BASICODE-2 solve 3 order quadratics?
TANKIE.BGS BASICODE-2 game, simple ASCII graphics
TESTBC.BGS BASICODE-2 test/exerciser
TIMERS555.BGS BASICODE-2 designs 555 timer circuits
UTILISO.I INTRODUCTION TO BASICODE? (in Dutch)
UTILISO.BGS See UTILISO.BBS

Vol 236 - CP/M+ BIOS for Disk-Jockey Controller
Updated Lisp in Pascal/Z
released July 19, 1985

CPMBIOS.DOC CP/M+ BIOS for Morrow Disk Jockey-Doc
SCB.ASM BIOS routines
MOVE.ASM " "
CHARIO.ASM " "
DISKEFS.ASM " "
DISKHDL.ASM " "

Vol 237 - Pilot in Pascal/Z
Solving Deductive Reasoning Puzzles
released July 19, 1985

PILOTP.LBR Pilot in Pascal/Z
PUZZLE.LBR Helps solve deductive reasoning puzzles

Vol 238 - CCITT X.25 Packet Standard (all 3 levels)
released August 16, 1985

BUFFERS.AGM Full implementation of CCITT X.25
FILES.AGM packet standard (all 3 levels) under
LEVEL1.AGM CP/M-80, implements a dumb terminal
LEVEL2.AGM with bi-directional file transfer
LEVEL3.AGM capability. Configured for Digital
PLOG.AGM Research Big Board (uses SIO on BB
X25.AGM to handle HILC bit stuffing and
X25.COM polynomial check). Extensive diagnostic facilities built in. Full
X25STS.DOC User manual.
X25UN.COM / XULTIL.AGM /

Vol 239 - Z8E 250 Debug Monitor
released August 16, 1985

25E.COM Symbolic Z80 debugger. Full screen
25E.ACM animated display of program under
25E.MC test, built in assembler, 16 break-
points, 20 + commands. Full doc file

Vol 240 - Extracts from UK CPUG - Volumes 21 & 23
BASIC (250) Bulletin Board
released August 16, 1985

ASM65.DOC converts ASM.COM to 6502
ASM56.HEX cross assembler
BACKUP.COM Winchester backup program (250)
BACKUP.DOC / BACKUP.MAC /
ECCE.DOC Edinburgh Compatible Context Editor
ECCE65.COM line oriented editor with macro
ECCE65.COM capability and conditional commands
ECCE65.COM /
ACK.COM /
ZBBS.LBR BASIC BBS (280) system

Vol 241 - Updated XMODEM HEX with Revised XMODEM
Protocol; Turbo Pascal Bulletin Board
released August 16, 1985

MEX114.LBR Update to XMODEM & HEX using new
XCOM110.LBR 1024 protocol for faster transfer
TURBOBBS.LBR Turbo Pascal BBS system

Micro/Systems Journal November/December 1985 21
Free to create computer environments right for you ... free to automate repetitive tasks ... free to increase your productivity. **Z-System**, the high-performance 8-bit operating system that flies! Optimized assembly language code — full software development system with linkable libraries of often needed subroutines — relocating (ROM and RAM) macro assembler, linker, librarian, cross-reference table generator, debuggers, translators, disassembler — ready to free you!

**TERM III**

New generation communications package provides levels of flexibility, functionality, performance not available until now. Replaces BYE and XMODEM... master/server local area network capability... public or private bulletin board and electronic message handling are integral features... auto-dial/answer, menu install... XMODEM (CRC/Checksum), MODEM7 Batch, Kermit, CIS, and XON/XOFF protocols...

100-page manual ................................................................. $99.00

**Z-MSG**

Rolls Royce of message handling systems... mates with TERM III or BYE for most advanced overall electronic mail/file transfer capabilities... menu installed... extreme configurability... many levels of access and security... word, phrase editor, field search... complete message manipulation and database maintenance ................................................................. $99.95

**DISCAT**

Elegant, menu and command-line driven file and disk catalog manager. Generates and controls multiple master catalogs, working catalog used for update quickness. Nine flexible modules easily altered by user for custom requirements. Works with Z shells (VMENU, VFILER, MENU), aliases, and multiple commands per line ................................................................. $39.99

**ZCPR3: The Manual**

Bound, 350 pages, typeset book describes features of ZCPR3 command processor, how it works, how to install, and detailed command usage. Bible to understand Z-System ................................................................. $19.95

**ZCPR3 and I/OPS**

Loose-leaf book, 50 pages, 8-1/2" by 11", describes ins-and-outs of input/output processing using Z-System. Shows how to modify your BIOS to include I/O redirection... complements The Manual ................................................................. $9.95

More missing links found — Z Application Programs! Fly with eagles! Our programs promote high performance through flexibility! Productivity results from dynamically changeable work environments, matching operator to tasks and machines.

Above programs require 48K-byte memory, ZCPR3, Z-Com, or Z-System, and Z80/NSC800/HD64180-based computer. Shipping from stock. State desired disk format, plus two acceptable alternatives. As payment, we accept Visa, Mastercard, personal checks, money orders, and purchase orders from established companies. We also ship UPS COD.

Call or write to place order or to obtain literature.
MIX EDITOR
Programmable, Full/Split Screen Text Processor

Introductory Offer $29.95

Great For All Languages
A general purpose text processor, the MIX Editor is packed with features that make it useful with any language. It has auto indent for structured languages like Pascal or C. It has automatic line numbering for BASIC (255 character lines). It even has fill and justify for English.

Split Screen
You can split the screen horizontally or vertically and edit two files simultaneously.

Custom Key Layouts
Commands are mapped to keys just like WordStar. If you don’t like the WordStar layout, it’s easy to change it. Any key can be mapped to any command. You can also define a key to generate a string of characters, great for entering keywords.

Macro Commands
The MIX Editor allows a sequence of commands to be executed with a single keystroke. You can define a complete editing operation and perform it at the touch of a key.

Custom Setup Files
Custom keyboard layouts and macro commands can be saved in setup files. You can create a different setup file for each language you use.

MSDOS Features
Execute any DOS command or run another program from inside the editor. You can even enter DOS and then return to the editor by typing exit.

MIX C COMPILER
Full K&R Standard C Language Unix Compatible Function Library

Introductory Offer $39.95

Complete & Standard
MIX C is a complete and standard implementation of C as defined by Kernighan and Ritchie. Coupled with a Unix compatible function library, it greatly enhances your ability to write portable programs.

The Best C Manual
MIX C is complemented by a 400 page manual that includes a tutorial. It explains all the various features of the C language. You may find it more helpful than many of the books written about C.

Fast Development
MIX C includes a fast single pass compiler and an equally fast linker. Both are executed with a single one line command. Together they make program development a quick and easy process.

Fast Execution
The programs developed with MIX C are fast. For example, the often quoted prime number benchmark executes in a very respectable 17 seconds on a standard IBM PC.

30 DAY MONEY BACK GUARANTEE
Orders Only: Call Toll Free 1-800-523-9520, (Texas only 1-800-622-4070)
MIX Editor ___ $29.95 + shipping (45 USA/$10 Foreign) Texas residents add 6% sales tax
MIX C ___ $39.95 + shipping (45 USA/$25 Foreign) Texas residents add 6% sales tax
Visa ___ MasterCard ___ Card # ____________ Exp. Date ________
COD ___ Check ___ Money Order ___ Disk Format ___
Computer ___ Operating System: MSDOS ___ PCDOS ___ CPM80 ___
Name ____________________________
Street ____________________________
City/State/Zip _____________________
Country __________________________
Phone ____________________________

MIX software
2116 E. Arrapaho
Suite 535
Richardson, TX 75081
Dealer Inquiries Welcome: Call (214) 783-6001

MSDOS is a trademark of Microsoft 
PCDOS is a trademark of IBM
CPM80 is a trademark of Digital Research
WordStar is a trademark of MicroPro
## Multi-Function Boards

<table>
<thead>
<tr>
<th>Board Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teletek 384K Memory Board with OK</td>
<td>$125</td>
</tr>
<tr>
<td>Teletek 384K Memory Brd, Clock, OK</td>
<td>$140</td>
</tr>
<tr>
<td>Teletek 384K Memory Board with 384K</td>
<td>$199</td>
</tr>
<tr>
<td>Teletek 384K Memory Brd, Clock, 384K</td>
<td>$214</td>
</tr>
<tr>
<td>PBS 384K Short Card with Memory</td>
<td>$65</td>
</tr>
<tr>
<td>Tecmar Captain 64K</td>
<td>$199</td>
</tr>
<tr>
<td>PBS 7 Pak 384K</td>
<td>$197</td>
</tr>
<tr>
<td>Tecmar Maestro for at w/128K</td>
<td>$359</td>
</tr>
<tr>
<td>PBS 7 Pak 640K</td>
<td>$249</td>
</tr>
<tr>
<td>Ast 6 Pak + 64K, 1 PAR, 1 SER, Clock</td>
<td>$239</td>
</tr>
<tr>
<td>Ast Advantage 128K for AT</td>
<td>$425</td>
</tr>
<tr>
<td>Paradise 5 Pak 384K w/OX</td>
<td>$185</td>
</tr>
<tr>
<td>Everex Int. 300/1200 Modem</td>
<td>$185</td>
</tr>
<tr>
<td>STB Super Rio, Ser, Par, Clock 64K</td>
<td>$296</td>
</tr>
<tr>
<td>STB Rio Grande 128K for AT</td>
<td>$395</td>
</tr>
<tr>
<td>Quadram Expanded Quadboard OK</td>
<td>$199</td>
</tr>
<tr>
<td>PBS I/O - 100 AT Par., Serial</td>
<td>$99</td>
</tr>
<tr>
<td>Maynard Accent Board for AT OK</td>
<td>$345</td>
</tr>
<tr>
<td>PBS I/O Serial, Par, Clock</td>
<td>$99</td>
</tr>
</tbody>
</table>

## Graphics Boards

<table>
<thead>
<tr>
<th>Board Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hercules Monochrome Card</td>
<td>$299</td>
</tr>
<tr>
<td>Hi Res PBS Monochrome/Graphics Card</td>
<td>$125</td>
</tr>
<tr>
<td>Hercules Color Card w/Parallel</td>
<td>$159</td>
</tr>
<tr>
<td>PBS Color Card w/Parallel</td>
<td>$125</td>
</tr>
<tr>
<td>Tecmar Graphics Master</td>
<td>$449</td>
</tr>
<tr>
<td>PBS Color</td>
<td>$99</td>
</tr>
<tr>
<td>Paradise Modular Graphics Card</td>
<td>$269</td>
</tr>
<tr>
<td>Persyst Monochrome Card</td>
<td>$175</td>
</tr>
<tr>
<td>Persyst Color Graphics Board</td>
<td>$175</td>
</tr>
<tr>
<td>Persyst Color Combo 384K w/OX</td>
<td>$310</td>
</tr>
<tr>
<td>Persyst Monochrome Combo w/OX</td>
<td>$310</td>
</tr>
<tr>
<td>Quadram Gold Quad Color w/OX</td>
<td>$389</td>
</tr>
<tr>
<td>Everex Edge</td>
<td>$279</td>
</tr>
</tbody>
</table>

## Monitors

<table>
<thead>
<tr>
<th>Monitor Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amdek 310A</td>
<td>$159</td>
</tr>
<tr>
<td>Amdek 600 Color Green Switch Audio</td>
<td>$409</td>
</tr>
<tr>
<td>Quadram Quadchrome</td>
<td>$449</td>
</tr>
<tr>
<td>Quadram Quadchrome II</td>
<td>$389</td>
</tr>
<tr>
<td>Samsung Hi Res Green TTL</td>
<td>$119</td>
</tr>
<tr>
<td>Samsung Hi Res Amber TTL</td>
<td>$125</td>
</tr>
<tr>
<td>Princeton HX-12 Hi Res Color</td>
<td>$459</td>
</tr>
<tr>
<td>Princeton MAX-12 Amber</td>
<td>$179</td>
</tr>
<tr>
<td>Princeton SR-12 Ultra Hi Res</td>
<td>$599</td>
</tr>
<tr>
<td>Princeton SR-12P</td>
<td>$675</td>
</tr>
<tr>
<td>Taxan 410 RGB Color</td>
<td>$349</td>
</tr>
<tr>
<td>Taxan 420 RGB Super High Res</td>
<td>$425</td>
</tr>
<tr>
<td>Taxan 440 RGB Ultra High Res</td>
<td>$565</td>
</tr>
<tr>
<td>Tecmar RGB 81140 Hi Res Color</td>
<td>$595</td>
</tr>
</tbody>
</table>

## Floppy Drives

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAC FD55B</td>
<td>$119</td>
</tr>
<tr>
<td>National JA551</td>
<td>$99</td>
</tr>
<tr>
<td>Shugart SA455</td>
<td>$125</td>
</tr>
<tr>
<td>AT Power Supply 192 watt</td>
<td>$195</td>
</tr>
</tbody>
</table>

## Hard Disk Drive Kits

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Megabyte for IBM PC</td>
<td>$595</td>
</tr>
<tr>
<td>20 Megabyte for IBM AT-FAST</td>
<td>$795</td>
</tr>
<tr>
<td>32 Megabyte for IBM AT</td>
<td>$1295</td>
</tr>
<tr>
<td>70 Megabyte for IBM AT</td>
<td>$2295</td>
</tr>
<tr>
<td>80 Megabyte for IBM AT</td>
<td>$3295</td>
</tr>
<tr>
<td>112 Megabyte for IBM AT</td>
<td>$3495</td>
</tr>
<tr>
<td>Alloy PC-STOR 20MB + Tape</td>
<td>$2695</td>
</tr>
<tr>
<td>Alloy PC-STOR 52MB + Tape</td>
<td>$3795</td>
</tr>
<tr>
<td>Everex 20MB FAST Tape B/U</td>
<td>$695</td>
</tr>
<tr>
<td>Everex 60MB FAST Tape B/U</td>
<td>$995</td>
</tr>
<tr>
<td>Expansion Box-for HD.</td>
<td>$95</td>
</tr>
</tbody>
</table>

### AT Clone $3695

Serial, Parallel, Clock, choice of Hi Res Hercules compatible Monochrome/Graphics, with Parallel Port or Color Graphics Board with Parallel Port.

1 YEAR LIMITED WARRANTY

DEALER and QUANTITY PRICING AVAILABLE

### Accelerator Cards

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth Computer Turbo Accel-286 Software Transparent 286 Power for PC 512K</td>
<td>$895</td>
</tr>
<tr>
<td>True AT Power with Turbo Accel-286, Fast 16 Bit Memory &amp; Accepts 80287</td>
<td>$995</td>
</tr>
<tr>
<td>Earth Computer 8MHZ Z80 H Slave Run CP/M 2.2 Software on Your PC</td>
<td>$395</td>
</tr>
<tr>
<td>Earth Computer 8MHZ Z80H S-100 Slave Runs Under Turbodos</td>
<td>$395</td>
</tr>
</tbody>
</table>

ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE — SHIPPING EXTRA
### COMPETITIVE EDGE

**P.O. Box 556 — Plymouth, MI 48170 — (313) 451-0665**

**HIGH PERFORMANCE PRODUCTS RUNNING UNDER TURBODOS**

**TELETEK ENTERPRISES S-100 MASTER SLAVE BOARDS**

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teletek Systemaster I</td>
<td>$495</td>
</tr>
<tr>
<td>Systemaster II</td>
<td>$795</td>
</tr>
<tr>
<td>8MHz SBC 86 512K</td>
<td>$963</td>
</tr>
<tr>
<td>5MHz SBC 86 512K</td>
<td>$795</td>
</tr>
<tr>
<td>6MHz SBC 128K</td>
<td>$375</td>
</tr>
<tr>
<td>HDC</td>
<td>$375</td>
</tr>
</tbody>
</table>

- 4MHz Z80A MASTER SYSTEMASTER® I, 2 SERIAL, 2 PAR, FOC, CLOCK $495
- 8MHz Z80H 128K MASTER, SYSTEMASTER II®, 2 SER, 2 PAR, FDC CLK 795
- 8MHz 8086 512K SLAVE SBC 86 RUNS WITH EITHER MASTER ABOVE 963
- 5MHz 8086 512K SLAVE SBC 86 RUNS WITH EITHER MASTER ABOVE 795
- 8MHz 8087 OPTION FOR 8MHz 8086 SBC 86 175
- 5MHz 8087 OPTION FOR 5MHz 8086 SBC 86 109
- SBC 1 6MHz Z80B 128K SLAVE RUNS WITH EITHER MASTER ABOVE 375
- HDC HARD DISK CONTROLLER — ST506 INTERFACE RUNS WITH ABOVE 375
- SBC II DUAL SLAVE BOARD (TWO Z80’S PORTS ETC.) 689

### COMPETITIVE EDGE INTEGRATED SYSTEMS

- 4MHz Z80A 64K, CPM 2.2, 2-5” FLOPPYS, 4 SLOT CABINET 1295
- 8MHz Z80H 128K, SINGLE USER TURBODOS WITH SPOOLING, 2-5” FLOPPYS, 4 SLOT CABINET READY TO RUN 1695
- 8MHz Z80H, 128K MASTER, 4-6MHz 128K SLAVES, 1-5” 20MB HD 4795
- 10 SLOT 1-5” FLOPPY READY TO RUN WITH TURBODOS 4795
- 8MHz Z80H, 128K MASTER, 4-8MHz 512K SLAVES, 1-5” 20MB HD $7495
- 10 SLOT 1-5” FLOPPY READY TO RUN WITH TURBODOS 7495
- 4MHz Z80A, 64K MASTER, 4-6MHz 128K Z80B SLAVES, 1-5” 20 MB HD, 10 SLOT 1-5” FLOPPY READY TO RUN WITH TURBODOS 4395
- 8MHz Z80H 128K MASTER, 6-8MHz 8086 SLAVES WITH 8087, 6-6MHZ 208B 128K SLAVES, FAST 40 MB HARD DISK, 15 SLOT, 1-5” FLOPPY READY TO RUN WITH TURBODOS 10,695

SYSTEMS AVAILABLE WITH UP TO 16 SLAVES AND 2-112 MD HD (224 MB TOTAL)

- EARTH COMPUTER TURBO SLAVE I 8MHz Z80H-128K SLAVE 2 SERIAL 395
- TURBO SLAVE I RUNS WITH ALL TURBODOS S-100 SYSTEMS 395

All Prices Subject to Change — Shipping Extra, Visa M/C Accepted

Systemaster I & II, HDC, SRC I, SRC II are either registered trademarks or trademarks of trademarks of Teletek Enterprises. CPM is a registered trademark of Digital Research Inc.

Turbo is a trademark of Software 2000 Inc.
COMPETITIVE EDGE
P.O. Box 556 — Plymouth, MI 48170 — (313) 451-0665

Competitive Edge brings you Lomas Data Products Inc.
HI SPEED 16 BIT COMPONENTS AND SYSTEMS

S-100 CIRCUIT BOARDS

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thunder 186, 256K, 2 Serial, 1 Parallel, Floppy Disk Controller, Clock, All on One Board with Concurrent DOS</td>
<td>$895</td>
</tr>
<tr>
<td>8MHZ Lighting 286 CPU</td>
<td>$821</td>
</tr>
<tr>
<td>10MHZ Lighting 8086 CPU</td>
<td>$520</td>
</tr>
<tr>
<td>Control It All Floppy &amp; HD Controller</td>
<td>$487</td>
</tr>
<tr>
<td>Hazitall 2 Serial, 2 Par, Clock</td>
<td>$260</td>
</tr>
<tr>
<td>256K Dram Megaram</td>
<td>$358</td>
</tr>
<tr>
<td>1024K (1 Megabyte) Megaram</td>
<td>$599</td>
</tr>
<tr>
<td>Ram 67 128K Static 100ns Chips</td>
<td>$596</td>
</tr>
<tr>
<td>Octaport 8 Serial to 38.4K</td>
<td>$320</td>
</tr>
<tr>
<td>NV Disk 512K, Memory Drive</td>
<td>$371</td>
</tr>
<tr>
<td>Concurrent DOS Single User</td>
<td>$280</td>
</tr>
<tr>
<td>Concurrent DOS Multi-user</td>
<td>$360</td>
</tr>
<tr>
<td>MSDOS for 86, 186, or 286</td>
<td>$200</td>
</tr>
<tr>
<td>LDP-COM Modem Program</td>
<td>$55</td>
</tr>
<tr>
<td>PC DOS Drivers</td>
<td>$35</td>
</tr>
</tbody>
</table>

COMPETITIVE EDGE INTEGRATED SYSTEMS

<table>
<thead>
<tr>
<th>System Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>THUNDER 186, 4 SLOT PC STYLE CABINET, 2-5&quot; FLOPPYS, CDOS</td>
<td>$1595</td>
</tr>
<tr>
<td>THUNDER 186, 4 SLOT, 20 MB HARD DISK, 1-5&quot; FLOPPY, CDOS</td>
<td>$2595</td>
</tr>
<tr>
<td>THUNDER 186, 4 SLOT, 20 MB HD, 512K, 1-5&quot; FLOPPY 4 USER</td>
<td>$3195</td>
</tr>
<tr>
<td>THUNDER 186, 4 SLOT, 2-5&quot; FLOPPY, COLOR MAGIC, KEYBOARD</td>
<td>$2250</td>
</tr>
<tr>
<td>6MHZ 286, 1-5&quot; FLOPPY, 1024K, 20MB HD, 10 SERIAL, 15 SLOT, 7-8 USERS</td>
<td>$4695</td>
</tr>
<tr>
<td>6MHZ 286, 1-5&quot; FLOPPY, 1024K, 40MB HD, 10 SERIAL, 15 SLOT, 7-8 USERS</td>
<td>$5295</td>
</tr>
<tr>
<td>8MHZ 286, 1-5&quot; FLOPPY, 1024K STATIC, 40 MB HD, 10 SERIAL, 7-8 USERS</td>
<td>$7550</td>
</tr>
<tr>
<td>8MHZ 286, 1-5&quot; FLOPPY, 512K STATIC, 40 MB HD, 2 SERIAL &amp; 80287</td>
<td>$6495</td>
</tr>
<tr>
<td>8MHZ 8086/8087, 1-5&quot; FLOPPY, 512K DRAM, 20 MB HD, 2 SERIAL CDOS or MSDOS</td>
<td>$3695</td>
</tr>
<tr>
<td>S-100 AT, 512K, COLOR MAGIC PC COMPATABLE COLOR ADAPTER, 1-5&quot;, FAST 20MB HD, MSDOS, KEYBOARD, HI-RES COLOR MONITOR, READY TO RUN, YOU COULD BOOT PC DOS 3.1!</td>
<td>$5295</td>
</tr>
</tbody>
</table>

A COMPLETE LINE OF TERMINALS, PRINTERS and SOFTWARE FOR YOUR SYSTEM NEEDS

All Prices Subject to Change — Shipping Extra

IBM is a registered trademark of International Business Machines, CP/M, Concurrent DOS are registered trademarks of Digital Research Inc. MSDOS is a trademark of Microsoft.
S-100 CompuPro® CIRCUIT BOARDS

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk 1A™ Floppy Disk Controller</td>
<td>$371</td>
</tr>
<tr>
<td>8 MHZ 266 CPU A&amp;T</td>
<td>$671</td>
</tr>
<tr>
<td>Ram 22™ 256K Static Ram A&amp;T</td>
<td>$446</td>
</tr>
<tr>
<td>Ram 23™ 64K Static Ram A&amp;T</td>
<td>$188</td>
</tr>
<tr>
<td>Interfacer 3™ 8 Serial Ports</td>
<td>$371</td>
</tr>
<tr>
<td>SPU Z™ 8MHZ Z80, 256K Multiuser</td>
<td>$296</td>
</tr>
<tr>
<td>MDRIVE-H™ 512K Memory Drive</td>
<td>$371</td>
</tr>
<tr>
<td>PC Video Board for IBM® Compats</td>
<td>$396</td>
</tr>
<tr>
<td>Network 100™ Network Board</td>
<td>$316</td>
</tr>
<tr>
<td>80287 Option for 286 CPU</td>
<td>$199</td>
</tr>
<tr>
<td>Concurrent DOS™ 8-16™</td>
<td>$300</td>
</tr>
<tr>
<td>CP/M® 2.2 8&quot; or 5&quot;</td>
<td>$125</td>
</tr>
</tbody>
</table>

Your Choice $263

SYSTEM SUPPORT 1, 85/88-10MHZ, INTERFACER 4, RAM 23-128K

HARD DISK SUB-SYSTEMS

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 MEGABYTE HARD DISK, CABINET, DISK 3, SUB-SYSTEM</td>
<td>$1295</td>
</tr>
<tr>
<td>40 MEGABYTE HARD DISK, CABINET, DISK 3, SUB-SYSTEM</td>
<td>$1895</td>
</tr>
<tr>
<td>20 MEGABYTE HARD DISK, CABINET, DISK 3, 5&quot; FLOPPY</td>
<td>$1435</td>
</tr>
<tr>
<td>LOMAS 24 MB TAPE Backup SUB-SYSTEM</td>
<td>$1495</td>
</tr>
<tr>
<td>40 MEGABYTE HARD DISK, CABINET, DISK 3, 5&quot; FLOPPY</td>
<td>$2095</td>
</tr>
<tr>
<td>8&quot; &amp; 5&quot; FLOPPYS, 40 MB HARD DISK SUB-SYSTEM</td>
<td>$2395</td>
</tr>
<tr>
<td>2-40 MB HARD DISK DRIVES IN CABINET, DISK 3, SUB-SYSTEM</td>
<td>$3095</td>
</tr>
</tbody>
</table>

SYSTEMS INTEGRATED BY COMPETITIVE EDGE WITH COMPUPRO®, COMPONENTS

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>8MHZ 286 SYSTEM</strong></td>
<td>$4795</td>
</tr>
<tr>
<td>8MHZ 286 &amp; 512K STATIC RAM</td>
<td>85/88 CPU &amp; 128K STATIC</td>
</tr>
<tr>
<td>9 SERIAL PORTS, SS1 &amp; I/O 3</td>
<td>4 SERIAL PORTS &amp; 1 PAR</td>
</tr>
<tr>
<td>ONE 5&quot; FLOPPY &amp; 20MB HARD DISK</td>
<td>SYSTEM SUPPORT &amp; I/O 4</td>
</tr>
<tr>
<td>DISK 1A &amp; DISK 3 CONTROLLERS</td>
<td>ONE 5&quot; FLOPPY &amp; 20 MB HD</td>
</tr>
<tr>
<td>CONCURRENT DOS 8-16 MULTI-USER</td>
<td>DISK 1A &amp; DISK 3 CONTROLLERS</td>
</tr>
<tr>
<td>15 SLOT CABINET, 30 AMPS + 8</td>
<td>CP/M-8-16 8 &amp; 16 BIT</td>
</tr>
<tr>
<td>EMB0808 SOFTWARE 8 BIT EMULATOR</td>
<td>15 SLOT CABINET</td>
</tr>
<tr>
<td>OPTIONAL 8MHZ Z80H SLAVES</td>
<td>5&quot; FLOPPY WILL READ IBM</td>
</tr>
<tr>
<td>ALL COMPONENTS ASSEMBLED &amp; TESTED TOGETHER, ALL INTERNAL CABLES SUPPLIED</td>
<td>SYSTEM UPGRADEABLE TO MULTI-USER &amp; Z80 SLAVES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>8MHZ 286 SYSTEM</strong></td>
<td>$5395</td>
</tr>
<tr>
<td>AS ABOVE BUT 40 MB HD</td>
<td>SAME AS ABOVE BUT</td>
</tr>
<tr>
<td>INSTEAD OF 20 MB HD</td>
<td>40 MB HD INSTEAD OF 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>10MHZ 8088-85/88 SYSTEM</strong></td>
<td>$3395</td>
</tr>
<tr>
<td>85/88 CPU &amp; 128K STATIC</td>
<td>85/88 CPU &amp; 128K STATIC</td>
</tr>
<tr>
<td>4 SERIAL PORTS &amp; 1 PAR</td>
<td>4 SERIAL PORTS &amp; 1 PAR</td>
</tr>
<tr>
<td>SYSTEM SUPPORT &amp; I/O 4</td>
<td>SYSTEM SUPPORT &amp; I/O 4</td>
</tr>
<tr>
<td>ONE 5&quot; FLOPPY &amp; 20 MB HD</td>
<td>ONE 5&quot; FLOPPY &amp; 20 MB HD</td>
</tr>
<tr>
<td>DISK 1A &amp; DISK 3 CONTROLLERS</td>
<td>DISK 1A &amp; DISK 3 CONTROLLERS</td>
</tr>
<tr>
<td>CP/M-8-16 8 &amp; 16 BIT</td>
<td>CP/M-8-16 8 &amp; 16 BIT</td>
</tr>
<tr>
<td>15 SLOT CABINET</td>
<td>15 SLOT CABINET</td>
</tr>
<tr>
<td>5&quot; FLOPPY WILL READ IBM</td>
<td>5&quot; FLOPPY WILL READ IBM</td>
</tr>
<tr>
<td>SYSTEM UPGRADEABLE TO MULTI-USER &amp; Z80 SLAVES</td>
<td>SYSTEM UPGRADEABLE TO MULTI-USER &amp; Z80 SLAVES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>8MHZ 286 SYSTEM</strong></td>
<td>$5395</td>
</tr>
<tr>
<td>AS ABOVE BUT 40 MB HD</td>
<td>SAME AS ABOVE BUT</td>
</tr>
<tr>
<td>INSTEAD OF 20 MB HD</td>
<td>40 MB HD INSTEAD OF 20</td>
</tr>
</tbody>
</table>

All prices subject to change — shipping extra

*All above circuit board names are either registered trademarks or Trademarks of Viasys Corporation. CompuPro is a registered trademark of Viasyn Corporation. CP/M and concurrent DOS are either trademarks or registered trademarks of Digital Research Inc. IBM is a registered trademark of International Business Machines.*

Micro/Systems Journal November/December 1985
THE DATA BASE FORUM
by Nelson T. Dinerstein

This column will be a regular feature in MISJ. It will discuss problems associated with the application of database managers such as dBase II/III, Framework, and Rbase 5000. Suggestions, comments and questions are welcomed.

THE NATURE OF THE PROBLEM
When dBase-II programs slow down, the cause is almost always the indices. As the file size grows, programs that used to run quickly may now run very slowly. It is not the size of the data file that makes the difference, but the size and number of index files. The techniques described herein will help to overcome this problem and can be incorporated in written as well as to future programs. These speed techniques often reduce execution time.

Since it is the updating of the index files that makes dBASE II programs slow, we need to avoid the use of indices as much as possible. But, since indices are valuable, we must continue to use them. The trick is to use them in the most efficient manner.

RULE 1: If an operation is slow, use it as seldom as possible.

There are two major operations that use indices and change files, i.e. adding a new record to a file and modifying an existing record. Let's examine each of these operations.

ADDING A RECORD TO A FILE
Since the number of indices plays an important role in the amount of time needed to APPEND a record to a file, keep the number of indices as small as possible.

RULE 2: Do not create an index on the chance that you might eventually need it. Create an index only when you are sure you will need it. This will reduce the total number of indices on each file.

RULE 3: If an index will be used infrequently, add records to the file without using the index. Then, when the index is required, create the index just before it is used.

dBase-II Speed Techniques - Part I

The time required to add new records to a file can also be controlled through the use of a combination of interactive and batch techniques. Interactive is used here to mean that all of the indices are in use when the record is added to the file. Thus, when a record is added, all of the index files are updated immediately. Batch is used here to mean that no index is in use when the record is added to the file. This means that records can be added to the data file very rapidly. When all of the desired records have been added, the files can be re-indexed. Consider examples 1 and 2.

EXAMPLE 1: INTERACTIVE ADDITION OF RECORDS

* IN THIS EXAMPLE, INDEXES ARE UPDATED IMMEDIATELY
* ADDITIONS HAVE BEEN COMPLETED
* USE X INDEX A,B,C
* STORE * TO ANSWER
* STORE \$ 1.1 SAY "ENTER ANOTHER RECORD ([Y/N])" GET ANSWER
* IF ANSWER = "Y" RETURN

* ENTER RECORD HERE, IN NORMAL MANNER

EXAMPLE 2: BATCH ADDITION OF RECORDS

* IN THIS EXAMPLE, INDEXES ARE UPDATED AFTER ADDITIONS HAVE BEEN COMPLETED
* USE X INDEX A,B,C
* STORE * TO ANSWER
* STORE \$ 1.1 SAY "ENTER ANOTHER RECORD ([Y/N])" GET ANSWER
* IF ANSWER = "Y" RETURN

* ENTER RECORD HERE, IN NORMAL MANNER

In some cases, you may wish to verify that the record is not already in the file, then remove (deactivate) the index and add the record.

EXAMPLE 3: BATCH ADDITION OF RECORDS

* IN THIS EXAMPLE, INDEXES ARE UPDATED AFTER ADDITIONS HAVE BEEN COMPLETED, BUT CHECK IS MADE
* TO VERIFY THAT RECORD TO BE ENTERED IS NOT ALREADY IN FILE
* USE X
* DO WHILE T
* STORE * TO ANSWER
* STORE \$ 1.1 SAY "ENTER ANOTHER RECORD ([Y/N])" GET ANSWER
* IF ANSWER = "Y" RETURN

* ENTER RECORD HERE, IN NORMAL MANNER

In Example 3, SET INDEX TO A activates the index A causing it to become the primary index. The FIND function which follows will then work correctly, assuming that MEMKEY contains an appropriate value for the index A. After the FIND statement has been executed, # will have the value, 0, if there is no record in file X with the value contained in MEMKEY. Otherwise, the value of # will be greater than 0. To add a new record to the file, first remove (deactivate) the index with the SET INDEX TO statement and then add the new record.

I recommend that you have both types of functions (interactive and batch) in any system that you build. This will allow users to decide for themselves which to use. If, for example, a data file and its associated index files have grown so large that it takes 2 minutes to enter a single record, and 10 minutes to reindex all of the files, the interactive function should be used for entering five or fewer records and the batch function for entering five or more records. In this case, five records is the break-even point. As the file sizes grow or shrink, the break-even point will probably change.
RULE 4: Allow the users to choose interactive or batch entry of new records based upon the number of records to be entered.

In the next issue of M/SJ I will conclude my discussion of dBase speed-up techniques. In the meantime, if you have questions or topics that you would like to see discussed in this column drop me a line.

Nelson Dinerstein is an Associate Professor of Computer Science at Utah State University and an active consultant in database applications on micros. He has a Ph.D. in mathematics from the University of Utah. And, he is the author of 8 books on dBase-II/III, Framework, and Rbase 5000 applications.

---

We are looking for retailers

Make room on your magazine rack for Micro/Systems Journal, to provide you with no-risk profits. We offer attractive discounts on a low-cost, fast-moving product that will bring customers into your store and enhance your system sales.

Call us today at (201) 522-9347 or write to: M/SJ, Box 1192, Mountainside, NJ 07092 for details.

---

**CP/M-80 C Programmers . . .**

**Save time**

. . . with the BDS C Compiler. Compile, link and execute faster than you ever thought possible!

If you’re a C language programmer whose patience is wearing thin, who wants to spend your valuable time programming instead of twiddling your thumbs waiting for slow compilers, who just wants to work fast, then it’s time you programmed with the BDS C Compiler.

BDS C is designed for CP/M-80 and provides users with quick, clean software development with emphasis on systems programming. BDS C features include:

- Ultra-fast compilation, linkage and execution that produce directly executable 8080/820 CP/M command files.
- A comprehensive debugger that traces program execution and interactively displays both local and external variables by name and proper type.
- Dynamic overlays that allow for run-time segmentation of programs too large to fit into memory.
- A 120-function library written in both C and assembly language with full source code.

Plus . . .

- A thorough, easy-to-read, 181-page user’s manual complete with tutorials, hints, error messages and an easy-to-use index — it’s the perfect manual for the beginner and the seasoned professional.
- An attractive selection of sample programs, including MODEM-compatible telecommunications, CP/M system utilities, games and more.
- A nationwide BDS C User’s Group ($10 membership fee — application included with package) that offers a newsletter, BDS C updates and access to public domain C utilities.

Reviewers everywhere have praised BDS C for its elegant operation and optimal use of CP/M resources. Above all, BDS C has been hailed for it’s remarkable speed.

“I recommend both the language and the implementation by BDS very highly.”

Tim Pugh, Jr. in *Infoworld*  

“Performance Excellent. Documentation Excellent. Ease of Use: Excellent.”

*InfoWorld* Software Report Card  

“. . . a superior buy . . .”

Van Court Hare in *Lifelines/The Software Magazine*

BYTE Magazine placed BDS C ahead of all other 8080/Z80 C compilers tested for fastest object-code execution with all available speed-up options in use. In addition, BDS C’s speed of compilation was almost twice as fast as its closet competitor (benchmark for this test was the Sieve of Eratosthenes).

Don’t waste another minute on a slow language processor. Order your BDS C Compiler today!

Complete Package (two 8” SSD disks, 181-page manual): $150  
Free shipping on prepaid orders inside USA.  
VISA/MC, COD’s, rush orders accepted.  
Call for information on other disk formats.

BDS C is designed for use with CP/M-80 operating systems, version 2.2 or higher. It is not currently available for CP/M-86 or MS-DOS.

---

Micro/Systems Journal November/December 1985
EARTH COMPUTERS PRESENTS:
THE BEST OF BOTH WORLDS

**TURBOACCEL/286**

Now you can increase the performance of your IBM PC or PC/XT up to 500% with TURBOACCEL/286, the first 80286 processor card under $1000.

We started with an 8 MHz Intel 80286. Then packed 514K of 16-bit high speed RAM on board. Made it expandable. And left room for an 80287 math chip. But there's more.

The latest VLSI technology makes TURBOACCEL/286 far superior to 8086/886 accelerator boards. Our custom CMOS chip allows the 80286 to emulate the 8088, insuring software transparency and compatibility.

So you just plug it in, turn it on and go. No special software. No programming. No communications problems. Just pure speed: TURBOACCEL/286.

All for only $995. To order call (714) 964-5784.

**TURBOSLAVE/PC**

Run over 2000 CP/M programs faster than on any other computer with TURBOSLAVE/PC, the first Z-80H coprocessor for your IBM PC.

We use Zilog's 8MHz Z-80H. Include a CP/M emulator. Add on 128K RAM with parity, two RS-232 serial ports and full documentation to bring you the fastest, most versatile and reliable board of its kind.

Then we took it a step further. Under TurboDOS (optional) up to 16 TURBOSLAVE/PC users can be linked to a single PC for true multi-user capabilities. And our open architecture and utilities make TURBOSLAVE/PC ideal for those who need a special purpose processor.

All for only $495 (OEM/ISO discounts available).

So order your TURBOSLAVE/PC by calling (714) 964-5784.
Chassis Classics

3315
5" Floppy/Winchester
7 Cards $417*
$100

3310
5" Floppy/Winchester
4 Cards $387*
$100

3002T
5" Floppy/Winchester
10 Cards $565*
$100

3307
8" Floppy/5" Winchester
7 Cards $494*
$100

Laser 3000 MAIN/FRAMES & DISC ENCLOSURES FROM $100

LASER 3000 DISC/COVERS (not shown)

3916F
5" Floppy $100*
2 ea. 5" Winchester $199*

3915
(Disk drives not included)

*1 piece; prices lower in quantity.

MAIN FRAMES DISC ENCLOSURES

FROM $100

Satisfy Your Drives!

70 MAIN/FRAMES & DISK ENCLOSURES FROM $100

800D2F
5" Floppy Main/Frame
(10 cards) $392

2215
5" Floppy Winchester Main/Frame (7 cards) $380

2905
5" Disk Enclosure $100

Write or call for our brochure which includes our application note:
"Making micros, better than any of box computer"
The V20 and V30 carry the more formal part numbers uPD70108 and uPD70116, respectively (apparently, all NEC microprocessors carry the designation, uPD). These chips are pin-compatible replacements for the Intel 8088 and 8086. Far from being mere second sources of the same processor, these CMOS chips offer substantial improvements, both in terms of speed and instruction set. In addition, these processors can run 8080 code if desired! In this two part series, we will examine these improvements, citing benchmarks when appropriate.

We will also look into how these improvements can be incorporated into existing 8086 or 8088 systems, including, but not limited to, the IBM PC and compatibles.

We will examine closely the 8-bit bussed V20 and compare it to the 8088. Likewise this comparison can be extended to the 16 bit bussed V30 and 8086. Differences between the two pairs of chips, when they exist, will be pointed out. In this discussion keep in mind that both the 8086 and 8088 processors are available from several second sources besides Intel; however, for our purposes differences between the various 8086/88 versions are minimal.

THE V20 vs THE 8088

The V20 has the same exact pin out as the Intel 8088. NEC claims that there are no external electrical differences between the two chips. However, the chips differ internally in some significant ways.

The 8088 is known as an 8/16-bit processor, having a 16-bit word size, but an 8-bit external bus. The 8088 was designed to allow for interfacing to 8-bit peripherals originally designed for the 8080 and 280 microprocessors. (The 8086 is 16-bit both internally and externally.) The 8088 has 20 bits of address allowing for direct addressing of 1 megabyte of memory. Internally the 8088 is a microcoded machine, having a microcode word size of 21 bits. In a microcoded processor, machine instructions are decoded and carried out by an internal program, known collectively as the microcode. It generally requires multiple microcode instructions to perform even the simplest machine instruction. Since each microcode instruction takes one clock cycle to perform, individual instructions may take many clock cycles to execute. As an extreme example, the MULtiply instruction takes more than 100 clock cycles to perform in the Intel chips.

To route data internally to the chip, the 8088 has one 16-bit wide bus. Often extra clock cycles must be used in the 8088 to avoid collision of data on this internal bus. For example, in a compare (CMP) instruction, two 16-bit values must be passed to the ALU (arithmetic/logical unit) for comparison. These two values must be passed in 2 subsequent operations since only one value may be on the bus at one time, even if both are available simultaneously.

The V20 maintains two internal data busses. The second data bus is used to advantage in logical comparison and arithmetic instructions to fetch the second argument while the first argument is being fetched on the primary data bus. This results in a savings of one clock cycle, a 33% improvement. In addition, subtraction and comparison instruction times are reduced.

The 8088 allows several addressing modes to be used with its instructions. This makes the chip easier to program, but resolving some of its addressing modes into an effective address can be complicated as some modes require up to four additions to come up with a physical address. The 8088 uses microcoded subroutines to resolve these addresses. Although invisible to the user, these microroutines add from 5 to 12 clock cycles (depending on the addressing mode used) to the number of cycles needed to execute a single assembler instruction.

The V20 does not use microcoded subroutines to calculate effective addresses. Rather the chip contains a special circuit called the Effective Address Generator (EAG) which can calculate any effective address in a constant 2 clock cycles. (Note: The addition of an EAG circuit is one of the important improvements in the later members of the 8086 family.)

In order to improve chip performance, the 8088 has a 4-byte prefetch queue (6 byte in the 8086). The Bus Interface Unit (BIU) section of the chip uses clock cycles during which the bus would otherwise be idle to prefetch the next instruction to be executed into a faster memory within the chip (this technique is known as pipelining and is practiced on most modern microprocessors). The BIU in the 8088 allows the Instruction Pointer...
calculate the target address. The Unit, the part of the microprocessor instruction at address IFO codes a 'JMP to the IP. For example, a jump is not taken. Here the conditional jump and loop instruction, in fact the 8088's instruction set, in terms of time to execute, a 50% improvement may amount to many clock cycles. (It is not always obvious that your program is performing multiples -- many high level language resolve matrix subscripts with MUL instructions.)

In addition to these timing improvements in the 8088 instructions, the V20 adds three sets of extra instructions to the 8088 instruction set. The first of these extensions are the 80186 extensions, which are also the only extensions available to the 80286 when left in real mode (the 80186 and 80286 are the next members of the Intel iAPX 86 family).

These include a PUSH/PUSH all (pushes/pops all registers in one instruction), an expanded class of rotate and shift instructions, a string OUT and IN (used with the repeat prefix REP) for faster CPU controlled I/O and a set of stack frame instructions useful primarily for higher level languages (see Table 1).

The PUSH/PUSH all instructions are quite handy for interrupt routines which must save off any registers they intend to use upon entry into the interrupt code and restore them upon exit. In the 8088 rotate and shift instructions may only specify the CL register or a 1 as the number of bit positions to rotate; no other constant is allowed. The extended V20 shifts allow any constant (or the CL register). The string IN and OUT's allow driving I/O devices at the bandwidth of the bus under CPU control (as opposed to DMA). This is a respectable 2MB per second on an 8 MHz V30.

The 8088 has no instructions to manipulate any field smaller than a byte. The V20 corrects this limitation in the second set of extensions, which NEC calls the unique instructions. These include nibble (4-bit) and byte instructions (e.g., set, clear, and complement) as well as a pair of new repeat prefixes (repeat while and until carry) and a second floating point prefix (see Table 2). This second prefix allows NEC to offer an extended set of floating point instructions with their own numerical coprocessor, due out the beginning of next year.

The final members of the instruction set are truly unique, not being present on any other common microprocessor. They are the "enter emulation" and "exit emulation" instructions. When, in what NEC calls emulation mode, a different set of microcode is executed by the V20/30. This new set of microcode allows the NEC chips to execute 8080 code!

In emulation mode the V20 continues to look externally like an 8088, but it no longer understands 8088 instructions. Internally it now becomes an 8088 8-bit microprocessor. With the proper interface code, any computer using this chip can run either 8086 code (MS-DOS, CPM86, etc.) or 8080 code (primarily CPM80). We will leave the detailed discussion of how this is done (along with examples of a BDOS to do this) to the second part of our two part series.

These internal improvements to the instructions are roughly twice as fast, while its multiply and divide are up to three times as fast. Of all of the time improvements in this chip, the improvements in the multiply and divide have the potential for being the most significant, depending on the application. Since these are the longest instructions in the 8088's instruction set, in terms of time to execute, a 50% improvement may amount to many clock cycles. (It is not always obvious that your program is performing multiplies -- many high level language resolve matrix subscripts with MUL instructions.)

The V20 has a Prefetch Pointer separate from the instruction pointer for maintenance of the prefetch queue. The IP actually does point immediately after the instruction being executed just like we had always thought, while the prefetch pointer scouts out ahead for the next instructions. Thus, when a IP relative instruction is executed there is no need to back the IP up and that time is saved. For example, the V20 requires 50 clock cycles to perform an INT instruction, compared to the 8088's 63.

A further internal improvement of the V20 is the addition of two internal registers, allowing more efficient algorithms in the microcode for many instructions. The V20's string
V20 have forced the internal microcode size to swell from the 8088’s 21 bits to some 29 bits and the transistor count, a measure of the complexity of a chip, to almost double.

**ADDTING THE V20/30 TO YOUR 8088/86 COMPUTER**

Were it not for the external similarity of the V20 with the 8088 (and the V30 with the 8086), the discussion so far might be merely interesting but of no immediate use. However, since the NEC chips are pin compatible with the corresponding Intel part, anyone who owns a computer containing either of the Intel chips can have access to these improvements by merely replacing a microprocessor chip.

The V20 and V30 should work with Intel’s 8087 Numerical Processor (NP). In this mode of course the new floating point instructions are not available, but the standard Intel set works the same. I did not have sufficient access to the Intel numerical processor to test this completely.

Note also that the NEC parts will cause problems in the TI Professional Computer and the Victor 9000. The TI uses some rather critical timing loops in its self test BIOS code. Due to the higher speed of the V30, the TI erroneously times out its hardware and will not complete boot up. The Victor will not format a diskette properly, again due to the processor’s higher speed. The IBM PC and XT, Compaq Portable and Deskpro, Hyperion, Eagle PC, and Columbia are among those computers known to work properly with the NEC chip. Computers not on either list will probably work without problems.

When selecting the proper NEC chip for your computer you should first note whether your computer uses the 8088 or the 8086. Your documentation should make this clear in the technical specifications. You should note not only the clock speed of your system. It will probably be either 4.77 MHz or around 8 MHz (the 8088-2 is the 8 MHz model). The NEC processors come in 5, 8, and 10 MHz versions. If your machine runs at 4.77 MHz, then the 5 MHz model is the one for you; if your system clock is between 5 and 8 MHz or if you have a switchable clock whose higher speed is in this range, then the 8 MHz model is the correct processor. If your processor runs faster then 8 MHz, you are safest ordering the 10MHz part. NEC only guarantees a chip’s rated speed if your computer’s clock maintains a 50% duty cycle, the optimum for CMOS processors. If your computer runs with a 33% duty cycle clock, the optimum for NMOS chips, the V20/30 will probably work at its specified rating, but you might want to order the next faster chip just to be safe.

With this information in hand, you are now ready to order your V20 or V30. As of this writing, few computer retail outlets have these parts in stock. I did find two retailers handling the parts: Lolir Electronics, 13933 N. Central Expressway, Suite 212, Dallas, TX 75243 (214-234-8032) and GFI Electronics, 1800 Avalon St., Olive, KS 66062 (913-829-0157). The price for the 5 MHz V20 was $24.95. Wherever you purchase yours, cost should be in the $25 to $35 range, depending on speed and whether ordering the V20 or V30.

To install the new chip, you will of course need to locate and remove your existing processor. Locating the chip is fairly straightforward: look for a 40 pin dual in-line package (DIP) with the designation 8088 or 8086 on it. In the case of IBM PC’s and their clones, the 8088 is at the far rear of the board, immediately in front of the keyboard connector. Before removing the old chip, note in which direction the half circle groove on top of the chip points. Removing the chip is best done with a chip puller tool, but can be done by sliding a screwdriver up under the chip and carefully prying the chip up, being especially careful not to bend the chip legs.

To insert the new chip, set it down on top of the socket with each pin sitting in the slot into which it will be going. If one or more pins do not meet the hole(s), bend them until all do. Be sure the chip is oriented with its half-circle groove facing the same as the old chip. Now carefully, but firmly, press the chip into the socket ( be careful to support the other side of the board, if possible, to keep from bending it any more than is necessary).

**USING THE NEC V20/30**

Once you have installed your V20 or V30 in your system, you should notice some increase in speed. This increase will depend on what type of work you are doing and upon the configuration of your hardware. Programs which perform a lot of floppy disk I/O will not improve significantly. Programs which are not I/O bound and perform lots of calculations (multiplies and divides) will improve dramatically.

---

**TABLE 2**

NEC’s UNIQUE INSTRUCTIONS

<table>
<thead>
<tr>
<th>INSTRUCTION</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INRS reg8, reg8 reg8, imm84</td>
<td>transfers number of bits in second operand from least significant bits of AL into DI [DI] with bit addressed in lower 4 bits of first operand; both first and second operand are updated to point to next bit field. inverse operation to that above</td>
</tr>
<tr>
<td>EXT &quot; &quot;</td>
<td>adds BCD number pointed at by SI to the BCD number pointed at by DI; length of two BCD numbers is in CL (max no. of digits is 254); sets flags subtracts similar to add above; set flags as subtract above without saving results</td>
</tr>
<tr>
<td>SUB4S</td>
<td>rotates left by 4 bits 8 bit register or memory location specified with lower 4 bits of AL register complimentary operation</td>
</tr>
<tr>
<td>CMP4S</td>
<td>sets flags if bit specified by first argument in byte or word pointed at by CL or imm84, reg16 CL or imm84, reg8</td>
</tr>
<tr>
<td>AD04S</td>
<td>complement bit specified as above</td>
</tr>
<tr>
<td>ROR4</td>
<td>complement bit specified as above</td>
</tr>
<tr>
<td>RCR4</td>
<td>repeat while carry following string instruction</td>
</tr>
<tr>
<td>REP</td>
<td></td>
</tr>
<tr>
<td>REPNC</td>
<td>prompts NEC numerical processor for unique NEC floating point ops.</td>
</tr>
<tr>
<td>EX8H</td>
<td>execute 8080 code pointed at by interrupt vector imm80 (not included in EX8H.NEC - will be covered in part 2)</td>
</tr>
</tbody>
</table>

---

Micro/Systems Journal November/December 1985
To test the increase in speed I ran several benchmarks on an IBM PC (5MHz), and on a Compaq Deskpro (8MHz 8086), first with their standard Intel processors and then again with the NEC chips. The results of these timings appear in Table 3. It should be noted that I had no problem in replacing the processors on either computer and neither system showed any signs of rejecting the foreign chip.

When interpreting the "percentage improvement" column of Table 3, keep in mind that this is the improvement of the NEC chip over the Intel chip. Thus a figure of 100% means that the NEC part performed the benchmark in one half the time, i.e. twice as fast.

The first benchmark, the Sieve of Eratosthenes, is something of a standard, appearing in almost every discussion of compiler or processor speed. The sieve is small and easily reproduced on different processors, but does not test very many aspects of a chip. Nevertheless, the assembler source code for the sieve appears as program listing 1.

A further set of benchmarks was reproduced from an article appearing in EDN magazine, which compared the performances of several popular microprocessors. This bank of benchmarks tests various aspects of processor performance. In every case, the code for each benchmark was taken directly from the article. In some cases, however, the benchmark could have been coded more efficiently using the NEC chip's instruction extensions. In these cases, the benchmarks were recoded using the more efficient instructions and rerun. These times appear after the times using only the "standard" 8086 instructions.

The improvement on the 8088 equipped PC was not large, in some cases hardly amounting to more than 5%. The improvement in the 8 MHz 8086 was much more substantial, averaging more in the 25 to 35%. This is primarily because in programs with long strings of simple to execute instructions, such as those in the sieve, the 8088 runs at roughly 90% bus utilization. It is very difficult for the V20 to get data in and out through this 8-bit bottleneck very much faster than the 8088 chip and thus the meager throughput improvement. The relatively greater improvement in the V30 is due to the wider bus being much less of a performance limiting factor.

However, for those who tend to run programs which perform large amounts of math, such as spreadsheets without 8087 support, the improvements of even the V20 are substantial. This is equally true for those who code their own programs and are willing to make use of the V20/30 extensions.

To easily quantify your throughput increase, a benchmark program called CPU was adapted from a public domain program of the same name (see Program 2). Run this program before installing the NEC chip to get a reference for your system. The program compares the speed of your system against and IBM PC. You will get a time to execute (10 seconds on the PC) and an effective clock speed - that is, your PC runs as fast as an IBM PC with this speed clock. Re-riming the benchmark with the NEC part should result in shorter times and a faster effective clock speed. Notice that your clock speed has not changed, only the effective clock speed - the difference is due to the NEC using fewer cycles to perform the same instructions.

Picking the instruction mix to use in the timing loop of CPU is a difficult thing. The increase in throughput using NEC CPUs can vary anywhere from near 0%, if only simple instructions are used, to more than 100% if multiplies and divides are present. I have tried to pick a mix which accurately reflects the types of instructions I code. You may want to change the instruction mix to fit the types of programs you run.

To do this, with the Intel part still in place, change the instruction mix in the timing loop to whatever you prefer. Adjust the number of iterations of the timing loop until you get the same value for clock speed that you got when you ran my mix (4.77 for the IBM PC). When you now install the NEC chip rerun the program to get an accurate measure of how much improvement you should expect. Including lots of string instructions or multiplies in your instruction mix will favor the NEC; lots of simple instruction will minimize the improvement of the NEC.

### USING THE NEC INSTRUCTIONS

Programs which you buy or download from bulletin boards will continue to use only 8086/88 instructions and so, unless you write your own assembler programs, you cannot expect to see any improvement from the extended instruction set. However, if you do write some of your own programs, you may want to use some of the improved instructions.

If you own a later copy of Microsoft's MASM assembler, simply specifying the .186 or the .286C pseudo-op at the top of your program will allow you access to the extended

#### Table 3

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>REPS</th>
<th>8088 (4.77MHz)</th>
<th>8086 (7.14 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>INTEL</td>
<td>NEC</td>
</tr>
<tr>
<td>Sieve of Eratosthenes</td>
<td>10</td>
<td>3.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Bench A</td>
<td>50,000</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Bench B</td>
<td>5,000</td>
<td>7.2</td>
<td>6.8</td>
</tr>
<tr>
<td>Bench E</td>
<td>20,000</td>
<td>10.6</td>
<td>7.9</td>
</tr>
<tr>
<td>Bench F</td>
<td>20,000</td>
<td>10.9</td>
<td>10.3</td>
</tr>
<tr>
<td>Bench H</td>
<td>10,000</td>
<td>7.1</td>
<td>6.8</td>
</tr>
<tr>
<td>Bench I</td>
<td>100</td>
<td>11.1</td>
<td>9.8</td>
</tr>
<tr>
<td>Bench K</td>
<td>10,000</td>
<td>29.9</td>
<td>26.0</td>
</tr>
<tr>
<td>Filter</td>
<td>20,000</td>
<td>22.6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

8088 times measured on an unmodified IBM PC; 8086 times on a Compaq DeskPro in "fast" mode.

* = time when algorithm recoded to take advantage of NEC unique instructions
+ = benchmarks A thru K were selected in EON Sept. '81 from a 1979 Carnegie Mellon study for comparing 8086, 68000 and 2016 microprocessors; these benchmarks were selected as being most applicable to microprocessors.

Individual benchmarks measured:
- Bench A - interrupt response time
- Bench B - interrupt response time
- Bench E - string instruction performance
- Bench F - bit manipulation
- Bench H - linked list manipulation
- Bench I - quick sort
- Bench K - bit manipulation

++ filter benchmark selected from IEEE Micro 2/81 as being particularly advantageous for their microprocessors
instructions (but not the unique instructions). The Microsoft assembler manual, as well as Intel publications, describe the proper format for these instructions, so I will not describe them in detail here. A list of these instructions appears in Table 1. Programs using the extended instructions will also execute properly on 80186 and 80286 equipped computers.

The unique instructions defined by NEC fall into several related groups. The first group is comprised of the variable length bit field operations, INS (insert) and EXT (extract). The insert instruction transfers the least significant bits from the AX register to the address pointed at by DS:DI. The starting bit position in the memory location is specified by the first argument, which must be a register, and the number of bits transferred by the second argument, which may be either a register or an immediate value. The bit fields may cross from one byte or word to the next. The first argument and the DI register are updated after each transfer. The extract instruction performs the same function in the opposite direction. This instruction pair allows for efficient packing and unpacking from a structure of fields which are not an even 8 or 16-bits.

Also provided are the single bit instructions, TEST1 (test), NOT1 (complement), CLR1 (clear bit), and SET1 (set bit). The test bit instruction sets the Z flag if the specified bit is a 0 and clears the Z flag if not. All four of the above instructions specify a bit position in a byte or word field. The bit position is in the first argument and is either an immediate value or else the CL register. The word or byte in the second argument can be any valid reference: register, variable, or indexed location.

Three operations are included in the packed BCD group: ADD4S, SUB4S and CMP4S. Each of these operate on the BCD number pointed at by the DI register with the BCD number pointed at by the SI register. The number of BCD digits is specified by the CL register. These operations set the overflow, carry and zero flags, but if the number of digits is odd, the zero flag is not set correctly. An extra set of BCD rotate instructions, ROL4 and ROR4, rotates the 8-bit register or memory location specified by the single argument through the least significant 4 bits of the AX register. This instruction group allows efficient BCD algorithms to be implemented.

Two new prefixes to string instructions are added with the unique instructions: REP (repeat as long as carry set) and REPNC (repeat until carry set). An extra floating point instruction is included for eventual use with the NEC numerical processor to be introduced later.

The NEC's unique instructions are summarized in Table 2. If you would like to use these unique instructions and are using the popular Microsoft MacroAssembler, including the macro definition file EXTND.INC (Program 3) at the beginning of your program will define the unique instructions for you. (This is the same macroassembler sold and endorsed by the MS-DOS personal computers' manufacturers, including IBM.) Assembling a program which uses unique instructions can be done on either an Intel or NEC microprocessor, but of course, the resulting program will only run properly on the NEC chip.

The reader will probably be struck by the complexity of these macro definitions; this is primarily due to the severely limited macro capabilities of the Microsoft assembler. An example subroutine has been provided in program 4 showing usage of the unique instruction set.

Notice that the assembler limitations resulted in two concessions. As with all memory references, NEC allows segment overrides to be added to memory references in unique instructions. The macros provided do not allow adding a segment override directly to a memory reference. Generally a segment override can be avoided, but you can specify a segment with the override macros provided. Unlike normal segment overrides, these macros precede the instruction. Thus, instead of coding 'TEST1 CL, CS:memory_loc', you would need to code 'CS TEST1 CL, memory_loc'. If you prefer, you can use these segment

NEC does have some real defenses built right into the chip. NEC added a set of instructions to their processors not present on any Intel processor, including an emulation mode not present on any other common microprocessor. NEC improved the hardware by introducing a dual read internal bus, hardware calculation of effective address (which the Intel 80186 has but not the 8086) and an extra prefetch pointer to reduce the penalty of JUMPs and CALLs. These improvements result in increased CPU throughput by reducing the number of clock cycles required to perform most instructions. Further, the internal word size of the V20 and V30 processors was increased to 29 bits vs. the 8086 and 8088's 21 bits.

NEC may or may not win its case in district court, but no matter what the decision, the case will undoubtedly end up in the Supreme Court. By the time a decision is eventually handed down, it might well be a moot as the 8086/88 processor is already in the autumn years of its existence. In late April, Intel raised the stakes by asking for a summary judgement on the issue of whether microcode is copyrightable (a recent decision in the case of Apple vs Franklin established that software is copyrightable, but this decision probably does not apply to microcode). With that move the case took on an importance far more important than the original question, one which will have long reaching effects on the entire semiconductor industry.
override macros for all instructions, not only the unique opcodes.

Secondly, I was forced to code the bit instructions with the arguments in reverse order from that specified by NEC. Thus, where NEC specifies TESTI AX, CL, I was forced to use TESTI CL, AX.

Since incorrectly coding a unique instruction might lead to completely misleading error messages in the macro expansion, the macros check all arguments to the instructions for proper type. If a type is wrong, the offending argument is displayed on the listing along with a comment explaining the problem and an Improper syntax error message.

A special macro has also been included for Intel compatibility. This instruction macro, called J.NOT.NEC, checks the processor upon which it is being run to determine whether it is an Intel or an NEC part. If it is the NEC part, the jump is not taken; if it is an Intel processor, the jump is performed. This allows the programmer to code sections both with and without the NEC extensions. Such programs use the faster, more convenient NEC instructions when possible, but continue to work, albeit more slowly, when executed on Intel processors.

The emulation instructions are not defined in EXTND.INC as they cannot be executed like normal instructions without going into 8080 mode. This entire subject will be dealt with in Part 2 of this series.

A second macro definition file has also been provided for Intel's assembler as Program Listing 4. This assembler is superior to Microsoft's but, due to its exorbitant price plus Intel's marketing policy, is almost unknown. These macro definitions are much more straightforward than those written in that assembler's extensive macro capabilities. These macros perform more or less identically to those above except for the absence of the peculiarities noted in EXTND.INC.

When disassembling a program with MS-DOS's DEBUG, the debugger will not disassemble the extended and unique instructions correctly. Attempting to disassemble them with the U command will result in some garbled instructions at, and immediately after, the NEC instruction. This does not mean that the instruction is encoded incorrectly, so this is a big nuisance when debugging. (The debugger provided with MS-DOS 3.0 and later does handle the extended instructions properly.)

Several user groups are beginning to spring up around the country to offer support for the V20 and V30. This effort is being encouraged and supported by NEC. Already a version of DEBUG which understands and supports the NEC unique (and extended instructions) is available in the public domain. If you would like a copy of this debugger, send your name and address plus $10 to cover postage, disks, mailers, etc., to: Stephen R. Davis, Route 5 Box 107K, Greenville, TX 75401. This disk also includes source text for all listings appearing in both Parts 1 and 2, sample 8080 programs which run on the V20/30, etc. I will also include the numbers and addresses of any support groups.

CONCLUSION
The NEC V20/30 microprocessor provides a means of turbo charging your conventional 8086/8088 personal computer both in terms of speed and in terms of instruction set. Although the improvements may not come close to the improvements claimed for some of the add-on turbo cards, neither is the rather modest $25 cost close to their price.


### PROGRAM 1 LISTING

; Sieve of Eratosthenes

; Stephen R. Davis

; NTIMES EQU 8190 ;STANDARD SIZE
; NLOOPS EQU 10 ;TEN ITERATIONS STANDARD

CODE SEGMENT

PUBLIC PARA

ASSUME CS:CODE, DS:CODE, ES:CODE

GSEG 100H

START: CLI ;DON'T CONFUSE WITH INTERRUPTS

MOVL STRING, NINT ;INIT LOOP COUNTER

OUTER LOOP:

XOR AX, AX

FIRST ZERO OUT FLAG ARRAY

MOV DI, OFFSET ARRAY

CIL

REP STOSW

NOW COUNT THE PRIMES

XOR DX, DX

KEEP THE COUNT IN DX

XOR BX, BX

START AT SUBSCRIPT 0

MOV CX, NTIMES / 2

GET THE LOOP COUNT

MOV DI, CX

INNER LOOP:

CMP BYTE PTR ARRAY [BX], 0

JNZ SKIP AROUND

ADD AX, AX

ADD AX, BX

ADD AX, 3

MOV BX, PRIME

MOV SI, BX

NOW MARK OUT MULTIPLES

ADD SI, AX

MARK OUT

NOW BYTE PTR ARRAY [SI], 0

MARK THIS MULTIPLE OUT

JNA MARK OUT

INC DX

INCREMENT PRIME NUMBER COUNT

SKIP AROUND:

INC BX

LOOP INNER LOOP

DEC LOOP CNT

DO IT 10 TIMES

JNZ OUTER LOOP

OK — STOP NOW

; DEFINE OUR VARIABLES DOWN HERE

LOOP COUNT DM 0

PRIME DM 0

ARRAY DB NTIMES DUP (0)

GSEG ENDS

END START

### PROGRAM 2 LISTING

; CPU WAS TAKEN FROM PUBLIC DOMAIN AND MODIFIED TO PROVIDE
; A REPRESENTATIVE INSTRUCTION MIX FOR QUANTIFYING SPEED
; OF CPU'S 8086/8088/80186/80286 COMPUTER IN TERMS OF STANDARD
; IF RUNS AS FAST AS AN IBM PC WITH FOLLOWING CLOCK RATE

LF EQU 0AH
CR EQU 0DH
HUNDRED EQU 64H
THOUSAND EQU 3EH
TEN EQU 0AH

CODE SEGMENT


ORG 100H

; FIRST OUTPUT A 'WAIT A MINUTE' MESSAGE & THEN GET TIME

START:

MOV AH, 9
MOV DX, OFFSET INIT MSG
INT 21H
MOV AH, 2CH
MOV DX, 21H
MOV TIME1, DX
STI ;BE SURE CLOCK IS RUNNING

HERE IS THE BIG TIMING LOOP

XOR AX, AX

MOV DX, 1H

OUTER LOOP:

MOV CX, OFFSET 10H

; THIS NUMBER MUST BE ADJUSTED FOR DIFFERENT MIXES

TIMER LOOP:

MOV CX, 03584H

; MY MIX OF REPRESENTATIVE, USEFUL INSTRUCTIONS —
; USER MAY PROVIDE HIS OWN AND REASSEMBLE, BEING CAREFUL
; TO ADJUST CONSTANT ABOVE FOR TOTAL NUMBER

OF CLOCK CYCLES IN LOOP

MOV AX, BX

REGISTER TO REGISTER MOVE

MOV AX, BX

; (PAR AND ARAY MOST COMMON)

MOV AX, BX

; COMPLEX ADDRESSING

MOV AX, 10H

; (PRETTY COMMON)

MOV AX, 10H

ADD AX, AX

; REG - REG ARITHMETIC

ADD AX, 10

; REG - IMMED ARITHMETIC

PUSH CX

; PUSH (POP FOLLOWS) ARE COMMON

MOV CL, 5

SHL AX, CL

PUSH CX

CALL DUMMY ROUTINE ; THESE CALLS/JUMPS SHOULD ALSO

; FAVOR NEC

JMP CONTINUE

DUMMY ROUTINE PROC NEAR

CONTINUE:

LOOP TIMER LOOP

DEC BX

JNZ OUTER LOOP

NOW GET TIME AGAIN (AFTER LOOP)

MOV AH, 2CH

INT 21H

; CK — CONVERT THIS INTO CLOCK SPEED RELATIVE TO 8088

; AND OUTPUT IN ASCII FORM

MOV AX, HUNDRED

IMUL DX

DIV BX

ADD AX, DX

MOVL DX, TIME1

ADD DX, 10H

DIV BX

MOV AX, HUNDRED

IMUL DX

DIV BX

MOV AX, DX

ADD AX, DX

SUB BX, AX

JNZ SKIP

ADD BX, 1770H

SKIP:

MOV AX, BX

MOV TIME2, BX

MOV BX, OFFSET VALUE1

MOV BX, THOUSAND

QWD

IDIV BX

CALL CONVERT2NUM ; CONVERT FIRST VALUE & STORE

MOV BX, HUNDRED

IMUL DX

DIV BX

CALL CONVERT2NUM

INC BX

MOV AX, BX

IMUL DX

DIV BX

MOV AX, DX

INC BX, TEN

MOV AL, 9

MOV BL, OFFSET RES MSG

INT 21H

MOV BX, TIME2

DIV BX

CALL CONVERT2NUM

MOV AX, DX

IMUL BX

DIV BX

CALL CONVERT2NUM

MOV AX, DX

INC BX

MOV BX, HUNDRED

IMUL DX

DIV BX

CALL CONVERT2NUM

MOV AX, DX

INC BX

MOV AX, DX

MOV BX, 12AH

INT 21H

MOV AX, 12AH

; CALCULATE EFFECTIVE CLOCK RATE

MOV BX, TIME2

DIV BX

CALL CONVERT2NUM

MOV AX, DX

MOV BX, TEN

MUL CX

DIV BX

CALL CONVERT2NUM

INC BX

MOV BX, HUNDRED

MUL CX

MOV AX, DX

MUL CX

MOV AX, BX

MUL CX

; CONVINIENT FOR Z80/80C80/80Z80

Micro/Systems Journal November/December 1985
ATTENTION: S100 BUS USERS!

LOMAS DATA PRODUCTS PRESENTS:
IBM-PC COMPATIBILITY FOR ONLY

**$1749**

LDP is offering a compatibility upgrade package to convert your current S100 BUS system quickly and easily to IBM-PC compatibility. This upgrade includes the high performance THUNDER 186 and COLOR MAGIC, IBM-PC compatible color graphics board. You get 10 Mhz 8086 performance, 256K bytes of no wait state RAM, two serial ports and a parallel printer port. No other S100 bus boards are required. Included with this set is the advanced CONCURRENT DOS operating system bringing PC-DOS compatibility and multitasking. This board outperforms the IBM-PC by a three to one margin. Gain IBM-PC compatibility without sacrificing S100 bus compatibility.

**THUNDER186/COLOR MAGIC SET** ...... **$1749.00**

IBM COMPATIBLE S100 BUS COLOR GRAPHICS

LOMAS DATA PRODUCTS presents COLOR MAGIC, the most complete compatibility solution for S100 bus computer products. COLOR MAGIC includes three major hardware subfunctions which allow it to emulate the IBM-PC: An entirely compatible video function, an IBM-PC keyboard interface and an IBM-PC compatible timer interface including IBM-PC sound compatibility. HOW COMPATIBLE IS IT? Currently we are running MICROSOFT's FLIGHT SIMULATOR recognized as one of the severest tests of compatibility. We can also directly boot PC-DOS for the IBM-PC with no alterations. Other programs which have been tested and function without problems are: LOTUS 1-2-3, DBASE III, WORDSTAR and VOLEWRITE.

COLOR MAGIC (16K byte version) ...... **$595.00**

**THUNDER 186** single board computer provides a high performance 16 bit computer all on one board. It is an ideal companion to the COLOR MAGIC to provide a low cost, high performance IBM-PC compatible system. The IBM 80186 offers 10 Mhz 8086 performance. THUNDER 186 provides all the components necessary to form a complete system including: 256K bytes of no wait-state RAM, 2 serial ports, a parallel printer port, high performance floppy disk controller controls both 5 1/4" and 3 1/2" drives simultaneously, full IEEE 696 (S100) bus for system expansion. The COLOR MAGIC and THUNDER 186 combine to provide performance you won't find in other compatibles. The price includes the powerful CONCURRENT DOS operating system.

**THUNDER 186** .................. **$1195.00**

**NV-DISK** is a solid state memory with software to emulate a disk drive under MS-DOS. CONCURRENT DOS, and CP/M-86. NV-DISK is entirely COMPONO software compatible allowing COMPONO users to take advantage of the lower cost and battery protection support offered by NV-DISK. It offers the advantage of high speed access and no moving parts. It can be battery protected to allow data to stay even while powered down. The board is available in either 512K or 2 Megabyte configurations and multiple boards may be used to create disk drives with up to 16 Megabytes of storage.

**NV-DISK** 512K, **$595.00** 2 MBYTE, **$1695.00**

**MEGARAM** is a high density, high performance dynamic RAM board with up to two Megabytes of storage. MEGARAM offers no wait state performance in 8086/8088 systems with up to 10 Mhz processors at a fraction of the cost of comparable static RAM.

MEGARAM .............. 1 MBYTE, **$729.00** 2 MBYTE, **$1295.00**

IBM-PC COMPATIBLE S100-BUS SYSTEM

LOMAS DATA PRODUCTS offers IBM-PC compatible systems with performance far exceeding that available from IBM. You can purchase systems offering performance of an eight Mhz 8086 up to the performance of an 8Mhz 80286. Each system is capable of supporting 6Mhz math coprocessors. Our 8Mhz 80286 system offers IBM-PC compatibility while offering up to 3 times the performance of the IBM-PC-AT. For applications where PC compatibility is desirable but higher performance is a benefit or requirement LDP offers the only viable solution.

WHO IS LOMAS DATA PRODUCTS...

LOMAS DATA PRODUCTS has been shipping 16 bit microprocessor S100 bus products for five years. We have earned a strong reputation for reliability and performance over these five years. We were running MS-DOS (CP/DOSS/PC-DOS) before IBM knew the operating system existed. We offer a wide range of 16 bit operating systems including MS-DOS, CP/M-86, CONCURRENT CP/M-86 and CONCURRENT DOS. All our products are backed by a one year guarantee. We offer no 8 bit products and concentrate entirely on high performance 16 bit systems. If you are looking for the highest performance possible on the S100 bus, you can be sure LOMAS DATA PRODUCTS offers it.

LOMAS DATA PRODUCTS, INC.

182 CEDAR HILL ROAD, MARLBORO, MASSACHUSETTS 01752  TELEPHONE: (617) 460-0333  TELEX: 4996272

For orders outside the U.S., contact our exclusive dealers: Australia - LAMRON PTY. LTD., (02) 808-8666  Malaysia - EXA COMPUTER (m) SENDIRIAN BERHAD, 799284  England - RATIONAL SYSTEMS, 0908-613209 or 0908-611348; SHARPBORN LTD., 01876459.
Micro/Systems Journal November/December 1985

PROGRAM 3 LISTING

; EXTND, INC ---- ; DONT DO PROG WITH EXPANSION
; CALL --- ; NEED ONLY INCLUDE PROG 1
; WRITTEN FOR MICROSOFT ASSEMBLER TO DEFINE
; UNIQUE INSTRUCTIONS IN NEC'S P70108/P70116
; MICROPROCESSOR, INCLUDE THIS FILE IN YOUR
; PROGRAM WITHIN ANY SEGMENTED DEFINITION BEFORE
; USING NEC INSTRUCTIONS, E.G.

; INCLUDE EXTND, INC

ORG 100H

START : <STRT> ; WE NEED TO DEFINE SOME LABELS TO HELP DIFFERENTIATE BETWEEN 8-BIT REGISTER ARG.S & 16-BIT REGISTERS ARG.S TO OUR MACROS & TO GIVE

VAL = 0

64ZAX = .VAL + 1

; VAL = 0

64ZAI = .VAL + 4

64ZAL = .VAL + 1

; SET TYPE ?------------------------ ; GIVEN AN ARGUMENT, SETS VARIABLE "TYPE OF ARG" TO
; 0 IF IT IS AN IMMEDIATE VALUE
; 1 A BYTE VARIABLE REFERENCE
; 2 WORD VARIABLE

101 = EXC

102 = WREG

201 = BPTR TYPE REFERENCE

202 = WPTR TYPE REFERENCE

; SET TYPE MACRO ARG

IFDEF <ARG>,<BYTE>

TYPE OF ARG = 0BH

ELSE

IFDEF <ARG>,<WORD>

TYPE OF ARG = 02H

ELSE

TYPE OF ARG = TYPE ARG

IFDEF <ARG>,<PTR>

TYPE OF ARG = TYPE ARG

IFDEF <ARG>,<PTR>

TYPE OF ARG = TYPE ARG

IFDEF <ARG>,<100H>

ENDIF

ENDIF

ENDIF

ENDIF

IFDEF

ENDIF

ENDM

; IF WE CAN NOW BEGIN DEFINING NEC UNIQUE INSTRUCTIONS
; THE BCD INSTRUCTIONS--
; THESE HAVE NO ARGUMENTS, SO JUST PUT OPCODE
ADD4S MACRO

DB 0FH,20H

ENDM

SUB4S MACRO

DB 0FH,22H

ENDM

CM4S MACRO

DB 0FH,26H

ENDM

; THE BIT FIELD INSTRUCTIONS--
; THESE ALLOW EITHER 2 1-BYTE REGISTERS OR ELSE
; A BYTE REGISTER & AN IMMEDIATE BYTE VALUE.
; HERE WE CAN DO ALMOST COMPLETE ERROR
; CHECKING BECAUSE OF SIMPLE ARGUMENT TYPES.
; DEFINE A template TO DO THAT.

BITFIELD MACRO OC,ARG1,ARG2

.OK = 1

IFDEF ARG1

; CHECK ARGUMENT 1 FOR VALIDITY (REGS)

IFDEF TYPE OF ARG-101H ; A BYTE REGISTER

.OC = OPCODE + 8 ; IMMEDIATE ARG

IFDEF TYPE OF ARG-10H ; IMMEDIATE ARG

.ENDM

.ENDM

.ENDM

IFDEF ARG2

; NOW CHECK ARGUMENT 2 (REGS OR IMMS)

IFDEF TYPE OF ARG-10H ; IMMEDIATE ARG

.OC = OPCODE + 8 ; IMMEDIATE ARG

IFDEF TYPE OF ARG-101H ; CHECK FOR REGS

.IMMEDIATE ARGUMENT MUST BE BYTE REG OR IMMED

.ENDM

.ENDM

.ENDM

; EXEC

; EXEC MACRO ARG1,ARG2

; BIT FIELD 31H,ARG1,ARG2

.ENDM

; NON-BIT INSTRUCTIONS;

; Bit instructions have a complicated structure, allowing

; EITHER CL OR ELSE AN IMMEDIATE VALUE FOLLOWED BY ANY REGS, OR

; MEMORY REFERENCE (IT WAS NECESSARY TO REVERSE ARGUMENTS

; FROM NEC'S DEFINITION BECAUSE OF COMPLEXITY OF ADDRESSING

; MODES ALLOWED. THIS TEMPLATE BUILD LIKE "INC" INTO

; STRUCTURE TO BUILD MORE COMPLICATED ADDRESSING MODES FOR

; IT (THE OPCODE OF INC INSTRUCTION IS OVERWRITTEN WITH

; PROPER CODE AFTER ASSEMBLER GENERATES IT)

; BIT MACRO OC,ARG1,ARG2

; BIT FIELD 31H,ARG1,ARG2

.ENDM

; EXT

; EXT MACRO ARG1,ARG2

; BIT FIELD 31H,ARG1,ARG2

.ENDM

; LOCAL OPC,CONT

; OPCODE = OC

; .OK = 1

IFDEF <ARG1><CLD>

; 1ST ARG MUST BE CL OR IMMED

; SET TYPE ARG1

IFDEF TYPE OF ARG

; ARGUMENT MUST BE CL OR IMMEDIATE VALUE

; .OK = 0

ELSE

OPCODE=OPCODE+6 ; IF NOT CL, SET CL BIT IN OPCODE

.ENDM

ENDIF

IFDEF

ENDIF

ENDM

Micro/Systems Journal November/December 1985
IF .OK
  DB 0FH
  IPE (TYPE OF ARG-102H) ; FOR REG16 WE MUST BUILD INSTR
  ORG 0C0H+4&ARG2
ELSE
  INC ARG2 ARG3 ARG4 ; LET 'INC' BUILD ARGUMENT
  ORG OPC
  DB OPCODE
  DB OPCODE
  DB OPCODE
ENDDF
ENDIF <ARG2>,<CL>
ENDIF
ENDF

JNZ NOT NEC MACRO ARG
LOCAL V_SERIES
FUSH CS ; FUSH CS IN CASE IT'S INTEL
XCR CX,CX ; INTEL WILL POP CS
XCR CX,CX ; NEC WILL SET BIT IN CX
OR CX,CX ; JS 0X STILL 0?
JNZ V_SERIES
JMP ARG
YES — ASCII, IT'S AN INTEL CHIP
V_SERIES:
POP CX
NO— V NEC, BUT READJUST STACK
ENDM

; PROGRAM 4 LISTING

; Repeat Prefixes
CodeMacro REP EC Prefix
EndM
CodeMacro REPNC Prefix
EndM

; Bit Field Instructions
CodeMacro INS dst : Rb, src Rb
  00 0310FH
  ModRM src, dst EndM
CodeMacro INS dst Rb, count D(0,15)
  00 0390FH
  ModRM 0, dst
  DB count
  EndM
CodeMacro INS dst Rb, src Rb
  ~
  ~FMst
  EndM
CodeMacro EXT dst Rb, count 0(0,15)
  rw
  03BOFH
  ModRM 0, dst
  DB count
  EndM

; Bit Manipulation Instructions
CodeMacro TEST1 dst : Eb, off
  dst
  100FH
  0, dst
  ModRM 0, dst
  EndM
CodeMacro TEST1 dst
  Segfix dst
  00 180FH
  ModRM 0t dst DB of
  EndM
CodeMacro TEST1 dst
  Segfix dst
  00 190FH
  ModRM 0t dst
  DB of
  EndM
CodeMacro SET1 dst
  ~flx dst
  00 l40FH
  ModRM 0, dst
  EndM
CodeMacro SETI dst
  ~flx dst
  00 l50FH
  ModRM 0, dst
  EndM
CodeMacro SETI dst
  ~flx dst
  00 lCOFH
  ModRM 0t dst
  DB of
  EndM

; l-SEGMENT OVERRIDE
; PROVIDE METHOD FOR INCLUDING SEGMENT OVERIDES
; CS - MACRO ARG1,ARG2,ARG3,ARG4,ARG5
  DB 2EH
  ARG1 ARG2,ARG3,ARG4,ARG5
  EndM
ES - MACRO ARG1,ARG2,ARG3,ARG4,ARG5
  DB 2EH
  ARG1 ARG2,ARG3,ARG4,ARG5
  EndM

Micro/Systems Journal November/December 1985
CUSTOM PRODUCTS
DESIGN • LAYOUT
MANUFACTURING

ECT-100-F
RACKMOUNT CARD CAGES

8080 CPU
CENTRAL PROCESSING UNITS

CCMB-10-F MIN
6,10 OR 20 SLOT CARD CAGES

ECT
BUILDING BLOCKS
FOR MICROCOMPUTER SYSTEMS,
DEDICATED CONTROLLERS
AND TEST EQUIPMENT
CARD CAGES, POWER SUPPLIES
MAINFRAMES, CPU'S, MEMORY
I/O, OEM VARIATIONS

RM-10
CARD CAGE & POWER SUPPLY

64K RAM
FULLY STATIC MEMORY

TABLE TOP MAINFRAMES

R 21/O
ROM/RAM & I/O

ECT

ELECTRONIC CONTROL TECHNOLOGY, INC.
10 Cottage St., Berkeley Heights, NJ 07922 (201) 464-8086

SPECIALIZING IN QUALITY MICRO COMPUTER HARDWARE

PS-30 A
POWER SUPPLIES

MULTIBUS PRODUCTS
MULTIBUS IS A TRADEMARK OF INTEL CORP.
**CP/M, MS-DOS EPROM PROGRAMMING SYSTEM**

- SOFTWARE AVAILABLE FOR CP/M-80, CP/M-86 AND MS-DOS SYSTEMS
- STAND ALONGE BOARD - ELECTRONIC SWITCHING OR EPROM TYPES
- USES 24 VOLT XMR FOR POWER - ALL SUPPRES/TOURING ON BOARD
- NO PERSONALITY MODULES TO BUY - LARGE COMPANIONE MANUAL

**PARALLEL PRINTER INTERFACE**

CONNECTS TO ANY PARALLEL PRINTER INTERFACE - USES 8 OUTPUT DATA BITS AND ONE INPUT DATA BIT (BUSY LINE). BUSY LINE IS A HIGH SPEED SERIAL INPUT. FULL EPROM READING AND PROGRAMMING UNIT MAY ALSO BE CONNECTED TO ONE 16 BIT INPUT/OUTPUT PORT.

**CONTROL PROGRAM COMMANDS**

- PROGRAM PROM(S) FROM DISK - SAVES PROM(S) TO DISK
- READ DISK FILE INTO RAM - PROGRAM PROM(S) FROM RAM
- READ PROM(S) INTO RAM - COMPARE PROM WITH RAM
- VERIFY PROM IS BRANDED - COPY PROM
- DISPLAY MODIFIED RAM - MONITOR MODE WITH 12 SUB COMMANDS

ASSEMBLED & TESTED UNIT WITH COMPLETE DOCUMENTATION AND SOFTWARE ON DISKETTE

PARTS KIT WITH SOFTWARE AND DOCUMENTATION $199

SOFTWARE ON 8 & 5 1/4 DISK FOR IBM, OSCAR, KAYPRO & OTHER RMTS

TO ORDER SEND CHECK, MONEY ORDER, WRITE OR CALL

ANDRATHECH
P.O. BOX 222
MILFORD, OHIO 45150
(513) 752-7128

CALL OR WRITE FOR MORE INFORMATION - ADD $40 FOR SHIPPING OHIO RES ADD 50% TAX - VISA/MC ACCEPTED - $100 FOR COD

---

**d/MULTI**

MULTIUSER dBASE

TRUE File and Record Locking as easy as dBASE II. Unlimited users can perform the magic of dBASE in the program or interactive mode

- TurboDOS 1.3 or 1.4
- No Peeks or Pokes
- System Date and Time Functions
- Printspooler Controls up to 16 printers

**Martian Technologies...**

**CALL FOR DETAILS**

Martian Technologies
8348 Center Dr. Ste.-F La Mesa Ca. 92041
(619)464-2924
**16 USERS ON YOUR I.B.M. P.C.**

**TurboSlave - P.C.**
- 8 MHz Z-80H
- 128K RAM
- 2 RS-232 PORTS
- MULTIPROCESSOR ARCHITECTURE
- P.C. COMPATIBLE

TurboSlave P.C. turns your IBM into a multi-user multi-process super micro. One TurboSlave can be used as a simple CPM coprocessor. By adding the TurboDOS operating system, up to 16 TurboSlave P.C.'s can be added, each supporting one user on a standard terminal. All CPM 2.2 programs and most multi-user MPM applications can be run under TurboDOS. True record locking and print spooling are fully supported.

**Terminal Emulation $49**
With XTERM your PC can emulate the DEC VT100/120, VT52, IBM3101, HP2624, ADDS, and ADM3A. Site licenses available for all products.

**BASICA Windows $49**
Enhance your basica programs with a dozen new window commands for both interpreter or compiler. Add $399 for complete “ASM” source code.

**DES Encryption $59**
Government approved data encryption standard with compression and telecommunications formatting. Add $399 for complete “ASM” source code.

**Remote Operations $69**
Operate your PC/DOS remotely via telephone using CONSOLEX. Great for LAN or dBase II applications. Add $399 for complete “ASM” source code.

**S-100 Version Available**

---

**RP/M2™ creates**

**CP/M®2.2 compatible IBM PC**

1. Remove the 8088
2. Install the NEC µPD70108
3. Boot PC RP/M2

MSDOS and CP/M 2.2 capability coexist in your IBM PC. The NEC µPD70108 CPU chip is a fast 8088 that can also execute 8080 machine code. PC RP/M2 is standard 2.2 compatible RP/M2 with our CBIOS for the IBM PC. System disk with manual and NEC µPD70108 $129. Shipping $5 ($10 nonUS) = =

---

**EPROM-32**

- Field-proven board meets IEEE-696 standard.
- Programs 1K through 32K (byte) EPROMs.
- Textool zero-insertion-force programming socket.
- EPROM is programmed through I/O ports and can be verified through I/O ports or located in memory space for verification.
- Programming voltage generated on-board.
- Personality Modules adapt board to EPROMs:
  - PM-1−2516, 2716
  - PM-2−2532
- Feature-packed CP/M-compatible control software includes fast programming algorithm.
- One year warranty.

**$269.95* (A & T)**

**MicroDynamics**
Corporation
P.O. Box 17577 • Memphis, TN 38187
(901)−755−0619

---

Price includes EPROM-32, documentation and two Personality Modules (specify). Additional Modules $17.95, Control software on 8" SSD diskette $29.95, UPS ground $2.00, UPS air $4.00, COD $3.00, foreign $56.00, VISA & MASTERCARD welcome.

### MULTI-USER MICROPROCESSORS & COMPONENTS

#### 8-BIT MASTER PROCESSOR
- CPZ-48004 $746
- CPZ-48005 $794

#### 8-BIT SLAVE PROCESSORS
- CPS-6A $412
- CPS-64A $562
- CPS-66D $487

#### ARCNET CONTROLLERS
- LANS100 $371
- LANPC $371
- LANPC-256 $521

#### ARCNET HUBS
- HUB-2A $146
- HUB-4P-ENC $41
- HUB-8A $319
- HUB-8A-ENC $469

#### HARD DISK CONTROLLERS
- MD-1013 $521
- MD-1016 $521
- OMTI-5100 $521
- OMTI-5300 $596

#### CARTRIDGE TAPE DRIVES
- T-540 $975
- T-525 $520

#### HARD DISKS
- XT1085 $2239
- XT1140 $3495
- 3051/E $1395

#### CABINETS
- C2810 $849
- C3810 $1595

#### DATABASE SYSTEMS
- Informa-20 $720
- The Language $955

#### WORD PROCESSING
- Word Processor $250
- The Filer $145
- The Speller $145

#### 16-BIT MASTER PROCESSORS
- CPZ-86 $1121
- CPZ-86-512 $1271
- CPZ-86-1MB $1496

#### 16-BIT SLAVE PROCESSORS
- CPS-16 $476
- CPS-16-512 $597
- CPS-16-1MB $756

#### ARCNET CONTROLLERS
- ARCNET Controller $371
- ARCNET Controller IBM-PC BUS $371
- ARCNET Controller with 256K RAM $371

#### ARCNET HUBS
- Repeater-ARCNET Active Hub-2 Port $146
- Passive Hub-4 Port $41
- Active Hub-8 Port $319
- HUB-8A with Enclosure & Power Supply $469

#### HARD DISK CONTROLLERS
- Monitor Dynamics HD Controller $521
- Monitor Dynamics HD Controller $521
- HD Controller-SASI Interface $521
- HD & TAPE Cartridge Controller-SASI Interface $596

#### CARTRIDGE TAPE DRIVES
- Cipher, 90 IPS, 45/60 MB $975
- Cipher, Floppy Tapes, 32MB $520

#### HARD DISKS
- MAXTOR, 30ms, 85MB $2239
- MAXTOR, 30ms, 140MB $3495
- ADSI, 30ms, 52MB $1395

#### CABINETS
- Para Dynamics Mini-Pronto, 10 slots. Custom modified Para Dynamics Pronto-all peripherals mounted horizontally in brackets. Holds 2-8" half height floppy drives, 1-5 1/4" cartridge tape drive, and 2-full height 5 1/4" Winchester HD. 20 slots. Custom front bezel. All mounting brackets removed by loosening (not removing) 4 screws. No more cut or scraped knuckles or standing on your head to mount peripherals!

#### DATABASE SYSTEMS
- Unlimited Processing, 8-bit $270
- Unlimited Processing, 16-bit $270

#### WORD PROCESSING
- Palantir, 8 bit, includes Mailout $250
- Palantir, 16 bit, "AVAILABLE IN SEPTEMBER, 1985" $250

#### OFFICE AUTOMATION
- O'Hanlon Systems $995

#### APPLICATION SOFTWARE
- BACS $250
- MCS-3 $375

#### SPECIAL SERVICES
- "CALL FOR PRICING"

---

**TurboDOS COMPATIBLE MULTI-USER SOFTWARE**

**DATABASE SYSTEMS**
- Informa-20 $720
- The Language $955

**WORD PROCESSING**
- Word Processor $250
- The Filer $145
- The Speller $145

**OFFICE AUTOMATION**
- Office automation, includes multinode ELECTRONIC MAIL and REMOTE MAIL FORWARDING, File Cabinet, Calendar & Scheduling and terminal communications. $995

**APPLICATION SOFTWARE**
- BACS $250
- MCS-3 $375

---

All prices, specifications & availability subject to change and stock on hand. System House and Dealer inquiries invited. TurboDOS is a trademark of Software 2000, Inc. "Office" is a trademark of Commercial Systems Corp.
The Software Toolworks' C80 compiler has received high marks in several reviews for being a nearly complete implementation of C that compiles in a reasonable time to produce compact, fast integer code. It even has an optional floating-point library that extends its arithmetic capabilities beyond the basic byte and integer data types.

However, the speed of floating point operations in most languages for 8-bit micros leaves something to be desired, and C80 is no exception. In a list of benchmark timings based on Bill Savage’s program (Dr. Dobb's Journal #94 (Aug. 1984), pp.110-114), C80 clocked in at 238 seconds on a 6mHz 8085, but BASIC 80 took only 175 seconds on a 5mHz 8085!

I have been using C80 for over two years, but only recently found it necessary to use its floating point arithmetic. Appalled that an interpreted language could outperform a compiled one, I decided to speed up C80's floating point operations by replacing them with routines to run the Intel 8231A floating point processor IC (equivalent to the Advanced Micro Devices Am9511 Floating Point Processor) on my CompuPro Systems Support Board. This article tells how I did it and details my modifications to C80's floating point library. These routines were written for Microsoft's M80, but they can be altered easily for use with Digital Research's RMAC or the assembler provided with C80. Throughout this article I will also try to give helpful suggestions for others who might want to add hardware floating point support to other compilers and languages.

FLOATING POINT FORMATS

Unfortunately, there is no FFP for 8-bit systems that monitors the bus for data and commands destined for itself, responding automatically without specific intervention by the CPU. Instead, the CPU must feed it the data and instructions and retrieve the results by ported or memory-mapped I/O. Any speed advantage that an FPP may have over software arithmetic can be wiped out by delays required to convert the data format from that used by a high-level language to its own internal format, feed it the data and commands, get the results, and then convert back to the high-level language's format.

C80 and the 8231A both represent floating point variables with four bytes, but there are some differences (see comments just before label C2AMD: in Listing 3). Both have a 24-bit two's complement mantissa that is normalized to a value between 0.5 and 1. C80 saves one bit of storage by implicitly assuming the high bit of the mantissa will be 1, so the 24th bit can be used to represent mantissa sign. The 8231A retains the high bit of the mantissa, and puts the mantissa sign bit in the exponent byte. This reduces the number of bits available for the exponent to seven, so the range of numbers that the 8231A can represent is $2^{-64}$ to $2^{-4} + 63$. The more efficient storage scheme used by C80 and many other languages lets them represent numbers from $2^{-128}$ to $2^4 - 127$ with no loss of precision in the mantissa.

Despite this difference of range, the fundamental similarity of the formats meant that reasonably efficient routines could be written to convert between them (see C2AMD: and AMD2C: in Listing 3). I first wrote these routines as functions, tested them for proper operation with a program that printed out the bit patterns for various floating point values before and after conversion. Listing 1 gives this program for the convenience of others who wish to adapt it to investigate the internal representation of floats in other versions of C, some of which do not provide such information in their documentation. Single precision floating point variables in Microsoft's FORTRAN 80, and single floats in Alcor's C, also occupy 32-bits. There is a hardware floating point library to use the 8231A with FORTRAN 80, and it might be possible to develop one for single floats in Alcor C. The 8232 (Am9512), which does both four and eight byte floating point arithmetic, might be a better choice for Alcor C, which also has a double float type. The 8232 would be the only choice for ECO-C, which uses an internal eight byte double float format in all floating point calculations.

PASSING ARGUMENTS & RETURNING RESULTS

The next step was to write a set of routines to pass arguments from C80 to the FPP and return the result. The C80 manual gives a rather terse description of how floating point arguments and results are passed, and suggests that interested users examine the code that is produced to figure it out for themselves.

Which I did. The intrinsic float operations (add, subtract, multiply and divide) and the extrinsic functions (e.g. sin(), sqrt(), or user-defined functions) all return their result in registers BCDE, but there are important differences in how they receive arguments. The intrinsic operations are called with the first argument on the stack and the second in registers...
BCDE. The library routines for these elementary operations remove the first argument from the stack and return the result in BCDE.

The extrinsic functions retrieve all arguments from the stack without disturbing the stack pointer. The stack pointer is still unchanged upon return, so the calling routine must remove the arguments from the stack to prevent stack overflow. Code to preserve and fix the stack is generated automatically when the C80 compiler processes C source code. It is up to the programmer to keep track of the stack pointer and restore it as needed when writing functions in assembly language.

Although the LGFLTLIB.ASM and FLOATLIB.ASM sources provided by the Software Toolworks are uncommented, they were invaluable for tracing what happened to arguments and function results. Few other compiled languages provide the source code for their libraries, but many produce assembly code that can give useful clues to internal data formats, the names or locations of entry points for important library routines, and what source code constructions produce the most efficient object code. Such access to assembly code also offers the possibility of hand-optimization of critical sections to improve speed and reduce storage requirements.

At this point, I was able to estimate the time required just to convert formats and pass data back and forth to the FFP. This process took more than 167 microseconds (usec), slow enough that it didn’t seem worth the effort to replace the floating-point addition and subtraction routines. However, multiplication, division, and the other functions promised to be much faster with the FFP.

My next step was to write routines to use the FFP to duplicate but not replace C80’s floating point operations. I wrote these for assembly with M80, following the general format produced by C80. Then I tested them with a program that stepped through a section of the software floating point library and to my special FPP routines, and compared the results to be sure they gave the same answers as their software counterparts.

DISSECTING THE LIBRARY

Satisfied that no errors had crept in, I now had to decide how to replace the multiplication and division routines, and where to put the functions that were previously part of MATHLIB.C. This is when I became very grateful for two facts about C80: the relocatable floating point library was in Microsoft’s REL format and could be examined by LIB; source code for the floating point routines was provided, even though it was really intended for use with the Software Toolworks assembler.

Processing FLIBRARY.REL with LIB (/L option) identified its modules and their entry points. This revealed that the module that contained the floating-point multiplication and division routines was called FLTLIB.

FLOATLIB.ASM includes the source for several modules. The source for FLTLIB ends with a RET just before the label f.stak:. I isolated what looked like the FLTLIB code from FLOATLIB, added a list of ENTRYs and EXTRNs as indicated by LIB’s listing of FLIBRARY.REL, and inserted DSEG and CSEG to preserve the 15 byte data area revealed by LIB. I named this NUFLTLIB.MAC and assembled it with M80 using the /C option to produce NUFLTLIB.REL and NUFLTLIB.CRF. The cross-referenced NUFLTLIB.PRN file generated from the CRF file by CREF80 showed that the floating-point multiplication section could be excised in toto - the only entry point that was referenced by other routines was at the label fmul:. However, the division routine had an entry point (div10:) that might be called by something outside FLTLIB, so I decided not to tamper with the short section between div10: and fdiv:

The task of modifying the floating point library would have been more difficult if the source code were not available. Some versions of C (e.g., Alcor) have a runtime package that contains all of the math routines and is linked as a complete unit into every compiled program. Alcor says they would provide information such as locations and lengths of the software math functions to help interested users implement hardware math routines.

FLTLB - THE HARDWARE FLOATING POINT ROUTINES

I gave the hardware math module a different name than the original FLTLIB. This was accomplished with the TITLE pseudo-op (see Listing 2). The DSEG and CSEG pseudo-ops preserve data areas exactly as they were in the original, just in case they are referenced by some other part of the C80 library. The list of EXTRNs and ENTRYs was derived from LIB’s output, as described above.

C80 uses a dispatch table to jump to the floating point addition, subtraction, multiplication and division routines. I replaced this with a simple JMP for multiplication and division, and commented out the two unused entries in the dispatch table located at ftab:

(Listing 3). Since the dispatcher now only has to decide between addition and subtraction, further simplification is possible, but this would produce only a small improvement of speed and storage.

The actual floating point routines replace two major blocks of code. The first block contained the software multiplication routines starting with label fmlu3: and ending just before label popfr:. I decided to put everything but the hardware floating point division routine in this area. The division routine replaces the original section that started with fdiv: and ended just before mul10:. Listing 4 gives all the new code, plus the small portion between popfr: and the old fdiv: that remains unchanged. I have not included the absolute value or polynomial functions (fabs() and Fpoly()) in this listing, although they are part of the MATHLIB. If you prefer to include these in your version of FLTLIB, use C80 to generate the appropriate assembler code from the C source and patch the assembly code into your FLTLIB before assembly.

There are times when some hardware errors, such as underflow, could be handled more sensibly by returning a zero or some other value instead of aborting the program. Therefore I included a function fmask() that can be used to set the error detection mask under program control. The default condition is to test for, and crash in case of, any hardware error. If any of the FPP error tests is disabled, it is up to the programmer to test for and handle such errors in a meaningful way. This might be done by writing a routine that would check the
Super assemblers plus the world’s largest selection of cross assemblers!

Z-80 Macroassembler
Power for larger programs! This 2500AD macroassembler includes:
• Zilog Z-80 Macroassembler (with the same powerful features as all our assemblers)
• powerful linker that will link up to 128 files. Com files may start at any address
• Intel 8080 to Zilog Z-80 Source Code Converter (to convert all your Intel source to Zilog Syntax in one simple step)
• COM to Hex Converter (to convert your object files to Hex for PROM creation, etc.)
• 52 page User Manual

8086/88 Assembler with Translator
Available for MSDOS, PCDOS, or CP/M/86! This fully relocatable macroassembler will assemble and link code for MSDOS (PCDOS) and CP/M/86 on either a CP/M/86 or MSDOS machine. This package also includes:
• An 8080 to 8086 source code translator (no limit on program size to translate)
• A Z-80 to 8086 translator
• 64 page user manual
• 4 linkers included:
  - MSDOS produces .EXE file
  - CP/M/86 produces .CMD file
  - Pure object code generation
  - Object code and address information only
Linker features:
• Links up to 128 files
• Submit mode invocation
• Code, Data Stack and extra segments
• Handles complex overlays
• Written in assembly language for fast assemblies.

Z-8000 Cross Development Package
Instant Z-8000 Software! This package allows development and conversion of software for the Z8001, 8002, 8003, and 8004 based machines: the Z-80, Z-8000, or 8086 machine. This powerful package includes:
• a Z-80/8080 to Z-8000 Assembly Language Source Code Translator
• Z-8000 Macro Cross Assembler and Linker
The Translators provide Z-8000 source code from Intel 8080 or Z80 Z-80 source code. The Z-8000 source code used by these packages are the unique 2500AD syntax using Zilog mnemonics, designed to make the transition from Z-80 code writing to Z-8000 easy.

Z-8000 Cross Development Package
Instant Z-8000 Software! This package allows development and conversion of software for the Z8001, 8002, 8003, and 8004 based machines: the Z-80, Z-8000, or 8086 machine. This powerful package includes:
• a Z-80/8080 to Z-8000 Assembly Language Source Code Translator
• Z-8000 Macro Cross Assembler and Linker
The Translators provide Z-8000 source code from Intel 8080 or Z80 Z-80 source code. The Z-8000 source code used by these packages are the unique 2500AD syntax using Zilog mnemonics, designed to make the transition from Z-80 code writing to Z-8000 easy.

All 2500 AD Assemblers and Cross Assemblers support the following features:

Relocatable Code — the packages include a versatile Linker that will link up to 128 files together, or just be used for external reference resolution. Supports separate Code and Data space. The Linker allows Submit Mode or Command Invocation.

Large File Handling Capacity — the Assembler will process files as large as the disk storage device. All buffers including the symbol table buffer overflow to disk.

Powerful Macro Section — handles string comparisons during parameter substitutions. Recursion and nesting limited only by the amount of disk storage available.

Conditional Assembly — allows up to 248 levels of nesting.

Assembly Time Calculator — will perform calculations with up to 16 pending operands, using 16 or 32 Bit arithmetic (32 Bit only for 16 Bit products). The algebraic hierarchy may be changed through the use of parentheses.

Include files supported — Listing Control — allows listing of sections on the program with convenient assembly error detection overrides, along with assembly run time commands that may be used to dynamically change the listing mode during assembly.

Hex File Converter, included — for those who have special requirements, and need to generate object code in this format.

Cross reference table generated —

Plain English Error Messages —

System requirements for all programs: Z-80 CP/M 2.2 System with 54k TPA and at least a 96 column printer is recommended. Or 8086/88 256k CP/M-86 or MSDOS (PCDOS).

Cross Assembler Special Features
Z-8 — User defined registers names, standard Zilog and Z-80 style support. Tec Hex output option.
8748 — standard Intel and Z-80 style syntax supported.
8051 — 512 User defined register or addressable bit names.
6800 Family — absolute or relocatable modes, all addressing modes supported. Motorola syntax compatible. Intel Hex or S-Record format output.
6502 — Standard syntax or Z-80 type syntax supported, all addressing modes supported.
<table>
<thead>
<tr>
<th>Product</th>
<th>Z80</th>
<th>Z8000™</th>
<th>Z8000™</th>
<th>Z8000™</th>
<th>Z8000™</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP/M®</td>
<td>$299.50</td>
<td>$750.00</td>
<td>$299.50</td>
<td>$299.50</td>
<td>$299.50</td>
</tr>
<tr>
<td>UNIX</td>
<td>99.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>IBM PC</td>
<td>99.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>MSDOS</td>
<td>750.00</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>IBM PC</td>
<td>99.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
<td>199.50</td>
</tr>
<tr>
<td>M-20 PCOS</td>
<td>99.50</td>
<td>500.00</td>
<td>199.50</td>
<td>199.50</td>
<td>199.50</td>
</tr>
</tbody>
</table>

**Subtotal**

Name ____________________________
Company ____________________________
Address ____________________________
City ______ State _______ Zip ______
Phone ________________
Make and model of computer system ____________

COD (2500AD pays COD charges)

VISA or MasterCard

Number ____________________________
Expiration Date ____________________

**TO ORDER.** Simply circle the product or products you want in the price columns, and add up your order.

Check one:

- 8" Single Osborne IBM PC
- 8" Single Osborne IBM PC
- Cartridge tape
- Apple (Softcard)
- Kaypro DSDD

Total $ ________________

Total Order $ ________________

Check one:

- Shipping UPS Blue Label no charge, $15.00 International per unit $ ________________

Signature ____________________________

17200 E. Ohio Drive, Aurora, CO 80017 (303) 369-5001
status register immediately after any suspect operation, branching to an error-handling routine if an error occurs.

RESULTS

These routines illustrate two major bottlenecks in the use of any hardware math device that is not a coprocessor. Both are related to data transfer between the CPU and the FPP. The first is format conversion, which takes a major toll: about 46\textmu s per argument passed to the 8231, and 20\textmu s to convert the result back to C80's format. The second bottleneck is the fact that the C80 compiler maintains intermediate results in the CPU's address space rather than leaving them in the FPP's stack. Aside from the time needed to pass and retrieve these results, this imposes extra overhead for needless format conversions. Short of rewriting the C80 compiler, the only way around this would be to modify FLTLB and manually revise critical portions of the 8080 code produced by C80 so that frequently used intermediate results stay in the FPP's stack until all floating point operations are complete.

Despite these shortcomings, the new floating point library is a definite improvement over the original. Savage's benchmark took only 16 seconds on a 4MHz Z80 with a 2MHz 8231A, producing a final result of 2327 (rounded off to the nearest integer - error 2E+2). This is faster than any other 8-bit machine running at 4MHz, and about 15 times faster than C80's software floating point library. The result is slightly more precise than the software arithmetic, and just as (im)precise as any other Am9511 or Intel 8231A FPP in the list—roughly comparable to single precision FORTRAN. This is not my first choice for processing ill-conditioned matrix equations, but it is more than adequate for less demanding applications, such as averaging and display transformations of data following AID conversion.

Ted Carnevale, an assistant professor of neurology at SUNY Stony Brook NY, is involved in research on information processing in neurons. His primary use of computers is in the implementation of the following algorithm:

```
while not (broke or fired) {
 do_experiments(time_and_money--);
 write_papers(time_and_money--);
 submit_research_proposals_to.get_more_money(time_and_money--);
}
```

---

**LISTING 1**

```c
/* fpc.c--tests conversion to/from amd9511 fpp format */
#include forint.h
#include c80def.h
#define MESSAGE "Floating-point format conversion program"
#define DASHES "---"
#define MAX 6 /* how many different values to feed to the format conversion routines */
/* replace the next two functions with your own format conversion routines as needed */
extern long c2amd(float); /* link .rel file containing these */
extern float amd2c(); /* to fpc.rel */
main() {
 int i;
 static int sx=10;
 float x;
 static float dx=1.0;
 printf(MESSAGE); printf(DASHES);
 /* a geometric series of positive values */
 for (i = 0, x = +100.0; i<MAX; x *= sx, i++) showbits(x);
 printf(DASHES);
 /* a geometric series of negative values */
 for (i = 0, x = -100.0; i<MAX; x /= sx, i++) showbits(x);
 printf(DASHES);
 /* a linear series of positive and negative values */
 for (i = -MAX, x=(float) (-MAX); i<MAX; x += dx, i++) showbits(x);
 /* show bit patterns used by C80 and AMD FPP floating point formats to represent the float n */
 showbits(n) float n;
 int i;
 union { float f; long l; }
 x,z; /* unions are easier to use here than pointers */
 long y;
 /* show C80's preconversion bit pattern */
 printf("x = %e, \t\tBCDE = ",x.f);
 printf(DASHES);
 /* eliminate next few lines if you just want to check the format used by your version of C */
 /* show AMD formatted data */
 y=c2amd(x.f); printf("
n	\t\t\t AMD = "); printflong(y);
 /* convert back to C80's format */
 z=amd2c(y); printf("z = %e, \t\tBCDE = ",z.f);
 printflong(z.l);
 /* end of C80 \rightarrow \rightarrow C80 format conversion test */
 /* print bit pattern of a long, starting with the high-order bit of the most significant byte, working down from left to right */
 printflong(k) long k;
 int i;
 union { long l; char b[4]; }
 datum;
 datum.l=k;
 for (i=0; i<4; i--) { printf("\t\t\t\tBCDE = ");
 printflong(datum.b[i]);
 printf("\t\t\t\tBCDE = ");
 printflong(datum.l);
 printf("\t\t\t\tBCDE = ");
 printflong(datum.l);
 printf("\t\t\t\tBCDE = ");
 printflong(datum.l);
 printf("\t\t\t\tBCDE = ");
 printflong(datum.l);
 }
 /* print the bit pattern for a byte from left to right */
 printfbyte(1)
 int i;
 char bit;
 for (j=0; j<8; j++) { if (i & (1<<j)) { printf("\t\t\t\tBCDE = ");
 printfbyte(1); } else printfbyte(0); }
 printf(byte(1);
}
```

Micro/Systems Journal November/December 1985
LISTING 2

; Floating point library
; C/80 3.0 (7/7/83) - (c) 1983 Walter Bilofsky
; Modified 8/84 to use amd511 for floating point multiply/divide
; and MATHLIB functions as well.
; Replaces modules FLTLIB and MATHLIB
; - N.T.Carnevale
;
; these were gleaned from LIB's listing of FLIBRARY.REL:
ENTRY cf.eq,cf.ge,cf.gt,cf.le,cf.lt,cf.ne
ENTRY div10,mul10.
ENTRY errCod
ENTRY F.add,F.div,F.mul,F.neg,F.not,F.sub
ENTRY fac1,fac2,fac3,fac4,fac5,fac6
ENTRY fadd.,faddb.,fcmp.,fdiv a,fdiv b,fdiv c,fdiv g
ENTRY fmul.,float.,fult 0,fult 1
ENTRY hlt 1,hlt 2
ENTRY Hc.hf,Hc.Bf,Hu.Bf
ENTRY inxnr.
ENTRY movfn.,movfr.,movfm.,movf.
ENTRY pushf.,qint.,save,save_l,sign.,zero.
ENTRY llong.,movfn.,neg,.4,.alrpl.
;
; this preserves the 15 byte data area revealed by LIB:
DEBO
;
fac1 : DB 0
fac2 : DB 0
fac3 : DB 0
fac4 : DB 0
fac5 : DB 0
fac6 : DB 0
flt 0 : DB 0
flt 1 : DB 0
dum T : DB 0
save li : DB 0
errCod : DB 0
fdiv a : DB 0
fdiv b : DB 0
fdiv c : DB 0
fadd 1 : DB 0
;
; CB0
;
fupk : DS 0
F.add: XRA A
JMP Dual
F.sub: MVI A,1
JMP Dual
F.mul: JMP fmul
; jump to new routines
F.mvl: JMP fmul
;
; fadd, faddb, fcmp, fdiv
;
;-------------------------------
;
LISTING 3

Ftab: DW fadd.
; next two addresses not used
;
;-------------------------------

LISTING 4

What follows replaces the original code in the FLTLIB section of:
FLWIN.SDM that started with fmul3: and ended just before popfr:.

; send message to console
PUSH PSW
PUSH B
PUSH D
PUSH H
MV1 C,PSTTRQ
CALL EXCS
POP H
POP D
POP B
POP PSW

; Port addresses
BASE EQU 050H
; base address of CompuPro SSI board
BASH EQU BASE+6
; location of SSI's control & data ports

; FPP error codes
ERRBITS EQU 1EH
; the status register's error bits
OVERFL EQU 2
; overflow
UNDERF EQU 4
; underflow
NEGAT1 EQU 8
; negative argument to sqrt or log function
DIVZER EQU 10H
; divide by zero
TOOBIG EQU 18H
; arg of asin, acos, or exp too big

; FPP command codes
PMUL EQU 12H
; swap top two locations in fpp's stack
PDIV EQU 13H
; swap top two locations in fpp's stack
SCMP EQU 19H
; swap top two locations in fpp's stack
FSINV EQU 3
; swap top two locations in fpp's stack
FOAS EQU 4
; swap top two locations in fpp's stack
PETN EQU 5
; swap top two locations in fpp's stack
PARAN EQU 7
; swap top two locations in fpp's stack
PLUG EQU 8
; swap top two locations in fpp's stack
FLN EQU 10H
; natural logarithm
PEEP EQU 0AH
; ex
FPWR EQU 0BH
; ex

; note: timing indicated for some of the following
; this block converts c80 float in BD to FPP format, then loads it into FPP. 
; if out of range for FPP, aborts with warning.
; data format conversion routine C2AMD--
; converts c80's float to amd's fp format.
; based on suggestions by J. Shook, Electronics Lab, Dept. of Chemistry,
; SUNY Stony Brook
Floating point formats

C80 stores floats as:
manitissa sign in C7
manitissa = 24 bit two's complement in CDE,
with bit 23 assumed = 1
exponent is added to 128 (80H) and stored in B.
if the number is 0, B=0.

FPP stores floats as:
manitissa sign in B7
manitissa = 24 bit two's complement in CDE,
with bit 23 assumed = 1.
exponent is added to 128 (80H) and stored in B.
however, the value 0 is represented by BD=0.

;Call with value to convert in BD.

C2AMD:
MOV A,B
JNZ FPPZERO
;take care of register B
SUI BOH ;set hi bit of C
JMP EXPHI ;exponent ok, proceed

FPPZERO:
XRA A
MOV A,C
MOV D,A
MOV E,A

;data transfer routine
LOADFFP:
MOV A,E
OUT DRG
MOV A,D
OUT DRG
MOV A,C
OUT DRG
MOV A,B
OUT DRG
RETI
176 t cycles = 17.5usec

;total time for C2AMD & LOADFFP = 46usec

EXPCHI:
LXI D,HIMSG
JMP EREXIT

EREXIT:
CALL PFMASK
JMP BOOT ;ball out!
becomes the ERRMASK that is ANDed with the status word to detect a hardware (FPP) error.

PUBLIC fpnask

FPERR: get the user-specified error mask

ANT ERRBITS: and mask out all but the genuine error bits

GETIT: starts an FPP operation, tests for error, gets the result & converts to c80 format

DOIT: send command in A to FPP

WAIT: IN FPP

GRA A: 8

GRA T: 10—until done

ERRTEST: contains error code

ANT ERRBITS: 7—default = test all error bits

NZ FPERR: 10—If error found, else fall through to GETIT

GETTOP: get top of fpp's stack into BD

AMD2C: based on suggestions by J. Shook, Electronics Lab, Dept. of Chemistry, SUNY Stony Brook

AMD2C: return address argument fix stack

PUBLIC fpmul

Note: for fp multiply and divide

180 passes the first arg in the stack, the second in BD

1 For the intrinsic multiply and divide operations, the calling program does NOT have to remove args from the stack upon return! This is quite different from the situation with user-defined functions.

1 take 2nd arg from BD, convert to amd & format, and pass to fpp

CALL C2AMD: 17

1 take 1st arg from stack, convert format, and pass to fpp

CALL FLDI: 17

send command, test for error, return with result in BD

PUBLIC sqrt

float sqrt(x) float x;

PUBLIC sin

float sin(x) float x;
sin:
CALL FLOAD1
MVI A,FSIN
JMP DJIT

; float cos(x) float x;
PUBLIC cos

cos:
CALL FLOAD1
MVI A,FACOS
JMP DJIT

; float tan(x) float x;
PUBLIC tan

tan:
CALL FLOAD1
MVI A,FTAN
JMP DJIT

; float asin(x) float x; /* arc sin in radians */
PUBLIC asin

asin:
CALL FLOAD1
MVI A,FAASIN
JMP DJIT

; float acos(x) float x;
PUBLIC acos

acos:
CALL FLOAD1
MVI A,FAACOS
JMP DJIT

; float atan(x) float x;
PUBLIC atan

atan:
CALL FLOAD1
MVI A,FAATAN
JMP DJIT

; float log(x) float x; /* log10 */
PUBLIC log

log:
CALL FLOAD1
MVI A,FLLOG
JMP DJIT

; float ln(x) float x; /* log e */
PUBLIC ln

ln:
CALL FLOAD1
MVI A,FLN
JMP DJIT

; float exp(x) float x;
PUBLIC exp

exp:
CALL FLOAD1
MVI A,FLEXP
JMP DJIT

; float pow(x,y) float x,y; /* x to the yth power */
PUBLIC pow

pow:
CALL FLOAD2
MVI A,FCHF
OUT CHSC
WAIT: IN CHSC
OUT CHSR
JMP WAIT

DIV0: MOV A,CHF
OUT CHSC
JMP WAIT

; brieflly back to the original source for fltlib—

; html: POP H

THE PROGRAMMER'S SHOP helps save time, money and cut frustrations. Compare, evaluate, and find products.

SERVICES
Programmer's Referral List  
Cloud's Inquiry  
Compare Products  
Help Find a Publisher  
Read Order  
Evaluation Literature free  
Over 700 products  
BULLETIN BOARD: 7PM to 7AM 817-825-4066

SERVICE: FREE NEWSLETTER
Software development and AI on micros: trends, forecasts, controversies, innovations, and techniques. Plus announcement of 80 NEW tools.

CALL for “Newsletter Packet.”

RECENT DISCOVERIES
Fortran >> C - FORTRIX creates maintainable translations. MSDOS $995

FORTRAN LANGUAGE
MacFORTAN - full '77, '66 option. toolbox, debugger, 128K or 512K.  
ASM-out option  
RM-Fortran - Full '77, BIG ARRAYS.  
8087, optimize, back trace, debug.  
MSDOS $429
 
Ask about Microsoft, Supersoft, others.  
MS FORTAN-86 - Improved.  
DFR Fortran-86 - full '77.  
PolyFORTAN-XREF, Xtrack  
PCOOS 119

LANGUAGE LIBRARIES
MultiHALO Graphics-Multiple video boards, printers, rich Animation, engineering business.  
ANY MS language, Lattice, C86, $195.  
Turbo $95.  
Screen Sculptor - slick, thorough, fast. BASIC, PASCAL.  
PCOOS $109

GRAPHMATIC - 3D, FTN, PAS  
PCDOS 125

Professional Pascal - for performance; extensions like “packages”; “Iterators”;  
5 memory models; 64 bit 8087; strings.  
Space vs. speed: optimization options.  
MSDOS $895

SNOBOL4 -great for strings, patterns.  
MSDOS $ 85

MacASM - full, fast, tools  
Assembler & Tools - DIF  
MSDOS 89

PC FORTH - well liked  
MSDOS 89

SUPPORT PRODUCTS
PLINK 86 - a program-independent overlay linker to 32 levels for all MS languages. C86 and Lattice.  
Lev. II, native, screens.  
PCDOS $500

Multitask - multitasking  
PCDOS 265

Pfinish - Profile by routine  
PCDOS 299

Polytran - thorough  
PolyMAKE 85

ZAP Communications - VT100, TEK 4601 emulation, full xfer.  
PCDOS 85

COBOL
Microsoft Version II - upgraded. Full  
Lev. I, native, screens.  
PCDOS $500

Flexgen - CPM, MSDOS 475

Macintosh COBOL - Full.  
Mac 459

MicroFocus Prof.-full  
PCDOS call

Ryan McFarland-portable  
PCDOS 695
MEX-PC — Full-featured modem software for your IBM-PC (Versions also available for Tandy 2000 and most CP/M machines). Now can be menu driven! Fully programmable function keys • Simple built-in programming language for custom applications development • Choice of 8 background/foreground colors • All popular protocols (KERRMIT available Dec. 85) • Automatic & repeat dialing • Runs DOS commands and programs while online. *"Clones"* customized versions.

REO — Remote Operation module with password security. This inexpensive add-on module adds remote access capability to your MEX program. It allows you to call up your office computer from home — or your home computer from your office — and swap data or text files, even programs. Download a spreadsheet, rework it at home, then send it back, updated, to your office. Password security keeps unauthorized persons from gaining access to sensitive files.

TEM — Intelligent terminal emulation add-on module for MEX-PC. As shipped, MEX emulates an ADM-3A equivalent terminal. TEM expands MEX to emulate either a Videotex 925 or DEC VT52/VT100. TEM is full-function emulation, allowing you to use remote text processors and spreadsheet programs running on mainframes that require a specific terminal interface. Simple installation. Fully documented.

NightOwl Connection — A multi-user on-line service that provides you with round-the-clock access to MEX support, plus all the latest and best in public domain and user-supported software. The Connection features 36 megabytes of free software — some of it exclusive to Connection subscribers — including 18 megabytes worth of programs for the IBM-PC and compatibles. MEX-PC owners can download all updates to their communications program free of charge!

$59.95 $29.95 $29.95 $100/yr. ($50/yr. renewal)

All MEX products have a 30-day, money-back guarantee.

MEX 'n' Match

MEX PACK.....................$99.95

As a special introduction to our remote operating module and terminal emulation system, we’re offering an all-in-one package for a limited time only. MEX-PACK is a complete communications package that includes: MEX-PC (version 1.50); REO remote operating module; TEM intelligent terminal emulation module; and a six-month subscription to the NightOwl Connection. Purchased individually, the items in this package would cost you $144.85 — a savings of almost $45!

Give us a toll-free call at 1-800-NITEOWL.
In Wisconsin, 1-414-563-4013

NightOwl Software Inc., Rt. 1, Box 7, Ft. Atkinson, WI., 53538

Para Dynamics builds a variety of modern, efficient, trouble-free expandable housing systems for most S-100 BUS configurations. Whether a rack mount, desk top, or stand alone, our patented super-efficient heat dissipation system can end your board-level failures due to high temperatures. Please call today for full details. (602) 991-1600

Para Dynamics Corporation • 7895 East Acoma • Scottsdale, AZ 85260
Introducing GRAF 3.0
the complete BUSINESS and SCIENTIFIC printer graphics program

SALES by DIVISION

BUSINESS APPLICATIONS
* display floating point data directly from spreadsheets, data bases, and word processors (or the keyboard) in a wide variety of bar, pie, line, and scatter plots
* plot and group up to 6 different variables on a single graph, distinguished by up to 14 different "fill-in" patterns and 8 different point-plotting symbols
* menu driven operation supporting automatic graph scaling, labeling, and legend creation
* program default values may be set once and for all

BUSINESS APPLICATIONS

Sample High/Low Graph

SCIENTIFIC APPLICATIONS
* simple interface allows plotting floating-point data obtained from all popular programming languages
* plot any number of curves (e.g., experimental data vs. theoretical values) on the same graph, choosing from 8 different plotting symbols,
* automatically created legends distinguish variables
* add up to 5 different-density grid lines, and choose from a wide variety of numerical labeling options
* high/low graphs are supported directly

SAMPLE SQUARE WAVE APPROXIMATION

TERMS: We ship via first class mail. The above prices include $5.00 for s/h. (Orders outside USA require additional $5.00 for postage. NJ residents add 6% tax.) When ordering you MUST state your computer and printer make and model. We support MS-DOS (PC-DOS) version 2.0 or later computers with at least 192k RAM, and CP/M-80 version 2.2 or later on Z80 computers (other than Apple) supporting 64k of RAM. Most soft-sector disk formats are available. If you can read several formats, please send us a list. GRAF 3.0 works with any printer fully compatible with one of the following: Epson FX, RX, LX, MX (with GRAFTRAX), or LQ-1500; C. Itoh Prowriter; NEC 8023A, Star Micronics Gemini 10X, 15X, SG-10, SG-15, IBM Graphics Printer, Okidata 192, and earlier Okidata models equipped with the "IBM Plug 'n' Play" chips. (If you have an Okidata printer, other than the 192, the Plug 'n' Play chips are required!)

GRAF 2.0 Update Policy: Returning your original GRAF 2.0 disk to MSC entitles you to $20.00 off the above prices.

MSC Microcomputer Systems Consultants

27 Forest Avenue Port Jefferson Station New York 11776-1820
Bringing Up CP/M-68K

by J.L. Calaway & Ben Hill, Jr.

A few months ago, we were developing an idea for a new product. As the investigation proceeded, it became apparent that the real-time processing requirements would exceed the capabilities of an 8-bit processor by a wide margin. It was time to look into the world of 16 bits.

We currently manufacture equipment based on the S-100 bus and it was decided not to change buses in midstream. We knew we needed speed and most of the 16-bit processors seemed to have plenty. Programming ease and flexibility loomed large in our decision, as well as hardware multiply and divide capability along with plenty of room for expansion. These basic requirements can be met by several 16-bit processors, but the Motorola 68000 was given the edge for its extended, linear addressing facility, along with its programming similarity to the DEC PDP-11, a minicomputer with which we have had past experience.

With the choice of processor settled, the next order of business was to find some compatible hardware and software. Since CompuPro markets an S-100 68000 processor card and we have used a number of their boards, we felt this would solve the hardware problem nicely. For software, we decided to go with Digital Research’s CP/M-68K.

Anxious to press on after the delivery of the hardware and software, we now devoted our attention toward finding a Z80/68000 cross-assembler to work with our existing Z80 computer. Avocet Systems and Quelo have such software. We opted for the Quelo version, but the Avocet cross-assembler should work as well.

GETTING THE SYSTEM TOGETHER

A swift appraisal of the Digital Research documentation disclosed that the BIOS listing required the use of a Tarbell double-density disk-controller! Oh, no time like the present to replace our old, single-density model. A panic call was placed to our dealer (pusher?), Patio Computer, in Los Angeles. Fortunately for us, they rounded up a controller in record time. Yea Patio! Now we could begin work in earnest.

A thorough reading of all the documentation was the next item of business. The new CP/M-68K manuals are several light years ahead of the old, surgid, CP/M-80 manuals. It’s a good thing, too, because it turned out that we would get no additional help from Digital Research. We tried to contact them several times during the painful (and expensive) start-up process. Each time, the customer service desk promised to have someone call back on the problem, but nobody ever did.

We used the sample assembly language, BIOS listing in the the CP/M-68K manual as a guide. Unfortunately, while the mnemonics and the logic in the listings are correct, in our copy of the manual, some of the assembled op-codes were incorrect. Things like this are not especially helpful when implementing something new, complex and unfamiliar. However, things could be worse - and they quickly got that way. The operating manual provided for the 68000 CPU was typical CompuPro documentation - exasperatingly brief. At one point, in response to our call for technical assistance, we were informed by CompuPro that they would not give us any assistance. We would only be able to get the information second-hand, from the distributor! The distributor didn’t know the answer, of course. In contrast, we are happy to report, the people at Quelo not only
answered several questions about their cross-assembler’s operation by phone, but have twice updated the assembler, sending along a new disk at no cost, each time. Yea Quelo!

Further reading of the CP/M documentation disclosed the fact that CP/M-68K is configured to run with the Motorola EXORmaacs development system for the 68000. Since we didn’t have one of these systems, another approach had to be used. CP/M for the 68000 is similar in concept to the old 8080 CP/M. You have the CCP (Command Control Processor) that handles commands from the system terminal, the BDOS (Basic Disk Operating System) that processes all the disk activity, and the BIOS (Basic Input/Output System) that handles all the interfacing with the printer, terminal, disks and other peripherals.

MODIFYING THE SOFTWARE

The CP/M-68K system file (SR400.SYS) contains the CCP and the BDOS. This file is a Motorola S-record format file and contains no BIOS. Since the BIOS is hardware dependent, it must be written to fit the system in use. A listing of a sample BIOS is provided by Digital Research in an assembly language file called ERGBIOS.S. This listing can be used as a starting point for creating your own. The Motorola S-file (figure 1a), an all ASCII file. Everything in the file is in hex code. It serves the same purpose as the familiar INTEL hex format (figure 1b), and allowed us to read the file data.

It was obvious at this point that we would have to do a bit of work on the software to accomplish the following:
- Modify the CP/M BIOS to work with the hardware and cross-assembler.
- Work out a method of downloading the HEX S-files from the 8” standard CP/M release disk into the 68000’s system.
- Provide a method of displaying and changing the 68000’s memory.
- Provide a method of jumping to and executing code stored in the 68000 memory to check out the BIOS modifications and start the system running.

Modifying the BIOS was not too difficult. We had a cross-assembler and a good bit of experience with CP/M BIOS requirements from earlier systems, so it was a matter of copying the CP/M supplied sample into our Z-80 system in order to modify some of the lines of code to work with our 68000 hardware. We did find that some of the listed code in the sample BIOS wouldn’t assemble with the Quelo cross-assembler, but this was simply a syntax problem and a minor wording change here and there readily converted the code so it would assemble properly.

A few Input/Output addresses required changing in order to resolve the difference between the way the CP/M-68K BIOS and the CompuPro board sees I/O addresses. The Godbout CPU uses the top 64K of memory for I/O addresses. There are no IN or OUT instructions in the 68000. Instead, it sees everything as being memory-mapped. For example, address of FF0001H is converted to port 1 by the CPU board. The top 64K address of “FF” identifies it as a peripheral access address/instruction. The sample BIOS, on the other hand, expected to see an address of FFF001H for the same port, so it was necessary to change the listed BIOS address to FF0001H. All the disk-access ports were changed as well as the console data and status ports.

Another BIOS change necessary was an adjustment in the step-rate value loaded into the disk controller board. The disk I/O board uses the bus clock for timing. If this clock is too fast, the disk stepping motor won’t be able to keep up. The step-rate is a software-loaded variable that may be changed to get proper stepping-motor action. The Tarbell disk-controller manual lists the byte that has to be changed in the BIOS to adjust the rate.

The final change was to insert the address of the Command Control Processor (_ccp), into the BIOS. This is the address location the system will jump to on a warm-boot command. The BIOS label is ‘WBOOT’, and the required _ccp address is supplied with the CP/M-68K release notes. After the BIOS changes were thought to be correct, it was assembled to give us a hex S-file ready to be down-loaded into the 68000 system.

DEVELOPING A 68000 SYSTEM MONITOR

We needed a simple monitor that we could burn into a prom that would allow us to download, display, change and execute programs and data. We looked about for just such a program, but couldn’t find it, so we decided to do our own. The results are shown in listing 1. This simple tool is an invaluable aid when struggling with programming at the machine level in an unfamiliar system. The listing is heavily commented and should prove interesting to those of you who haven’t had a chance to see much 68000 assembly language software. In our development system, we had the convenience of two terminals. One for the Z-80 and the other dedicated to the 68000. If you haven’t the luxury of two terminals, the alternate, shown in figure 2, works as well.

There are three commands in the monitor, S (Substitute), L (Load), G (Go). While there is virtually no error checking in the program, it does the job. Once the monitor has been burned in a PROM and inserted into the 68000 system it is ready for use.

To change the data at memory location 1000H (hex), for example, type:
51000 <RETURN>
The display will show:
00001000 XX where XX is hex data at that location.
Enter the desired data change in hex, followed by a <RETURN>. The new data will be entered at the displayed memory location. For no change, just hit <RETURN>. To return to the monitor command mode, type a PERIOD (.), the monitor prompt, (also a PERIOD), will re-appear.

To start a program at location 1000H type:
Q1000 <RETURN>
The program will jump to that location and execute. In essence, the ‘G’ command acts as a jump-to-subroutine. If the code at the jump location ends with a return instruction, control returns to the monitor and the prompt reappears. The ‘G’ command is great for checking things like altered BIOS routines.

To download an S-format hex file, enter the ‘L’ command. This starts the 68000 monitor program running. The Z-80 BIOS is altered slightly so that PIP can call PUNCH (or any unused IOBYTE label) to output characters to the RS-232 port connected to the 68000 (figure 2). The monitor program loops while waiting for data to appear on this line. When it does, the monitor strips off the non-data portion of the incoming S-file, converts it to binary machine-code and loads it into consecutive memory locations. The command sequence is:
L <RETURN> on 68000 system.
P IP PUN=ERGBIOS.HEX <RETURN> on Z-80 system.

This command sequence downloads the file ERGBIOS.HEX byte-by-byte into the 68000. At the conclusion of the loading process, control returns to the monitor as indicated by the monitor prompt.

BIOS TEST PROGRAM

With our monitor working we tested our altered BIOS. To make that little job as simple possible, we wrote a short program called BTEST (see listing 2) to give us some test data for the BIOS. This program allows the loading of data in registers D0, D1 or D2, jumping to a segment of code in the BIOS and returning with the data stored in a memory location labelled ‘RESULT’ (00201CH). The process allows section-by-section testing and lets you know if the program is work-
ing correctly. This approach is better than trying to run a whole new BIOS and wondering where the problem is if it doesn’t run.

To test the console keyboard input routine, for example, load the altered BIOS and the BTEST program into the 68000 system. The CP/M read-console-character routine is Function 3, so using the SUBSTITUTE command of our monitor, load 03H into register D0, (location 002000H), and enter G2000 <RETURN>. The system starts running at address 002000H and loops, waiting for a typed character. When a key is pressed, the monitor prompt reappears as the system exits the loop. Using the SUBSTITUTE command again examine the contents of location RESULT (202CH). If all is well, the hex value of the pressed key should be found there. If it isn’t, something in the CONIN section of the BIOS isn’t quite right. In a similar manner, all the functions — at least the ones that return a value — can be tested. In our case, we were fortunate enough to get all the right answers with no further changes.

LESSON

Now that we had the BIOS checked out and working, things got easier. Using our monitor, we downloaded the SR400.SYS file along with the BIOS hex file. One final patch remained to be made at this point. Since this was the first time everything has been put together, the BDOS section of the system did not know the address of the new BIOS. Using the SUBSTITUTE command of our monitor, we inserted the BIOS INIT (initialization) address, into the required location in the BDOS. The BDOS address for this entry was provided with the CP/M-68K documentation. In our case the address was 004F97H. After completing the patch, at long last, everything was ready. Since the start address of the SR400.SYS is 0400H, we typed in G4000 and hit <RETURN>. The reward for all our effort was synthesized in a two-character message displayed on the terminal screen: A>, the CP/M prompt.

Testing from this point on was merely a matter of making certain all the normal CP/M functions work. PIP, DDT, ED, DIR, etc., all the standard functions should be operational. Most users will want to continue on to develop an auto-loading, boot-up CP/M-68K system. The CP/M documentation supplied is fairly explicit about the additional steps necessary to accomplish this, but if there is sufficient interest perhaps we’ll do another article on the procedure.

IN CONCLUSION

Now that we had the BIOS checked out and working, things got easier. Using our monitor, we downloaded the SR400.SYS file along with the BIOS hex file. One final patch remained to be made at this point. Since this was the first time everything has been put together, the BDOS section of the system did not know the address of the new BIOS. Using the SUBSTITUTE command of our monitor, we inserted the BIOS INIT (initialization) address, into the required location in the BDOS. The BDOS address for this entry was provided with the CP/M-68K documentation. In our case the address was 004F97H. After completing the patch, at long last, everything was ready. Since the start address of the SR400.SYS is 0400H, we typed in G4000 and hit <RETURN>. The reward for all our effort was synthesized in a two-character message displayed on the terminal screen: A>, the CP/M prompt.

Testing from this point on was merely a matter of making certain all the normal CP/M functions work. PIP, DDT, ED, DIR, etc., all the standard functions should be operational. Most users will want to continue on to develop an auto-loading, boot-up CP/M-68K system. The CP/M documentation supplied is fairly explicit about the additional steps necessary to accomplish this, but if there is sufficient interest perhaps we’ll do another article on the procedure.

IN CONCLUSION

Now that we had the BIOS checked out and working, things got easier. Using our monitor, we downloaded the SR400.SYS file along with the BIOS hex file. One final patch remained to be made at this point. Since this was the first time everything has been put together, the BDOS section of the system did not know the address of the new BIOS. Using the SUBSTITUTE command of our monitor, we inserted the BIOS INIT (initialization) address, into the required location in the BDOS. The BDOS address for this entry was provided with the CP/M-68K documentation. In our case the address was 004F97H. After completing the patch, at long last, everything was ready. Since the start address of the SR400.SYS is 0400H, we typed in G4000 and hit <RETURN>. The reward for all our effort was synthesized in a two-character message displayed on the terminal screen: A>, the CP/M prompt.

Testing from this point on was merely a matter of making certain all the normal CP/M functions work. PIP, DDT, ED, DIR, etc., all the standard functions should be operational. Most users will want to continue on to develop an auto-loading, boot-up CP/M-68K system. The CP/M documentation supplied is fairly explicit about the additional steps necessary to accomplish this, but if there is sufficient interest perhaps we’ll do another article on the procedure.

Although this project was somewhat trying, don’t let it discourage you. The information in this article should do much to ease the pain if you decide to follow in our footsteps. It is actually more difficult to describe than to do. We feel that the 68000 chip is going become a de facto standard in the world of 16/32 bit microprocessors and as such, will have a long and productive life. As more companies come on-line with 68000 related products and software, system implementation will get easier.

Jack Calaway is an engineering consultant specializing in hardware and software systems for the television broadcast and post-production industry.

He has extensive experience with many types of computers, peripherals and videotape editing systems. His special interest in software is assembly languages and C, but he has an avid interest in other computer languages as well. When his schedule permits, his hobby is flying. His equipment ranges extensively from a PDP/11 to an IBM/PC with a 4 disk-drive S-100 system in between.

Ben Hill is president of Teleshows, Inc., a company that provides television production services to the broadcast industry. He has a special interest in computer business applications and uses Cobol extensively. His equipment is a three-disk, S-100 system. As a hobby, he is an avid photographer.

LISTING 2

*******************************************************************

BTEST
A PROGRAM TO TEST THE BIOS CHANGES IN 68000 SYSTEM.

* WRITTEN BY J. L. CALAWAY, 03/17/85

*******************************************************************

* ENTER THIS TEST PROGRAM WITH A CALL AFTER FIRST PATCHING THE
* REQUIRED VALUES IN REGISTERS DO, D1, AND D2 WITH THE MONITOR.

ORG.L $002000
MOVE.L #$00000000, D0
MOVE.L #$00000000, D1
MOVE.L #$00000000, D2
TRAP #3
MOVE.L DO,RESULT
RTS
RESULT: DC.L $0
END

Micro/Systems Journal November/December 1985
LISTING 1

A MONITOR FOR THE MOTOROLA 68000 MICROPROCESSOR TO ENABLE LOADING PROGRAMS, CHANGING DATA VALUES, AND BEGIN EXECUTION AT ANY MEMORY LOCATION. 68000 ASSEMBLY LANGUAGE LISTING

Copyright (C) 1985, Jack L. Calaway. All rights reserved.

EQUATES

DATA EQU.L $0FF0010
STATUS EQU.L $0FF0011
SDATA EQU.L $0FF0020
SDSTAT EQU.L $0FF0021
STACK EQU.L $0000300
ORG $0F0000

START UP CODE FOR GODBOUT CPU
ON HARDWARE RESET, PROMS ON CPU BOARD ARE GLOBAL AT ANY MEMORY LOCATION. 66000 ASSEMBLY LANGUAGE LISTING.

DC.L $0<br>DC.L $0

DO INITIALIZING TASKS

INIT:

MOVE.L #STACK,A7<br>BSR CRLF<br>MOVEQ #040,DO<br>OUTCH<br>MOVEQ #0036,DO<br>MESAGE: &OSK<br>BSR OUTCH<br>MOVEQ #038,DO<br>BSR OUTCH<br>MOVEQ #048,DO<br>BSR OUTCH

BEGIN PROCESSING COMMANDS. THE PROGRAM RETURNS TO THIS POINT BETWEEN COMMANDS

START:

MOVE.L #STACK,A7<br>BSR CRLF<br>MOVEQ #02E,DO<br>OUTCH<br>BSR INCH<br>BSR GCHR<br>BEQ.S START<br>CMPI.B #055,DO<br>NOT 'S', TRY NEXT COMMAND<br>BSR SUBST<br>BSR CRLF<br>BSR GCHR<br>BSR GADR<br>CMPI.B #032,DO<br>IF 'S', GOTO AND BEGIN<br>BSR INCH<br>BNE.S START1<br>CMPI.B #047,DO<br>IF COMMAND IS A 'G', JUMP TO GOTO AND BEGIN<br>BSR CRLF<br>BSR GCHR<br>BSR GADR<br>CMPI.B #04C,DO<br>ON THE LOAD ROUTINE<br>BSR CRLF<br>BSR GCHR<br>BSR GADR<br>BSR CRLF<br>BSR GCHR<br>BSR GADR

GOTO:

BSR INADR<br>JMP (AO) # GET THE ADDRESS<br>BSR CRLF<br>JMP (AO) # JUMP TO IT

Micro/Systems Journal November/December 1985
Micro/Systems Journal November/December 1985
Now Available! FULCRUM'S New...

256K STATIC RAM
- 8/16 Bit Transfers
- 24 Bit Extended Addressing
- Battery Back-Up

$495

Designed For Speed & Flexibility.

MPUZ CPU
This NEW MPUZ CPU utilizes the Z-80 8MHz uP as a basis for its 8MHz CPU for S-100 systems, and has been carefully designed to meet the requirements of the IEEE-696 standard. The quality and performance this CPU provides is rarely found in S-100 products, and you can see why... only $299

- 4 or 8MHz clock rate
- Two RS-232 serial ports
- Centronics printer ports
- Real time clock with battery back-up
- Vectored interrups to any block location in memory
- Programmable timer
- ROM monitor
- Power on Jump
- On board wait states
- 2K of RAM space
- 24-bit extended addressing
- Latched Status
- Front panel compatibility
- MPM support

Best Value In Disk Controllers.

OMNIDISK
Now the FULCRUM OMNIDISK offers S-100 systems users a unique marriage of component compatibility and technological innovation. These together produce features not found in any conventional disk controllers made today. See for yourself what tomorrow looks like... only $299

- Simultaneous support of both 5½" and 8" floppy disks and hard disks
- Complete 24 bit DMA
- Power on boot for 5½" and 8" floppy and hard disks
- Power on boot PROM
- On board de-blocking to save RAM space over BIOS
- Interfaces with the WD 1001® hard disk controller
- Supports 13 devices simultaneously
- Full track buffer allows controller to recall entire track
- DMA’S at 10 MHz
- Supports MS DOS
- 10K on board buffer saves two K of TPA

So before you buy another S-100 component, call or write for our FREE catalog. And see how your system can benefit from the FULCRUM difference.

*CP/M '2.2 configured for OMNIDISK
$60 * Trade mark of Digital Research.
FREE UPS ground shipping on prepaid orders. Shipping is added to VISA, MC, and C.O.D. orders. CA residents, please add sales tax.

FULCRUM COMPUTER PRODUCTS
707/433-0202
459 Allan Court, Healdsburg, CA 95448.
### Products for the Expanding Universe

**UNIX-like Commands for CP/M**
- Price: 125.00
- Fast command (subdir) files, I/O redirection, command line editing, automatic disk and user searches. (Usable under CP/M, CP/M-80)

**UNIX-like Utilities**
- Price: 150.00
- Sorting, searching, printing formatting, file differences, vertical cut paste, etc. [CP/M-80, 83, CP/M-81, CP/M-816]

**Named Directory Areas**
- Price: 99.00
- Hierarchical file directories and utilities. Permits named directory areas under CP/M, CP/M-816 with: change/make/list/remove directories, rehash, copy and show directory tree. [CP/M-80, 83, CP/M-816, CP/M-816, CP/M-86k]

**Multituser Utilities**
- Price: 99.00
- Schedule and time commands, printer setup, disk utility (DU-like: unerase, view, change, etc.), write to terminals, electronic mail and others for CompuPro Concurrent CP/M systems.

**TelSys**
- Price: 195.00
- Multiple versions of text files—source code, letters, spread sheets, contracts, any text. Keeps record of changes allowing any version to be recovered. Twenty revisions normally only require three times the disk space storage. [CP/M-80, 83, CP/M-816, CP/M-816, PCDOS/MDSOS, Macintosh, Lisa]

**Bibliography Data Base**
- Price: 250.00
- Maintain, search and format bibliographies. Compatible with most word processors. [CP/M-80, 83, CP/M-816, CP/M-816, PCDOS/MDSOS]

**Dynamic Screen Debugger**
- Price: 125.00
- Symbolic, full screen program debugger for assembly language, BBS, etc. programs. Dynamically displays instructions, registers, memory, and stack areas. 8080, 8086 and Z80 compatible. [CP/M-80, 83, MP/M-816, CP/M-816]

---

### ZENET NETWORK through twist pair
- 6Mhz H86481B0 (280 upward compatible 1.5) 2K
- Price: 190.00
- Fast Hard Disk Backup
- 16 bit version 30-100% faster than PIP, handles random files, files larger than a floppy disk, backup only changed files (88 version only), selective restore. [CP/M-80, 83, MP/M-816, CP/M-816]

**Learn C on your PC**
- Price: 95.00
- Complete, comprehensive introductory course in C with a C interpreter to run your programs as you write and change them. [PCDOS 2.0]

**Full 16-bit C compiler**
- Price: 349.00
- Computer Innovations' fast, optimized, 16-bit full C compiler. With source code for all library functions, 8087, small/big model support, comprehensive manual. We use it for all 16-bit programs; it's great!

**The Original—Still Fastest**
- Price: 120.00
- Ultrafast C compiler for CP/M-80 with symbolic debugger, full function and run time source code. Large public domain library of programs available.

**CP/M plus system**
- Price: 329,00
- Full featured CP/M system in palm 4MHz 280 256K RAM (128K RAM DISK)
- Serial RS232C X 2 automatic baud rate checking
- PARALLEL Centronics type printer port
- Floppy 3.5, 5 and 8 inch, d/s density d/s sided and d/s track automatic density/format checking
- Hard disk: SCSI interface on board
- Video: 80X24 characters (color) and 640X200 pixels color graphic 128K byte video RAM character set is downloaded from disk
- Timer: battery back up calendar

**FULL FEATURED CP/M**
- Price: 499
- 280 4MHz 128K Byte RAM Floppy 3.5, 5 and 8 inch d/s density d/s sided and d/s track automatic density/format checking
- Serial RS232C X 2
- PARALLEL Centronics type, 16 bits I/O, 7/8 bit keyboard port
- Timer: battery back up calendar
- Video: 80X24 high speed CRT controller
- O.S. CP/M plus bank version included

**MSC-MTC**
- Price: 299
- Full assembled pcb of MTC Under $185 in CP/M quantity
- BIOS source code available
- Complete faster than other 28060

**MSC-TCH**
- Price: 199
- Expansion card for I/O RAM disk (up to 2MB) and SCSI hard disk interface card for I/O with installation program

**MSC-LAT1**
- Price: 649
- Full personal CP/M system in palm 4MHz 280 256K RAM (128K RAM DISK)
- Serial RS232C X 2 automatic baud rate checking
- PARALLEL Centronics type printer port
- Floppy 3.5 inch micro floppy drive 800K byte (option 5.25 inch drive d/s sided d/s track automatic density checking)

**FULL FEATURED CP/M**
- Price: 499
- 280 4MHz 128K Byte RAM Floppy 3.5, 5 and 8 inch d/s density d/s sided and d/s track automatic density/format checking
- Serial RS232C X 2
- PARALLEL Centronics type, 16 bits I/O, 7/8 bit keyboard port
- Timer: battery back up calendar
- Video: 80X24 high speed CRT controller
- O.S. CP/M plus bank version included

**MSC-TCH**
- Price: 199
- Expansion card for I/O RAM disk (up to 2MB) and SCSI hard disk interface card for I/O with installation program

**MSC-LAT1**
- Price: 649
- Full personal CP/M system in palm 4MHz 280 256K RAM (128K RAM DISK)
- Serial RS232C X 2 automatic baud rate checking
- PARALLEL Centronics type printer port
- Floppy 3.5 inch micro floppy drive 800K byte (option 5.25 inch drive d/s sided d/s track automatic density checking)

**MSC-MTC**
- Price: 299
- Full assembled pcb of MTC Under $185 in CP/M quantity
- BIOS source code available
- Complete faster than other 28060

**MSC-TCH**
- Price: 199
- Expansion card for I/O RAM disk (up to 2MB) and SCSI hard disk interface card for I/O with installation program

**MSC-LAT1**
- Price: 649
- Full personal CP/M system in palm 4MHz 280 256K RAM (128K RAM DISK)
- Serial RS232C X 2 automatic baud rate checking
- PARALLEL Centronics type printer port
- Floppy 3.5 inch micro floppy drive 800K byte (option 5.25 inch drive d/s sided d/s track automatic density checking)
HARD DISKS
- complete 10MB Kit
- special! only $460
- complete internal 1/4-high 10MB kit, incl. controller and cables, special $460
- complete 10MB kit with low-power 3-1/4" half-high drive, fits 5-1/4" slots, $495
- 3-1/4" 10MB Winchester drive alone HD-3 just $395
- 20MB half-high drive HD-2 now $455

ADD-ON CARDS
- multifunction 384K, clk/cal, S, P, with OK save $50 Model MFC-4 $145
- monochrome graphics card runs 1-2-3 graphics, w/printer port, 720 x 348, hi-res monochrome TTL output Model MGC-1 now $145
- floppy controller for 1-4 48 or 96tpi drives, w/cable save $25 Model FDC-2 now $74
- color adapter w/light pen port, RGB and composite outputs reg $140 Model CC-1 now $116
- hard disk controller for 1-2 ST-506/412 drives reg $220 Model HDC-01 only $160

SPECIAL BONUS Norton Utilities Ver 3.0 Reg $90, only $80 w/purchase of any disk drive. IBM PC-DOS 3.1 (the real thing) Reg $65, only $40, w/purchase of motherboard.

MOTHERBOARDS
- full IBM PC/XT compatibility
- 8 I/O slots
- runs IBM's PC-DOS 3.1
- BASIC interpreter available
- great foundation for business or personal system
- 1 year warranty

HARDWARE SPECIALS
- keyboard 5150 style regularly $125, Model KB-3 only $90
- memory nine 150ns DRAMs Set ID-64 64K reg $10, now $6; Set ID-264 264K reg $55, now $39
- no better DS/DD drives anywhere, Sanyo 48tpi F-4 $99; F-9 96tpi $129
- super IBM PC look alike case Reg $95, now $69

The ideal foundation for complete business, personal, and workbench PC's. Complete with a manual that will please novice thru expert.

- keyboard w/256K RAM installed save $97 now ONLY $248, w/OK Reg $295, now $220

POWER SUPPLY
- 135 Watts
- side switch
- top quality
- one year warranty
- standard cables for 4 disk drives
- Model PS-135 power supply regularly $129, now only $95

Shipping and handling: drives/motherboards/cases/power supplies $4.50 ea, software $2.50 ea, keyboards $4. CA residents add 6% sales tax.

The SBC Mart, 821 Commercial St., P.O. Box 1296, Ridgecrest, CA 93555
Visa/MC/AmEx ORDERS: (619) 375-5744

Sidekick for CP/M!

Write-Hand-Man
Desk Accessories for CP/M
NEW! Now with automatic screen refresh!

Suspend CP/M applications such as WordStar, dBase, and SuperCalc, with a single keystroke and look up phone numbers, edit a notepad, make appointments, view files and directories, communicate with other computers, and do simple arithmetic. Return to undisturbed application! All made possible by Write-Hand-Man. Ready to run after a simple terminal configuration! No installation required.

Don't be put down by 16 bit computer owners. Now any CP/M 2.2 machine can have the power of Sidekick.

Bonus! User extendable! Add your own applications.

$49.95 plus tax (California residents), shipping included!

Volume and dealer discounts.

Available on IBM 8 inch and Northstar 5 inch disks. Other 5 inch formats available with a $5.00 handling charge. CP/M 2.2 required; CP/M 3 not supported.

COD or checks ok, no credit cards

Poor Person Software
3721 Starr King Circle
Palo Alto, CA 94306
tel 415-493-3735

Write-Hand-Man trademark of Poor Person Software, CP/M trademark of Digital Research, Sidekick trademark of Borland International, dBase trademark of Ashton-Tate, WordStar trademark of Micropro, SuperCalc 1 trademark of Novatech.

PORT-A-SOFT
Aardvark to Zorba
We Can Handle It

TRANSFER PROGRAMS, DATA AND OTHER FILES BETWEEN OVER 400 COMPUTERS!

13 OPERATING SYSTEMS

WORD PROCESSORS TOO!!
Prices From $7.00 Per Disk
Software and Hardware So You Can Do Your Own

Call or write today for your FREE CATALOG
P.O. BOX 1685 555 S. STATE, STE. 12
OREM, UT 84058 (801) 226-6704

Micro/Systems Journal November/December 1985
Peak Electronics' 68K8-CP Coprocessor card offers the S-100 user a fast and painless way to upgrade to the world of high-speed, high-powered multi-processing. Using the MC68008 (8-bit bus version of the 68000) processor at 8 or 10MHz, the IEEE-696 compatible 68K8-CP can be installed in just about ANY S-100 system in less than five minutes, and will coexist with that system's current processor.

Software provided with the 68K8-CP allows the user to switch between the system's original processor and the 68000 with just a simple command, and full source for the board's firmware is available for those users who prefer to "roll their own" operating systems.

THE HARDWARE

The 68K8-CP is a standard single-height S-100 board, well made, solder-masked, silk-screened, and fully socketed. A spare DIP socket is available for those who wish to perform any circuit modifications. All options are either switch or jumper selectable, so no soldering is necessary for user configuration.

Naturally, the 68K8-CP is fully IEEE-696 compatible (after all, Peak's president, Don Pannell, is one of the authors of the IEEE-696 standard), including the ability to do full bus arbitration and act as an IEEE-696 temporary bus master.

Communication between the master processor and the 68K8-CP is performed via two S-100 ports that provide the ability for the two processors to exchange commands and status information. This is really the key to the operation of the 68K8-CP. Each processor can talk to the other via this simple I/O interface for commands and status, but the 68K8-CP actually takes over the S-100 bus (via its TMA ability) to perform data transfers, or use other S-100 bus resources. Because the states are needed for any of the on-board RAM or EPROM.

The serial I/O, timer, and on-board interrupt handler are all contained in the same versatile IC, an MC 68681 DUART, which requires only the addition of RS-232 or current-loop driver (daughter) boards, if serial I/O from the 68K8-CP is desired.

The parallel printer port is actually just a simple latched output port with strobe and acknowledge lines. The input port at the same address serves as the sense switch input that is used at power-up to read configuration information into the 68K8-CP.

THE SOFTWARE

The 68K8-CP is currently available with software to allow the user to boot directly from CP/M 2.2 into CP/M 68K, although a proficient 68000 programmer could program the board to do most anything else, since it is basically an S-100 peripheral device. In fact, the manual gives several ideas for alternate uses of the 68K8-CP, including a numeric processor, and a high-speed data buffer. Although they were not ready at the time of this writing, 68K8-CP firmware is also available for use as a printer buffer and a RAM disk.

We were impressed with the implementation of CP/M-68K, especially due to the fact that the CP/M-68K system could be loaded and executed from CP/M 2.2 with just a single command. Eight single-density 8" standard CP/M format disks are provided with the 68K8-CP, along with a demo disk that contains some simple 'C' programs and a benchmark program. (Because the 68K8-CP uses the host system's disk drivers after it boots up, it can read any disk that the host system can read, so transferring data files from CP/M-80 to CP/M 68K requires no additional work at all.)

Disk #1 is the CP/M 68K boot disk,
which contains all of the files necessary to run CP/M 68K, along with the files "CPM68K.COM" and "RETURN.68K," which are used to boot CP/M 68K from CP/M-80 and to return to CP/M-80 from CP/M 68K. All of the usual CP/M utilities are present with CP/M 68K, like STAT, DDT, ASM, etc., along with a few new ones. Not surprisingly, the BIOS is written in ASM, etc., along with a few new ones.

DOCUMENTATION

The 68K8-CP comes in a ring-binder containing four separate parts: the Introduction, the Hardware manual, the Software manual, and the Firmware manual.

The introduction section comes with two very important pieces of information. First, it lists the factory-shipped configuration and serial number of the 68K8-CP. Second, and most importantly, it contains a one-page mini-manual called "How to bring up your new 68K8-CP card in 5 minutes." We tried it, and it works, except that it actually takes only about 3 minutes if you have already removed the cover from your S-100 machine.

The Hardware manual is a complete little book about the 68K8-CP, including an overview of the entire board, precise explanations about how the board works and how to configure it, appendices, an index, and complete schematics. Also included are instructions on how to set up the 68K8-CP for use in older non-IEEE-696 S-100 machines.

The Software manual is only about 10 pages long (any source listings provided are on the floppy disks), and briefly covers how to use the CPM68K.COM program and how to set up a system configuration file.

The Firmware manual was not yet available at the time of this review.

INSTALLATION

In most cases, installation of the 68K8-CP should take only a few minutes. We installed the board in more than a dozen different S-100 machines with virtually no trouble at all. As shipped from the factory, the board is set up to use S-100 I/O ports 0COH and 0CH for data and status exchange, but it is easily reconfigurable to any other port addresses by just changing a few switch settings and editing the system configuration file to indicate the new port addresses.

Our technical staff took great delight in plugging the 68K8-CP into every S-100 machine it could find, including everything from dinosaur IMSAI's to multi-processor TurboDOS-based frames, and never had ANY problems at all. The 68K8-CP contains nine user configurable jumpers and three user configurable switches, although it can usually be installed using factory settings. The user configurable jumpers are:

J1 - Wait States for RAM, EPROM or I/O
J2 - Type of parallel I/O IC used (74LS374 or 74LS273)
J3 - Off-board RAM paging size
J4 - EPROM type (2764, 27128, 27256, 27512)
J5 & J6 - S-100 Vectored Interrupt number (VIO-VI7, NMI*, INT*)
J7 - Ground/Thirdpartyhiring (VIO-VI7, NMI*, INT*)
J8 - pS/28H, transfer disable (for old non-IEEE-696 machines)
J9 - sM1 disable (for old non-IEEE-696 machines)

The user configurable switches are:

S1 - 8-bit sense switch (used to determine serial I/O speed at boot-up)
S2 - 4-Bit TMA priority number (needed for bus arbitration)
S3 - S-100 I/O address

TESTS

Our usual benchmark tests were of little use with the 68K8-CP, since they are meant primarily for testing other processors in stand-alone configurations. However, we did duplicate the manufacturer's tests (using the Sieve of Eratosthenes "C" language benchmark provided), and the results were:

68K8-CP @ 8MHz: 32 seconds
Z80 @ 4MHz: 141 seconds

These results are largely meaningless, except they do demonstrate the 68000's increased efficiency. The 68K8-CP could yield some very attractive time savings in a system that could off-load number-crunching from a Z80 master processor.

CONCLUSION

The 68K8-CP is a fast and easy way to expand an existing S-100 system into a multiprocessing machine, or at least a painless way to bring up a powerful 68000-based system. Although the 68K8-CP is currently only available with CP/M 68K, other operating systems (like UNIX) are almost certainly going to be available in the future.

The price of the 68K8-CP with an 8MHz CPU and 128K of RAM is $995. The 10MHz version with 512K of RAM costs $1545, and various other configurations are available. CP/M 68K is available for $350, and source code for the 68K8-CP programs is available for an additional $50 with the purchase of a board.

For more information, contact:
Peak Electronics
Box 700112
San Jose, CA 95170

---

**Disk Sale**

**Dysan Corporation**

**Integral Systems Corp.**

2900-H Longmire Drive
College Station, TX 77840
(409) 764-8017

---

**Type**

<table>
<thead>
<tr>
<th>BOX OF 10</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5&quot;-SS/DD-48 TPI</td>
<td>25.50</td>
</tr>
<tr>
<td>5&quot;-DD/DD-48 TPI</td>
<td>29.50</td>
</tr>
<tr>
<td>5&quot;-DD/DD-96 TPI</td>
<td>25.90</td>
</tr>
<tr>
<td>5&quot;-DD/DD-128 TPI</td>
<td>37.50</td>
</tr>
<tr>
<td>8&quot;-SS/SD-48 TPI</td>
<td>29.95</td>
</tr>
<tr>
<td>8&quot;-SS/DD-48 TPI</td>
<td>39.95</td>
</tr>
<tr>
<td>3.5&quot;-SS/SD</td>
<td>32.95</td>
</tr>
</tbody>
</table>

Available Soft or Hard Sector
For Plastic Case Add 1.25/Box Plus Tax & Shipping
- Cash, Visa, Mastercard, COD

---

Micro/Systems Journal November/December 1985
TAKE THE PAIN OUT OF BACKUP

Famous Excuses For Not Doing Backups

Back up a Winchester onto multiple floppies takes forever.
PIP makes you remember what you changed — too much trouble.
Disk failures only happen to the other guy.

Floppy-To-Floppy Incremental Backup For Only $40.

Like PIP but copies just the files that have changed.
Order Qbax1.

For CP/M 2.2 on 8" SSSD and popular 5¼" formats. Shipping $2 U.S. and Canada, $4 overseas. Qbax TM Amanuensis, Inc. CP/M® Digital Research.

FOR EVERYONE WITHOUT A DISPENSATION FROM MURPHY’S LAW

ATTENTION Z-80* CP/M* USERS
NOW A NEW IMPROVED VERSION OF
ZDM AND ZDMZ

ZDM/ZDMZ is a complete Z-80 debugger and monitor designed to replace DDT in CP/M systems for Z-80 and 8080® software development and general program debugging. ZDMZ displays 100% ZILOG mnemonics for disassembled code. ZDM is identical except for displaying extended 8080 mnemonics (similar to TDL). ZDM/ZDMZ include the following features:

- Automatic terminal installation file created
- Will not crash when loading large files
- All DDT commands implemented except "A"
- Ten additional commands including:
  - Alternate register display/alter/exchange
  - Hex and ASCII string search
  - I/O port addressing
  - Trace option to break at branch points only
  - User interrupt control
- Thirty-four unique command functions
- Upper/lower case keyboard input
- Complete manual including ZILOG/ZDM mnemonics table
- Guaranteed immediate delivery and customer support

ZDM and ZDMZ are available together on standard 8-inch disk and most 5¼-inch disk formats. Entire package still only $50.00 shipped postpaid in U.S. California residents please add 6.5% sales tax.

RD SOFTWARE
1290 Monument St., Pacific Palisades, CA 90272
Tel (213) 454-5270

* CP/M is a registered trademark of Digital Research Corp.
Z-80 is a registered trademark of ZILOG Corp.
8080 is a registered trademark of INTEL Corp.

The Remedy: Copy Just What’s New — Automatically!

Qbax2 will:
Split files bigger than one floppy.
Track all the pieces.
Tell you which floppy it needs and when.
Give you a built-in catalogue.
Reclaim wasted floppy space.

Qbax2 only $95 from:

Amanuensis, Inc.
R. D. 1, Box 236
Grindstone, PA 15442
(412) 785-2806

M68000 SINGLE BOARD COMPUTER

On board 6-10 MHz CPU, 20K RAM, 32K EPROM, two RS-232, 16-bit port, 5-counter/timers expandable via Memory/FDC Board.

M68K CPU (bare board) .................. $ 89.95
M68K CPU A&T (6MHz) ................... $495.00
MD512K Memory/FDC (bare board) ........ $ 89.95
MD512K Memory/FDC (128K) .............. $495.00
FDC/Hard Disk interface option ........... $150.00
M68K Enclosure w/power supply .......... $249.00
M68K Monitor EPROM’s ....... $ 95.00
M68K Macro Cross Assembler .......... $195.00
4XFORTH OS w/assembler, editor ........ $295.00
CP/M 68K OS w/”C” compiler ............... $395.00

EDUCATIONAL MICROCOMPUTER SYSTEMS
P.O. Box 16115
Irvine, CA 92713
(714) 854-8545

EMS

Micro/Systems Journal November/December 1985
VALUE and PERFORMANCE
with Relocatable Z-80
Macro Assembler
FROM MITEK

It's a real bargain! Here's why:

• Only $49.95 plus shipping
• 8080 to Z-80 Source Code Converter
• Generates Microsoft compatible REL files or INTEL compatible hex files
• Compatible with Digital Research macro assemblers MAC & RMAC
• Generates Digital Research compatible SYM files
• Full Zilog mnemonics
• INCLUDE and MACLIB files
• Conditional assembly
• Phase/dephase
• Separate data, program, common and absolute program spaces
• Customize the Macro Assembler to your requirements with installation program
• Cross-reference generation
• Supports Hitachi HD64180 additional instructions
• Z-80 Linker and Library Manager for Microsoft compatible REL files available as a total package with Macro Assembler for only $95.00 plus shipping; manual only is $15

NEW
for
Turbo Pascal
Users
Mitek's Relocatable Z-80 Macro Assembler will also:

• Generate Turbo Pascal in-line machine code include files
• Include files provide Turbo Pascal compatible machine code with assembly language mnemonics as comments

TO ORDER, CALL TOLL FREE: 1-800-367-5134, ext. 804
For information or technical assistance: 1-808-623-6361
Specify desired 5¼” or 8” format. Personal check, cashier’s check, money order, VISA, MC, or COD welcomed. Include $5 for postage and handling.

Z-80 is a trademark of Zilog, Inc. MAC, RMAC, and ZSIO are trademarks of Digital Research, Inc.
Turbo Pascal is a trademark of Borland International, Inc.

SLICER— THE SYSTEM THAT GROWS TO FIT YOUR NEEDS

Slicer Computers Inc.
2543 Marshall St. N.E.
Minneapolis, MN 55418
612/788-9481
Telex 501357 Slicer UD
UNIX-style file functions were first included in DOS V2 along with the hierarchical directory structure. Although these tools provide a more powerful and flexible environment the functions are actually easier to use than the CP/M-style file functions. For this reason, new applications tend to use the UNIX-style file functions exclusively.

I will first discuss what a subdirectory is for those unfamiliar with their use, then deal with file names and handles since they differ significantly from the CP/M-style file function parameters. The file functions themselves are covered after this.

Another unique feature of the UNIX-style file functions is the ability to redirect the data transfer of a particular file to another file including built-in files such as the console. This process will be covered in the section on file redirection.

Finally, a simple file copy program example will be presented to show how simple it is to use the UNIX-style file functions at the assembly language level.

**SUBDIRECTORIES & DEVICES**

One of the more advanced features found in UNIX is the hierarchical file system. It allows files to be organized in a multi-level tree structure. The basic hierarchical file structure has been incorporated into all versions of DOS except V1.

The top-level collection of files on a disk is called a directory. Files in the directory may be data files or a special file called a subdirectory. The subdirectory works and looks just like the main directory. Subdirectories may also contain data files or subdirectory files. Subdirectories always contain at least two special files named '.' and '..'. The first is the current subdirectory and the second is a reference to the parent directory. The latter allows access to files in higher level directories.

File names and subdirectory names still retain the CP/M-style syntax with an eight character file name and an optional three character file type. The file name and type are separated by a period. For example: NAME.TYP or A-NAME. A file name alone refers to a file in the current subdirectory. Like the current disk, the current subdirectory allows simple file names to be used without having to explicitly include drive or path information.

A path is a list of subdirectories. This is presented in text form as the file names of the subdirectories separated by a backslash, '\'. The last name in the list is the reference file. Some examples are:

```
\SOURCEclist.ASM
\SYSTEMFORMAT.COM
\LEVEL1\LEVEL2\LEVEL3\DATA
\PARENT.DAT
\A-FILE
```

The path name can be viewed as directions on how a file is to be found and the current subdirectory information as preliminary search information. A current subdirectory is associated with each drive. The current subdirectory information is used only if the first character of the path is not a backslash, '\', otherwise, the search is started from the main directory (on the current disk, if none is specified). The last example listed above (\A-FILE) shows how a file in the main directory is referenced while in a subdirectory.

Subdirectories could, in theory, be created ad infinitum. However, DOS does restrict a path name to 64 characters. This translates to 30 levels of subdirectories if single character subdirectory file names are used and 4 levels if full size file names are used at each level.

Special file names have been delegated to devices because the UNIX-style file functions allow devices to be treated as files. These names may be used in the file open function. The following table lists device names and descriptions.

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>Console/Display</td>
</tr>
<tr>
<td>AUX</td>
<td>Same as CON</td>
</tr>
<tr>
<td>COM1</td>
<td>First serial port</td>
</tr>
<tr>
<td>COM2</td>
<td>Second serial port</td>
</tr>
<tr>
<td>PRN</td>
<td>Same as LPT1</td>
</tr>
<tr>
<td>LPT1</td>
<td>First printer port</td>
</tr>
<tr>
<td>LPT2</td>
<td>Second printer port</td>
</tr>
<tr>
<td>NUL</td>
<td>Always end of file on input</td>
</tr>
</tbody>
</table>

**FILE NAMES & HANDLES**

The CP/M style File Control Block (FCB) contained a file name which was parsed into a special format. Extending this mode of operation would be tedious at best. Instead, the UNIX-style file functions use zero terminated strings and a 16 bit value called a file handle. A program no longer needs to keep an FCB around for each open file.

A file name is stored as an ASCII string with the same syntax for a path name, as described in the previous section. It must not contain any spaces and is followed by (terminated) with a NULL character (a decimal 0). An assembly language constant would be defined as:

```
db "LEVEL\LEVEL2\DATA",0
```

A pointer to this type of string is normally passed in the DS:DX register pair with the UNIX-style file functions. The file open and create functions return a file handle as a result if a file exists or is created. This handle is then used in subsequent operations such as read, write, and close. The file name string area can change after a file handle is acquired since it is not used by DOS unless, of course, the file name is used in a subsequent operation.

A set of predefined handles is provided by DOS. These files are open by default when a program starts and may be used with the read and write functions by using the handle value specified in the following table:

<table>
<thead>
<tr>
<th>Handle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Standard input device</td>
</tr>
<tr>
<td>1</td>
<td>Standard output device</td>
</tr>
<tr>
<td>2</td>
<td>Standard error device</td>
</tr>
<tr>
<td>3</td>
<td>Standard auxiliary device</td>
</tr>
<tr>
<td>4</td>
<td>Standard printer device</td>
</tr>
</tbody>
</table>

**UNIX-STYLE FILE FUNCTIONS**

The UNIX-style file functions return their result in the AX register. The carry bit is set if an error has
The number of bytes transferred is always enabled for a newly created file.

MOV DX,OFFSET NAME ; DS:DX := file name
MOV CX,0       ; CX := file handle
MOV AH,3CH     ; AH := create opcode
INT 21H        ; create a file

NAME: DB 'SUB-DIR\NAME',0

The file open operation works in a similar fashion except the file attribute parameter is not required but the file access method is passed in the AL register. The file access method may be any of the following:

<table>
<thead>
<tr>
<th>Access Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Read-only</td>
</tr>
<tr>
<td>1</td>
<td>Write-only</td>
</tr>
<tr>
<td>2</td>
<td>Read and write</td>
</tr>
</tbody>
</table>

Here is an example of the file open function:

MOV DX,OFFSET NAME ; DS:DX := file name
MOV AX,2002H       ; AL := open opcode
MOV AL,1           ; AL := r/w access
INT 21H            ; open a file

There are four operations which can be done using the file handle returned by the create or open functions. These are: closing a file, reading from the file, writing to the file, and changing the value of the file’s read/write pointer.

The close operation takes an open file handle in the BX register and an offset of 3E hex in the AH register. All buffers associated with the file are written to disk.

The parameters for read and write operations are:

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Opcode:</td>
</tr>
<tr>
<td></td>
<td>3FH = read</td>
</tr>
<tr>
<td></td>
<td>40H = write</td>
</tr>
<tr>
<td>BX</td>
<td>File handle</td>
</tr>
<tr>
<td>CX</td>
<td>Buffer size in bytes</td>
</tr>
<tr>
<td>DS:DX</td>
<td>Buffer address</td>
</tr>
</tbody>
</table>

The number of bytes transferred is returned in the AX register. This value will be less than or equal to the buffer size. A value less than the buffer size on a write indicates an error. On a read, it indicates the end of a file has been reached. On character devices it indicates a partial record. For example, a keyboard input file returns one line at a time.

All file data transfers occur from the current file position which is initially 0 for the start of the file. The position is adjusted by the number of bytes transferred by a read or write operation. Random access to data in a file is done using the file seek function. This function should be called before a read or write operation. The parameters and results for the seek function are:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>42H, seek opcode</td>
</tr>
<tr>
<td>BX</td>
<td>File handle</td>
</tr>
<tr>
<td>CX</td>
<td>Buffer size in bytes</td>
</tr>
<tr>
<td>DS:DX</td>
<td>Buffer address</td>
</tr>
</tbody>
</table>

The most commonly used operations are movement to the start or end of the file. It can also be used to move forward or backward from the current file position allowing access of the next or previous record. The function can also be used to determine the current file position by using method 1 with an offset of 0.

The remaining functions deal with maintenance of files contained within a directory. The first two functions are used to get the names of files within a directory. These functions use the Disk Transfer Area (DTA) used with the CP/M-style functions. The set DTA function must be used before the two UNIX-style file functions are used. The first function is used to find the initial file. The address of the file name string is passed in the DS:DX registers and the file name string is passed in the AX register. The latter is the same as the attribute search byte used in the directory. These functions used the Disk Transfer Area (DTA) used with the CP/M-style file functions. The file name string may contain a drive and path name but not wildcard characters (* or ?). This function only works with data files. See the first part of this section to see how subdirectories are deleted.

Renaming a file is almost as easy as deleting one except that some additional rules must be followed. First, the strings containing the old name and the new name must have the same drive specification. Do not explicitly use drive A: in one name and drive B: in the other. Also, do not explicitly use drive A: in one name and specify no drive in the other while the current disk is not A:. Second, all subdirectories listed in the old and new file names must exist. No directory creation is performed.

Files may be moved from one subdirectory to another. This is the same as copying the file and deleting the source but it is much quicker. As mentioned before, files cannot be renamed across disks.

The file name in the DTA is a zero terminated string containing the name of the first file which matches the path given as the parameter. It does not contain the path or drive names.

The subsequent file function is used to find additional file names which are in the directory searched by the initial search path. The opcode value is 4F hex and it requires no parameters. The results are the same as the initial function. The DTA used by the first function should be selected. Subsequent file names which match are placed into the DTA file name area.

Finally, there is the matter of the file time and date stamps. DOS keeps track of these values and initializes them when the file is created. The values can be examined using the

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL,1</td>
<td>AL := set opcode</td>
</tr>
<tr>
<td>BX</td>
<td>File handle</td>
</tr>
</tbody>
</table>

A file's current attribute can be returned in the CX register by changing the AL register to 0 instead of 1. The value in the CX register before the INT 21H is ignored. See the previous article for a description of the file attribute byte.

A read-only file cannot be deleted. Use the set file attribute function first to enable reading and writing to a file. Then use the following code to delete the file.

MOV DX,OFFSET NAME ; DS:DX := string index
MOV AH,43H       ; AL := delete opcode
INT 21H           ; delete file

The file name may contain a drive and path name but not wildcard characters (* or ?). This function only works with data files. See the first part of this section to see how subdirectories are deleted.

NEW: DB 'NEW.NAM', 0

OLD: DB 'OLD.NAM', 0

Listing 1 shows a simple example of a directory search program which collects all the matching file names in the buffer FNBUF. The file names are zero terminated and the end of the list is marked by a zero length string.

MOV DX,OFFSET OLD ; DS:DX := old name
MOV AX,DS
MOV ES,AX
MOV DI,OFFSET NEW ; ES:DI := new name
MOV AH,56H       ; AH := rename opcode
INT 21H           ; rename file
directory search functions or the values

can be returned using the following
code.

MOV DX,OFFSET FNAME ; ES:DX := string index
MOV AH,5CH ; AH := search attribute
MOV AL,0 ; AL := get opcode
INT 21H ; get AX register assuming the additional
portion of the stamp.

The time and date stamps are returned
in the CX and DX registers respectively. These values are the same
as described in the previous article except the bytes are reversed. That is,
CH and DH contain the least significant portion of the stamp.

FILE REDIRECTION
One very useful operation which can be performed using the UNIX-style
file functions, but not the CP/M-style file functions, is redirection. This
allows a program to change where data is transferred even though a specific
routine uses a predefined file. For example, the standard output device is
normally attached to the console. Redirection allows this to be changed to
the printer or a disk file.

two functions are provided by DOS to support the redirection feature.
One creates a duplicate file handle given a previously opened file handle.
The other forces one file handle to refer to another.

The duplicate file handle function takes the open file handle in the BX
register and returns a duplicate in the AX register assuming the additional
file does not exceed the file open limit. Both handles may be closed
independent of the other. However, the file read/write position is the same for
both files. Moving the file position using one file changes it for the other
file. The following is an example of the code used to make a duplicate file
handle.

HANDLE: DW 0 ; place open handle here
MOV BX,HANDLE ; BX := open file handle
MOV AH,4CH ; AH := duplicate opcode
INT 21H ; AX := duplicate handle

Although this function is useful in creating a file which can be closed
twice (once via each handle). It is most often used to keep a copy of a file so the
duplicate handle can be used with the redirection facility.

The redirection file function requires two open file handles. The second
file is closed and first file handle is duplicated such that the second file
handle is the duplicate. The duplicate follows the same restrictions as
duplicates created using the previous function. The following example
shows how the standard output can be directed to the printer.

MOV BX,4 ; BX := printer handle
MOV AH,4CH ; AH := duplicate opcode
INT 21H ; AX := duplicate handle
MOV BX,AX ; BX := duplicate handle
MOV CX,1 ; AX := standard output
INT 21H ; use printer for output

Redirection is not restricted to
device files. Either file handle may refer to a device file or a disk file.

FILE COPY EXAMPLE
A simple file copy program is shown in listing 2. This uses constant
file names and creates a new file with the default attribute settings. The error
result is not specific, either the file copies or it does not. It uses the file
create function so any existing destination file is removed.

More sophisticated error handling,
programmable file names, and status
output can be added using functions
listed in this and previous articles.

SUMMARY
The UNIX-style file functions are an obvious improvement over the
CP/M-style file functions in power and ease of use both from the programmers
and users point of view. The UNIX-style file functions also provide
redirection facilities which cannot be duplicated with the CP/M-style file
functions.

Subdirectories can be used to
organize a large disk into meaningful
sections. The UNIX-style file handles and variable length data records also
simplifies programming.

LISTING 1: DIRECTORY SEARCH

SNNAME: DB "C:\SYSTEM\*,*' , 0 ; search name
FNBUF: DB 8096 DUP (0) ; name buffer
; Setup loop parameters
; Assumes data is in the DS segment
MOV DX,OFFSET SNNAME
MOV AX,DS
MOV ES,AX
MOV DL,OFFSET FNBUF
MOV CX,0

; DX:BX := search string address
; ES:DI := file name buffer
; CX := search attribute
PUSH ES ; save file buffer index
PUSH DI ; save buffer index
PUSH DS ; save string index
PUSH DX ; save string index
MOV AX,CS ; set local LTA
MOV DS,AX
MOV DS,OFFSET SRESULT
MOV AH,1AH
INT 21H
POP DX
POP DS
MOV AX,40H ; AX := search opcode
INT 21H ; search for first name
JMP LOOP ; loop until all found

POP ES
ES:DX := buffer index

LOOP: ; skip if no file found
JC ENDCLOOP
MOV SI,OFFSET SRESULT

CLOOP: ; loop until done
LCDSH ; AL := character
STOSH ; add to string
TEST AL,0 ; check for end of string
JNZ CLOOP ; loop until done
PUSH ES ; save buffer index
PUSH DX ; save buffer index
MOV AH,40H ; AX := search opcode
INT 21H ; search for next name
POP DX
POP ES
JMP LOOP ; loop until all found

ENDCLOOP: ; AL := terminator
STOSH ; add to buffer
RET

SRESULT: DB 21 DUP (0) ; reserved area
SATTRIBUTE: DB 0 ; file attribute
SSTIME: DW 0 ; file time stamp
SSDATE: DW 0 ; file date stamp
SSSIZE: DW 0 ; file size
SSSIZEI : DW 0 ; most significant part
SRESULT: DB 13 DUP (0) ; file name
LISTING 2: FILE COPY PROGRAM

; Copy file program
; Open files

MOV DX, OFFSET SOURCE
MOV AH, 3DH
INT 21H
MOV DX, OFFSET SOURCE
MOV AH, 3CH
INT 21H
MOV BX, AX
POP BX
MOV DX, OFFSET DEST
MOV AH, 3DH
INT 21H
MOV AX, BX
POP AX

DOLOOP:

; HANDLE SOURCE FILE

PUSH BX
PUSH CX
MOV DX, OFFSET BUFFER
MOV CX, 512
INT 21H
MOV AX, BX
POP AX
MOV DX, OFFSET SOURCE
READ
FIND
MOV CX, 512
ENTR
POP CX
POP BX
POP CX

; HANDLE DESTINATION FILE

PUSH CX
PUSH DX
MOV DX, OFFSET DEST
MOV CX, 512
INT 21H
MOV AX, BX
POP AX
MOV DX, OFFSET DEST
READ
FIND
MOV CX, 512
ENTR
POP CX
POP DX
POP CX

; HANDLE COPY

PUSH CX
PUSH AX
POP BX
MOV AX, 1
CALL CREATE
MOV AX, 0
JMP PRINT

; Close files and show transfer complete

PRINT:

; Close source file

CALL CLOSE
MOV AX, 9
INT 21H
RETI

; Close destination file

CALL CLOSE
MOV AX, 9
INT 21H
RETI

; Handle error while writing source file

BAD READ:

; Handle error while reading source file

BAD WRITE:

; Handle error while writing source file

BAD WRITE:

; Close both files

CALL CLOSE
MOV AX, 9
INT 21H
RETI

; Error and status messages

SOURCE: DB 'SOURCE', 0
DEST: DB 'DEST', 0
BUFFER: DB 512 DUP (?)

; Error messages

RESOURCES: DB 'Cannot open source file.$'
DEST: DB 'Cannot create destination file.$'
SOURCE: DB 'Cannot read source file.$'
DEST: DB 'Cannot write destination file.$'
MDONE: DB 'Copy done.$'

PUBLIC DOMAIN SOFTWARE

Our public domain software library:

- now in excess of 1000 disks
- over 30,000 programs
- includes the complete CP/M UG, SIG/M, PCSIG libraries
- 20-40 new volumes added per month
- supporting over 200 CP/M computers (including Northstar and Apple) and all major IBM type computers (including DEC)

Available In One of Two Ways

Via Modem

- online directly from one of our 11 remote RCP/M, RBBS or FIDO Host systems
- 24 hours per day, 7 days per week
- limited access, restricted membership
- access fee only $35 Can ($30 US) covers one year access
- supporting 300/1200 and 2400 baud modems
- telnet access also available

By Mail

- all software available by mail on over 200 different disk formats
- priced by disk, from $10 Can ($8 US) per disk
- all major user groups available

Canadian Users

- a full line of commercial software available
- 12 different brands of modems including the US Robotics 300/1200 baud Password and the US Robotics 300/1200/2400 baud Courier
- Echelon and Night Owl software available directly from us

For a free minicatalog, call (416) 239-2835 or write:

CANADA REMOTE SYSTEMS LTD.
4691 Dundas Street West
Islington, Ontario, Canada
M9A 1A7
**NEW PRODUCTS**

**SERIAL ADAPTER FOR THE VDB-A2**
- Plugs into keyboard socket
- Direct connect to Keytronic (IBM) serial ASCII keyboard
- Internal speaker for BEEPER
- Tx port for non VDB-A2 use
- Hardware programmed Rx & Tx
- Dual baud-rate generator
- Bare-board OR assembled

**DOUBLE-HEIGHT S-100 PROTOTYPING**
- Oversized heatsinks for HI-CURRENT reg's: +5, +/-12 V.
- Use with wire-wrap sockets OR direct solder connections
- GOLD plated edge connector
- NO PLATING CUTS required
- NO wasted address decoding

WATCH OUR ADS FOR OTHER PRODUCTS COMING SOON
- MODEM ADAPTER FOR THE BIO-1
- 256K RAM SOFTWARE FOR BIO-1
- HIGH FEATURE DISC CONTROLLER
- Z80 C.P.U. / MEMORY MANAGER
- 1 MEGABYTE DRAM BOARD

**Csharp Realtime Toolkit**

Realtime on MSDOS! **Csharp** can do it! Get the tools without operating system overhead. Cut development time with C source code for realtime data acquisition and control. **Csharp** includes: graphics, event handling, procedure scheduling, state system control, and interrupt handling. Processor, device, and operating system independent. **Csharp** runs standalone or with: MSDOS, PCDOS, or RT11. **Csharp** runs on: PDP-11 and IBM PC. **Csharp** includes drivers for Hercules and IBM graphics boards, Data Translation and Metabyte I/O boards, real time clock, and more. Inquire for Victory 9000, Unix, and other systems. Price: $600

**SYSTEMS GUILD**

Systems Guild, Inc., P.O. Box 1085, Cambridge, MA 02142
(617) 451-8479
Sometimes Good Is Just Not Good Enough.

Frankly, there’s a lot of good development software on the market today. But when your programming project is on the line, good isn’t good enough. You need the best.

Because we’re an independent publisher and distributor, we can pick and choose. We’ve been selling to microcomputer programmers since 1976, so we know quality when we see it. Lifeboat offers each of the following popular software development tools and more... When we offer a product, you know it is the very best in its class.

Mark Williams C Programming System

Mark Williams C Programming System combines a C compiler with an easy-to-use debugging to make C programming simpler.

One-step compilation produces an executable file with a single command.

Options include object file in MC- or MS-DOS formats or ROM-able code.

Full UNIX capabilities, with large library of more than 100 routines.

Debugging facilities allow setting trace points at source level; windowing enables source to be viewed while debugging; optional assembly listing.

MWC compilers are available for 8088/8086, 80186, 80286, 68000, Z8000, and PDP-11. VAX cross compilers are available.

RUN/C LITE

Learn C the natural way with the RUN/C Lite introductory package. Over 100 sample programs are included on the disk to coincide with the thorough and professionally written C reference manual. RUN/C Lite’s user interface is similar to that of the BASIC interpreter with easy familiar commands such as LOAD, LIST, SAVE, EDIT, and RUN. Debug with TRON, TRACE, and PRON. Try your hand at graphics with easy-to-learn functions like PUT, GET, CIRCLE, LINE, SCREEN, and DRAW. Lighten up on the time it takes to learn C with RUN/C Lite.

RUN/C PROFESSIONAL

All of RUN/C Lite’s features, plus powerful enhancements for program development. LOAD and RUN, your favorite library functions (GSS Drivers, Multi-Halo, Panel, Lattice Window, etc.) from within your RUN/C interpreted code. Polish program modules before compiling. New source code debugging facilities allow you to set multiple breakpoints, single step through a program, and view and change variables during execution.

BetterBASIC

BetterBASIC is just what it sounds like. Better than the BASIC you got with your PC. What’s better about it? Just about everything.

Fast. Programs run fast. Each line of code is compiled as it is entered into memory.

Big. Break the 64K barrier. Use the full memory of your PC to write big programs.

Powerful. Windows and graphics, DOS and BIOS calls, chaining, overlays, local and global variables, recursions and more.

Interactive. Responds to user commands in immediate mode.

Structured. Write structured programs using functions and procedures.

Modular. Create re-usable “library” modules for more efficient programming. Easy interface to assembly language.

BetterBASIC Runtime System, 8087/80287 Math Module, and Btrieve Interface also available.

Lattice C Compiler

The best selling C compiler!

• Lattice C produces fast and compact code.

• The widest selection of C support tools is available to the Lattice C user.

• Choose from four memory models for optimum efficiency.

• Full compatibility with the C implementation established by Kernighan and Ritchie assures portability.

• Superbly written documentation augments the lengthy list of reasons why software developers continue to choose Lattice C, the industry standard.

GSS Products

Industry leading graphics software based on a commitment to standardization. Device independence and source code portability are assured with these powerful software tools.

GSS DRIVERS — Provide a standard VDI interface between your PC and a wide variety of peripherals.

GSS Bindings — The language binding provides an interface between the language source and the VDI. Bindings to Lattice C and the following MicroSoft languages are available: Fortran, Assembler, Pascal, Basic Compiler.

GSS ToolKITS:

• Kernel System — Subroutine library provides quality graphics for computer aided design and engineering. This toolkit adheres to standard described in Level 2b of the ANSI Graphical Kernel System (GKS) specifications.

• Plotting System — Device independent subroutine library of two dimensional plotting functions for creating programmer-specified charts efficiently and easily.

• Metafile Interpreter — Reads any standard metafile and converts it to graphic output commands.

For immediate delivery or more information, call: 1-800-847-7078 In NY: 212-860-0300 or write: Lifeboat™ Associates

1651 Third Avenue
New York, NY 10128

The Source for Software with Full Support

© 1985 Lifeboat Associates
The Scientific Computer User

by A.G.W. Cameron

Editor's Note

We expect "The Scientific User" to be a regular column in Micro/Systems Journal appearing in every other issue. Initial feedback from reader study we are conducting indicates to us that a very large percentage of our readers are scientists and engineers using computer systems in their work. Hence, we feel there will be a great deal of interest in this column. We would appreciate hearing reader reactions to the column. And, we assure the author would also like to hear from readers.

In discussions of computer workstations, the computer-related press has made the most of the business-oriented aspects of the uses of IBM PCs and similar machines. Spreadsheets and data bases and word processors. Bar graphs and pie charts. Links to mainframes. This is not the world of the scientist and the engineer. Nevertheless, the scientist and engineer have much to be thankful for in these developments. They have made the PC workstation affordable for other uses.

Technical people have been working with mainframes and minicomputers for quite a long time now, time-sharing number crunching and data analysis and whatnot. Recently very powerful resources have been put at the disposal of individuals, particularly for such applications as CAD-CAM. Some aspect of system sharing has usually remained, but names such as Apollo and Sun and Masscomp denote very capable workstations, costing typically $10,000 to $20,000 for each such station. I shall not be dealing with these, other than as prototypes toward which the IBM PC style of workstation can aspire.

I am a theoretical astrophysicist, and I have been interested for some time in transferring all of my scientific activities to workstations at a lower level of sophistication, the $2,000 to $5,000 range represented by IBM PCs and their clones and emulators. The performance of hardware and software that is particularly useful to me in this endeavor has been rapidly improving, and will continue to do so, although most of it is not nearly as well publicised as business-oriented items. This seems to be a useful time to take stock of where we are and where we are going.

PROCESSING SPEED

Most technical people want to crunch numbers in some form. A fairly common phenomenon recently has been the University departmental DEC VAX 11/780, which I will henceforth simply call a VAX. It is a time-shared resource. At one time at the Center for Astrophysics, when we had only one VAX to handle all our computing, we held the world's record for the number of terminals tied to ports on this VAX, well over 100. I hardly need award you a prize for guessing what response times were like in the middle of the afternoon. Now there are two VAXes tied together, which helps a little, and soon there will be lots of DEC Microvax II's around (a small machine of similar performance costing in the range $20,000 to $40,000). So I will use the CPU speed of the VAX with floating point accelerator as a basis for comparison with microcomputer floating point computation speeds.

Some benchmark speed comparisons which have been made at the Center for Astrophysics by those with IBM PCs have shown that the PC runs close to ten percent of the speed of the VAX, using the 8087 and Microsoft Fortran. This was a highly cost effective number in favor of the PC until recently, but DEC has managed to scramble back onto this new cost-performance curve with the Microvax II. I had hoped for a large improvement in computation speed with the advent of the IBM AT. Indeed, the AT proved capable of moving bytes around (a typical business use) at about three times the rate of the PC. But it is a computational disgrace. Benchmarks carried out by Avram Tetewsky of Draper Labs have shown that for number-crunching intensive jobs the IBM XT and AT compute at the same speed! The reasons appear to be the following. The XT uses the Intel 8088 and 8087 running at 4.77 megahertz with an 8-bit bus. The AT uses the Intel 286 with a 16-bit bus, allowing it to move bytes around twice as fast per clock cycle; it uses a faster clock, and it performs CPU functions in fewer clock cycles than the 8088 or 8086. The problem lies with the 287 numeric coprocessor. This is divided into two parts, a communications part running at the same 6 megahertz clock speed as the 286, and a 4 megahertz computation part that is not enhanced over the 8087. So what advantage the AT gains in communication speed is lost in a slower computation speed.

The lesson for the technical person interested in fast computation is clear. For the near term, it is better to enhance the speed of the PC or look-alike than to invest in an AT. Following this logic, a few months ago I invested in a Number Smasher board from Microway. This runs at 9.54 megahertz (twice the PC clock rate), and it uses on-board 8086 and 8087 chips that have been designed for 8 megahertz and tested at the slightly higher speed. It has an on-board 16-bit bus into which up to 640 kilobytes of memory can be plugged. This board plugs into the 8088 and 8087 sockets on the PC mother board and interacts with all other hardware services through the regular 8-bit bus. With this board I find that I can crunch numbers at 25 percent of the VAX speed.

For certain specialized problems, the PC technical person can do still better by using array processor insert boards. These achieve a faster computational throughput by using pipeline techniques and a faster numeric processor. However, so far these are very limited by 32-bit floating point arithmetic, and I have not been personally interested in them. For more general-purpose computations we must await the (presumably soon-to-be announced) 64-bit array processors using very fast Weitek numeric coprocessor chips.

However, it is already apparent that the Motorola 68020 CPU teamed with the Weitek coprocessor can strongly outperform the VAX. I am indebted to Steve Ward of the Center for Astrophysics engineering staff for giving me the following preliminary benchmark numbers. For a double
precision floating multiply, the VAX with floating point accelerator takes 3.40 microseconds. The 68881 (the Motorola numeric coprocessor for the 68020) takes 4.00 microseconds at 16.67 megahertz and 5.33 microseconds at 12.5 megahertz, so it is slower than the VAX. The National Semiconductor 32081 (coprocessor for the 32016) takes 6.20 microseconds at 10 megahertz and 7.75 microseconds at 8 megahertz. According to trade journal reports, the Weitek 1164+1165 numeric coprocessor chip set takes 0.60 microseconds! This chip set clearly has a very promising future.

Is this the road for future upgrades by the PC workstation user? Does this mean a totally new personal computer architecture or will we get these Weitek chips as parts of insert boards for PCs? In that case what will the software situation be? Or will the IBM commitment to the Intel line mean that we should expect to use the Intel 386 and 387 chips and to migrate our present software base? The answers to these questions may not be clear but the existence of the questions suggests that the individual desktop workstation will continue a rapid evolution in capability.

STORAGE

There are two types of storage of vital interest to the workstation user, RAM and permanent storage.

The business PC user has been demanding larger and larger spreadsheets and data bases, and this has spurred several important technical developments. The 640 kilobyte limitation of DOS, which once seemed much more than adequate, has lately been seen as a serious straitjacket. For a while the solution seemed to go to the 286 chip, which can address 16 megabytes, but not when it is running DOS. If this were to be the solution, then we would all migrate to XENIX as an operating system. But the large installed base of PCs has brought forward an alternative solution, and since the processing enhancements described above at least temporarily make the PC superior to the AT as a hardware base, it is possible that the new memory developments will maintain DOS as a viable alternative for some considerable time.

The recent announcement of a new proposed hardware and software standard for bank switching of memory by Lotus jointly with Intel is of considerable interest to the scientific workstation user, because many of the Fortran programs that he may have been using on mainframes exceed the 640 kilobyte limit. The Intel

AboveBoard will have many clones and variants which will bring multimegabyte memory resources to our disposal, once our language compilers and linkers have been brought up-to-date to use them. However, I am aware of other technical developments which are in progress, and it may be premature to conclude that the AboveBoard implementation of memory management will turn out to be the best for the scientific workstation user.

The 360 kilobyte floppy disk remains a useful medium of backup storage and program and data exchange, but it is seriously cramping the style of the workstation user who

devotes big programs. For example, Microsoft Fortran 3.2 creates intermediate compiler files that are serious memory hogs, leading to a lot of floppy shuffling for those with floppy-only systems. Fortunately, the price of 10 megabyte hard disks has come down very dramatically in the last year, and the new 20 megabyte disks tend to cost only an additional $300. Many of my colleagues say they have passed the point of no return; having invested in a hard disk, they will be both unable and unwilling to go back to a floppy system, and I feel that way myself. A couple of years ago ten megabytes seemed more than adequate, but with some of the memory

![Instant-C™: The Fastest Interpreter for C](image)

**Instant-C™**

The Fastest Interpreter for C

Runs your programs 50 to 500 times faster than any other C language interpreter.

Any C interpreter can save you compile and link time when developing your programs. But only **Instant-C** saves your time by running your program at compiled-code speed.

**Fastest Development.** A program that runs in one second when compiled with an optimizing compiler runs in two or three seconds with **Instant-C**. Other interpreters will run the same program in two minutes. Or even ten minutes. Don't trade slow compiling and linking for slow testing and debugging. Only **Instant-C** will let you edit, test, and debug at the fastest possible speeds.

**Fastest Testing.** **Instant-C** immediately executes any C expression, statement, or function call, and display the results. Learn C or test your programs faster than ever before.

**Fastest Debugging.** **Instant-C** gives you the best source-level debugger for C. Single-step by source statement, or set any number of conditional breakpoints throughout your program. Errors always show the source statements involved. Errors always show the source statements involved. Once you find the problem, test the correction in seconds.

**Fastest Programming.** **Instant-C** can directly generate executable files, supports full K & R standard C, comes with complete library source, and works under PC-DOS, MS-DOS, or CP/M-86. **Instant-C** gives you working, well-tested programs faster than any other programming tool. Satisfaction guaranteed, or your money back in first 31 days. **Instant-C** is $495.

**Rational Systems, Inc.**
P.O. Box 480
Natick, MA 01760
(617) 653-6194
demands that I will discuss below, I would ordinarily counsel the investment in 20 megabytes.

Of course, there are various hard disk technologies from which to choose. Hard disks tend to come with random access times close to either 30 or 80 milliseconds, and the slower ones are a lot cheaper than the faster ones. I tend to think that for the scientific user larger capacity is more important than a faster access time, and one's investment strategy should be governed accordingly, but there will obviously be situations where the reverse is true. But fast access time can often be achieved with the use of RAM disks, particularly if one uses a specialized RAM disk board such as the JRAM-2 from Tall Tree Systems, which can hold up to 2 megabytes for this purpose.

An entirely different set of options becomes available when one thinks of hard disks with removable media. Unfortunately these still tend to be rather expensive. In a class by itself is Iomega's Bernoulli Box, a unique technology which is not only safer to use but is also an excellent way to store off-line data bases or other specialized materials in a form that can easily be loaded into the computer. It is also an excellent form of backup medium, more reliable and faster than magnetic tape. There are also more conventional types of hard disks which are removable or have a removable platter.

Coming up are the laser disks, initially write-once read-many-times, but eventually read and write at will. These will represent another large step upward in storage capacity, and once again we will have the pressure of the business market to thank for driving the development. I think these will be extremely useful to the scientific workstation user. Not only will they enable specialized scientific data bases to be distributed for his use, but it seems likely that one of the outcomes of artificial intelligence research will be knowledge-based expert systems with a convenient prompting system that the user can assemble in modules as needed. This is the kind of development that is likely to be available for workstations compatible with business systems much sooner than for the more expensive and specialized types of workstations mentioned at the beginning of this article.

LANGUAGES

Fortran remains the workhorse language for most of the scientific and engineering community. Fortran has had its vociferous critics in the computer sciences community, and just about all the nasty things they have said about the language are true. Despite that, it remains my favorite computational language. Why is that so? Partly from familiarity, but mainly because of the large software base associated with it.

Until quite recently, the version of Fortran generally available was the 1966 ANSI standard, usually with some extensions. This lacked the structure of the better modern languages and resulted in what is often called "spaghetti code", a tangled mess of GO TO's. Now on IBM PC's and nearly everywhere else the Fortran available is the 1977 ANSI standard. This still lacks most of the usual control structures, but it does have IF...THEN...ELSE, and you can do nearly everything you want with that. A few years ago I started using a Fortran preprocessor called RATFOR, which introduced C-like control structures into the way one writes code, and which is compiled into standard Fortran. The extra compilation procedure was certainly a nuisance, so I learned to write structured Fortran by mimicking the results of the translation procedures used by RATFOR. Now I simply use IF...THEN...ELSE.
At last count there were some seven Fortran packages being offered for the IBM PC. Avram Tetedsky of Draper Labs recently ran some benchmark comparisons of the three Fortrans that seemed to be most capable. In decreasing order of execution speed these were the Fortrans prepared by Ryan McFarland (IBM Professional Fortran), Microsoft, and Digital Research, Inc., all of which have nearly transparent procedures for utilizing the full amount of memory available under MSDOS. Under ordinary conditions IBM Professional Fortran would therefore be the preferred choice for most number crunching tasks. However, Microsoft Fortran has been out longer, and there are many libraries of auxiliary routines for various purposes that are designed to link to it, but so far very few of these have released versions that link to Professional Fortran. Thus in many practical cases the Fortran of choice becomes that from Microsoft.

probably the most useful of the Fortran add-on packages are those that support computational functions that are not included with the standard Fortran. There are in general much more extensive packages that have been produced for Fortran than for other languages.

First (to my knowledge) in the field was a package called MicroSUB:MATH sold by Foehn Consulting. This has a useful set of procedures and routines, but one often wants to change the Fortran source code, and the source code for this is rather expensive.

Then recently the FORTRAN Scientific Subroutine Library, a package from the Professional Software division of John Wiley, the book publisher, appeared. This was a more extensive package which did not provide source code.

On mainframes the most extensive package of subroutines and procedures is from IMSL, who have just brought out subsets of these FORTRAN libraries for the IBM PC. The source code for this is a closely guarded secret, and this limits the usefulness of the package. I have heard that the source code for the IMSL package is quietly circulating "underground" among some IBM PC users.

Probably the most useful package is one that has not yet appeared, a book entitled "Numerical Recipes" (by W.H. Press, B.P. Flannery, S. Teukolsky, and W.T. Vetterling) to be published by Cambridge University Press this fall, and to be accompanied by source code disks which may be obtained in either Fortran or Pascal. In order to include the source code and examples of its use on two disks, the authors have stripped out all the commented statements, so that this is a package to be used hand-in-hand with the textbook. The authors have provided a separate summary in Pascal code because of its extensive use in teaching programming, but all the illustrations in the main part of the text are in Fortran. They hope to provide C source code later.

In the last few years I have transported a fair amount of Fortran code from mainframes to minicomputers and from there to IBM PC compatibles. This procedure has turned out to be relatively painless, with most of the effort involved in translating the system calls. It is here that the limitations of MSDOS cause the most grief. For example, it is frequently painful not to have a Fortran procedure for opening a file for appending. There remains a clear need for more extensive Fortran utilities for dealing with the operating system.

A fair number of scientific and technical people are now using C in laboratory environments for interfacing with equipment, for which it is well adapted and Fortran is not. Not much use of other languages has come to my attention. Some of my colleagues have used Pascal a little bit. Opinions on it are divided. On the positive side, some people like the strong typing in the language, because "it won't let you make a mistake." Others dislike the strong typing in the language because "it is a royal pain." Such people would...
rather use C. Perhaps there will be a drift away from Fortran in coming years as other languages build up a base of mathematical and physical supporting software, but I suspect that any such motion will resemble that of a glacier. It is also likely that Fortran itself will undergo further evolution.

**PLOTTING**

There is an incredible number of software programs now available for plotting with IBM PCs. Most of them have been developed for business use. These tend to be screen oriented and pen-plottor oriented, and usually offer a set of utilities for providing bar graphs and pie diagrams and that sort of thing. Very few provide a facility for doing the kinds of drawings that most scientific people want, with lines and curves and isolated points, perhaps showing least squares fits or spline interpolations. Fewer still provide a decent facility for using a dot matrix printer for plotting (most just do screen dumps with very poor resolution).

For quite a long time I have been looking for a plotting package that will provide a library of Fortran plotting routines and which will use the full resolution of the FX-80 printer. The closest I have yet found is Plot88 from Plotworks. This provides a good set of Fortran plotting routines and supports several Hewlett-Packard pen plotters, the IBM color graphics monitor, the Tektronix 4025, and Epson dot matrix printers. Unfortunately the FX-80 is only supported for a vertical resolution of 72 dots per inch, one-third of its capability, but it does support up to 240 dots per inch horizontally. That means that you must still use a pen plotter to prepare a reasonably good publishable graph.

There is no fundamental reason why we cannot get plotting programs which make better use of rasterized devices. The need for these will accelerate when cheap laser printers become available and are desired also for plotting uses.

**EDITING AND TEXT PROCESSING**

Everyone seems to have a favorite word processor, and arguments about the superior qualities of some other word processor fall on deaf ears. Scientists are no different. However, at least some scientists prefer an editor with extremely powerful macro command capabilities, and that preference is unlikely to be shared by the average person. Many of my colleagues and I share this preference, and our editor of choice is PMATE, distributed by Phoenix Software Associates. Some of my colleagues are interested in little more than the direct entry of text, and they prefer a wide variety of other word processors.

Those word processors that try to integrate editing with spelling checking and hyphenation and text formatting tend not to do any or all of those things as well as other programs do individually. Personally I have for a long time preferred to do such operations separately. Some years ago I started using a hardware text formatter called a Retroscloller, which consisted of a Z80-based board that was inserted into a Diablo 1620 daisy wheel printer. This could be fed text prepared with any editor and it produced better scientific output than any software available at the time. This has evolved into a medley of programs for the IBM PC called the PS Technical Word Processor, and sold by Scroll Systems, Inc., which includes PMATE. In fact, PMATE is merged into the package available at the time. This has evolved into a medley of programs for the IBM PC called the PS Technical Word Processor, and sold by Scroll Systems, Inc., which includes PMATE. In fact, PMATE is merged into the package short of a minicomputer-driven phototypesetter. Even with this set of programs I still preferred to use The Word Plus from Oasis Systems for spelling checking and also for hyphenation. Although PS does hyphenation, I consider the algorithm used by The Word Plus to be superior.
the technical side. We would not
have hardware and software senses. Much of
that are used for laboratory control and
momentum for these changes
of a field rapidly evolving both in the
important is probably not the
specifics of the moment, but the sense
encyclopedia, and these will be
data bases, sort of the on-line technical
for specialized scientific and technical
government agencies and on the on-line
these. I expect laser disks to become
available, and then I will switch
disk space, depending on the version
that you have. This is a very slow
output device, and PC TEX users will
certainly look forward to obtaining a
supported laser printer for output which
will also produce superior quality
characters. My own expectation is that
I will use PS for ordinary material and
TEX for very technical material until
such an inexpensive laser printer is
available, and then I will switch
to TEX. However, I am likely
to continue to use PMATE with PS
macros to prepare text for TEX output.

OVERVIEW

In this discussion of the scientific
workstation I have not attempted
to discuss control of laboratory equipment
or analysis of the data that results, since
I have not had any experience in this
area. Nevertheless, that is an important
area of scientific workstation activity. I
expect this to be even more important in
the future. Large data bases of
scientific and technical information
have become available both within
government agencies and on the on-line
information resource networks, and
PCs can be used for data retrieval from
these. I expect laser disks to become
available as cheap distribution media
for specialized scientific and technical
data bases, sort of the on-line technical
cyclopedia, and these will be
invaluable both for those workstations
that are used for laboratory control and
for those that are not.

From a general point of view what
is important is probably not the
details of the moment, but the sense
of a field rapidly evolving both in the
hardware and software sense. Much of
the momentum for these changes
comes from the business community, but
there is also a growing constituency
on the technical side. We would not
have seven versions of Fortran
to choose from if that were not the case.
Since the scientific and technical community
forms a substantial market for
workstations in the $20,000 to
$40,000 class, the market will become
very large indeed when all of those
functions can be provided for $5,000.
The components of that workstation are
rapidly becoming available.

A.G.W. Cameron is Professor of
Astronomy at Harvard University,
Center for Astrophysics, 60 Garden St.
Cambridge MA 02138.

VENDORS MENTIONED IN THIS
ARTICLE

Addison-Wesley Publishing Co.
Inc., Jacobway, Reading MA 01867
(617)944-3700-X2677
Cambridge University Press, 32
East 57th St, NY NY 10022
Digital Research, Inc., Box 579,
Pacific Grove CA 93950
(408)649-3896
Foch Consulting, Box 5123,
Klamath Falls OR 97601
(503)884-3023
IBM Corp., Personal Computer,
Box 1328-C, Boca Raton FL 33432
IMSL Inc., NBC Bldg, 7500
Belairle Blvd, Houston TX 77036
(800)222-IMSL
Inte Corp., 3065 Bowers Ave.,
Santa Clara CA 95051
Iomega Corp., 1821 West 4000
South, Roy UT 84067
(800)556-1234-X215
Lotus Development Corp., 55
Wheeler St, Cambridge MA 02138
(617)492-7171
Microsoft Corp., 10480 Northup
Way, Bellevue WA 98004
(425)424-9400
MicroWay, Inc., Box 79, Kingston
MA 02364 (617)746-7341
Oasis Systems, 2765 Reynard
Way, San Diego CA 92103
Personal TEX, Inc., 20 Sunnyside,
South, Mill Valley CA 94941
(415)388-8853
Plotters, Inc., Box 12385, La
Jolla CA 92037 (619)457-5090
Phoenix Software Associates, 1416
Providence Highway, Suite 220,
Norwood MA 02062 (800)344-7200
Scollin Systems, Inc., 6930 East
Acoma PI., Tucson AZ 85715
(602)885-1633
Tall Trees Systems, 1032 Elwell
Ct., Suite 124, Palo Alto CA 94303
(415)964-1980
Wiley Professional Software, 605
Third Ave., NY, NY 10158
(212)850-6788

Of course,
POWER! saves your
Bad Disk.
NOW WINDOWS FOR IBM!

It also does
54 other things to
keep your disk in line.

EVERYTHING YOU ALWAYS WANTED TO
DO, BUT WERE AFRAID TO TRY

Unlike some utility programs that are a headache
to use, POWER! is engineered to spoil you with 55
features, simple and uniform commands, and utter
simplicity of use. POWER! automatically alphanum-
berizes and numbers your files. You select by the
number and never type your file name. Need to
[COPY], [RENAME], [ERASE], or [RUN] programs? Just
type in their menu number! POWER! also looks
out your disk's bad sectors [TEST] without destroy-
ing files-a critical difference from other utilities
that search and destroy, without informing you
what they've done, leaving you to wonder why
your programs won't run. (And POWER! still has
50 commands to go!)

POWER! ONE PROGRAM DOES IT ALL!

You may own a few utility programs for your com-
puter housekeeping, each with its own commands
to memorize. POWER! has all the programs rolled
into one 16K integrated package, so you do things
you've never tried before-every day. Save sen-
itivity from prying eyes with [PASS] word pro-
tect, move a block of memory [MOVE], look for data
[SEARCH] or compare files [CHECK]. POWER! also
makes easy work of patching [DISPLAY/SUBSTITUTE],
customizing software [LOAD/SAVE]. Among the
other commands are [SIZE], [STAT], [LOG], [DUMP],
[TYPE], [JUMP], [FILL], [S], and the CP/M version
lets you restore erased files--even when you don't
remember the filename-at a flick of the POWER!
[RECLAIM] command. (Still 51 commands to go!)

POWER! NOW FOR IBM's PC-DOS
AS WELL AS CP/M

We first developed POWER! for CP/M two years ago,
and a stack of testimonials from FORD to
IBM testifies to its excellence. For IBM-PC™
users, special features like managing sub-direct-
tories, [CHANGE], and a separate creation of up to 8
simultaneous, on-screen [WINDOWS] have been added.

MONEY-BACK GUARANTEE AND
A 10 DAY TRIAL

POWER! has the Seal of Approval from the Pro-
fessional Software Programmers Association, and
you too, must be happy with POWER! or your
money back! For only $169 you can now really be in
control of your computer. Call Computing! at (415)
567-1634, or your local dealer. For IBM-PC or any
CP/M machine. Please specify disk format.
The company that earns its exclamation point.

COMPUTING!

2659 Greenwich, San Francisco, CA 94123

TO ORDER CALL 800 TOLLFREE
800-428-7825 Extension 96C
In CA: 800-428-7824 Extension 96C

IBM and IBM PC are registered trademarks of International Business Machines Corporation.
**C Programmers:**

*File System Utility Libraries*

**Source Code Included, No Royalties, Powerful & Portable.**

**BTREE Library** $75.00

- High speed random and sequential access.
- Multiple keys per data file.
- Up to 16 million records per file.
- Full documentation and example programs included.

**ISAM Driver** $40.00

- Works with the BTREE Library.
- Greatly speeds application development.
- Combines ease of use of database manager with flexibility of programming language.
- Supports multi key files and dynamic index definition.
- Very easy to use; fully documented; example programs included.

**Both products**

Are written entirely in K&R C.

Come with complete source code. + $3.00 Shipping & Handling Charge.

Are free of any royalty charges.

For more information call:

1277 Pallatine Drive
Oakville, Ontario, Canada
LEH 1Z1
(416) 844-2610

**EUREKA!**

In Greek it means "I found it". In CP/M it means you'll never lose it again! Eureka! is the premier CP/M disk cataloger. It puts the critical information about your library of disks and files in one place and allows you to quickly and easily retrieve any of the information. Never again will you have to wonder what disk that letter SMITH37.L TR. is on - or what it is for...Eureka! can tell you in a snap. Lawyers, writers, programmers and many others save time with Eureka!. Haven't you suffered long enough without it???

"We finally choose Eureka!...largely because it has the ability to read comments directly from a file...Eureka! is easy to learn and use, has more access and report choices, finds files by many different ways, and has an attractive price." - T. Bove & C. Rhodes, USER'S GUIDE No. 11

**EUREKA!**, the popular CP/M® disk cataloger

Unprotected version $75  Protected version $50  Additional Licenses $15

**Mendocino Software Company, Inc.**

Dept. M-5  P.O. Box 1566  Willits, CA 95490

add $2.50 shipping  Calif. residents add 5% sales tax

**68K8-CP**

The World's First 68000 Coprocessor

Peak Electronics' 68K8-CP is a high performance processor card designed to function as one of several CPU elements within a multiprocessor S-100 system. This card features the MC68008® (8-bit object code compatible version of the industry renowned 68000), up to 512K bytes of RAM and 128K bytes of EPROM, two serial ports and a parallel printer port.

The true power of the 68K8-CP card is shown with its ability to be plugged into any existing S-100 system running CP/M-2.2 and to be running CP/M-68K within minutes without any change in existing hardware or software. This card does not replace your current processor. All of the original system's devices (RAM, disks, and other peripherals) are immediately available to the user of CP/M-68K, files can be accessed by whichever operating system is currently active.

**Features:**

- Does not replace your current CPU card
- IEEE-696-1983, S-100 Compatible
- MC68008 8 or 16 MHz CPU
- 128K bytes of RAM expandable to 512K
- 8K bytes of EPROM expandable to 128K
- No wait state access to on board RAM and EPROM
- Two high speed serial ports (up to 38.4K BAUD)
- 8-bit parallel printer port
- Supports CP/M-68K and Concurrent-68K
- Onboard 16-bit counter-timer
- Includes printer buffer and RAM disk firmware

$995, includes CP/M-68K

MTBASIC

Basic Compiler

Features:

- Multi-line functions
- Multitasking
- No runtime fee
- Windowing
- Handles interrupts
- Interactive
- Fast native code
- Compiles in seconds

MTBASIC is easy to use since you can write programs in an interactive environment and then compile them using only one command. MTBASIC has many advanced features like multitasking, random file access, formatted I/O, assembly language calls, and ROMable code.

The MTBASIC package includes all the necessary software to run in interpreter or compiler mode, an installation program (so any system can use windows), demonstration programs, and a comprehensive manual.

**Ordering**

MTBASIC is available for CP/M, MS-DOS, and PC-DOS systems for $49.95. MTBASIC with 8087 support is available for MS-DOS for $79.95. Shipping is $3.50 ($10.00 overseas). MD residents add 5% sales tax. MC, Visa, checks and COD accepted.

**SOFIAID, INC.**

P.O. Box 2412 Columbia, MD 21045-1412
301/792-8096
100,000 software developers can’t be wrong.

UNIX is the chosen operating system for more than 100,000 software developers because it has the power they need. But developers aren’t the only people who need computing power. Any business that wants multi-users to access the same files at the same time or wants to simultaneously run multi-task operations... needs UNIX. At Dynacomp, we offer UniPlus® System V by UnivSoft Corp. For $1495. U.S. dollars you can run UNIX on the Compupro® 816/E™... a powerful 68K S-100 bus computer system that maximizes its memory for multi-user/multi-task operations.

UniPlus+ includes all the standard UNIX System V features PLUS performance enhancements found only in UniPlus+. These features increase the portability, flexibility, and performance of UNIX, allowing an affordable operating system that you can run on the system. Dynacomp in Canada for complete details.
The UNIX File

by Ian F. Darwin

This column discusses the UNIX operating system. If you have comments or questions about UNIX, or this column, please write to Ian Darwin, Box 603, Station F, Toronto, Ontario, Canada M4Y 2L8. If you have access to the uucp network, mail “ihnp4!darwin!ian”. I can’t always answer immediately, but I will get back to you; electronic mail gets answered first!

This UNIX File tells how to get the source for a hacker’s operating system, shows how to tune programs, and tells about upcoming UNIX conferences.

HACKER’S OPERATING SYSTEM

Many hackers dream of getting the source to the UNIX system. The GNU system has been promised for some time, but to date GNU has only released an EMACS-like editor. Here’s a UNIX-like system that you can get the complete source for. The system is XINU. Its author, Douglas Comer, wrote an excellent book Operating System Design: The XINU Approach (Prentice-Hall, 1984, ISBN 0-13-637539-1; also available via M/SJ - see “The Book Mart”). The book describes how Xinu works, rather than enumerating ways an OS might work.

Xinu is not a complete UNIX-like system. As a teaching/learning tool it consists of a kernel with some UNIX functionality. One important function to be added before you would have working timesharing system is the ability to dynamically load new programs. Instead, your application is linked with Xinu, and the combined module loaded and run. Comer alludes that it would be hard to add this facility. You’d still have to add a shell and utilities before you’d have full UNIX functionality.

The OS source is included, and a dedicated hacker could type it in. Tom Hartnett (electronic address ihmp4!invu!dh), did so and is willing to make the part he typed in available by UNIX electronic mail (or put you in touch with someone near you to whom he’s sent it). Tom is setting up a uucp system so you can dial in and pick up his version of the source files; contact him for details. As important, Tom is running an electronic news letters for people playing with Xinu, getting it up on different machines, etc. The first issue summarizes the work needed to port Xinu to a new machine.

A Hacker’s OS & Tuning Unix Programs

Alternately, you can get the complete source on nine-track magnetic tape from the book’s publishers for under a hundred dollars. Information on how to get the source tape is not included in the book, so here it is. To order the tape, contact James F. Fegen, Jr., College Editorial, Prentice-Hall, Englewood Cliffs, NJ 07632, phone (201)592-3122. We got our tape with no problems, and have even received minor corrections made since the tape was written.

What it means is that there’s an OS that you can get the source for, hack at, and (maybe) expand to a working timesharing system. The operating system, like UNIX, is written in C with an underpinning of assembly language. The real machine on which it’s running is the ubiquitous LSI-11 micro. Tom Hartnett has it running on a 68000, and through his electronic newsletter you may find it running on other machines by now.

NEED TO OPTIMIZE?

How much execution time are you willing to trade off for programmer time? How much can you slow down a small system and still consider it usable? There are no hard answers for such questions, of course. But there are techniques for improving execution time of C programs.

Before you even think about optimizing, think about several things. First, the importance of making it right before you make it faster. There’s no point solving an equation quickly if you get the wrong answer! This often overlooked aspect of program efficiency is emphasized in The Elements of Programming Style by Kernighan and Plauger, a book I recommend for all programmers.

Second is the degree of use the program gets. To shave one second off the run time of an accounting program that’s used once daily, and at 2 AM at that, is to make an utter waste of your life’s work. The improvement is so useless compared to a day’s worth of CPU time that nobody will ever notice. But shave that same second off grep or cat or some frequently-used user program, and you will contribute some fraction of a percent of CPU time back to system throughput. Two UNIX tools that give numerical data on program performance are Time and prof. Time tells how long a program takes to execute for a given set of inputs. You just say, for example,

time cat /unix >/dev/null

to see how long the particular cat takes to run. Time reports three numbers, which are the wall clock time (elapsed time you would see with a stopwatch), the program CPU time, and the amount of CPU time the kernel spent processing requests on behalf of the program.

The sum of the user and system CPU times is what timesharing services conventionally use to bill for CPU time. The real or elapsed time must always be greater than (just possibly equal to) the sum of the user and system CPU times. Elapsed time varies with system load. If you had the system to yourself, the elapsed time should be close to the CPU time; if not, there may be time lost waiting for disk swapping, system-provided processes, etc.

Prof is used to print an execution profile of a running program. You compile the program with the -p option specified to the compiler for each module you want to examine, and for the final cc command that loads the modules together. This option causes inclusion of code in your compiled program to indicate where time is being spent, and to write the results to disk at exit for later analysis by prof itself (note that if your program is interrupted or dumps core, the counts do not get written).

For example, I have a Research-UNIX-like version of cat i.e., no options such as -s, -n, -v, -d (cat is a program to copy files to the standard output; its most common uses are printing files at the terminal and concatenating files together). My version lives in two source files, main and process, each containing one function with the same name as the file. A testing sequence might look like this:

```c
```
The command make rebuilds the program. Then I run my newly-made cat against a short file, and run prof to look at the profile. The columns are function name, percent of CPU time, number of calls and msec/call. In this case, every measureable bit of CPU went into a routine called memccpy that is called from inside the stdio (standard I/O) library. As its name suggests, memccpy copies data in memory, presumably copying the input buffer to the output buffer.

If you don’t know about stdio, suffice to say, that there are two sets of calls for doing I/O in UNIX; the system calls (open, read, write) and the ‘standard IO’ or stdio routines. The system calls pass control to the operating system to carry out some request, but system calls only read blocks of data (or read one byte at a time, which is very inefficient). For byte at a time processing, or line-at-a-time processing, you almost invariably should use the stdio routines (fopen, fread, fwrite, etc) since they take care of buffering, lines that are stored across block boundaries on disk, etc.

When I run the program on a larger file, although memccpy is still the largest component of time (at only 79% of the total CPU), a number of other functions show up with measurable CPU time.

As a general principle of program tuning, you need to run a program like this with one small file, with several files, and with one or more large files. Often this will show different parts of the code dominating the CPU usage.

The first version of process was written using stdio routines fgets and fputs. Noticing that stdio routines and subordinate library routines dominate the CPU usage, I rewrote the process function to use the read and write system calls. Here’s what happened:

The change was so dramatic I ran it several times to be sure. User CPU time was not measurable. Once on copying a large file (unix), the system noticed 62 msec (0.06 sec) of CPU time in the program; on the other two runs, the system did not notice any user CPU time. I have since installed this version of cat in /bin on my system.

Now this is not to argue that one should not use stdio in general. A good intermediate would have been to use the fread() and fwrite() library calls. But cat is a program that by design does not need to transform or even look at the data it is reading, so it’s appropriate to use read() and write() here. Most programs would want to examine the data in some way; for such programs, stdio is definitely the way to go, despite the apparent CPU overhead of using stdio. The programmer overhead saved is worth it.

I’ve shown some quick examples of using time and prof. These are two main tuning tools that every UNIX/C programmer should know. There are many fancier tools on some versions of UNIX and some that are available as proprietary add-ons; I have limited the discussion to two tools that I can be sure every real UNIX system has. For an alternate method of studying the CPU program usage, see Dynamic Instruction Counting by Peter J. Weinberger, AT&T Bell Labs Technical Journal, October 1984, Vol 63, No 8, Part 2, p 1815.

I hope you find this discussion useful; please let me know if you are interested in a similar discussion of standard debuggers or other programming aids.

CONFERENCES

USENIX has scheduled its 1986 winter technical conference for January 15-17, in Denver, Colorado, three weeks before /usr/group’s UniForum show February 3-7, in Anaheim, California. The two groups couldn’t put together a joint conference this year, but continue to cooperate with each other and may do so again at some point in the future.

This USENIX will be different from previous USENIXes, consisting of three one-day technical workshop sessions with a new topic each day, namely UNIX and Window Systems, UNIX on Big Iron, and UNIX and Ada. This is obviously an experiment; if it works well USENIX will probably continue the ‘workshop’ organization; if not, they may try other approaches or revert to the standard multi-stream conference.

UniForum, in February, will be a conventional conference and commercial trade show, including a day of Tutorials (I will be presenting a one-day tutorial on Effective UNIX Programming) and a program of technical and commercial papers. USENIX will also hold a traditional Summer technical conference in Atlanta, Ga., June 9-13.

For more details, contact USENIX Association, Box 7, El Cerrito CA 94530, (415)528-UNIX (528-8649), and /usr/group, 4655 Old Ironsides, #200, Santa Clara CA 95054, (408)986-8840. Hope to see you there!

For European readers, or those who like to go there, the European UNIX User’s Group (EUUG) holds conferences periodically. The September 1985 conference was in Copenhagen in September. They planned talks on many topics including the long-awaited 4.3 BSD. I always seem to hear about EUUG gatherings just a little too late to tell you in this column; if you’re planning to attend future EUUG conferences, you might write to EUUG, Helen Gibbons, Owles Hall, Buntingford, SG9 9PL, Great Britain, phone ++44 763 73039.

That’s all for this month. I welcome cards and letters and electronic mail on these and other topics. Cheers!
Eureka
by Robert Hazelwood

Ever had a bad case of DIR:itis? When you forgot which disk a badly-needed file was on and you wear out your fingers inserting disk after disk and typing DIR: over and over again! Well, I may have found an answer for those of you out there who were like me. It's called Eureka, a program that lets you catalog and list all the necessary information about your floppy disk collection. My problem started out just as, I guess, everybody's does. I never tried to catalog my growing disk collection because I never thought it necessary, until I discovered it had grown to over a hundred disks with, at best, scanty comments on the labels. I first tried using index cards, then printing out each disk directory but these methods were too difficult to update and didn't help with duplicate file names.

What I needed was a series of comments for each file and a master alphabetical listing of all the disks. I then tried a few experiments with some of the public domain software for disk catalogs, but was never quite satisfied with the results. I could set up an index file on each disk and place comments in it, but still had to search each listing either manually or use the FIND program to search a cobbled-together, master catalog of all the disks. Then I saw an ad in Microsystems for a catalog system called Eureka by Mendocino Software Inc. I got a copy of Eureka and tried it.

DOCUMENTATION
The first thing that impressed me about the program was the manual. It was eighty pages of detailed instructions on installation, operation, and explanations about the program. I was so fascinated with the manual that I actually read it before I installed the program.

The manual was well thought out and had an index, table of contents, and several appendices, one of which listed all of the error messages, that were used by the program. With the listing of the error messages there is a set of explanations telling you when you would normally encounter these errors and what probably caused them. The manual is very user friendly.

A CP/M-80 Disk Cataloging Program

INSTALLATION
I then followed the step-by-step installation instructions. You must use their program (M-COPY.COM) to install the program on your system as the normal copy programs, pip etc... will not properly copy the program. This made me curious, but I followed their instructions and used M-COPY to copy over EUREKA.COM.

When finished copying Eureka to the work-disk the installation program (M-INSTALL) is run. First pick a terminal from the selection which includes most terminals in use. If yours is not on the list, you will have to answer a few questions about your terminal, i.e. its screen width, height, and the code used to clear the screen.

Next are the questions about your printer, i.e. the width and number of lines-per-inch it prints. If your printer cannot handle the ASCII form feed code, you will have to set the printer parameters differently than if your printer used form feeds, but Eureka will work either way.

To try to prevent BDOS errors from dumping you out of Eureka, the program checks for valid drive names. So in the installation you will need to specify all of the valid drive names you have on your system.

When I installed my copy of Eureka, I had to decide which files I didn't want cataloged. As shipped, Eureka will not catalog any file with the attribute $$$, BAK, or HEX. To this you can add two more types or change any of the original three for a maximum of five types that can be excluded. All files that are declared to be system files are not cataloged and this cannot be changed from the install program. The remaining installation consists of selecting default toggles for the ACCESS menu. Most of these toggles can be changed from the ACCESS menu and they affect how the catalog information is presented on the screen and the printer. I left mine with the default settings. The instructions were very easy to understand and I did not have any problems with installation.

SETTING UP THE CATALOG
Next I had to design a cataloging method for my disk collection. It should be well thought out as you will have to live with it for quite a while. A file containing the contents of each disk's directory is given a name. This "volume label" is preceded by a hyphen and is in the same format as a file name under CP/M, except you are allowed one less character due to the hyphen. Eureka searches for this file when it catalogs a disk, so there can be only one file of this type on the disk at a time. Eureka uses this file as the name of the disk that is stored in the master catalog.

USING THE CATALOG
The program itself is very easy to use, as it is menu driven with the selections self-explanatory to the point that you should not really need the manual after you have used Eureka a few times. If you get stuck and cannot find a menu selection that helps, hit the escape key to return to the previous menu.

A key feature of Eureka is that you can add comments to your catalog listings in two ways. The first (recommended in the manual) is to add the comments to the files on your disk. Eureka searches the first 256 bytes of each file and looks for the four identifiers that are part of its cataloging system. These are Desc:, Date:, Vers:, and Auth:. If these are placed in the first 256 bytes of the file, Eureka will read them and insert them in the catalog file for that disk. Only the first two of these must be exactly as they are listed. The last two can be any four letters followed by a colon. They must be four letters in length and if the identifier is less than that, you must fill in with blanks to the colon. The first two identifiers can be changed using the install program.

Eureka looks only for its special identifiers which can be hidden inside of the file using whatever method will...
work with that language or program. Comments inserted in various types of programs look like this:

**FORTRAN**
C Desc:Fortran program to calculate distance
C Date:04/27/83
C Vers:3.34
C Auth:R.Hazelwood

Basic
10 REM Desc:Calculations program
Date:04/27/83
Vers:3.34
Auth:R.Hazelwood

Pascal
(*) Desc:Calculations program (*)
(* Date:04/27/85 *)
(* Vers:3.34 *)
(* Auth:RHH *)

The manual shows several other methods for other types of programs.

The second method of adding comments to your program is to insert them into the disk name file that was created on the disk. If Eureka searches the disk files for comments and fails to find any, it checks the catalog file to see if there are any comments there. If it finds any, it uses these comments. If you have comments in both places, it uses only the comments inserted in the file itself. These comments are formatted in a slightly different way than the rest of the file so that you can insert comments into files you wouldn’t ordinarily be able to comment, such as COM files. Each file name must be on a line by itself and preceded by an asterisk. Then on the following lines the comments are inserted just as before.

*FORUX.ASM
Desc:New improved game program
Date:04/27/85
Vers:3.39
Auth:RHH & C.K.

Eureka’s nicest feature is available under the ACCESS menu. **"T(text)"** allows you to selectively sort through your disk files, using logical operators which Eureka provides. They allow you to include and exclude various groups of characters from the search string. For instance, if you wanted to search for all the Fortran programs written by RHH and DKT, you would enter “Fortran+RHH+DKT” on the text line. Eureka then searches the comments, looking only for those programs that were Fortran and were written by RHH and DKT. In addition to the text options, you can narrow the search further by using wildcard references when you select the disk title at the ACCESS menu.

It is always nice to have a printed copy of your catalog. Eureka will do this for you in a variety of different forms. The first shows all of the catalog files alphabetically, both with or without comments. The second prints out a selected disk’s files in alphabetical order by disk. The third lists all of the disk titles in alphabetical order. The last method lists disk information by disk title telling you the disk size, number of files cataloged, space used, and space free on each disk. It also shows the last date that the disk was updated. Each of these listings can be modified using the search parameters explained earlier. This allows you to print out just the listings on the disks that have been changed without printing all of the catalog.

**COPY PROTECTION**

One last area of concern is that Eureka uses a novel approach to software piracy. When the program is first installed, it reads certain items from your operating system and stores them in the program. If you try to use the program on another machine you will get the following warning message:

```plaintext
*** EUREKA! runs on a single system ***
```

When I took my copy of Eureka into work with me and tried to bring it up on the Apple II, all I got when I tried to run Eureka was the above warning message. This does not mean that you cannot make copies of Eureka. One of the selections on the main menu is “Put Eureka on a new disk”. When selected, it copies Eureka to the new disk. The copy program works with your current catalog disk and does not require the distribution disk for copying.

My curiosity got the better of me however, so I called the company and was told that additional licenses were fifteen dollars each and included a new disk to install on the other system. I asked about possible problems with ZCPR3. They said that they didn’t think there would be any problem as they had ZCPR2 installed on a home system and had not had any problems with Eureka. I asked him about bugs in Eureka and was told they had not received any bug reports in over eighteen months. If any are found they use the registration form to contact users.

There is one problem that I didn’t encounter that is warned against in the manual. Certain versions of the BIOS included with CP/M cannot handle mixed-disk densities while you are in Eureka. In this case, you will have to exit Eureka, type control-C and return to Eureka to finish cataloging your disks. Sort your disks before you start cataloging, so as not to have to do this more than once during your use of Eureka.

Eureka requires CP/M 2.2, 48K of RAM, at least two disk drives, and a terminal that can handle at least 50 columns.

I like the program very much. It is easy to use and searches through the catalog files very quickly. The manual is very good and the people who supply it are friendly and courteous. Eureka should be one of those programs that is automatically supplied with your system. That way you could start cataloging your disks before their number becomes too large to work with easily. If you don’t already have a copy of Eureka, go buy one, it’s $50 very well spent. It can be purchased directly from Mendocino Software Inc., Box 1564, Willits, Ca. 95490, (707) 459-9130.

Robert Hazelwood works as an Electronic Engineer for Atlantic Satellite Communications, designing and maintaining audio, video, and microwave communications systems at their satellite uplink facility in Northvale, NJ. He attended the University of Missouri at Rolla where he majored in Electrical Engineering and Computer Science. He has been involved with microcomputers since the early seventies.
Complete your Heath/Zenith system with a subscription to Sextant!

The Independent Magazine for Users of Heath/Zenith Microcomputers

Whether you use an H/Z100, H/Z89, Z90, H88, or H8—you'll find articles in every issue which apply to your system.

Explore CP/M, HDOS, Z-DOS, and MS-DOS capabilities in Sextant. Applications, programs, compatible hardware and software, and the latest developments in the Heath/Zenith community are among the topics covered in every issue of Sextant.

Regular Sextant features include:
- “How-to” articles to help you enhance your system. Read how other users have altered their systems to suit their needs—and how you can too.
- Reviews of products from Zenith and independent suppliers, which can help answer your questions about hardware and software purchases you're considering.
- Short program listings—including utility programs and games—which you can use immediately.
- Advertising by independent suppliers who support Heath/Zenith systems. In Sextant you'll find many products advertised that you just won't find anywhere else.
- Coverage of community affairs. You'll read about major events and personalities in the Heath/Zenith user community, and what effect they could have on you.

You can't afford to miss all the information packed into each issue of Sextant. Your Heath/Zenith system just isn't complete without a Sextant subscription!

Get the information you need to get the most from your system!

Start your subscription today!

Call Toll Free: 800/341-1522 (DATATEL 500™, for orders only, Monday-Friday 8 a.m.–9 p.m., and Saturday 9 a.m.–5 p.m., Eastern Time)

Or mail this coupon to:
Sextant, Dept. M3
716 E Street, S.E.
Washington, DC 20003
Please allow 6–8 weeks for delivery of your first issue.

Send me:
- 12 issues for $29.91 ($34.50 to Canada)
- 6 issues (1 year) for $14.97 ($17.25 to Canada; $21.00 overseas via surface mail, $35.00 via air mail)
- Payment enclosed (Checks must be in U.S. dollars payable on a U.S. bank)
- Bill me
- Charge my: □ Visa □ MasterCard

Card #: ____________________________ Expires __________________
Name _______________________________
Address ______________________________

Your satisfaction with Sextant is completely guaranteed. If at any time you're not completely satisfied, just let us know and your money will be refunded—even for the issues you've already received.

Sextant, Dept. M3, 716 E Street S.E., Washington, DC 20003
Program Name: REVAS 4
Requirements: CP/M, MP/M or Z-System
Description: Disassembles 8080, 8085, Z80 and HD64180 object code files as large as 64K. Can assign labels, insert comments and generate cross-reference listings.
Price: $90
Publisher: Echelon Inc.
101 First Street
Los Altos CA 94022
(415)948-3820

Program Names: ZAS and ZDM
Requirements: CP/M, MP/M or Z-System
Description: ZAS is a relocating macro assembler. Produces HEX and REL files. Compatible with Digital Research's ASM, MAC and RMAC, Microsoft's MACRO-80 and Xitan's TDL assemblers. Assembles Hitachi's HD64180 and Zilog Z80 instructions. Nestable conditionals and full expression handling, relocation by absolute, code, common, and data criteria, and complete macro expansion and library insert capabilities. Creates SYM tables used by DSD, SID and ZSID debuggers. ZDM is a debugger and monitor for HD64180 and Z80 code. Has 21 commands.
Price: ZDM - $50; ZAS - $69.
Publisher: Echelon Inc.
101 First Street
Los Altos CA 94022
(415)948-3820

Program Name: MB+ Tools & MBPASLIB
Requirements: CP/M-80, CP/M-86 or MS-DOS
Description: MB+ Tools is a library of tested functions and procedures for use with Digital Research's Pascal MT+. Functions are coded in assembler to improve size and speed. All are supplied in 8080 or 8086 source code form and most are supplied in both. Program profiler is included to see where to optimize programs. MBPASLIB is PASLIB rewritten in assembler to optimize programs so that they are smaller and run faster.
Price: MB+ Tools $175, MBPASLIB $75, plus $5 shipping
Publisher: Minnow Bear Computers
Box 2233 Sta. A
Champaign IL 61820-8233
(217)398-6883

Program Name: LOCIPRO
Requirements: PC/MS-DOS, CP/M-80 or TRSDOS system
Description: Provides simple means to quickly determine closed loop system stability from open loop transfer functions. Solves locus of roots for systems up to 26th order and ten loop elements. Output compatible with other BVE products adding transient analysis and high resolution graphics.
Price: $72.95
Publisher: BV Engineering
2200 Business Way #207
Riverside CA 92501

Program Name: SMARTS
Requirements: 256K S-100 RAM card(s) - GSR, QT, Great Salt Lake, California Digital or ComputeTime.
Description: RAM disk emulator. Allows user to define drive as RAM disk. Automatically configures itself for number of boards present in system. Has asterisk option - specifies software on file. Not reinitializable if disk area will not be erased.
Price: $40
Publisher: GSR Computers
60-10 69th St
Maspeth NY 11378
(718)476-2091

Program Name: SNOBOL4+
Minimum Memory: 128K
Language: Written in C & Assembler
Description: BASIC enhancement to SNOBOL4 as used on mainframes, except Fortran output formats. Produces concise programs for string, algebraic, and list processing, and all forms of non-numerical computation. Based on intricate pattern matching supported by an extensive collection of string manipulation primitives. Provides integer and double-precision real arithmetic, recursion (in patterns and functions), associative data structures, program-defined datatypes, automatic storage management, assembly language subroutines and self-modifying code. Extensions include additional string and real functions, SPITBOL compatible operators, binary and random access I/O, built-in sorting, include files, case-folding, and BREAK key control. Over 100 sample programs and functions provided.
Price: $95 + $3 shipping & handling
Publisher: Catspaw, Inc.
Box 1123
Salida CO 81201
(303)539-3884

Program Name: db VISTA Version 2.0
Requirements: C Compiler for MS-DOS (Lattice, Microsoft, Computer Innovations, DeSmet or Aztec C) or UNIX (Fortune 32:16, Altos 886, AT&T 3B2 and generic).
Description: Multi-user or single-user database management system in C source form. Provides shared file protection (record locking), transaction processing. Interactive access utility (menu driven/screen and command/batch oriented). Can import and export dBASE II/III and ASCII files. Can handle more than 16,000,000 records/file. Record sizes up to limit of memory.
Publisher: Raina Corp.
11717 Rainier Ave South
Seattle WA 98178
(206)772-1515
(800)843-3313 then dial 700-992

Program Name: d/MULTI
Requirements: TurbDOS Z-80 based system
Description: Converts dBASE II into a multi-user system with true file and record locking. Adds new dBASE-like commands. Allows interactive real time keyboard commands, making debugging of programs easier.
Price: $695
Publisher: Martian Technologies
8348 Center Dr. Ste. F
La Mesa CA 92041
(619)464-2924

Program Name: MATRIX 100
Requirements: PC or compatible
Language: Written in C & Assembler
Description: BASIC enhancement to perform complex matrix operations with simple BASIC statements. Has extended commands for estimating numerical stability of solutions, LU factorizations, etc. and on-line help. Also includes an interactive linear programming package for small dense problems and Eigenvalue Solver for real symmetric matrices.
Price: $80; with 8087 support $125; with compiler/8087 support $250. Add $4 U.S./$5 foreign shipping
Publisher: Stanford Business Software Inc.
4151 Middlefield Rd, Suite 215
Palo Alto CA 94303
(415)424-9499
A collection of all the CP/M oriented articles which appeared in Microsystems magazine from Vol. No. 1 (January 1980) up through Vol. 3 No. 1 (February 1982) ... an absolute wealth of in-depth information on CP/M. Covers topics such as: Structure and Format, Interfacing, Utilities and Enhancements, Assemblers, Applications and lots more. Also includes a CP/M Programmer’s Reference Guide. 200 pages. $12.95 + $2.00 shipping & handling.

U.S., Canada and Mexico. $5 for other countries. Send check for full amount payable in U.S. funds by a U.S. bank. We cannot bill or take credit cards.

Send orders to: Micro/Systems Journal, Box 1192, Mountainside NJ 07082.

For Programming Professionals: an expanding family of compatible, high-performance, Forth-83 Standard compilers for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers
- 16-bit and 32-bit implementations
- Full screen editor and assembler
- Uses standard operating system files
- 400 page manual written in plain English
- Options include software floating point, arithmetic coprocessor support, symbolic debugger, native code compilers, and graphics support

For Applications: Forth-83 Metacomplier
- Unique table-driven multi-pass Forth compiler
- Compiles compact ROMable or disk-based applications
- Excellent error handling
- Produces headerless code, compiles from intermediate states, and performs conditional compilation
- Cross-compiles to 8080, Z-80, 8086, 68000, and 6502
- No license fee or royalty for compiled applications

Support Services for registered users:
- Technical Assistance Hotline
- Periodic newsletters and low-cost updates
- Bulletin Board System

Call or write for detailed product information and prices. Consulting and Educational Services available by special arrangement.

Laboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295
Phone credit card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch, D-7820 Titisee-Neustadt
UK: System Science Ltd., London EC1A 9JX
France: Micro-Sigma S.A.R.L., 75008 Paris
Japan: Southern Pacific Ltd., Yokohama 220
Australia: Wave-onic Associates, 6197 Wilson, W.A.
The following selected books can be ordered thru Micro/Systems Journal.

Prices include shipping (NJ residents add sales tax) with prices shown for U.S., Canada and Mexico. Add $5 for other countries. Send check for full amount payable in U.S. funds by a U.S. bank. We cannot bill or take credit cards. Allow 15-20 days for order to be processed. Please do not give a P.O. Box address as we ship via UPS. Send orders to: Micro/Systems Journal, Box 1192, Mountainside NJ 07082.

NEW WORTHWHILE BOOKS

C: A Reference Manual by Harbison & Steele Jr. This is the book that Don Libes (C Forum) uses as his referenced book. $20.95

Operating Systems Design: The XINU Approach by Comer. How to write a Unix-like operating system with much of the source code included. $35.95 (includes a companion disk).

The Turbo Pascal Primer by David Carroll. Contains lots of programs. By the author of the Turbo Pascal Corner in this magazine. $35.95 (includes a companion disk).

Inside the IBM PC: Access to Advanced Features and Programming by Peter Norton. A detailed analysis of MS-DOS, the PC-system architecture, the ROM-BIOS service routines and much more....$20.95 - Companion disk....$66.00

The following books are listed only by topic, title and author due to lack of space.

8086/8088
IAPX 8086, 186/188 User's Manual
Hardware Reference, Intel; $21.95
IAPX 8086, 186/188 User's Manual
Programmer's Reference, Intel; $19.95
From Basic To 8086/8088 Assembly Language, Templeton/Wordware; $18.95
The 8086 Book, Rector/Alexy; $19.95

80286
80286 Programmer's Guide, Childs/Evanczuk; $15.95
80286 System Guide, Childs/Evanczuk; $15.95
IAPX 286 Programmer's Reference Manual, Numeric Supplement, Intel; 17.95

68000
Self-Guided Tour Through The 68000, Andrews; $15.95
68000 16/32 Bit Microprocessor, 4th Ed., Motorola; $19.95
68000 Assembly Language Programming, Kane/Hawkins/Leventhal; $19.95

Scientific & Engineering
Microcomputers For Engineers & Scientists, Gibson/Liu; $37.95
Basic Programming For Scientists & Engineers, Hubin; $21.95
IBM PC Basic For Scientists & Engineers, Weinman/Kurshan; $20.95

IBM PC/XT
Business Graphics For the IBM PC & XT, Glau; $18.95
Complete Guide To IBM PC Graphics, Hyman; $20.95
Assembly Language Routines For The IBM, Dornier; $20.95, companion disk $30
Assembly Language For The IBM PC/XT, Scanlon; $22.95, companion disk $30
Input/Output Assembler Programming For IBM-PC DOS, Germain; $25.95
Programming Tools For The IBM PC: Screen Design, Code Generator, and High Memory Access, Fugate; $20.95

CP/M
A Programmer's Notebook: Utilities For CP/M Plus, Cortesi; $18.95
CP/M Solutions: Improving CP/M, Barbier; $15.95
CP/M Assembly Language Programming, Barbier; $13.95
CP/M Techniques, Barbier; $20.95
The Programmer's CP/M Handbook, Johnson-Laid; $22.95
CP/M-86 User's Guide, Sachs; $19.95
Inside CP/M, Cortesi; $27.50
Inside CP/M Plus, Cortesi; $19.95
Inside CP/M-86, Cortesi; $18.95
Inside Concurrent CP/M, Cortesi; $18.95

Hardware
Interfacing to S-100/IEEE-696 Microcomputers, Libes/Garetz; no longer published. We have only a limited supply; $19.95
Designer's Guide To Disk Drives, Teja/Gonnella; $20.95
RS-232 Made Easy, Seyer; $19.95
Guide To Local Area Networks, Byers; $16.95

Wordprocessing
Getting The Most From Wordstar & Mailmerge, Stone; $15.95

dBase-II
The dBase II/Cash Manager: Cash Receipts/Cash Disbursements for the Small Owner or Accountant, Heiser/Pickney; $15.95
Advanced dBase II User's Guide, Green; $30

Using dBase III, Jones; $18.95
Micro/Systems Journal is the independent magazine for advanced software and hardware hackers who use MS/DOS, CP/M, PDP-11, or TurboDOS, Concurrent-DOS and Xenix. An important resource for programmers who use C, Turbo Pascal, Forth, Lisp and Assembler. It also covers hardware based on the S-100, PC and AT busses, as well as powerful single board and multi-user systems. Its name — MICRO/SYSTEMS JOURNAL!

Each issue is packed with practical articles... in depth tutorials, reviews, hints... the latest information on SIG/M, PC/Blue, C-User Group and PC-SIG Public Domain Software. Advanced topics such as 16-bit and 32-bit microprocessors, high performance data acquisition systems, interfacing to peripherals, patching application software packages for improved performance, and lots more! Strictly technical info... no fluff... stuff to keep every hacker up-to-date on the ever-changing micro technology.

The only magazine by and for advanced micro users.

Edited by Sol Libes, former editor of Microsystems, former columnist in Byte, PC Tech Journal, PC Week, Computers & Electronics and other magazines and author of 15 books. An authority in the field since the early seventies.

Here are examples of topics covered in recent issues:
- Build an S-100 to PC-Bus Interface
- Loadable Drivers for CP/M
- Structured Programming with Microsoft's M80 Assembler
- Review of Three 16-Bit Lisp & Prolog Packages
- Local Variables in Forth
- Installing ZCPR3
- Build a PC Clone for Under $1,000
- Interfacing to MS-DOS
- Assembly Language Extensions For MS-Basic
- Reviews of Scientific Word Processors, Concurrent DOS and Turbo Pascal Version 3.0

TAKE ADVANTAGE OF SPECIAL LIMITED TIME OFFER.

Offer expires December 31, 1985 so hurry and mail your subscription now.

<table>
<thead>
<tr>
<th></th>
<th>1 YEAR*</th>
<th>1 YEAR (Canada &amp; Mexico)*</th>
<th>2 YEARS**</th>
<th>2 YEARS (Canada &amp; Mexico)**</th>
<th>1 YEAR (other foreign)*</th>
<th>1 YEAR (other foreign)**</th>
<th>2 YEARS (other foreign)**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$20.00</td>
<td>$28.00</td>
<td>$35.00</td>
<td>$52.00</td>
<td>$35.00</td>
<td>$64.00</td>
<td>$64.00</td>
</tr>
</tbody>
</table>

* 6 issues ** 12 issues

Checks must be payable in U.S. funds by a U.S. bank.

Name: ________________________
Address: _______________________
City: ________________________ State: _______ Zip: _______

make check payable to: MICRO/SYSTEMS JOURNAL
Box 1192
Mountainside, NJ 07092
The following back issues are available at $4.50 per copy ($5.50 foreign, cash, Postal Order or U.S. bank check) including shipping. If order 3-9 copies deduct 10%, 10 or more deduct 15%. Orders can be combined with back issues of Microsystems for discount. Send to: M/SJ, Box 1192, Mountainside, NJ 07092.


MAY/JUNE 1985 (Vol 1., No. 2): Build an S-100 to PC-Bus Converter, Interfacing to MS-DOS Part-1, Loadable Drivers for CP/M2.2, Roll Your Own PC-Clone, Bringing Up ZCPR-3, C & Godbout Disk-I Controller, Writing Translation Programs in C and Turbo Pascal; REVIEWS: 16-Bit Lisp & ProLog-Part II.

Microsystems Back Issues

Some of the issues of the old Microsystems magazine are still available in very limited quantities. They are $4 per copy ($5.50 foreign, cash, Postal Order or U.S. bank check) including shipping. If ordering 3-9 copies deduct 10%, 10 or more deduct 15%. Orders can be combined with M/SJ back issues for discount. Send to: M/SJ, Box 1192, Mountainside, NJ 07092.

1984

FEBRUARY: Using WordStar to Create Mailmerge/DBase-II files; Moving data files between CP/M software packages; Datestamp DBase-II; CP/M 2.2 Deblocking; Building S-100 diagnostic hardware; Enhance CP/M+ with RSX; REVIEWS: DBase-II, S-100 Mainframes, DRI Display Manager, AutoDex, Turbo Pascal.

JANUARY: Enhancing MP/M - Part 1; Installing MP/M; Add Concurrency to MP/M; Two Users on CP/M; Relocating Assemblers & Linkage Editors - Part 3; S-100 Wait States; REVIEWS: MP/M-8/16, ProComp-8, Paragraphics Game Board, ProLog.

1983

DECEMBER: CP/M Software Directory; A Debug Subroutine; Implement JOBYTIE on North Star; Floppy Disk Problems; Improve Trig Functions in CBasic-80; Build Cheap S-100 Memory; Extended Memory Management; CP/M-86 BDOS Calls; REVIEWS: XLISP, LISP/80, TLC LISP, APC Basic, Microdynamics S-100 EProm Programmer, Ackerman S-100 Digital Synthetalker, Digital Research 16K & 32K S-100 Memory cards.

NOVEMBER: Intro to 80286, 68000, and 16032 Microprocessors; Intro to Local Area Networks - Part 2; Extended Memory Management for older S-100 Systems; Notes on Microsoft Fortran-80; Building S-100 Parallel Ports; REVIEWS: CompuPro CPU-68K, System 8/16, Xenith Z-100, Nevada & Ellis Computing Fortran.

OCTOBER: Intro to Local Area Networks, Part-1; Build Low-Cost LAN; Build S-100 Bubble Memory Card; Use Radio Shack Model 100 portable with a CP/M system; Write Menu-Driven Utility for Setting Printer Options; North Star Improvement; True Z-80 Random Number Function; Hide Code in Basic REM statements; Machine Code loader for MBasic; Increase Single-Density Disk Formatting; Relocating Assemblers & Linkage Editors, Part-2; Run MX-80 with North Star; User Group Directory; CP/M-86 Versus CP/M-80; REVIEWS: CP/NET, QBAX, S-Basic.

JUNE: Plotting Package Part 1; Drive HP Plotter; Laboratory Graphics Applications; Console Keypressed interrupts; Cutomize Wordprocessor Keyboard; WordStar Patch for H-19/Z-19 Terminal; Relocatable Code; REVIEWS: Graftalk, JES S-100 Graphics Controller, ZCPR2.

1982

NOVEMBER/DECEMBER: CP/M Vs MS/DOS; CP/M-86 Vs MS-DOS; Intro to ADA Part 2; Virtual Disk for NorthStar; CP/M Program Auto-execute; Macros & Macro-Assemblers; REVIEWS: Janus, Aztec-C, C/80, Morrow S-100 M26 Hard Disk System, Teleram S-100 Bubble Memory Card, Jade S-100 Bus Probe.
ADD THE PIC DISC TO YOUR PORTABLE* AND GET DESK TOP COMPUTER PERFORMANCE

SOFTWARE FEATURES:
- Filer — A menu driven LOAD/STORE program for transferring individual files (or total memory) to disc.
- The industry standard CP/M 2.2™ operating system, which provides for access to all popular CP/M based software (including dBASE II™, SuperCalc™, and T/Maker™).
- Modem — Public domain communications package (both terminal and disc file transfer modes).
- Utilities — DISKCOPY, COPY, FORMAT, and CP/M.

Complete System described above — Only $599*

SAVE ON POWERFUL INTEGRATED SOFTWARE — when purchased with PIC DISC:
- T/Maker — an integrated software package that provides:
  - Word Processing
  - Spreadsheet
  - Spelling Checker with a 50,000 word Dictionary
  - Relational Database Manager

Complete System above with T/Maker for $799*

*Does not include Computer, M.C., Visa or check, plus $5 shipping and 6% sales tax. CA residents only.
*Immediately available for the TRS-80 Model 100 (portable must have 32K bytes RAM) and the NEC8201 and OUVEDI OM-10 pending FCC approval.

Call or write: PERSONAL INTEGRATED COMPUTERS (PIC)
18013 SkyPark Circle, Ste. D., Irvine, CA 92714 (714) 261-0503

CLANGUAGE PROGRAMMER’S REFERENCE CARD

A concise comprehensive reference to C language. Saves time and avoids cumbersome manuals. Organized to keep train of thought while programming and enhance productivity. Includes: Data Types, Conversions, Statements, Expressions, Operators, Preprocessor Statements, Constants, examples, utility usage, and lots, lots more.

An 8-1/2" x 11" card, on laminated plastic, printed in two colors, printed both sides. $595-$1 (U.S., Canada & Mexico; foreign $3) Shipping & Handling. Send check (drawn on U.S. bank) or postal order to Micro/Systems Journal, Box 1192, Mountainside NJ 07092.
Micro/Systems Journal will accept Classified Ads. The charge is $6/line (3 lines minimum); 50 characters maximum per line. Three times Frequency $5/line; six times $4/line; non-profit clubs $2/line. Logos, special type, etc., are an extra charge. Check must accompany ad copy. Send to Micro/Systems Journal, POB 1192, Mountainside NJ 07092.

S-100 CARD SALE, JONTEL BUSINESS SYSTEM

FOR SALE: Complete set of Microsystems magazines, January 1980 through November 1984. Will take best offer. Call Jerry Throckmorton (513) 426-8781 or write, 2706 Lillian Lane, Fairborn OH 45324.

WANT S-100 CARDS!

BOARD BANK BUYS 'EM ALL! (Well, almost.) ROM- RAM- CPU- VIDEOGRAPHICS- I/O- AD/DA- FDC- HDC- SPEECH- the uniquer the better! Convert your extras to CASH. Send FULL description, CHEAPEST asking PRICE to S-100 BOARD BANK, Mailorder Dept., M1-Box 344, Olympia WA 98507.


$995 LAP-TOP CP/M MACHINE

NEC 8401A with serial and parallel interfaces, 300b modem built-in, battery powered, and 16 line x 80 col. display. Interface Technology, Inc., Box 3040, Laurel MD 20708, (301)490-3608.


DISK CONVERSION SERVICE

Over 300 CP/M and MS/Dos (PcDos) formats. Originals and copies returned in 48hrs. Reasonable rates. Personal service. For information and list of available formats, write: RH Associates, Box 7035, Silver Spring MD 20907, or call (301)587-6230.

Advertiser Index

2500AD Software .................. 48 & 49
Amanuensis ........................... 68
AndraTech ............................. 43
Applied Innovations .................. 88
Atlaz International ................... 5
Austen Code Works ................... 88
AutoSoft ............................... 5
BD Software ............................ 29
BG Computer Applications ............ 14
BV Engineering ........................ 88
Canada Remote Systems Ltd. .......... 73
Competitive Edge ..................... 24-27
Commercial Systems Corp ............. 45
Computer House ...................... 88
Compu/Time ........................... 54
Computing! ............................ 81
Computing Technology ................. 63
C Users' Group ........................ 88
Dynacomp Computer Systems .......... 83
Dusch Computer Services .............. 83
Earth Computer ........................ 30 & 44
Echelon ............................... 22 & 80
Educational Micro/Computer Systems ... 68
Electronic Control Technology ........ 42
First Capitol Computer ............... 9
Fulcrum Computer Products ........... 63
Gimpel Software ....................... 79
Hawkeye Graphics ...................... 44
Inner Access ........................... 11
Integral Systems ....................... 67
Integrand ............................. 31
Intelligent Computer Design .......... 1
InterContinental Micro ................ C3
I/O Technology ........................ 7
Laboratory Microsystems .............. 91
Lattice ............................... 8
Lifeboat Associates .................... 75
Lomas Data ............................ 39
Macrotech International .............. C2
Martian Technologies .................. 43
Mendocino Software ................... 82
Microcomputer Systems Consultants ... 57
Microdynamics ........................ 44
Micro Methods ........................ 44
Micro/Systems Journal ................ 93
Micro/Systems Journal Renewal ....... 89
Micro/Systems Books ................... 92
Micro/Systems Retailers ................ 29
Microsyscs Back Issues ............... 92 & 93
Mitek .................................. 69
Mix Software ........................... 23
National Public Domain Software ...... 88
New Generation Systems .............. 64
Night Owl .............................. 56
Para Dynamics ........................ 56
Peak Electronics ........................ 82
Performics .............................. 15
Personal Integrated Computer ........ 95
Pickles & Trout ........................ 87
Poor Person Software ................. 65
Port-A-Soft ............................ 65
Programmer's Shop, The .............. 55
Public Domain Software ............... 88
Raine Corp. ............................. 5
Rational Systems ...................... 77
RD Software ............................ 68
R & L MicroServices ................... 88
S.C. Digital ............................ 83
Semidisk Systems ...................... C4
Servo Computer ....................... 37
Sextant ............................... 89
Simplisware Products ................. 74
Silver Computers ...................... 69
SLR Systems ........................... 11
SoftAdvances .......................... 19
Softaid ............................... 82
Softfocus ............................. 82
Southern Pacific ....................... 64
Systems Guild ......................... 74
Tarbell Electronics .................... 14
Teletek ............................... 2
WB Software Development ............. 88
Western Wares ........................ 17
Imagine IBM PCs, intelligent workstations and S-100 BUS multiuser systems all on the same local area network: impossible?

Not with TurboLAN, Intercontinental Micro's networking solution.

The key is a unique hardware and software approach to local area networks.

You get the flexibility of 8-bit and 16-bit processors on the same network, the cost savings of shared peripherals, and expandability to over 4000 users.

You simply organize the network the way you want, mixing IBM PCs, S-100 BUS file servers, and workstations.

Intercontinental's sophisticated single board computers, 8-bit and 16-bit slaves, memory and interface boards make your job even easier.

TurboLAN will work with almost any S-100 BUS system including NORTHSTAR, IMS, Telek, and any other S-100 master featuring phantom deselection or extended addressing capability.

The ability to run PC-DOS, MS-DOS, CP/M, MP/M, and other applications programs means whatever the future holds, TurboLAN is ready.

And so is Intercontinental Micro.

You see, our S-100 BUS products revolutionized an industry. Intercontinental's slaves, masters and memory boards introduced advanced features like Direct Memory Access and Memory Management to micro environments. TurboLAN™ the new networking solution from the company that's been building networking solutions for years.

Still think TurboLAN's impossible?

Then call, write or circle the bingo number below—we'll send you complete information on TurboLAN and descriptions of all our products, including the most complete S-100 BUS product line in the business.

Our Complete TurboLAN and S-100 BUS Product Line

**CPS-8MX** - 8-BIT SLAVE PROCESSORS
4 to 6 MHz processors, 64K RAM or 128K bank selectable memory, two serial ports, 24 line parallel I/O port.

**256KMB** - MEMORY BOARD.
Hard disk cache, linear addressable to two megabytes, bank selectable in 16K increments, configures for phantom deselection, parity error detection.

**LANS-100** - TURBOLAN FOR S-100 BUS SYSTEMS
ARCNET controller meets 696.2/D2S-100 spec, coax cable interface, 255 nodes per network segment, 2.5 megabit/sec. data rate.

**LANPC** - TURBOLAN FOR THE IBM PC
Plug-in expansion ArcNet board. Custom software drivers integrates IBM PC into TurboLAN networks. 64K or 256K RAM options available.

**WSBOX** - DISKLESS WORKSTATION
Converts almost any dumb terminal into intelligent workstation with networking capability. Floppy and hard disk options available.

**PERSONALITY BOARDS**
SASI, Centronix, PRIAM, Clock/Calendar, RS232, Modem, RS422, long distance serial communications (up to 4000 Ft.)

Intercontinental Micro Systems

TurboDOS is a Trademark of Software 2000, Inc. ARCNet is a Trademark of Datapoint. CP/M, MP/M, and other applications programs means whatever the future holds, TurboLAN is ready.

And so is Intercontinental Micro.

You see, our S-100 BUS products revolutionized an industry. Intercontinental's slaves, masters and memory boards introduced advanced features like Direct Memory Access and Memory Management to micro environments. TurboLAN™ the new networking solution from the company that's been building networking solutions for years.

Still think TurboLAN's impossible?

Then call, write or circle the bingo number below—we'll send you complete information on TurboLAN and descriptions of all our products, including the most complete S-100 BUS product line in the business.

Our Complete TurboLAN and S-100 BUS Product Line

**CPS-8MX** - 8-BIT SLAVE PROCESSORS
4 to 6 MHz processors, 64K RAM or 128K bank selectable memory, two serial ports, 24 line parallel I/O port.

**256KMB** - MEMORY BOARD.
Hard disk cache, linear addressable to two megabytes, bank selectable in 16K increments, configures for phantom deselection, parity error detection.

**LANS-100** - TURBOLAN FOR S-100 BUS SYSTEMS
ARCNET controller meets 696.2/D2S-100 spec, coax cable interface, 255 nodes per network segment, 2.5 megabit/sec. data rate.

**LANPC** - TURBOLAN FOR THE IBM PC
Plug-in expansion ArcNet board. Custom software drivers integrates IBM PC into TurboLAN networks. 64K or 256K RAM options available.

**WSBOX** - DISKLESS WORKSTATION
Converts almost any dumb terminal into intelligent workstation with networking capability. Floppy and hard disk options available.

**PERSONALITY BOARDS**
SASI, Centronix, PRIAM, Clock/Calendar, RS232, Modem, RS422, long distance serial communications (up to 4000 Ft.)

Intercontinental Micro Systems

TurboDOS is a Trademark of Software 2000, Inc. ARCNet is a Trademark of Datapoint. CP/M, MP/M, and other applications programs means whatever the future holds, TurboLAN is ready.

And so is Intercontinental Micro.

You see, our S-100 BUS products revolutionized an industry. Intercontinental's slaves, masters and memory boards introduced advanced features like Direct Memory Access and Memory Management to micro environments. TurboLAN™ the new networking solution from the company that's been building networking solutions for years.
We've just done something we know you'll like. We've made
the SemiDisk far more affordable than ever before. With price
cuts over 25% for most of our product line. Even our new 2
megabyte units are included.

COMPARE WITH THE OTHERS.
SemiDisk Systems builds fast disk emulators for more
microcomputers than anyone else, S-100, IBM-PC, Epson QX-10,
TRS-80 Models II, 12, and 16. Up to 2 megabytes per board,
standard. Up to 8 megabytes per computer, using only four bus
slots, max! Software drivers are available for CP/M 80, MS-DOS,
ZDOS, TurboDOS, VALDOCS 2, and Cromix. SemiDisk turns
good computers into great computers.

GREAT NEWS FOR IBM PC AT USERS.
New MS-DOS 3.0 software drives take full advantage of the
80286’s expanded instruction set, moving data four times faster
than can be done on PC or XT.

BATTERY BACKUP, TOO.
At 0.7 amps per 2 megabytes, SemiDisk consumes far less
power than the competition. And you don't have to worry if the
lights go out. The battery backup option gives you 5-10 hours of
data protection during a blackout. Nobody else has this
important feature. Why risk valuable data?

IT'S EXPANDABLE TO 8 MEGABYTES.
You can start with as little as 512K bytes, and later upgrade to
2 megabytes per board. At your own pace, as your needs expand.
In an IBM PC, XT, and AT you can have multiple drives on a
single system. And the SemiDisk gives you mainframe
performance on the top of your desk.

AND THE BEST NEWS IS SAVED FOR LAST:

<table>
<thead>
<tr>
<th></th>
<th>512K</th>
<th>1Mbyte</th>
<th>2Mbyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemiDisk I, S-100</td>
<td>$695</td>
<td>$1395</td>
<td>$1995</td>
</tr>
<tr>
<td>SemiDisk II, S-100</td>
<td>$995</td>
<td>$1795</td>
<td>$1995</td>
</tr>
<tr>
<td>IBM PC, XT, AT</td>
<td>$695</td>
<td>$1795</td>
<td>$1795</td>
</tr>
<tr>
<td>QX-10</td>
<td>$595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRS-80 II, 12, 16</td>
<td>$695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery Backup Unit</td>
<td>$150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SemiDisk Systems, Inc.
P.O. Box 66, Beaverton, Oregon 97005
503-642-3100

Call 503-646-5510 for CBBS/NW, 503-775-4558 for CBBS/PCS, and 503-649-8527 for CBBS/Aloha. all SemiDisk-equipped computer bulletin boards